drm/i915: Pass an atomic state to modeset_global_resources() functions
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106
107 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
108 {
109 if (!connector->mst_port)
110 return connector->encoder;
111 else
112 return &connector->mst_port->mst_encoders[pipe]->base;
113 }
114
115 typedef struct {
116 int min, max;
117 } intel_range_t;
118
119 typedef struct {
120 int dot_limit;
121 int p2_slow, p2_fast;
122 } intel_p2_t;
123
124 typedef struct intel_limit intel_limit_t;
125 struct intel_limit {
126 intel_range_t dot, vco, n, m, m1, m2, p, p1;
127 intel_p2_t p2;
128 };
129
130 int
131 intel_pch_rawclk(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134
135 WARN_ON(!HAS_PCH_SPLIT(dev));
136
137 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
138 }
139
140 static inline u32 /* units of 100MHz */
141 intel_fdi_link_freq(struct drm_device *dev)
142 {
143 if (IS_GEN5(dev)) {
144 struct drm_i915_private *dev_priv = dev->dev_private;
145 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
146 } else
147 return 27;
148 }
149
150 static const intel_limit_t intel_limits_i8xx_dac = {
151 .dot = { .min = 25000, .max = 350000 },
152 .vco = { .min = 908000, .max = 1512000 },
153 .n = { .min = 2, .max = 16 },
154 .m = { .min = 96, .max = 140 },
155 .m1 = { .min = 18, .max = 26 },
156 .m2 = { .min = 6, .max = 16 },
157 .p = { .min = 4, .max = 128 },
158 .p1 = { .min = 2, .max = 33 },
159 .p2 = { .dot_limit = 165000,
160 .p2_slow = 4, .p2_fast = 2 },
161 };
162
163 static const intel_limit_t intel_limits_i8xx_dvo = {
164 .dot = { .min = 25000, .max = 350000 },
165 .vco = { .min = 908000, .max = 1512000 },
166 .n = { .min = 2, .max = 16 },
167 .m = { .min = 96, .max = 140 },
168 .m1 = { .min = 18, .max = 26 },
169 .m2 = { .min = 6, .max = 16 },
170 .p = { .min = 4, .max = 128 },
171 .p1 = { .min = 2, .max = 33 },
172 .p2 = { .dot_limit = 165000,
173 .p2_slow = 4, .p2_fast = 4 },
174 };
175
176 static const intel_limit_t intel_limits_i8xx_lvds = {
177 .dot = { .min = 25000, .max = 350000 },
178 .vco = { .min = 908000, .max = 1512000 },
179 .n = { .min = 2, .max = 16 },
180 .m = { .min = 96, .max = 140 },
181 .m1 = { .min = 18, .max = 26 },
182 .m2 = { .min = 6, .max = 16 },
183 .p = { .min = 4, .max = 128 },
184 .p1 = { .min = 1, .max = 6 },
185 .p2 = { .dot_limit = 165000,
186 .p2_slow = 14, .p2_fast = 7 },
187 };
188
189 static const intel_limit_t intel_limits_i9xx_sdvo = {
190 .dot = { .min = 20000, .max = 400000 },
191 .vco = { .min = 1400000, .max = 2800000 },
192 .n = { .min = 1, .max = 6 },
193 .m = { .min = 70, .max = 120 },
194 .m1 = { .min = 8, .max = 18 },
195 .m2 = { .min = 3, .max = 7 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8 },
198 .p2 = { .dot_limit = 200000,
199 .p2_slow = 10, .p2_fast = 5 },
200 };
201
202 static const intel_limit_t intel_limits_i9xx_lvds = {
203 .dot = { .min = 20000, .max = 400000 },
204 .vco = { .min = 1400000, .max = 2800000 },
205 .n = { .min = 1, .max = 6 },
206 .m = { .min = 70, .max = 120 },
207 .m1 = { .min = 8, .max = 18 },
208 .m2 = { .min = 3, .max = 7 },
209 .p = { .min = 7, .max = 98 },
210 .p1 = { .min = 1, .max = 8 },
211 .p2 = { .dot_limit = 112000,
212 .p2_slow = 14, .p2_fast = 7 },
213 };
214
215
216 static const intel_limit_t intel_limits_g4x_sdvo = {
217 .dot = { .min = 25000, .max = 270000 },
218 .vco = { .min = 1750000, .max = 3500000},
219 .n = { .min = 1, .max = 4 },
220 .m = { .min = 104, .max = 138 },
221 .m1 = { .min = 17, .max = 23 },
222 .m2 = { .min = 5, .max = 11 },
223 .p = { .min = 10, .max = 30 },
224 .p1 = { .min = 1, .max = 3},
225 .p2 = { .dot_limit = 270000,
226 .p2_slow = 10,
227 .p2_fast = 10
228 },
229 };
230
231 static const intel_limit_t intel_limits_g4x_hdmi = {
232 .dot = { .min = 22000, .max = 400000 },
233 .vco = { .min = 1750000, .max = 3500000},
234 .n = { .min = 1, .max = 4 },
235 .m = { .min = 104, .max = 138 },
236 .m1 = { .min = 16, .max = 23 },
237 .m2 = { .min = 5, .max = 11 },
238 .p = { .min = 5, .max = 80 },
239 .p1 = { .min = 1, .max = 8},
240 .p2 = { .dot_limit = 165000,
241 .p2_slow = 10, .p2_fast = 5 },
242 };
243
244 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
245 .dot = { .min = 20000, .max = 115000 },
246 .vco = { .min = 1750000, .max = 3500000 },
247 .n = { .min = 1, .max = 3 },
248 .m = { .min = 104, .max = 138 },
249 .m1 = { .min = 17, .max = 23 },
250 .m2 = { .min = 5, .max = 11 },
251 .p = { .min = 28, .max = 112 },
252 .p1 = { .min = 2, .max = 8 },
253 .p2 = { .dot_limit = 0,
254 .p2_slow = 14, .p2_fast = 14
255 },
256 };
257
258 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
259 .dot = { .min = 80000, .max = 224000 },
260 .vco = { .min = 1750000, .max = 3500000 },
261 .n = { .min = 1, .max = 3 },
262 .m = { .min = 104, .max = 138 },
263 .m1 = { .min = 17, .max = 23 },
264 .m2 = { .min = 5, .max = 11 },
265 .p = { .min = 14, .max = 42 },
266 .p1 = { .min = 2, .max = 6 },
267 .p2 = { .dot_limit = 0,
268 .p2_slow = 7, .p2_fast = 7
269 },
270 };
271
272 static const intel_limit_t intel_limits_pineview_sdvo = {
273 .dot = { .min = 20000, .max = 400000},
274 .vco = { .min = 1700000, .max = 3500000 },
275 /* Pineview's Ncounter is a ring counter */
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 /* Pineview only has one combined m divider, which we treat as m2. */
279 .m1 = { .min = 0, .max = 0 },
280 .m2 = { .min = 0, .max = 254 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 200000,
284 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_pineview_lvds = {
288 .dot = { .min = 20000, .max = 400000 },
289 .vco = { .min = 1700000, .max = 3500000 },
290 .n = { .min = 3, .max = 6 },
291 .m = { .min = 2, .max = 256 },
292 .m1 = { .min = 0, .max = 0 },
293 .m2 = { .min = 0, .max = 254 },
294 .p = { .min = 7, .max = 112 },
295 .p1 = { .min = 1, .max = 8 },
296 .p2 = { .dot_limit = 112000,
297 .p2_slow = 14, .p2_fast = 14 },
298 };
299
300 /* Ironlake / Sandybridge
301 *
302 * We calculate clock using (register_value + 2) for N/M1/M2, so here
303 * the range value for them is (actual_value - 2).
304 */
305 static const intel_limit_t intel_limits_ironlake_dac = {
306 .dot = { .min = 25000, .max = 350000 },
307 .vco = { .min = 1760000, .max = 3510000 },
308 .n = { .min = 1, .max = 5 },
309 .m = { .min = 79, .max = 127 },
310 .m1 = { .min = 12, .max = 22 },
311 .m2 = { .min = 5, .max = 9 },
312 .p = { .min = 5, .max = 80 },
313 .p1 = { .min = 1, .max = 8 },
314 .p2 = { .dot_limit = 225000,
315 .p2_slow = 10, .p2_fast = 5 },
316 };
317
318 static const intel_limit_t intel_limits_ironlake_single_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 118 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 28, .max = 112 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 14, .p2_fast = 14 },
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 127 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 56 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
342 };
343
344 /* LVDS 100mhz refclk limits. */
345 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000 },
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 79, .max = 126 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 28, .max = 112 },
353 .p1 = { .min = 2, .max = 8 },
354 .p2 = { .dot_limit = 225000,
355 .p2_slow = 14, .p2_fast = 14 },
356 };
357
358 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
359 .dot = { .min = 25000, .max = 350000 },
360 .vco = { .min = 1760000, .max = 3510000 },
361 .n = { .min = 1, .max = 3 },
362 .m = { .min = 79, .max = 126 },
363 .m1 = { .min = 12, .max = 22 },
364 .m2 = { .min = 5, .max = 9 },
365 .p = { .min = 14, .max = 42 },
366 .p1 = { .min = 2, .max = 6 },
367 .p2 = { .dot_limit = 225000,
368 .p2_slow = 7, .p2_fast = 7 },
369 };
370
371 static const intel_limit_t intel_limits_vlv = {
372 /*
373 * These are the data rate limits (measured in fast clocks)
374 * since those are the strictest limits we have. The fast
375 * clock and actual rate limits are more relaxed, so checking
376 * them would make no difference.
377 */
378 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m1 = { .min = 2, .max = 3 },
382 .m2 = { .min = 11, .max = 156 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
385 };
386
387 static const intel_limit_t intel_limits_chv = {
388 /*
389 * These are the data rate limits (measured in fast clocks)
390 * since those are the strictest limits we have. The fast
391 * clock and actual rate limits are more relaxed, so checking
392 * them would make no difference.
393 */
394 .dot = { .min = 25000 * 5, .max = 540000 * 5},
395 .vco = { .min = 4800000, .max = 6480000 },
396 .n = { .min = 1, .max = 1 },
397 .m1 = { .min = 2, .max = 2 },
398 .m2 = { .min = 24 << 22, .max = 175 << 22 },
399 .p1 = { .min = 2, .max = 4 },
400 .p2 = { .p2_slow = 1, .p2_fast = 14 },
401 };
402
403 static void vlv_clock(int refclk, intel_clock_t *clock)
404 {
405 clock->m = clock->m1 * clock->m2;
406 clock->p = clock->p1 * clock->p2;
407 if (WARN_ON(clock->n == 0 || clock->p == 0))
408 return;
409 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
410 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
411 }
412
413 /**
414 * Returns whether any output on the specified pipe is of the specified type
415 */
416 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
417 {
418 struct drm_device *dev = crtc->base.dev;
419 struct intel_encoder *encoder;
420
421 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
422 if (encoder->type == type)
423 return true;
424
425 return false;
426 }
427
428 /**
429 * Returns whether any output on the specified pipe will have the specified
430 * type after a staged modeset is complete, i.e., the same as
431 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
432 * encoder->crtc.
433 */
434 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
435 {
436 struct drm_device *dev = crtc->base.dev;
437 struct intel_encoder *encoder;
438
439 for_each_intel_encoder(dev, encoder)
440 if (encoder->new_crtc == crtc && encoder->type == type)
441 return true;
442
443 return false;
444 }
445
446 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
447 int refclk)
448 {
449 struct drm_device *dev = crtc->base.dev;
450 const intel_limit_t *limit;
451
452 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
453 if (intel_is_dual_link_lvds(dev)) {
454 if (refclk == 100000)
455 limit = &intel_limits_ironlake_dual_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_dual_lvds;
458 } else {
459 if (refclk == 100000)
460 limit = &intel_limits_ironlake_single_lvds_100m;
461 else
462 limit = &intel_limits_ironlake_single_lvds;
463 }
464 } else
465 limit = &intel_limits_ironlake_dac;
466
467 return limit;
468 }
469
470 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
471 {
472 struct drm_device *dev = crtc->base.dev;
473 const intel_limit_t *limit;
474
475 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
476 if (intel_is_dual_link_lvds(dev))
477 limit = &intel_limits_g4x_dual_channel_lvds;
478 else
479 limit = &intel_limits_g4x_single_channel_lvds;
480 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
481 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
482 limit = &intel_limits_g4x_hdmi;
483 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
484 limit = &intel_limits_g4x_sdvo;
485 } else /* The option is for other outputs */
486 limit = &intel_limits_i9xx_sdvo;
487
488 return limit;
489 }
490
491 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
492 {
493 struct drm_device *dev = crtc->base.dev;
494 const intel_limit_t *limit;
495
496 if (HAS_PCH_SPLIT(dev))
497 limit = intel_ironlake_limit(crtc, refclk);
498 else if (IS_G4X(dev)) {
499 limit = intel_g4x_limit(crtc);
500 } else if (IS_PINEVIEW(dev)) {
501 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
502 limit = &intel_limits_pineview_lvds;
503 else
504 limit = &intel_limits_pineview_sdvo;
505 } else if (IS_CHERRYVIEW(dev)) {
506 limit = &intel_limits_chv;
507 } else if (IS_VALLEYVIEW(dev)) {
508 limit = &intel_limits_vlv;
509 } else if (!IS_GEN2(dev)) {
510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511 limit = &intel_limits_i9xx_lvds;
512 else
513 limit = &intel_limits_i9xx_sdvo;
514 } else {
515 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
516 limit = &intel_limits_i8xx_lvds;
517 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
518 limit = &intel_limits_i8xx_dvo;
519 else
520 limit = &intel_limits_i8xx_dac;
521 }
522 return limit;
523 }
524
525 /* m1 is reserved as 0 in Pineview, n is a ring counter */
526 static void pineview_clock(int refclk, intel_clock_t *clock)
527 {
528 clock->m = clock->m2 + 2;
529 clock->p = clock->p1 * clock->p2;
530 if (WARN_ON(clock->n == 0 || clock->p == 0))
531 return;
532 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
533 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
534 }
535
536 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
537 {
538 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
539 }
540
541 static void i9xx_clock(int refclk, intel_clock_t *clock)
542 {
543 clock->m = i9xx_dpll_compute_m(clock);
544 clock->p = clock->p1 * clock->p2;
545 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
546 return;
547 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
548 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
549 }
550
551 static void chv_clock(int refclk, intel_clock_t *clock)
552 {
553 clock->m = clock->m1 * clock->m2;
554 clock->p = clock->p1 * clock->p2;
555 if (WARN_ON(clock->n == 0 || clock->p == 0))
556 return;
557 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
558 clock->n << 22);
559 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
560 }
561
562 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
563 /**
564 * Returns whether the given set of divisors are valid for a given refclk with
565 * the given connectors.
566 */
567
568 static bool intel_PLL_is_valid(struct drm_device *dev,
569 const intel_limit_t *limit,
570 const intel_clock_t *clock)
571 {
572 if (clock->n < limit->n.min || limit->n.max < clock->n)
573 INTELPllInvalid("n out of range\n");
574 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
575 INTELPllInvalid("p1 out of range\n");
576 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
577 INTELPllInvalid("m2 out of range\n");
578 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
579 INTELPllInvalid("m1 out of range\n");
580
581 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
582 if (clock->m1 <= clock->m2)
583 INTELPllInvalid("m1 <= m2\n");
584
585 if (!IS_VALLEYVIEW(dev)) {
586 if (clock->p < limit->p.min || limit->p.max < clock->p)
587 INTELPllInvalid("p out of range\n");
588 if (clock->m < limit->m.min || limit->m.max < clock->m)
589 INTELPllInvalid("m out of range\n");
590 }
591
592 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
593 INTELPllInvalid("vco out of range\n");
594 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
595 * connector, etc., rather than just a single range.
596 */
597 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
598 INTELPllInvalid("dot out of range\n");
599
600 return true;
601 }
602
603 static bool
604 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
605 int target, int refclk, intel_clock_t *match_clock,
606 intel_clock_t *best_clock)
607 {
608 struct drm_device *dev = crtc->base.dev;
609 intel_clock_t clock;
610 int err = target;
611
612 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
613 /*
614 * For LVDS just rely on its current settings for dual-channel.
615 * We haven't figured out how to reliably set up different
616 * single/dual channel state, if we even can.
617 */
618 if (intel_is_dual_link_lvds(dev))
619 clock.p2 = limit->p2.p2_fast;
620 else
621 clock.p2 = limit->p2.p2_slow;
622 } else {
623 if (target < limit->p2.dot_limit)
624 clock.p2 = limit->p2.p2_slow;
625 else
626 clock.p2 = limit->p2.p2_fast;
627 }
628
629 memset(best_clock, 0, sizeof(*best_clock));
630
631 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
632 clock.m1++) {
633 for (clock.m2 = limit->m2.min;
634 clock.m2 <= limit->m2.max; clock.m2++) {
635 if (clock.m2 >= clock.m1)
636 break;
637 for (clock.n = limit->n.min;
638 clock.n <= limit->n.max; clock.n++) {
639 for (clock.p1 = limit->p1.min;
640 clock.p1 <= limit->p1.max; clock.p1++) {
641 int this_err;
642
643 i9xx_clock(refclk, &clock);
644 if (!intel_PLL_is_valid(dev, limit,
645 &clock))
646 continue;
647 if (match_clock &&
648 clock.p != match_clock->p)
649 continue;
650
651 this_err = abs(clock.dot - target);
652 if (this_err < err) {
653 *best_clock = clock;
654 err = this_err;
655 }
656 }
657 }
658 }
659 }
660
661 return (err != target);
662 }
663
664 static bool
665 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
666 int target, int refclk, intel_clock_t *match_clock,
667 intel_clock_t *best_clock)
668 {
669 struct drm_device *dev = crtc->base.dev;
670 intel_clock_t clock;
671 int err = target;
672
673 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
674 /*
675 * For LVDS just rely on its current settings for dual-channel.
676 * We haven't figured out how to reliably set up different
677 * single/dual channel state, if we even can.
678 */
679 if (intel_is_dual_link_lvds(dev))
680 clock.p2 = limit->p2.p2_fast;
681 else
682 clock.p2 = limit->p2.p2_slow;
683 } else {
684 if (target < limit->p2.dot_limit)
685 clock.p2 = limit->p2.p2_slow;
686 else
687 clock.p2 = limit->p2.p2_fast;
688 }
689
690 memset(best_clock, 0, sizeof(*best_clock));
691
692 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
693 clock.m1++) {
694 for (clock.m2 = limit->m2.min;
695 clock.m2 <= limit->m2.max; clock.m2++) {
696 for (clock.n = limit->n.min;
697 clock.n <= limit->n.max; clock.n++) {
698 for (clock.p1 = limit->p1.min;
699 clock.p1 <= limit->p1.max; clock.p1++) {
700 int this_err;
701
702 pineview_clock(refclk, &clock);
703 if (!intel_PLL_is_valid(dev, limit,
704 &clock))
705 continue;
706 if (match_clock &&
707 clock.p != match_clock->p)
708 continue;
709
710 this_err = abs(clock.dot - target);
711 if (this_err < err) {
712 *best_clock = clock;
713 err = this_err;
714 }
715 }
716 }
717 }
718 }
719
720 return (err != target);
721 }
722
723 static bool
724 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
725 int target, int refclk, intel_clock_t *match_clock,
726 intel_clock_t *best_clock)
727 {
728 struct drm_device *dev = crtc->base.dev;
729 intel_clock_t clock;
730 int max_n;
731 bool found;
732 /* approximately equals target * 0.00585 */
733 int err_most = (target >> 8) + (target >> 9);
734 found = false;
735
736 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
737 if (intel_is_dual_link_lvds(dev))
738 clock.p2 = limit->p2.p2_fast;
739 else
740 clock.p2 = limit->p2.p2_slow;
741 } else {
742 if (target < limit->p2.dot_limit)
743 clock.p2 = limit->p2.p2_slow;
744 else
745 clock.p2 = limit->p2.p2_fast;
746 }
747
748 memset(best_clock, 0, sizeof(*best_clock));
749 max_n = limit->n.max;
750 /* based on hardware requirement, prefer smaller n to precision */
751 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
752 /* based on hardware requirement, prefere larger m1,m2 */
753 for (clock.m1 = limit->m1.max;
754 clock.m1 >= limit->m1.min; clock.m1--) {
755 for (clock.m2 = limit->m2.max;
756 clock.m2 >= limit->m2.min; clock.m2--) {
757 for (clock.p1 = limit->p1.max;
758 clock.p1 >= limit->p1.min; clock.p1--) {
759 int this_err;
760
761 i9xx_clock(refclk, &clock);
762 if (!intel_PLL_is_valid(dev, limit,
763 &clock))
764 continue;
765
766 this_err = abs(clock.dot - target);
767 if (this_err < err_most) {
768 *best_clock = clock;
769 err_most = this_err;
770 max_n = clock.n;
771 found = true;
772 }
773 }
774 }
775 }
776 }
777 return found;
778 }
779
780 /*
781 * Check if the calculated PLL configuration is more optimal compared to the
782 * best configuration and error found so far. Return the calculated error.
783 */
784 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
785 const intel_clock_t *calculated_clock,
786 const intel_clock_t *best_clock,
787 unsigned int best_error_ppm,
788 unsigned int *error_ppm)
789 {
790 /*
791 * For CHV ignore the error and consider only the P value.
792 * Prefer a bigger P value based on HW requirements.
793 */
794 if (IS_CHERRYVIEW(dev)) {
795 *error_ppm = 0;
796
797 return calculated_clock->p > best_clock->p;
798 }
799
800 if (WARN_ON_ONCE(!target_freq))
801 return false;
802
803 *error_ppm = div_u64(1000000ULL *
804 abs(target_freq - calculated_clock->dot),
805 target_freq);
806 /*
807 * Prefer a better P value over a better (smaller) error if the error
808 * is small. Ensure this preference for future configurations too by
809 * setting the error to 0.
810 */
811 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
812 *error_ppm = 0;
813
814 return true;
815 }
816
817 return *error_ppm + 10 < best_error_ppm;
818 }
819
820 static bool
821 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
822 int target, int refclk, intel_clock_t *match_clock,
823 intel_clock_t *best_clock)
824 {
825 struct drm_device *dev = crtc->base.dev;
826 intel_clock_t clock;
827 unsigned int bestppm = 1000000;
828 /* min update 19.2 MHz */
829 int max_n = min(limit->n.max, refclk / 19200);
830 bool found = false;
831
832 target *= 5; /* fast clock */
833
834 memset(best_clock, 0, sizeof(*best_clock));
835
836 /* based on hardware requirement, prefer smaller n to precision */
837 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
838 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
839 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841 clock.p = clock.p1 * clock.p2;
842 /* based on hardware requirement, prefer bigger m1,m2 values */
843 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
844 unsigned int ppm;
845
846 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
847 refclk * clock.m1);
848
849 vlv_clock(refclk, &clock);
850
851 if (!intel_PLL_is_valid(dev, limit,
852 &clock))
853 continue;
854
855 if (!vlv_PLL_is_optimal(dev, target,
856 &clock,
857 best_clock,
858 bestppm, &ppm))
859 continue;
860
861 *best_clock = clock;
862 bestppm = ppm;
863 found = true;
864 }
865 }
866 }
867 }
868
869 return found;
870 }
871
872 static bool
873 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
874 int target, int refclk, intel_clock_t *match_clock,
875 intel_clock_t *best_clock)
876 {
877 struct drm_device *dev = crtc->base.dev;
878 unsigned int best_error_ppm;
879 intel_clock_t clock;
880 uint64_t m2;
881 int found = false;
882
883 memset(best_clock, 0, sizeof(*best_clock));
884 best_error_ppm = 1000000;
885
886 /*
887 * Based on hardware doc, the n always set to 1, and m1 always
888 * set to 2. If requires to support 200Mhz refclk, we need to
889 * revisit this because n may not 1 anymore.
890 */
891 clock.n = 1, clock.m1 = 2;
892 target *= 5; /* fast clock */
893
894 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895 for (clock.p2 = limit->p2.p2_fast;
896 clock.p2 >= limit->p2.p2_slow;
897 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
898 unsigned int error_ppm;
899
900 clock.p = clock.p1 * clock.p2;
901
902 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
903 clock.n) << 22, refclk * clock.m1);
904
905 if (m2 > INT_MAX/clock.m1)
906 continue;
907
908 clock.m2 = m2;
909
910 chv_clock(refclk, &clock);
911
912 if (!intel_PLL_is_valid(dev, limit, &clock))
913 continue;
914
915 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
916 best_error_ppm, &error_ppm))
917 continue;
918
919 *best_clock = clock;
920 best_error_ppm = error_ppm;
921 found = true;
922 }
923 }
924
925 return found;
926 }
927
928 bool intel_crtc_active(struct drm_crtc *crtc)
929 {
930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
931
932 /* Be paranoid as we can arrive here with only partial
933 * state retrieved from the hardware during setup.
934 *
935 * We can ditch the adjusted_mode.crtc_clock check as soon
936 * as Haswell has gained clock readout/fastboot support.
937 *
938 * We can ditch the crtc->primary->fb check as soon as we can
939 * properly reconstruct framebuffers.
940 *
941 * FIXME: The intel_crtc->active here should be switched to
942 * crtc->state->active once we have proper CRTC states wired up
943 * for atomic.
944 */
945 return intel_crtc->active && crtc->primary->state->fb &&
946 intel_crtc->config->base.adjusted_mode.crtc_clock;
947 }
948
949 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
950 enum pipe pipe)
951 {
952 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
953 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
954
955 return intel_crtc->config->cpu_transcoder;
956 }
957
958 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 reg = PIPEDSL(pipe);
962 u32 line1, line2;
963 u32 line_mask;
964
965 if (IS_GEN2(dev))
966 line_mask = DSL_LINEMASK_GEN2;
967 else
968 line_mask = DSL_LINEMASK_GEN3;
969
970 line1 = I915_READ(reg) & line_mask;
971 mdelay(5);
972 line2 = I915_READ(reg) & line_mask;
973
974 return line1 == line2;
975 }
976
977 /*
978 * intel_wait_for_pipe_off - wait for pipe to turn off
979 * @crtc: crtc whose pipe to wait for
980 *
981 * After disabling a pipe, we can't wait for vblank in the usual way,
982 * spinning on the vblank interrupt status bit, since we won't actually
983 * see an interrupt when the pipe is disabled.
984 *
985 * On Gen4 and above:
986 * wait for the pipe register state bit to turn off
987 *
988 * Otherwise:
989 * wait for the display line value to settle (it usually
990 * ends up stopping at the start of the next frame).
991 *
992 */
993 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
994 {
995 struct drm_device *dev = crtc->base.dev;
996 struct drm_i915_private *dev_priv = dev->dev_private;
997 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
998 enum pipe pipe = crtc->pipe;
999
1000 if (INTEL_INFO(dev)->gen >= 4) {
1001 int reg = PIPECONF(cpu_transcoder);
1002
1003 /* Wait for the Pipe State to go off */
1004 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1005 100))
1006 WARN(1, "pipe_off wait timed out\n");
1007 } else {
1008 /* Wait for the display line to settle */
1009 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1010 WARN(1, "pipe_off wait timed out\n");
1011 }
1012 }
1013
1014 /*
1015 * ibx_digital_port_connected - is the specified port connected?
1016 * @dev_priv: i915 private structure
1017 * @port: the port to test
1018 *
1019 * Returns true if @port is connected, false otherwise.
1020 */
1021 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1022 struct intel_digital_port *port)
1023 {
1024 u32 bit;
1025
1026 if (HAS_PCH_IBX(dev_priv->dev)) {
1027 switch (port->port) {
1028 case PORT_B:
1029 bit = SDE_PORTB_HOTPLUG;
1030 break;
1031 case PORT_C:
1032 bit = SDE_PORTC_HOTPLUG;
1033 break;
1034 case PORT_D:
1035 bit = SDE_PORTD_HOTPLUG;
1036 break;
1037 default:
1038 return true;
1039 }
1040 } else {
1041 switch (port->port) {
1042 case PORT_B:
1043 bit = SDE_PORTB_HOTPLUG_CPT;
1044 break;
1045 case PORT_C:
1046 bit = SDE_PORTC_HOTPLUG_CPT;
1047 break;
1048 case PORT_D:
1049 bit = SDE_PORTD_HOTPLUG_CPT;
1050 break;
1051 default:
1052 return true;
1053 }
1054 }
1055
1056 return I915_READ(SDEISR) & bit;
1057 }
1058
1059 static const char *state_string(bool enabled)
1060 {
1061 return enabled ? "on" : "off";
1062 }
1063
1064 /* Only for pre-ILK configs */
1065 void assert_pll(struct drm_i915_private *dev_priv,
1066 enum pipe pipe, bool state)
1067 {
1068 int reg;
1069 u32 val;
1070 bool cur_state;
1071
1072 reg = DPLL(pipe);
1073 val = I915_READ(reg);
1074 cur_state = !!(val & DPLL_VCO_ENABLE);
1075 I915_STATE_WARN(cur_state != state,
1076 "PLL state assertion failure (expected %s, current %s)\n",
1077 state_string(state), state_string(cur_state));
1078 }
1079
1080 /* XXX: the dsi pll is shared between MIPI DSI ports */
1081 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1082 {
1083 u32 val;
1084 bool cur_state;
1085
1086 mutex_lock(&dev_priv->dpio_lock);
1087 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1088 mutex_unlock(&dev_priv->dpio_lock);
1089
1090 cur_state = val & DSI_PLL_VCO_EN;
1091 I915_STATE_WARN(cur_state != state,
1092 "DSI PLL state assertion failure (expected %s, current %s)\n",
1093 state_string(state), state_string(cur_state));
1094 }
1095 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1096 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1097
1098 struct intel_shared_dpll *
1099 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1100 {
1101 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1102
1103 if (crtc->config->shared_dpll < 0)
1104 return NULL;
1105
1106 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1107 }
1108
1109 /* For ILK+ */
1110 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1111 struct intel_shared_dpll *pll,
1112 bool state)
1113 {
1114 bool cur_state;
1115 struct intel_dpll_hw_state hw_state;
1116
1117 if (WARN (!pll,
1118 "asserting DPLL %s with no DPLL\n", state_string(state)))
1119 return;
1120
1121 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1122 I915_STATE_WARN(cur_state != state,
1123 "%s assertion failure (expected %s, current %s)\n",
1124 pll->name, state_string(state), state_string(cur_state));
1125 }
1126
1127 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1128 enum pipe pipe, bool state)
1129 {
1130 int reg;
1131 u32 val;
1132 bool cur_state;
1133 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1134 pipe);
1135
1136 if (HAS_DDI(dev_priv->dev)) {
1137 /* DDI does not have a specific FDI_TX register */
1138 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1139 val = I915_READ(reg);
1140 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1141 } else {
1142 reg = FDI_TX_CTL(pipe);
1143 val = I915_READ(reg);
1144 cur_state = !!(val & FDI_TX_ENABLE);
1145 }
1146 I915_STATE_WARN(cur_state != state,
1147 "FDI TX state assertion failure (expected %s, current %s)\n",
1148 state_string(state), state_string(cur_state));
1149 }
1150 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1151 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1152
1153 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1154 enum pipe pipe, bool state)
1155 {
1156 int reg;
1157 u32 val;
1158 bool cur_state;
1159
1160 reg = FDI_RX_CTL(pipe);
1161 val = I915_READ(reg);
1162 cur_state = !!(val & FDI_RX_ENABLE);
1163 I915_STATE_WARN(cur_state != state,
1164 "FDI RX state assertion failure (expected %s, current %s)\n",
1165 state_string(state), state_string(cur_state));
1166 }
1167 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1168 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1169
1170 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1171 enum pipe pipe)
1172 {
1173 int reg;
1174 u32 val;
1175
1176 /* ILK FDI PLL is always enabled */
1177 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1178 return;
1179
1180 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1181 if (HAS_DDI(dev_priv->dev))
1182 return;
1183
1184 reg = FDI_TX_CTL(pipe);
1185 val = I915_READ(reg);
1186 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1187 }
1188
1189 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1190 enum pipe pipe, bool state)
1191 {
1192 int reg;
1193 u32 val;
1194 bool cur_state;
1195
1196 reg = FDI_RX_CTL(pipe);
1197 val = I915_READ(reg);
1198 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1199 I915_STATE_WARN(cur_state != state,
1200 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1201 state_string(state), state_string(cur_state));
1202 }
1203
1204 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1205 enum pipe pipe)
1206 {
1207 struct drm_device *dev = dev_priv->dev;
1208 int pp_reg;
1209 u32 val;
1210 enum pipe panel_pipe = PIPE_A;
1211 bool locked = true;
1212
1213 if (WARN_ON(HAS_DDI(dev)))
1214 return;
1215
1216 if (HAS_PCH_SPLIT(dev)) {
1217 u32 port_sel;
1218
1219 pp_reg = PCH_PP_CONTROL;
1220 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1221
1222 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1223 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
1225 /* XXX: else fix for eDP */
1226 } else if (IS_VALLEYVIEW(dev)) {
1227 /* presumably write lock depends on pipe, not port select */
1228 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1229 panel_pipe = pipe;
1230 } else {
1231 pp_reg = PP_CONTROL;
1232 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1233 panel_pipe = PIPE_B;
1234 }
1235
1236 val = I915_READ(pp_reg);
1237 if (!(val & PANEL_POWER_ON) ||
1238 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1239 locked = false;
1240
1241 I915_STATE_WARN(panel_pipe == pipe && locked,
1242 "panel assertion failure, pipe %c regs locked\n",
1243 pipe_name(pipe));
1244 }
1245
1246 static void assert_cursor(struct drm_i915_private *dev_priv,
1247 enum pipe pipe, bool state)
1248 {
1249 struct drm_device *dev = dev_priv->dev;
1250 bool cur_state;
1251
1252 if (IS_845G(dev) || IS_I865G(dev))
1253 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1254 else
1255 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1256
1257 I915_STATE_WARN(cur_state != state,
1258 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1259 pipe_name(pipe), state_string(state), state_string(cur_state));
1260 }
1261 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1262 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1263
1264 void assert_pipe(struct drm_i915_private *dev_priv,
1265 enum pipe pipe, bool state)
1266 {
1267 int reg;
1268 u32 val;
1269 bool cur_state;
1270 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1271 pipe);
1272
1273 /* if we need the pipe quirk it must be always on */
1274 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1275 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1276 state = true;
1277
1278 if (!intel_display_power_is_enabled(dev_priv,
1279 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1280 cur_state = false;
1281 } else {
1282 reg = PIPECONF(cpu_transcoder);
1283 val = I915_READ(reg);
1284 cur_state = !!(val & PIPECONF_ENABLE);
1285 }
1286
1287 I915_STATE_WARN(cur_state != state,
1288 "pipe %c assertion failure (expected %s, current %s)\n",
1289 pipe_name(pipe), state_string(state), state_string(cur_state));
1290 }
1291
1292 static void assert_plane(struct drm_i915_private *dev_priv,
1293 enum plane plane, bool state)
1294 {
1295 int reg;
1296 u32 val;
1297 bool cur_state;
1298
1299 reg = DSPCNTR(plane);
1300 val = I915_READ(reg);
1301 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1302 I915_STATE_WARN(cur_state != state,
1303 "plane %c assertion failure (expected %s, current %s)\n",
1304 plane_name(plane), state_string(state), state_string(cur_state));
1305 }
1306
1307 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1308 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1309
1310 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1311 enum pipe pipe)
1312 {
1313 struct drm_device *dev = dev_priv->dev;
1314 int reg, i;
1315 u32 val;
1316 int cur_pipe;
1317
1318 /* Primary planes are fixed to pipes on gen4+ */
1319 if (INTEL_INFO(dev)->gen >= 4) {
1320 reg = DSPCNTR(pipe);
1321 val = I915_READ(reg);
1322 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1323 "plane %c assertion failure, should be disabled but not\n",
1324 plane_name(pipe));
1325 return;
1326 }
1327
1328 /* Need to check both planes against the pipe */
1329 for_each_pipe(dev_priv, i) {
1330 reg = DSPCNTR(i);
1331 val = I915_READ(reg);
1332 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1333 DISPPLANE_SEL_PIPE_SHIFT;
1334 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1335 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1336 plane_name(i), pipe_name(pipe));
1337 }
1338 }
1339
1340 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe)
1342 {
1343 struct drm_device *dev = dev_priv->dev;
1344 int reg, sprite;
1345 u32 val;
1346
1347 if (INTEL_INFO(dev)->gen >= 9) {
1348 for_each_sprite(dev_priv, pipe, sprite) {
1349 val = I915_READ(PLANE_CTL(pipe, sprite));
1350 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1351 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1352 sprite, pipe_name(pipe));
1353 }
1354 } else if (IS_VALLEYVIEW(dev)) {
1355 for_each_sprite(dev_priv, pipe, sprite) {
1356 reg = SPCNTR(pipe, sprite);
1357 val = I915_READ(reg);
1358 I915_STATE_WARN(val & SP_ENABLE,
1359 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1360 sprite_name(pipe, sprite), pipe_name(pipe));
1361 }
1362 } else if (INTEL_INFO(dev)->gen >= 7) {
1363 reg = SPRCTL(pipe);
1364 val = I915_READ(reg);
1365 I915_STATE_WARN(val & SPRITE_ENABLE,
1366 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1367 plane_name(pipe), pipe_name(pipe));
1368 } else if (INTEL_INFO(dev)->gen >= 5) {
1369 reg = DVSCNTR(pipe);
1370 val = I915_READ(reg);
1371 I915_STATE_WARN(val & DVS_ENABLE,
1372 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1373 plane_name(pipe), pipe_name(pipe));
1374 }
1375 }
1376
1377 static void assert_vblank_disabled(struct drm_crtc *crtc)
1378 {
1379 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1380 drm_crtc_vblank_put(crtc);
1381 }
1382
1383 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1384 {
1385 u32 val;
1386 bool enabled;
1387
1388 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1389
1390 val = I915_READ(PCH_DREF_CONTROL);
1391 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1392 DREF_SUPERSPREAD_SOURCE_MASK));
1393 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1394 }
1395
1396 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe)
1398 {
1399 int reg;
1400 u32 val;
1401 bool enabled;
1402
1403 reg = PCH_TRANSCONF(pipe);
1404 val = I915_READ(reg);
1405 enabled = !!(val & TRANS_ENABLE);
1406 I915_STATE_WARN(enabled,
1407 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1408 pipe_name(pipe));
1409 }
1410
1411 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 port_sel, u32 val)
1413 {
1414 if ((val & DP_PORT_EN) == 0)
1415 return false;
1416
1417 if (HAS_PCH_CPT(dev_priv->dev)) {
1418 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1419 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1420 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1421 return false;
1422 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1423 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1424 return false;
1425 } else {
1426 if ((val & DP_PIPE_MASK) != (pipe << 30))
1427 return false;
1428 }
1429 return true;
1430 }
1431
1432 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1433 enum pipe pipe, u32 val)
1434 {
1435 if ((val & SDVO_ENABLE) == 0)
1436 return false;
1437
1438 if (HAS_PCH_CPT(dev_priv->dev)) {
1439 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1440 return false;
1441 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1442 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1443 return false;
1444 } else {
1445 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1446 return false;
1447 }
1448 return true;
1449 }
1450
1451 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe, u32 val)
1453 {
1454 if ((val & LVDS_PORT_EN) == 0)
1455 return false;
1456
1457 if (HAS_PCH_CPT(dev_priv->dev)) {
1458 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1459 return false;
1460 } else {
1461 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1462 return false;
1463 }
1464 return true;
1465 }
1466
1467 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1468 enum pipe pipe, u32 val)
1469 {
1470 if ((val & ADPA_DAC_ENABLE) == 0)
1471 return false;
1472 if (HAS_PCH_CPT(dev_priv->dev)) {
1473 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1474 return false;
1475 } else {
1476 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1477 return false;
1478 }
1479 return true;
1480 }
1481
1482 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1483 enum pipe pipe, int reg, u32 port_sel)
1484 {
1485 u32 val = I915_READ(reg);
1486 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1487 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1488 reg, pipe_name(pipe));
1489
1490 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1491 && (val & DP_PIPEB_SELECT),
1492 "IBX PCH dp port still using transcoder B\n");
1493 }
1494
1495 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1496 enum pipe pipe, int reg)
1497 {
1498 u32 val = I915_READ(reg);
1499 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1500 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1501 reg, pipe_name(pipe));
1502
1503 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1504 && (val & SDVO_PIPE_B_SELECT),
1505 "IBX PCH hdmi port still using transcoder B\n");
1506 }
1507
1508 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1509 enum pipe pipe)
1510 {
1511 int reg;
1512 u32 val;
1513
1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1515 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1516 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1517
1518 reg = PCH_ADPA;
1519 val = I915_READ(reg);
1520 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1521 "PCH VGA enabled on transcoder %c, should be disabled\n",
1522 pipe_name(pipe));
1523
1524 reg = PCH_LVDS;
1525 val = I915_READ(reg);
1526 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1527 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1528 pipe_name(pipe));
1529
1530 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1531 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1532 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1533 }
1534
1535 static void intel_init_dpio(struct drm_device *dev)
1536 {
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538
1539 if (!IS_VALLEYVIEW(dev))
1540 return;
1541
1542 /*
1543 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1544 * CHV x1 PHY (DP/HDMI D)
1545 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1546 */
1547 if (IS_CHERRYVIEW(dev)) {
1548 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1549 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1550 } else {
1551 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1552 }
1553 }
1554
1555 static void vlv_enable_pll(struct intel_crtc *crtc,
1556 const struct intel_crtc_state *pipe_config)
1557 {
1558 struct drm_device *dev = crtc->base.dev;
1559 struct drm_i915_private *dev_priv = dev->dev_private;
1560 int reg = DPLL(crtc->pipe);
1561 u32 dpll = pipe_config->dpll_hw_state.dpll;
1562
1563 assert_pipe_disabled(dev_priv, crtc->pipe);
1564
1565 /* No really, not for ILK+ */
1566 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1567
1568 /* PLL is protected by panel, make sure we can write it */
1569 if (IS_MOBILE(dev_priv->dev))
1570 assert_panel_unlocked(dev_priv, crtc->pipe);
1571
1572 I915_WRITE(reg, dpll);
1573 POSTING_READ(reg);
1574 udelay(150);
1575
1576 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1577 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1578
1579 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1580 POSTING_READ(DPLL_MD(crtc->pipe));
1581
1582 /* We do this three times for luck */
1583 I915_WRITE(reg, dpll);
1584 POSTING_READ(reg);
1585 udelay(150); /* wait for warmup */
1586 I915_WRITE(reg, dpll);
1587 POSTING_READ(reg);
1588 udelay(150); /* wait for warmup */
1589 I915_WRITE(reg, dpll);
1590 POSTING_READ(reg);
1591 udelay(150); /* wait for warmup */
1592 }
1593
1594 static void chv_enable_pll(struct intel_crtc *crtc,
1595 const struct intel_crtc_state *pipe_config)
1596 {
1597 struct drm_device *dev = crtc->base.dev;
1598 struct drm_i915_private *dev_priv = dev->dev_private;
1599 int pipe = crtc->pipe;
1600 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1601 u32 tmp;
1602
1603 assert_pipe_disabled(dev_priv, crtc->pipe);
1604
1605 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1606
1607 mutex_lock(&dev_priv->dpio_lock);
1608
1609 /* Enable back the 10bit clock to display controller */
1610 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1611 tmp |= DPIO_DCLKP_EN;
1612 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1613
1614 /*
1615 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1616 */
1617 udelay(1);
1618
1619 /* Enable PLL */
1620 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1621
1622 /* Check PLL is locked */
1623 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1624 DRM_ERROR("PLL %d failed to lock\n", pipe);
1625
1626 /* not sure when this should be written */
1627 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1628 POSTING_READ(DPLL_MD(pipe));
1629
1630 mutex_unlock(&dev_priv->dpio_lock);
1631 }
1632
1633 static int intel_num_dvo_pipes(struct drm_device *dev)
1634 {
1635 struct intel_crtc *crtc;
1636 int count = 0;
1637
1638 for_each_intel_crtc(dev, crtc)
1639 count += crtc->active &&
1640 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1641
1642 return count;
1643 }
1644
1645 static void i9xx_enable_pll(struct intel_crtc *crtc)
1646 {
1647 struct drm_device *dev = crtc->base.dev;
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 int reg = DPLL(crtc->pipe);
1650 u32 dpll = crtc->config->dpll_hw_state.dpll;
1651
1652 assert_pipe_disabled(dev_priv, crtc->pipe);
1653
1654 /* No really, not for ILK+ */
1655 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1656
1657 /* PLL is protected by panel, make sure we can write it */
1658 if (IS_MOBILE(dev) && !IS_I830(dev))
1659 assert_panel_unlocked(dev_priv, crtc->pipe);
1660
1661 /* Enable DVO 2x clock on both PLLs if necessary */
1662 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1663 /*
1664 * It appears to be important that we don't enable this
1665 * for the current pipe before otherwise configuring the
1666 * PLL. No idea how this should be handled if multiple
1667 * DVO outputs are enabled simultaneosly.
1668 */
1669 dpll |= DPLL_DVO_2X_MODE;
1670 I915_WRITE(DPLL(!crtc->pipe),
1671 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1672 }
1673
1674 /* Wait for the clocks to stabilize. */
1675 POSTING_READ(reg);
1676 udelay(150);
1677
1678 if (INTEL_INFO(dev)->gen >= 4) {
1679 I915_WRITE(DPLL_MD(crtc->pipe),
1680 crtc->config->dpll_hw_state.dpll_md);
1681 } else {
1682 /* The pixel multiplier can only be updated once the
1683 * DPLL is enabled and the clocks are stable.
1684 *
1685 * So write it again.
1686 */
1687 I915_WRITE(reg, dpll);
1688 }
1689
1690 /* We do this three times for luck */
1691 I915_WRITE(reg, dpll);
1692 POSTING_READ(reg);
1693 udelay(150); /* wait for warmup */
1694 I915_WRITE(reg, dpll);
1695 POSTING_READ(reg);
1696 udelay(150); /* wait for warmup */
1697 I915_WRITE(reg, dpll);
1698 POSTING_READ(reg);
1699 udelay(150); /* wait for warmup */
1700 }
1701
1702 /**
1703 * i9xx_disable_pll - disable a PLL
1704 * @dev_priv: i915 private structure
1705 * @pipe: pipe PLL to disable
1706 *
1707 * Disable the PLL for @pipe, making sure the pipe is off first.
1708 *
1709 * Note! This is for pre-ILK only.
1710 */
1711 static void i9xx_disable_pll(struct intel_crtc *crtc)
1712 {
1713 struct drm_device *dev = crtc->base.dev;
1714 struct drm_i915_private *dev_priv = dev->dev_private;
1715 enum pipe pipe = crtc->pipe;
1716
1717 /* Disable DVO 2x clock on both PLLs if necessary */
1718 if (IS_I830(dev) &&
1719 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1720 intel_num_dvo_pipes(dev) == 1) {
1721 I915_WRITE(DPLL(PIPE_B),
1722 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1723 I915_WRITE(DPLL(PIPE_A),
1724 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1725 }
1726
1727 /* Don't disable pipe or pipe PLLs if needed */
1728 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1729 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1730 return;
1731
1732 /* Make sure the pipe isn't still relying on us */
1733 assert_pipe_disabled(dev_priv, pipe);
1734
1735 I915_WRITE(DPLL(pipe), 0);
1736 POSTING_READ(DPLL(pipe));
1737 }
1738
1739 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1740 {
1741 u32 val = 0;
1742
1743 /* Make sure the pipe isn't still relying on us */
1744 assert_pipe_disabled(dev_priv, pipe);
1745
1746 /*
1747 * Leave integrated clock source and reference clock enabled for pipe B.
1748 * The latter is needed for VGA hotplug / manual detection.
