drm/i915: Move the ban period onto the context
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111 int min, max;
112 } intel_range_t;
113
114 typedef struct {
115 int dot_limit;
116 int p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146 .dot = { .min = 25000, .max = 350000 },
147 .vco = { .min = 908000, .max = 1512000 },
148 .n = { .min = 2, .max = 16 },
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
160 .vco = { .min = 908000, .max = 1512000 },
161 .n = { .min = 2, .max = 16 },
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172 .dot = { .min = 25000, .max = 350000 },
173 .vco = { .min = 908000, .max = 1512000 },
174 .n = { .min = 2, .max = 16 },
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
223 },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
250 },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
264 },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
270 /* Pineview's Ncounter is a ring counter */
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273 /* Pineview only has one combined m divider, which we treat as m2. */
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
348 .p1 = { .min = 2, .max = 8 },
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
361 .p1 = { .min = 2, .max = 6 },
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374 .vco = { .min = 4000000, .max = 6000000 },
375 .n = { .min = 1, .max = 7 },
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
378 .p1 = { .min = 2, .max = 3 },
379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413 struct drm_device *dev = crtc->base.dev;
414 struct intel_encoder *encoder;
415
416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417 if (encoder->type == type)
418 return true;
419
420 return false;
421 }
422
423 /**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442 int refclk)
443 {
444 struct drm_device *dev = crtc->base.dev;
445 const intel_limit_t *limit;
446
447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448 if (intel_is_dual_link_lvds(dev)) {
449 if (refclk == 100000)
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
454 if (refclk == 100000)
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
459 } else
460 limit = &intel_limits_ironlake_dac;
461
462 return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467 struct drm_device *dev = crtc->base.dev;
468 const intel_limit_t *limit;
469
470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471 if (intel_is_dual_link_lvds(dev))
472 limit = &intel_limits_g4x_dual_channel_lvds;
473 else
474 limit = &intel_limits_g4x_single_channel_lvds;
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477 limit = &intel_limits_g4x_hdmi;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479 limit = &intel_limits_g4x_sdvo;
480 } else /* The option is for other outputs */
481 limit = &intel_limits_i9xx_sdvo;
482
483 return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488 struct drm_device *dev = crtc->base.dev;
489 const intel_limit_t *limit;
490
491 if (HAS_PCH_SPLIT(dev))
492 limit = intel_ironlake_limit(crtc, refclk);
493 else if (IS_G4X(dev)) {
494 limit = intel_g4x_limit(crtc);
495 } else if (IS_PINEVIEW(dev)) {
496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497 limit = &intel_limits_pineview_lvds;
498 else
499 limit = &intel_limits_pineview_sdvo;
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
502 } else if (IS_VALLEYVIEW(dev)) {
503 limit = &intel_limits_vlv;
504 } else if (!IS_GEN2(dev)) {
505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
509 } else {
510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511 limit = &intel_limits_i8xx_lvds;
512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513 limit = &intel_limits_i8xx_dvo;
514 else
515 limit = &intel_limits_i8xx_dac;
516 }
517 return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538 clock->m = i9xx_dpll_compute_m(clock);
539 clock->p = clock->p1 * clock->p2;
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
566 {
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
570 INTELPllInvalid("p1 out of range\n");
571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
572 INTELPllInvalid("m2 out of range\n");
573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
574 INTELPllInvalid("m1 out of range\n");
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588 INTELPllInvalid("vco out of range\n");
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593 INTELPllInvalid("dot out of range\n");
594
595 return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
602 {
603 struct drm_device *dev = crtc->base.dev;
604 intel_clock_t clock;
605 int err = target;
606
607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608 /*
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
612 */
613 if (intel_is_dual_link_lvds(dev))
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
624 memset(best_clock, 0, sizeof(*best_clock));
625
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
630 if (clock.m2 >= clock.m1)
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
636 int this_err;
637
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
663 {
664 struct drm_device *dev = crtc->base.dev;
665 intel_clock_t clock;
666 int err = target;
667
668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669 /*
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
673 */
674 if (intel_is_dual_link_lvds(dev))
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
695 int this_err;
696
697 pineview_clock(refclk, &clock);
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
700 continue;
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
722 {
723 struct drm_device *dev = crtc->base.dev;
724 intel_clock_t clock;
725 int max_n;
726 bool found;
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
729 found = false;
730
731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732 if (intel_is_dual_link_lvds(dev))
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
745 /* based on hardware requirement, prefer smaller n to precision */
746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747 /* based on hardware requirement, prefere larger m1,m2 */
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
756 i9xx_clock(refclk, &clock);
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
759 continue;
760
761 this_err = abs(clock.dot - target);
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
772 return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 intel_clock_t clock;
782 unsigned int bestppm = 1000000;
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
785 bool found = false;
786
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
790
791 /* based on hardware requirement, prefer smaller n to precision */
792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796 clock.p = clock.p1 * clock.p2;
797 /* based on hardware requirement, prefer bigger m1,m2 values */
798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799 unsigned int ppm, diff;
800
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
805
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
808 continue;
809
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
814 bestppm = 0;
815 *best_clock = clock;
816 found = true;
817 }
818
819 if (bestppm >= 10 && ppm < bestppm - 10) {
820 bestppm = ppm;
821 *best_clock = clock;
822 found = true;
823 }
824 }
825 }
826 }
827 }
828
829 return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836 {
837 struct drm_device *dev = crtc->base.dev;
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
891 * We can ditch the adjusted_mode.crtc_clock check as soon
892 * as Haswell has gained clock readout/fastboot support.
893 *
894 * We can ditch the crtc->primary->fb check as soon as we can
895 * properly reconstruct framebuffers.
896 */
897 return intel_crtc->active && crtc->primary->fb &&
898 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903 {
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907 return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927 }
928
929 /*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
931 * @crtc: crtc whose pipe to wait for
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
943 *
944 */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947 struct drm_device *dev = crtc->base.dev;
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
951
952 if (INTEL_INFO(dev)->gen >= 4) {
953 int reg = PIPECONF(cpu_transcoder);
954
955 /* Wait for the Pipe State to go off */
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
958 WARN(1, "pipe_off wait timed out\n");
959 } else {
960 /* Wait for the display line to settle */
961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962 WARN(1, "pipe_off wait timed out\n");
963 }
964 }
965
966 /*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975 {
976 u32 bit;
977
978 if (HAS_PCH_IBX(dev_priv->dev)) {
979 switch (port->port) {
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
993 switch (port->port) {
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013 return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
1019 {
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 I915_STATE_WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 I915_STATE_WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055 if (crtc->config.shared_dpll < 0)
1056 return NULL;
1057
1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
1065 {
1066 bool cur_state;
1067 struct intel_dpll_hw_state hw_state;
1068
1069 if (WARN (!pll,
1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
1071 return;
1072
1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074 I915_STATE_WARN(cur_state != state,
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081 {
1082 int reg;
1083 u32 val;
1084 bool cur_state;
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
1087
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091 val = I915_READ(reg);
1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
1098 I915_STATE_WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107 {
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
1115 I915_STATE_WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124 {
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130 return;
1131
1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133 if (HAS_DDI(dev_priv->dev))
1134 return;
1135
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 I915_STATE_WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
1158 {
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
1163 bool locked = true;
1164
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
1171 pp_reg = PCH_PP_CONTROL;
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
1182 } else {
1183 pp_reg = PP_CONTROL;
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191 locked = false;
1192
1193 I915_STATE_WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
1195 pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200 {
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
1204 if (IS_845G(dev) || IS_I865G(dev))
1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206 else
1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209 I915_STATE_WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
1218 {
1219 int reg;
1220 u32 val;
1221 bool cur_state;
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
1224
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228 state = true;
1229
1230 if (!intel_display_power_is_enabled(dev_priv,
1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
1239 I915_STATE_WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
1241 pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
1246 {
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 I915_STATE_WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264 {
1265 struct drm_device *dev = dev_priv->dev;
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
1274 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
1277 return;
1278 }
1279
1280 /* Need to check both planes against the pipe */
1281 for_each_pipe(dev_priv, i) {
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
1289 }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294 {
1295 struct drm_device *dev = dev_priv->dev;
1296 int reg, sprite;
1297 u32 val;
1298
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
1309 val = I915_READ(reg);
1310 I915_STATE_WARN(val & SP_ENABLE,
1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312 sprite_name(pipe, sprite), pipe_name(pipe));
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
1316 val = I915_READ(reg);
1317 I915_STATE_WARN(val & SPRITE_ENABLE,
1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
1322 val = I915_READ(reg);
1323 I915_STATE_WARN(val & DVS_ENABLE,
1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325 plane_name(pipe), pipe_name(pipe));
1326 }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337 u32 val;
1338 bool enabled;
1339
1340 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
1350 {
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
1355 reg = PCH_TRANSCONF(pipe);
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
1358 I915_STATE_WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386 {
1387 if ((val & SDVO_ENABLE) == 0)
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392 return false;
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1396 } else {
1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398 return false;
1399 }
1400 return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405 {
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421 {
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435 enum pipe pipe, int reg, u32 port_sel)
1436 {
1437 u32 val = I915_READ(reg);
1438 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440 reg, pipe_name(pipe));
1441
1442 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
1444 "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449 {
1450 u32 val = I915_READ(reg);
1451 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453 reg, pipe_name(pipe));
1454
1455 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456 && (val & SDVO_PIPE_B_SELECT),
1457 "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462 {
1463 int reg;
1464 u32 val;
1465
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
1472 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
1474 pipe_name(pipe));
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
1478 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
1509 {
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515 assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
1521 if (IS_MOBILE(dev_priv->dev))
1522 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532 POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534 /* We do this three times for luck */
1535 I915_WRITE(reg, dpll);
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
1538 I915_WRITE(reg, dpll);
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
1541 I915_WRITE(reg, dpll);
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
1548 {
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574 /* Check PLL is locked */
1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578 /* not sure when this should be written */
1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580 POSTING_READ(DPLL_MD(pipe));
1581
1582 mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594 return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604 assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606 /* No really, not for ILK+ */
1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609 /* PLL is protected by panel, make sure we can write it */
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
1641
1642 /* We do this three times for luck */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655 * i9xx_disable_pll - disable a PLL
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
1702 if (pipe == PIPE_B)
1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712 u32 val;
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
1717 /* Set PLL en = 0 */
1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
1742 mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
1747 {
1748 u32 port_mask;
1749 int dpll_reg;
1750
1751 switch (dport->port) {
1752 case PORT_B:
1753 port_mask = DPLL_PORTB_READY_MASK;
1754 dpll_reg = DPLL(0);
1755 break;
1756 case PORT_C:
1757 port_mask = DPLL_PORTC_READY_MASK;
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
1763 break;
1764 default:
1765 BUG();
1766 }
1767
1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770 port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
1782 WARN_ON(!pll->config.crtc_mask);
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790 }
1791
1792 /**
1793 * intel_enable_shared_dpll - enable PCH PLL
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806 if (WARN_ON(pll == NULL))
1807 return;
1808
1809 if (WARN_ON(pll->config.crtc_mask == 0))
1810 return;
1811
1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813 pll->name, pll->active, pll->on,
1814 crtc->base.base.id);
1815
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
1818 assert_shared_dpll_enabled(dev_priv, pll);
1819 return;
1820 }
1821 WARN_ON(pll->on);
1822
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826 pll->enable(dev_priv, pll);
1827 pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836 /* PCH only available on ILK+ */
1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
1838 if (WARN_ON(pll == NULL))
1839 return;
1840
1841 if (WARN_ON(pll->config.crtc_mask == 0))
1842 return;
1843
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
1846 crtc->base.base.id);
1847
1848 if (WARN_ON(pll->active == 0)) {
1849 assert_shared_dpll_disabled(dev_priv, pll);
1850 return;
1851 }
1852
1853 assert_shared_dpll_enabled(dev_priv, pll);
1854 WARN_ON(!pll->on);
1855 if (--pll->active)
1856 return;
1857
1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859 pll->disable(dev_priv, pll);
1860 pll->on = false;
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
1867 {
1868 struct drm_device *dev = dev_priv->dev;
1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871 uint32_t reg, val, pipeconf_val;
1872
1873 /* PCH only available on ILK+ */
1874 BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876 /* Make sure PCH DPLL is enabled */
1877 assert_shared_dpll_enabled(dev_priv,
1878 intel_crtc_to_shared_dpll(intel_crtc));
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
1891 }
1892
1893 reg = PCH_TRANSCONF(pipe);
1894 val = I915_READ(reg);
1895 pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904 }
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908 if (HAS_PCH_IBX(dev_priv->dev) &&
1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum transcoder cpu_transcoder)
1923 {
1924 u32 val, pipeconf_val;
1925
1926 /* PCH only available on ILK+ */
1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929 /* FDI must be feeding us bits for PCH ports */
1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938 val = TRANS_ENABLE;
1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
1943 val |= TRANS_INTERLACED;
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
1954 {
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
1965 reg = PCH_TRANSCONF(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984 u32 val;
1985
1986 val = I915_READ(LPT_TRANSCONF);
1987 val &= ~TRANS_ENABLE;
1988 I915_WRITE(LPT_TRANSCONF, val);
1989 /* wait for PCH transcoder off, transcoder state */
1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996 I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000 * intel_enable_pipe - enable a pipe, asserting requirements
2001 * @crtc: crtc responsible for the pipe
2002 *
2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005 */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
2013 enum pipe pch_transcoder;
2014 int reg;
2015 u32 val;
2016
2017 assert_planes_disabled(dev_priv, pipe);
2018 assert_cursor_disabled(dev_priv, pipe);
2019 assert_sprites_disabled(dev_priv, pipe);
2020
2021 if (HAS_PCH_LPT(dev_priv->dev))
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
2036 else {
2037 if (crtc->config.has_pch_encoder) {
2038 /* if driving the PCH, we need FDI enabled */
2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
2045
2046 reg = PIPECONF(cpu_transcoder);
2047 val = I915_READ(reg);
2048 if (val & PIPECONF_ENABLE) {
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051 return;
2052 }
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
2055 POSTING_READ(reg);
2056 }
2057
2058 /**
2059 * intel_disable_pipe - disable a pipe, asserting requirements
2060 * @crtc: crtc whose pipes is to be disabled
2061 *
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
2081 assert_cursor_disabled(dev_priv, pipe);
2082 assert_sprites_disabled(dev_priv, pipe);
2083
2084 reg = PIPECONF(cpu_transcoder);
2085 val = I915_READ(reg);
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
2112 {
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
2118 }
2119
2120 /**
2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
2124 *
2125 * Enable @plane on @crtc, making sure that the pipe is running first.
2126 */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
2129 {
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137 if (intel_crtc->primary_enabled)
2138 return;
2139
2140 intel_crtc->primary_enabled = true;
2141
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
2158 *
2159 * Disable @plane on @crtc, making sure that the pipe is running first.
2160 */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
2163 {
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170 if (!intel_crtc->primary_enabled)
2171 return;
2172
2173 intel_crtc->primary_enabled = false;
2174
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184 #endif
2185 return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198 struct drm_framebuffer *fb,
2199 struct intel_engine_cs *pipelined)
2200 {
2201 struct drm_device *dev = fb->dev;
2202 struct drm_i915_private *dev_priv = dev->dev_private;
2203 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204 u32 alignment;
2205 int ret;
2206
2207 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209 switch (obj->tiling_mode) {
2210 case I915_TILING_NONE:
2211 if (INTEL_INFO(dev)->gen >= 9)
2212 alignment = 256 * 1024;
2213 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214 alignment = 128 * 1024;
2215 else if (INTEL_INFO(dev)->gen >= 4)
2216 alignment = 4 * 1024;
2217 else
2218 alignment = 64 * 1024;
2219 break;
2220 case I915_TILING_X:
2221 if (INTEL_INFO(dev)->gen >= 9)
2222 alignment = 256 * 1024;
2223 else {
2224 /* pin() will align the object as required by fence */
2225 alignment = 0;
2226 }
2227 break;
2228 case I915_TILING_Y:
2229 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230 return -EINVAL;
2231 default:
2232 BUG();
2233 }
2234
2235 /* Note that the w/a also requires 64 PTE of padding following the
2236 * bo. We currently fill all unused PTE with the shadow page and so
2237 * we should always have valid PTE following the scanout preventing
2238 * the VT-d warning.
2239 */
2240 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241 alignment = 256 * 1024;
2242
2243 /*
2244 * Global gtt pte registers are special registers which actually forward
2245 * writes to a chunk of system memory. Which means that there is no risk
2246 * that the register values disappear as soon as we call
2247 * intel_runtime_pm_put(), so it is correct to wrap only the
2248 * pin/unpin/fence and not more.
2249 */
2250 intel_runtime_pm_get(dev_priv);
2251
2252 dev_priv->mm.interruptible = false;
2253 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254 if (ret)
2255 goto err_interruptible;
2256
2257 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258 * fence, whereas 965+ only requires a fence if using
2259 * framebuffer compression. For simplicity, we always install
2260 * a fence as the cost is not that onerous.
2261 */
2262 ret = i915_gem_object_get_fence(obj);
2263 if (ret)
2264 goto err_unpin;
2265
2266 i915_gem_object_pin_fence(obj);
2267
2268 dev_priv->mm.interruptible = true;
2269 intel_runtime_pm_put(dev_priv);
2270 return 0;
2271
2272 err_unpin:
2273 i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275 dev_priv->mm.interruptible = true;
2276 intel_runtime_pm_put(dev_priv);
2277 return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284 i915_gem_object_unpin_fence(obj);
2285 i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289 * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291 unsigned int tiling_mode,
2292 unsigned int cpp,
2293 unsigned int pitch)
2294 {
2295 if (tiling_mode != I915_TILING_NONE) {
2296 unsigned int tile_rows, tiles;
2297
2298 tile_rows = *y / 8;
2299 *y %= 8;
2300
2301 tiles = *x / (512/cpp);
2302 *x %= 512/cpp;
2303
2304 return tile_rows * pitch * 8 + tiles * 4096;
2305 } else {
2306 unsigned int offset;
2307
2308 offset = *y * pitch + *x * cpp;
2309 *y = 0;
2310 *x = (offset & 4095) / cpp;
2311 return offset & -4096;
2312 }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317 switch (format) {
2318 case DISPPLANE_8BPP:
2319 return DRM_FORMAT_C8;
2320 case DISPPLANE_BGRX555:
2321 return DRM_FORMAT_XRGB1555;
2322 case DISPPLANE_BGRX565:
2323 return DRM_FORMAT_RGB565;
2324 default:
2325 case DISPPLANE_BGRX888:
2326 return DRM_FORMAT_XRGB8888;
2327 case DISPPLANE_RGBX888:
2328 return DRM_FORMAT_XBGR8888;
2329 case DISPPLANE_BGRX101010:
2330 return DRM_FORMAT_XRGB2101010;
2331 case DISPPLANE_RGBX101010:
2332 return DRM_FORMAT_XBGR2101010;
2333 }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337 struct intel_plane_config *plane_config)
2338 {
2339 struct drm_device *dev = crtc->base.dev;
2340 struct drm_i915_gem_object *obj = NULL;
2341 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342 u32 base = plane_config->base;
2343
2344 if (plane_config->size == 0)
2345 return false;
2346
2347 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348 plane_config->size);
2349 if (!obj)
2350 return false;
2351
2352 if (plane_config->tiled) {
2353 obj->tiling_mode = I915_TILING_X;
2354 obj->stride = crtc->base.primary->fb->pitches[0];
2355 }
2356
2357 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358 mode_cmd.width = crtc->base.primary->fb->width;
2359 mode_cmd.height = crtc->base.primary->fb->height;
2360 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362 mutex_lock(&dev->struct_mutex);
2363
2364 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365 &mode_cmd, obj)) {
2366 DRM_DEBUG_KMS("intel fb init failed\n");
2367 goto out_unref_obj;
2368 }
2369
2370 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371 mutex_unlock(&dev->struct_mutex);
2372
2373 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374 return true;
2375
2376 out_unref_obj:
2377 drm_gem_object_unreference(&obj->base);
2378 mutex_unlock(&dev->struct_mutex);
2379 return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383 struct intel_plane_config *plane_config)
2384 {
2385 struct drm_device *dev = intel_crtc->base.dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct drm_crtc *c;
2388 struct intel_crtc *i;
2389 struct drm_i915_gem_object *obj;
2390
2391 if (!intel_crtc->base.primary->fb)
2392 return;
2393
2394 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395 return;
2396
2397 kfree(intel_crtc->base.primary->fb);
2398 intel_crtc->base.primary->fb = NULL;
2399
2400 /*
2401 * Failed to alloc the obj, check to see if we should share
2402 * an fb with another CRTC instead
2403 */
2404 for_each_crtc(dev, c) {
2405 i = to_intel_crtc(c);
2406
2407 if (c == &intel_crtc->base)
2408 continue;
2409
2410 if (!i->active)
2411 continue;
2412
2413 obj = intel_fb_obj(c->primary->fb);
2414 if (obj == NULL)
2415 continue;
2416
2417 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418 if (obj->tiling_mode != I915_TILING_NONE)
2419 dev_priv->preserve_bios_swizzle = true;
2420
2421 drm_framebuffer_reference(c->primary->fb);
2422 intel_crtc->base.primary->fb = c->primary->fb;
2423 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424 break;
2425 }
2426 }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430 struct drm_framebuffer *fb,
2431 int x, int y)
2432 {
2433 struct drm_device *dev = crtc->dev;
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436 struct drm_i915_gem_object *obj;
2437 int plane = intel_crtc->plane;
2438 unsigned long linear_offset;
2439 u32 dspcntr;
2440 u32 reg = DSPCNTR(plane);
2441 int pixel_size;
2442
2443 if (!intel_crtc->primary_enabled) {
2444 I915_WRITE(reg, 0);
2445 if (INTEL_INFO(dev)->gen >= 4)
2446 I915_WRITE(DSPSURF(plane), 0);
2447 else
2448 I915_WRITE(DSPADDR(plane), 0);
2449 POSTING_READ(reg);
2450 return;
2451 }
2452
2453 obj = intel_fb_obj(fb);
2454 if (WARN_ON(obj == NULL))
2455 return;
2456
2457 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459 dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461 dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463 if (INTEL_INFO(dev)->gen < 4) {
2464 if (intel_crtc->pipe == PIPE_B)
2465 dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467 /* pipesrc and dspsize control the size that is scaled from,
2468 * which should always be the user's requested size.
2469 */
2470 I915_WRITE(DSPSIZE(plane),
2471 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472 (intel_crtc->config.pipe_src_w - 1));
2473 I915_WRITE(DSPPOS(plane), 0);
2474 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475 I915_WRITE(PRIMSIZE(plane),
2476 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477 (intel_crtc->config.pipe_src_w - 1));
2478 I915_WRITE(PRIMPOS(plane), 0);
2479 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480 }
2481
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
2486 case DRM_FORMAT_XRGB1555:
2487 case DRM_FORMAT_ARGB1555:
2488 dspcntr |= DISPPLANE_BGRX555;
2489 break;
2490 case DRM_FORMAT_RGB565:
2491 dspcntr |= DISPPLANE_BGRX565;
2492 break;
2493 case DRM_FORMAT_XRGB8888:
2494 case DRM_FORMAT_ARGB8888:
2495 dspcntr |= DISPPLANE_BGRX888;
2496 break;
2497 case DRM_FORMAT_XBGR8888:
2498 case DRM_FORMAT_ABGR8888:
2499 dspcntr |= DISPPLANE_RGBX888;
2500 break;
2501 case DRM_FORMAT_XRGB2101010:
2502 case DRM_FORMAT_ARGB2101010:
2503 dspcntr |= DISPPLANE_BGRX101010;
2504 break;
2505 case DRM_FORMAT_XBGR2101010:
2506 case DRM_FORMAT_ABGR2101010:
2507 dspcntr |= DISPPLANE_RGBX101010;
2508 break;
2509 default:
2510 BUG();
2511 }
2512
2513 if (INTEL_INFO(dev)->gen >= 4 &&
2514 obj->tiling_mode != I915_TILING_NONE)
2515 dspcntr |= DISPPLANE_TILED;
2516
2517 if (IS_G4X(dev))
2518 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520 linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522 if (INTEL_INFO(dev)->gen >= 4) {
2523 intel_crtc->dspaddr_offset =
2524 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525 pixel_size,
2526 fb->pitches[0]);
2527 linear_offset -= intel_crtc->dspaddr_offset;
2528 } else {
2529 intel_crtc->dspaddr_offset = linear_offset;
2530 }
2531
2532 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535 x += (intel_crtc->config.pipe_src_w - 1);
2536 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538 /* Finding the last pixel of the last line of the display
2539 data and adding to linear_offset*/
2540 linear_offset +=
2541 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543 }
2544
2545 I915_WRITE(reg, dspcntr);
2546
2547 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549 fb->pitches[0]);
2550 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551 if (INTEL_INFO(dev)->gen >= 4) {
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556 } else
2557 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558 POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562 struct drm_framebuffer *fb,
2563 int x, int y)
2564 {
2565 struct drm_device *dev = crtc->dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568 struct drm_i915_gem_object *obj;
2569 int plane = intel_crtc->plane;
2570 unsigned long linear_offset;
2571 u32 dspcntr;
2572 u32 reg = DSPCNTR(plane);
2573 int pixel_size;
2574
2575 if (!intel_crtc->primary_enabled) {
2576 I915_WRITE(reg, 0);
2577 I915_WRITE(DSPSURF(plane), 0);
2578 POSTING_READ(reg);
2579 return;
2580 }
2581
2582 obj = intel_fb_obj(fb);
2583 if (WARN_ON(obj == NULL))
2584 return;
2585
2586 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588 dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590 dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595 switch (fb->pixel_format) {
2596 case DRM_FORMAT_C8:
2597 dspcntr |= DISPPLANE_8BPP;
2598 break;
2599 case DRM_FORMAT_RGB565:
2600 dspcntr |= DISPPLANE_BGRX565;
2601 break;
2602 case DRM_FORMAT_XRGB8888:
2603 case DRM_FORMAT_ARGB8888:
2604 dspcntr |= DISPPLANE_BGRX888;
2605 break;
2606 case DRM_FORMAT_XBGR8888:
2607 case DRM_FORMAT_ABGR8888:
2608 dspcntr |= DISPPLANE_RGBX888;
2609 break;
2610 case DRM_FORMAT_XRGB2101010:
2611 case DRM_FORMAT_ARGB2101010:
2612 dspcntr |= DISPPLANE_BGRX101010;
2613 break;
2614 case DRM_FORMAT_XBGR2101010:
2615 case DRM_FORMAT_ABGR2101010:
2616 dspcntr |= DISPPLANE_RGBX101010;
2617 break;
2618 default:
2619 BUG();
2620 }
2621
2622 if (obj->tiling_mode != I915_TILING_NONE)
2623 dspcntr |= DISPPLANE_TILED;
2624
2625 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628 linear_offset = y * fb->pitches[0] + x * pixel_size;
2629 intel_crtc->dspaddr_offset =
2630 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631 pixel_size,
2632 fb->pitches[0]);
2633 linear_offset -= intel_crtc->dspaddr_offset;
2634 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638 x += (intel_crtc->config.pipe_src_w - 1);
2639 y += (intel_crtc->config.pipe_src_h - 1);
2640
2641 /* Finding the last pixel of the last line of the display
2642 data and adding to linear_offset*/
2643 linear_offset +=
2644 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646 }
2647 }
2648
2649 I915_WRITE(reg, dspcntr);
2650
2651 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653 fb->pitches[0]);
2654 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655 I915_WRITE(DSPSURF(plane),
2656 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659 } else {
2660 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662 }
2663 POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667 struct drm_framebuffer *fb,
2668 int x, int y)
2669 {
2670 struct drm_device *dev = crtc->dev;
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673 struct intel_framebuffer *intel_fb;
2674 struct drm_i915_gem_object *obj;
2675 int pipe = intel_crtc->pipe;
2676 u32 plane_ctl, stride;
2677
2678 if (!intel_crtc->primary_enabled) {
2679 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681 POSTING_READ(PLANE_CTL(pipe, 0));
2682 return;
2683 }
2684
2685 plane_ctl = PLANE_CTL_ENABLE |
2686 PLANE_CTL_PIPE_GAMMA_ENABLE |
2687 PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689 switch (fb->pixel_format) {
2690 case DRM_FORMAT_RGB565:
2691 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692 break;
2693 case DRM_FORMAT_XRGB8888:
2694 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695 break;
2696 case DRM_FORMAT_XBGR8888:
2697 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699 break;
2700 case DRM_FORMAT_XRGB2101010:
2701 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702 break;
2703 case DRM_FORMAT_XBGR2101010:
2704 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706 break;
2707 default:
2708 BUG();
2709 }
2710
2711 intel_fb = to_intel_framebuffer(fb);
2712 obj = intel_fb->obj;
2713
2714 /*
2715 * The stride is either expressed as a multiple of 64 bytes chunks for
2716 * linear buffers or in number of tiles for tiled buffers.
2717 */
2718 switch (obj->tiling_mode) {
2719 case I915_TILING_NONE:
2720 stride = fb->pitches[0] >> 6;
2721 break;
2722 case I915_TILING_X:
2723 plane_ctl |= PLANE_CTL_TILED_X;
2724 stride = fb->pitches[0] >> 9;
2725 break;
2726 default:
2727 BUG();
2728 }
2729
2730 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737 i915_gem_obj_ggtt_offset(obj),
2738 x, y, fb->width, fb->height,
2739 fb->pitches[0]);
2740
2741 I915_WRITE(PLANE_POS(pipe, 0), 0);
2742 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743 I915_WRITE(PLANE_SIZE(pipe, 0),
2744 (intel_crtc->config.pipe_src_h - 1) << 16 |
2745 (intel_crtc->config.pipe_src_w - 1));
2746 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749 POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755 int x, int y, enum mode_set_atomic state)
2756 {
2757 struct drm_device *dev = crtc->dev;
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760 if (dev_priv->display.disable_fbc)
2761 dev_priv->display.disable_fbc(dev);
2762
2763 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765 return 0;
2766 }
2767
2768 static void intel_complete_page_flips(struct drm_device *dev)
2769 {
2770 struct drm_crtc *crtc;
2771
2772 for_each_crtc(dev, crtc) {
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 enum plane plane = intel_crtc->plane;
2775
2776 intel_prepare_page_flip(dev, plane);
2777 intel_finish_page_flip_plane(dev, plane);
2778 }
2779 }
2780
2781 static void intel_update_primary_planes(struct drm_device *dev)
2782 {
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct drm_crtc *crtc;
2785
2786 for_each_crtc(dev, crtc) {
2787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2788
2789 drm_modeset_lock(&crtc->mutex, NULL);
2790 /*
2791 * FIXME: Once we have proper support for primary planes (and
2792 * disabling them without disabling the entire crtc) allow again
2793 * a NULL crtc->primary->fb.
2794 */
2795 if (intel_crtc->active && crtc->primary->fb)
2796 dev_priv->display.update_primary_plane(crtc,
2797 crtc->primary->fb,
2798 crtc->x,
2799 crtc->y);
2800 drm_modeset_unlock(&crtc->mutex);
2801 }
2802 }
2803
2804 void intel_prepare_reset(struct drm_device *dev)
2805 {
2806 struct drm_i915_private *dev_priv = to_i915(dev);
2807 struct intel_crtc *crtc;
2808
2809 /* no reset support for gen2 */
2810 if (IS_GEN2(dev))
2811 return;
2812
2813 /* reset doesn't touch the display */
2814 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2815 return;
2816
2817 drm_modeset_lock_all(dev);
2818
2819 /*
2820 * Disabling the crtcs gracefully seems nicer. Also the
2821 * g33 docs say we should at least disable all the planes.
2822 */
2823 for_each_intel_crtc(dev, crtc) {
2824 if (crtc->active)
2825 dev_priv->display.crtc_disable(&crtc->base);
2826 }
2827 }
2828
2829 void intel_finish_reset(struct drm_device *dev)
2830 {
2831 struct drm_i915_private *dev_priv = to_i915(dev);
2832
2833 /*
2834 * Flips in the rings will be nuked by the reset,
2835 * so complete all pending flips so that user space
2836 * will get its events and not get stuck.
2837 */
2838 intel_complete_page_flips(dev);
2839
2840 /* no reset support for gen2 */
2841 if (IS_GEN2(dev))
2842 return;
2843
2844 /* reset doesn't touch the display */
2845 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2846 /*
2847 * Flips in the rings have been nuked by the reset,
2848 * so update the base address of all primary
2849 * planes to the the last fb to make sure we're
2850 * showing the correct fb after a reset.
2851 */
2852 intel_update_primary_planes(dev);
2853 return;
2854 }
2855
2856 /*
2857 * The display has been reset as well,
2858 * so need a full re-initialization.
2859 */
2860 intel_runtime_pm_disable_interrupts(dev_priv);
2861 intel_runtime_pm_enable_interrupts(dev_priv);
2862
2863 intel_modeset_init_hw(dev);
2864
2865 spin_lock_irq(&dev_priv->irq_lock);
2866 if (dev_priv->display.hpd_irq_setup)
2867 dev_priv->display.hpd_irq_setup(dev);
2868 spin_unlock_irq(&dev_priv->irq_lock);
2869
2870 intel_modeset_setup_hw_state(dev, true);
2871
2872 intel_hpd_init(dev_priv);
2873
2874 drm_modeset_unlock_all(dev);
2875 }
2876
2877 static int
2878 intel_finish_fb(struct drm_framebuffer *old_fb)
2879 {
2880 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2882 bool was_interruptible = dev_priv->mm.interruptible;
2883 int ret;
2884
2885 /* Big Hammer, we also need to ensure that any pending
2886 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2887 * current scanout is retired before unpinning the old
2888 * framebuffer.
2889 *
2890 * This should only fail upon a hung GPU, in which case we
2891 * can safely continue.
2892 */
2893 dev_priv->mm.interruptible = false;
2894 ret = i915_gem_object_finish_gpu(obj);
2895 dev_priv->mm.interruptible = was_interruptible;
2896
2897 return ret;
2898 }
2899
2900 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2901 {
2902 struct drm_device *dev = crtc->dev;
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2905 bool pending;
2906
2907 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2908 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2909 return false;
2910
2911 spin_lock_irq(&dev->event_lock);
2912 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2913 spin_unlock_irq(&dev->event_lock);
2914
2915 return pending;
2916 }
2917
2918 static void intel_update_pipe_size(struct intel_crtc *crtc)
2919 {
2920 struct drm_device *dev = crtc->base.dev;
2921 struct drm_i915_private *dev_priv = dev->dev_private;
2922 const struct drm_display_mode *adjusted_mode;
2923
2924 if (!i915.fastboot)
2925 return;
2926
2927 /*
2928 * Update pipe size and adjust fitter if needed: the reason for this is
2929 * that in compute_mode_changes we check the native mode (not the pfit
2930 * mode) to see if we can flip rather than do a full mode set. In the
2931 * fastboot case, we'll flip, but if we don't update the pipesrc and
2932 * pfit state, we'll end up with a big fb scanned out into the wrong
2933 * sized surface.
2934 *
2935 * To fix this properly, we need to hoist the checks up into
2936 * compute_mode_changes (or above), check the actual pfit state and
2937 * whether the platform allows pfit disable with pipe active, and only
2938 * then update the pipesrc and pfit state, even on the flip path.
2939 */
2940
2941 adjusted_mode = &crtc->config.adjusted_mode;
2942
2943 I915_WRITE(PIPESRC(crtc->pipe),
2944 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2945 (adjusted_mode->crtc_vdisplay - 1));
2946 if (!crtc->config.pch_pfit.enabled &&
2947 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2948 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2949 I915_WRITE(PF_CTL(crtc->pipe), 0);
2950 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2951 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2952 }
2953 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2954 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2955 }
2956
2957 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2958 {
2959 struct drm_device *dev = crtc->dev;
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2962 int pipe = intel_crtc->pipe;
2963 u32 reg, temp;
2964
2965 /* enable normal train */
2966 reg = FDI_TX_CTL(pipe);
2967 temp = I915_READ(reg);
2968 if (IS_IVYBRIDGE(dev)) {
2969 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2970 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2971 } else {
2972 temp &= ~FDI_LINK_TRAIN_NONE;
2973 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2974 }
2975 I915_WRITE(reg, temp);
2976
2977 reg = FDI_RX_CTL(pipe);
2978 temp = I915_READ(reg);
2979 if (HAS_PCH_CPT(dev)) {
2980 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2981 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2982 } else {
2983 temp &= ~FDI_LINK_TRAIN_NONE;
2984 temp |= FDI_LINK_TRAIN_NONE;
2985 }
2986 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2987
2988 /* wait one idle pattern time */
2989 POSTING_READ(reg);
2990 udelay(1000);
2991
2992 /* IVB wants error correction enabled */
2993 if (IS_IVYBRIDGE(dev))
2994 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2995 FDI_FE_ERRC_ENABLE);
2996 }
2997
2998 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2999 {
3000 return crtc->base.enabled && crtc->active &&
3001 crtc->config.has_pch_encoder;
3002 }
3003
3004 static void ivb_modeset_global_resources(struct drm_device *dev)
3005 {
3006 struct drm_i915_private *dev_priv = dev->dev_private;
3007 struct intel_crtc *pipe_B_crtc =
3008 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3009 struct intel_crtc *pipe_C_crtc =
3010 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3011 uint32_t temp;
3012
3013 /*
3014 * When everything is off disable fdi C so that we could enable fdi B
3015 * with all lanes. Note that we don't care about enabled pipes without
3016 * an enabled pch encoder.
3017 */
3018 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3019 !pipe_has_enabled_pch(pipe_C_crtc)) {
3020 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3021 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3022
3023 temp = I915_READ(SOUTH_CHICKEN1);
3024 temp &= ~FDI_BC_BIFURCATION_SELECT;
3025 DRM_DEBUG_KMS("disabling fdi C rx\n");
3026 I915_WRITE(SOUTH_CHICKEN1, temp);
3027 }
3028 }
3029
3030 /* The FDI link training functions for ILK/Ibexpeak. */
3031 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3032 {
3033 struct drm_device *dev = crtc->dev;
3034 struct drm_i915_private *dev_priv = dev->dev_private;
3035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3036 int pipe = intel_crtc->pipe;
3037 u32 reg, temp, tries;
3038
3039 /* FDI needs bits from pipe first */
3040 assert_pipe_enabled(dev_priv, pipe);
3041
3042 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3043 for train result */
3044 reg = FDI_RX_IMR(pipe);
3045 temp = I915_READ(reg);
3046 temp &= ~FDI_RX_SYMBOL_LOCK;
3047 temp &= ~FDI_RX_BIT_LOCK;
3048 I915_WRITE(reg, temp);
3049 I915_READ(reg);
3050 udelay(150);
3051
3052 /* enable CPU FDI TX and PCH FDI RX */
3053 reg = FDI_TX_CTL(pipe);
3054 temp = I915_READ(reg);
3055 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3056 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3057 temp &= ~FDI_LINK_TRAIN_NONE;
3058 temp |= FDI_LINK_TRAIN_PATTERN_1;
3059 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3060
3061 reg = FDI_RX_CTL(pipe);
3062 temp = I915_READ(reg);
3063 temp &= ~FDI_LINK_TRAIN_NONE;
3064 temp |= FDI_LINK_TRAIN_PATTERN_1;
3065 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3066
3067 POSTING_READ(reg);
3068 udelay(150);
3069
3070 /* Ironlake workaround, enable clock pointer after FDI enable*/
3071 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3072 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3073 FDI_RX_PHASE_SYNC_POINTER_EN);
3074
3075 reg = FDI_RX_IIR(pipe);
3076 for (tries = 0; tries < 5; tries++) {
3077 temp = I915_READ(reg);
3078 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3079
3080 if ((temp & FDI_RX_BIT_LOCK)) {
3081 DRM_DEBUG_KMS("FDI train 1 done.\n");
3082 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3083 break;
3084 }
3085 }
3086 if (tries == 5)
3087 DRM_ERROR("FDI train 1 fail!\n");
3088
3089 /* Train 2 */
3090 reg = FDI_TX_CTL(pipe);
3091 temp = I915_READ(reg);
3092 temp &= ~FDI_LINK_TRAIN_NONE;
3093 temp |= FDI_LINK_TRAIN_PATTERN_2;
3094 I915_WRITE(reg, temp);
3095
3096 reg = FDI_RX_CTL(pipe);
3097 temp = I915_READ(reg);
3098 temp &= ~FDI_LINK_TRAIN_NONE;
3099 temp |= FDI_LINK_TRAIN_PATTERN_2;
3100 I915_WRITE(reg, temp);
3101
3102 POSTING_READ(reg);
3103 udelay(150);
3104
3105 reg = FDI_RX_IIR(pipe);
3106 for (tries = 0; tries < 5; tries++) {
3107 temp = I915_READ(reg);
3108 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3109
3110 if (temp & FDI_RX_SYMBOL_LOCK) {
3111 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3112 DRM_DEBUG_KMS("FDI train 2 done.\n");
3113 break;
3114 }
3115 }
3116 if (tries == 5)
3117 DRM_ERROR("FDI train 2 fail!\n");
3118
3119 DRM_DEBUG_KMS("FDI train done\n");
3120
3121 }
3122
3123 static const int snb_b_fdi_train_param[] = {
3124 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3125 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3126 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3127 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3128 };
3129
3130 /* The FDI link training functions for SNB/Cougarpoint. */
3131 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3132 {
3133 struct drm_device *dev = crtc->dev;
3134 struct drm_i915_private *dev_priv = dev->dev_private;
3135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3136 int pipe = intel_crtc->pipe;
3137 u32 reg, temp, i, retry;
3138
3139 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3140 for train result */
3141 reg = FDI_RX_IMR(pipe);
3142 temp = I915_READ(reg);
3143 temp &= ~FDI_RX_SYMBOL_LOCK;
3144 temp &= ~FDI_RX_BIT_LOCK;
3145 I915_WRITE(reg, temp);
3146
3147 POSTING_READ(reg);
3148 udelay(150);
3149
3150 /* enable CPU FDI TX and PCH FDI RX */
3151 reg = FDI_TX_CTL(pipe);
3152 temp = I915_READ(reg);
3153 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3154 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3155 temp &= ~FDI_LINK_TRAIN_NONE;
3156 temp |= FDI_LINK_TRAIN_PATTERN_1;
3157 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3158 /* SNB-B */
3159 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3160 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3161
3162 I915_WRITE(FDI_RX_MISC(pipe),
3163 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3164
3165 reg = FDI_RX_CTL(pipe);
3166 temp = I915_READ(reg);
3167 if (HAS_PCH_CPT(dev)) {
3168 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3169 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3170 } else {
3171 temp &= ~FDI_LINK_TRAIN_NONE;
3172 temp |= FDI_LINK_TRAIN_PATTERN_1;
3173 }
3174 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3175
3176 POSTING_READ(reg);
3177 udelay(150);
3178
3179 for (i = 0; i < 4; i++) {
3180 reg = FDI_TX_CTL(pipe);
3181 temp = I915_READ(reg);
3182 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3183 temp |= snb_b_fdi_train_param[i];
3184 I915_WRITE(reg, temp);
3185
3186 POSTING_READ(reg);
3187 udelay(500);
3188
3189 for (retry = 0; retry < 5; retry++) {
3190 reg = FDI_RX_IIR(pipe);
3191 temp = I915_READ(reg);
3192 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3193 if (temp & FDI_RX_BIT_LOCK) {
3194 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3195 DRM_DEBUG_KMS("FDI train 1 done.\n");
3196 break;
3197 }
3198 udelay(50);
3199 }
3200 if (retry < 5)
3201 break;
3202 }
3203 if (i == 4)
3204 DRM_ERROR("FDI train 1 fail!\n");
3205
3206 /* Train 2 */
3207 reg = FDI_TX_CTL(pipe);
3208 temp = I915_READ(reg);
3209 temp &= ~FDI_LINK_TRAIN_NONE;
3210 temp |= FDI_LINK_TRAIN_PATTERN_2;
3211 if (IS_GEN6(dev)) {
3212 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3213 /* SNB-B */
3214 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3215 }
3216 I915_WRITE(reg, temp);
3217
3218 reg = FDI_RX_CTL(pipe);
3219 temp = I915_READ(reg);
3220 if (HAS_PCH_CPT(dev)) {
3221 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3222 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3223 } else {
3224 temp &= ~FDI_LINK_TRAIN_NONE;
3225 temp |= FDI_LINK_TRAIN_PATTERN_2;
3226 }
3227 I915_WRITE(reg, temp);
3228
3229 POSTING_READ(reg);
3230 udelay(150);
3231
3232 for (i = 0; i < 4; i++) {
3233 reg = FDI_TX_CTL(pipe);
3234 temp = I915_READ(reg);
3235 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3236 temp |= snb_b_fdi_train_param[i];
3237 I915_WRITE(reg, temp);
3238
3239 POSTING_READ(reg);
3240 udelay(500);
3241
3242 for (retry = 0; retry < 5; retry++) {
3243 reg = FDI_RX_IIR(pipe);
3244 temp = I915_READ(reg);
3245 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3246 if (temp & FDI_RX_SYMBOL_LOCK) {
3247 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3248 DRM_DEBUG_KMS("FDI train 2 done.\n");
3249 break;
3250 }
3251 udelay(50);
3252 }
3253 if (retry < 5)
3254 break;
3255 }
3256 if (i == 4)
3257 DRM_ERROR("FDI train 2 fail!\n");
3258
3259 DRM_DEBUG_KMS("FDI train done.\n");
3260 }
3261
3262 /* Manual link training for Ivy Bridge A0 parts */
3263 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3264 {
3265 struct drm_device *dev = crtc->dev;
3266 struct drm_i915_private *dev_priv = dev->dev_private;
3267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3268 int pipe = intel_crtc->pipe;
3269 u32 reg, temp, i, j;
3270
3271 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3272 for train result */
3273 reg = FDI_RX_IMR(pipe);
3274 temp = I915_READ(reg);
3275 temp &= ~FDI_RX_SYMBOL_LOCK;
3276 temp &= ~FDI_RX_BIT_LOCK;
3277 I915_WRITE(reg, temp);
3278
3279 POSTING_READ(reg);
3280 udelay(150);
3281
3282 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3283 I915_READ(FDI_RX_IIR(pipe)));
3284
3285 /* Try each vswing and preemphasis setting twice before moving on */
3286 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3287 /* disable first in case we need to retry */
3288 reg = FDI_TX_CTL(pipe);
3289 temp = I915_READ(reg);
3290 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3291 temp &= ~FDI_TX_ENABLE;
3292 I915_WRITE(reg, temp);
3293
3294 reg = FDI_RX_CTL(pipe);
3295 temp = I915_READ(reg);
3296 temp &= ~FDI_LINK_TRAIN_AUTO;
3297 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3298 temp &= ~FDI_RX_ENABLE;
3299 I915_WRITE(reg, temp);
3300
3301 /* enable CPU FDI TX and PCH FDI RX */
3302 reg = FDI_TX_CTL(pipe);
3303 temp = I915_READ(reg);
3304 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3305 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3306 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3307 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3308 temp |= snb_b_fdi_train_param[j/2];
3309 temp |= FDI_COMPOSITE_SYNC;
3310 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3311
3312 I915_WRITE(FDI_RX_MISC(pipe),
3313 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3314
3315 reg = FDI_RX_CTL(pipe);
3316 temp = I915_READ(reg);
3317 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3318 temp |= FDI_COMPOSITE_SYNC;
3319 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3320
3321 POSTING_READ(reg);
3322 udelay(1); /* should be 0.5us */
3323
3324 for (i = 0; i < 4; i++) {
3325 reg = FDI_RX_IIR(pipe);
3326 temp = I915_READ(reg);
3327 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3328
3329 if (temp & FDI_RX_BIT_LOCK ||
3330 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3331 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3332 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3333 i);
3334 break;
3335 }
3336 udelay(1); /* should be 0.5us */
3337 }
3338 if (i == 4) {
3339 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3340 continue;
3341 }
3342
3343 /* Train 2 */
3344 reg = FDI_TX_CTL(pipe);
3345 temp = I915_READ(reg);
3346 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3347 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3348 I915_WRITE(reg, temp);
3349
3350 reg = FDI_RX_CTL(pipe);
3351 temp = I915_READ(reg);
3352 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3353 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3354 I915_WRITE(reg, temp);
3355
3356 POSTING_READ(reg);
3357 udelay(2); /* should be 1.5us */
3358
3359 for (i = 0; i < 4; i++) {
3360 reg = FDI_RX_IIR(pipe);
3361 temp = I915_READ(reg);
3362 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3363
3364 if (temp & FDI_RX_SYMBOL_LOCK ||
3365 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3366 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3367 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3368 i);
3369 goto train_done;
3370 }
3371 udelay(2); /* should be 1.5us */
3372 }
3373 if (i == 4)
3374 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3375 }
3376
3377 train_done:
3378 DRM_DEBUG_KMS("FDI train done.\n");
3379 }
3380
3381 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3382 {
3383 struct drm_device *dev = intel_crtc->base.dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 int pipe = intel_crtc->pipe;
3386 u32 reg, temp;
3387
3388
3389 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3390 reg = FDI_RX_CTL(pipe);
3391 temp = I915_READ(reg);
3392 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3393 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3394 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3395 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3396
3397 POSTING_READ(reg);
3398 udelay(200);
3399
3400 /* Switch from Rawclk to PCDclk */
3401 temp = I915_READ(reg);
3402 I915_WRITE(reg, temp | FDI_PCDCLK);
3403
3404 POSTING_READ(reg);
3405 udelay(200);
3406
3407 /* Enable CPU FDI TX PLL, always on for Ironlake */
3408 reg = FDI_TX_CTL(pipe);
3409 temp = I915_READ(reg);
3410 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3411 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3412
3413 POSTING_READ(reg);
3414 udelay(100);
3415 }
3416 }
3417
3418 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3419 {
3420 struct drm_device *dev = intel_crtc->base.dev;
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422 int pipe = intel_crtc->pipe;
3423 u32 reg, temp;
3424
3425 /* Switch from PCDclk to Rawclk */
3426 reg = FDI_RX_CTL(pipe);
3427 temp = I915_READ(reg);
3428 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3429
3430 /* Disable CPU FDI TX PLL */
3431 reg = FDI_TX_CTL(pipe);
3432 temp = I915_READ(reg);
3433 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3434
3435 POSTING_READ(reg);
3436 udelay(100);
3437
3438 reg = FDI_RX_CTL(pipe);
3439 temp = I915_READ(reg);
3440 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3441
3442 /* Wait for the clocks to turn off. */
3443 POSTING_READ(reg);
3444 udelay(100);
3445 }
3446
3447 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3448 {
3449 struct drm_device *dev = crtc->dev;
3450 struct drm_i915_private *dev_priv = dev->dev_private;
3451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3452 int pipe = intel_crtc->pipe;
3453 u32 reg, temp;
3454
3455 /* disable CPU FDI tx and PCH FDI rx */
3456 reg = FDI_TX_CTL(pipe);
3457 temp = I915_READ(reg);
3458 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3459 POSTING_READ(reg);
3460
3461 reg = FDI_RX_CTL(pipe);
3462 temp = I915_READ(reg);
3463 temp &= ~(0x7 << 16);
3464 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3465 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3466
3467 POSTING_READ(reg);
3468 udelay(100);
3469
3470 /* Ironlake workaround, disable clock pointer after downing FDI */
3471 if (HAS_PCH_IBX(dev))
3472 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3473
3474 /* still set train pattern 1 */
3475 reg = FDI_TX_CTL(pipe);
3476 temp = I915_READ(reg);
3477 temp &= ~FDI_LINK_TRAIN_NONE;
3478 temp |= FDI_LINK_TRAIN_PATTERN_1;
3479 I915_WRITE(reg, temp);
3480
3481 reg = FDI_RX_CTL(pipe);
3482 temp = I915_READ(reg);
3483 if (HAS_PCH_CPT(dev)) {
3484 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3485 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3486 } else {
3487 temp &= ~FDI_LINK_TRAIN_NONE;
3488 temp |= FDI_LINK_TRAIN_PATTERN_1;
3489 }
3490 /* BPC in FDI rx is consistent with that in PIPECONF */
3491 temp &= ~(0x07 << 16);
3492 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3493 I915_WRITE(reg, temp);
3494
3495 POSTING_READ(reg);
3496 udelay(100);
3497 }
3498
3499 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3500 {
3501 struct intel_crtc *crtc;
3502
3503 /* Note that we don't need to be called with mode_config.lock here
3504 * as our list of CRTC objects is static for the lifetime of the
3505 * device and so cannot disappear as we iterate. Similarly, we can
3506 * happily treat the predicates as racy, atomic checks as userspace
3507 * cannot claim and pin a new fb without at least acquring the
3508 * struct_mutex and so serialising with us.
