drm/i915: make intel_crtc_fb_gamma_{set, get} static
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 static void intel_increase_pllclock(struct drm_crtc *crtc);
45 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54
55
56 typedef struct {
57 int min, max;
58 } intel_range_t;
59
60 typedef struct {
61 int dot_limit;
62 int p2_slow, p2_fast;
63 } intel_p2_t;
64
65 typedef struct intel_limit intel_limit_t;
66 struct intel_limit {
67 intel_range_t dot, vco, n, m, m1, m2, p, p1;
68 intel_p2_t p2;
69 };
70
71 int
72 intel_pch_rawclk(struct drm_device *dev)
73 {
74 struct drm_i915_private *dev_priv = dev->dev_private;
75
76 WARN_ON(!HAS_PCH_SPLIT(dev));
77
78 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79 }
80
81 static inline u32 /* units of 100MHz */
82 intel_fdi_link_freq(struct drm_device *dev)
83 {
84 if (IS_GEN5(dev)) {
85 struct drm_i915_private *dev_priv = dev->dev_private;
86 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87 } else
88 return 27;
89 }
90
91 static const intel_limit_t intel_limits_i8xx_dac = {
92 .dot = { .min = 25000, .max = 350000 },
93 .vco = { .min = 930000, .max = 1400000 },
94 .n = { .min = 3, .max = 16 },
95 .m = { .min = 96, .max = 140 },
96 .m1 = { .min = 18, .max = 26 },
97 .m2 = { .min = 6, .max = 16 },
98 .p = { .min = 4, .max = 128 },
99 .p1 = { .min = 2, .max = 33 },
100 .p2 = { .dot_limit = 165000,
101 .p2_slow = 4, .p2_fast = 2 },
102 };
103
104 static const intel_limit_t intel_limits_i8xx_dvo = {
105 .dot = { .min = 25000, .max = 350000 },
106 .vco = { .min = 930000, .max = 1400000 },
107 .n = { .min = 3, .max = 16 },
108 .m = { .min = 96, .max = 140 },
109 .m1 = { .min = 18, .max = 26 },
110 .m2 = { .min = 6, .max = 16 },
111 .p = { .min = 4, .max = 128 },
112 .p1 = { .min = 2, .max = 33 },
113 .p2 = { .dot_limit = 165000,
114 .p2_slow = 4, .p2_fast = 4 },
115 };
116
117 static const intel_limit_t intel_limits_i8xx_lvds = {
118 .dot = { .min = 25000, .max = 350000 },
119 .vco = { .min = 930000, .max = 1400000 },
120 .n = { .min = 3, .max = 16 },
121 .m = { .min = 96, .max = 140 },
122 .m1 = { .min = 18, .max = 26 },
123 .m2 = { .min = 6, .max = 16 },
124 .p = { .min = 4, .max = 128 },
125 .p1 = { .min = 1, .max = 6 },
126 .p2 = { .dot_limit = 165000,
127 .p2_slow = 14, .p2_fast = 7 },
128 };
129
130 static const intel_limit_t intel_limits_i9xx_sdvo = {
131 .dot = { .min = 20000, .max = 400000 },
132 .vco = { .min = 1400000, .max = 2800000 },
133 .n = { .min = 1, .max = 6 },
134 .m = { .min = 70, .max = 120 },
135 .m1 = { .min = 8, .max = 18 },
136 .m2 = { .min = 3, .max = 7 },
137 .p = { .min = 5, .max = 80 },
138 .p1 = { .min = 1, .max = 8 },
139 .p2 = { .dot_limit = 200000,
140 .p2_slow = 10, .p2_fast = 5 },
141 };
142
143 static const intel_limit_t intel_limits_i9xx_lvds = {
144 .dot = { .min = 20000, .max = 400000 },
145 .vco = { .min = 1400000, .max = 2800000 },
146 .n = { .min = 1, .max = 6 },
147 .m = { .min = 70, .max = 120 },
148 .m1 = { .min = 8, .max = 18 },
149 .m2 = { .min = 3, .max = 7 },
150 .p = { .min = 7, .max = 98 },
151 .p1 = { .min = 1, .max = 8 },
152 .p2 = { .dot_limit = 112000,
153 .p2_slow = 14, .p2_fast = 7 },
154 };
155
156
157 static const intel_limit_t intel_limits_g4x_sdvo = {
158 .dot = { .min = 25000, .max = 270000 },
159 .vco = { .min = 1750000, .max = 3500000},
160 .n = { .min = 1, .max = 4 },
161 .m = { .min = 104, .max = 138 },
162 .m1 = { .min = 17, .max = 23 },
163 .m2 = { .min = 5, .max = 11 },
164 .p = { .min = 10, .max = 30 },
165 .p1 = { .min = 1, .max = 3},
166 .p2 = { .dot_limit = 270000,
167 .p2_slow = 10,
168 .p2_fast = 10
169 },
170 };
171
172 static const intel_limit_t intel_limits_g4x_hdmi = {
173 .dot = { .min = 22000, .max = 400000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 16, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 5, .max = 80 },
180 .p1 = { .min = 1, .max = 8},
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 10, .p2_fast = 5 },
183 };
184
185 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186 .dot = { .min = 20000, .max = 115000 },
187 .vco = { .min = 1750000, .max = 3500000 },
188 .n = { .min = 1, .max = 3 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 17, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 28, .max = 112 },
193 .p1 = { .min = 2, .max = 8 },
194 .p2 = { .dot_limit = 0,
195 .p2_slow = 14, .p2_fast = 14
196 },
197 };
198
199 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200 .dot = { .min = 80000, .max = 224000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 14, .max = 42 },
207 .p1 = { .min = 2, .max = 6 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 7, .p2_fast = 7
210 },
211 };
212
213 static const intel_limit_t intel_limits_pineview_sdvo = {
214 .dot = { .min = 20000, .max = 400000},
215 .vco = { .min = 1700000, .max = 3500000 },
216 /* Pineview's Ncounter is a ring counter */
217 .n = { .min = 3, .max = 6 },
218 .m = { .min = 2, .max = 256 },
219 /* Pineview only has one combined m divider, which we treat as m2. */
220 .m1 = { .min = 0, .max = 0 },
221 .m2 = { .min = 0, .max = 254 },
222 .p = { .min = 5, .max = 80 },
223 .p1 = { .min = 1, .max = 8 },
224 .p2 = { .dot_limit = 200000,
225 .p2_slow = 10, .p2_fast = 5 },
226 };
227
228 static const intel_limit_t intel_limits_pineview_lvds = {
229 .dot = { .min = 20000, .max = 400000 },
230 .vco = { .min = 1700000, .max = 3500000 },
231 .n = { .min = 3, .max = 6 },
232 .m = { .min = 2, .max = 256 },
233 .m1 = { .min = 0, .max = 0 },
234 .m2 = { .min = 0, .max = 254 },
235 .p = { .min = 7, .max = 112 },
236 .p1 = { .min = 1, .max = 8 },
237 .p2 = { .dot_limit = 112000,
238 .p2_slow = 14, .p2_fast = 14 },
239 };
240
241 /* Ironlake / Sandybridge
242 *
243 * We calculate clock using (register_value + 2) for N/M1/M2, so here
244 * the range value for them is (actual_value - 2).
245 */
246 static const intel_limit_t intel_limits_ironlake_dac = {
247 .dot = { .min = 25000, .max = 350000 },
248 .vco = { .min = 1760000, .max = 3510000 },
249 .n = { .min = 1, .max = 5 },
250 .m = { .min = 79, .max = 127 },
251 .m1 = { .min = 12, .max = 22 },
252 .m2 = { .min = 5, .max = 9 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 225000,
256 .p2_slow = 10, .p2_fast = 5 },
257 };
258
259 static const intel_limit_t intel_limits_ironlake_single_lvds = {
260 .dot = { .min = 25000, .max = 350000 },
261 .vco = { .min = 1760000, .max = 3510000 },
262 .n = { .min = 1, .max = 3 },
263 .m = { .min = 79, .max = 118 },
264 .m1 = { .min = 12, .max = 22 },
265 .m2 = { .min = 5, .max = 9 },
266 .p = { .min = 28, .max = 112 },
267 .p1 = { .min = 2, .max = 8 },
268 .p2 = { .dot_limit = 225000,
269 .p2_slow = 14, .p2_fast = 14 },
270 };
271
272 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 3 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 14, .max = 56 },
280 .p1 = { .min = 2, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 7, .p2_fast = 7 },
283 };
284
285 /* LVDS 100mhz refclk limits. */
286 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 2 },
290 .m = { .min = 79, .max = 126 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 126 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 42 },
307 .p1 = { .min = 2, .max = 6 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310 };
311
312 static const intel_limit_t intel_limits_vlv_dac = {
313 .dot = { .min = 25000, .max = 270000 },
314 .vco = { .min = 4000000, .max = 6000000 },
315 .n = { .min = 1, .max = 7 },
316 .m = { .min = 22, .max = 450 }, /* guess */
317 .m1 = { .min = 2, .max = 3 },
318 .m2 = { .min = 11, .max = 156 },
319 .p = { .min = 10, .max = 30 },
320 .p1 = { .min = 1, .max = 3 },
321 .p2 = { .dot_limit = 270000,
322 .p2_slow = 2, .p2_fast = 20 },
323 };
324
325 static const intel_limit_t intel_limits_vlv_hdmi = {
326 .dot = { .min = 25000, .max = 270000 },
327 .vco = { .min = 4000000, .max = 6000000 },
328 .n = { .min = 1, .max = 7 },
329 .m = { .min = 60, .max = 300 }, /* guess */
330 .m1 = { .min = 2, .max = 3 },
331 .m2 = { .min = 11, .max = 156 },
332 .p = { .min = 10, .max = 30 },
333 .p1 = { .min = 2, .max = 3 },
334 .p2 = { .dot_limit = 270000,
335 .p2_slow = 2, .p2_fast = 20 },
336 };
337
338 /**
339 * Returns whether any output on the specified pipe is of the specified type
340 */
341 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
342 {
343 struct drm_device *dev = crtc->dev;
344 struct intel_encoder *encoder;
345
346 for_each_encoder_on_crtc(dev, crtc, encoder)
347 if (encoder->type == type)
348 return true;
349
350 return false;
351 }
352
353 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
354 int refclk)
355 {
356 struct drm_device *dev = crtc->dev;
357 const intel_limit_t *limit;
358
359 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
360 if (intel_is_dual_link_lvds(dev)) {
361 if (refclk == 100000)
362 limit = &intel_limits_ironlake_dual_lvds_100m;
363 else
364 limit = &intel_limits_ironlake_dual_lvds;
365 } else {
366 if (refclk == 100000)
367 limit = &intel_limits_ironlake_single_lvds_100m;
368 else
369 limit = &intel_limits_ironlake_single_lvds;
370 }
371 } else
372 limit = &intel_limits_ironlake_dac;
373
374 return limit;
375 }
376
377 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
378 {
379 struct drm_device *dev = crtc->dev;
380 const intel_limit_t *limit;
381
382 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
383 if (intel_is_dual_link_lvds(dev))
384 limit = &intel_limits_g4x_dual_channel_lvds;
385 else
386 limit = &intel_limits_g4x_single_channel_lvds;
387 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
388 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
389 limit = &intel_limits_g4x_hdmi;
390 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
391 limit = &intel_limits_g4x_sdvo;
392 } else /* The option is for other outputs */
393 limit = &intel_limits_i9xx_sdvo;
394
395 return limit;
396 }
397
398 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
399 {
400 struct drm_device *dev = crtc->dev;
401 const intel_limit_t *limit;
402
403 if (HAS_PCH_SPLIT(dev))
404 limit = intel_ironlake_limit(crtc, refclk);
405 else if (IS_G4X(dev)) {
406 limit = intel_g4x_limit(crtc);
407 } else if (IS_PINEVIEW(dev)) {
408 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
409 limit = &intel_limits_pineview_lvds;
410 else
411 limit = &intel_limits_pineview_sdvo;
412 } else if (IS_VALLEYVIEW(dev)) {
413 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
414 limit = &intel_limits_vlv_dac;
415 else
416 limit = &intel_limits_vlv_hdmi;
417 } else if (!IS_GEN2(dev)) {
418 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419 limit = &intel_limits_i9xx_lvds;
420 else
421 limit = &intel_limits_i9xx_sdvo;
422 } else {
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
424 limit = &intel_limits_i8xx_lvds;
425 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
426 limit = &intel_limits_i8xx_dvo;
427 else
428 limit = &intel_limits_i8xx_dac;
429 }
430 return limit;
431 }
432
433 /* m1 is reserved as 0 in Pineview, n is a ring counter */
434 static void pineview_clock(int refclk, intel_clock_t *clock)
435 {
436 clock->m = clock->m2 + 2;
437 clock->p = clock->p1 * clock->p2;
438 clock->vco = refclk * clock->m / clock->n;
439 clock->dot = clock->vco / clock->p;
440 }
441
442 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
443 {
444 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
445 }
446
447 static void i9xx_clock(int refclk, intel_clock_t *clock)
448 {
449 clock->m = i9xx_dpll_compute_m(clock);
450 clock->p = clock->p1 * clock->p2;
451 clock->vco = refclk * clock->m / (clock->n + 2);
452 clock->dot = clock->vco / clock->p;
453 }
454
455 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
456 /**
457 * Returns whether the given set of divisors are valid for a given refclk with
458 * the given connectors.
459 */
460
461 static bool intel_PLL_is_valid(struct drm_device *dev,
462 const intel_limit_t *limit,
463 const intel_clock_t *clock)
464 {
465 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
466 INTELPllInvalid("p1 out of range\n");
467 if (clock->p < limit->p.min || limit->p.max < clock->p)
468 INTELPllInvalid("p out of range\n");
469 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
470 INTELPllInvalid("m2 out of range\n");
471 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
472 INTELPllInvalid("m1 out of range\n");
473 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
474 INTELPllInvalid("m1 <= m2\n");
475 if (clock->m < limit->m.min || limit->m.max < clock->m)
476 INTELPllInvalid("m out of range\n");
477 if (clock->n < limit->n.min || limit->n.max < clock->n)
478 INTELPllInvalid("n out of range\n");
479 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
480 INTELPllInvalid("vco out of range\n");
481 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
482 * connector, etc., rather than just a single range.
483 */
484 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
485 INTELPllInvalid("dot out of range\n");
486
487 return true;
488 }
489
490 static bool
491 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
492 int target, int refclk, intel_clock_t *match_clock,
493 intel_clock_t *best_clock)
494 {
495 struct drm_device *dev = crtc->dev;
496 intel_clock_t clock;
497 int err = target;
498
499 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
500 /*
501 * For LVDS just rely on its current settings for dual-channel.
502 * We haven't figured out how to reliably set up different
503 * single/dual channel state, if we even can.
504 */
505 if (intel_is_dual_link_lvds(dev))
506 clock.p2 = limit->p2.p2_fast;
507 else
508 clock.p2 = limit->p2.p2_slow;
509 } else {
510 if (target < limit->p2.dot_limit)
511 clock.p2 = limit->p2.p2_slow;
512 else
513 clock.p2 = limit->p2.p2_fast;
514 }
515
516 memset(best_clock, 0, sizeof(*best_clock));
517
518 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
519 clock.m1++) {
520 for (clock.m2 = limit->m2.min;
521 clock.m2 <= limit->m2.max; clock.m2++) {
522 if (clock.m2 >= clock.m1)
523 break;
524 for (clock.n = limit->n.min;
525 clock.n <= limit->n.max; clock.n++) {
526 for (clock.p1 = limit->p1.min;
527 clock.p1 <= limit->p1.max; clock.p1++) {
528 int this_err;
529
530 i9xx_clock(refclk, &clock);
531 if (!intel_PLL_is_valid(dev, limit,
532 &clock))
533 continue;
534 if (match_clock &&
535 clock.p != match_clock->p)
536 continue;
537
538 this_err = abs(clock.dot - target);
539 if (this_err < err) {
540 *best_clock = clock;
541 err = this_err;
542 }
543 }
544 }
545 }
546 }
547
548 return (err != target);
549 }
550
551 static bool
552 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
553 int target, int refclk, intel_clock_t *match_clock,
554 intel_clock_t *best_clock)
555 {
556 struct drm_device *dev = crtc->dev;
557 intel_clock_t clock;
558 int err = target;
559
560 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
561 /*
562 * For LVDS just rely on its current settings for dual-channel.
563 * We haven't figured out how to reliably set up different
564 * single/dual channel state, if we even can.
565 */
566 if (intel_is_dual_link_lvds(dev))
567 clock.p2 = limit->p2.p2_fast;
568 else
569 clock.p2 = limit->p2.p2_slow;
570 } else {
571 if (target < limit->p2.dot_limit)
572 clock.p2 = limit->p2.p2_slow;
573 else
574 clock.p2 = limit->p2.p2_fast;
575 }
576
577 memset(best_clock, 0, sizeof(*best_clock));
578
579 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
580 clock.m1++) {
581 for (clock.m2 = limit->m2.min;
582 clock.m2 <= limit->m2.max; clock.m2++) {
583 for (clock.n = limit->n.min;
584 clock.n <= limit->n.max; clock.n++) {
585 for (clock.p1 = limit->p1.min;
586 clock.p1 <= limit->p1.max; clock.p1++) {
587 int this_err;
588
589 pineview_clock(refclk, &clock);
590 if (!intel_PLL_is_valid(dev, limit,
591 &clock))
592 continue;
593 if (match_clock &&
594 clock.p != match_clock->p)
595 continue;
596
597 this_err = abs(clock.dot - target);
598 if (this_err < err) {
599 *best_clock = clock;
600 err = this_err;
601 }
602 }
603 }
604 }
605 }
606
607 return (err != target);
608 }
609
610 static bool
611 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
612 int target, int refclk, intel_clock_t *match_clock,
613 intel_clock_t *best_clock)
614 {
615 struct drm_device *dev = crtc->dev;
616 intel_clock_t clock;
617 int max_n;
618 bool found;
619 /* approximately equals target * 0.00585 */
620 int err_most = (target >> 8) + (target >> 9);
621 found = false;
622
623 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
624 if (intel_is_dual_link_lvds(dev))
625 clock.p2 = limit->p2.p2_fast;
626 else
627 clock.p2 = limit->p2.p2_slow;
628 } else {
629 if (target < limit->p2.dot_limit)
630 clock.p2 = limit->p2.p2_slow;
631 else
632 clock.p2 = limit->p2.p2_fast;
633 }
634
635 memset(best_clock, 0, sizeof(*best_clock));
636 max_n = limit->n.max;
637 /* based on hardware requirement, prefer smaller n to precision */
638 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
639 /* based on hardware requirement, prefere larger m1,m2 */
640 for (clock.m1 = limit->m1.max;
641 clock.m1 >= limit->m1.min; clock.m1--) {
642 for (clock.m2 = limit->m2.max;
643 clock.m2 >= limit->m2.min; clock.m2--) {
644 for (clock.p1 = limit->p1.max;
645 clock.p1 >= limit->p1.min; clock.p1--) {
646 int this_err;
647
648 i9xx_clock(refclk, &clock);
649 if (!intel_PLL_is_valid(dev, limit,
650 &clock))
651 continue;
652
653 this_err = abs(clock.dot - target);
654 if (this_err < err_most) {
655 *best_clock = clock;
656 err_most = this_err;
657 max_n = clock.n;
658 found = true;
659 }
660 }
661 }
662 }
663 }
664 return found;
665 }
666
667 static bool
668 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
669 int target, int refclk, intel_clock_t *match_clock,
670 intel_clock_t *best_clock)
671 {
672 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
673 u32 m, n, fastclk;
674 u32 updrate, minupdate, p;
675 unsigned long bestppm, ppm, absppm;
676 int dotclk, flag;
677
678 flag = 0;
679 dotclk = target * 1000;
680 bestppm = 1000000;
681 ppm = absppm = 0;
682 fastclk = dotclk / (2*100);
683 updrate = 0;
684 minupdate = 19200;
685 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
686 bestm1 = bestm2 = bestp1 = bestp2 = 0;
687
688 /* based on hardware requirement, prefer smaller n to precision */
689 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
690 updrate = refclk / n;
691 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
692 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
693 if (p2 > 10)
694 p2 = p2 - 1;
695 p = p1 * p2;
696 /* based on hardware requirement, prefer bigger m1,m2 values */
697 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
698 m2 = (((2*(fastclk * p * n / m1 )) +
699 refclk) / (2*refclk));
700 m = m1 * m2;
701 vco = updrate * m;
702 if (vco >= limit->vco.min && vco < limit->vco.max) {
703 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
704 absppm = (ppm > 0) ? ppm : (-ppm);
705 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
706 bestppm = 0;
707 flag = 1;
708 }
709 if (absppm < bestppm - 10) {
710 bestppm = absppm;
711 flag = 1;
712 }
713 if (flag) {
714 bestn = n;
715 bestm1 = m1;
716 bestm2 = m2;
717 bestp1 = p1;
718 bestp2 = p2;
719 flag = 0;
720 }
721 }
722 }
723 }
724 }
725 }
726 best_clock->n = bestn;
727 best_clock->m1 = bestm1;
728 best_clock->m2 = bestm2;
729 best_clock->p1 = bestp1;
730 best_clock->p2 = bestp2;
731
732 return true;
733 }
734
735 bool intel_crtc_active(struct drm_crtc *crtc)
736 {
737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
738
739 /* Be paranoid as we can arrive here with only partial
740 * state retrieved from the hardware during setup.
741 *
742 * We can ditch the adjusted_mode.clock check as soon
743 * as Haswell has gained clock readout/fastboot support.
744 *
745 * We can ditch the crtc->fb check as soon as we can
746 * properly reconstruct framebuffers.
747 */
748 return intel_crtc->active && crtc->fb &&
749 intel_crtc->config.adjusted_mode.clock;
750 }
751
752 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
753 enum pipe pipe)
754 {
755 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
757
758 return intel_crtc->config.cpu_transcoder;
759 }
760
761 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
762 {
763 struct drm_i915_private *dev_priv = dev->dev_private;
764 u32 frame, frame_reg = PIPEFRAME(pipe);
765
766 frame = I915_READ(frame_reg);
767
768 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
769 DRM_DEBUG_KMS("vblank wait timed out\n");
770 }
771
772 /**
773 * intel_wait_for_vblank - wait for vblank on a given pipe
774 * @dev: drm device
775 * @pipe: pipe to wait for
776 *
777 * Wait for vblank to occur on a given pipe. Needed for various bits of
778 * mode setting code.
779 */
780 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
781 {
782 struct drm_i915_private *dev_priv = dev->dev_private;
783 int pipestat_reg = PIPESTAT(pipe);
784
785 if (INTEL_INFO(dev)->gen >= 5) {
786 ironlake_wait_for_vblank(dev, pipe);
787 return;
788 }
789
790 /* Clear existing vblank status. Note this will clear any other
791 * sticky status fields as well.
792 *
793 * This races with i915_driver_irq_handler() with the result
794 * that either function could miss a vblank event. Here it is not
795 * fatal, as we will either wait upon the next vblank interrupt or
796 * timeout. Generally speaking intel_wait_for_vblank() is only
797 * called during modeset at which time the GPU should be idle and
798 * should *not* be performing page flips and thus not waiting on
799 * vblanks...
800 * Currently, the result of us stealing a vblank from the irq
801 * handler is that a single frame will be skipped during swapbuffers.
802 */
803 I915_WRITE(pipestat_reg,
804 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
805
806 /* Wait for vblank interrupt bit to set */
807 if (wait_for(I915_READ(pipestat_reg) &
808 PIPE_VBLANK_INTERRUPT_STATUS,
809 50))
810 DRM_DEBUG_KMS("vblank wait timed out\n");
811 }
812
813 /*
814 * intel_wait_for_pipe_off - wait for pipe to turn off
815 * @dev: drm device
816 * @pipe: pipe to wait for
817 *
818 * After disabling a pipe, we can't wait for vblank in the usual way,
819 * spinning on the vblank interrupt status bit, since we won't actually
820 * see an interrupt when the pipe is disabled.
821 *
822 * On Gen4 and above:
823 * wait for the pipe register state bit to turn off
824 *
825 * Otherwise:
826 * wait for the display line value to settle (it usually
827 * ends up stopping at the start of the next frame).
828 *
829 */
830 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
831 {
832 struct drm_i915_private *dev_priv = dev->dev_private;
833 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
834 pipe);
835
836 if (INTEL_INFO(dev)->gen >= 4) {
837 int reg = PIPECONF(cpu_transcoder);
838
839 /* Wait for the Pipe State to go off */
840 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
841 100))
842 WARN(1, "pipe_off wait timed out\n");
843 } else {
844 u32 last_line, line_mask;
845 int reg = PIPEDSL(pipe);
846 unsigned long timeout = jiffies + msecs_to_jiffies(100);
847
848 if (IS_GEN2(dev))
849 line_mask = DSL_LINEMASK_GEN2;
850 else
851 line_mask = DSL_LINEMASK_GEN3;
852
853 /* Wait for the display line to settle */
854 do {
855 last_line = I915_READ(reg) & line_mask;
856 mdelay(5);
857 } while (((I915_READ(reg) & line_mask) != last_line) &&
858 time_after(timeout, jiffies));
859 if (time_after(jiffies, timeout))
860 WARN(1, "pipe_off wait timed out\n");
861 }
862 }
863
864 /*
865 * ibx_digital_port_connected - is the specified port connected?
866 * @dev_priv: i915 private structure
867 * @port: the port to test
868 *
869 * Returns true if @port is connected, false otherwise.
870 */
871 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
872 struct intel_digital_port *port)
873 {
874 u32 bit;
875
876 if (HAS_PCH_IBX(dev_priv->dev)) {
877 switch(port->port) {
878 case PORT_B:
879 bit = SDE_PORTB_HOTPLUG;
880 break;
881 case PORT_C:
882 bit = SDE_PORTC_HOTPLUG;
883 break;
884 case PORT_D:
885 bit = SDE_PORTD_HOTPLUG;
886 break;
887 default:
888 return true;
889 }
890 } else {
891 switch(port->port) {
892 case PORT_B:
893 bit = SDE_PORTB_HOTPLUG_CPT;
894 break;
895 case PORT_C:
896 bit = SDE_PORTC_HOTPLUG_CPT;
897 break;
898 case PORT_D:
899 bit = SDE_PORTD_HOTPLUG_CPT;
900 break;
901 default:
902 return true;
903 }
904 }
905
906 return I915_READ(SDEISR) & bit;
907 }
908
909 static const char *state_string(bool enabled)
910 {
911 return enabled ? "on" : "off";
912 }
913
914 /* Only for pre-ILK configs */
915 void assert_pll(struct drm_i915_private *dev_priv,
916 enum pipe pipe, bool state)
917 {
918 int reg;
919 u32 val;
920 bool cur_state;
921
922 reg = DPLL(pipe);
923 val = I915_READ(reg);
924 cur_state = !!(val & DPLL_VCO_ENABLE);
925 WARN(cur_state != state,
926 "PLL state assertion failure (expected %s, current %s)\n",
927 state_string(state), state_string(cur_state));
928 }
929
930 /* XXX: the dsi pll is shared between MIPI DSI ports */
931 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
932 {
933 u32 val;
934 bool cur_state;
935
936 mutex_lock(&dev_priv->dpio_lock);
937 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
938 mutex_unlock(&dev_priv->dpio_lock);
939
940 cur_state = val & DSI_PLL_VCO_EN;
941 WARN(cur_state != state,
942 "DSI PLL state assertion failure (expected %s, current %s)\n",
943 state_string(state), state_string(cur_state));
944 }
945 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
946 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
947
948 struct intel_shared_dpll *
949 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
950 {
951 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
952
953 if (crtc->config.shared_dpll < 0)
954 return NULL;
955
956 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
957 }
958
959 /* For ILK+ */
960 void assert_shared_dpll(struct drm_i915_private *dev_priv,
961 struct intel_shared_dpll *pll,
962 bool state)
963 {
964 bool cur_state;
965 struct intel_dpll_hw_state hw_state;
966
967 if (HAS_PCH_LPT(dev_priv->dev)) {
968 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
969 return;
970 }
971
972 if (WARN (!pll,
973 "asserting DPLL %s with no DPLL\n", state_string(state)))
974 return;
975
976 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
977 WARN(cur_state != state,
978 "%s assertion failure (expected %s, current %s)\n",
979 pll->name, state_string(state), state_string(cur_state));
980 }
981
982 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
983 enum pipe pipe, bool state)
984 {
985 int reg;
986 u32 val;
987 bool cur_state;
988 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
989 pipe);
990
991 if (HAS_DDI(dev_priv->dev)) {
992 /* DDI does not have a specific FDI_TX register */
993 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
994 val = I915_READ(reg);
995 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
996 } else {
997 reg = FDI_TX_CTL(pipe);
998 val = I915_READ(reg);
999 cur_state = !!(val & FDI_TX_ENABLE);
1000 }
1001 WARN(cur_state != state,
1002 "FDI TX state assertion failure (expected %s, current %s)\n",
1003 state_string(state), state_string(cur_state));
1004 }
1005 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1006 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1007
1008 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1009 enum pipe pipe, bool state)
1010 {
1011 int reg;
1012 u32 val;
1013 bool cur_state;
1014
1015 reg = FDI_RX_CTL(pipe);
1016 val = I915_READ(reg);
1017 cur_state = !!(val & FDI_RX_ENABLE);
1018 WARN(cur_state != state,
1019 "FDI RX state assertion failure (expected %s, current %s)\n",
1020 state_string(state), state_string(cur_state));
1021 }
1022 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1023 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1024
1025 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1026 enum pipe pipe)
1027 {
1028 int reg;
1029 u32 val;
1030
1031 /* ILK FDI PLL is always enabled */
1032 if (dev_priv->info->gen == 5)
1033 return;
1034
1035 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1036 if (HAS_DDI(dev_priv->dev))
1037 return;
1038
1039 reg = FDI_TX_CTL(pipe);
1040 val = I915_READ(reg);
1041 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1042 }
1043
1044 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1045 enum pipe pipe, bool state)
1046 {
1047 int reg;
1048 u32 val;
1049 bool cur_state;
1050
1051 reg = FDI_RX_CTL(pipe);
1052 val = I915_READ(reg);
1053 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1054 WARN(cur_state != state,
1055 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1056 state_string(state), state_string(cur_state));
1057 }
1058
1059 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1060 enum pipe pipe)
1061 {
1062 int pp_reg, lvds_reg;
1063 u32 val;
1064 enum pipe panel_pipe = PIPE_A;
1065 bool locked = true;
1066
1067 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1068 pp_reg = PCH_PP_CONTROL;
1069 lvds_reg = PCH_LVDS;
1070 } else {
1071 pp_reg = PP_CONTROL;
1072 lvds_reg = LVDS;
1073 }
1074
1075 val = I915_READ(pp_reg);
1076 if (!(val & PANEL_POWER_ON) ||
1077 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1078 locked = false;
1079
1080 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1081 panel_pipe = PIPE_B;
1082
1083 WARN(panel_pipe == pipe && locked,
1084 "panel assertion failure, pipe %c regs locked\n",
1085 pipe_name(pipe));
1086 }
1087
1088 static void assert_cursor(struct drm_i915_private *dev_priv,
1089 enum pipe pipe, bool state)
1090 {
1091 struct drm_device *dev = dev_priv->dev;
1092 bool cur_state;
1093
1094 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1095 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1096 else if (IS_845G(dev) || IS_I865G(dev))
1097 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1098 else
1099 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1100
1101 WARN(cur_state != state,
1102 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1103 pipe_name(pipe), state_string(state), state_string(cur_state));
1104 }
1105 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1106 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1107
1108 void assert_pipe(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1110 {
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1114 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1115 pipe);
1116
1117 /* if we need the pipe A quirk it must be always on */
1118 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1119 state = true;
1120
1121 if (!intel_display_power_enabled(dev_priv->dev,
1122 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1123 cur_state = false;
1124 } else {
1125 reg = PIPECONF(cpu_transcoder);
1126 val = I915_READ(reg);
1127 cur_state = !!(val & PIPECONF_ENABLE);
1128 }
1129
1130 WARN(cur_state != state,
1131 "pipe %c assertion failure (expected %s, current %s)\n",
1132 pipe_name(pipe), state_string(state), state_string(cur_state));
1133 }
1134
1135 static void assert_plane(struct drm_i915_private *dev_priv,
1136 enum plane plane, bool state)
1137 {
1138 int reg;
1139 u32 val;
1140 bool cur_state;
1141
1142 reg = DSPCNTR(plane);
1143 val = I915_READ(reg);
1144 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1145 WARN(cur_state != state,
1146 "plane %c assertion failure (expected %s, current %s)\n",
1147 plane_name(plane), state_string(state), state_string(cur_state));
1148 }
1149
1150 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1151 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1152
1153 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1154 enum pipe pipe)
1155 {
1156 struct drm_device *dev = dev_priv->dev;
1157 int reg, i;
1158 u32 val;
1159 int cur_pipe;
1160
1161 /* Primary planes are fixed to pipes on gen4+ */
1162 if (INTEL_INFO(dev)->gen >= 4) {
1163 reg = DSPCNTR(pipe);
1164 val = I915_READ(reg);
1165 WARN((val & DISPLAY_PLANE_ENABLE),
1166 "plane %c assertion failure, should be disabled but not\n",
1167 plane_name(pipe));
1168 return;
1169 }
1170
1171 /* Need to check both planes against the pipe */
1172 for_each_pipe(i) {
1173 reg = DSPCNTR(i);
1174 val = I915_READ(reg);
1175 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1176 DISPPLANE_SEL_PIPE_SHIFT;
1177 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1178 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1179 plane_name(i), pipe_name(pipe));
1180 }
1181 }
1182
1183 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1184 enum pipe pipe)
1185 {
1186 struct drm_device *dev = dev_priv->dev;
1187 int reg, i;
1188 u32 val;
1189
1190 if (IS_VALLEYVIEW(dev)) {
1191 for (i = 0; i < dev_priv->num_plane; i++) {
1192 reg = SPCNTR(pipe, i);
1193 val = I915_READ(reg);
1194 WARN((val & SP_ENABLE),
1195 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1196 sprite_name(pipe, i), pipe_name(pipe));
1197 }
1198 } else if (INTEL_INFO(dev)->gen >= 7) {
1199 reg = SPRCTL(pipe);
1200 val = I915_READ(reg);
1201 WARN((val & SPRITE_ENABLE),
1202 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1203 plane_name(pipe), pipe_name(pipe));
1204 } else if (INTEL_INFO(dev)->gen >= 5) {
1205 reg = DVSCNTR(pipe);
1206 val = I915_READ(reg);
1207 WARN((val & DVS_ENABLE),
1208 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1209 plane_name(pipe), pipe_name(pipe));
1210 }
1211 }
1212
1213 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1214 {
1215 u32 val;
1216 bool enabled;
1217
1218 if (HAS_PCH_LPT(dev_priv->dev)) {
1219 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1220 return;
1221 }
1222
1223 val = I915_READ(PCH_DREF_CONTROL);
1224 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1225 DREF_SUPERSPREAD_SOURCE_MASK));
1226 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1227 }
1228
1229 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1230 enum pipe pipe)
1231 {
1232 int reg;
1233 u32 val;
1234 bool enabled;
1235
1236 reg = PCH_TRANSCONF(pipe);
1237 val = I915_READ(reg);
1238 enabled = !!(val & TRANS_ENABLE);
1239 WARN(enabled,
1240 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1241 pipe_name(pipe));
1242 }
1243
1244 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1245 enum pipe pipe, u32 port_sel, u32 val)
1246 {
1247 if ((val & DP_PORT_EN) == 0)
1248 return false;
1249
1250 if (HAS_PCH_CPT(dev_priv->dev)) {
1251 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1252 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1253 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1254 return false;
1255 } else {
1256 if ((val & DP_PIPE_MASK) != (pipe << 30))
1257 return false;
1258 }
1259 return true;
1260 }
1261
1262 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe, u32 val)
1264 {
1265 if ((val & SDVO_ENABLE) == 0)
1266 return false;
1267
1268 if (HAS_PCH_CPT(dev_priv->dev)) {
1269 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1270 return false;
1271 } else {
1272 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1273 return false;
1274 }
1275 return true;
1276 }
1277
1278 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1279 enum pipe pipe, u32 val)
1280 {
1281 if ((val & LVDS_PORT_EN) == 0)
1282 return false;
1283
1284 if (HAS_PCH_CPT(dev_priv->dev)) {
1285 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1286 return false;
1287 } else {
1288 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1289 return false;
1290 }
1291 return true;
1292 }
1293
1294 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe, u32 val)
1296 {
1297 if ((val & ADPA_DAC_ENABLE) == 0)
1298 return false;
1299 if (HAS_PCH_CPT(dev_priv->dev)) {
1300 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1301 return false;
1302 } else {
1303 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1304 return false;
1305 }
1306 return true;
1307 }
1308
1309 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1310 enum pipe pipe, int reg, u32 port_sel)
1311 {
1312 u32 val = I915_READ(reg);
1313 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1314 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1315 reg, pipe_name(pipe));
1316
1317 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1318 && (val & DP_PIPEB_SELECT),
1319 "IBX PCH dp port still using transcoder B\n");
1320 }
1321
1322 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1323 enum pipe pipe, int reg)
1324 {
1325 u32 val = I915_READ(reg);
1326 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1327 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1328 reg, pipe_name(pipe));
1329
1330 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1331 && (val & SDVO_PIPE_B_SELECT),
1332 "IBX PCH hdmi port still using transcoder B\n");
1333 }
1334
1335 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1336 enum pipe pipe)
1337 {
1338 int reg;
1339 u32 val;
1340
1341 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1342 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1343 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1344
1345 reg = PCH_ADPA;
1346 val = I915_READ(reg);
1347 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1348 "PCH VGA enabled on transcoder %c, should be disabled\n",
1349 pipe_name(pipe));
1350
1351 reg = PCH_LVDS;
1352 val = I915_READ(reg);
1353 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1354 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1355 pipe_name(pipe));
1356
1357 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1358 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1359 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1360 }
1361
1362 static void vlv_enable_pll(struct intel_crtc *crtc)
1363 {
1364 struct drm_device *dev = crtc->base.dev;
1365 struct drm_i915_private *dev_priv = dev->dev_private;
1366 int reg = DPLL(crtc->pipe);
1367 u32 dpll = crtc->config.dpll_hw_state.dpll;
1368
1369 assert_pipe_disabled(dev_priv, crtc->pipe);
1370
1371 /* No really, not for ILK+ */
1372 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1373
1374 /* PLL is protected by panel, make sure we can write it */
1375 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1376 assert_panel_unlocked(dev_priv, crtc->pipe);
1377
1378 I915_WRITE(reg, dpll);
1379 POSTING_READ(reg);
1380 udelay(150);
1381
1382 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1383 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1384
1385 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1386 POSTING_READ(DPLL_MD(crtc->pipe));
1387
1388 /* We do this three times for luck */
1389 I915_WRITE(reg, dpll);
1390 POSTING_READ(reg);
1391 udelay(150); /* wait for warmup */
1392 I915_WRITE(reg, dpll);
1393 POSTING_READ(reg);
1394 udelay(150); /* wait for warmup */
1395 I915_WRITE(reg, dpll);
1396 POSTING_READ(reg);
1397 udelay(150); /* wait for warmup */
1398 }
1399
1400 static void i9xx_enable_pll(struct intel_crtc *crtc)
1401 {
1402 struct drm_device *dev = crtc->base.dev;
1403 struct drm_i915_private *dev_priv = dev->dev_private;
1404 int reg = DPLL(crtc->pipe);
1405 u32 dpll = crtc->config.dpll_hw_state.dpll;
1406
1407 assert_pipe_disabled(dev_priv, crtc->pipe);
1408
1409 /* No really, not for ILK+ */
1410 BUG_ON(dev_priv->info->gen >= 5);
1411
1412 /* PLL is protected by panel, make sure we can write it */
1413 if (IS_MOBILE(dev) && !IS_I830(dev))
1414 assert_panel_unlocked(dev_priv, crtc->pipe);
1415
1416 I915_WRITE(reg, dpll);
1417
1418 /* Wait for the clocks to stabilize. */
1419 POSTING_READ(reg);
1420 udelay(150);
1421
1422 if (INTEL_INFO(dev)->gen >= 4) {
1423 I915_WRITE(DPLL_MD(crtc->pipe),
1424 crtc->config.dpll_hw_state.dpll_md);
1425 } else {
1426 /* The pixel multiplier can only be updated once the
1427 * DPLL is enabled and the clocks are stable.