1749 */
1750 if (pipe == PIPE_B)
1751 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1752 I915_WRITE(DPLL(pipe), val);
1753 POSTING_READ(DPLL(pipe));
1754
1755 }
1756
1757 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1758 {
1759 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1760 u32 val;
1761
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
1764
1765 /* Set PLL en = 0 */
1766 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1767 if (pipe != PIPE_A)
1768 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1769 I915_WRITE(DPLL(pipe), val);
1770 POSTING_READ(DPLL(pipe));
1771
1772 mutex_lock(&dev_priv->dpio_lock);
1773
1774 /* Disable 10bit clock to display controller */
1775 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1776 val &= ~DPIO_DCLKP_EN;
1777 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1778
1779 /* disable left/right clock distribution */
1780 if (pipe != PIPE_B) {
1781 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1782 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1783 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1784 } else {
1785 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1786 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1787 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1788 }
1789
1790 mutex_unlock(&dev_priv->dpio_lock);
1791 }
1792
1793 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1794 struct intel_digital_port *dport)
1795 {
1796 u32 port_mask;
1797 int dpll_reg;
1798
1799 switch (dport->port) {
1800 case PORT_B:
1801 port_mask = DPLL_PORTB_READY_MASK;
1802 dpll_reg = DPLL(0);
1803 break;
1804 case PORT_C:
1805 port_mask = DPLL_PORTC_READY_MASK;
1806 dpll_reg = DPLL(0);
1807 break;
1808 case PORT_D:
1809 port_mask = DPLL_PORTD_READY_MASK;
1810 dpll_reg = DPIO_PHY_STATUS;
1811 break;
1812 default:
1813 BUG();
1814 }
1815
1816 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1817 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1818 port_name(dport->port), I915_READ(dpll_reg));
1819 }
1820
1821 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1822 {
1823 struct drm_device *dev = crtc->base.dev;
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1826
1827 if (WARN_ON(pll == NULL))
1828 return;
1829
1830 WARN_ON(!pll->config.crtc_mask);
1831 if (pll->active == 0) {
1832 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1833 WARN_ON(pll->on);
1834 assert_shared_dpll_disabled(dev_priv, pll);
1835
1836 pll->mode_set(dev_priv, pll);
1837 }
1838 }
1839
1840 /**
1841 * intel_enable_shared_dpll - enable PCH PLL
1842 * @dev_priv: i915 private structure
1843 * @pipe: pipe PLL to enable
1844 *
1845 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1846 * drives the transcoder clock.
1847 */
1848 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1849 {
1850 struct drm_device *dev = crtc->base.dev;
1851 struct drm_i915_private *dev_priv = dev->dev_private;
1852 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1853
1854 if (WARN_ON(pll == NULL))
1855 return;
1856
1857 if (WARN_ON(pll->config.crtc_mask == 0))
1858 return;
1859
1860 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1861 pll->name, pll->active, pll->on,
1862 crtc->base.base.id);
1863
1864 if (pll->active++) {
1865 WARN_ON(!pll->on);
1866 assert_shared_dpll_enabled(dev_priv, pll);
1867 return;
1868 }
1869 WARN_ON(pll->on);
1870
1871 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1872
1873 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1874 pll->enable(dev_priv, pll);
1875 pll->on = true;
1876 }
1877
1878 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1879 {
1880 struct drm_device *dev = crtc->base.dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1883
1884 /* PCH only available on ILK+ */
1885 BUG_ON(INTEL_INFO(dev)->gen < 5);
1886 if (WARN_ON(pll == NULL))
1887 return;
1888
1889 if (WARN_ON(pll->config.crtc_mask == 0))
1890 return;
1891
1892 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1893 pll->name, pll->active, pll->on,
1894 crtc->base.base.id);
1895
1896 if (WARN_ON(pll->active == 0)) {
1897 assert_shared_dpll_disabled(dev_priv, pll);
1898 return;
1899 }
1900
1901 assert_shared_dpll_enabled(dev_priv, pll);
1902 WARN_ON(!pll->on);
1903 if (--pll->active)
1904 return;
1905
1906 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1907 pll->disable(dev_priv, pll);
1908 pll->on = false;
1909
1910 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1911 }
1912
1913 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1914 enum pipe pipe)
1915 {
1916 struct drm_device *dev = dev_priv->dev;
1917 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1918 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1919 uint32_t reg, val, pipeconf_val;
1920
1921 /* PCH only available on ILK+ */
1922 BUG_ON(!HAS_PCH_SPLIT(dev));
1923
1924 /* Make sure PCH DPLL is enabled */
1925 assert_shared_dpll_enabled(dev_priv,
1926 intel_crtc_to_shared_dpll(intel_crtc));
1927
1928 /* FDI must be feeding us bits for PCH ports */
1929 assert_fdi_tx_enabled(dev_priv, pipe);
1930 assert_fdi_rx_enabled(dev_priv, pipe);
1931
1932 if (HAS_PCH_CPT(dev)) {
1933 /* Workaround: Set the timing override bit before enabling the
1934 * pch transcoder. */
1935 reg = TRANS_CHICKEN2(pipe);
1936 val = I915_READ(reg);
1937 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1938 I915_WRITE(reg, val);
1939 }
1940
1941 reg = PCH_TRANSCONF(pipe);
1942 val = I915_READ(reg);
1943 pipeconf_val = I915_READ(PIPECONF(pipe));
1944
1945 if (HAS_PCH_IBX(dev_priv->dev)) {
1946 /*
1947 * make the BPC in transcoder be consistent with
1948 * that in pipeconf reg.
1949 */
1950 val &= ~PIPECONF_BPC_MASK;
1951 val |= pipeconf_val & PIPECONF_BPC_MASK;
1952 }
1953
1954 val &= ~TRANS_INTERLACE_MASK;
1955 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1956 if (HAS_PCH_IBX(dev_priv->dev) &&
1957 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1958 val |= TRANS_LEGACY_INTERLACED_ILK;
1959 else
1960 val |= TRANS_INTERLACED;
1961 else
1962 val |= TRANS_PROGRESSIVE;
1963
1964 I915_WRITE(reg, val | TRANS_ENABLE);
1965 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1966 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1967 }
1968
1969 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1970 enum transcoder cpu_transcoder)
1971 {
1972 u32 val, pipeconf_val;
1973
1974 /* PCH only available on ILK+ */
1975 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1976
1977 /* FDI must be feeding us bits for PCH ports */
1978 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1979 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1980
1981 /* Workaround: set timing override bit. */
1982 val = I915_READ(_TRANSA_CHICKEN2);
1983 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1984 I915_WRITE(_TRANSA_CHICKEN2, val);
1985
1986 val = TRANS_ENABLE;
1987 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1988
1989 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1990 PIPECONF_INTERLACED_ILK)
1991 val |= TRANS_INTERLACED;
1992 else
1993 val |= TRANS_PROGRESSIVE;
1994
1995 I915_WRITE(LPT_TRANSCONF, val);
1996 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1997 DRM_ERROR("Failed to enable PCH transcoder\n");
1998 }
1999
2000 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2001 enum pipe pipe)
2002 {
2003 struct drm_device *dev = dev_priv->dev;
2004 uint32_t reg, val;
2005
2006 /* FDI relies on the transcoder */
2007 assert_fdi_tx_disabled(dev_priv, pipe);
2008 assert_fdi_rx_disabled(dev_priv, pipe);
2009
2010 /* Ports must be off as well */
2011 assert_pch_ports_disabled(dev_priv, pipe);
2012
2013 reg = PCH_TRANSCONF(pipe);
2014 val = I915_READ(reg);
2015 val &= ~TRANS_ENABLE;
2016 I915_WRITE(reg, val);
2017 /* wait for PCH transcoder off, transcoder state */
2018 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2019 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2020
2021 if (!HAS_PCH_IBX(dev)) {
2022 /* Workaround: Clear the timing override chicken bit again. */
2023 reg = TRANS_CHICKEN2(pipe);
2024 val = I915_READ(reg);
2025 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2026 I915_WRITE(reg, val);
2027 }
2028 }
2029
2030 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2031 {
2032 u32 val;
2033
2034 val = I915_READ(LPT_TRANSCONF);
2035 val &= ~TRANS_ENABLE;
2036 I915_WRITE(LPT_TRANSCONF, val);
2037 /* wait for PCH transcoder off, transcoder state */
2038 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2039 DRM_ERROR("Failed to disable PCH transcoder\n");
2040
2041 /* Workaround: clear timing override bit. */
2042 val = I915_READ(_TRANSA_CHICKEN2);
2043 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2044 I915_WRITE(_TRANSA_CHICKEN2, val);
2045 }
2046
2047 /**
2048 * intel_enable_pipe - enable a pipe, asserting requirements
2049 * @crtc: crtc responsible for the pipe
2050 *
2051 * Enable @crtc's pipe, making sure that various hardware specific requirements
2052 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2053 */
2054 static void intel_enable_pipe(struct intel_crtc *crtc)
2055 {
2056 struct drm_device *dev = crtc->base.dev;
2057 struct drm_i915_private *dev_priv = dev->dev_private;
2058 enum pipe pipe = crtc->pipe;
2059 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2060 pipe);
2061 enum pipe pch_transcoder;
2062 int reg;
2063 u32 val;
2064
2065 assert_planes_disabled(dev_priv, pipe);
2066 assert_cursor_disabled(dev_priv, pipe);
2067 assert_sprites_disabled(dev_priv, pipe);
2068
2069 if (HAS_PCH_LPT(dev_priv->dev))
2070 pch_transcoder = TRANSCODER_A;
2071 else
2072 pch_transcoder = pipe;
2073
2074 /*
2075 * A pipe without a PLL won't actually be able to drive bits from
2076 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2077 * need the check.
2078 */
2079 if (!HAS_PCH_SPLIT(dev_priv->dev))
2080 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2081 assert_dsi_pll_enabled(dev_priv);
2082 else
2083 assert_pll_enabled(dev_priv, pipe);
2084 else {
2085 if (crtc->config->has_pch_encoder) {
2086 /* if driving the PCH, we need FDI enabled */
2087 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2088 assert_fdi_tx_pll_enabled(dev_priv,
2089 (enum pipe) cpu_transcoder);
2090 }
2091 /* FIXME: assert CPU port conditions for SNB+ */
2092 }
2093
2094 reg = PIPECONF(cpu_transcoder);
2095 val = I915_READ(reg);
2096 if (val & PIPECONF_ENABLE) {
2097 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2098 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2099 return;
2100 }
2101
2102 I915_WRITE(reg, val | PIPECONF_ENABLE);
2103 POSTING_READ(reg);
2104 }
2105
2106 /**
2107 * intel_disable_pipe - disable a pipe, asserting requirements
2108 * @crtc: crtc whose pipes is to be disabled
2109 *
2110 * Disable the pipe of @crtc, making sure that various hardware
2111 * specific requirements are met, if applicable, e.g. plane
2112 * disabled, panel fitter off, etc.
2113 *
2114 * Will wait until the pipe has shut down before returning.
2115 */
2116 static void intel_disable_pipe(struct intel_crtc *crtc)
2117 {
2118 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2119 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2120 enum pipe pipe = crtc->pipe;
2121 int reg;
2122 u32 val;
2123
2124 /*
2125 * Make sure planes won't keep trying to pump pixels to us,
2126 * or we might hang the display.
2127 */
2128 assert_planes_disabled(dev_priv, pipe);
2129 assert_cursor_disabled(dev_priv, pipe);
2130 assert_sprites_disabled(dev_priv, pipe);
2131
2132 reg = PIPECONF(cpu_transcoder);
2133 val = I915_READ(reg);
2134 if ((val & PIPECONF_ENABLE) == 0)
2135 return;
2136
2137 /*
2138 * Double wide has implications for planes
2139 * so best keep it disabled when not needed.
2140 */
2141 if (crtc->config->double_wide)
2142 val &= ~PIPECONF_DOUBLE_WIDE;
2143
2144 /* Don't disable pipe or pipe PLLs if needed */
2145 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2146 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2147 val &= ~PIPECONF_ENABLE;
2148
2149 I915_WRITE(reg, val);
2150 if ((val & PIPECONF_ENABLE) == 0)
2151 intel_wait_for_pipe_off(crtc);
2152 }
2153
2154 /*
2155 * Plane regs are double buffered, going from enabled->disabled needs a
2156 * trigger in order to latch. The display address reg provides this.
2157 */
2158 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2159 enum plane plane)
2160 {
2161 struct drm_device *dev = dev_priv->dev;
2162 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2163
2164 I915_WRITE(reg, I915_READ(reg));
2165 POSTING_READ(reg);
2166 }
2167
2168 /**
2169 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2170 * @plane: plane to be enabled
2171 * @crtc: crtc for the plane
2172 *
2173 * Enable @plane on @crtc, making sure that the pipe is running first.
2174 */
2175 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2176 struct drm_crtc *crtc)
2177 {
2178 struct drm_device *dev = plane->dev;
2179 struct drm_i915_private *dev_priv = dev->dev_private;
2180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2181
2182 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2183 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2184
2185 if (intel_crtc->primary_enabled)
2186 return;
2187
2188 intel_crtc->primary_enabled = true;
2189
2190 dev_priv->display.update_primary_plane(crtc, plane->fb,
2191 crtc->x, crtc->y);
2192
2193 /*
2194 * BDW signals flip done immediately if the plane
2195 * is disabled, even if the plane enable is already
2196 * armed to occur at the next vblank :(
2197 */
2198 if (IS_BROADWELL(dev))
2199 intel_wait_for_vblank(dev, intel_crtc->pipe);
2200 }
2201
2202 /**
2203 * intel_disable_primary_hw_plane - disable the primary hardware plane
2204 * @plane: plane to be disabled
2205 * @crtc: crtc for the plane
2206 *
2207 * Disable @plane on @crtc, making sure that the pipe is running first.
2208 */
2209 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2210 struct drm_crtc *crtc)
2211 {
2212 struct drm_device *dev = plane->dev;
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2215
2216 if (WARN_ON(!intel_crtc->active))
2217 return;
2218
2219 if (!intel_crtc->primary_enabled)
2220 return;
2221
2222 intel_crtc->primary_enabled = false;
2223
2224 dev_priv->display.update_primary_plane(crtc, plane->fb,
2225 crtc->x, crtc->y);
2226 }
2227
2228 static bool need_vtd_wa(struct drm_device *dev)
2229 {
2230 #ifdef CONFIG_INTEL_IOMMU
2231 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2232 return true;
2233 #endif
2234 return false;
2235 }
2236
2237 unsigned int
2238 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2239 uint64_t fb_format_modifier)
2240 {
2241 unsigned int tile_height;
2242 uint32_t pixel_bytes;
2243
2244 switch (fb_format_modifier) {
2245 case DRM_FORMAT_MOD_NONE:
2246 tile_height = 1;
2247 break;
2248 case I915_FORMAT_MOD_X_TILED:
2249 tile_height = IS_GEN2(dev) ? 16 : 8;
2250 break;
2251 case I915_FORMAT_MOD_Y_TILED:
2252 tile_height = 32;
2253 break;
2254 case I915_FORMAT_MOD_Yf_TILED:
2255 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2256 switch (pixel_bytes) {
2257 default:
2258 case 1:
2259 tile_height = 64;
2260 break;
2261 case 2:
2262 case 4:
2263 tile_height = 32;
2264 break;
2265 case 8:
2266 tile_height = 16;
2267 break;
2268 case 16:
2269 WARN_ONCE(1,
2270 "128-bit pixels are not supported for display!");
2271 tile_height = 16;
2272 break;
2273 }
2274 break;
2275 default:
2276 MISSING_CASE(fb_format_modifier);
2277 tile_height = 1;
2278 break;
2279 }
2280
2281 return tile_height;
2282 }
2283
2284 unsigned int
2285 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2286 uint32_t pixel_format, uint64_t fb_format_modifier)
2287 {
2288 return ALIGN(height, intel_tile_height(dev, pixel_format,
2289 fb_format_modifier));
2290 }
2291
2292 static int
2293 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2294 const struct drm_plane_state *plane_state)
2295 {
2296 struct intel_rotation_info *info = &view->rotation_info;
2297 static const struct i915_ggtt_view rotated_view =
2298 { .type = I915_GGTT_VIEW_ROTATED };
2299
2300 *view = i915_ggtt_view_normal;
2301
2302 if (!plane_state)
2303 return 0;
2304
2305 if (!intel_rotation_90_or_270(plane_state->rotation))
2306 return 0;
2307
2308 *view = rotated_view;
2309
2310 info->height = fb->height;
2311 info->pixel_format = fb->pixel_format;
2312 info->pitch = fb->pitches[0];
2313 info->fb_modifier = fb->modifier[0];
2314
2315 if (!(info->fb_modifier == I915_FORMAT_MOD_Y_TILED ||
2316 info->fb_modifier == I915_FORMAT_MOD_Yf_TILED)) {
2317 DRM_DEBUG_KMS(
2318 "Y or Yf tiling is needed for 90/270 rotation!\n");
2319 return -EINVAL;
2320 }
2321
2322 return 0;
2323 }
2324
2325 int
2326 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2327 struct drm_framebuffer *fb,
2328 const struct drm_plane_state *plane_state,
2329 struct intel_engine_cs *pipelined)
2330 {
2331 struct drm_device *dev = fb->dev;
2332 struct drm_i915_private *dev_priv = dev->dev_private;
2333 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2334 struct i915_ggtt_view view;
2335 u32 alignment;
2336 int ret;
2337
2338 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2339
2340 switch (fb->modifier[0]) {
2341 case DRM_FORMAT_MOD_NONE:
2342 if (INTEL_INFO(dev)->gen >= 9)
2343 alignment = 256 * 1024;
2344 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2345 alignment = 128 * 1024;
2346 else if (INTEL_INFO(dev)->gen >= 4)
2347 alignment = 4 * 1024;
2348 else
2349 alignment = 64 * 1024;
2350 break;
2351 case I915_FORMAT_MOD_X_TILED:
2352 if (INTEL_INFO(dev)->gen >= 9)
2353 alignment = 256 * 1024;
2354 else {
2355 /* pin() will align the object as required by fence */
2356 alignment = 0;
2357 }
2358 break;
2359 case I915_FORMAT_MOD_Y_TILED:
2360 case I915_FORMAT_MOD_Yf_TILED:
2361 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2362 "Y tiling bo slipped through, driver bug!\n"))
2363 return -EINVAL;
2364 alignment = 1 * 1024 * 1024;
2365 break;
2366 default:
2367 MISSING_CASE(fb->modifier[0]);
2368 return -EINVAL;
2369 }
2370
2371 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2372 if (ret)
2373 return ret;
2374
2375 /* Note that the w/a also requires 64 PTE of padding following the
2376 * bo. We currently fill all unused PTE with the shadow page and so
2377 * we should always have valid PTE following the scanout preventing
2378 * the VT-d warning.
2379 */
2380 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2381 alignment = 256 * 1024;
2382
2383 /*
2384 * Global gtt pte registers are special registers which actually forward
2385 * writes to a chunk of system memory. Which means that there is no risk
2386 * that the register values disappear as soon as we call
2387 * intel_runtime_pm_put(), so it is correct to wrap only the
2388 * pin/unpin/fence and not more.
2389 */
2390 intel_runtime_pm_get(dev_priv);
2391
2392 dev_priv->mm.interruptible = false;
2393 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2394 &view);
2395 if (ret)
2396 goto err_interruptible;
2397
2398 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2399 * fence, whereas 965+ only requires a fence if using
2400 * framebuffer compression. For simplicity, we always install
2401 * a fence as the cost is not that onerous.
2402 */
2403 ret = i915_gem_object_get_fence(obj);
2404 if (ret)
2405 goto err_unpin;
2406
2407 i915_gem_object_pin_fence(obj);
2408
2409 dev_priv->mm.interruptible = true;
2410 intel_runtime_pm_put(dev_priv);
2411 return 0;
2412
2413 err_unpin:
2414 i915_gem_object_unpin_from_display_plane(obj, &view);
2415 err_interruptible:
2416 dev_priv->mm.interruptible = true;
2417 intel_runtime_pm_put(dev_priv);
2418 return ret;
2419 }
2420
2421 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2422 const struct drm_plane_state *plane_state)
2423 {
2424 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2425 struct i915_ggtt_view view;
2426 int ret;
2427
2428 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2429
2430 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2431 WARN_ONCE(ret, "Couldn't get view from plane state!");
2432
2433 i915_gem_object_unpin_fence(obj);
2434 i915_gem_object_unpin_from_display_plane(obj, &view);
2435 }
2436
2437 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2438 * is assumed to be a power-of-two. */
2439 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2440 unsigned int tiling_mode,
2441 unsigned int cpp,
2442 unsigned int pitch)
2443 {
2444 if (tiling_mode != I915_TILING_NONE) {
2445 unsigned int tile_rows, tiles;
2446
2447 tile_rows = *y / 8;
2448 *y %= 8;
2449
2450 tiles = *x / (512/cpp);
2451 *x %= 512/cpp;
2452
2453 return tile_rows * pitch * 8 + tiles * 4096;
2454 } else {
2455 unsigned int offset;
2456
2457 offset = *y * pitch + *x * cpp;
2458 *y = 0;
2459 *x = (offset & 4095) / cpp;
2460 return offset & -4096;
2461 }
2462 }
2463
2464 static int i9xx_format_to_fourcc(int format)
2465 {
2466 switch (format) {
2467 case DISPPLANE_8BPP:
2468 return DRM_FORMAT_C8;
2469 case DISPPLANE_BGRX555:
2470 return DRM_FORMAT_XRGB1555;
2471 case DISPPLANE_BGRX565:
2472 return DRM_FORMAT_RGB565;
2473 default:
2474 case DISPPLANE_BGRX888:
2475 return DRM_FORMAT_XRGB8888;
2476 case DISPPLANE_RGBX888:
2477 return DRM_FORMAT_XBGR8888;
2478 case DISPPLANE_BGRX101010:
2479 return DRM_FORMAT_XRGB2101010;
2480 case DISPPLANE_RGBX101010:
2481 return DRM_FORMAT_XBGR2101010;
2482 }
2483 }
2484
2485 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2486 {
2487 switch (format) {
2488 case PLANE_CTL_FORMAT_RGB_565:
2489 return DRM_FORMAT_RGB565;
2490 default:
2491 case PLANE_CTL_FORMAT_XRGB_8888:
2492 if (rgb_order) {
2493 if (alpha)
2494 return DRM_FORMAT_ABGR8888;
2495 else
2496 return DRM_FORMAT_XBGR8888;
2497 } else {
2498 if (alpha)
2499 return DRM_FORMAT_ARGB8888;
2500 else
2501 return DRM_FORMAT_XRGB8888;
2502 }
2503 case PLANE_CTL_FORMAT_XRGB_2101010:
2504 if (rgb_order)
2505 return DRM_FORMAT_XBGR2101010;
2506 else
2507 return DRM_FORMAT_XRGB2101010;
2508 }
2509 }
2510
2511 static bool
2512 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2513 struct intel_initial_plane_config *plane_config)
2514 {
2515 struct drm_device *dev = crtc->base.dev;
2516 struct drm_i915_gem_object *obj = NULL;
2517 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2518 struct drm_framebuffer *fb = &plane_config->fb->base;
2519 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2520 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2521 PAGE_SIZE);
2522
2523 size_aligned -= base_aligned;
2524
2525 if (plane_config->size == 0)
2526 return false;
2527
2528 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2529 base_aligned,
2530 base_aligned,
2531 size_aligned);
2532 if (!obj)
2533 return false;
2534
2535 obj->tiling_mode = plane_config->tiling;
2536 if (obj->tiling_mode == I915_TILING_X)
2537 obj->stride = fb->pitches[0];
2538
2539 mode_cmd.pixel_format = fb->pixel_format;
2540 mode_cmd.width = fb->width;
2541 mode_cmd.height = fb->height;
2542 mode_cmd.pitches[0] = fb->pitches[0];
2543 mode_cmd.modifier[0] = fb->modifier[0];
2544 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2545
2546 mutex_lock(&dev->struct_mutex);
2547 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2548 &mode_cmd, obj)) {
2549 DRM_DEBUG_KMS("intel fb init failed\n");
2550 goto out_unref_obj;
2551 }
2552 mutex_unlock(&dev->struct_mutex);
2553
2554 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2555 return true;
2556
2557 out_unref_obj:
2558 drm_gem_object_unreference(&obj->base);
2559 mutex_unlock(&dev->struct_mutex);
2560 return false;
2561 }
2562
2563 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2564 static void
2565 update_state_fb(struct drm_plane *plane)
2566 {
2567 if (plane->fb == plane->state->fb)
2568 return;
2569
2570 if (plane->state->fb)
2571 drm_framebuffer_unreference(plane->state->fb);
2572 plane->state->fb = plane->fb;
2573 if (plane->state->fb)
2574 drm_framebuffer_reference(plane->state->fb);
2575 }
2576
2577 static void
2578 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2579 struct intel_initial_plane_config *plane_config)
2580 {
2581 struct drm_device *dev = intel_crtc->base.dev;
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 struct drm_crtc *c;
2584 struct intel_crtc *i;
2585 struct drm_i915_gem_object *obj;
2586 struct drm_plane *primary = intel_crtc->base.primary;
2587 struct drm_framebuffer *fb;
2588
2589 if (!plane_config->fb)
2590 return;
2591
2592 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2593 fb = &plane_config->fb->base;
2594 goto valid_fb;
2595 }
2596
2597 kfree(plane_config->fb);
2598
2599 /*
2600 * Failed to alloc the obj, check to see if we should share
2601 * an fb with another CRTC instead
2602 */
2603 for_each_crtc(dev, c) {
2604 i = to_intel_crtc(c);
2605
2606 if (c == &intel_crtc->base)
2607 continue;
2608
2609 if (!i->active)
2610 continue;
2611
2612 fb = c->primary->fb;
2613 if (!fb)
2614 continue;
2615
2616 obj = intel_fb_obj(fb);
2617 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2618 drm_framebuffer_reference(fb);
2619 goto valid_fb;
2620 }
2621 }
2622
2623 return;
2624
2625 valid_fb:
2626 obj = intel_fb_obj(fb);
2627 if (obj->tiling_mode != I915_TILING_NONE)
2628 dev_priv->preserve_bios_swizzle = true;
2629
2630 primary->fb = fb;
2631 primary->state->crtc = &intel_crtc->base;
2632 primary->crtc = &intel_crtc->base;
2633 update_state_fb(primary);
2634 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2635 }
2636
2637 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2638 struct drm_framebuffer *fb,
2639 int x, int y)
2640 {
2641 struct drm_device *dev = crtc->dev;
2642 struct drm_i915_private *dev_priv = dev->dev_private;
2643 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2644 struct drm_i915_gem_object *obj;
2645 int plane = intel_crtc->plane;
2646 unsigned long linear_offset;
2647 u32 dspcntr;
2648 u32 reg = DSPCNTR(plane);
2649 int pixel_size;
2650
2651 if (!intel_crtc->primary_enabled) {
2652 I915_WRITE(reg, 0);
2653 if (INTEL_INFO(dev)->gen >= 4)
2654 I915_WRITE(DSPSURF(plane), 0);
2655 else
2656 I915_WRITE(DSPADDR(plane), 0);
2657 POSTING_READ(reg);
2658 return;
2659 }
2660
2661 obj = intel_fb_obj(fb);
2662 if (WARN_ON(obj == NULL))
2663 return;
2664
2665 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
2667 dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
2669 dspcntr |= DISPLAY_PLANE_ENABLE;
2670
2671 if (INTEL_INFO(dev)->gen < 4) {
2672 if (intel_crtc->pipe == PIPE_B)
2673 dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675 /* pipesrc and dspsize control the size that is scaled from,
2676 * which should always be the user's requested size.
2677 */
2678 I915_WRITE(DSPSIZE(plane),
2679 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680 (intel_crtc->config->pipe_src_w - 1));
2681 I915_WRITE(DSPPOS(plane), 0);
2682 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683 I915_WRITE(PRIMSIZE(plane),
2684 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685 (intel_crtc->config->pipe_src_w - 1));
2686 I915_WRITE(PRIMPOS(plane), 0);
2687 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2688 }
2689
2690 switch (fb->pixel_format) {
2691 case DRM_FORMAT_C8:
2692 dspcntr |= DISPPLANE_8BPP;
2693 break;
2694 case DRM_FORMAT_XRGB1555:
2695 case DRM_FORMAT_ARGB1555:
2696 dspcntr |= DISPPLANE_BGRX555;
2697 break;
2698 case DRM_FORMAT_RGB565:
2699 dspcntr |= DISPPLANE_BGRX565;
2700 break;
2701 case DRM_FORMAT_XRGB8888:
2702 case DRM_FORMAT_ARGB8888:
2703 dspcntr |= DISPPLANE_BGRX888;
2704 break;
2705 case DRM_FORMAT_XBGR8888:
2706 case DRM_FORMAT_ABGR8888:
2707 dspcntr |= DISPPLANE_RGBX888;
2708 break;
2709 case DRM_FORMAT_XRGB2101010:
2710 case DRM_FORMAT_ARGB2101010:
2711 dspcntr |= DISPPLANE_BGRX101010;
2712 break;
2713 case DRM_FORMAT_XBGR2101010:
2714 case DRM_FORMAT_ABGR2101010:
2715 dspcntr |= DISPPLANE_RGBX101010;
2716 break;
2717 default:
2718 BUG();
2719 }
2720
2721 if (INTEL_INFO(dev)->gen >= 4 &&
2722 obj->tiling_mode != I915_TILING_NONE)
2723 dspcntr |= DISPPLANE_TILED;
2724
2725 if (IS_G4X(dev))
2726 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2727
2728 linear_offset = y * fb->pitches[0] + x * pixel_size;
2729
2730 if (INTEL_INFO(dev)->gen >= 4) {
2731 intel_crtc->dspaddr_offset =
2732 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2733 pixel_size,
2734 fb->pitches[0]);
2735 linear_offset -= intel_crtc->dspaddr_offset;
2736 } else {
2737 intel_crtc->dspaddr_offset = linear_offset;
2738 }
2739
2740 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2741 dspcntr |= DISPPLANE_ROTATE_180;
2742
2743 x += (intel_crtc->config->pipe_src_w - 1);
2744 y += (intel_crtc->config->pipe_src_h - 1);
2745
2746 /* Finding the last pixel of the last line of the display
2747 data and adding to linear_offset*/
2748 linear_offset +=
2749 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2750 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2751 }
2752
2753 I915_WRITE(reg, dspcntr);
2754
2755 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2756 if (INTEL_INFO(dev)->gen >= 4) {
2757 I915_WRITE(DSPSURF(plane),
2758 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2759 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2760 I915_WRITE(DSPLINOFF(plane), linear_offset);
2761 } else
2762 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2763 POSTING_READ(reg);
2764 }
2765
2766 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2767 struct drm_framebuffer *fb,
2768 int x, int y)
2769 {
2770 struct drm_device *dev = crtc->dev;
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2773 struct drm_i915_gem_object *obj;
2774 int plane = intel_crtc->plane;
2775 unsigned long linear_offset;
2776 u32 dspcntr;
2777 u32 reg = DSPCNTR(plane);
2778 int pixel_size;
2779
2780 if (!intel_crtc->primary_enabled) {
2781 I915_WRITE(reg, 0);
2782 I915_WRITE(DSPSURF(plane), 0);
2783 POSTING_READ(reg);
2784 return;
2785 }
2786
2787 obj = intel_fb_obj(fb);
2788 if (WARN_ON(obj == NULL))
2789 return;
2790
2791 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2792
2793 dspcntr = DISPPLANE_GAMMA_ENABLE;
2794
2795 dspcntr |= DISPLAY_PLANE_ENABLE;
2796
2797 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2798 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2799
2800 switch (fb->pixel_format) {
2801 case DRM_FORMAT_C8:
2802 dspcntr |= DISPPLANE_8BPP;
2803 break;
2804 case DRM_FORMAT_RGB565:
2805 dspcntr |= DISPPLANE_BGRX565;
2806 break;
2807 case DRM_FORMAT_XRGB8888:
2808 case DRM_FORMAT_ARGB8888:
2809 dspcntr |= DISPPLANE_BGRX888;
2810 break;
2811 case DRM_FORMAT_XBGR8888:
2812 case DRM_FORMAT_ABGR8888:
2813 dspcntr |= DISPPLANE_RGBX888;
2814 break;
2815 case DRM_FORMAT_XRGB2101010:
2816 case DRM_FORMAT_ARGB2101010:
2817 dspcntr |= DISPPLANE_BGRX101010;
2818 break;
2819 case DRM_FORMAT_XBGR2101010:
2820 case DRM_FORMAT_ABGR2101010:
2821 dspcntr |= DISPPLANE_RGBX101010;
2822 break;
2823 default:
2824 BUG();
2825 }
2826
2827 if (obj->tiling_mode != I915_TILING_NONE)
2828 dspcntr |= DISPPLANE_TILED;
2829
2830 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2831 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2832
2833 linear_offset = y * fb->pitches[0] + x * pixel_size;
2834 intel_crtc->dspaddr_offset =
2835 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2836 pixel_size,
2837 fb->pitches[0]);
2838 linear_offset -= intel_crtc->dspaddr_offset;
2839 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2840 dspcntr |= DISPPLANE_ROTATE_180;
2841
2842 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2843 x += (intel_crtc->config->pipe_src_w - 1);
2844 y += (intel_crtc->config->pipe_src_h - 1);
2845
2846 /* Finding the last pixel of the last line of the display
2847 data and adding to linear_offset*/
2848 linear_offset +=
2849 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2850 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2851 }
2852 }
2853
2854 I915_WRITE(reg, dspcntr);
2855
2856 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2857 I915_WRITE(DSPSURF(plane),
2858 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2859 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2860 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2861 } else {
2862 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2863 I915_WRITE(DSPLINOFF(plane), linear_offset);
2864 }
2865 POSTING_READ(reg);
2866 }
2867
2868 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2869 uint32_t pixel_format)
2870 {
2871 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2872
2873 /*
2874 * The stride is either expressed as a multiple of 64 bytes
2875 * chunks for linear buffers or in number of tiles for tiled
2876 * buffers.
2877 */
2878 switch (fb_modifier) {
2879 case DRM_FORMAT_MOD_NONE:
2880 return 64;
2881 case I915_FORMAT_MOD_X_TILED:
2882 if (INTEL_INFO(dev)->gen == 2)
2883 return 128;
2884 return 512;
2885 case I915_FORMAT_MOD_Y_TILED:
2886 /* No need to check for old gens and Y tiling since this is
2887 * about the display engine and those will be blocked before
2888 * we get here.
2889 */
2890 return 128;
2891 case I915_FORMAT_MOD_Yf_TILED:
2892 if (bits_per_pixel == 8)
2893 return 64;
2894 else
2895 return 128;
2896 default:
2897 MISSING_CASE(fb_modifier);
2898 return 64;
2899 }
2900 }
2901
2902 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2903 struct drm_i915_gem_object *obj)
2904 {
2905 enum i915_ggtt_view_type view = I915_GGTT_VIEW_NORMAL;
2906
2907 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2908 view = I915_GGTT_VIEW_ROTATED;
2909
2910 return i915_gem_obj_ggtt_offset_view(obj, view);
2911 }
2912
2913 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2914 struct drm_framebuffer *fb,
2915 int x, int y)
2916 {
2917 struct drm_device *dev = crtc->dev;
2918 struct drm_i915_private *dev_priv = dev->dev_private;
2919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2920 struct drm_i915_gem_object *obj;
2921 int pipe = intel_crtc->pipe;
2922 u32 plane_ctl, stride_div;
2923 unsigned long surf_addr;
2924
2925 if (!intel_crtc->primary_enabled) {
2926 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2927 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2928 POSTING_READ(PLANE_CTL(pipe, 0));
2929 return;
2930 }
2931
2932 plane_ctl = PLANE_CTL_ENABLE |
2933 PLANE_CTL_PIPE_GAMMA_ENABLE |
2934 PLANE_CTL_PIPE_CSC_ENABLE;
2935
2936 switch (fb->pixel_format) {
2937 case DRM_FORMAT_RGB565:
2938 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2939 break;
2940 case DRM_FORMAT_XRGB8888:
2941 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2942 break;
2943 case DRM_FORMAT_ARGB8888:
2944 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2945 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2946 break;
2947 case DRM_FORMAT_XBGR8888:
2948 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2949 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2950 break;
2951 case DRM_FORMAT_ABGR8888:
2952 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2953 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2954 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955 break;
2956 case DRM_FORMAT_XRGB2101010:
2957 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2958 break;
2959 case DRM_FORMAT_XBGR2101010:
2960 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2961 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2962 break;
2963 default:
2964 BUG();
2965 }
2966
2967 switch (fb->modifier[0]) {
2968 case DRM_FORMAT_MOD_NONE:
2969 break;
2970 case I915_FORMAT_MOD_X_TILED:
2971 plane_ctl |= PLANE_CTL_TILED_X;
2972 break;
2973 case I915_FORMAT_MOD_Y_TILED:
2974 plane_ctl |= PLANE_CTL_TILED_Y;
2975 break;
2976 case I915_FORMAT_MOD_Yf_TILED:
2977 plane_ctl |= PLANE_CTL_TILED_YF;
2978 break;
2979 default:
2980 MISSING_CASE(fb->modifier[0]);
2981 }
2982
2983 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2984 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2985 plane_ctl |= PLANE_CTL_ROTATE_180;
2986
2987 obj = intel_fb_obj(fb);
2988 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2989 fb->pixel_format);
2990 surf_addr = intel_plane_obj_offset(to_intel_plane(crtc->primary), obj);
2991
2992 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2993 I915_WRITE(PLANE_POS(pipe, 0), 0);
2994 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2995 I915_WRITE(PLANE_SIZE(pipe, 0),
2996 (intel_crtc->config->pipe_src_h - 1) << 16 |
2997 (intel_crtc->config->pipe_src_w - 1));
2998 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
2999 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3000
3001 POSTING_READ(PLANE_SURF(pipe, 0));
3002 }
3003
3004 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3005 static int
3006 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3007 int x, int y, enum mode_set_atomic state)
3008 {
3009 struct drm_device *dev = crtc->dev;
3010 struct drm_i915_private *dev_priv = dev->dev_private;
3011
3012 if (dev_priv->display.disable_fbc)
3013 dev_priv->display.disable_fbc(dev);
3014
3015 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3016
3017 return 0;
3018 }
3019
3020 static void intel_complete_page_flips(struct drm_device *dev)
3021 {
3022 struct drm_crtc *crtc;
3023
3024 for_each_crtc(dev, crtc) {
3025 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3026 enum plane plane = intel_crtc->plane;
3027
3028 intel_prepare_page_flip(dev, plane);
3029 intel_finish_page_flip_plane(dev, plane);
3030 }
3031 }
3032
3033 static void intel_update_primary_planes(struct drm_device *dev)
3034 {
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 struct drm_crtc *crtc;
3037
3038 for_each_crtc(dev, crtc) {
3039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3040
3041 drm_modeset_lock(&crtc->mutex, NULL);
3042 /*
3043 * FIXME: Once we have proper support for primary planes (and
3044 * disabling them without disabling the entire crtc) allow again
3045 * a NULL crtc->primary->fb.
3046 */
3047 if (intel_crtc->active && crtc->primary->fb)
3048 dev_priv->display.update_primary_plane(crtc,
3049 crtc->primary->fb,
3050 crtc->x,
3051 crtc->y);
3052 drm_modeset_unlock(&crtc->mutex);
3053 }
3054 }
3055
3056 void intel_prepare_reset(struct drm_device *dev)
3057 {
3058 struct drm_i915_private *dev_priv = to_i915(dev);
3059 struct intel_crtc *crtc;
3060
3061 /* no reset support for gen2 */
3062 if (IS_GEN2(dev))
3063 return;
3064
3065 /* reset doesn't touch the display */
3066 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3067 return;
3068
3069 drm_modeset_lock_all(dev);
3070
3071 /*
3072 * Disabling the crtcs gracefully seems nicer. Also the
3073 * g33 docs say we should at least disable all the planes.
3074 */
3075 for_each_intel_crtc(dev, crtc) {
3076 if (crtc->active)
3077 dev_priv->display.crtc_disable(&crtc->base);
3078 }
3079 }
3080
3081 void intel_finish_reset(struct drm_device *dev)
3082 {
3083 struct drm_i915_private *dev_priv = to_i915(dev);
3084
3085 /*
3086 * Flips in the rings will be nuked by the reset,
3087 * so complete all pending flips so that user space
3088 * will get its events and not get stuck.
3089 */
3090 intel_complete_page_flips(dev);
3091
3092 /* no reset support for gen2 */
3093 if (IS_GEN2(dev))
3094 return;
3095
3096 /* reset doesn't touch the display */
3097 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3098 /*
3099 * Flips in the rings have been nuked by the reset,
3100 * so update the base address of all primary
3101 * planes to the the last fb to make sure we're
3102 * showing the correct fb after a reset.
3103 */
3104 intel_update_primary_planes(dev);
3105 return;
3106 }
3107
3108 /*
3109 * The display has been reset as well,
3110 * so need a full re-initialization.
3111 */
3112 intel_runtime_pm_disable_interrupts(dev_priv);
3113 intel_runtime_pm_enable_interrupts(dev_priv);
3114
3115 intel_modeset_init_hw(dev);
3116
3117 spin_lock_irq(&dev_priv->irq_lock);
3118 if (dev_priv->display.hpd_irq_setup)
3119 dev_priv->display.hpd_irq_setup(dev);
3120 spin_unlock_irq(&dev_priv->irq_lock);
3121
3122 intel_modeset_setup_hw_state(dev, true);
3123
3124 intel_hpd_init(dev_priv);
3125
3126 drm_modeset_unlock_all(dev);
3127 }
3128
3129 static int
3130 intel_finish_fb(struct drm_framebuffer *old_fb)
3131 {
3132 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3133 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3134 bool was_interruptible = dev_priv->mm.interruptible;
3135 int ret;
3136
3137 /* Big Hammer, we also need to ensure that any pending
3138 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3139 * current scanout is retired before unpinning the old
3140 * framebuffer.
3141 *
3142 * This should only fail upon a hung GPU, in which case we
3143 * can safely continue.
3144 */
3145 dev_priv->mm.interruptible = false;
3146 ret = i915_gem_object_finish_gpu(obj);
3147 dev_priv->mm.interruptible = was_interruptible;
3148
3149 return ret;
3150 }
3151
3152 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3153 {
3154 struct drm_device *dev = crtc->dev;
3155 struct drm_i915_private *dev_priv = dev->dev_private;
3156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3157 bool pending;
3158
3159 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3160 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3161 return false;
3162
3163 spin_lock_irq(&dev->event_lock);
3164 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3165 spin_unlock_irq(&dev->event_lock);
3166
3167 return pending;
3168 }
3169
3170 static void intel_update_pipe_size(struct intel_crtc *crtc)
3171 {
3172 struct drm_device *dev = crtc->base.dev;
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 const struct drm_display_mode *adjusted_mode;
3175
3176 if (!i915.fastboot)
3177 return;
3178
3179 /*
3180 * Update pipe size and adjust fitter if needed: the reason for this is
3181 * that in compute_mode_changes we check the native mode (not the pfit
3182 * mode) to see if we can flip rather than do a full mode set. In the
3183 * fastboot case, we'll flip, but if we don't update the pipesrc and
3184 * pfit state, we'll end up with a big fb scanned out into the wrong
3185 * sized surface.
3186 *
3187 * To fix this properly, we need to hoist the checks up into
3188 * compute_mode_changes (or above), check the actual pfit state and
3189 * whether the platform allows pfit disable with pipe active, and only
3190 * then update the pipesrc and pfit state, even on the flip path.