3509 */
3510 for_each_intel_crtc(dev, crtc) {
3511 if (atomic_read(&crtc->unpin_work_count) == 0)
3512 continue;
3513
3514 if (crtc->unpin_work)
3515 intel_wait_for_vblank(dev, crtc->pipe);
3516
3517 return true;
3518 }
3519
3520 return false;
3521 }
3522
3523 static void page_flip_completed(struct intel_crtc *intel_crtc)
3524 {
3525 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3526 struct intel_unpin_work *work = intel_crtc->unpin_work;
3527
3528 /* ensure that the unpin work is consistent wrt ->pending. */
3529 smp_rmb();
3530 intel_crtc->unpin_work = NULL;
3531
3532 if (work->event)
3533 drm_send_vblank_event(intel_crtc->base.dev,
3534 intel_crtc->pipe,
3535 work->event);
3536
3537 drm_crtc_vblank_put(&intel_crtc->base);
3538
3539 wake_up_all(&dev_priv->pending_flip_queue);
3540 queue_work(dev_priv->wq, &work->work);
3541
3542 trace_i915_flip_complete(intel_crtc->plane,
3543 work->pending_flip_obj);
3544 }
3545
3546 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3547 {
3548 struct drm_device *dev = crtc->dev;
3549 struct drm_i915_private *dev_priv = dev->dev_private;
3550
3551 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3552 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3553 !intel_crtc_has_pending_flip(crtc),
3554 60*HZ) == 0)) {
3555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556
3557 spin_lock_irq(&dev->event_lock);
3558 if (intel_crtc->unpin_work) {
3559 WARN_ONCE(1, "Removing stuck page flip\n");
3560 page_flip_completed(intel_crtc);
3561 }
3562 spin_unlock_irq(&dev->event_lock);
3563 }
3564
3565 if (crtc->primary->fb) {
3566 mutex_lock(&dev->struct_mutex);
3567 intel_finish_fb(crtc->primary->fb);
3568 mutex_unlock(&dev->struct_mutex);
3569 }
3570 }
3571
3572 /* Program iCLKIP clock to the desired frequency */
3573 static void lpt_program_iclkip(struct drm_crtc *crtc)
3574 {
3575 struct drm_device *dev = crtc->dev;
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3578 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3579 u32 temp;
3580
3581 mutex_lock(&dev_priv->dpio_lock);
3582
3583 /* It is necessary to ungate the pixclk gate prior to programming
3584 * the divisors, and gate it back when it is done.
3585 */
3586 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3587
3588 /* Disable SSCCTL */
3589 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3590 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3591 SBI_SSCCTL_DISABLE,
3592 SBI_ICLK);
3593
3594 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3595 if (clock == 20000) {
3596 auxdiv = 1;
3597 divsel = 0x41;
3598 phaseinc = 0x20;
3599 } else {
3600 /* The iCLK virtual clock root frequency is in MHz,
3601 * but the adjusted_mode->crtc_clock in in KHz. To get the
3602 * divisors, it is necessary to divide one by another, so we
3603 * convert the virtual clock precision to KHz here for higher
3604 * precision.
3605 */
3606 u32 iclk_virtual_root_freq = 172800 * 1000;
3607 u32 iclk_pi_range = 64;
3608 u32 desired_divisor, msb_divisor_value, pi_value;
3609
3610 desired_divisor = (iclk_virtual_root_freq / clock);
3611 msb_divisor_value = desired_divisor / iclk_pi_range;
3612 pi_value = desired_divisor % iclk_pi_range;
3613
3614 auxdiv = 0;
3615 divsel = msb_divisor_value - 2;
3616 phaseinc = pi_value;
3617 }
3618
3619 /* This should not happen with any sane values */
3620 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3621 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3622 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3623 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3624
3625 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3626 clock,
3627 auxdiv,
3628 divsel,
3629 phasedir,
3630 phaseinc);
3631
3632 /* Program SSCDIVINTPHASE6 */
3633 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3634 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3635 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3636 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3637 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3638 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3639 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3640 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3641
3642 /* Program SSCAUXDIV */
3643 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3644 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3645 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3646 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3647
3648 /* Enable modulator and associated divider */
3649 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3650 temp &= ~SBI_SSCCTL_DISABLE;
3651 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3652
3653 /* Wait for initialization time */
3654 udelay(24);
3655
3656 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3657
3658 mutex_unlock(&dev_priv->dpio_lock);
3659 }
3660
3661 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3662 enum pipe pch_transcoder)
3663 {
3664 struct drm_device *dev = crtc->base.dev;
3665 struct drm_i915_private *dev_priv = dev->dev_private;
3666 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3667
3668 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3669 I915_READ(HTOTAL(cpu_transcoder)));
3670 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3671 I915_READ(HBLANK(cpu_transcoder)));
3672 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3673 I915_READ(HSYNC(cpu_transcoder)));
3674
3675 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3676 I915_READ(VTOTAL(cpu_transcoder)));
3677 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3678 I915_READ(VBLANK(cpu_transcoder)));
3679 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3680 I915_READ(VSYNC(cpu_transcoder)));
3681 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3682 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3683 }
3684
3685 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3686 {
3687 struct drm_i915_private *dev_priv = dev->dev_private;
3688 uint32_t temp;
3689
3690 temp = I915_READ(SOUTH_CHICKEN1);
3691 if (temp & FDI_BC_BIFURCATION_SELECT)
3692 return;
3693
3694 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3695 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3696
3697 temp |= FDI_BC_BIFURCATION_SELECT;
3698 DRM_DEBUG_KMS("enabling fdi C rx\n");
3699 I915_WRITE(SOUTH_CHICKEN1, temp);
3700 POSTING_READ(SOUTH_CHICKEN1);
3701 }
3702
3703 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3704 {
3705 struct drm_device *dev = intel_crtc->base.dev;
3706 struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708 switch (intel_crtc->pipe) {
3709 case PIPE_A:
3710 break;
3711 case PIPE_B:
3712 if (intel_crtc->config.fdi_lanes > 2)
3713 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3714 else
3715 cpt_enable_fdi_bc_bifurcation(dev);
3716
3717 break;
3718 case PIPE_C:
3719 cpt_enable_fdi_bc_bifurcation(dev);
3720
3721 break;
3722 default:
3723 BUG();
3724 }
3725 }
3726
3727 /*
3728 * Enable PCH resources required for PCH ports:
3729 * - PCH PLLs
3730 * - FDI training & RX/TX
3731 * - update transcoder timings
3732 * - DP transcoding bits
3733 * - transcoder
3734 */
3735 static void ironlake_pch_enable(struct drm_crtc *crtc)
3736 {
3737 struct drm_device *dev = crtc->dev;
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3740 int pipe = intel_crtc->pipe;
3741 u32 reg, temp;
3742
3743 assert_pch_transcoder_disabled(dev_priv, pipe);
3744
3745 if (IS_IVYBRIDGE(dev))
3746 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3747
3748 /* Write the TU size bits before fdi link training, so that error
3749 * detection works. */
3750 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3751 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3752
3753 /* For PCH output, training FDI link */
3754 dev_priv->display.fdi_link_train(crtc);
3755
3756 /* We need to program the right clock selection before writing the pixel
3757 * mutliplier into the DPLL. */
3758 if (HAS_PCH_CPT(dev)) {
3759 u32 sel;
3760
3761 temp = I915_READ(PCH_DPLL_SEL);
3762 temp |= TRANS_DPLL_ENABLE(pipe);
3763 sel = TRANS_DPLLB_SEL(pipe);
3764 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3765 temp |= sel;
3766 else
3767 temp &= ~sel;
3768 I915_WRITE(PCH_DPLL_SEL, temp);
3769 }
3770
3771 /* XXX: pch pll's can be enabled any time before we enable the PCH
3772 * transcoder, and we actually should do this to not upset any PCH
3773 * transcoder that already use the clock when we share it.
3774 *
3775 * Note that enable_shared_dpll tries to do the right thing, but
3776 * get_shared_dpll unconditionally resets the pll - we need that to have
3777 * the right LVDS enable sequence. */
3778 intel_enable_shared_dpll(intel_crtc);
3779
3780 /* set transcoder timing, panel must allow it */
3781 assert_panel_unlocked(dev_priv, pipe);
3782 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3783
3784 intel_fdi_normal_train(crtc);
3785
3786 /* For PCH DP, enable TRANS_DP_CTL */
3787 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3788 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3789 reg = TRANS_DP_CTL(pipe);
3790 temp = I915_READ(reg);
3791 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3792 TRANS_DP_SYNC_MASK |
3793 TRANS_DP_BPC_MASK);
3794 temp |= (TRANS_DP_OUTPUT_ENABLE |
3795 TRANS_DP_ENH_FRAMING);
3796 temp |= bpc << 9; /* same format but at 11:9 */
3797
3798 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3799 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3800 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3801 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3802
3803 switch (intel_trans_dp_port_sel(crtc)) {
3804 case PCH_DP_B:
3805 temp |= TRANS_DP_PORT_SEL_B;
3806 break;
3807 case PCH_DP_C:
3808 temp |= TRANS_DP_PORT_SEL_C;
3809 break;
3810 case PCH_DP_D:
3811 temp |= TRANS_DP_PORT_SEL_D;
3812 break;
3813 default:
3814 BUG();
3815 }
3816
3817 I915_WRITE(reg, temp);
3818 }
3819
3820 ironlake_enable_pch_transcoder(dev_priv, pipe);
3821 }
3822
3823 static void lpt_pch_enable(struct drm_crtc *crtc)
3824 {
3825 struct drm_device *dev = crtc->dev;
3826 struct drm_i915_private *dev_priv = dev->dev_private;
3827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3828 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3829
3830 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3831
3832 lpt_program_iclkip(crtc);
3833
3834 /* Set transcoder timing. */
3835 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3836
3837 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3838 }
3839
3840 void intel_put_shared_dpll(struct intel_crtc *crtc)
3841 {
3842 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3843
3844 if (pll == NULL)
3845 return;
3846
3847 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3848 WARN(1, "bad %s crtc mask\n", pll->name);
3849 return;
3850 }
3851
3852 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3853 if (pll->config.crtc_mask == 0) {
3854 WARN_ON(pll->on);
3855 WARN_ON(pll->active);
3856 }
3857
3858 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3859 }
3860
3861 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3862 {
3863 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3864 struct intel_shared_dpll *pll;
3865 enum intel_dpll_id i;
3866
3867 if (HAS_PCH_IBX(dev_priv->dev)) {
3868 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3869 i = (enum intel_dpll_id) crtc->pipe;
3870 pll = &dev_priv->shared_dplls[i];
3871
3872 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3873 crtc->base.base.id, pll->name);
3874
3875 WARN_ON(pll->new_config->crtc_mask);
3876
3877 goto found;
3878 }
3879
3880 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3881 pll = &dev_priv->shared_dplls[i];
3882
3883 /* Only want to check enabled timings first */
3884 if (pll->new_config->crtc_mask == 0)
3885 continue;
3886
3887 if (memcmp(&crtc->new_config->dpll_hw_state,
3888 &pll->new_config->hw_state,
3889 sizeof(pll->new_config->hw_state)) == 0) {
3890 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3891 crtc->base.base.id, pll->name,
3892 pll->new_config->crtc_mask,
3893 pll->active);
3894 goto found;
3895 }
3896 }
3897
3898 /* Ok no matching timings, maybe there's a free one? */
3899 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3900 pll = &dev_priv->shared_dplls[i];
3901 if (pll->new_config->crtc_mask == 0) {
3902 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3903 crtc->base.base.id, pll->name);
3904 goto found;
3905 }
3906 }
3907
3908 return NULL;
3909
3910 found:
3911 if (pll->new_config->crtc_mask == 0)
3912 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3913
3914 crtc->new_config->shared_dpll = i;
3915 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3916 pipe_name(crtc->pipe));
3917
3918 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3919
3920 return pll;
3921 }
3922
3923 /**
3924 * intel_shared_dpll_start_config - start a new PLL staged config
3925 * @dev_priv: DRM device
3926 * @clear_pipes: mask of pipes that will have their PLLs freed
3927 *
3928 * Starts a new PLL staged config, copying the current config but
3929 * releasing the references of pipes specified in clear_pipes.
3930 */
3931 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3932 unsigned clear_pipes)
3933 {
3934 struct intel_shared_dpll *pll;
3935 enum intel_dpll_id i;
3936
3937 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3938 pll = &dev_priv->shared_dplls[i];
3939
3940 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3941 GFP_KERNEL);
3942 if (!pll->new_config)
3943 goto cleanup;
3944
3945 pll->new_config->crtc_mask &= ~clear_pipes;
3946 }
3947
3948 return 0;
3949
3950 cleanup:
3951 while (--i >= 0) {
3952 pll = &dev_priv->shared_dplls[i];
3953 kfree(pll->new_config);
3954 pll->new_config = NULL;
3955 }
3956
3957 return -ENOMEM;
3958 }
3959
3960 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3961 {
3962 struct intel_shared_dpll *pll;
3963 enum intel_dpll_id i;
3964
3965 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3966 pll = &dev_priv->shared_dplls[i];
3967
3968 WARN_ON(pll->new_config == &pll->config);
3969
3970 pll->config = *pll->new_config;
3971 kfree(pll->new_config);
3972 pll->new_config = NULL;
3973 }
3974 }
3975
3976 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3977 {
3978 struct intel_shared_dpll *pll;
3979 enum intel_dpll_id i;
3980
3981 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3982 pll = &dev_priv->shared_dplls[i];
3983
3984 WARN_ON(pll->new_config == &pll->config);
3985
3986 kfree(pll->new_config);
3987 pll->new_config = NULL;
3988 }
3989 }
3990
3991 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3992 {
3993 struct drm_i915_private *dev_priv = dev->dev_private;
3994 int dslreg = PIPEDSL(pipe);
3995 u32 temp;
3996
3997 temp = I915_READ(dslreg);
3998 udelay(500);
3999 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4000 if (wait_for(I915_READ(dslreg) != temp, 5))
4001 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4002 }
4003 }
4004
4005 static void skylake_pfit_enable(struct intel_crtc *crtc)
4006 {
4007 struct drm_device *dev = crtc->base.dev;
4008 struct drm_i915_private *dev_priv = dev->dev_private;
4009 int pipe = crtc->pipe;
4010
4011 if (crtc->config.pch_pfit.enabled) {
4012 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4013 I915_WRITE(PS_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4014 I915_WRITE(PS_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4015 }
4016 }
4017
4018 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4019 {
4020 struct drm_device *dev = crtc->base.dev;
4021 struct drm_i915_private *dev_priv = dev->dev_private;
4022 int pipe = crtc->pipe;
4023
4024 if (crtc->config.pch_pfit.enabled) {
4025 /* Force use of hard-coded filter coefficients
4026 * as some pre-programmed values are broken,
4027 * e.g. x201.
4028 */
4029 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4030 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4031 PF_PIPE_SEL_IVB(pipe));
4032 else
4033 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4034 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4035 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4036 }
4037 }
4038
4039 static void intel_enable_planes(struct drm_crtc *crtc)
4040 {
4041 struct drm_device *dev = crtc->dev;
4042 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4043 struct drm_plane *plane;
4044 struct intel_plane *intel_plane;
4045
4046 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4047 intel_plane = to_intel_plane(plane);
4048 if (intel_plane->pipe == pipe)
4049 intel_plane_restore(&intel_plane->base);
4050 }
4051 }
4052
4053 static void intel_disable_planes(struct drm_crtc *crtc)
4054 {
4055 struct drm_device *dev = crtc->dev;
4056 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4057 struct drm_plane *plane;
4058 struct intel_plane *intel_plane;
4059
4060 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4061 intel_plane = to_intel_plane(plane);
4062 if (intel_plane->pipe == pipe)
4063 plane->funcs->disable_plane(plane);
4064 }
4065 }
4066
4067 void hsw_enable_ips(struct intel_crtc *crtc)
4068 {
4069 struct drm_device *dev = crtc->base.dev;
4070 struct drm_i915_private *dev_priv = dev->dev_private;
4071
4072 if (!crtc->config.ips_enabled)
4073 return;
4074
4075 /* We can only enable IPS after we enable a plane and wait for a vblank */
4076 intel_wait_for_vblank(dev, crtc->pipe);
4077
4078 assert_plane_enabled(dev_priv, crtc->plane);
4079 if (IS_BROADWELL(dev)) {
4080 mutex_lock(&dev_priv->rps.hw_lock);
4081 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4082 mutex_unlock(&dev_priv->rps.hw_lock);
4083 /* Quoting Art Runyan: "its not safe to expect any particular
4084 * value in IPS_CTL bit 31 after enabling IPS through the
4085 * mailbox." Moreover, the mailbox may return a bogus state,
4086 * so we need to just enable it and continue on.
4087 */
4088 } else {
4089 I915_WRITE(IPS_CTL, IPS_ENABLE);
4090 /* The bit only becomes 1 in the next vblank, so this wait here
4091 * is essentially intel_wait_for_vblank. If we don't have this
4092 * and don't wait for vblanks until the end of crtc_enable, then
4093 * the HW state readout code will complain that the expected
4094 * IPS_CTL value is not the one we read. */
4095 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4096 DRM_ERROR("Timed out waiting for IPS enable\n");
4097 }
4098 }
4099
4100 void hsw_disable_ips(struct intel_crtc *crtc)
4101 {
4102 struct drm_device *dev = crtc->base.dev;
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104
4105 if (!crtc->config.ips_enabled)
4106 return;
4107
4108 assert_plane_enabled(dev_priv, crtc->plane);
4109 if (IS_BROADWELL(dev)) {
4110 mutex_lock(&dev_priv->rps.hw_lock);
4111 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4112 mutex_unlock(&dev_priv->rps.hw_lock);
4113 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4114 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4115 DRM_ERROR("Timed out waiting for IPS disable\n");
4116 } else {
4117 I915_WRITE(IPS_CTL, 0);
4118 POSTING_READ(IPS_CTL);
4119 }
4120
4121 /* We need to wait for a vblank before we can disable the plane. */
4122 intel_wait_for_vblank(dev, crtc->pipe);
4123 }
4124
4125 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4126 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4127 {
4128 struct drm_device *dev = crtc->dev;
4129 struct drm_i915_private *dev_priv = dev->dev_private;
4130 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4131 enum pipe pipe = intel_crtc->pipe;
4132 int palreg = PALETTE(pipe);
4133 int i;
4134 bool reenable_ips = false;
4135
4136 /* The clocks have to be on to load the palette. */
4137 if (!crtc->enabled || !intel_crtc->active)
4138 return;
4139
4140 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4141 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4142 assert_dsi_pll_enabled(dev_priv);
4143 else
4144 assert_pll_enabled(dev_priv, pipe);
4145 }
4146
4147 /* use legacy palette for Ironlake */
4148 if (!HAS_GMCH_DISPLAY(dev))
4149 palreg = LGC_PALETTE(pipe);
4150
4151 /* Workaround : Do not read or write the pipe palette/gamma data while
4152 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4153 */
4154 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4155 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4156 GAMMA_MODE_MODE_SPLIT)) {
4157 hsw_disable_ips(intel_crtc);
4158 reenable_ips = true;
4159 }
4160
4161 for (i = 0; i < 256; i++) {
4162 I915_WRITE(palreg + 4 * i,
4163 (intel_crtc->lut_r[i] << 16) |
4164 (intel_crtc->lut_g[i] << 8) |
4165 intel_crtc->lut_b[i]);
4166 }
4167
4168 if (reenable_ips)
4169 hsw_enable_ips(intel_crtc);
4170 }
4171
4172 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4173 {
4174 if (!enable && intel_crtc->overlay) {
4175 struct drm_device *dev = intel_crtc->base.dev;
4176 struct drm_i915_private *dev_priv = dev->dev_private;
4177
4178 mutex_lock(&dev->struct_mutex);
4179 dev_priv->mm.interruptible = false;
4180 (void) intel_overlay_switch_off(intel_crtc->overlay);
4181 dev_priv->mm.interruptible = true;
4182 mutex_unlock(&dev->struct_mutex);
4183 }
4184
4185 /* Let userspace switch the overlay on again. In most cases userspace
4186 * has to recompute where to put it anyway.
4187 */
4188 }
4189
4190 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4191 {
4192 struct drm_device *dev = crtc->dev;
4193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4194 int pipe = intel_crtc->pipe;
4195
4196 intel_enable_primary_hw_plane(crtc->primary, crtc);
4197 intel_enable_planes(crtc);
4198 intel_crtc_update_cursor(crtc, true);
4199 intel_crtc_dpms_overlay(intel_crtc, true);
4200
4201 hsw_enable_ips(intel_crtc);
4202
4203 mutex_lock(&dev->struct_mutex);
4204 intel_fbc_update(dev);
4205 mutex_unlock(&dev->struct_mutex);
4206
4207 /*
4208 * FIXME: Once we grow proper nuclear flip support out of this we need
4209 * to compute the mask of flip planes precisely. For the time being
4210 * consider this a flip from a NULL plane.
4211 */
4212 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4213 }
4214
4215 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4216 {
4217 struct drm_device *dev = crtc->dev;
4218 struct drm_i915_private *dev_priv = dev->dev_private;
4219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4220 int pipe = intel_crtc->pipe;
4221 int plane = intel_crtc->plane;
4222
4223 intel_crtc_wait_for_pending_flips(crtc);
4224
4225 if (dev_priv->fbc.plane == plane)
4226 intel_fbc_disable(dev);
4227
4228 hsw_disable_ips(intel_crtc);
4229
4230 intel_crtc_dpms_overlay(intel_crtc, false);
4231 intel_crtc_update_cursor(crtc, false);
4232 intel_disable_planes(crtc);
4233 intel_disable_primary_hw_plane(crtc->primary, crtc);
4234
4235 /*
4236 * FIXME: Once we grow proper nuclear flip support out of this we need
4237 * to compute the mask of flip planes precisely. For the time being
4238 * consider this a flip to a NULL plane.
4239 */
4240 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4241 }
4242
4243 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4244 {
4245 struct drm_device *dev = crtc->dev;
4246 struct drm_i915_private *dev_priv = dev->dev_private;
4247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4248 struct intel_encoder *encoder;
4249 int pipe = intel_crtc->pipe;
4250
4251 WARN_ON(!crtc->enabled);
4252
4253 if (intel_crtc->active)
4254 return;
4255
4256 if (intel_crtc->config.has_pch_encoder)
4257 intel_prepare_shared_dpll(intel_crtc);
4258
4259 if (intel_crtc->config.has_dp_encoder)
4260 intel_dp_set_m_n(intel_crtc);
4261
4262 intel_set_pipe_timings(intel_crtc);
4263
4264 if (intel_crtc->config.has_pch_encoder) {
4265 intel_cpu_transcoder_set_m_n(intel_crtc,
4266 &intel_crtc->config.fdi_m_n, NULL);
4267 }
4268
4269 ironlake_set_pipeconf(crtc);
4270
4271 intel_crtc->active = true;
4272
4273 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4274 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4275
4276 for_each_encoder_on_crtc(dev, crtc, encoder)
4277 if (encoder->pre_enable)
4278 encoder->pre_enable(encoder);
4279
4280 if (intel_crtc->config.has_pch_encoder) {
4281 /* Note: FDI PLL enabling _must_ be done before we enable the
4282 * cpu pipes, hence this is separate from all the other fdi/pch
4283 * enabling. */
4284 ironlake_fdi_pll_enable(intel_crtc);
4285 } else {
4286 assert_fdi_tx_disabled(dev_priv, pipe);
4287 assert_fdi_rx_disabled(dev_priv, pipe);
4288 }
4289
4290 ironlake_pfit_enable(intel_crtc);
4291
4292 /*
4293 * On ILK+ LUT must be loaded before the pipe is running but with
4294 * clocks enabled
4295 */
4296 intel_crtc_load_lut(crtc);
4297
4298 intel_update_watermarks(crtc);
4299 intel_enable_pipe(intel_crtc);
4300
4301 if (intel_crtc->config.has_pch_encoder)
4302 ironlake_pch_enable(crtc);
4303
4304 for_each_encoder_on_crtc(dev, crtc, encoder)
4305 encoder->enable(encoder);
4306
4307 if (HAS_PCH_CPT(dev))
4308 cpt_verify_modeset(dev, intel_crtc->pipe);
4309
4310 assert_vblank_disabled(crtc);
4311 drm_crtc_vblank_on(crtc);
4312
4313 intel_crtc_enable_planes(crtc);
4314 }
4315
4316 /* IPS only exists on ULT machines and is tied to pipe A. */
4317 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4318 {
4319 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4320 }
4321
4322 /*
4323 * This implements the workaround described in the "notes" section of the mode
4324 * set sequence documentation. When going from no pipes or single pipe to
4325 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4326 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4327 */
4328 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4329 {
4330 struct drm_device *dev = crtc->base.dev;
4331 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4332
4333 /* We want to get the other_active_crtc only if there's only 1 other
4334 * active crtc. */
4335 for_each_intel_crtc(dev, crtc_it) {
4336 if (!crtc_it->active || crtc_it == crtc)
4337 continue;
4338
4339 if (other_active_crtc)
4340 return;
4341
4342 other_active_crtc = crtc_it;
4343 }
4344 if (!other_active_crtc)
4345 return;
4346
4347 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4348 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4349 }
4350
4351 static void haswell_crtc_enable(struct drm_crtc *crtc)
4352 {
4353 struct drm_device *dev = crtc->dev;
4354 struct drm_i915_private *dev_priv = dev->dev_private;
4355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4356 struct intel_encoder *encoder;
4357 int pipe = intel_crtc->pipe;
4358
4359 WARN_ON(!crtc->enabled);
4360
4361 if (intel_crtc->active)
4362 return;
4363
4364 if (intel_crtc_to_shared_dpll(intel_crtc))
4365 intel_enable_shared_dpll(intel_crtc);
4366
4367 if (intel_crtc->config.has_dp_encoder)
4368 intel_dp_set_m_n(intel_crtc);
4369
4370 intel_set_pipe_timings(intel_crtc);
4371
4372 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4373 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4374 intel_crtc->config.pixel_multiplier - 1);
4375 }
4376
4377 if (intel_crtc->config.has_pch_encoder) {
4378 intel_cpu_transcoder_set_m_n(intel_crtc,
4379 &intel_crtc->config.fdi_m_n, NULL);
4380 }
4381
4382 haswell_set_pipeconf(crtc);
4383
4384 intel_set_pipe_csc(crtc);
4385
4386 intel_crtc->active = true;
4387
4388 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4389 for_each_encoder_on_crtc(dev, crtc, encoder)
4390 if (encoder->pre_enable)
4391 encoder->pre_enable(encoder);
4392
4393 if (intel_crtc->config.has_pch_encoder) {
4394 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4395 true);
4396 dev_priv->display.fdi_link_train(crtc);
4397 }
4398
4399 intel_ddi_enable_pipe_clock(intel_crtc);
4400
4401 if (IS_SKYLAKE(dev))
4402 skylake_pfit_enable(intel_crtc);
4403 else
4404 ironlake_pfit_enable(intel_crtc);
4405
4406 /*
4407 * On ILK+ LUT must be loaded before the pipe is running but with
4408 * clocks enabled
4409 */
4410 intel_crtc_load_lut(crtc);
4411
4412 intel_ddi_set_pipe_settings(crtc);
4413 intel_ddi_enable_transcoder_func(crtc);
4414
4415 intel_update_watermarks(crtc);
4416 intel_enable_pipe(intel_crtc);
4417
4418 if (intel_crtc->config.has_pch_encoder)
4419 lpt_pch_enable(crtc);
4420
4421 if (intel_crtc->config.dp_encoder_is_mst)
4422 intel_ddi_set_vc_payload_alloc(crtc, true);
4423
4424 for_each_encoder_on_crtc(dev, crtc, encoder) {
4425 encoder->enable(encoder);
4426 intel_opregion_notify_encoder(encoder, true);
4427 }
4428
4429 assert_vblank_disabled(crtc);
4430 drm_crtc_vblank_on(crtc);
4431
4432 /* If we change the relative order between pipe/planes enabling, we need
4433 * to change the workaround. */
4434 haswell_mode_set_planes_workaround(intel_crtc);
4435 intel_crtc_enable_planes(crtc);
4436 }
4437
4438 static void skylake_pfit_disable(struct intel_crtc *crtc)
4439 {
4440 struct drm_device *dev = crtc->base.dev;
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 int pipe = crtc->pipe;
4443
4444 /* To avoid upsetting the power well on haswell only disable the pfit if
4445 * it's in use. The hw state code will make sure we get this right. */
4446 if (crtc->config.pch_pfit.enabled) {
4447 I915_WRITE(PS_CTL(pipe), 0);
4448 I915_WRITE(PS_WIN_POS(pipe), 0);
4449 I915_WRITE(PS_WIN_SZ(pipe), 0);
4450 }
4451 }
4452
4453 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4454 {
4455 struct drm_device *dev = crtc->base.dev;
4456 struct drm_i915_private *dev_priv = dev->dev_private;
4457 int pipe = crtc->pipe;
4458
4459 /* To avoid upsetting the power well on haswell only disable the pfit if
4460 * it's in use. The hw state code will make sure we get this right. */
4461 if (crtc->config.pch_pfit.enabled) {
4462 I915_WRITE(PF_CTL(pipe), 0);
4463 I915_WRITE(PF_WIN_POS(pipe), 0);
4464 I915_WRITE(PF_WIN_SZ(pipe), 0);
4465 }
4466 }
4467
4468 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4469 {
4470 struct drm_device *dev = crtc->dev;
4471 struct drm_i915_private *dev_priv = dev->dev_private;
4472 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4473 struct intel_encoder *encoder;
4474 int pipe = intel_crtc->pipe;
4475 u32 reg, temp;
4476
4477 if (!intel_crtc->active)
4478 return;
4479
4480 intel_crtc_disable_planes(crtc);
4481
4482 drm_crtc_vblank_off(crtc);
4483 assert_vblank_disabled(crtc);
4484
4485 for_each_encoder_on_crtc(dev, crtc, encoder)
4486 encoder->disable(encoder);
4487
4488 if (intel_crtc->config.has_pch_encoder)
4489 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4490
4491 intel_disable_pipe(intel_crtc);
4492
4493 ironlake_pfit_disable(intel_crtc);
4494
4495 for_each_encoder_on_crtc(dev, crtc, encoder)
4496 if (encoder->post_disable)
4497 encoder->post_disable(encoder);
4498
4499 if (intel_crtc->config.has_pch_encoder) {
4500 ironlake_fdi_disable(crtc);
4501
4502 ironlake_disable_pch_transcoder(dev_priv, pipe);
4503 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4504
4505 if (HAS_PCH_CPT(dev)) {
4506 /* disable TRANS_DP_CTL */
4507 reg = TRANS_DP_CTL(pipe);
4508 temp = I915_READ(reg);
4509 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4510 TRANS_DP_PORT_SEL_MASK);
4511 temp |= TRANS_DP_PORT_SEL_NONE;
4512 I915_WRITE(reg, temp);
4513
4514 /* disable DPLL_SEL */
4515 temp = I915_READ(PCH_DPLL_SEL);
4516 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4517 I915_WRITE(PCH_DPLL_SEL, temp);
4518 }
4519
4520 /* disable PCH DPLL */
4521 intel_disable_shared_dpll(intel_crtc);
4522
4523 ironlake_fdi_pll_disable(intel_crtc);
4524 }
4525
4526 intel_crtc->active = false;
4527 intel_update_watermarks(crtc);
4528
4529 mutex_lock(&dev->struct_mutex);
4530 intel_fbc_update(dev);
4531 mutex_unlock(&dev->struct_mutex);
4532 }
4533
4534 static void haswell_crtc_disable(struct drm_crtc *crtc)
4535 {
4536 struct drm_device *dev = crtc->dev;
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4539 struct intel_encoder *encoder;
4540 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4541
4542 if (!intel_crtc->active)
4543 return;
4544
4545 intel_crtc_disable_planes(crtc);
4546
4547 drm_crtc_vblank_off(crtc);
4548 assert_vblank_disabled(crtc);
4549
4550 for_each_encoder_on_crtc(dev, crtc, encoder) {
4551 intel_opregion_notify_encoder(encoder, false);
4552 encoder->disable(encoder);
4553 }
4554
4555 if (intel_crtc->config.has_pch_encoder)
4556 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4557 false);
4558 intel_disable_pipe(intel_crtc);
4559
4560 if (intel_crtc->config.dp_encoder_is_mst)
4561 intel_ddi_set_vc_payload_alloc(crtc, false);
4562
4563 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4564
4565 if (IS_SKYLAKE(dev))
4566 skylake_pfit_disable(intel_crtc);
4567 else
4568 ironlake_pfit_disable(intel_crtc);
4569
4570 intel_ddi_disable_pipe_clock(intel_crtc);
4571
4572 if (intel_crtc->config.has_pch_encoder) {
4573 lpt_disable_pch_transcoder(dev_priv);
4574 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4575 true);
4576 intel_ddi_fdi_disable(crtc);
4577 }
4578
4579 for_each_encoder_on_crtc(dev, crtc, encoder)
4580 if (encoder->post_disable)
4581 encoder->post_disable(encoder);
4582
4583 intel_crtc->active = false;
4584 intel_update_watermarks(crtc);
4585
4586 mutex_lock(&dev->struct_mutex);
4587 intel_fbc_update(dev);
4588 mutex_unlock(&dev->struct_mutex);
4589
4590 if (intel_crtc_to_shared_dpll(intel_crtc))
4591 intel_disable_shared_dpll(intel_crtc);
4592 }
4593
4594 static void ironlake_crtc_off(struct drm_crtc *crtc)
4595 {
4596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4597 intel_put_shared_dpll(intel_crtc);
4598 }
4599
4600
4601 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4602 {
4603 struct drm_device *dev = crtc->base.dev;
4604 struct drm_i915_private *dev_priv = dev->dev_private;
4605 struct intel_crtc_config *pipe_config = &crtc->config;
4606
4607 if (!crtc->config.gmch_pfit.control)
4608 return;
4609
4610 /*
4611 * The panel fitter should only be adjusted whilst the pipe is disabled,
4612 * according to register description and PRM.
4613 */
4614 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4615 assert_pipe_disabled(dev_priv, crtc->pipe);
4616
4617 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4618 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4619
4620 /* Border color in case we don't scale up to the full screen. Black by
4621 * default, change to something else for debugging. */
4622 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4623 }
4624
4625 static enum intel_display_power_domain port_to_power_domain(enum port port)
4626 {
4627 switch (port) {
4628 case PORT_A:
4629 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4630 case PORT_B:
4631 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4632 case PORT_C:
4633 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4634 case PORT_D:
4635 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4636 default:
4637 WARN_ON_ONCE(1);
4638 return POWER_DOMAIN_PORT_OTHER;
4639 }
4640 }
4641
4642 #define for_each_power_domain(domain, mask) \
4643 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4644 if ((1 << (domain)) & (mask))
4645
4646 enum intel_display_power_domain
4647 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4648 {
4649 struct drm_device *dev = intel_encoder->base.dev;
4650 struct intel_digital_port *intel_dig_port;
4651
4652 switch (intel_encoder->type) {
4653 case INTEL_OUTPUT_UNKNOWN:
4654 /* Only DDI platforms should ever use this output type */
4655 WARN_ON_ONCE(!HAS_DDI(dev));
4656 case INTEL_OUTPUT_DISPLAYPORT:
4657 case INTEL_OUTPUT_HDMI:
4658 case INTEL_OUTPUT_EDP:
4659 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4660 return port_to_power_domain(intel_dig_port->port);
4661 case INTEL_OUTPUT_DP_MST:
4662 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4663 return port_to_power_domain(intel_dig_port->port);
4664 case INTEL_OUTPUT_ANALOG:
4665 return POWER_DOMAIN_PORT_CRT;
4666 case INTEL_OUTPUT_DSI:
4667 return POWER_DOMAIN_PORT_DSI;
4668 default:
4669 return POWER_DOMAIN_PORT_OTHER;
4670 }
4671 }
4672
4673 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4674 {
4675 struct drm_device *dev = crtc->dev;
4676 struct intel_encoder *intel_encoder;
4677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4678 enum pipe pipe = intel_crtc->pipe;
4679 unsigned long mask;
4680 enum transcoder transcoder;
4681
4682 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4683
4684 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4685 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4686 if (intel_crtc->config.pch_pfit.enabled ||
4687 intel_crtc->config.pch_pfit.force_thru)
4688 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4689
4690 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4691 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4692
4693 return mask;
4694 }
4695
4696 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4697 {
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4700 struct intel_crtc *crtc;
4701
4702 /*
4703 * First get all needed power domains, then put all unneeded, to avoid
4704 * any unnecessary toggling of the power wells.
4705 */
4706 for_each_intel_crtc(dev, crtc) {
4707 enum intel_display_power_domain domain;
4708
4709 if (!crtc->base.enabled)
4710 continue;
4711
4712 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4713
4714 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4715 intel_display_power_get(dev_priv, domain);
4716 }
4717
4718 if (dev_priv->display.modeset_global_resources)
4719 dev_priv->display.modeset_global_resources(dev);
4720
4721 for_each_intel_crtc(dev, crtc) {
4722 enum intel_display_power_domain domain;
4723
4724 for_each_power_domain(domain, crtc->enabled_power_domains)
4725 intel_display_power_put(dev_priv, domain);
4726
4727 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4728 }
4729
4730 intel_display_set_init_power(dev_priv, false);
4731 }
4732
4733 /* returns HPLL frequency in kHz */
4734 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4735 {
4736 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4737
4738 /* Obtain SKU information */
4739 mutex_lock(&dev_priv->dpio_lock);
4740 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4741 CCK_FUSE_HPLL_FREQ_MASK;
4742 mutex_unlock(&dev_priv->dpio_lock);
4743
4744 return vco_freq[hpll_freq] * 1000;
4745 }
4746
4747 static void vlv_update_cdclk(struct drm_device *dev)
4748 {
4749 struct drm_i915_private *dev_priv = dev->dev_private;
4750
4751 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4752 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4753 dev_priv->vlv_cdclk_freq);
4754
4755 /*
4756 * Program the gmbus_freq based on the cdclk frequency.