1428 *
1429 * So write it again.
1430 */
1431 I915_WRITE(reg, dpll);
1432 }
1433
1434 /* We do this three times for luck */
1435 I915_WRITE(reg, dpll);
1436 POSTING_READ(reg);
1437 udelay(150); /* wait for warmup */
1438 I915_WRITE(reg, dpll);
1439 POSTING_READ(reg);
1440 udelay(150); /* wait for warmup */
1441 I915_WRITE(reg, dpll);
1442 POSTING_READ(reg);
1443 udelay(150); /* wait for warmup */
1444 }
1445
1446 /**
1447 * i9xx_disable_pll - disable a PLL
1448 * @dev_priv: i915 private structure
1449 * @pipe: pipe PLL to disable
1450 *
1451 * Disable the PLL for @pipe, making sure the pipe is off first.
1452 *
1453 * Note! This is for pre-ILK only.
1454 */
1455 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1456 {
1457 /* Don't disable pipe A or pipe A PLLs if needed */
1458 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1459 return;
1460
1461 /* Make sure the pipe isn't still relying on us */
1462 assert_pipe_disabled(dev_priv, pipe);
1463
1464 I915_WRITE(DPLL(pipe), 0);
1465 POSTING_READ(DPLL(pipe));
1466 }
1467
1468 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1469 {
1470 u32 port_mask;
1471
1472 if (!port)
1473 port_mask = DPLL_PORTB_READY_MASK;
1474 else
1475 port_mask = DPLL_PORTC_READY_MASK;
1476
1477 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1478 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1479 'B' + port, I915_READ(DPLL(0)));
1480 }
1481
1482 /**
1483 * ironlake_enable_shared_dpll - enable PCH PLL
1484 * @dev_priv: i915 private structure
1485 * @pipe: pipe PLL to enable
1486 *
1487 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1488 * drives the transcoder clock.
1489 */
1490 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1491 {
1492 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1493 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1494
1495 /* PCH PLLs only available on ILK, SNB and IVB */
1496 BUG_ON(dev_priv->info->gen < 5);
1497 if (WARN_ON(pll == NULL))
1498 return;
1499
1500 if (WARN_ON(pll->refcount == 0))
1501 return;
1502
1503 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1504 pll->name, pll->active, pll->on,
1505 crtc->base.base.id);
1506
1507 if (pll->active++) {
1508 WARN_ON(!pll->on);
1509 assert_shared_dpll_enabled(dev_priv, pll);
1510 return;
1511 }
1512 WARN_ON(pll->on);
1513
1514 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1515 pll->enable(dev_priv, pll);
1516 pll->on = true;
1517 }
1518
1519 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1520 {
1521 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524 /* PCH only available on ILK+ */
1525 BUG_ON(dev_priv->info->gen < 5);
1526 if (WARN_ON(pll == NULL))
1527 return;
1528
1529 if (WARN_ON(pll->refcount == 0))
1530 return;
1531
1532 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1533 pll->name, pll->active, pll->on,
1534 crtc->base.base.id);
1535
1536 if (WARN_ON(pll->active == 0)) {
1537 assert_shared_dpll_disabled(dev_priv, pll);
1538 return;
1539 }
1540
1541 assert_shared_dpll_enabled(dev_priv, pll);
1542 WARN_ON(!pll->on);
1543 if (--pll->active)
1544 return;
1545
1546 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1547 pll->disable(dev_priv, pll);
1548 pll->on = false;
1549 }
1550
1551 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1552 enum pipe pipe)
1553 {
1554 struct drm_device *dev = dev_priv->dev;
1555 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1557 uint32_t reg, val, pipeconf_val;
1558
1559 /* PCH only available on ILK+ */
1560 BUG_ON(dev_priv->info->gen < 5);
1561
1562 /* Make sure PCH DPLL is enabled */
1563 assert_shared_dpll_enabled(dev_priv,
1564 intel_crtc_to_shared_dpll(intel_crtc));
1565
1566 /* FDI must be feeding us bits for PCH ports */
1567 assert_fdi_tx_enabled(dev_priv, pipe);
1568 assert_fdi_rx_enabled(dev_priv, pipe);
1569
1570 if (HAS_PCH_CPT(dev)) {
1571 /* Workaround: Set the timing override bit before enabling the
1572 * pch transcoder. */
1573 reg = TRANS_CHICKEN2(pipe);
1574 val = I915_READ(reg);
1575 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1576 I915_WRITE(reg, val);
1577 }
1578
1579 reg = PCH_TRANSCONF(pipe);
1580 val = I915_READ(reg);
1581 pipeconf_val = I915_READ(PIPECONF(pipe));
1582
1583 if (HAS_PCH_IBX(dev_priv->dev)) {
1584 /*
1585 * make the BPC in transcoder be consistent with
1586 * that in pipeconf reg.
1587 */
1588 val &= ~PIPECONF_BPC_MASK;
1589 val |= pipeconf_val & PIPECONF_BPC_MASK;
1590 }
1591
1592 val &= ~TRANS_INTERLACE_MASK;
1593 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1594 if (HAS_PCH_IBX(dev_priv->dev) &&
1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1596 val |= TRANS_LEGACY_INTERLACED_ILK;
1597 else
1598 val |= TRANS_INTERLACED;
1599 else
1600 val |= TRANS_PROGRESSIVE;
1601
1602 I915_WRITE(reg, val | TRANS_ENABLE);
1603 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1604 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1605 }
1606
1607 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1608 enum transcoder cpu_transcoder)
1609 {
1610 u32 val, pipeconf_val;
1611
1612 /* PCH only available on ILK+ */
1613 BUG_ON(dev_priv->info->gen < 5);
1614
1615 /* FDI must be feeding us bits for PCH ports */
1616 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1617 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1618
1619 /* Workaround: set timing override bit. */
1620 val = I915_READ(_TRANSA_CHICKEN2);
1621 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1622 I915_WRITE(_TRANSA_CHICKEN2, val);
1623
1624 val = TRANS_ENABLE;
1625 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1626
1627 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1628 PIPECONF_INTERLACED_ILK)
1629 val |= TRANS_INTERLACED;
1630 else
1631 val |= TRANS_PROGRESSIVE;
1632
1633 I915_WRITE(LPT_TRANSCONF, val);
1634 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1635 DRM_ERROR("Failed to enable PCH transcoder\n");
1636 }
1637
1638 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1639 enum pipe pipe)
1640 {
1641 struct drm_device *dev = dev_priv->dev;
1642 uint32_t reg, val;
1643
1644 /* FDI relies on the transcoder */
1645 assert_fdi_tx_disabled(dev_priv, pipe);
1646 assert_fdi_rx_disabled(dev_priv, pipe);
1647
1648 /* Ports must be off as well */
1649 assert_pch_ports_disabled(dev_priv, pipe);
1650
1651 reg = PCH_TRANSCONF(pipe);
1652 val = I915_READ(reg);
1653 val &= ~TRANS_ENABLE;
1654 I915_WRITE(reg, val);
1655 /* wait for PCH transcoder off, transcoder state */
1656 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1657 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1658
1659 if (!HAS_PCH_IBX(dev)) {
1660 /* Workaround: Clear the timing override chicken bit again. */
1661 reg = TRANS_CHICKEN2(pipe);
1662 val = I915_READ(reg);
1663 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1664 I915_WRITE(reg, val);
1665 }
1666 }
1667
1668 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1669 {
1670 u32 val;
1671
1672 val = I915_READ(LPT_TRANSCONF);
1673 val &= ~TRANS_ENABLE;
1674 I915_WRITE(LPT_TRANSCONF, val);
1675 /* wait for PCH transcoder off, transcoder state */
1676 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1677 DRM_ERROR("Failed to disable PCH transcoder\n");
1678
1679 /* Workaround: clear timing override bit. */
1680 val = I915_READ(_TRANSA_CHICKEN2);
1681 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1682 I915_WRITE(_TRANSA_CHICKEN2, val);
1683 }
1684
1685 /**
1686 * intel_enable_pipe - enable a pipe, asserting requirements
1687 * @dev_priv: i915 private structure
1688 * @pipe: pipe to enable
1689 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1690 *
1691 * Enable @pipe, making sure that various hardware specific requirements
1692 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1693 *
1694 * @pipe should be %PIPE_A or %PIPE_B.
1695 *
1696 * Will wait until the pipe is actually running (i.e. first vblank) before
1697 * returning.
1698 */
1699 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1700 bool pch_port, bool dsi)
1701 {
1702 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1703 pipe);
1704 enum pipe pch_transcoder;
1705 int reg;
1706 u32 val;
1707
1708 assert_planes_disabled(dev_priv, pipe);
1709 assert_cursor_disabled(dev_priv, pipe);
1710 assert_sprites_disabled(dev_priv, pipe);
1711
1712 if (HAS_PCH_LPT(dev_priv->dev))
1713 pch_transcoder = TRANSCODER_A;
1714 else
1715 pch_transcoder = pipe;
1716
1717 /*
1718 * A pipe without a PLL won't actually be able to drive bits from
1719 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1720 * need the check.
1721 */
1722 if (!HAS_PCH_SPLIT(dev_priv->dev))
1723 if (dsi)
1724 assert_dsi_pll_enabled(dev_priv);
1725 else
1726 assert_pll_enabled(dev_priv, pipe);
1727 else {
1728 if (pch_port) {
1729 /* if driving the PCH, we need FDI enabled */
1730 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1731 assert_fdi_tx_pll_enabled(dev_priv,
1732 (enum pipe) cpu_transcoder);
1733 }
1734 /* FIXME: assert CPU port conditions for SNB+ */
1735 }
1736
1737 reg = PIPECONF(cpu_transcoder);
1738 val = I915_READ(reg);
1739 if (val & PIPECONF_ENABLE)
1740 return;
1741
1742 I915_WRITE(reg, val | PIPECONF_ENABLE);
1743 intel_wait_for_vblank(dev_priv->dev, pipe);
1744 }
1745
1746 /**
1747 * intel_disable_pipe - disable a pipe, asserting requirements
1748 * @dev_priv: i915 private structure
1749 * @pipe: pipe to disable
1750 *
1751 * Disable @pipe, making sure that various hardware specific requirements
1752 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1753 *
1754 * @pipe should be %PIPE_A or %PIPE_B.
1755 *
1756 * Will wait until the pipe has shut down before returning.
1757 */
1758 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1759 enum pipe pipe)
1760 {
1761 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1762 pipe);
1763 int reg;
1764 u32 val;
1765
1766 /*
1767 * Make sure planes won't keep trying to pump pixels to us,
1768 * or we might hang the display.
1769 */
1770 assert_planes_disabled(dev_priv, pipe);
1771 assert_cursor_disabled(dev_priv, pipe);
1772 assert_sprites_disabled(dev_priv, pipe);
1773
1774 /* Don't disable pipe A or pipe A PLLs if needed */
1775 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1776 return;
1777
1778 reg = PIPECONF(cpu_transcoder);
1779 val = I915_READ(reg);
1780 if ((val & PIPECONF_ENABLE) == 0)
1781 return;
1782
1783 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1784 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1785 }
1786
1787 /*
1788 * Plane regs are double buffered, going from enabled->disabled needs a
1789 * trigger in order to latch. The display address reg provides this.
1790 */
1791 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1792 enum plane plane)
1793 {
1794 if (dev_priv->info->gen >= 4)
1795 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1796 else
1797 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1798 }
1799
1800 /**
1801 * intel_enable_plane - enable a display plane on a given pipe
1802 * @dev_priv: i915 private structure
1803 * @plane: plane to enable
1804 * @pipe: pipe being fed
1805 *
1806 * Enable @plane on @pipe, making sure that @pipe is running first.
1807 */
1808 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1809 enum plane plane, enum pipe pipe)
1810 {
1811 int reg;
1812 u32 val;
1813
1814 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1815 assert_pipe_enabled(dev_priv, pipe);
1816
1817 reg = DSPCNTR(plane);
1818 val = I915_READ(reg);
1819 if (val & DISPLAY_PLANE_ENABLE)
1820 return;
1821
1822 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1823 intel_flush_display_plane(dev_priv, plane);
1824 intel_wait_for_vblank(dev_priv->dev, pipe);
1825 }
1826
1827 /**
1828 * intel_disable_plane - disable a display plane
1829 * @dev_priv: i915 private structure
1830 * @plane: plane to disable
1831 * @pipe: pipe consuming the data
1832 *
1833 * Disable @plane; should be an independent operation.
1834 */
1835 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1836 enum plane plane, enum pipe pipe)
1837 {
1838 int reg;
1839 u32 val;
1840
1841 reg = DSPCNTR(plane);
1842 val = I915_READ(reg);
1843 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1844 return;
1845
1846 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1847 intel_flush_display_plane(dev_priv, plane);
1848 intel_wait_for_vblank(dev_priv->dev, pipe);
1849 }
1850
1851 static bool need_vtd_wa(struct drm_device *dev)
1852 {
1853 #ifdef CONFIG_INTEL_IOMMU
1854 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1855 return true;
1856 #endif
1857 return false;
1858 }
1859
1860 int
1861 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1862 struct drm_i915_gem_object *obj,
1863 struct intel_ring_buffer *pipelined)
1864 {
1865 struct drm_i915_private *dev_priv = dev->dev_private;
1866 u32 alignment;
1867 int ret;
1868
1869 switch (obj->tiling_mode) {
1870 case I915_TILING_NONE:
1871 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1872 alignment = 128 * 1024;
1873 else if (INTEL_INFO(dev)->gen >= 4)
1874 alignment = 4 * 1024;
1875 else
1876 alignment = 64 * 1024;
1877 break;
1878 case I915_TILING_X:
1879 /* pin() will align the object as required by fence */
1880 alignment = 0;
1881 break;
1882 case I915_TILING_Y:
1883 /* Despite that we check this in framebuffer_init userspace can
1884 * screw us over and change the tiling after the fact. Only
1885 * pinned buffers can't change their tiling. */
1886 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1887 return -EINVAL;
1888 default:
1889 BUG();
1890 }
1891
1892 /* Note that the w/a also requires 64 PTE of padding following the
1893 * bo. We currently fill all unused PTE with the shadow page and so
1894 * we should always have valid PTE following the scanout preventing
1895 * the VT-d warning.
1896 */
1897 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1898 alignment = 256 * 1024;
1899
1900 dev_priv->mm.interruptible = false;
1901 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1902 if (ret)
1903 goto err_interruptible;
1904
1905 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1906 * fence, whereas 965+ only requires a fence if using
1907 * framebuffer compression. For simplicity, we always install
1908 * a fence as the cost is not that onerous.
1909 */
1910 ret = i915_gem_object_get_fence(obj);
1911 if (ret)
1912 goto err_unpin;
1913
1914 i915_gem_object_pin_fence(obj);
1915
1916 dev_priv->mm.interruptible = true;
1917 return 0;
1918
1919 err_unpin:
1920 i915_gem_object_unpin_from_display_plane(obj);
1921 err_interruptible:
1922 dev_priv->mm.interruptible = true;
1923 return ret;
1924 }
1925
1926 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1927 {
1928 i915_gem_object_unpin_fence(obj);
1929 i915_gem_object_unpin_from_display_plane(obj);
1930 }
1931
1932 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1933 * is assumed to be a power-of-two. */
1934 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1935 unsigned int tiling_mode,
1936 unsigned int cpp,
1937 unsigned int pitch)
1938 {
1939 if (tiling_mode != I915_TILING_NONE) {
1940 unsigned int tile_rows, tiles;
1941
1942 tile_rows = *y / 8;
1943 *y %= 8;
1944
1945 tiles = *x / (512/cpp);
1946 *x %= 512/cpp;
1947
1948 return tile_rows * pitch * 8 + tiles * 4096;
1949 } else {
1950 unsigned int offset;
1951
1952 offset = *y * pitch + *x * cpp;
1953 *y = 0;
1954 *x = (offset & 4095) / cpp;
1955 return offset & -4096;
1956 }
1957 }
1958
1959 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1960 int x, int y)
1961 {
1962 struct drm_device *dev = crtc->dev;
1963 struct drm_i915_private *dev_priv = dev->dev_private;
1964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1965 struct intel_framebuffer *intel_fb;
1966 struct drm_i915_gem_object *obj;
1967 int plane = intel_crtc->plane;
1968 unsigned long linear_offset;
1969 u32 dspcntr;
1970 u32 reg;
1971
1972 switch (plane) {
1973 case 0:
1974 case 1:
1975 break;
1976 default:
1977 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1978 return -EINVAL;
1979 }
1980
1981 intel_fb = to_intel_framebuffer(fb);
1982 obj = intel_fb->obj;
1983
1984 reg = DSPCNTR(plane);
1985 dspcntr = I915_READ(reg);
1986 /* Mask out pixel format bits in case we change it */
1987 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1988 switch (fb->pixel_format) {
1989 case DRM_FORMAT_C8:
1990 dspcntr |= DISPPLANE_8BPP;
1991 break;
1992 case DRM_FORMAT_XRGB1555:
1993 case DRM_FORMAT_ARGB1555:
1994 dspcntr |= DISPPLANE_BGRX555;
1995 break;
1996 case DRM_FORMAT_RGB565:
1997 dspcntr |= DISPPLANE_BGRX565;
1998 break;
1999 case DRM_FORMAT_XRGB8888:
2000 case DRM_FORMAT_ARGB8888:
2001 dspcntr |= DISPPLANE_BGRX888;
2002 break;
2003 case DRM_FORMAT_XBGR8888:
2004 case DRM_FORMAT_ABGR8888:
2005 dspcntr |= DISPPLANE_RGBX888;
2006 break;
2007 case DRM_FORMAT_XRGB2101010:
2008 case DRM_FORMAT_ARGB2101010:
2009 dspcntr |= DISPPLANE_BGRX101010;
2010 break;
2011 case DRM_FORMAT_XBGR2101010:
2012 case DRM_FORMAT_ABGR2101010:
2013 dspcntr |= DISPPLANE_RGBX101010;
2014 break;
2015 default:
2016 BUG();
2017 }
2018
2019 if (INTEL_INFO(dev)->gen >= 4) {
2020 if (obj->tiling_mode != I915_TILING_NONE)
2021 dspcntr |= DISPPLANE_TILED;
2022 else
2023 dspcntr &= ~DISPPLANE_TILED;
2024 }
2025
2026 if (IS_G4X(dev))
2027 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2028
2029 I915_WRITE(reg, dspcntr);
2030
2031 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2032
2033 if (INTEL_INFO(dev)->gen >= 4) {
2034 intel_crtc->dspaddr_offset =
2035 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2036 fb->bits_per_pixel / 8,
2037 fb->pitches[0]);
2038 linear_offset -= intel_crtc->dspaddr_offset;
2039 } else {
2040 intel_crtc->dspaddr_offset = linear_offset;
2041 }
2042
2043 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2044 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2045 fb->pitches[0]);
2046 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2047 if (INTEL_INFO(dev)->gen >= 4) {
2048 I915_MODIFY_DISPBASE(DSPSURF(plane),
2049 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2050 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2051 I915_WRITE(DSPLINOFF(plane), linear_offset);
2052 } else
2053 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2054 POSTING_READ(reg);
2055
2056 return 0;
2057 }
2058
2059 static int ironlake_update_plane(struct drm_crtc *crtc,
2060 struct drm_framebuffer *fb, int x, int y)
2061 {
2062 struct drm_device *dev = crtc->dev;
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2065 struct intel_framebuffer *intel_fb;
2066 struct drm_i915_gem_object *obj;
2067 int plane = intel_crtc->plane;
2068 unsigned long linear_offset;
2069 u32 dspcntr;
2070 u32 reg;
2071
2072 switch (plane) {
2073 case 0:
2074 case 1:
2075 case 2:
2076 break;
2077 default:
2078 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2079 return -EINVAL;
2080 }
2081
2082 intel_fb = to_intel_framebuffer(fb);
2083 obj = intel_fb->obj;
2084
2085 reg = DSPCNTR(plane);
2086 dspcntr = I915_READ(reg);
2087 /* Mask out pixel format bits in case we change it */
2088 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2089 switch (fb->pixel_format) {
2090 case DRM_FORMAT_C8:
2091 dspcntr |= DISPPLANE_8BPP;
2092 break;
2093 case DRM_FORMAT_RGB565:
2094 dspcntr |= DISPPLANE_BGRX565;
2095 break;
2096 case DRM_FORMAT_XRGB8888:
2097 case DRM_FORMAT_ARGB8888:
2098 dspcntr |= DISPPLANE_BGRX888;
2099 break;
2100 case DRM_FORMAT_XBGR8888:
2101 case DRM_FORMAT_ABGR8888:
2102 dspcntr |= DISPPLANE_RGBX888;
2103 break;
2104 case DRM_FORMAT_XRGB2101010:
2105 case DRM_FORMAT_ARGB2101010:
2106 dspcntr |= DISPPLANE_BGRX101010;
2107 break;
2108 case DRM_FORMAT_XBGR2101010:
2109 case DRM_FORMAT_ABGR2101010:
2110 dspcntr |= DISPPLANE_RGBX101010;
2111 break;
2112 default:
2113 BUG();
2114 }
2115
2116 if (obj->tiling_mode != I915_TILING_NONE)
2117 dspcntr |= DISPPLANE_TILED;
2118 else
2119 dspcntr &= ~DISPPLANE_TILED;
2120
2121 if (IS_HASWELL(dev))
2122 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2123 else
2124 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2125
2126 I915_WRITE(reg, dspcntr);
2127
2128 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2129 intel_crtc->dspaddr_offset =
2130 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2131 fb->bits_per_pixel / 8,
2132 fb->pitches[0]);
2133 linear_offset -= intel_crtc->dspaddr_offset;
2134
2135 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2136 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2137 fb->pitches[0]);
2138 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2139 I915_MODIFY_DISPBASE(DSPSURF(plane),
2140 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2141 if (IS_HASWELL(dev)) {
2142 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2143 } else {
2144 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2145 I915_WRITE(DSPLINOFF(plane), linear_offset);
2146 }
2147 POSTING_READ(reg);
2148
2149 return 0;
2150 }
2151
2152 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2153 static int
2154 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2155 int x, int y, enum mode_set_atomic state)
2156 {
2157 struct drm_device *dev = crtc->dev;
2158 struct drm_i915_private *dev_priv = dev->dev_private;
2159
2160 if (dev_priv->display.disable_fbc)
2161 dev_priv->display.disable_fbc(dev);
2162 intel_increase_pllclock(crtc);
2163
2164 return dev_priv->display.update_plane(crtc, fb, x, y);
2165 }
2166
2167 void intel_display_handle_reset(struct drm_device *dev)
2168 {
2169 struct drm_i915_private *dev_priv = dev->dev_private;
2170 struct drm_crtc *crtc;
2171
2172 /*
2173 * Flips in the rings have been nuked by the reset,
2174 * so complete all pending flips so that user space
2175 * will get its events and not get stuck.
2176 *
2177 * Also update the base address of all primary
2178 * planes to the the last fb to make sure we're
2179 * showing the correct fb after a reset.
2180 *
2181 * Need to make two loops over the crtcs so that we
2182 * don't try to grab a crtc mutex before the
2183 * pending_flip_queue really got woken up.
2184 */
2185
2186 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188 enum plane plane = intel_crtc->plane;
2189
2190 intel_prepare_page_flip(dev, plane);
2191 intel_finish_page_flip_plane(dev, plane);
2192 }
2193
2194 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2196
2197 mutex_lock(&crtc->mutex);
2198 if (intel_crtc->active)
2199 dev_priv->display.update_plane(crtc, crtc->fb,
2200 crtc->x, crtc->y);
2201 mutex_unlock(&crtc->mutex);
2202 }
2203 }
2204
2205 static int
2206 intel_finish_fb(struct drm_framebuffer *old_fb)
2207 {
2208 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2209 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2210 bool was_interruptible = dev_priv->mm.interruptible;
2211 int ret;
2212
2213 /* Big Hammer, we also need to ensure that any pending
2214 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2215 * current scanout is retired before unpinning the old
2216 * framebuffer.
2217 *
2218 * This should only fail upon a hung GPU, in which case we
2219 * can safely continue.
2220 */
2221 dev_priv->mm.interruptible = false;
2222 ret = i915_gem_object_finish_gpu(obj);
2223 dev_priv->mm.interruptible = was_interruptible;
2224
2225 return ret;
2226 }
2227
2228 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2229 {
2230 struct drm_device *dev = crtc->dev;
2231 struct drm_i915_master_private *master_priv;
2232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2233
2234 if (!dev->primary->master)
2235 return;
2236
2237 master_priv = dev->primary->master->driver_priv;
2238 if (!master_priv->sarea_priv)
2239 return;
2240
2241 switch (intel_crtc->pipe) {
2242 case 0:
2243 master_priv->sarea_priv->pipeA_x = x;
2244 master_priv->sarea_priv->pipeA_y = y;
2245 break;
2246 case 1:
2247 master_priv->sarea_priv->pipeB_x = x;
2248 master_priv->sarea_priv->pipeB_y = y;
2249 break;
2250 default:
2251 break;
2252 }
2253 }
2254
2255 static int
2256 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2257 struct drm_framebuffer *fb)
2258 {
2259 struct drm_device *dev = crtc->dev;
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2262 struct drm_framebuffer *old_fb;
2263 int ret;
2264
2265 /* no fb bound */
2266 if (!fb) {
2267 DRM_ERROR("No FB bound\n");
2268 return 0;
2269 }
2270
2271 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2272 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2273 plane_name(intel_crtc->plane),
2274 INTEL_INFO(dev)->num_pipes);
2275 return -EINVAL;
2276 }
2277
2278 mutex_lock(&dev->struct_mutex);
2279 ret = intel_pin_and_fence_fb_obj(dev,
2280 to_intel_framebuffer(fb)->obj,
2281 NULL);
2282 if (ret != 0) {
2283 mutex_unlock(&dev->struct_mutex);
2284 DRM_ERROR("pin & fence failed\n");
2285 return ret;
2286 }
2287
2288 /* Update pipe size and adjust fitter if needed */
2289 if (i915_fastboot) {
2290 I915_WRITE(PIPESRC(intel_crtc->pipe),
2291 ((crtc->mode.hdisplay - 1) << 16) |
2292 (crtc->mode.vdisplay - 1));
2293 if (!intel_crtc->config.pch_pfit.enabled &&
2294 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2295 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2296 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2297 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2298 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2299 }
2300 }
2301
2302 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2303 if (ret) {
2304 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2305 mutex_unlock(&dev->struct_mutex);
2306 DRM_ERROR("failed to update base address\n");
2307 return ret;
2308 }
2309
2310 old_fb = crtc->fb;
2311 crtc->fb = fb;
2312 crtc->x = x;
2313 crtc->y = y;
2314
2315 if (old_fb) {
2316 if (intel_crtc->active && old_fb != fb)
2317 intel_wait_for_vblank(dev, intel_crtc->pipe);
2318 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2319 }
2320
2321 intel_update_fbc(dev);
2322 intel_edp_psr_update(dev);
2323 mutex_unlock(&dev->struct_mutex);
2324
2325 intel_crtc_update_sarea_pos(crtc, x, y);
2326
2327 return 0;
2328 }
2329
2330 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2331 {
2332 struct drm_device *dev = crtc->dev;
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335 int pipe = intel_crtc->pipe;
2336 u32 reg, temp;
2337
2338 /* enable normal train */
2339 reg = FDI_TX_CTL(pipe);
2340 temp = I915_READ(reg);
2341 if (IS_IVYBRIDGE(dev)) {
2342 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2343 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2344 } else {
2345 temp &= ~FDI_LINK_TRAIN_NONE;
2346 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2347 }
2348 I915_WRITE(reg, temp);
2349
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
2352 if (HAS_PCH_CPT(dev)) {
2353 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2354 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2355 } else {
2356 temp &= ~FDI_LINK_TRAIN_NONE;
2357 temp |= FDI_LINK_TRAIN_NONE;
2358 }
2359 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2360
2361 /* wait one idle pattern time */
2362 POSTING_READ(reg);
2363 udelay(1000);
2364
2365 /* IVB wants error correction enabled */
2366 if (IS_IVYBRIDGE(dev))
2367 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2368 FDI_FE_ERRC_ENABLE);
2369 }
2370
2371 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2372 {
2373 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2374 }
2375
2376 static void ivb_modeset_global_resources(struct drm_device *dev)
2377 {
2378 struct drm_i915_private *dev_priv = dev->dev_private;
2379 struct intel_crtc *pipe_B_crtc =
2380 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2381 struct intel_crtc *pipe_C_crtc =
2382 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2383 uint32_t temp;
2384
2385 /*
2386 * When everything is off disable fdi C so that we could enable fdi B
2387 * with all lanes. Note that we don't care about enabled pipes without
2388 * an enabled pch encoder.
2389 */
2390 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2391 !pipe_has_enabled_pch(pipe_C_crtc)) {
2392 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2393 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2394
2395 temp = I915_READ(SOUTH_CHICKEN1);
2396 temp &= ~FDI_BC_BIFURCATION_SELECT;
2397 DRM_DEBUG_KMS("disabling fdi C rx\n");
2398 I915_WRITE(SOUTH_CHICKEN1, temp);
2399 }
2400 }
2401
2402 /* The FDI link training functions for ILK/Ibexpeak. */
2403 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2404 {
2405 struct drm_device *dev = crtc->dev;
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2408 int pipe = intel_crtc->pipe;
2409 int plane = intel_crtc->plane;
2410 u32 reg, temp, tries;
2411
2412 /* FDI needs bits from pipe & plane first */
2413 assert_pipe_enabled(dev_priv, pipe);
2414 assert_plane_enabled(dev_priv, plane);
2415
2416 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2417 for train result */
2418 reg = FDI_RX_IMR(pipe);
2419 temp = I915_READ(reg);
2420 temp &= ~FDI_RX_SYMBOL_LOCK;
2421 temp &= ~FDI_RX_BIT_LOCK;
2422 I915_WRITE(reg, temp);
2423 I915_READ(reg);
2424 udelay(150);
2425
2426 /* enable CPU FDI TX and PCH FDI RX */
2427 reg = FDI_TX_CTL(pipe);
2428 temp = I915_READ(reg);
2429 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2430 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2431 temp &= ~FDI_LINK_TRAIN_NONE;
2432 temp |= FDI_LINK_TRAIN_PATTERN_1;
2433 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2434
2435 reg = FDI_RX_CTL(pipe);
2436 temp = I915_READ(reg);
2437 temp &= ~FDI_LINK_TRAIN_NONE;
2438 temp |= FDI_LINK_TRAIN_PATTERN_1;
2439 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2440
2441 POSTING_READ(reg);
2442 udelay(150);
2443
2444 /* Ironlake workaround, enable clock pointer after FDI enable*/
2445 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2446 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2447 FDI_RX_PHASE_SYNC_POINTER_EN);
2448
2449 reg = FDI_RX_IIR(pipe);
2450 for (tries = 0; tries < 5; tries++) {
2451 temp = I915_READ(reg);
2452 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2453
2454 if ((temp & FDI_RX_BIT_LOCK)) {
2455 DRM_DEBUG_KMS("FDI train 1 done.\n");
2456 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2457 break;
2458 }
2459 }
2460 if (tries == 5)
2461 DRM_ERROR("FDI train 1 fail!\n");
2462
2463 /* Train 2 */
2464 reg = FDI_TX_CTL(pipe);
2465 temp = I915_READ(reg);
2466 temp &= ~FDI_LINK_TRAIN_NONE;
2467 temp |= FDI_LINK_TRAIN_PATTERN_2;
2468 I915_WRITE(reg, temp);
2469
2470 reg = FDI_RX_CTL(pipe);
2471 temp = I915_READ(reg);
2472 temp &= ~FDI_LINK_TRAIN_NONE;
2473 temp |= FDI_LINK_TRAIN_PATTERN_2;
2474 I915_WRITE(reg, temp);
2475
2476 POSTING_READ(reg);
2477 udelay(150);
2478
2479 reg = FDI_RX_IIR(pipe);
2480 for (tries = 0; tries < 5; tries++) {
2481 temp = I915_READ(reg);
2482 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2483
2484 if (temp & FDI_RX_SYMBOL_LOCK) {
2485 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2486 DRM_DEBUG_KMS("FDI train 2 done.\n");
2487 break;
2488 }
2489 }
2490 if (tries == 5)
2491 DRM_ERROR("FDI train 2 fail!\n");
2492
2493 DRM_DEBUG_KMS("FDI train done\n");
2494
2495 }
2496
2497 static const int snb_b_fdi_train_param[] = {
2498 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2499 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2500 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2501 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2502 };
2503
2504 /* The FDI link training functions for SNB/Cougarpoint. */
2505 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2506 {
2507 struct drm_device *dev = crtc->dev;
2508 struct drm_i915_private *dev_priv = dev->dev_private;
2509 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2510 int pipe = intel_crtc->pipe;
2511 u32 reg, temp, i, retry;
2512
2513 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2514 for train result */
2515 reg = FDI_RX_IMR(pipe);
2516 temp = I915_READ(reg);
2517 temp &= ~FDI_RX_SYMBOL_LOCK;
2518 temp &= ~FDI_RX_BIT_LOCK;
2519 I915_WRITE(reg, temp);
2520
2521 POSTING_READ(reg);
2522 udelay(150);
2523
2524 /* enable CPU FDI TX and PCH FDI RX */
2525 reg = FDI_TX_CTL(pipe);
2526 temp = I915_READ(reg);
2527 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2528 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2529 temp &= ~FDI_LINK_TRAIN_NONE;
2530 temp |= FDI_LINK_TRAIN_PATTERN_1;
2531 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2532 /* SNB-B */
2533 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2534 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2535
2536 I915_WRITE(FDI_RX_MISC(pipe),
2537 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2538
2539 reg = FDI_RX_CTL(pipe);
2540 temp = I915_READ(reg);
2541 if (HAS_PCH_CPT(dev)) {
2542 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2543 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2544 } else {
2545 temp &= ~FDI_LINK_TRAIN_NONE;
2546 temp |= FDI_LINK_TRAIN_PATTERN_1;
2547 }
2548 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2549
2550 POSTING_READ(reg);
2551 udelay(150);
2552
2553 for (i = 0; i < 4; i++) {
2554 reg = FDI_TX_CTL(pipe);
2555 temp = I915_READ(reg);
2556 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2557 temp |= snb_b_fdi_train_param[i];
2558 I915_WRITE(reg, temp);
2559
2560 POSTING_READ(reg);
2561 udelay(500);
2562
2563 for (retry = 0; retry < 5; retry++) {
2564 reg = FDI_RX_IIR(pipe);
2565 temp = I915_READ(reg);
2566 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2567 if (temp & FDI_RX_BIT_LOCK) {
2568 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2569 DRM_DEBUG_KMS("FDI train 1 done.\n");
2570 break;
2571 }
2572 udelay(50);
2573 }
2574 if (retry < 5)
2575 break;
2576 }
2577 if (i == 4)
2578 DRM_ERROR("FDI train 1 fail!\n");
2579
2580 /* Train 2 */
2581 reg = FDI_TX_CTL(pipe);
2582 temp = I915_READ(reg);
2583 temp &= ~FDI_LINK_TRAIN_NONE;
2584 temp |= FDI_LINK_TRAIN_PATTERN_2;
2585 if (IS_GEN6(dev)) {
2586 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2587 /* SNB-B */
2588 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2589 }
2590 I915_WRITE(reg, temp);
2591
2592 reg = FDI_RX_CTL(pipe);
2593 temp = I915_READ(reg);
2594 if (HAS_PCH_CPT(dev)) {
2595 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2596 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2597 } else {
2598 temp &= ~FDI_LINK_TRAIN_NONE;
2599 temp |= FDI_LINK_TRAIN_PATTERN_2;
2600 }
2601 I915_WRITE(reg, temp);
2602
2603 POSTING_READ(reg);
2604 udelay(150);
2605
2606 for (i = 0; i < 4; i++) {
2607 reg = FDI_TX_CTL(pipe);
2608 temp = I915_READ(reg);
2609 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610 temp |= snb_b_fdi_train_param[i];
2611 I915_WRITE(reg, temp);
2612
2613 POSTING_READ(reg);
2614 udelay(500);
2615
2616 for (retry = 0; retry < 5; retry++) {
2617 reg = FDI_RX_IIR(pipe);
2618 temp = I915_READ(reg);
2619 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2620 if (temp & FDI_RX_SYMBOL_LOCK) {
2621 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2622 DRM_DEBUG_KMS("FDI train 2 done.\n");
2623 break;
2624 }
2625 udelay(50);
2626 }
2627 if (retry < 5)
2628 break;
2629 }
2630 if (i == 4)
2631 DRM_ERROR("FDI train 2 fail!\n");
2632
2633 DRM_DEBUG_KMS("FDI train done.\n");
2634 }
2635
2636 /* Manual link training for Ivy Bridge A0 parts */
2637 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2638 {
2639 struct drm_device *dev = crtc->dev;
2640 struct drm_i915_private *dev_priv = dev->dev_private;
2641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2642 int pipe = intel_crtc->pipe;
2643 u32 reg, temp, i, j;
2644
2645 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2646 for train result */
2647 reg = FDI_RX_IMR(pipe);
2648 temp = I915_READ(reg);
2649 temp &= ~FDI_RX_SYMBOL_LOCK;
2650 temp &= ~FDI_RX_BIT_LOCK;
2651 I915_WRITE(reg, temp);
2652
2653 POSTING_READ(reg);
2654 udelay(150);
2655
2656 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2657 I915_READ(FDI_RX_IIR(pipe)));
2658
2659 /* Try each vswing and preemphasis setting twice before moving on */
2660 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2661 /* disable first in case we need to retry */
2662 reg = FDI_TX_CTL(pipe);
2663 temp = I915_READ(reg);
2664 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2665 temp &= ~FDI_TX_ENABLE;
2666 I915_WRITE(reg, temp);
2667
2668 reg = FDI_RX_CTL(pipe);
2669 temp = I915_READ(reg);
2670 temp &= ~FDI_LINK_TRAIN_AUTO;
2671 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2672 temp &= ~FDI_RX_ENABLE;
2673 I915_WRITE(reg, temp);
2674
2675 /* enable CPU FDI TX and PCH FDI RX */
2676 reg = FDI_TX_CTL(pipe);
2677 temp = I915_READ(reg);
2678 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2679 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2680 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2681 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2682 temp |= snb_b_fdi_train_param[j/2];
2683 temp |= FDI_COMPOSITE_SYNC;
2684 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2685
2686 I915_WRITE(FDI_RX_MISC(pipe),
2687 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2688
2689 reg = FDI_RX_CTL(pipe);
2690 temp = I915_READ(reg);
2691 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2692 temp |= FDI_COMPOSITE_SYNC;
2693 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2694
2695 POSTING_READ(reg);
2696 udelay(1); /* should be 0.5us */
2697
2698 for (i = 0; i < 4; i++) {
2699 reg = FDI_RX_IIR(pipe);
2700 temp = I915_READ(reg);
2701 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2702
2703 if (temp & FDI_RX_BIT_LOCK ||
2704 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2705 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2706 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2707 i);
2708 break;
2709 }
2710 udelay(1); /* should be 0.5us */
2711 }
2712 if (i == 4) {
2713 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2714 continue;
2715 }
2716
2717 /* Train 2 */
2718 reg = FDI_TX_CTL(pipe);
2719 temp = I915_READ(reg);
2720 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2721 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2722 I915_WRITE(reg, temp);
2723
2724 reg = FDI_RX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2727 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2728 I915_WRITE(reg, temp);
2729
2730 POSTING_READ(reg);
2731 udelay(2); /* should be 1.5us */
2732
2733 for (i = 0; i < 4; i++) {
2734 reg = FDI_RX_IIR(pipe);
2735 temp = I915_READ(reg);
2736 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2737
2738 if (temp & FDI_RX_SYMBOL_LOCK ||
2739 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2740 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2741 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2742 i);
2743 goto train_done;
2744 }
2745 udelay(2); /* should be 1.5us */
2746 }
2747 if (i == 4)
2748 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2749 }
2750
2751 train_done:
2752 DRM_DEBUG_KMS("FDI train done.\n");
2753 }
2754
2755 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2756 {
2757 struct drm_device *dev = intel_crtc->base.dev;
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 int pipe = intel_crtc->pipe;
2760 u32 reg, temp;
2761
2762
2763 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2764 reg = FDI_RX_CTL(pipe);
2765 temp = I915_READ(reg);
2766 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2767 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2768 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2769 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2770
2771 POSTING_READ(reg);
2772 udelay(200);
2773
2774 /* Switch from Rawclk to PCDclk */
2775 temp = I915_READ(reg);
2776 I915_WRITE(reg, temp | FDI_PCDCLK);
2777
2778 POSTING_READ(reg);
2779 udelay(200);
2780
2781 /* Enable CPU FDI TX PLL, always on for Ironlake */
2782 reg = FDI_TX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2785 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2786
2787 POSTING_READ(reg);
2788 udelay(100);
2789 }
2790 }
2791
2792 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2793 {
2794 struct drm_device *dev = intel_crtc->base.dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 int pipe = intel_crtc->pipe;
2797 u32 reg, temp;
2798
2799 /* Switch from PCDclk to Rawclk */
2800 reg = FDI_RX_CTL(pipe);
2801 temp = I915_READ(reg);
2802 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2803
2804 /* Disable CPU FDI TX PLL */
2805 reg = FDI_TX_CTL(pipe);
2806 temp = I915_READ(reg);
2807 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2808
2809 POSTING_READ(reg);
2810 udelay(100);
2811
2812 reg = FDI_RX_CTL(pipe);
2813 temp = I915_READ(reg);
2814 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2815
2816 /* Wait for the clocks to turn off. */
2817 POSTING_READ(reg);
2818 udelay(100);
2819 }
2820
2821 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2822 {
2823 struct drm_device *dev = crtc->dev;
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2826 int pipe = intel_crtc->pipe;
2827 u32 reg, temp;
2828
2829 /* disable CPU FDI tx and PCH FDI rx */
2830 reg = FDI_TX_CTL(pipe);
2831 temp = I915_READ(reg);
2832 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2833 POSTING_READ(reg);
2834
2835 reg = FDI_RX_CTL(pipe);
2836 temp = I915_READ(reg);
2837 temp &= ~(0x7 << 16);
2838 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2839 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2840
2841 POSTING_READ(reg);
2842 udelay(100);
2843
2844 /* Ironlake workaround, disable clock pointer after downing FDI */
2845 if (HAS_PCH_IBX(dev)) {
2846 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2847 }
2848
2849 /* still set train pattern 1 */
2850 reg = FDI_TX_CTL(pipe);
2851 temp = I915_READ(reg);
2852 temp &= ~FDI_LINK_TRAIN_NONE;
2853 temp |= FDI_LINK_TRAIN_PATTERN_1;
2854 I915_WRITE(reg, temp);
2855
2856 reg = FDI_RX_CTL(pipe);
2857 temp = I915_READ(reg);
2858 if (HAS_PCH_CPT(dev)) {
2859 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2860 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2861 } else {
2862 temp &= ~FDI_LINK_TRAIN_NONE;
2863 temp |= FDI_LINK_TRAIN_PATTERN_1;
2864 }
2865 /* BPC in FDI rx is consistent with that in PIPECONF */
2866 temp &= ~(0x07 << 16);
2867 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2868 I915_WRITE(reg, temp);
2869
2870 POSTING_READ(reg);
2871 udelay(100);
2872 }
2873
2874 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2875 {
2876 struct drm_device *dev = crtc->dev;
2877 struct drm_i915_private *dev_priv = dev->dev_private;
2878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2879 unsigned long flags;
2880 bool pending;
2881
2882 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2883 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2884 return false;
2885
2886 spin_lock_irqsave(&dev->event_lock, flags);
2887 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2888 spin_unlock_irqrestore(&dev->event_lock, flags);
2889
2890 return pending;
2891 }
2892
2893 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2894 {
2895 struct drm_device *dev = crtc->dev;
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897
2898 if (crtc->fb == NULL)
2899 return;
2900
2901 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2902
2903 wait_event(dev_priv->pending_flip_queue,
2904 !intel_crtc_has_pending_flip(crtc));
2905
2906 mutex_lock(&dev->struct_mutex);
2907 intel_finish_fb(crtc->fb);
2908 mutex_unlock(&dev->struct_mutex);
2909 }
2910
2911 /* Program iCLKIP clock to the desired frequency */
2912 static void lpt_program_iclkip(struct drm_crtc *crtc)
2913 {
2914 struct drm_device *dev = crtc->dev;
2915 struct drm_i915_private *dev_priv = dev->dev_private;
2916 int clock = to_intel_crtc(crtc)->config.adjusted_mode.clock;
2917 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2918 u32 temp;
2919
2920 mutex_lock(&dev_priv->dpio_lock);
2921
2922 /* It is necessary to ungate the pixclk gate prior to programming
2923 * the divisors, and gate it back when it is done.