3191 */
3192
3193 adjusted_mode = &crtc->config->base.adjusted_mode;
3194
3195 I915_WRITE(PIPESRC(crtc->pipe),
3196 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3197 (adjusted_mode->crtc_vdisplay - 1));
3198 if (!crtc->config->pch_pfit.enabled &&
3199 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3200 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3201 I915_WRITE(PF_CTL(crtc->pipe), 0);
3202 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3203 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3204 }
3205 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3206 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3207 }
3208
3209 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3210 {
3211 struct drm_device *dev = crtc->dev;
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 int pipe = intel_crtc->pipe;
3215 u32 reg, temp;
3216
3217 /* enable normal train */
3218 reg = FDI_TX_CTL(pipe);
3219 temp = I915_READ(reg);
3220 if (IS_IVYBRIDGE(dev)) {
3221 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3222 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3223 } else {
3224 temp &= ~FDI_LINK_TRAIN_NONE;
3225 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3226 }
3227 I915_WRITE(reg, temp);
3228
3229 reg = FDI_RX_CTL(pipe);
3230 temp = I915_READ(reg);
3231 if (HAS_PCH_CPT(dev)) {
3232 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3233 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3234 } else {
3235 temp &= ~FDI_LINK_TRAIN_NONE;
3236 temp |= FDI_LINK_TRAIN_NONE;
3237 }
3238 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3239
3240 /* wait one idle pattern time */
3241 POSTING_READ(reg);
3242 udelay(1000);
3243
3244 /* IVB wants error correction enabled */
3245 if (IS_IVYBRIDGE(dev))
3246 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3247 FDI_FE_ERRC_ENABLE);
3248 }
3249
3250 /* The FDI link training functions for ILK/Ibexpeak. */
3251 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3252 {
3253 struct drm_device *dev = crtc->dev;
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3256 int pipe = intel_crtc->pipe;
3257 u32 reg, temp, tries;
3258
3259 /* FDI needs bits from pipe first */
3260 assert_pipe_enabled(dev_priv, pipe);
3261
3262 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3263 for train result */
3264 reg = FDI_RX_IMR(pipe);
3265 temp = I915_READ(reg);
3266 temp &= ~FDI_RX_SYMBOL_LOCK;
3267 temp &= ~FDI_RX_BIT_LOCK;
3268 I915_WRITE(reg, temp);
3269 I915_READ(reg);
3270 udelay(150);
3271
3272 /* enable CPU FDI TX and PCH FDI RX */
3273 reg = FDI_TX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3276 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3277 temp &= ~FDI_LINK_TRAIN_NONE;
3278 temp |= FDI_LINK_TRAIN_PATTERN_1;
3279 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3280
3281 reg = FDI_RX_CTL(pipe);
3282 temp = I915_READ(reg);
3283 temp &= ~FDI_LINK_TRAIN_NONE;
3284 temp |= FDI_LINK_TRAIN_PATTERN_1;
3285 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3286
3287 POSTING_READ(reg);
3288 udelay(150);
3289
3290 /* Ironlake workaround, enable clock pointer after FDI enable*/
3291 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3292 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3293 FDI_RX_PHASE_SYNC_POINTER_EN);
3294
3295 reg = FDI_RX_IIR(pipe);
3296 for (tries = 0; tries < 5; tries++) {
3297 temp = I915_READ(reg);
3298 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3299
3300 if ((temp & FDI_RX_BIT_LOCK)) {
3301 DRM_DEBUG_KMS("FDI train 1 done.\n");
3302 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3303 break;
3304 }
3305 }
3306 if (tries == 5)
3307 DRM_ERROR("FDI train 1 fail!\n");
3308
3309 /* Train 2 */
3310 reg = FDI_TX_CTL(pipe);
3311 temp = I915_READ(reg);
3312 temp &= ~FDI_LINK_TRAIN_NONE;
3313 temp |= FDI_LINK_TRAIN_PATTERN_2;
3314 I915_WRITE(reg, temp);
3315
3316 reg = FDI_RX_CTL(pipe);
3317 temp = I915_READ(reg);
3318 temp &= ~FDI_LINK_TRAIN_NONE;
3319 temp |= FDI_LINK_TRAIN_PATTERN_2;
3320 I915_WRITE(reg, temp);
3321
3322 POSTING_READ(reg);
3323 udelay(150);
3324
3325 reg = FDI_RX_IIR(pipe);
3326 for (tries = 0; tries < 5; tries++) {
3327 temp = I915_READ(reg);
3328 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330 if (temp & FDI_RX_SYMBOL_LOCK) {
3331 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3332 DRM_DEBUG_KMS("FDI train 2 done.\n");
3333 break;
3334 }
3335 }
3336 if (tries == 5)
3337 DRM_ERROR("FDI train 2 fail!\n");
3338
3339 DRM_DEBUG_KMS("FDI train done\n");
3340
3341 }
3342
3343 static const int snb_b_fdi_train_param[] = {
3344 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3345 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3346 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3347 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3348 };
3349
3350 /* The FDI link training functions for SNB/Cougarpoint. */
3351 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3352 {
3353 struct drm_device *dev = crtc->dev;
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356 int pipe = intel_crtc->pipe;
3357 u32 reg, temp, i, retry;
3358
3359 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3360 for train result */
3361 reg = FDI_RX_IMR(pipe);
3362 temp = I915_READ(reg);
3363 temp &= ~FDI_RX_SYMBOL_LOCK;
3364 temp &= ~FDI_RX_BIT_LOCK;
3365 I915_WRITE(reg, temp);
3366
3367 POSTING_READ(reg);
3368 udelay(150);
3369
3370 /* enable CPU FDI TX and PCH FDI RX */
3371 reg = FDI_TX_CTL(pipe);
3372 temp = I915_READ(reg);
3373 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3374 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3375 temp &= ~FDI_LINK_TRAIN_NONE;
3376 temp |= FDI_LINK_TRAIN_PATTERN_1;
3377 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3378 /* SNB-B */
3379 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3380 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3381
3382 I915_WRITE(FDI_RX_MISC(pipe),
3383 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3384
3385 reg = FDI_RX_CTL(pipe);
3386 temp = I915_READ(reg);
3387 if (HAS_PCH_CPT(dev)) {
3388 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3389 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3390 } else {
3391 temp &= ~FDI_LINK_TRAIN_NONE;
3392 temp |= FDI_LINK_TRAIN_PATTERN_1;
3393 }
3394 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3395
3396 POSTING_READ(reg);
3397 udelay(150);
3398
3399 for (i = 0; i < 4; i++) {
3400 reg = FDI_TX_CTL(pipe);
3401 temp = I915_READ(reg);
3402 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3403 temp |= snb_b_fdi_train_param[i];
3404 I915_WRITE(reg, temp);
3405
3406 POSTING_READ(reg);
3407 udelay(500);
3408
3409 for (retry = 0; retry < 5; retry++) {
3410 reg = FDI_RX_IIR(pipe);
3411 temp = I915_READ(reg);
3412 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3413 if (temp & FDI_RX_BIT_LOCK) {
3414 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3415 DRM_DEBUG_KMS("FDI train 1 done.\n");
3416 break;
3417 }
3418 udelay(50);
3419 }
3420 if (retry < 5)
3421 break;
3422 }
3423 if (i == 4)
3424 DRM_ERROR("FDI train 1 fail!\n");
3425
3426 /* Train 2 */
3427 reg = FDI_TX_CTL(pipe);
3428 temp = I915_READ(reg);
3429 temp &= ~FDI_LINK_TRAIN_NONE;
3430 temp |= FDI_LINK_TRAIN_PATTERN_2;
3431 if (IS_GEN6(dev)) {
3432 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3433 /* SNB-B */
3434 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3435 }
3436 I915_WRITE(reg, temp);
3437
3438 reg = FDI_RX_CTL(pipe);
3439 temp = I915_READ(reg);
3440 if (HAS_PCH_CPT(dev)) {
3441 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3442 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3443 } else {
3444 temp &= ~FDI_LINK_TRAIN_NONE;
3445 temp |= FDI_LINK_TRAIN_PATTERN_2;
3446 }
3447 I915_WRITE(reg, temp);
3448
3449 POSTING_READ(reg);
3450 udelay(150);
3451
3452 for (i = 0; i < 4; i++) {
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
3455 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3456 temp |= snb_b_fdi_train_param[i];
3457 I915_WRITE(reg, temp);
3458
3459 POSTING_READ(reg);
3460 udelay(500);
3461
3462 for (retry = 0; retry < 5; retry++) {
3463 reg = FDI_RX_IIR(pipe);
3464 temp = I915_READ(reg);
3465 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3466 if (temp & FDI_RX_SYMBOL_LOCK) {
3467 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3468 DRM_DEBUG_KMS("FDI train 2 done.\n");
3469 break;
3470 }
3471 udelay(50);
3472 }
3473 if (retry < 5)
3474 break;
3475 }
3476 if (i == 4)
3477 DRM_ERROR("FDI train 2 fail!\n");
3478
3479 DRM_DEBUG_KMS("FDI train done.\n");
3480 }
3481
3482 /* Manual link training for Ivy Bridge A0 parts */
3483 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3484 {
3485 struct drm_device *dev = crtc->dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3488 int pipe = intel_crtc->pipe;
3489 u32 reg, temp, i, j;
3490
3491 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3492 for train result */
3493 reg = FDI_RX_IMR(pipe);
3494 temp = I915_READ(reg);
3495 temp &= ~FDI_RX_SYMBOL_LOCK;
3496 temp &= ~FDI_RX_BIT_LOCK;
3497 I915_WRITE(reg, temp);
3498
3499 POSTING_READ(reg);
3500 udelay(150);
3501
3502 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3503 I915_READ(FDI_RX_IIR(pipe)));
3504
3505 /* Try each vswing and preemphasis setting twice before moving on */
3506 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3507 /* disable first in case we need to retry */
3508 reg = FDI_TX_CTL(pipe);
3509 temp = I915_READ(reg);
3510 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3511 temp &= ~FDI_TX_ENABLE;
3512 I915_WRITE(reg, temp);
3513
3514 reg = FDI_RX_CTL(pipe);
3515 temp = I915_READ(reg);
3516 temp &= ~FDI_LINK_TRAIN_AUTO;
3517 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518 temp &= ~FDI_RX_ENABLE;
3519 I915_WRITE(reg, temp);
3520
3521 /* enable CPU FDI TX and PCH FDI RX */
3522 reg = FDI_TX_CTL(pipe);
3523 temp = I915_READ(reg);
3524 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3525 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3526 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3528 temp |= snb_b_fdi_train_param[j/2];
3529 temp |= FDI_COMPOSITE_SYNC;
3530 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3531
3532 I915_WRITE(FDI_RX_MISC(pipe),
3533 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3534
3535 reg = FDI_RX_CTL(pipe);
3536 temp = I915_READ(reg);
3537 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3538 temp |= FDI_COMPOSITE_SYNC;
3539 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3540
3541 POSTING_READ(reg);
3542 udelay(1); /* should be 0.5us */
3543
3544 for (i = 0; i < 4; i++) {
3545 reg = FDI_RX_IIR(pipe);
3546 temp = I915_READ(reg);
3547 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3548
3549 if (temp & FDI_RX_BIT_LOCK ||
3550 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3551 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3552 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3553 i);
3554 break;
3555 }
3556 udelay(1); /* should be 0.5us */
3557 }
3558 if (i == 4) {
3559 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3560 continue;
3561 }
3562
3563 /* Train 2 */
3564 reg = FDI_TX_CTL(pipe);
3565 temp = I915_READ(reg);
3566 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3567 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3568 I915_WRITE(reg, temp);
3569
3570 reg = FDI_RX_CTL(pipe);
3571 temp = I915_READ(reg);
3572 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3573 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3574 I915_WRITE(reg, temp);
3575
3576 POSTING_READ(reg);
3577 udelay(2); /* should be 1.5us */
3578
3579 for (i = 0; i < 4; i++) {
3580 reg = FDI_RX_IIR(pipe);
3581 temp = I915_READ(reg);
3582 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3583
3584 if (temp & FDI_RX_SYMBOL_LOCK ||
3585 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3586 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3587 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3588 i);
3589 goto train_done;
3590 }
3591 udelay(2); /* should be 1.5us */
3592 }
3593 if (i == 4)
3594 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3595 }
3596
3597 train_done:
3598 DRM_DEBUG_KMS("FDI train done.\n");
3599 }
3600
3601 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3602 {
3603 struct drm_device *dev = intel_crtc->base.dev;
3604 struct drm_i915_private *dev_priv = dev->dev_private;
3605 int pipe = intel_crtc->pipe;
3606 u32 reg, temp;
3607
3608
3609 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3610 reg = FDI_RX_CTL(pipe);
3611 temp = I915_READ(reg);
3612 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3613 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3614 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3615 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3616
3617 POSTING_READ(reg);
3618 udelay(200);
3619
3620 /* Switch from Rawclk to PCDclk */
3621 temp = I915_READ(reg);
3622 I915_WRITE(reg, temp | FDI_PCDCLK);
3623
3624 POSTING_READ(reg);
3625 udelay(200);
3626
3627 /* Enable CPU FDI TX PLL, always on for Ironlake */
3628 reg = FDI_TX_CTL(pipe);
3629 temp = I915_READ(reg);
3630 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3631 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3632
3633 POSTING_READ(reg);
3634 udelay(100);
3635 }
3636 }
3637
3638 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3639 {
3640 struct drm_device *dev = intel_crtc->base.dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 int pipe = intel_crtc->pipe;
3643 u32 reg, temp;
3644
3645 /* Switch from PCDclk to Rawclk */
3646 reg = FDI_RX_CTL(pipe);
3647 temp = I915_READ(reg);
3648 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3649
3650 /* Disable CPU FDI TX PLL */
3651 reg = FDI_TX_CTL(pipe);
3652 temp = I915_READ(reg);
3653 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3654
3655 POSTING_READ(reg);
3656 udelay(100);
3657
3658 reg = FDI_RX_CTL(pipe);
3659 temp = I915_READ(reg);
3660 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3661
3662 /* Wait for the clocks to turn off. */
3663 POSTING_READ(reg);
3664 udelay(100);
3665 }
3666
3667 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3668 {
3669 struct drm_device *dev = crtc->dev;
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3672 int pipe = intel_crtc->pipe;
3673 u32 reg, temp;
3674
3675 /* disable CPU FDI tx and PCH FDI rx */
3676 reg = FDI_TX_CTL(pipe);
3677 temp = I915_READ(reg);
3678 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3679 POSTING_READ(reg);
3680
3681 reg = FDI_RX_CTL(pipe);
3682 temp = I915_READ(reg);
3683 temp &= ~(0x7 << 16);
3684 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3685 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3686
3687 POSTING_READ(reg);
3688 udelay(100);
3689
3690 /* Ironlake workaround, disable clock pointer after downing FDI */
3691 if (HAS_PCH_IBX(dev))
3692 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3693
3694 /* still set train pattern 1 */
3695 reg = FDI_TX_CTL(pipe);
3696 temp = I915_READ(reg);
3697 temp &= ~FDI_LINK_TRAIN_NONE;
3698 temp |= FDI_LINK_TRAIN_PATTERN_1;
3699 I915_WRITE(reg, temp);
3700
3701 reg = FDI_RX_CTL(pipe);
3702 temp = I915_READ(reg);
3703 if (HAS_PCH_CPT(dev)) {
3704 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3705 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3706 } else {
3707 temp &= ~FDI_LINK_TRAIN_NONE;
3708 temp |= FDI_LINK_TRAIN_PATTERN_1;
3709 }
3710 /* BPC in FDI rx is consistent with that in PIPECONF */
3711 temp &= ~(0x07 << 16);
3712 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3713 I915_WRITE(reg, temp);
3714
3715 POSTING_READ(reg);
3716 udelay(100);
3717 }
3718
3719 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3720 {
3721 struct intel_crtc *crtc;
3722
3723 /* Note that we don't need to be called with mode_config.lock here
3724 * as our list of CRTC objects is static for the lifetime of the
3725 * device and so cannot disappear as we iterate. Similarly, we can
3726 * happily treat the predicates as racy, atomic checks as userspace
3727 * cannot claim and pin a new fb without at least acquring the
3728 * struct_mutex and so serialising with us.
3729 */
3730 for_each_intel_crtc(dev, crtc) {
3731 if (atomic_read(&crtc->unpin_work_count) == 0)
3732 continue;
3733
3734 if (crtc->unpin_work)
3735 intel_wait_for_vblank(dev, crtc->pipe);
3736
3737 return true;
3738 }
3739
3740 return false;
3741 }
3742
3743 static void page_flip_completed(struct intel_crtc *intel_crtc)
3744 {
3745 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3746 struct intel_unpin_work *work = intel_crtc->unpin_work;
3747
3748 /* ensure that the unpin work is consistent wrt ->pending. */
3749 smp_rmb();
3750 intel_crtc->unpin_work = NULL;
3751
3752 if (work->event)
3753 drm_send_vblank_event(intel_crtc->base.dev,
3754 intel_crtc->pipe,
3755 work->event);
3756
3757 drm_crtc_vblank_put(&intel_crtc->base);
3758
3759 wake_up_all(&dev_priv->pending_flip_queue);
3760 queue_work(dev_priv->wq, &work->work);
3761
3762 trace_i915_flip_complete(intel_crtc->plane,
3763 work->pending_flip_obj);
3764 }
3765
3766 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3767 {
3768 struct drm_device *dev = crtc->dev;
3769 struct drm_i915_private *dev_priv = dev->dev_private;
3770
3771 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3772 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3773 !intel_crtc_has_pending_flip(crtc),
3774 60*HZ) == 0)) {
3775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3776
3777 spin_lock_irq(&dev->event_lock);
3778 if (intel_crtc->unpin_work) {
3779 WARN_ONCE(1, "Removing stuck page flip\n");
3780 page_flip_completed(intel_crtc);
3781 }
3782 spin_unlock_irq(&dev->event_lock);
3783 }
3784
3785 if (crtc->primary->fb) {
3786 mutex_lock(&dev->struct_mutex);
3787 intel_finish_fb(crtc->primary->fb);
3788 mutex_unlock(&dev->struct_mutex);
3789 }
3790 }
3791
3792 /* Program iCLKIP clock to the desired frequency */
3793 static void lpt_program_iclkip(struct drm_crtc *crtc)
3794 {
3795 struct drm_device *dev = crtc->dev;
3796 struct drm_i915_private *dev_priv = dev->dev_private;
3797 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3798 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3799 u32 temp;
3800
3801 mutex_lock(&dev_priv->dpio_lock);
3802
3803 /* It is necessary to ungate the pixclk gate prior to programming
3804 * the divisors, and gate it back when it is done.
3805 */
3806 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3807
3808 /* Disable SSCCTL */
3809 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3810 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3811 SBI_SSCCTL_DISABLE,
3812 SBI_ICLK);
3813
3814 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3815 if (clock == 20000) {
3816 auxdiv = 1;
3817 divsel = 0x41;
3818 phaseinc = 0x20;
3819 } else {
3820 /* The iCLK virtual clock root frequency is in MHz,
3821 * but the adjusted_mode->crtc_clock in in KHz. To get the
3822 * divisors, it is necessary to divide one by another, so we
3823 * convert the virtual clock precision to KHz here for higher
3824 * precision.
3825 */
3826 u32 iclk_virtual_root_freq = 172800 * 1000;
3827 u32 iclk_pi_range = 64;
3828 u32 desired_divisor, msb_divisor_value, pi_value;
3829
3830 desired_divisor = (iclk_virtual_root_freq / clock);
3831 msb_divisor_value = desired_divisor / iclk_pi_range;
3832 pi_value = desired_divisor % iclk_pi_range;
3833
3834 auxdiv = 0;
3835 divsel = msb_divisor_value - 2;
3836 phaseinc = pi_value;
3837 }
3838
3839 /* This should not happen with any sane values */
3840 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3841 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3842 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3843 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3844
3845 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3846 clock,
3847 auxdiv,
3848 divsel,
3849 phasedir,
3850 phaseinc);
3851
3852 /* Program SSCDIVINTPHASE6 */
3853 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3854 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3855 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3856 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3857 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3858 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3859 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3860 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3861
3862 /* Program SSCAUXDIV */
3863 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3864 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3865 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3866 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3867
3868 /* Enable modulator and associated divider */
3869 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3870 temp &= ~SBI_SSCCTL_DISABLE;
3871 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3872
3873 /* Wait for initialization time */
3874 udelay(24);
3875
3876 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3877
3878 mutex_unlock(&dev_priv->dpio_lock);
3879 }
3880
3881 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3882 enum pipe pch_transcoder)
3883 {
3884 struct drm_device *dev = crtc->base.dev;
3885 struct drm_i915_private *dev_priv = dev->dev_private;
3886 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3887
3888 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3889 I915_READ(HTOTAL(cpu_transcoder)));
3890 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3891 I915_READ(HBLANK(cpu_transcoder)));
3892 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3893 I915_READ(HSYNC(cpu_transcoder)));
3894
3895 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3896 I915_READ(VTOTAL(cpu_transcoder)));
3897 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3898 I915_READ(VBLANK(cpu_transcoder)));
3899 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3900 I915_READ(VSYNC(cpu_transcoder)));
3901 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3902 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3903 }
3904
3905 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
3906 {
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908 uint32_t temp;
3909
3910 temp = I915_READ(SOUTH_CHICKEN1);
3911 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
3912 return;
3913
3914 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3915 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3916
3917 temp &= ~FDI_BC_BIFURCATION_SELECT;
3918 if (enable)
3919 temp |= FDI_BC_BIFURCATION_SELECT;
3920
3921 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
3922 I915_WRITE(SOUTH_CHICKEN1, temp);
3923 POSTING_READ(SOUTH_CHICKEN1);
3924 }
3925
3926 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3927 {
3928 struct drm_device *dev = intel_crtc->base.dev;
3929
3930 switch (intel_crtc->pipe) {
3931 case PIPE_A:
3932 break;
3933 case PIPE_B:
3934 if (intel_crtc->config->fdi_lanes > 2)
3935 cpt_set_fdi_bc_bifurcation(dev, false);
3936 else
3937 cpt_set_fdi_bc_bifurcation(dev, true);
3938
3939 break;
3940 case PIPE_C:
3941 cpt_set_fdi_bc_bifurcation(dev, true);
3942
3943 break;
3944 default:
3945 BUG();
3946 }
3947 }
3948
3949 /*
3950 * Enable PCH resources required for PCH ports:
3951 * - PCH PLLs
3952 * - FDI training & RX/TX
3953 * - update transcoder timings
3954 * - DP transcoding bits
3955 * - transcoder
3956 */
3957 static void ironlake_pch_enable(struct drm_crtc *crtc)
3958 {
3959 struct drm_device *dev = crtc->dev;
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3962 int pipe = intel_crtc->pipe;
3963 u32 reg, temp;
3964
3965 assert_pch_transcoder_disabled(dev_priv, pipe);
3966
3967 if (IS_IVYBRIDGE(dev))
3968 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3969
3970 /* Write the TU size bits before fdi link training, so that error
3971 * detection works. */
3972 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3973 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3974
3975 /* For PCH output, training FDI link */
3976 dev_priv->display.fdi_link_train(crtc);
3977
3978 /* We need to program the right clock selection before writing the pixel
3979 * mutliplier into the DPLL. */
3980 if (HAS_PCH_CPT(dev)) {
3981 u32 sel;
3982
3983 temp = I915_READ(PCH_DPLL_SEL);
3984 temp |= TRANS_DPLL_ENABLE(pipe);
3985 sel = TRANS_DPLLB_SEL(pipe);
3986 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3987 temp |= sel;
3988 else
3989 temp &= ~sel;
3990 I915_WRITE(PCH_DPLL_SEL, temp);
3991 }
3992
3993 /* XXX: pch pll's can be enabled any time before we enable the PCH
3994 * transcoder, and we actually should do this to not upset any PCH
3995 * transcoder that already use the clock when we share it.
3996 *
3997 * Note that enable_shared_dpll tries to do the right thing, but
3998 * get_shared_dpll unconditionally resets the pll - we need that to have
3999 * the right LVDS enable sequence. */
4000 intel_enable_shared_dpll(intel_crtc);
4001
4002 /* set transcoder timing, panel must allow it */
4003 assert_panel_unlocked(dev_priv, pipe);
4004 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4005
4006 intel_fdi_normal_train(crtc);
4007
4008 /* For PCH DP, enable TRANS_DP_CTL */
4009 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4010 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4011 reg = TRANS_DP_CTL(pipe);
4012 temp = I915_READ(reg);
4013 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4014 TRANS_DP_SYNC_MASK |
4015 TRANS_DP_BPC_MASK);
4016 temp |= (TRANS_DP_OUTPUT_ENABLE |
4017 TRANS_DP_ENH_FRAMING);
4018 temp |= bpc << 9; /* same format but at 11:9 */
4019
4020 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4021 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4022 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4023 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4024
4025 switch (intel_trans_dp_port_sel(crtc)) {
4026 case PCH_DP_B:
4027 temp |= TRANS_DP_PORT_SEL_B;
4028 break;
4029 case PCH_DP_C:
4030 temp |= TRANS_DP_PORT_SEL_C;
4031 break;
4032 case PCH_DP_D:
4033 temp |= TRANS_DP_PORT_SEL_D;
4034 break;
4035 default:
4036 BUG();
4037 }
4038
4039 I915_WRITE(reg, temp);
4040 }
4041
4042 ironlake_enable_pch_transcoder(dev_priv, pipe);
4043 }
4044
4045 static void lpt_pch_enable(struct drm_crtc *crtc)
4046 {
4047 struct drm_device *dev = crtc->dev;
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4050 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4051
4052 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4053
4054 lpt_program_iclkip(crtc);
4055
4056 /* Set transcoder timing. */
4057 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4058
4059 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4060 }
4061
4062 void intel_put_shared_dpll(struct intel_crtc *crtc)
4063 {
4064 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4065
4066 if (pll == NULL)
4067 return;
4068
4069 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4070 WARN(1, "bad %s crtc mask\n", pll->name);
4071 return;
4072 }
4073
4074 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4075 if (pll->config.crtc_mask == 0) {
4076 WARN_ON(pll->on);
4077 WARN_ON(pll->active);
4078 }
4079
4080 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4081 }
4082
4083 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4084 struct intel_crtc_state *crtc_state)
4085 {
4086 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4087 struct intel_shared_dpll *pll;
4088 enum intel_dpll_id i;
4089
4090 if (HAS_PCH_IBX(dev_priv->dev)) {
4091 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4092 i = (enum intel_dpll_id) crtc->pipe;
4093 pll = &dev_priv->shared_dplls[i];
4094
4095 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4096 crtc->base.base.id, pll->name);
4097
4098 WARN_ON(pll->new_config->crtc_mask);
4099
4100 goto found;
4101 }
4102
4103 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4104 pll = &dev_priv->shared_dplls[i];
4105
4106 /* Only want to check enabled timings first */
4107 if (pll->new_config->crtc_mask == 0)
4108 continue;
4109
4110 if (memcmp(&crtc_state->dpll_hw_state,
4111 &pll->new_config->hw_state,
4112 sizeof(pll->new_config->hw_state)) == 0) {
4113 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4114 crtc->base.base.id, pll->name,
4115 pll->new_config->crtc_mask,
4116 pll->active);
4117 goto found;
4118 }
4119 }
4120
4121 /* Ok no matching timings, maybe there's a free one? */
4122 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4123 pll = &dev_priv->shared_dplls[i];
4124 if (pll->new_config->crtc_mask == 0) {
4125 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4126 crtc->base.base.id, pll->name);
4127 goto found;
4128 }
4129 }
4130
4131 return NULL;
4132
4133 found:
4134 if (pll->new_config->crtc_mask == 0)
4135 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4136
4137 crtc_state->shared_dpll = i;
4138 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4139 pipe_name(crtc->pipe));
4140
4141 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4142
4143 return pll;
4144 }
4145
4146 /**
4147 * intel_shared_dpll_start_config - start a new PLL staged config
4148 * @dev_priv: DRM device
4149 * @clear_pipes: mask of pipes that will have their PLLs freed
4150 *
4151 * Starts a new PLL staged config, copying the current config but
4152 * releasing the references of pipes specified in clear_pipes.
4153 */
4154 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4155 unsigned clear_pipes)
4156 {
4157 struct intel_shared_dpll *pll;
4158 enum intel_dpll_id i;
4159
4160 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4161 pll = &dev_priv->shared_dplls[i];
4162
4163 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4164 GFP_KERNEL);
4165 if (!pll->new_config)
4166 goto cleanup;
4167
4168 pll->new_config->crtc_mask &= ~clear_pipes;
4169 }
4170
4171 return 0;
4172
4173 cleanup:
4174 while (--i >= 0) {
4175 pll = &dev_priv->shared_dplls[i];
4176 kfree(pll->new_config);
4177 pll->new_config = NULL;
4178 }
4179
4180 return -ENOMEM;
4181 }
4182
4183 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4184 {
4185 struct intel_shared_dpll *pll;
4186 enum intel_dpll_id i;
4187
4188 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4189 pll = &dev_priv->shared_dplls[i];
4190
4191 WARN_ON(pll->new_config == &pll->config);
4192
4193 pll->config = *pll->new_config;
4194 kfree(pll->new_config);
4195 pll->new_config = NULL;
4196 }
4197 }
4198
4199 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4200 {
4201 struct intel_shared_dpll *pll;
4202 enum intel_dpll_id i;
4203
4204 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4205 pll = &dev_priv->shared_dplls[i];
4206
4207 WARN_ON(pll->new_config == &pll->config);
4208
4209 kfree(pll->new_config);
4210 pll->new_config = NULL;
4211 }
4212 }
4213
4214 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4215 {
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 int dslreg = PIPEDSL(pipe);
4218 u32 temp;
4219
4220 temp = I915_READ(dslreg);
4221 udelay(500);
4222 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4223 if (wait_for(I915_READ(dslreg) != temp, 5))
4224 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4225 }
4226 }
4227
4228 static void skylake_pfit_enable(struct intel_crtc *crtc)
4229 {
4230 struct drm_device *dev = crtc->base.dev;
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 int pipe = crtc->pipe;
4233
4234 if (crtc->config->pch_pfit.enabled) {
4235 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4236 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4237 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4238 }
4239 }
4240
4241 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4242 {
4243 struct drm_device *dev = crtc->base.dev;
4244 struct drm_i915_private *dev_priv = dev->dev_private;
4245 int pipe = crtc->pipe;
4246
4247 if (crtc->config->pch_pfit.enabled) {
4248 /* Force use of hard-coded filter coefficients
4249 * as some pre-programmed values are broken,
4250 * e.g. x201.
4251 */
4252 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4253 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4254 PF_PIPE_SEL_IVB(pipe));
4255 else
4256 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4257 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4258 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4259 }
4260 }
4261
4262 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4263 {
4264 struct drm_device *dev = crtc->dev;
4265 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4266 struct drm_plane *plane;
4267 struct intel_plane *intel_plane;
4268
4269 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4270 intel_plane = to_intel_plane(plane);
4271 if (intel_plane->pipe == pipe)
4272 intel_plane_restore(&intel_plane->base);
4273 }
4274 }
4275
4276 /*
4277 * Disable a plane internally without actually modifying the plane's state.
4278 * This will allow us to easily restore the plane later by just reprogramming
4279 * its state.
4280 */
4281 static void disable_plane_internal(struct drm_plane *plane)
4282 {
4283 struct intel_plane *intel_plane = to_intel_plane(plane);
4284 struct drm_plane_state *state =
4285 plane->funcs->atomic_duplicate_state(plane);
4286 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4287
4288 intel_state->visible = false;
4289 intel_plane->commit_plane(plane, intel_state);
4290
4291 intel_plane_destroy_state(plane, state);
4292 }
4293
4294 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4295 {
4296 struct drm_device *dev = crtc->dev;
4297 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4298 struct drm_plane *plane;
4299 struct intel_plane *intel_plane;
4300
4301 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4302 intel_plane = to_intel_plane(plane);
4303 if (plane->fb && intel_plane->pipe == pipe)
4304 disable_plane_internal(plane);
4305 }
4306 }
4307
4308 void hsw_enable_ips(struct intel_crtc *crtc)
4309 {
4310 struct drm_device *dev = crtc->base.dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312
4313 if (!crtc->config->ips_enabled)
4314 return;
4315
4316 /* We can only enable IPS after we enable a plane and wait for a vblank */
4317 intel_wait_for_vblank(dev, crtc->pipe);
4318
4319 assert_plane_enabled(dev_priv, crtc->plane);
4320 if (IS_BROADWELL(dev)) {
4321 mutex_lock(&dev_priv->rps.hw_lock);
4322 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4323 mutex_unlock(&dev_priv->rps.hw_lock);
4324 /* Quoting Art Runyan: "its not safe to expect any particular
4325 * value in IPS_CTL bit 31 after enabling IPS through the
4326 * mailbox." Moreover, the mailbox may return a bogus state,
4327 * so we need to just enable it and continue on.
4328 */
4329 } else {
4330 I915_WRITE(IPS_CTL, IPS_ENABLE);
4331 /* The bit only becomes 1 in the next vblank, so this wait here
4332 * is essentially intel_wait_for_vblank. If we don't have this
4333 * and don't wait for vblanks until the end of crtc_enable, then
4334 * the HW state readout code will complain that the expected
4335 * IPS_CTL value is not the one we read. */
4336 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4337 DRM_ERROR("Timed out waiting for IPS enable\n");
4338 }
4339 }
4340
4341 void hsw_disable_ips(struct intel_crtc *crtc)
4342 {
4343 struct drm_device *dev = crtc->base.dev;
4344 struct drm_i915_private *dev_priv = dev->dev_private;
4345
4346 if (!crtc->config->ips_enabled)
4347 return;
4348
4349 assert_plane_enabled(dev_priv, crtc->plane);
4350 if (IS_BROADWELL(dev)) {
4351 mutex_lock(&dev_priv->rps.hw_lock);
4352 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4353 mutex_unlock(&dev_priv->rps.hw_lock);
4354 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4355 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4356 DRM_ERROR("Timed out waiting for IPS disable\n");
4357 } else {
4358 I915_WRITE(IPS_CTL, 0);
4359 POSTING_READ(IPS_CTL);
4360 }
4361
4362 /* We need to wait for a vblank before we can disable the plane. */
4363 intel_wait_for_vblank(dev, crtc->pipe);
4364 }
4365
4366 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4367 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4368 {
4369 struct drm_device *dev = crtc->dev;
4370 struct drm_i915_private *dev_priv = dev->dev_private;
4371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4372 enum pipe pipe = intel_crtc->pipe;
4373 int palreg = PALETTE(pipe);
4374 int i;
4375 bool reenable_ips = false;
4376
4377 /* The clocks have to be on to load the palette. */
4378 if (!crtc->state->enable || !intel_crtc->active)
4379 return;
4380
4381 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4382 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4383 assert_dsi_pll_enabled(dev_priv);
4384 else
4385 assert_pll_enabled(dev_priv, pipe);
4386 }
4387
4388 /* use legacy palette for Ironlake */
4389 if (!HAS_GMCH_DISPLAY(dev))
4390 palreg = LGC_PALETTE(pipe);
4391
4392 /* Workaround : Do not read or write the pipe palette/gamma data while
4393 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4394 */
4395 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4396 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4397 GAMMA_MODE_MODE_SPLIT)) {
4398 hsw_disable_ips(intel_crtc);
4399 reenable_ips = true;
4400 }
4401
4402 for (i = 0; i < 256; i++) {
4403 I915_WRITE(palreg + 4 * i,
4404 (intel_crtc->lut_r[i] << 16) |
4405 (intel_crtc->lut_g[i] << 8) |
4406 intel_crtc->lut_b[i]);
4407 }
4408
4409 if (reenable_ips)
4410 hsw_enable_ips(intel_crtc);
4411 }
4412
4413 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4414 {
4415 if (!enable && intel_crtc->overlay) {
4416 struct drm_device *dev = intel_crtc->base.dev;
4417 struct drm_i915_private *dev_priv = dev->dev_private;
4418
4419 mutex_lock(&dev->struct_mutex);
4420 dev_priv->mm.interruptible = false;
4421 (void) intel_overlay_switch_off(intel_crtc->overlay);
4422 dev_priv->mm.interruptible = true;
4423 mutex_unlock(&dev->struct_mutex);
4424 }
4425
4426 /* Let userspace switch the overlay on again. In most cases userspace
4427 * has to recompute where to put it anyway.
4428 */
4429 }
4430
4431 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4432 {
4433 struct drm_device *dev = crtc->dev;
4434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435 int pipe = intel_crtc->pipe;
4436
4437 intel_enable_primary_hw_plane(crtc->primary, crtc);
4438 intel_enable_sprite_planes(crtc);
4439 intel_crtc_update_cursor(crtc, true);
4440 intel_crtc_dpms_overlay(intel_crtc, true);
4441
4442 hsw_enable_ips(intel_crtc);
4443
4444 mutex_lock(&dev->struct_mutex);
4445 intel_fbc_update(dev);
4446 mutex_unlock(&dev->struct_mutex);
4447
4448 /*
4449 * FIXME: Once we grow proper nuclear flip support out of this we need
4450 * to compute the mask of flip planes precisely. For the time being
4451 * consider this a flip from a NULL plane.
4452 */
4453 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4454 }
4455
4456 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4457 {
4458 struct drm_device *dev = crtc->dev;
4459 struct drm_i915_private *dev_priv = dev->dev_private;
4460 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4461 int pipe = intel_crtc->pipe;
4462
4463 intel_crtc_wait_for_pending_flips(crtc);
4464
4465 if (dev_priv->fbc.crtc == intel_crtc)
4466 intel_fbc_disable(dev);
4467
4468 hsw_disable_ips(intel_crtc);
4469
4470 intel_crtc_dpms_overlay(intel_crtc, false);
4471 intel_crtc_update_cursor(crtc, false);
4472 intel_disable_sprite_planes(crtc);
4473 intel_disable_primary_hw_plane(crtc->primary, crtc);
4474
4475 /*
4476 * FIXME: Once we grow proper nuclear flip support out of this we need
4477 * to compute the mask of flip planes precisely. For the time being
4478 * consider this a flip to a NULL plane.
4479 */
4480 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4481 }
4482
4483 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4484 {
4485 struct drm_device *dev = crtc->dev;
4486 struct drm_i915_private *dev_priv = dev->dev_private;
4487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4488 struct intel_encoder *encoder;
4489 int pipe = intel_crtc->pipe;
4490
4491 WARN_ON(!crtc->state->enable);
4492
4493 if (intel_crtc->active)
4494 return;
4495
4496 if (intel_crtc->config->has_pch_encoder)
4497 intel_prepare_shared_dpll(intel_crtc);
4498
4499 if (intel_crtc->config->has_dp_encoder)
4500 intel_dp_set_m_n(intel_crtc, M1_N1);
4501
4502 intel_set_pipe_timings(intel_crtc);
4503
4504 if (intel_crtc->config->has_pch_encoder) {
4505 intel_cpu_transcoder_set_m_n(intel_crtc,
4506 &intel_crtc->config->fdi_m_n, NULL);
4507 }
4508
4509 ironlake_set_pipeconf(crtc);
4510
4511 intel_crtc->active = true;
4512
4513 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4514 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4515
4516 for_each_encoder_on_crtc(dev, crtc, encoder)
4517 if (encoder->pre_enable)
4518 encoder->pre_enable(encoder);
4519
4520 if (intel_crtc->config->has_pch_encoder) {
4521 /* Note: FDI PLL enabling _must_ be done before we enable the
4522 * cpu pipes, hence this is separate from all the other fdi/pch
4523 * enabling. */
4524 ironlake_fdi_pll_enable(intel_crtc);
4525 } else {
4526 assert_fdi_tx_disabled(dev_priv, pipe);
4527 assert_fdi_rx_disabled(dev_priv, pipe);
4528 }
4529
4530 ironlake_pfit_enable(intel_crtc);
4531
4532 /*
4533 * On ILK+ LUT must be loaded before the pipe is running but with
4534 * clocks enabled
4535 */
4536 intel_crtc_load_lut(crtc);
4537
4538 intel_update_watermarks(crtc);
4539 intel_enable_pipe(intel_crtc);
4540
4541 if (intel_crtc->config->has_pch_encoder)
4542 ironlake_pch_enable(crtc);
4543
4544 assert_vblank_disabled(crtc);
4545 drm_crtc_vblank_on(crtc);
4546
4547 for_each_encoder_on_crtc(dev, crtc, encoder)
4548 encoder->enable(encoder);
4549
4550 if (HAS_PCH_CPT(dev))
4551 cpt_verify_modeset(dev, intel_crtc->pipe);
4552
4553 intel_crtc_enable_planes(crtc);
4554 }
4555
4556 /* IPS only exists on ULT machines and is tied to pipe A. */
4557 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4558 {
4559 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4560 }
4561
4562 /*
4563 * This implements the workaround described in the "notes" section of the mode
4564 * set sequence documentation. When going from no pipes or single pipe to
4565 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4566 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4567 */
4568 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4569 {
4570 struct drm_device *dev = crtc->base.dev;
4571 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4572
4573 /* We want to get the other_active_crtc only if there's only 1 other
4574 * active crtc. */
4575 for_each_intel_crtc(dev, crtc_it) {
4576 if (!crtc_it->active || crtc_it == crtc)
4577 continue;
4578
4579 if (other_active_crtc)
4580 return;
4581
4582 other_active_crtc = crtc_it;
4583 }
4584 if (!other_active_crtc)
4585 return;
4586
4587 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4588 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4589 }
4590
4591 static void haswell_crtc_enable(struct drm_crtc *crtc)
4592 {
4593 struct drm_device *dev = crtc->dev;
4594 struct drm_i915_private *dev_priv = dev->dev_private;
4595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4596 struct intel_encoder *encoder;
4597 int pipe = intel_crtc->pipe;
4598
4599 WARN_ON(!crtc->state->enable);
4600
4601 if (intel_crtc->active)
4602 return;
4603
4604 if (intel_crtc_to_shared_dpll(intel_crtc))
4605 intel_enable_shared_dpll(intel_crtc);
4606
4607 if (intel_crtc->config->has_dp_encoder)
4608 intel_dp_set_m_n(intel_crtc, M1_N1);
4609
4610 intel_set_pipe_timings(intel_crtc);
4611
4612 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4613 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4614 intel_crtc->config->pixel_multiplier - 1);
4615 }
4616
4617 if (intel_crtc->config->has_pch_encoder) {
4618 intel_cpu_transcoder_set_m_n(intel_crtc,
4619 &intel_crtc->config->fdi_m_n, NULL);
4620 }
4621
4622 haswell_set_pipeconf(crtc);
4623
4624 intel_set_pipe_csc(crtc);
4625
4626 intel_crtc->active = true;
4627
4628 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4629 for_each_encoder_on_crtc(dev, crtc, encoder)
4630 if (encoder->pre_enable)
4631 encoder->pre_enable(encoder);
4632
4633 if (intel_crtc->config->has_pch_encoder) {
4634 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4635 true);
4636 dev_priv->display.fdi_link_train(crtc);
4637 }
4638
4639 intel_ddi_enable_pipe_clock(intel_crtc);
4640
4641 if (IS_SKYLAKE(dev))
4642 skylake_pfit_enable(intel_crtc);
4643 else
4644 ironlake_pfit_enable(intel_crtc);
4645
4646 /*
4647 * On ILK+ LUT must be loaded before the pipe is running but with
4648 * clocks enabled
4649 */
4650 intel_crtc_load_lut(crtc);
4651
4652 intel_ddi_set_pipe_settings(crtc);
4653 intel_ddi_enable_transcoder_func(crtc);
4654
4655 intel_update_watermarks(crtc);
4656 intel_enable_pipe(intel_crtc);
4657
4658 if (intel_crtc->config->has_pch_encoder)
4659 lpt_pch_enable(crtc);
4660
4661 if (intel_crtc->config->dp_encoder_is_mst)
4662 intel_ddi_set_vc_payload_alloc(crtc, true);
4663
4664 assert_vblank_disabled(crtc);
4665 drm_crtc_vblank_on(crtc);
4666
4667 for_each_encoder_on_crtc(dev, crtc, encoder) {
4668 encoder->enable(encoder);
4669 intel_opregion_notify_encoder(encoder, true);
4670 }
4671
4672 /* If we change the relative order between pipe/planes enabling, we need
4673 * to change the workaround. */
4674 haswell_mode_set_planes_workaround(intel_crtc);
4675 intel_crtc_enable_planes(crtc);
4676 }
4677
4678 static void skylake_pfit_disable(struct intel_crtc *crtc)
4679 {
4680 struct drm_device *dev = crtc->base.dev;
4681 struct drm_i915_private *dev_priv = dev->dev_private;
4682 int pipe = crtc->pipe;
4683
4684 /* To avoid upsetting the power well on haswell only disable the pfit if
4685 * it's in use. The hw state code will make sure we get this right. */
4686 if (crtc->config->pch_pfit.enabled) {
4687 I915_WRITE(PS_CTL(pipe), 0);
4688 I915_WRITE(PS_WIN_POS(pipe), 0);
4689 I915_WRITE(PS_WIN_SZ(pipe), 0);
4690 }
4691 }
4692
4693 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4694 {
4695 struct drm_device *dev = crtc->base.dev;
4696 struct drm_i915_private *dev_priv = dev->dev_private;
4697 int pipe = crtc->pipe;
4698
4699 /* To avoid upsetting the power well on haswell only disable the pfit if
4700 * it's in use. The hw state code will make sure we get this right. */
4701 if (crtc->config->pch_pfit.enabled) {
4702 I915_WRITE(PF_CTL(pipe), 0);
4703 I915_WRITE(PF_WIN_POS(pipe), 0);
4704 I915_WRITE(PF_WIN_SZ(pipe), 0);
4705 }
4706 }
4707
4708 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4709 {
4710 struct drm_device *dev = crtc->dev;
4711 struct drm_i915_private *dev_priv = dev->dev_private;
4712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713 struct intel_encoder *encoder;
4714 int pipe = intel_crtc->pipe;
4715 u32 reg, temp;
4716
4717 if (!intel_crtc->active)
4718 return;
4719
4720 intel_crtc_disable_planes(crtc);
4721
4722 for_each_encoder_on_crtc(dev, crtc, encoder)
4723 encoder->disable(encoder);
4724
4725 drm_crtc_vblank_off(crtc);
4726 assert_vblank_disabled(crtc);
4727
4728 if (intel_crtc->config->has_pch_encoder)
4729 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4730
4731 intel_disable_pipe(intel_crtc);
4732
4733 ironlake_pfit_disable(intel_crtc);
4734
4735 for_each_encoder_on_crtc(dev, crtc, encoder)
4736 if (encoder->post_disable)
4737 encoder->post_disable(encoder);
4738
4739 if (intel_crtc->config->has_pch_encoder) {
4740 ironlake_fdi_disable(crtc);
4741
4742 ironlake_disable_pch_transcoder(dev_priv, pipe);
4743
4744 if (HAS_PCH_CPT(dev)) {
4745 /* disable TRANS_DP_CTL */
4746 reg = TRANS_DP_CTL(pipe);
4747 temp = I915_READ(reg);
4748 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4749 TRANS_DP_PORT_SEL_MASK);
4750 temp |= TRANS_DP_PORT_SEL_NONE;
4751 I915_WRITE(reg, temp);
4752
4753 /* disable DPLL_SEL */
4754 temp = I915_READ(PCH_DPLL_SEL);
4755 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4756 I915_WRITE(PCH_DPLL_SEL, temp);
4757 }
4758
4759 /* disable PCH DPLL */
4760 intel_disable_shared_dpll(intel_crtc);
4761
4762 ironlake_fdi_pll_disable(intel_crtc);
4763 }
4764
4765 intel_crtc->active = false;
4766 intel_update_watermarks(crtc);
4767
4768 mutex_lock(&dev->struct_mutex);
4769 intel_fbc_update(dev);
4770 mutex_unlock(&dev->struct_mutex);
4771 }
4772
4773 static void haswell_crtc_disable(struct drm_crtc *crtc)
4774 {
4775 struct drm_device *dev = crtc->dev;
4776 struct drm_i915_private *dev_priv = dev->dev_private;
4777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4778 struct intel_encoder *encoder;
4779 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4780
4781 if (!intel_crtc->active)
4782 return;
4783
4784 intel_crtc_disable_planes(crtc);
4785
4786 for_each_encoder_on_crtc(dev, crtc, encoder) {
4787 intel_opregion_notify_encoder(encoder, false);
4788 encoder->disable(encoder);
4789 }
4790
4791 drm_crtc_vblank_off(crtc);
4792 assert_vblank_disabled(crtc);
4793
4794 if (intel_crtc->config->has_pch_encoder)
4795 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4796 false);
4797 intel_disable_pipe(intel_crtc);
4798
4799 if (intel_crtc->config->dp_encoder_is_mst)
4800 intel_ddi_set_vc_payload_alloc(crtc, false);
4801
4802 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4803
4804 if (IS_SKYLAKE(dev))
4805 skylake_pfit_disable(intel_crtc);
4806 else
4807 ironlake_pfit_disable(intel_crtc);
4808
4809 intel_ddi_disable_pipe_clock(intel_crtc);
4810
4811 if (intel_crtc->config->has_pch_encoder) {
4812 lpt_disable_pch_transcoder(dev_priv);
4813 intel_ddi_fdi_disable(crtc);
4814 }
4815
4816 for_each_encoder_on_crtc(dev, crtc, encoder)
4817 if (encoder->post_disable)
4818 encoder->post_disable(encoder);
4819
4820 intel_crtc->active = false;
4821 intel_update_watermarks(crtc);
4822
4823 mutex_lock(&dev->struct_mutex);
4824 intel_fbc_update(dev);
4825 mutex_unlock(&dev->struct_mutex);
4826
4827 if (intel_crtc_to_shared_dpll(intel_crtc))
4828 intel_disable_shared_dpll(intel_crtc);
4829 }
4830
4831 static void ironlake_crtc_off(struct drm_crtc *crtc)
4832 {
4833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834 intel_put_shared_dpll(intel_crtc);
4835 }
4836
4837
4838 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4839 {
4840 struct drm_device *dev = crtc->base.dev;
4841 struct drm_i915_private *dev_priv = dev->dev_private;
4842 struct intel_crtc_state *pipe_config = crtc->config;
4843
4844 if (!pipe_config->gmch_pfit.control)
4845 return;
4846
4847 /*
4848 * The panel fitter should only be adjusted whilst the pipe is disabled,
4849 * according to register description and PRM.
4850 */
4851 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4852 assert_pipe_disabled(dev_priv, crtc->pipe);
4853
4854 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4855 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4856
4857 /* Border color in case we don't scale up to the full screen. Black by
4858 * default, change to something else for debugging. */
4859 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4860 }
4861
4862 static enum intel_display_power_domain port_to_power_domain(enum port port)
4863 {
4864 switch (port) {
4865 case PORT_A:
4866 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4867 case PORT_B:
4868 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4869 case PORT_C:
4870 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4871 case PORT_D:
4872 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4873 default:
4874 WARN_ON_ONCE(1);
4875 return POWER_DOMAIN_PORT_OTHER;
4876 }
4877 }
4878
4879 #define for_each_power_domain(domain, mask) \
4880 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4881 if ((1 << (domain)) & (mask))
4882
4883 enum intel_display_power_domain
4884 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4885 {
4886 struct drm_device *dev = intel_encoder->base.dev;
4887 struct intel_digital_port *intel_dig_port;
4888
4889 switch (intel_encoder->type) {
4890 case INTEL_OUTPUT_UNKNOWN:
4891 /* Only DDI platforms should ever use this output type */
4892 WARN_ON_ONCE(!HAS_DDI(dev));
4893 case INTEL_OUTPUT_DISPLAYPORT:
4894 case INTEL_OUTPUT_HDMI:
4895 case INTEL_OUTPUT_EDP:
4896 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4897 return port_to_power_domain(intel_dig_port->port);
4898 case INTEL_OUTPUT_DP_MST:
4899 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4900 return port_to_power_domain(intel_dig_port->port);
4901 case INTEL_OUTPUT_ANALOG:
4902 return POWER_DOMAIN_PORT_CRT;
4903 case INTEL_OUTPUT_DSI:
4904 return POWER_DOMAIN_PORT_DSI;
4905 default:
4906 return POWER_DOMAIN_PORT_OTHER;
4907 }
4908 }
4909
4910 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4911 {
4912 struct drm_device *dev = crtc->dev;
4913 struct intel_encoder *intel_encoder;
4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915 enum pipe pipe = intel_crtc->pipe;
4916 unsigned long mask;
4917 enum transcoder transcoder;
4918
4919 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4920
4921 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4922 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4923 if (intel_crtc->config->pch_pfit.enabled ||
4924 intel_crtc->config->pch_pfit.force_thru)
4925 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4926
4927 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4928 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4929
4930 return mask;
4931 }
4932
4933 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
4934 {
4935 struct drm_device *dev = state->dev;
4936 struct drm_i915_private *dev_priv = dev->dev_private;
4937 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4938 struct intel_crtc *crtc;
4939
4940 /*
4941 * First get all needed power domains, then put all unneeded, to avoid
4942 * any unnecessary toggling of the power wells.