4757 * BSpec erroneously claims we should aim for 4MHz, but
4758 * in fact 1MHz is the correct frequency.
4759 */
4760 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4761 }
4762
4763 /* Adjust CDclk dividers to allow high res or save power if possible */
4764 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4765 {
4766 struct drm_i915_private *dev_priv = dev->dev_private;
4767 u32 val, cmd;
4768
4769 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4770
4771 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4772 cmd = 2;
4773 else if (cdclk == 266667)
4774 cmd = 1;
4775 else
4776 cmd = 0;
4777
4778 mutex_lock(&dev_priv->rps.hw_lock);
4779 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4780 val &= ~DSPFREQGUAR_MASK;
4781 val |= (cmd << DSPFREQGUAR_SHIFT);
4782 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4783 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4784 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4785 50)) {
4786 DRM_ERROR("timed out waiting for CDclk change\n");
4787 }
4788 mutex_unlock(&dev_priv->rps.hw_lock);
4789
4790 if (cdclk == 400000) {
4791 u32 divider;
4792
4793 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4794
4795 mutex_lock(&dev_priv->dpio_lock);
4796 /* adjust cdclk divider */
4797 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4798 val &= ~DISPLAY_FREQUENCY_VALUES;
4799 val |= divider;
4800 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4801
4802 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4803 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4804 50))
4805 DRM_ERROR("timed out waiting for CDclk change\n");
4806 mutex_unlock(&dev_priv->dpio_lock);
4807 }
4808
4809 mutex_lock(&dev_priv->dpio_lock);
4810 /* adjust self-refresh exit latency value */
4811 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4812 val &= ~0x7f;
4813
4814 /*
4815 * For high bandwidth configs, we set a higher latency in the bunit
4816 * so that the core display fetch happens in time to avoid underruns.
4817 */
4818 if (cdclk == 400000)
4819 val |= 4500 / 250; /* 4.5 usec */
4820 else
4821 val |= 3000 / 250; /* 3.0 usec */
4822 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4823 mutex_unlock(&dev_priv->dpio_lock);
4824
4825 vlv_update_cdclk(dev);
4826 }
4827
4828 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4829 {
4830 struct drm_i915_private *dev_priv = dev->dev_private;
4831 u32 val, cmd;
4832
4833 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4834
4835 switch (cdclk) {
4836 case 400000:
4837 cmd = 3;
4838 break;
4839 case 333333:
4840 case 320000:
4841 cmd = 2;
4842 break;
4843 case 266667:
4844 cmd = 1;
4845 break;
4846 case 200000:
4847 cmd = 0;
4848 break;
4849 default:
4850 MISSING_CASE(cdclk);
4851 return;
4852 }
4853
4854 mutex_lock(&dev_priv->rps.hw_lock);
4855 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4856 val &= ~DSPFREQGUAR_MASK_CHV;
4857 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4858 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4859 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4860 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4861 50)) {
4862 DRM_ERROR("timed out waiting for CDclk change\n");
4863 }
4864 mutex_unlock(&dev_priv->rps.hw_lock);
4865
4866 vlv_update_cdclk(dev);
4867 }
4868
4869 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4870 int max_pixclk)
4871 {
4872 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4873
4874 /* FIXME: Punit isn't quite ready yet */
4875 if (IS_CHERRYVIEW(dev_priv->dev))
4876 return 400000;
4877
4878 /*
4879 * Really only a few cases to deal with, as only 4 CDclks are supported:
4880 * 200MHz
4881 * 267MHz
4882 * 320/333MHz (depends on HPLL freq)
4883 * 400MHz
4884 * So we check to see whether we're above 90% of the lower bin and
4885 * adjust if needed.
4886 *
4887 * We seem to get an unstable or solid color picture at 200MHz.
4888 * Not sure what's wrong. For now use 200MHz only when all pipes
4889 * are off.
4890 */
4891 if (max_pixclk > freq_320*9/10)
4892 return 400000;
4893 else if (max_pixclk > 266667*9/10)
4894 return freq_320;
4895 else if (max_pixclk > 0)
4896 return 266667;
4897 else
4898 return 200000;
4899 }
4900
4901 /* compute the max pixel clock for new configuration */
4902 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4903 {
4904 struct drm_device *dev = dev_priv->dev;
4905 struct intel_crtc *intel_crtc;
4906 int max_pixclk = 0;
4907
4908 for_each_intel_crtc(dev, intel_crtc) {
4909 if (intel_crtc->new_enabled)
4910 max_pixclk = max(max_pixclk,
4911 intel_crtc->new_config->adjusted_mode.crtc_clock);
4912 }
4913
4914 return max_pixclk;
4915 }
4916
4917 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4918 unsigned *prepare_pipes)
4919 {
4920 struct drm_i915_private *dev_priv = dev->dev_private;
4921 struct intel_crtc *intel_crtc;
4922 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4923
4924 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4925 dev_priv->vlv_cdclk_freq)
4926 return;
4927
4928 /* disable/enable all currently active pipes while we change cdclk */
4929 for_each_intel_crtc(dev, intel_crtc)
4930 if (intel_crtc->base.enabled)
4931 *prepare_pipes |= (1 << intel_crtc->pipe);
4932 }
4933
4934 static void valleyview_modeset_global_resources(struct drm_device *dev)
4935 {
4936 struct drm_i915_private *dev_priv = dev->dev_private;
4937 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4938 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4939
4940 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4941 /*
4942 * FIXME: We can end up here with all power domains off, yet
4943 * with a CDCLK frequency other than the minimum. To account
4944 * for this take the PIPE-A power domain, which covers the HW
4945 * blocks needed for the following programming. This can be
4946 * removed once it's guaranteed that we get here either with
4947 * the minimum CDCLK set, or the required power domains
4948 * enabled.
4949 */
4950 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4951
4952 if (IS_CHERRYVIEW(dev))
4953 cherryview_set_cdclk(dev, req_cdclk);
4954 else
4955 valleyview_set_cdclk(dev, req_cdclk);
4956
4957 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4958 }
4959 }
4960
4961 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4962 {
4963 struct drm_device *dev = crtc->dev;
4964 struct drm_i915_private *dev_priv = to_i915(dev);
4965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4966 struct intel_encoder *encoder;
4967 int pipe = intel_crtc->pipe;
4968 bool is_dsi;
4969
4970 WARN_ON(!crtc->enabled);
4971
4972 if (intel_crtc->active)
4973 return;
4974
4975 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4976
4977 if (!is_dsi) {
4978 if (IS_CHERRYVIEW(dev))
4979 chv_prepare_pll(intel_crtc, &intel_crtc->config);
4980 else
4981 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4982 }
4983
4984 if (intel_crtc->config.has_dp_encoder)
4985 intel_dp_set_m_n(intel_crtc);
4986
4987 intel_set_pipe_timings(intel_crtc);
4988
4989 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4990 struct drm_i915_private *dev_priv = dev->dev_private;
4991
4992 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4993 I915_WRITE(CHV_CANVAS(pipe), 0);
4994 }
4995
4996 i9xx_set_pipeconf(intel_crtc);
4997
4998 intel_crtc->active = true;
4999
5000 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5001
5002 for_each_encoder_on_crtc(dev, crtc, encoder)
5003 if (encoder->pre_pll_enable)
5004 encoder->pre_pll_enable(encoder);
5005
5006 if (!is_dsi) {
5007 if (IS_CHERRYVIEW(dev))
5008 chv_enable_pll(intel_crtc, &intel_crtc->config);
5009 else
5010 vlv_enable_pll(intel_crtc, &intel_crtc->config);
5011 }
5012
5013 for_each_encoder_on_crtc(dev, crtc, encoder)
5014 if (encoder->pre_enable)
5015 encoder->pre_enable(encoder);
5016
5017 i9xx_pfit_enable(intel_crtc);
5018
5019 intel_crtc_load_lut(crtc);
5020
5021 intel_update_watermarks(crtc);
5022 intel_enable_pipe(intel_crtc);
5023
5024 for_each_encoder_on_crtc(dev, crtc, encoder)
5025 encoder->enable(encoder);
5026
5027 assert_vblank_disabled(crtc);
5028 drm_crtc_vblank_on(crtc);
5029
5030 intel_crtc_enable_planes(crtc);
5031
5032 /* Underruns don't raise interrupts, so check manually. */
5033 i9xx_check_fifo_underruns(dev_priv);
5034 }
5035
5036 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5037 {
5038 struct drm_device *dev = crtc->base.dev;
5039 struct drm_i915_private *dev_priv = dev->dev_private;
5040
5041 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
5042 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
5043 }
5044
5045 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5046 {
5047 struct drm_device *dev = crtc->dev;
5048 struct drm_i915_private *dev_priv = to_i915(dev);
5049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5050 struct intel_encoder *encoder;
5051 int pipe = intel_crtc->pipe;
5052
5053 WARN_ON(!crtc->enabled);
5054
5055 if (intel_crtc->active)
5056 return;
5057
5058 i9xx_set_pll_dividers(intel_crtc);
5059
5060 if (intel_crtc->config.has_dp_encoder)
5061 intel_dp_set_m_n(intel_crtc);
5062
5063 intel_set_pipe_timings(intel_crtc);
5064
5065 i9xx_set_pipeconf(intel_crtc);
5066
5067 intel_crtc->active = true;
5068
5069 if (!IS_GEN2(dev))
5070 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5071
5072 for_each_encoder_on_crtc(dev, crtc, encoder)
5073 if (encoder->pre_enable)
5074 encoder->pre_enable(encoder);
5075
5076 i9xx_enable_pll(intel_crtc);
5077
5078 i9xx_pfit_enable(intel_crtc);
5079
5080 intel_crtc_load_lut(crtc);
5081
5082 intel_update_watermarks(crtc);
5083 intel_enable_pipe(intel_crtc);
5084
5085 for_each_encoder_on_crtc(dev, crtc, encoder)
5086 encoder->enable(encoder);
5087
5088 assert_vblank_disabled(crtc);
5089 drm_crtc_vblank_on(crtc);
5090
5091 intel_crtc_enable_planes(crtc);
5092
5093 /*
5094 * Gen2 reports pipe underruns whenever all planes are disabled.
5095 * So don't enable underrun reporting before at least some planes
5096 * are enabled.
5097 * FIXME: Need to fix the logic to work when we turn off all planes
5098 * but leave the pipe running.
5099 */
5100 if (IS_GEN2(dev))
5101 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5102
5103 /* Underruns don't raise interrupts, so check manually. */
5104 i9xx_check_fifo_underruns(dev_priv);
5105 }
5106
5107 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5108 {
5109 struct drm_device *dev = crtc->base.dev;
5110 struct drm_i915_private *dev_priv = dev->dev_private;
5111
5112 if (!crtc->config.gmch_pfit.control)
5113 return;
5114
5115 assert_pipe_disabled(dev_priv, crtc->pipe);
5116
5117 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5118 I915_READ(PFIT_CONTROL));
5119 I915_WRITE(PFIT_CONTROL, 0);
5120 }
5121
5122 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5123 {
5124 struct drm_device *dev = crtc->dev;
5125 struct drm_i915_private *dev_priv = dev->dev_private;
5126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5127 struct intel_encoder *encoder;
5128 int pipe = intel_crtc->pipe;
5129
5130 if (!intel_crtc->active)
5131 return;
5132
5133 /*
5134 * Gen2 reports pipe underruns whenever all planes are disabled.
5135 * So diasble underrun reporting before all the planes get disabled.
5136 * FIXME: Need to fix the logic to work when we turn off all planes
5137 * but leave the pipe running.
5138 */
5139 if (IS_GEN2(dev))
5140 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5141
5142 /*
5143 * Vblank time updates from the shadow to live plane control register
5144 * are blocked if the memory self-refresh mode is active at that
5145 * moment. So to make sure the plane gets truly disabled, disable
5146 * first the self-refresh mode. The self-refresh enable bit in turn
5147 * will be checked/applied by the HW only at the next frame start
5148 * event which is after the vblank start event, so we need to have a
5149 * wait-for-vblank between disabling the plane and the pipe.
5150 */
5151 intel_set_memory_cxsr(dev_priv, false);
5152 intel_crtc_disable_planes(crtc);
5153
5154 /*
5155 * On gen2 planes are double buffered but the pipe isn't, so we must
5156 * wait for planes to fully turn off before disabling the pipe.
5157 * We also need to wait on all gmch platforms because of the
5158 * self-refresh mode constraint explained above.
5159 */
5160 intel_wait_for_vblank(dev, pipe);
5161
5162 drm_crtc_vblank_off(crtc);
5163 assert_vblank_disabled(crtc);
5164
5165 for_each_encoder_on_crtc(dev, crtc, encoder)
5166 encoder->disable(encoder);
5167
5168 intel_disable_pipe(intel_crtc);
5169
5170 i9xx_pfit_disable(intel_crtc);
5171
5172 for_each_encoder_on_crtc(dev, crtc, encoder)
5173 if (encoder->post_disable)
5174 encoder->post_disable(encoder);
5175
5176 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5177 if (IS_CHERRYVIEW(dev))
5178 chv_disable_pll(dev_priv, pipe);
5179 else if (IS_VALLEYVIEW(dev))
5180 vlv_disable_pll(dev_priv, pipe);
5181 else
5182 i9xx_disable_pll(intel_crtc);
5183 }
5184
5185 if (!IS_GEN2(dev))
5186 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5187
5188 intel_crtc->active = false;
5189 intel_update_watermarks(crtc);
5190
5191 mutex_lock(&dev->struct_mutex);
5192 intel_fbc_update(dev);
5193 mutex_unlock(&dev->struct_mutex);
5194 }
5195
5196 static void i9xx_crtc_off(struct drm_crtc *crtc)
5197 {
5198 }
5199
5200 /* Master function to enable/disable CRTC and corresponding power wells */
5201 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5202 {
5203 struct drm_device *dev = crtc->dev;
5204 struct drm_i915_private *dev_priv = dev->dev_private;
5205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5206 enum intel_display_power_domain domain;
5207 unsigned long domains;
5208
5209 if (enable) {
5210 if (!intel_crtc->active) {
5211 domains = get_crtc_power_domains(crtc);
5212 for_each_power_domain(domain, domains)
5213 intel_display_power_get(dev_priv, domain);
5214 intel_crtc->enabled_power_domains = domains;
5215
5216 dev_priv->display.crtc_enable(crtc);
5217 }
5218 } else {
5219 if (intel_crtc->active) {
5220 dev_priv->display.crtc_disable(crtc);
5221
5222 domains = intel_crtc->enabled_power_domains;
5223 for_each_power_domain(domain, domains)
5224 intel_display_power_put(dev_priv, domain);
5225 intel_crtc->enabled_power_domains = 0;
5226 }
5227 }
5228 }
5229
5230 /**
5231 * Sets the power management mode of the pipe and plane.
5232 */
5233 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5234 {
5235 struct drm_device *dev = crtc->dev;
5236 struct intel_encoder *intel_encoder;
5237 bool enable = false;
5238
5239 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5240 enable |= intel_encoder->connectors_active;
5241
5242 intel_crtc_control(crtc, enable);
5243 }
5244
5245 static void intel_crtc_disable(struct drm_crtc *crtc)
5246 {
5247 struct drm_device *dev = crtc->dev;
5248 struct drm_connector *connector;
5249 struct drm_i915_private *dev_priv = dev->dev_private;
5250
5251 /* crtc should still be enabled when we disable it. */
5252 WARN_ON(!crtc->enabled);
5253
5254 dev_priv->display.crtc_disable(crtc);
5255 dev_priv->display.off(crtc);
5256
5257 crtc->primary->funcs->disable_plane(crtc->primary);
5258
5259 /* Update computed state. */
5260 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5261 if (!connector->encoder || !connector->encoder->crtc)
5262 continue;
5263
5264 if (connector->encoder->crtc != crtc)
5265 continue;
5266
5267 connector->dpms = DRM_MODE_DPMS_OFF;
5268 to_intel_encoder(connector->encoder)->connectors_active = false;
5269 }
5270 }
5271
5272 void intel_encoder_destroy(struct drm_encoder *encoder)
5273 {
5274 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5275
5276 drm_encoder_cleanup(encoder);
5277 kfree(intel_encoder);
5278 }
5279
5280 /* Simple dpms helper for encoders with just one connector, no cloning and only
5281 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5282 * state of the entire output pipe. */
5283 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5284 {
5285 if (mode == DRM_MODE_DPMS_ON) {
5286 encoder->connectors_active = true;
5287
5288 intel_crtc_update_dpms(encoder->base.crtc);
5289 } else {
5290 encoder->connectors_active = false;
5291
5292 intel_crtc_update_dpms(encoder->base.crtc);
5293 }
5294 }
5295
5296 /* Cross check the actual hw state with our own modeset state tracking (and it's
5297 * internal consistency). */
5298 static void intel_connector_check_state(struct intel_connector *connector)
5299 {
5300 if (connector->get_hw_state(connector)) {
5301 struct intel_encoder *encoder = connector->encoder;
5302 struct drm_crtc *crtc;
5303 bool encoder_enabled;
5304 enum pipe pipe;
5305
5306 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5307 connector->base.base.id,
5308 connector->base.name);
5309
5310 /* there is no real hw state for MST connectors */
5311 if (connector->mst_port)
5312 return;
5313
5314 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5315 "wrong connector dpms state\n");
5316 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5317 "active connector not linked to encoder\n");
5318
5319 if (encoder) {
5320 I915_STATE_WARN(!encoder->connectors_active,
5321 "encoder->connectors_active not set\n");
5322
5323 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5324 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5325 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5326 return;
5327
5328 crtc = encoder->base.crtc;
5329
5330 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5331 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5332 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5333 "encoder active on the wrong pipe\n");
5334 }
5335 }
5336 }
5337
5338 /* Even simpler default implementation, if there's really no special case to
5339 * consider. */
5340 void intel_connector_dpms(struct drm_connector *connector, int mode)
5341 {
5342 /* All the simple cases only support two dpms states. */
5343 if (mode != DRM_MODE_DPMS_ON)
5344 mode = DRM_MODE_DPMS_OFF;
5345
5346 if (mode == connector->dpms)
5347 return;
5348
5349 connector->dpms = mode;
5350
5351 /* Only need to change hw state when actually enabled */
5352 if (connector->encoder)
5353 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5354
5355 intel_modeset_check_state(connector->dev);
5356 }
5357
5358 /* Simple connector->get_hw_state implementation for encoders that support only
5359 * one connector and no cloning and hence the encoder state determines the state
5360 * of the connector. */
5361 bool intel_connector_get_hw_state(struct intel_connector *connector)
5362 {
5363 enum pipe pipe = 0;
5364 struct intel_encoder *encoder = connector->encoder;
5365
5366 return encoder->get_hw_state(encoder, &pipe);
5367 }
5368
5369 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5370 struct intel_crtc_config *pipe_config)
5371 {
5372 struct drm_i915_private *dev_priv = dev->dev_private;
5373 struct intel_crtc *pipe_B_crtc =
5374 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5375
5376 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5377 pipe_name(pipe), pipe_config->fdi_lanes);
5378 if (pipe_config->fdi_lanes > 4) {
5379 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5380 pipe_name(pipe), pipe_config->fdi_lanes);
5381 return false;
5382 }
5383
5384 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5385 if (pipe_config->fdi_lanes > 2) {
5386 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5387 pipe_config->fdi_lanes);
5388 return false;
5389 } else {
5390 return true;
5391 }
5392 }
5393
5394 if (INTEL_INFO(dev)->num_pipes == 2)
5395 return true;
5396
5397 /* Ivybridge 3 pipe is really complicated */
5398 switch (pipe) {
5399 case PIPE_A:
5400 return true;
5401 case PIPE_B:
5402 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5403 pipe_config->fdi_lanes > 2) {
5404 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5405 pipe_name(pipe), pipe_config->fdi_lanes);
5406 return false;
5407 }
5408 return true;
5409 case PIPE_C:
5410 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5411 pipe_B_crtc->config.fdi_lanes <= 2) {
5412 if (pipe_config->fdi_lanes > 2) {
5413 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5414 pipe_name(pipe), pipe_config->fdi_lanes);
5415 return false;
5416 }
5417 } else {
5418 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5419 return false;
5420 }
5421 return true;
5422 default:
5423 BUG();
5424 }
5425 }
5426
5427 #define RETRY 1
5428 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5429 struct intel_crtc_config *pipe_config)
5430 {
5431 struct drm_device *dev = intel_crtc->base.dev;
5432 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5433 int lane, link_bw, fdi_dotclock;
5434 bool setup_ok, needs_recompute = false;
5435
5436 retry:
5437 /* FDI is a binary signal running at ~2.7GHz, encoding
5438 * each output octet as 10 bits. The actual frequency
5439 * is stored as a divider into a 100MHz clock, and the
5440 * mode pixel clock is stored in units of 1KHz.
5441 * Hence the bw of each lane in terms of the mode signal
5442 * is:
5443 */
5444 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5445
5446 fdi_dotclock = adjusted_mode->crtc_clock;
5447
5448 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5449 pipe_config->pipe_bpp);
5450
5451 pipe_config->fdi_lanes = lane;
5452
5453 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5454 link_bw, &pipe_config->fdi_m_n);
5455
5456 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5457 intel_crtc->pipe, pipe_config);
5458 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5459 pipe_config->pipe_bpp -= 2*3;
5460 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5461 pipe_config->pipe_bpp);
5462 needs_recompute = true;
5463 pipe_config->bw_constrained = true;
5464
5465 goto retry;
5466 }
5467
5468 if (needs_recompute)
5469 return RETRY;
5470
5471 return setup_ok ? 0 : -EINVAL;
5472 }
5473
5474 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5475 struct intel_crtc_config *pipe_config)
5476 {
5477 pipe_config->ips_enabled = i915.enable_ips &&
5478 hsw_crtc_supports_ips(crtc) &&
5479 pipe_config->pipe_bpp <= 24;
5480 }
5481
5482 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5483 struct intel_crtc_config *pipe_config)
5484 {
5485 struct drm_device *dev = crtc->base.dev;
5486 struct drm_i915_private *dev_priv = dev->dev_private;
5487 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5488
5489 /* FIXME should check pixel clock limits on all platforms */
5490 if (INTEL_INFO(dev)->gen < 4) {
5491 int clock_limit =
5492 dev_priv->display.get_display_clock_speed(dev);
5493
5494 /*
5495 * Enable pixel doubling when the dot clock
5496 * is > 90% of the (display) core speed.
5497 *
5498 * GDG double wide on either pipe,
5499 * otherwise pipe A only.
5500 */
5501 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5502 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5503 clock_limit *= 2;
5504 pipe_config->double_wide = true;
5505 }
5506
5507 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5508 return -EINVAL;
5509 }
5510
5511 /*
5512 * Pipe horizontal size must be even in:
5513 * - DVO ganged mode
5514 * - LVDS dual channel mode
5515 * - Double wide pipe
5516 */
5517 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5518 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5519 pipe_config->pipe_src_w &= ~1;
5520
5521 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5522 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5523 */
5524 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5525 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5526 return -EINVAL;
5527
5528 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5529 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5530 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5531 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5532 * for lvds. */
5533 pipe_config->pipe_bpp = 8*3;
5534 }
5535
5536 if (HAS_IPS(dev))
5537 hsw_compute_ips_config(crtc, pipe_config);
5538
5539 if (pipe_config->has_pch_encoder)
5540 return ironlake_fdi_compute_config(crtc, pipe_config);
5541
5542 return 0;
5543 }
5544
5545 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5546 {
5547 struct drm_i915_private *dev_priv = dev->dev_private;
5548 u32 val;
5549 int divider;
5550
5551 /* FIXME: Punit isn't quite ready yet */
5552 if (IS_CHERRYVIEW(dev))
5553 return 400000;
5554
5555 if (dev_priv->hpll_freq == 0)
5556 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5557
5558 mutex_lock(&dev_priv->dpio_lock);
5559 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5560 mutex_unlock(&dev_priv->dpio_lock);
5561
5562 divider = val & DISPLAY_FREQUENCY_VALUES;
5563
5564 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5565 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5566 "cdclk change in progress\n");
5567
5568 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5569 }
5570
5571 static int i945_get_display_clock_speed(struct drm_device *dev)
5572 {
5573 return 400000;
5574 }
5575
5576 static int i915_get_display_clock_speed(struct drm_device *dev)
5577 {
5578 return 333000;
5579 }
5580
5581 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5582 {
5583 return 200000;
5584 }
5585
5586 static int pnv_get_display_clock_speed(struct drm_device *dev)
5587 {
5588 u16 gcfgc = 0;
5589
5590 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5591
5592 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5593 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5594 return 267000;
5595 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5596 return 333000;
5597 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5598 return 444000;
5599 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5600 return 200000;
5601 default:
5602 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5603 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5604 return 133000;
5605 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5606 return 167000;
5607 }
5608 }
5609
5610 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5611 {
5612 u16 gcfgc = 0;
5613
5614 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5615
5616 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5617 return 133000;
5618 else {
5619 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5620 case GC_DISPLAY_CLOCK_333_MHZ:
5621 return 333000;
5622 default:
5623 case GC_DISPLAY_CLOCK_190_200_MHZ:
5624 return 190000;
5625 }
5626 }
5627 }
5628
5629 static int i865_get_display_clock_speed(struct drm_device *dev)
5630 {
5631 return 266000;
5632 }
5633
5634 static int i855_get_display_clock_speed(struct drm_device *dev)
5635 {
5636 u16 hpllcc = 0;
5637 /* Assume that the hardware is in the high speed state. This
5638 * should be the default.
5639 */
5640 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5641 case GC_CLOCK_133_200:
5642 case GC_CLOCK_100_200:
5643 return 200000;
5644 case GC_CLOCK_166_250:
5645 return 250000;
5646 case GC_CLOCK_100_133:
5647 return 133000;
5648 }
5649
5650 /* Shouldn't happen */
5651 return 0;
5652 }
5653
5654 static int i830_get_display_clock_speed(struct drm_device *dev)
5655 {
5656 return 133000;
5657 }
5658
5659 static void
5660 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5661 {
5662 while (*num > DATA_LINK_M_N_MASK ||
5663 *den > DATA_LINK_M_N_MASK) {
5664 *num >>= 1;
5665 *den >>= 1;
5666 }
5667 }
5668
5669 static void compute_m_n(unsigned int m, unsigned int n,
5670 uint32_t *ret_m, uint32_t *ret_n)
5671 {
5672 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5673 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5674 intel_reduce_m_n_ratio(ret_m, ret_n);
5675 }
5676
5677 void
5678 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5679 int pixel_clock, int link_clock,
5680 struct intel_link_m_n *m_n)
5681 {
5682 m_n->tu = 64;
5683
5684 compute_m_n(bits_per_pixel * pixel_clock,
5685 link_clock * nlanes * 8,
5686 &m_n->gmch_m, &m_n->gmch_n);
5687
5688 compute_m_n(pixel_clock, link_clock,
5689 &m_n->link_m, &m_n->link_n);
5690 }
5691
5692 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5693 {
5694 if (i915.panel_use_ssc >= 0)
5695 return i915.panel_use_ssc != 0;
5696 return dev_priv->vbt.lvds_use_ssc
5697 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5698 }
5699
5700 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5701 {
5702 struct drm_device *dev = crtc->base.dev;
5703 struct drm_i915_private *dev_priv = dev->dev_private;
5704 int refclk;
5705
5706 if (IS_VALLEYVIEW(dev)) {
5707 refclk = 100000;
5708 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5709 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5710 refclk = dev_priv->vbt.lvds_ssc_freq;
5711 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5712 } else if (!IS_GEN2(dev)) {
5713 refclk = 96000;
5714 } else {
5715 refclk = 48000;
5716 }
5717
5718 return refclk;
5719 }
5720
5721 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5722 {
5723 return (1 << dpll->n) << 16 | dpll->m2;
5724 }
5725
5726 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5727 {
5728 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5729 }
5730
5731 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5732 intel_clock_t *reduced_clock)
5733 {
5734 struct drm_device *dev = crtc->base.dev;
5735 u32 fp, fp2 = 0;
5736
5737 if (IS_PINEVIEW(dev)) {
5738 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5739 if (reduced_clock)
5740 fp2 = pnv_dpll_compute_fp(reduced_clock);
5741 } else {
5742 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5743 if (reduced_clock)
5744 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5745 }
5746
5747 crtc->new_config->dpll_hw_state.fp0 = fp;
5748
5749 crtc->lowfreq_avail = false;
5750 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5751 reduced_clock && i915.powersave) {
5752 crtc->new_config->dpll_hw_state.fp1 = fp2;
5753 crtc->lowfreq_avail = true;
5754 } else {
5755 crtc->new_config->dpll_hw_state.fp1 = fp;
5756 }
5757 }
5758
5759 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5760 pipe)
5761 {
5762 u32 reg_val;
5763
5764 /*
5765 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5766 * and set it to a reasonable value instead.
5767 */
5768 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5769 reg_val &= 0xffffff00;
5770 reg_val |= 0x00000030;
5771 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5772
5773 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5774 reg_val &= 0x8cffffff;
5775 reg_val = 0x8c000000;
5776 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5777
5778 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5779 reg_val &= 0xffffff00;
5780 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5781
5782 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5783 reg_val &= 0x00ffffff;
5784 reg_val |= 0xb0000000;
5785 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5786 }
5787
5788 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5789 struct intel_link_m_n *m_n)
5790 {
5791 struct drm_device *dev = crtc->base.dev;
5792 struct drm_i915_private *dev_priv = dev->dev_private;
5793 int pipe = crtc->pipe;
5794
5795 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5796 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5797 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5798 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5799 }
5800
5801 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5802 struct intel_link_m_n *m_n,
5803 struct intel_link_m_n *m2_n2)
5804 {
5805 struct drm_device *dev = crtc->base.dev;
5806 struct drm_i915_private *dev_priv = dev->dev_private;
5807 int pipe = crtc->pipe;
5808 enum transcoder transcoder = crtc->config.cpu_transcoder;
5809
5810 if (INTEL_INFO(dev)->gen >= 5) {
5811 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5812 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5813 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5814 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5815 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5816 * for gen < 8) and if DRRS is supported (to make sure the
5817 * registers are not unnecessarily accessed).
5818 */
5819 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5820 crtc->config.has_drrs) {
5821 I915_WRITE(PIPE_DATA_M2(transcoder),
5822 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5823 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5824 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5825 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5826 }
5827 } else {
5828 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5829 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5830 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5831 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5832 }
5833 }
5834
5835 void intel_dp_set_m_n(struct intel_crtc *crtc)
5836 {
5837 if (crtc->config.has_pch_encoder)
5838 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5839 else
5840 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5841 &crtc->config.dp_m2_n2);
5842 }
5843
5844 static void vlv_update_pll(struct intel_crtc *crtc,
5845 struct intel_crtc_config *pipe_config)
5846 {
5847 u32 dpll, dpll_md;
5848
5849 /*
5850 * Enable DPIO clock input. We should never disable the reference
5851 * clock for pipe B, since VGA hotplug / manual detection depends
5852 * on it.
5853 */
5854 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5855 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5856 /* We should never disable this, set it here for state tracking */
5857 if (crtc->pipe == PIPE_B)
5858 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5859 dpll |= DPLL_VCO_ENABLE;
5860 pipe_config->dpll_hw_state.dpll = dpll;
5861
5862 dpll_md = (pipe_config->pixel_multiplier - 1)
5863 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5864 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5865 }
5866
5867 static void vlv_prepare_pll(struct intel_crtc *crtc,
5868 const struct intel_crtc_config *pipe_config)
5869 {
5870 struct drm_device *dev = crtc->base.dev;
5871 struct drm_i915_private *dev_priv = dev->dev_private;
5872 int pipe = crtc->pipe;
5873 u32 mdiv;
5874 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5875 u32 coreclk, reg_val;
5876
5877 mutex_lock(&dev_priv->dpio_lock);
5878
5879 bestn = pipe_config->dpll.n;
5880 bestm1 = pipe_config->dpll.m1;
5881 bestm2 = pipe_config->dpll.m2;
5882 bestp1 = pipe_config->dpll.p1;
5883 bestp2 = pipe_config->dpll.p2;
5884
5885 /* See eDP HDMI DPIO driver vbios notes doc */
5886
5887 /* PLL B needs special handling */
5888 if (pipe == PIPE_B)
5889 vlv_pllb_recal_opamp(dev_priv, pipe);
5890
5891 /* Set up Tx target for periodic Rcomp update */
5892 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5893
5894 /* Disable target IRef on PLL */
5895 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5896 reg_val &= 0x00ffffff;
5897 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5898
5899 /* Disable fast lock */
5900 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5901
5902 /* Set idtafcrecal before PLL is enabled */
5903 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5904 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5905 mdiv |= ((bestn << DPIO_N_SHIFT));
5906 mdiv |= (1 << DPIO_K_SHIFT);
5907
5908 /*
5909 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5910 * but we don't support that).
5911 * Note: don't use the DAC post divider as it seems unstable.
5912 */
5913 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5914 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5915
5916 mdiv |= DPIO_ENABLE_CALIBRATION;
5917 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5918
5919 /* Set HBR and RBR LPF coefficients */
5920 if (pipe_config->port_clock == 162000 ||
5921 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5922 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5923 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5924 0x009f0003);
5925 else
5926 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5927 0x00d0000f);
5928
5929 if (crtc->config.has_dp_encoder) {
5930 /* Use SSC source */
5931 if (pipe == PIPE_A)
5932 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5933 0x0df40000);
5934 else
5935 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5936 0x0df70000);
5937 } else { /* HDMI or VGA */
5938 /* Use bend source */
5939 if (pipe == PIPE_A)
5940 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5941 0x0df70000);
5942 else
5943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5944 0x0df40000);
5945 }
5946
5947 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5948 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5949 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5950 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5951 coreclk |= 0x01000000;
5952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5953
5954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5955 mutex_unlock(&dev_priv->dpio_lock);
5956 }
5957
5958 static void chv_update_pll(struct intel_crtc *crtc,
5959 struct intel_crtc_config *pipe_config)
5960 {
5961 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5962 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5963 DPLL_VCO_ENABLE;
5964 if (crtc->pipe != PIPE_A)
5965 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5966
5967 pipe_config->dpll_hw_state.dpll_md =
5968 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5969 }
5970
5971 static void chv_prepare_pll(struct intel_crtc *crtc,
5972 const struct intel_crtc_config *pipe_config)
5973 {
5974 struct drm_device *dev = crtc->base.dev;
5975 struct drm_i915_private *dev_priv = dev->dev_private;
5976 int pipe = crtc->pipe;
5977 int dpll_reg = DPLL(crtc->pipe);
5978 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5979 u32 loopfilter, intcoeff;
5980 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5981 int refclk;
5982
5983 bestn = pipe_config->dpll.n;
5984 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5985 bestm1 = pipe_config->dpll.m1;
5986 bestm2 = pipe_config->dpll.m2 >> 22;
5987 bestp1 = pipe_config->dpll.p1;
5988 bestp2 = pipe_config->dpll.p2;
5989
5990 /*
5991 * Enable Refclk and SSC
5992 */
5993 I915_WRITE(dpll_reg,
5994 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5995
5996 mutex_lock(&dev_priv->dpio_lock);
5997
5998 /* p1 and p2 divider */
5999 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6000 5 << DPIO_CHV_S1_DIV_SHIFT |
6001 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6002 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6003 1 << DPIO_CHV_K_DIV_SHIFT);
6004
6005 /* Feedback post-divider - m2 */
6006 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6007
6008 /* Feedback refclk divider - n and m1 */
6009 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6010 DPIO_CHV_M1_DIV_BY_2 |
6011 1 << DPIO_CHV_N_DIV_SHIFT);
6012
6013 /* M2 fraction division */
6014 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6015
6016 /* M2 fraction division enable */
6017 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6018 DPIO_CHV_FRAC_DIV_EN |
6019 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6020
6021 /* Loop filter */
6022 refclk = i9xx_get_refclk(crtc, 0);
6023 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6024 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6025 if (refclk == 100000)
6026 intcoeff = 11;
6027 else if (refclk == 38400)
6028 intcoeff = 10;
6029 else
6030 intcoeff = 9;
6031 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6032 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6033
6034 /* AFC Recal */
6035 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6036 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6037 DPIO_AFC_RECAL);
6038
6039 mutex_unlock(&dev_priv->dpio_lock);
6040 }
6041
6042 /**
6043 * vlv_force_pll_on - forcibly enable just the PLL
6044 * @dev_priv: i915 private structure
6045 * @pipe: pipe PLL to enable
6046 * @dpll: PLL configuration
6047 *
6048 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6049 * in cases where we need the PLL enabled even when @pipe is not going to
6050 * be enabled.
6051 */
6052 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6053 const struct dpll *dpll)
6054 {
6055 struct intel_crtc *crtc =
6056 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6057 struct intel_crtc_config pipe_config = {
6058 .pixel_multiplier = 1,
6059 .dpll = *dpll,
6060 };
6061
6062 if (IS_CHERRYVIEW(dev)) {
6063 chv_update_pll(crtc, &pipe_config);
6064 chv_prepare_pll(crtc, &pipe_config);
6065 chv_enable_pll(crtc, &pipe_config);
6066 } else {
6067 vlv_update_pll(crtc, &pipe_config);
6068 vlv_prepare_pll(crtc, &pipe_config);
6069 vlv_enable_pll(crtc, &pipe_config);
6070 }
6071 }
6072
6073 /**
6074 * vlv_force_pll_off - forcibly disable just the PLL
6075 * @dev_priv: i915 private structure
6076 * @pipe: pipe PLL to disable
6077 *
6078 * Disable the PLL for @pipe. To be used in cases where we need
6079 * the PLL enabled even when @pipe is not going to be enabled.
6080 */
6081 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6082 {
6083 if (IS_CHERRYVIEW(dev))
6084 chv_disable_pll(to_i915(dev), pipe);
6085 else
6086 vlv_disable_pll(to_i915(dev), pipe);
6087 }
6088
6089 static void i9xx_update_pll(struct intel_crtc *crtc,
6090 intel_clock_t *reduced_clock,
6091 int num_connectors)
6092 {
6093 struct drm_device *dev = crtc->base.dev;
6094 struct drm_i915_private *dev_priv = dev->dev_private;
6095 u32 dpll;
6096 bool is_sdvo;
6097 struct dpll *clock = &crtc->new_config->dpll;
6098
6099 i9xx_update_pll_dividers(crtc, reduced_clock);
6100
6101 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6102 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6103
6104 dpll = DPLL_VGA_MODE_DIS;
6105
6106 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6107 dpll |= DPLLB_MODE_LVDS;
6108 else
6109 dpll |= DPLLB_MODE_DAC_SERIAL;
6110
6111 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6112 dpll |= (crtc->new_config->pixel_multiplier - 1)
6113 << SDVO_MULTIPLIER_SHIFT_HIRES;
6114 }
6115
6116 if (is_sdvo)
6117 dpll |= DPLL_SDVO_HIGH_SPEED;
6118
6119 if (crtc->new_config->has_dp_encoder)
6120 dpll |= DPLL_SDVO_HIGH_SPEED;
6121
6122 /* compute bitmask from p1 value */
6123 if (IS_PINEVIEW(dev))
6124 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6125 else {
6126 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6127 if (IS_G4X(dev) && reduced_clock)
6128 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6129 }
6130 switch (clock->p2) {
6131 case 5:
6132 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6133 break;
6134 case 7:
6135 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6136 break;
6137 case 10:
6138 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6139 break;
6140 case 14:
6141 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6142 break;
6143 }
6144 if (INTEL_INFO(dev)->gen >= 4)
6145 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6146
6147 if (crtc->new_config->sdvo_tv_clock)
6148 dpll |= PLL_REF_INPUT_TVCLKINBC;
6149 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6150 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6151 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6152 else
6153 dpll |= PLL_REF_INPUT_DREFCLK;
6154
6155 dpll |= DPLL_VCO_ENABLE;
6156 crtc->new_config->dpll_hw_state.dpll = dpll;
6157
6158 if (INTEL_INFO(dev)->gen >= 4) {
6159 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6160 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6161 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6162 }
6163 }
6164
6165 static void i8xx_update_pll(struct intel_crtc *crtc,
6166 intel_clock_t *reduced_clock,
6167 int num_connectors)
6168 {
6169 struct drm_device *dev = crtc->base.dev;
6170 struct drm_i915_private *dev_priv = dev->dev_private;
6171 u32 dpll;
6172 struct dpll *clock = &crtc->new_config->dpll;
6173
6174 i9xx_update_pll_dividers(crtc, reduced_clock);
6175
6176 dpll = DPLL_VGA_MODE_DIS;
6177
6178 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6179 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6180 } else {
6181 if (clock->p1 == 2)
6182 dpll |= PLL_P1_DIVIDE_BY_TWO;
6183 else
6184 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6185 if (clock->p2 == 4)
6186 dpll |= PLL_P2_DIVIDE_BY_4;
6187 }
6188
6189 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6190 dpll |= DPLL_DVO_2X_MODE;
6191
6192 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6193 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6194 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6195 else
6196 dpll |= PLL_REF_INPUT_DREFCLK;
6197
6198 dpll |= DPLL_VCO_ENABLE;
6199 crtc->new_config->dpll_hw_state.dpll = dpll;
6200 }
6201
6202 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6203 {
6204 struct drm_device *dev = intel_crtc->base.dev;
6205 struct drm_i915_private *dev_priv = dev->dev_private;
6206 enum pipe pipe = intel_crtc->pipe;
6207 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6208 struct drm_display_mode *adjusted_mode =
6209 &intel_crtc->config.adjusted_mode;
6210 uint32_t crtc_vtotal, crtc_vblank_end;
6211 int vsyncshift = 0;
6212
6213 /* We need to be careful not to changed the adjusted mode, for otherwise
6214 * the hw state checker will get angry at the mismatch. */
6215 crtc_vtotal = adjusted_mode->crtc_vtotal;
6216 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6217
6218 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6219 /* the chip adds 2 halflines automatically */
6220 crtc_vtotal -= 1;
6221 crtc_vblank_end -= 1;
6222
6223 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6224 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6225 else
6226 vsyncshift = adjusted_mode->crtc_hsync_start -
6227 adjusted_mode->crtc_htotal / 2;
6228 if (vsyncshift < 0)
6229 vsyncshift += adjusted_mode->crtc_htotal;
6230 }
6231
6232 if (INTEL_INFO(dev)->gen > 3)
6233 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6234
6235 I915_WRITE(HTOTAL(cpu_transcoder),
6236 (adjusted_mode->crtc_hdisplay - 1) |
6237 ((adjusted_mode->crtc_htotal - 1) << 16));
6238 I915_WRITE(HBLANK(cpu_transcoder),
6239 (adjusted_mode->crtc_hblank_start - 1) |
6240 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6241 I915_WRITE(HSYNC(cpu_transcoder),
6242 (adjusted_mode->crtc_hsync_start - 1) |
6243 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6244
6245 I915_WRITE(VTOTAL(cpu_transcoder),
6246 (adjusted_mode->crtc_vdisplay - 1) |
6247 ((crtc_vtotal - 1) << 16));
6248 I915_WRITE(VBLANK(cpu_transcoder),
6249 (adjusted_mode->crtc_vblank_start - 1) |
6250 ((crtc_vblank_end - 1) << 16));
6251 I915_WRITE(VSYNC(cpu_transcoder),
6252 (adjusted_mode->crtc_vsync_start - 1) |
6253 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6254
6255 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6256 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6257 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6258 * bits. */
6259 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6260 (pipe == PIPE_B || pipe == PIPE_C))
6261 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6262
6263 /* pipesrc controls the size that is scaled from, which should
6264 * always be the user's requested size.