2924 */
2925 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2926
2927 /* Disable SSCCTL */
2928 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2929 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2930 SBI_SSCCTL_DISABLE,
2931 SBI_ICLK);
2932
2933 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2934 if (clock == 20000) {
2935 auxdiv = 1;
2936 divsel = 0x41;
2937 phaseinc = 0x20;
2938 } else {
2939 /* The iCLK virtual clock root frequency is in MHz,
2940 * but the adjusted_mode->clock in in KHz. To get the divisors,
2941 * it is necessary to divide one by another, so we
2942 * convert the virtual clock precision to KHz here for higher
2943 * precision.
2944 */
2945 u32 iclk_virtual_root_freq = 172800 * 1000;
2946 u32 iclk_pi_range = 64;
2947 u32 desired_divisor, msb_divisor_value, pi_value;
2948
2949 desired_divisor = (iclk_virtual_root_freq / clock);
2950 msb_divisor_value = desired_divisor / iclk_pi_range;
2951 pi_value = desired_divisor % iclk_pi_range;
2952
2953 auxdiv = 0;
2954 divsel = msb_divisor_value - 2;
2955 phaseinc = pi_value;
2956 }
2957
2958 /* This should not happen with any sane values */
2959 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2960 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2961 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2962 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2963
2964 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2965 clock,
2966 auxdiv,
2967 divsel,
2968 phasedir,
2969 phaseinc);
2970
2971 /* Program SSCDIVINTPHASE6 */
2972 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2973 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2974 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2975 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2976 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2977 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2978 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2979 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2980
2981 /* Program SSCAUXDIV */
2982 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2983 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2984 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2985 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2986
2987 /* Enable modulator and associated divider */
2988 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2989 temp &= ~SBI_SSCCTL_DISABLE;
2990 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2991
2992 /* Wait for initialization time */
2993 udelay(24);
2994
2995 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2996
2997 mutex_unlock(&dev_priv->dpio_lock);
2998 }
2999
3000 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3001 enum pipe pch_transcoder)
3002 {
3003 struct drm_device *dev = crtc->base.dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3006
3007 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3008 I915_READ(HTOTAL(cpu_transcoder)));
3009 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3010 I915_READ(HBLANK(cpu_transcoder)));
3011 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3012 I915_READ(HSYNC(cpu_transcoder)));
3013
3014 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3015 I915_READ(VTOTAL(cpu_transcoder)));
3016 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3017 I915_READ(VBLANK(cpu_transcoder)));
3018 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3019 I915_READ(VSYNC(cpu_transcoder)));
3020 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3021 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3022 }
3023
3024 /*
3025 * Enable PCH resources required for PCH ports:
3026 * - PCH PLLs
3027 * - FDI training & RX/TX
3028 * - update transcoder timings
3029 * - DP transcoding bits
3030 * - transcoder
3031 */
3032 static void ironlake_pch_enable(struct drm_crtc *crtc)
3033 {
3034 struct drm_device *dev = crtc->dev;
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037 int pipe = intel_crtc->pipe;
3038 u32 reg, temp;
3039
3040 assert_pch_transcoder_disabled(dev_priv, pipe);
3041
3042 /* Write the TU size bits before fdi link training, so that error
3043 * detection works. */
3044 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3045 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3046
3047 /* For PCH output, training FDI link */
3048 dev_priv->display.fdi_link_train(crtc);
3049
3050 /* We need to program the right clock selection before writing the pixel
3051 * mutliplier into the DPLL. */
3052 if (HAS_PCH_CPT(dev)) {
3053 u32 sel;
3054
3055 temp = I915_READ(PCH_DPLL_SEL);
3056 temp |= TRANS_DPLL_ENABLE(pipe);
3057 sel = TRANS_DPLLB_SEL(pipe);
3058 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3059 temp |= sel;
3060 else
3061 temp &= ~sel;
3062 I915_WRITE(PCH_DPLL_SEL, temp);
3063 }
3064
3065 /* XXX: pch pll's can be enabled any time before we enable the PCH
3066 * transcoder, and we actually should do this to not upset any PCH
3067 * transcoder that already use the clock when we share it.
3068 *
3069 * Note that enable_shared_dpll tries to do the right thing, but
3070 * get_shared_dpll unconditionally resets the pll - we need that to have
3071 * the right LVDS enable sequence. */
3072 ironlake_enable_shared_dpll(intel_crtc);
3073
3074 /* set transcoder timing, panel must allow it */
3075 assert_panel_unlocked(dev_priv, pipe);
3076 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3077
3078 intel_fdi_normal_train(crtc);
3079
3080 /* For PCH DP, enable TRANS_DP_CTL */
3081 if (HAS_PCH_CPT(dev) &&
3082 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3083 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3084 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3085 reg = TRANS_DP_CTL(pipe);
3086 temp = I915_READ(reg);
3087 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3088 TRANS_DP_SYNC_MASK |
3089 TRANS_DP_BPC_MASK);
3090 temp |= (TRANS_DP_OUTPUT_ENABLE |
3091 TRANS_DP_ENH_FRAMING);
3092 temp |= bpc << 9; /* same format but at 11:9 */
3093
3094 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3095 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3096 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3097 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3098
3099 switch (intel_trans_dp_port_sel(crtc)) {
3100 case PCH_DP_B:
3101 temp |= TRANS_DP_PORT_SEL_B;
3102 break;
3103 case PCH_DP_C:
3104 temp |= TRANS_DP_PORT_SEL_C;
3105 break;
3106 case PCH_DP_D:
3107 temp |= TRANS_DP_PORT_SEL_D;
3108 break;
3109 default:
3110 BUG();
3111 }
3112
3113 I915_WRITE(reg, temp);
3114 }
3115
3116 ironlake_enable_pch_transcoder(dev_priv, pipe);
3117 }
3118
3119 static void lpt_pch_enable(struct drm_crtc *crtc)
3120 {
3121 struct drm_device *dev = crtc->dev;
3122 struct drm_i915_private *dev_priv = dev->dev_private;
3123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3124 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3125
3126 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3127
3128 lpt_program_iclkip(crtc);
3129
3130 /* Set transcoder timing. */
3131 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3132
3133 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3134 }
3135
3136 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3137 {
3138 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3139
3140 if (pll == NULL)
3141 return;
3142
3143 if (pll->refcount == 0) {
3144 WARN(1, "bad %s refcount\n", pll->name);
3145 return;
3146 }
3147
3148 if (--pll->refcount == 0) {
3149 WARN_ON(pll->on);
3150 WARN_ON(pll->active);
3151 }
3152
3153 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3154 }
3155
3156 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3157 {
3158 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3159 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3160 enum intel_dpll_id i;
3161
3162 if (pll) {
3163 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3164 crtc->base.base.id, pll->name);
3165 intel_put_shared_dpll(crtc);
3166 }
3167
3168 if (HAS_PCH_IBX(dev_priv->dev)) {
3169 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3170 i = (enum intel_dpll_id) crtc->pipe;
3171 pll = &dev_priv->shared_dplls[i];
3172
3173 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3174 crtc->base.base.id, pll->name);
3175
3176 goto found;
3177 }
3178
3179 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3180 pll = &dev_priv->shared_dplls[i];
3181
3182 /* Only want to check enabled timings first */
3183 if (pll->refcount == 0)
3184 continue;
3185
3186 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3187 sizeof(pll->hw_state)) == 0) {
3188 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3189 crtc->base.base.id,
3190 pll->name, pll->refcount, pll->active);
3191
3192 goto found;
3193 }
3194 }
3195
3196 /* Ok no matching timings, maybe there's a free one? */
3197 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3198 pll = &dev_priv->shared_dplls[i];
3199 if (pll->refcount == 0) {
3200 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3201 crtc->base.base.id, pll->name);
3202 goto found;
3203 }
3204 }
3205
3206 return NULL;
3207
3208 found:
3209 crtc->config.shared_dpll = i;
3210 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3211 pipe_name(crtc->pipe));
3212
3213 if (pll->active == 0) {
3214 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3215 sizeof(pll->hw_state));
3216
3217 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3218 WARN_ON(pll->on);
3219 assert_shared_dpll_disabled(dev_priv, pll);
3220
3221 pll->mode_set(dev_priv, pll);
3222 }
3223 pll->refcount++;
3224
3225 return pll;
3226 }
3227
3228 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3229 {
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231 int dslreg = PIPEDSL(pipe);
3232 u32 temp;
3233
3234 temp = I915_READ(dslreg);
3235 udelay(500);
3236 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3237 if (wait_for(I915_READ(dslreg) != temp, 5))
3238 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3239 }
3240 }
3241
3242 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3243 {
3244 struct drm_device *dev = crtc->base.dev;
3245 struct drm_i915_private *dev_priv = dev->dev_private;
3246 int pipe = crtc->pipe;
3247
3248 if (crtc->config.pch_pfit.enabled) {
3249 /* Force use of hard-coded filter coefficients
3250 * as some pre-programmed values are broken,
3251 * e.g. x201.
3252 */
3253 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3254 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3255 PF_PIPE_SEL_IVB(pipe));
3256 else
3257 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3258 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3259 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3260 }
3261 }
3262
3263 static void intel_enable_planes(struct drm_crtc *crtc)
3264 {
3265 struct drm_device *dev = crtc->dev;
3266 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3267 struct intel_plane *intel_plane;
3268
3269 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3270 if (intel_plane->pipe == pipe)
3271 intel_plane_restore(&intel_plane->base);
3272 }
3273
3274 static void intel_disable_planes(struct drm_crtc *crtc)
3275 {
3276 struct drm_device *dev = crtc->dev;
3277 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3278 struct intel_plane *intel_plane;
3279
3280 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3281 if (intel_plane->pipe == pipe)
3282 intel_plane_disable(&intel_plane->base);
3283 }
3284
3285 static void hsw_enable_ips(struct intel_crtc *crtc)
3286 {
3287 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3288
3289 if (!crtc->config.ips_enabled)
3290 return;
3291
3292 /* We can only enable IPS after we enable a plane and wait for a vblank.
3293 * We guarantee that the plane is enabled by calling intel_enable_ips
3294 * only after intel_enable_plane. And intel_enable_plane already waits
3295 * for a vblank, so all we need to do here is to enable the IPS bit. */
3296 assert_plane_enabled(dev_priv, crtc->plane);
3297 I915_WRITE(IPS_CTL, IPS_ENABLE);
3298 }
3299
3300 static void hsw_disable_ips(struct intel_crtc *crtc)
3301 {
3302 struct drm_device *dev = crtc->base.dev;
3303 struct drm_i915_private *dev_priv = dev->dev_private;
3304
3305 if (!crtc->config.ips_enabled)
3306 return;
3307
3308 assert_plane_enabled(dev_priv, crtc->plane);
3309 I915_WRITE(IPS_CTL, 0);
3310 POSTING_READ(IPS_CTL);
3311
3312 /* We need to wait for a vblank before we can disable the plane. */
3313 intel_wait_for_vblank(dev, crtc->pipe);
3314 }
3315
3316 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3317 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3318 {
3319 struct drm_device *dev = crtc->dev;
3320 struct drm_i915_private *dev_priv = dev->dev_private;
3321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3322 enum pipe pipe = intel_crtc->pipe;
3323 int palreg = PALETTE(pipe);
3324 int i;
3325 bool reenable_ips = false;
3326
3327 /* The clocks have to be on to load the palette. */
3328 if (!crtc->enabled || !intel_crtc->active)
3329 return;
3330
3331 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3332 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3333 assert_dsi_pll_enabled(dev_priv);
3334 else
3335 assert_pll_enabled(dev_priv, pipe);
3336 }
3337
3338 /* use legacy palette for Ironlake */
3339 if (HAS_PCH_SPLIT(dev))
3340 palreg = LGC_PALETTE(pipe);
3341
3342 /* Workaround : Do not read or write the pipe palette/gamma data while
3343 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3344 */
3345 if (intel_crtc->config.ips_enabled &&
3346 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3347 GAMMA_MODE_MODE_SPLIT)) {
3348 hsw_disable_ips(intel_crtc);
3349 reenable_ips = true;
3350 }
3351
3352 for (i = 0; i < 256; i++) {
3353 I915_WRITE(palreg + 4 * i,
3354 (intel_crtc->lut_r[i] << 16) |
3355 (intel_crtc->lut_g[i] << 8) |
3356 intel_crtc->lut_b[i]);
3357 }
3358
3359 if (reenable_ips)
3360 hsw_enable_ips(intel_crtc);
3361 }
3362
3363 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3364 {
3365 struct drm_device *dev = crtc->dev;
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3368 struct intel_encoder *encoder;
3369 int pipe = intel_crtc->pipe;
3370 int plane = intel_crtc->plane;
3371
3372 WARN_ON(!crtc->enabled);
3373
3374 if (intel_crtc->active)
3375 return;
3376
3377 intel_crtc->active = true;
3378
3379 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3380 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3381
3382 for_each_encoder_on_crtc(dev, crtc, encoder)
3383 if (encoder->pre_enable)
3384 encoder->pre_enable(encoder);
3385
3386 if (intel_crtc->config.has_pch_encoder) {
3387 /* Note: FDI PLL enabling _must_ be done before we enable the
3388 * cpu pipes, hence this is separate from all the other fdi/pch
3389 * enabling. */
3390 ironlake_fdi_pll_enable(intel_crtc);
3391 } else {
3392 assert_fdi_tx_disabled(dev_priv, pipe);
3393 assert_fdi_rx_disabled(dev_priv, pipe);
3394 }
3395
3396 ironlake_pfit_enable(intel_crtc);
3397
3398 /*
3399 * On ILK+ LUT must be loaded before the pipe is running but with
3400 * clocks enabled
3401 */
3402 intel_crtc_load_lut(crtc);
3403
3404 intel_update_watermarks(crtc);
3405 intel_enable_pipe(dev_priv, pipe,
3406 intel_crtc->config.has_pch_encoder, false);
3407 intel_enable_plane(dev_priv, plane, pipe);
3408 intel_enable_planes(crtc);
3409 intel_crtc_update_cursor(crtc, true);
3410
3411 if (intel_crtc->config.has_pch_encoder)
3412 ironlake_pch_enable(crtc);
3413
3414 mutex_lock(&dev->struct_mutex);
3415 intel_update_fbc(dev);
3416 mutex_unlock(&dev->struct_mutex);
3417
3418 for_each_encoder_on_crtc(dev, crtc, encoder)
3419 encoder->enable(encoder);
3420
3421 if (HAS_PCH_CPT(dev))
3422 cpt_verify_modeset(dev, intel_crtc->pipe);
3423
3424 /*
3425 * There seems to be a race in PCH platform hw (at least on some
3426 * outputs) where an enabled pipe still completes any pageflip right
3427 * away (as if the pipe is off) instead of waiting for vblank. As soon
3428 * as the first vblank happend, everything works as expected. Hence just
3429 * wait for one vblank before returning to avoid strange things
3430 * happening.
3431 */
3432 intel_wait_for_vblank(dev, intel_crtc->pipe);
3433 }
3434
3435 /* IPS only exists on ULT machines and is tied to pipe A. */
3436 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3437 {
3438 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3439 }
3440
3441 static void haswell_crtc_enable(struct drm_crtc *crtc)
3442 {
3443 struct drm_device *dev = crtc->dev;
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3446 struct intel_encoder *encoder;
3447 int pipe = intel_crtc->pipe;
3448 int plane = intel_crtc->plane;
3449
3450 WARN_ON(!crtc->enabled);
3451
3452 if (intel_crtc->active)
3453 return;
3454
3455 intel_crtc->active = true;
3456
3457 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3458 if (intel_crtc->config.has_pch_encoder)
3459 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3460
3461 if (intel_crtc->config.has_pch_encoder)
3462 dev_priv->display.fdi_link_train(crtc);
3463
3464 for_each_encoder_on_crtc(dev, crtc, encoder)
3465 if (encoder->pre_enable)
3466 encoder->pre_enable(encoder);
3467
3468 intel_ddi_enable_pipe_clock(intel_crtc);
3469
3470 ironlake_pfit_enable(intel_crtc);
3471
3472 /*
3473 * On ILK+ LUT must be loaded before the pipe is running but with
3474 * clocks enabled
3475 */
3476 intel_crtc_load_lut(crtc);
3477
3478 intel_ddi_set_pipe_settings(crtc);
3479 intel_ddi_enable_transcoder_func(crtc);
3480
3481 intel_update_watermarks(crtc);
3482 intel_enable_pipe(dev_priv, pipe,
3483 intel_crtc->config.has_pch_encoder, false);
3484 intel_enable_plane(dev_priv, plane, pipe);
3485 intel_enable_planes(crtc);
3486 intel_crtc_update_cursor(crtc, true);
3487
3488 hsw_enable_ips(intel_crtc);
3489
3490 if (intel_crtc->config.has_pch_encoder)
3491 lpt_pch_enable(crtc);
3492
3493 mutex_lock(&dev->struct_mutex);
3494 intel_update_fbc(dev);
3495 mutex_unlock(&dev->struct_mutex);
3496
3497 for_each_encoder_on_crtc(dev, crtc, encoder) {
3498 encoder->enable(encoder);
3499 intel_opregion_notify_encoder(encoder, true);
3500 }
3501
3502 /*
3503 * There seems to be a race in PCH platform hw (at least on some
3504 * outputs) where an enabled pipe still completes any pageflip right
3505 * away (as if the pipe is off) instead of waiting for vblank. As soon
3506 * as the first vblank happend, everything works as expected. Hence just
3507 * wait for one vblank before returning to avoid strange things
3508 * happening.
3509 */
3510 intel_wait_for_vblank(dev, intel_crtc->pipe);
3511 }
3512
3513 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3514 {
3515 struct drm_device *dev = crtc->base.dev;
3516 struct drm_i915_private *dev_priv = dev->dev_private;
3517 int pipe = crtc->pipe;
3518
3519 /* To avoid upsetting the power well on haswell only disable the pfit if
3520 * it's in use. The hw state code will make sure we get this right. */
3521 if (crtc->config.pch_pfit.enabled) {
3522 I915_WRITE(PF_CTL(pipe), 0);
3523 I915_WRITE(PF_WIN_POS(pipe), 0);
3524 I915_WRITE(PF_WIN_SZ(pipe), 0);
3525 }
3526 }
3527
3528 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3529 {
3530 struct drm_device *dev = crtc->dev;
3531 struct drm_i915_private *dev_priv = dev->dev_private;
3532 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3533 struct intel_encoder *encoder;
3534 int pipe = intel_crtc->pipe;
3535 int plane = intel_crtc->plane;
3536 u32 reg, temp;
3537
3538
3539 if (!intel_crtc->active)
3540 return;
3541
3542 for_each_encoder_on_crtc(dev, crtc, encoder)
3543 encoder->disable(encoder);
3544
3545 intel_crtc_wait_for_pending_flips(crtc);
3546 drm_vblank_off(dev, pipe);
3547
3548 if (dev_priv->fbc.plane == plane)
3549 intel_disable_fbc(dev);
3550
3551 intel_crtc_update_cursor(crtc, false);
3552 intel_disable_planes(crtc);
3553 intel_disable_plane(dev_priv, plane, pipe);
3554
3555 if (intel_crtc->config.has_pch_encoder)
3556 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3557
3558 intel_disable_pipe(dev_priv, pipe);
3559
3560 ironlake_pfit_disable(intel_crtc);
3561
3562 for_each_encoder_on_crtc(dev, crtc, encoder)
3563 if (encoder->post_disable)
3564 encoder->post_disable(encoder);
3565
3566 if (intel_crtc->config.has_pch_encoder) {
3567 ironlake_fdi_disable(crtc);
3568
3569 ironlake_disable_pch_transcoder(dev_priv, pipe);
3570 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3571
3572 if (HAS_PCH_CPT(dev)) {
3573 /* disable TRANS_DP_CTL */
3574 reg = TRANS_DP_CTL(pipe);
3575 temp = I915_READ(reg);
3576 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3577 TRANS_DP_PORT_SEL_MASK);
3578 temp |= TRANS_DP_PORT_SEL_NONE;
3579 I915_WRITE(reg, temp);
3580
3581 /* disable DPLL_SEL */
3582 temp = I915_READ(PCH_DPLL_SEL);
3583 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3584 I915_WRITE(PCH_DPLL_SEL, temp);
3585 }
3586
3587 /* disable PCH DPLL */
3588 intel_disable_shared_dpll(intel_crtc);
3589
3590 ironlake_fdi_pll_disable(intel_crtc);
3591 }
3592
3593 intel_crtc->active = false;
3594 intel_update_watermarks(crtc);
3595
3596 mutex_lock(&dev->struct_mutex);
3597 intel_update_fbc(dev);
3598 mutex_unlock(&dev->struct_mutex);
3599 }
3600
3601 static void haswell_crtc_disable(struct drm_crtc *crtc)
3602 {
3603 struct drm_device *dev = crtc->dev;
3604 struct drm_i915_private *dev_priv = dev->dev_private;
3605 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3606 struct intel_encoder *encoder;
3607 int pipe = intel_crtc->pipe;
3608 int plane = intel_crtc->plane;
3609 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3610
3611 if (!intel_crtc->active)
3612 return;
3613
3614 for_each_encoder_on_crtc(dev, crtc, encoder) {
3615 intel_opregion_notify_encoder(encoder, false);
3616 encoder->disable(encoder);
3617 }
3618
3619 intel_crtc_wait_for_pending_flips(crtc);
3620 drm_vblank_off(dev, pipe);
3621
3622 /* FBC must be disabled before disabling the plane on HSW. */
3623 if (dev_priv->fbc.plane == plane)
3624 intel_disable_fbc(dev);
3625
3626 hsw_disable_ips(intel_crtc);
3627
3628 intel_crtc_update_cursor(crtc, false);
3629 intel_disable_planes(crtc);
3630 intel_disable_plane(dev_priv, plane, pipe);
3631
3632 if (intel_crtc->config.has_pch_encoder)
3633 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3634 intel_disable_pipe(dev_priv, pipe);
3635
3636 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3637
3638 ironlake_pfit_disable(intel_crtc);
3639
3640 intel_ddi_disable_pipe_clock(intel_crtc);
3641
3642 for_each_encoder_on_crtc(dev, crtc, encoder)
3643 if (encoder->post_disable)
3644 encoder->post_disable(encoder);
3645
3646 if (intel_crtc->config.has_pch_encoder) {
3647 lpt_disable_pch_transcoder(dev_priv);
3648 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3649 intel_ddi_fdi_disable(crtc);
3650 }
3651
3652 intel_crtc->active = false;
3653 intel_update_watermarks(crtc);
3654
3655 mutex_lock(&dev->struct_mutex);
3656 intel_update_fbc(dev);
3657 mutex_unlock(&dev->struct_mutex);
3658 }
3659
3660 static void ironlake_crtc_off(struct drm_crtc *crtc)
3661 {
3662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3663 intel_put_shared_dpll(intel_crtc);
3664 }
3665
3666 static void haswell_crtc_off(struct drm_crtc *crtc)
3667 {
3668 intel_ddi_put_crtc_pll(crtc);
3669 }
3670
3671 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3672 {
3673 if (!enable && intel_crtc->overlay) {
3674 struct drm_device *dev = intel_crtc->base.dev;
3675 struct drm_i915_private *dev_priv = dev->dev_private;
3676
3677 mutex_lock(&dev->struct_mutex);
3678 dev_priv->mm.interruptible = false;
3679 (void) intel_overlay_switch_off(intel_crtc->overlay);
3680 dev_priv->mm.interruptible = true;
3681 mutex_unlock(&dev->struct_mutex);
3682 }
3683
3684 /* Let userspace switch the overlay on again. In most cases userspace
3685 * has to recompute where to put it anyway.
3686 */
3687 }
3688
3689 /**
3690 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3691 * cursor plane briefly if not already running after enabling the display
3692 * plane.
3693 * This workaround avoids occasional blank screens when self refresh is
3694 * enabled.
3695 */
3696 static void
3697 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3698 {
3699 u32 cntl = I915_READ(CURCNTR(pipe));
3700
3701 if ((cntl & CURSOR_MODE) == 0) {
3702 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3703
3704 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3705 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3706 intel_wait_for_vblank(dev_priv->dev, pipe);
3707 I915_WRITE(CURCNTR(pipe), cntl);
3708 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3709 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3710 }
3711 }
3712
3713 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3714 {
3715 struct drm_device *dev = crtc->base.dev;
3716 struct drm_i915_private *dev_priv = dev->dev_private;
3717 struct intel_crtc_config *pipe_config = &crtc->config;
3718
3719 if (!crtc->config.gmch_pfit.control)
3720 return;
3721
3722 /*
3723 * The panel fitter should only be adjusted whilst the pipe is disabled,
3724 * according to register description and PRM.
3725 */
3726 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3727 assert_pipe_disabled(dev_priv, crtc->pipe);
3728
3729 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3730 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3731
3732 /* Border color in case we don't scale up to the full screen. Black by
3733 * default, change to something else for debugging. */
3734 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3735 }
3736
3737 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3738 {
3739 struct drm_device *dev = crtc->dev;
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742 struct intel_encoder *encoder;
3743 int pipe = intel_crtc->pipe;
3744 int plane = intel_crtc->plane;
3745 bool is_dsi;
3746
3747 WARN_ON(!crtc->enabled);
3748
3749 if (intel_crtc->active)
3750 return;
3751
3752 intel_crtc->active = true;
3753
3754 for_each_encoder_on_crtc(dev, crtc, encoder)
3755 if (encoder->pre_pll_enable)
3756 encoder->pre_pll_enable(encoder);
3757
3758 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3759
3760 if (!is_dsi)
3761 vlv_enable_pll(intel_crtc);
3762
3763 for_each_encoder_on_crtc(dev, crtc, encoder)
3764 if (encoder->pre_enable)
3765 encoder->pre_enable(encoder);
3766
3767 i9xx_pfit_enable(intel_crtc);
3768
3769 intel_crtc_load_lut(crtc);
3770
3771 intel_update_watermarks(crtc);
3772 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3773 intel_enable_plane(dev_priv, plane, pipe);
3774 intel_enable_planes(crtc);
3775 intel_crtc_update_cursor(crtc, true);
3776
3777 intel_update_fbc(dev);
3778
3779 for_each_encoder_on_crtc(dev, crtc, encoder)
3780 encoder->enable(encoder);
3781 }
3782
3783 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3784 {
3785 struct drm_device *dev = crtc->dev;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788 struct intel_encoder *encoder;
3789 int pipe = intel_crtc->pipe;
3790 int plane = intel_crtc->plane;
3791
3792 WARN_ON(!crtc->enabled);
3793
3794 if (intel_crtc->active)
3795 return;
3796
3797 intel_crtc->active = true;
3798
3799 for_each_encoder_on_crtc(dev, crtc, encoder)
3800 if (encoder->pre_enable)
3801 encoder->pre_enable(encoder);
3802
3803 i9xx_enable_pll(intel_crtc);
3804
3805 i9xx_pfit_enable(intel_crtc);
3806
3807 intel_crtc_load_lut(crtc);
3808
3809 intel_update_watermarks(crtc);
3810 intel_enable_pipe(dev_priv, pipe, false, false);
3811 intel_enable_plane(dev_priv, plane, pipe);
3812 intel_enable_planes(crtc);
3813 /* The fixup needs to happen before cursor is enabled */
3814 if (IS_G4X(dev))
3815 g4x_fixup_plane(dev_priv, pipe);
3816 intel_crtc_update_cursor(crtc, true);
3817
3818 /* Give the overlay scaler a chance to enable if it's on this pipe */
3819 intel_crtc_dpms_overlay(intel_crtc, true);
3820
3821 intel_update_fbc(dev);
3822
3823 for_each_encoder_on_crtc(dev, crtc, encoder)
3824 encoder->enable(encoder);
3825 }
3826
3827 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3828 {
3829 struct drm_device *dev = crtc->base.dev;
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831
3832 if (!crtc->config.gmch_pfit.control)
3833 return;
3834
3835 assert_pipe_disabled(dev_priv, crtc->pipe);
3836
3837 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3838 I915_READ(PFIT_CONTROL));
3839 I915_WRITE(PFIT_CONTROL, 0);
3840 }
3841
3842 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3843 {
3844 struct drm_device *dev = crtc->dev;
3845 struct drm_i915_private *dev_priv = dev->dev_private;
3846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3847 struct intel_encoder *encoder;
3848 int pipe = intel_crtc->pipe;
3849 int plane = intel_crtc->plane;
3850
3851 if (!intel_crtc->active)
3852 return;
3853
3854 for_each_encoder_on_crtc(dev, crtc, encoder)
3855 encoder->disable(encoder);
3856
3857 /* Give the overlay scaler a chance to disable if it's on this pipe */
3858 intel_crtc_wait_for_pending_flips(crtc);
3859 drm_vblank_off(dev, pipe);
3860
3861 if (dev_priv->fbc.plane == plane)
3862 intel_disable_fbc(dev);
3863
3864 intel_crtc_dpms_overlay(intel_crtc, false);
3865 intel_crtc_update_cursor(crtc, false);
3866 intel_disable_planes(crtc);
3867 intel_disable_plane(dev_priv, plane, pipe);
3868
3869 intel_disable_pipe(dev_priv, pipe);
3870
3871 i9xx_pfit_disable(intel_crtc);
3872
3873 for_each_encoder_on_crtc(dev, crtc, encoder)
3874 if (encoder->post_disable)
3875 encoder->post_disable(encoder);
3876
3877 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3878 i9xx_disable_pll(dev_priv, pipe);
3879
3880 intel_crtc->active = false;
3881 intel_update_watermarks(crtc);
3882
3883 intel_update_fbc(dev);
3884 }
3885
3886 static void i9xx_crtc_off(struct drm_crtc *crtc)
3887 {
3888 }
3889
3890 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3891 bool enabled)
3892 {
3893 struct drm_device *dev = crtc->dev;
3894 struct drm_i915_master_private *master_priv;
3895 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3896 int pipe = intel_crtc->pipe;
3897
3898 if (!dev->primary->master)
3899 return;
3900
3901 master_priv = dev->primary->master->driver_priv;
3902 if (!master_priv->sarea_priv)
3903 return;
3904
3905 switch (pipe) {
3906 case 0:
3907 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3908 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3909 break;
3910 case 1:
3911 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3912 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3913 break;
3914 default:
3915 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3916 break;
3917 }
3918 }
3919
3920 /**
3921 * Sets the power management mode of the pipe and plane.
3922 */
3923 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3924 {
3925 struct drm_device *dev = crtc->dev;
3926 struct drm_i915_private *dev_priv = dev->dev_private;
3927 struct intel_encoder *intel_encoder;
3928 bool enable = false;
3929
3930 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3931 enable |= intel_encoder->connectors_active;
3932
3933 if (enable)
3934 dev_priv->display.crtc_enable(crtc);
3935 else
3936 dev_priv->display.crtc_disable(crtc);
3937
3938 intel_crtc_update_sarea(crtc, enable);
3939 }
3940
3941 static void intel_crtc_disable(struct drm_crtc *crtc)
3942 {
3943 struct drm_device *dev = crtc->dev;
3944 struct drm_connector *connector;
3945 struct drm_i915_private *dev_priv = dev->dev_private;
3946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3947
3948 /* crtc should still be enabled when we disable it. */
3949 WARN_ON(!crtc->enabled);
3950
3951 dev_priv->display.crtc_disable(crtc);
3952 intel_crtc->eld_vld = false;
3953 intel_crtc_update_sarea(crtc, false);
3954 dev_priv->display.off(crtc);
3955
3956 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3957 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
3958 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3959
3960 if (crtc->fb) {
3961 mutex_lock(&dev->struct_mutex);
3962 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3963 mutex_unlock(&dev->struct_mutex);
3964 crtc->fb = NULL;
3965 }
3966
3967 /* Update computed state. */
3968 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3969 if (!connector->encoder || !connector->encoder->crtc)
3970 continue;
3971
3972 if (connector->encoder->crtc != crtc)
3973 continue;
3974
3975 connector->dpms = DRM_MODE_DPMS_OFF;
3976 to_intel_encoder(connector->encoder)->connectors_active = false;
3977 }
3978 }
3979
3980 void intel_encoder_destroy(struct drm_encoder *encoder)
3981 {
3982 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3983
3984 drm_encoder_cleanup(encoder);
3985 kfree(intel_encoder);
3986 }
3987
3988 /* Simple dpms helper for encoders with just one connector, no cloning and only
3989 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3990 * state of the entire output pipe. */
3991 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3992 {
3993 if (mode == DRM_MODE_DPMS_ON) {
3994 encoder->connectors_active = true;
3995
3996 intel_crtc_update_dpms(encoder->base.crtc);
3997 } else {
3998 encoder->connectors_active = false;
3999
4000 intel_crtc_update_dpms(encoder->base.crtc);
4001 }
4002 }
4003
4004 /* Cross check the actual hw state with our own modeset state tracking (and it's
4005 * internal consistency). */
4006 static void intel_connector_check_state(struct intel_connector *connector)
4007 {
4008 if (connector->get_hw_state(connector)) {
4009 struct intel_encoder *encoder = connector->encoder;
4010 struct drm_crtc *crtc;
4011 bool encoder_enabled;
4012 enum pipe pipe;
4013
4014 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4015 connector->base.base.id,
4016 drm_get_connector_name(&connector->base));
4017
4018 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4019 "wrong connector dpms state\n");
4020 WARN(connector->base.encoder != &encoder->base,
4021 "active connector not linked to encoder\n");
4022 WARN(!encoder->connectors_active,
4023 "encoder->connectors_active not set\n");
4024
4025 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4026 WARN(!encoder_enabled, "encoder not enabled\n");
4027 if (WARN_ON(!encoder->base.crtc))
4028 return;
4029
4030 crtc = encoder->base.crtc;
4031
4032 WARN(!crtc->enabled, "crtc not enabled\n");
4033 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4034 WARN(pipe != to_intel_crtc(crtc)->pipe,
4035 "encoder active on the wrong pipe\n");
4036 }
4037 }
4038
4039 /* Even simpler default implementation, if there's really no special case to
4040 * consider. */
4041 void intel_connector_dpms(struct drm_connector *connector, int mode)
4042 {
4043 struct intel_encoder *encoder = intel_attached_encoder(connector);
4044
4045 /* All the simple cases only support two dpms states. */
4046 if (mode != DRM_MODE_DPMS_ON)
4047 mode = DRM_MODE_DPMS_OFF;
4048
4049 if (mode == connector->dpms)
4050 return;
4051
4052 connector->dpms = mode;
4053
4054 /* Only need to change hw state when actually enabled */
4055 if (encoder->base.crtc)
4056 intel_encoder_dpms(encoder, mode);
4057 else
4058 WARN_ON(encoder->connectors_active != false);
4059
4060 intel_modeset_check_state(connector->dev);
4061 }
4062
4063 /* Simple connector->get_hw_state implementation for encoders that support only
4064 * one connector and no cloning and hence the encoder state determines the state
4065 * of the connector. */
4066 bool intel_connector_get_hw_state(struct intel_connector *connector)
4067 {
4068 enum pipe pipe = 0;
4069 struct intel_encoder *encoder = connector->encoder;
4070
4071 return encoder->get_hw_state(encoder, &pipe);
4072 }
4073
4074 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4075 struct intel_crtc_config *pipe_config)
4076 {
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4078 struct intel_crtc *pipe_B_crtc =
4079 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4080
4081 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4082 pipe_name(pipe), pipe_config->fdi_lanes);
4083 if (pipe_config->fdi_lanes > 4) {
4084 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4085 pipe_name(pipe), pipe_config->fdi_lanes);
4086 return false;
4087 }
4088
4089 if (IS_HASWELL(dev)) {
4090 if (pipe_config->fdi_lanes > 2) {
4091 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4092 pipe_config->fdi_lanes);
4093 return false;
4094 } else {
4095 return true;
4096 }
4097 }
4098
4099 if (INTEL_INFO(dev)->num_pipes == 2)
4100 return true;
4101
4102 /* Ivybridge 3 pipe is really complicated */
4103 switch (pipe) {
4104 case PIPE_A:
4105 return true;
4106 case PIPE_B:
4107 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4108 pipe_config->fdi_lanes > 2) {
4109 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4110 pipe_name(pipe), pipe_config->fdi_lanes);
4111 return false;
4112 }
4113 return true;
4114 case PIPE_C:
4115 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4116 pipe_B_crtc->config.fdi_lanes <= 2) {
4117 if (pipe_config->fdi_lanes > 2) {
4118 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4119 pipe_name(pipe), pipe_config->fdi_lanes);
4120 return false;
4121 }
4122 } else {
4123 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4124 return false;
4125 }
4126 return true;
4127 default:
4128 BUG();
4129 }
4130 }
4131
4132 #define RETRY 1
4133 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4134 struct intel_crtc_config *pipe_config)
4135 {
4136 struct drm_device *dev = intel_crtc->base.dev;
4137 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4138 int lane, link_bw, fdi_dotclock;
4139 bool setup_ok, needs_recompute = false;
4140
4141 retry:
4142 /* FDI is a binary signal running at ~2.7GHz, encoding
4143 * each output octet as 10 bits. The actual frequency
4144 * is stored as a divider into a 100MHz clock, and the
4145 * mode pixel clock is stored in units of 1KHz.