4943 */
4944 for_each_intel_crtc(dev, crtc) {
4945 enum intel_display_power_domain domain;
4946
4947 if (!crtc->base.state->enable)
4948 continue;
4949
4950 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4951
4952 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4953 intel_display_power_get(dev_priv, domain);
4954 }
4955
4956 if (dev_priv->display.modeset_global_resources)
4957 dev_priv->display.modeset_global_resources(state);
4958
4959 for_each_intel_crtc(dev, crtc) {
4960 enum intel_display_power_domain domain;
4961
4962 for_each_power_domain(domain, crtc->enabled_power_domains)
4963 intel_display_power_put(dev_priv, domain);
4964
4965 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4966 }
4967
4968 intel_display_set_init_power(dev_priv, false);
4969 }
4970
4971 /* returns HPLL frequency in kHz */
4972 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4973 {
4974 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4975
4976 /* Obtain SKU information */
4977 mutex_lock(&dev_priv->dpio_lock);
4978 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4979 CCK_FUSE_HPLL_FREQ_MASK;
4980 mutex_unlock(&dev_priv->dpio_lock);
4981
4982 return vco_freq[hpll_freq] * 1000;
4983 }
4984
4985 static void vlv_update_cdclk(struct drm_device *dev)
4986 {
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988
4989 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4990 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4991 dev_priv->vlv_cdclk_freq);
4992
4993 /*
4994 * Program the gmbus_freq based on the cdclk frequency.
4995 * BSpec erroneously claims we should aim for 4MHz, but
4996 * in fact 1MHz is the correct frequency.
4997 */
4998 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4999 }
5000
5001 /* Adjust CDclk dividers to allow high res or save power if possible */
5002 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5003 {
5004 struct drm_i915_private *dev_priv = dev->dev_private;
5005 u32 val, cmd;
5006
5007 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5008
5009 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5010 cmd = 2;
5011 else if (cdclk == 266667)
5012 cmd = 1;
5013 else
5014 cmd = 0;
5015
5016 mutex_lock(&dev_priv->rps.hw_lock);
5017 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5018 val &= ~DSPFREQGUAR_MASK;
5019 val |= (cmd << DSPFREQGUAR_SHIFT);
5020 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5021 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5022 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5023 50)) {
5024 DRM_ERROR("timed out waiting for CDclk change\n");
5025 }
5026 mutex_unlock(&dev_priv->rps.hw_lock);
5027
5028 if (cdclk == 400000) {
5029 u32 divider;
5030
5031 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5032
5033 mutex_lock(&dev_priv->dpio_lock);
5034 /* adjust cdclk divider */
5035 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5036 val &= ~DISPLAY_FREQUENCY_VALUES;
5037 val |= divider;
5038 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5039
5040 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5041 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5042 50))
5043 DRM_ERROR("timed out waiting for CDclk change\n");
5044 mutex_unlock(&dev_priv->dpio_lock);
5045 }
5046
5047 mutex_lock(&dev_priv->dpio_lock);
5048 /* adjust self-refresh exit latency value */
5049 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5050 val &= ~0x7f;
5051
5052 /*
5053 * For high bandwidth configs, we set a higher latency in the bunit
5054 * so that the core display fetch happens in time to avoid underruns.
5055 */
5056 if (cdclk == 400000)
5057 val |= 4500 / 250; /* 4.5 usec */
5058 else
5059 val |= 3000 / 250; /* 3.0 usec */
5060 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5061 mutex_unlock(&dev_priv->dpio_lock);
5062
5063 vlv_update_cdclk(dev);
5064 }
5065
5066 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5067 {
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 u32 val, cmd;
5070
5071 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5072
5073 switch (cdclk) {
5074 case 333333:
5075 case 320000:
5076 case 266667:
5077 case 200000:
5078 break;
5079 default:
5080 MISSING_CASE(cdclk);
5081 return;
5082 }
5083
5084 /*
5085 * Specs are full of misinformation, but testing on actual
5086 * hardware has shown that we just need to write the desired
5087 * CCK divider into the Punit register.
5088 */
5089 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5090
5091 mutex_lock(&dev_priv->rps.hw_lock);
5092 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5093 val &= ~DSPFREQGUAR_MASK_CHV;
5094 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5095 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5096 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5097 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5098 50)) {
5099 DRM_ERROR("timed out waiting for CDclk change\n");
5100 }
5101 mutex_unlock(&dev_priv->rps.hw_lock);
5102
5103 vlv_update_cdclk(dev);
5104 }
5105
5106 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5107 int max_pixclk)
5108 {
5109 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5110 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5111
5112 /*
5113 * Really only a few cases to deal with, as only 4 CDclks are supported:
5114 * 200MHz
5115 * 267MHz
5116 * 320/333MHz (depends on HPLL freq)
5117 * 400MHz (VLV only)
5118 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5119 * of the lower bin and adjust if needed.
5120 *
5121 * We seem to get an unstable or solid color picture at 200MHz.
5122 * Not sure what's wrong. For now use 200MHz only when all pipes
5123 * are off.
5124 */
5125 if (!IS_CHERRYVIEW(dev_priv) &&
5126 max_pixclk > freq_320*limit/100)
5127 return 400000;
5128 else if (max_pixclk > 266667*limit/100)
5129 return freq_320;
5130 else if (max_pixclk > 0)
5131 return 266667;
5132 else
5133 return 200000;
5134 }
5135
5136 /* compute the max pixel clock for new configuration */
5137 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5138 {
5139 struct drm_device *dev = dev_priv->dev;
5140 struct intel_crtc *intel_crtc;
5141 int max_pixclk = 0;
5142
5143 for_each_intel_crtc(dev, intel_crtc) {
5144 if (intel_crtc->new_enabled)
5145 max_pixclk = max(max_pixclk,
5146 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5147 }
5148
5149 return max_pixclk;
5150 }
5151
5152 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5153 unsigned *prepare_pipes)
5154 {
5155 struct drm_i915_private *dev_priv = dev->dev_private;
5156 struct intel_crtc *intel_crtc;
5157 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5158
5159 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5160 dev_priv->vlv_cdclk_freq)
5161 return;
5162
5163 /* disable/enable all currently active pipes while we change cdclk */
5164 for_each_intel_crtc(dev, intel_crtc)
5165 if (intel_crtc->base.state->enable)
5166 *prepare_pipes |= (1 << intel_crtc->pipe);
5167 }
5168
5169 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5170 {
5171 unsigned int credits, default_credits;
5172
5173 if (IS_CHERRYVIEW(dev_priv))
5174 default_credits = PFI_CREDIT(12);
5175 else
5176 default_credits = PFI_CREDIT(8);
5177
5178 if (DIV_ROUND_CLOSEST(dev_priv->vlv_cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5179 /* CHV suggested value is 31 or 63 */
5180 if (IS_CHERRYVIEW(dev_priv))
5181 credits = PFI_CREDIT_31;
5182 else
5183 credits = PFI_CREDIT(15);
5184 } else {
5185 credits = default_credits;
5186 }
5187
5188 /*
5189 * WA - write default credits before re-programming
5190 * FIXME: should we also set the resend bit here?
5191 */
5192 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5193 default_credits);
5194
5195 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5196 credits | PFI_CREDIT_RESEND);
5197
5198 /*
5199 * FIXME is this guaranteed to clear
5200 * immediately or should we poll for it?
5201 */
5202 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5203 }
5204
5205 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5206 {
5207 struct drm_device *dev = state->dev;
5208 struct drm_i915_private *dev_priv = dev->dev_private;
5209 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5210 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5211
5212 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5213 /*
5214 * FIXME: We can end up here with all power domains off, yet
5215 * with a CDCLK frequency other than the minimum. To account
5216 * for this take the PIPE-A power domain, which covers the HW
5217 * blocks needed for the following programming. This can be
5218 * removed once it's guaranteed that we get here either with
5219 * the minimum CDCLK set, or the required power domains
5220 * enabled.
5221 */
5222 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5223
5224 if (IS_CHERRYVIEW(dev))
5225 cherryview_set_cdclk(dev, req_cdclk);
5226 else
5227 valleyview_set_cdclk(dev, req_cdclk);
5228
5229 vlv_program_pfi_credits(dev_priv);
5230
5231 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5232 }
5233 }
5234
5235 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5236 {
5237 struct drm_device *dev = crtc->dev;
5238 struct drm_i915_private *dev_priv = to_i915(dev);
5239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240 struct intel_encoder *encoder;
5241 int pipe = intel_crtc->pipe;
5242 bool is_dsi;
5243
5244 WARN_ON(!crtc->state->enable);
5245
5246 if (intel_crtc->active)
5247 return;
5248
5249 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5250
5251 if (!is_dsi) {
5252 if (IS_CHERRYVIEW(dev))
5253 chv_prepare_pll(intel_crtc, intel_crtc->config);
5254 else
5255 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5256 }
5257
5258 if (intel_crtc->config->has_dp_encoder)
5259 intel_dp_set_m_n(intel_crtc, M1_N1);
5260
5261 intel_set_pipe_timings(intel_crtc);
5262
5263 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265
5266 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5267 I915_WRITE(CHV_CANVAS(pipe), 0);
5268 }
5269
5270 i9xx_set_pipeconf(intel_crtc);
5271
5272 intel_crtc->active = true;
5273
5274 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5275
5276 for_each_encoder_on_crtc(dev, crtc, encoder)
5277 if (encoder->pre_pll_enable)
5278 encoder->pre_pll_enable(encoder);
5279
5280 if (!is_dsi) {
5281 if (IS_CHERRYVIEW(dev))
5282 chv_enable_pll(intel_crtc, intel_crtc->config);
5283 else
5284 vlv_enable_pll(intel_crtc, intel_crtc->config);
5285 }
5286
5287 for_each_encoder_on_crtc(dev, crtc, encoder)
5288 if (encoder->pre_enable)
5289 encoder->pre_enable(encoder);
5290
5291 i9xx_pfit_enable(intel_crtc);
5292
5293 intel_crtc_load_lut(crtc);
5294
5295 intel_update_watermarks(crtc);
5296 intel_enable_pipe(intel_crtc);
5297
5298 assert_vblank_disabled(crtc);
5299 drm_crtc_vblank_on(crtc);
5300
5301 for_each_encoder_on_crtc(dev, crtc, encoder)
5302 encoder->enable(encoder);
5303
5304 intel_crtc_enable_planes(crtc);
5305
5306 /* Underruns don't raise interrupts, so check manually. */
5307 i9xx_check_fifo_underruns(dev_priv);
5308 }
5309
5310 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5311 {
5312 struct drm_device *dev = crtc->base.dev;
5313 struct drm_i915_private *dev_priv = dev->dev_private;
5314
5315 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5316 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5317 }
5318
5319 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5320 {
5321 struct drm_device *dev = crtc->dev;
5322 struct drm_i915_private *dev_priv = to_i915(dev);
5323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5324 struct intel_encoder *encoder;
5325 int pipe = intel_crtc->pipe;
5326
5327 WARN_ON(!crtc->state->enable);
5328
5329 if (intel_crtc->active)
5330 return;
5331
5332 i9xx_set_pll_dividers(intel_crtc);
5333
5334 if (intel_crtc->config->has_dp_encoder)
5335 intel_dp_set_m_n(intel_crtc, M1_N1);
5336
5337 intel_set_pipe_timings(intel_crtc);
5338
5339 i9xx_set_pipeconf(intel_crtc);
5340
5341 intel_crtc->active = true;
5342
5343 if (!IS_GEN2(dev))
5344 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5345
5346 for_each_encoder_on_crtc(dev, crtc, encoder)
5347 if (encoder->pre_enable)
5348 encoder->pre_enable(encoder);
5349
5350 i9xx_enable_pll(intel_crtc);
5351
5352 i9xx_pfit_enable(intel_crtc);
5353
5354 intel_crtc_load_lut(crtc);
5355
5356 intel_update_watermarks(crtc);
5357 intel_enable_pipe(intel_crtc);
5358
5359 assert_vblank_disabled(crtc);
5360 drm_crtc_vblank_on(crtc);
5361
5362 for_each_encoder_on_crtc(dev, crtc, encoder)
5363 encoder->enable(encoder);
5364
5365 intel_crtc_enable_planes(crtc);
5366
5367 /*
5368 * Gen2 reports pipe underruns whenever all planes are disabled.
5369 * So don't enable underrun reporting before at least some planes
5370 * are enabled.
5371 * FIXME: Need to fix the logic to work when we turn off all planes
5372 * but leave the pipe running.
5373 */
5374 if (IS_GEN2(dev))
5375 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5376
5377 /* Underruns don't raise interrupts, so check manually. */
5378 i9xx_check_fifo_underruns(dev_priv);
5379 }
5380
5381 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5382 {
5383 struct drm_device *dev = crtc->base.dev;
5384 struct drm_i915_private *dev_priv = dev->dev_private;
5385
5386 if (!crtc->config->gmch_pfit.control)
5387 return;
5388
5389 assert_pipe_disabled(dev_priv, crtc->pipe);
5390
5391 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5392 I915_READ(PFIT_CONTROL));
5393 I915_WRITE(PFIT_CONTROL, 0);
5394 }
5395
5396 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5397 {
5398 struct drm_device *dev = crtc->dev;
5399 struct drm_i915_private *dev_priv = dev->dev_private;
5400 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5401 struct intel_encoder *encoder;
5402 int pipe = intel_crtc->pipe;
5403
5404 if (!intel_crtc->active)
5405 return;
5406
5407 /*
5408 * Gen2 reports pipe underruns whenever all planes are disabled.
5409 * So diasble underrun reporting before all the planes get disabled.
5410 * FIXME: Need to fix the logic to work when we turn off all planes
5411 * but leave the pipe running.
5412 */
5413 if (IS_GEN2(dev))
5414 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5415
5416 /*
5417 * Vblank time updates from the shadow to live plane control register
5418 * are blocked if the memory self-refresh mode is active at that
5419 * moment. So to make sure the plane gets truly disabled, disable
5420 * first the self-refresh mode. The self-refresh enable bit in turn
5421 * will be checked/applied by the HW only at the next frame start
5422 * event which is after the vblank start event, so we need to have a
5423 * wait-for-vblank between disabling the plane and the pipe.
5424 */
5425 intel_set_memory_cxsr(dev_priv, false);
5426 intel_crtc_disable_planes(crtc);
5427
5428 /*
5429 * On gen2 planes are double buffered but the pipe isn't, so we must
5430 * wait for planes to fully turn off before disabling the pipe.
5431 * We also need to wait on all gmch platforms because of the
5432 * self-refresh mode constraint explained above.
5433 */
5434 intel_wait_for_vblank(dev, pipe);
5435
5436 for_each_encoder_on_crtc(dev, crtc, encoder)
5437 encoder->disable(encoder);
5438
5439 drm_crtc_vblank_off(crtc);
5440 assert_vblank_disabled(crtc);
5441
5442 intel_disable_pipe(intel_crtc);
5443
5444 i9xx_pfit_disable(intel_crtc);
5445
5446 for_each_encoder_on_crtc(dev, crtc, encoder)
5447 if (encoder->post_disable)
5448 encoder->post_disable(encoder);
5449
5450 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5451 if (IS_CHERRYVIEW(dev))
5452 chv_disable_pll(dev_priv, pipe);
5453 else if (IS_VALLEYVIEW(dev))
5454 vlv_disable_pll(dev_priv, pipe);
5455 else
5456 i9xx_disable_pll(intel_crtc);
5457 }
5458
5459 if (!IS_GEN2(dev))
5460 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5461
5462 intel_crtc->active = false;
5463 intel_update_watermarks(crtc);
5464
5465 mutex_lock(&dev->struct_mutex);
5466 intel_fbc_update(dev);
5467 mutex_unlock(&dev->struct_mutex);
5468 }
5469
5470 static void i9xx_crtc_off(struct drm_crtc *crtc)
5471 {
5472 }
5473
5474 /* Master function to enable/disable CRTC and corresponding power wells */
5475 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5476 {
5477 struct drm_device *dev = crtc->dev;
5478 struct drm_i915_private *dev_priv = dev->dev_private;
5479 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5480 enum intel_display_power_domain domain;
5481 unsigned long domains;
5482
5483 if (enable) {
5484 if (!intel_crtc->active) {
5485 domains = get_crtc_power_domains(crtc);
5486 for_each_power_domain(domain, domains)
5487 intel_display_power_get(dev_priv, domain);
5488 intel_crtc->enabled_power_domains = domains;
5489
5490 dev_priv->display.crtc_enable(crtc);
5491 }
5492 } else {
5493 if (intel_crtc->active) {
5494 dev_priv->display.crtc_disable(crtc);
5495
5496 domains = intel_crtc->enabled_power_domains;
5497 for_each_power_domain(domain, domains)
5498 intel_display_power_put(dev_priv, domain);
5499 intel_crtc->enabled_power_domains = 0;
5500 }
5501 }
5502 }
5503
5504 /**
5505 * Sets the power management mode of the pipe and plane.
5506 */
5507 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5508 {
5509 struct drm_device *dev = crtc->dev;
5510 struct intel_encoder *intel_encoder;
5511 bool enable = false;
5512
5513 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5514 enable |= intel_encoder->connectors_active;
5515
5516 intel_crtc_control(crtc, enable);
5517 }
5518
5519 static void intel_crtc_disable(struct drm_crtc *crtc)
5520 {
5521 struct drm_device *dev = crtc->dev;
5522 struct drm_connector *connector;
5523 struct drm_i915_private *dev_priv = dev->dev_private;
5524
5525 /* crtc should still be enabled when we disable it. */
5526 WARN_ON(!crtc->state->enable);
5527
5528 dev_priv->display.crtc_disable(crtc);
5529 dev_priv->display.off(crtc);
5530
5531 crtc->primary->funcs->disable_plane(crtc->primary);
5532
5533 /* Update computed state. */
5534 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5535 if (!connector->encoder || !connector->encoder->crtc)
5536 continue;
5537
5538 if (connector->encoder->crtc != crtc)
5539 continue;
5540
5541 connector->dpms = DRM_MODE_DPMS_OFF;
5542 to_intel_encoder(connector->encoder)->connectors_active = false;
5543 }
5544 }
5545
5546 void intel_encoder_destroy(struct drm_encoder *encoder)
5547 {
5548 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5549
5550 drm_encoder_cleanup(encoder);
5551 kfree(intel_encoder);
5552 }
5553
5554 /* Simple dpms helper for encoders with just one connector, no cloning and only
5555 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5556 * state of the entire output pipe. */
5557 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5558 {
5559 if (mode == DRM_MODE_DPMS_ON) {
5560 encoder->connectors_active = true;
5561
5562 intel_crtc_update_dpms(encoder->base.crtc);
5563 } else {
5564 encoder->connectors_active = false;
5565
5566 intel_crtc_update_dpms(encoder->base.crtc);
5567 }
5568 }
5569
5570 /* Cross check the actual hw state with our own modeset state tracking (and it's
5571 * internal consistency). */
5572 static void intel_connector_check_state(struct intel_connector *connector)
5573 {
5574 if (connector->get_hw_state(connector)) {
5575 struct intel_encoder *encoder = connector->encoder;
5576 struct drm_crtc *crtc;
5577 bool encoder_enabled;
5578 enum pipe pipe;
5579
5580 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5581 connector->base.base.id,
5582 connector->base.name);
5583
5584 /* there is no real hw state for MST connectors */
5585 if (connector->mst_port)
5586 return;
5587
5588 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5589 "wrong connector dpms state\n");
5590 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5591 "active connector not linked to encoder\n");
5592
5593 if (encoder) {
5594 I915_STATE_WARN(!encoder->connectors_active,
5595 "encoder->connectors_active not set\n");
5596
5597 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5598 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5599 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5600 return;
5601
5602 crtc = encoder->base.crtc;
5603
5604 I915_STATE_WARN(!crtc->state->enable,
5605 "crtc not enabled\n");
5606 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5607 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5608 "encoder active on the wrong pipe\n");
5609 }
5610 }
5611 }
5612
5613 /* Even simpler default implementation, if there's really no special case to
5614 * consider. */
5615 void intel_connector_dpms(struct drm_connector *connector, int mode)
5616 {
5617 /* All the simple cases only support two dpms states. */
5618 if (mode != DRM_MODE_DPMS_ON)
5619 mode = DRM_MODE_DPMS_OFF;
5620
5621 if (mode == connector->dpms)
5622 return;
5623
5624 connector->dpms = mode;
5625
5626 /* Only need to change hw state when actually enabled */
5627 if (connector->encoder)
5628 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5629
5630 intel_modeset_check_state(connector->dev);
5631 }
5632
5633 /* Simple connector->get_hw_state implementation for encoders that support only
5634 * one connector and no cloning and hence the encoder state determines the state
5635 * of the connector. */
5636 bool intel_connector_get_hw_state(struct intel_connector *connector)
5637 {
5638 enum pipe pipe = 0;
5639 struct intel_encoder *encoder = connector->encoder;
5640
5641 return encoder->get_hw_state(encoder, &pipe);
5642 }
5643
5644 static int pipe_required_fdi_lanes(struct drm_device *dev, enum pipe pipe)
5645 {
5646 struct intel_crtc *crtc =
5647 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5648
5649 if (crtc->base.state->enable &&
5650 crtc->config->has_pch_encoder)
5651 return crtc->config->fdi_lanes;
5652
5653 return 0;
5654 }
5655
5656 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5657 struct intel_crtc_state *pipe_config)
5658 {
5659 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5660 pipe_name(pipe), pipe_config->fdi_lanes);
5661 if (pipe_config->fdi_lanes > 4) {
5662 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5663 pipe_name(pipe), pipe_config->fdi_lanes);
5664 return false;
5665 }
5666
5667 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5668 if (pipe_config->fdi_lanes > 2) {
5669 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5670 pipe_config->fdi_lanes);
5671 return false;
5672 } else {
5673 return true;
5674 }
5675 }
5676
5677 if (INTEL_INFO(dev)->num_pipes == 2)
5678 return true;
5679
5680 /* Ivybridge 3 pipe is really complicated */
5681 switch (pipe) {
5682 case PIPE_A:
5683 return true;
5684 case PIPE_B:
5685 if (pipe_config->fdi_lanes > 2 &&
5686 pipe_required_fdi_lanes(dev, PIPE_C) > 0) {
5687 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5688 pipe_name(pipe), pipe_config->fdi_lanes);
5689 return false;
5690 }
5691 return true;
5692 case PIPE_C:
5693 if (pipe_config->fdi_lanes > 2) {
5694 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
5695 pipe_name(pipe), pipe_config->fdi_lanes);
5696 return false;
5697 }
5698 if (pipe_required_fdi_lanes(dev, PIPE_B) > 2) {
5699 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5700 return false;
5701 }
5702 return true;
5703 default:
5704 BUG();
5705 }
5706 }
5707
5708 #define RETRY 1
5709 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5710 struct intel_crtc_state *pipe_config)
5711 {
5712 struct drm_device *dev = intel_crtc->base.dev;
5713 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5714 int lane, link_bw, fdi_dotclock;
5715 bool setup_ok, needs_recompute = false;
5716
5717 retry:
5718 /* FDI is a binary signal running at ~2.7GHz, encoding
5719 * each output octet as 10 bits. The actual frequency
5720 * is stored as a divider into a 100MHz clock, and the
5721 * mode pixel clock is stored in units of 1KHz.
5722 * Hence the bw of each lane in terms of the mode signal
5723 * is:
5724 */
5725 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5726
5727 fdi_dotclock = adjusted_mode->crtc_clock;
5728
5729 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5730 pipe_config->pipe_bpp);
5731
5732 pipe_config->fdi_lanes = lane;
5733
5734 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5735 link_bw, &pipe_config->fdi_m_n);
5736
5737 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5738 intel_crtc->pipe, pipe_config);
5739 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5740 pipe_config->pipe_bpp -= 2*3;
5741 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5742 pipe_config->pipe_bpp);
5743 needs_recompute = true;
5744 pipe_config->bw_constrained = true;
5745
5746 goto retry;
5747 }
5748
5749 if (needs_recompute)
5750 return RETRY;
5751
5752 return setup_ok ? 0 : -EINVAL;
5753 }
5754
5755 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5756 struct intel_crtc_state *pipe_config)
5757 {
5758 pipe_config->ips_enabled = i915.enable_ips &&
5759 hsw_crtc_supports_ips(crtc) &&
5760 pipe_config->pipe_bpp <= 24;
5761 }
5762
5763 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5764 struct intel_crtc_state *pipe_config)
5765 {
5766 struct drm_device *dev = crtc->base.dev;
5767 struct drm_i915_private *dev_priv = dev->dev_private;
5768 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5769
5770 /* FIXME should check pixel clock limits on all platforms */
5771 if (INTEL_INFO(dev)->gen < 4) {
5772 int clock_limit =
5773 dev_priv->display.get_display_clock_speed(dev);
5774
5775 /*
5776 * Enable pixel doubling when the dot clock
5777 * is > 90% of the (display) core speed.
5778 *
5779 * GDG double wide on either pipe,
5780 * otherwise pipe A only.
5781 */
5782 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5783 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5784 clock_limit *= 2;
5785 pipe_config->double_wide = true;
5786 }
5787
5788 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5789 return -EINVAL;
5790 }
5791
5792 /*
5793 * Pipe horizontal size must be even in:
5794 * - DVO ganged mode
5795 * - LVDS dual channel mode
5796 * - Double wide pipe
5797 */
5798 if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5799 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5800 pipe_config->pipe_src_w &= ~1;
5801
5802 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5803 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5804 */
5805 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5806 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5807 return -EINVAL;
5808
5809 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5810 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5811 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5812 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5813 * for lvds. */
5814 pipe_config->pipe_bpp = 8*3;
5815 }
5816
5817 if (HAS_IPS(dev))
5818 hsw_compute_ips_config(crtc, pipe_config);
5819
5820 if (pipe_config->has_pch_encoder)
5821 return ironlake_fdi_compute_config(crtc, pipe_config);
5822
5823 return 0;
5824 }
5825
5826 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5827 {
5828 struct drm_i915_private *dev_priv = dev->dev_private;
5829 u32 val;
5830 int divider;
5831
5832 if (dev_priv->hpll_freq == 0)
5833 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5834
5835 mutex_lock(&dev_priv->dpio_lock);
5836 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5837 mutex_unlock(&dev_priv->dpio_lock);
5838
5839 divider = val & DISPLAY_FREQUENCY_VALUES;
5840
5841 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5842 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5843 "cdclk change in progress\n");
5844
5845 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5846 }
5847
5848 static int i945_get_display_clock_speed(struct drm_device *dev)
5849 {
5850 return 400000;
5851 }
5852
5853 static int i915_get_display_clock_speed(struct drm_device *dev)
5854 {
5855 return 333000;
5856 }
5857
5858 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5859 {
5860 return 200000;
5861 }
5862
5863 static int pnv_get_display_clock_speed(struct drm_device *dev)
5864 {
5865 u16 gcfgc = 0;
5866
5867 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5868
5869 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5870 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5871 return 267000;
5872 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5873 return 333000;
5874 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5875 return 444000;
5876 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5877 return 200000;
5878 default:
5879 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5880 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5881 return 133000;
5882 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5883 return 167000;
5884 }
5885 }
5886
5887 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5888 {
5889 u16 gcfgc = 0;
5890
5891 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5892
5893 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5894 return 133000;
5895 else {
5896 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5897 case GC_DISPLAY_CLOCK_333_MHZ:
5898 return 333000;
5899 default:
5900 case GC_DISPLAY_CLOCK_190_200_MHZ:
5901 return 190000;
5902 }
5903 }
5904 }
5905
5906 static int i865_get_display_clock_speed(struct drm_device *dev)
5907 {
5908 return 266000;
5909 }
5910
5911 static int i855_get_display_clock_speed(struct drm_device *dev)
5912 {
5913 u16 hpllcc = 0;
5914 /* Assume that the hardware is in the high speed state. This
5915 * should be the default.
5916 */
5917 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5918 case GC_CLOCK_133_200:
5919 case GC_CLOCK_100_200:
5920 return 200000;
5921 case GC_CLOCK_166_250:
5922 return 250000;
5923 case GC_CLOCK_100_133:
5924 return 133000;
5925 }
5926
5927 /* Shouldn't happen */
5928 return 0;
5929 }
5930
5931 static int i830_get_display_clock_speed(struct drm_device *dev)
5932 {
5933 return 133000;
5934 }
5935
5936 static void
5937 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5938 {
5939 while (*num > DATA_LINK_M_N_MASK ||
5940 *den > DATA_LINK_M_N_MASK) {
5941 *num >>= 1;
5942 *den >>= 1;
5943 }
5944 }
5945
5946 static void compute_m_n(unsigned int m, unsigned int n,
5947 uint32_t *ret_m, uint32_t *ret_n)
5948 {
5949 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5950 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5951 intel_reduce_m_n_ratio(ret_m, ret_n);
5952 }
5953
5954 void
5955 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5956 int pixel_clock, int link_clock,
5957 struct intel_link_m_n *m_n)
5958 {
5959 m_n->tu = 64;
5960
5961 compute_m_n(bits_per_pixel * pixel_clock,
5962 link_clock * nlanes * 8,
5963 &m_n->gmch_m, &m_n->gmch_n);
5964
5965 compute_m_n(pixel_clock, link_clock,
5966 &m_n->link_m, &m_n->link_n);
5967 }
5968
5969 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5970 {
5971 if (i915.panel_use_ssc >= 0)
5972 return i915.panel_use_ssc != 0;
5973 return dev_priv->vbt.lvds_use_ssc
5974 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5975 }
5976
5977 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5978 {
5979 struct drm_device *dev = crtc->base.dev;
5980 struct drm_i915_private *dev_priv = dev->dev_private;
5981 int refclk;
5982
5983 if (IS_VALLEYVIEW(dev)) {
5984 refclk = 100000;
5985 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5986 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5987 refclk = dev_priv->vbt.lvds_ssc_freq;
5988 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5989 } else if (!IS_GEN2(dev)) {
5990 refclk = 96000;
5991 } else {
5992 refclk = 48000;
5993 }
5994
5995 return refclk;
5996 }
5997
5998 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5999 {
6000 return (1 << dpll->n) << 16 | dpll->m2;
6001 }
6002
6003 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6004 {
6005 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6006 }
6007
6008 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6009 struct intel_crtc_state *crtc_state,
6010 intel_clock_t *reduced_clock)
6011 {
6012 struct drm_device *dev = crtc->base.dev;
6013 u32 fp, fp2 = 0;
6014
6015 if (IS_PINEVIEW(dev)) {
6016 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6017 if (reduced_clock)
6018 fp2 = pnv_dpll_compute_fp(reduced_clock);
6019 } else {
6020 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6021 if (reduced_clock)
6022 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6023 }
6024
6025 crtc_state->dpll_hw_state.fp0 = fp;
6026
6027 crtc->lowfreq_avail = false;
6028 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6029 reduced_clock) {
6030 crtc_state->dpll_hw_state.fp1 = fp2;
6031 crtc->lowfreq_avail = true;
6032 } else {
6033 crtc_state->dpll_hw_state.fp1 = fp;
6034 }
6035 }
6036
6037 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6038 pipe)
6039 {
6040 u32 reg_val;
6041
6042 /*
6043 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6044 * and set it to a reasonable value instead.
6045 */
6046 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6047 reg_val &= 0xffffff00;
6048 reg_val |= 0x00000030;
6049 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6050
6051 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6052 reg_val &= 0x8cffffff;
6053 reg_val = 0x8c000000;
6054 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6055
6056 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6057 reg_val &= 0xffffff00;
6058 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6059
6060 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6061 reg_val &= 0x00ffffff;
6062 reg_val |= 0xb0000000;
6063 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6064 }
6065
6066 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6067 struct intel_link_m_n *m_n)
6068 {
6069 struct drm_device *dev = crtc->base.dev;
6070 struct drm_i915_private *dev_priv = dev->dev_private;
6071 int pipe = crtc->pipe;
6072
6073 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6074 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6075 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6076 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6077 }
6078
6079 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6080 struct intel_link_m_n *m_n,
6081 struct intel_link_m_n *m2_n2)
6082 {
6083 struct drm_device *dev = crtc->base.dev;
6084 struct drm_i915_private *dev_priv = dev->dev_private;
6085 int pipe = crtc->pipe;
6086 enum transcoder transcoder = crtc->config->cpu_transcoder;
6087
6088 if (INTEL_INFO(dev)->gen >= 5) {
6089 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6090 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6091 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6092 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6093 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6094 * for gen < 8) and if DRRS is supported (to make sure the
6095 * registers are not unnecessarily accessed).
6096 */
6097 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6098 crtc->config->has_drrs) {
6099 I915_WRITE(PIPE_DATA_M2(transcoder),
6100 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6101 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6102 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6103 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6104 }
6105 } else {
6106 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6107 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6108 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6109 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6110 }
6111 }
6112
6113 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6114 {
6115 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6116
6117 if (m_n == M1_N1) {
6118 dp_m_n = &crtc->config->dp_m_n;
6119 dp_m2_n2 = &crtc->config->dp_m2_n2;
6120 } else if (m_n == M2_N2) {
6121
6122 /*
6123 * M2_N2 registers are not supported. Hence m2_n2 divider value
6124 * needs to be programmed into M1_N1.
6125 */
6126 dp_m_n = &crtc->config->dp_m2_n2;
6127 } else {
6128 DRM_ERROR("Unsupported divider value\n");
6129 return;
6130 }
6131
6132 if (crtc->config->has_pch_encoder)
6133 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6134 else
6135 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6136 }
6137
6138 static void vlv_update_pll(struct intel_crtc *crtc,
6139 struct intel_crtc_state *pipe_config)
6140 {
6141 u32 dpll, dpll_md;
6142
6143 /*
6144 * Enable DPIO clock input. We should never disable the reference
6145 * clock for pipe B, since VGA hotplug / manual detection depends
6146 * on it.
6147 */
6148 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6149 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6150 /* We should never disable this, set it here for state tracking */
6151 if (crtc->pipe == PIPE_B)
6152 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6153 dpll |= DPLL_VCO_ENABLE;
6154 pipe_config->dpll_hw_state.dpll = dpll;
6155
6156 dpll_md = (pipe_config->pixel_multiplier - 1)
6157 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6158 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6159 }
6160
6161 static void vlv_prepare_pll(struct intel_crtc *crtc,
6162 const struct intel_crtc_state *pipe_config)
6163 {
6164 struct drm_device *dev = crtc->base.dev;
6165 struct drm_i915_private *dev_priv = dev->dev_private;
6166 int pipe = crtc->pipe;
6167 u32 mdiv;
6168 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6169 u32 coreclk, reg_val;
6170
6171 mutex_lock(&dev_priv->dpio_lock);
6172
6173 bestn = pipe_config->dpll.n;
6174 bestm1 = pipe_config->dpll.m1;
6175 bestm2 = pipe_config->dpll.m2;
6176 bestp1 = pipe_config->dpll.p1;
6177 bestp2 = pipe_config->dpll.p2;
6178
6179 /* See eDP HDMI DPIO driver vbios notes doc */
6180
6181 /* PLL B needs special handling */
6182 if (pipe == PIPE_B)
6183 vlv_pllb_recal_opamp(dev_priv, pipe);
6184
6185 /* Set up Tx target for periodic Rcomp update */
6186 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6187
6188 /* Disable target IRef on PLL */
6189 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6190 reg_val &= 0x00ffffff;
6191 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6192
6193 /* Disable fast lock */
6194 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6195
6196 /* Set idtafcrecal before PLL is enabled */
6197 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6198 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6199 mdiv |= ((bestn << DPIO_N_SHIFT));
6200 mdiv |= (1 << DPIO_K_SHIFT);
6201
6202 /*
6203 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6204 * but we don't support that).
6205 * Note: don't use the DAC post divider as it seems unstable.
6206 */
6207 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6208 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6209
6210 mdiv |= DPIO_ENABLE_CALIBRATION;
6211 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6212
6213 /* Set HBR and RBR LPF coefficients */
6214 if (pipe_config->port_clock == 162000 ||
6215 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6216 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6217 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6218 0x009f0003);
6219 else
6220 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6221 0x00d0000f);
6222
6223 if (pipe_config->has_dp_encoder) {
6224 /* Use SSC source */
6225 if (pipe == PIPE_A)
6226 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6227 0x0df40000);
6228 else
6229 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6230 0x0df70000);
6231 } else { /* HDMI or VGA */
6232 /* Use bend source */
6233 if (pipe == PIPE_A)
6234 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6235 0x0df70000);
6236 else
6237 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6238 0x0df40000);
6239 }
6240
6241 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6242 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6243 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6244 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6245 coreclk |= 0x01000000;
6246 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6247
6248 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6249 mutex_unlock(&dev_priv->dpio_lock);
6250 }
6251
6252 static void chv_update_pll(struct intel_crtc *crtc,
6253 struct intel_crtc_state *pipe_config)
6254 {
6255 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6256 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6257 DPLL_VCO_ENABLE;
6258 if (crtc->pipe != PIPE_A)
6259 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6260
6261 pipe_config->dpll_hw_state.dpll_md =
6262 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6263 }
6264
6265 static void chv_prepare_pll(struct intel_crtc *crtc,
6266 const struct intel_crtc_state *pipe_config)
6267 {
6268 struct drm_device *dev = crtc->base.dev;
6269 struct drm_i915_private *dev_priv = dev->dev_private;
6270 int pipe = crtc->pipe;
6271 int dpll_reg = DPLL(crtc->pipe);
6272 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6273 u32 loopfilter, tribuf_calcntr;
6274 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6275 u32 dpio_val;
6276 int vco;
6277
6278 bestn = pipe_config->dpll.n;
6279 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6280 bestm1 = pipe_config->dpll.m1;
6281 bestm2 = pipe_config->dpll.m2 >> 22;
6282 bestp1 = pipe_config->dpll.p1;
6283 bestp2 = pipe_config->dpll.p2;
6284 vco = pipe_config->dpll.vco;
6285 dpio_val = 0;
6286 loopfilter = 0;
6287
6288 /*
6289 * Enable Refclk and SSC
6290 */
6291 I915_WRITE(dpll_reg,
6292 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6293
6294 mutex_lock(&dev_priv->dpio_lock);
6295
6296 /* p1 and p2 divider */
6297 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6298 5 << DPIO_CHV_S1_DIV_SHIFT |
6299 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6300 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6301 1 << DPIO_CHV_K_DIV_SHIFT);
6302
6303 /* Feedback post-divider - m2 */
6304 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6305
6306 /* Feedback refclk divider - n and m1 */
6307 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6308 DPIO_CHV_M1_DIV_BY_2 |
6309 1 << DPIO_CHV_N_DIV_SHIFT);
6310
6311 /* M2 fraction division */
6312 if (bestm2_frac)
6313 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6314
6315 /* M2 fraction division enable */
6316 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6317 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6318 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6319 if (bestm2_frac)
6320 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6321 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6322
6323 /* Program digital lock detect threshold */
6324 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6325 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6326 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6327 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6328 if (!bestm2_frac)
6329 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6330 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6331
6332 /* Loop filter */
6333 if (vco == 5400000) {
6334 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6335 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6336 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6337 tribuf_calcntr = 0x9;
6338 } else if (vco <= 6200000) {
6339 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6340 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6341 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6342 tribuf_calcntr = 0x9;
6343 } else if (vco <= 6480000) {
6344 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6345 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6346 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6347 tribuf_calcntr = 0x8;
6348 } else {
6349 /* Not supported. Apply the same limits as in the max case */
6350 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6351 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6352 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6353 tribuf_calcntr = 0;
6354 }
6355 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6356
6357 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6358 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6359 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6360 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6361
6362 /* AFC Recal */
6363 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6364 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6365 DPIO_AFC_RECAL);
6366
6367 mutex_unlock(&dev_priv->dpio_lock);
6368 }
6369
6370 /**
6371 * vlv_force_pll_on - forcibly enable just the PLL
6372 * @dev_priv: i915 private structure
6373 * @pipe: pipe PLL to enable
6374 * @dpll: PLL configuration
6375 *
6376 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6377 * in cases where we need the PLL enabled even when @pipe is not going to
6378 * be enabled.
6379 */
6380 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6381 const struct dpll *dpll)
6382 {
6383 struct intel_crtc *crtc =
6384 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6385 struct intel_crtc_state pipe_config = {
6386 .pixel_multiplier = 1,
6387 .dpll = *dpll,
6388 };
6389
6390 if (IS_CHERRYVIEW(dev)) {
6391 chv_update_pll(crtc, &pipe_config);
6392 chv_prepare_pll(crtc, &pipe_config);
6393 chv_enable_pll(crtc, &pipe_config);
6394 } else {
6395 vlv_update_pll(crtc, &pipe_config);
6396 vlv_prepare_pll(crtc, &pipe_config);
6397 vlv_enable_pll(crtc, &pipe_config);
6398 }
6399 }
6400
6401 /**
6402 * vlv_force_pll_off - forcibly disable just the PLL
6403 * @dev_priv: i915 private structure
6404 * @pipe: pipe PLL to disable
6405 *
6406 * Disable the PLL for @pipe. To be used in cases where we need
6407 * the PLL enabled even when @pipe is not going to be enabled.
6408 */
6409 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6410 {
6411 if (IS_CHERRYVIEW(dev))
6412 chv_disable_pll(to_i915(dev), pipe);
6413 else
6414 vlv_disable_pll(to_i915(dev), pipe);
6415 }
6416
6417 static void i9xx_update_pll(struct intel_crtc *crtc,
6418 struct intel_crtc_state *crtc_state,
6419 intel_clock_t *reduced_clock,
6420 int num_connectors)
6421 {
6422 struct drm_device *dev = crtc->base.dev;
6423 struct drm_i915_private *dev_priv = dev->dev_private;
6424 u32 dpll;
6425 bool is_sdvo;
6426 struct dpll *clock = &crtc_state->dpll;
6427
6428 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6429
6430 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6431 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6432
6433 dpll = DPLL_VGA_MODE_DIS;
6434
6435 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6436 dpll |= DPLLB_MODE_LVDS;
6437 else
6438 dpll |= DPLLB_MODE_DAC_SERIAL;
6439
6440 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6441 dpll |= (crtc_state->pixel_multiplier - 1)
6442 << SDVO_MULTIPLIER_SHIFT_HIRES;
6443 }
6444
6445 if (is_sdvo)
6446 dpll |= DPLL_SDVO_HIGH_SPEED;
6447
6448 if (crtc_state->has_dp_encoder)
6449 dpll |= DPLL_SDVO_HIGH_SPEED;
6450
6451 /* compute bitmask from p1 value */
6452 if (IS_PINEVIEW(dev))
6453 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6454 else {
6455 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6456 if (IS_G4X(dev) && reduced_clock)
6457 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6458 }
6459 switch (clock->p2) {
6460 case 5:
6461 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6462 break;
6463 case 7:
6464 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6465 break;
6466 case 10:
6467 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6468 break;
6469 case 14:
6470 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6471 break;
6472 }
6473 if (INTEL_INFO(dev)->gen >= 4)
6474 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6475
6476 if (crtc_state->sdvo_tv_clock)
6477 dpll |= PLL_REF_INPUT_TVCLKINBC;
6478 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6479 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6480 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6481 else
6482 dpll |= PLL_REF_INPUT_DREFCLK;
6483
6484 dpll |= DPLL_VCO_ENABLE;
6485 crtc_state->dpll_hw_state.dpll = dpll;
6486
6487 if (INTEL_INFO(dev)->gen >= 4) {
6488 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6489 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6490 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6491 }
6492 }
6493
6494 static void i8xx_update_pll(struct intel_crtc *crtc,
6495 struct intel_crtc_state *crtc_state,
6496 intel_clock_t *reduced_clock,
6497 int num_connectors)
6498 {
6499 struct drm_device *dev = crtc->base.dev;
6500 struct drm_i915_private *dev_priv = dev->dev_private;
6501 u32 dpll;
6502 struct dpll *clock = &crtc_state->dpll;
6503
6504 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6505
6506 dpll = DPLL_VGA_MODE_DIS;
6507
6508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6509 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6510 } else {
6511 if (clock->p1 == 2)
6512 dpll |= PLL_P1_DIVIDE_BY_TWO;
6513 else
6514 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6515 if (clock->p2 == 4)
6516 dpll |= PLL_P2_DIVIDE_BY_4;
6517 }
6518
6519 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6520 dpll |= DPLL_DVO_2X_MODE;
6521
6522 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6523 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6524 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6525 else
6526 dpll |= PLL_REF_INPUT_DREFCLK;
6527
6528 dpll |= DPLL_VCO_ENABLE;
6529 crtc_state->dpll_hw_state.dpll = dpll;
6530 }
6531
6532 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6533 {
6534 struct drm_device *dev = intel_crtc->base.dev;
6535 struct drm_i915_private *dev_priv = dev->dev_private;
6536 enum pipe pipe = intel_crtc->pipe;
6537 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6538 struct drm_display_mode *adjusted_mode =
6539 &intel_crtc->config->base.adjusted_mode;
6540 uint32_t crtc_vtotal, crtc_vblank_end;
6541 int vsyncshift = 0;
6542
6543 /* We need to be careful not to changed the adjusted mode, for otherwise
6544 * the hw state checker will get angry at the mismatch. */
6545 crtc_vtotal = adjusted_mode->crtc_vtotal;
6546 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6547
6548 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6549 /* the chip adds 2 halflines automatically */
6550 crtc_vtotal -= 1;
6551 crtc_vblank_end -= 1;
6552
6553 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6554 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6555 else
6556 vsyncshift = adjusted_mode->crtc_hsync_start -
6557 adjusted_mode->crtc_htotal / 2;
6558 if (vsyncshift < 0)
6559 vsyncshift += adjusted_mode->crtc_htotal;
6560 }
6561
6562 if (INTEL_INFO(dev)->gen > 3)
6563 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6564
6565 I915_WRITE(HTOTAL(cpu_transcoder),
6566 (adjusted_mode->crtc_hdisplay - 1) |
6567 ((adjusted_mode->crtc_htotal - 1) << 16));
6568 I915_WRITE(HBLANK(cpu_transcoder),
6569 (adjusted_mode->crtc_hblank_start - 1) |
6570 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6571 I915_WRITE(HSYNC(cpu_transcoder),
6572 (adjusted_mode->crtc_hsync_start - 1) |
6573 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6574
6575 I915_WRITE(VTOTAL(cpu_transcoder),
6576 (adjusted_mode->crtc_vdisplay - 1) |
6577 ((crtc_vtotal - 1) << 16));
6578 I915_WRITE(VBLANK(cpu_transcoder),
6579 (adjusted_mode->crtc_vblank_start - 1) |
6580 ((crtc_vblank_end - 1) << 16));
6581 I915_WRITE(VSYNC(cpu_transcoder),
6582 (adjusted_mode->crtc_vsync_start - 1) |
6583 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6584
6585 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6586 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6587 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6588 * bits. */
6589 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6590 (pipe == PIPE_B || pipe == PIPE_C))
6591 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6592
6593 /* pipesrc controls the size that is scaled from, which should
6594 * always be the user's requested size.