6265 */
6266 I915_WRITE(PIPESRC(pipe),
6267 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6268 (intel_crtc->config.pipe_src_h - 1));
6269 }
6270
6271 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6272 struct intel_crtc_config *pipe_config)
6273 {
6274 struct drm_device *dev = crtc->base.dev;
6275 struct drm_i915_private *dev_priv = dev->dev_private;
6276 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6277 uint32_t tmp;
6278
6279 tmp = I915_READ(HTOTAL(cpu_transcoder));
6280 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6281 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6282 tmp = I915_READ(HBLANK(cpu_transcoder));
6283 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6284 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6285 tmp = I915_READ(HSYNC(cpu_transcoder));
6286 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6287 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6288
6289 tmp = I915_READ(VTOTAL(cpu_transcoder));
6290 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6291 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6292 tmp = I915_READ(VBLANK(cpu_transcoder));
6293 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6294 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6295 tmp = I915_READ(VSYNC(cpu_transcoder));
6296 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6297 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6298
6299 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6300 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6301 pipe_config->adjusted_mode.crtc_vtotal += 1;
6302 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6303 }
6304
6305 tmp = I915_READ(PIPESRC(crtc->pipe));
6306 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6307 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6308
6309 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6310 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6311 }
6312
6313 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6314 struct intel_crtc_config *pipe_config)
6315 {
6316 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6317 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6318 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6319 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6320
6321 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6322 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6323 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6324 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6325
6326 mode->flags = pipe_config->adjusted_mode.flags;
6327
6328 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6329 mode->flags |= pipe_config->adjusted_mode.flags;
6330 }
6331
6332 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6333 {
6334 struct drm_device *dev = intel_crtc->base.dev;
6335 struct drm_i915_private *dev_priv = dev->dev_private;
6336 uint32_t pipeconf;
6337
6338 pipeconf = 0;
6339
6340 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6341 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6342 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6343
6344 if (intel_crtc->config.double_wide)
6345 pipeconf |= PIPECONF_DOUBLE_WIDE;
6346
6347 /* only g4x and later have fancy bpc/dither controls */
6348 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6349 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6350 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6351 pipeconf |= PIPECONF_DITHER_EN |
6352 PIPECONF_DITHER_TYPE_SP;
6353
6354 switch (intel_crtc->config.pipe_bpp) {
6355 case 18:
6356 pipeconf |= PIPECONF_6BPC;
6357 break;
6358 case 24:
6359 pipeconf |= PIPECONF_8BPC;
6360 break;
6361 case 30:
6362 pipeconf |= PIPECONF_10BPC;
6363 break;
6364 default:
6365 /* Case prevented by intel_choose_pipe_bpp_dither. */
6366 BUG();
6367 }
6368 }
6369
6370 if (HAS_PIPE_CXSR(dev)) {
6371 if (intel_crtc->lowfreq_avail) {
6372 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6373 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6374 } else {
6375 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6376 }
6377 }
6378
6379 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6380 if (INTEL_INFO(dev)->gen < 4 ||
6381 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6382 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6383 else
6384 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6385 } else
6386 pipeconf |= PIPECONF_PROGRESSIVE;
6387
6388 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6389 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6390
6391 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6392 POSTING_READ(PIPECONF(intel_crtc->pipe));
6393 }
6394
6395 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6396 {
6397 struct drm_device *dev = crtc->base.dev;
6398 struct drm_i915_private *dev_priv = dev->dev_private;
6399 int refclk, num_connectors = 0;
6400 intel_clock_t clock, reduced_clock;
6401 bool ok, has_reduced_clock = false;
6402 bool is_lvds = false, is_dsi = false;
6403 struct intel_encoder *encoder;
6404 const intel_limit_t *limit;
6405
6406 for_each_intel_encoder(dev, encoder) {
6407 if (encoder->new_crtc != crtc)
6408 continue;
6409
6410 switch (encoder->type) {
6411 case INTEL_OUTPUT_LVDS:
6412 is_lvds = true;
6413 break;
6414 case INTEL_OUTPUT_DSI:
6415 is_dsi = true;
6416 break;
6417 default:
6418 break;
6419 }
6420
6421 num_connectors++;
6422 }
6423
6424 if (is_dsi)
6425 return 0;
6426
6427 if (!crtc->new_config->clock_set) {
6428 refclk = i9xx_get_refclk(crtc, num_connectors);
6429
6430 /*
6431 * Returns a set of divisors for the desired target clock with
6432 * the given refclk, or FALSE. The returned values represent
6433 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6434 * 2) / p1 / p2.
6435 */
6436 limit = intel_limit(crtc, refclk);
6437 ok = dev_priv->display.find_dpll(limit, crtc,
6438 crtc->new_config->port_clock,
6439 refclk, NULL, &clock);
6440 if (!ok) {
6441 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6442 return -EINVAL;
6443 }
6444
6445 if (is_lvds && dev_priv->lvds_downclock_avail) {
6446 /*
6447 * Ensure we match the reduced clock's P to the target
6448 * clock. If the clocks don't match, we can't switch
6449 * the display clock by using the FP0/FP1. In such case
6450 * we will disable the LVDS downclock feature.
6451 */
6452 has_reduced_clock =
6453 dev_priv->display.find_dpll(limit, crtc,
6454 dev_priv->lvds_downclock,
6455 refclk, &clock,
6456 &reduced_clock);
6457 }
6458 /* Compat-code for transition, will disappear. */
6459 crtc->new_config->dpll.n = clock.n;
6460 crtc->new_config->dpll.m1 = clock.m1;
6461 crtc->new_config->dpll.m2 = clock.m2;
6462 crtc->new_config->dpll.p1 = clock.p1;
6463 crtc->new_config->dpll.p2 = clock.p2;
6464 }
6465
6466 if (IS_GEN2(dev)) {
6467 i8xx_update_pll(crtc,
6468 has_reduced_clock ? &reduced_clock : NULL,
6469 num_connectors);
6470 } else if (IS_CHERRYVIEW(dev)) {
6471 chv_update_pll(crtc, crtc->new_config);
6472 } else if (IS_VALLEYVIEW(dev)) {
6473 vlv_update_pll(crtc, crtc->new_config);
6474 } else {
6475 i9xx_update_pll(crtc,
6476 has_reduced_clock ? &reduced_clock : NULL,
6477 num_connectors);
6478 }
6479
6480 return 0;
6481 }
6482
6483 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6484 struct intel_crtc_config *pipe_config)
6485 {
6486 struct drm_device *dev = crtc->base.dev;
6487 struct drm_i915_private *dev_priv = dev->dev_private;
6488 uint32_t tmp;
6489
6490 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6491 return;
6492
6493 tmp = I915_READ(PFIT_CONTROL);
6494 if (!(tmp & PFIT_ENABLE))
6495 return;
6496
6497 /* Check whether the pfit is attached to our pipe. */
6498 if (INTEL_INFO(dev)->gen < 4) {
6499 if (crtc->pipe != PIPE_B)
6500 return;
6501 } else {
6502 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6503 return;
6504 }
6505
6506 pipe_config->gmch_pfit.control = tmp;
6507 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6508 if (INTEL_INFO(dev)->gen < 5)
6509 pipe_config->gmch_pfit.lvds_border_bits =
6510 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6511 }
6512
6513 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6514 struct intel_crtc_config *pipe_config)
6515 {
6516 struct drm_device *dev = crtc->base.dev;
6517 struct drm_i915_private *dev_priv = dev->dev_private;
6518 int pipe = pipe_config->cpu_transcoder;
6519 intel_clock_t clock;
6520 u32 mdiv;
6521 int refclk = 100000;
6522
6523 /* In case of MIPI DPLL will not even be used */
6524 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6525 return;
6526
6527 mutex_lock(&dev_priv->dpio_lock);
6528 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6529 mutex_unlock(&dev_priv->dpio_lock);
6530
6531 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6532 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6533 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6534 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6535 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6536
6537 vlv_clock(refclk, &clock);
6538
6539 /* clock.dot is the fast clock */
6540 pipe_config->port_clock = clock.dot / 5;
6541 }
6542
6543 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6544 struct intel_plane_config *plane_config)
6545 {
6546 struct drm_device *dev = crtc->base.dev;
6547 struct drm_i915_private *dev_priv = dev->dev_private;
6548 u32 val, base, offset;
6549 int pipe = crtc->pipe, plane = crtc->plane;
6550 int fourcc, pixel_format;
6551 int aligned_height;
6552
6553 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6554 if (!crtc->base.primary->fb) {
6555 DRM_DEBUG_KMS("failed to alloc fb\n");
6556 return;
6557 }
6558
6559 val = I915_READ(DSPCNTR(plane));
6560
6561 if (INTEL_INFO(dev)->gen >= 4)
6562 if (val & DISPPLANE_TILED)
6563 plane_config->tiled = true;
6564
6565 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6566 fourcc = intel_format_to_fourcc(pixel_format);
6567 crtc->base.primary->fb->pixel_format = fourcc;
6568 crtc->base.primary->fb->bits_per_pixel =
6569 drm_format_plane_cpp(fourcc, 0) * 8;
6570
6571 if (INTEL_INFO(dev)->gen >= 4) {
6572 if (plane_config->tiled)
6573 offset = I915_READ(DSPTILEOFF(plane));
6574 else
6575 offset = I915_READ(DSPLINOFF(plane));
6576 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6577 } else {
6578 base = I915_READ(DSPADDR(plane));
6579 }
6580 plane_config->base = base;
6581
6582 val = I915_READ(PIPESRC(pipe));
6583 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6584 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6585
6586 val = I915_READ(DSPSTRIDE(pipe));
6587 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6588
6589 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6590 plane_config->tiled);
6591
6592 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6593 aligned_height);
6594
6595 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6596 pipe, plane, crtc->base.primary->fb->width,
6597 crtc->base.primary->fb->height,
6598 crtc->base.primary->fb->bits_per_pixel, base,
6599 crtc->base.primary->fb->pitches[0],
6600 plane_config->size);
6601
6602 }
6603
6604 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6605 struct intel_crtc_config *pipe_config)
6606 {
6607 struct drm_device *dev = crtc->base.dev;
6608 struct drm_i915_private *dev_priv = dev->dev_private;
6609 int pipe = pipe_config->cpu_transcoder;
6610 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6611 intel_clock_t clock;
6612 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6613 int refclk = 100000;
6614
6615 mutex_lock(&dev_priv->dpio_lock);
6616 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6617 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6618 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6619 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6620 mutex_unlock(&dev_priv->dpio_lock);
6621
6622 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6623 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6624 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6625 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6626 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6627
6628 chv_clock(refclk, &clock);
6629
6630 /* clock.dot is the fast clock */
6631 pipe_config->port_clock = clock.dot / 5;
6632 }
6633
6634 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6635 struct intel_crtc_config *pipe_config)
6636 {
6637 struct drm_device *dev = crtc->base.dev;
6638 struct drm_i915_private *dev_priv = dev->dev_private;
6639 uint32_t tmp;
6640
6641 if (!intel_display_power_is_enabled(dev_priv,
6642 POWER_DOMAIN_PIPE(crtc->pipe)))
6643 return false;
6644
6645 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6646 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6647
6648 tmp = I915_READ(PIPECONF(crtc->pipe));
6649 if (!(tmp & PIPECONF_ENABLE))
6650 return false;
6651
6652 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6653 switch (tmp & PIPECONF_BPC_MASK) {
6654 case PIPECONF_6BPC:
6655 pipe_config->pipe_bpp = 18;
6656 break;
6657 case PIPECONF_8BPC:
6658 pipe_config->pipe_bpp = 24;
6659 break;
6660 case PIPECONF_10BPC:
6661 pipe_config->pipe_bpp = 30;
6662 break;
6663 default:
6664 break;
6665 }
6666 }
6667
6668 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6669 pipe_config->limited_color_range = true;
6670
6671 if (INTEL_INFO(dev)->gen < 4)
6672 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6673
6674 intel_get_pipe_timings(crtc, pipe_config);
6675
6676 i9xx_get_pfit_config(crtc, pipe_config);
6677
6678 if (INTEL_INFO(dev)->gen >= 4) {
6679 tmp = I915_READ(DPLL_MD(crtc->pipe));
6680 pipe_config->pixel_multiplier =
6681 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6682 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6683 pipe_config->dpll_hw_state.dpll_md = tmp;
6684 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6685 tmp = I915_READ(DPLL(crtc->pipe));
6686 pipe_config->pixel_multiplier =
6687 ((tmp & SDVO_MULTIPLIER_MASK)
6688 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6689 } else {
6690 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6691 * port and will be fixed up in the encoder->get_config
6692 * function. */
6693 pipe_config->pixel_multiplier = 1;
6694 }
6695 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6696 if (!IS_VALLEYVIEW(dev)) {
6697 /*
6698 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6699 * on 830. Filter it out here so that we don't
6700 * report errors due to that.
6701 */
6702 if (IS_I830(dev))
6703 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6704
6705 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6706 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6707 } else {
6708 /* Mask out read-only status bits. */
6709 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6710 DPLL_PORTC_READY_MASK |
6711 DPLL_PORTB_READY_MASK);
6712 }
6713
6714 if (IS_CHERRYVIEW(dev))
6715 chv_crtc_clock_get(crtc, pipe_config);
6716 else if (IS_VALLEYVIEW(dev))
6717 vlv_crtc_clock_get(crtc, pipe_config);
6718 else
6719 i9xx_crtc_clock_get(crtc, pipe_config);
6720
6721 return true;
6722 }
6723
6724 static void ironlake_init_pch_refclk(struct drm_device *dev)
6725 {
6726 struct drm_i915_private *dev_priv = dev->dev_private;
6727 struct intel_encoder *encoder;
6728 u32 val, final;
6729 bool has_lvds = false;
6730 bool has_cpu_edp = false;
6731 bool has_panel = false;
6732 bool has_ck505 = false;
6733 bool can_ssc = false;
6734
6735 /* We need to take the global config into account */
6736 for_each_intel_encoder(dev, encoder) {
6737 switch (encoder->type) {
6738 case INTEL_OUTPUT_LVDS:
6739 has_panel = true;
6740 has_lvds = true;
6741 break;
6742 case INTEL_OUTPUT_EDP:
6743 has_panel = true;
6744 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6745 has_cpu_edp = true;
6746 break;
6747 default:
6748 break;
6749 }
6750 }
6751
6752 if (HAS_PCH_IBX(dev)) {
6753 has_ck505 = dev_priv->vbt.display_clock_mode;
6754 can_ssc = has_ck505;
6755 } else {
6756 has_ck505 = false;
6757 can_ssc = true;
6758 }
6759
6760 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6761 has_panel, has_lvds, has_ck505);
6762
6763 /* Ironlake: try to setup display ref clock before DPLL
6764 * enabling. This is only under driver's control after
6765 * PCH B stepping, previous chipset stepping should be
6766 * ignoring this setting.
6767 */
6768 val = I915_READ(PCH_DREF_CONTROL);
6769
6770 /* As we must carefully and slowly disable/enable each source in turn,
6771 * compute the final state we want first and check if we need to
6772 * make any changes at all.
6773 */
6774 final = val;
6775 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6776 if (has_ck505)
6777 final |= DREF_NONSPREAD_CK505_ENABLE;
6778 else
6779 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6780
6781 final &= ~DREF_SSC_SOURCE_MASK;
6782 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6783 final &= ~DREF_SSC1_ENABLE;
6784
6785 if (has_panel) {
6786 final |= DREF_SSC_SOURCE_ENABLE;
6787
6788 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6789 final |= DREF_SSC1_ENABLE;
6790
6791 if (has_cpu_edp) {
6792 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6793 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6794 else
6795 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6796 } else
6797 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6798 } else {
6799 final |= DREF_SSC_SOURCE_DISABLE;
6800 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6801 }
6802
6803 if (final == val)
6804 return;
6805
6806 /* Always enable nonspread source */
6807 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6808
6809 if (has_ck505)
6810 val |= DREF_NONSPREAD_CK505_ENABLE;
6811 else
6812 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6813
6814 if (has_panel) {
6815 val &= ~DREF_SSC_SOURCE_MASK;
6816 val |= DREF_SSC_SOURCE_ENABLE;
6817
6818 /* SSC must be turned on before enabling the CPU output */
6819 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6820 DRM_DEBUG_KMS("Using SSC on panel\n");
6821 val |= DREF_SSC1_ENABLE;
6822 } else
6823 val &= ~DREF_SSC1_ENABLE;
6824
6825 /* Get SSC going before enabling the outputs */
6826 I915_WRITE(PCH_DREF_CONTROL, val);
6827 POSTING_READ(PCH_DREF_CONTROL);
6828 udelay(200);
6829
6830 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6831
6832 /* Enable CPU source on CPU attached eDP */
6833 if (has_cpu_edp) {
6834 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6835 DRM_DEBUG_KMS("Using SSC on eDP\n");
6836 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6837 } else
6838 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6839 } else
6840 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6841
6842 I915_WRITE(PCH_DREF_CONTROL, val);
6843 POSTING_READ(PCH_DREF_CONTROL);
6844 udelay(200);
6845 } else {
6846 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6847
6848 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6849
6850 /* Turn off CPU output */
6851 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6852
6853 I915_WRITE(PCH_DREF_CONTROL, val);
6854 POSTING_READ(PCH_DREF_CONTROL);
6855 udelay(200);
6856
6857 /* Turn off the SSC source */
6858 val &= ~DREF_SSC_SOURCE_MASK;
6859 val |= DREF_SSC_SOURCE_DISABLE;
6860
6861 /* Turn off SSC1 */
6862 val &= ~DREF_SSC1_ENABLE;
6863
6864 I915_WRITE(PCH_DREF_CONTROL, val);
6865 POSTING_READ(PCH_DREF_CONTROL);
6866 udelay(200);
6867 }
6868
6869 BUG_ON(val != final);
6870 }
6871
6872 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6873 {
6874 uint32_t tmp;
6875
6876 tmp = I915_READ(SOUTH_CHICKEN2);
6877 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6878 I915_WRITE(SOUTH_CHICKEN2, tmp);
6879
6880 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6881 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6882 DRM_ERROR("FDI mPHY reset assert timeout\n");
6883
6884 tmp = I915_READ(SOUTH_CHICKEN2);
6885 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6886 I915_WRITE(SOUTH_CHICKEN2, tmp);
6887
6888 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6889 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6890 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6891 }
6892
6893 /* WaMPhyProgramming:hsw */
6894 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6895 {
6896 uint32_t tmp;
6897
6898 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6899 tmp &= ~(0xFF << 24);
6900 tmp |= (0x12 << 24);
6901 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6902
6903 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6904 tmp |= (1 << 11);
6905 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6906
6907 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6908 tmp |= (1 << 11);
6909 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6910
6911 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6912 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6913 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6914
6915 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6916 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6917 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6918
6919 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6920 tmp &= ~(7 << 13);
6921 tmp |= (5 << 13);
6922 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6923
6924 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6925 tmp &= ~(7 << 13);
6926 tmp |= (5 << 13);
6927 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6928
6929 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6930 tmp &= ~0xFF;
6931 tmp |= 0x1C;
6932 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6933
6934 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6935 tmp &= ~0xFF;
6936 tmp |= 0x1C;
6937 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6938
6939 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6940 tmp &= ~(0xFF << 16);
6941 tmp |= (0x1C << 16);
6942 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6943
6944 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6945 tmp &= ~(0xFF << 16);
6946 tmp |= (0x1C << 16);
6947 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6948
6949 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6950 tmp |= (1 << 27);
6951 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6952
6953 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6954 tmp |= (1 << 27);
6955 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6956
6957 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6958 tmp &= ~(0xF << 28);
6959 tmp |= (4 << 28);
6960 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6961
6962 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6963 tmp &= ~(0xF << 28);
6964 tmp |= (4 << 28);
6965 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6966 }
6967
6968 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6969 * Programming" based on the parameters passed:
6970 * - Sequence to enable CLKOUT_DP
6971 * - Sequence to enable CLKOUT_DP without spread
6972 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6973 */
6974 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6975 bool with_fdi)
6976 {
6977 struct drm_i915_private *dev_priv = dev->dev_private;
6978 uint32_t reg, tmp;
6979
6980 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6981 with_spread = true;
6982 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6983 with_fdi, "LP PCH doesn't have FDI\n"))
6984 with_fdi = false;
6985
6986 mutex_lock(&dev_priv->dpio_lock);
6987
6988 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6989 tmp &= ~SBI_SSCCTL_DISABLE;
6990 tmp |= SBI_SSCCTL_PATHALT;
6991 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6992
6993 udelay(24);
6994
6995 if (with_spread) {
6996 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6997 tmp &= ~SBI_SSCCTL_PATHALT;
6998 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6999
7000 if (with_fdi) {
7001 lpt_reset_fdi_mphy(dev_priv);
7002 lpt_program_fdi_mphy(dev_priv);
7003 }
7004 }
7005
7006 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7007 SBI_GEN0 : SBI_DBUFF0;
7008 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7009 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7010 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7011
7012 mutex_unlock(&dev_priv->dpio_lock);
7013 }
7014
7015 /* Sequence to disable CLKOUT_DP */
7016 static void lpt_disable_clkout_dp(struct drm_device *dev)
7017 {
7018 struct drm_i915_private *dev_priv = dev->dev_private;
7019 uint32_t reg, tmp;
7020
7021 mutex_lock(&dev_priv->dpio_lock);
7022
7023 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7024 SBI_GEN0 : SBI_DBUFF0;
7025 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7026 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7027 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7028
7029 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7030 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7031 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7032 tmp |= SBI_SSCCTL_PATHALT;
7033 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7034 udelay(32);
7035 }
7036 tmp |= SBI_SSCCTL_DISABLE;
7037 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7038 }
7039
7040 mutex_unlock(&dev_priv->dpio_lock);
7041 }
7042
7043 static void lpt_init_pch_refclk(struct drm_device *dev)
7044 {
7045 struct intel_encoder *encoder;
7046 bool has_vga = false;
7047
7048 for_each_intel_encoder(dev, encoder) {
7049 switch (encoder->type) {
7050 case INTEL_OUTPUT_ANALOG:
7051 has_vga = true;
7052 break;
7053 default:
7054 break;
7055 }
7056 }
7057
7058 if (has_vga)
7059 lpt_enable_clkout_dp(dev, true, true);
7060 else
7061 lpt_disable_clkout_dp(dev);
7062 }
7063
7064 /*
7065 * Initialize reference clocks when the driver loads
7066 */
7067 void intel_init_pch_refclk(struct drm_device *dev)
7068 {
7069 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7070 ironlake_init_pch_refclk(dev);
7071 else if (HAS_PCH_LPT(dev))
7072 lpt_init_pch_refclk(dev);
7073 }
7074
7075 static int ironlake_get_refclk(struct drm_crtc *crtc)
7076 {
7077 struct drm_device *dev = crtc->dev;
7078 struct drm_i915_private *dev_priv = dev->dev_private;
7079 struct intel_encoder *encoder;
7080 int num_connectors = 0;
7081 bool is_lvds = false;
7082
7083 for_each_intel_encoder(dev, encoder) {
7084 if (encoder->new_crtc != to_intel_crtc(crtc))
7085 continue;
7086
7087 switch (encoder->type) {
7088 case INTEL_OUTPUT_LVDS:
7089 is_lvds = true;
7090 break;
7091 default:
7092 break;
7093 }
7094 num_connectors++;
7095 }
7096
7097 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7098 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7099 dev_priv->vbt.lvds_ssc_freq);
7100 return dev_priv->vbt.lvds_ssc_freq;
7101 }
7102
7103 return 120000;
7104 }
7105
7106 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7107 {
7108 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7110 int pipe = intel_crtc->pipe;
7111 uint32_t val;
7112
7113 val = 0;
7114
7115 switch (intel_crtc->config.pipe_bpp) {
7116 case 18:
7117 val |= PIPECONF_6BPC;
7118 break;
7119 case 24:
7120 val |= PIPECONF_8BPC;
7121 break;
7122 case 30:
7123 val |= PIPECONF_10BPC;
7124 break;
7125 case 36:
7126 val |= PIPECONF_12BPC;
7127 break;
7128 default:
7129 /* Case prevented by intel_choose_pipe_bpp_dither. */
7130 BUG();
7131 }
7132
7133 if (intel_crtc->config.dither)
7134 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7135
7136 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7137 val |= PIPECONF_INTERLACED_ILK;
7138 else
7139 val |= PIPECONF_PROGRESSIVE;
7140
7141 if (intel_crtc->config.limited_color_range)
7142 val |= PIPECONF_COLOR_RANGE_SELECT;
7143
7144 I915_WRITE(PIPECONF(pipe), val);
7145 POSTING_READ(PIPECONF(pipe));
7146 }
7147
7148 /*
7149 * Set up the pipe CSC unit.
7150 *
7151 * Currently only full range RGB to limited range RGB conversion
7152 * is supported, but eventually this should handle various
7153 * RGB<->YCbCr scenarios as well.
7154 */
7155 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7156 {
7157 struct drm_device *dev = crtc->dev;
7158 struct drm_i915_private *dev_priv = dev->dev_private;
7159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7160 int pipe = intel_crtc->pipe;
7161 uint16_t coeff = 0x7800; /* 1.0 */
7162
7163 /*
7164 * TODO: Check what kind of values actually come out of the pipe
7165 * with these coeff/postoff values and adjust to get the best
7166 * accuracy. Perhaps we even need to take the bpc value into
7167 * consideration.
7168 */
7169
7170 if (intel_crtc->config.limited_color_range)
7171 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7172
7173 /*
7174 * GY/GU and RY/RU should be the other way around according
7175 * to BSpec, but reality doesn't agree. Just set them up in
7176 * a way that results in the correct picture.
7177 */
7178 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7179 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7180
7181 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7182 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7183
7184 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7185 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7186
7187 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7188 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7189 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7190
7191 if (INTEL_INFO(dev)->gen > 6) {
7192 uint16_t postoff = 0;
7193
7194 if (intel_crtc->config.limited_color_range)
7195 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7196
7197 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7198 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7199 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7200
7201 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7202 } else {
7203 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7204
7205 if (intel_crtc->config.limited_color_range)
7206 mode |= CSC_BLACK_SCREEN_OFFSET;
7207
7208 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7209 }
7210 }
7211
7212 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7213 {
7214 struct drm_device *dev = crtc->dev;
7215 struct drm_i915_private *dev_priv = dev->dev_private;
7216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7217 enum pipe pipe = intel_crtc->pipe;
7218 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7219 uint32_t val;
7220
7221 val = 0;
7222
7223 if (IS_HASWELL(dev) && intel_crtc->config.dither)
7224 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7225
7226 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7227 val |= PIPECONF_INTERLACED_ILK;
7228 else
7229 val |= PIPECONF_PROGRESSIVE;
7230
7231 I915_WRITE(PIPECONF(cpu_transcoder), val);
7232 POSTING_READ(PIPECONF(cpu_transcoder));
7233
7234 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7235 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7236
7237 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7238 val = 0;
7239
7240 switch (intel_crtc->config.pipe_bpp) {
7241 case 18:
7242 val |= PIPEMISC_DITHER_6_BPC;
7243 break;
7244 case 24:
7245 val |= PIPEMISC_DITHER_8_BPC;
7246 break;
7247 case 30:
7248 val |= PIPEMISC_DITHER_10_BPC;
7249 break;
7250 case 36:
7251 val |= PIPEMISC_DITHER_12_BPC;
7252 break;
7253 default:
7254 /* Case prevented by pipe_config_set_bpp. */
7255 BUG();
7256 }
7257
7258 if (intel_crtc->config.dither)
7259 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7260
7261 I915_WRITE(PIPEMISC(pipe), val);
7262 }
7263 }
7264
7265 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7266 intel_clock_t *clock,
7267 bool *has_reduced_clock,
7268 intel_clock_t *reduced_clock)
7269 {
7270 struct drm_device *dev = crtc->dev;
7271 struct drm_i915_private *dev_priv = dev->dev_private;
7272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7273 int refclk;
7274 const intel_limit_t *limit;
7275 bool ret, is_lvds = false;
7276
7277 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7278
7279 refclk = ironlake_get_refclk(crtc);
7280
7281 /*
7282 * Returns a set of divisors for the desired target clock with the given
7283 * refclk, or FALSE. The returned values represent the clock equation:
7284 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7285 */
7286 limit = intel_limit(intel_crtc, refclk);
7287 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7288 intel_crtc->new_config->port_clock,
7289 refclk, NULL, clock);
7290 if (!ret)
7291 return false;
7292
7293 if (is_lvds && dev_priv->lvds_downclock_avail) {
7294 /*
7295 * Ensure we match the reduced clock's P to the target clock.
7296 * If the clocks don't match, we can't switch the display clock
7297 * by using the FP0/FP1. In such case we will disable the LVDS
7298 * downclock feature.
7299 */
7300 *has_reduced_clock =
7301 dev_priv->display.find_dpll(limit, intel_crtc,
7302 dev_priv->lvds_downclock,
7303 refclk, clock,
7304 reduced_clock);
7305 }
7306
7307 return true;
7308 }
7309
7310 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7311 {
7312 /*
7313 * Account for spread spectrum to avoid
7314 * oversubscribing the link. Max center spread
7315 * is 2.5%; use 5% for safety's sake.
7316 */
7317 u32 bps = target_clock * bpp * 21 / 20;
7318 return DIV_ROUND_UP(bps, link_bw * 8);
7319 }
7320
7321 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7322 {
7323 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7324 }
7325
7326 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7327 u32 *fp,
7328 intel_clock_t *reduced_clock, u32 *fp2)
7329 {
7330 struct drm_crtc *crtc = &intel_crtc->base;
7331 struct drm_device *dev = crtc->dev;
7332 struct drm_i915_private *dev_priv = dev->dev_private;
7333 struct intel_encoder *intel_encoder;
7334 uint32_t dpll;
7335 int factor, num_connectors = 0;
7336 bool is_lvds = false, is_sdvo = false;
7337
7338 for_each_intel_encoder(dev, intel_encoder) {
7339 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7340 continue;
7341
7342 switch (intel_encoder->type) {
7343 case INTEL_OUTPUT_LVDS:
7344 is_lvds = true;
7345 break;
7346 case INTEL_OUTPUT_SDVO:
7347 case INTEL_OUTPUT_HDMI:
7348 is_sdvo = true;
7349 break;
7350 default:
7351 break;
7352 }
7353
7354 num_connectors++;
7355 }
7356
7357 /* Enable autotuning of the PLL clock (if permissible) */
7358 factor = 21;
7359 if (is_lvds) {
7360 if ((intel_panel_use_ssc(dev_priv) &&
7361 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7362 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7363 factor = 25;
7364 } else if (intel_crtc->new_config->sdvo_tv_clock)
7365 factor = 20;
7366
7367 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7368 *fp |= FP_CB_TUNE;
7369
7370 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7371 *fp2 |= FP_CB_TUNE;
7372
7373 dpll = 0;
7374
7375 if (is_lvds)
7376 dpll |= DPLLB_MODE_LVDS;
7377 else
7378 dpll |= DPLLB_MODE_DAC_SERIAL;
7379
7380 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7381 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7382
7383 if (is_sdvo)
7384 dpll |= DPLL_SDVO_HIGH_SPEED;
7385 if (intel_crtc->new_config->has_dp_encoder)
7386 dpll |= DPLL_SDVO_HIGH_SPEED;
7387
7388 /* compute bitmask from p1 value */
7389 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7390 /* also FPA1 */
7391 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7392
7393 switch (intel_crtc->new_config->dpll.p2) {
7394 case 5:
7395 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7396 break;
7397 case 7:
7398 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7399 break;
7400 case 10:
7401 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7402 break;
7403 case 14:
7404 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7405 break;
7406 }
7407
7408 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7409 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7410 else
7411 dpll |= PLL_REF_INPUT_DREFCLK;
7412
7413 return dpll | DPLL_VCO_ENABLE;
7414 }
7415
7416 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7417 {
7418 struct drm_device *dev = crtc->base.dev;
7419 intel_clock_t clock, reduced_clock;
7420 u32 dpll = 0, fp = 0, fp2 = 0;
7421 bool ok, has_reduced_clock = false;
7422 bool is_lvds = false;
7423 struct intel_shared_dpll *pll;
7424
7425 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7426
7427 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7428 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7429
7430 ok = ironlake_compute_clocks(&crtc->base, &clock,
7431 &has_reduced_clock, &reduced_clock);
7432 if (!ok && !crtc->new_config->clock_set) {
7433 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7434 return -EINVAL;
7435 }
7436 /* Compat-code for transition, will disappear. */
7437 if (!crtc->new_config->clock_set) {
7438 crtc->new_config->dpll.n = clock.n;
7439 crtc->new_config->dpll.m1 = clock.m1;
7440 crtc->new_config->dpll.m2 = clock.m2;
7441 crtc->new_config->dpll.p1 = clock.p1;
7442 crtc->new_config->dpll.p2 = clock.p2;
7443 }
7444
7445 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7446 if (crtc->new_config->has_pch_encoder) {
7447 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7448 if (has_reduced_clock)
7449 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7450
7451 dpll = ironlake_compute_dpll(crtc,
7452 &fp, &reduced_clock,
7453 has_reduced_clock ? &fp2 : NULL);
7454
7455 crtc->new_config->dpll_hw_state.dpll = dpll;
7456 crtc->new_config->dpll_hw_state.fp0 = fp;
7457 if (has_reduced_clock)
7458 crtc->new_config->dpll_hw_state.fp1 = fp2;
7459 else
7460 crtc->new_config->dpll_hw_state.fp1 = fp;
7461
7462 pll = intel_get_shared_dpll(crtc);
7463 if (pll == NULL) {
7464 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7465 pipe_name(crtc->pipe));
7466 return -EINVAL;
7467 }
7468 }
7469
7470 if (is_lvds && has_reduced_clock && i915.powersave)
7471 crtc->lowfreq_avail = true;
7472 else
7473 crtc->lowfreq_avail = false;
7474
7475 return 0;
7476 }
7477
7478 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7479 struct intel_link_m_n *m_n)
7480 {
7481 struct drm_device *dev = crtc->base.dev;
7482 struct drm_i915_private *dev_priv = dev->dev_private;
7483 enum pipe pipe = crtc->pipe;
7484
7485 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7486 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7487 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7488 & ~TU_SIZE_MASK;
7489 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7490 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7491 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7492 }
7493
7494 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7495 enum transcoder transcoder,
7496 struct intel_link_m_n *m_n,
7497 struct intel_link_m_n *m2_n2)
7498 {
7499 struct drm_device *dev = crtc->base.dev;
7500 struct drm_i915_private *dev_priv = dev->dev_private;
7501 enum pipe pipe = crtc->pipe;
7502
7503 if (INTEL_INFO(dev)->gen >= 5) {
7504 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7505 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7506 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7507 & ~TU_SIZE_MASK;
7508 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7509 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7510 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7511 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7512 * gen < 8) and if DRRS is supported (to make sure the
7513 * registers are not unnecessarily read).
7514 */
7515 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7516 crtc->config.has_drrs) {
7517 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7518 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7519 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7520 & ~TU_SIZE_MASK;
7521 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7522 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7523 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7524 }
7525 } else {
7526 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7527 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7528 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7529 & ~TU_SIZE_MASK;
7530 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7531 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7532 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7533 }
7534 }
7535
7536 void intel_dp_get_m_n(struct intel_crtc *crtc,
7537 struct intel_crtc_config *pipe_config)
7538 {
7539 if (crtc->config.has_pch_encoder)
7540 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7541 else
7542 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7543 &pipe_config->dp_m_n,
7544 &pipe_config->dp_m2_n2);
7545 }
7546
7547 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7548 struct intel_crtc_config *pipe_config)
7549 {
7550 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7551 &pipe_config->fdi_m_n, NULL);
7552 }
7553
7554 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7555 struct intel_crtc_config *pipe_config)
7556 {
7557 struct drm_device *dev = crtc->base.dev;
7558 struct drm_i915_private *dev_priv = dev->dev_private;
7559 uint32_t tmp;
7560
7561 tmp = I915_READ(PS_CTL(crtc->pipe));
7562
7563 if (tmp & PS_ENABLE) {
7564 pipe_config->pch_pfit.enabled = true;
7565 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7566 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7567 }
7568 }
7569
7570 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7571 struct intel_crtc_config *pipe_config)
7572 {
7573 struct drm_device *dev = crtc->base.dev;
7574 struct drm_i915_private *dev_priv = dev->dev_private;
7575 uint32_t tmp;
7576
7577 tmp = I915_READ(PF_CTL(crtc->pipe));
7578
7579 if (tmp & PF_ENABLE) {
7580 pipe_config->pch_pfit.enabled = true;
7581 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7582 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7583
7584 /* We currently do not free assignements of panel fitters on
7585 * ivb/hsw (since we don't use the higher upscaling modes which
7586 * differentiates them) so just WARN about this case for now. */
7587 if (IS_GEN7(dev)) {
7588 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7589 PF_PIPE_SEL_IVB(crtc->pipe));
7590 }
7591 }
7592 }
7593
7594 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7595 struct intel_plane_config *plane_config)
7596 {
7597 struct drm_device *dev = crtc->base.dev;
7598 struct drm_i915_private *dev_priv = dev->dev_private;
7599 u32 val, base, offset;
7600 int pipe = crtc->pipe, plane = crtc->plane;
7601 int fourcc, pixel_format;
7602 int aligned_height;
7603
7604 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7605 if (!crtc->base.primary->fb) {
7606 DRM_DEBUG_KMS("failed to alloc fb\n");
7607 return;
7608 }
7609
7610 val = I915_READ(DSPCNTR(plane));
7611
7612 if (INTEL_INFO(dev)->gen >= 4)
7613 if (val & DISPPLANE_TILED)
7614 plane_config->tiled = true;
7615
7616 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7617 fourcc = intel_format_to_fourcc(pixel_format);
7618 crtc->base.primary->fb->pixel_format = fourcc;
7619 crtc->base.primary->fb->bits_per_pixel =
7620 drm_format_plane_cpp(fourcc, 0) * 8;
7621
7622 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7623 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7624 offset = I915_READ(DSPOFFSET(plane));
7625 } else {
7626 if (plane_config->tiled)
7627 offset = I915_READ(DSPTILEOFF(plane));
7628 else
7629 offset = I915_READ(DSPLINOFF(plane));
7630 }
7631 plane_config->base = base;
7632
7633 val = I915_READ(PIPESRC(pipe));
7634 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7635 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7636
7637 val = I915_READ(DSPSTRIDE(pipe));
7638 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7639
7640 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7641 plane_config->tiled);
7642
7643 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7644 aligned_height);
7645
7646 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7647 pipe, plane, crtc->base.primary->fb->width,
7648 crtc->base.primary->fb->height,
7649 crtc->base.primary->fb->bits_per_pixel, base,
7650 crtc->base.primary->fb->pitches[0],
7651 plane_config->size);
7652 }
7653
7654 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7655 struct intel_crtc_config *pipe_config)
7656 {
7657 struct drm_device *dev = crtc->base.dev;
7658 struct drm_i915_private *dev_priv = dev->dev_private;
7659 uint32_t tmp;
7660
7661 if (!intel_display_power_is_enabled(dev_priv,
7662 POWER_DOMAIN_PIPE(crtc->pipe)))
7663 return false;
7664
7665 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7666 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7667
7668 tmp = I915_READ(PIPECONF(crtc->pipe));
7669 if (!(tmp & PIPECONF_ENABLE))
7670 return false;
7671
7672 switch (tmp & PIPECONF_BPC_MASK) {
7673 case PIPECONF_6BPC:
7674 pipe_config->pipe_bpp = 18;
7675 break;
7676 case PIPECONF_8BPC:
7677 pipe_config->pipe_bpp = 24;
7678 break;
7679 case PIPECONF_10BPC:
7680 pipe_config->pipe_bpp = 30;
7681 break;
7682 case PIPECONF_12BPC:
7683 pipe_config->pipe_bpp = 36;
7684 break;
7685 default:
7686 break;
7687 }
7688
7689 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7690 pipe_config->limited_color_range = true;
7691
7692 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7693 struct intel_shared_dpll *pll;
7694
7695 pipe_config->has_pch_encoder = true;
7696
7697 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7698 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7699 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7700
7701 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7702
7703 if (HAS_PCH_IBX(dev_priv->dev)) {
7704 pipe_config->shared_dpll =
7705 (enum intel_dpll_id) crtc->pipe;
7706 } else {
7707 tmp = I915_READ(PCH_DPLL_SEL);
7708 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7709 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7710 else
7711 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7712 }
7713
7714 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7715
7716 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7717 &pipe_config->dpll_hw_state));
7718
7719 tmp = pipe_config->dpll_hw_state.dpll;
7720 pipe_config->pixel_multiplier =
7721 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7722 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7723
7724 ironlake_pch_clock_get(crtc, pipe_config);
7725 } else {
7726 pipe_config->pixel_multiplier = 1;
7727 }
7728
7729 intel_get_pipe_timings(crtc, pipe_config);
7730
7731 ironlake_get_pfit_config(crtc, pipe_config);
7732
7733 return true;
7734 }
7735
7736 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7737 {
7738 struct drm_device *dev = dev_priv->dev;
7739 struct intel_crtc *crtc;
7740
7741 for_each_intel_crtc(dev, crtc)
7742 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7743 pipe_name(crtc->pipe));
7744
7745 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7746 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7747 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7748 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7749 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7750 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7751 "CPU PWM1 enabled\n");
7752 if (IS_HASWELL(dev))
7753 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7754 "CPU PWM2 enabled\n");
7755 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7756 "PCH PWM1 enabled\n");
7757 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7758 "Utility pin enabled\n");
7759 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7760
7761 /*
7762 * In theory we can still leave IRQs enabled, as long as only the HPD
7763 * interrupts remain enabled. We used to check for that, but since it's
7764 * gen-specific and since we only disable LCPLL after we fully disable
7765 * the interrupts, the check below should be enough.
7766 */
7767 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7768 }
7769
7770 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7771 {
7772 struct drm_device *dev = dev_priv->dev;
7773
7774 if (IS_HASWELL(dev))
7775 return I915_READ(D_COMP_HSW);
7776 else
7777 return I915_READ(D_COMP_BDW);
7778 }
7779
7780 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7781 {
7782 struct drm_device *dev = dev_priv->dev;
7783
7784 if (IS_HASWELL(dev)) {
7785 mutex_lock(&dev_priv->rps.hw_lock);
7786 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7787 val))
7788 DRM_ERROR("Failed to write to D_COMP\n");
7789 mutex_unlock(&dev_priv->rps.hw_lock);
7790 } else {
7791 I915_WRITE(D_COMP_BDW, val);
7792 POSTING_READ(D_COMP_BDW);
7793 }
7794 }
7795
7796 /*
7797 * This function implements pieces of two sequences from BSpec:
7798 * - Sequence for display software to disable LCPLL
7799 * - Sequence for display software to allow package C8+
7800 * The steps implemented here are just the steps that actually touch the LCPLL
7801 * register. Callers should take care of disabling all the display engine
7802 * functions, doing the mode unset, fixing interrupts, etc.
7803 */
7804 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7805 bool switch_to_fclk, bool allow_power_down)
7806 {
7807 uint32_t val;
7808
7809 assert_can_disable_lcpll(dev_priv);
7810
7811 val = I915_READ(LCPLL_CTL);
7812
7813 if (switch_to_fclk) {
7814 val |= LCPLL_CD_SOURCE_FCLK;
7815 I915_WRITE(LCPLL_CTL, val);
7816
7817 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7818 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7819 DRM_ERROR("Switching to FCLK failed\n");
7820
7821 val = I915_READ(LCPLL_CTL);
7822 }
7823
7824 val |= LCPLL_PLL_DISABLE;
7825 I915_WRITE(LCPLL_CTL, val);
7826 POSTING_READ(LCPLL_CTL);
7827
7828 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7829 DRM_ERROR("LCPLL still locked\n");
7830
7831 val = hsw_read_dcomp(dev_priv);
7832 val |= D_COMP_COMP_DISABLE;
7833 hsw_write_dcomp(dev_priv, val);
7834 ndelay(100);
7835
7836 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7837 1))
7838 DRM_ERROR("D_COMP RCOMP still in progress\n");
7839
7840 if (allow_power_down) {
7841 val = I915_READ(LCPLL_CTL);
7842 val |= LCPLL_POWER_DOWN_ALLOW;
7843 I915_WRITE(LCPLL_CTL, val);
7844 POSTING_READ(LCPLL_CTL);
7845 }
7846 }
7847
7848 /*
7849 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7850 * source.
7851 */
7852 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7853 {
7854 uint32_t val;
7855
7856 val = I915_READ(LCPLL_CTL);
7857
7858 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7859 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7860 return;
7861
7862 /*
7863 * Make sure we're not on PC8 state before disabling PC8, otherwise
7864 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7865 *
7866 * The other problem is that hsw_restore_lcpll() is called as part of
7867 * the runtime PM resume sequence, so we can't just call
7868 * gen6_gt_force_wake_get() because that function calls
7869 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7870 * while we are on the resume sequence. So to solve this problem we have
7871 * to call special forcewake code that doesn't touch runtime PM and
7872 * doesn't enable the forcewake delayed work.
7873 */
7874 spin_lock_irq(&dev_priv->uncore.lock);
7875 if (dev_priv->uncore.forcewake_count++ == 0)
7876 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7877 spin_unlock_irq(&dev_priv->uncore.lock);
7878
7879 if (val & LCPLL_POWER_DOWN_ALLOW) {
7880 val &= ~LCPLL_POWER_DOWN_ALLOW;
7881 I915_WRITE(LCPLL_CTL, val);
7882 POSTING_READ(LCPLL_CTL);
7883 }
7884
7885 val = hsw_read_dcomp(dev_priv);
7886 val |= D_COMP_COMP_FORCE;
7887 val &= ~D_COMP_COMP_DISABLE;
7888 hsw_write_dcomp(dev_priv, val);
7889
7890 val = I915_READ(LCPLL_CTL);
7891 val &= ~LCPLL_PLL_DISABLE;
7892 I915_WRITE(LCPLL_CTL, val);
7893
7894 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7895 DRM_ERROR("LCPLL not locked yet\n");
7896
7897 if (val & LCPLL_CD_SOURCE_FCLK) {
7898 val = I915_READ(LCPLL_CTL);
7899 val &= ~LCPLL_CD_SOURCE_FCLK;
7900 I915_WRITE(LCPLL_CTL, val);
7901
7902 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7903 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7904 DRM_ERROR("Switching back to LCPLL failed\n");
7905 }
7906
7907 /* See the big comment above. */
7908 spin_lock_irq(&dev_priv->uncore.lock);
7909 if (--dev_priv->uncore.forcewake_count == 0)
7910 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7911 spin_unlock_irq(&dev_priv->uncore.lock);
7912 }
7913
7914 /*
7915 * Package states C8 and deeper are really deep PC states that can only be
7916 * reached when all the devices on the system allow it, so even if the graphics
7917 * device allows PC8+, it doesn't mean the system will actually get to these
7918 * states. Our driver only allows PC8+ when going into runtime PM.