4146 * Hence the bw of each lane in terms of the mode signal
4147 * is:
4148 */
4149 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4150
4151 fdi_dotclock = adjusted_mode->clock;
4152
4153 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4154 pipe_config->pipe_bpp);
4155
4156 pipe_config->fdi_lanes = lane;
4157
4158 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4159 link_bw, &pipe_config->fdi_m_n);
4160
4161 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4162 intel_crtc->pipe, pipe_config);
4163 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4164 pipe_config->pipe_bpp -= 2*3;
4165 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4166 pipe_config->pipe_bpp);
4167 needs_recompute = true;
4168 pipe_config->bw_constrained = true;
4169
4170 goto retry;
4171 }
4172
4173 if (needs_recompute)
4174 return RETRY;
4175
4176 return setup_ok ? 0 : -EINVAL;
4177 }
4178
4179 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4180 struct intel_crtc_config *pipe_config)
4181 {
4182 pipe_config->ips_enabled = i915_enable_ips &&
4183 hsw_crtc_supports_ips(crtc) &&
4184 pipe_config->pipe_bpp <= 24;
4185 }
4186
4187 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4188 struct intel_crtc_config *pipe_config)
4189 {
4190 struct drm_device *dev = crtc->base.dev;
4191 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4192
4193 /* FIXME should check pixel clock limits on all platforms */
4194 if (INTEL_INFO(dev)->gen < 4) {
4195 struct drm_i915_private *dev_priv = dev->dev_private;
4196 int clock_limit =
4197 dev_priv->display.get_display_clock_speed(dev);
4198
4199 /*
4200 * Enable pixel doubling when the dot clock
4201 * is > 90% of the (display) core speed.
4202 *
4203 * GDG double wide on either pipe,
4204 * otherwise pipe A only.
4205 */
4206 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4207 adjusted_mode->clock > clock_limit * 9 / 10) {
4208 clock_limit *= 2;
4209 pipe_config->double_wide = true;
4210 }
4211
4212 if (adjusted_mode->clock > clock_limit * 9 / 10)
4213 return -EINVAL;
4214 }
4215
4216 /*
4217 * Pipe horizontal size must be even in:
4218 * - DVO ganged mode
4219 * - LVDS dual channel mode
4220 * - Double wide pipe
4221 */
4222 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4223 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4224 pipe_config->pipe_src_w &= ~1;
4225
4226 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4227 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4228 */
4229 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4230 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4231 return -EINVAL;
4232
4233 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4234 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4235 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4236 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4237 * for lvds. */
4238 pipe_config->pipe_bpp = 8*3;
4239 }
4240
4241 if (HAS_IPS(dev))
4242 hsw_compute_ips_config(crtc, pipe_config);
4243
4244 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4245 * clock survives for now. */
4246 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4247 pipe_config->shared_dpll = crtc->config.shared_dpll;
4248
4249 if (pipe_config->has_pch_encoder)
4250 return ironlake_fdi_compute_config(crtc, pipe_config);
4251
4252 return 0;
4253 }
4254
4255 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4256 {
4257 return 400000; /* FIXME */
4258 }
4259
4260 static int i945_get_display_clock_speed(struct drm_device *dev)
4261 {
4262 return 400000;
4263 }
4264
4265 static int i915_get_display_clock_speed(struct drm_device *dev)
4266 {
4267 return 333000;
4268 }
4269
4270 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4271 {
4272 return 200000;
4273 }
4274
4275 static int pnv_get_display_clock_speed(struct drm_device *dev)
4276 {
4277 u16 gcfgc = 0;
4278
4279 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4280
4281 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4282 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4283 return 267000;
4284 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4285 return 333000;
4286 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4287 return 444000;
4288 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4289 return 200000;
4290 default:
4291 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4292 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4293 return 133000;
4294 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4295 return 167000;
4296 }
4297 }
4298
4299 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4300 {
4301 u16 gcfgc = 0;
4302
4303 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4304
4305 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4306 return 133000;
4307 else {
4308 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4309 case GC_DISPLAY_CLOCK_333_MHZ:
4310 return 333000;
4311 default:
4312 case GC_DISPLAY_CLOCK_190_200_MHZ:
4313 return 190000;
4314 }
4315 }
4316 }
4317
4318 static int i865_get_display_clock_speed(struct drm_device *dev)
4319 {
4320 return 266000;
4321 }
4322
4323 static int i855_get_display_clock_speed(struct drm_device *dev)
4324 {
4325 u16 hpllcc = 0;
4326 /* Assume that the hardware is in the high speed state. This
4327 * should be the default.
4328 */
4329 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4330 case GC_CLOCK_133_200:
4331 case GC_CLOCK_100_200:
4332 return 200000;
4333 case GC_CLOCK_166_250:
4334 return 250000;
4335 case GC_CLOCK_100_133:
4336 return 133000;
4337 }
4338
4339 /* Shouldn't happen */
4340 return 0;
4341 }
4342
4343 static int i830_get_display_clock_speed(struct drm_device *dev)
4344 {
4345 return 133000;
4346 }
4347
4348 static void
4349 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4350 {
4351 while (*num > DATA_LINK_M_N_MASK ||
4352 *den > DATA_LINK_M_N_MASK) {
4353 *num >>= 1;
4354 *den >>= 1;
4355 }
4356 }
4357
4358 static void compute_m_n(unsigned int m, unsigned int n,
4359 uint32_t *ret_m, uint32_t *ret_n)
4360 {
4361 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4362 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4363 intel_reduce_m_n_ratio(ret_m, ret_n);
4364 }
4365
4366 void
4367 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4368 int pixel_clock, int link_clock,
4369 struct intel_link_m_n *m_n)
4370 {
4371 m_n->tu = 64;
4372
4373 compute_m_n(bits_per_pixel * pixel_clock,
4374 link_clock * nlanes * 8,
4375 &m_n->gmch_m, &m_n->gmch_n);
4376
4377 compute_m_n(pixel_clock, link_clock,
4378 &m_n->link_m, &m_n->link_n);
4379 }
4380
4381 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4382 {
4383 if (i915_panel_use_ssc >= 0)
4384 return i915_panel_use_ssc != 0;
4385 return dev_priv->vbt.lvds_use_ssc
4386 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4387 }
4388
4389 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4390 {
4391 struct drm_device *dev = crtc->dev;
4392 struct drm_i915_private *dev_priv = dev->dev_private;
4393 int refclk;
4394
4395 if (IS_VALLEYVIEW(dev)) {
4396 refclk = 100000;
4397 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4398 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4399 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4400 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4401 refclk / 1000);
4402 } else if (!IS_GEN2(dev)) {
4403 refclk = 96000;
4404 } else {
4405 refclk = 48000;
4406 }
4407
4408 return refclk;
4409 }
4410
4411 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4412 {
4413 return (1 << dpll->n) << 16 | dpll->m2;
4414 }
4415
4416 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4417 {
4418 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4419 }
4420
4421 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4422 intel_clock_t *reduced_clock)
4423 {
4424 struct drm_device *dev = crtc->base.dev;
4425 struct drm_i915_private *dev_priv = dev->dev_private;
4426 int pipe = crtc->pipe;
4427 u32 fp, fp2 = 0;
4428
4429 if (IS_PINEVIEW(dev)) {
4430 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4431 if (reduced_clock)
4432 fp2 = pnv_dpll_compute_fp(reduced_clock);
4433 } else {
4434 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4435 if (reduced_clock)
4436 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4437 }
4438
4439 I915_WRITE(FP0(pipe), fp);
4440 crtc->config.dpll_hw_state.fp0 = fp;
4441
4442 crtc->lowfreq_avail = false;
4443 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4444 reduced_clock && i915_powersave) {
4445 I915_WRITE(FP1(pipe), fp2);
4446 crtc->config.dpll_hw_state.fp1 = fp2;
4447 crtc->lowfreq_avail = true;
4448 } else {
4449 I915_WRITE(FP1(pipe), fp);
4450 crtc->config.dpll_hw_state.fp1 = fp;
4451 }
4452 }
4453
4454 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4455 pipe)
4456 {
4457 u32 reg_val;
4458
4459 /*
4460 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4461 * and set it to a reasonable value instead.
4462 */
4463 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4464 reg_val &= 0xffffff00;
4465 reg_val |= 0x00000030;
4466 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4467
4468 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4469 reg_val &= 0x8cffffff;
4470 reg_val = 0x8c000000;
4471 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4472
4473 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4474 reg_val &= 0xffffff00;
4475 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4476
4477 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4478 reg_val &= 0x00ffffff;
4479 reg_val |= 0xb0000000;
4480 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4481 }
4482
4483 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4484 struct intel_link_m_n *m_n)
4485 {
4486 struct drm_device *dev = crtc->base.dev;
4487 struct drm_i915_private *dev_priv = dev->dev_private;
4488 int pipe = crtc->pipe;
4489
4490 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4491 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4492 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4493 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4494 }
4495
4496 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4497 struct intel_link_m_n *m_n)
4498 {
4499 struct drm_device *dev = crtc->base.dev;
4500 struct drm_i915_private *dev_priv = dev->dev_private;
4501 int pipe = crtc->pipe;
4502 enum transcoder transcoder = crtc->config.cpu_transcoder;
4503
4504 if (INTEL_INFO(dev)->gen >= 5) {
4505 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4506 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4507 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4508 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4509 } else {
4510 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4511 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4512 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4513 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4514 }
4515 }
4516
4517 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4518 {
4519 if (crtc->config.has_pch_encoder)
4520 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4521 else
4522 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4523 }
4524
4525 static void vlv_update_pll(struct intel_crtc *crtc)
4526 {
4527 struct drm_device *dev = crtc->base.dev;
4528 struct drm_i915_private *dev_priv = dev->dev_private;
4529 int pipe = crtc->pipe;
4530 u32 dpll, mdiv;
4531 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4532 u32 coreclk, reg_val, dpll_md;
4533
4534 mutex_lock(&dev_priv->dpio_lock);
4535
4536 bestn = crtc->config.dpll.n;
4537 bestm1 = crtc->config.dpll.m1;
4538 bestm2 = crtc->config.dpll.m2;
4539 bestp1 = crtc->config.dpll.p1;
4540 bestp2 = crtc->config.dpll.p2;
4541
4542 /* See eDP HDMI DPIO driver vbios notes doc */
4543
4544 /* PLL B needs special handling */
4545 if (pipe)
4546 vlv_pllb_recal_opamp(dev_priv, pipe);
4547
4548 /* Set up Tx target for periodic Rcomp update */
4549 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4550
4551 /* Disable target IRef on PLL */
4552 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4553 reg_val &= 0x00ffffff;
4554 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4555
4556 /* Disable fast lock */
4557 vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4558
4559 /* Set idtafcrecal before PLL is enabled */
4560 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4561 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4562 mdiv |= ((bestn << DPIO_N_SHIFT));
4563 mdiv |= (1 << DPIO_K_SHIFT);
4564
4565 /*
4566 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4567 * but we don't support that).
4568 * Note: don't use the DAC post divider as it seems unstable.
4569 */
4570 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4571 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4572
4573 mdiv |= DPIO_ENABLE_CALIBRATION;
4574 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4575
4576 /* Set HBR and RBR LPF coefficients */
4577 if (crtc->config.port_clock == 162000 ||
4578 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4579 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4580 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4581 0x009f0003);
4582 else
4583 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4584 0x00d0000f);
4585
4586 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4587 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4588 /* Use SSC source */
4589 if (!pipe)
4590 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4591 0x0df40000);
4592 else
4593 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4594 0x0df70000);
4595 } else { /* HDMI or VGA */
4596 /* Use bend source */
4597 if (!pipe)
4598 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4599 0x0df70000);
4600 else
4601 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4602 0x0df40000);
4603 }
4604
4605 coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4606 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4607 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4608 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4609 coreclk |= 0x01000000;
4610 vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4611
4612 vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4613
4614 /* Enable DPIO clock input */
4615 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4616 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4617 if (pipe)
4618 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4619
4620 dpll |= DPLL_VCO_ENABLE;
4621 crtc->config.dpll_hw_state.dpll = dpll;
4622
4623 dpll_md = (crtc->config.pixel_multiplier - 1)
4624 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4625 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4626
4627 if (crtc->config.has_dp_encoder)
4628 intel_dp_set_m_n(crtc);
4629
4630 mutex_unlock(&dev_priv->dpio_lock);
4631 }
4632
4633 static void i9xx_update_pll(struct intel_crtc *crtc,
4634 intel_clock_t *reduced_clock,
4635 int num_connectors)
4636 {
4637 struct drm_device *dev = crtc->base.dev;
4638 struct drm_i915_private *dev_priv = dev->dev_private;
4639 u32 dpll;
4640 bool is_sdvo;
4641 struct dpll *clock = &crtc->config.dpll;
4642
4643 i9xx_update_pll_dividers(crtc, reduced_clock);
4644
4645 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4646 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4647
4648 dpll = DPLL_VGA_MODE_DIS;
4649
4650 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4651 dpll |= DPLLB_MODE_LVDS;
4652 else
4653 dpll |= DPLLB_MODE_DAC_SERIAL;
4654
4655 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4656 dpll |= (crtc->config.pixel_multiplier - 1)
4657 << SDVO_MULTIPLIER_SHIFT_HIRES;
4658 }
4659
4660 if (is_sdvo)
4661 dpll |= DPLL_SDVO_HIGH_SPEED;
4662
4663 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4664 dpll |= DPLL_SDVO_HIGH_SPEED;
4665
4666 /* compute bitmask from p1 value */
4667 if (IS_PINEVIEW(dev))
4668 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4669 else {
4670 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4671 if (IS_G4X(dev) && reduced_clock)
4672 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4673 }
4674 switch (clock->p2) {
4675 case 5:
4676 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4677 break;
4678 case 7:
4679 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4680 break;
4681 case 10:
4682 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4683 break;
4684 case 14:
4685 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4686 break;
4687 }
4688 if (INTEL_INFO(dev)->gen >= 4)
4689 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4690
4691 if (crtc->config.sdvo_tv_clock)
4692 dpll |= PLL_REF_INPUT_TVCLKINBC;
4693 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4694 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4695 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4696 else
4697 dpll |= PLL_REF_INPUT_DREFCLK;
4698
4699 dpll |= DPLL_VCO_ENABLE;
4700 crtc->config.dpll_hw_state.dpll = dpll;
4701
4702 if (INTEL_INFO(dev)->gen >= 4) {
4703 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4704 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4705 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4706 }
4707
4708 if (crtc->config.has_dp_encoder)
4709 intel_dp_set_m_n(crtc);
4710 }
4711
4712 static void i8xx_update_pll(struct intel_crtc *crtc,
4713 intel_clock_t *reduced_clock,
4714 int num_connectors)
4715 {
4716 struct drm_device *dev = crtc->base.dev;
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 u32 dpll;
4719 struct dpll *clock = &crtc->config.dpll;
4720
4721 i9xx_update_pll_dividers(crtc, reduced_clock);
4722
4723 dpll = DPLL_VGA_MODE_DIS;
4724
4725 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4726 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4727 } else {
4728 if (clock->p1 == 2)
4729 dpll |= PLL_P1_DIVIDE_BY_TWO;
4730 else
4731 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4732 if (clock->p2 == 4)
4733 dpll |= PLL_P2_DIVIDE_BY_4;
4734 }
4735
4736 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4737 dpll |= DPLL_DVO_2X_MODE;
4738
4739 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4740 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4741 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4742 else
4743 dpll |= PLL_REF_INPUT_DREFCLK;
4744
4745 dpll |= DPLL_VCO_ENABLE;
4746 crtc->config.dpll_hw_state.dpll = dpll;
4747 }
4748
4749 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4750 {
4751 struct drm_device *dev = intel_crtc->base.dev;
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753 enum pipe pipe = intel_crtc->pipe;
4754 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4755 struct drm_display_mode *adjusted_mode =
4756 &intel_crtc->config.adjusted_mode;
4757 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4758
4759 /* We need to be careful not to changed the adjusted mode, for otherwise
4760 * the hw state checker will get angry at the mismatch. */
4761 crtc_vtotal = adjusted_mode->crtc_vtotal;
4762 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4763
4764 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4765 /* the chip adds 2 halflines automatically */
4766 crtc_vtotal -= 1;
4767 crtc_vblank_end -= 1;
4768 vsyncshift = adjusted_mode->crtc_hsync_start
4769 - adjusted_mode->crtc_htotal / 2;
4770 } else {
4771 vsyncshift = 0;
4772 }
4773
4774 if (INTEL_INFO(dev)->gen > 3)
4775 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4776
4777 I915_WRITE(HTOTAL(cpu_transcoder),
4778 (adjusted_mode->crtc_hdisplay - 1) |
4779 ((adjusted_mode->crtc_htotal - 1) << 16));
4780 I915_WRITE(HBLANK(cpu_transcoder),
4781 (adjusted_mode->crtc_hblank_start - 1) |
4782 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4783 I915_WRITE(HSYNC(cpu_transcoder),
4784 (adjusted_mode->crtc_hsync_start - 1) |
4785 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4786
4787 I915_WRITE(VTOTAL(cpu_transcoder),
4788 (adjusted_mode->crtc_vdisplay - 1) |
4789 ((crtc_vtotal - 1) << 16));
4790 I915_WRITE(VBLANK(cpu_transcoder),
4791 (adjusted_mode->crtc_vblank_start - 1) |
4792 ((crtc_vblank_end - 1) << 16));
4793 I915_WRITE(VSYNC(cpu_transcoder),
4794 (adjusted_mode->crtc_vsync_start - 1) |
4795 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4796
4797 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4798 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4799 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4800 * bits. */
4801 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4802 (pipe == PIPE_B || pipe == PIPE_C))
4803 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4804
4805 /* pipesrc controls the size that is scaled from, which should
4806 * always be the user's requested size.
4807 */
4808 I915_WRITE(PIPESRC(pipe),
4809 ((intel_crtc->config.pipe_src_w - 1) << 16) |
4810 (intel_crtc->config.pipe_src_h - 1));
4811 }
4812
4813 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4814 struct intel_crtc_config *pipe_config)
4815 {
4816 struct drm_device *dev = crtc->base.dev;
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4818 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4819 uint32_t tmp;
4820
4821 tmp = I915_READ(HTOTAL(cpu_transcoder));
4822 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4823 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4824 tmp = I915_READ(HBLANK(cpu_transcoder));
4825 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4826 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4827 tmp = I915_READ(HSYNC(cpu_transcoder));
4828 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4829 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4830
4831 tmp = I915_READ(VTOTAL(cpu_transcoder));
4832 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4833 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4834 tmp = I915_READ(VBLANK(cpu_transcoder));
4835 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4836 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4837 tmp = I915_READ(VSYNC(cpu_transcoder));
4838 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4839 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4840
4841 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4842 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4843 pipe_config->adjusted_mode.crtc_vtotal += 1;
4844 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4845 }
4846
4847 tmp = I915_READ(PIPESRC(crtc->pipe));
4848 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
4849 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
4850
4851 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
4852 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
4853 }
4854
4855 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4856 struct intel_crtc_config *pipe_config)
4857 {
4858 struct drm_crtc *crtc = &intel_crtc->base;
4859
4860 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4861 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4862 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4863 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4864
4865 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4866 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4867 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4868 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4869
4870 crtc->mode.flags = pipe_config->adjusted_mode.flags;
4871
4872 crtc->mode.clock = pipe_config->adjusted_mode.clock;
4873 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4874 }
4875
4876 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4877 {
4878 struct drm_device *dev = intel_crtc->base.dev;
4879 struct drm_i915_private *dev_priv = dev->dev_private;
4880 uint32_t pipeconf;
4881
4882 pipeconf = 0;
4883
4884 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4885 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4886 pipeconf |= PIPECONF_ENABLE;
4887
4888 if (intel_crtc->config.double_wide)
4889 pipeconf |= PIPECONF_DOUBLE_WIDE;
4890
4891 /* only g4x and later have fancy bpc/dither controls */
4892 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4893 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4894 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4895 pipeconf |= PIPECONF_DITHER_EN |
4896 PIPECONF_DITHER_TYPE_SP;
4897
4898 switch (intel_crtc->config.pipe_bpp) {
4899 case 18:
4900 pipeconf |= PIPECONF_6BPC;
4901 break;
4902 case 24:
4903 pipeconf |= PIPECONF_8BPC;
4904 break;
4905 case 30:
4906 pipeconf |= PIPECONF_10BPC;
4907 break;
4908 default:
4909 /* Case prevented by intel_choose_pipe_bpp_dither. */
4910 BUG();
4911 }
4912 }
4913
4914 if (HAS_PIPE_CXSR(dev)) {
4915 if (intel_crtc->lowfreq_avail) {
4916 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4917 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4918 } else {
4919 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4920 }
4921 }
4922
4923 if (!IS_GEN2(dev) &&
4924 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4925 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4926 else
4927 pipeconf |= PIPECONF_PROGRESSIVE;
4928
4929 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4930 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4931
4932 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4933 POSTING_READ(PIPECONF(intel_crtc->pipe));
4934 }
4935
4936 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4937 int x, int y,
4938 struct drm_framebuffer *fb)
4939 {
4940 struct drm_device *dev = crtc->dev;
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4943 int pipe = intel_crtc->pipe;
4944 int plane = intel_crtc->plane;
4945 int refclk, num_connectors = 0;
4946 intel_clock_t clock, reduced_clock;
4947 u32 dspcntr;
4948 bool ok, has_reduced_clock = false;
4949 bool is_lvds = false, is_dsi = false;
4950 struct intel_encoder *encoder;
4951 const intel_limit_t *limit;
4952 int ret;
4953
4954 for_each_encoder_on_crtc(dev, crtc, encoder) {
4955 switch (encoder->type) {
4956 case INTEL_OUTPUT_LVDS:
4957 is_lvds = true;
4958 break;
4959 case INTEL_OUTPUT_DSI:
4960 is_dsi = true;
4961 break;
4962 }
4963
4964 num_connectors++;
4965 }
4966
4967 if (is_dsi)
4968 goto skip_dpll;
4969
4970 if (!intel_crtc->config.clock_set) {
4971 refclk = i9xx_get_refclk(crtc, num_connectors);
4972
4973 /*
4974 * Returns a set of divisors for the desired target clock with
4975 * the given refclk, or FALSE. The returned values represent
4976 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
4977 * 2) / p1 / p2.
4978 */
4979 limit = intel_limit(crtc, refclk);
4980 ok = dev_priv->display.find_dpll(limit, crtc,
4981 intel_crtc->config.port_clock,
4982 refclk, NULL, &clock);
4983 if (!ok) {
4984 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4985 return -EINVAL;
4986 }
4987
4988 if (is_lvds && dev_priv->lvds_downclock_avail) {
4989 /*
4990 * Ensure we match the reduced clock's P to the target
4991 * clock. If the clocks don't match, we can't switch
4992 * the display clock by using the FP0/FP1. In such case
4993 * we will disable the LVDS downclock feature.
4994 */
4995 has_reduced_clock =
4996 dev_priv->display.find_dpll(limit, crtc,
4997 dev_priv->lvds_downclock,
4998 refclk, &clock,
4999 &reduced_clock);
5000 }
5001 /* Compat-code for transition, will disappear. */
5002 intel_crtc->config.dpll.n = clock.n;
5003 intel_crtc->config.dpll.m1 = clock.m1;
5004 intel_crtc->config.dpll.m2 = clock.m2;
5005 intel_crtc->config.dpll.p1 = clock.p1;
5006 intel_crtc->config.dpll.p2 = clock.p2;
5007 }
5008
5009 if (IS_GEN2(dev)) {
5010 i8xx_update_pll(intel_crtc,
5011 has_reduced_clock ? &reduced_clock : NULL,
5012 num_connectors);
5013 } else if (IS_VALLEYVIEW(dev)) {
5014 vlv_update_pll(intel_crtc);
5015 } else {
5016 i9xx_update_pll(intel_crtc,
5017 has_reduced_clock ? &reduced_clock : NULL,
5018 num_connectors);
5019 }
5020
5021 skip_dpll:
5022 /* Set up the display plane register */
5023 dspcntr = DISPPLANE_GAMMA_ENABLE;
5024
5025 if (!IS_VALLEYVIEW(dev)) {
5026 if (pipe == 0)
5027 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5028 else
5029 dspcntr |= DISPPLANE_SEL_PIPE_B;
5030 }
5031
5032 intel_set_pipe_timings(intel_crtc);
5033
5034 /* pipesrc and dspsize control the size that is scaled from,
5035 * which should always be the user's requested size.
5036 */
5037 I915_WRITE(DSPSIZE(plane),
5038 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5039 (intel_crtc->config.pipe_src_w - 1));
5040 I915_WRITE(DSPPOS(plane), 0);
5041
5042 i9xx_set_pipeconf(intel_crtc);
5043
5044 I915_WRITE(DSPCNTR(plane), dspcntr);
5045 POSTING_READ(DSPCNTR(plane));
5046
5047 ret = intel_pipe_set_base(crtc, x, y, fb);
5048
5049 return ret;
5050 }
5051
5052 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5053 struct intel_crtc_config *pipe_config)
5054 {
5055 struct drm_device *dev = crtc->base.dev;
5056 struct drm_i915_private *dev_priv = dev->dev_private;
5057 uint32_t tmp;
5058
5059 tmp = I915_READ(PFIT_CONTROL);
5060 if (!(tmp & PFIT_ENABLE))
5061 return;
5062
5063 /* Check whether the pfit is attached to our pipe. */
5064 if (INTEL_INFO(dev)->gen < 4) {
5065 if (crtc->pipe != PIPE_B)
5066 return;
5067 } else {
5068 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5069 return;
5070 }
5071
5072 pipe_config->gmch_pfit.control = tmp;
5073 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5074 if (INTEL_INFO(dev)->gen < 5)
5075 pipe_config->gmch_pfit.lvds_border_bits =
5076 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5077 }
5078
5079 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5080 struct intel_crtc_config *pipe_config)
5081 {
5082 struct drm_device *dev = crtc->base.dev;
5083 struct drm_i915_private *dev_priv = dev->dev_private;
5084 uint32_t tmp;
5085
5086 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5087 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5088
5089 tmp = I915_READ(PIPECONF(crtc->pipe));
5090 if (!(tmp & PIPECONF_ENABLE))
5091 return false;
5092
5093 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5094 switch (tmp & PIPECONF_BPC_MASK) {
5095 case PIPECONF_6BPC:
5096 pipe_config->pipe_bpp = 18;
5097 break;
5098 case PIPECONF_8BPC:
5099 pipe_config->pipe_bpp = 24;
5100 break;
5101 case PIPECONF_10BPC:
5102 pipe_config->pipe_bpp = 30;
5103 break;
5104 default:
5105 break;
5106 }
5107 }
5108
5109 if (INTEL_INFO(dev)->gen < 4)
5110 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5111
5112 intel_get_pipe_timings(crtc, pipe_config);
5113
5114 i9xx_get_pfit_config(crtc, pipe_config);
5115
5116 if (INTEL_INFO(dev)->gen >= 4) {
5117 tmp = I915_READ(DPLL_MD(crtc->pipe));
5118 pipe_config->pixel_multiplier =
5119 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5120 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5121 pipe_config->dpll_hw_state.dpll_md = tmp;
5122 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5123 tmp = I915_READ(DPLL(crtc->pipe));
5124 pipe_config->pixel_multiplier =
5125 ((tmp & SDVO_MULTIPLIER_MASK)
5126 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5127 } else {
5128 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5129 * port and will be fixed up in the encoder->get_config
5130 * function. */
5131 pipe_config->pixel_multiplier = 1;
5132 }
5133 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5134 if (!IS_VALLEYVIEW(dev)) {
5135 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5136 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5137 } else {
5138 /* Mask out read-only status bits. */
5139 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5140 DPLL_PORTC_READY_MASK |
5141 DPLL_PORTB_READY_MASK);
5142 }
5143
5144 i9xx_crtc_clock_get(crtc, pipe_config);
5145
5146 return true;
5147 }
5148
5149 static void ironlake_init_pch_refclk(struct drm_device *dev)
5150 {
5151 struct drm_i915_private *dev_priv = dev->dev_private;
5152 struct drm_mode_config *mode_config = &dev->mode_config;
5153 struct intel_encoder *encoder;
5154 u32 val, final;
5155 bool has_lvds = false;
5156 bool has_cpu_edp = false;
5157 bool has_panel = false;
5158 bool has_ck505 = false;
5159 bool can_ssc = false;
5160
5161 /* We need to take the global config into account */
5162 list_for_each_entry(encoder, &mode_config->encoder_list,
5163 base.head) {
5164 switch (encoder->type) {
5165 case INTEL_OUTPUT_LVDS:
5166 has_panel = true;
5167 has_lvds = true;
5168 break;
5169 case INTEL_OUTPUT_EDP:
5170 has_panel = true;
5171 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5172 has_cpu_edp = true;
5173 break;
5174 }
5175 }
5176
5177 if (HAS_PCH_IBX(dev)) {
5178 has_ck505 = dev_priv->vbt.display_clock_mode;
5179 can_ssc = has_ck505;
5180 } else {
5181 has_ck505 = false;
5182 can_ssc = true;
5183 }
5184
5185 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5186 has_panel, has_lvds, has_ck505);
5187
5188 /* Ironlake: try to setup display ref clock before DPLL
5189 * enabling. This is only under driver's control after
5190 * PCH B stepping, previous chipset stepping should be
5191 * ignoring this setting.
5192 */
5193 val = I915_READ(PCH_DREF_CONTROL);
5194
5195 /* As we must carefully and slowly disable/enable each source in turn,
5196 * compute the final state we want first and check if we need to
5197 * make any changes at all.
5198 */
5199 final = val;
5200 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5201 if (has_ck505)
5202 final |= DREF_NONSPREAD_CK505_ENABLE;
5203 else
5204 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5205
5206 final &= ~DREF_SSC_SOURCE_MASK;
5207 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5208 final &= ~DREF_SSC1_ENABLE;
5209
5210 if (has_panel) {
5211 final |= DREF_SSC_SOURCE_ENABLE;
5212
5213 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5214 final |= DREF_SSC1_ENABLE;
5215
5216 if (has_cpu_edp) {
5217 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5218 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5219 else
5220 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5221 } else
5222 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5223 } else {
5224 final |= DREF_SSC_SOURCE_DISABLE;
5225 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5226 }
5227
5228 if (final == val)
5229 return;
5230
5231 /* Always enable nonspread source */
5232 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5233
5234 if (has_ck505)
5235 val |= DREF_NONSPREAD_CK505_ENABLE;
5236 else
5237 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5238
5239 if (has_panel) {
5240 val &= ~DREF_SSC_SOURCE_MASK;
5241 val |= DREF_SSC_SOURCE_ENABLE;
5242
5243 /* SSC must be turned on before enabling the CPU output */
5244 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5245 DRM_DEBUG_KMS("Using SSC on panel\n");
5246 val |= DREF_SSC1_ENABLE;
5247 } else
5248 val &= ~DREF_SSC1_ENABLE;
5249
5250 /* Get SSC going before enabling the outputs */
5251 I915_WRITE(PCH_DREF_CONTROL, val);
5252 POSTING_READ(PCH_DREF_CONTROL);
5253 udelay(200);
5254
5255 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5256
5257 /* Enable CPU source on CPU attached eDP */
5258 if (has_cpu_edp) {
5259 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5260 DRM_DEBUG_KMS("Using SSC on eDP\n");
5261 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5262 }
5263 else
5264 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5265 } else
5266 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5267
5268 I915_WRITE(PCH_DREF_CONTROL, val);
5269 POSTING_READ(PCH_DREF_CONTROL);
5270 udelay(200);
5271 } else {
5272 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5273
5274 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5275
5276 /* Turn off CPU output */
5277 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5278
5279 I915_WRITE(PCH_DREF_CONTROL, val);
5280 POSTING_READ(PCH_DREF_CONTROL);
5281 udelay(200);
5282
5283 /* Turn off the SSC source */
5284 val &= ~DREF_SSC_SOURCE_MASK;
5285 val |= DREF_SSC_SOURCE_DISABLE;
5286
5287 /* Turn off SSC1 */
5288 val &= ~DREF_SSC1_ENABLE;
5289
5290 I915_WRITE(PCH_DREF_CONTROL, val);
5291 POSTING_READ(PCH_DREF_CONTROL);
5292 udelay(200);
5293 }
5294
5295 BUG_ON(val != final);
5296 }
5297
5298 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5299 {
5300 uint32_t tmp;
5301
5302 tmp = I915_READ(SOUTH_CHICKEN2);
5303 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5304 I915_WRITE(SOUTH_CHICKEN2, tmp);
5305
5306 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5307 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5308 DRM_ERROR("FDI mPHY reset assert timeout\n");
5309
5310 tmp = I915_READ(SOUTH_CHICKEN2);
5311 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5312 I915_WRITE(SOUTH_CHICKEN2, tmp);
5313
5314 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5315 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5316 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5317 }
5318
5319 /* WaMPhyProgramming:hsw */
5320 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5321 {
5322 uint32_t tmp;
5323
5324 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5325 tmp &= ~(0xFF << 24);
5326 tmp |= (0x12 << 24);
5327 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5328
5329 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5330 tmp |= (1 << 11);
5331 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5332
5333 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5334 tmp |= (1 << 11);
5335 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5336
5337 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5338 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5339 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5340
5341 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5342 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5343 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5344
5345 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5346 tmp &= ~(7 << 13);
5347 tmp |= (5 << 13);
5348 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5349
5350 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5351 tmp &= ~(7 << 13);
5352 tmp |= (5 << 13);
5353 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5354
5355 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5356 tmp &= ~0xFF;
5357 tmp |= 0x1C;
5358 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5359
5360 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5361 tmp &= ~0xFF;
5362 tmp |= 0x1C;
5363 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5364
5365 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5366 tmp &= ~(0xFF << 16);
5367 tmp |= (0x1C << 16);
5368 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5369
5370 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5371 tmp &= ~(0xFF << 16);
5372 tmp |= (0x1C << 16);
5373 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5374
5375 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5376 tmp |= (1 << 27);
5377 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5378
5379 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5380 tmp |= (1 << 27);
5381 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5382
5383 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5384 tmp &= ~(0xF << 28);
5385 tmp |= (4 << 28);
5386 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5387
5388 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5389 tmp &= ~(0xF << 28);
5390 tmp |= (4 << 28);
5391 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5392 }
5393
5394 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5395 * Programming" based on the parameters passed:
5396 * - Sequence to enable CLKOUT_DP
5397 * - Sequence to enable CLKOUT_DP without spread
5398 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5399 */
5400 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5401 bool with_fdi)
5402 {
5403 struct drm_i915_private *dev_priv = dev->dev_private;
5404 uint32_t reg, tmp;
5405
5406 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5407 with_spread = true;
5408 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5409 with_fdi, "LP PCH doesn't have FDI\n"))
5410 with_fdi = false;
5411
5412 mutex_lock(&dev_priv->dpio_lock);
5413
5414 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5415 tmp &= ~SBI_SSCCTL_DISABLE;
5416 tmp |= SBI_SSCCTL_PATHALT;
5417 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5418
5419 udelay(24);
5420
5421 if (with_spread) {
5422 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5423 tmp &= ~SBI_SSCCTL_PATHALT;
5424 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5425
5426 if (with_fdi) {
5427 lpt_reset_fdi_mphy(dev_priv);
5428 lpt_program_fdi_mphy(dev_priv);
5429 }
5430 }
5431
5432 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5433 SBI_GEN0 : SBI_DBUFF0;
5434 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5435 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5436 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5437
5438 mutex_unlock(&dev_priv->dpio_lock);
5439 }
5440
5441 /* Sequence to disable CLKOUT_DP */
5442 static void lpt_disable_clkout_dp(struct drm_device *dev)
5443 {
5444 struct drm_i915_private *dev_priv = dev->dev_private;
5445 uint32_t reg, tmp;
5446
5447 mutex_lock(&dev_priv->dpio_lock);
5448
5449 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5450 SBI_GEN0 : SBI_DBUFF0;
5451 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5452 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5453 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5454
5455 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5456 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5457 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5458 tmp |= SBI_SSCCTL_PATHALT;
5459 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5460 udelay(32);
5461 }
5462 tmp |= SBI_SSCCTL_DISABLE;
5463 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5464 }
5465
5466 mutex_unlock(&dev_priv->dpio_lock);
5467 }
5468
5469 static void lpt_init_pch_refclk(struct drm_device *dev)
5470 {
5471 struct drm_mode_config *mode_config = &dev->mode_config;
5472 struct intel_encoder *encoder;
5473 bool has_vga = false;
5474
5475 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5476 switch (encoder->type) {
5477 case INTEL_OUTPUT_ANALOG:
5478 has_vga = true;
5479 break;
5480 }
5481 }
5482
5483 if (has_vga)
5484 lpt_enable_clkout_dp(dev, true, true);
5485 else
5486 lpt_disable_clkout_dp(dev);
5487 }
5488
5489 /*
5490 * Initialize reference clocks when the driver loads
5491 */
5492 void intel_init_pch_refclk(struct drm_device *dev)
5493 {
5494 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5495 ironlake_init_pch_refclk(dev);
5496 else if (HAS_PCH_LPT(dev))
5497 lpt_init_pch_refclk(dev);
5498 }
5499
5500 static int ironlake_get_refclk(struct drm_crtc *crtc)
5501 {
5502 struct drm_device *dev = crtc->dev;
5503 struct drm_i915_private *dev_priv = dev->dev_private;
5504 struct intel_encoder *encoder;
5505 int num_connectors = 0;
5506 bool is_lvds = false;
5507
5508 for_each_encoder_on_crtc(dev, crtc, encoder) {
5509 switch (encoder->type) {
5510 case INTEL_OUTPUT_LVDS:
5511 is_lvds = true;
5512 break;
5513 }
5514 num_connectors++;
5515 }
5516
5517 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5518 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5519 dev_priv->vbt.lvds_ssc_freq);
5520 return dev_priv->vbt.lvds_ssc_freq * 1000;
5521 }
5522
5523 return 120000;
5524 }
5525
5526 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5527 {
5528 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5529 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5530 int pipe = intel_crtc->pipe;
5531 uint32_t val;
5532
5533 val = 0;
5534
5535 switch (intel_crtc->config.pipe_bpp) {
5536 case 18:
5537 val |= PIPECONF_6BPC;
5538 break;
5539 case 24:
5540 val |= PIPECONF_8BPC;
5541 break;
5542 case 30:
5543 val |= PIPECONF_10BPC;
5544 break;
5545 case 36:
5546 val |= PIPECONF_12BPC;
5547 break;
5548 default:
5549 /* Case prevented by intel_choose_pipe_bpp_dither. */
5550 BUG();
5551 }
5552
5553 if (intel_crtc->config.dither)
5554 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5555
5556 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5557 val |= PIPECONF_INTERLACED_ILK;
5558 else
5559 val |= PIPECONF_PROGRESSIVE;
5560
5561 if (intel_crtc->config.limited_color_range)
5562 val |= PIPECONF_COLOR_RANGE_SELECT;
5563
5564 I915_WRITE(PIPECONF(pipe), val);
5565 POSTING_READ(PIPECONF(pipe));
5566 }
5567
5568 /*
5569 * Set up the pipe CSC unit.