6595 */
6596 I915_WRITE(PIPESRC(pipe),
6597 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6598 (intel_crtc->config->pipe_src_h - 1));
6599 }
6600
6601 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6602 struct intel_crtc_state *pipe_config)
6603 {
6604 struct drm_device *dev = crtc->base.dev;
6605 struct drm_i915_private *dev_priv = dev->dev_private;
6606 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6607 uint32_t tmp;
6608
6609 tmp = I915_READ(HTOTAL(cpu_transcoder));
6610 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6611 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6612 tmp = I915_READ(HBLANK(cpu_transcoder));
6613 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6614 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6615 tmp = I915_READ(HSYNC(cpu_transcoder));
6616 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6617 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6618
6619 tmp = I915_READ(VTOTAL(cpu_transcoder));
6620 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6621 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6622 tmp = I915_READ(VBLANK(cpu_transcoder));
6623 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6624 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6625 tmp = I915_READ(VSYNC(cpu_transcoder));
6626 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6627 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6628
6629 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6630 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6631 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6632 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6633 }
6634
6635 tmp = I915_READ(PIPESRC(crtc->pipe));
6636 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6637 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6638
6639 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6640 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6641 }
6642
6643 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6644 struct intel_crtc_state *pipe_config)
6645 {
6646 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6647 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6648 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6649 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6650
6651 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6652 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6653 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6654 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6655
6656 mode->flags = pipe_config->base.adjusted_mode.flags;
6657
6658 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6659 mode->flags |= pipe_config->base.adjusted_mode.flags;
6660 }
6661
6662 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6663 {
6664 struct drm_device *dev = intel_crtc->base.dev;
6665 struct drm_i915_private *dev_priv = dev->dev_private;
6666 uint32_t pipeconf;
6667
6668 pipeconf = 0;
6669
6670 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6671 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6672 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6673
6674 if (intel_crtc->config->double_wide)
6675 pipeconf |= PIPECONF_DOUBLE_WIDE;
6676
6677 /* only g4x and later have fancy bpc/dither controls */
6678 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6679 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6680 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6681 pipeconf |= PIPECONF_DITHER_EN |
6682 PIPECONF_DITHER_TYPE_SP;
6683
6684 switch (intel_crtc->config->pipe_bpp) {
6685 case 18:
6686 pipeconf |= PIPECONF_6BPC;
6687 break;
6688 case 24:
6689 pipeconf |= PIPECONF_8BPC;
6690 break;
6691 case 30:
6692 pipeconf |= PIPECONF_10BPC;
6693 break;
6694 default:
6695 /* Case prevented by intel_choose_pipe_bpp_dither. */
6696 BUG();
6697 }
6698 }
6699
6700 if (HAS_PIPE_CXSR(dev)) {
6701 if (intel_crtc->lowfreq_avail) {
6702 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6703 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6704 } else {
6705 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6706 }
6707 }
6708
6709 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6710 if (INTEL_INFO(dev)->gen < 4 ||
6711 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6712 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6713 else
6714 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6715 } else
6716 pipeconf |= PIPECONF_PROGRESSIVE;
6717
6718 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6719 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6720
6721 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6722 POSTING_READ(PIPECONF(intel_crtc->pipe));
6723 }
6724
6725 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6726 struct intel_crtc_state *crtc_state)
6727 {
6728 struct drm_device *dev = crtc->base.dev;
6729 struct drm_i915_private *dev_priv = dev->dev_private;
6730 int refclk, num_connectors = 0;
6731 intel_clock_t clock, reduced_clock;
6732 bool ok, has_reduced_clock = false;
6733 bool is_lvds = false, is_dsi = false;
6734 struct intel_encoder *encoder;
6735 const intel_limit_t *limit;
6736
6737 for_each_intel_encoder(dev, encoder) {
6738 if (encoder->new_crtc != crtc)
6739 continue;
6740
6741 switch (encoder->type) {
6742 case INTEL_OUTPUT_LVDS:
6743 is_lvds = true;
6744 break;
6745 case INTEL_OUTPUT_DSI:
6746 is_dsi = true;
6747 break;
6748 default:
6749 break;
6750 }
6751
6752 num_connectors++;
6753 }
6754
6755 if (is_dsi)
6756 return 0;
6757
6758 if (!crtc_state->clock_set) {
6759 refclk = i9xx_get_refclk(crtc, num_connectors);
6760
6761 /*
6762 * Returns a set of divisors for the desired target clock with
6763 * the given refclk, or FALSE. The returned values represent
6764 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6765 * 2) / p1 / p2.
6766 */
6767 limit = intel_limit(crtc, refclk);
6768 ok = dev_priv->display.find_dpll(limit, crtc,
6769 crtc_state->port_clock,
6770 refclk, NULL, &clock);
6771 if (!ok) {
6772 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6773 return -EINVAL;
6774 }
6775
6776 if (is_lvds && dev_priv->lvds_downclock_avail) {
6777 /*
6778 * Ensure we match the reduced clock's P to the target
6779 * clock. If the clocks don't match, we can't switch
6780 * the display clock by using the FP0/FP1. In such case
6781 * we will disable the LVDS downclock feature.
6782 */
6783 has_reduced_clock =
6784 dev_priv->display.find_dpll(limit, crtc,
6785 dev_priv->lvds_downclock,
6786 refclk, &clock,
6787 &reduced_clock);
6788 }
6789 /* Compat-code for transition, will disappear. */
6790 crtc_state->dpll.n = clock.n;
6791 crtc_state->dpll.m1 = clock.m1;
6792 crtc_state->dpll.m2 = clock.m2;
6793 crtc_state->dpll.p1 = clock.p1;
6794 crtc_state->dpll.p2 = clock.p2;
6795 }
6796
6797 if (IS_GEN2(dev)) {
6798 i8xx_update_pll(crtc, crtc_state,
6799 has_reduced_clock ? &reduced_clock : NULL,
6800 num_connectors);
6801 } else if (IS_CHERRYVIEW(dev)) {
6802 chv_update_pll(crtc, crtc_state);
6803 } else if (IS_VALLEYVIEW(dev)) {
6804 vlv_update_pll(crtc, crtc_state);
6805 } else {
6806 i9xx_update_pll(crtc, crtc_state,
6807 has_reduced_clock ? &reduced_clock : NULL,
6808 num_connectors);
6809 }
6810
6811 return 0;
6812 }
6813
6814 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6815 struct intel_crtc_state *pipe_config)
6816 {
6817 struct drm_device *dev = crtc->base.dev;
6818 struct drm_i915_private *dev_priv = dev->dev_private;
6819 uint32_t tmp;
6820
6821 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6822 return;
6823
6824 tmp = I915_READ(PFIT_CONTROL);
6825 if (!(tmp & PFIT_ENABLE))
6826 return;
6827
6828 /* Check whether the pfit is attached to our pipe. */
6829 if (INTEL_INFO(dev)->gen < 4) {
6830 if (crtc->pipe != PIPE_B)
6831 return;
6832 } else {
6833 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6834 return;
6835 }
6836
6837 pipe_config->gmch_pfit.control = tmp;
6838 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6839 if (INTEL_INFO(dev)->gen < 5)
6840 pipe_config->gmch_pfit.lvds_border_bits =
6841 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6842 }
6843
6844 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6845 struct intel_crtc_state *pipe_config)
6846 {
6847 struct drm_device *dev = crtc->base.dev;
6848 struct drm_i915_private *dev_priv = dev->dev_private;
6849 int pipe = pipe_config->cpu_transcoder;
6850 intel_clock_t clock;
6851 u32 mdiv;
6852 int refclk = 100000;
6853
6854 /* In case of MIPI DPLL will not even be used */
6855 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6856 return;
6857
6858 mutex_lock(&dev_priv->dpio_lock);
6859 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6860 mutex_unlock(&dev_priv->dpio_lock);
6861
6862 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6863 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6864 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6865 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6866 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6867
6868 vlv_clock(refclk, &clock);
6869
6870 /* clock.dot is the fast clock */
6871 pipe_config->port_clock = clock.dot / 5;
6872 }
6873
6874 static void
6875 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6876 struct intel_initial_plane_config *plane_config)
6877 {
6878 struct drm_device *dev = crtc->base.dev;
6879 struct drm_i915_private *dev_priv = dev->dev_private;
6880 u32 val, base, offset;
6881 int pipe = crtc->pipe, plane = crtc->plane;
6882 int fourcc, pixel_format;
6883 unsigned int aligned_height;
6884 struct drm_framebuffer *fb;
6885 struct intel_framebuffer *intel_fb;
6886
6887 val = I915_READ(DSPCNTR(plane));
6888 if (!(val & DISPLAY_PLANE_ENABLE))
6889 return;
6890
6891 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6892 if (!intel_fb) {
6893 DRM_DEBUG_KMS("failed to alloc fb\n");
6894 return;
6895 }
6896
6897 fb = &intel_fb->base;
6898
6899 if (INTEL_INFO(dev)->gen >= 4) {
6900 if (val & DISPPLANE_TILED) {
6901 plane_config->tiling = I915_TILING_X;
6902 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6903 }
6904 }
6905
6906 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6907 fourcc = i9xx_format_to_fourcc(pixel_format);
6908 fb->pixel_format = fourcc;
6909 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6910
6911 if (INTEL_INFO(dev)->gen >= 4) {
6912 if (plane_config->tiling)
6913 offset = I915_READ(DSPTILEOFF(plane));
6914 else
6915 offset = I915_READ(DSPLINOFF(plane));
6916 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6917 } else {
6918 base = I915_READ(DSPADDR(plane));
6919 }
6920 plane_config->base = base;
6921
6922 val = I915_READ(PIPESRC(pipe));
6923 fb->width = ((val >> 16) & 0xfff) + 1;
6924 fb->height = ((val >> 0) & 0xfff) + 1;
6925
6926 val = I915_READ(DSPSTRIDE(pipe));
6927 fb->pitches[0] = val & 0xffffffc0;
6928
6929 aligned_height = intel_fb_align_height(dev, fb->height,
6930 fb->pixel_format,
6931 fb->modifier[0]);
6932
6933 plane_config->size = fb->pitches[0] * aligned_height;
6934
6935 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6936 pipe_name(pipe), plane, fb->width, fb->height,
6937 fb->bits_per_pixel, base, fb->pitches[0],
6938 plane_config->size);
6939
6940 plane_config->fb = intel_fb;
6941 }
6942
6943 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6944 struct intel_crtc_state *pipe_config)
6945 {
6946 struct drm_device *dev = crtc->base.dev;
6947 struct drm_i915_private *dev_priv = dev->dev_private;
6948 int pipe = pipe_config->cpu_transcoder;
6949 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6950 intel_clock_t clock;
6951 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6952 int refclk = 100000;
6953
6954 mutex_lock(&dev_priv->dpio_lock);
6955 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6956 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6957 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6958 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6959 mutex_unlock(&dev_priv->dpio_lock);
6960
6961 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6962 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6963 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6964 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6965 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6966
6967 chv_clock(refclk, &clock);
6968
6969 /* clock.dot is the fast clock */
6970 pipe_config->port_clock = clock.dot / 5;
6971 }
6972
6973 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6974 struct intel_crtc_state *pipe_config)
6975 {
6976 struct drm_device *dev = crtc->base.dev;
6977 struct drm_i915_private *dev_priv = dev->dev_private;
6978 uint32_t tmp;
6979
6980 if (!intel_display_power_is_enabled(dev_priv,
6981 POWER_DOMAIN_PIPE(crtc->pipe)))
6982 return false;
6983
6984 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6985 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6986
6987 tmp = I915_READ(PIPECONF(crtc->pipe));
6988 if (!(tmp & PIPECONF_ENABLE))
6989 return false;
6990
6991 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6992 switch (tmp & PIPECONF_BPC_MASK) {
6993 case PIPECONF_6BPC:
6994 pipe_config->pipe_bpp = 18;
6995 break;
6996 case PIPECONF_8BPC:
6997 pipe_config->pipe_bpp = 24;
6998 break;
6999 case PIPECONF_10BPC:
7000 pipe_config->pipe_bpp = 30;
7001 break;
7002 default:
7003 break;
7004 }
7005 }
7006
7007 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7008 pipe_config->limited_color_range = true;
7009
7010 if (INTEL_INFO(dev)->gen < 4)
7011 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7012
7013 intel_get_pipe_timings(crtc, pipe_config);
7014
7015 i9xx_get_pfit_config(crtc, pipe_config);
7016
7017 if (INTEL_INFO(dev)->gen >= 4) {
7018 tmp = I915_READ(DPLL_MD(crtc->pipe));
7019 pipe_config->pixel_multiplier =
7020 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7021 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7022 pipe_config->dpll_hw_state.dpll_md = tmp;
7023 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7024 tmp = I915_READ(DPLL(crtc->pipe));
7025 pipe_config->pixel_multiplier =
7026 ((tmp & SDVO_MULTIPLIER_MASK)
7027 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7028 } else {
7029 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7030 * port and will be fixed up in the encoder->get_config
7031 * function. */
7032 pipe_config->pixel_multiplier = 1;
7033 }
7034 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7035 if (!IS_VALLEYVIEW(dev)) {
7036 /*
7037 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7038 * on 830. Filter it out here so that we don't
7039 * report errors due to that.
7040 */
7041 if (IS_I830(dev))
7042 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7043
7044 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7045 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7046 } else {
7047 /* Mask out read-only status bits. */
7048 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7049 DPLL_PORTC_READY_MASK |
7050 DPLL_PORTB_READY_MASK);
7051 }
7052
7053 if (IS_CHERRYVIEW(dev))
7054 chv_crtc_clock_get(crtc, pipe_config);
7055 else if (IS_VALLEYVIEW(dev))
7056 vlv_crtc_clock_get(crtc, pipe_config);
7057 else
7058 i9xx_crtc_clock_get(crtc, pipe_config);
7059
7060 return true;
7061 }
7062
7063 static void ironlake_init_pch_refclk(struct drm_device *dev)
7064 {
7065 struct drm_i915_private *dev_priv = dev->dev_private;
7066 struct intel_encoder *encoder;
7067 u32 val, final;
7068 bool has_lvds = false;
7069 bool has_cpu_edp = false;
7070 bool has_panel = false;
7071 bool has_ck505 = false;
7072 bool can_ssc = false;
7073
7074 /* We need to take the global config into account */
7075 for_each_intel_encoder(dev, encoder) {
7076 switch (encoder->type) {
7077 case INTEL_OUTPUT_LVDS:
7078 has_panel = true;
7079 has_lvds = true;
7080 break;
7081 case INTEL_OUTPUT_EDP:
7082 has_panel = true;
7083 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7084 has_cpu_edp = true;
7085 break;
7086 default:
7087 break;
7088 }
7089 }
7090
7091 if (HAS_PCH_IBX(dev)) {
7092 has_ck505 = dev_priv->vbt.display_clock_mode;
7093 can_ssc = has_ck505;
7094 } else {
7095 has_ck505 = false;
7096 can_ssc = true;
7097 }
7098
7099 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7100 has_panel, has_lvds, has_ck505);
7101
7102 /* Ironlake: try to setup display ref clock before DPLL
7103 * enabling. This is only under driver's control after
7104 * PCH B stepping, previous chipset stepping should be
7105 * ignoring this setting.
7106 */
7107 val = I915_READ(PCH_DREF_CONTROL);
7108
7109 /* As we must carefully and slowly disable/enable each source in turn,
7110 * compute the final state we want first and check if we need to
7111 * make any changes at all.
7112 */
7113 final = val;
7114 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7115 if (has_ck505)
7116 final |= DREF_NONSPREAD_CK505_ENABLE;
7117 else
7118 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7119
7120 final &= ~DREF_SSC_SOURCE_MASK;
7121 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7122 final &= ~DREF_SSC1_ENABLE;
7123
7124 if (has_panel) {
7125 final |= DREF_SSC_SOURCE_ENABLE;
7126
7127 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7128 final |= DREF_SSC1_ENABLE;
7129
7130 if (has_cpu_edp) {
7131 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7132 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7133 else
7134 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7135 } else
7136 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7137 } else {
7138 final |= DREF_SSC_SOURCE_DISABLE;
7139 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7140 }
7141
7142 if (final == val)
7143 return;
7144
7145 /* Always enable nonspread source */
7146 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7147
7148 if (has_ck505)
7149 val |= DREF_NONSPREAD_CK505_ENABLE;
7150 else
7151 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7152
7153 if (has_panel) {
7154 val &= ~DREF_SSC_SOURCE_MASK;
7155 val |= DREF_SSC_SOURCE_ENABLE;
7156
7157 /* SSC must be turned on before enabling the CPU output */
7158 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7159 DRM_DEBUG_KMS("Using SSC on panel\n");
7160 val |= DREF_SSC1_ENABLE;
7161 } else
7162 val &= ~DREF_SSC1_ENABLE;
7163
7164 /* Get SSC going before enabling the outputs */
7165 I915_WRITE(PCH_DREF_CONTROL, val);
7166 POSTING_READ(PCH_DREF_CONTROL);
7167 udelay(200);
7168
7169 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7170
7171 /* Enable CPU source on CPU attached eDP */
7172 if (has_cpu_edp) {
7173 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7174 DRM_DEBUG_KMS("Using SSC on eDP\n");
7175 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7176 } else
7177 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7178 } else
7179 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7180
7181 I915_WRITE(PCH_DREF_CONTROL, val);
7182 POSTING_READ(PCH_DREF_CONTROL);
7183 udelay(200);
7184 } else {
7185 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7186
7187 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7188
7189 /* Turn off CPU output */
7190 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7191
7192 I915_WRITE(PCH_DREF_CONTROL, val);
7193 POSTING_READ(PCH_DREF_CONTROL);
7194 udelay(200);
7195
7196 /* Turn off the SSC source */
7197 val &= ~DREF_SSC_SOURCE_MASK;
7198 val |= DREF_SSC_SOURCE_DISABLE;
7199
7200 /* Turn off SSC1 */
7201 val &= ~DREF_SSC1_ENABLE;
7202
7203 I915_WRITE(PCH_DREF_CONTROL, val);
7204 POSTING_READ(PCH_DREF_CONTROL);
7205 udelay(200);
7206 }
7207
7208 BUG_ON(val != final);
7209 }
7210
7211 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7212 {
7213 uint32_t tmp;
7214
7215 tmp = I915_READ(SOUTH_CHICKEN2);
7216 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7217 I915_WRITE(SOUTH_CHICKEN2, tmp);
7218
7219 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7220 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7221 DRM_ERROR("FDI mPHY reset assert timeout\n");
7222
7223 tmp = I915_READ(SOUTH_CHICKEN2);
7224 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7225 I915_WRITE(SOUTH_CHICKEN2, tmp);
7226
7227 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7228 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7229 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7230 }
7231
7232 /* WaMPhyProgramming:hsw */
7233 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7234 {
7235 uint32_t tmp;
7236
7237 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7238 tmp &= ~(0xFF << 24);
7239 tmp |= (0x12 << 24);
7240 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7241
7242 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7243 tmp |= (1 << 11);
7244 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7245
7246 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7247 tmp |= (1 << 11);
7248 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7249
7250 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7251 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7252 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7253
7254 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7255 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7256 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7257
7258 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7259 tmp &= ~(7 << 13);
7260 tmp |= (5 << 13);
7261 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7262
7263 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7264 tmp &= ~(7 << 13);
7265 tmp |= (5 << 13);
7266 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7267
7268 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7269 tmp &= ~0xFF;
7270 tmp |= 0x1C;
7271 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7272
7273 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7274 tmp &= ~0xFF;
7275 tmp |= 0x1C;
7276 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7277
7278 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7279 tmp &= ~(0xFF << 16);
7280 tmp |= (0x1C << 16);
7281 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7282
7283 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7284 tmp &= ~(0xFF << 16);
7285 tmp |= (0x1C << 16);
7286 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7287
7288 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7289 tmp |= (1 << 27);
7290 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7291
7292 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7293 tmp |= (1 << 27);
7294 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7295
7296 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7297 tmp &= ~(0xF << 28);
7298 tmp |= (4 << 28);
7299 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7300
7301 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7302 tmp &= ~(0xF << 28);
7303 tmp |= (4 << 28);
7304 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7305 }
7306
7307 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7308 * Programming" based on the parameters passed:
7309 * - Sequence to enable CLKOUT_DP
7310 * - Sequence to enable CLKOUT_DP without spread
7311 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7312 */
7313 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7314 bool with_fdi)
7315 {
7316 struct drm_i915_private *dev_priv = dev->dev_private;
7317 uint32_t reg, tmp;
7318
7319 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7320 with_spread = true;
7321 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7322 with_fdi, "LP PCH doesn't have FDI\n"))
7323 with_fdi = false;
7324
7325 mutex_lock(&dev_priv->dpio_lock);
7326
7327 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7328 tmp &= ~SBI_SSCCTL_DISABLE;
7329 tmp |= SBI_SSCCTL_PATHALT;
7330 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7331
7332 udelay(24);
7333
7334 if (with_spread) {
7335 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7336 tmp &= ~SBI_SSCCTL_PATHALT;
7337 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7338
7339 if (with_fdi) {
7340 lpt_reset_fdi_mphy(dev_priv);
7341 lpt_program_fdi_mphy(dev_priv);
7342 }
7343 }
7344
7345 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7346 SBI_GEN0 : SBI_DBUFF0;
7347 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7348 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7349 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7350
7351 mutex_unlock(&dev_priv->dpio_lock);
7352 }
7353
7354 /* Sequence to disable CLKOUT_DP */
7355 static void lpt_disable_clkout_dp(struct drm_device *dev)
7356 {
7357 struct drm_i915_private *dev_priv = dev->dev_private;
7358 uint32_t reg, tmp;
7359
7360 mutex_lock(&dev_priv->dpio_lock);
7361
7362 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7363 SBI_GEN0 : SBI_DBUFF0;
7364 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7365 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7366 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7367
7368 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7369 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7370 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7371 tmp |= SBI_SSCCTL_PATHALT;
7372 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7373 udelay(32);
7374 }
7375 tmp |= SBI_SSCCTL_DISABLE;
7376 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7377 }
7378
7379 mutex_unlock(&dev_priv->dpio_lock);
7380 }
7381
7382 static void lpt_init_pch_refclk(struct drm_device *dev)
7383 {
7384 struct intel_encoder *encoder;
7385 bool has_vga = false;
7386
7387 for_each_intel_encoder(dev, encoder) {
7388 switch (encoder->type) {
7389 case INTEL_OUTPUT_ANALOG:
7390 has_vga = true;
7391 break;
7392 default:
7393 break;
7394 }
7395 }
7396
7397 if (has_vga)
7398 lpt_enable_clkout_dp(dev, true, true);
7399 else
7400 lpt_disable_clkout_dp(dev);
7401 }
7402
7403 /*
7404 * Initialize reference clocks when the driver loads
7405 */
7406 void intel_init_pch_refclk(struct drm_device *dev)
7407 {
7408 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7409 ironlake_init_pch_refclk(dev);
7410 else if (HAS_PCH_LPT(dev))
7411 lpt_init_pch_refclk(dev);
7412 }
7413
7414 static int ironlake_get_refclk(struct drm_crtc *crtc)
7415 {
7416 struct drm_device *dev = crtc->dev;
7417 struct drm_i915_private *dev_priv = dev->dev_private;
7418 struct intel_encoder *encoder;
7419 int num_connectors = 0;
7420 bool is_lvds = false;
7421
7422 for_each_intel_encoder(dev, encoder) {
7423 if (encoder->new_crtc != to_intel_crtc(crtc))
7424 continue;
7425
7426 switch (encoder->type) {
7427 case INTEL_OUTPUT_LVDS:
7428 is_lvds = true;
7429 break;
7430 default:
7431 break;
7432 }
7433 num_connectors++;
7434 }
7435
7436 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7437 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7438 dev_priv->vbt.lvds_ssc_freq);
7439 return dev_priv->vbt.lvds_ssc_freq;
7440 }
7441
7442 return 120000;
7443 }
7444
7445 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7446 {
7447 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7449 int pipe = intel_crtc->pipe;
7450 uint32_t val;
7451
7452 val = 0;
7453
7454 switch (intel_crtc->config->pipe_bpp) {
7455 case 18:
7456 val |= PIPECONF_6BPC;
7457 break;
7458 case 24:
7459 val |= PIPECONF_8BPC;
7460 break;
7461 case 30:
7462 val |= PIPECONF_10BPC;
7463 break;
7464 case 36:
7465 val |= PIPECONF_12BPC;
7466 break;
7467 default:
7468 /* Case prevented by intel_choose_pipe_bpp_dither. */
7469 BUG();
7470 }
7471
7472 if (intel_crtc->config->dither)
7473 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7474
7475 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7476 val |= PIPECONF_INTERLACED_ILK;
7477 else
7478 val |= PIPECONF_PROGRESSIVE;
7479
7480 if (intel_crtc->config->limited_color_range)
7481 val |= PIPECONF_COLOR_RANGE_SELECT;
7482
7483 I915_WRITE(PIPECONF(pipe), val);
7484 POSTING_READ(PIPECONF(pipe));
7485 }
7486
7487 /*
7488 * Set up the pipe CSC unit.
7489 *
7490 * Currently only full range RGB to limited range RGB conversion
7491 * is supported, but eventually this should handle various
7492 * RGB<->YCbCr scenarios as well.
7493 */
7494 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7495 {
7496 struct drm_device *dev = crtc->dev;
7497 struct drm_i915_private *dev_priv = dev->dev_private;
7498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7499 int pipe = intel_crtc->pipe;
7500 uint16_t coeff = 0x7800; /* 1.0 */
7501
7502 /*
7503 * TODO: Check what kind of values actually come out of the pipe
7504 * with these coeff/postoff values and adjust to get the best
7505 * accuracy. Perhaps we even need to take the bpc value into
7506 * consideration.
7507 */
7508
7509 if (intel_crtc->config->limited_color_range)
7510 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7511
7512 /*
7513 * GY/GU and RY/RU should be the other way around according
7514 * to BSpec, but reality doesn't agree. Just set them up in
7515 * a way that results in the correct picture.
7516 */
7517 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7518 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7519
7520 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7521 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7522
7523 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7524 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7525
7526 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7527 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7528 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7529
7530 if (INTEL_INFO(dev)->gen > 6) {
7531 uint16_t postoff = 0;
7532
7533 if (intel_crtc->config->limited_color_range)
7534 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7535
7536 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7537 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7538 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7539
7540 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7541 } else {
7542 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7543
7544 if (intel_crtc->config->limited_color_range)
7545 mode |= CSC_BLACK_SCREEN_OFFSET;
7546
7547 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7548 }
7549 }
7550
7551 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7552 {
7553 struct drm_device *dev = crtc->dev;
7554 struct drm_i915_private *dev_priv = dev->dev_private;
7555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7556 enum pipe pipe = intel_crtc->pipe;
7557 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7558 uint32_t val;
7559
7560 val = 0;
7561
7562 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7563 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7564
7565 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7566 val |= PIPECONF_INTERLACED_ILK;
7567 else
7568 val |= PIPECONF_PROGRESSIVE;
7569
7570 I915_WRITE(PIPECONF(cpu_transcoder), val);
7571 POSTING_READ(PIPECONF(cpu_transcoder));
7572
7573 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7574 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7575
7576 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7577 val = 0;
7578
7579 switch (intel_crtc->config->pipe_bpp) {
7580 case 18:
7581 val |= PIPEMISC_DITHER_6_BPC;
7582 break;
7583 case 24:
7584 val |= PIPEMISC_DITHER_8_BPC;
7585 break;
7586 case 30:
7587 val |= PIPEMISC_DITHER_10_BPC;
7588 break;
7589 case 36:
7590 val |= PIPEMISC_DITHER_12_BPC;
7591 break;
7592 default:
7593 /* Case prevented by pipe_config_set_bpp. */
7594 BUG();
7595 }
7596
7597 if (intel_crtc->config->dither)
7598 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7599
7600 I915_WRITE(PIPEMISC(pipe), val);
7601 }
7602 }
7603
7604 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7605 struct intel_crtc_state *crtc_state,
7606 intel_clock_t *clock,
7607 bool *has_reduced_clock,
7608 intel_clock_t *reduced_clock)
7609 {
7610 struct drm_device *dev = crtc->dev;
7611 struct drm_i915_private *dev_priv = dev->dev_private;
7612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7613 int refclk;
7614 const intel_limit_t *limit;
7615 bool ret, is_lvds = false;
7616
7617 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7618
7619 refclk = ironlake_get_refclk(crtc);
7620
7621 /*
7622 * Returns a set of divisors for the desired target clock with the given
7623 * refclk, or FALSE. The returned values represent the clock equation:
7624 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7625 */
7626 limit = intel_limit(intel_crtc, refclk);
7627 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7628 crtc_state->port_clock,
7629 refclk, NULL, clock);
7630 if (!ret)
7631 return false;
7632
7633 if (is_lvds && dev_priv->lvds_downclock_avail) {
7634 /*
7635 * Ensure we match the reduced clock's P to the target clock.
7636 * If the clocks don't match, we can't switch the display clock
7637 * by using the FP0/FP1. In such case we will disable the LVDS
7638 * downclock feature.
7639 */
7640 *has_reduced_clock =
7641 dev_priv->display.find_dpll(limit, intel_crtc,
7642 dev_priv->lvds_downclock,
7643 refclk, clock,
7644 reduced_clock);
7645 }
7646
7647 return true;
7648 }
7649
7650 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7651 {
7652 /*
7653 * Account for spread spectrum to avoid
7654 * oversubscribing the link. Max center spread
7655 * is 2.5%; use 5% for safety's sake.
7656 */
7657 u32 bps = target_clock * bpp * 21 / 20;
7658 return DIV_ROUND_UP(bps, link_bw * 8);
7659 }
7660
7661 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7662 {
7663 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7664 }
7665
7666 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7667 struct intel_crtc_state *crtc_state,
7668 u32 *fp,
7669 intel_clock_t *reduced_clock, u32 *fp2)
7670 {
7671 struct drm_crtc *crtc = &intel_crtc->base;
7672 struct drm_device *dev = crtc->dev;
7673 struct drm_i915_private *dev_priv = dev->dev_private;
7674 struct intel_encoder *intel_encoder;
7675 uint32_t dpll;
7676 int factor, num_connectors = 0;
7677 bool is_lvds = false, is_sdvo = false;
7678
7679 for_each_intel_encoder(dev, intel_encoder) {
7680 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7681 continue;
7682
7683 switch (intel_encoder->type) {
7684 case INTEL_OUTPUT_LVDS:
7685 is_lvds = true;
7686 break;
7687 case INTEL_OUTPUT_SDVO:
7688 case INTEL_OUTPUT_HDMI:
7689 is_sdvo = true;
7690 break;
7691 default:
7692 break;
7693 }
7694
7695 num_connectors++;
7696 }
7697
7698 /* Enable autotuning of the PLL clock (if permissible) */
7699 factor = 21;
7700 if (is_lvds) {
7701 if ((intel_panel_use_ssc(dev_priv) &&
7702 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7703 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7704 factor = 25;
7705 } else if (crtc_state->sdvo_tv_clock)
7706 factor = 20;
7707
7708 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7709 *fp |= FP_CB_TUNE;
7710
7711 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7712 *fp2 |= FP_CB_TUNE;
7713
7714 dpll = 0;
7715
7716 if (is_lvds)
7717 dpll |= DPLLB_MODE_LVDS;
7718 else
7719 dpll |= DPLLB_MODE_DAC_SERIAL;
7720
7721 dpll |= (crtc_state->pixel_multiplier - 1)
7722 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7723
7724 if (is_sdvo)
7725 dpll |= DPLL_SDVO_HIGH_SPEED;
7726 if (crtc_state->has_dp_encoder)
7727 dpll |= DPLL_SDVO_HIGH_SPEED;
7728
7729 /* compute bitmask from p1 value */
7730 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7731 /* also FPA1 */
7732 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7733
7734 switch (crtc_state->dpll.p2) {
7735 case 5:
7736 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7737 break;
7738 case 7:
7739 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7740 break;
7741 case 10:
7742 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7743 break;
7744 case 14:
7745 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7746 break;
7747 }
7748
7749 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7750 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7751 else
7752 dpll |= PLL_REF_INPUT_DREFCLK;
7753
7754 return dpll | DPLL_VCO_ENABLE;
7755 }
7756
7757 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7758 struct intel_crtc_state *crtc_state)
7759 {
7760 struct drm_device *dev = crtc->base.dev;
7761 intel_clock_t clock, reduced_clock;
7762 u32 dpll = 0, fp = 0, fp2 = 0;
7763 bool ok, has_reduced_clock = false;
7764 bool is_lvds = false;
7765 struct intel_shared_dpll *pll;
7766
7767 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7768
7769 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7770 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7771
7772 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7773 &has_reduced_clock, &reduced_clock);
7774 if (!ok && !crtc_state->clock_set) {
7775 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7776 return -EINVAL;
7777 }
7778 /* Compat-code for transition, will disappear. */
7779 if (!crtc_state->clock_set) {
7780 crtc_state->dpll.n = clock.n;
7781 crtc_state->dpll.m1 = clock.m1;
7782 crtc_state->dpll.m2 = clock.m2;
7783 crtc_state->dpll.p1 = clock.p1;
7784 crtc_state->dpll.p2 = clock.p2;
7785 }
7786
7787 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7788 if (crtc_state->has_pch_encoder) {
7789 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7790 if (has_reduced_clock)
7791 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7792
7793 dpll = ironlake_compute_dpll(crtc, crtc_state,
7794 &fp, &reduced_clock,
7795 has_reduced_clock ? &fp2 : NULL);
7796
7797 crtc_state->dpll_hw_state.dpll = dpll;
7798 crtc_state->dpll_hw_state.fp0 = fp;
7799 if (has_reduced_clock)
7800 crtc_state->dpll_hw_state.fp1 = fp2;
7801 else
7802 crtc_state->dpll_hw_state.fp1 = fp;
7803
7804 pll = intel_get_shared_dpll(crtc, crtc_state);
7805 if (pll == NULL) {
7806 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7807 pipe_name(crtc->pipe));
7808 return -EINVAL;
7809 }
7810 }
7811
7812 if (is_lvds && has_reduced_clock)
7813 crtc->lowfreq_avail = true;
7814 else
7815 crtc->lowfreq_avail = false;
7816
7817 return 0;
7818 }
7819
7820 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7821 struct intel_link_m_n *m_n)
7822 {
7823 struct drm_device *dev = crtc->base.dev;
7824 struct drm_i915_private *dev_priv = dev->dev_private;
7825 enum pipe pipe = crtc->pipe;
7826
7827 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7828 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7829 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7830 & ~TU_SIZE_MASK;
7831 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7832 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7833 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7834 }
7835
7836 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7837 enum transcoder transcoder,
7838 struct intel_link_m_n *m_n,
7839 struct intel_link_m_n *m2_n2)
7840 {
7841 struct drm_device *dev = crtc->base.dev;
7842 struct drm_i915_private *dev_priv = dev->dev_private;
7843 enum pipe pipe = crtc->pipe;
7844
7845 if (INTEL_INFO(dev)->gen >= 5) {
7846 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7847 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7848 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7849 & ~TU_SIZE_MASK;
7850 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7851 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7852 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7853 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7854 * gen < 8) and if DRRS is supported (to make sure the
7855 * registers are not unnecessarily read).
7856 */
7857 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7858 crtc->config->has_drrs) {
7859 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7860 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7861 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7862 & ~TU_SIZE_MASK;
7863 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7864 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7865 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7866 }
7867 } else {
7868 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7869 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7870 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7871 & ~TU_SIZE_MASK;
7872 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7873 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7874 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7875 }
7876 }
7877
7878 void intel_dp_get_m_n(struct intel_crtc *crtc,
7879 struct intel_crtc_state *pipe_config)
7880 {
7881 if (pipe_config->has_pch_encoder)
7882 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7883 else
7884 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7885 &pipe_config->dp_m_n,
7886 &pipe_config->dp_m2_n2);
7887 }
7888
7889 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7890 struct intel_crtc_state *pipe_config)
7891 {
7892 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7893 &pipe_config->fdi_m_n, NULL);
7894 }
7895
7896 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7897 struct intel_crtc_state *pipe_config)
7898 {
7899 struct drm_device *dev = crtc->base.dev;
7900 struct drm_i915_private *dev_priv = dev->dev_private;
7901 uint32_t tmp;
7902
7903 tmp = I915_READ(PS_CTL(crtc->pipe));
7904
7905 if (tmp & PS_ENABLE) {
7906 pipe_config->pch_pfit.enabled = true;
7907 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7908 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7909 }
7910 }
7911
7912 static void
7913 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7914 struct intel_initial_plane_config *plane_config)
7915 {
7916 struct drm_device *dev = crtc->base.dev;
7917 struct drm_i915_private *dev_priv = dev->dev_private;
7918 u32 val, base, offset, stride_mult, tiling;
7919 int pipe = crtc->pipe;
7920 int fourcc, pixel_format;
7921 unsigned int aligned_height;
7922 struct drm_framebuffer *fb;
7923 struct intel_framebuffer *intel_fb;
7924
7925 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7926 if (!intel_fb) {
7927 DRM_DEBUG_KMS("failed to alloc fb\n");
7928 return;
7929 }
7930
7931 fb = &intel_fb->base;
7932
7933 val = I915_READ(PLANE_CTL(pipe, 0));
7934 if (!(val & PLANE_CTL_ENABLE))
7935 goto error;
7936
7937 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7938 fourcc = skl_format_to_fourcc(pixel_format,
7939 val & PLANE_CTL_ORDER_RGBX,
7940 val & PLANE_CTL_ALPHA_MASK);
7941 fb->pixel_format = fourcc;
7942 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7943
7944 tiling = val & PLANE_CTL_TILED_MASK;
7945 switch (tiling) {
7946 case PLANE_CTL_TILED_LINEAR:
7947 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7948 break;
7949 case PLANE_CTL_TILED_X:
7950 plane_config->tiling = I915_TILING_X;
7951 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7952 break;
7953 case PLANE_CTL_TILED_Y:
7954 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7955 break;
7956 case PLANE_CTL_TILED_YF:
7957 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7958 break;
7959 default:
7960 MISSING_CASE(tiling);
7961 goto error;
7962 }
7963
7964 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7965 plane_config->base = base;
7966
7967 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7968
7969 val = I915_READ(PLANE_SIZE(pipe, 0));
7970 fb->height = ((val >> 16) & 0xfff) + 1;
7971 fb->width = ((val >> 0) & 0x1fff) + 1;
7972
7973 val = I915_READ(PLANE_STRIDE(pipe, 0));
7974 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7975 fb->pixel_format);
7976 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7977
7978 aligned_height = intel_fb_align_height(dev, fb->height,
7979 fb->pixel_format,
7980 fb->modifier[0]);
7981
7982 plane_config->size = fb->pitches[0] * aligned_height;
7983
7984 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7985 pipe_name(pipe), fb->width, fb->height,
7986 fb->bits_per_pixel, base, fb->pitches[0],
7987 plane_config->size);
7988
7989 plane_config->fb = intel_fb;
7990 return;
7991
7992 error:
7993 kfree(fb);
7994 }
7995
7996 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7997 struct intel_crtc_state *pipe_config)
7998 {
7999 struct drm_device *dev = crtc->base.dev;
8000 struct drm_i915_private *dev_priv = dev->dev_private;
8001 uint32_t tmp;
8002
8003 tmp = I915_READ(PF_CTL(crtc->pipe));
8004
8005 if (tmp & PF_ENABLE) {
8006 pipe_config->pch_pfit.enabled = true;
8007 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8008 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8009
8010 /* We currently do not free assignements of panel fitters on
8011 * ivb/hsw (since we don't use the higher upscaling modes which
8012 * differentiates them) so just WARN about this case for now. */
8013 if (IS_GEN7(dev)) {
8014 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8015 PF_PIPE_SEL_IVB(crtc->pipe));
8016 }
8017 }
8018 }
8019
8020 static void
8021 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8022 struct intel_initial_plane_config *plane_config)
8023 {
8024 struct drm_device *dev = crtc->base.dev;
8025 struct drm_i915_private *dev_priv = dev->dev_private;
8026 u32 val, base, offset;
8027 int pipe = crtc->pipe;
8028 int fourcc, pixel_format;
8029 unsigned int aligned_height;
8030 struct drm_framebuffer *fb;
8031 struct intel_framebuffer *intel_fb;
8032
8033 val = I915_READ(DSPCNTR(pipe));
8034 if (!(val & DISPLAY_PLANE_ENABLE))
8035 return;
8036
8037 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8038 if (!intel_fb) {
8039 DRM_DEBUG_KMS("failed to alloc fb\n");
8040 return;
8041 }
8042
8043 fb = &intel_fb->base;
8044
8045 if (INTEL_INFO(dev)->gen >= 4) {
8046 if (val & DISPPLANE_TILED) {
8047 plane_config->tiling = I915_TILING_X;
8048 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8049 }
8050 }
8051
8052 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8053 fourcc = i9xx_format_to_fourcc(pixel_format);
8054 fb->pixel_format = fourcc;
8055 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8056
8057 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8058 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8059 offset = I915_READ(DSPOFFSET(pipe));
8060 } else {
8061 if (plane_config->tiling)
8062 offset = I915_READ(DSPTILEOFF(pipe));
8063 else
8064 offset = I915_READ(DSPLINOFF(pipe));
8065 }
8066 plane_config->base = base;
8067
8068 val = I915_READ(PIPESRC(pipe));
8069 fb->width = ((val >> 16) & 0xfff) + 1;
8070 fb->height = ((val >> 0) & 0xfff) + 1;
8071
8072 val = I915_READ(DSPSTRIDE(pipe));
8073 fb->pitches[0] = val & 0xffffffc0;
8074
8075 aligned_height = intel_fb_align_height(dev, fb->height,
8076 fb->pixel_format,
8077 fb->modifier[0]);
8078
8079 plane_config->size = fb->pitches[0] * aligned_height;
8080
8081 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8082 pipe_name(pipe), fb->width, fb->height,
8083 fb->bits_per_pixel, base, fb->pitches[0],
8084 plane_config->size);
8085
8086 plane_config->fb = intel_fb;
8087 }
8088
8089 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8090 struct intel_crtc_state *pipe_config)
8091 {
8092 struct drm_device *dev = crtc->base.dev;
8093 struct drm_i915_private *dev_priv = dev->dev_private;
8094 uint32_t tmp;
8095
8096 if (!intel_display_power_is_enabled(dev_priv,
8097 POWER_DOMAIN_PIPE(crtc->pipe)))
8098 return false;
8099
8100 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8101 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8102
8103 tmp = I915_READ(PIPECONF(crtc->pipe));
8104 if (!(tmp & PIPECONF_ENABLE))
8105 return false;
8106
8107 switch (tmp & PIPECONF_BPC_MASK) {
8108 case PIPECONF_6BPC:
8109 pipe_config->pipe_bpp = 18;
8110 break;
8111 case PIPECONF_8BPC:
8112 pipe_config->pipe_bpp = 24;
8113 break;
8114 case PIPECONF_10BPC:
8115 pipe_config->pipe_bpp = 30;
8116 break;
8117 case PIPECONF_12BPC:
8118 pipe_config->pipe_bpp = 36;
8119 break;
8120 default:
8121 break;
8122 }
8123
8124 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8125 pipe_config->limited_color_range = true;
8126
8127 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8128 struct intel_shared_dpll *pll;
8129
8130 pipe_config->has_pch_encoder = true;
8131
8132 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8133 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8134 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8135
8136 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8137
8138 if (HAS_PCH_IBX(dev_priv->dev)) {
8139 pipe_config->shared_dpll =
8140 (enum intel_dpll_id) crtc->pipe;
8141 } else {
8142 tmp = I915_READ(PCH_DPLL_SEL);
8143 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8144 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8145 else
8146 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8147 }
8148
8149 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8150
8151 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8152 &pipe_config->dpll_hw_state));
8153
8154 tmp = pipe_config->dpll_hw_state.dpll;
8155 pipe_config->pixel_multiplier =
8156 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8157 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8158
8159 ironlake_pch_clock_get(crtc, pipe_config);
8160 } else {
8161 pipe_config->pixel_multiplier = 1;
8162 }
8163
8164 intel_get_pipe_timings(crtc, pipe_config);
8165
8166 ironlake_get_pfit_config(crtc, pipe_config);
8167
8168 return true;
8169 }
8170
8171 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8172 {
8173 struct drm_device *dev = dev_priv->dev;
8174 struct intel_crtc *crtc;
8175
8176 for_each_intel_crtc(dev, crtc)
8177 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8178 pipe_name(crtc->pipe));
8179
8180 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8181 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8182 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8183 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8184 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8185 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8186 "CPU PWM1 enabled\n");
8187 if (IS_HASWELL(dev))
8188 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8189 "CPU PWM2 enabled\n");
8190 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8191 "PCH PWM1 enabled\n");
8192 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8193 "Utility pin enabled\n");
8194 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8195
8196 /*
8197 * In theory we can still leave IRQs enabled, as long as only the HPD
8198 * interrupts remain enabled. We used to check for that, but since it's
8199 * gen-specific and since we only disable LCPLL after we fully disable
8200 * the interrupts, the check below should be enough.
8201 */
8202 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8203 }
8204
8205 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8206 {
8207 struct drm_device *dev = dev_priv->dev;
8208
8209 if (IS_HASWELL(dev))
8210 return I915_READ(D_COMP_HSW);
8211 else
8212 return I915_READ(D_COMP_BDW);
8213 }
8214
8215 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8216 {
8217 struct drm_device *dev = dev_priv->dev;
8218
8219 if (IS_HASWELL(dev)) {
8220 mutex_lock(&dev_priv->rps.hw_lock);
8221 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8222 val))
8223 DRM_ERROR("Failed to write to D_COMP\n");
8224 mutex_unlock(&dev_priv->rps.hw_lock);
8225 } else {
8226 I915_WRITE(D_COMP_BDW, val);
8227 POSTING_READ(D_COMP_BDW);
8228 }
8229 }
8230
8231 /*
8232 * This function implements pieces of two sequences from BSpec:
8233 * - Sequence for display software to disable LCPLL
8234 * - Sequence for display software to allow package C8+
8235 * The steps implemented here are just the steps that actually touch the LCPLL
8236 * register. Callers should take care of disabling all the display engine
8237 * functions, doing the mode unset, fixing interrupts, etc.
8238 */
8239 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8240 bool switch_to_fclk, bool allow_power_down)
8241 {
8242 uint32_t val;
8243
8244 assert_can_disable_lcpll(dev_priv);
8245
8246 val = I915_READ(LCPLL_CTL);
8247
8248 if (switch_to_fclk) {
8249 val |= LCPLL_CD_SOURCE_FCLK;
8250 I915_WRITE(LCPLL_CTL, val);
8251
8252 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8253 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8254 DRM_ERROR("Switching to FCLK failed\n");
8255
8256 val = I915_READ(LCPLL_CTL);
8257 }
8258
8259 val |= LCPLL_PLL_DISABLE;
8260 I915_WRITE(LCPLL_CTL, val);
8261 POSTING_READ(LCPLL_CTL);
8262
8263 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8264 DRM_ERROR("LCPLL still locked\n");
8265
8266 val = hsw_read_dcomp(dev_priv);
8267 val |= D_COMP_COMP_DISABLE;
8268 hsw_write_dcomp(dev_priv, val);
8269 ndelay(100);
8270
8271 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8272 1))
8273 DRM_ERROR("D_COMP RCOMP still in progress\n");
8274
8275 if (allow_power_down) {
8276 val = I915_READ(LCPLL_CTL);
8277 val |= LCPLL_POWER_DOWN_ALLOW;
8278 I915_WRITE(LCPLL_CTL, val);
8279 POSTING_READ(LCPLL_CTL);
8280 }
8281 }
8282
8283 /*
8284 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8285 * source.