7919 *
7920 * The requirements for PC8+ are that all the outputs are disabled, the power
7921 * well is disabled and most interrupts are disabled, and these are also
7922 * requirements for runtime PM. When these conditions are met, we manually do
7923 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7924 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7925 * hang the machine.
7926 *
7927 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7928 * the state of some registers, so when we come back from PC8+ we need to
7929 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7930 * need to take care of the registers kept by RC6. Notice that this happens even
7931 * if we don't put the device in PCI D3 state (which is what currently happens
7932 * because of the runtime PM support).
7933 *
7934 * For more, read "Display Sequences for Package C8" on the hardware
7935 * documentation.
7936 */
7937 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7938 {
7939 struct drm_device *dev = dev_priv->dev;
7940 uint32_t val;
7941
7942 DRM_DEBUG_KMS("Enabling package C8+\n");
7943
7944 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7945 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7946 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7947 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7948 }
7949
7950 lpt_disable_clkout_dp(dev);
7951 hsw_disable_lcpll(dev_priv, true, true);
7952 }
7953
7954 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7955 {
7956 struct drm_device *dev = dev_priv->dev;
7957 uint32_t val;
7958
7959 DRM_DEBUG_KMS("Disabling package C8+\n");
7960
7961 hsw_restore_lcpll(dev_priv);
7962 lpt_init_pch_refclk(dev);
7963
7964 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7965 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7966 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7967 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7968 }
7969
7970 intel_prepare_ddi(dev);
7971 }
7972
7973 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7974 {
7975 if (!intel_ddi_pll_select(crtc))
7976 return -EINVAL;
7977
7978 crtc->lowfreq_avail = false;
7979
7980 return 0;
7981 }
7982
7983 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
7984 enum port port,
7985 struct intel_crtc_config *pipe_config)
7986 {
7987 u32 temp, dpll_ctl1;
7988
7989 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
7990 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
7991
7992 switch (pipe_config->ddi_pll_sel) {
7993 case SKL_DPLL0:
7994 /*
7995 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
7996 * of the shared DPLL framework and thus needs to be read out
7997 * separately
7998 */
7999 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8000 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8001 break;
8002 case SKL_DPLL1:
8003 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8004 break;
8005 case SKL_DPLL2:
8006 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8007 break;
8008 case SKL_DPLL3:
8009 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8010 break;
8011 }
8012 }
8013
8014 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8015 enum port port,
8016 struct intel_crtc_config *pipe_config)
8017 {
8018 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8019
8020 switch (pipe_config->ddi_pll_sel) {
8021 case PORT_CLK_SEL_WRPLL1:
8022 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8023 break;
8024 case PORT_CLK_SEL_WRPLL2:
8025 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8026 break;
8027 }
8028 }
8029
8030 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8031 struct intel_crtc_config *pipe_config)
8032 {
8033 struct drm_device *dev = crtc->base.dev;
8034 struct drm_i915_private *dev_priv = dev->dev_private;
8035 struct intel_shared_dpll *pll;
8036 enum port port;
8037 uint32_t tmp;
8038
8039 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8040
8041 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8042
8043 if (IS_SKYLAKE(dev))
8044 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8045 else
8046 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8047
8048 if (pipe_config->shared_dpll >= 0) {
8049 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8050
8051 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8052 &pipe_config->dpll_hw_state));
8053 }
8054
8055 /*
8056 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8057 * DDI E. So just check whether this pipe is wired to DDI E and whether
8058 * the PCH transcoder is on.
8059 */
8060 if (INTEL_INFO(dev)->gen < 9 &&
8061 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8062 pipe_config->has_pch_encoder = true;
8063
8064 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8065 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8066 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8067
8068 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8069 }
8070 }
8071
8072 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8073 struct intel_crtc_config *pipe_config)
8074 {
8075 struct drm_device *dev = crtc->base.dev;
8076 struct drm_i915_private *dev_priv = dev->dev_private;
8077 enum intel_display_power_domain pfit_domain;
8078 uint32_t tmp;
8079
8080 if (!intel_display_power_is_enabled(dev_priv,
8081 POWER_DOMAIN_PIPE(crtc->pipe)))
8082 return false;
8083
8084 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8085 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8086
8087 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8088 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8089 enum pipe trans_edp_pipe;
8090 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8091 default:
8092 WARN(1, "unknown pipe linked to edp transcoder\n");
8093 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8094 case TRANS_DDI_EDP_INPUT_A_ON:
8095 trans_edp_pipe = PIPE_A;
8096 break;
8097 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8098 trans_edp_pipe = PIPE_B;
8099 break;
8100 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8101 trans_edp_pipe = PIPE_C;
8102 break;
8103 }
8104
8105 if (trans_edp_pipe == crtc->pipe)
8106 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8107 }
8108
8109 if (!intel_display_power_is_enabled(dev_priv,
8110 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8111 return false;
8112
8113 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8114 if (!(tmp & PIPECONF_ENABLE))
8115 return false;
8116
8117 haswell_get_ddi_port_state(crtc, pipe_config);
8118
8119 intel_get_pipe_timings(crtc, pipe_config);
8120
8121 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8122 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8123 if (IS_SKYLAKE(dev))
8124 skylake_get_pfit_config(crtc, pipe_config);
8125 else
8126 ironlake_get_pfit_config(crtc, pipe_config);
8127 }
8128
8129 if (IS_HASWELL(dev))
8130 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8131 (I915_READ(IPS_CTL) & IPS_ENABLE);
8132
8133 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8134 pipe_config->pixel_multiplier =
8135 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8136 } else {
8137 pipe_config->pixel_multiplier = 1;
8138 }
8139
8140 return true;
8141 }
8142
8143 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8144 {
8145 struct drm_device *dev = crtc->dev;
8146 struct drm_i915_private *dev_priv = dev->dev_private;
8147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8148 uint32_t cntl = 0, size = 0;
8149
8150 if (base) {
8151 unsigned int width = intel_crtc->cursor_width;
8152 unsigned int height = intel_crtc->cursor_height;
8153 unsigned int stride = roundup_pow_of_two(width) * 4;
8154
8155 switch (stride) {
8156 default:
8157 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8158 width, stride);
8159 stride = 256;
8160 /* fallthrough */
8161 case 256:
8162 case 512:
8163 case 1024:
8164 case 2048:
8165 break;
8166 }
8167
8168 cntl |= CURSOR_ENABLE |
8169 CURSOR_GAMMA_ENABLE |
8170 CURSOR_FORMAT_ARGB |
8171 CURSOR_STRIDE(stride);
8172
8173 size = (height << 12) | width;
8174 }
8175
8176 if (intel_crtc->cursor_cntl != 0 &&
8177 (intel_crtc->cursor_base != base ||
8178 intel_crtc->cursor_size != size ||
8179 intel_crtc->cursor_cntl != cntl)) {
8180 /* On these chipsets we can only modify the base/size/stride
8181 * whilst the cursor is disabled.
8182 */
8183 I915_WRITE(_CURACNTR, 0);
8184 POSTING_READ(_CURACNTR);
8185 intel_crtc->cursor_cntl = 0;
8186 }
8187
8188 if (intel_crtc->cursor_base != base) {
8189 I915_WRITE(_CURABASE, base);
8190 intel_crtc->cursor_base = base;
8191 }
8192
8193 if (intel_crtc->cursor_size != size) {
8194 I915_WRITE(CURSIZE, size);
8195 intel_crtc->cursor_size = size;
8196 }
8197
8198 if (intel_crtc->cursor_cntl != cntl) {
8199 I915_WRITE(_CURACNTR, cntl);
8200 POSTING_READ(_CURACNTR);
8201 intel_crtc->cursor_cntl = cntl;
8202 }
8203 }
8204
8205 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8206 {
8207 struct drm_device *dev = crtc->dev;
8208 struct drm_i915_private *dev_priv = dev->dev_private;
8209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8210 int pipe = intel_crtc->pipe;
8211 uint32_t cntl;
8212
8213 cntl = 0;
8214 if (base) {
8215 cntl = MCURSOR_GAMMA_ENABLE;
8216 switch (intel_crtc->cursor_width) {
8217 case 64:
8218 cntl |= CURSOR_MODE_64_ARGB_AX;
8219 break;
8220 case 128:
8221 cntl |= CURSOR_MODE_128_ARGB_AX;
8222 break;
8223 case 256:
8224 cntl |= CURSOR_MODE_256_ARGB_AX;
8225 break;
8226 default:
8227 MISSING_CASE(intel_crtc->cursor_width);
8228 return;
8229 }
8230 cntl |= pipe << 28; /* Connect to correct pipe */
8231
8232 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8233 cntl |= CURSOR_PIPE_CSC_ENABLE;
8234 }
8235
8236 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8237 cntl |= CURSOR_ROTATE_180;
8238
8239 if (intel_crtc->cursor_cntl != cntl) {
8240 I915_WRITE(CURCNTR(pipe), cntl);
8241 POSTING_READ(CURCNTR(pipe));
8242 intel_crtc->cursor_cntl = cntl;
8243 }
8244
8245 /* and commit changes on next vblank */
8246 I915_WRITE(CURBASE(pipe), base);
8247 POSTING_READ(CURBASE(pipe));
8248
8249 intel_crtc->cursor_base = base;
8250 }
8251
8252 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8253 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8254 bool on)
8255 {
8256 struct drm_device *dev = crtc->dev;
8257 struct drm_i915_private *dev_priv = dev->dev_private;
8258 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8259 int pipe = intel_crtc->pipe;
8260 int x = crtc->cursor_x;
8261 int y = crtc->cursor_y;
8262 u32 base = 0, pos = 0;
8263
8264 if (on)
8265 base = intel_crtc->cursor_addr;
8266
8267 if (x >= intel_crtc->config.pipe_src_w)
8268 base = 0;
8269
8270 if (y >= intel_crtc->config.pipe_src_h)
8271 base = 0;
8272
8273 if (x < 0) {
8274 if (x + intel_crtc->cursor_width <= 0)
8275 base = 0;
8276
8277 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8278 x = -x;
8279 }
8280 pos |= x << CURSOR_X_SHIFT;
8281
8282 if (y < 0) {
8283 if (y + intel_crtc->cursor_height <= 0)
8284 base = 0;
8285
8286 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8287 y = -y;
8288 }
8289 pos |= y << CURSOR_Y_SHIFT;
8290
8291 if (base == 0 && intel_crtc->cursor_base == 0)
8292 return;
8293
8294 I915_WRITE(CURPOS(pipe), pos);
8295
8296 /* ILK+ do this automagically */
8297 if (HAS_GMCH_DISPLAY(dev) &&
8298 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8299 base += (intel_crtc->cursor_height *
8300 intel_crtc->cursor_width - 1) * 4;
8301 }
8302
8303 if (IS_845G(dev) || IS_I865G(dev))
8304 i845_update_cursor(crtc, base);
8305 else
8306 i9xx_update_cursor(crtc, base);
8307 }
8308
8309 static bool cursor_size_ok(struct drm_device *dev,
8310 uint32_t width, uint32_t height)
8311 {
8312 if (width == 0 || height == 0)
8313 return false;
8314
8315 /*
8316 * 845g/865g are special in that they are only limited by
8317 * the width of their cursors, the height is arbitrary up to
8318 * the precision of the register. Everything else requires
8319 * square cursors, limited to a few power-of-two sizes.
8320 */
8321 if (IS_845G(dev) || IS_I865G(dev)) {
8322 if ((width & 63) != 0)
8323 return false;
8324
8325 if (width > (IS_845G(dev) ? 64 : 512))
8326 return false;
8327
8328 if (height > 1023)
8329 return false;
8330 } else {
8331 switch (width | height) {
8332 case 256:
8333 case 128:
8334 if (IS_GEN2(dev))
8335 return false;
8336 case 64:
8337 break;
8338 default:
8339 return false;
8340 }
8341 }
8342
8343 return true;
8344 }
8345
8346 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8347 u16 *blue, uint32_t start, uint32_t size)
8348 {
8349 int end = (start + size > 256) ? 256 : start + size, i;
8350 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8351
8352 for (i = start; i < end; i++) {
8353 intel_crtc->lut_r[i] = red[i] >> 8;
8354 intel_crtc->lut_g[i] = green[i] >> 8;
8355 intel_crtc->lut_b[i] = blue[i] >> 8;
8356 }
8357
8358 intel_crtc_load_lut(crtc);
8359 }
8360
8361 /* VESA 640x480x72Hz mode to set on the pipe */
8362 static struct drm_display_mode load_detect_mode = {
8363 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8364 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8365 };
8366
8367 struct drm_framebuffer *
8368 __intel_framebuffer_create(struct drm_device *dev,
8369 struct drm_mode_fb_cmd2 *mode_cmd,
8370 struct drm_i915_gem_object *obj)
8371 {
8372 struct intel_framebuffer *intel_fb;
8373 int ret;
8374
8375 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8376 if (!intel_fb) {
8377 drm_gem_object_unreference(&obj->base);
8378 return ERR_PTR(-ENOMEM);
8379 }
8380
8381 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8382 if (ret)
8383 goto err;
8384
8385 return &intel_fb->base;
8386 err:
8387 drm_gem_object_unreference(&obj->base);
8388 kfree(intel_fb);
8389
8390 return ERR_PTR(ret);
8391 }
8392
8393 static struct drm_framebuffer *
8394 intel_framebuffer_create(struct drm_device *dev,
8395 struct drm_mode_fb_cmd2 *mode_cmd,
8396 struct drm_i915_gem_object *obj)
8397 {
8398 struct drm_framebuffer *fb;
8399 int ret;
8400
8401 ret = i915_mutex_lock_interruptible(dev);
8402 if (ret)
8403 return ERR_PTR(ret);
8404 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8405 mutex_unlock(&dev->struct_mutex);
8406
8407 return fb;
8408 }
8409
8410 static u32
8411 intel_framebuffer_pitch_for_width(int width, int bpp)
8412 {
8413 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8414 return ALIGN(pitch, 64);
8415 }
8416
8417 static u32
8418 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8419 {
8420 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8421 return PAGE_ALIGN(pitch * mode->vdisplay);
8422 }
8423
8424 static struct drm_framebuffer *
8425 intel_framebuffer_create_for_mode(struct drm_device *dev,
8426 struct drm_display_mode *mode,
8427 int depth, int bpp)
8428 {
8429 struct drm_i915_gem_object *obj;
8430 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8431
8432 obj = i915_gem_alloc_object(dev,
8433 intel_framebuffer_size_for_mode(mode, bpp));
8434 if (obj == NULL)
8435 return ERR_PTR(-ENOMEM);
8436
8437 mode_cmd.width = mode->hdisplay;
8438 mode_cmd.height = mode->vdisplay;
8439 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8440 bpp);
8441 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8442
8443 return intel_framebuffer_create(dev, &mode_cmd, obj);
8444 }
8445
8446 static struct drm_framebuffer *
8447 mode_fits_in_fbdev(struct drm_device *dev,
8448 struct drm_display_mode *mode)
8449 {
8450 #ifdef CONFIG_DRM_I915_FBDEV
8451 struct drm_i915_private *dev_priv = dev->dev_private;
8452 struct drm_i915_gem_object *obj;
8453 struct drm_framebuffer *fb;
8454
8455 if (!dev_priv->fbdev)
8456 return NULL;
8457
8458 if (!dev_priv->fbdev->fb)
8459 return NULL;
8460
8461 obj = dev_priv->fbdev->fb->obj;
8462 BUG_ON(!obj);
8463
8464 fb = &dev_priv->fbdev->fb->base;
8465 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8466 fb->bits_per_pixel))
8467 return NULL;
8468
8469 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8470 return NULL;
8471
8472 return fb;
8473 #else
8474 return NULL;
8475 #endif
8476 }
8477
8478 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8479 struct drm_display_mode *mode,
8480 struct intel_load_detect_pipe *old,
8481 struct drm_modeset_acquire_ctx *ctx)
8482 {
8483 struct intel_crtc *intel_crtc;
8484 struct intel_encoder *intel_encoder =
8485 intel_attached_encoder(connector);
8486 struct drm_crtc *possible_crtc;
8487 struct drm_encoder *encoder = &intel_encoder->base;
8488 struct drm_crtc *crtc = NULL;
8489 struct drm_device *dev = encoder->dev;
8490 struct drm_framebuffer *fb;
8491 struct drm_mode_config *config = &dev->mode_config;
8492 int ret, i = -1;
8493
8494 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8495 connector->base.id, connector->name,
8496 encoder->base.id, encoder->name);
8497
8498 retry:
8499 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8500 if (ret)
8501 goto fail_unlock;
8502
8503 /*
8504 * Algorithm gets a little messy:
8505 *
8506 * - if the connector already has an assigned crtc, use it (but make
8507 * sure it's on first)
8508 *
8509 * - try to find the first unused crtc that can drive this connector,
8510 * and use that if we find one
8511 */
8512
8513 /* See if we already have a CRTC for this connector */
8514 if (encoder->crtc) {
8515 crtc = encoder->crtc;
8516
8517 ret = drm_modeset_lock(&crtc->mutex, ctx);
8518 if (ret)
8519 goto fail_unlock;
8520 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8521 if (ret)
8522 goto fail_unlock;
8523
8524 old->dpms_mode = connector->dpms;
8525 old->load_detect_temp = false;
8526
8527 /* Make sure the crtc and connector are running */
8528 if (connector->dpms != DRM_MODE_DPMS_ON)
8529 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8530
8531 return true;
8532 }
8533
8534 /* Find an unused one (if possible) */
8535 for_each_crtc(dev, possible_crtc) {
8536 i++;
8537 if (!(encoder->possible_crtcs & (1 << i)))
8538 continue;
8539 if (possible_crtc->enabled)
8540 continue;
8541 /* This can occur when applying the pipe A quirk on resume. */
8542 if (to_intel_crtc(possible_crtc)->new_enabled)
8543 continue;
8544
8545 crtc = possible_crtc;
8546 break;
8547 }
8548
8549 /*
8550 * If we didn't find an unused CRTC, don't use any.
8551 */
8552 if (!crtc) {
8553 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8554 goto fail_unlock;
8555 }
8556
8557 ret = drm_modeset_lock(&crtc->mutex, ctx);
8558 if (ret)
8559 goto fail_unlock;
8560 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8561 if (ret)
8562 goto fail_unlock;
8563 intel_encoder->new_crtc = to_intel_crtc(crtc);
8564 to_intel_connector(connector)->new_encoder = intel_encoder;
8565
8566 intel_crtc = to_intel_crtc(crtc);
8567 intel_crtc->new_enabled = true;
8568 intel_crtc->new_config = &intel_crtc->config;
8569 old->dpms_mode = connector->dpms;
8570 old->load_detect_temp = true;
8571 old->release_fb = NULL;
8572
8573 if (!mode)
8574 mode = &load_detect_mode;
8575
8576 /* We need a framebuffer large enough to accommodate all accesses
8577 * that the plane may generate whilst we perform load detection.
8578 * We can not rely on the fbcon either being present (we get called
8579 * during its initialisation to detect all boot displays, or it may
8580 * not even exist) or that it is large enough to satisfy the
8581 * requested mode.
8582 */
8583 fb = mode_fits_in_fbdev(dev, mode);
8584 if (fb == NULL) {
8585 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8586 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8587 old->release_fb = fb;
8588 } else
8589 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8590 if (IS_ERR(fb)) {
8591 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8592 goto fail;
8593 }
8594
8595 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8596 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8597 if (old->release_fb)
8598 old->release_fb->funcs->destroy(old->release_fb);
8599 goto fail;
8600 }
8601
8602 /* let the connector get through one full cycle before testing */
8603 intel_wait_for_vblank(dev, intel_crtc->pipe);
8604 return true;
8605
8606 fail:
8607 intel_crtc->new_enabled = crtc->enabled;
8608 if (intel_crtc->new_enabled)
8609 intel_crtc->new_config = &intel_crtc->config;
8610 else
8611 intel_crtc->new_config = NULL;
8612 fail_unlock:
8613 if (ret == -EDEADLK) {
8614 drm_modeset_backoff(ctx);
8615 goto retry;
8616 }
8617
8618 return false;
8619 }
8620
8621 void intel_release_load_detect_pipe(struct drm_connector *connector,
8622 struct intel_load_detect_pipe *old)
8623 {
8624 struct intel_encoder *intel_encoder =
8625 intel_attached_encoder(connector);
8626 struct drm_encoder *encoder = &intel_encoder->base;
8627 struct drm_crtc *crtc = encoder->crtc;
8628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8629
8630 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8631 connector->base.id, connector->name,
8632 encoder->base.id, encoder->name);
8633
8634 if (old->load_detect_temp) {
8635 to_intel_connector(connector)->new_encoder = NULL;
8636 intel_encoder->new_crtc = NULL;
8637 intel_crtc->new_enabled = false;
8638 intel_crtc->new_config = NULL;
8639 intel_set_mode(crtc, NULL, 0, 0, NULL);
8640
8641 if (old->release_fb) {
8642 drm_framebuffer_unregister_private(old->release_fb);
8643 drm_framebuffer_unreference(old->release_fb);
8644 }
8645
8646 return;
8647 }
8648
8649 /* Switch crtc and encoder back off if necessary */
8650 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8651 connector->funcs->dpms(connector, old->dpms_mode);
8652 }
8653
8654 static int i9xx_pll_refclk(struct drm_device *dev,
8655 const struct intel_crtc_config *pipe_config)
8656 {
8657 struct drm_i915_private *dev_priv = dev->dev_private;
8658 u32 dpll = pipe_config->dpll_hw_state.dpll;
8659
8660 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8661 return dev_priv->vbt.lvds_ssc_freq;
8662 else if (HAS_PCH_SPLIT(dev))
8663 return 120000;
8664 else if (!IS_GEN2(dev))
8665 return 96000;
8666 else
8667 return 48000;
8668 }
8669
8670 /* Returns the clock of the currently programmed mode of the given pipe. */
8671 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8672 struct intel_crtc_config *pipe_config)
8673 {
8674 struct drm_device *dev = crtc->base.dev;
8675 struct drm_i915_private *dev_priv = dev->dev_private;
8676 int pipe = pipe_config->cpu_transcoder;
8677 u32 dpll = pipe_config->dpll_hw_state.dpll;
8678 u32 fp;
8679 intel_clock_t clock;
8680 int refclk = i9xx_pll_refclk(dev, pipe_config);
8681
8682 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8683 fp = pipe_config->dpll_hw_state.fp0;
8684 else
8685 fp = pipe_config->dpll_hw_state.fp1;
8686
8687 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8688 if (IS_PINEVIEW(dev)) {
8689 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8690 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8691 } else {
8692 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8693 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8694 }
8695
8696 if (!IS_GEN2(dev)) {
8697 if (IS_PINEVIEW(dev))
8698 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8699 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8700 else
8701 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8702 DPLL_FPA01_P1_POST_DIV_SHIFT);
8703
8704 switch (dpll & DPLL_MODE_MASK) {
8705 case DPLLB_MODE_DAC_SERIAL:
8706 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8707 5 : 10;
8708 break;
8709 case DPLLB_MODE_LVDS:
8710 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8711 7 : 14;
8712 break;
8713 default:
8714 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8715 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8716 return;
8717 }
8718
8719 if (IS_PINEVIEW(dev))
8720 pineview_clock(refclk, &clock);
8721 else
8722 i9xx_clock(refclk, &clock);
8723 } else {
8724 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8725 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8726
8727 if (is_lvds) {
8728 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8729 DPLL_FPA01_P1_POST_DIV_SHIFT);
8730
8731 if (lvds & LVDS_CLKB_POWER_UP)
8732 clock.p2 = 7;
8733 else
8734 clock.p2 = 14;
8735 } else {
8736 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8737 clock.p1 = 2;
8738 else {
8739 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8740 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8741 }
8742 if (dpll & PLL_P2_DIVIDE_BY_4)
8743 clock.p2 = 4;
8744 else
8745 clock.p2 = 2;
8746 }
8747
8748 i9xx_clock(refclk, &clock);
8749 }
8750
8751 /*
8752 * This value includes pixel_multiplier. We will use
8753 * port_clock to compute adjusted_mode.crtc_clock in the
8754 * encoder's get_config() function.
8755 */
8756 pipe_config->port_clock = clock.dot;
8757 }
8758
8759 int intel_dotclock_calculate(int link_freq,
8760 const struct intel_link_m_n *m_n)
8761 {
8762 /*
8763 * The calculation for the data clock is:
8764 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8765 * But we want to avoid losing precison if possible, so:
8766 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8767 *
8768 * and the link clock is simpler:
8769 * link_clock = (m * link_clock) / n
8770 */
8771
8772 if (!m_n->link_n)
8773 return 0;
8774
8775 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8776 }
8777
8778 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8779 struct intel_crtc_config *pipe_config)
8780 {
8781 struct drm_device *dev = crtc->base.dev;
8782
8783 /* read out port_clock from the DPLL */
8784 i9xx_crtc_clock_get(crtc, pipe_config);
8785
8786 /*
8787 * This value does not include pixel_multiplier.
8788 * We will check that port_clock and adjusted_mode.crtc_clock
8789 * agree once we know their relationship in the encoder's
8790 * get_config() function.
8791 */
8792 pipe_config->adjusted_mode.crtc_clock =
8793 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8794 &pipe_config->fdi_m_n);
8795 }
8796
8797 /** Returns the currently programmed mode of the given pipe. */
8798 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8799 struct drm_crtc *crtc)
8800 {
8801 struct drm_i915_private *dev_priv = dev->dev_private;
8802 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8803 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8804 struct drm_display_mode *mode;
8805 struct intel_crtc_config pipe_config;
8806 int htot = I915_READ(HTOTAL(cpu_transcoder));
8807 int hsync = I915_READ(HSYNC(cpu_transcoder));
8808 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8809 int vsync = I915_READ(VSYNC(cpu_transcoder));
8810 enum pipe pipe = intel_crtc->pipe;
8811
8812 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8813 if (!mode)
8814 return NULL;
8815
8816 /*
8817 * Construct a pipe_config sufficient for getting the clock info
8818 * back out of crtc_clock_get.
8819 *
8820 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8821 * to use a real value here instead.
8822 */
8823 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8824 pipe_config.pixel_multiplier = 1;
8825 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8826 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8827 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8828 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8829
8830 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8831 mode->hdisplay = (htot & 0xffff) + 1;
8832 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8833 mode->hsync_start = (hsync & 0xffff) + 1;
8834 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8835 mode->vdisplay = (vtot & 0xffff) + 1;
8836 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8837 mode->vsync_start = (vsync & 0xffff) + 1;
8838 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8839
8840 drm_mode_set_name(mode);
8841
8842 return mode;
8843 }
8844
8845 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8846 {
8847 struct drm_device *dev = crtc->dev;
8848 struct drm_i915_private *dev_priv = dev->dev_private;
8849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8850
8851 if (!HAS_GMCH_DISPLAY(dev))
8852 return;
8853
8854 if (!dev_priv->lvds_downclock_avail)
8855 return;
8856
8857 /*
8858 * Since this is called by a timer, we should never get here in
8859 * the manual case.
8860 */
8861 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8862 int pipe = intel_crtc->pipe;
8863 int dpll_reg = DPLL(pipe);
8864 int dpll;
8865
8866 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8867
8868 assert_panel_unlocked(dev_priv, pipe);
8869
8870 dpll = I915_READ(dpll_reg);
8871 dpll |= DISPLAY_RATE_SELECT_FPA1;
8872 I915_WRITE(dpll_reg, dpll);
8873 intel_wait_for_vblank(dev, pipe);
8874 dpll = I915_READ(dpll_reg);
8875 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8876 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8877 }
8878
8879 }
8880
8881 void intel_mark_busy(struct drm_device *dev)
8882 {
8883 struct drm_i915_private *dev_priv = dev->dev_private;
8884
8885 if (dev_priv->mm.busy)
8886 return;
8887
8888 intel_runtime_pm_get(dev_priv);
8889 i915_update_gfx_val(dev_priv);
8890 dev_priv->mm.busy = true;
8891 }
8892
8893 void intel_mark_idle(struct drm_device *dev)
8894 {
8895 struct drm_i915_private *dev_priv = dev->dev_private;
8896 struct drm_crtc *crtc;
8897
8898 if (!dev_priv->mm.busy)
8899 return;
8900
8901 dev_priv->mm.busy = false;
8902
8903 if (!i915.powersave)
8904 goto out;
8905
8906 for_each_crtc(dev, crtc) {
8907 if (!crtc->primary->fb)
8908 continue;
8909
8910 intel_decrease_pllclock(crtc);
8911 }
8912
8913 if (INTEL_INFO(dev)->gen >= 6)
8914 gen6_rps_idle(dev->dev_private);
8915
8916 out:
8917 intel_runtime_pm_put(dev_priv);
8918 }
8919
8920 static void intel_crtc_destroy(struct drm_crtc *crtc)
8921 {
8922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8923 struct drm_device *dev = crtc->dev;
8924 struct intel_unpin_work *work;
8925
8926 spin_lock_irq(&dev->event_lock);
8927 work = intel_crtc->unpin_work;
8928 intel_crtc->unpin_work = NULL;
8929 spin_unlock_irq(&dev->event_lock);
8930
8931 if (work) {
8932 cancel_work_sync(&work->work);
8933 kfree(work);
8934 }
8935
8936 drm_crtc_cleanup(crtc);
8937
8938 kfree(intel_crtc);
8939 }
8940
8941 static void intel_unpin_work_fn(struct work_struct *__work)
8942 {
8943 struct intel_unpin_work *work =
8944 container_of(__work, struct intel_unpin_work, work);
8945 struct drm_device *dev = work->crtc->dev;
8946 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
8947
8948 mutex_lock(&dev->struct_mutex);
8949 intel_unpin_fb_obj(work->old_fb_obj);
8950 drm_gem_object_unreference(&work->pending_flip_obj->base);
8951 drm_gem_object_unreference(&work->old_fb_obj->base);
8952
8953 intel_fbc_update(dev);
8954
8955 if (work->flip_queued_req)
8956 i915_gem_request_assign(&work->flip_queued_req, NULL);
8957 mutex_unlock(&dev->struct_mutex);
8958
8959 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
8960
8961 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8962 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8963
8964 kfree(work);
8965 }
8966
8967 static void do_intel_finish_page_flip(struct drm_device *dev,
8968 struct drm_crtc *crtc)
8969 {
8970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8971 struct intel_unpin_work *work;
8972 unsigned long flags;
8973
8974 /* Ignore early vblank irqs */
8975 if (intel_crtc == NULL)
8976 return;
8977
8978 /*
8979 * This is called both by irq handlers and the reset code (to complete
8980 * lost pageflips) so needs the full irqsave spinlocks.
8981 */
8982 spin_lock_irqsave(&dev->event_lock, flags);
8983 work = intel_crtc->unpin_work;
8984
8985 /* Ensure we don't miss a work->pending update ... */
8986 smp_rmb();
8987
8988 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8989 spin_unlock_irqrestore(&dev->event_lock, flags);
8990 return;
8991 }
8992
8993 page_flip_completed(intel_crtc);
8994
8995 spin_unlock_irqrestore(&dev->event_lock, flags);
8996 }
8997
8998 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8999 {
9000 struct drm_i915_private *dev_priv = dev->dev_private;
9001 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9002
9003 do_intel_finish_page_flip(dev, crtc);
9004 }
9005
9006 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9007 {
9008 struct drm_i915_private *dev_priv = dev->dev_private;
9009 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9010
9011 do_intel_finish_page_flip(dev, crtc);
9012 }
9013
9014 /* Is 'a' after or equal to 'b'? */
9015 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9016 {
9017 return !((a - b) & 0x80000000);
9018 }
9019
9020 static bool page_flip_finished(struct intel_crtc *crtc)
9021 {
9022 struct drm_device *dev = crtc->base.dev;
9023 struct drm_i915_private *dev_priv = dev->dev_private;
9024
9025 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9026 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9027 return true;
9028
9029 /*
9030 * The relevant registers doen't exist on pre-ctg.
9031 * As the flip done interrupt doesn't trigger for mmio
9032 * flips on gmch platforms, a flip count check isn't
9033 * really needed there. But since ctg has the registers,
9034 * include it in the check anyway.
9035 */
9036 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9037 return true;
9038
9039 /*
9040 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9041 * used the same base address. In that case the mmio flip might
9042 * have completed, but the CS hasn't even executed the flip yet.
9043 *
9044 * A flip count check isn't enough as the CS might have updated
9045 * the base address just after start of vblank, but before we
9046 * managed to process the interrupt. This means we'd complete the
9047 * CS flip too soon.
9048 *
9049 * Combining both checks should get us a good enough result. It may
9050 * still happen that the CS flip has been executed, but has not
9051 * yet actually completed. But in case the base address is the same
9052 * anyway, we don't really care.
9053 */
9054 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9055 crtc->unpin_work->gtt_offset &&
9056 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9057 crtc->unpin_work->flip_count);
9058 }
9059
9060 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9061 {
9062 struct drm_i915_private *dev_priv = dev->dev_private;
9063 struct intel_crtc *intel_crtc =
9064 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9065 unsigned long flags;
9066
9067
9068 /*
9069 * This is called both by irq handlers and the reset code (to complete
9070 * lost pageflips) so needs the full irqsave spinlocks.
9071 *
9072 * NB: An MMIO update of the plane base pointer will also
9073 * generate a page-flip completion irq, i.e. every modeset
9074 * is also accompanied by a spurious intel_prepare_page_flip().
9075 */
9076 spin_lock_irqsave(&dev->event_lock, flags);
9077 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9078 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9079 spin_unlock_irqrestore(&dev->event_lock, flags);
9080 }
9081
9082 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9083 {
9084 /* Ensure that the work item is consistent when activating it ... */
9085 smp_wmb();
9086 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9087 /* and that it is marked active as soon as the irq could fire. */
9088 smp_wmb();
9089 }
9090
9091 static int intel_gen2_queue_flip(struct drm_device *dev,
9092 struct drm_crtc *crtc,
9093 struct drm_framebuffer *fb,
9094 struct drm_i915_gem_object *obj,
9095 struct intel_engine_cs *ring,
9096 uint32_t flags)
9097 {
9098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9099 u32 flip_mask;
9100 int ret;
9101
9102 ret = intel_ring_begin(ring, 6);
9103 if (ret)
9104 return ret;
9105
9106 /* Can't queue multiple flips, so wait for the previous
9107 * one to finish before executing the next.
9108 */
9109 if (intel_crtc->plane)
9110 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9111 else
9112 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9113 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9114 intel_ring_emit(ring, MI_NOOP);
9115 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9116 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9117 intel_ring_emit(ring, fb->pitches[0]);
9118 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9119 intel_ring_emit(ring, 0); /* aux display base address, unused */
9120
9121 intel_mark_page_flip_active(intel_crtc);
9122 __intel_ring_advance(ring);
9123 return 0;
9124 }
9125
9126 static int intel_gen3_queue_flip(struct drm_device *dev,
9127 struct drm_crtc *crtc,
9128 struct drm_framebuffer *fb,
9129 struct drm_i915_gem_object *obj,
9130 struct intel_engine_cs *ring,
9131 uint32_t flags)
9132 {
9133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9134 u32 flip_mask;
9135 int ret;
9136
9137 ret = intel_ring_begin(ring, 6);
9138 if (ret)
9139 return ret;
9140
9141 if (intel_crtc->plane)
9142 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9143 else
9144 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9145 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9146 intel_ring_emit(ring, MI_NOOP);
9147 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9148 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9149 intel_ring_emit(ring, fb->pitches[0]);
9150 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9151 intel_ring_emit(ring, MI_NOOP);
9152
9153 intel_mark_page_flip_active(intel_crtc);
9154 __intel_ring_advance(ring);
9155 return 0;
9156 }
9157
9158 static int intel_gen4_queue_flip(struct drm_device *dev,
9159 struct drm_crtc *crtc,
9160 struct drm_framebuffer *fb,
9161 struct drm_i915_gem_object *obj,
9162 struct intel_engine_cs *ring,
9163 uint32_t flags)
9164 {
9165 struct drm_i915_private *dev_priv = dev->dev_private;
9166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9167 uint32_t pf, pipesrc;
9168 int ret;
9169
9170 ret = intel_ring_begin(ring, 4);
9171 if (ret)
9172 return ret;
9173
9174 /* i965+ uses the linear or tiled offsets from the
9175 * Display Registers (which do not change across a page-flip)
9176 * so we need only reprogram the base address.
9177 */
9178 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9179 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9180 intel_ring_emit(ring, fb->pitches[0]);
9181 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9182 obj->tiling_mode);
9183
9184 /* XXX Enabling the panel-fitter across page-flip is so far
9185 * untested on non-native modes, so ignore it for now.
9186 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9187 */
9188 pf = 0;
9189 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9190 intel_ring_emit(ring, pf | pipesrc);
9191
9192 intel_mark_page_flip_active(intel_crtc);
9193 __intel_ring_advance(ring);
9194 return 0;
9195 }
9196
9197 static int intel_gen6_queue_flip(struct drm_device *dev,
9198 struct drm_crtc *crtc,
9199 struct drm_framebuffer *fb,
9200 struct drm_i915_gem_object *obj,
9201 struct intel_engine_cs *ring,
9202 uint32_t flags)
9203 {
9204 struct drm_i915_private *dev_priv = dev->dev_private;
9205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9206 uint32_t pf, pipesrc;
9207 int ret;
9208
9209 ret = intel_ring_begin(ring, 4);
9210 if (ret)
9211 return ret;
9212
9213 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9214 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9215 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9216 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9217
9218 /* Contrary to the suggestions in the documentation,
9219 * "Enable Panel Fitter" does not seem to be required when page
9220 * flipping with a non-native mode, and worse causes a normal
9221 * modeset to fail.
9222 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9223 */
9224 pf = 0;
9225 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9226 intel_ring_emit(ring, pf | pipesrc);
9227
9228 intel_mark_page_flip_active(intel_crtc);
9229 __intel_ring_advance(ring);
9230 return 0;
9231 }
9232
9233 static int intel_gen7_queue_flip(struct drm_device *dev,
9234 struct drm_crtc *crtc,
9235 struct drm_framebuffer *fb,
9236 struct drm_i915_gem_object *obj,
9237 struct intel_engine_cs *ring,
9238 uint32_t flags)
9239 {
9240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9241 uint32_t plane_bit = 0;
9242 int len, ret;
9243
9244 switch (intel_crtc->plane) {
9245 case PLANE_A:
9246 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9247 break;
9248 case PLANE_B:
9249 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9250 break;
9251 case PLANE_C:
9252 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9253 break;
9254 default:
9255 WARN_ONCE(1, "unknown plane in flip command\n");
9256 return -ENODEV;
9257 }
9258
9259 len = 4;
9260 if (ring->id == RCS) {
9261 len += 6;
9262 /*
9263 * On Gen 8, SRM is now taking an extra dword to accommodate
9264 * 48bits addresses, and we need a NOOP for the batch size to
9265 * stay even.
9266 */
9267 if (IS_GEN8(dev))
9268 len += 2;
9269 }
9270
9271 /*
9272 * BSpec MI_DISPLAY_FLIP for IVB:
9273 * "The full packet must be contained within the same cache line."
9274 *
9275 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9276 * cacheline, if we ever start emitting more commands before
9277 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9278 * then do the cacheline alignment, and finally emit the
9279 * MI_DISPLAY_FLIP.
9280 */
9281 ret = intel_ring_cacheline_align(ring);
9282 if (ret)
9283 return ret;
9284
9285 ret = intel_ring_begin(ring, len);
9286 if (ret)
9287 return ret;
9288
9289 /* Unmask the flip-done completion message. Note that the bspec says that
9290 * we should do this for both the BCS and RCS, and that we must not unmask
9291 * more than one flip event at any time (or ensure that one flip message
9292 * can be sent by waiting for flip-done prior to queueing new flips).
9293 * Experimentation says that BCS works despite DERRMR masking all
9294 * flip-done completion events and that unmasking all planes at once
9295 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9296 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9297 */
9298 if (ring->id == RCS) {
9299 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9300 intel_ring_emit(ring, DERRMR);
9301 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9302 DERRMR_PIPEB_PRI_FLIP_DONE |
9303 DERRMR_PIPEC_PRI_FLIP_DONE));
9304 if (IS_GEN8(dev))
9305 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9306 MI_SRM_LRM_GLOBAL_GTT);
9307 else
9308 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9309 MI_SRM_LRM_GLOBAL_GTT);
9310 intel_ring_emit(ring, DERRMR);
9311 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9312 if (IS_GEN8(dev)) {
9313 intel_ring_emit(ring, 0);
9314 intel_ring_emit(ring, MI_NOOP);
9315 }
9316 }
9317
9318 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9319 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9320 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9321 intel_ring_emit(ring, (MI_NOOP));
9322
9323 intel_mark_page_flip_active(intel_crtc);
9324 __intel_ring_advance(ring);
9325 return 0;
9326 }
9327
9328 static bool use_mmio_flip(struct intel_engine_cs *ring,
9329 struct drm_i915_gem_object *obj)
9330 {
9331 /*
9332 * This is not being used for older platforms, because
9333 * non-availability of flip done interrupt forces us to use
9334 * CS flips. Older platforms derive flip done using some clever
9335 * tricks involving the flip_pending status bits and vblank irqs.
9336 * So using MMIO flips there would disrupt this mechanism.
9337 */
9338
9339 if (ring == NULL)
9340 return true;
9341
9342 if (INTEL_INFO(ring->dev)->gen < 5)
9343 return false;
9344
9345 if (i915.use_mmio_flip < 0)
9346 return false;
9347 else if (i915.use_mmio_flip > 0)
9348 return true;
9349 else if (i915.enable_execlists)
9350 return true;
9351 else
9352 return ring != i915_gem_request_get_ring(obj->last_read_req);
9353 }
9354
9355 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9356 {
9357 struct drm_device *dev = intel_crtc->base.dev;
9358 struct drm_i915_private *dev_priv = dev->dev_private;
9359 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9360 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9361 struct drm_i915_gem_object *obj = intel_fb->obj;
9362 const enum pipe pipe = intel_crtc->pipe;
9363 u32 ctl, stride;
9364
9365 ctl = I915_READ(PLANE_CTL(pipe, 0));
9366 ctl &= ~PLANE_CTL_TILED_MASK;
9367 if (obj->tiling_mode == I915_TILING_X)
9368 ctl |= PLANE_CTL_TILED_X;
9369
9370 /*
9371 * The stride is either expressed as a multiple of 64 bytes chunks for
9372 * linear buffers or in number of tiles for tiled buffers.