5570 *
5571 * Currently only full range RGB to limited range RGB conversion
5572 * is supported, but eventually this should handle various
5573 * RGB<->YCbCr scenarios as well.
5574 */
5575 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5576 {
5577 struct drm_device *dev = crtc->dev;
5578 struct drm_i915_private *dev_priv = dev->dev_private;
5579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5580 int pipe = intel_crtc->pipe;
5581 uint16_t coeff = 0x7800; /* 1.0 */
5582
5583 /*
5584 * TODO: Check what kind of values actually come out of the pipe
5585 * with these coeff/postoff values and adjust to get the best
5586 * accuracy. Perhaps we even need to take the bpc value into
5587 * consideration.
5588 */
5589
5590 if (intel_crtc->config.limited_color_range)
5591 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5592
5593 /*
5594 * GY/GU and RY/RU should be the other way around according
5595 * to BSpec, but reality doesn't agree. Just set them up in
5596 * a way that results in the correct picture.
5597 */
5598 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5599 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5600
5601 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5602 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5603
5604 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5605 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5606
5607 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5608 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5609 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5610
5611 if (INTEL_INFO(dev)->gen > 6) {
5612 uint16_t postoff = 0;
5613
5614 if (intel_crtc->config.limited_color_range)
5615 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5616
5617 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5618 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5619 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5620
5621 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5622 } else {
5623 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5624
5625 if (intel_crtc->config.limited_color_range)
5626 mode |= CSC_BLACK_SCREEN_OFFSET;
5627
5628 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5629 }
5630 }
5631
5632 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5633 {
5634 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5636 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5637 uint32_t val;
5638
5639 val = 0;
5640
5641 if (intel_crtc->config.dither)
5642 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5643
5644 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5645 val |= PIPECONF_INTERLACED_ILK;
5646 else
5647 val |= PIPECONF_PROGRESSIVE;
5648
5649 I915_WRITE(PIPECONF(cpu_transcoder), val);
5650 POSTING_READ(PIPECONF(cpu_transcoder));
5651
5652 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5653 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5654 }
5655
5656 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5657 intel_clock_t *clock,
5658 bool *has_reduced_clock,
5659 intel_clock_t *reduced_clock)
5660 {
5661 struct drm_device *dev = crtc->dev;
5662 struct drm_i915_private *dev_priv = dev->dev_private;
5663 struct intel_encoder *intel_encoder;
5664 int refclk;
5665 const intel_limit_t *limit;
5666 bool ret, is_lvds = false;
5667
5668 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5669 switch (intel_encoder->type) {
5670 case INTEL_OUTPUT_LVDS:
5671 is_lvds = true;
5672 break;
5673 }
5674 }
5675
5676 refclk = ironlake_get_refclk(crtc);
5677
5678 /*
5679 * Returns a set of divisors for the desired target clock with the given
5680 * refclk, or FALSE. The returned values represent the clock equation:
5681 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5682 */
5683 limit = intel_limit(crtc, refclk);
5684 ret = dev_priv->display.find_dpll(limit, crtc,
5685 to_intel_crtc(crtc)->config.port_clock,
5686 refclk, NULL, clock);
5687 if (!ret)
5688 return false;
5689
5690 if (is_lvds && dev_priv->lvds_downclock_avail) {
5691 /*
5692 * Ensure we match the reduced clock's P to the target clock.
5693 * If the clocks don't match, we can't switch the display clock
5694 * by using the FP0/FP1. In such case we will disable the LVDS
5695 * downclock feature.
5696 */
5697 *has_reduced_clock =
5698 dev_priv->display.find_dpll(limit, crtc,
5699 dev_priv->lvds_downclock,
5700 refclk, clock,
5701 reduced_clock);
5702 }
5703
5704 return true;
5705 }
5706
5707 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5708 {
5709 struct drm_i915_private *dev_priv = dev->dev_private;
5710 uint32_t temp;
5711
5712 temp = I915_READ(SOUTH_CHICKEN1);
5713 if (temp & FDI_BC_BIFURCATION_SELECT)
5714 return;
5715
5716 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5717 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5718
5719 temp |= FDI_BC_BIFURCATION_SELECT;
5720 DRM_DEBUG_KMS("enabling fdi C rx\n");
5721 I915_WRITE(SOUTH_CHICKEN1, temp);
5722 POSTING_READ(SOUTH_CHICKEN1);
5723 }
5724
5725 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5726 {
5727 struct drm_device *dev = intel_crtc->base.dev;
5728 struct drm_i915_private *dev_priv = dev->dev_private;
5729
5730 switch (intel_crtc->pipe) {
5731 case PIPE_A:
5732 break;
5733 case PIPE_B:
5734 if (intel_crtc->config.fdi_lanes > 2)
5735 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5736 else
5737 cpt_enable_fdi_bc_bifurcation(dev);
5738
5739 break;
5740 case PIPE_C:
5741 cpt_enable_fdi_bc_bifurcation(dev);
5742
5743 break;
5744 default:
5745 BUG();
5746 }
5747 }
5748
5749 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5750 {
5751 /*
5752 * Account for spread spectrum to avoid
5753 * oversubscribing the link. Max center spread
5754 * is 2.5%; use 5% for safety's sake.
5755 */
5756 u32 bps = target_clock * bpp * 21 / 20;
5757 return bps / (link_bw * 8) + 1;
5758 }
5759
5760 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5761 {
5762 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5763 }
5764
5765 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5766 u32 *fp,
5767 intel_clock_t *reduced_clock, u32 *fp2)
5768 {
5769 struct drm_crtc *crtc = &intel_crtc->base;
5770 struct drm_device *dev = crtc->dev;
5771 struct drm_i915_private *dev_priv = dev->dev_private;
5772 struct intel_encoder *intel_encoder;
5773 uint32_t dpll;
5774 int factor, num_connectors = 0;
5775 bool is_lvds = false, is_sdvo = false;
5776
5777 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5778 switch (intel_encoder->type) {
5779 case INTEL_OUTPUT_LVDS:
5780 is_lvds = true;
5781 break;
5782 case INTEL_OUTPUT_SDVO:
5783 case INTEL_OUTPUT_HDMI:
5784 is_sdvo = true;
5785 break;
5786 }
5787
5788 num_connectors++;
5789 }
5790
5791 /* Enable autotuning of the PLL clock (if permissible) */
5792 factor = 21;
5793 if (is_lvds) {
5794 if ((intel_panel_use_ssc(dev_priv) &&
5795 dev_priv->vbt.lvds_ssc_freq == 100) ||
5796 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5797 factor = 25;
5798 } else if (intel_crtc->config.sdvo_tv_clock)
5799 factor = 20;
5800
5801 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5802 *fp |= FP_CB_TUNE;
5803
5804 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5805 *fp2 |= FP_CB_TUNE;
5806
5807 dpll = 0;
5808
5809 if (is_lvds)
5810 dpll |= DPLLB_MODE_LVDS;
5811 else
5812 dpll |= DPLLB_MODE_DAC_SERIAL;
5813
5814 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5815 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5816
5817 if (is_sdvo)
5818 dpll |= DPLL_SDVO_HIGH_SPEED;
5819 if (intel_crtc->config.has_dp_encoder)
5820 dpll |= DPLL_SDVO_HIGH_SPEED;
5821
5822 /* compute bitmask from p1 value */
5823 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5824 /* also FPA1 */
5825 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5826
5827 switch (intel_crtc->config.dpll.p2) {
5828 case 5:
5829 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5830 break;
5831 case 7:
5832 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5833 break;
5834 case 10:
5835 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5836 break;
5837 case 14:
5838 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5839 break;
5840 }
5841
5842 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5843 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5844 else
5845 dpll |= PLL_REF_INPUT_DREFCLK;
5846
5847 return dpll | DPLL_VCO_ENABLE;
5848 }
5849
5850 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5851 int x, int y,
5852 struct drm_framebuffer *fb)
5853 {
5854 struct drm_device *dev = crtc->dev;
5855 struct drm_i915_private *dev_priv = dev->dev_private;
5856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5857 int pipe = intel_crtc->pipe;
5858 int plane = intel_crtc->plane;
5859 int num_connectors = 0;
5860 intel_clock_t clock, reduced_clock;
5861 u32 dpll = 0, fp = 0, fp2 = 0;
5862 bool ok, has_reduced_clock = false;
5863 bool is_lvds = false;
5864 struct intel_encoder *encoder;
5865 struct intel_shared_dpll *pll;
5866 int ret;
5867
5868 for_each_encoder_on_crtc(dev, crtc, encoder) {
5869 switch (encoder->type) {
5870 case INTEL_OUTPUT_LVDS:
5871 is_lvds = true;
5872 break;
5873 }
5874
5875 num_connectors++;
5876 }
5877
5878 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5879 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5880
5881 ok = ironlake_compute_clocks(crtc, &clock,
5882 &has_reduced_clock, &reduced_clock);
5883 if (!ok && !intel_crtc->config.clock_set) {
5884 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5885 return -EINVAL;
5886 }
5887 /* Compat-code for transition, will disappear. */
5888 if (!intel_crtc->config.clock_set) {
5889 intel_crtc->config.dpll.n = clock.n;
5890 intel_crtc->config.dpll.m1 = clock.m1;
5891 intel_crtc->config.dpll.m2 = clock.m2;
5892 intel_crtc->config.dpll.p1 = clock.p1;
5893 intel_crtc->config.dpll.p2 = clock.p2;
5894 }
5895
5896 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5897 if (intel_crtc->config.has_pch_encoder) {
5898 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5899 if (has_reduced_clock)
5900 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5901
5902 dpll = ironlake_compute_dpll(intel_crtc,
5903 &fp, &reduced_clock,
5904 has_reduced_clock ? &fp2 : NULL);
5905
5906 intel_crtc->config.dpll_hw_state.dpll = dpll;
5907 intel_crtc->config.dpll_hw_state.fp0 = fp;
5908 if (has_reduced_clock)
5909 intel_crtc->config.dpll_hw_state.fp1 = fp2;
5910 else
5911 intel_crtc->config.dpll_hw_state.fp1 = fp;
5912
5913 pll = intel_get_shared_dpll(intel_crtc);
5914 if (pll == NULL) {
5915 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5916 pipe_name(pipe));
5917 return -EINVAL;
5918 }
5919 } else
5920 intel_put_shared_dpll(intel_crtc);
5921
5922 if (intel_crtc->config.has_dp_encoder)
5923 intel_dp_set_m_n(intel_crtc);
5924
5925 if (is_lvds && has_reduced_clock && i915_powersave)
5926 intel_crtc->lowfreq_avail = true;
5927 else
5928 intel_crtc->lowfreq_avail = false;
5929
5930 if (intel_crtc->config.has_pch_encoder) {
5931 pll = intel_crtc_to_shared_dpll(intel_crtc);
5932
5933 }
5934
5935 intel_set_pipe_timings(intel_crtc);
5936
5937 if (intel_crtc->config.has_pch_encoder) {
5938 intel_cpu_transcoder_set_m_n(intel_crtc,
5939 &intel_crtc->config.fdi_m_n);
5940 }
5941
5942 if (IS_IVYBRIDGE(dev))
5943 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5944
5945 ironlake_set_pipeconf(crtc);
5946
5947 /* Set up the display plane register */
5948 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5949 POSTING_READ(DSPCNTR(plane));
5950
5951 ret = intel_pipe_set_base(crtc, x, y, fb);
5952
5953 return ret;
5954 }
5955
5956 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
5957 struct intel_link_m_n *m_n)
5958 {
5959 struct drm_device *dev = crtc->base.dev;
5960 struct drm_i915_private *dev_priv = dev->dev_private;
5961 enum pipe pipe = crtc->pipe;
5962
5963 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
5964 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
5965 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
5966 & ~TU_SIZE_MASK;
5967 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
5968 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
5969 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5970 }
5971
5972 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
5973 enum transcoder transcoder,
5974 struct intel_link_m_n *m_n)
5975 {
5976 struct drm_device *dev = crtc->base.dev;
5977 struct drm_i915_private *dev_priv = dev->dev_private;
5978 enum pipe pipe = crtc->pipe;
5979
5980 if (INTEL_INFO(dev)->gen >= 5) {
5981 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
5982 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
5983 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5984 & ~TU_SIZE_MASK;
5985 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5986 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5987 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5988 } else {
5989 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
5990 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
5991 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
5992 & ~TU_SIZE_MASK;
5993 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
5994 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
5995 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5996 }
5997 }
5998
5999 void intel_dp_get_m_n(struct intel_crtc *crtc,
6000 struct intel_crtc_config *pipe_config)
6001 {
6002 if (crtc->config.has_pch_encoder)
6003 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6004 else
6005 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6006 &pipe_config->dp_m_n);
6007 }
6008
6009 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6010 struct intel_crtc_config *pipe_config)
6011 {
6012 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6013 &pipe_config->fdi_m_n);
6014 }
6015
6016 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6017 struct intel_crtc_config *pipe_config)
6018 {
6019 struct drm_device *dev = crtc->base.dev;
6020 struct drm_i915_private *dev_priv = dev->dev_private;
6021 uint32_t tmp;
6022
6023 tmp = I915_READ(PF_CTL(crtc->pipe));
6024
6025 if (tmp & PF_ENABLE) {
6026 pipe_config->pch_pfit.enabled = true;
6027 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6028 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6029
6030 /* We currently do not free assignements of panel fitters on
6031 * ivb/hsw (since we don't use the higher upscaling modes which
6032 * differentiates them) so just WARN about this case for now. */
6033 if (IS_GEN7(dev)) {
6034 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6035 PF_PIPE_SEL_IVB(crtc->pipe));
6036 }
6037 }
6038 }
6039
6040 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6041 struct intel_crtc_config *pipe_config)
6042 {
6043 struct drm_device *dev = crtc->base.dev;
6044 struct drm_i915_private *dev_priv = dev->dev_private;
6045 uint32_t tmp;
6046
6047 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6048 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6049
6050 tmp = I915_READ(PIPECONF(crtc->pipe));
6051 if (!(tmp & PIPECONF_ENABLE))
6052 return false;
6053
6054 switch (tmp & PIPECONF_BPC_MASK) {
6055 case PIPECONF_6BPC:
6056 pipe_config->pipe_bpp = 18;
6057 break;
6058 case PIPECONF_8BPC:
6059 pipe_config->pipe_bpp = 24;
6060 break;
6061 case PIPECONF_10BPC:
6062 pipe_config->pipe_bpp = 30;
6063 break;
6064 case PIPECONF_12BPC:
6065 pipe_config->pipe_bpp = 36;
6066 break;
6067 default:
6068 break;
6069 }
6070
6071 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6072 struct intel_shared_dpll *pll;
6073
6074 pipe_config->has_pch_encoder = true;
6075
6076 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6077 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6078 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6079
6080 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6081
6082 if (HAS_PCH_IBX(dev_priv->dev)) {
6083 pipe_config->shared_dpll =
6084 (enum intel_dpll_id) crtc->pipe;
6085 } else {
6086 tmp = I915_READ(PCH_DPLL_SEL);
6087 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6088 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6089 else
6090 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6091 }
6092
6093 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6094
6095 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6096 &pipe_config->dpll_hw_state));
6097
6098 tmp = pipe_config->dpll_hw_state.dpll;
6099 pipe_config->pixel_multiplier =
6100 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6101 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6102
6103 ironlake_pch_clock_get(crtc, pipe_config);
6104 } else {
6105 pipe_config->pixel_multiplier = 1;
6106 }
6107
6108 intel_get_pipe_timings(crtc, pipe_config);
6109
6110 ironlake_get_pfit_config(crtc, pipe_config);
6111
6112 return true;
6113 }
6114
6115 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6116 {
6117 struct drm_device *dev = dev_priv->dev;
6118 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6119 struct intel_crtc *crtc;
6120 unsigned long irqflags;
6121 uint32_t val;
6122
6123 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6124 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6125 pipe_name(crtc->pipe));
6126
6127 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6128 WARN(plls->spll_refcount, "SPLL enabled\n");
6129 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6130 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6131 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6132 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6133 "CPU PWM1 enabled\n");
6134 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6135 "CPU PWM2 enabled\n");
6136 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6137 "PCH PWM1 enabled\n");
6138 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6139 "Utility pin enabled\n");
6140 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6141
6142 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6143 val = I915_READ(DEIMR);
6144 WARN((val & ~DE_PCH_EVENT_IVB) != val,
6145 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6146 val = I915_READ(SDEIMR);
6147 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6148 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6149 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6150 }
6151
6152 /*
6153 * This function implements pieces of two sequences from BSpec:
6154 * - Sequence for display software to disable LCPLL
6155 * - Sequence for display software to allow package C8+
6156 * The steps implemented here are just the steps that actually touch the LCPLL
6157 * register. Callers should take care of disabling all the display engine
6158 * functions, doing the mode unset, fixing interrupts, etc.
6159 */
6160 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6161 bool switch_to_fclk, bool allow_power_down)
6162 {
6163 uint32_t val;
6164
6165 assert_can_disable_lcpll(dev_priv);
6166
6167 val = I915_READ(LCPLL_CTL);
6168
6169 if (switch_to_fclk) {
6170 val |= LCPLL_CD_SOURCE_FCLK;
6171 I915_WRITE(LCPLL_CTL, val);
6172
6173 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6174 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6175 DRM_ERROR("Switching to FCLK failed\n");
6176
6177 val = I915_READ(LCPLL_CTL);
6178 }
6179
6180 val |= LCPLL_PLL_DISABLE;
6181 I915_WRITE(LCPLL_CTL, val);
6182 POSTING_READ(LCPLL_CTL);
6183
6184 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6185 DRM_ERROR("LCPLL still locked\n");
6186
6187 val = I915_READ(D_COMP);
6188 val |= D_COMP_COMP_DISABLE;
6189 mutex_lock(&dev_priv->rps.hw_lock);
6190 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6191 DRM_ERROR("Failed to disable D_COMP\n");
6192 mutex_unlock(&dev_priv->rps.hw_lock);
6193 POSTING_READ(D_COMP);
6194 ndelay(100);
6195
6196 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6197 DRM_ERROR("D_COMP RCOMP still in progress\n");
6198
6199 if (allow_power_down) {
6200 val = I915_READ(LCPLL_CTL);
6201 val |= LCPLL_POWER_DOWN_ALLOW;
6202 I915_WRITE(LCPLL_CTL, val);
6203 POSTING_READ(LCPLL_CTL);
6204 }
6205 }
6206
6207 /*
6208 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6209 * source.
6210 */
6211 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6212 {
6213 uint32_t val;
6214
6215 val = I915_READ(LCPLL_CTL);
6216
6217 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6218 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6219 return;
6220
6221 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6222 * we'll hang the machine! */
6223 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6224
6225 if (val & LCPLL_POWER_DOWN_ALLOW) {
6226 val &= ~LCPLL_POWER_DOWN_ALLOW;
6227 I915_WRITE(LCPLL_CTL, val);
6228 POSTING_READ(LCPLL_CTL);
6229 }
6230
6231 val = I915_READ(D_COMP);
6232 val |= D_COMP_COMP_FORCE;
6233 val &= ~D_COMP_COMP_DISABLE;
6234 mutex_lock(&dev_priv->rps.hw_lock);
6235 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6236 DRM_ERROR("Failed to enable D_COMP\n");
6237 mutex_unlock(&dev_priv->rps.hw_lock);
6238 POSTING_READ(D_COMP);
6239
6240 val = I915_READ(LCPLL_CTL);
6241 val &= ~LCPLL_PLL_DISABLE;
6242 I915_WRITE(LCPLL_CTL, val);
6243
6244 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6245 DRM_ERROR("LCPLL not locked yet\n");
6246
6247 if (val & LCPLL_CD_SOURCE_FCLK) {
6248 val = I915_READ(LCPLL_CTL);
6249 val &= ~LCPLL_CD_SOURCE_FCLK;
6250 I915_WRITE(LCPLL_CTL, val);
6251
6252 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6253 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6254 DRM_ERROR("Switching back to LCPLL failed\n");
6255 }
6256
6257 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6258 }
6259
6260 void hsw_enable_pc8_work(struct work_struct *__work)
6261 {
6262 struct drm_i915_private *dev_priv =
6263 container_of(to_delayed_work(__work), struct drm_i915_private,
6264 pc8.enable_work);
6265 struct drm_device *dev = dev_priv->dev;
6266 uint32_t val;
6267
6268 if (dev_priv->pc8.enabled)
6269 return;
6270
6271 DRM_DEBUG_KMS("Enabling package C8+\n");
6272
6273 dev_priv->pc8.enabled = true;
6274
6275 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6276 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6277 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6278 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6279 }
6280
6281 lpt_disable_clkout_dp(dev);
6282 hsw_pc8_disable_interrupts(dev);
6283 hsw_disable_lcpll(dev_priv, true, true);
6284 }
6285
6286 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6287 {
6288 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6289 WARN(dev_priv->pc8.disable_count < 1,
6290 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6291
6292 dev_priv->pc8.disable_count--;
6293 if (dev_priv->pc8.disable_count != 0)
6294 return;
6295
6296 schedule_delayed_work(&dev_priv->pc8.enable_work,
6297 msecs_to_jiffies(i915_pc8_timeout));
6298 }
6299
6300 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6301 {
6302 struct drm_device *dev = dev_priv->dev;
6303 uint32_t val;
6304
6305 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6306 WARN(dev_priv->pc8.disable_count < 0,
6307 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6308
6309 dev_priv->pc8.disable_count++;
6310 if (dev_priv->pc8.disable_count != 1)
6311 return;
6312
6313 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6314 if (!dev_priv->pc8.enabled)
6315 return;
6316
6317 DRM_DEBUG_KMS("Disabling package C8+\n");
6318
6319 hsw_restore_lcpll(dev_priv);
6320 hsw_pc8_restore_interrupts(dev);
6321 lpt_init_pch_refclk(dev);
6322
6323 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6324 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6325 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6326 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6327 }
6328
6329 intel_prepare_ddi(dev);
6330 i915_gem_init_swizzling(dev);
6331 mutex_lock(&dev_priv->rps.hw_lock);
6332 gen6_update_ring_freq(dev);
6333 mutex_unlock(&dev_priv->rps.hw_lock);
6334 dev_priv->pc8.enabled = false;
6335 }
6336
6337 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6338 {
6339 mutex_lock(&dev_priv->pc8.lock);
6340 __hsw_enable_package_c8(dev_priv);
6341 mutex_unlock(&dev_priv->pc8.lock);
6342 }
6343
6344 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6345 {
6346 mutex_lock(&dev_priv->pc8.lock);
6347 __hsw_disable_package_c8(dev_priv);
6348 mutex_unlock(&dev_priv->pc8.lock);
6349 }
6350
6351 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6352 {
6353 struct drm_device *dev = dev_priv->dev;
6354 struct intel_crtc *crtc;
6355 uint32_t val;
6356
6357 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6358 if (crtc->base.enabled)
6359 return false;
6360
6361 /* This case is still possible since we have the i915.disable_power_well
6362 * parameter and also the KVMr or something else might be requesting the
6363 * power well. */
6364 val = I915_READ(HSW_PWR_WELL_DRIVER);
6365 if (val != 0) {
6366 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6367 return false;
6368 }
6369
6370 return true;
6371 }
6372
6373 /* Since we're called from modeset_global_resources there's no way to
6374 * symmetrically increase and decrease the refcount, so we use
6375 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6376 * or not.
6377 */
6378 static void hsw_update_package_c8(struct drm_device *dev)
6379 {
6380 struct drm_i915_private *dev_priv = dev->dev_private;
6381 bool allow;
6382
6383 if (!i915_enable_pc8)
6384 return;
6385
6386 mutex_lock(&dev_priv->pc8.lock);
6387
6388 allow = hsw_can_enable_package_c8(dev_priv);
6389
6390 if (allow == dev_priv->pc8.requirements_met)
6391 goto done;
6392
6393 dev_priv->pc8.requirements_met = allow;
6394
6395 if (allow)
6396 __hsw_enable_package_c8(dev_priv);
6397 else
6398 __hsw_disable_package_c8(dev_priv);
6399
6400 done:
6401 mutex_unlock(&dev_priv->pc8.lock);
6402 }
6403
6404 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6405 {
6406 if (!dev_priv->pc8.gpu_idle) {
6407 dev_priv->pc8.gpu_idle = true;
6408 hsw_enable_package_c8(dev_priv);
6409 }
6410 }
6411
6412 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6413 {
6414 if (dev_priv->pc8.gpu_idle) {
6415 dev_priv->pc8.gpu_idle = false;
6416 hsw_disable_package_c8(dev_priv);
6417 }
6418 }
6419
6420 static void haswell_modeset_global_resources(struct drm_device *dev)
6421 {
6422 bool enable = false;
6423 struct intel_crtc *crtc;
6424
6425 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6426 if (!crtc->base.enabled)
6427 continue;
6428
6429 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6430 crtc->config.cpu_transcoder != TRANSCODER_EDP)
6431 enable = true;
6432 }
6433
6434 intel_set_power_well(dev, enable);
6435
6436 hsw_update_package_c8(dev);
6437 }
6438
6439 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6440 int x, int y,
6441 struct drm_framebuffer *fb)
6442 {
6443 struct drm_device *dev = crtc->dev;
6444 struct drm_i915_private *dev_priv = dev->dev_private;
6445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6446 int plane = intel_crtc->plane;
6447 int ret;
6448
6449 if (!intel_ddi_pll_mode_set(crtc))
6450 return -EINVAL;
6451
6452 if (intel_crtc->config.has_dp_encoder)
6453 intel_dp_set_m_n(intel_crtc);
6454
6455 intel_crtc->lowfreq_avail = false;
6456
6457 intel_set_pipe_timings(intel_crtc);
6458
6459 if (intel_crtc->config.has_pch_encoder) {
6460 intel_cpu_transcoder_set_m_n(intel_crtc,
6461 &intel_crtc->config.fdi_m_n);
6462 }
6463
6464 haswell_set_pipeconf(crtc);
6465
6466 intel_set_pipe_csc(crtc);
6467
6468 /* Set up the display plane register */
6469 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6470 POSTING_READ(DSPCNTR(plane));
6471
6472 ret = intel_pipe_set_base(crtc, x, y, fb);
6473
6474 return ret;
6475 }
6476
6477 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6478 struct intel_crtc_config *pipe_config)
6479 {
6480 struct drm_device *dev = crtc->base.dev;
6481 struct drm_i915_private *dev_priv = dev->dev_private;
6482 enum intel_display_power_domain pfit_domain;
6483 uint32_t tmp;
6484
6485 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6486 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6487
6488 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6489 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6490 enum pipe trans_edp_pipe;
6491 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6492 default:
6493 WARN(1, "unknown pipe linked to edp transcoder\n");
6494 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6495 case TRANS_DDI_EDP_INPUT_A_ON:
6496 trans_edp_pipe = PIPE_A;
6497 break;
6498 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6499 trans_edp_pipe = PIPE_B;
6500 break;
6501 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6502 trans_edp_pipe = PIPE_C;
6503 break;
6504 }
6505
6506 if (trans_edp_pipe == crtc->pipe)
6507 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6508 }
6509
6510 if (!intel_display_power_enabled(dev,
6511 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6512 return false;
6513
6514 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6515 if (!(tmp & PIPECONF_ENABLE))
6516 return false;
6517
6518 /*
6519 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6520 * DDI E. So just check whether this pipe is wired to DDI E and whether
6521 * the PCH transcoder is on.
6522 */
6523 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6524 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6525 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6526 pipe_config->has_pch_encoder = true;
6527
6528 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6529 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6530 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6531
6532 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6533 }
6534
6535 intel_get_pipe_timings(crtc, pipe_config);
6536
6537 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6538 if (intel_display_power_enabled(dev, pfit_domain))
6539 ironlake_get_pfit_config(crtc, pipe_config);
6540
6541 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6542 (I915_READ(IPS_CTL) & IPS_ENABLE);
6543
6544 pipe_config->pixel_multiplier = 1;
6545
6546 return true;
6547 }
6548
6549 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6550 int x, int y,
6551 struct drm_framebuffer *fb)
6552 {
6553 struct drm_device *dev = crtc->dev;
6554 struct drm_i915_private *dev_priv = dev->dev_private;
6555 struct intel_encoder *encoder;
6556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6557 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6558 int pipe = intel_crtc->pipe;
6559 int ret;
6560
6561 drm_vblank_pre_modeset(dev, pipe);
6562
6563 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6564
6565 drm_vblank_post_modeset(dev, pipe);
6566
6567 if (ret != 0)
6568 return ret;
6569
6570 for_each_encoder_on_crtc(dev, crtc, encoder) {
6571 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6572 encoder->base.base.id,
6573 drm_get_encoder_name(&encoder->base),
6574 mode->base.id, mode->name);
6575 encoder->mode_set(encoder);
6576 }
6577
6578 return 0;
6579 }
6580
6581 static bool intel_eld_uptodate(struct drm_connector *connector,
6582 int reg_eldv, uint32_t bits_eldv,
6583 int reg_elda, uint32_t bits_elda,
6584 int reg_edid)
6585 {
6586 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6587 uint8_t *eld = connector->eld;
6588 uint32_t i;
6589
6590 i = I915_READ(reg_eldv);
6591 i &= bits_eldv;
6592
6593 if (!eld[0])
6594 return !i;
6595
6596 if (!i)
6597 return false;
6598
6599 i = I915_READ(reg_elda);
6600 i &= ~bits_elda;
6601 I915_WRITE(reg_elda, i);
6602
6603 for (i = 0; i < eld[2]; i++)
6604 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6605 return false;
6606
6607 return true;
6608 }
6609
6610 static void g4x_write_eld(struct drm_connector *connector,
6611 struct drm_crtc *crtc)
6612 {
6613 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6614 uint8_t *eld = connector->eld;
6615 uint32_t eldv;
6616 uint32_t len;
6617 uint32_t i;
6618
6619 i = I915_READ(G4X_AUD_VID_DID);
6620
6621 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6622 eldv = G4X_ELDV_DEVCL_DEVBLC;
6623 else
6624 eldv = G4X_ELDV_DEVCTG;
6625
6626 if (intel_eld_uptodate(connector,
6627 G4X_AUD_CNTL_ST, eldv,
6628 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6629 G4X_HDMIW_HDMIEDID))
6630 return;
6631
6632 i = I915_READ(G4X_AUD_CNTL_ST);
6633 i &= ~(eldv | G4X_ELD_ADDR);
6634 len = (i >> 9) & 0x1f; /* ELD buffer size */
6635 I915_WRITE(G4X_AUD_CNTL_ST, i);
6636
6637 if (!eld[0])
6638 return;
6639
6640 len = min_t(uint8_t, eld[2], len);
6641 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6642 for (i = 0; i < len; i++)
6643 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6644
6645 i = I915_READ(G4X_AUD_CNTL_ST);
6646 i |= eldv;
6647 I915_WRITE(G4X_AUD_CNTL_ST, i);
6648 }
6649
6650 static void haswell_write_eld(struct drm_connector *connector,
6651 struct drm_crtc *crtc)
6652 {
6653 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6654 uint8_t *eld = connector->eld;
6655 struct drm_device *dev = crtc->dev;
6656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6657 uint32_t eldv;
6658 uint32_t i;
6659 int len;
6660 int pipe = to_intel_crtc(crtc)->pipe;
6661 int tmp;
6662
6663 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6664 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6665 int aud_config = HSW_AUD_CFG(pipe);
6666 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6667
6668
6669 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6670
6671 /* Audio output enable */
6672 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6673 tmp = I915_READ(aud_cntrl_st2);
6674 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6675 I915_WRITE(aud_cntrl_st2, tmp);
6676
6677 /* Wait for 1 vertical blank */
6678 intel_wait_for_vblank(dev, pipe);
6679
6680 /* Set ELD valid state */
6681 tmp = I915_READ(aud_cntrl_st2);
6682 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6683 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6684 I915_WRITE(aud_cntrl_st2, tmp);
6685 tmp = I915_READ(aud_cntrl_st2);
6686 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6687
6688 /* Enable HDMI mode */
6689 tmp = I915_READ(aud_config);
6690 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6691 /* clear N_programing_enable and N_value_index */
6692 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6693 I915_WRITE(aud_config, tmp);
6694
6695 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6696
6697 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6698 intel_crtc->eld_vld = true;
6699
6700 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6701 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6702 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6703 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6704 } else
6705 I915_WRITE(aud_config, 0);
6706
6707 if (intel_eld_uptodate(connector,
6708 aud_cntrl_st2, eldv,
6709 aud_cntl_st, IBX_ELD_ADDRESS,
6710 hdmiw_hdmiedid))
6711 return;
6712
6713 i = I915_READ(aud_cntrl_st2);
6714 i &= ~eldv;
6715 I915_WRITE(aud_cntrl_st2, i);
6716
6717 if (!eld[0])
6718 return;
6719
6720 i = I915_READ(aud_cntl_st);
6721 i &= ~IBX_ELD_ADDRESS;
6722 I915_WRITE(aud_cntl_st, i);
6723 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6724 DRM_DEBUG_DRIVER("port num:%d\n", i);
6725
6726 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6727 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6728 for (i = 0; i < len; i++)
6729 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6730
6731 i = I915_READ(aud_cntrl_st2);
6732 i |= eldv;
6733 I915_WRITE(aud_cntrl_st2, i);
6734
6735 }
6736
6737 static void ironlake_write_eld(struct drm_connector *connector,
6738 struct drm_crtc *crtc)
6739 {
6740 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6741 uint8_t *eld = connector->eld;
6742 uint32_t eldv;
6743 uint32_t i;
6744 int len;
6745 int hdmiw_hdmiedid;
6746 int aud_config;
6747 int aud_cntl_st;
6748 int aud_cntrl_st2;
6749 int pipe = to_intel_crtc(crtc)->pipe;
6750
6751 if (HAS_PCH_IBX(connector->dev)) {
6752 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6753 aud_config = IBX_AUD_CFG(pipe);
6754 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6755 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6756 } else {
6757 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6758 aud_config = CPT_AUD_CFG(pipe);
6759 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6760 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6761 }
6762
6763 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6764
6765 i = I915_READ(aud_cntl_st);
6766 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6767 if (!i) {
6768 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6769 /* operate blindly on all ports */
6770 eldv = IBX_ELD_VALIDB;
6771 eldv |= IBX_ELD_VALIDB << 4;
6772 eldv |= IBX_ELD_VALIDB << 8;
6773 } else {
6774 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6775 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6776 }
6777
6778 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6779 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6780 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6781 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6782 } else
6783 I915_WRITE(aud_config, 0);
6784
6785 if (intel_eld_uptodate(connector,
6786 aud_cntrl_st2, eldv,
6787 aud_cntl_st, IBX_ELD_ADDRESS,
6788 hdmiw_hdmiedid))
6789 return;
6790
6791 i = I915_READ(aud_cntrl_st2);
6792 i &= ~eldv;
6793 I915_WRITE(aud_cntrl_st2, i);
6794
6795 if (!eld[0])
6796 return;
6797
6798 i = I915_READ(aud_cntl_st);
6799 i &= ~IBX_ELD_ADDRESS;
6800 I915_WRITE(aud_cntl_st, i);
6801
6802 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6803 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6804 for (i = 0; i < len; i++)
6805 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6806
6807 i = I915_READ(aud_cntrl_st2);
6808 i |= eldv;
6809 I915_WRITE(aud_cntrl_st2, i);
6810 }
6811
6812 void intel_write_eld(struct drm_encoder *encoder,
6813 struct drm_display_mode *mode)
6814 {
6815 struct drm_crtc *crtc = encoder->crtc;
6816 struct drm_connector *connector;
6817 struct drm_device *dev = encoder->dev;
6818 struct drm_i915_private *dev_priv = dev->dev_private;
6819
6820 connector = drm_select_eld(encoder, mode);
6821 if (!connector)
6822 return;
6823
6824 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6825 connector->base.id,
6826 drm_get_connector_name(connector),
6827 connector->encoder->base.id,
6828 drm_get_encoder_name(connector->encoder));
6829
6830 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6831
6832 if (dev_priv->display.write_eld)
6833 dev_priv->display.write_eld(connector, crtc);
6834 }
6835
6836 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6837 {
6838 struct drm_device *dev = crtc->dev;
6839 struct drm_i915_private *dev_priv = dev->dev_private;
6840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6841 bool visible = base != 0;
6842 u32 cntl;
6843
6844 if (intel_crtc->cursor_visible == visible)
6845 return;
6846
6847 cntl = I915_READ(_CURACNTR);
6848 if (visible) {
6849 /* On these chipsets we can only modify the base whilst
6850 * the cursor is disabled.