8286 */
8287 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8288 {
8289 uint32_t val;
8290
8291 val = I915_READ(LCPLL_CTL);
8292
8293 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8294 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8295 return;
8296
8297 /*
8298 * Make sure we're not on PC8 state before disabling PC8, otherwise
8299 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8300 */
8301 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8302
8303 if (val & LCPLL_POWER_DOWN_ALLOW) {
8304 val &= ~LCPLL_POWER_DOWN_ALLOW;
8305 I915_WRITE(LCPLL_CTL, val);
8306 POSTING_READ(LCPLL_CTL);
8307 }
8308
8309 val = hsw_read_dcomp(dev_priv);
8310 val |= D_COMP_COMP_FORCE;
8311 val &= ~D_COMP_COMP_DISABLE;
8312 hsw_write_dcomp(dev_priv, val);
8313
8314 val = I915_READ(LCPLL_CTL);
8315 val &= ~LCPLL_PLL_DISABLE;
8316 I915_WRITE(LCPLL_CTL, val);
8317
8318 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8319 DRM_ERROR("LCPLL not locked yet\n");
8320
8321 if (val & LCPLL_CD_SOURCE_FCLK) {
8322 val = I915_READ(LCPLL_CTL);
8323 val &= ~LCPLL_CD_SOURCE_FCLK;
8324 I915_WRITE(LCPLL_CTL, val);
8325
8326 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8327 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8328 DRM_ERROR("Switching back to LCPLL failed\n");
8329 }
8330
8331 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8332 }
8333
8334 /*
8335 * Package states C8 and deeper are really deep PC states that can only be
8336 * reached when all the devices on the system allow it, so even if the graphics
8337 * device allows PC8+, it doesn't mean the system will actually get to these
8338 * states. Our driver only allows PC8+ when going into runtime PM.
8339 *
8340 * The requirements for PC8+ are that all the outputs are disabled, the power
8341 * well is disabled and most interrupts are disabled, and these are also
8342 * requirements for runtime PM. When these conditions are met, we manually do
8343 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8344 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8345 * hang the machine.
8346 *
8347 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8348 * the state of some registers, so when we come back from PC8+ we need to
8349 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8350 * need to take care of the registers kept by RC6. Notice that this happens even
8351 * if we don't put the device in PCI D3 state (which is what currently happens
8352 * because of the runtime PM support).
8353 *
8354 * For more, read "Display Sequences for Package C8" on the hardware
8355 * documentation.
8356 */
8357 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8358 {
8359 struct drm_device *dev = dev_priv->dev;
8360 uint32_t val;
8361
8362 DRM_DEBUG_KMS("Enabling package C8+\n");
8363
8364 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8365 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8366 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8367 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8368 }
8369
8370 lpt_disable_clkout_dp(dev);
8371 hsw_disable_lcpll(dev_priv, true, true);
8372 }
8373
8374 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8375 {
8376 struct drm_device *dev = dev_priv->dev;
8377 uint32_t val;
8378
8379 DRM_DEBUG_KMS("Disabling package C8+\n");
8380
8381 hsw_restore_lcpll(dev_priv);
8382 lpt_init_pch_refclk(dev);
8383
8384 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8385 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8386 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8387 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8388 }
8389
8390 intel_prepare_ddi(dev);
8391 }
8392
8393 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8394 struct intel_crtc_state *crtc_state)
8395 {
8396 if (!intel_ddi_pll_select(crtc, crtc_state))
8397 return -EINVAL;
8398
8399 crtc->lowfreq_avail = false;
8400
8401 return 0;
8402 }
8403
8404 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8405 enum port port,
8406 struct intel_crtc_state *pipe_config)
8407 {
8408 u32 temp, dpll_ctl1;
8409
8410 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8411 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8412
8413 switch (pipe_config->ddi_pll_sel) {
8414 case SKL_DPLL0:
8415 /*
8416 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8417 * of the shared DPLL framework and thus needs to be read out
8418 * separately
8419 */
8420 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8421 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8422 break;
8423 case SKL_DPLL1:
8424 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8425 break;
8426 case SKL_DPLL2:
8427 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8428 break;
8429 case SKL_DPLL3:
8430 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8431 break;
8432 }
8433 }
8434
8435 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8436 enum port port,
8437 struct intel_crtc_state *pipe_config)
8438 {
8439 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8440
8441 switch (pipe_config->ddi_pll_sel) {
8442 case PORT_CLK_SEL_WRPLL1:
8443 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8444 break;
8445 case PORT_CLK_SEL_WRPLL2:
8446 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8447 break;
8448 }
8449 }
8450
8451 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8452 struct intel_crtc_state *pipe_config)
8453 {
8454 struct drm_device *dev = crtc->base.dev;
8455 struct drm_i915_private *dev_priv = dev->dev_private;
8456 struct intel_shared_dpll *pll;
8457 enum port port;
8458 uint32_t tmp;
8459
8460 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8461
8462 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8463
8464 if (IS_SKYLAKE(dev))
8465 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8466 else
8467 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8468
8469 if (pipe_config->shared_dpll >= 0) {
8470 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8471
8472 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8473 &pipe_config->dpll_hw_state));
8474 }
8475
8476 /*
8477 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8478 * DDI E. So just check whether this pipe is wired to DDI E and whether
8479 * the PCH transcoder is on.
8480 */
8481 if (INTEL_INFO(dev)->gen < 9 &&
8482 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8483 pipe_config->has_pch_encoder = true;
8484
8485 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8486 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8487 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8488
8489 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8490 }
8491 }
8492
8493 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8494 struct intel_crtc_state *pipe_config)
8495 {
8496 struct drm_device *dev = crtc->base.dev;
8497 struct drm_i915_private *dev_priv = dev->dev_private;
8498 enum intel_display_power_domain pfit_domain;
8499 uint32_t tmp;
8500
8501 if (!intel_display_power_is_enabled(dev_priv,
8502 POWER_DOMAIN_PIPE(crtc->pipe)))
8503 return false;
8504
8505 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8506 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8507
8508 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8509 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8510 enum pipe trans_edp_pipe;
8511 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8512 default:
8513 WARN(1, "unknown pipe linked to edp transcoder\n");
8514 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8515 case TRANS_DDI_EDP_INPUT_A_ON:
8516 trans_edp_pipe = PIPE_A;
8517 break;
8518 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8519 trans_edp_pipe = PIPE_B;
8520 break;
8521 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8522 trans_edp_pipe = PIPE_C;
8523 break;
8524 }
8525
8526 if (trans_edp_pipe == crtc->pipe)
8527 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8528 }
8529
8530 if (!intel_display_power_is_enabled(dev_priv,
8531 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8532 return false;
8533
8534 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8535 if (!(tmp & PIPECONF_ENABLE))
8536 return false;
8537
8538 haswell_get_ddi_port_state(crtc, pipe_config);
8539
8540 intel_get_pipe_timings(crtc, pipe_config);
8541
8542 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8543 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8544 if (IS_SKYLAKE(dev))
8545 skylake_get_pfit_config(crtc, pipe_config);
8546 else
8547 ironlake_get_pfit_config(crtc, pipe_config);
8548 }
8549
8550 if (IS_HASWELL(dev))
8551 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8552 (I915_READ(IPS_CTL) & IPS_ENABLE);
8553
8554 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8555 pipe_config->pixel_multiplier =
8556 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8557 } else {
8558 pipe_config->pixel_multiplier = 1;
8559 }
8560
8561 return true;
8562 }
8563
8564 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8565 {
8566 struct drm_device *dev = crtc->dev;
8567 struct drm_i915_private *dev_priv = dev->dev_private;
8568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8569 uint32_t cntl = 0, size = 0;
8570
8571 if (base) {
8572 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8573 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8574 unsigned int stride = roundup_pow_of_two(width) * 4;
8575
8576 switch (stride) {
8577 default:
8578 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8579 width, stride);
8580 stride = 256;
8581 /* fallthrough */
8582 case 256:
8583 case 512:
8584 case 1024:
8585 case 2048:
8586 break;
8587 }
8588
8589 cntl |= CURSOR_ENABLE |
8590 CURSOR_GAMMA_ENABLE |
8591 CURSOR_FORMAT_ARGB |
8592 CURSOR_STRIDE(stride);
8593
8594 size = (height << 12) | width;
8595 }
8596
8597 if (intel_crtc->cursor_cntl != 0 &&
8598 (intel_crtc->cursor_base != base ||
8599 intel_crtc->cursor_size != size ||
8600 intel_crtc->cursor_cntl != cntl)) {
8601 /* On these chipsets we can only modify the base/size/stride
8602 * whilst the cursor is disabled.
8603 */
8604 I915_WRITE(_CURACNTR, 0);
8605 POSTING_READ(_CURACNTR);
8606 intel_crtc->cursor_cntl = 0;
8607 }
8608
8609 if (intel_crtc->cursor_base != base) {
8610 I915_WRITE(_CURABASE, base);
8611 intel_crtc->cursor_base = base;
8612 }
8613
8614 if (intel_crtc->cursor_size != size) {
8615 I915_WRITE(CURSIZE, size);
8616 intel_crtc->cursor_size = size;
8617 }
8618
8619 if (intel_crtc->cursor_cntl != cntl) {
8620 I915_WRITE(_CURACNTR, cntl);
8621 POSTING_READ(_CURACNTR);
8622 intel_crtc->cursor_cntl = cntl;
8623 }
8624 }
8625
8626 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8627 {
8628 struct drm_device *dev = crtc->dev;
8629 struct drm_i915_private *dev_priv = dev->dev_private;
8630 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8631 int pipe = intel_crtc->pipe;
8632 uint32_t cntl;
8633
8634 cntl = 0;
8635 if (base) {
8636 cntl = MCURSOR_GAMMA_ENABLE;
8637 switch (intel_crtc->base.cursor->state->crtc_w) {
8638 case 64:
8639 cntl |= CURSOR_MODE_64_ARGB_AX;
8640 break;
8641 case 128:
8642 cntl |= CURSOR_MODE_128_ARGB_AX;
8643 break;
8644 case 256:
8645 cntl |= CURSOR_MODE_256_ARGB_AX;
8646 break;
8647 default:
8648 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8649 return;
8650 }
8651 cntl |= pipe << 28; /* Connect to correct pipe */
8652
8653 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8654 cntl |= CURSOR_PIPE_CSC_ENABLE;
8655 }
8656
8657 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8658 cntl |= CURSOR_ROTATE_180;
8659
8660 if (intel_crtc->cursor_cntl != cntl) {
8661 I915_WRITE(CURCNTR(pipe), cntl);
8662 POSTING_READ(CURCNTR(pipe));
8663 intel_crtc->cursor_cntl = cntl;
8664 }
8665
8666 /* and commit changes on next vblank */
8667 I915_WRITE(CURBASE(pipe), base);
8668 POSTING_READ(CURBASE(pipe));
8669
8670 intel_crtc->cursor_base = base;
8671 }
8672
8673 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8674 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8675 bool on)
8676 {
8677 struct drm_device *dev = crtc->dev;
8678 struct drm_i915_private *dev_priv = dev->dev_private;
8679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8680 int pipe = intel_crtc->pipe;
8681 int x = crtc->cursor_x;
8682 int y = crtc->cursor_y;
8683 u32 base = 0, pos = 0;
8684
8685 if (on)
8686 base = intel_crtc->cursor_addr;
8687
8688 if (x >= intel_crtc->config->pipe_src_w)
8689 base = 0;
8690
8691 if (y >= intel_crtc->config->pipe_src_h)
8692 base = 0;
8693
8694 if (x < 0) {
8695 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8696 base = 0;
8697
8698 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8699 x = -x;
8700 }
8701 pos |= x << CURSOR_X_SHIFT;
8702
8703 if (y < 0) {
8704 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8705 base = 0;
8706
8707 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8708 y = -y;
8709 }
8710 pos |= y << CURSOR_Y_SHIFT;
8711
8712 if (base == 0 && intel_crtc->cursor_base == 0)
8713 return;
8714
8715 I915_WRITE(CURPOS(pipe), pos);
8716
8717 /* ILK+ do this automagically */
8718 if (HAS_GMCH_DISPLAY(dev) &&
8719 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8720 base += (intel_crtc->base.cursor->state->crtc_h *
8721 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8722 }
8723
8724 if (IS_845G(dev) || IS_I865G(dev))
8725 i845_update_cursor(crtc, base);
8726 else
8727 i9xx_update_cursor(crtc, base);
8728 }
8729
8730 static bool cursor_size_ok(struct drm_device *dev,
8731 uint32_t width, uint32_t height)
8732 {
8733 if (width == 0 || height == 0)
8734 return false;
8735
8736 /*
8737 * 845g/865g are special in that they are only limited by
8738 * the width of their cursors, the height is arbitrary up to
8739 * the precision of the register. Everything else requires
8740 * square cursors, limited to a few power-of-two sizes.
8741 */
8742 if (IS_845G(dev) || IS_I865G(dev)) {
8743 if ((width & 63) != 0)
8744 return false;
8745
8746 if (width > (IS_845G(dev) ? 64 : 512))
8747 return false;
8748
8749 if (height > 1023)
8750 return false;
8751 } else {
8752 switch (width | height) {
8753 case 256:
8754 case 128:
8755 if (IS_GEN2(dev))
8756 return false;
8757 case 64:
8758 break;
8759 default:
8760 return false;
8761 }
8762 }
8763
8764 return true;
8765 }
8766
8767 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8768 u16 *blue, uint32_t start, uint32_t size)
8769 {
8770 int end = (start + size > 256) ? 256 : start + size, i;
8771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8772
8773 for (i = start; i < end; i++) {
8774 intel_crtc->lut_r[i] = red[i] >> 8;
8775 intel_crtc->lut_g[i] = green[i] >> 8;
8776 intel_crtc->lut_b[i] = blue[i] >> 8;
8777 }
8778
8779 intel_crtc_load_lut(crtc);
8780 }
8781
8782 /* VESA 640x480x72Hz mode to set on the pipe */
8783 static struct drm_display_mode load_detect_mode = {
8784 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8785 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8786 };
8787
8788 struct drm_framebuffer *
8789 __intel_framebuffer_create(struct drm_device *dev,
8790 struct drm_mode_fb_cmd2 *mode_cmd,
8791 struct drm_i915_gem_object *obj)
8792 {
8793 struct intel_framebuffer *intel_fb;
8794 int ret;
8795
8796 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8797 if (!intel_fb) {
8798 drm_gem_object_unreference(&obj->base);
8799 return ERR_PTR(-ENOMEM);
8800 }
8801
8802 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8803 if (ret)
8804 goto err;
8805
8806 return &intel_fb->base;
8807 err:
8808 drm_gem_object_unreference(&obj->base);
8809 kfree(intel_fb);
8810
8811 return ERR_PTR(ret);
8812 }
8813
8814 static struct drm_framebuffer *
8815 intel_framebuffer_create(struct drm_device *dev,
8816 struct drm_mode_fb_cmd2 *mode_cmd,
8817 struct drm_i915_gem_object *obj)
8818 {
8819 struct drm_framebuffer *fb;
8820 int ret;
8821
8822 ret = i915_mutex_lock_interruptible(dev);
8823 if (ret)
8824 return ERR_PTR(ret);
8825 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8826 mutex_unlock(&dev->struct_mutex);
8827
8828 return fb;
8829 }
8830
8831 static u32
8832 intel_framebuffer_pitch_for_width(int width, int bpp)
8833 {
8834 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8835 return ALIGN(pitch, 64);
8836 }
8837
8838 static u32
8839 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8840 {
8841 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8842 return PAGE_ALIGN(pitch * mode->vdisplay);
8843 }
8844
8845 static struct drm_framebuffer *
8846 intel_framebuffer_create_for_mode(struct drm_device *dev,
8847 struct drm_display_mode *mode,
8848 int depth, int bpp)
8849 {
8850 struct drm_i915_gem_object *obj;
8851 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8852
8853 obj = i915_gem_alloc_object(dev,
8854 intel_framebuffer_size_for_mode(mode, bpp));
8855 if (obj == NULL)
8856 return ERR_PTR(-ENOMEM);
8857
8858 mode_cmd.width = mode->hdisplay;
8859 mode_cmd.height = mode->vdisplay;
8860 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8861 bpp);
8862 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8863
8864 return intel_framebuffer_create(dev, &mode_cmd, obj);
8865 }
8866
8867 static struct drm_framebuffer *
8868 mode_fits_in_fbdev(struct drm_device *dev,
8869 struct drm_display_mode *mode)
8870 {
8871 #ifdef CONFIG_DRM_I915_FBDEV
8872 struct drm_i915_private *dev_priv = dev->dev_private;
8873 struct drm_i915_gem_object *obj;
8874 struct drm_framebuffer *fb;
8875
8876 if (!dev_priv->fbdev)
8877 return NULL;
8878
8879 if (!dev_priv->fbdev->fb)
8880 return NULL;
8881
8882 obj = dev_priv->fbdev->fb->obj;
8883 BUG_ON(!obj);
8884
8885 fb = &dev_priv->fbdev->fb->base;
8886 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8887 fb->bits_per_pixel))
8888 return NULL;
8889
8890 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8891 return NULL;
8892
8893 return fb;
8894 #else
8895 return NULL;
8896 #endif
8897 }
8898
8899 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8900 struct drm_display_mode *mode,
8901 struct intel_load_detect_pipe *old,
8902 struct drm_modeset_acquire_ctx *ctx)
8903 {
8904 struct intel_crtc *intel_crtc;
8905 struct intel_encoder *intel_encoder =
8906 intel_attached_encoder(connector);
8907 struct drm_crtc *possible_crtc;
8908 struct drm_encoder *encoder = &intel_encoder->base;
8909 struct drm_crtc *crtc = NULL;
8910 struct drm_device *dev = encoder->dev;
8911 struct drm_framebuffer *fb;
8912 struct drm_mode_config *config = &dev->mode_config;
8913 struct drm_atomic_state *state = NULL;
8914 struct drm_connector_state *connector_state;
8915 int ret, i = -1;
8916
8917 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8918 connector->base.id, connector->name,
8919 encoder->base.id, encoder->name);
8920
8921 retry:
8922 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8923 if (ret)
8924 goto fail_unlock;
8925
8926 /*
8927 * Algorithm gets a little messy:
8928 *
8929 * - if the connector already has an assigned crtc, use it (but make
8930 * sure it's on first)
8931 *
8932 * - try to find the first unused crtc that can drive this connector,
8933 * and use that if we find one
8934 */
8935
8936 /* See if we already have a CRTC for this connector */
8937 if (encoder->crtc) {
8938 crtc = encoder->crtc;
8939
8940 ret = drm_modeset_lock(&crtc->mutex, ctx);
8941 if (ret)
8942 goto fail_unlock;
8943 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8944 if (ret)
8945 goto fail_unlock;
8946
8947 old->dpms_mode = connector->dpms;
8948 old->load_detect_temp = false;
8949
8950 /* Make sure the crtc and connector are running */
8951 if (connector->dpms != DRM_MODE_DPMS_ON)
8952 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8953
8954 return true;
8955 }
8956
8957 /* Find an unused one (if possible) */
8958 for_each_crtc(dev, possible_crtc) {
8959 i++;
8960 if (!(encoder->possible_crtcs & (1 << i)))
8961 continue;
8962 if (possible_crtc->state->enable)
8963 continue;
8964 /* This can occur when applying the pipe A quirk on resume. */
8965 if (to_intel_crtc(possible_crtc)->new_enabled)
8966 continue;
8967
8968 crtc = possible_crtc;
8969 break;
8970 }
8971
8972 /*
8973 * If we didn't find an unused CRTC, don't use any.
8974 */
8975 if (!crtc) {
8976 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8977 goto fail_unlock;
8978 }
8979
8980 ret = drm_modeset_lock(&crtc->mutex, ctx);
8981 if (ret)
8982 goto fail_unlock;
8983 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8984 if (ret)
8985 goto fail_unlock;
8986 intel_encoder->new_crtc = to_intel_crtc(crtc);
8987 to_intel_connector(connector)->new_encoder = intel_encoder;
8988
8989 intel_crtc = to_intel_crtc(crtc);
8990 intel_crtc->new_enabled = true;
8991 intel_crtc->new_config = intel_crtc->config;
8992 old->dpms_mode = connector->dpms;
8993 old->load_detect_temp = true;
8994 old->release_fb = NULL;
8995
8996 state = drm_atomic_state_alloc(dev);
8997 if (!state)
8998 return false;
8999
9000 state->acquire_ctx = ctx;
9001
9002 connector_state = drm_atomic_get_connector_state(state, connector);
9003 if (IS_ERR(connector_state)) {
9004 ret = PTR_ERR(connector_state);
9005 goto fail;
9006 }
9007
9008 connector_state->crtc = crtc;
9009 connector_state->best_encoder = &intel_encoder->base;
9010
9011 if (!mode)
9012 mode = &load_detect_mode;
9013
9014 /* We need a framebuffer large enough to accommodate all accesses
9015 * that the plane may generate whilst we perform load detection.
9016 * We can not rely on the fbcon either being present (we get called
9017 * during its initialisation to detect all boot displays, or it may
9018 * not even exist) or that it is large enough to satisfy the
9019 * requested mode.
9020 */
9021 fb = mode_fits_in_fbdev(dev, mode);
9022 if (fb == NULL) {
9023 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9024 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9025 old->release_fb = fb;
9026 } else
9027 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9028 if (IS_ERR(fb)) {
9029 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9030 goto fail;
9031 }
9032
9033 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9034 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9035 if (old->release_fb)
9036 old->release_fb->funcs->destroy(old->release_fb);
9037 goto fail;
9038 }
9039 crtc->primary->crtc = crtc;
9040
9041 /* let the connector get through one full cycle before testing */
9042 intel_wait_for_vblank(dev, intel_crtc->pipe);
9043 return true;
9044
9045 fail:
9046 intel_crtc->new_enabled = crtc->state->enable;
9047 if (intel_crtc->new_enabled)
9048 intel_crtc->new_config = intel_crtc->config;
9049 else
9050 intel_crtc->new_config = NULL;
9051 fail_unlock:
9052 if (state) {
9053 drm_atomic_state_free(state);
9054 state = NULL;
9055 }
9056
9057 if (ret == -EDEADLK) {
9058 drm_modeset_backoff(ctx);
9059 goto retry;
9060 }
9061
9062 return false;
9063 }
9064
9065 void intel_release_load_detect_pipe(struct drm_connector *connector,
9066 struct intel_load_detect_pipe *old,
9067 struct drm_modeset_acquire_ctx *ctx)
9068 {
9069 struct drm_device *dev = connector->dev;
9070 struct intel_encoder *intel_encoder =
9071 intel_attached_encoder(connector);
9072 struct drm_encoder *encoder = &intel_encoder->base;
9073 struct drm_crtc *crtc = encoder->crtc;
9074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9075 struct drm_atomic_state *state;
9076 struct drm_connector_state *connector_state;
9077
9078 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9079 connector->base.id, connector->name,
9080 encoder->base.id, encoder->name);
9081
9082 if (old->load_detect_temp) {
9083 state = drm_atomic_state_alloc(dev);
9084 if (!state)
9085 goto fail;
9086
9087 state->acquire_ctx = ctx;
9088
9089 connector_state = drm_atomic_get_connector_state(state, connector);
9090 if (IS_ERR(connector_state))
9091 goto fail;
9092
9093 to_intel_connector(connector)->new_encoder = NULL;
9094 intel_encoder->new_crtc = NULL;
9095 intel_crtc->new_enabled = false;
9096 intel_crtc->new_config = NULL;
9097
9098 connector_state->best_encoder = NULL;
9099 connector_state->crtc = NULL;
9100
9101 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9102
9103 drm_atomic_state_free(state);
9104
9105 if (old->release_fb) {
9106 drm_framebuffer_unregister_private(old->release_fb);
9107 drm_framebuffer_unreference(old->release_fb);
9108 }
9109
9110 return;
9111 }
9112
9113 /* Switch crtc and encoder back off if necessary */
9114 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9115 connector->funcs->dpms(connector, old->dpms_mode);
9116
9117 return;
9118 fail:
9119 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9120 drm_atomic_state_free(state);
9121 }
9122
9123 static int i9xx_pll_refclk(struct drm_device *dev,
9124 const struct intel_crtc_state *pipe_config)
9125 {
9126 struct drm_i915_private *dev_priv = dev->dev_private;
9127 u32 dpll = pipe_config->dpll_hw_state.dpll;
9128
9129 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9130 return dev_priv->vbt.lvds_ssc_freq;
9131 else if (HAS_PCH_SPLIT(dev))
9132 return 120000;
9133 else if (!IS_GEN2(dev))
9134 return 96000;
9135 else
9136 return 48000;
9137 }
9138
9139 /* Returns the clock of the currently programmed mode of the given pipe. */
9140 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9141 struct intel_crtc_state *pipe_config)
9142 {
9143 struct drm_device *dev = crtc->base.dev;
9144 struct drm_i915_private *dev_priv = dev->dev_private;
9145 int pipe = pipe_config->cpu_transcoder;
9146 u32 dpll = pipe_config->dpll_hw_state.dpll;
9147 u32 fp;
9148 intel_clock_t clock;
9149 int refclk = i9xx_pll_refclk(dev, pipe_config);
9150
9151 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9152 fp = pipe_config->dpll_hw_state.fp0;
9153 else
9154 fp = pipe_config->dpll_hw_state.fp1;
9155
9156 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9157 if (IS_PINEVIEW(dev)) {
9158 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9159 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9160 } else {
9161 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9162 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9163 }
9164
9165 if (!IS_GEN2(dev)) {
9166 if (IS_PINEVIEW(dev))
9167 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9168 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9169 else
9170 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9171 DPLL_FPA01_P1_POST_DIV_SHIFT);
9172
9173 switch (dpll & DPLL_MODE_MASK) {
9174 case DPLLB_MODE_DAC_SERIAL:
9175 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9176 5 : 10;
9177 break;
9178 case DPLLB_MODE_LVDS:
9179 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9180 7 : 14;
9181 break;
9182 default:
9183 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9184 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9185 return;
9186 }
9187
9188 if (IS_PINEVIEW(dev))
9189 pineview_clock(refclk, &clock);
9190 else
9191 i9xx_clock(refclk, &clock);
9192 } else {
9193 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9194 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9195
9196 if (is_lvds) {
9197 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9198 DPLL_FPA01_P1_POST_DIV_SHIFT);
9199
9200 if (lvds & LVDS_CLKB_POWER_UP)
9201 clock.p2 = 7;
9202 else
9203 clock.p2 = 14;
9204 } else {
9205 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9206 clock.p1 = 2;
9207 else {
9208 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9209 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9210 }
9211 if (dpll & PLL_P2_DIVIDE_BY_4)
9212 clock.p2 = 4;
9213 else
9214 clock.p2 = 2;
9215 }
9216
9217 i9xx_clock(refclk, &clock);
9218 }
9219
9220 /*
9221 * This value includes pixel_multiplier. We will use
9222 * port_clock to compute adjusted_mode.crtc_clock in the
9223 * encoder's get_config() function.
9224 */
9225 pipe_config->port_clock = clock.dot;
9226 }
9227
9228 int intel_dotclock_calculate(int link_freq,
9229 const struct intel_link_m_n *m_n)
9230 {
9231 /*
9232 * The calculation for the data clock is:
9233 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9234 * But we want to avoid losing precison if possible, so:
9235 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9236 *
9237 * and the link clock is simpler:
9238 * link_clock = (m * link_clock) / n
9239 */
9240
9241 if (!m_n->link_n)
9242 return 0;
9243
9244 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9245 }
9246
9247 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9248 struct intel_crtc_state *pipe_config)
9249 {
9250 struct drm_device *dev = crtc->base.dev;
9251
9252 /* read out port_clock from the DPLL */
9253 i9xx_crtc_clock_get(crtc, pipe_config);
9254
9255 /*
9256 * This value does not include pixel_multiplier.
9257 * We will check that port_clock and adjusted_mode.crtc_clock
9258 * agree once we know their relationship in the encoder's
9259 * get_config() function.
9260 */
9261 pipe_config->base.adjusted_mode.crtc_clock =
9262 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9263 &pipe_config->fdi_m_n);
9264 }
9265
9266 /** Returns the currently programmed mode of the given pipe. */
9267 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9268 struct drm_crtc *crtc)
9269 {
9270 struct drm_i915_private *dev_priv = dev->dev_private;
9271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9272 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9273 struct drm_display_mode *mode;
9274 struct intel_crtc_state pipe_config;
9275 int htot = I915_READ(HTOTAL(cpu_transcoder));
9276 int hsync = I915_READ(HSYNC(cpu_transcoder));
9277 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9278 int vsync = I915_READ(VSYNC(cpu_transcoder));
9279 enum pipe pipe = intel_crtc->pipe;
9280
9281 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9282 if (!mode)
9283 return NULL;
9284
9285 /*
9286 * Construct a pipe_config sufficient for getting the clock info
9287 * back out of crtc_clock_get.
9288 *
9289 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9290 * to use a real value here instead.
9291 */
9292 pipe_config.cpu_transcoder = (enum transcoder) pipe;
9293 pipe_config.pixel_multiplier = 1;
9294 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9295 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9296 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9297 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9298
9299 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9300 mode->hdisplay = (htot & 0xffff) + 1;
9301 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9302 mode->hsync_start = (hsync & 0xffff) + 1;
9303 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9304 mode->vdisplay = (vtot & 0xffff) + 1;
9305 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9306 mode->vsync_start = (vsync & 0xffff) + 1;
9307 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9308
9309 drm_mode_set_name(mode);
9310
9311 return mode;
9312 }
9313
9314 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9315 {
9316 struct drm_device *dev = crtc->dev;
9317 struct drm_i915_private *dev_priv = dev->dev_private;
9318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9319
9320 if (!HAS_GMCH_DISPLAY(dev))
9321 return;
9322
9323 if (!dev_priv->lvds_downclock_avail)
9324 return;
9325
9326 /*
9327 * Since this is called by a timer, we should never get here in
9328 * the manual case.
9329 */
9330 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9331 int pipe = intel_crtc->pipe;
9332 int dpll_reg = DPLL(pipe);
9333 int dpll;
9334
9335 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9336
9337 assert_panel_unlocked(dev_priv, pipe);
9338
9339 dpll = I915_READ(dpll_reg);
9340 dpll |= DISPLAY_RATE_SELECT_FPA1;
9341 I915_WRITE(dpll_reg, dpll);
9342 intel_wait_for_vblank(dev, pipe);
9343 dpll = I915_READ(dpll_reg);
9344 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9345 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9346 }
9347
9348 }
9349
9350 void intel_mark_busy(struct drm_device *dev)
9351 {
9352 struct drm_i915_private *dev_priv = dev->dev_private;
9353
9354 if (dev_priv->mm.busy)
9355 return;
9356
9357 intel_runtime_pm_get(dev_priv);
9358 i915_update_gfx_val(dev_priv);
9359 if (INTEL_INFO(dev)->gen >= 6)
9360 gen6_rps_busy(dev_priv);
9361 dev_priv->mm.busy = true;
9362 }
9363
9364 void intel_mark_idle(struct drm_device *dev)
9365 {
9366 struct drm_i915_private *dev_priv = dev->dev_private;
9367 struct drm_crtc *crtc;
9368
9369 if (!dev_priv->mm.busy)
9370 return;
9371
9372 dev_priv->mm.busy = false;
9373
9374 for_each_crtc(dev, crtc) {
9375 if (!crtc->primary->fb)
9376 continue;
9377
9378 intel_decrease_pllclock(crtc);
9379 }
9380
9381 if (INTEL_INFO(dev)->gen >= 6)
9382 gen6_rps_idle(dev->dev_private);
9383
9384 intel_runtime_pm_put(dev_priv);
9385 }
9386
9387 static void intel_crtc_set_state(struct intel_crtc *crtc,
9388 struct intel_crtc_state *crtc_state)
9389 {
9390 kfree(crtc->config);
9391 crtc->config = crtc_state;
9392 crtc->base.state = &crtc_state->base;
9393 }
9394
9395 static void intel_crtc_destroy(struct drm_crtc *crtc)
9396 {
9397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9398 struct drm_device *dev = crtc->dev;
9399 struct intel_unpin_work *work;
9400
9401 spin_lock_irq(&dev->event_lock);
9402 work = intel_crtc->unpin_work;
9403 intel_crtc->unpin_work = NULL;
9404 spin_unlock_irq(&dev->event_lock);
9405
9406 if (work) {
9407 cancel_work_sync(&work->work);
9408 kfree(work);
9409 }
9410
9411 intel_crtc_set_state(intel_crtc, NULL);
9412 drm_crtc_cleanup(crtc);
9413
9414 kfree(intel_crtc);
9415 }
9416
9417 static void intel_unpin_work_fn(struct work_struct *__work)
9418 {
9419 struct intel_unpin_work *work =
9420 container_of(__work, struct intel_unpin_work, work);
9421 struct drm_device *dev = work->crtc->dev;
9422 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9423
9424 mutex_lock(&dev->struct_mutex);
9425 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
9426 drm_gem_object_unreference(&work->pending_flip_obj->base);
9427
9428 intel_fbc_update(dev);
9429
9430 if (work->flip_queued_req)
9431 i915_gem_request_assign(&work->flip_queued_req, NULL);
9432 mutex_unlock(&dev->struct_mutex);
9433
9434 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9435 drm_framebuffer_unreference(work->old_fb);
9436
9437 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9438 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9439
9440 kfree(work);
9441 }
9442
9443 static void do_intel_finish_page_flip(struct drm_device *dev,
9444 struct drm_crtc *crtc)
9445 {
9446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9447 struct intel_unpin_work *work;
9448 unsigned long flags;
9449
9450 /* Ignore early vblank irqs */
9451 if (intel_crtc == NULL)
9452 return;
9453
9454 /*
9455 * This is called both by irq handlers and the reset code (to complete
9456 * lost pageflips) so needs the full irqsave spinlocks.
9457 */
9458 spin_lock_irqsave(&dev->event_lock, flags);
9459 work = intel_crtc->unpin_work;
9460
9461 /* Ensure we don't miss a work->pending update ... */
9462 smp_rmb();
9463
9464 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9465 spin_unlock_irqrestore(&dev->event_lock, flags);
9466 return;
9467 }
9468
9469 page_flip_completed(intel_crtc);
9470
9471 spin_unlock_irqrestore(&dev->event_lock, flags);
9472 }
9473
9474 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9475 {
9476 struct drm_i915_private *dev_priv = dev->dev_private;
9477 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9478
9479 do_intel_finish_page_flip(dev, crtc);
9480 }
9481
9482 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9483 {
9484 struct drm_i915_private *dev_priv = dev->dev_private;
9485 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9486
9487 do_intel_finish_page_flip(dev, crtc);
9488 }
9489
9490 /* Is 'a' after or equal to 'b'? */
9491 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9492 {
9493 return !((a - b) & 0x80000000);
9494 }
9495
9496 static bool page_flip_finished(struct intel_crtc *crtc)
9497 {
9498 struct drm_device *dev = crtc->base.dev;
9499 struct drm_i915_private *dev_priv = dev->dev_private;
9500
9501 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9502 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9503 return true;
9504
9505 /*
9506 * The relevant registers doen't exist on pre-ctg.
9507 * As the flip done interrupt doesn't trigger for mmio
9508 * flips on gmch platforms, a flip count check isn't
9509 * really needed there. But since ctg has the registers,
9510 * include it in the check anyway.
9511 */
9512 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9513 return true;
9514
9515 /*
9516 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9517 * used the same base address. In that case the mmio flip might
9518 * have completed, but the CS hasn't even executed the flip yet.
9519 *
9520 * A flip count check isn't enough as the CS might have updated
9521 * the base address just after start of vblank, but before we
9522 * managed to process the interrupt. This means we'd complete the
9523 * CS flip too soon.
9524 *
9525 * Combining both checks should get us a good enough result. It may
9526 * still happen that the CS flip has been executed, but has not
9527 * yet actually completed. But in case the base address is the same
9528 * anyway, we don't really care.
9529 */
9530 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9531 crtc->unpin_work->gtt_offset &&
9532 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9533 crtc->unpin_work->flip_count);
9534 }
9535
9536 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9537 {
9538 struct drm_i915_private *dev_priv = dev->dev_private;
9539 struct intel_crtc *intel_crtc =
9540 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9541 unsigned long flags;
9542
9543
9544 /*
9545 * This is called both by irq handlers and the reset code (to complete
9546 * lost pageflips) so needs the full irqsave spinlocks.
9547 *
9548 * NB: An MMIO update of the plane base pointer will also
9549 * generate a page-flip completion irq, i.e. every modeset
9550 * is also accompanied by a spurious intel_prepare_page_flip().
9551 */
9552 spin_lock_irqsave(&dev->event_lock, flags);
9553 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9554 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9555 spin_unlock_irqrestore(&dev->event_lock, flags);
9556 }
9557
9558 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9559 {
9560 /* Ensure that the work item is consistent when activating it ... */
9561 smp_wmb();
9562 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9563 /* and that it is marked active as soon as the irq could fire. */
9564 smp_wmb();
9565 }
9566
9567 static int intel_gen2_queue_flip(struct drm_device *dev,
9568 struct drm_crtc *crtc,
9569 struct drm_framebuffer *fb,
9570 struct drm_i915_gem_object *obj,
9571 struct intel_engine_cs *ring,
9572 uint32_t flags)
9573 {
9574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9575 u32 flip_mask;
9576 int ret;
9577
9578 ret = intel_ring_begin(ring, 6);
9579 if (ret)
9580 return ret;
9581
9582 /* Can't queue multiple flips, so wait for the previous
9583 * one to finish before executing the next.
9584 */
9585 if (intel_crtc->plane)
9586 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9587 else
9588 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9589 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9590 intel_ring_emit(ring, MI_NOOP);
9591 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9592 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9593 intel_ring_emit(ring, fb->pitches[0]);
9594 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9595 intel_ring_emit(ring, 0); /* aux display base address, unused */
9596
9597 intel_mark_page_flip_active(intel_crtc);
9598 __intel_ring_advance(ring);
9599 return 0;
9600 }
9601
9602 static int intel_gen3_queue_flip(struct drm_device *dev,
9603 struct drm_crtc *crtc,
9604 struct drm_framebuffer *fb,
9605 struct drm_i915_gem_object *obj,
9606 struct intel_engine_cs *ring,
9607 uint32_t flags)
9608 {
9609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9610 u32 flip_mask;
9611 int ret;
9612
9613 ret = intel_ring_begin(ring, 6);
9614 if (ret)
9615 return ret;
9616
9617 if (intel_crtc->plane)
9618 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9619 else
9620 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9621 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9622 intel_ring_emit(ring, MI_NOOP);
9623 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9624 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9625 intel_ring_emit(ring, fb->pitches[0]);
9626 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9627 intel_ring_emit(ring, MI_NOOP);
9628
9629 intel_mark_page_flip_active(intel_crtc);
9630 __intel_ring_advance(ring);
9631 return 0;
9632 }
9633
9634 static int intel_gen4_queue_flip(struct drm_device *dev,
9635 struct drm_crtc *crtc,
9636 struct drm_framebuffer *fb,
9637 struct drm_i915_gem_object *obj,
9638 struct intel_engine_cs *ring,
9639 uint32_t flags)
9640 {
9641 struct drm_i915_private *dev_priv = dev->dev_private;
9642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9643 uint32_t pf, pipesrc;
9644 int ret;
9645
9646 ret = intel_ring_begin(ring, 4);
9647 if (ret)
9648 return ret;
9649
9650 /* i965+ uses the linear or tiled offsets from the
9651 * Display Registers (which do not change across a page-flip)
9652 * so we need only reprogram the base address.
9653 */
9654 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9655 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9656 intel_ring_emit(ring, fb->pitches[0]);
9657 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9658 obj->tiling_mode);
9659
9660 /* XXX Enabling the panel-fitter across page-flip is so far
9661 * untested on non-native modes, so ignore it for now.
9662 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9663 */
9664 pf = 0;
9665 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9666 intel_ring_emit(ring, pf | pipesrc);
9667
9668 intel_mark_page_flip_active(intel_crtc);
9669 __intel_ring_advance(ring);
9670 return 0;
9671 }
9672
9673 static int intel_gen6_queue_flip(struct drm_device *dev,
9674 struct drm_crtc *crtc,
9675 struct drm_framebuffer *fb,
9676 struct drm_i915_gem_object *obj,
9677 struct intel_engine_cs *ring,
9678 uint32_t flags)
9679 {
9680 struct drm_i915_private *dev_priv = dev->dev_private;
9681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9682 uint32_t pf, pipesrc;
9683 int ret;
9684
9685 ret = intel_ring_begin(ring, 4);
9686 if (ret)
9687 return ret;
9688
9689 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9690 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9691 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9692 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9693
9694 /* Contrary to the suggestions in the documentation,
9695 * "Enable Panel Fitter" does not seem to be required when page
9696 * flipping with a non-native mode, and worse causes a normal
9697 * modeset to fail.
9698 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9699 */
9700 pf = 0;
9701 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9702 intel_ring_emit(ring, pf | pipesrc);
9703
9704 intel_mark_page_flip_active(intel_crtc);
9705 __intel_ring_advance(ring);
9706 return 0;
9707 }
9708
9709 static int intel_gen7_queue_flip(struct drm_device *dev,
9710 struct drm_crtc *crtc,
9711 struct drm_framebuffer *fb,
9712 struct drm_i915_gem_object *obj,
9713 struct intel_engine_cs *ring,
9714 uint32_t flags)
9715 {
9716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9717 uint32_t plane_bit = 0;
9718 int len, ret;
9719
9720 switch (intel_crtc->plane) {
9721 case PLANE_A:
9722 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9723 break;
9724 case PLANE_B:
9725 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9726 break;
9727 case PLANE_C:
9728 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9729 break;
9730 default:
9731 WARN_ONCE(1, "unknown plane in flip command\n");
9732 return -ENODEV;
9733 }
9734
9735 len = 4;
9736 if (ring->id == RCS) {
9737 len += 6;
9738 /*
9739 * On Gen 8, SRM is now taking an extra dword to accommodate
9740 * 48bits addresses, and we need a NOOP for the batch size to
9741 * stay even.
9742 */
9743 if (IS_GEN8(dev))
9744 len += 2;
9745 }
9746
9747 /*
9748 * BSpec MI_DISPLAY_FLIP for IVB:
9749 * "The full packet must be contained within the same cache line."
9750 *
9751 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9752 * cacheline, if we ever start emitting more commands before
9753 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9754 * then do the cacheline alignment, and finally emit the
9755 * MI_DISPLAY_FLIP.
9756 */
9757 ret = intel_ring_cacheline_align(ring);
9758 if (ret)
9759 return ret;
9760
9761 ret = intel_ring_begin(ring, len);
9762 if (ret)
9763 return ret;
9764
9765 /* Unmask the flip-done completion message. Note that the bspec says that
9766 * we should do this for both the BCS and RCS, and that we must not unmask
9767 * more than one flip event at any time (or ensure that one flip message
9768 * can be sent by waiting for flip-done prior to queueing new flips).
9769 * Experimentation says that BCS works despite DERRMR masking all
9770 * flip-done completion events and that unmasking all planes at once
9771 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9772 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9773 */
9774 if (ring->id == RCS) {
9775 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9776 intel_ring_emit(ring, DERRMR);
9777 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9778 DERRMR_PIPEB_PRI_FLIP_DONE |
9779 DERRMR_PIPEC_PRI_FLIP_DONE));
9780 if (IS_GEN8(dev))
9781 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9782 MI_SRM_LRM_GLOBAL_GTT);
9783 else
9784 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9785 MI_SRM_LRM_GLOBAL_GTT);
9786 intel_ring_emit(ring, DERRMR);
9787 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9788 if (IS_GEN8(dev)) {
9789 intel_ring_emit(ring, 0);
9790 intel_ring_emit(ring, MI_NOOP);
9791 }
9792 }
9793
9794 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9795 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9796 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9797 intel_ring_emit(ring, (MI_NOOP));
9798
9799 intel_mark_page_flip_active(intel_crtc);
9800 __intel_ring_advance(ring);
9801 return 0;
9802 }
9803
9804 static bool use_mmio_flip(struct intel_engine_cs *ring,
9805 struct drm_i915_gem_object *obj)
9806 {
9807 /*
9808 * This is not being used for older platforms, because
9809 * non-availability of flip done interrupt forces us to use
9810 * CS flips. Older platforms derive flip done using some clever
9811 * tricks involving the flip_pending status bits and vblank irqs.
9812 * So using MMIO flips there would disrupt this mechanism.
9813 */
9814
9815 if (ring == NULL)
9816 return true;
9817
9818 if (INTEL_INFO(ring->dev)->gen < 5)
9819 return false;
9820
9821 if (i915.use_mmio_flip < 0)
9822 return false;
9823 else if (i915.use_mmio_flip > 0)
9824 return true;
9825 else if (i915.enable_execlists)
9826 return true;
9827 else
9828 return ring != i915_gem_request_get_ring(obj->last_read_req);
9829 }
9830
9831 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9832 {
9833 struct drm_device *dev = intel_crtc->base.dev;
9834 struct drm_i915_private *dev_priv = dev->dev_private;
9835 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9836 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9837 struct drm_i915_gem_object *obj = intel_fb->obj;
9838 const enum pipe pipe = intel_crtc->pipe;
9839 u32 ctl, stride;
9840
9841 ctl = I915_READ(PLANE_CTL(pipe, 0));
9842 ctl &= ~PLANE_CTL_TILED_MASK;
9843 if (obj->tiling_mode == I915_TILING_X)
9844 ctl |= PLANE_CTL_TILED_X;
9845
9846 /*
9847 * The stride is either expressed as a multiple of 64 bytes chunks for
9848 * linear buffers or in number of tiles for tiled buffers.