9373 */
9374 stride = fb->pitches[0] >> 6;
9375 if (obj->tiling_mode == I915_TILING_X)
9376 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9377
9378 /*
9379 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9380 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9381 */
9382 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9383 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9384
9385 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9386 POSTING_READ(PLANE_SURF(pipe, 0));
9387 }
9388
9389 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9390 {
9391 struct drm_device *dev = intel_crtc->base.dev;
9392 struct drm_i915_private *dev_priv = dev->dev_private;
9393 struct intel_framebuffer *intel_fb =
9394 to_intel_framebuffer(intel_crtc->base.primary->fb);
9395 struct drm_i915_gem_object *obj = intel_fb->obj;
9396 u32 dspcntr;
9397 u32 reg;
9398
9399 reg = DSPCNTR(intel_crtc->plane);
9400 dspcntr = I915_READ(reg);
9401
9402 if (obj->tiling_mode != I915_TILING_NONE)
9403 dspcntr |= DISPPLANE_TILED;
9404 else
9405 dspcntr &= ~DISPPLANE_TILED;
9406
9407 I915_WRITE(reg, dspcntr);
9408
9409 I915_WRITE(DSPSURF(intel_crtc->plane),
9410 intel_crtc->unpin_work->gtt_offset);
9411 POSTING_READ(DSPSURF(intel_crtc->plane));
9412
9413 }
9414
9415 /*
9416 * XXX: This is the temporary way to update the plane registers until we get
9417 * around to using the usual plane update functions for MMIO flips
9418 */
9419 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9420 {
9421 struct drm_device *dev = intel_crtc->base.dev;
9422 bool atomic_update;
9423 u32 start_vbl_count;
9424
9425 intel_mark_page_flip_active(intel_crtc);
9426
9427 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9428
9429 if (INTEL_INFO(dev)->gen >= 9)
9430 skl_do_mmio_flip(intel_crtc);
9431 else
9432 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9433 ilk_do_mmio_flip(intel_crtc);
9434
9435 if (atomic_update)
9436 intel_pipe_update_end(intel_crtc, start_vbl_count);
9437 }
9438
9439 static void intel_mmio_flip_work_func(struct work_struct *work)
9440 {
9441 struct intel_crtc *crtc =
9442 container_of(work, struct intel_crtc, mmio_flip.work);
9443 struct intel_mmio_flip *mmio_flip;
9444
9445 mmio_flip = &crtc->mmio_flip;
9446 if (mmio_flip->req)
9447 WARN_ON(__i915_wait_request(mmio_flip->req,
9448 crtc->reset_counter,
9449 false, NULL, NULL) != 0);
9450
9451 intel_do_mmio_flip(crtc);
9452 if (mmio_flip->req) {
9453 mutex_lock(&crtc->base.dev->struct_mutex);
9454 i915_gem_request_assign(&mmio_flip->req, NULL);
9455 mutex_unlock(&crtc->base.dev->struct_mutex);
9456 }
9457 }
9458
9459 static int intel_queue_mmio_flip(struct drm_device *dev,
9460 struct drm_crtc *crtc,
9461 struct drm_framebuffer *fb,
9462 struct drm_i915_gem_object *obj,
9463 struct intel_engine_cs *ring,
9464 uint32_t flags)
9465 {
9466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9467
9468 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9469 obj->last_write_req);
9470
9471 schedule_work(&intel_crtc->mmio_flip.work);
9472
9473 return 0;
9474 }
9475
9476 static int intel_gen9_queue_flip(struct drm_device *dev,
9477 struct drm_crtc *crtc,
9478 struct drm_framebuffer *fb,
9479 struct drm_i915_gem_object *obj,
9480 struct intel_engine_cs *ring,
9481 uint32_t flags)
9482 {
9483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9484 uint32_t plane = 0, stride;
9485 int ret;
9486
9487 switch(intel_crtc->pipe) {
9488 case PIPE_A:
9489 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9490 break;
9491 case PIPE_B:
9492 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9493 break;
9494 case PIPE_C:
9495 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9496 break;
9497 default:
9498 WARN_ONCE(1, "unknown plane in flip command\n");
9499 return -ENODEV;
9500 }
9501
9502 switch (obj->tiling_mode) {
9503 case I915_TILING_NONE:
9504 stride = fb->pitches[0] >> 6;
9505 break;
9506 case I915_TILING_X:
9507 stride = fb->pitches[0] >> 9;
9508 break;
9509 default:
9510 WARN_ONCE(1, "unknown tiling in flip command\n");
9511 return -ENODEV;
9512 }
9513
9514 ret = intel_ring_begin(ring, 10);
9515 if (ret)
9516 return ret;
9517
9518 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9519 intel_ring_emit(ring, DERRMR);
9520 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9521 DERRMR_PIPEB_PRI_FLIP_DONE |
9522 DERRMR_PIPEC_PRI_FLIP_DONE));
9523 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9524 MI_SRM_LRM_GLOBAL_GTT);
9525 intel_ring_emit(ring, DERRMR);
9526 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9527 intel_ring_emit(ring, 0);
9528
9529 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9530 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9531 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9532
9533 intel_mark_page_flip_active(intel_crtc);
9534 __intel_ring_advance(ring);
9535
9536 return 0;
9537 }
9538
9539 static int intel_default_queue_flip(struct drm_device *dev,
9540 struct drm_crtc *crtc,
9541 struct drm_framebuffer *fb,
9542 struct drm_i915_gem_object *obj,
9543 struct intel_engine_cs *ring,
9544 uint32_t flags)
9545 {
9546 return -ENODEV;
9547 }
9548
9549 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9550 struct drm_crtc *crtc)
9551 {
9552 struct drm_i915_private *dev_priv = dev->dev_private;
9553 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9554 struct intel_unpin_work *work = intel_crtc->unpin_work;
9555 u32 addr;
9556
9557 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9558 return true;
9559
9560 if (!work->enable_stall_check)
9561 return false;
9562
9563 if (work->flip_ready_vblank == 0) {
9564 if (work->flip_queued_req &&
9565 !i915_gem_request_completed(work->flip_queued_req, true))
9566 return false;
9567
9568 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9569 }
9570
9571 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9572 return false;
9573
9574 /* Potential stall - if we see that the flip has happened,
9575 * assume a missed interrupt. */
9576 if (INTEL_INFO(dev)->gen >= 4)
9577 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9578 else
9579 addr = I915_READ(DSPADDR(intel_crtc->plane));
9580
9581 /* There is a potential issue here with a false positive after a flip
9582 * to the same address. We could address this by checking for a
9583 * non-incrementing frame counter.
9584 */
9585 return addr == work->gtt_offset;
9586 }
9587
9588 void intel_check_page_flip(struct drm_device *dev, int pipe)
9589 {
9590 struct drm_i915_private *dev_priv = dev->dev_private;
9591 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9593
9594 WARN_ON(!in_irq());
9595
9596 if (crtc == NULL)
9597 return;
9598
9599 spin_lock(&dev->event_lock);
9600 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9601 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9602 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9603 page_flip_completed(intel_crtc);
9604 }
9605 spin_unlock(&dev->event_lock);
9606 }
9607
9608 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9609 struct drm_framebuffer *fb,
9610 struct drm_pending_vblank_event *event,
9611 uint32_t page_flip_flags)
9612 {
9613 struct drm_device *dev = crtc->dev;
9614 struct drm_i915_private *dev_priv = dev->dev_private;
9615 struct drm_framebuffer *old_fb = crtc->primary->fb;
9616 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9617 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9618 struct drm_plane *primary = crtc->primary;
9619 struct intel_plane *intel_plane = to_intel_plane(primary);
9620 enum pipe pipe = intel_crtc->pipe;
9621 struct intel_unpin_work *work;
9622 struct intel_engine_cs *ring;
9623 int ret;
9624
9625 /*
9626 * drm_mode_page_flip_ioctl() should already catch this, but double
9627 * check to be safe. In the future we may enable pageflipping from
9628 * a disabled primary plane.
9629 */
9630 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9631 return -EBUSY;
9632
9633 /* Can't change pixel format via MI display flips. */
9634 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9635 return -EINVAL;
9636
9637 /*
9638 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9639 * Note that pitch changes could also affect these register.
9640 */
9641 if (INTEL_INFO(dev)->gen > 3 &&
9642 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9643 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9644 return -EINVAL;
9645
9646 if (i915_terminally_wedged(&dev_priv->gpu_error))
9647 goto out_hang;
9648
9649 work = kzalloc(sizeof(*work), GFP_KERNEL);
9650 if (work == NULL)
9651 return -ENOMEM;
9652
9653 work->event = event;
9654 work->crtc = crtc;
9655 work->old_fb_obj = intel_fb_obj(old_fb);
9656 INIT_WORK(&work->work, intel_unpin_work_fn);
9657
9658 ret = drm_crtc_vblank_get(crtc);
9659 if (ret)
9660 goto free_work;
9661
9662 /* We borrow the event spin lock for protecting unpin_work */
9663 spin_lock_irq(&dev->event_lock);
9664 if (intel_crtc->unpin_work) {
9665 /* Before declaring the flip queue wedged, check if
9666 * the hardware completed the operation behind our backs.
9667 */
9668 if (__intel_pageflip_stall_check(dev, crtc)) {
9669 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9670 page_flip_completed(intel_crtc);
9671 } else {
9672 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9673 spin_unlock_irq(&dev->event_lock);
9674
9675 drm_crtc_vblank_put(crtc);
9676 kfree(work);
9677 return -EBUSY;
9678 }
9679 }
9680 intel_crtc->unpin_work = work;
9681 spin_unlock_irq(&dev->event_lock);
9682
9683 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9684 flush_workqueue(dev_priv->wq);
9685
9686 ret = i915_mutex_lock_interruptible(dev);
9687 if (ret)
9688 goto cleanup;
9689
9690 /* Reference the objects for the scheduled work. */
9691 drm_gem_object_reference(&work->old_fb_obj->base);
9692 drm_gem_object_reference(&obj->base);
9693
9694 crtc->primary->fb = fb;
9695
9696 work->pending_flip_obj = obj;
9697
9698 atomic_inc(&intel_crtc->unpin_work_count);
9699 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9700
9701 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9702 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9703
9704 if (IS_VALLEYVIEW(dev)) {
9705 ring = &dev_priv->ring[BCS];
9706 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9707 /* vlv: DISPLAY_FLIP fails to change tiling */
9708 ring = NULL;
9709 } else if (IS_IVYBRIDGE(dev)) {
9710 ring = &dev_priv->ring[BCS];
9711 } else if (INTEL_INFO(dev)->gen >= 7) {
9712 ring = i915_gem_request_get_ring(obj->last_read_req);
9713 if (ring == NULL || ring->id != RCS)
9714 ring = &dev_priv->ring[BCS];
9715 } else {
9716 ring = &dev_priv->ring[RCS];
9717 }
9718
9719 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9720 if (ret)
9721 goto cleanup_pending;
9722
9723 work->gtt_offset =
9724 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9725
9726 if (use_mmio_flip(ring, obj)) {
9727 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9728 page_flip_flags);
9729 if (ret)
9730 goto cleanup_unpin;
9731
9732 i915_gem_request_assign(&work->flip_queued_req,
9733 obj->last_write_req);
9734 } else {
9735 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9736 page_flip_flags);
9737 if (ret)
9738 goto cleanup_unpin;
9739
9740 i915_gem_request_assign(&work->flip_queued_req,
9741 intel_ring_get_request(ring));
9742 }
9743
9744 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9745 work->enable_stall_check = true;
9746
9747 i915_gem_track_fb(work->old_fb_obj, obj,
9748 INTEL_FRONTBUFFER_PRIMARY(pipe));
9749
9750 intel_fbc_disable(dev);
9751 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9752 mutex_unlock(&dev->struct_mutex);
9753
9754 trace_i915_flip_request(intel_crtc->plane, obj);
9755
9756 return 0;
9757
9758 cleanup_unpin:
9759 intel_unpin_fb_obj(obj);
9760 cleanup_pending:
9761 atomic_dec(&intel_crtc->unpin_work_count);
9762 crtc->primary->fb = old_fb;
9763 drm_gem_object_unreference(&work->old_fb_obj->base);
9764 drm_gem_object_unreference(&obj->base);
9765 mutex_unlock(&dev->struct_mutex);
9766
9767 cleanup:
9768 spin_lock_irq(&dev->event_lock);
9769 intel_crtc->unpin_work = NULL;
9770 spin_unlock_irq(&dev->event_lock);
9771
9772 drm_crtc_vblank_put(crtc);
9773 free_work:
9774 kfree(work);
9775
9776 if (ret == -EIO) {
9777 out_hang:
9778 ret = primary->funcs->update_plane(primary, crtc, fb,
9779 intel_plane->crtc_x,
9780 intel_plane->crtc_y,
9781 intel_plane->crtc_h,
9782 intel_plane->crtc_w,
9783 intel_plane->src_x,
9784 intel_plane->src_y,
9785 intel_plane->src_h,
9786 intel_plane->src_w);
9787 if (ret == 0 && event) {
9788 spin_lock_irq(&dev->event_lock);
9789 drm_send_vblank_event(dev, pipe, event);
9790 spin_unlock_irq(&dev->event_lock);
9791 }
9792 }
9793 return ret;
9794 }
9795
9796 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9797 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9798 .load_lut = intel_crtc_load_lut,
9799 };
9800
9801 /**
9802 * intel_modeset_update_staged_output_state
9803 *
9804 * Updates the staged output configuration state, e.g. after we've read out the
9805 * current hw state.
9806 */
9807 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9808 {
9809 struct intel_crtc *crtc;
9810 struct intel_encoder *encoder;
9811 struct intel_connector *connector;
9812
9813 list_for_each_entry(connector, &dev->mode_config.connector_list,
9814 base.head) {
9815 connector->new_encoder =
9816 to_intel_encoder(connector->base.encoder);
9817 }
9818
9819 for_each_intel_encoder(dev, encoder) {
9820 encoder->new_crtc =
9821 to_intel_crtc(encoder->base.crtc);
9822 }
9823
9824 for_each_intel_crtc(dev, crtc) {
9825 crtc->new_enabled = crtc->base.enabled;
9826
9827 if (crtc->new_enabled)
9828 crtc->new_config = &crtc->config;
9829 else
9830 crtc->new_config = NULL;
9831 }
9832 }
9833
9834 /**
9835 * intel_modeset_commit_output_state
9836 *
9837 * This function copies the stage display pipe configuration to the real one.
9838 */
9839 static void intel_modeset_commit_output_state(struct drm_device *dev)
9840 {
9841 struct intel_crtc *crtc;
9842 struct intel_encoder *encoder;
9843 struct intel_connector *connector;
9844
9845 list_for_each_entry(connector, &dev->mode_config.connector_list,
9846 base.head) {
9847 connector->base.encoder = &connector->new_encoder->base;
9848 }
9849
9850 for_each_intel_encoder(dev, encoder) {
9851 encoder->base.crtc = &encoder->new_crtc->base;
9852 }
9853
9854 for_each_intel_crtc(dev, crtc) {
9855 crtc->base.enabled = crtc->new_enabled;
9856 }
9857 }
9858
9859 static void
9860 connected_sink_compute_bpp(struct intel_connector *connector,
9861 struct intel_crtc_config *pipe_config)
9862 {
9863 int bpp = pipe_config->pipe_bpp;
9864
9865 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9866 connector->base.base.id,
9867 connector->base.name);
9868
9869 /* Don't use an invalid EDID bpc value */
9870 if (connector->base.display_info.bpc &&
9871 connector->base.display_info.bpc * 3 < bpp) {
9872 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9873 bpp, connector->base.display_info.bpc*3);
9874 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9875 }
9876
9877 /* Clamp bpp to 8 on screens without EDID 1.4 */
9878 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9879 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9880 bpp);
9881 pipe_config->pipe_bpp = 24;
9882 }
9883 }
9884
9885 static int
9886 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9887 struct drm_framebuffer *fb,
9888 struct intel_crtc_config *pipe_config)
9889 {
9890 struct drm_device *dev = crtc->base.dev;
9891 struct intel_connector *connector;
9892 int bpp;
9893
9894 switch (fb->pixel_format) {
9895 case DRM_FORMAT_C8:
9896 bpp = 8*3; /* since we go through a colormap */
9897 break;
9898 case DRM_FORMAT_XRGB1555:
9899 case DRM_FORMAT_ARGB1555:
9900 /* checked in intel_framebuffer_init already */
9901 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9902 return -EINVAL;
9903 case DRM_FORMAT_RGB565:
9904 bpp = 6*3; /* min is 18bpp */
9905 break;
9906 case DRM_FORMAT_XBGR8888:
9907 case DRM_FORMAT_ABGR8888:
9908 /* checked in intel_framebuffer_init already */
9909 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9910 return -EINVAL;
9911 case DRM_FORMAT_XRGB8888:
9912 case DRM_FORMAT_ARGB8888:
9913 bpp = 8*3;
9914 break;
9915 case DRM_FORMAT_XRGB2101010:
9916 case DRM_FORMAT_ARGB2101010:
9917 case DRM_FORMAT_XBGR2101010:
9918 case DRM_FORMAT_ABGR2101010:
9919 /* checked in intel_framebuffer_init already */
9920 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9921 return -EINVAL;
9922 bpp = 10*3;
9923 break;
9924 /* TODO: gen4+ supports 16 bpc floating point, too. */
9925 default:
9926 DRM_DEBUG_KMS("unsupported depth\n");
9927 return -EINVAL;
9928 }
9929
9930 pipe_config->pipe_bpp = bpp;
9931
9932 /* Clamp display bpp to EDID value */
9933 list_for_each_entry(connector, &dev->mode_config.connector_list,
9934 base.head) {
9935 if (!connector->new_encoder ||
9936 connector->new_encoder->new_crtc != crtc)
9937 continue;
9938
9939 connected_sink_compute_bpp(connector, pipe_config);
9940 }
9941
9942 return bpp;
9943 }
9944
9945 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9946 {
9947 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9948 "type: 0x%x flags: 0x%x\n",
9949 mode->crtc_clock,
9950 mode->crtc_hdisplay, mode->crtc_hsync_start,
9951 mode->crtc_hsync_end, mode->crtc_htotal,
9952 mode->crtc_vdisplay, mode->crtc_vsync_start,
9953 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9954 }
9955
9956 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9957 struct intel_crtc_config *pipe_config,
9958 const char *context)
9959 {
9960 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9961 context, pipe_name(crtc->pipe));
9962
9963 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9964 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9965 pipe_config->pipe_bpp, pipe_config->dither);
9966 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9967 pipe_config->has_pch_encoder,
9968 pipe_config->fdi_lanes,
9969 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9970 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9971 pipe_config->fdi_m_n.tu);
9972 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9973 pipe_config->has_dp_encoder,
9974 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9975 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9976 pipe_config->dp_m_n.tu);
9977
9978 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9979 pipe_config->has_dp_encoder,
9980 pipe_config->dp_m2_n2.gmch_m,
9981 pipe_config->dp_m2_n2.gmch_n,
9982 pipe_config->dp_m2_n2.link_m,
9983 pipe_config->dp_m2_n2.link_n,
9984 pipe_config->dp_m2_n2.tu);
9985
9986 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
9987 pipe_config->has_audio,
9988 pipe_config->has_infoframe);
9989
9990 DRM_DEBUG_KMS("requested mode:\n");
9991 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9992 DRM_DEBUG_KMS("adjusted mode:\n");
9993 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9994 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9995 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9996 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9997 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9998 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9999 pipe_config->gmch_pfit.control,
10000 pipe_config->gmch_pfit.pgm_ratios,
10001 pipe_config->gmch_pfit.lvds_border_bits);
10002 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10003 pipe_config->pch_pfit.pos,
10004 pipe_config->pch_pfit.size,
10005 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10006 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10007 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10008 }
10009
10010 static bool encoders_cloneable(const struct intel_encoder *a,
10011 const struct intel_encoder *b)
10012 {
10013 /* masks could be asymmetric, so check both ways */
10014 return a == b || (a->cloneable & (1 << b->type) &&
10015 b->cloneable & (1 << a->type));
10016 }
10017
10018 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10019 struct intel_encoder *encoder)
10020 {
10021 struct drm_device *dev = crtc->base.dev;
10022 struct intel_encoder *source_encoder;
10023
10024 for_each_intel_encoder(dev, source_encoder) {
10025 if (source_encoder->new_crtc != crtc)
10026 continue;
10027
10028 if (!encoders_cloneable(encoder, source_encoder))
10029 return false;
10030 }
10031
10032 return true;
10033 }
10034
10035 static bool check_encoder_cloning(struct intel_crtc *crtc)
10036 {
10037 struct drm_device *dev = crtc->base.dev;
10038 struct intel_encoder *encoder;
10039
10040 for_each_intel_encoder(dev, encoder) {
10041 if (encoder->new_crtc != crtc)
10042 continue;
10043
10044 if (!check_single_encoder_cloning(crtc, encoder))
10045 return false;
10046 }
10047
10048 return true;
10049 }
10050
10051 static bool check_digital_port_conflicts(struct drm_device *dev)
10052 {
10053 struct intel_connector *connector;
10054 unsigned int used_ports = 0;
10055
10056 /*
10057 * Walk the connector list instead of the encoder
10058 * list to detect the problem on ddi platforms
10059 * where there's just one encoder per digital port.
10060 */
10061 list_for_each_entry(connector,
10062 &dev->mode_config.connector_list, base.head) {
10063 struct intel_encoder *encoder = connector->new_encoder;
10064
10065 if (!encoder)
10066 continue;
10067
10068 WARN_ON(!encoder->new_crtc);
10069
10070 switch (encoder->type) {
10071 unsigned int port_mask;
10072 case INTEL_OUTPUT_UNKNOWN:
10073 if (WARN_ON(!HAS_DDI(dev)))
10074 break;
10075 case INTEL_OUTPUT_DISPLAYPORT:
10076 case INTEL_OUTPUT_HDMI:
10077 case INTEL_OUTPUT_EDP:
10078 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10079
10080 /* the same port mustn't appear more than once */
10081 if (used_ports & port_mask)
10082 return false;
10083
10084 used_ports |= port_mask;
10085 default:
10086 break;
10087 }
10088 }
10089
10090 return true;
10091 }
10092
10093 static struct intel_crtc_config *
10094 intel_modeset_pipe_config(struct drm_crtc *crtc,
10095 struct drm_framebuffer *fb,
10096 struct drm_display_mode *mode)
10097 {
10098 struct drm_device *dev = crtc->dev;
10099 struct intel_encoder *encoder;
10100 struct intel_crtc_config *pipe_config;
10101 int plane_bpp, ret = -EINVAL;
10102 bool retry = true;
10103
10104 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10105 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10106 return ERR_PTR(-EINVAL);
10107 }
10108
10109 if (!check_digital_port_conflicts(dev)) {
10110 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10111 return ERR_PTR(-EINVAL);
10112 }
10113
10114 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10115 if (!pipe_config)
10116 return ERR_PTR(-ENOMEM);
10117
10118 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10119 drm_mode_copy(&pipe_config->requested_mode, mode);
10120
10121 pipe_config->cpu_transcoder =
10122 (enum transcoder) to_intel_crtc(crtc)->pipe;
10123 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10124
10125 /*
10126 * Sanitize sync polarity flags based on requested ones. If neither
10127 * positive or negative polarity is requested, treat this as meaning
10128 * negative polarity.
10129 */
10130 if (!(pipe_config->adjusted_mode.flags &
10131 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10132 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10133
10134 if (!(pipe_config->adjusted_mode.flags &
10135 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10136 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10137
10138 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10139 * plane pixel format and any sink constraints into account. Returns the
10140 * source plane bpp so that dithering can be selected on mismatches
10141 * after encoders and crtc also have had their say. */
10142 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10143 fb, pipe_config);
10144 if (plane_bpp < 0)
10145 goto fail;
10146
10147 /*
10148 * Determine the real pipe dimensions. Note that stereo modes can
10149 * increase the actual pipe size due to the frame doubling and
10150 * insertion of additional space for blanks between the frame. This
10151 * is stored in the crtc timings. We use the requested mode to do this
10152 * computation to clearly distinguish it from the adjusted mode, which
10153 * can be changed by the connectors in the below retry loop.
10154 */
10155 drm_crtc_get_hv_timing(&pipe_config->requested_mode,
10156 &pipe_config->pipe_src_w,
10157 &pipe_config->pipe_src_h);
10158
10159 encoder_retry:
10160 /* Ensure the port clock defaults are reset when retrying. */
10161 pipe_config->port_clock = 0;
10162 pipe_config->pixel_multiplier = 1;
10163
10164 /* Fill in default crtc timings, allow encoders to overwrite them. */
10165 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10166
10167 /* Pass our mode to the connectors and the CRTC to give them a chance to
10168 * adjust it according to limitations or connector properties, and also
10169 * a chance to reject the mode entirely.
10170 */
10171 for_each_intel_encoder(dev, encoder) {
10172
10173 if (&encoder->new_crtc->base != crtc)
10174 continue;
10175
10176 if (!(encoder->compute_config(encoder, pipe_config))) {
10177 DRM_DEBUG_KMS("Encoder config failure\n");
10178 goto fail;
10179 }
10180 }
10181
10182 /* Set default port clock if not overwritten by the encoder. Needs to be
10183 * done afterwards in case the encoder adjusts the mode. */
10184 if (!pipe_config->port_clock)
10185 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10186 * pipe_config->pixel_multiplier;
10187
10188 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10189 if (ret < 0) {
10190 DRM_DEBUG_KMS("CRTC fixup failed\n");
10191 goto fail;
10192 }
10193
10194 if (ret == RETRY) {
10195 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10196 ret = -EINVAL;
10197 goto fail;
10198 }
10199
10200 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10201 retry = false;
10202 goto encoder_retry;
10203 }
10204
10205 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10206 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10207 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10208
10209 return pipe_config;
10210 fail:
10211 kfree(pipe_config);
10212 return ERR_PTR(ret);
10213 }
10214
10215 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10216 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10217 static void
10218 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10219 unsigned *prepare_pipes, unsigned *disable_pipes)
10220 {
10221 struct intel_crtc *intel_crtc;
10222 struct drm_device *dev = crtc->dev;
10223 struct intel_encoder *encoder;
10224 struct intel_connector *connector;
10225 struct drm_crtc *tmp_crtc;
10226
10227 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10228
10229 /* Check which crtcs have changed outputs connected to them, these need
10230 * to be part of the prepare_pipes mask. We don't (yet) support global
10231 * modeset across multiple crtcs, so modeset_pipes will only have one
10232 * bit set at most. */
10233 list_for_each_entry(connector, &dev->mode_config.connector_list,
10234 base.head) {
10235 if (connector->base.encoder == &connector->new_encoder->base)
10236 continue;
10237
10238 if (connector->base.encoder) {
10239 tmp_crtc = connector->base.encoder->crtc;
10240
10241 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10242 }
10243
10244 if (connector->new_encoder)
10245 *prepare_pipes |=
10246 1 << connector->new_encoder->new_crtc->pipe;
10247 }
10248
10249 for_each_intel_encoder(dev, encoder) {
10250 if (encoder->base.crtc == &encoder->new_crtc->base)
10251 continue;
10252
10253 if (encoder->base.crtc) {
10254 tmp_crtc = encoder->base.crtc;
10255
10256 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10257 }
10258
10259 if (encoder->new_crtc)
10260 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10261 }
10262
10263 /* Check for pipes that will be enabled/disabled ... */
10264 for_each_intel_crtc(dev, intel_crtc) {
10265 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10266 continue;
10267
10268 if (!intel_crtc->new_enabled)
10269 *disable_pipes |= 1 << intel_crtc->pipe;
10270 else
10271 *prepare_pipes |= 1 << intel_crtc->pipe;
10272 }
10273
10274
10275 /* set_mode is also used to update properties on life display pipes. */
10276 intel_crtc = to_intel_crtc(crtc);
10277 if (intel_crtc->new_enabled)
10278 *prepare_pipes |= 1 << intel_crtc->pipe;
10279
10280 /*
10281 * For simplicity do a full modeset on any pipe where the output routing
10282 * changed. We could be more clever, but that would require us to be
10283 * more careful with calling the relevant encoder->mode_set functions.
10284 */
10285 if (*prepare_pipes)
10286 *modeset_pipes = *prepare_pipes;
10287
10288 /* ... and mask these out. */
10289 *modeset_pipes &= ~(*disable_pipes);
10290 *prepare_pipes &= ~(*disable_pipes);
10291
10292 /*
10293 * HACK: We don't (yet) fully support global modesets. intel_set_config
10294 * obies this rule, but the modeset restore mode of
10295 * intel_modeset_setup_hw_state does not.
10296 */
10297 *modeset_pipes &= 1 << intel_crtc->pipe;
10298 *prepare_pipes &= 1 << intel_crtc->pipe;
10299
10300 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10301 *modeset_pipes, *prepare_pipes, *disable_pipes);
10302 }
10303
10304 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10305 {
10306 struct drm_encoder *encoder;
10307 struct drm_device *dev = crtc->dev;
10308
10309 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10310 if (encoder->crtc == crtc)
10311 return true;
10312
10313 return false;
10314 }
10315
10316 static void
10317 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10318 {
10319 struct drm_i915_private *dev_priv = dev->dev_private;
10320 struct intel_encoder *intel_encoder;
10321 struct intel_crtc *intel_crtc;
10322 struct drm_connector *connector;
10323
10324 intel_shared_dpll_commit(dev_priv);
10325
10326 for_each_intel_encoder(dev, intel_encoder) {
10327 if (!intel_encoder->base.crtc)
10328 continue;
10329
10330 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10331
10332 if (prepare_pipes & (1 << intel_crtc->pipe))
10333 intel_encoder->connectors_active = false;
10334 }
10335
10336 intel_modeset_commit_output_state(dev);
10337
10338 /* Double check state. */
10339 for_each_intel_crtc(dev, intel_crtc) {
10340 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10341 WARN_ON(intel_crtc->new_config &&
10342 intel_crtc->new_config != &intel_crtc->config);
10343 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10344 }
10345
10346 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10347 if (!connector->encoder || !connector->encoder->crtc)
10348 continue;
10349
10350 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10351
10352 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10353 struct drm_property *dpms_property =
10354 dev->mode_config.dpms_property;
10355
10356 connector->dpms = DRM_MODE_DPMS_ON;
10357 drm_object_property_set_value(&connector->base,
10358 dpms_property,
10359 DRM_MODE_DPMS_ON);
10360
10361 intel_encoder = to_intel_encoder(connector->encoder);
10362 intel_encoder->connectors_active = true;
10363 }
10364 }
10365
10366 }
10367
10368 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10369 {
10370 int diff;
10371
10372 if (clock1 == clock2)
10373 return true;
10374
10375 if (!clock1 || !clock2)
10376 return false;
10377
10378 diff = abs(clock1 - clock2);
10379
10380 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10381 return true;
10382
10383 return false;
10384 }
10385
10386 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10387 list_for_each_entry((intel_crtc), \
10388 &(dev)->mode_config.crtc_list, \
10389 base.head) \
10390 if (mask & (1 <<(intel_crtc)->pipe))
10391
10392 static bool
10393 intel_pipe_config_compare(struct drm_device *dev,
10394 struct intel_crtc_config *current_config,
10395 struct intel_crtc_config *pipe_config)
10396 {
10397 #define PIPE_CONF_CHECK_X(name) \
10398 if (current_config->name != pipe_config->name) { \
10399 DRM_ERROR("mismatch in " #name " " \
10400 "(expected 0x%08x, found 0x%08x)\n", \
10401 current_config->name, \
10402 pipe_config->name); \
10403 return false; \
10404 }
10405
10406 #define PIPE_CONF_CHECK_I(name) \
10407 if (current_config->name != pipe_config->name) { \
10408 DRM_ERROR("mismatch in " #name " " \
10409 "(expected %i, found %i)\n", \
10410 current_config->name, \
10411 pipe_config->name); \
10412 return false; \
10413 }
10414
10415 /* This is required for BDW+ where there is only one set of registers for
10416 * switching between high and low RR.
10417 * This macro can be used whenever a comparison has to be made between one
10418 * hw state and multiple sw state variables.
10419 */
10420 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10421 if ((current_config->name != pipe_config->name) && \
10422 (current_config->alt_name != pipe_config->name)) { \
10423 DRM_ERROR("mismatch in " #name " " \
10424 "(expected %i or %i, found %i)\n", \
10425 current_config->name, \
10426 current_config->alt_name, \
10427 pipe_config->name); \
10428 return false; \
10429 }
10430
10431 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10432 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10433 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10434 "(expected %i, found %i)\n", \
10435 current_config->name & (mask), \
10436 pipe_config->name & (mask)); \
10437 return false; \
10438 }
10439
10440 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10441 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10442 DRM_ERROR("mismatch in " #name " " \
10443 "(expected %i, found %i)\n", \
10444 current_config->name, \
10445 pipe_config->name); \
10446 return false; \
10447 }
10448
10449 #define PIPE_CONF_QUIRK(quirk) \
10450 ((current_config->quirks | pipe_config->quirks) & (quirk))
10451
10452 PIPE_CONF_CHECK_I(cpu_transcoder);
10453
10454 PIPE_CONF_CHECK_I(has_pch_encoder);
10455 PIPE_CONF_CHECK_I(fdi_lanes);
10456 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10457 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10458 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10459 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10460 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10461
10462 PIPE_CONF_CHECK_I(has_dp_encoder);
10463
10464 if (INTEL_INFO(dev)->gen < 8) {
10465 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10466 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10467 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10468 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10469 PIPE_CONF_CHECK_I(dp_m_n.tu);
10470
10471 if (current_config->has_drrs) {
10472 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10473 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10474 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10475 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10476 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10477 }
10478 } else {
10479 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10480 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10481 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10482 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10483 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10484 }
10485
10486 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10487 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10488 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10489 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10490 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10491 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10492
10493 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10494 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10495 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10496 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10497 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10498 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10499
10500 PIPE_CONF_CHECK_I(pixel_multiplier);
10501 PIPE_CONF_CHECK_I(has_hdmi_sink);
10502 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10503 IS_VALLEYVIEW(dev))
10504 PIPE_CONF_CHECK_I(limited_color_range);
10505 PIPE_CONF_CHECK_I(has_infoframe);
10506
10507 PIPE_CONF_CHECK_I(has_audio);
10508
10509 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10510 DRM_MODE_FLAG_INTERLACE);
10511
10512 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10513 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10514 DRM_MODE_FLAG_PHSYNC);
10515 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10516 DRM_MODE_FLAG_NHSYNC);
10517 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10518 DRM_MODE_FLAG_PVSYNC);
10519 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10520 DRM_MODE_FLAG_NVSYNC);
10521 }
10522
10523 PIPE_CONF_CHECK_I(pipe_src_w);
10524 PIPE_CONF_CHECK_I(pipe_src_h);
10525
10526 /*
10527 * FIXME: BIOS likes to set up a cloned config with lvds+external
10528 * screen. Since we don't yet re-compute the pipe config when moving
10529 * just the lvds port away to another pipe the sw tracking won't match.
10530 *
10531 * Proper atomic modesets with recomputed global state will fix this.
10532 * Until then just don't check gmch state for inherited modes.
10533 */
10534 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10535 PIPE_CONF_CHECK_I(gmch_pfit.control);
10536 /* pfit ratios are autocomputed by the hw on gen4+ */
10537 if (INTEL_INFO(dev)->gen < 4)
10538 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10539 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10540 }
10541
10542 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10543 if (current_config->pch_pfit.enabled) {
10544 PIPE_CONF_CHECK_I(pch_pfit.pos);
10545 PIPE_CONF_CHECK_I(pch_pfit.size);
10546 }
10547
10548 /* BDW+ don't expose a synchronous way to read the state */
10549 if (IS_HASWELL(dev))
10550 PIPE_CONF_CHECK_I(ips_enabled);
10551
10552 PIPE_CONF_CHECK_I(double_wide);
10553
10554 PIPE_CONF_CHECK_X(ddi_pll_sel);
10555
10556 PIPE_CONF_CHECK_I(shared_dpll);
10557 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10558 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10559 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10560 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10561 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10562 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10563 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10564 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10565
10566 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10567 PIPE_CONF_CHECK_I(pipe_bpp);
10568
10569 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10570 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10571
10572 #undef PIPE_CONF_CHECK_X
10573 #undef PIPE_CONF_CHECK_I
10574 #undef PIPE_CONF_CHECK_I_ALT
10575 #undef PIPE_CONF_CHECK_FLAGS
10576 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10577 #undef PIPE_CONF_QUIRK
10578
10579 return true;
10580 }
10581
10582 static void check_wm_state(struct drm_device *dev)
10583 {
10584 struct drm_i915_private *dev_priv = dev->dev_private;
10585 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10586 struct intel_crtc *intel_crtc;
10587 int plane;
10588
10589 if (INTEL_INFO(dev)->gen < 9)
10590 return;
10591
10592 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10593 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10594
10595 for_each_intel_crtc(dev, intel_crtc) {
10596 struct skl_ddb_entry *hw_entry, *sw_entry;
10597 const enum pipe pipe = intel_crtc->pipe;
10598
10599 if (!intel_crtc->active)
10600 continue;
10601
10602 /* planes */
10603 for_each_plane(pipe, plane) {
10604 hw_entry = &hw_ddb.plane[pipe][plane];
10605 sw_entry = &sw_ddb->plane[pipe][plane];
10606
10607 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10608 continue;
10609
10610 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10611 "(expected (%u,%u), found (%u,%u))\n",
10612 pipe_name(pipe), plane + 1,
10613 sw_entry->start, sw_entry->end,
10614 hw_entry->start, hw_entry->end);
10615 }
10616
10617 /* cursor */
10618 hw_entry = &hw_ddb.cursor[pipe];
10619 sw_entry = &sw_ddb->cursor[pipe];
10620
10621 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10622 continue;
10623
10624 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10625 "(expected (%u,%u), found (%u,%u))\n",
10626 pipe_name(pipe),
10627 sw_entry->start, sw_entry->end,
10628 hw_entry->start, hw_entry->end);
10629 }
10630 }
10631
10632 static void
10633 check_connector_state(struct drm_device *dev)
10634 {
10635 struct intel_connector *connector;
10636
10637 list_for_each_entry(connector, &dev->mode_config.connector_list,
10638 base.head) {
10639 /* This also checks the encoder/connector hw state with the
10640 * ->get_hw_state callbacks. */
10641 intel_connector_check_state(connector);
10642
10643 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10644 "connector's staged encoder doesn't match current encoder\n");
10645 }
10646 }
10647
10648 static void
10649 check_encoder_state(struct drm_device *dev)
10650 {
10651 struct intel_encoder *encoder;
10652 struct intel_connector *connector;
10653
10654 for_each_intel_encoder(dev, encoder) {
10655 bool enabled = false;
10656 bool active = false;
10657 enum pipe pipe, tracked_pipe;
10658
10659 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10660 encoder->base.base.id,
10661 encoder->base.name);
10662
10663 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10664 "encoder's stage crtc doesn't match current crtc\n");
10665 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10666 "encoder's active_connectors set, but no crtc\n");
10667
10668 list_for_each_entry(connector, &dev->mode_config.connector_list,
10669 base.head) {
10670 if (connector->base.encoder != &encoder->base)
10671 continue;
10672 enabled = true;
10673 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10674 active = true;
10675 }
10676 /*
10677 * for MST connectors if we unplug the connector is gone
10678 * away but the encoder is still connected to a crtc
10679 * until a modeset happens in response to the hotplug.
10680 */
10681 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10682 continue;
10683
10684 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10685 "encoder's enabled state mismatch "
10686 "(expected %i, found %i)\n",
10687 !!encoder->base.crtc, enabled);
10688 I915_STATE_WARN(active && !encoder->base.crtc,
10689 "active encoder with no crtc\n");
10690
10691 I915_STATE_WARN(encoder->connectors_active != active,
10692 "encoder's computed active state doesn't match tracked active state "
10693 "(expected %i, found %i)\n", active, encoder->connectors_active);
10694
10695 active = encoder->get_hw_state(encoder, &pipe);
10696 I915_STATE_WARN(active != encoder->connectors_active,
10697 "encoder's hw state doesn't match sw tracking "
10698 "(expected %i, found %i)\n",
10699 encoder->connectors_active, active);
10700
10701 if (!encoder->base.crtc)
10702 continue;
10703
10704 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10705 I915_STATE_WARN(active && pipe != tracked_pipe,
10706 "active encoder's pipe doesn't match"
10707 "(expected %i, found %i)\n",
10708 tracked_pipe, pipe);
10709
10710 }
10711 }
10712
10713 static void
10714 check_crtc_state(struct drm_device *dev)
10715 {
10716 struct drm_i915_private *dev_priv = dev->dev_private;
10717 struct intel_crtc *crtc;
10718 struct intel_encoder *encoder;
10719 struct intel_crtc_config pipe_config;
10720
10721 for_each_intel_crtc(dev, crtc) {
10722 bool enabled = false;
10723 bool active = false;
10724
10725 memset(&pipe_config, 0, sizeof(pipe_config));
10726
10727 DRM_DEBUG_KMS("[CRTC:%d]\n",
10728 crtc->base.base.id);
10729
10730 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10731 "active crtc, but not enabled in sw tracking\n");
10732
10733 for_each_intel_encoder(dev, encoder) {
10734 if (encoder->base.crtc != &crtc->base)
10735 continue;
10736 enabled = true;
10737 if (encoder->connectors_active)
10738 active = true;
10739 }
10740
10741 I915_STATE_WARN(active != crtc->active,
10742 "crtc's computed active state doesn't match tracked active state "
10743 "(expected %i, found %i)\n", active, crtc->active);
10744 I915_STATE_WARN(enabled != crtc->base.enabled,
10745 "crtc's computed enabled state doesn't match tracked enabled state "
10746 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10747
10748 active = dev_priv->display.get_pipe_config(crtc,
10749 &pipe_config);
10750
10751 /* hw state is inconsistent with the pipe quirk */
10752 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10753 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10754 active = crtc->active;
10755
10756 for_each_intel_encoder(dev, encoder) {
10757 enum pipe pipe;
10758 if (encoder->base.crtc != &crtc->base)
10759 continue;
10760 if (encoder->get_hw_state(encoder, &pipe))
10761 encoder->get_config(encoder, &pipe_config);
10762 }
10763
10764 I915_STATE_WARN(crtc->active != active,
10765 "crtc active state doesn't match with hw state "
10766 "(expected %i, found %i)\n", crtc->active, active);
10767
10768 if (active &&
10769 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10770 I915_STATE_WARN(1, "pipe state doesn't match!\n");
10771 intel_dump_pipe_config(crtc, &pipe_config,
10772 "[hw state]");
10773 intel_dump_pipe_config(crtc, &crtc->config,
10774 "[sw state]");
10775 }
10776 }
10777 }
10778
10779 static void
10780 check_shared_dpll_state(struct drm_device *dev)
10781 {
10782 struct drm_i915_private *dev_priv = dev->dev_private;
10783 struct intel_crtc *crtc;
10784 struct intel_dpll_hw_state dpll_hw_state;
10785 int i;
10786
10787 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10788 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10789 int enabled_crtcs = 0, active_crtcs = 0;
10790 bool active;
10791
10792 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10793
10794 DRM_DEBUG_KMS("%s\n", pll->name);
10795
10796 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10797
10798 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10799 "more active pll users than references: %i vs %i\n",
10800 pll->active, hweight32(pll->config.crtc_mask));
10801 I915_STATE_WARN(pll->active && !pll->on,
10802 "pll in active use but not on in sw tracking\n");
10803 I915_STATE_WARN(pll->on && !pll->active,
10804 "pll in on but not on in use in sw tracking\n");
10805 I915_STATE_WARN(pll->on != active,
10806 "pll on state mismatch (expected %i, found %i)\n",
10807 pll->on, active);
10808
10809 for_each_intel_crtc(dev, crtc) {
10810 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10811 enabled_crtcs++;
10812 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10813 active_crtcs++;
10814 }
10815 I915_STATE_WARN(pll->active != active_crtcs,
10816 "pll active crtcs mismatch (expected %i, found %i)\n",
10817 pll->active, active_crtcs);
10818 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10819 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10820 hweight32(pll->config.crtc_mask), enabled_crtcs);
10821
10822 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10823 sizeof(dpll_hw_state)),
10824 "pll hw state mismatch\n");
10825 }
10826 }
10827
10828 void
10829 intel_modeset_check_state(struct drm_device *dev)
10830 {
10831 check_wm_state(dev);
10832 check_connector_state(dev);
10833 check_encoder_state(dev);
10834 check_crtc_state(dev);
10835 check_shared_dpll_state(dev);
10836 }
10837
10838 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10839 int dotclock)
10840 {
10841 /*
10842 * FDI already provided one idea for the dotclock.
10843 * Yell if the encoder disagrees.
10844 */
10845 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10846 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10847 pipe_config->adjusted_mode.crtc_clock, dotclock);
10848 }
10849
10850 static void update_scanline_offset(struct intel_crtc *crtc)
10851 {
10852 struct drm_device *dev = crtc->base.dev;
10853
10854 /*
10855 * The scanline counter increments at the leading edge of hsync.
10856 *
10857 * On most platforms it starts counting from vtotal-1 on the
10858 * first active line. That means the scanline counter value is
10859 * always one less than what we would expect. Ie. just after
10860 * start of vblank, which also occurs at start of hsync (on the
10861 * last active line), the scanline counter will read vblank_start-1.
10862 *
10863 * On gen2 the scanline counter starts counting from 1 instead
10864 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10865 * to keep the value positive), instead of adding one.
10866 *
10867 * On HSW+ the behaviour of the scanline counter depends on the output
10868 * type. For DP ports it behaves like most other platforms, but on HDMI
10869 * there's an extra 1 line difference. So we need to add two instead of
10870 * one to the value.
10871 */
10872 if (IS_GEN2(dev)) {
10873 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10874 int vtotal;
10875
10876 vtotal = mode->crtc_vtotal;
10877 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10878 vtotal /= 2;
10879
10880 crtc->scanline_offset = vtotal - 1;
10881 } else if (HAS_DDI(dev) &&
10882 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10883 crtc->scanline_offset = 2;
10884 } else
10885 crtc->scanline_offset = 1;
10886 }
10887
10888 static struct intel_crtc_config *
10889 intel_modeset_compute_config(struct drm_crtc *crtc,
10890 struct drm_display_mode *mode,
10891 struct drm_framebuffer *fb,
10892 unsigned *modeset_pipes,
10893 unsigned *prepare_pipes,
10894 unsigned *disable_pipes)
10895 {
10896 struct intel_crtc_config *pipe_config = NULL;
10897
10898 intel_modeset_affected_pipes(crtc, modeset_pipes,
10899 prepare_pipes, disable_pipes);
10900
10901 if ((*modeset_pipes) == 0)
10902 goto out;
10903
10904 /*
10905 * Note this needs changes when we start tracking multiple modes
10906 * and crtcs. At that point we'll need to compute the whole config
10907 * (i.e. one pipe_config for each crtc) rather than just the one
10908 * for this crtc.