6851 */
6852 I915_WRITE(_CURABASE, base);
6853
6854 cntl &= ~(CURSOR_FORMAT_MASK);
6855 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6856 cntl |= CURSOR_ENABLE |
6857 CURSOR_GAMMA_ENABLE |
6858 CURSOR_FORMAT_ARGB;
6859 } else
6860 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6861 I915_WRITE(_CURACNTR, cntl);
6862
6863 intel_crtc->cursor_visible = visible;
6864 }
6865
6866 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6867 {
6868 struct drm_device *dev = crtc->dev;
6869 struct drm_i915_private *dev_priv = dev->dev_private;
6870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6871 int pipe = intel_crtc->pipe;
6872 bool visible = base != 0;
6873
6874 if (intel_crtc->cursor_visible != visible) {
6875 uint32_t cntl = I915_READ(CURCNTR(pipe));
6876 if (base) {
6877 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6878 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6879 cntl |= pipe << 28; /* Connect to correct pipe */
6880 } else {
6881 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6882 cntl |= CURSOR_MODE_DISABLE;
6883 }
6884 I915_WRITE(CURCNTR(pipe), cntl);
6885
6886 intel_crtc->cursor_visible = visible;
6887 }
6888 /* and commit changes on next vblank */
6889 I915_WRITE(CURBASE(pipe), base);
6890 }
6891
6892 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6893 {
6894 struct drm_device *dev = crtc->dev;
6895 struct drm_i915_private *dev_priv = dev->dev_private;
6896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6897 int pipe = intel_crtc->pipe;
6898 bool visible = base != 0;
6899
6900 if (intel_crtc->cursor_visible != visible) {
6901 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6902 if (base) {
6903 cntl &= ~CURSOR_MODE;
6904 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6905 } else {
6906 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6907 cntl |= CURSOR_MODE_DISABLE;
6908 }
6909 if (IS_HASWELL(dev)) {
6910 cntl |= CURSOR_PIPE_CSC_ENABLE;
6911 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6912 }
6913 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6914
6915 intel_crtc->cursor_visible = visible;
6916 }
6917 /* and commit changes on next vblank */
6918 I915_WRITE(CURBASE_IVB(pipe), base);
6919 }
6920
6921 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6922 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6923 bool on)
6924 {
6925 struct drm_device *dev = crtc->dev;
6926 struct drm_i915_private *dev_priv = dev->dev_private;
6927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6928 int pipe = intel_crtc->pipe;
6929 int x = intel_crtc->cursor_x;
6930 int y = intel_crtc->cursor_y;
6931 u32 base = 0, pos = 0;
6932 bool visible;
6933
6934 if (on)
6935 base = intel_crtc->cursor_addr;
6936
6937 if (x >= intel_crtc->config.pipe_src_w)
6938 base = 0;
6939
6940 if (y >= intel_crtc->config.pipe_src_h)
6941 base = 0;
6942
6943 if (x < 0) {
6944 if (x + intel_crtc->cursor_width <= 0)
6945 base = 0;
6946
6947 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6948 x = -x;
6949 }
6950 pos |= x << CURSOR_X_SHIFT;
6951
6952 if (y < 0) {
6953 if (y + intel_crtc->cursor_height <= 0)
6954 base = 0;
6955
6956 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6957 y = -y;
6958 }
6959 pos |= y << CURSOR_Y_SHIFT;
6960
6961 visible = base != 0;
6962 if (!visible && !intel_crtc->cursor_visible)
6963 return;
6964
6965 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6966 I915_WRITE(CURPOS_IVB(pipe), pos);
6967 ivb_update_cursor(crtc, base);
6968 } else {
6969 I915_WRITE(CURPOS(pipe), pos);
6970 if (IS_845G(dev) || IS_I865G(dev))
6971 i845_update_cursor(crtc, base);
6972 else
6973 i9xx_update_cursor(crtc, base);
6974 }
6975 }
6976
6977 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6978 struct drm_file *file,
6979 uint32_t handle,
6980 uint32_t width, uint32_t height)
6981 {
6982 struct drm_device *dev = crtc->dev;
6983 struct drm_i915_private *dev_priv = dev->dev_private;
6984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6985 struct drm_i915_gem_object *obj;
6986 uint32_t addr;
6987 int ret;
6988
6989 /* if we want to turn off the cursor ignore width and height */
6990 if (!handle) {
6991 DRM_DEBUG_KMS("cursor off\n");
6992 addr = 0;
6993 obj = NULL;
6994 mutex_lock(&dev->struct_mutex);
6995 goto finish;
6996 }
6997
6998 /* Currently we only support 64x64 cursors */
6999 if (width != 64 || height != 64) {
7000 DRM_ERROR("we currently only support 64x64 cursors\n");
7001 return -EINVAL;
7002 }
7003
7004 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7005 if (&obj->base == NULL)
7006 return -ENOENT;
7007
7008 if (obj->base.size < width * height * 4) {
7009 DRM_ERROR("buffer is to small\n");
7010 ret = -ENOMEM;
7011 goto fail;
7012 }
7013
7014 /* we only need to pin inside GTT if cursor is non-phy */
7015 mutex_lock(&dev->struct_mutex);
7016 if (!dev_priv->info->cursor_needs_physical) {
7017 unsigned alignment;
7018
7019 if (obj->tiling_mode) {
7020 DRM_ERROR("cursor cannot be tiled\n");
7021 ret = -EINVAL;
7022 goto fail_locked;
7023 }
7024
7025 /* Note that the w/a also requires 2 PTE of padding following
7026 * the bo. We currently fill all unused PTE with the shadow
7027 * page and so we should always have valid PTE following the
7028 * cursor preventing the VT-d warning.
7029 */
7030 alignment = 0;
7031 if (need_vtd_wa(dev))
7032 alignment = 64*1024;
7033
7034 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7035 if (ret) {
7036 DRM_ERROR("failed to move cursor bo into the GTT\n");
7037 goto fail_locked;
7038 }
7039
7040 ret = i915_gem_object_put_fence(obj);
7041 if (ret) {
7042 DRM_ERROR("failed to release fence for cursor");
7043 goto fail_unpin;
7044 }
7045
7046 addr = i915_gem_obj_ggtt_offset(obj);
7047 } else {
7048 int align = IS_I830(dev) ? 16 * 1024 : 256;
7049 ret = i915_gem_attach_phys_object(dev, obj,
7050 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7051 align);
7052 if (ret) {
7053 DRM_ERROR("failed to attach phys object\n");
7054 goto fail_locked;
7055 }
7056 addr = obj->phys_obj->handle->busaddr;
7057 }
7058
7059 if (IS_GEN2(dev))
7060 I915_WRITE(CURSIZE, (height << 12) | width);
7061
7062 finish:
7063 if (intel_crtc->cursor_bo) {
7064 if (dev_priv->info->cursor_needs_physical) {
7065 if (intel_crtc->cursor_bo != obj)
7066 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7067 } else
7068 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7069 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7070 }
7071
7072 mutex_unlock(&dev->struct_mutex);
7073
7074 intel_crtc->cursor_addr = addr;
7075 intel_crtc->cursor_bo = obj;
7076 intel_crtc->cursor_width = width;
7077 intel_crtc->cursor_height = height;
7078
7079 if (intel_crtc->active)
7080 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7081
7082 return 0;
7083 fail_unpin:
7084 i915_gem_object_unpin_from_display_plane(obj);
7085 fail_locked:
7086 mutex_unlock(&dev->struct_mutex);
7087 fail:
7088 drm_gem_object_unreference_unlocked(&obj->base);
7089 return ret;
7090 }
7091
7092 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7093 {
7094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7095
7096 intel_crtc->cursor_x = x;
7097 intel_crtc->cursor_y = y;
7098
7099 if (intel_crtc->active)
7100 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7101
7102 return 0;
7103 }
7104
7105 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7106 u16 *blue, uint32_t start, uint32_t size)
7107 {
7108 int end = (start + size > 256) ? 256 : start + size, i;
7109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7110
7111 for (i = start; i < end; i++) {
7112 intel_crtc->lut_r[i] = red[i] >> 8;
7113 intel_crtc->lut_g[i] = green[i] >> 8;
7114 intel_crtc->lut_b[i] = blue[i] >> 8;
7115 }
7116
7117 intel_crtc_load_lut(crtc);
7118 }
7119
7120 /* VESA 640x480x72Hz mode to set on the pipe */
7121 static struct drm_display_mode load_detect_mode = {
7122 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7123 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7124 };
7125
7126 static struct drm_framebuffer *
7127 intel_framebuffer_create(struct drm_device *dev,
7128 struct drm_mode_fb_cmd2 *mode_cmd,
7129 struct drm_i915_gem_object *obj)
7130 {
7131 struct intel_framebuffer *intel_fb;
7132 int ret;
7133
7134 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7135 if (!intel_fb) {
7136 drm_gem_object_unreference_unlocked(&obj->base);
7137 return ERR_PTR(-ENOMEM);
7138 }
7139
7140 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7141 if (ret) {
7142 drm_gem_object_unreference_unlocked(&obj->base);
7143 kfree(intel_fb);
7144 return ERR_PTR(ret);
7145 }
7146
7147 return &intel_fb->base;
7148 }
7149
7150 static u32
7151 intel_framebuffer_pitch_for_width(int width, int bpp)
7152 {
7153 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7154 return ALIGN(pitch, 64);
7155 }
7156
7157 static u32
7158 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7159 {
7160 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7161 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7162 }
7163
7164 static struct drm_framebuffer *
7165 intel_framebuffer_create_for_mode(struct drm_device *dev,
7166 struct drm_display_mode *mode,
7167 int depth, int bpp)
7168 {
7169 struct drm_i915_gem_object *obj;
7170 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7171
7172 obj = i915_gem_alloc_object(dev,
7173 intel_framebuffer_size_for_mode(mode, bpp));
7174 if (obj == NULL)
7175 return ERR_PTR(-ENOMEM);
7176
7177 mode_cmd.width = mode->hdisplay;
7178 mode_cmd.height = mode->vdisplay;
7179 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7180 bpp);
7181 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7182
7183 return intel_framebuffer_create(dev, &mode_cmd, obj);
7184 }
7185
7186 static struct drm_framebuffer *
7187 mode_fits_in_fbdev(struct drm_device *dev,
7188 struct drm_display_mode *mode)
7189 {
7190 struct drm_i915_private *dev_priv = dev->dev_private;
7191 struct drm_i915_gem_object *obj;
7192 struct drm_framebuffer *fb;
7193
7194 if (dev_priv->fbdev == NULL)
7195 return NULL;
7196
7197 obj = dev_priv->fbdev->ifb.obj;
7198 if (obj == NULL)
7199 return NULL;
7200
7201 fb = &dev_priv->fbdev->ifb.base;
7202 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7203 fb->bits_per_pixel))
7204 return NULL;
7205
7206 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7207 return NULL;
7208
7209 return fb;
7210 }
7211
7212 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7213 struct drm_display_mode *mode,
7214 struct intel_load_detect_pipe *old)
7215 {
7216 struct intel_crtc *intel_crtc;
7217 struct intel_encoder *intel_encoder =
7218 intel_attached_encoder(connector);
7219 struct drm_crtc *possible_crtc;
7220 struct drm_encoder *encoder = &intel_encoder->base;
7221 struct drm_crtc *crtc = NULL;
7222 struct drm_device *dev = encoder->dev;
7223 struct drm_framebuffer *fb;
7224 int i = -1;
7225
7226 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7227 connector->base.id, drm_get_connector_name(connector),
7228 encoder->base.id, drm_get_encoder_name(encoder));
7229
7230 /*
7231 * Algorithm gets a little messy:
7232 *
7233 * - if the connector already has an assigned crtc, use it (but make
7234 * sure it's on first)
7235 *
7236 * - try to find the first unused crtc that can drive this connector,
7237 * and use that if we find one
7238 */
7239
7240 /* See if we already have a CRTC for this connector */
7241 if (encoder->crtc) {
7242 crtc = encoder->crtc;
7243
7244 mutex_lock(&crtc->mutex);
7245
7246 old->dpms_mode = connector->dpms;
7247 old->load_detect_temp = false;
7248
7249 /* Make sure the crtc and connector are running */
7250 if (connector->dpms != DRM_MODE_DPMS_ON)
7251 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7252
7253 return true;
7254 }
7255
7256 /* Find an unused one (if possible) */
7257 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7258 i++;
7259 if (!(encoder->possible_crtcs & (1 << i)))
7260 continue;
7261 if (!possible_crtc->enabled) {
7262 crtc = possible_crtc;
7263 break;
7264 }
7265 }
7266
7267 /*
7268 * If we didn't find an unused CRTC, don't use any.
7269 */
7270 if (!crtc) {
7271 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7272 return false;
7273 }
7274
7275 mutex_lock(&crtc->mutex);
7276 intel_encoder->new_crtc = to_intel_crtc(crtc);
7277 to_intel_connector(connector)->new_encoder = intel_encoder;
7278
7279 intel_crtc = to_intel_crtc(crtc);
7280 old->dpms_mode = connector->dpms;
7281 old->load_detect_temp = true;
7282 old->release_fb = NULL;
7283
7284 if (!mode)
7285 mode = &load_detect_mode;
7286
7287 /* We need a framebuffer large enough to accommodate all accesses
7288 * that the plane may generate whilst we perform load detection.
7289 * We can not rely on the fbcon either being present (we get called
7290 * during its initialisation to detect all boot displays, or it may
7291 * not even exist) or that it is large enough to satisfy the
7292 * requested mode.
7293 */
7294 fb = mode_fits_in_fbdev(dev, mode);
7295 if (fb == NULL) {
7296 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7297 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7298 old->release_fb = fb;
7299 } else
7300 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7301 if (IS_ERR(fb)) {
7302 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7303 mutex_unlock(&crtc->mutex);
7304 return false;
7305 }
7306
7307 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7308 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7309 if (old->release_fb)
7310 old->release_fb->funcs->destroy(old->release_fb);
7311 mutex_unlock(&crtc->mutex);
7312 return false;
7313 }
7314
7315 /* let the connector get through one full cycle before testing */
7316 intel_wait_for_vblank(dev, intel_crtc->pipe);
7317 return true;
7318 }
7319
7320 void intel_release_load_detect_pipe(struct drm_connector *connector,
7321 struct intel_load_detect_pipe *old)
7322 {
7323 struct intel_encoder *intel_encoder =
7324 intel_attached_encoder(connector);
7325 struct drm_encoder *encoder = &intel_encoder->base;
7326 struct drm_crtc *crtc = encoder->crtc;
7327
7328 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7329 connector->base.id, drm_get_connector_name(connector),
7330 encoder->base.id, drm_get_encoder_name(encoder));
7331
7332 if (old->load_detect_temp) {
7333 to_intel_connector(connector)->new_encoder = NULL;
7334 intel_encoder->new_crtc = NULL;
7335 intel_set_mode(crtc, NULL, 0, 0, NULL);
7336
7337 if (old->release_fb) {
7338 drm_framebuffer_unregister_private(old->release_fb);
7339 drm_framebuffer_unreference(old->release_fb);
7340 }
7341
7342 mutex_unlock(&crtc->mutex);
7343 return;
7344 }
7345
7346 /* Switch crtc and encoder back off if necessary */
7347 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7348 connector->funcs->dpms(connector, old->dpms_mode);
7349
7350 mutex_unlock(&crtc->mutex);
7351 }
7352
7353 static int i9xx_pll_refclk(struct drm_device *dev,
7354 const struct intel_crtc_config *pipe_config)
7355 {
7356 struct drm_i915_private *dev_priv = dev->dev_private;
7357 u32 dpll = pipe_config->dpll_hw_state.dpll;
7358
7359 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7360 return dev_priv->vbt.lvds_ssc_freq * 1000;
7361 else if (HAS_PCH_SPLIT(dev))
7362 return 120000;
7363 else if (!IS_GEN2(dev))
7364 return 96000;
7365 else
7366 return 48000;
7367 }
7368
7369 /* Returns the clock of the currently programmed mode of the given pipe. */
7370 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7371 struct intel_crtc_config *pipe_config)
7372 {
7373 struct drm_device *dev = crtc->base.dev;
7374 struct drm_i915_private *dev_priv = dev->dev_private;
7375 int pipe = pipe_config->cpu_transcoder;
7376 u32 dpll = pipe_config->dpll_hw_state.dpll;
7377 u32 fp;
7378 intel_clock_t clock;
7379 int refclk = i9xx_pll_refclk(dev, pipe_config);
7380
7381 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7382 fp = pipe_config->dpll_hw_state.fp0;
7383 else
7384 fp = pipe_config->dpll_hw_state.fp1;
7385
7386 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7387 if (IS_PINEVIEW(dev)) {
7388 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7389 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7390 } else {
7391 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7392 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7393 }
7394
7395 if (!IS_GEN2(dev)) {
7396 if (IS_PINEVIEW(dev))
7397 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7398 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7399 else
7400 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7401 DPLL_FPA01_P1_POST_DIV_SHIFT);
7402
7403 switch (dpll & DPLL_MODE_MASK) {
7404 case DPLLB_MODE_DAC_SERIAL:
7405 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7406 5 : 10;
7407 break;
7408 case DPLLB_MODE_LVDS:
7409 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7410 7 : 14;
7411 break;
7412 default:
7413 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7414 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7415 return;
7416 }
7417
7418 if (IS_PINEVIEW(dev))
7419 pineview_clock(refclk, &clock);
7420 else
7421 i9xx_clock(refclk, &clock);
7422 } else {
7423 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7424
7425 if (is_lvds) {
7426 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7427 DPLL_FPA01_P1_POST_DIV_SHIFT);
7428 clock.p2 = 14;
7429 } else {
7430 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7431 clock.p1 = 2;
7432 else {
7433 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7434 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7435 }
7436 if (dpll & PLL_P2_DIVIDE_BY_4)
7437 clock.p2 = 4;
7438 else
7439 clock.p2 = 2;
7440 }
7441
7442 i9xx_clock(refclk, &clock);
7443 }
7444
7445 /*
7446 * This value includes pixel_multiplier. We will use
7447 * port_clock to compute adjusted_mode.clock in the
7448 * encoder's get_config() function.
7449 */
7450 pipe_config->port_clock = clock.dot;
7451 }
7452
7453 int intel_dotclock_calculate(int link_freq,
7454 const struct intel_link_m_n *m_n)
7455 {
7456 /*
7457 * The calculation for the data clock is:
7458 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7459 * But we want to avoid losing precison if possible, so:
7460 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7461 *
7462 * and the link clock is simpler:
7463 * link_clock = (m * link_clock) / n
7464 */
7465
7466 if (!m_n->link_n)
7467 return 0;
7468
7469 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7470 }
7471
7472 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7473 struct intel_crtc_config *pipe_config)
7474 {
7475 struct drm_device *dev = crtc->base.dev;
7476
7477 /* read out port_clock from the DPLL */
7478 i9xx_crtc_clock_get(crtc, pipe_config);
7479
7480 /*
7481 * This value does not include pixel_multiplier.
7482 * We will check that port_clock and adjusted_mode.clock
7483 * agree once we know their relationship in the encoder's
7484 * get_config() function.
7485 */
7486 pipe_config->adjusted_mode.clock =
7487 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7488 &pipe_config->fdi_m_n);
7489 }
7490
7491 /** Returns the currently programmed mode of the given pipe. */
7492 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7493 struct drm_crtc *crtc)
7494 {
7495 struct drm_i915_private *dev_priv = dev->dev_private;
7496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7497 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7498 struct drm_display_mode *mode;
7499 struct intel_crtc_config pipe_config;
7500 int htot = I915_READ(HTOTAL(cpu_transcoder));
7501 int hsync = I915_READ(HSYNC(cpu_transcoder));
7502 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7503 int vsync = I915_READ(VSYNC(cpu_transcoder));
7504 enum pipe pipe = intel_crtc->pipe;
7505
7506 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7507 if (!mode)
7508 return NULL;
7509
7510 /*
7511 * Construct a pipe_config sufficient for getting the clock info
7512 * back out of crtc_clock_get.
7513 *
7514 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7515 * to use a real value here instead.
7516 */
7517 pipe_config.cpu_transcoder = (enum transcoder) pipe;
7518 pipe_config.pixel_multiplier = 1;
7519 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7520 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7521 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7522 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7523
7524 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7525 mode->hdisplay = (htot & 0xffff) + 1;
7526 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7527 mode->hsync_start = (hsync & 0xffff) + 1;
7528 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7529 mode->vdisplay = (vtot & 0xffff) + 1;
7530 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7531 mode->vsync_start = (vsync & 0xffff) + 1;
7532 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7533
7534 drm_mode_set_name(mode);
7535
7536 return mode;
7537 }
7538
7539 static void intel_increase_pllclock(struct drm_crtc *crtc)
7540 {
7541 struct drm_device *dev = crtc->dev;
7542 drm_i915_private_t *dev_priv = dev->dev_private;
7543 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7544 int pipe = intel_crtc->pipe;
7545 int dpll_reg = DPLL(pipe);
7546 int dpll;
7547
7548 if (HAS_PCH_SPLIT(dev))
7549 return;
7550
7551 if (!dev_priv->lvds_downclock_avail)
7552 return;
7553
7554 dpll = I915_READ(dpll_reg);
7555 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7556 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7557
7558 assert_panel_unlocked(dev_priv, pipe);
7559
7560 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7561 I915_WRITE(dpll_reg, dpll);
7562 intel_wait_for_vblank(dev, pipe);
7563
7564 dpll = I915_READ(dpll_reg);
7565 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7566 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7567 }
7568 }
7569
7570 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7571 {
7572 struct drm_device *dev = crtc->dev;
7573 drm_i915_private_t *dev_priv = dev->dev_private;
7574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7575
7576 if (HAS_PCH_SPLIT(dev))
7577 return;
7578
7579 if (!dev_priv->lvds_downclock_avail)
7580 return;
7581
7582 /*
7583 * Since this is called by a timer, we should never get here in
7584 * the manual case.
7585 */
7586 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7587 int pipe = intel_crtc->pipe;
7588 int dpll_reg = DPLL(pipe);
7589 int dpll;
7590
7591 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7592
7593 assert_panel_unlocked(dev_priv, pipe);
7594
7595 dpll = I915_READ(dpll_reg);
7596 dpll |= DISPLAY_RATE_SELECT_FPA1;
7597 I915_WRITE(dpll_reg, dpll);
7598 intel_wait_for_vblank(dev, pipe);
7599 dpll = I915_READ(dpll_reg);
7600 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7601 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7602 }
7603
7604 }
7605
7606 void intel_mark_busy(struct drm_device *dev)
7607 {
7608 struct drm_i915_private *dev_priv = dev->dev_private;
7609
7610 hsw_package_c8_gpu_busy(dev_priv);
7611 i915_update_gfx_val(dev_priv);
7612 }
7613
7614 void intel_mark_idle(struct drm_device *dev)
7615 {
7616 struct drm_i915_private *dev_priv = dev->dev_private;
7617 struct drm_crtc *crtc;
7618
7619 hsw_package_c8_gpu_idle(dev_priv);
7620
7621 if (!i915_powersave)
7622 return;
7623
7624 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7625 if (!crtc->fb)
7626 continue;
7627
7628 intel_decrease_pllclock(crtc);
7629 }
7630 }
7631
7632 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7633 struct intel_ring_buffer *ring)
7634 {
7635 struct drm_device *dev = obj->base.dev;
7636 struct drm_crtc *crtc;
7637
7638 if (!i915_powersave)
7639 return;
7640
7641 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7642 if (!crtc->fb)
7643 continue;
7644
7645 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7646 continue;
7647
7648 intel_increase_pllclock(crtc);
7649 if (ring && intel_fbc_enabled(dev))
7650 ring->fbc_dirty = true;
7651 }
7652 }
7653
7654 static void intel_crtc_destroy(struct drm_crtc *crtc)
7655 {
7656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7657 struct drm_device *dev = crtc->dev;
7658 struct intel_unpin_work *work;
7659 unsigned long flags;
7660
7661 spin_lock_irqsave(&dev->event_lock, flags);
7662 work = intel_crtc->unpin_work;
7663 intel_crtc->unpin_work = NULL;
7664 spin_unlock_irqrestore(&dev->event_lock, flags);
7665
7666 if (work) {
7667 cancel_work_sync(&work->work);
7668 kfree(work);
7669 }
7670
7671 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7672
7673 drm_crtc_cleanup(crtc);
7674
7675 kfree(intel_crtc);
7676 }
7677
7678 static void intel_unpin_work_fn(struct work_struct *__work)
7679 {
7680 struct intel_unpin_work *work =
7681 container_of(__work, struct intel_unpin_work, work);
7682 struct drm_device *dev = work->crtc->dev;
7683
7684 mutex_lock(&dev->struct_mutex);
7685 intel_unpin_fb_obj(work->old_fb_obj);
7686 drm_gem_object_unreference(&work->pending_flip_obj->base);
7687 drm_gem_object_unreference(&work->old_fb_obj->base);
7688
7689 intel_update_fbc(dev);
7690 mutex_unlock(&dev->struct_mutex);
7691
7692 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7693 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7694
7695 kfree(work);
7696 }
7697
7698 static void do_intel_finish_page_flip(struct drm_device *dev,
7699 struct drm_crtc *crtc)
7700 {
7701 drm_i915_private_t *dev_priv = dev->dev_private;
7702 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7703 struct intel_unpin_work *work;
7704 unsigned long flags;
7705
7706 /* Ignore early vblank irqs */
7707 if (intel_crtc == NULL)
7708 return;
7709
7710 spin_lock_irqsave(&dev->event_lock, flags);
7711 work = intel_crtc->unpin_work;
7712
7713 /* Ensure we don't miss a work->pending update ... */
7714 smp_rmb();
7715
7716 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7717 spin_unlock_irqrestore(&dev->event_lock, flags);
7718 return;
7719 }
7720
7721 /* and that the unpin work is consistent wrt ->pending. */
7722 smp_rmb();
7723
7724 intel_crtc->unpin_work = NULL;
7725
7726 if (work->event)
7727 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7728
7729 drm_vblank_put(dev, intel_crtc->pipe);
7730
7731 spin_unlock_irqrestore(&dev->event_lock, flags);
7732
7733 wake_up_all(&dev_priv->pending_flip_queue);
7734
7735 queue_work(dev_priv->wq, &work->work);
7736
7737 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7738 }
7739
7740 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7741 {
7742 drm_i915_private_t *dev_priv = dev->dev_private;
7743 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7744
7745 do_intel_finish_page_flip(dev, crtc);
7746 }
7747
7748 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7749 {
7750 drm_i915_private_t *dev_priv = dev->dev_private;
7751 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7752
7753 do_intel_finish_page_flip(dev, crtc);
7754 }
7755
7756 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7757 {
7758 drm_i915_private_t *dev_priv = dev->dev_private;
7759 struct intel_crtc *intel_crtc =
7760 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7761 unsigned long flags;
7762
7763 /* NB: An MMIO update of the plane base pointer will also
7764 * generate a page-flip completion irq, i.e. every modeset
7765 * is also accompanied by a spurious intel_prepare_page_flip().
7766 */
7767 spin_lock_irqsave(&dev->event_lock, flags);
7768 if (intel_crtc->unpin_work)
7769 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7770 spin_unlock_irqrestore(&dev->event_lock, flags);
7771 }
7772
7773 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7774 {
7775 /* Ensure that the work item is consistent when activating it ... */
7776 smp_wmb();
7777 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7778 /* and that it is marked active as soon as the irq could fire. */
7779 smp_wmb();
7780 }
7781
7782 static int intel_gen2_queue_flip(struct drm_device *dev,
7783 struct drm_crtc *crtc,
7784 struct drm_framebuffer *fb,
7785 struct drm_i915_gem_object *obj,
7786 uint32_t flags)
7787 {
7788 struct drm_i915_private *dev_priv = dev->dev_private;
7789 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7790 u32 flip_mask;
7791 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7792 int ret;
7793
7794 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7795 if (ret)
7796 goto err;
7797
7798 ret = intel_ring_begin(ring, 6);
7799 if (ret)
7800 goto err_unpin;
7801
7802 /* Can't queue multiple flips, so wait for the previous
7803 * one to finish before executing the next.
7804 */
7805 if (intel_crtc->plane)
7806 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7807 else
7808 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7809 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7810 intel_ring_emit(ring, MI_NOOP);
7811 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7812 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7813 intel_ring_emit(ring, fb->pitches[0]);
7814 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7815 intel_ring_emit(ring, 0); /* aux display base address, unused */
7816
7817 intel_mark_page_flip_active(intel_crtc);
7818 __intel_ring_advance(ring);
7819 return 0;
7820
7821 err_unpin:
7822 intel_unpin_fb_obj(obj);
7823 err:
7824 return ret;
7825 }
7826
7827 static int intel_gen3_queue_flip(struct drm_device *dev,
7828 struct drm_crtc *crtc,
7829 struct drm_framebuffer *fb,
7830 struct drm_i915_gem_object *obj,
7831 uint32_t flags)
7832 {
7833 struct drm_i915_private *dev_priv = dev->dev_private;
7834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7835 u32 flip_mask;
7836 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7837 int ret;
7838
7839 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7840 if (ret)
7841 goto err;
7842
7843 ret = intel_ring_begin(ring, 6);
7844 if (ret)
7845 goto err_unpin;
7846
7847 if (intel_crtc->plane)
7848 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7849 else
7850 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7851 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7852 intel_ring_emit(ring, MI_NOOP);
7853 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7854 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7855 intel_ring_emit(ring, fb->pitches[0]);
7856 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7857 intel_ring_emit(ring, MI_NOOP);
7858
7859 intel_mark_page_flip_active(intel_crtc);
7860 __intel_ring_advance(ring);
7861 return 0;
7862
7863 err_unpin:
7864 intel_unpin_fb_obj(obj);
7865 err:
7866 return ret;
7867 }
7868
7869 static int intel_gen4_queue_flip(struct drm_device *dev,
7870 struct drm_crtc *crtc,
7871 struct drm_framebuffer *fb,
7872 struct drm_i915_gem_object *obj,
7873 uint32_t flags)
7874 {
7875 struct drm_i915_private *dev_priv = dev->dev_private;
7876 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7877 uint32_t pf, pipesrc;
7878 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7879 int ret;
7880
7881 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7882 if (ret)
7883 goto err;
7884
7885 ret = intel_ring_begin(ring, 4);
7886 if (ret)
7887 goto err_unpin;
7888
7889 /* i965+ uses the linear or tiled offsets from the
7890 * Display Registers (which do not change across a page-flip)
7891 * so we need only reprogram the base address.
7892 */
7893 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7894 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7895 intel_ring_emit(ring, fb->pitches[0]);
7896 intel_ring_emit(ring,
7897 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7898 obj->tiling_mode);
7899
7900 /* XXX Enabling the panel-fitter across page-flip is so far
7901 * untested on non-native modes, so ignore it for now.
7902 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7903 */
7904 pf = 0;
7905 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7906 intel_ring_emit(ring, pf | pipesrc);
7907
7908 intel_mark_page_flip_active(intel_crtc);
7909 __intel_ring_advance(ring);
7910 return 0;
7911
7912 err_unpin:
7913 intel_unpin_fb_obj(obj);
7914 err:
7915 return ret;
7916 }
7917
7918 static int intel_gen6_queue_flip(struct drm_device *dev,
7919 struct drm_crtc *crtc,
7920 struct drm_framebuffer *fb,
7921 struct drm_i915_gem_object *obj,
7922 uint32_t flags)
7923 {
7924 struct drm_i915_private *dev_priv = dev->dev_private;
7925 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7926 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7927 uint32_t pf, pipesrc;
7928 int ret;
7929
7930 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7931 if (ret)
7932 goto err;
7933
7934 ret = intel_ring_begin(ring, 4);
7935 if (ret)
7936 goto err_unpin;
7937
7938 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7939 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7940 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7941 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7942
7943 /* Contrary to the suggestions in the documentation,
7944 * "Enable Panel Fitter" does not seem to be required when page
7945 * flipping with a non-native mode, and worse causes a normal
7946 * modeset to fail.
7947 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7948 */
7949 pf = 0;
7950 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7951 intel_ring_emit(ring, pf | pipesrc);
7952
7953 intel_mark_page_flip_active(intel_crtc);
7954 __intel_ring_advance(ring);
7955 return 0;
7956
7957 err_unpin:
7958 intel_unpin_fb_obj(obj);
7959 err:
7960 return ret;
7961 }
7962
7963 static int intel_gen7_queue_flip(struct drm_device *dev,
7964 struct drm_crtc *crtc,
7965 struct drm_framebuffer *fb,
7966 struct drm_i915_gem_object *obj,
7967 uint32_t flags)
7968 {
7969 struct drm_i915_private *dev_priv = dev->dev_private;
7970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7971 struct intel_ring_buffer *ring;
7972 uint32_t plane_bit = 0;
7973 int len, ret;
7974
7975 ring = obj->ring;
7976 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7977 ring = &dev_priv->ring[BCS];
7978
7979 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7980 if (ret)
7981 goto err;
7982
7983 switch(intel_crtc->plane) {
7984 case PLANE_A:
7985 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7986 break;
7987 case PLANE_B:
7988 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7989 break;
7990 case PLANE_C:
7991 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7992 break;
7993 default:
7994 WARN_ONCE(1, "unknown plane in flip command\n");
7995 ret = -ENODEV;
7996 goto err_unpin;
7997 }
7998
7999 len = 4;
8000 if (ring->id == RCS)
8001 len += 6;
8002
8003 ret = intel_ring_begin(ring, len);
8004 if (ret)
8005 goto err_unpin;
8006
8007 /* Unmask the flip-done completion message. Note that the bspec says that
8008 * we should do this for both the BCS and RCS, and that we must not unmask
8009 * more than one flip event at any time (or ensure that one flip message
8010 * can be sent by waiting for flip-done prior to queueing new flips).
8011 * Experimentation says that BCS works despite DERRMR masking all
8012 * flip-done completion events and that unmasking all planes at once
8013 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8014 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8015 */
8016 if (ring->id == RCS) {
8017 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8018 intel_ring_emit(ring, DERRMR);
8019 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8020 DERRMR_PIPEB_PRI_FLIP_DONE |
8021 DERRMR_PIPEC_PRI_FLIP_DONE));
8022 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8023 intel_ring_emit(ring, DERRMR);
8024 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8025 }
8026
8027 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8028 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8029 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8030 intel_ring_emit(ring, (MI_NOOP));
8031
8032 intel_mark_page_flip_active(intel_crtc);
8033 __intel_ring_advance(ring);
8034 return 0;
8035
8036 err_unpin:
8037 intel_unpin_fb_obj(obj);
8038 err:
8039 return ret;
8040 }
8041
8042 static int intel_default_queue_flip(struct drm_device *dev,
8043 struct drm_crtc *crtc,
8044 struct drm_framebuffer *fb,
8045 struct drm_i915_gem_object *obj,
8046 uint32_t flags)
8047 {
8048 return -ENODEV;
8049 }
8050
8051 static int intel_crtc_page_flip(struct drm_crtc *crtc,
8052 struct drm_framebuffer *fb,
8053 struct drm_pending_vblank_event *event,
8054 uint32_t page_flip_flags)
8055 {
8056 struct drm_device *dev = crtc->dev;
8057 struct drm_i915_private *dev_priv = dev->dev_private;
8058 struct drm_framebuffer *old_fb = crtc->fb;
8059 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8061 struct intel_unpin_work *work;
8062 unsigned long flags;
8063 int ret;
8064
8065 /* Can't change pixel format via MI display flips. */
8066 if (fb->pixel_format != crtc->fb->pixel_format)
8067 return -EINVAL;
8068
8069 /*
8070 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8071 * Note that pitch changes could also affect these register.
8072 */
8073 if (INTEL_INFO(dev)->gen > 3 &&
8074 (fb->offsets[0] != crtc->fb->offsets[0] ||
8075 fb->pitches[0] != crtc->fb->pitches[0]))
8076 return -EINVAL;
8077
8078 work = kzalloc(sizeof(*work), GFP_KERNEL);
8079 if (work == NULL)
8080 return -ENOMEM;
8081
8082 work->event = event;
8083 work->crtc = crtc;
8084 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8085 INIT_WORK(&work->work, intel_unpin_work_fn);
8086
8087 ret = drm_vblank_get(dev, intel_crtc->pipe);
8088 if (ret)
8089 goto free_work;
8090
8091 /* We borrow the event spin lock for protecting unpin_work */
8092 spin_lock_irqsave(&dev->event_lock, flags);
8093 if (intel_crtc->unpin_work) {
8094 spin_unlock_irqrestore(&dev->event_lock, flags);
8095 kfree(work);
8096 drm_vblank_put(dev, intel_crtc->pipe);
8097
8098 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8099 return -EBUSY;
8100 }
8101 intel_crtc->unpin_work = work;
8102 spin_unlock_irqrestore(&dev->event_lock, flags);
8103
8104 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8105 flush_workqueue(dev_priv->wq);
8106
8107 ret = i915_mutex_lock_interruptible(dev);
8108 if (ret)
8109 goto cleanup;
8110
8111 /* Reference the objects for the scheduled work. */
8112 drm_gem_object_reference(&work->old_fb_obj->base);
8113 drm_gem_object_reference(&obj->base);
8114
8115 crtc->fb = fb;
8116
8117 work->pending_flip_obj = obj;
8118
8119 work->enable_stall_check = true;
8120
8121 atomic_inc(&intel_crtc->unpin_work_count);
8122 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8123
8124 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8125 if (ret)
8126 goto cleanup_pending;
8127
8128 intel_disable_fbc(dev);
8129 intel_mark_fb_busy(obj, NULL);
8130 mutex_unlock(&dev->struct_mutex);
8131
8132 trace_i915_flip_request(intel_crtc->plane, obj);
8133
8134 return 0;
8135
8136 cleanup_pending:
8137 atomic_dec(&intel_crtc->unpin_work_count);
8138 crtc->fb = old_fb;
8139 drm_gem_object_unreference(&work->old_fb_obj->base);
8140 drm_gem_object_unreference(&obj->base);
8141 mutex_unlock(&dev->struct_mutex);
8142
8143 cleanup:
8144 spin_lock_irqsave(&dev->event_lock, flags);
8145 intel_crtc->unpin_work = NULL;
8146 spin_unlock_irqrestore(&dev->event_lock, flags);
8147
8148 drm_vblank_put(dev, intel_crtc->pipe);
8149 free_work:
8150 kfree(work);
8151
8152 return ret;
8153 }
8154
8155 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8156 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8157 .load_lut = intel_crtc_load_lut,
8158 };
8159
8160 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8161 struct drm_crtc *crtc)
8162 {
8163 struct drm_device *dev;
8164 struct drm_crtc *tmp;
8165 int crtc_mask = 1;
8166
8167 WARN(!crtc, "checking null crtc?\n");
8168
8169 dev = crtc->dev;
8170
8171 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8172 if (tmp == crtc)
8173 break;
8174 crtc_mask <<= 1;
8175 }
8176
8177 if (encoder->possible_crtcs & crtc_mask)
8178 return true;
8179 return false;
8180 }
8181
8182 /**
8183 * intel_modeset_update_staged_output_state
8184 *
8185 * Updates the staged output configuration state, e.g. after we've read out the
8186 * current hw state.
8187 */
8188 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8189 {
8190 struct intel_encoder *encoder;
8191 struct intel_connector *connector;
8192
8193 list_for_each_entry(connector, &dev->mode_config.connector_list,
8194 base.head) {
8195 connector->new_encoder =
8196 to_intel_encoder(connector->base.encoder);
8197 }
8198
8199 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8200 base.head) {
8201 encoder->new_crtc =
8202 to_intel_crtc(encoder->base.crtc);
8203 }
8204 }
8205
8206 /**
8207 * intel_modeset_commit_output_state
8208 *
8209 * This function copies the stage display pipe configuration to the real one.