9849 */
9850 stride = fb->pitches[0] >> 6;
9851 if (obj->tiling_mode == I915_TILING_X)
9852 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9853
9854 /*
9855 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9856 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9857 */
9858 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9859 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9860
9861 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9862 POSTING_READ(PLANE_SURF(pipe, 0));
9863 }
9864
9865 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9866 {
9867 struct drm_device *dev = intel_crtc->base.dev;
9868 struct drm_i915_private *dev_priv = dev->dev_private;
9869 struct intel_framebuffer *intel_fb =
9870 to_intel_framebuffer(intel_crtc->base.primary->fb);
9871 struct drm_i915_gem_object *obj = intel_fb->obj;
9872 u32 dspcntr;
9873 u32 reg;
9874
9875 reg = DSPCNTR(intel_crtc->plane);
9876 dspcntr = I915_READ(reg);
9877
9878 if (obj->tiling_mode != I915_TILING_NONE)
9879 dspcntr |= DISPPLANE_TILED;
9880 else
9881 dspcntr &= ~DISPPLANE_TILED;
9882
9883 I915_WRITE(reg, dspcntr);
9884
9885 I915_WRITE(DSPSURF(intel_crtc->plane),
9886 intel_crtc->unpin_work->gtt_offset);
9887 POSTING_READ(DSPSURF(intel_crtc->plane));
9888
9889 }
9890
9891 /*
9892 * XXX: This is the temporary way to update the plane registers until we get
9893 * around to using the usual plane update functions for MMIO flips
9894 */
9895 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9896 {
9897 struct drm_device *dev = intel_crtc->base.dev;
9898 bool atomic_update;
9899 u32 start_vbl_count;
9900
9901 intel_mark_page_flip_active(intel_crtc);
9902
9903 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9904
9905 if (INTEL_INFO(dev)->gen >= 9)
9906 skl_do_mmio_flip(intel_crtc);
9907 else
9908 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9909 ilk_do_mmio_flip(intel_crtc);
9910
9911 if (atomic_update)
9912 intel_pipe_update_end(intel_crtc, start_vbl_count);
9913 }
9914
9915 static void intel_mmio_flip_work_func(struct work_struct *work)
9916 {
9917 struct intel_crtc *crtc =
9918 container_of(work, struct intel_crtc, mmio_flip.work);
9919 struct intel_mmio_flip *mmio_flip;
9920
9921 mmio_flip = &crtc->mmio_flip;
9922 if (mmio_flip->req)
9923 WARN_ON(__i915_wait_request(mmio_flip->req,
9924 crtc->reset_counter,
9925 false, NULL, NULL) != 0);
9926
9927 intel_do_mmio_flip(crtc);
9928 if (mmio_flip->req) {
9929 mutex_lock(&crtc->base.dev->struct_mutex);
9930 i915_gem_request_assign(&mmio_flip->req, NULL);
9931 mutex_unlock(&crtc->base.dev->struct_mutex);
9932 }
9933 }
9934
9935 static int intel_queue_mmio_flip(struct drm_device *dev,
9936 struct drm_crtc *crtc,
9937 struct drm_framebuffer *fb,
9938 struct drm_i915_gem_object *obj,
9939 struct intel_engine_cs *ring,
9940 uint32_t flags)
9941 {
9942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9943
9944 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9945 obj->last_write_req);
9946
9947 schedule_work(&intel_crtc->mmio_flip.work);
9948
9949 return 0;
9950 }
9951
9952 static int intel_default_queue_flip(struct drm_device *dev,
9953 struct drm_crtc *crtc,
9954 struct drm_framebuffer *fb,
9955 struct drm_i915_gem_object *obj,
9956 struct intel_engine_cs *ring,
9957 uint32_t flags)
9958 {
9959 return -ENODEV;
9960 }
9961
9962 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9963 struct drm_crtc *crtc)
9964 {
9965 struct drm_i915_private *dev_priv = dev->dev_private;
9966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9967 struct intel_unpin_work *work = intel_crtc->unpin_work;
9968 u32 addr;
9969
9970 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9971 return true;
9972
9973 if (!work->enable_stall_check)
9974 return false;
9975
9976 if (work->flip_ready_vblank == 0) {
9977 if (work->flip_queued_req &&
9978 !i915_gem_request_completed(work->flip_queued_req, true))
9979 return false;
9980
9981 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
9982 }
9983
9984 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
9985 return false;
9986
9987 /* Potential stall - if we see that the flip has happened,
9988 * assume a missed interrupt. */
9989 if (INTEL_INFO(dev)->gen >= 4)
9990 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9991 else
9992 addr = I915_READ(DSPADDR(intel_crtc->plane));
9993
9994 /* There is a potential issue here with a false positive after a flip
9995 * to the same address. We could address this by checking for a
9996 * non-incrementing frame counter.
9997 */
9998 return addr == work->gtt_offset;
9999 }
10000
10001 void intel_check_page_flip(struct drm_device *dev, int pipe)
10002 {
10003 struct drm_i915_private *dev_priv = dev->dev_private;
10004 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10006
10007 WARN_ON(!in_interrupt());
10008
10009 if (crtc == NULL)
10010 return;
10011
10012 spin_lock(&dev->event_lock);
10013 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
10014 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10015 intel_crtc->unpin_work->flip_queued_vblank,
10016 drm_vblank_count(dev, pipe));
10017 page_flip_completed(intel_crtc);
10018 }
10019 spin_unlock(&dev->event_lock);
10020 }
10021
10022 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10023 struct drm_framebuffer *fb,
10024 struct drm_pending_vblank_event *event,
10025 uint32_t page_flip_flags)
10026 {
10027 struct drm_device *dev = crtc->dev;
10028 struct drm_i915_private *dev_priv = dev->dev_private;
10029 struct drm_framebuffer *old_fb = crtc->primary->fb;
10030 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10032 struct drm_plane *primary = crtc->primary;
10033 enum pipe pipe = intel_crtc->pipe;
10034 struct intel_unpin_work *work;
10035 struct intel_engine_cs *ring;
10036 int ret;
10037
10038 /*
10039 * drm_mode_page_flip_ioctl() should already catch this, but double
10040 * check to be safe. In the future we may enable pageflipping from
10041 * a disabled primary plane.
10042 */
10043 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10044 return -EBUSY;
10045
10046 /* Can't change pixel format via MI display flips. */
10047 if (fb->pixel_format != crtc->primary->fb->pixel_format)
10048 return -EINVAL;
10049
10050 /*
10051 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10052 * Note that pitch changes could also affect these register.
10053 */
10054 if (INTEL_INFO(dev)->gen > 3 &&
10055 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10056 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10057 return -EINVAL;
10058
10059 if (i915_terminally_wedged(&dev_priv->gpu_error))
10060 goto out_hang;
10061
10062 work = kzalloc(sizeof(*work), GFP_KERNEL);
10063 if (work == NULL)
10064 return -ENOMEM;
10065
10066 work->event = event;
10067 work->crtc = crtc;
10068 work->old_fb = old_fb;
10069 INIT_WORK(&work->work, intel_unpin_work_fn);
10070
10071 ret = drm_crtc_vblank_get(crtc);
10072 if (ret)
10073 goto free_work;
10074
10075 /* We borrow the event spin lock for protecting unpin_work */
10076 spin_lock_irq(&dev->event_lock);
10077 if (intel_crtc->unpin_work) {
10078 /* Before declaring the flip queue wedged, check if
10079 * the hardware completed the operation behind our backs.
10080 */
10081 if (__intel_pageflip_stall_check(dev, crtc)) {
10082 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10083 page_flip_completed(intel_crtc);
10084 } else {
10085 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10086 spin_unlock_irq(&dev->event_lock);
10087
10088 drm_crtc_vblank_put(crtc);
10089 kfree(work);
10090 return -EBUSY;
10091 }
10092 }
10093 intel_crtc->unpin_work = work;
10094 spin_unlock_irq(&dev->event_lock);
10095
10096 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10097 flush_workqueue(dev_priv->wq);
10098
10099 /* Reference the objects for the scheduled work. */
10100 drm_framebuffer_reference(work->old_fb);
10101 drm_gem_object_reference(&obj->base);
10102
10103 crtc->primary->fb = fb;
10104 update_state_fb(crtc->primary);
10105
10106 work->pending_flip_obj = obj;
10107
10108 ret = i915_mutex_lock_interruptible(dev);
10109 if (ret)
10110 goto cleanup;
10111
10112 atomic_inc(&intel_crtc->unpin_work_count);
10113 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10114
10115 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10116 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10117
10118 if (IS_VALLEYVIEW(dev)) {
10119 ring = &dev_priv->ring[BCS];
10120 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10121 /* vlv: DISPLAY_FLIP fails to change tiling */
10122 ring = NULL;
10123 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10124 ring = &dev_priv->ring[BCS];
10125 } else if (INTEL_INFO(dev)->gen >= 7) {
10126 ring = i915_gem_request_get_ring(obj->last_read_req);
10127 if (ring == NULL || ring->id != RCS)
10128 ring = &dev_priv->ring[BCS];
10129 } else {
10130 ring = &dev_priv->ring[RCS];
10131 }
10132
10133 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10134 crtc->primary->state, ring);
10135 if (ret)
10136 goto cleanup_pending;
10137
10138 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10139 + intel_crtc->dspaddr_offset;
10140
10141 if (use_mmio_flip(ring, obj)) {
10142 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10143 page_flip_flags);
10144 if (ret)
10145 goto cleanup_unpin;
10146
10147 i915_gem_request_assign(&work->flip_queued_req,
10148 obj->last_write_req);
10149 } else {
10150 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10151 page_flip_flags);
10152 if (ret)
10153 goto cleanup_unpin;
10154
10155 i915_gem_request_assign(&work->flip_queued_req,
10156 intel_ring_get_request(ring));
10157 }
10158
10159 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10160 work->enable_stall_check = true;
10161
10162 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10163 INTEL_FRONTBUFFER_PRIMARY(pipe));
10164
10165 intel_fbc_disable(dev);
10166 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10167 mutex_unlock(&dev->struct_mutex);
10168
10169 trace_i915_flip_request(intel_crtc->plane, obj);
10170
10171 return 0;
10172
10173 cleanup_unpin:
10174 intel_unpin_fb_obj(fb, crtc->primary->state);
10175 cleanup_pending:
10176 atomic_dec(&intel_crtc->unpin_work_count);
10177 mutex_unlock(&dev->struct_mutex);
10178 cleanup:
10179 crtc->primary->fb = old_fb;
10180 update_state_fb(crtc->primary);
10181
10182 drm_gem_object_unreference_unlocked(&obj->base);
10183 drm_framebuffer_unreference(work->old_fb);
10184
10185 spin_lock_irq(&dev->event_lock);
10186 intel_crtc->unpin_work = NULL;
10187 spin_unlock_irq(&dev->event_lock);
10188
10189 drm_crtc_vblank_put(crtc);
10190 free_work:
10191 kfree(work);
10192
10193 if (ret == -EIO) {
10194 out_hang:
10195 ret = intel_plane_restore(primary);
10196 if (ret == 0 && event) {
10197 spin_lock_irq(&dev->event_lock);
10198 drm_send_vblank_event(dev, pipe, event);
10199 spin_unlock_irq(&dev->event_lock);
10200 }
10201 }
10202 return ret;
10203 }
10204
10205 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10206 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10207 .load_lut = intel_crtc_load_lut,
10208 .atomic_begin = intel_begin_crtc_commit,
10209 .atomic_flush = intel_finish_crtc_commit,
10210 };
10211
10212 /**
10213 * intel_modeset_update_staged_output_state
10214 *
10215 * Updates the staged output configuration state, e.g. after we've read out the
10216 * current hw state.
10217 */
10218 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10219 {
10220 struct intel_crtc *crtc;
10221 struct intel_encoder *encoder;
10222 struct intel_connector *connector;
10223
10224 for_each_intel_connector(dev, connector) {
10225 connector->new_encoder =
10226 to_intel_encoder(connector->base.encoder);
10227 }
10228
10229 for_each_intel_encoder(dev, encoder) {
10230 encoder->new_crtc =
10231 to_intel_crtc(encoder->base.crtc);
10232 }
10233
10234 for_each_intel_crtc(dev, crtc) {
10235 crtc->new_enabled = crtc->base.state->enable;
10236
10237 if (crtc->new_enabled)
10238 crtc->new_config = crtc->config;
10239 else
10240 crtc->new_config = NULL;
10241 }
10242 }
10243
10244 /* Transitional helper to copy current connector/encoder state to
10245 * connector->state. This is needed so that code that is partially
10246 * converted to atomic does the right thing.
10247 */
10248 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10249 {
10250 struct intel_connector *connector;
10251
10252 for_each_intel_connector(dev, connector) {
10253 if (connector->base.encoder) {
10254 connector->base.state->best_encoder =
10255 connector->base.encoder;
10256 connector->base.state->crtc =
10257 connector->base.encoder->crtc;
10258 } else {
10259 connector->base.state->best_encoder = NULL;
10260 connector->base.state->crtc = NULL;
10261 }
10262 }
10263 }
10264
10265 /**
10266 * intel_modeset_commit_output_state
10267 *
10268 * This function copies the stage display pipe configuration to the real one.
10269 */
10270 static void intel_modeset_commit_output_state(struct drm_device *dev)
10271 {
10272 struct intel_crtc *crtc;
10273 struct intel_encoder *encoder;
10274 struct intel_connector *connector;
10275
10276 for_each_intel_connector(dev, connector) {
10277 connector->base.encoder = &connector->new_encoder->base;
10278 }
10279
10280 for_each_intel_encoder(dev, encoder) {
10281 encoder->base.crtc = &encoder->new_crtc->base;
10282 }
10283
10284 for_each_intel_crtc(dev, crtc) {
10285 crtc->base.state->enable = crtc->new_enabled;
10286 crtc->base.enabled = crtc->new_enabled;
10287 }
10288
10289 intel_modeset_update_connector_atomic_state(dev);
10290 }
10291
10292 static void
10293 connected_sink_compute_bpp(struct intel_connector *connector,
10294 struct intel_crtc_state *pipe_config)
10295 {
10296 int bpp = pipe_config->pipe_bpp;
10297
10298 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10299 connector->base.base.id,
10300 connector->base.name);
10301
10302 /* Don't use an invalid EDID bpc value */
10303 if (connector->base.display_info.bpc &&
10304 connector->base.display_info.bpc * 3 < bpp) {
10305 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10306 bpp, connector->base.display_info.bpc*3);
10307 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10308 }
10309
10310 /* Clamp bpp to 8 on screens without EDID 1.4 */
10311 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10312 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10313 bpp);
10314 pipe_config->pipe_bpp = 24;
10315 }
10316 }
10317
10318 static int
10319 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10320 struct drm_framebuffer *fb,
10321 struct intel_crtc_state *pipe_config)
10322 {
10323 struct drm_device *dev = crtc->base.dev;
10324 struct drm_atomic_state *state;
10325 struct intel_connector *connector;
10326 int bpp, i;
10327
10328 switch (fb->pixel_format) {
10329 case DRM_FORMAT_C8:
10330 bpp = 8*3; /* since we go through a colormap */
10331 break;
10332 case DRM_FORMAT_XRGB1555:
10333 case DRM_FORMAT_ARGB1555:
10334 /* checked in intel_framebuffer_init already */
10335 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10336 return -EINVAL;
10337 case DRM_FORMAT_RGB565:
10338 bpp = 6*3; /* min is 18bpp */
10339 break;
10340 case DRM_FORMAT_XBGR8888:
10341 case DRM_FORMAT_ABGR8888:
10342 /* checked in intel_framebuffer_init already */
10343 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10344 return -EINVAL;
10345 case DRM_FORMAT_XRGB8888:
10346 case DRM_FORMAT_ARGB8888:
10347 bpp = 8*3;
10348 break;
10349 case DRM_FORMAT_XRGB2101010:
10350 case DRM_FORMAT_ARGB2101010:
10351 case DRM_FORMAT_XBGR2101010:
10352 case DRM_FORMAT_ABGR2101010:
10353 /* checked in intel_framebuffer_init already */
10354 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10355 return -EINVAL;
10356 bpp = 10*3;
10357 break;
10358 /* TODO: gen4+ supports 16 bpc floating point, too. */
10359 default:
10360 DRM_DEBUG_KMS("unsupported depth\n");
10361 return -EINVAL;
10362 }
10363
10364 pipe_config->pipe_bpp = bpp;
10365
10366 state = pipe_config->base.state;
10367
10368 /* Clamp display bpp to EDID value */
10369 for (i = 0; i < state->num_connector; i++) {
10370 if (!state->connectors[i])
10371 continue;
10372
10373 connector = to_intel_connector(state->connectors[i]);
10374 if (state->connector_states[i]->crtc != &crtc->base)
10375 continue;
10376
10377 connected_sink_compute_bpp(connector, pipe_config);
10378 }
10379
10380 return bpp;
10381 }
10382
10383 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10384 {
10385 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10386 "type: 0x%x flags: 0x%x\n",
10387 mode->crtc_clock,
10388 mode->crtc_hdisplay, mode->crtc_hsync_start,
10389 mode->crtc_hsync_end, mode->crtc_htotal,
10390 mode->crtc_vdisplay, mode->crtc_vsync_start,
10391 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10392 }
10393
10394 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10395 struct intel_crtc_state *pipe_config,
10396 const char *context)
10397 {
10398 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10399 context, pipe_name(crtc->pipe));
10400
10401 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10402 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10403 pipe_config->pipe_bpp, pipe_config->dither);
10404 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10405 pipe_config->has_pch_encoder,
10406 pipe_config->fdi_lanes,
10407 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10408 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10409 pipe_config->fdi_m_n.tu);
10410 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10411 pipe_config->has_dp_encoder,
10412 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10413 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10414 pipe_config->dp_m_n.tu);
10415
10416 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10417 pipe_config->has_dp_encoder,
10418 pipe_config->dp_m2_n2.gmch_m,
10419 pipe_config->dp_m2_n2.gmch_n,
10420 pipe_config->dp_m2_n2.link_m,
10421 pipe_config->dp_m2_n2.link_n,
10422 pipe_config->dp_m2_n2.tu);
10423
10424 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10425 pipe_config->has_audio,
10426 pipe_config->has_infoframe);
10427
10428 DRM_DEBUG_KMS("requested mode:\n");
10429 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10430 DRM_DEBUG_KMS("adjusted mode:\n");
10431 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10432 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10433 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10434 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10435 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10436 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10437 pipe_config->gmch_pfit.control,
10438 pipe_config->gmch_pfit.pgm_ratios,
10439 pipe_config->gmch_pfit.lvds_border_bits);
10440 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10441 pipe_config->pch_pfit.pos,
10442 pipe_config->pch_pfit.size,
10443 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10444 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10445 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10446 }
10447
10448 static bool encoders_cloneable(const struct intel_encoder *a,
10449 const struct intel_encoder *b)
10450 {
10451 /* masks could be asymmetric, so check both ways */
10452 return a == b || (a->cloneable & (1 << b->type) &&
10453 b->cloneable & (1 << a->type));
10454 }
10455
10456 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10457 struct intel_encoder *encoder)
10458 {
10459 struct drm_device *dev = crtc->base.dev;
10460 struct intel_encoder *source_encoder;
10461
10462 for_each_intel_encoder(dev, source_encoder) {
10463 if (source_encoder->new_crtc != crtc)
10464 continue;
10465
10466 if (!encoders_cloneable(encoder, source_encoder))
10467 return false;
10468 }
10469
10470 return true;
10471 }
10472
10473 static bool check_encoder_cloning(struct intel_crtc *crtc)
10474 {
10475 struct drm_device *dev = crtc->base.dev;
10476 struct intel_encoder *encoder;
10477
10478 for_each_intel_encoder(dev, encoder) {
10479 if (encoder->new_crtc != crtc)
10480 continue;
10481
10482 if (!check_single_encoder_cloning(crtc, encoder))
10483 return false;
10484 }
10485
10486 return true;
10487 }
10488
10489 static bool check_digital_port_conflicts(struct drm_device *dev)
10490 {
10491 struct intel_connector *connector;
10492 unsigned int used_ports = 0;
10493
10494 /*
10495 * Walk the connector list instead of the encoder
10496 * list to detect the problem on ddi platforms
10497 * where there's just one encoder per digital port.
10498 */
10499 for_each_intel_connector(dev, connector) {
10500 struct intel_encoder *encoder = connector->new_encoder;
10501
10502 if (!encoder)
10503 continue;
10504
10505 WARN_ON(!encoder->new_crtc);
10506
10507 switch (encoder->type) {
10508 unsigned int port_mask;
10509 case INTEL_OUTPUT_UNKNOWN:
10510 if (WARN_ON(!HAS_DDI(dev)))
10511 break;
10512 case INTEL_OUTPUT_DISPLAYPORT:
10513 case INTEL_OUTPUT_HDMI:
10514 case INTEL_OUTPUT_EDP:
10515 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10516
10517 /* the same port mustn't appear more than once */
10518 if (used_ports & port_mask)
10519 return false;
10520
10521 used_ports |= port_mask;
10522 default:
10523 break;
10524 }
10525 }
10526
10527 return true;
10528 }
10529
10530 static void
10531 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10532 {
10533 struct drm_crtc_state tmp_state;
10534
10535 /* Clear only the intel specific part of the crtc state */
10536 tmp_state = crtc_state->base;
10537 memset(crtc_state, 0, sizeof *crtc_state);
10538 crtc_state->base = tmp_state;
10539 }
10540
10541 static struct intel_crtc_state *
10542 intel_modeset_pipe_config(struct drm_crtc *crtc,
10543 struct drm_framebuffer *fb,
10544 struct drm_display_mode *mode,
10545 struct drm_atomic_state *state)
10546 {
10547 struct drm_device *dev = crtc->dev;
10548 struct intel_encoder *encoder;
10549 struct intel_connector *connector;
10550 struct drm_connector_state *connector_state;
10551 struct intel_crtc_state *pipe_config;
10552 int plane_bpp, ret = -EINVAL;
10553 int i;
10554 bool retry = true;
10555
10556 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10557 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10558 return ERR_PTR(-EINVAL);
10559 }
10560
10561 if (!check_digital_port_conflicts(dev)) {
10562 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10563 return ERR_PTR(-EINVAL);
10564 }
10565
10566 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
10567 if (IS_ERR(pipe_config))
10568 return pipe_config;
10569
10570 clear_intel_crtc_state(pipe_config);
10571
10572 pipe_config->base.crtc = crtc;
10573 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10574 drm_mode_copy(&pipe_config->base.mode, mode);
10575
10576 pipe_config->cpu_transcoder =
10577 (enum transcoder) to_intel_crtc(crtc)->pipe;
10578 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10579
10580 /*
10581 * Sanitize sync polarity flags based on requested ones. If neither
10582 * positive or negative polarity is requested, treat this as meaning
10583 * negative polarity.
10584 */
10585 if (!(pipe_config->base.adjusted_mode.flags &
10586 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10587 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10588
10589 if (!(pipe_config->base.adjusted_mode.flags &
10590 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10591 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10592
10593 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10594 * plane pixel format and any sink constraints into account. Returns the
10595 * source plane bpp so that dithering can be selected on mismatches
10596 * after encoders and crtc also have had their say. */
10597 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10598 fb, pipe_config);
10599 if (plane_bpp < 0)
10600 goto fail;
10601
10602 /*
10603 * Determine the real pipe dimensions. Note that stereo modes can
10604 * increase the actual pipe size due to the frame doubling and
10605 * insertion of additional space for blanks between the frame. This
10606 * is stored in the crtc timings. We use the requested mode to do this
10607 * computation to clearly distinguish it from the adjusted mode, which
10608 * can be changed by the connectors in the below retry loop.
10609 */
10610 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10611 &pipe_config->pipe_src_w,
10612 &pipe_config->pipe_src_h);
10613
10614 encoder_retry:
10615 /* Ensure the port clock defaults are reset when retrying. */
10616 pipe_config->port_clock = 0;
10617 pipe_config->pixel_multiplier = 1;
10618
10619 /* Fill in default crtc timings, allow encoders to overwrite them. */
10620 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10621 CRTC_STEREO_DOUBLE);
10622
10623 /* Pass our mode to the connectors and the CRTC to give them a chance to
10624 * adjust it according to limitations or connector properties, and also
10625 * a chance to reject the mode entirely.
10626 */
10627 for (i = 0; i < state->num_connector; i++) {
10628 connector = to_intel_connector(state->connectors[i]);
10629 if (!connector)
10630 continue;
10631
10632 connector_state = state->connector_states[i];
10633 if (connector_state->crtc != crtc)
10634 continue;
10635
10636 encoder = to_intel_encoder(connector_state->best_encoder);
10637
10638 if (!(encoder->compute_config(encoder, pipe_config))) {
10639 DRM_DEBUG_KMS("Encoder config failure\n");
10640 goto fail;
10641 }
10642 }
10643
10644 /* Set default port clock if not overwritten by the encoder. Needs to be
10645 * done afterwards in case the encoder adjusts the mode. */
10646 if (!pipe_config->port_clock)
10647 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10648 * pipe_config->pixel_multiplier;
10649
10650 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10651 if (ret < 0) {
10652 DRM_DEBUG_KMS("CRTC fixup failed\n");
10653 goto fail;
10654 }
10655
10656 if (ret == RETRY) {
10657 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10658 ret = -EINVAL;
10659 goto fail;
10660 }
10661
10662 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10663 retry = false;
10664 goto encoder_retry;
10665 }
10666
10667 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10668 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10669 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10670
10671 return pipe_config;
10672 fail:
10673 return ERR_PTR(ret);
10674 }
10675
10676 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10677 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10678 static void
10679 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10680 unsigned *prepare_pipes, unsigned *disable_pipes)
10681 {
10682 struct intel_crtc *intel_crtc;
10683 struct drm_device *dev = crtc->dev;
10684 struct intel_encoder *encoder;
10685 struct intel_connector *connector;
10686 struct drm_crtc *tmp_crtc;
10687
10688 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10689
10690 /* Check which crtcs have changed outputs connected to them, these need
10691 * to be part of the prepare_pipes mask. We don't (yet) support global
10692 * modeset across multiple crtcs, so modeset_pipes will only have one
10693 * bit set at most. */
10694 for_each_intel_connector(dev, connector) {
10695 if (connector->base.encoder == &connector->new_encoder->base)
10696 continue;
10697
10698 if (connector->base.encoder) {
10699 tmp_crtc = connector->base.encoder->crtc;
10700
10701 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10702 }
10703
10704 if (connector->new_encoder)
10705 *prepare_pipes |=
10706 1 << connector->new_encoder->new_crtc->pipe;
10707 }
10708
10709 for_each_intel_encoder(dev, encoder) {
10710 if (encoder->base.crtc == &encoder->new_crtc->base)
10711 continue;
10712
10713 if (encoder->base.crtc) {
10714 tmp_crtc = encoder->base.crtc;
10715
10716 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10717 }
10718
10719 if (encoder->new_crtc)
10720 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10721 }
10722
10723 /* Check for pipes that will be enabled/disabled ... */
10724 for_each_intel_crtc(dev, intel_crtc) {
10725 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10726 continue;
10727
10728 if (!intel_crtc->new_enabled)
10729 *disable_pipes |= 1 << intel_crtc->pipe;
10730 else
10731 *prepare_pipes |= 1 << intel_crtc->pipe;
10732 }
10733
10734
10735 /* set_mode is also used to update properties on life display pipes. */
10736 intel_crtc = to_intel_crtc(crtc);
10737 if (intel_crtc->new_enabled)
10738 *prepare_pipes |= 1 << intel_crtc->pipe;
10739
10740 /*
10741 * For simplicity do a full modeset on any pipe where the output routing
10742 * changed. We could be more clever, but that would require us to be
10743 * more careful with calling the relevant encoder->mode_set functions.
10744 */
10745 if (*prepare_pipes)
10746 *modeset_pipes = *prepare_pipes;
10747
10748 /* ... and mask these out. */
10749 *modeset_pipes &= ~(*disable_pipes);
10750 *prepare_pipes &= ~(*disable_pipes);
10751
10752 /*
10753 * HACK: We don't (yet) fully support global modesets. intel_set_config
10754 * obies this rule, but the modeset restore mode of
10755 * intel_modeset_setup_hw_state does not.
10756 */
10757 *modeset_pipes &= 1 << intel_crtc->pipe;
10758 *prepare_pipes &= 1 << intel_crtc->pipe;
10759
10760 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10761 *modeset_pipes, *prepare_pipes, *disable_pipes);
10762 }
10763
10764 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10765 {
10766 struct drm_encoder *encoder;
10767 struct drm_device *dev = crtc->dev;
10768
10769 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10770 if (encoder->crtc == crtc)
10771 return true;
10772
10773 return false;
10774 }
10775
10776 static void
10777 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10778 {
10779 struct drm_i915_private *dev_priv = dev->dev_private;
10780 struct intel_encoder *intel_encoder;
10781 struct intel_crtc *intel_crtc;
10782 struct drm_connector *connector;
10783
10784 intel_shared_dpll_commit(dev_priv);
10785
10786 for_each_intel_encoder(dev, intel_encoder) {
10787 if (!intel_encoder->base.crtc)
10788 continue;
10789
10790 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10791
10792 if (prepare_pipes & (1 << intel_crtc->pipe))
10793 intel_encoder->connectors_active = false;
10794 }
10795
10796 intel_modeset_commit_output_state(dev);
10797
10798 /* Double check state. */
10799 for_each_intel_crtc(dev, intel_crtc) {
10800 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10801 WARN_ON(intel_crtc->new_config &&
10802 intel_crtc->new_config != intel_crtc->config);
10803 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10804 }
10805
10806 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10807 if (!connector->encoder || !connector->encoder->crtc)
10808 continue;
10809
10810 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10811
10812 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10813 struct drm_property *dpms_property =
10814 dev->mode_config.dpms_property;
10815
10816 connector->dpms = DRM_MODE_DPMS_ON;
10817 drm_object_property_set_value(&connector->base,
10818 dpms_property,
10819 DRM_MODE_DPMS_ON);
10820
10821 intel_encoder = to_intel_encoder(connector->encoder);
10822 intel_encoder->connectors_active = true;
10823 }
10824 }
10825
10826 }
10827
10828 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10829 {
10830 int diff;
10831
10832 if (clock1 == clock2)
10833 return true;
10834
10835 if (!clock1 || !clock2)
10836 return false;
10837
10838 diff = abs(clock1 - clock2);
10839
10840 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10841 return true;
10842
10843 return false;
10844 }
10845
10846 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10847 list_for_each_entry((intel_crtc), \
10848 &(dev)->mode_config.crtc_list, \
10849 base.head) \
10850 if (mask & (1 <<(intel_crtc)->pipe))
10851
10852 static bool
10853 intel_pipe_config_compare(struct drm_device *dev,
10854 struct intel_crtc_state *current_config,
10855 struct intel_crtc_state *pipe_config)
10856 {
10857 #define PIPE_CONF_CHECK_X(name) \
10858 if (current_config->name != pipe_config->name) { \
10859 DRM_ERROR("mismatch in " #name " " \
10860 "(expected 0x%08x, found 0x%08x)\n", \
10861 current_config->name, \
10862 pipe_config->name); \
10863 return false; \
10864 }
10865
10866 #define PIPE_CONF_CHECK_I(name) \
10867 if (current_config->name != pipe_config->name) { \
10868 DRM_ERROR("mismatch in " #name " " \
10869 "(expected %i, found %i)\n", \
10870 current_config->name, \
10871 pipe_config->name); \
10872 return false; \
10873 }
10874
10875 /* This is required for BDW+ where there is only one set of registers for
10876 * switching between high and low RR.
10877 * This macro can be used whenever a comparison has to be made between one
10878 * hw state and multiple sw state variables.
10879 */
10880 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10881 if ((current_config->name != pipe_config->name) && \
10882 (current_config->alt_name != pipe_config->name)) { \
10883 DRM_ERROR("mismatch in " #name " " \
10884 "(expected %i or %i, found %i)\n", \
10885 current_config->name, \
10886 current_config->alt_name, \
10887 pipe_config->name); \
10888 return false; \
10889 }
10890
10891 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10892 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10893 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10894 "(expected %i, found %i)\n", \
10895 current_config->name & (mask), \
10896 pipe_config->name & (mask)); \
10897 return false; \
10898 }
10899
10900 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10901 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10902 DRM_ERROR("mismatch in " #name " " \
10903 "(expected %i, found %i)\n", \
10904 current_config->name, \
10905 pipe_config->name); \
10906 return false; \
10907 }
10908
10909 #define PIPE_CONF_QUIRK(quirk) \
10910 ((current_config->quirks | pipe_config->quirks) & (quirk))
10911
10912 PIPE_CONF_CHECK_I(cpu_transcoder);
10913
10914 PIPE_CONF_CHECK_I(has_pch_encoder);
10915 PIPE_CONF_CHECK_I(fdi_lanes);
10916 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10917 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10918 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10919 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10920 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10921
10922 PIPE_CONF_CHECK_I(has_dp_encoder);
10923
10924 if (INTEL_INFO(dev)->gen < 8) {
10925 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10926 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10927 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10928 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10929 PIPE_CONF_CHECK_I(dp_m_n.tu);
10930
10931 if (current_config->has_drrs) {
10932 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10933 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10934 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10935 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10936 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10937 }
10938 } else {
10939 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10940 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10941 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10942 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10943 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10944 }
10945
10946 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10947 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10948 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10949 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10950 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10951 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10952
10953 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10954 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10955 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10956 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10957 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10958 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10959
10960 PIPE_CONF_CHECK_I(pixel_multiplier);
10961 PIPE_CONF_CHECK_I(has_hdmi_sink);
10962 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10963 IS_VALLEYVIEW(dev))
10964 PIPE_CONF_CHECK_I(limited_color_range);
10965 PIPE_CONF_CHECK_I(has_infoframe);
10966
10967 PIPE_CONF_CHECK_I(has_audio);
10968
10969 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10970 DRM_MODE_FLAG_INTERLACE);
10971
10972 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10973 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10974 DRM_MODE_FLAG_PHSYNC);
10975 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10976 DRM_MODE_FLAG_NHSYNC);
10977 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10978 DRM_MODE_FLAG_PVSYNC);
10979 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10980 DRM_MODE_FLAG_NVSYNC);
10981 }
10982
10983 PIPE_CONF_CHECK_I(pipe_src_w);
10984 PIPE_CONF_CHECK_I(pipe_src_h);
10985
10986 /*
10987 * FIXME: BIOS likes to set up a cloned config with lvds+external
10988 * screen. Since we don't yet re-compute the pipe config when moving
10989 * just the lvds port away to another pipe the sw tracking won't match.
10990 *
10991 * Proper atomic modesets with recomputed global state will fix this.
10992 * Until then just don't check gmch state for inherited modes.
10993 */
10994 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10995 PIPE_CONF_CHECK_I(gmch_pfit.control);
10996 /* pfit ratios are autocomputed by the hw on gen4+ */
10997 if (INTEL_INFO(dev)->gen < 4)
10998 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10999 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11000 }
11001
11002 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11003 if (current_config->pch_pfit.enabled) {
11004 PIPE_CONF_CHECK_I(pch_pfit.pos);
11005 PIPE_CONF_CHECK_I(pch_pfit.size);
11006 }
11007
11008 /* BDW+ don't expose a synchronous way to read the state */
11009 if (IS_HASWELL(dev))
11010 PIPE_CONF_CHECK_I(ips_enabled);
11011
11012 PIPE_CONF_CHECK_I(double_wide);
11013
11014 PIPE_CONF_CHECK_X(ddi_pll_sel);
11015
11016 PIPE_CONF_CHECK_I(shared_dpll);
11017 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11018 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11019 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11020 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11021 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11022 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11023 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11024 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11025
11026 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11027 PIPE_CONF_CHECK_I(pipe_bpp);
11028
11029 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11030 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11031
11032 #undef PIPE_CONF_CHECK_X
11033 #undef PIPE_CONF_CHECK_I
11034 #undef PIPE_CONF_CHECK_I_ALT
11035 #undef PIPE_CONF_CHECK_FLAGS
11036 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11037 #undef PIPE_CONF_QUIRK
11038
11039 return true;
11040 }
11041
11042 static void check_wm_state(struct drm_device *dev)
11043 {
11044 struct drm_i915_private *dev_priv = dev->dev_private;
11045 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11046 struct intel_crtc *intel_crtc;
11047 int plane;
11048
11049 if (INTEL_INFO(dev)->gen < 9)
11050 return;
11051
11052 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11053 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11054
11055 for_each_intel_crtc(dev, intel_crtc) {
11056 struct skl_ddb_entry *hw_entry, *sw_entry;
11057 const enum pipe pipe = intel_crtc->pipe;
11058
11059 if (!intel_crtc->active)
11060 continue;
11061
11062 /* planes */
11063 for_each_plane(dev_priv, pipe, plane) {
11064 hw_entry = &hw_ddb.plane[pipe][plane];
11065 sw_entry = &sw_ddb->plane[pipe][plane];
11066
11067 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11068 continue;
11069
11070 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11071 "(expected (%u,%u), found (%u,%u))\n",
11072 pipe_name(pipe), plane + 1,
11073 sw_entry->start, sw_entry->end,
11074 hw_entry->start, hw_entry->end);
11075 }
11076
11077 /* cursor */
11078 hw_entry = &hw_ddb.cursor[pipe];
11079 sw_entry = &sw_ddb->cursor[pipe];
11080
11081 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11082 continue;
11083
11084 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11085 "(expected (%u,%u), found (%u,%u))\n",
11086 pipe_name(pipe),
11087 sw_entry->start, sw_entry->end,
11088 hw_entry->start, hw_entry->end);
11089 }
11090 }
11091
11092 static void
11093 check_connector_state(struct drm_device *dev)
11094 {
11095 struct intel_connector *connector;
11096
11097 for_each_intel_connector(dev, connector) {
11098 /* This also checks the encoder/connector hw state with the
11099 * ->get_hw_state callbacks. */
11100 intel_connector_check_state(connector);
11101
11102 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11103 "connector's staged encoder doesn't match current encoder\n");
11104 }
11105 }
11106
11107 static void
11108 check_encoder_state(struct drm_device *dev)
11109 {
11110 struct intel_encoder *encoder;
11111 struct intel_connector *connector;
11112
11113 for_each_intel_encoder(dev, encoder) {
11114 bool enabled = false;
11115 bool active = false;
11116 enum pipe pipe, tracked_pipe;
11117
11118 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11119 encoder->base.base.id,
11120 encoder->base.name);
11121
11122 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11123 "encoder's stage crtc doesn't match current crtc\n");
11124 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11125 "encoder's active_connectors set, but no crtc\n");
11126
11127 for_each_intel_connector(dev, connector) {
11128 if (connector->base.encoder != &encoder->base)
11129 continue;
11130 enabled = true;
11131 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11132 active = true;
11133 }
11134 /*
11135 * for MST connectors if we unplug the connector is gone
11136 * away but the encoder is still connected to a crtc
11137 * until a modeset happens in response to the hotplug.
11138 */
11139 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11140 continue;
11141
11142 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11143 "encoder's enabled state mismatch "
11144 "(expected %i, found %i)\n",
11145 !!encoder->base.crtc, enabled);
11146 I915_STATE_WARN(active && !encoder->base.crtc,
11147 "active encoder with no crtc\n");
11148
11149 I915_STATE_WARN(encoder->connectors_active != active,
11150 "encoder's computed active state doesn't match tracked active state "
11151 "(expected %i, found %i)\n", active, encoder->connectors_active);
11152
11153 active = encoder->get_hw_state(encoder, &pipe);
11154 I915_STATE_WARN(active != encoder->connectors_active,
11155 "encoder's hw state doesn't match sw tracking "
11156 "(expected %i, found %i)\n",
11157 encoder->connectors_active, active);
11158
11159 if (!encoder->base.crtc)
11160 continue;
11161
11162 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11163 I915_STATE_WARN(active && pipe != tracked_pipe,
11164 "active encoder's pipe doesn't match"
11165 "(expected %i, found %i)\n",
11166 tracked_pipe, pipe);
11167
11168 }
11169 }
11170
11171 static void
11172 check_crtc_state(struct drm_device *dev)
11173 {
11174 struct drm_i915_private *dev_priv = dev->dev_private;
11175 struct intel_crtc *crtc;
11176 struct intel_encoder *encoder;
11177 struct intel_crtc_state pipe_config;
11178
11179 for_each_intel_crtc(dev, crtc) {
11180 bool enabled = false;
11181 bool active = false;
11182
11183 memset(&pipe_config, 0, sizeof(pipe_config));
11184
11185 DRM_DEBUG_KMS("[CRTC:%d]\n",
11186 crtc->base.base.id);
11187
11188 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11189 "active crtc, but not enabled in sw tracking\n");
11190
11191 for_each_intel_encoder(dev, encoder) {
11192 if (encoder->base.crtc != &crtc->base)
11193 continue;
11194 enabled = true;
11195 if (encoder->connectors_active)
11196 active = true;
11197 }
11198
11199 I915_STATE_WARN(active != crtc->active,
11200 "crtc's computed active state doesn't match tracked active state "
11201 "(expected %i, found %i)\n", active, crtc->active);
11202 I915_STATE_WARN(enabled != crtc->base.state->enable,
11203 "crtc's computed enabled state doesn't match tracked enabled state "
11204 "(expected %i, found %i)\n", enabled,
11205 crtc->base.state->enable);
11206
11207 active = dev_priv->display.get_pipe_config(crtc,
11208 &pipe_config);
11209
11210 /* hw state is inconsistent with the pipe quirk */
11211 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11212 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11213 active = crtc->active;
11214
11215 for_each_intel_encoder(dev, encoder) {
11216 enum pipe pipe;
11217 if (encoder->base.crtc != &crtc->base)
11218 continue;
11219 if (encoder->get_hw_state(encoder, &pipe))
11220 encoder->get_config(encoder, &pipe_config);
11221 }
11222
11223 I915_STATE_WARN(crtc->active != active,
11224 "crtc active state doesn't match with hw state "
11225 "(expected %i, found %i)\n", crtc->active, active);
11226
11227 if (active &&
11228 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11229 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11230 intel_dump_pipe_config(crtc, &pipe_config,
11231 "[hw state]");
11232 intel_dump_pipe_config(crtc, crtc->config,
11233 "[sw state]");
11234 }
11235 }
11236 }
11237
11238 static void
11239 check_shared_dpll_state(struct drm_device *dev)
11240 {
11241 struct drm_i915_private *dev_priv = dev->dev_private;
11242 struct intel_crtc *crtc;
11243 struct intel_dpll_hw_state dpll_hw_state;
11244 int i;
11245
11246 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11247 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11248 int enabled_crtcs = 0, active_crtcs = 0;
11249 bool active;
11250
11251 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11252
11253 DRM_DEBUG_KMS("%s\n", pll->name);
11254
11255 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11256
11257 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11258 "more active pll users than references: %i vs %i\n",
11259 pll->active, hweight32(pll->config.crtc_mask));
11260 I915_STATE_WARN(pll->active && !pll->on,
11261 "pll in active use but not on in sw tracking\n");
11262 I915_STATE_WARN(pll->on && !pll->active,
11263 "pll in on but not on in use in sw tracking\n");
11264 I915_STATE_WARN(pll->on != active,
11265 "pll on state mismatch (expected %i, found %i)\n",
11266 pll->on, active);
11267
11268 for_each_intel_crtc(dev, crtc) {
11269 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11270 enabled_crtcs++;
11271 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11272 active_crtcs++;
11273 }
11274 I915_STATE_WARN(pll->active != active_crtcs,
11275 "pll active crtcs mismatch (expected %i, found %i)\n",
11276 pll->active, active_crtcs);
11277 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11278 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11279 hweight32(pll->config.crtc_mask), enabled_crtcs);
11280
11281 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11282 sizeof(dpll_hw_state)),
11283 "pll hw state mismatch\n");
11284 }
11285 }
11286
11287 void
11288 intel_modeset_check_state(struct drm_device *dev)
11289 {
11290 check_wm_state(dev);
11291 check_connector_state(dev);
11292 check_encoder_state(dev);
11293 check_crtc_state(dev);
11294 check_shared_dpll_state(dev);
11295 }
11296
11297 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11298 int dotclock)
11299 {
11300 /*
11301 * FDI already provided one idea for the dotclock.
11302 * Yell if the encoder disagrees.
11303 */
11304 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11305 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11306 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11307 }
11308
11309 static void update_scanline_offset(struct intel_crtc *crtc)
11310 {
11311 struct drm_device *dev = crtc->base.dev;
11312
11313 /*
11314 * The scanline counter increments at the leading edge of hsync.
11315 *
11316 * On most platforms it starts counting from vtotal-1 on the
11317 * first active line. That means the scanline counter value is
11318 * always one less than what we would expect. Ie. just after
11319 * start of vblank, which also occurs at start of hsync (on the
11320 * last active line), the scanline counter will read vblank_start-1.
11321 *
11322 * On gen2 the scanline counter starts counting from 1 instead
11323 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11324 * to keep the value positive), instead of adding one.
11325 *
11326 * On HSW+ the behaviour of the scanline counter depends on the output
11327 * type. For DP ports it behaves like most other platforms, but on HDMI
11328 * there's an extra 1 line difference. So we need to add two instead of
11329 * one to the value.
11330 */
11331 if (IS_GEN2(dev)) {
11332 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11333 int vtotal;
11334
11335 vtotal = mode->crtc_vtotal;
11336 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11337 vtotal /= 2;
11338
11339 crtc->scanline_offset = vtotal - 1;
11340 } else if (HAS_DDI(dev) &&
11341 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11342 crtc->scanline_offset = 2;
11343 } else
11344 crtc->scanline_offset = 1;
11345 }
11346
11347 static struct intel_crtc_state *
11348 intel_modeset_compute_config(struct drm_crtc *crtc,
11349 struct drm_display_mode *mode,
11350 struct drm_framebuffer *fb,
11351 struct drm_atomic_state *state,
11352 unsigned *modeset_pipes,
11353 unsigned *prepare_pipes,
11354 unsigned *disable_pipes)
11355 {
11356 struct drm_device *dev = crtc->dev;
11357 struct intel_crtc_state *pipe_config = NULL;
11358 struct intel_crtc *intel_crtc;
11359 int ret = 0;
11360
11361 ret = drm_atomic_add_affected_connectors(state, crtc);
11362 if (ret)
11363 return ERR_PTR(ret);
11364
11365 intel_modeset_affected_pipes(crtc, modeset_pipes,
11366 prepare_pipes, disable_pipes);
11367
11368 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
11369 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11370 if (IS_ERR(pipe_config))
11371 return pipe_config;
11372
11373 pipe_config->base.enable = false;
11374 }
11375
11376 /*
11377 * Note this needs changes when we start tracking multiple modes
11378 * and crtcs. At that point we'll need to compute the whole config
11379 * (i.e. one pipe_config for each crtc) rather than just the one
11380 * for this crtc.
11381 */
11382 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
11383 /* FIXME: For now we still expect modeset_pipes has at most
11384 * one bit set. */
11385 if (WARN_ON(&intel_crtc->base != crtc))
11386 continue;
11387
11388 pipe_config = intel_modeset_pipe_config(crtc, fb, mode, state);
11389 if (IS_ERR(pipe_config))
11390 return pipe_config;
11391
11392 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11393 "[modeset]");
11394 }
11395
11396 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
11397 }
11398
11399 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11400 unsigned modeset_pipes,
11401 unsigned disable_pipes)
11402 {
11403 struct drm_i915_private *dev_priv = to_i915(dev);
11404 unsigned clear_pipes = modeset_pipes | disable_pipes;
11405 struct intel_crtc *intel_crtc;
11406 int ret = 0;
11407
11408 if (!dev_priv->display.crtc_compute_clock)
11409 return 0;
11410
11411 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11412 if (ret)
11413 goto done;
11414
11415 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11416 struct intel_crtc_state *state = intel_crtc->new_config;
11417 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11418 state);
11419 if (ret) {
11420 intel_shared_dpll_abort_config(dev_priv);
11421 goto done;
11422 }
11423 }
11424
11425 done:
11426 return ret;
11427 }
11428
11429 static int __intel_set_mode(struct drm_crtc *crtc,
11430 struct drm_display_mode *mode,
11431 int x, int y, struct drm_framebuffer *fb,
11432 struct intel_crtc_state *pipe_config,
11433 unsigned modeset_pipes,
11434 unsigned prepare_pipes,
11435 unsigned disable_pipes)
11436 {
11437 struct drm_device *dev = crtc->dev;
11438 struct drm_i915_private *dev_priv = dev->dev_private;
11439 struct drm_display_mode *saved_mode;
11440 struct intel_crtc_state *crtc_state_copy = NULL;
11441 struct intel_crtc *intel_crtc;
11442 int ret = 0;
11443
11444 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11445 if (!saved_mode)
11446 return -ENOMEM;
11447
11448 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
11449 if (!crtc_state_copy) {
11450 ret = -ENOMEM;
11451 goto done;
11452 }
11453
11454 *saved_mode = crtc->mode;
11455
11456 if (modeset_pipes)
11457 to_intel_crtc(crtc)->new_config = pipe_config;
11458
11459 /*
11460 * See if the config requires any additional preparation, e.g.
11461 * to adjust global state with pipes off. We need to do this
11462 * here so we can get the modeset_pipe updated config for the new
11463 * mode set on this crtc. For other crtcs we need to use the
11464 * adjusted_mode bits in the crtc directly.
11465 */
11466 if (IS_VALLEYVIEW(dev)) {
11467 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11468
11469 /* may have added more to prepare_pipes than we should */
11470 prepare_pipes &= ~disable_pipes;
11471 }
11472
11473 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11474 if (ret)
11475 goto done;
11476
11477 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11478 intel_crtc_disable(&intel_crtc->base);
11479
11480 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11481 if (intel_crtc->base.state->enable)
11482 dev_priv->display.crtc_disable(&intel_crtc->base);
11483 }
11484
11485 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11486 * to set it here already despite that we pass it down the callchain.