10909 */
10910 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10911 if (IS_ERR(pipe_config)) {
10912 goto out;
10913 }
10914 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10915 "[modeset]");
10916
10917 out:
10918 return pipe_config;
10919 }
10920
10921 static int __intel_set_mode(struct drm_crtc *crtc,
10922 struct drm_display_mode *mode,
10923 int x, int y, struct drm_framebuffer *fb,
10924 struct intel_crtc_config *pipe_config,
10925 unsigned modeset_pipes,
10926 unsigned prepare_pipes,
10927 unsigned disable_pipes)
10928 {
10929 struct drm_device *dev = crtc->dev;
10930 struct drm_i915_private *dev_priv = dev->dev_private;
10931 struct drm_display_mode *saved_mode;
10932 struct intel_crtc *intel_crtc;
10933 int ret = 0;
10934
10935 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10936 if (!saved_mode)
10937 return -ENOMEM;
10938
10939 *saved_mode = crtc->mode;
10940
10941 if (modeset_pipes)
10942 to_intel_crtc(crtc)->new_config = pipe_config;
10943
10944 /*
10945 * See if the config requires any additional preparation, e.g.
10946 * to adjust global state with pipes off. We need to do this
10947 * here so we can get the modeset_pipe updated config for the new
10948 * mode set on this crtc. For other crtcs we need to use the
10949 * adjusted_mode bits in the crtc directly.
10950 */
10951 if (IS_VALLEYVIEW(dev)) {
10952 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10953
10954 /* may have added more to prepare_pipes than we should */
10955 prepare_pipes &= ~disable_pipes;
10956 }
10957
10958 if (dev_priv->display.crtc_compute_clock) {
10959 unsigned clear_pipes = modeset_pipes | disable_pipes;
10960
10961 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10962 if (ret)
10963 goto done;
10964
10965 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10966 ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10967 if (ret) {
10968 intel_shared_dpll_abort_config(dev_priv);
10969 goto done;
10970 }
10971 }
10972 }
10973
10974 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10975 intel_crtc_disable(&intel_crtc->base);
10976
10977 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10978 if (intel_crtc->base.enabled)
10979 dev_priv->display.crtc_disable(&intel_crtc->base);
10980 }
10981
10982 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10983 * to set it here already despite that we pass it down the callchain.
10984 *
10985 * Note we'll need to fix this up when we start tracking multiple
10986 * pipes; here we assume a single modeset_pipe and only track the
10987 * single crtc and mode.
10988 */
10989 if (modeset_pipes) {
10990 crtc->mode = *mode;
10991 /* mode_set/enable/disable functions rely on a correct pipe
10992 * config. */
10993 to_intel_crtc(crtc)->config = *pipe_config;
10994 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10995
10996 /*
10997 * Calculate and store various constants which
10998 * are later needed by vblank and swap-completion
10999 * timestamping. They are derived from true hwmode.
11000 */
11001 drm_calc_timestamping_constants(crtc,
11002 &pipe_config->adjusted_mode);
11003 }
11004
11005 /* Only after disabling all output pipelines that will be changed can we
11006 * update the the output configuration. */
11007 intel_modeset_update_state(dev, prepare_pipes);
11008
11009 modeset_update_crtc_power_domains(dev);
11010
11011 /* Set up the DPLL and any encoders state that needs to adjust or depend
11012 * on the DPLL.
11013 */
11014 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11015 struct drm_plane *primary = intel_crtc->base.primary;
11016 int vdisplay, hdisplay;
11017
11018 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11019 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11020 fb, 0, 0,
11021 hdisplay, vdisplay,
11022 x << 16, y << 16,
11023 hdisplay << 16, vdisplay << 16);
11024 }
11025
11026 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11027 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11028 update_scanline_offset(intel_crtc);
11029
11030 dev_priv->display.crtc_enable(&intel_crtc->base);
11031 }
11032
11033 /* FIXME: add subpixel order */
11034 done:
11035 if (ret && crtc->enabled)
11036 crtc->mode = *saved_mode;
11037
11038 kfree(pipe_config);
11039 kfree(saved_mode);
11040 return ret;
11041 }
11042
11043 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11044 struct drm_display_mode *mode,
11045 int x, int y, struct drm_framebuffer *fb,
11046 struct intel_crtc_config *pipe_config,
11047 unsigned modeset_pipes,
11048 unsigned prepare_pipes,
11049 unsigned disable_pipes)
11050 {
11051 int ret;
11052
11053 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11054 prepare_pipes, disable_pipes);
11055
11056 if (ret == 0)
11057 intel_modeset_check_state(crtc->dev);
11058
11059 return ret;
11060 }
11061
11062 static int intel_set_mode(struct drm_crtc *crtc,
11063 struct drm_display_mode *mode,
11064 int x, int y, struct drm_framebuffer *fb)
11065 {
11066 struct intel_crtc_config *pipe_config;
11067 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11068
11069 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11070 &modeset_pipes,
11071 &prepare_pipes,
11072 &disable_pipes);
11073
11074 if (IS_ERR(pipe_config))
11075 return PTR_ERR(pipe_config);
11076
11077 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11078 modeset_pipes, prepare_pipes,
11079 disable_pipes);
11080 }
11081
11082 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11083 {
11084 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11085 }
11086
11087 #undef for_each_intel_crtc_masked
11088
11089 static void intel_set_config_free(struct intel_set_config *config)
11090 {
11091 if (!config)
11092 return;
11093
11094 kfree(config->save_connector_encoders);
11095 kfree(config->save_encoder_crtcs);
11096 kfree(config->save_crtc_enabled);
11097 kfree(config);
11098 }
11099
11100 static int intel_set_config_save_state(struct drm_device *dev,
11101 struct intel_set_config *config)
11102 {
11103 struct drm_crtc *crtc;
11104 struct drm_encoder *encoder;
11105 struct drm_connector *connector;
11106 int count;
11107
11108 config->save_crtc_enabled =
11109 kcalloc(dev->mode_config.num_crtc,
11110 sizeof(bool), GFP_KERNEL);
11111 if (!config->save_crtc_enabled)
11112 return -ENOMEM;
11113
11114 config->save_encoder_crtcs =
11115 kcalloc(dev->mode_config.num_encoder,
11116 sizeof(struct drm_crtc *), GFP_KERNEL);
11117 if (!config->save_encoder_crtcs)
11118 return -ENOMEM;
11119
11120 config->save_connector_encoders =
11121 kcalloc(dev->mode_config.num_connector,
11122 sizeof(struct drm_encoder *), GFP_KERNEL);
11123 if (!config->save_connector_encoders)
11124 return -ENOMEM;
11125
11126 /* Copy data. Note that driver private data is not affected.
11127 * Should anything bad happen only the expected state is
11128 * restored, not the drivers personal bookkeeping.
11129 */
11130 count = 0;
11131 for_each_crtc(dev, crtc) {
11132 config->save_crtc_enabled[count++] = crtc->enabled;
11133 }
11134
11135 count = 0;
11136 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11137 config->save_encoder_crtcs[count++] = encoder->crtc;
11138 }
11139
11140 count = 0;
11141 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11142 config->save_connector_encoders[count++] = connector->encoder;
11143 }
11144
11145 return 0;
11146 }
11147
11148 static void intel_set_config_restore_state(struct drm_device *dev,
11149 struct intel_set_config *config)
11150 {
11151 struct intel_crtc *crtc;
11152 struct intel_encoder *encoder;
11153 struct intel_connector *connector;
11154 int count;
11155
11156 count = 0;
11157 for_each_intel_crtc(dev, crtc) {
11158 crtc->new_enabled = config->save_crtc_enabled[count++];
11159
11160 if (crtc->new_enabled)
11161 crtc->new_config = &crtc->config;
11162 else
11163 crtc->new_config = NULL;
11164 }
11165
11166 count = 0;
11167 for_each_intel_encoder(dev, encoder) {
11168 encoder->new_crtc =
11169 to_intel_crtc(config->save_encoder_crtcs[count++]);
11170 }
11171
11172 count = 0;
11173 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11174 connector->new_encoder =
11175 to_intel_encoder(config->save_connector_encoders[count++]);
11176 }
11177 }
11178
11179 static bool
11180 is_crtc_connector_off(struct drm_mode_set *set)
11181 {
11182 int i;
11183
11184 if (set->num_connectors == 0)
11185 return false;
11186
11187 if (WARN_ON(set->connectors == NULL))
11188 return false;
11189
11190 for (i = 0; i < set->num_connectors; i++)
11191 if (set->connectors[i]->encoder &&
11192 set->connectors[i]->encoder->crtc == set->crtc &&
11193 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11194 return true;
11195
11196 return false;
11197 }
11198
11199 static void
11200 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11201 struct intel_set_config *config)
11202 {
11203
11204 /* We should be able to check here if the fb has the same properties
11205 * and then just flip_or_move it */
11206 if (is_crtc_connector_off(set)) {
11207 config->mode_changed = true;
11208 } else if (set->crtc->primary->fb != set->fb) {
11209 /*
11210 * If we have no fb, we can only flip as long as the crtc is
11211 * active, otherwise we need a full mode set. The crtc may
11212 * be active if we've only disabled the primary plane, or
11213 * in fastboot situations.
11214 */
11215 if (set->crtc->primary->fb == NULL) {
11216 struct intel_crtc *intel_crtc =
11217 to_intel_crtc(set->crtc);
11218
11219 if (intel_crtc->active) {
11220 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11221 config->fb_changed = true;
11222 } else {
11223 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11224 config->mode_changed = true;
11225 }
11226 } else if (set->fb == NULL) {
11227 config->mode_changed = true;
11228 } else if (set->fb->pixel_format !=
11229 set->crtc->primary->fb->pixel_format) {
11230 config->mode_changed = true;
11231 } else {
11232 config->fb_changed = true;
11233 }
11234 }
11235
11236 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11237 config->fb_changed = true;
11238
11239 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11240 DRM_DEBUG_KMS("modes are different, full mode set\n");
11241 drm_mode_debug_printmodeline(&set->crtc->mode);
11242 drm_mode_debug_printmodeline(set->mode);
11243 config->mode_changed = true;
11244 }
11245
11246 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11247 set->crtc->base.id, config->mode_changed, config->fb_changed);
11248 }
11249
11250 static int
11251 intel_modeset_stage_output_state(struct drm_device *dev,
11252 struct drm_mode_set *set,
11253 struct intel_set_config *config)
11254 {
11255 struct intel_connector *connector;
11256 struct intel_encoder *encoder;
11257 struct intel_crtc *crtc;
11258 int ro;
11259
11260 /* The upper layers ensure that we either disable a crtc or have a list
11261 * of connectors. For paranoia, double-check this. */
11262 WARN_ON(!set->fb && (set->num_connectors != 0));
11263 WARN_ON(set->fb && (set->num_connectors == 0));
11264
11265 list_for_each_entry(connector, &dev->mode_config.connector_list,
11266 base.head) {
11267 /* Otherwise traverse passed in connector list and get encoders
11268 * for them. */
11269 for (ro = 0; ro < set->num_connectors; ro++) {
11270 if (set->connectors[ro] == &connector->base) {
11271 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11272 break;
11273 }
11274 }
11275
11276 /* If we disable the crtc, disable all its connectors. Also, if
11277 * the connector is on the changing crtc but not on the new
11278 * connector list, disable it. */
11279 if ((!set->fb || ro == set->num_connectors) &&
11280 connector->base.encoder &&
11281 connector->base.encoder->crtc == set->crtc) {
11282 connector->new_encoder = NULL;
11283
11284 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11285 connector->base.base.id,
11286 connector->base.name);
11287 }
11288
11289
11290 if (&connector->new_encoder->base != connector->base.encoder) {
11291 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11292 config->mode_changed = true;
11293 }
11294 }
11295 /* connector->new_encoder is now updated for all connectors. */
11296
11297 /* Update crtc of enabled connectors. */
11298 list_for_each_entry(connector, &dev->mode_config.connector_list,
11299 base.head) {
11300 struct drm_crtc *new_crtc;
11301
11302 if (!connector->new_encoder)
11303 continue;
11304
11305 new_crtc = connector->new_encoder->base.crtc;
11306
11307 for (ro = 0; ro < set->num_connectors; ro++) {
11308 if (set->connectors[ro] == &connector->base)
11309 new_crtc = set->crtc;
11310 }
11311
11312 /* Make sure the new CRTC will work with the encoder */
11313 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11314 new_crtc)) {
11315 return -EINVAL;
11316 }
11317 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11318
11319 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11320 connector->base.base.id,
11321 connector->base.name,
11322 new_crtc->base.id);
11323 }
11324
11325 /* Check for any encoders that needs to be disabled. */
11326 for_each_intel_encoder(dev, encoder) {
11327 int num_connectors = 0;
11328 list_for_each_entry(connector,
11329 &dev->mode_config.connector_list,
11330 base.head) {
11331 if (connector->new_encoder == encoder) {
11332 WARN_ON(!connector->new_encoder->new_crtc);
11333 num_connectors++;
11334 }
11335 }
11336
11337 if (num_connectors == 0)
11338 encoder->new_crtc = NULL;
11339 else if (num_connectors > 1)
11340 return -EINVAL;
11341
11342 /* Only now check for crtc changes so we don't miss encoders
11343 * that will be disabled. */
11344 if (&encoder->new_crtc->base != encoder->base.crtc) {
11345 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11346 config->mode_changed = true;
11347 }
11348 }
11349 /* Now we've also updated encoder->new_crtc for all encoders. */
11350 list_for_each_entry(connector, &dev->mode_config.connector_list,
11351 base.head) {
11352 if (connector->new_encoder)
11353 if (connector->new_encoder != connector->encoder)
11354 connector->encoder = connector->new_encoder;
11355 }
11356 for_each_intel_crtc(dev, crtc) {
11357 crtc->new_enabled = false;
11358
11359 for_each_intel_encoder(dev, encoder) {
11360 if (encoder->new_crtc == crtc) {
11361 crtc->new_enabled = true;
11362 break;
11363 }
11364 }
11365
11366 if (crtc->new_enabled != crtc->base.enabled) {
11367 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11368 crtc->new_enabled ? "en" : "dis");
11369 config->mode_changed = true;
11370 }
11371
11372 if (crtc->new_enabled)
11373 crtc->new_config = &crtc->config;
11374 else
11375 crtc->new_config = NULL;
11376 }
11377
11378 return 0;
11379 }
11380
11381 static void disable_crtc_nofb(struct intel_crtc *crtc)
11382 {
11383 struct drm_device *dev = crtc->base.dev;
11384 struct intel_encoder *encoder;
11385 struct intel_connector *connector;
11386
11387 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11388 pipe_name(crtc->pipe));
11389
11390 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11391 if (connector->new_encoder &&
11392 connector->new_encoder->new_crtc == crtc)
11393 connector->new_encoder = NULL;
11394 }
11395
11396 for_each_intel_encoder(dev, encoder) {
11397 if (encoder->new_crtc == crtc)
11398 encoder->new_crtc = NULL;
11399 }
11400
11401 crtc->new_enabled = false;
11402 crtc->new_config = NULL;
11403 }
11404
11405 static int intel_crtc_set_config(struct drm_mode_set *set)
11406 {
11407 struct drm_device *dev;
11408 struct drm_mode_set save_set;
11409 struct intel_set_config *config;
11410 struct intel_crtc_config *pipe_config;
11411 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11412 int ret;
11413
11414 BUG_ON(!set);
11415 BUG_ON(!set->crtc);
11416 BUG_ON(!set->crtc->helper_private);
11417
11418 /* Enforce sane interface api - has been abused by the fb helper. */
11419 BUG_ON(!set->mode && set->fb);
11420 BUG_ON(set->fb && set->num_connectors == 0);
11421
11422 if (set->fb) {
11423 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11424 set->crtc->base.id, set->fb->base.id,
11425 (int)set->num_connectors, set->x, set->y);
11426 } else {
11427 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11428 }
11429
11430 dev = set->crtc->dev;
11431
11432 ret = -ENOMEM;
11433 config = kzalloc(sizeof(*config), GFP_KERNEL);
11434 if (!config)
11435 goto out_config;
11436
11437 ret = intel_set_config_save_state(dev, config);
11438 if (ret)
11439 goto out_config;
11440
11441 save_set.crtc = set->crtc;
11442 save_set.mode = &set->crtc->mode;
11443 save_set.x = set->crtc->x;
11444 save_set.y = set->crtc->y;
11445 save_set.fb = set->crtc->primary->fb;
11446
11447 /* Compute whether we need a full modeset, only an fb base update or no
11448 * change at all. In the future we might also check whether only the
11449 * mode changed, e.g. for LVDS where we only change the panel fitter in
11450 * such cases. */
11451 intel_set_config_compute_mode_changes(set, config);
11452
11453 ret = intel_modeset_stage_output_state(dev, set, config);
11454 if (ret)
11455 goto fail;
11456
11457 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11458 set->fb,
11459 &modeset_pipes,
11460 &prepare_pipes,
11461 &disable_pipes);
11462 if (IS_ERR(pipe_config)) {
11463 ret = PTR_ERR(pipe_config);
11464 goto fail;
11465 } else if (pipe_config) {
11466 if (pipe_config->has_audio !=
11467 to_intel_crtc(set->crtc)->config.has_audio)
11468 config->mode_changed = true;
11469
11470 /* Force mode sets for any infoframe stuff */
11471 if (pipe_config->has_infoframe ||
11472 to_intel_crtc(set->crtc)->config.has_infoframe)
11473 config->mode_changed = true;
11474 }
11475
11476 /* set_mode will free it in the mode_changed case */
11477 if (!config->mode_changed)
11478 kfree(pipe_config);
11479
11480 intel_update_pipe_size(to_intel_crtc(set->crtc));
11481
11482 if (config->mode_changed) {
11483 ret = intel_set_mode_pipes(set->crtc, set->mode,
11484 set->x, set->y, set->fb, pipe_config,
11485 modeset_pipes, prepare_pipes,
11486 disable_pipes);
11487 } else if (config->fb_changed) {
11488 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11489 struct drm_plane *primary = set->crtc->primary;
11490 int vdisplay, hdisplay;
11491
11492 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11493 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11494 0, 0, hdisplay, vdisplay,
11495 set->x << 16, set->y << 16,
11496 hdisplay << 16, vdisplay << 16);
11497
11498 /*
11499 * We need to make sure the primary plane is re-enabled if it
11500 * has previously been turned off.
11501 */
11502 if (!intel_crtc->primary_enabled && ret == 0) {
11503 WARN_ON(!intel_crtc->active);
11504 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11505 }
11506
11507 /*
11508 * In the fastboot case this may be our only check of the
11509 * state after boot. It would be better to only do it on
11510 * the first update, but we don't have a nice way of doing that
11511 * (and really, set_config isn't used much for high freq page
11512 * flipping, so increasing its cost here shouldn't be a big
11513 * deal).
11514 */
11515 if (i915.fastboot && ret == 0)
11516 intel_modeset_check_state(set->crtc->dev);
11517 }
11518
11519 if (ret) {
11520 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11521 set->crtc->base.id, ret);
11522 fail:
11523 intel_set_config_restore_state(dev, config);
11524
11525 /*
11526 * HACK: if the pipe was on, but we didn't have a framebuffer,
11527 * force the pipe off to avoid oopsing in the modeset code
11528 * due to fb==NULL. This should only happen during boot since
11529 * we don't yet reconstruct the FB from the hardware state.
11530 */
11531 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11532 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11533
11534 /* Try to restore the config */
11535 if (config->mode_changed &&
11536 intel_set_mode(save_set.crtc, save_set.mode,
11537 save_set.x, save_set.y, save_set.fb))
11538 DRM_ERROR("failed to restore config after modeset failure\n");
11539 }
11540
11541 out_config:
11542 intel_set_config_free(config);
11543 return ret;
11544 }
11545
11546 static const struct drm_crtc_funcs intel_crtc_funcs = {
11547 .gamma_set = intel_crtc_gamma_set,
11548 .set_config = intel_crtc_set_config,
11549 .destroy = intel_crtc_destroy,
11550 .page_flip = intel_crtc_page_flip,
11551 };
11552
11553 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11554 struct intel_shared_dpll *pll,
11555 struct intel_dpll_hw_state *hw_state)
11556 {
11557 uint32_t val;
11558
11559 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11560 return false;
11561
11562 val = I915_READ(PCH_DPLL(pll->id));
11563 hw_state->dpll = val;
11564 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11565 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11566
11567 return val & DPLL_VCO_ENABLE;
11568 }
11569
11570 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11571 struct intel_shared_dpll *pll)
11572 {
11573 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11574 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11575 }
11576
11577 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11578 struct intel_shared_dpll *pll)
11579 {
11580 /* PCH refclock must be enabled first */
11581 ibx_assert_pch_refclk_enabled(dev_priv);
11582
11583 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11584
11585 /* Wait for the clocks to stabilize. */
11586 POSTING_READ(PCH_DPLL(pll->id));
11587 udelay(150);
11588
11589 /* The pixel multiplier can only be updated once the
11590 * DPLL is enabled and the clocks are stable.
11591 *
11592 * So write it again.
11593 */
11594 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11595 POSTING_READ(PCH_DPLL(pll->id));
11596 udelay(200);
11597 }
11598
11599 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11600 struct intel_shared_dpll *pll)
11601 {
11602 struct drm_device *dev = dev_priv->dev;
11603 struct intel_crtc *crtc;
11604
11605 /* Make sure no transcoder isn't still depending on us. */
11606 for_each_intel_crtc(dev, crtc) {
11607 if (intel_crtc_to_shared_dpll(crtc) == pll)
11608 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11609 }
11610
11611 I915_WRITE(PCH_DPLL(pll->id), 0);
11612 POSTING_READ(PCH_DPLL(pll->id));
11613 udelay(200);
11614 }
11615
11616 static char *ibx_pch_dpll_names[] = {
11617 "PCH DPLL A",
11618 "PCH DPLL B",
11619 };
11620
11621 static void ibx_pch_dpll_init(struct drm_device *dev)
11622 {
11623 struct drm_i915_private *dev_priv = dev->dev_private;
11624 int i;
11625
11626 dev_priv->num_shared_dpll = 2;
11627
11628 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11629 dev_priv->shared_dplls[i].id = i;
11630 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11631 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11632 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11633 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11634 dev_priv->shared_dplls[i].get_hw_state =
11635 ibx_pch_dpll_get_hw_state;
11636 }
11637 }
11638
11639 static void intel_shared_dpll_init(struct drm_device *dev)
11640 {
11641 struct drm_i915_private *dev_priv = dev->dev_private;
11642
11643 if (HAS_DDI(dev))
11644 intel_ddi_pll_init(dev);
11645 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11646 ibx_pch_dpll_init(dev);
11647 else
11648 dev_priv->num_shared_dpll = 0;
11649
11650 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11651 }
11652
11653 /**
11654 * intel_prepare_plane_fb - Prepare fb for usage on plane
11655 * @plane: drm plane to prepare for
11656 * @fb: framebuffer to prepare for presentation
11657 *
11658 * Prepares a framebuffer for usage on a display plane. Generally this
11659 * involves pinning the underlying object and updating the frontbuffer tracking
11660 * bits. Some older platforms need special physical address handling for
11661 * cursor planes.
11662 *
11663 * Returns 0 on success, negative error code on failure.
11664 */
11665 int
11666 intel_prepare_plane_fb(struct drm_plane *plane,
11667 struct drm_framebuffer *fb)
11668 {
11669 struct drm_device *dev = plane->dev;
11670 struct intel_plane *intel_plane = to_intel_plane(plane);
11671 enum pipe pipe = intel_plane->pipe;
11672 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11673 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11674 unsigned frontbuffer_bits = 0;
11675 int ret = 0;
11676
11677 if (WARN_ON(fb == plane->fb || !obj))
11678 return 0;
11679
11680 switch (plane->type) {
11681 case DRM_PLANE_TYPE_PRIMARY:
11682 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11683 break;
11684 case DRM_PLANE_TYPE_CURSOR:
11685 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11686 break;
11687 case DRM_PLANE_TYPE_OVERLAY:
11688 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11689 break;
11690 }
11691
11692 mutex_lock(&dev->struct_mutex);
11693
11694 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11695 INTEL_INFO(dev)->cursor_needs_physical) {
11696 int align = IS_I830(dev) ? 16 * 1024 : 256;
11697 ret = i915_gem_object_attach_phys(obj, align);
11698 if (ret)
11699 DRM_DEBUG_KMS("failed to attach phys object\n");
11700 } else {
11701 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11702 }
11703
11704 if (ret == 0)
11705 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11706
11707 mutex_unlock(&dev->struct_mutex);
11708
11709 return ret;
11710 }
11711
11712 /**
11713 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11714 * @plane: drm plane to clean up for
11715 * @fb: old framebuffer that was on plane
11716 *
11717 * Cleans up a framebuffer that has just been removed from a plane.
11718 */
11719 void
11720 intel_cleanup_plane_fb(struct drm_plane *plane,
11721 struct drm_framebuffer *fb)
11722 {
11723 struct drm_device *dev = plane->dev;
11724 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11725
11726 if (WARN_ON(!obj))
11727 return;
11728
11729 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11730 !INTEL_INFO(dev)->cursor_needs_physical) {
11731 mutex_lock(&dev->struct_mutex);
11732 intel_unpin_fb_obj(obj);
11733 mutex_unlock(&dev->struct_mutex);
11734 }
11735 }
11736
11737 static int
11738 intel_check_primary_plane(struct drm_plane *plane,
11739 struct intel_plane_state *state)
11740 {
11741 struct drm_crtc *crtc = state->base.crtc;
11742 struct drm_framebuffer *fb = state->base.fb;
11743 struct drm_rect *dest = &state->dst;
11744 struct drm_rect *src = &state->src;
11745 const struct drm_rect *clip = &state->clip;
11746 int ret;
11747
11748 ret = drm_plane_helper_check_update(plane, crtc, fb,
11749 src, dest, clip,
11750 DRM_PLANE_HELPER_NO_SCALING,
11751 DRM_PLANE_HELPER_NO_SCALING,
11752 false, true, &state->visible);
11753 if (ret)
11754 return ret;
11755
11756 intel_crtc_wait_for_pending_flips(crtc);
11757 if (intel_crtc_has_pending_flip(crtc)) {
11758 DRM_ERROR("pipe is still busy with an old pageflip\n");
11759 return -EBUSY;
11760 }
11761
11762 return 0;
11763 }
11764
11765 static void
11766 intel_commit_primary_plane(struct drm_plane *plane,
11767 struct intel_plane_state *state)
11768 {
11769 struct drm_crtc *crtc = state->base.crtc;
11770 struct drm_framebuffer *fb = state->base.fb;
11771 struct drm_device *dev = plane->dev;
11772 struct drm_i915_private *dev_priv = dev->dev_private;
11773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11774 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11775 struct intel_plane *intel_plane = to_intel_plane(plane);
11776 struct drm_rect *src = &state->src;
11777 enum pipe pipe = intel_plane->pipe;
11778
11779 if (!fb) {
11780 /*
11781 * 'prepare' is never called when plane is being disabled, so
11782 * we need to handle frontbuffer tracking here
11783 */
11784 mutex_lock(&dev->struct_mutex);
11785 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11786 INTEL_FRONTBUFFER_PRIMARY(pipe));
11787 mutex_unlock(&dev->struct_mutex);
11788 }
11789
11790 plane->fb = fb;
11791 crtc->x = src->x1 >> 16;
11792 crtc->y = src->y1 >> 16;
11793
11794 intel_plane->crtc_x = state->orig_dst.x1;
11795 intel_plane->crtc_y = state->orig_dst.y1;
11796 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11797 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11798 intel_plane->src_x = state->orig_src.x1;
11799 intel_plane->src_y = state->orig_src.y1;
11800 intel_plane->src_w = drm_rect_width(&state->orig_src);
11801 intel_plane->src_h = drm_rect_height(&state->orig_src);
11802 intel_plane->obj = obj;
11803
11804 if (intel_crtc->active) {
11805 /*
11806 * FBC does not work on some platforms for rotated
11807 * planes, so disable it when rotation is not 0 and
11808 * update it when rotation is set back to 0.
11809 *
11810 * FIXME: This is redundant with the fbc update done in
11811 * the primary plane enable function except that that
11812 * one is done too late. We eventually need to unify
11813 * this.
11814 */
11815 if (intel_crtc->primary_enabled &&
11816 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11817 dev_priv->fbc.plane == intel_crtc->plane &&
11818 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11819 intel_fbc_disable(dev);
11820 }
11821
11822 if (state->visible) {
11823 bool was_enabled = intel_crtc->primary_enabled;
11824
11825 /* FIXME: kill this fastboot hack */
11826 intel_update_pipe_size(intel_crtc);
11827
11828 intel_crtc->primary_enabled = true;
11829
11830 dev_priv->display.update_primary_plane(crtc, plane->fb,
11831 crtc->x, crtc->y);
11832
11833 /*
11834 * BDW signals flip done immediately if the plane
11835 * is disabled, even if the plane enable is already
11836 * armed to occur at the next vblank :(
11837 */
11838 if (IS_BROADWELL(dev) && !was_enabled)
11839 intel_wait_for_vblank(dev, intel_crtc->pipe);
11840 } else {
11841 /*
11842 * If clipping results in a non-visible primary plane,
11843 * we'll disable the primary plane. Note that this is
11844 * a bit different than what happens if userspace
11845 * explicitly disables the plane by passing fb=0
11846 * because plane->fb still gets set and pinned.
11847 */
11848 intel_disable_primary_hw_plane(plane, crtc);
11849 }
11850
11851 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11852
11853 mutex_lock(&dev->struct_mutex);
11854 intel_fbc_update(dev);
11855 mutex_unlock(&dev->struct_mutex);
11856 }
11857 }
11858
11859 int
11860 intel_update_plane(struct drm_plane *plane, struct drm_crtc *crtc,
11861 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11862 unsigned int crtc_w, unsigned int crtc_h,
11863 uint32_t src_x, uint32_t src_y,
11864 uint32_t src_w, uint32_t src_h)
11865 {
11866 struct drm_device *dev = plane->dev;
11867 struct drm_i915_private *dev_priv = dev->dev_private;
11868 struct drm_framebuffer *old_fb = plane->fb;
11869 struct intel_plane_state state;
11870 struct intel_plane *intel_plane = to_intel_plane(plane);
11871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11872 int ret;
11873
11874 state.base.crtc = crtc ? crtc : plane->crtc;
11875 state.base.fb = fb;
11876
11877 /* sample coordinates in 16.16 fixed point */
11878 state.src.x1 = src_x;
11879 state.src.x2 = src_x + src_w;
11880 state.src.y1 = src_y;
11881 state.src.y2 = src_y + src_h;
11882
11883 /* integer pixels */
11884 state.dst.x1 = crtc_x;
11885 state.dst.x2 = crtc_x + crtc_w;
11886 state.dst.y1 = crtc_y;
11887 state.dst.y2 = crtc_y + crtc_h;
11888
11889 state.clip.x1 = 0;
11890 state.clip.y1 = 0;
11891 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11892 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11893
11894 state.orig_src = state.src;
11895 state.orig_dst = state.dst;
11896
11897 ret = intel_plane->check_plane(plane, &state);
11898 if (ret)
11899 return ret;
11900
11901 if (fb != old_fb && fb) {
11902 ret = intel_prepare_plane_fb(plane, fb);
11903 if (ret)
11904 return ret;
11905 }
11906
11907 intel_runtime_pm_get(dev_priv);
11908 intel_plane->commit_plane(plane, &state);
11909 intel_runtime_pm_put(dev_priv);
11910
11911 if (fb != old_fb && old_fb) {
11912 if (intel_crtc->active)
11913 intel_wait_for_vblank(dev, intel_crtc->pipe);
11914 intel_cleanup_plane_fb(plane, old_fb);
11915 }
11916
11917 plane->fb = fb;
11918
11919 return 0;
11920 }
11921
11922 /**
11923 * intel_disable_plane - disable a plane
11924 * @plane: plane to disable
11925 *
11926 * General disable handler for all plane types.
11927 */
11928 int
11929 intel_disable_plane(struct drm_plane *plane)
11930 {
11931 if (!plane->fb)
11932 return 0;
11933
11934 if (WARN_ON(!plane->crtc))
11935 return -EINVAL;
11936
11937 return plane->funcs->update_plane(plane, plane->crtc, NULL,
11938 0, 0, 0, 0, 0, 0, 0, 0);
11939 }
11940
11941 /* Common destruction function for both primary and cursor planes */
11942 static void intel_plane_destroy(struct drm_plane *plane)
11943 {
11944 struct intel_plane *intel_plane = to_intel_plane(plane);
11945 drm_plane_cleanup(plane);
11946 kfree(intel_plane);
11947 }
11948
11949 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11950 .update_plane = intel_update_plane,
11951 .disable_plane = intel_disable_plane,
11952 .destroy = intel_plane_destroy,
11953 .set_property = intel_plane_set_property
11954 };
11955
11956 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11957 int pipe)
11958 {
11959 struct intel_plane *primary;
11960 const uint32_t *intel_primary_formats;
11961 int num_formats;
11962
11963 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11964 if (primary == NULL)
11965 return NULL;
11966
11967 primary->can_scale = false;
11968 primary->max_downscale = 1;
11969 primary->pipe = pipe;
11970 primary->plane = pipe;
11971 primary->rotation = BIT(DRM_ROTATE_0);
11972 primary->check_plane = intel_check_primary_plane;
11973 primary->commit_plane = intel_commit_primary_plane;
11974 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11975 primary->plane = !pipe;
11976
11977 if (INTEL_INFO(dev)->gen <= 3) {
11978 intel_primary_formats = intel_primary_formats_gen2;
11979 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11980 } else {
11981 intel_primary_formats = intel_primary_formats_gen4;
11982 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11983 }
11984
11985 drm_universal_plane_init(dev, &primary->base, 0,
11986 &intel_primary_plane_funcs,
11987 intel_primary_formats, num_formats,
11988 DRM_PLANE_TYPE_PRIMARY);
11989
11990 if (INTEL_INFO(dev)->gen >= 4) {
11991 if (!dev->mode_config.rotation_property)
11992 dev->mode_config.rotation_property =
11993 drm_mode_create_rotation_property(dev,
11994 BIT(DRM_ROTATE_0) |
11995 BIT(DRM_ROTATE_180));
11996 if (dev->mode_config.rotation_property)
11997 drm_object_attach_property(&primary->base.base,
11998 dev->mode_config.rotation_property,
11999 primary->rotation);
12000 }
12001
12002 return &primary->base;
12003 }
12004
12005 static int
12006 intel_check_cursor_plane(struct drm_plane *plane,
12007 struct intel_plane_state *state)
12008 {
12009 struct drm_crtc *crtc = state->base.crtc;
12010 struct drm_device *dev = crtc->dev;
12011 struct drm_framebuffer *fb = state->base.fb;
12012 struct drm_rect *dest = &state->dst;
12013 struct drm_rect *src = &state->src;
12014 const struct drm_rect *clip = &state->clip;
12015 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12016 int crtc_w, crtc_h;
12017 unsigned stride;
12018 int ret;
12019
12020 ret = drm_plane_helper_check_update(plane, crtc, fb,
12021 src, dest, clip,
12022 DRM_PLANE_HELPER_NO_SCALING,
12023 DRM_PLANE_HELPER_NO_SCALING,
12024 true, true, &state->visible);
12025 if (ret)
12026 return ret;
12027
12028
12029 /* if we want to turn off the cursor ignore width and height */
12030 if (!obj)
12031 return 0;
12032
12033 /* Check for which cursor types we support */
12034 crtc_w = drm_rect_width(&state->orig_dst);
12035 crtc_h = drm_rect_height(&state->orig_dst);
12036 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
12037 DRM_DEBUG("Cursor dimension not supported\n");
12038 return -EINVAL;
12039 }
12040
12041 stride = roundup_pow_of_two(crtc_w) * 4;
12042 if (obj->base.size < stride * crtc_h) {
12043 DRM_DEBUG_KMS("buffer is too small\n");
12044 return -ENOMEM;
12045 }
12046
12047 if (fb == crtc->cursor->fb)
12048 return 0;
12049
12050 /* we only need to pin inside GTT if cursor is non-phy */
12051 mutex_lock(&dev->struct_mutex);
12052 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12053 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12054 ret = -EINVAL;
12055 }
12056 mutex_unlock(&dev->struct_mutex);
12057
12058 return ret;
12059 }
12060
12061 static void
12062 intel_commit_cursor_plane(struct drm_plane *plane,
12063 struct intel_plane_state *state)
12064 {
12065 struct drm_crtc *crtc = state->base.crtc;
12066 struct drm_device *dev = crtc->dev;
12067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12068 struct intel_plane *intel_plane = to_intel_plane(plane);
12069 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12070 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12071 enum pipe pipe = intel_crtc->pipe;
12072 unsigned old_width;
12073 uint32_t addr;
12074
12075 plane->fb = state->base.fb;
12076 crtc->cursor_x = state->orig_dst.x1;
12077 crtc->cursor_y = state->orig_dst.y1;
12078
12079 intel_plane->crtc_x = state->orig_dst.x1;
12080 intel_plane->crtc_y = state->orig_dst.y1;
12081 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
12082 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
12083 intel_plane->src_x = state->orig_src.x1;
12084 intel_plane->src_y = state->orig_src.y1;
12085 intel_plane->src_w = drm_rect_width(&state->orig_src);
12086 intel_plane->src_h = drm_rect_height(&state->orig_src);
12087 intel_plane->obj = obj;
12088
12089 if (intel_crtc->cursor_bo == obj)
12090 goto update;
12091
12092 /*
12093 * 'prepare' is only called when fb != NULL; we still need to update
12094 * frontbuffer tracking for the 'disable' case here.
12095 */
12096 if (!obj) {
12097 mutex_lock(&dev->struct_mutex);
12098 i915_gem_track_fb(old_obj, NULL,
12099 INTEL_FRONTBUFFER_CURSOR(pipe));
12100 mutex_unlock(&dev->struct_mutex);
12101 }
12102
12103 if (!obj)
12104 addr = 0;
12105 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12106 addr = i915_gem_obj_ggtt_offset(obj);
12107 else
12108 addr = obj->phys_handle->busaddr;
12109
12110 intel_crtc->cursor_addr = addr;
12111 intel_crtc->cursor_bo = obj;
12112 update:
12113 old_width = intel_crtc->cursor_width;
12114
12115 intel_crtc->cursor_width = drm_rect_width(&state->orig_dst);
12116 intel_crtc->cursor_height = drm_rect_height(&state->orig_dst);
12117
12118 if (intel_crtc->active) {
12119 if (old_width != intel_crtc->cursor_width)
12120 intel_update_watermarks(crtc);
12121 intel_crtc_update_cursor(crtc, state->visible);
12122
12123 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
12124 }
12125 }
12126
12127 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12128 .update_plane = intel_update_plane,
12129 .disable_plane = intel_disable_plane,
12130 .destroy = intel_plane_destroy,
12131 .set_property = intel_plane_set_property,
12132 };
12133
12134 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12135 int pipe)
12136 {
12137 struct intel_plane *cursor;
12138
12139 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12140 if (cursor == NULL)
12141 return NULL;
12142
12143 cursor->can_scale = false;
12144 cursor->max_downscale = 1;
12145 cursor->pipe = pipe;
12146 cursor->plane = pipe;
12147 cursor->rotation = BIT(DRM_ROTATE_0);
12148 cursor->check_plane = intel_check_cursor_plane;
12149 cursor->commit_plane = intel_commit_cursor_plane;
12150
12151 drm_universal_plane_init(dev, &cursor->base, 0,
12152 &intel_cursor_plane_funcs,
12153 intel_cursor_formats,
12154 ARRAY_SIZE(intel_cursor_formats),
12155 DRM_PLANE_TYPE_CURSOR);
12156
12157 if (INTEL_INFO(dev)->gen >= 4) {
12158 if (!dev->mode_config.rotation_property)
12159 dev->mode_config.rotation_property =
12160 drm_mode_create_rotation_property(dev,
12161 BIT(DRM_ROTATE_0) |
12162 BIT(DRM_ROTATE_180));
12163 if (dev->mode_config.rotation_property)
12164 drm_object_attach_property(&cursor->base.base,
12165 dev->mode_config.rotation_property,
12166 cursor->rotation);
12167 }
12168
12169 return &cursor->base;
12170 }
12171
12172 static void intel_crtc_init(struct drm_device *dev, int pipe)
12173 {
12174 struct drm_i915_private *dev_priv = dev->dev_private;
12175 struct intel_crtc *intel_crtc;
12176 struct drm_plane *primary = NULL;
12177 struct drm_plane *cursor = NULL;
12178 int i, ret;
12179
12180 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12181 if (intel_crtc == NULL)
12182 return;
12183
12184 primary = intel_primary_plane_create(dev, pipe);
12185 if (!primary)
12186 goto fail;
12187
12188 cursor = intel_cursor_plane_create(dev, pipe);
12189 if (!cursor)
12190 goto fail;
12191
12192 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12193 cursor, &intel_crtc_funcs);
12194 if (ret)
12195 goto fail;
12196
12197 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12198 for (i = 0; i < 256; i++) {
12199 intel_crtc->lut_r[i] = i;
12200 intel_crtc->lut_g[i] = i;
12201 intel_crtc->lut_b[i] = i;
12202 }
12203
12204 /*
12205 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12206 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12207 */
12208 intel_crtc->pipe = pipe;
12209 intel_crtc->plane = pipe;
12210 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12211 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12212 intel_crtc->plane = !pipe;
12213 }
12214
12215 intel_crtc->cursor_base = ~0;
12216 intel_crtc->cursor_cntl = ~0;
12217 intel_crtc->cursor_size = ~0;
12218
12219 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12220 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12221 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12222 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12223
12224 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12225
12226 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12227
12228 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12229 return;
12230
12231 fail:
12232 if (primary)
12233 drm_plane_cleanup(primary);
12234 if (cursor)
12235 drm_plane_cleanup(cursor);
12236 kfree(intel_crtc);
12237 }
12238
12239 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12240 {
12241 struct drm_encoder *encoder = connector->base.encoder;
12242 struct drm_device *dev = connector->base.dev;
12243
12244 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12245
12246 if (!encoder || WARN_ON(!encoder->crtc))
12247 return INVALID_PIPE;
12248
12249 return to_intel_crtc(encoder->crtc)->pipe;
12250 }
12251
12252 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12253 struct drm_file *file)
12254 {
12255 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12256 struct drm_crtc *drmmode_crtc;
12257 struct intel_crtc *crtc;
12258
12259 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12260 return -ENODEV;
12261
12262 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12263
12264 if (!drmmode_crtc) {
12265 DRM_ERROR("no such CRTC id\n");
12266 return -ENOENT;
12267 }
12268
12269 crtc = to_intel_crtc(drmmode_crtc);
12270 pipe_from_crtc_id->pipe = crtc->pipe;
12271
12272 return 0;
12273 }
12274
12275 static int intel_encoder_clones(struct intel_encoder *encoder)
12276 {
12277 struct drm_device *dev = encoder->base.dev;
12278 struct intel_encoder *source_encoder;
12279 int index_mask = 0;
12280 int entry = 0;
12281
12282 for_each_intel_encoder(dev, source_encoder) {
12283 if (encoders_cloneable(encoder, source_encoder))
12284 index_mask |= (1 << entry);
12285
12286 entry++;
12287 }
12288
12289 return index_mask;
12290 }
12291
12292 static bool has_edp_a(struct drm_device *dev)
12293 {
12294 struct drm_i915_private *dev_priv = dev->dev_private;
12295
12296 if (!IS_MOBILE(dev))
12297 return false;
12298
12299 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12300 return false;
12301
12302 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12303 return false;
12304
12305 return true;
12306 }
12307
12308 static bool intel_crt_present(struct drm_device *dev)
12309 {
12310 struct drm_i915_private *dev_priv = dev->dev_private;
12311
12312 if (INTEL_INFO(dev)->gen >= 9)
12313 return false;
12314
12315 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12316 return false;
12317
12318 if (IS_CHERRYVIEW(dev))
12319 return false;
12320
12321 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12322 return false;
12323
12324 return true;
12325 }
12326
12327 static void intel_setup_outputs(struct drm_device *dev)
12328 {
12329 struct drm_i915_private *dev_priv = dev->dev_private;
12330 struct intel_encoder *encoder;
12331 bool dpd_is_edp = false;
12332
12333 intel_lvds_init(dev);
12334
12335 if (intel_crt_present(dev))
12336 intel_crt_init(dev);
12337
12338 if (HAS_DDI(dev)) {
12339 int found;
12340
12341 /* Haswell uses DDI functions to detect digital outputs */
12342 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12343 /* DDI A only supports eDP */
12344 if (found)
12345 intel_ddi_init(dev, PORT_A);
12346
12347 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12348 * register */
12349 found = I915_READ(SFUSE_STRAP);
12350
12351 if (found & SFUSE_STRAP_DDIB_DETECTED)
12352 intel_ddi_init(dev, PORT_B);
12353 if (found & SFUSE_STRAP_DDIC_DETECTED)
12354 intel_ddi_init(dev, PORT_C);
12355 if (found & SFUSE_STRAP_DDID_DETECTED)
12356 intel_ddi_init(dev, PORT_D);
12357 } else if (HAS_PCH_SPLIT(dev)) {
12358 int found;
12359 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12360
12361 if (has_edp_a(dev))
12362 intel_dp_init(dev, DP_A, PORT_A);
12363
12364 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12365 /* PCH SDVOB multiplex with HDMIB */
12366 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12367 if (!found)
12368 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12369 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12370 intel_dp_init(dev, PCH_DP_B, PORT_B);
12371 }
12372
12373 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12374 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12375
12376 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12377 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12378
12379 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12380 intel_dp_init(dev, PCH_DP_C, PORT_C);
12381
12382 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12383 intel_dp_init(dev, PCH_DP_D, PORT_D);
12384 } else if (IS_VALLEYVIEW(dev)) {
12385 /*
12386 * The DP_DETECTED bit is the latched state of the DDC
12387 * SDA pin at boot. However since eDP doesn't require DDC
12388 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12389 * eDP ports may have been muxed to an alternate function.