8210 */
8211 static void intel_modeset_commit_output_state(struct drm_device *dev)
8212 {
8213 struct intel_encoder *encoder;
8214 struct intel_connector *connector;
8215
8216 list_for_each_entry(connector, &dev->mode_config.connector_list,
8217 base.head) {
8218 connector->base.encoder = &connector->new_encoder->base;
8219 }
8220
8221 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8222 base.head) {
8223 encoder->base.crtc = &encoder->new_crtc->base;
8224 }
8225 }
8226
8227 static void
8228 connected_sink_compute_bpp(struct intel_connector * connector,
8229 struct intel_crtc_config *pipe_config)
8230 {
8231 int bpp = pipe_config->pipe_bpp;
8232
8233 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8234 connector->base.base.id,
8235 drm_get_connector_name(&connector->base));
8236
8237 /* Don't use an invalid EDID bpc value */
8238 if (connector->base.display_info.bpc &&
8239 connector->base.display_info.bpc * 3 < bpp) {
8240 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8241 bpp, connector->base.display_info.bpc*3);
8242 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8243 }
8244
8245 /* Clamp bpp to 8 on screens without EDID 1.4 */
8246 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8247 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8248 bpp);
8249 pipe_config->pipe_bpp = 24;
8250 }
8251 }
8252
8253 static int
8254 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8255 struct drm_framebuffer *fb,
8256 struct intel_crtc_config *pipe_config)
8257 {
8258 struct drm_device *dev = crtc->base.dev;
8259 struct intel_connector *connector;
8260 int bpp;
8261
8262 switch (fb->pixel_format) {
8263 case DRM_FORMAT_C8:
8264 bpp = 8*3; /* since we go through a colormap */
8265 break;
8266 case DRM_FORMAT_XRGB1555:
8267 case DRM_FORMAT_ARGB1555:
8268 /* checked in intel_framebuffer_init already */
8269 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8270 return -EINVAL;
8271 case DRM_FORMAT_RGB565:
8272 bpp = 6*3; /* min is 18bpp */
8273 break;
8274 case DRM_FORMAT_XBGR8888:
8275 case DRM_FORMAT_ABGR8888:
8276 /* checked in intel_framebuffer_init already */
8277 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8278 return -EINVAL;
8279 case DRM_FORMAT_XRGB8888:
8280 case DRM_FORMAT_ARGB8888:
8281 bpp = 8*3;
8282 break;
8283 case DRM_FORMAT_XRGB2101010:
8284 case DRM_FORMAT_ARGB2101010:
8285 case DRM_FORMAT_XBGR2101010:
8286 case DRM_FORMAT_ABGR2101010:
8287 /* checked in intel_framebuffer_init already */
8288 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8289 return -EINVAL;
8290 bpp = 10*3;
8291 break;
8292 /* TODO: gen4+ supports 16 bpc floating point, too. */
8293 default:
8294 DRM_DEBUG_KMS("unsupported depth\n");
8295 return -EINVAL;
8296 }
8297
8298 pipe_config->pipe_bpp = bpp;
8299
8300 /* Clamp display bpp to EDID value */
8301 list_for_each_entry(connector, &dev->mode_config.connector_list,
8302 base.head) {
8303 if (!connector->new_encoder ||
8304 connector->new_encoder->new_crtc != crtc)
8305 continue;
8306
8307 connected_sink_compute_bpp(connector, pipe_config);
8308 }
8309
8310 return bpp;
8311 }
8312
8313 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8314 {
8315 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8316 "type: 0x%x flags: 0x%x\n",
8317 mode->clock,
8318 mode->crtc_hdisplay, mode->crtc_hsync_start,
8319 mode->crtc_hsync_end, mode->crtc_htotal,
8320 mode->crtc_vdisplay, mode->crtc_vsync_start,
8321 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8322 }
8323
8324 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8325 struct intel_crtc_config *pipe_config,
8326 const char *context)
8327 {
8328 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8329 context, pipe_name(crtc->pipe));
8330
8331 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8332 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8333 pipe_config->pipe_bpp, pipe_config->dither);
8334 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8335 pipe_config->has_pch_encoder,
8336 pipe_config->fdi_lanes,
8337 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8338 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8339 pipe_config->fdi_m_n.tu);
8340 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8341 pipe_config->has_dp_encoder,
8342 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8343 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8344 pipe_config->dp_m_n.tu);
8345 DRM_DEBUG_KMS("requested mode:\n");
8346 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8347 DRM_DEBUG_KMS("adjusted mode:\n");
8348 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8349 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8350 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8351 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8352 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8353 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8354 pipe_config->gmch_pfit.control,
8355 pipe_config->gmch_pfit.pgm_ratios,
8356 pipe_config->gmch_pfit.lvds_border_bits);
8357 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8358 pipe_config->pch_pfit.pos,
8359 pipe_config->pch_pfit.size,
8360 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8361 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8362 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8363 }
8364
8365 static bool check_encoder_cloning(struct drm_crtc *crtc)
8366 {
8367 int num_encoders = 0;
8368 bool uncloneable_encoders = false;
8369 struct intel_encoder *encoder;
8370
8371 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8372 base.head) {
8373 if (&encoder->new_crtc->base != crtc)
8374 continue;
8375
8376 num_encoders++;
8377 if (!encoder->cloneable)
8378 uncloneable_encoders = true;
8379 }
8380
8381 return !(num_encoders > 1 && uncloneable_encoders);
8382 }
8383
8384 static struct intel_crtc_config *
8385 intel_modeset_pipe_config(struct drm_crtc *crtc,
8386 struct drm_framebuffer *fb,
8387 struct drm_display_mode *mode)
8388 {
8389 struct drm_device *dev = crtc->dev;
8390 struct intel_encoder *encoder;
8391 struct intel_crtc_config *pipe_config;
8392 int plane_bpp, ret = -EINVAL;
8393 bool retry = true;
8394
8395 if (!check_encoder_cloning(crtc)) {
8396 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8397 return ERR_PTR(-EINVAL);
8398 }
8399
8400 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8401 if (!pipe_config)
8402 return ERR_PTR(-ENOMEM);
8403
8404 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8405 drm_mode_copy(&pipe_config->requested_mode, mode);
8406
8407 pipe_config->pipe_src_w = mode->hdisplay;
8408 pipe_config->pipe_src_h = mode->vdisplay;
8409
8410 pipe_config->cpu_transcoder =
8411 (enum transcoder) to_intel_crtc(crtc)->pipe;
8412 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8413
8414 /*
8415 * Sanitize sync polarity flags based on requested ones. If neither
8416 * positive or negative polarity is requested, treat this as meaning
8417 * negative polarity.
8418 */
8419 if (!(pipe_config->adjusted_mode.flags &
8420 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8421 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8422
8423 if (!(pipe_config->adjusted_mode.flags &
8424 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8425 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8426
8427 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8428 * plane pixel format and any sink constraints into account. Returns the
8429 * source plane bpp so that dithering can be selected on mismatches
8430 * after encoders and crtc also have had their say. */
8431 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8432 fb, pipe_config);
8433 if (plane_bpp < 0)
8434 goto fail;
8435
8436 encoder_retry:
8437 /* Ensure the port clock defaults are reset when retrying. */
8438 pipe_config->port_clock = 0;
8439 pipe_config->pixel_multiplier = 1;
8440
8441 /* Fill in default crtc timings, allow encoders to overwrite them. */
8442 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8443
8444 /* Pass our mode to the connectors and the CRTC to give them a chance to
8445 * adjust it according to limitations or connector properties, and also
8446 * a chance to reject the mode entirely.
8447 */
8448 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8449 base.head) {
8450
8451 if (&encoder->new_crtc->base != crtc)
8452 continue;
8453
8454 if (!(encoder->compute_config(encoder, pipe_config))) {
8455 DRM_DEBUG_KMS("Encoder config failure\n");
8456 goto fail;
8457 }
8458 }
8459
8460 /* Set default port clock if not overwritten by the encoder. Needs to be
8461 * done afterwards in case the encoder adjusts the mode. */
8462 if (!pipe_config->port_clock)
8463 pipe_config->port_clock = pipe_config->adjusted_mode.clock *
8464 pipe_config->pixel_multiplier;
8465
8466 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8467 if (ret < 0) {
8468 DRM_DEBUG_KMS("CRTC fixup failed\n");
8469 goto fail;
8470 }
8471
8472 if (ret == RETRY) {
8473 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8474 ret = -EINVAL;
8475 goto fail;
8476 }
8477
8478 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8479 retry = false;
8480 goto encoder_retry;
8481 }
8482
8483 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8484 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8485 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8486
8487 return pipe_config;
8488 fail:
8489 kfree(pipe_config);
8490 return ERR_PTR(ret);
8491 }
8492
8493 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8494 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8495 static void
8496 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8497 unsigned *prepare_pipes, unsigned *disable_pipes)
8498 {
8499 struct intel_crtc *intel_crtc;
8500 struct drm_device *dev = crtc->dev;
8501 struct intel_encoder *encoder;
8502 struct intel_connector *connector;
8503 struct drm_crtc *tmp_crtc;
8504
8505 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8506
8507 /* Check which crtcs have changed outputs connected to them, these need
8508 * to be part of the prepare_pipes mask. We don't (yet) support global
8509 * modeset across multiple crtcs, so modeset_pipes will only have one
8510 * bit set at most. */
8511 list_for_each_entry(connector, &dev->mode_config.connector_list,
8512 base.head) {
8513 if (connector->base.encoder == &connector->new_encoder->base)
8514 continue;
8515
8516 if (connector->base.encoder) {
8517 tmp_crtc = connector->base.encoder->crtc;
8518
8519 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8520 }
8521
8522 if (connector->new_encoder)
8523 *prepare_pipes |=
8524 1 << connector->new_encoder->new_crtc->pipe;
8525 }
8526
8527 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8528 base.head) {
8529 if (encoder->base.crtc == &encoder->new_crtc->base)
8530 continue;
8531
8532 if (encoder->base.crtc) {
8533 tmp_crtc = encoder->base.crtc;
8534
8535 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8536 }
8537
8538 if (encoder->new_crtc)
8539 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8540 }
8541
8542 /* Check for any pipes that will be fully disabled ... */
8543 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8544 base.head) {
8545 bool used = false;
8546
8547 /* Don't try to disable disabled crtcs. */
8548 if (!intel_crtc->base.enabled)
8549 continue;
8550
8551 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8552 base.head) {
8553 if (encoder->new_crtc == intel_crtc)
8554 used = true;
8555 }
8556
8557 if (!used)
8558 *disable_pipes |= 1 << intel_crtc->pipe;
8559 }
8560
8561
8562 /* set_mode is also used to update properties on life display pipes. */
8563 intel_crtc = to_intel_crtc(crtc);
8564 if (crtc->enabled)
8565 *prepare_pipes |= 1 << intel_crtc->pipe;
8566
8567 /*
8568 * For simplicity do a full modeset on any pipe where the output routing
8569 * changed. We could be more clever, but that would require us to be
8570 * more careful with calling the relevant encoder->mode_set functions.
8571 */
8572 if (*prepare_pipes)
8573 *modeset_pipes = *prepare_pipes;
8574
8575 /* ... and mask these out. */
8576 *modeset_pipes &= ~(*disable_pipes);
8577 *prepare_pipes &= ~(*disable_pipes);
8578
8579 /*
8580 * HACK: We don't (yet) fully support global modesets. intel_set_config
8581 * obies this rule, but the modeset restore mode of
8582 * intel_modeset_setup_hw_state does not.
8583 */
8584 *modeset_pipes &= 1 << intel_crtc->pipe;
8585 *prepare_pipes &= 1 << intel_crtc->pipe;
8586
8587 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8588 *modeset_pipes, *prepare_pipes, *disable_pipes);
8589 }
8590
8591 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8592 {
8593 struct drm_encoder *encoder;
8594 struct drm_device *dev = crtc->dev;
8595
8596 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8597 if (encoder->crtc == crtc)
8598 return true;
8599
8600 return false;
8601 }
8602
8603 static void
8604 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8605 {
8606 struct intel_encoder *intel_encoder;
8607 struct intel_crtc *intel_crtc;
8608 struct drm_connector *connector;
8609
8610 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8611 base.head) {
8612 if (!intel_encoder->base.crtc)
8613 continue;
8614
8615 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8616
8617 if (prepare_pipes & (1 << intel_crtc->pipe))
8618 intel_encoder->connectors_active = false;
8619 }
8620
8621 intel_modeset_commit_output_state(dev);
8622
8623 /* Update computed state. */
8624 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8625 base.head) {
8626 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8627 }
8628
8629 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8630 if (!connector->encoder || !connector->encoder->crtc)
8631 continue;
8632
8633 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8634
8635 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8636 struct drm_property *dpms_property =
8637 dev->mode_config.dpms_property;
8638
8639 connector->dpms = DRM_MODE_DPMS_ON;
8640 drm_object_property_set_value(&connector->base,
8641 dpms_property,
8642 DRM_MODE_DPMS_ON);
8643
8644 intel_encoder = to_intel_encoder(connector->encoder);
8645 intel_encoder->connectors_active = true;
8646 }
8647 }
8648
8649 }
8650
8651 static bool intel_fuzzy_clock_check(int clock1, int clock2)
8652 {
8653 int diff;
8654
8655 if (clock1 == clock2)
8656 return true;
8657
8658 if (!clock1 || !clock2)
8659 return false;
8660
8661 diff = abs(clock1 - clock2);
8662
8663 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8664 return true;
8665
8666 return false;
8667 }
8668
8669 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8670 list_for_each_entry((intel_crtc), \
8671 &(dev)->mode_config.crtc_list, \
8672 base.head) \
8673 if (mask & (1 <<(intel_crtc)->pipe))
8674
8675 static bool
8676 intel_pipe_config_compare(struct drm_device *dev,
8677 struct intel_crtc_config *current_config,
8678 struct intel_crtc_config *pipe_config)
8679 {
8680 #define PIPE_CONF_CHECK_X(name) \
8681 if (current_config->name != pipe_config->name) { \
8682 DRM_ERROR("mismatch in " #name " " \
8683 "(expected 0x%08x, found 0x%08x)\n", \
8684 current_config->name, \
8685 pipe_config->name); \
8686 return false; \
8687 }
8688
8689 #define PIPE_CONF_CHECK_I(name) \
8690 if (current_config->name != pipe_config->name) { \
8691 DRM_ERROR("mismatch in " #name " " \
8692 "(expected %i, found %i)\n", \
8693 current_config->name, \
8694 pipe_config->name); \
8695 return false; \
8696 }
8697
8698 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8699 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8700 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8701 "(expected %i, found %i)\n", \
8702 current_config->name & (mask), \
8703 pipe_config->name & (mask)); \
8704 return false; \
8705 }
8706
8707 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8708 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8709 DRM_ERROR("mismatch in " #name " " \
8710 "(expected %i, found %i)\n", \
8711 current_config->name, \
8712 pipe_config->name); \
8713 return false; \
8714 }
8715
8716 #define PIPE_CONF_QUIRK(quirk) \
8717 ((current_config->quirks | pipe_config->quirks) & (quirk))
8718
8719 PIPE_CONF_CHECK_I(cpu_transcoder);
8720
8721 PIPE_CONF_CHECK_I(has_pch_encoder);
8722 PIPE_CONF_CHECK_I(fdi_lanes);
8723 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8724 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8725 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8726 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8727 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8728
8729 PIPE_CONF_CHECK_I(has_dp_encoder);
8730 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
8731 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
8732 PIPE_CONF_CHECK_I(dp_m_n.link_m);
8733 PIPE_CONF_CHECK_I(dp_m_n.link_n);
8734 PIPE_CONF_CHECK_I(dp_m_n.tu);
8735
8736 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8737 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8738 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8739 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8740 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8741 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8742
8743 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8744 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8745 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8746 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8747 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8748 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8749
8750 PIPE_CONF_CHECK_I(pixel_multiplier);
8751
8752 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8753 DRM_MODE_FLAG_INTERLACE);
8754
8755 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8756 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8757 DRM_MODE_FLAG_PHSYNC);
8758 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8759 DRM_MODE_FLAG_NHSYNC);
8760 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8761 DRM_MODE_FLAG_PVSYNC);
8762 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8763 DRM_MODE_FLAG_NVSYNC);
8764 }
8765
8766 PIPE_CONF_CHECK_I(pipe_src_w);
8767 PIPE_CONF_CHECK_I(pipe_src_h);
8768
8769 PIPE_CONF_CHECK_I(gmch_pfit.control);
8770 /* pfit ratios are autocomputed by the hw on gen4+ */
8771 if (INTEL_INFO(dev)->gen < 4)
8772 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8773 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8774 PIPE_CONF_CHECK_I(pch_pfit.enabled);
8775 if (current_config->pch_pfit.enabled) {
8776 PIPE_CONF_CHECK_I(pch_pfit.pos);
8777 PIPE_CONF_CHECK_I(pch_pfit.size);
8778 }
8779
8780 PIPE_CONF_CHECK_I(ips_enabled);
8781
8782 PIPE_CONF_CHECK_I(double_wide);
8783
8784 PIPE_CONF_CHECK_I(shared_dpll);
8785 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8786 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8787 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8788 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8789
8790 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8791 PIPE_CONF_CHECK_I(pipe_bpp);
8792
8793 if (!IS_HASWELL(dev)) {
8794 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
8795 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
8796 }
8797
8798 #undef PIPE_CONF_CHECK_X
8799 #undef PIPE_CONF_CHECK_I
8800 #undef PIPE_CONF_CHECK_FLAGS
8801 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
8802 #undef PIPE_CONF_QUIRK
8803
8804 return true;
8805 }
8806
8807 static void
8808 check_connector_state(struct drm_device *dev)
8809 {
8810 struct intel_connector *connector;
8811
8812 list_for_each_entry(connector, &dev->mode_config.connector_list,
8813 base.head) {
8814 /* This also checks the encoder/connector hw state with the
8815 * ->get_hw_state callbacks. */
8816 intel_connector_check_state(connector);
8817
8818 WARN(&connector->new_encoder->base != connector->base.encoder,
8819 "connector's staged encoder doesn't match current encoder\n");
8820 }
8821 }
8822
8823 static void
8824 check_encoder_state(struct drm_device *dev)
8825 {
8826 struct intel_encoder *encoder;
8827 struct intel_connector *connector;
8828
8829 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8830 base.head) {
8831 bool enabled = false;
8832 bool active = false;
8833 enum pipe pipe, tracked_pipe;
8834
8835 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8836 encoder->base.base.id,
8837 drm_get_encoder_name(&encoder->base));
8838
8839 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8840 "encoder's stage crtc doesn't match current crtc\n");
8841 WARN(encoder->connectors_active && !encoder->base.crtc,
8842 "encoder's active_connectors set, but no crtc\n");
8843
8844 list_for_each_entry(connector, &dev->mode_config.connector_list,
8845 base.head) {
8846 if (connector->base.encoder != &encoder->base)
8847 continue;
8848 enabled = true;
8849 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8850 active = true;
8851 }
8852 WARN(!!encoder->base.crtc != enabled,
8853 "encoder's enabled state mismatch "
8854 "(expected %i, found %i)\n",
8855 !!encoder->base.crtc, enabled);
8856 WARN(active && !encoder->base.crtc,
8857 "active encoder with no crtc\n");
8858
8859 WARN(encoder->connectors_active != active,
8860 "encoder's computed active state doesn't match tracked active state "
8861 "(expected %i, found %i)\n", active, encoder->connectors_active);
8862
8863 active = encoder->get_hw_state(encoder, &pipe);
8864 WARN(active != encoder->connectors_active,
8865 "encoder's hw state doesn't match sw tracking "
8866 "(expected %i, found %i)\n",
8867 encoder->connectors_active, active);
8868
8869 if (!encoder->base.crtc)
8870 continue;
8871
8872 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8873 WARN(active && pipe != tracked_pipe,
8874 "active encoder's pipe doesn't match"
8875 "(expected %i, found %i)\n",
8876 tracked_pipe, pipe);
8877
8878 }
8879 }
8880
8881 static void
8882 check_crtc_state(struct drm_device *dev)
8883 {
8884 drm_i915_private_t *dev_priv = dev->dev_private;
8885 struct intel_crtc *crtc;
8886 struct intel_encoder *encoder;
8887 struct intel_crtc_config pipe_config;
8888
8889 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8890 base.head) {
8891 bool enabled = false;
8892 bool active = false;
8893
8894 memset(&pipe_config, 0, sizeof(pipe_config));
8895
8896 DRM_DEBUG_KMS("[CRTC:%d]\n",
8897 crtc->base.base.id);
8898
8899 WARN(crtc->active && !crtc->base.enabled,
8900 "active crtc, but not enabled in sw tracking\n");
8901
8902 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8903 base.head) {
8904 if (encoder->base.crtc != &crtc->base)
8905 continue;
8906 enabled = true;
8907 if (encoder->connectors_active)
8908 active = true;
8909 }
8910
8911 WARN(active != crtc->active,
8912 "crtc's computed active state doesn't match tracked active state "
8913 "(expected %i, found %i)\n", active, crtc->active);
8914 WARN(enabled != crtc->base.enabled,
8915 "crtc's computed enabled state doesn't match tracked enabled state "
8916 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8917
8918 active = dev_priv->display.get_pipe_config(crtc,
8919 &pipe_config);
8920
8921 /* hw state is inconsistent with the pipe A quirk */
8922 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8923 active = crtc->active;
8924
8925 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8926 base.head) {
8927 enum pipe pipe;
8928 if (encoder->base.crtc != &crtc->base)
8929 continue;
8930 if (encoder->get_config &&
8931 encoder->get_hw_state(encoder, &pipe))
8932 encoder->get_config(encoder, &pipe_config);
8933 }
8934
8935 WARN(crtc->active != active,
8936 "crtc active state doesn't match with hw state "
8937 "(expected %i, found %i)\n", crtc->active, active);
8938
8939 if (active &&
8940 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8941 WARN(1, "pipe state doesn't match!\n");
8942 intel_dump_pipe_config(crtc, &pipe_config,
8943 "[hw state]");
8944 intel_dump_pipe_config(crtc, &crtc->config,
8945 "[sw state]");
8946 }
8947 }
8948 }
8949
8950 static void
8951 check_shared_dpll_state(struct drm_device *dev)
8952 {
8953 drm_i915_private_t *dev_priv = dev->dev_private;
8954 struct intel_crtc *crtc;
8955 struct intel_dpll_hw_state dpll_hw_state;
8956 int i;
8957
8958 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8959 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8960 int enabled_crtcs = 0, active_crtcs = 0;
8961 bool active;
8962
8963 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8964
8965 DRM_DEBUG_KMS("%s\n", pll->name);
8966
8967 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8968
8969 WARN(pll->active > pll->refcount,
8970 "more active pll users than references: %i vs %i\n",
8971 pll->active, pll->refcount);
8972 WARN(pll->active && !pll->on,
8973 "pll in active use but not on in sw tracking\n");
8974 WARN(pll->on && !pll->active,
8975 "pll in on but not on in use in sw tracking\n");
8976 WARN(pll->on != active,
8977 "pll on state mismatch (expected %i, found %i)\n",
8978 pll->on, active);
8979
8980 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8981 base.head) {
8982 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8983 enabled_crtcs++;
8984 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8985 active_crtcs++;
8986 }
8987 WARN(pll->active != active_crtcs,
8988 "pll active crtcs mismatch (expected %i, found %i)\n",
8989 pll->active, active_crtcs);
8990 WARN(pll->refcount != enabled_crtcs,
8991 "pll enabled crtcs mismatch (expected %i, found %i)\n",
8992 pll->refcount, enabled_crtcs);
8993
8994 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8995 sizeof(dpll_hw_state)),
8996 "pll hw state mismatch\n");
8997 }
8998 }
8999
9000 void
9001 intel_modeset_check_state(struct drm_device *dev)
9002 {
9003 check_connector_state(dev);
9004 check_encoder_state(dev);
9005 check_crtc_state(dev);
9006 check_shared_dpll_state(dev);
9007 }
9008
9009 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9010 int dotclock)
9011 {
9012 /*
9013 * FDI already provided one idea for the dotclock.
9014 * Yell if the encoder disagrees.
9015 */
9016 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
9017 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9018 pipe_config->adjusted_mode.clock, dotclock);
9019 }
9020
9021 static int __intel_set_mode(struct drm_crtc *crtc,
9022 struct drm_display_mode *mode,
9023 int x, int y, struct drm_framebuffer *fb)
9024 {
9025 struct drm_device *dev = crtc->dev;
9026 drm_i915_private_t *dev_priv = dev->dev_private;
9027 struct drm_display_mode *saved_mode, *saved_hwmode;
9028 struct intel_crtc_config *pipe_config = NULL;
9029 struct intel_crtc *intel_crtc;
9030 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9031 int ret = 0;
9032
9033 saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9034 if (!saved_mode)
9035 return -ENOMEM;
9036 saved_hwmode = saved_mode + 1;
9037
9038 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9039 &prepare_pipes, &disable_pipes);
9040
9041 *saved_hwmode = crtc->hwmode;
9042 *saved_mode = crtc->mode;
9043
9044 /* Hack: Because we don't (yet) support global modeset on multiple
9045 * crtcs, we don't keep track of the new mode for more than one crtc.
9046 * Hence simply check whether any bit is set in modeset_pipes in all the
9047 * pieces of code that are not yet converted to deal with mutliple crtcs
9048 * changing their mode at the same time. */
9049 if (modeset_pipes) {
9050 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9051 if (IS_ERR(pipe_config)) {
9052 ret = PTR_ERR(pipe_config);
9053 pipe_config = NULL;
9054
9055 goto out;
9056 }
9057 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9058 "[modeset]");
9059 }
9060
9061 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9062 intel_crtc_disable(&intel_crtc->base);
9063
9064 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9065 if (intel_crtc->base.enabled)
9066 dev_priv->display.crtc_disable(&intel_crtc->base);
9067 }
9068
9069 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9070 * to set it here already despite that we pass it down the callchain.
9071 */
9072 if (modeset_pipes) {
9073 crtc->mode = *mode;
9074 /* mode_set/enable/disable functions rely on a correct pipe
9075 * config. */
9076 to_intel_crtc(crtc)->config = *pipe_config;
9077 }
9078
9079 /* Only after disabling all output pipelines that will be changed can we
9080 * update the the output configuration. */
9081 intel_modeset_update_state(dev, prepare_pipes);
9082
9083 if (dev_priv->display.modeset_global_resources)
9084 dev_priv->display.modeset_global_resources(dev);
9085
9086 /* Set up the DPLL and any encoders state that needs to adjust or depend
9087 * on the DPLL.
9088 */
9089 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9090 ret = intel_crtc_mode_set(&intel_crtc->base,
9091 x, y, fb);
9092 if (ret)
9093 goto done;
9094 }
9095
9096 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9097 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9098 dev_priv->display.crtc_enable(&intel_crtc->base);
9099
9100 if (modeset_pipes) {
9101 /* Store real post-adjustment hardware mode. */
9102 crtc->hwmode = pipe_config->adjusted_mode;
9103
9104 /* Calculate and store various constants which
9105 * are later needed by vblank and swap-completion
9106 * timestamping. They are derived from true hwmode.
9107 */
9108 drm_calc_timestamping_constants(crtc);
9109 }
9110
9111 /* FIXME: add subpixel order */
9112 done:
9113 if (ret && crtc->enabled) {
9114 crtc->hwmode = *saved_hwmode;
9115 crtc->mode = *saved_mode;
9116 }
9117
9118 out:
9119 kfree(pipe_config);
9120 kfree(saved_mode);
9121 return ret;
9122 }
9123
9124 static int intel_set_mode(struct drm_crtc *crtc,
9125 struct drm_display_mode *mode,
9126 int x, int y, struct drm_framebuffer *fb)
9127 {
9128 int ret;
9129
9130 ret = __intel_set_mode(crtc, mode, x, y, fb);
9131
9132 if (ret == 0)
9133 intel_modeset_check_state(crtc->dev);
9134
9135 return ret;
9136 }
9137
9138 void intel_crtc_restore_mode(struct drm_crtc *crtc)
9139 {
9140 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9141 }
9142
9143 #undef for_each_intel_crtc_masked
9144
9145 static void intel_set_config_free(struct intel_set_config *config)
9146 {
9147 if (!config)
9148 return;
9149
9150 kfree(config->save_connector_encoders);
9151 kfree(config->save_encoder_crtcs);
9152 kfree(config);
9153 }
9154
9155 static int intel_set_config_save_state(struct drm_device *dev,
9156 struct intel_set_config *config)
9157 {
9158 struct drm_encoder *encoder;
9159 struct drm_connector *connector;
9160 int count;
9161
9162 config->save_encoder_crtcs =
9163 kcalloc(dev->mode_config.num_encoder,
9164 sizeof(struct drm_crtc *), GFP_KERNEL);
9165 if (!config->save_encoder_crtcs)
9166 return -ENOMEM;
9167
9168 config->save_connector_encoders =
9169 kcalloc(dev->mode_config.num_connector,
9170 sizeof(struct drm_encoder *), GFP_KERNEL);
9171 if (!config->save_connector_encoders)
9172 return -ENOMEM;
9173
9174 /* Copy data. Note that driver private data is not affected.
9175 * Should anything bad happen only the expected state is
9176 * restored, not the drivers personal bookkeeping.
9177 */
9178 count = 0;
9179 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9180 config->save_encoder_crtcs[count++] = encoder->crtc;
9181 }
9182
9183 count = 0;
9184 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9185 config->save_connector_encoders[count++] = connector->encoder;
9186 }
9187
9188 return 0;
9189 }
9190
9191 static void intel_set_config_restore_state(struct drm_device *dev,
9192 struct intel_set_config *config)
9193 {
9194 struct intel_encoder *encoder;
9195 struct intel_connector *connector;
9196 int count;
9197
9198 count = 0;
9199 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9200 encoder->new_crtc =
9201 to_intel_crtc(config->save_encoder_crtcs[count++]);
9202 }
9203
9204 count = 0;
9205 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9206 connector->new_encoder =
9207 to_intel_encoder(config->save_connector_encoders[count++]);
9208 }
9209 }
9210
9211 static bool
9212 is_crtc_connector_off(struct drm_mode_set *set)
9213 {
9214 int i;
9215
9216 if (set->num_connectors == 0)
9217 return false;
9218
9219 if (WARN_ON(set->connectors == NULL))
9220 return false;
9221
9222 for (i = 0; i < set->num_connectors; i++)
9223 if (set->connectors[i]->encoder &&
9224 set->connectors[i]->encoder->crtc == set->crtc &&
9225 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9226 return true;
9227
9228 return false;
9229 }
9230
9231 static void
9232 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9233 struct intel_set_config *config)
9234 {
9235
9236 /* We should be able to check here if the fb has the same properties
9237 * and then just flip_or_move it */
9238 if (is_crtc_connector_off(set)) {
9239 config->mode_changed = true;
9240 } else if (set->crtc->fb != set->fb) {
9241 /* If we have no fb then treat it as a full mode set */
9242 if (set->crtc->fb == NULL) {
9243 struct intel_crtc *intel_crtc =
9244 to_intel_crtc(set->crtc);
9245
9246 if (intel_crtc->active && i915_fastboot) {
9247 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9248 config->fb_changed = true;
9249 } else {
9250 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9251 config->mode_changed = true;
9252 }
9253 } else if (set->fb == NULL) {
9254 config->mode_changed = true;
9255 } else if (set->fb->pixel_format !=
9256 set->crtc->fb->pixel_format) {
9257 config->mode_changed = true;
9258 } else {
9259 config->fb_changed = true;
9260 }
9261 }
9262
9263 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9264 config->fb_changed = true;
9265
9266 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9267 DRM_DEBUG_KMS("modes are different, full mode set\n");
9268 drm_mode_debug_printmodeline(&set->crtc->mode);
9269 drm_mode_debug_printmodeline(set->mode);
9270 config->mode_changed = true;
9271 }
9272
9273 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9274 set->crtc->base.id, config->mode_changed, config->fb_changed);
9275 }
9276
9277 static int
9278 intel_modeset_stage_output_state(struct drm_device *dev,
9279 struct drm_mode_set *set,
9280 struct intel_set_config *config)
9281 {
9282 struct drm_crtc *new_crtc;
9283 struct intel_connector *connector;
9284 struct intel_encoder *encoder;
9285 int ro;
9286
9287 /* The upper layers ensure that we either disable a crtc or have a list
9288 * of connectors. For paranoia, double-check this. */
9289 WARN_ON(!set->fb && (set->num_connectors != 0));
9290 WARN_ON(set->fb && (set->num_connectors == 0));
9291
9292 list_for_each_entry(connector, &dev->mode_config.connector_list,
9293 base.head) {
9294 /* Otherwise traverse passed in connector list and get encoders
9295 * for them. */
9296 for (ro = 0; ro < set->num_connectors; ro++) {
9297 if (set->connectors[ro] == &connector->base) {
9298 connector->new_encoder = connector->encoder;
9299 break;
9300 }
9301 }
9302
9303 /* If we disable the crtc, disable all its connectors. Also, if
9304 * the connector is on the changing crtc but not on the new
9305 * connector list, disable it. */
9306 if ((!set->fb || ro == set->num_connectors) &&
9307 connector->base.encoder &&
9308 connector->base.encoder->crtc == set->crtc) {
9309 connector->new_encoder = NULL;
9310
9311 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9312 connector->base.base.id,
9313 drm_get_connector_name(&connector->base));
9314 }
9315
9316
9317 if (&connector->new_encoder->base != connector->base.encoder) {
9318 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9319 config->mode_changed = true;
9320 }
9321 }
9322 /* connector->new_encoder is now updated for all connectors. */
9323
9324 /* Update crtc of enabled connectors. */
9325 list_for_each_entry(connector, &dev->mode_config.connector_list,
9326 base.head) {
9327 if (!connector->new_encoder)
9328 continue;
9329
9330 new_crtc = connector->new_encoder->base.crtc;
9331
9332 for (ro = 0; ro < set->num_connectors; ro++) {
9333 if (set->connectors[ro] == &connector->base)
9334 new_crtc = set->crtc;
9335 }
9336
9337 /* Make sure the new CRTC will work with the encoder */
9338 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9339 new_crtc)) {
9340 return -EINVAL;
9341 }
9342 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9343
9344 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9345 connector->base.base.id,
9346 drm_get_connector_name(&connector->base),
9347 new_crtc->base.id);
9348 }
9349
9350 /* Check for any encoders that needs to be disabled. */
9351 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9352 base.head) {
9353 list_for_each_entry(connector,
9354 &dev->mode_config.connector_list,
9355 base.head) {
9356 if (connector->new_encoder == encoder) {
9357 WARN_ON(!connector->new_encoder->new_crtc);
9358
9359 goto next_encoder;
9360 }
9361 }
9362 encoder->new_crtc = NULL;
9363 next_encoder:
9364 /* Only now check for crtc changes so we don't miss encoders
9365 * that will be disabled. */
9366 if (&encoder->new_crtc->base != encoder->base.crtc) {
9367 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9368 config->mode_changed = true;
9369 }
9370 }
9371 /* Now we've also updated encoder->new_crtc for all encoders. */
9372
9373 return 0;
9374 }
9375
9376 static int intel_crtc_set_config(struct drm_mode_set *set)
9377 {
9378 struct drm_device *dev;
9379 struct drm_mode_set save_set;
9380 struct intel_set_config *config;
9381 int ret;
9382
9383 BUG_ON(!set);
9384 BUG_ON(!set->crtc);
9385 BUG_ON(!set->crtc->helper_private);
9386
9387 /* Enforce sane interface api - has been abused by the fb helper. */
9388 BUG_ON(!set->mode && set->fb);
9389 BUG_ON(set->fb && set->num_connectors == 0);
9390
9391 if (set->fb) {
9392 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9393 set->crtc->base.id, set->fb->base.id,
9394 (int)set->num_connectors, set->x, set->y);
9395 } else {
9396 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9397 }
9398
9399 dev = set->crtc->dev;
9400
9401 ret = -ENOMEM;
9402 config = kzalloc(sizeof(*config), GFP_KERNEL);
9403 if (!config)
9404 goto out_config;
9405
9406 ret = intel_set_config_save_state(dev, config);
9407 if (ret)
9408 goto out_config;
9409
9410 save_set.crtc = set->crtc;
9411 save_set.mode = &set->crtc->mode;
9412 save_set.x = set->crtc->x;
9413 save_set.y = set->crtc->y;
9414 save_set.fb = set->crtc->fb;
9415
9416 /* Compute whether we need a full modeset, only an fb base update or no
9417 * change at all. In the future we might also check whether only the
9418 * mode changed, e.g. for LVDS where we only change the panel fitter in
9419 * such cases. */
9420 intel_set_config_compute_mode_changes(set, config);
9421
9422 ret = intel_modeset_stage_output_state(dev, set, config);
9423 if (ret)
9424 goto fail;
9425
9426 if (config->mode_changed) {
9427 ret = intel_set_mode(set->crtc, set->mode,
9428 set->x, set->y, set->fb);
9429 } else if (config->fb_changed) {
9430 intel_crtc_wait_for_pending_flips(set->crtc);
9431
9432 ret = intel_pipe_set_base(set->crtc,
9433 set->x, set->y, set->fb);
9434 }
9435
9436 if (ret) {
9437 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9438 set->crtc->base.id, ret);
9439 fail:
9440 intel_set_config_restore_state(dev, config);
9441
9442 /* Try to restore the config */
9443 if (config->mode_changed &&
9444 intel_set_mode(save_set.crtc, save_set.mode,
9445 save_set.x, save_set.y, save_set.fb))
9446 DRM_ERROR("failed to restore config after modeset failure\n");
9447 }
9448
9449 out_config:
9450 intel_set_config_free(config);
9451 return ret;
9452 }
9453
9454 static const struct drm_crtc_funcs intel_crtc_funcs = {
9455 .cursor_set = intel_crtc_cursor_set,
9456 .cursor_move = intel_crtc_cursor_move,
9457 .gamma_set = intel_crtc_gamma_set,
9458 .set_config = intel_crtc_set_config,
9459 .destroy = intel_crtc_destroy,
9460 .page_flip = intel_crtc_page_flip,
9461 };
9462
9463 static void intel_cpu_pll_init(struct drm_device *dev)
9464 {
9465 if (HAS_DDI(dev))
9466 intel_ddi_pll_init(dev);
9467 }
9468
9469 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9470 struct intel_shared_dpll *pll,
9471 struct intel_dpll_hw_state *hw_state)
9472 {
9473 uint32_t val;
9474
9475 val = I915_READ(PCH_DPLL(pll->id));
9476 hw_state->dpll = val;
9477 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9478 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9479
9480 return val & DPLL_VCO_ENABLE;
9481 }
9482
9483 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9484 struct intel_shared_dpll *pll)
9485 {
9486 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9487 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9488 }
9489
9490 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9491 struct intel_shared_dpll *pll)
9492 {
9493 /* PCH refclock must be enabled first */
9494 assert_pch_refclk_enabled(dev_priv);
9495
9496 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9497
9498 /* Wait for the clocks to stabilize. */
9499 POSTING_READ(PCH_DPLL(pll->id));
9500 udelay(150);
9501
9502 /* The pixel multiplier can only be updated once the
9503 * DPLL is enabled and the clocks are stable.
9504 *
9505 * So write it again.
9506 */
9507 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9508 POSTING_READ(PCH_DPLL(pll->id));
9509 udelay(200);
9510 }
9511
9512 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9513 struct intel_shared_dpll *pll)
9514 {
9515 struct drm_device *dev = dev_priv->dev;
9516 struct intel_crtc *crtc;
9517
9518 /* Make sure no transcoder isn't still depending on us. */
9519 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9520 if (intel_crtc_to_shared_dpll(crtc) == pll)
9521 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9522 }
9523
9524 I915_WRITE(PCH_DPLL(pll->id), 0);
9525 POSTING_READ(PCH_DPLL(pll->id));
9526 udelay(200);
9527 }
9528
9529 static char *ibx_pch_dpll_names[] = {
9530 "PCH DPLL A",
9531 "PCH DPLL B",
9532 };
9533
9534 static void ibx_pch_dpll_init(struct drm_device *dev)
9535 {
9536 struct drm_i915_private *dev_priv = dev->dev_private;
9537 int i;
9538
9539 dev_priv->num_shared_dpll = 2;
9540
9541 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9542 dev_priv->shared_dplls[i].id = i;
9543 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9544 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9545 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9546 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9547 dev_priv->shared_dplls[i].get_hw_state =
9548 ibx_pch_dpll_get_hw_state;
9549 }
9550 }
9551
9552 static void intel_shared_dpll_init(struct drm_device *dev)
9553 {
9554 struct drm_i915_private *dev_priv = dev->dev_private;
9555
9556 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9557 ibx_pch_dpll_init(dev);
9558 else
9559 dev_priv->num_shared_dpll = 0;
9560
9561 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9562 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9563 dev_priv->num_shared_dpll);
9564 }
9565
9566 static void intel_crtc_init(struct drm_device *dev, int pipe)
9567 {
9568 drm_i915_private_t *dev_priv = dev->dev_private;
9569 struct intel_crtc *intel_crtc;
9570 int i;
9571
9572 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9573 if (intel_crtc == NULL)
9574 return;
9575
9576 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9577
9578 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9579 for (i = 0; i < 256; i++) {
9580 intel_crtc->lut_r[i] = i;
9581 intel_crtc->lut_g[i] = i;
9582 intel_crtc->lut_b[i] = i;
9583 }
9584
9585 /* Swap pipes & planes for FBC on pre-965 */
9586 intel_crtc->pipe = pipe;
9587 intel_crtc->plane = pipe;
9588 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9589 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9590 intel_crtc->plane = !pipe;
9591 }
9592
9593 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9594 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9595 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9596 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9597
9598 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9599 }
9600
9601 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9602 struct drm_file *file)
9603 {
9604 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9605 struct drm_mode_object *drmmode_obj;
9606 struct intel_crtc *crtc;
9607
9608 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9609 return -ENODEV;
9610
9611 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9612 DRM_MODE_OBJECT_CRTC);
9613
9614 if (!drmmode_obj) {
9615 DRM_ERROR("no such CRTC id\n");
9616 return -EINVAL;
9617 }
9618
9619 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9620 pipe_from_crtc_id->pipe = crtc->pipe;
9621
9622 return 0;
9623 }
9624
9625 static int intel_encoder_clones(struct intel_encoder *encoder)
9626 {
9627 struct drm_device *dev = encoder->base.dev;
9628 struct intel_encoder *source_encoder;
9629 int index_mask = 0;
9630 int entry = 0;
9631
9632 list_for_each_entry(source_encoder,
9633 &dev->mode_config.encoder_list, base.head) {
9634
9635 if (encoder == source_encoder)
9636 index_mask |= (1 << entry);
9637
9638 /* Intel hw has only one MUX where enocoders could be cloned. */
9639 if (encoder->cloneable && source_encoder->cloneable)
9640 index_mask |= (1 << entry);
9641
9642 entry++;
9643 }
9644
9645 return index_mask;
9646 }
9647
9648 static bool has_edp_a(struct drm_device *dev)
9649 {
9650 struct drm_i915_private *dev_priv = dev->dev_private;
9651
9652 if (!IS_MOBILE(dev))
9653 return false;
9654
9655 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9656 return false;
9657
9658 if (IS_GEN5(dev) &&
9659 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9660 return false;
9661
9662 return true;
9663 }
9664
9665 static void intel_setup_outputs(struct drm_device *dev)
9666 {
9667 struct drm_i915_private *dev_priv = dev->dev_private;
9668 struct intel_encoder *encoder;
9669 bool dpd_is_edp = false;
9670
9671 intel_lvds_init(dev);
9672
9673 if (!IS_ULT(dev))
9674 intel_crt_init(dev);
9675
9676 if (HAS_DDI(dev)) {
9677 int found;
9678
9679 /* Haswell uses DDI functions to detect digital outputs */
9680 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9681 /* DDI A only supports eDP */
9682 if (found)
9683 intel_ddi_init(dev, PORT_A);
9684
9685 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9686 * register */
9687 found = I915_READ(SFUSE_STRAP);
9688
9689 if (found & SFUSE_STRAP_DDIB_DETECTED)
9690 intel_ddi_init(dev, PORT_B);
9691 if (found & SFUSE_STRAP_DDIC_DETECTED)
9692 intel_ddi_init(dev, PORT_C);
9693 if (found & SFUSE_STRAP_DDID_DETECTED)
9694 intel_ddi_init(dev, PORT_D);
9695 } else if (HAS_PCH_SPLIT(dev)) {
9696 int found;
9697 dpd_is_edp = intel_dpd_is_edp(dev);
9698
9699 if (has_edp_a(dev))
9700 intel_dp_init(dev, DP_A, PORT_A);
9701
9702 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9703 /* PCH SDVOB multiplex with HDMIB */
9704 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9705 if (!found)
9706 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9707 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9708 intel_dp_init(dev, PCH_DP_B, PORT_B);
9709 }
9710
9711 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9712 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9713
9714 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9715 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9716
9717 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9718 intel_dp_init(dev, PCH_DP_C, PORT_C);
9719
9720 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9721 intel_dp_init(dev, PCH_DP_D, PORT_D);
9722 } else if (IS_VALLEYVIEW(dev)) {
9723 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9724 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9725 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9726 PORT_C);
9727 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9728 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9729 PORT_C);
9730 }
9731
9732 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9733 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9734 PORT_B);
9735 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9736 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9737 }
9738
9739 intel_dsi_init(dev);
9740 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9741 bool found = false;
9742
9743 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9744 DRM_DEBUG_KMS("probing SDVOB\n");
9745 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9746 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9747 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9748 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9749 }
9750
9751 if (!found && SUPPORTS_INTEGRATED_DP(dev))
9752 intel_dp_init(dev, DP_B, PORT_B);
9753 }
9754
9755 /* Before G4X SDVOC doesn't have its own detect register */
9756
9757 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9758 DRM_DEBUG_KMS("probing SDVOC\n");
9759 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9760 }
9761
9762 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9763
9764 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9765 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9766 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9767 }
9768 if (SUPPORTS_INTEGRATED_DP(dev))
9769 intel_dp_init(dev, DP_C, PORT_C);
9770 }
9771
9772 if (SUPPORTS_INTEGRATED_DP(dev) &&
9773 (I915_READ(DP_D) & DP_DETECTED))
9774 intel_dp_init(dev, DP_D, PORT_D);
9775 } else if (IS_GEN2(dev))
9776 intel_dvo_init(dev);
9777
9778 if (SUPPORTS_TV(dev))
9779 intel_tv_init(dev);
9780
9781 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9782 encoder->base.possible_crtcs = encoder->crtc_mask;
9783 encoder->base.possible_clones =
9784 intel_encoder_clones(encoder);
9785 }
9786
9787 intel_init_pch_refclk(dev);
9788
9789 drm_helper_move_panel_connectors_to_head(dev);
9790 }
9791
9792 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9793 {
9794 drm_framebuffer_cleanup(&fb->base);
9795 drm_gem_object_unreference_unlocked(&fb->obj->base);
9796 }
9797
9798 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9799 {
9800 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9801
9802 intel_framebuffer_fini(intel_fb);
9803 kfree(intel_fb);
9804 }
9805
9806 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9807 struct drm_file *file,
9808 unsigned int *handle)
9809 {
9810 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9811 struct drm_i915_gem_object *obj = intel_fb->obj;
9812
9813 return drm_gem_handle_create(file, &obj->base, handle);
9814 }
9815
9816 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9817 .destroy = intel_user_framebuffer_destroy,
9818 .create_handle = intel_user_framebuffer_create_handle,
9819 };
9820
9821 int intel_framebuffer_init(struct drm_device *dev,
9822 struct intel_framebuffer *intel_fb,
9823 struct drm_mode_fb_cmd2 *mode_cmd,
9824 struct drm_i915_gem_object *obj)
9825 {
9826 int pitch_limit;
9827 int ret;
9828
9829 if (obj->tiling_mode == I915_TILING_Y) {
9830 DRM_DEBUG("hardware does not support tiling Y\n");
9831 return -EINVAL;
9832 }
9833
9834 if (mode_cmd->pitches[0] & 63) {
9835 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9836 mode_cmd->pitches[0]);
9837 return -EINVAL;
9838 }
9839
9840 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9841 pitch_limit = 32*1024;
9842 } else if (INTEL_INFO(dev)->gen >= 4) {
9843 if (obj->tiling_mode)
9844 pitch_limit = 16*1024;
9845 else
9846 pitch_limit = 32*1024;
9847 } else if (INTEL_INFO(dev)->gen >= 3) {
9848 if (obj->tiling_mode)
9849 pitch_limit = 8*1024;
9850 else
9851 pitch_limit = 16*1024;
9852 } else
9853 /* XXX DSPC is limited to 4k tiled */
9854 pitch_limit = 8*1024;
9855
9856 if (mode_cmd->pitches[0] > pitch_limit) {
9857 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9858 obj->tiling_mode ? "tiled" : "linear",
9859 mode_cmd->pitches[0], pitch_limit);
9860 return -EINVAL;
9861 }
9862
9863 if (obj->tiling_mode != I915_TILING_NONE &&
9864 mode_cmd->pitches[0] != obj->stride) {
9865 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9866 mode_cmd->pitches[0], obj->stride);
9867 return -EINVAL;
9868 }
9869
9870 /* Reject formats not supported by any plane early. */
9871 switch (mode_cmd->pixel_format) {
9872 case DRM_FORMAT_C8:
9873 case DRM_FORMAT_RGB565:
9874 case DRM_FORMAT_XRGB8888:
9875 case DRM_FORMAT_ARGB8888:
9876 break;
9877 case DRM_FORMAT_XRGB1555:
9878 case DRM_FORMAT_ARGB1555:
9879 if (INTEL_INFO(dev)->gen > 3) {
9880 DRM_DEBUG("unsupported pixel format: %s\n",
9881 drm_get_format_name(mode_cmd->pixel_format));
9882 return -EINVAL;
9883 }
9884 break;
9885 case DRM_FORMAT_XBGR8888:
9886 case DRM_FORMAT_ABGR8888:
9887 case DRM_FORMAT_XRGB2101010:
9888 case DRM_FORMAT_ARGB2101010:
9889 case DRM_FORMAT_XBGR2101010:
9890 case DRM_FORMAT_ABGR2101010:
9891 if (INTEL_INFO(dev)->gen < 4) {
9892 DRM_DEBUG("unsupported pixel format: %s\n",
9893 drm_get_format_name(mode_cmd->pixel_format));
9894 return -EINVAL;
9895 }
9896 break;
9897 case DRM_FORMAT_YUYV:
9898 case DRM_FORMAT_UYVY:
9899 case DRM_FORMAT_YVYU:
9900 case DRM_FORMAT_VYUY:
9901 if (INTEL_INFO(dev)->gen < 5) {
9902 DRM_DEBUG("unsupported pixel format: %s\n",
9903 drm_get_format_name(mode_cmd->pixel_format));
9904 return -EINVAL;
9905 }
9906 break;
9907 default:
9908 DRM_DEBUG("unsupported pixel format: %s\n",
9909 drm_get_format_name(mode_cmd->pixel_format));
9910 return -EINVAL;
9911 }
9912
9913 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9914 if (mode_cmd->offsets[0] != 0)
9915 return -EINVAL;
9916
9917 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9918 intel_fb->obj = obj;
9919
9920 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9921 if (ret) {
9922 DRM_ERROR("framebuffer init failed %d\n", ret);
9923 return ret;
9924 }
9925
9926 return 0;
9927 }
9928
9929 static struct drm_framebuffer *
9930 intel_user_framebuffer_create(struct drm_device *dev,
9931 struct drm_file *filp,
9932 struct drm_mode_fb_cmd2 *mode_cmd)
9933 {
9934 struct drm_i915_gem_object *obj;
9935
9936 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9937 mode_cmd->handles[0]));
9938 if (&obj->base == NULL)
9939 return ERR_PTR(-ENOENT);
9940
9941 return intel_framebuffer_create(dev, mode_cmd, obj);
9942 }
9943
9944 static const struct drm_mode_config_funcs intel_mode_funcs = {
9945 .fb_create = intel_user_framebuffer_create,
9946 .output_poll_changed = intel_fb_output_poll_changed,
9947 };
9948
9949 /* Set up chip specific display functions */
9950 static void intel_init_display(struct drm_device *dev)
9951 {
9952 struct drm_i915_private *dev_priv = dev->dev_private;
9953
9954 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9955 dev_priv->display.find_dpll = g4x_find_best_dpll;
9956 else if (IS_VALLEYVIEW(dev))
9957 dev_priv->display.find_dpll = vlv_find_best_dpll;
9958 else if (IS_PINEVIEW(dev))
9959 dev_priv->display.find_dpll = pnv_find_best_dpll;
9960 else
9961 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9962
9963 if (HAS_DDI(dev)) {
9964 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9965 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9966 dev_priv->display.crtc_enable = haswell_crtc_enable;
9967 dev_priv->display.crtc_disable = haswell_crtc_disable;
9968 dev_priv->display.off = haswell_crtc_off;
9969 dev_priv->display.update_plane = ironlake_update_plane;
9970 } else if (HAS_PCH_SPLIT(dev)) {
9971 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9972 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9973 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9974 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9975 dev_priv->display.off = ironlake_crtc_off;
9976 dev_priv->display.update_plane = ironlake_update_plane;
9977 } else if (IS_VALLEYVIEW(dev)) {
9978 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9979 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9980 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9981 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9982 dev_priv->display.off = i9xx_crtc_off;
9983 dev_priv->display.update_plane = i9xx_update_plane;
9984 } else {
9985 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9986 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9987 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9988 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9989 dev_priv->display.off = i9xx_crtc_off;
9990 dev_priv->display.update_plane = i9xx_update_plane;
9991 }
9992
9993 /* Returns the core display clock speed */
9994 if (IS_VALLEYVIEW(dev))
9995 dev_priv->display.get_display_clock_speed =
9996 valleyview_get_display_clock_speed;
9997 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9998 dev_priv->display.get_display_clock_speed =
9999 i945_get_display_clock_speed;
10000 else if (IS_I915G(dev))
10001 dev_priv->display.get_display_clock_speed =
10002 i915_get_display_clock_speed;
10003 else if (IS_I945GM(dev) || IS_845G(dev))
10004 dev_priv->display.get_display_clock_speed =
10005 i9xx_misc_get_display_clock_speed;
10006 else if (IS_PINEVIEW(dev))
10007 dev_priv->display.get_display_clock_speed =
10008 pnv_get_display_clock_speed;
10009 else if (IS_I915GM(dev))
10010 dev_priv->display.get_display_clock_speed =
10011 i915gm_get_display_clock_speed;
10012 else if (IS_I865G(dev))
10013 dev_priv->display.get_display_clock_speed =
10014 i865_get_display_clock_speed;
10015 else if (IS_I85X(dev))
10016 dev_priv->display.get_display_clock_speed =
10017 i855_get_display_clock_speed;
10018 else /* 852, 830 */
10019 dev_priv->display.get_display_clock_speed =
10020 i830_get_display_clock_speed;
10021
10022 if (HAS_PCH_SPLIT(dev)) {
10023 if (IS_GEN5(dev)) {
10024 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10025 dev_priv->display.write_eld = ironlake_write_eld;
10026 } else if (IS_GEN6(dev)) {
10027 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10028 dev_priv->display.write_eld = ironlake_write_eld;
10029 } else if (IS_IVYBRIDGE(dev)) {
10030 /* FIXME: detect B0+ stepping and use auto training */
10031 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10032 dev_priv->display.write_eld = ironlake_write_eld;
10033 dev_priv->display.modeset_global_resources =
10034 ivb_modeset_global_resources;
10035 } else if (IS_HASWELL(dev)) {
10036 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10037 dev_priv->display.write_eld = haswell_write_eld;
10038 dev_priv->display.modeset_global_resources =
10039 haswell_modeset_global_resources;
10040 }
10041 } else if (IS_G4X(dev)) {
10042 dev_priv->display.write_eld = g4x_write_eld;
10043 }
10044
10045 /* Default just returns -ENODEV to indicate unsupported */
10046 dev_priv->display.queue_flip = intel_default_queue_flip;
10047
10048 switch (INTEL_INFO(dev)->gen) {
10049 case 2:
10050 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10051 break;
10052
10053 case 3:
10054 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10055 break;
10056
10057 case 4:
10058 case 5:
10059 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10060 break;
10061
10062 case 6:
10063 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10064 break;
10065 case 7:
10066 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10067 break;
10068 }
10069 }
10070
10071 /*
10072 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10073 * resume, or other times. This quirk makes sure that's the case for
10074 * affected systems.
10075 */
10076 static void quirk_pipea_force(struct drm_device *dev)
10077 {
10078 struct drm_i915_private *dev_priv = dev->dev_private;
10079
10080 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10081 DRM_INFO("applying pipe a force quirk\n");
10082 }
10083
10084 /*
10085 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10086 */
10087 static void quirk_ssc_force_disable(struct drm_device *dev)
10088 {
10089 struct drm_i915_private *dev_priv = dev->dev_private;
10090 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10091 DRM_INFO("applying lvds SSC disable quirk\n");
10092 }
10093
10094 /*
10095 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10096 * brightness value
10097 */
10098 static void quirk_invert_brightness(struct drm_device *dev)
10099 {
10100 struct drm_i915_private *dev_priv = dev->dev_private;
10101 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10102 DRM_INFO("applying inverted panel brightness quirk\n");
10103 }
10104
10105 /*
10106 * Some machines (Dell XPS13) suffer broken backlight controls if
10107 * BLM_PCH_PWM_ENABLE is set.
10108 */
10109 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10110 {
10111 struct drm_i915_private *dev_priv = dev->dev_private;
10112 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10113 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10114 }
10115
10116 struct intel_quirk {
10117 int device;
10118 int subsystem_vendor;
10119 int subsystem_device;
10120 void (*hook)(struct drm_device *dev);
10121 };
10122
10123 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10124 struct intel_dmi_quirk {
10125 void (*hook)(struct drm_device *dev);
10126 const struct dmi_system_id (*dmi_id_list)[];
10127 };
10128
10129 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10130 {
10131 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10132 return 1;
10133 }
10134
10135 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10136 {
10137 .dmi_id_list = &(const struct dmi_system_id[]) {
10138 {
10139 .callback = intel_dmi_reverse_brightness,
10140 .ident = "NCR Corporation",
10141 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10142 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10143 },
10144 },
10145 { } /* terminating entry */
10146 },
10147 .hook = quirk_invert_brightness,
10148 },
10149 };
10150
10151 static struct intel_quirk intel_quirks[] = {
10152 /* HP Mini needs pipe A force quirk (LP: #322104) */
10153 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10154
10155 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10156 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10157
10158 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10159 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10160
10161 /* 830/845 need to leave pipe A & dpll A up */
10162 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10163 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10164
10165 /* Lenovo U160 cannot use SSC on LVDS */
10166 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10167
10168 /* Sony Vaio Y cannot use SSC on LVDS */
10169 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10170
10171 /*
10172 * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10173 * seem to use inverted backlight PWM.
10174 */
10175 { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10176
10177 /* Dell XPS13 HD Sandy Bridge */
10178 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10179 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10180 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10181 };
10182
10183 static void intel_init_quirks(struct drm_device *dev)
10184 {
10185 struct pci_dev *d = dev->pdev;
10186 int i;
10187
10188 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10189 struct intel_quirk *q = &intel_quirks[i];
10190
10191 if (d->device == q->device &&
10192 (d->subsystem_vendor == q->subsystem_vendor ||
10193 q->subsystem_vendor == PCI_ANY_ID) &&
10194 (d->subsystem_device == q->subsystem_device ||
10195 q->subsystem_device == PCI_ANY_ID))
10196 q->hook(dev);
10197 }
10198 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10199 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10200 intel_dmi_quirks[i].hook(dev);
10201 }
10202 }
10203
10204 /* Disable the VGA plane that we never use */
10205 static void i915_disable_vga(struct drm_device *dev)
10206 {
10207 struct drm_i915_private *dev_priv = dev->dev_private;
10208 u8 sr1;
10209 u32 vga_reg = i915_vgacntrl_reg(dev);
10210
10211 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10212 outb(SR01, VGA_SR_INDEX);
10213 sr1 = inb(VGA_SR_DATA);
10214 outb(sr1 | 1<<5, VGA_SR_DATA);
10215 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10216 udelay(300);
10217
10218 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10219 POSTING_READ(vga_reg);
10220 }
10221
10222 static void i915_enable_vga_mem(struct drm_device *dev)
10223 {
10224 /* Enable VGA memory on Intel HD */
10225 if (HAS_PCH_SPLIT(dev)) {
10226 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10227 outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10228 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10229 VGA_RSRC_LEGACY_MEM |
10230 VGA_RSRC_NORMAL_IO |
10231 VGA_RSRC_NORMAL_MEM);
10232 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10233 }
10234 }
10235
10236 void i915_disable_vga_mem(struct drm_device *dev)
10237 {
10238 /* Disable VGA memory on Intel HD */
10239 if (HAS_PCH_SPLIT(dev)) {
10240 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10241 outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
10242 vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
10243 VGA_RSRC_NORMAL_IO |
10244 VGA_RSRC_NORMAL_MEM);
10245 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10246 }
10247 }
10248
10249 void intel_modeset_init_hw(struct drm_device *dev)
10250 {
10251 intel_prepare_ddi(dev);
10252
10253 intel_init_clock_gating(dev);
10254
10255 mutex_lock(&dev->struct_mutex);
10256 intel_enable_gt_powersave(dev);
10257 mutex_unlock(&dev->struct_mutex);
10258 }
10259
10260 void intel_modeset_suspend_hw(struct drm_device *dev)
10261 {
10262 intel_suspend_hw(dev);
10263 }
10264
10265 void intel_modeset_init(struct drm_device *dev)
10266 {
10267 struct drm_i915_private *dev_priv = dev->dev_private;
10268 int i, j, ret;
10269
10270 drm_mode_config_init(dev);
10271
10272 dev->mode_config.min_width = 0;
10273 dev->mode_config.min_height = 0;
10274
10275 dev->mode_config.preferred_depth = 24;
10276 dev->mode_config.prefer_shadow = 1;
10277
10278 dev->mode_config.funcs = &intel_mode_funcs;
10279
10280 intel_init_quirks(dev);
10281
10282 intel_init_pm(dev);
10283
10284 if (INTEL_INFO(dev)->num_pipes == 0)
10285 return;
10286
10287 intel_init_display(dev);
10288
10289 if (IS_GEN2(dev)) {
10290 dev->mode_config.max_width = 2048;
10291 dev->mode_config.max_height = 2048;
10292 } else if (IS_GEN3(dev)) {
10293 dev->mode_config.max_width = 4096;
10294 dev->mode_config.max_height = 4096;
10295 } else {
10296 dev->mode_config.max_width = 8192;
10297 dev->mode_config.max_height = 8192;
10298 }
10299 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10300
10301 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10302 INTEL_INFO(dev)->num_pipes,
10303 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10304
10305 for_each_pipe(i) {
10306 intel_crtc_init(dev, i);
10307 for (j = 0; j < dev_priv->num_plane; j++) {
10308 ret = intel_plane_init(dev, i, j);
10309 if (ret)
10310 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10311 pipe_name(i), sprite_name(i, j), ret);
10312 }
10313 }
10314
10315 intel_cpu_pll_init(dev);
10316 intel_shared_dpll_init(dev);
10317
10318 /* Just disable it once at startup */
10319 i915_disable_vga(dev);
10320 intel_setup_outputs(dev);
10321
10322 /* Just in case the BIOS is doing something questionable. */
10323 intel_disable_fbc(dev);
10324 }
10325
10326 static void
10327 intel_connector_break_all_links(struct intel_connector *connector)
10328 {
10329 connector->base.dpms = DRM_MODE_DPMS_OFF;
10330 connector->base.encoder = NULL;
10331 connector->encoder->connectors_active = false;
10332 connector->encoder->base.crtc = NULL;
10333 }
10334
10335 static void intel_enable_pipe_a(struct drm_device *dev)
10336 {
10337 struct intel_connector *connector;
10338 struct drm_connector *crt = NULL;
10339 struct intel_load_detect_pipe load_detect_temp;
10340
10341 /* We can't just switch on the pipe A, we need to set things up with a
10342 * proper mode and output configuration. As a gross hack, enable pipe A
10343 * by enabling the load detect pipe once. */
10344 list_for_each_entry(connector,
10345 &dev->mode_config.connector_list,
10346 base.head) {
10347 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10348 crt = &connector->base;
10349 break;
10350 }
10351 }
10352
10353 if (!crt)
10354 return;
10355
10356 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10357 intel_release_load_detect_pipe(crt, &load_detect_temp);
10358
10359
10360 }
10361
10362 static bool
10363 intel_check_plane_mapping(struct intel_crtc *crtc)
10364 {
10365 struct drm_device *dev = crtc->base.dev;
10366 struct drm_i915_private *dev_priv = dev->dev_private;
10367 u32 reg, val;
10368
10369 if (INTEL_INFO(dev)->num_pipes == 1)
10370 return true;
10371
10372 reg = DSPCNTR(!crtc->plane);
10373 val = I915_READ(reg);
10374
10375 if ((val & DISPLAY_PLANE_ENABLE) &&
10376 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10377 return false;
10378
10379 return true;
10380 }
10381
10382 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10383 {
10384 struct drm_device *dev = crtc->base.dev;
10385 struct drm_i915_private *dev_priv = dev->dev_private;
10386 u32 reg;
10387
10388 /* Clear any frame start delays used for debugging left by the BIOS */
10389 reg = PIPECONF(crtc->config.cpu_transcoder);
10390 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10391
10392 /* We need to sanitize the plane -> pipe mapping first because this will
10393 * disable the crtc (and hence change the state) if it is wrong. Note
10394 * that gen4+ has a fixed plane -> pipe mapping. */
10395 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10396 struct intel_connector *connector;
10397 bool plane;
10398
10399 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10400 crtc->base.base.id);
10401
10402 /* Pipe has the wrong plane attached and the plane is active.
10403 * Temporarily change the plane mapping and disable everything
10404 * ... */
10405 plane = crtc->plane;
10406 crtc->plane = !plane;
10407 dev_priv->display.crtc_disable(&crtc->base);
10408 crtc->plane = plane;
10409
10410 /* ... and break all links. */
10411 list_for_each_entry(connector, &dev->mode_config.connector_list,
10412 base.head) {
10413 if (connector->encoder->base.crtc != &crtc->base)
10414 continue;
10415
10416 intel_connector_break_all_links(connector);
10417 }
10418
10419 WARN_ON(crtc->active);
10420 crtc->base.enabled = false;
10421 }
10422
10423 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10424 crtc->pipe == PIPE_A && !crtc->active) {
10425 /* BIOS forgot to enable pipe A, this mostly happens after
10426 * resume. Force-enable the pipe to fix this, the update_dpms
10427 * call below we restore the pipe to the right state, but leave
10428 * the required bits on. */
10429 intel_enable_pipe_a(dev);
10430 }
10431
10432 /* Adjust the state of the output pipe according to whether we
10433 * have active connectors/encoders. */
10434 intel_crtc_update_dpms(&crtc->base);
10435
10436 if (crtc->active != crtc->base.enabled) {
10437 struct intel_encoder *encoder;
10438
10439 /* This can happen either due to bugs in the get_hw_state
10440 * functions or because the pipe is force-enabled due to the
10441 * pipe A quirk. */
10442 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10443 crtc->base.base.id,
10444 crtc->base.enabled ? "enabled" : "disabled",
10445 crtc->active ? "enabled" : "disabled");
10446
10447 crtc->base.enabled = crtc->active;
10448
10449 /* Because we only establish the connector -> encoder ->
10450 * crtc links if something is active, this means the
10451 * crtc is now deactivated. Break the links. connector
10452 * -> encoder links are only establish when things are
10453 * actually up, hence no need to break them. */
10454 WARN_ON(crtc->active);
10455
10456 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10457 WARN_ON(encoder->connectors_active);
10458 encoder->base.crtc = NULL;
10459 }
10460 }
10461 }
10462
10463 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10464 {
10465 struct intel_connector *connector;
10466 struct drm_device *dev = encoder->base.dev;
10467
10468 /* We need to check both for a crtc link (meaning that the
10469 * encoder is active and trying to read from a pipe) and the
10470 * pipe itself being active. */
10471 bool has_active_crtc = encoder->base.crtc &&
10472 to_intel_crtc(encoder->base.crtc)->active;
10473
10474 if (encoder->connectors_active && !has_active_crtc) {
10475 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10476 encoder->base.base.id,
10477 drm_get_encoder_name(&encoder->base));
10478
10479 /* Connector is active, but has no active pipe. This is
10480 * fallout from our resume register restoring. Disable
10481 * the encoder manually again. */
10482 if (encoder->base.crtc) {
10483 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10484 encoder->base.base.id,
10485 drm_get_encoder_name(&encoder->base));
10486 encoder->disable(encoder);
10487 }
10488
10489 /* Inconsistent output/port/pipe state happens presumably due to
10490 * a bug in one of the get_hw_state functions. Or someplace else
10491 * in our code, like the register restore mess on resume. Clamp
10492 * things to off as a safer default. */
10493 list_for_each_entry(connector,
10494 &dev->mode_config.connector_list,
10495 base.head) {
10496 if (connector->encoder != encoder)
10497 continue;
10498
10499 intel_connector_break_all_links(connector);
10500 }
10501 }
10502 /* Enabled encoders without active connectors will be fixed in
10503 * the crtc fixup. */
10504 }
10505
10506 void i915_redisable_vga(struct drm_device *dev)
10507 {
10508 struct drm_i915_private *dev_priv = dev->dev_private;
10509 u32 vga_reg = i915_vgacntrl_reg(dev);
10510
10511 /* This function can be called both from intel_modeset_setup_hw_state or
10512 * at a very early point in our resume sequence, where the power well
10513 * structures are not yet restored. Since this function is at a very
10514 * paranoid "someone might have enabled VGA while we were not looking"
10515 * level, just check if the power well is enabled instead of trying to
10516 * follow the "don't touch the power well if we don't need it" policy
10517 * the rest of the driver uses. */
10518 if (HAS_POWER_WELL(dev) &&
10519 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10520 return;
10521
10522 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10523 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10524 i915_disable_vga(dev);
10525 i915_disable_vga_mem(dev);
10526 }
10527 }
10528
10529 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10530 {
10531 struct drm_i915_private *dev_priv = dev->dev_private;
10532 enum pipe pipe;
10533 struct intel_crtc *crtc;
10534 struct intel_encoder *encoder;
10535 struct intel_connector *connector;
10536 int i;
10537
10538 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10539 base.head) {
10540 memset(&crtc->config, 0, sizeof(crtc->config));
10541
10542 crtc->active = dev_priv->display.get_pipe_config(crtc,
10543 &crtc->config);
10544
10545 crtc->base.enabled = crtc->active;
10546
10547 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10548 crtc->base.base.id,
10549 crtc->active ? "enabled" : "disabled");
10550 }
10551
10552 /* FIXME: Smash this into the new shared dpll infrastructure. */
10553 if (HAS_DDI(dev))
10554 intel_ddi_setup_hw_pll_state(dev);
10555
10556 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10557 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10558
10559 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10560 pll->active = 0;
10561 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10562 base.head) {
10563 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10564 pll->active++;
10565 }
10566 pll->refcount = pll->active;
10567
10568 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10569 pll->name, pll->refcount, pll->on);
10570 }
10571
10572 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10573 base.head) {
10574 pipe = 0;
10575
10576 if (encoder->get_hw_state(encoder, &pipe)) {
10577 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10578 encoder->base.crtc = &crtc->base;
10579 if (encoder->get_config)
10580 encoder->get_config(encoder, &crtc->config);
10581 } else {
10582 encoder->base.crtc = NULL;
10583 }
10584
10585 encoder->connectors_active = false;
10586 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10587 encoder->base.base.id,
10588 drm_get_encoder_name(&encoder->base),
10589 encoder->base.crtc ? "enabled" : "disabled",
10590 pipe);
10591 }
10592
10593 list_for_each_entry(connector, &dev->mode_config.connector_list,
10594 base.head) {
10595 if (connector->get_hw_state(connector)) {
10596 connector->base.dpms = DRM_MODE_DPMS_ON;
10597 connector->encoder->connectors_active = true;
10598 connector->base.encoder = &connector->encoder->base;
10599 } else {
10600 connector->base.dpms = DRM_MODE_DPMS_OFF;
10601 connector->base.encoder = NULL;
10602 }
10603 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10604 connector->base.base.id,
10605 drm_get_connector_name(&connector->base),
10606 connector->base.encoder ? "enabled" : "disabled");
10607 }
10608 }
10609
10610 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10611 * and i915 state tracking structures. */
10612 void intel_modeset_setup_hw_state(struct drm_device *dev,
10613 bool force_restore)
10614 {
10615 struct drm_i915_private *dev_priv = dev->dev_private;
10616 enum pipe pipe;
10617 struct intel_crtc *crtc;
10618 struct intel_encoder *encoder;
10619 int i;
10620
10621 intel_modeset_readout_hw_state(dev);
10622
10623 /*
10624 * Now that we have the config, copy it to each CRTC struct
10625 * Note that this could go away if we move to using crtc_config
10626 * checking everywhere.
10627 */
10628 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10629 base.head) {
10630 if (crtc->active && i915_fastboot) {
10631 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10632
10633 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10634 crtc->base.base.id);
10635 drm_mode_debug_printmodeline(&crtc->base.mode);
10636 }
10637 }
10638
10639 /* HW state is read out, now we need to sanitize this mess. */
10640 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10641 base.head) {
10642 intel_sanitize_encoder(encoder);
10643 }
10644
10645 for_each_pipe(pipe) {
10646 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10647 intel_sanitize_crtc(crtc);
10648 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10649 }
10650
10651 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10652 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10653
10654 if (!pll->on || pll->active)
10655 continue;
10656
10657 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10658
10659 pll->disable(dev_priv, pll);
10660 pll->on = false;
10661 }
10662
10663 if (force_restore) {
10664 i915_redisable_vga(dev);
10665
10666 /*
10667 * We need to use raw interfaces for restoring state to avoid
10668 * checking (bogus) intermediate states.
10669 */
10670 for_each_pipe(pipe) {
10671 struct drm_crtc *crtc =
10672 dev_priv->pipe_to_crtc_mapping[pipe];
10673
10674 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10675 crtc->fb);
10676 }
10677 } else {
10678 intel_modeset_update_staged_output_state(dev);
10679 }
10680
10681 intel_modeset_check_state(dev);
10682
10683 drm_mode_config_reset(dev);
10684 }
10685
10686 void intel_modeset_gem_init(struct drm_device *dev)
10687 {
10688 intel_modeset_init_hw(dev);
10689
10690 intel_setup_overlay(dev);
10691
10692 intel_modeset_setup_hw_state(dev, false);
10693 }
10694
10695 void intel_modeset_cleanup(struct drm_device *dev)
10696 {
10697 struct drm_i915_private *dev_priv = dev->dev_private;
10698 struct drm_crtc *crtc;
10699
10700 /*
10701 * Interrupts and polling as the first thing to avoid creating havoc.
10702 * Too much stuff here (turning of rps, connectors, ...) would
10703 * experience fancy races otherwise.
10704 */
10705 drm_irq_uninstall(dev);
10706 cancel_work_sync(&dev_priv->hotplug_work);
10707 /*
10708 * Due to the hpd irq storm handling the hotplug work can re-arm the
10709 * poll handlers. Hence disable polling after hpd handling is shut down.
10710 */
10711 drm_kms_helper_poll_fini(dev);
10712
10713 mutex_lock(&dev->struct_mutex);
10714
10715 intel_unregister_dsm_handler();
10716
10717 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10718 /* Skip inactive CRTCs */
10719 if (!crtc->fb)
10720 continue;
10721
10722 intel_increase_pllclock(crtc);
10723 }
10724
10725 intel_disable_fbc(dev);
10726
10727 i915_enable_vga_mem(dev);
10728
10729 intel_disable_gt_powersave(dev);
10730
10731 ironlake_teardown_rc6(dev);
10732
10733 mutex_unlock(&dev->struct_mutex);
10734
10735 /* flush any delayed tasks or pending work */
10736 flush_scheduled_work();
10737
10738 /* destroy backlight, if any, before the connectors */
10739 intel_panel_destroy_backlight(dev);
10740
10741 drm_mode_config_cleanup(dev);
10742
10743 intel_cleanup_overlay(dev);
10744 }
10745
10746 /*
10747 * Return which encoder is currently attached for connector.
10748 */
10749 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10750 {
10751 return &intel_attached_encoder(connector)->base;
10752 }
10753
10754 void intel_connector_attach_encoder(struct intel_connector *connector,
10755 struct intel_encoder *encoder)
10756 {
10757 connector->encoder = encoder;
10758 drm_mode_connector_attach_encoder(&connector->base,
10759 &encoder->base);
10760 }
10761
10762 /*
10763 * set vga decode state - true == enable VGA decode
10764 */
10765 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10766 {
10767 struct drm_i915_private *dev_priv = dev->dev_private;
10768 u16 gmch_ctrl;
10769
10770 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10771 if (state)
10772 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10773 else
10774 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10775 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10776 return 0;
10777 }
10778
10779 struct intel_display_error_state {
10780
10781 u32 power_well_driver;
10782
10783 int num_transcoders;
10784
10785 struct intel_cursor_error_state {
10786 u32 control;
10787 u32 position;
10788 u32 base;
10789 u32 size;
10790 } cursor[I915_MAX_PIPES];
10791
10792 struct intel_pipe_error_state {
10793 u32 source;
10794 } pipe[I915_MAX_PIPES];
10795
10796 struct intel_plane_error_state {
10797 u32 control;
10798 u32 stride;
10799 u32 size;
10800 u32 pos;
10801 u32 addr;
10802 u32 surface;
10803 u32 tile_offset;
10804 } plane[I915_MAX_PIPES];
10805
10806 struct intel_transcoder_error_state {
10807 enum transcoder cpu_transcoder;
10808
10809 u32 conf;
10810
10811 u32 htotal;
10812 u32 hblank;
10813 u32 hsync;
10814 u32 vtotal;
10815 u32 vblank;
10816 u32 vsync;
10817 } transcoder[4];
10818 };
10819
10820 struct intel_display_error_state *
10821 intel_display_capture_error_state(struct drm_device *dev)
10822 {
10823 drm_i915_private_t *dev_priv = dev->dev_private;
10824 struct intel_display_error_state *error;
10825 int transcoders[] = {
10826 TRANSCODER_A,
10827 TRANSCODER_B,
10828 TRANSCODER_C,
10829 TRANSCODER_EDP,
10830 };
10831 int i;
10832
10833 if (INTEL_INFO(dev)->num_pipes == 0)
10834 return NULL;
10835
10836 error = kmalloc(sizeof(*error), GFP_ATOMIC);
10837 if (error == NULL)
10838 return NULL;
10839
10840 if (HAS_POWER_WELL(dev))
10841 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10842
10843 for_each_pipe(i) {
10844 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10845 error->cursor[i].control = I915_READ(CURCNTR(i));
10846 error->cursor[i].position = I915_READ(CURPOS(i));
10847 error->cursor[i].base = I915_READ(CURBASE(i));
10848 } else {
10849 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10850 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10851 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10852 }
10853
10854 error->plane[i].control = I915_READ(DSPCNTR(i));
10855 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10856 if (INTEL_INFO(dev)->gen <= 3) {
10857 error->plane[i].size = I915_READ(DSPSIZE(i));
10858 error->plane[i].pos = I915_READ(DSPPOS(i));
10859 }
10860 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10861 error->plane[i].addr = I915_READ(DSPADDR(i));
10862 if (INTEL_INFO(dev)->gen >= 4) {
10863 error->plane[i].surface = I915_READ(DSPSURF(i));
10864 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10865 }
10866
10867 error->pipe[i].source = I915_READ(PIPESRC(i));
10868 }
10869
10870 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10871 if (HAS_DDI(dev_priv->dev))
10872 error->num_transcoders++; /* Account for eDP. */
10873
10874 for (i = 0; i < error->num_transcoders; i++) {
10875 enum transcoder cpu_transcoder = transcoders[i];
10876
10877 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10878
10879 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10880 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10881 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10882 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10883 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10884 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10885 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10886 }
10887
10888 /* In the code above we read the registers without checking if the power
10889 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10890 * prevent the next I915_WRITE from detecting it and printing an error
10891 * message. */
10892 intel_uncore_clear_errors(dev);
10893
10894 return error;
10895 }
10896
10897 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10898
10899 void
10900 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10901 struct drm_device *dev,
10902 struct intel_display_error_state *error)
10903 {
10904 int i;
10905
10906 if (!error)
10907 return;
10908
10909 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10910 if (HAS_POWER_WELL(dev))
10911 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10912 error->power_well_driver);
10913 for_each_pipe(i) {
10914 err_printf(m, "Pipe [%d]:\n", i);
10915 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
10916
10917 err_printf(m, "Plane [%d]:\n", i);
10918 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
10919 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
10920 if (INTEL_INFO(dev)->gen <= 3) {
10921 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
10922 err_printf(m, " POS: %08x\n", error->plane[i].pos);
10923 }
10924 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10925 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
10926 if (INTEL_INFO(dev)->gen >= 4) {
10927 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
10928 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
10929 }
10930
10931 err_printf(m, "Cursor [%d]:\n", i);
10932 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
10933 err_printf(m, " POS: %08x\n", error->cursor[i].position);
10934 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
10935 }
10936
10937 for (i = 0; i < error->num_transcoders; i++) {
10938 err_printf(m, " CPU transcoder: %c\n",
10939 transcoder_name(error->transcoder[i].cpu_transcoder));
10940 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
10941 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
10942 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
10943 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
10944 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
10945 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
10946 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
10947 }
10948 }
This page took 0.252767 seconds and 6 git commands to generate.