12390 * Thus we can't rely on the DP_DETECTED bit alone to detect
12391 * eDP ports. Consult the VBT as well as DP_DETECTED to
12392 * detect eDP ports.
12393 */
12394 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12395 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12396 PORT_B);
12397 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12398 intel_dp_is_edp(dev, PORT_B))
12399 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12400
12401 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12402 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12403 PORT_C);
12404 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12405 intel_dp_is_edp(dev, PORT_C))
12406 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12407
12408 if (IS_CHERRYVIEW(dev)) {
12409 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12410 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12411 PORT_D);
12412 /* eDP not supported on port D, so don't check VBT */
12413 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12414 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12415 }
12416
12417 intel_dsi_init(dev);
12418 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12419 bool found = false;
12420
12421 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12422 DRM_DEBUG_KMS("probing SDVOB\n");
12423 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12424 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12425 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12426 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12427 }
12428
12429 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12430 intel_dp_init(dev, DP_B, PORT_B);
12431 }
12432
12433 /* Before G4X SDVOC doesn't have its own detect register */
12434
12435 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12436 DRM_DEBUG_KMS("probing SDVOC\n");
12437 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12438 }
12439
12440 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12441
12442 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12443 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12444 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12445 }
12446 if (SUPPORTS_INTEGRATED_DP(dev))
12447 intel_dp_init(dev, DP_C, PORT_C);
12448 }
12449
12450 if (SUPPORTS_INTEGRATED_DP(dev) &&
12451 (I915_READ(DP_D) & DP_DETECTED))
12452 intel_dp_init(dev, DP_D, PORT_D);
12453 } else if (IS_GEN2(dev))
12454 intel_dvo_init(dev);
12455
12456 if (SUPPORTS_TV(dev))
12457 intel_tv_init(dev);
12458
12459 intel_psr_init(dev);
12460
12461 for_each_intel_encoder(dev, encoder) {
12462 encoder->base.possible_crtcs = encoder->crtc_mask;
12463 encoder->base.possible_clones =
12464 intel_encoder_clones(encoder);
12465 }
12466
12467 intel_init_pch_refclk(dev);
12468
12469 drm_helper_move_panel_connectors_to_head(dev);
12470 }
12471
12472 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12473 {
12474 struct drm_device *dev = fb->dev;
12475 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12476
12477 drm_framebuffer_cleanup(fb);
12478 mutex_lock(&dev->struct_mutex);
12479 WARN_ON(!intel_fb->obj->framebuffer_references--);
12480 drm_gem_object_unreference(&intel_fb->obj->base);
12481 mutex_unlock(&dev->struct_mutex);
12482 kfree(intel_fb);
12483 }
12484
12485 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12486 struct drm_file *file,
12487 unsigned int *handle)
12488 {
12489 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12490 struct drm_i915_gem_object *obj = intel_fb->obj;
12491
12492 return drm_gem_handle_create(file, &obj->base, handle);
12493 }
12494
12495 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12496 .destroy = intel_user_framebuffer_destroy,
12497 .create_handle = intel_user_framebuffer_create_handle,
12498 };
12499
12500 static int intel_framebuffer_init(struct drm_device *dev,
12501 struct intel_framebuffer *intel_fb,
12502 struct drm_mode_fb_cmd2 *mode_cmd,
12503 struct drm_i915_gem_object *obj)
12504 {
12505 int aligned_height;
12506 int pitch_limit;
12507 int ret;
12508
12509 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12510
12511 if (obj->tiling_mode == I915_TILING_Y) {
12512 DRM_DEBUG("hardware does not support tiling Y\n");
12513 return -EINVAL;
12514 }
12515
12516 if (mode_cmd->pitches[0] & 63) {
12517 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12518 mode_cmd->pitches[0]);
12519 return -EINVAL;
12520 }
12521
12522 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12523 pitch_limit = 32*1024;
12524 } else if (INTEL_INFO(dev)->gen >= 4) {
12525 if (obj->tiling_mode)
12526 pitch_limit = 16*1024;
12527 else
12528 pitch_limit = 32*1024;
12529 } else if (INTEL_INFO(dev)->gen >= 3) {
12530 if (obj->tiling_mode)
12531 pitch_limit = 8*1024;
12532 else
12533 pitch_limit = 16*1024;
12534 } else
12535 /* XXX DSPC is limited to 4k tiled */
12536 pitch_limit = 8*1024;
12537
12538 if (mode_cmd->pitches[0] > pitch_limit) {
12539 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12540 obj->tiling_mode ? "tiled" : "linear",
12541 mode_cmd->pitches[0], pitch_limit);
12542 return -EINVAL;
12543 }
12544
12545 if (obj->tiling_mode != I915_TILING_NONE &&
12546 mode_cmd->pitches[0] != obj->stride) {
12547 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12548 mode_cmd->pitches[0], obj->stride);
12549 return -EINVAL;
12550 }
12551
12552 /* Reject formats not supported by any plane early. */
12553 switch (mode_cmd->pixel_format) {
12554 case DRM_FORMAT_C8:
12555 case DRM_FORMAT_RGB565:
12556 case DRM_FORMAT_XRGB8888:
12557 case DRM_FORMAT_ARGB8888:
12558 break;
12559 case DRM_FORMAT_XRGB1555:
12560 case DRM_FORMAT_ARGB1555:
12561 if (INTEL_INFO(dev)->gen > 3) {
12562 DRM_DEBUG("unsupported pixel format: %s\n",
12563 drm_get_format_name(mode_cmd->pixel_format));
12564 return -EINVAL;
12565 }
12566 break;
12567 case DRM_FORMAT_XBGR8888:
12568 case DRM_FORMAT_ABGR8888:
12569 case DRM_FORMAT_XRGB2101010:
12570 case DRM_FORMAT_ARGB2101010:
12571 case DRM_FORMAT_XBGR2101010:
12572 case DRM_FORMAT_ABGR2101010:
12573 if (INTEL_INFO(dev)->gen < 4) {
12574 DRM_DEBUG("unsupported pixel format: %s\n",
12575 drm_get_format_name(mode_cmd->pixel_format));
12576 return -EINVAL;
12577 }
12578 break;
12579 case DRM_FORMAT_YUYV:
12580 case DRM_FORMAT_UYVY:
12581 case DRM_FORMAT_YVYU:
12582 case DRM_FORMAT_VYUY:
12583 if (INTEL_INFO(dev)->gen < 5) {
12584 DRM_DEBUG("unsupported pixel format: %s\n",
12585 drm_get_format_name(mode_cmd->pixel_format));
12586 return -EINVAL;
12587 }
12588 break;
12589 default:
12590 DRM_DEBUG("unsupported pixel format: %s\n",
12591 drm_get_format_name(mode_cmd->pixel_format));
12592 return -EINVAL;
12593 }
12594
12595 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12596 if (mode_cmd->offsets[0] != 0)
12597 return -EINVAL;
12598
12599 aligned_height = intel_align_height(dev, mode_cmd->height,
12600 obj->tiling_mode);
12601 /* FIXME drm helper for size checks (especially planar formats)? */
12602 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12603 return -EINVAL;
12604
12605 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12606 intel_fb->obj = obj;
12607 intel_fb->obj->framebuffer_references++;
12608
12609 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12610 if (ret) {
12611 DRM_ERROR("framebuffer init failed %d\n", ret);
12612 return ret;
12613 }
12614
12615 return 0;
12616 }
12617
12618 static struct drm_framebuffer *
12619 intel_user_framebuffer_create(struct drm_device *dev,
12620 struct drm_file *filp,
12621 struct drm_mode_fb_cmd2 *mode_cmd)
12622 {
12623 struct drm_i915_gem_object *obj;
12624
12625 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12626 mode_cmd->handles[0]));
12627 if (&obj->base == NULL)
12628 return ERR_PTR(-ENOENT);
12629
12630 return intel_framebuffer_create(dev, mode_cmd, obj);
12631 }
12632
12633 #ifndef CONFIG_DRM_I915_FBDEV
12634 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12635 {
12636 }
12637 #endif
12638
12639 static const struct drm_mode_config_funcs intel_mode_funcs = {
12640 .fb_create = intel_user_framebuffer_create,
12641 .output_poll_changed = intel_fbdev_output_poll_changed,
12642 };
12643
12644 /* Set up chip specific display functions */
12645 static void intel_init_display(struct drm_device *dev)
12646 {
12647 struct drm_i915_private *dev_priv = dev->dev_private;
12648
12649 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12650 dev_priv->display.find_dpll = g4x_find_best_dpll;
12651 else if (IS_CHERRYVIEW(dev))
12652 dev_priv->display.find_dpll = chv_find_best_dpll;
12653 else if (IS_VALLEYVIEW(dev))
12654 dev_priv->display.find_dpll = vlv_find_best_dpll;
12655 else if (IS_PINEVIEW(dev))
12656 dev_priv->display.find_dpll = pnv_find_best_dpll;
12657 else
12658 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12659
12660 if (HAS_DDI(dev)) {
12661 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12662 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12663 dev_priv->display.crtc_compute_clock =
12664 haswell_crtc_compute_clock;
12665 dev_priv->display.crtc_enable = haswell_crtc_enable;
12666 dev_priv->display.crtc_disable = haswell_crtc_disable;
12667 dev_priv->display.off = ironlake_crtc_off;
12668 if (INTEL_INFO(dev)->gen >= 9)
12669 dev_priv->display.update_primary_plane =
12670 skylake_update_primary_plane;
12671 else
12672 dev_priv->display.update_primary_plane =
12673 ironlake_update_primary_plane;
12674 } else if (HAS_PCH_SPLIT(dev)) {
12675 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12676 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12677 dev_priv->display.crtc_compute_clock =
12678 ironlake_crtc_compute_clock;
12679 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12680 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12681 dev_priv->display.off = ironlake_crtc_off;
12682 dev_priv->display.update_primary_plane =
12683 ironlake_update_primary_plane;
12684 } else if (IS_VALLEYVIEW(dev)) {
12685 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12686 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12687 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12688 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12689 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12690 dev_priv->display.off = i9xx_crtc_off;
12691 dev_priv->display.update_primary_plane =
12692 i9xx_update_primary_plane;
12693 } else {
12694 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12695 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12696 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12697 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12698 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12699 dev_priv->display.off = i9xx_crtc_off;
12700 dev_priv->display.update_primary_plane =
12701 i9xx_update_primary_plane;
12702 }
12703
12704 /* Returns the core display clock speed */
12705 if (IS_VALLEYVIEW(dev))
12706 dev_priv->display.get_display_clock_speed =
12707 valleyview_get_display_clock_speed;
12708 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12709 dev_priv->display.get_display_clock_speed =
12710 i945_get_display_clock_speed;
12711 else if (IS_I915G(dev))
12712 dev_priv->display.get_display_clock_speed =
12713 i915_get_display_clock_speed;
12714 else if (IS_I945GM(dev) || IS_845G(dev))
12715 dev_priv->display.get_display_clock_speed =
12716 i9xx_misc_get_display_clock_speed;
12717 else if (IS_PINEVIEW(dev))
12718 dev_priv->display.get_display_clock_speed =
12719 pnv_get_display_clock_speed;
12720 else if (IS_I915GM(dev))
12721 dev_priv->display.get_display_clock_speed =
12722 i915gm_get_display_clock_speed;
12723 else if (IS_I865G(dev))
12724 dev_priv->display.get_display_clock_speed =
12725 i865_get_display_clock_speed;
12726 else if (IS_I85X(dev))
12727 dev_priv->display.get_display_clock_speed =
12728 i855_get_display_clock_speed;
12729 else /* 852, 830 */
12730 dev_priv->display.get_display_clock_speed =
12731 i830_get_display_clock_speed;
12732
12733 if (IS_GEN5(dev)) {
12734 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12735 } else if (IS_GEN6(dev)) {
12736 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12737 } else if (IS_IVYBRIDGE(dev)) {
12738 /* FIXME: detect B0+ stepping and use auto training */
12739 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12740 dev_priv->display.modeset_global_resources =
12741 ivb_modeset_global_resources;
12742 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12743 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12744 } else if (IS_VALLEYVIEW(dev)) {
12745 dev_priv->display.modeset_global_resources =
12746 valleyview_modeset_global_resources;
12747 }
12748
12749 /* Default just returns -ENODEV to indicate unsupported */
12750 dev_priv->display.queue_flip = intel_default_queue_flip;
12751
12752 switch (INTEL_INFO(dev)->gen) {
12753 case 2:
12754 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12755 break;
12756
12757 case 3:
12758 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12759 break;
12760
12761 case 4:
12762 case 5:
12763 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12764 break;
12765
12766 case 6:
12767 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12768 break;
12769 case 7:
12770 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12771 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12772 break;
12773 case 9:
12774 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12775 break;
12776 }
12777
12778 intel_panel_init_backlight_funcs(dev);
12779
12780 mutex_init(&dev_priv->pps_mutex);
12781 }
12782
12783 /*
12784 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12785 * resume, or other times. This quirk makes sure that's the case for
12786 * affected systems.
12787 */
12788 static void quirk_pipea_force(struct drm_device *dev)
12789 {
12790 struct drm_i915_private *dev_priv = dev->dev_private;
12791
12792 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12793 DRM_INFO("applying pipe a force quirk\n");
12794 }
12795
12796 static void quirk_pipeb_force(struct drm_device *dev)
12797 {
12798 struct drm_i915_private *dev_priv = dev->dev_private;
12799
12800 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12801 DRM_INFO("applying pipe b force quirk\n");
12802 }
12803
12804 /*
12805 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12806 */
12807 static void quirk_ssc_force_disable(struct drm_device *dev)
12808 {
12809 struct drm_i915_private *dev_priv = dev->dev_private;
12810 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12811 DRM_INFO("applying lvds SSC disable quirk\n");
12812 }
12813
12814 /*
12815 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12816 * brightness value
12817 */
12818 static void quirk_invert_brightness(struct drm_device *dev)
12819 {
12820 struct drm_i915_private *dev_priv = dev->dev_private;
12821 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12822 DRM_INFO("applying inverted panel brightness quirk\n");
12823 }
12824
12825 /* Some VBT's incorrectly indicate no backlight is present */
12826 static void quirk_backlight_present(struct drm_device *dev)
12827 {
12828 struct drm_i915_private *dev_priv = dev->dev_private;
12829 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12830 DRM_INFO("applying backlight present quirk\n");
12831 }
12832
12833 struct intel_quirk {
12834 int device;
12835 int subsystem_vendor;
12836 int subsystem_device;
12837 void (*hook)(struct drm_device *dev);
12838 };
12839
12840 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12841 struct intel_dmi_quirk {
12842 void (*hook)(struct drm_device *dev);
12843 const struct dmi_system_id (*dmi_id_list)[];
12844 };
12845
12846 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12847 {
12848 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12849 return 1;
12850 }
12851
12852 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12853 {
12854 .dmi_id_list = &(const struct dmi_system_id[]) {
12855 {
12856 .callback = intel_dmi_reverse_brightness,
12857 .ident = "NCR Corporation",
12858 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12859 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12860 },
12861 },
12862 { } /* terminating entry */
12863 },
12864 .hook = quirk_invert_brightness,
12865 },
12866 };
12867
12868 static struct intel_quirk intel_quirks[] = {
12869 /* HP Mini needs pipe A force quirk (LP: #322104) */
12870 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12871
12872 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12873 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12874
12875 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12876 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12877
12878 /* 830 needs to leave pipe A & dpll A up */
12879 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12880
12881 /* 830 needs to leave pipe B & dpll B up */
12882 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12883
12884 /* Lenovo U160 cannot use SSC on LVDS */
12885 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12886
12887 /* Sony Vaio Y cannot use SSC on LVDS */
12888 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12889
12890 /* Acer Aspire 5734Z must invert backlight brightness */
12891 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12892
12893 /* Acer/eMachines G725 */
12894 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12895
12896 /* Acer/eMachines e725 */
12897 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12898
12899 /* Acer/Packard Bell NCL20 */
12900 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12901
12902 /* Acer Aspire 4736Z */
12903 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12904
12905 /* Acer Aspire 5336 */
12906 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12907
12908 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12909 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12910
12911 /* Acer C720 Chromebook (Core i3 4005U) */
12912 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12913
12914 /* Apple Macbook 2,1 (Core 2 T7400) */
12915 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12916
12917 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12918 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12919
12920 /* HP Chromebook 14 (Celeron 2955U) */
12921 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12922 };
12923
12924 static void intel_init_quirks(struct drm_device *dev)
12925 {
12926 struct pci_dev *d = dev->pdev;
12927 int i;
12928
12929 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12930 struct intel_quirk *q = &intel_quirks[i];
12931
12932 if (d->device == q->device &&
12933 (d->subsystem_vendor == q->subsystem_vendor ||
12934 q->subsystem_vendor == PCI_ANY_ID) &&
12935 (d->subsystem_device == q->subsystem_device ||
12936 q->subsystem_device == PCI_ANY_ID))
12937 q->hook(dev);
12938 }
12939 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12940 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12941 intel_dmi_quirks[i].hook(dev);
12942 }
12943 }
12944
12945 /* Disable the VGA plane that we never use */
12946 static void i915_disable_vga(struct drm_device *dev)
12947 {
12948 struct drm_i915_private *dev_priv = dev->dev_private;
12949 u8 sr1;
12950 u32 vga_reg = i915_vgacntrl_reg(dev);
12951
12952 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12953 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12954 outb(SR01, VGA_SR_INDEX);
12955 sr1 = inb(VGA_SR_DATA);
12956 outb(sr1 | 1<<5, VGA_SR_DATA);
12957 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12958 udelay(300);
12959
12960 /*
12961 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12962 * from S3 without preserving (some of?) the other bits.
12963 */
12964 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12965 POSTING_READ(vga_reg);
12966 }
12967
12968 void intel_modeset_init_hw(struct drm_device *dev)
12969 {
12970 intel_prepare_ddi(dev);
12971
12972 if (IS_VALLEYVIEW(dev))
12973 vlv_update_cdclk(dev);
12974
12975 intel_init_clock_gating(dev);
12976
12977 intel_enable_gt_powersave(dev);
12978 }
12979
12980 void intel_modeset_init(struct drm_device *dev)
12981 {
12982 struct drm_i915_private *dev_priv = dev->dev_private;
12983 int sprite, ret;
12984 enum pipe pipe;
12985 struct intel_crtc *crtc;
12986
12987 drm_mode_config_init(dev);
12988
12989 dev->mode_config.min_width = 0;
12990 dev->mode_config.min_height = 0;
12991
12992 dev->mode_config.preferred_depth = 24;
12993 dev->mode_config.prefer_shadow = 1;
12994
12995 dev->mode_config.funcs = &intel_mode_funcs;
12996
12997 intel_init_quirks(dev);
12998
12999 intel_init_pm(dev);
13000
13001 if (INTEL_INFO(dev)->num_pipes == 0)
13002 return;
13003
13004 intel_init_display(dev);
13005 intel_init_audio(dev);
13006
13007 if (IS_GEN2(dev)) {
13008 dev->mode_config.max_width = 2048;
13009 dev->mode_config.max_height = 2048;
13010 } else if (IS_GEN3(dev)) {
13011 dev->mode_config.max_width = 4096;
13012 dev->mode_config.max_height = 4096;
13013 } else {
13014 dev->mode_config.max_width = 8192;
13015 dev->mode_config.max_height = 8192;
13016 }
13017
13018 if (IS_845G(dev) || IS_I865G(dev)) {
13019 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13020 dev->mode_config.cursor_height = 1023;
13021 } else if (IS_GEN2(dev)) {
13022 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13023 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13024 } else {
13025 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13026 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13027 }
13028
13029 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13030
13031 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13032 INTEL_INFO(dev)->num_pipes,
13033 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13034
13035 for_each_pipe(dev_priv, pipe) {
13036 intel_crtc_init(dev, pipe);
13037 for_each_sprite(pipe, sprite) {
13038 ret = intel_plane_init(dev, pipe, sprite);
13039 if (ret)
13040 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13041 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13042 }
13043 }
13044
13045 intel_init_dpio(dev);
13046
13047 intel_shared_dpll_init(dev);
13048
13049 /* save the BIOS value before clobbering it */
13050 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
13051 /* Just disable it once at startup */
13052 i915_disable_vga(dev);
13053 intel_setup_outputs(dev);
13054
13055 /* Just in case the BIOS is doing something questionable. */
13056 intel_fbc_disable(dev);
13057
13058 drm_modeset_lock_all(dev);
13059 intel_modeset_setup_hw_state(dev, false);
13060 drm_modeset_unlock_all(dev);
13061
13062 for_each_intel_crtc(dev, crtc) {
13063 if (!crtc->active)
13064 continue;
13065
13066 /*
13067 * Note that reserving the BIOS fb up front prevents us
13068 * from stuffing other stolen allocations like the ring
13069 * on top. This prevents some ugliness at boot time, and
13070 * can even allow for smooth boot transitions if the BIOS
13071 * fb is large enough for the active pipe configuration.
13072 */
13073 if (dev_priv->display.get_plane_config) {
13074 dev_priv->display.get_plane_config(crtc,
13075 &crtc->plane_config);
13076 /*
13077 * If the fb is shared between multiple heads, we'll
13078 * just get the first one.
13079 */
13080 intel_find_plane_obj(crtc, &crtc->plane_config);
13081 }
13082 }
13083 }
13084
13085 static void intel_enable_pipe_a(struct drm_device *dev)
13086 {
13087 struct intel_connector *connector;
13088 struct drm_connector *crt = NULL;
13089 struct intel_load_detect_pipe load_detect_temp;
13090 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13091
13092 /* We can't just switch on the pipe A, we need to set things up with a
13093 * proper mode and output configuration. As a gross hack, enable pipe A
13094 * by enabling the load detect pipe once. */
13095 list_for_each_entry(connector,
13096 &dev->mode_config.connector_list,
13097 base.head) {
13098 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13099 crt = &connector->base;
13100 break;
13101 }
13102 }
13103
13104 if (!crt)
13105 return;
13106
13107 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13108 intel_release_load_detect_pipe(crt, &load_detect_temp);
13109 }
13110
13111 static bool
13112 intel_check_plane_mapping(struct intel_crtc *crtc)
13113 {
13114 struct drm_device *dev = crtc->base.dev;
13115 struct drm_i915_private *dev_priv = dev->dev_private;
13116 u32 reg, val;
13117
13118 if (INTEL_INFO(dev)->num_pipes == 1)
13119 return true;
13120
13121 reg = DSPCNTR(!crtc->plane);
13122 val = I915_READ(reg);
13123
13124 if ((val & DISPLAY_PLANE_ENABLE) &&
13125 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13126 return false;
13127
13128 return true;
13129 }
13130
13131 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13132 {
13133 struct drm_device *dev = crtc->base.dev;
13134 struct drm_i915_private *dev_priv = dev->dev_private;
13135 u32 reg;
13136
13137 /* Clear any frame start delays used for debugging left by the BIOS */
13138 reg = PIPECONF(crtc->config.cpu_transcoder);
13139 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13140
13141 /* restore vblank interrupts to correct state */
13142 if (crtc->active) {
13143 update_scanline_offset(crtc);
13144 drm_vblank_on(dev, crtc->pipe);
13145 } else
13146 drm_vblank_off(dev, crtc->pipe);
13147
13148 /* We need to sanitize the plane -> pipe mapping first because this will
13149 * disable the crtc (and hence change the state) if it is wrong. Note
13150 * that gen4+ has a fixed plane -> pipe mapping. */
13151 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13152 struct intel_connector *connector;
13153 bool plane;
13154
13155 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13156 crtc->base.base.id);
13157
13158 /* Pipe has the wrong plane attached and the plane is active.
13159 * Temporarily change the plane mapping and disable everything
13160 * ... */
13161 plane = crtc->plane;
13162 crtc->plane = !plane;
13163 crtc->primary_enabled = true;
13164 dev_priv->display.crtc_disable(&crtc->base);
13165 crtc->plane = plane;
13166
13167 /* ... and break all links. */
13168 list_for_each_entry(connector, &dev->mode_config.connector_list,
13169 base.head) {
13170 if (connector->encoder->base.crtc != &crtc->base)
13171 continue;
13172
13173 connector->base.dpms = DRM_MODE_DPMS_OFF;
13174 connector->base.encoder = NULL;
13175 }
13176 /* multiple connectors may have the same encoder:
13177 * handle them and break crtc link separately */
13178 list_for_each_entry(connector, &dev->mode_config.connector_list,
13179 base.head)
13180 if (connector->encoder->base.crtc == &crtc->base) {
13181 connector->encoder->base.crtc = NULL;
13182 connector->encoder->connectors_active = false;
13183 }
13184
13185 WARN_ON(crtc->active);
13186 crtc->base.enabled = false;
13187 }
13188
13189 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13190 crtc->pipe == PIPE_A && !crtc->active) {
13191 /* BIOS forgot to enable pipe A, this mostly happens after
13192 * resume. Force-enable the pipe to fix this, the update_dpms
13193 * call below we restore the pipe to the right state, but leave
13194 * the required bits on. */
13195 intel_enable_pipe_a(dev);
13196 }
13197
13198 /* Adjust the state of the output pipe according to whether we
13199 * have active connectors/encoders. */
13200 intel_crtc_update_dpms(&crtc->base);
13201
13202 if (crtc->active != crtc->base.enabled) {
13203 struct intel_encoder *encoder;
13204
13205 /* This can happen either due to bugs in the get_hw_state
13206 * functions or because the pipe is force-enabled due to the
13207 * pipe A quirk. */
13208 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13209 crtc->base.base.id,
13210 crtc->base.enabled ? "enabled" : "disabled",
13211 crtc->active ? "enabled" : "disabled");
13212
13213 crtc->base.enabled = crtc->active;
13214
13215 /* Because we only establish the connector -> encoder ->
13216 * crtc links if something is active, this means the
13217 * crtc is now deactivated. Break the links. connector
13218 * -> encoder links are only establish when things are
13219 * actually up, hence no need to break them. */
13220 WARN_ON(crtc->active);
13221
13222 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13223 WARN_ON(encoder->connectors_active);
13224 encoder->base.crtc = NULL;
13225 }
13226 }
13227
13228 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13229 /*
13230 * We start out with underrun reporting disabled to avoid races.
13231 * For correct bookkeeping mark this on active crtcs.
13232 *
13233 * Also on gmch platforms we dont have any hardware bits to
13234 * disable the underrun reporting. Which means we need to start
13235 * out with underrun reporting disabled also on inactive pipes,
13236 * since otherwise we'll complain about the garbage we read when
13237 * e.g. coming up after runtime pm.
13238 *
13239 * No protection against concurrent access is required - at
13240 * worst a fifo underrun happens which also sets this to false.
13241 */
13242 crtc->cpu_fifo_underrun_disabled = true;
13243 crtc->pch_fifo_underrun_disabled = true;
13244 }
13245 }
13246
13247 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13248 {
13249 struct intel_connector *connector;
13250 struct drm_device *dev = encoder->base.dev;
13251
13252 /* We need to check both for a crtc link (meaning that the
13253 * encoder is active and trying to read from a pipe) and the
13254 * pipe itself being active. */
13255 bool has_active_crtc = encoder->base.crtc &&
13256 to_intel_crtc(encoder->base.crtc)->active;
13257
13258 if (encoder->connectors_active && !has_active_crtc) {
13259 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13260 encoder->base.base.id,
13261 encoder->base.name);
13262
13263 /* Connector is active, but has no active pipe. This is
13264 * fallout from our resume register restoring. Disable
13265 * the encoder manually again. */
13266 if (encoder->base.crtc) {
13267 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13268 encoder->base.base.id,
13269 encoder->base.name);
13270 encoder->disable(encoder);
13271 if (encoder->post_disable)
13272 encoder->post_disable(encoder);
13273 }
13274 encoder->base.crtc = NULL;
13275 encoder->connectors_active = false;
13276
13277 /* Inconsistent output/port/pipe state happens presumably due to
13278 * a bug in one of the get_hw_state functions. Or someplace else
13279 * in our code, like the register restore mess on resume. Clamp
13280 * things to off as a safer default. */
13281 list_for_each_entry(connector,
13282 &dev->mode_config.connector_list,
13283 base.head) {
13284 if (connector->encoder != encoder)
13285 continue;
13286 connector->base.dpms = DRM_MODE_DPMS_OFF;
13287 connector->base.encoder = NULL;
13288 }
13289 }
13290 /* Enabled encoders without active connectors will be fixed in
13291 * the crtc fixup. */
13292 }
13293
13294 void i915_redisable_vga_power_on(struct drm_device *dev)
13295 {
13296 struct drm_i915_private *dev_priv = dev->dev_private;
13297 u32 vga_reg = i915_vgacntrl_reg(dev);
13298
13299 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13300 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13301 i915_disable_vga(dev);
13302 }
13303 }
13304
13305 void i915_redisable_vga(struct drm_device *dev)
13306 {
13307 struct drm_i915_private *dev_priv = dev->dev_private;
13308
13309 /* This function can be called both from intel_modeset_setup_hw_state or
13310 * at a very early point in our resume sequence, where the power well
13311 * structures are not yet restored. Since this function is at a very
13312 * paranoid "someone might have enabled VGA while we were not looking"
13313 * level, just check if the power well is enabled instead of trying to
13314 * follow the "don't touch the power well if we don't need it" policy
13315 * the rest of the driver uses. */
13316 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13317 return;
13318
13319 i915_redisable_vga_power_on(dev);
13320 }
13321
13322 static bool primary_get_hw_state(struct intel_crtc *crtc)
13323 {
13324 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13325
13326 if (!crtc->active)
13327 return false;
13328
13329 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13330 }
13331
13332 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13333 {
13334 struct drm_i915_private *dev_priv = dev->dev_private;
13335 enum pipe pipe;
13336 struct intel_crtc *crtc;
13337 struct intel_encoder *encoder;
13338 struct intel_connector *connector;
13339 int i;
13340
13341 for_each_intel_crtc(dev, crtc) {
13342 memset(&crtc->config, 0, sizeof(crtc->config));
13343
13344 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13345
13346 crtc->active = dev_priv->display.get_pipe_config(crtc,
13347 &crtc->config);
13348
13349 crtc->base.enabled = crtc->active;
13350 crtc->primary_enabled = primary_get_hw_state(crtc);
13351
13352 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13353 crtc->base.base.id,
13354 crtc->active ? "enabled" : "disabled");
13355 }
13356
13357 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13358 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13359
13360 pll->on = pll->get_hw_state(dev_priv, pll,
13361 &pll->config.hw_state);
13362 pll->active = 0;
13363 pll->config.crtc_mask = 0;
13364 for_each_intel_crtc(dev, crtc) {
13365 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13366 pll->active++;
13367 pll->config.crtc_mask |= 1 << crtc->pipe;
13368 }
13369 }
13370
13371 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13372 pll->name, pll->config.crtc_mask, pll->on);
13373
13374 if (pll->config.crtc_mask)
13375 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13376 }
13377
13378 for_each_intel_encoder(dev, encoder) {
13379 pipe = 0;
13380
13381 if (encoder->get_hw_state(encoder, &pipe)) {
13382 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13383 encoder->base.crtc = &crtc->base;
13384 encoder->get_config(encoder, &crtc->config);
13385 } else {
13386 encoder->base.crtc = NULL;
13387 }
13388
13389 encoder->connectors_active = false;
13390 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13391 encoder->base.base.id,
13392 encoder->base.name,
13393 encoder->base.crtc ? "enabled" : "disabled",
13394 pipe_name(pipe));
13395 }
13396
13397 list_for_each_entry(connector, &dev->mode_config.connector_list,
13398 base.head) {
13399 if (connector->get_hw_state(connector)) {
13400 connector->base.dpms = DRM_MODE_DPMS_ON;
13401 connector->encoder->connectors_active = true;
13402 connector->base.encoder = &connector->encoder->base;
13403 } else {
13404 connector->base.dpms = DRM_MODE_DPMS_OFF;
13405 connector->base.encoder = NULL;
13406 }
13407 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13408 connector->base.base.id,
13409 connector->base.name,
13410 connector->base.encoder ? "enabled" : "disabled");
13411 }
13412 }
13413
13414 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13415 * and i915 state tracking structures. */
13416 void intel_modeset_setup_hw_state(struct drm_device *dev,
13417 bool force_restore)
13418 {
13419 struct drm_i915_private *dev_priv = dev->dev_private;
13420 enum pipe pipe;
13421 struct intel_crtc *crtc;
13422 struct intel_encoder *encoder;
13423 int i;
13424
13425 intel_modeset_readout_hw_state(dev);
13426
13427 /*
13428 * Now that we have the config, copy it to each CRTC struct
13429 * Note that this could go away if we move to using crtc_config
13430 * checking everywhere.
13431 */
13432 for_each_intel_crtc(dev, crtc) {
13433 if (crtc->active && i915.fastboot) {
13434 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13435 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13436 crtc->base.base.id);
13437 drm_mode_debug_printmodeline(&crtc->base.mode);
13438 }
13439 }
13440
13441 /* HW state is read out, now we need to sanitize this mess. */
13442 for_each_intel_encoder(dev, encoder) {
13443 intel_sanitize_encoder(encoder);
13444 }
13445
13446 for_each_pipe(dev_priv, pipe) {
13447 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13448 intel_sanitize_crtc(crtc);
13449 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13450 }
13451
13452 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13453 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13454
13455 if (!pll->on || pll->active)
13456 continue;
13457
13458 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13459
13460 pll->disable(dev_priv, pll);
13461 pll->on = false;
13462 }
13463
13464 if (IS_GEN9(dev))
13465 skl_wm_get_hw_state(dev);
13466 else if (HAS_PCH_SPLIT(dev))
13467 ilk_wm_get_hw_state(dev);
13468
13469 if (force_restore) {
13470 i915_redisable_vga(dev);
13471
13472 /*
13473 * We need to use raw interfaces for restoring state to avoid
13474 * checking (bogus) intermediate states.
13475 */
13476 for_each_pipe(dev_priv, pipe) {
13477 struct drm_crtc *crtc =
13478 dev_priv->pipe_to_crtc_mapping[pipe];
13479
13480 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13481 crtc->primary->fb);
13482 }
13483 } else {
13484 intel_modeset_update_staged_output_state(dev);
13485 }
13486
13487 intel_modeset_check_state(dev);
13488 }
13489
13490 void intel_modeset_gem_init(struct drm_device *dev)
13491 {
13492 struct drm_i915_private *dev_priv = dev->dev_private;
13493 struct drm_crtc *c;
13494 struct drm_i915_gem_object *obj;
13495
13496 mutex_lock(&dev->struct_mutex);
13497 intel_init_gt_powersave(dev);
13498 mutex_unlock(&dev->struct_mutex);
13499
13500 /*
13501 * There may be no VBT; and if the BIOS enabled SSC we can
13502 * just keep using it to avoid unnecessary flicker. Whereas if the
13503 * BIOS isn't using it, don't assume it will work even if the VBT
13504 * indicates as much.
13505 */
13506 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13507 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13508 DREF_SSC1_ENABLE);
13509
13510 intel_modeset_init_hw(dev);
13511
13512 intel_setup_overlay(dev);
13513
13514 /*
13515 * Make sure any fbs we allocated at startup are properly
13516 * pinned & fenced. When we do the allocation it's too early
13517 * for this.
13518 */
13519 mutex_lock(&dev->struct_mutex);
13520 for_each_crtc(dev, c) {
13521 obj = intel_fb_obj(c->primary->fb);
13522 if (obj == NULL)
13523 continue;
13524
13525 if (intel_pin_and_fence_fb_obj(c->primary,
13526 c->primary->fb,
13527 NULL)) {
13528 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13529 to_intel_crtc(c)->pipe);
13530 drm_framebuffer_unreference(c->primary->fb);
13531 c->primary->fb = NULL;
13532 }
13533 }
13534 mutex_unlock(&dev->struct_mutex);
13535
13536 intel_backlight_register(dev);
13537 }
13538
13539 void intel_connector_unregister(struct intel_connector *intel_connector)
13540 {
13541 struct drm_connector *connector = &intel_connector->base;
13542
13543 intel_panel_destroy_backlight(connector);
13544 drm_connector_unregister(connector);
13545 }
13546
13547 void intel_modeset_cleanup(struct drm_device *dev)
13548 {
13549 struct drm_i915_private *dev_priv = dev->dev_private;
13550 struct drm_connector *connector;
13551
13552 intel_disable_gt_powersave(dev);
13553
13554 intel_backlight_unregister(dev);
13555
13556 /*
13557 * Interrupts and polling as the first thing to avoid creating havoc.
13558 * Too much stuff here (turning of connectors, ...) would
13559 * experience fancy races otherwise.
13560 */
13561 intel_irq_uninstall(dev_priv);
13562
13563 /*
13564 * Due to the hpd irq storm handling the hotplug work can re-arm the
13565 * poll handlers. Hence disable polling after hpd handling is shut down.
13566 */
13567 drm_kms_helper_poll_fini(dev);
13568
13569 mutex_lock(&dev->struct_mutex);
13570
13571 intel_unregister_dsm_handler();
13572
13573 intel_fbc_disable(dev);
13574
13575 ironlake_teardown_rc6(dev);
13576
13577 mutex_unlock(&dev->struct_mutex);
13578
13579 /* flush any delayed tasks or pending work */
13580 flush_scheduled_work();
13581
13582 /* destroy the backlight and sysfs files before encoders/connectors */
13583 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13584 struct intel_connector *intel_connector;
13585
13586 intel_connector = to_intel_connector(connector);
13587 intel_connector->unregister(intel_connector);
13588 }
13589
13590 drm_mode_config_cleanup(dev);
13591
13592 intel_cleanup_overlay(dev);
13593
13594 mutex_lock(&dev->struct_mutex);
13595 intel_cleanup_gt_powersave(dev);
13596 mutex_unlock(&dev->struct_mutex);
13597 }
13598
13599 /*
13600 * Return which encoder is currently attached for connector.
13601 */
13602 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13603 {
13604 return &intel_attached_encoder(connector)->base;
13605 }
13606
13607 void intel_connector_attach_encoder(struct intel_connector *connector,
13608 struct intel_encoder *encoder)
13609 {
13610 connector->encoder = encoder;
13611 drm_mode_connector_attach_encoder(&connector->base,
13612 &encoder->base);
13613 }
13614
13615 /*
13616 * set vga decode state - true == enable VGA decode
13617 */
13618 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13619 {
13620 struct drm_i915_private *dev_priv = dev->dev_private;
13621 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13622 u16 gmch_ctrl;
13623
13624 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13625 DRM_ERROR("failed to read control word\n");
13626 return -EIO;
13627 }
13628
13629 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13630 return 0;
13631
13632 if (state)
13633 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13634 else
13635 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13636
13637 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13638 DRM_ERROR("failed to write control word\n");
13639 return -EIO;
13640 }
13641
13642 return 0;
13643 }
13644
13645 struct intel_display_error_state {
13646
13647 u32 power_well_driver;
13648
13649 int num_transcoders;
13650
13651 struct intel_cursor_error_state {
13652 u32 control;
13653 u32 position;
13654 u32 base;
13655 u32 size;
13656 } cursor[I915_MAX_PIPES];
13657
13658 struct intel_pipe_error_state {
13659 bool power_domain_on;
13660 u32 source;
13661 u32 stat;
13662 } pipe[I915_MAX_PIPES];
13663
13664 struct intel_plane_error_state {
13665 u32 control;
13666 u32 stride;
13667 u32 size;
13668 u32 pos;
13669 u32 addr;
13670 u32 surface;
13671 u32 tile_offset;
13672 } plane[I915_MAX_PIPES];
13673
13674 struct intel_transcoder_error_state {
13675 bool power_domain_on;
13676 enum transcoder cpu_transcoder;
13677
13678 u32 conf;
13679
13680 u32 htotal;
13681 u32 hblank;
13682 u32 hsync;
13683 u32 vtotal;
13684 u32 vblank;
13685 u32 vsync;
13686 } transcoder[4];
13687 };
13688
13689 struct intel_display_error_state *
13690 intel_display_capture_error_state(struct drm_device *dev)
13691 {
13692 struct drm_i915_private *dev_priv = dev->dev_private;
13693 struct intel_display_error_state *error;
13694 int transcoders[] = {
13695 TRANSCODER_A,
13696 TRANSCODER_B,
13697 TRANSCODER_C,
13698 TRANSCODER_EDP,
13699 };
13700 int i;
13701
13702 if (INTEL_INFO(dev)->num_pipes == 0)
13703 return NULL;
13704
13705 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13706 if (error == NULL)
13707 return NULL;
13708
13709 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13710 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13711
13712 for_each_pipe(dev_priv, i) {
13713 error->pipe[i].power_domain_on =
13714 __intel_display_power_is_enabled(dev_priv,
13715 POWER_DOMAIN_PIPE(i));
13716 if (!error->pipe[i].power_domain_on)
13717 continue;
13718
13719 error->cursor[i].control = I915_READ(CURCNTR(i));
13720 error->cursor[i].position = I915_READ(CURPOS(i));
13721 error->cursor[i].base = I915_READ(CURBASE(i));
13722
13723 error->plane[i].control = I915_READ(DSPCNTR(i));
13724 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13725 if (INTEL_INFO(dev)->gen <= 3) {
13726 error->plane[i].size = I915_READ(DSPSIZE(i));
13727 error->plane[i].pos = I915_READ(DSPPOS(i));
13728 }
13729 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13730 error->plane[i].addr = I915_READ(DSPADDR(i));
13731 if (INTEL_INFO(dev)->gen >= 4) {
13732 error->plane[i].surface = I915_READ(DSPSURF(i));
13733 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13734 }
13735
13736 error->pipe[i].source = I915_READ(PIPESRC(i));
13737
13738 if (HAS_GMCH_DISPLAY(dev))
13739 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13740 }
13741
13742 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13743 if (HAS_DDI(dev_priv->dev))
13744 error->num_transcoders++; /* Account for eDP. */
13745
13746 for (i = 0; i < error->num_transcoders; i++) {
13747 enum transcoder cpu_transcoder = transcoders[i];
13748
13749 error->transcoder[i].power_domain_on =
13750 __intel_display_power_is_enabled(dev_priv,
13751 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13752 if (!error->transcoder[i].power_domain_on)
13753 continue;
13754
13755 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13756
13757 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13758 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13759 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13760 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13761 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13762 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13763 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13764 }
13765
13766 return error;
13767 }
13768
13769 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13770
13771 void
13772 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13773 struct drm_device *dev,
13774 struct intel_display_error_state *error)
13775 {
13776 struct drm_i915_private *dev_priv = dev->dev_private;
13777 int i;
13778
13779 if (!error)
13780 return;
13781
13782 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13783 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13784 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13785 error->power_well_driver);
13786 for_each_pipe(dev_priv, i) {
13787 err_printf(m, "Pipe [%d]:\n", i);
13788 err_printf(m, " Power: %s\n",
13789 error->pipe[i].power_domain_on ? "on" : "off");
13790 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13791 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13792
13793 err_printf(m, "Plane [%d]:\n", i);
13794 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13795 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13796 if (INTEL_INFO(dev)->gen <= 3) {
13797 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13798 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13799 }
13800 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13801 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13802 if (INTEL_INFO(dev)->gen >= 4) {
13803 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13804 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13805 }
13806
13807 err_printf(m, "Cursor [%d]:\n", i);
13808 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13809 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13810 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13811 }
13812
13813 for (i = 0; i < error->num_transcoders; i++) {
13814 err_printf(m, "CPU transcoder: %c\n",
13815 transcoder_name(error->transcoder[i].cpu_transcoder));
13816 err_printf(m, " Power: %s\n",
13817 error->transcoder[i].power_domain_on ? "on" : "off");
13818 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13819 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13820 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13821 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13822 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13823 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13824 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13825 }
13826 }
13827
13828 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13829 {
13830 struct intel_crtc *crtc;
13831
13832 for_each_intel_crtc(dev, crtc) {
13833 struct intel_unpin_work *work;
13834
13835 spin_lock_irq(&dev->event_lock);
13836
13837 work = crtc->unpin_work;
13838
13839 if (work && work->event &&
13840 work->event->base.file_priv == file) {
13841 kfree(work->event);
13842 work->event = NULL;
13843 }
13844
13845 spin_unlock_irq(&dev->event_lock);
13846 }
13847 }
This page took 0.36019 seconds and 6 git commands to generate.