11487 *
11488 * Note we'll need to fix this up when we start tracking multiple
11489 * pipes; here we assume a single modeset_pipe and only track the
11490 * single crtc and mode.
11491 */
11492 if (modeset_pipes) {
11493 crtc->mode = *mode;
11494 /* mode_set/enable/disable functions rely on a correct pipe
11495 * config. */
11496 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11497
11498 /*
11499 * Calculate and store various constants which
11500 * are later needed by vblank and swap-completion
11501 * timestamping. They are derived from true hwmode.
11502 */
11503 drm_calc_timestamping_constants(crtc,
11504 &pipe_config->base.adjusted_mode);
11505 }
11506
11507 /* Only after disabling all output pipelines that will be changed can we
11508 * update the the output configuration. */
11509 intel_modeset_update_state(dev, prepare_pipes);
11510
11511 modeset_update_crtc_power_domains(pipe_config->base.state);
11512
11513 /* Set up the DPLL and any encoders state that needs to adjust or depend
11514 * on the DPLL.
11515 */
11516 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11517 struct drm_plane *primary = intel_crtc->base.primary;
11518 int vdisplay, hdisplay;
11519
11520 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11521 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11522 fb, 0, 0,
11523 hdisplay, vdisplay,
11524 x << 16, y << 16,
11525 hdisplay << 16, vdisplay << 16);
11526 }
11527
11528 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11529 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11530 update_scanline_offset(intel_crtc);
11531
11532 dev_priv->display.crtc_enable(&intel_crtc->base);
11533 }
11534
11535 /* FIXME: add subpixel order */
11536 done:
11537 if (ret && crtc->state->enable)
11538 crtc->mode = *saved_mode;
11539
11540 if (ret == 0 && pipe_config) {
11541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11542
11543 /* The pipe_config will be freed with the atomic state, so
11544 * make a copy. */
11545 memcpy(crtc_state_copy, intel_crtc->config,
11546 sizeof *crtc_state_copy);
11547 intel_crtc->config = crtc_state_copy;
11548 intel_crtc->base.state = &crtc_state_copy->base;
11549
11550 if (modeset_pipes)
11551 intel_crtc->new_config = intel_crtc->config;
11552 } else {
11553 kfree(crtc_state_copy);
11554 }
11555
11556 kfree(saved_mode);
11557 return ret;
11558 }
11559
11560 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11561 struct drm_display_mode *mode,
11562 int x, int y, struct drm_framebuffer *fb,
11563 struct intel_crtc_state *pipe_config,
11564 unsigned modeset_pipes,
11565 unsigned prepare_pipes,
11566 unsigned disable_pipes)
11567 {
11568 int ret;
11569
11570 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11571 prepare_pipes, disable_pipes);
11572
11573 if (ret == 0)
11574 intel_modeset_check_state(crtc->dev);
11575
11576 return ret;
11577 }
11578
11579 static int intel_set_mode(struct drm_crtc *crtc,
11580 struct drm_display_mode *mode,
11581 int x, int y, struct drm_framebuffer *fb,
11582 struct drm_atomic_state *state)
11583 {
11584 struct intel_crtc_state *pipe_config;
11585 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11586 int ret = 0;
11587
11588 pipe_config = intel_modeset_compute_config(crtc, mode, fb, state,
11589 &modeset_pipes,
11590 &prepare_pipes,
11591 &disable_pipes);
11592
11593 if (IS_ERR(pipe_config)) {
11594 ret = PTR_ERR(pipe_config);
11595 goto out;
11596 }
11597
11598 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11599 modeset_pipes, prepare_pipes,
11600 disable_pipes);
11601 if (ret)
11602 goto out;
11603
11604 out:
11605 return ret;
11606 }
11607
11608 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11609 {
11610 struct drm_device *dev = crtc->dev;
11611 struct drm_atomic_state *state;
11612 struct intel_encoder *encoder;
11613 struct intel_connector *connector;
11614 struct drm_connector_state *connector_state;
11615
11616 state = drm_atomic_state_alloc(dev);
11617 if (!state) {
11618 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
11619 crtc->base.id);
11620 return;
11621 }
11622
11623 state->acquire_ctx = dev->mode_config.acquire_ctx;
11624
11625 /* The force restore path in the HW readout code relies on the staged
11626 * config still keeping the user requested config while the actual
11627 * state has been overwritten by the configuration read from HW. We
11628 * need to copy the staged config to the atomic state, otherwise the
11629 * mode set will just reapply the state the HW is already in. */
11630 for_each_intel_encoder(dev, encoder) {
11631 if (&encoder->new_crtc->base != crtc)
11632 continue;
11633
11634 for_each_intel_connector(dev, connector) {
11635 if (connector->new_encoder != encoder)
11636 continue;
11637
11638 connector_state = drm_atomic_get_connector_state(state, &connector->base);
11639 if (IS_ERR(connector_state)) {
11640 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
11641 connector->base.base.id,
11642 connector->base.name,
11643 PTR_ERR(connector_state));
11644 continue;
11645 }
11646
11647 connector_state->crtc = crtc;
11648 connector_state->best_encoder = &encoder->base;
11649 }
11650 }
11651
11652 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
11653 state);
11654
11655 drm_atomic_state_free(state);
11656 }
11657
11658 #undef for_each_intel_crtc_masked
11659
11660 static void intel_set_config_free(struct intel_set_config *config)
11661 {
11662 if (!config)
11663 return;
11664
11665 kfree(config->save_connector_encoders);
11666 kfree(config->save_encoder_crtcs);
11667 kfree(config->save_crtc_enabled);
11668 kfree(config);
11669 }
11670
11671 static int intel_set_config_save_state(struct drm_device *dev,
11672 struct intel_set_config *config)
11673 {
11674 struct drm_crtc *crtc;
11675 struct drm_encoder *encoder;
11676 struct drm_connector *connector;
11677 int count;
11678
11679 config->save_crtc_enabled =
11680 kcalloc(dev->mode_config.num_crtc,
11681 sizeof(bool), GFP_KERNEL);
11682 if (!config->save_crtc_enabled)
11683 return -ENOMEM;
11684
11685 config->save_encoder_crtcs =
11686 kcalloc(dev->mode_config.num_encoder,
11687 sizeof(struct drm_crtc *), GFP_KERNEL);
11688 if (!config->save_encoder_crtcs)
11689 return -ENOMEM;
11690
11691 config->save_connector_encoders =
11692 kcalloc(dev->mode_config.num_connector,
11693 sizeof(struct drm_encoder *), GFP_KERNEL);
11694 if (!config->save_connector_encoders)
11695 return -ENOMEM;
11696
11697 /* Copy data. Note that driver private data is not affected.
11698 * Should anything bad happen only the expected state is
11699 * restored, not the drivers personal bookkeeping.
11700 */
11701 count = 0;
11702 for_each_crtc(dev, crtc) {
11703 config->save_crtc_enabled[count++] = crtc->state->enable;
11704 }
11705
11706 count = 0;
11707 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11708 config->save_encoder_crtcs[count++] = encoder->crtc;
11709 }
11710
11711 count = 0;
11712 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11713 config->save_connector_encoders[count++] = connector->encoder;
11714 }
11715
11716 return 0;
11717 }
11718
11719 static void intel_set_config_restore_state(struct drm_device *dev,
11720 struct intel_set_config *config)
11721 {
11722 struct intel_crtc *crtc;
11723 struct intel_encoder *encoder;
11724 struct intel_connector *connector;
11725 int count;
11726
11727 count = 0;
11728 for_each_intel_crtc(dev, crtc) {
11729 crtc->new_enabled = config->save_crtc_enabled[count++];
11730
11731 if (crtc->new_enabled)
11732 crtc->new_config = crtc->config;
11733 else
11734 crtc->new_config = NULL;
11735 }
11736
11737 count = 0;
11738 for_each_intel_encoder(dev, encoder) {
11739 encoder->new_crtc =
11740 to_intel_crtc(config->save_encoder_crtcs[count++]);
11741 }
11742
11743 count = 0;
11744 for_each_intel_connector(dev, connector) {
11745 connector->new_encoder =
11746 to_intel_encoder(config->save_connector_encoders[count++]);
11747 }
11748 }
11749
11750 static bool
11751 is_crtc_connector_off(struct drm_mode_set *set)
11752 {
11753 int i;
11754
11755 if (set->num_connectors == 0)
11756 return false;
11757
11758 if (WARN_ON(set->connectors == NULL))
11759 return false;
11760
11761 for (i = 0; i < set->num_connectors; i++)
11762 if (set->connectors[i]->encoder &&
11763 set->connectors[i]->encoder->crtc == set->crtc &&
11764 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11765 return true;
11766
11767 return false;
11768 }
11769
11770 static void
11771 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11772 struct intel_set_config *config)
11773 {
11774
11775 /* We should be able to check here if the fb has the same properties
11776 * and then just flip_or_move it */
11777 if (is_crtc_connector_off(set)) {
11778 config->mode_changed = true;
11779 } else if (set->crtc->primary->fb != set->fb) {
11780 /*
11781 * If we have no fb, we can only flip as long as the crtc is
11782 * active, otherwise we need a full mode set. The crtc may
11783 * be active if we've only disabled the primary plane, or
11784 * in fastboot situations.
11785 */
11786 if (set->crtc->primary->fb == NULL) {
11787 struct intel_crtc *intel_crtc =
11788 to_intel_crtc(set->crtc);
11789
11790 if (intel_crtc->active) {
11791 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11792 config->fb_changed = true;
11793 } else {
11794 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11795 config->mode_changed = true;
11796 }
11797 } else if (set->fb == NULL) {
11798 config->mode_changed = true;
11799 } else if (set->fb->pixel_format !=
11800 set->crtc->primary->fb->pixel_format) {
11801 config->mode_changed = true;
11802 } else {
11803 config->fb_changed = true;
11804 }
11805 }
11806
11807 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11808 config->fb_changed = true;
11809
11810 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11811 DRM_DEBUG_KMS("modes are different, full mode set\n");
11812 drm_mode_debug_printmodeline(&set->crtc->mode);
11813 drm_mode_debug_printmodeline(set->mode);
11814 config->mode_changed = true;
11815 }
11816
11817 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11818 set->crtc->base.id, config->mode_changed, config->fb_changed);
11819 }
11820
11821 static int
11822 intel_modeset_stage_output_state(struct drm_device *dev,
11823 struct drm_mode_set *set,
11824 struct intel_set_config *config,
11825 struct drm_atomic_state *state)
11826 {
11827 struct intel_connector *connector;
11828 struct drm_connector_state *connector_state;
11829 struct intel_encoder *encoder;
11830 struct intel_crtc *crtc;
11831 int ro;
11832
11833 /* The upper layers ensure that we either disable a crtc or have a list
11834 * of connectors. For paranoia, double-check this. */
11835 WARN_ON(!set->fb && (set->num_connectors != 0));
11836 WARN_ON(set->fb && (set->num_connectors == 0));
11837
11838 for_each_intel_connector(dev, connector) {
11839 /* Otherwise traverse passed in connector list and get encoders
11840 * for them. */
11841 for (ro = 0; ro < set->num_connectors; ro++) {
11842 if (set->connectors[ro] == &connector->base) {
11843 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11844 break;
11845 }
11846 }
11847
11848 /* If we disable the crtc, disable all its connectors. Also, if
11849 * the connector is on the changing crtc but not on the new
11850 * connector list, disable it. */
11851 if ((!set->fb || ro == set->num_connectors) &&
11852 connector->base.encoder &&
11853 connector->base.encoder->crtc == set->crtc) {
11854 connector->new_encoder = NULL;
11855
11856 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11857 connector->base.base.id,
11858 connector->base.name);
11859 }
11860
11861
11862 if (&connector->new_encoder->base != connector->base.encoder) {
11863 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11864 connector->base.base.id,
11865 connector->base.name);
11866 config->mode_changed = true;
11867 }
11868 }
11869 /* connector->new_encoder is now updated for all connectors. */
11870
11871 /* Update crtc of enabled connectors. */
11872 for_each_intel_connector(dev, connector) {
11873 struct drm_crtc *new_crtc;
11874
11875 if (!connector->new_encoder)
11876 continue;
11877
11878 new_crtc = connector->new_encoder->base.crtc;
11879
11880 for (ro = 0; ro < set->num_connectors; ro++) {
11881 if (set->connectors[ro] == &connector->base)
11882 new_crtc = set->crtc;
11883 }
11884
11885 /* Make sure the new CRTC will work with the encoder */
11886 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11887 new_crtc)) {
11888 return -EINVAL;
11889 }
11890 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11891
11892 connector_state =
11893 drm_atomic_get_connector_state(state, &connector->base);
11894 if (IS_ERR(connector_state))
11895 return PTR_ERR(connector_state);
11896
11897 connector_state->crtc = new_crtc;
11898 connector_state->best_encoder = &connector->new_encoder->base;
11899
11900 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11901 connector->base.base.id,
11902 connector->base.name,
11903 new_crtc->base.id);
11904 }
11905
11906 /* Check for any encoders that needs to be disabled. */
11907 for_each_intel_encoder(dev, encoder) {
11908 int num_connectors = 0;
11909 for_each_intel_connector(dev, connector) {
11910 if (connector->new_encoder == encoder) {
11911 WARN_ON(!connector->new_encoder->new_crtc);
11912 num_connectors++;
11913 }
11914 }
11915
11916 if (num_connectors == 0)
11917 encoder->new_crtc = NULL;
11918 else if (num_connectors > 1)
11919 return -EINVAL;
11920
11921 /* Only now check for crtc changes so we don't miss encoders
11922 * that will be disabled. */
11923 if (&encoder->new_crtc->base != encoder->base.crtc) {
11924 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11925 encoder->base.base.id,
11926 encoder->base.name);
11927 config->mode_changed = true;
11928 }
11929 }
11930 /* Now we've also updated encoder->new_crtc for all encoders. */
11931 for_each_intel_connector(dev, connector) {
11932 connector_state =
11933 drm_atomic_get_connector_state(state, &connector->base);
11934
11935 if (connector->new_encoder) {
11936 if (connector->new_encoder != connector->encoder)
11937 connector->encoder = connector->new_encoder;
11938 } else {
11939 connector_state->crtc = NULL;
11940 }
11941 }
11942 for_each_intel_crtc(dev, crtc) {
11943 crtc->new_enabled = false;
11944
11945 for_each_intel_encoder(dev, encoder) {
11946 if (encoder->new_crtc == crtc) {
11947 crtc->new_enabled = true;
11948 break;
11949 }
11950 }
11951
11952 if (crtc->new_enabled != crtc->base.state->enable) {
11953 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11954 crtc->base.base.id,
11955 crtc->new_enabled ? "en" : "dis");
11956 config->mode_changed = true;
11957 }
11958
11959 if (crtc->new_enabled)
11960 crtc->new_config = crtc->config;
11961 else
11962 crtc->new_config = NULL;
11963 }
11964
11965 return 0;
11966 }
11967
11968 static void disable_crtc_nofb(struct intel_crtc *crtc)
11969 {
11970 struct drm_device *dev = crtc->base.dev;
11971 struct intel_encoder *encoder;
11972 struct intel_connector *connector;
11973
11974 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11975 pipe_name(crtc->pipe));
11976
11977 for_each_intel_connector(dev, connector) {
11978 if (connector->new_encoder &&
11979 connector->new_encoder->new_crtc == crtc)
11980 connector->new_encoder = NULL;
11981 }
11982
11983 for_each_intel_encoder(dev, encoder) {
11984 if (encoder->new_crtc == crtc)
11985 encoder->new_crtc = NULL;
11986 }
11987
11988 crtc->new_enabled = false;
11989 crtc->new_config = NULL;
11990 }
11991
11992 static int intel_crtc_set_config(struct drm_mode_set *set)
11993 {
11994 struct drm_device *dev;
11995 struct drm_mode_set save_set;
11996 struct drm_atomic_state *state = NULL;
11997 struct intel_set_config *config;
11998 struct intel_crtc_state *pipe_config;
11999 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12000 int ret;
12001
12002 BUG_ON(!set);
12003 BUG_ON(!set->crtc);
12004 BUG_ON(!set->crtc->helper_private);
12005
12006 /* Enforce sane interface api - has been abused by the fb helper. */
12007 BUG_ON(!set->mode && set->fb);
12008 BUG_ON(set->fb && set->num_connectors == 0);
12009
12010 if (set->fb) {
12011 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12012 set->crtc->base.id, set->fb->base.id,
12013 (int)set->num_connectors, set->x, set->y);
12014 } else {
12015 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12016 }
12017
12018 dev = set->crtc->dev;
12019
12020 ret = -ENOMEM;
12021 config = kzalloc(sizeof(*config), GFP_KERNEL);
12022 if (!config)
12023 goto out_config;
12024
12025 ret = intel_set_config_save_state(dev, config);
12026 if (ret)
12027 goto out_config;
12028
12029 save_set.crtc = set->crtc;
12030 save_set.mode = &set->crtc->mode;
12031 save_set.x = set->crtc->x;
12032 save_set.y = set->crtc->y;
12033 save_set.fb = set->crtc->primary->fb;
12034
12035 /* Compute whether we need a full modeset, only an fb base update or no
12036 * change at all. In the future we might also check whether only the
12037 * mode changed, e.g. for LVDS where we only change the panel fitter in
12038 * such cases. */
12039 intel_set_config_compute_mode_changes(set, config);
12040
12041 state = drm_atomic_state_alloc(dev);
12042 if (!state) {
12043 ret = -ENOMEM;
12044 goto out_config;
12045 }
12046
12047 state->acquire_ctx = dev->mode_config.acquire_ctx;
12048
12049 ret = intel_modeset_stage_output_state(dev, set, config, state);
12050 if (ret)
12051 goto fail;
12052
12053 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12054 set->fb, state,
12055 &modeset_pipes,
12056 &prepare_pipes,
12057 &disable_pipes);
12058 if (IS_ERR(pipe_config)) {
12059 ret = PTR_ERR(pipe_config);
12060 goto fail;
12061 } else if (pipe_config) {
12062 if (pipe_config->has_audio !=
12063 to_intel_crtc(set->crtc)->config->has_audio)
12064 config->mode_changed = true;
12065
12066 /*
12067 * Note we have an issue here with infoframes: current code
12068 * only updates them on the full mode set path per hw
12069 * requirements. So here we should be checking for any
12070 * required changes and forcing a mode set.
12071 */
12072 }
12073
12074 intel_update_pipe_size(to_intel_crtc(set->crtc));
12075
12076 if (config->mode_changed) {
12077 ret = intel_set_mode_pipes(set->crtc, set->mode,
12078 set->x, set->y, set->fb, pipe_config,
12079 modeset_pipes, prepare_pipes,
12080 disable_pipes);
12081 } else if (config->fb_changed) {
12082 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12083 struct drm_plane *primary = set->crtc->primary;
12084 int vdisplay, hdisplay;
12085
12086 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12087 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
12088 0, 0, hdisplay, vdisplay,
12089 set->x << 16, set->y << 16,
12090 hdisplay << 16, vdisplay << 16);
12091
12092 /*
12093 * We need to make sure the primary plane is re-enabled if it
12094 * has previously been turned off.
12095 */
12096 if (!intel_crtc->primary_enabled && ret == 0) {
12097 WARN_ON(!intel_crtc->active);
12098 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
12099 }
12100
12101 /*
12102 * In the fastboot case this may be our only check of the
12103 * state after boot. It would be better to only do it on
12104 * the first update, but we don't have a nice way of doing that
12105 * (and really, set_config isn't used much for high freq page
12106 * flipping, so increasing its cost here shouldn't be a big
12107 * deal).
12108 */
12109 if (i915.fastboot && ret == 0)
12110 intel_modeset_check_state(set->crtc->dev);
12111 }
12112
12113 if (ret) {
12114 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12115 set->crtc->base.id, ret);
12116 fail:
12117 intel_set_config_restore_state(dev, config);
12118
12119 drm_atomic_state_clear(state);
12120
12121 /*
12122 * HACK: if the pipe was on, but we didn't have a framebuffer,
12123 * force the pipe off to avoid oopsing in the modeset code
12124 * due to fb==NULL. This should only happen during boot since
12125 * we don't yet reconstruct the FB from the hardware state.
12126 */
12127 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12128 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12129
12130 /* Try to restore the config */
12131 if (config->mode_changed &&
12132 intel_set_mode(save_set.crtc, save_set.mode,
12133 save_set.x, save_set.y, save_set.fb,
12134 state))
12135 DRM_ERROR("failed to restore config after modeset failure\n");
12136 }
12137
12138 out_config:
12139 if (state)
12140 drm_atomic_state_free(state);
12141
12142 intel_set_config_free(config);
12143 return ret;
12144 }
12145
12146 static const struct drm_crtc_funcs intel_crtc_funcs = {
12147 .gamma_set = intel_crtc_gamma_set,
12148 .set_config = intel_crtc_set_config,
12149 .destroy = intel_crtc_destroy,
12150 .page_flip = intel_crtc_page_flip,
12151 .atomic_duplicate_state = intel_crtc_duplicate_state,
12152 .atomic_destroy_state = intel_crtc_destroy_state,
12153 };
12154
12155 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12156 struct intel_shared_dpll *pll,
12157 struct intel_dpll_hw_state *hw_state)
12158 {
12159 uint32_t val;
12160
12161 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12162 return false;
12163
12164 val = I915_READ(PCH_DPLL(pll->id));
12165 hw_state->dpll = val;
12166 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12167 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12168
12169 return val & DPLL_VCO_ENABLE;
12170 }
12171
12172 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12173 struct intel_shared_dpll *pll)
12174 {
12175 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12176 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12177 }
12178
12179 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12180 struct intel_shared_dpll *pll)
12181 {
12182 /* PCH refclock must be enabled first */
12183 ibx_assert_pch_refclk_enabled(dev_priv);
12184
12185 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12186
12187 /* Wait for the clocks to stabilize. */
12188 POSTING_READ(PCH_DPLL(pll->id));
12189 udelay(150);
12190
12191 /* The pixel multiplier can only be updated once the
12192 * DPLL is enabled and the clocks are stable.
12193 *
12194 * So write it again.
12195 */
12196 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12197 POSTING_READ(PCH_DPLL(pll->id));
12198 udelay(200);
12199 }
12200
12201 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12202 struct intel_shared_dpll *pll)
12203 {
12204 struct drm_device *dev = dev_priv->dev;
12205 struct intel_crtc *crtc;
12206
12207 /* Make sure no transcoder isn't still depending on us. */
12208 for_each_intel_crtc(dev, crtc) {
12209 if (intel_crtc_to_shared_dpll(crtc) == pll)
12210 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12211 }
12212
12213 I915_WRITE(PCH_DPLL(pll->id), 0);
12214 POSTING_READ(PCH_DPLL(pll->id));
12215 udelay(200);
12216 }
12217
12218 static char *ibx_pch_dpll_names[] = {
12219 "PCH DPLL A",
12220 "PCH DPLL B",
12221 };
12222
12223 static void ibx_pch_dpll_init(struct drm_device *dev)
12224 {
12225 struct drm_i915_private *dev_priv = dev->dev_private;
12226 int i;
12227
12228 dev_priv->num_shared_dpll = 2;
12229
12230 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12231 dev_priv->shared_dplls[i].id = i;
12232 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
12233 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
12234 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
12235 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
12236 dev_priv->shared_dplls[i].get_hw_state =
12237 ibx_pch_dpll_get_hw_state;
12238 }
12239 }
12240
12241 static void intel_shared_dpll_init(struct drm_device *dev)
12242 {
12243 struct drm_i915_private *dev_priv = dev->dev_private;
12244
12245 if (HAS_DDI(dev))
12246 intel_ddi_pll_init(dev);
12247 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
12248 ibx_pch_dpll_init(dev);
12249 else
12250 dev_priv->num_shared_dpll = 0;
12251
12252 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
12253 }
12254
12255 /**
12256 * intel_wm_need_update - Check whether watermarks need updating
12257 * @plane: drm plane
12258 * @state: new plane state
12259 *
12260 * Check current plane state versus the new one to determine whether
12261 * watermarks need to be recalculated.
12262 *
12263 * Returns true or false.
12264 */
12265 bool intel_wm_need_update(struct drm_plane *plane,
12266 struct drm_plane_state *state)
12267 {
12268 /* Update watermarks on tiling changes. */
12269 if (!plane->state->fb || !state->fb ||
12270 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
12271 plane->state->rotation != state->rotation)
12272 return true;
12273
12274 return false;
12275 }
12276
12277 /**
12278 * intel_prepare_plane_fb - Prepare fb for usage on plane
12279 * @plane: drm plane to prepare for
12280 * @fb: framebuffer to prepare for presentation
12281 *
12282 * Prepares a framebuffer for usage on a display plane. Generally this
12283 * involves pinning the underlying object and updating the frontbuffer tracking
12284 * bits. Some older platforms need special physical address handling for
12285 * cursor planes.
12286 *
12287 * Returns 0 on success, negative error code on failure.
12288 */
12289 int
12290 intel_prepare_plane_fb(struct drm_plane *plane,
12291 struct drm_framebuffer *fb,
12292 const struct drm_plane_state *new_state)
12293 {
12294 struct drm_device *dev = plane->dev;
12295 struct intel_plane *intel_plane = to_intel_plane(plane);
12296 enum pipe pipe = intel_plane->pipe;
12297 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12298 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
12299 unsigned frontbuffer_bits = 0;
12300 int ret = 0;
12301
12302 if (!obj)
12303 return 0;
12304
12305 switch (plane->type) {
12306 case DRM_PLANE_TYPE_PRIMARY:
12307 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
12308 break;
12309 case DRM_PLANE_TYPE_CURSOR:
12310 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
12311 break;
12312 case DRM_PLANE_TYPE_OVERLAY:
12313 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
12314 break;
12315 }
12316
12317 mutex_lock(&dev->struct_mutex);
12318
12319 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12320 INTEL_INFO(dev)->cursor_needs_physical) {
12321 int align = IS_I830(dev) ? 16 * 1024 : 256;
12322 ret = i915_gem_object_attach_phys(obj, align);
12323 if (ret)
12324 DRM_DEBUG_KMS("failed to attach phys object\n");
12325 } else {
12326 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
12327 }
12328
12329 if (ret == 0)
12330 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
12331
12332 mutex_unlock(&dev->struct_mutex);
12333
12334 return ret;
12335 }
12336
12337 /**
12338 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12339 * @plane: drm plane to clean up for
12340 * @fb: old framebuffer that was on plane
12341 *
12342 * Cleans up a framebuffer that has just been removed from a plane.
12343 */
12344 void
12345 intel_cleanup_plane_fb(struct drm_plane *plane,
12346 struct drm_framebuffer *fb,
12347 const struct drm_plane_state *old_state)
12348 {
12349 struct drm_device *dev = plane->dev;
12350 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12351
12352 if (WARN_ON(!obj))
12353 return;
12354
12355 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
12356 !INTEL_INFO(dev)->cursor_needs_physical) {
12357 mutex_lock(&dev->struct_mutex);
12358 intel_unpin_fb_obj(fb, old_state);
12359 mutex_unlock(&dev->struct_mutex);
12360 }
12361 }
12362
12363 static int
12364 intel_check_primary_plane(struct drm_plane *plane,
12365 struct intel_plane_state *state)
12366 {
12367 struct drm_device *dev = plane->dev;
12368 struct drm_i915_private *dev_priv = dev->dev_private;
12369 struct drm_crtc *crtc = state->base.crtc;
12370 struct intel_crtc *intel_crtc;
12371 struct drm_framebuffer *fb = state->base.fb;
12372 struct drm_rect *dest = &state->dst;
12373 struct drm_rect *src = &state->src;
12374 const struct drm_rect *clip = &state->clip;
12375 int ret;
12376
12377 crtc = crtc ? crtc : plane->crtc;
12378 intel_crtc = to_intel_crtc(crtc);
12379
12380 ret = drm_plane_helper_check_update(plane, crtc, fb,
12381 src, dest, clip,
12382 DRM_PLANE_HELPER_NO_SCALING,
12383 DRM_PLANE_HELPER_NO_SCALING,
12384 false, true, &state->visible);
12385 if (ret)
12386 return ret;
12387
12388 if (intel_crtc->active) {
12389 intel_crtc->atomic.wait_for_flips = true;
12390
12391 /*
12392 * FBC does not work on some platforms for rotated
12393 * planes, so disable it when rotation is not 0 and
12394 * update it when rotation is set back to 0.
12395 *
12396 * FIXME: This is redundant with the fbc update done in
12397 * the primary plane enable function except that that
12398 * one is done too late. We eventually need to unify
12399 * this.
12400 */
12401 if (intel_crtc->primary_enabled &&
12402 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12403 dev_priv->fbc.crtc == intel_crtc &&
12404 state->base.rotation != BIT(DRM_ROTATE_0)) {
12405 intel_crtc->atomic.disable_fbc = true;
12406 }
12407
12408 if (state->visible) {
12409 /*
12410 * BDW signals flip done immediately if the plane
12411 * is disabled, even if the plane enable is already
12412 * armed to occur at the next vblank :(
12413 */
12414 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12415 intel_crtc->atomic.wait_vblank = true;
12416 }
12417
12418 intel_crtc->atomic.fb_bits |=
12419 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12420
12421 intel_crtc->atomic.update_fbc = true;
12422
12423 if (intel_wm_need_update(plane, &state->base))
12424 intel_crtc->atomic.update_wm = true;
12425 }
12426
12427 return 0;
12428 }
12429
12430 static void
12431 intel_commit_primary_plane(struct drm_plane *plane,
12432 struct intel_plane_state *state)
12433 {
12434 struct drm_crtc *crtc = state->base.crtc;
12435 struct drm_framebuffer *fb = state->base.fb;
12436 struct drm_device *dev = plane->dev;
12437 struct drm_i915_private *dev_priv = dev->dev_private;
12438 struct intel_crtc *intel_crtc;
12439 struct drm_rect *src = &state->src;
12440
12441 crtc = crtc ? crtc : plane->crtc;
12442 intel_crtc = to_intel_crtc(crtc);
12443
12444 plane->fb = fb;
12445 crtc->x = src->x1 >> 16;
12446 crtc->y = src->y1 >> 16;
12447
12448 if (intel_crtc->active) {
12449 if (state->visible) {
12450 /* FIXME: kill this fastboot hack */
12451 intel_update_pipe_size(intel_crtc);
12452
12453 intel_crtc->primary_enabled = true;
12454
12455 dev_priv->display.update_primary_plane(crtc, plane->fb,
12456 crtc->x, crtc->y);
12457 } else {
12458 /*
12459 * If clipping results in a non-visible primary plane,
12460 * we'll disable the primary plane. Note that this is
12461 * a bit different than what happens if userspace
12462 * explicitly disables the plane by passing fb=0
12463 * because plane->fb still gets set and pinned.
12464 */
12465 intel_disable_primary_hw_plane(plane, crtc);
12466 }
12467 }
12468 }
12469
12470 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12471 {
12472 struct drm_device *dev = crtc->dev;
12473 struct drm_i915_private *dev_priv = dev->dev_private;
12474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12475 struct intel_plane *intel_plane;
12476 struct drm_plane *p;
12477 unsigned fb_bits = 0;
12478
12479 /* Track fb's for any planes being disabled */
12480 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12481 intel_plane = to_intel_plane(p);
12482
12483 if (intel_crtc->atomic.disabled_planes &
12484 (1 << drm_plane_index(p))) {
12485 switch (p->type) {
12486 case DRM_PLANE_TYPE_PRIMARY:
12487 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12488 break;
12489 case DRM_PLANE_TYPE_CURSOR:
12490 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12491 break;
12492 case DRM_PLANE_TYPE_OVERLAY:
12493 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12494 break;
12495 }
12496
12497 mutex_lock(&dev->struct_mutex);
12498 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12499 mutex_unlock(&dev->struct_mutex);
12500 }
12501 }
12502
12503 if (intel_crtc->atomic.wait_for_flips)
12504 intel_crtc_wait_for_pending_flips(crtc);
12505
12506 if (intel_crtc->atomic.disable_fbc)
12507 intel_fbc_disable(dev);
12508
12509 if (intel_crtc->atomic.pre_disable_primary)
12510 intel_pre_disable_primary(crtc);
12511
12512 if (intel_crtc->atomic.update_wm)
12513 intel_update_watermarks(crtc);
12514
12515 intel_runtime_pm_get(dev_priv);
12516
12517 /* Perform vblank evasion around commit operation */
12518 if (intel_crtc->active)
12519 intel_crtc->atomic.evade =
12520 intel_pipe_update_start(intel_crtc,
12521 &intel_crtc->atomic.start_vbl_count);
12522 }
12523
12524 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12525 {
12526 struct drm_device *dev = crtc->dev;
12527 struct drm_i915_private *dev_priv = dev->dev_private;
12528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12529 struct drm_plane *p;
12530
12531 if (intel_crtc->atomic.evade)
12532 intel_pipe_update_end(intel_crtc,
12533 intel_crtc->atomic.start_vbl_count);
12534
12535 intel_runtime_pm_put(dev_priv);
12536
12537 if (intel_crtc->atomic.wait_vblank)
12538 intel_wait_for_vblank(dev, intel_crtc->pipe);
12539
12540 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12541
12542 if (intel_crtc->atomic.update_fbc) {
12543 mutex_lock(&dev->struct_mutex);
12544 intel_fbc_update(dev);
12545 mutex_unlock(&dev->struct_mutex);
12546 }
12547
12548 if (intel_crtc->atomic.post_enable_primary)
12549 intel_post_enable_primary(crtc);
12550
12551 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12552 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12553 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12554 false, false);
12555
12556 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12557 }
12558
12559 /**
12560 * intel_plane_destroy - destroy a plane
12561 * @plane: plane to destroy
12562 *
12563 * Common destruction function for all types of planes (primary, cursor,
12564 * sprite).
12565 */
12566 void intel_plane_destroy(struct drm_plane *plane)
12567 {
12568 struct intel_plane *intel_plane = to_intel_plane(plane);
12569 drm_plane_cleanup(plane);
12570 kfree(intel_plane);
12571 }
12572
12573 const struct drm_plane_funcs intel_plane_funcs = {
12574 .update_plane = drm_plane_helper_update,
12575 .disable_plane = drm_plane_helper_disable,
12576 .destroy = intel_plane_destroy,
12577 .set_property = drm_atomic_helper_plane_set_property,
12578 .atomic_get_property = intel_plane_atomic_get_property,
12579 .atomic_set_property = intel_plane_atomic_set_property,
12580 .atomic_duplicate_state = intel_plane_duplicate_state,
12581 .atomic_destroy_state = intel_plane_destroy_state,
12582
12583 };
12584
12585 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12586 int pipe)
12587 {
12588 struct intel_plane *primary;
12589 struct intel_plane_state *state;
12590 const uint32_t *intel_primary_formats;
12591 int num_formats;
12592
12593 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12594 if (primary == NULL)
12595 return NULL;
12596
12597 state = intel_create_plane_state(&primary->base);
12598 if (!state) {
12599 kfree(primary);
12600 return NULL;
12601 }
12602 primary->base.state = &state->base;
12603
12604 primary->can_scale = false;
12605 primary->max_downscale = 1;
12606 primary->pipe = pipe;
12607 primary->plane = pipe;
12608 primary->check_plane = intel_check_primary_plane;
12609 primary->commit_plane = intel_commit_primary_plane;
12610 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12611 primary->plane = !pipe;
12612
12613 if (INTEL_INFO(dev)->gen <= 3) {
12614 intel_primary_formats = intel_primary_formats_gen2;
12615 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12616 } else {
12617 intel_primary_formats = intel_primary_formats_gen4;
12618 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12619 }
12620
12621 drm_universal_plane_init(dev, &primary->base, 0,
12622 &intel_plane_funcs,
12623 intel_primary_formats, num_formats,
12624 DRM_PLANE_TYPE_PRIMARY);
12625
12626 if (INTEL_INFO(dev)->gen >= 4) {
12627 if (!dev->mode_config.rotation_property)
12628 dev->mode_config.rotation_property =
12629 drm_mode_create_rotation_property(dev,
12630 BIT(DRM_ROTATE_0) |
12631 BIT(DRM_ROTATE_180));
12632 if (dev->mode_config.rotation_property)
12633 drm_object_attach_property(&primary->base.base,
12634 dev->mode_config.rotation_property,
12635 state->base.rotation);
12636 }
12637
12638 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12639
12640 return &primary->base;
12641 }
12642
12643 static int
12644 intel_check_cursor_plane(struct drm_plane *plane,
12645 struct intel_plane_state *state)
12646 {
12647 struct drm_crtc *crtc = state->base.crtc;
12648 struct drm_device *dev = plane->dev;
12649 struct drm_framebuffer *fb = state->base.fb;
12650 struct drm_rect *dest = &state->dst;
12651 struct drm_rect *src = &state->src;
12652 const struct drm_rect *clip = &state->clip;
12653 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12654 struct intel_crtc *intel_crtc;
12655 unsigned stride;
12656 int ret;
12657
12658 crtc = crtc ? crtc : plane->crtc;
12659 intel_crtc = to_intel_crtc(crtc);
12660
12661 ret = drm_plane_helper_check_update(plane, crtc, fb,
12662 src, dest, clip,
12663 DRM_PLANE_HELPER_NO_SCALING,
12664 DRM_PLANE_HELPER_NO_SCALING,
12665 true, true, &state->visible);
12666 if (ret)
12667 return ret;
12668
12669
12670 /* if we want to turn off the cursor ignore width and height */
12671 if (!obj)
12672 goto finish;
12673
12674 /* Check for which cursor types we support */
12675 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12676 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12677 state->base.crtc_w, state->base.crtc_h);
12678 return -EINVAL;
12679 }
12680
12681 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12682 if (obj->base.size < stride * state->base.crtc_h) {
12683 DRM_DEBUG_KMS("buffer is too small\n");
12684 return -ENOMEM;
12685 }
12686
12687 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12688 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12689 ret = -EINVAL;
12690 }
12691
12692 finish:
12693 if (intel_crtc->active) {
12694 if (plane->state->crtc_w != state->base.crtc_w)
12695 intel_crtc->atomic.update_wm = true;
12696
12697 intel_crtc->atomic.fb_bits |=
12698 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12699 }
12700
12701 return ret;
12702 }
12703
12704 static void
12705 intel_commit_cursor_plane(struct drm_plane *plane,
12706 struct intel_plane_state *state)
12707 {
12708 struct drm_crtc *crtc = state->base.crtc;
12709 struct drm_device *dev = plane->dev;
12710 struct intel_crtc *intel_crtc;
12711 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12712 uint32_t addr;
12713
12714 crtc = crtc ? crtc : plane->crtc;
12715 intel_crtc = to_intel_crtc(crtc);
12716
12717 plane->fb = state->base.fb;
12718 crtc->cursor_x = state->base.crtc_x;
12719 crtc->cursor_y = state->base.crtc_y;
12720
12721 if (intel_crtc->cursor_bo == obj)
12722 goto update;
12723
12724 if (!obj)
12725 addr = 0;
12726 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12727 addr = i915_gem_obj_ggtt_offset(obj);
12728 else
12729 addr = obj->phys_handle->busaddr;
12730
12731 intel_crtc->cursor_addr = addr;
12732 intel_crtc->cursor_bo = obj;
12733 update:
12734
12735 if (intel_crtc->active)
12736 intel_crtc_update_cursor(crtc, state->visible);
12737 }
12738
12739 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12740 int pipe)
12741 {
12742 struct intel_plane *cursor;
12743 struct intel_plane_state *state;
12744
12745 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12746 if (cursor == NULL)
12747 return NULL;
12748
12749 state = intel_create_plane_state(&cursor->base);
12750 if (!state) {
12751 kfree(cursor);
12752 return NULL;
12753 }
12754 cursor->base.state = &state->base;
12755
12756 cursor->can_scale = false;
12757 cursor->max_downscale = 1;
12758 cursor->pipe = pipe;
12759 cursor->plane = pipe;
12760 cursor->check_plane = intel_check_cursor_plane;
12761 cursor->commit_plane = intel_commit_cursor_plane;
12762
12763 drm_universal_plane_init(dev, &cursor->base, 0,
12764 &intel_plane_funcs,
12765 intel_cursor_formats,
12766 ARRAY_SIZE(intel_cursor_formats),
12767 DRM_PLANE_TYPE_CURSOR);
12768
12769 if (INTEL_INFO(dev)->gen >= 4) {
12770 if (!dev->mode_config.rotation_property)
12771 dev->mode_config.rotation_property =
12772 drm_mode_create_rotation_property(dev,
12773 BIT(DRM_ROTATE_0) |
12774 BIT(DRM_ROTATE_180));
12775 if (dev->mode_config.rotation_property)
12776 drm_object_attach_property(&cursor->base.base,
12777 dev->mode_config.rotation_property,
12778 state->base.rotation);
12779 }
12780
12781 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12782
12783 return &cursor->base;
12784 }
12785
12786 static void intel_crtc_init(struct drm_device *dev, int pipe)
12787 {
12788 struct drm_i915_private *dev_priv = dev->dev_private;
12789 struct intel_crtc *intel_crtc;
12790 struct intel_crtc_state *crtc_state = NULL;
12791 struct drm_plane *primary = NULL;
12792 struct drm_plane *cursor = NULL;
12793 int i, ret;
12794
12795 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12796 if (intel_crtc == NULL)
12797 return;
12798
12799 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12800 if (!crtc_state)
12801 goto fail;
12802 intel_crtc_set_state(intel_crtc, crtc_state);
12803 crtc_state->base.crtc = &intel_crtc->base;
12804
12805 primary = intel_primary_plane_create(dev, pipe);
12806 if (!primary)
12807 goto fail;
12808
12809 cursor = intel_cursor_plane_create(dev, pipe);
12810 if (!cursor)
12811 goto fail;
12812
12813 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12814 cursor, &intel_crtc_funcs);
12815 if (ret)
12816 goto fail;
12817
12818 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12819 for (i = 0; i < 256; i++) {
12820 intel_crtc->lut_r[i] = i;
12821 intel_crtc->lut_g[i] = i;
12822 intel_crtc->lut_b[i] = i;
12823 }
12824
12825 /*
12826 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12827 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12828 */
12829 intel_crtc->pipe = pipe;
12830 intel_crtc->plane = pipe;
12831 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12832 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12833 intel_crtc->plane = !pipe;
12834 }
12835
12836 intel_crtc->cursor_base = ~0;
12837 intel_crtc->cursor_cntl = ~0;
12838 intel_crtc->cursor_size = ~0;
12839
12840 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12841 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12842 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12843 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12844
12845 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12846
12847 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12848
12849 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12850 return;
12851
12852 fail:
12853 if (primary)
12854 drm_plane_cleanup(primary);
12855 if (cursor)
12856 drm_plane_cleanup(cursor);
12857 kfree(crtc_state);
12858 kfree(intel_crtc);
12859 }
12860
12861 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12862 {
12863 struct drm_encoder *encoder = connector->base.encoder;
12864 struct drm_device *dev = connector->base.dev;
12865
12866 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12867
12868 if (!encoder || WARN_ON(!encoder->crtc))
12869 return INVALID_PIPE;
12870
12871 return to_intel_crtc(encoder->crtc)->pipe;
12872 }
12873
12874 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12875 struct drm_file *file)
12876 {
12877 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12878 struct drm_crtc *drmmode_crtc;
12879 struct intel_crtc *crtc;
12880
12881 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12882
12883 if (!drmmode_crtc) {
12884 DRM_ERROR("no such CRTC id\n");
12885 return -ENOENT;
12886 }
12887
12888 crtc = to_intel_crtc(drmmode_crtc);
12889 pipe_from_crtc_id->pipe = crtc->pipe;
12890
12891 return 0;
12892 }
12893
12894 static int intel_encoder_clones(struct intel_encoder *encoder)
12895 {
12896 struct drm_device *dev = encoder->base.dev;
12897 struct intel_encoder *source_encoder;
12898 int index_mask = 0;
12899 int entry = 0;
12900
12901 for_each_intel_encoder(dev, source_encoder) {
12902 if (encoders_cloneable(encoder, source_encoder))
12903 index_mask |= (1 << entry);
12904
12905 entry++;
12906 }
12907
12908 return index_mask;
12909 }
12910
12911 static bool has_edp_a(struct drm_device *dev)
12912 {
12913 struct drm_i915_private *dev_priv = dev->dev_private;
12914
12915 if (!IS_MOBILE(dev))
12916 return false;
12917
12918 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12919 return false;
12920
12921 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12922 return false;
12923
12924 return true;
12925 }
12926
12927 static bool intel_crt_present(struct drm_device *dev)
12928 {
12929 struct drm_i915_private *dev_priv = dev->dev_private;
12930
12931 if (INTEL_INFO(dev)->gen >= 9)
12932 return false;
12933
12934 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12935 return false;
12936
12937 if (IS_CHERRYVIEW(dev))
12938 return false;
12939
12940 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12941 return false;
12942
12943 return true;
12944 }
12945
12946 static void intel_setup_outputs(struct drm_device *dev)
12947 {
12948 struct drm_i915_private *dev_priv = dev->dev_private;
12949 struct intel_encoder *encoder;
12950 struct drm_connector *connector;
12951 bool dpd_is_edp = false;
12952
12953 intel_lvds_init(dev);
12954
12955 if (intel_crt_present(dev))
12956 intel_crt_init(dev);
12957
12958 if (HAS_DDI(dev)) {
12959 int found;
12960
12961 /*
12962 * Haswell uses DDI functions to detect digital outputs.
12963 * On SKL pre-D0 the strap isn't connected, so we assume
12964 * it's there.
12965 */
12966 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12967 /* WaIgnoreDDIAStrap: skl */
12968 if (found ||
12969 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
12970 intel_ddi_init(dev, PORT_A);
12971
12972 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12973 * register */
12974 found = I915_READ(SFUSE_STRAP);
12975
12976 if (found & SFUSE_STRAP_DDIB_DETECTED)
12977 intel_ddi_init(dev, PORT_B);
12978 if (found & SFUSE_STRAP_DDIC_DETECTED)
12979 intel_ddi_init(dev, PORT_C);
12980 if (found & SFUSE_STRAP_DDID_DETECTED)
12981 intel_ddi_init(dev, PORT_D);
12982 } else if (HAS_PCH_SPLIT(dev)) {
12983 int found;
12984 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12985
12986 if (has_edp_a(dev))
12987 intel_dp_init(dev, DP_A, PORT_A);
12988
12989 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12990 /* PCH SDVOB multiplex with HDMIB */
12991 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12992 if (!found)
12993 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12994 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12995 intel_dp_init(dev, PCH_DP_B, PORT_B);
12996 }
12997
12998 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12999 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13000
13001 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13002 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13003
13004 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13005 intel_dp_init(dev, PCH_DP_C, PORT_C);
13006
13007 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13008 intel_dp_init(dev, PCH_DP_D, PORT_D);
13009 } else if (IS_VALLEYVIEW(dev)) {
13010 /*
13011 * The DP_DETECTED bit is the latched state of the DDC
13012 * SDA pin at boot. However since eDP doesn't require DDC
13013 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13014 * eDP ports may have been muxed to an alternate function.
13015 * Thus we can't rely on the DP_DETECTED bit alone to detect
13016 * eDP ports. Consult the VBT as well as DP_DETECTED to
13017 * detect eDP ports.
13018 */
13019 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13020 !intel_dp_is_edp(dev, PORT_B))
13021 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13022 PORT_B);
13023 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13024 intel_dp_is_edp(dev, PORT_B))
13025 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13026
13027 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13028 !intel_dp_is_edp(dev, PORT_C))
13029 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13030 PORT_C);
13031 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13032 intel_dp_is_edp(dev, PORT_C))
13033 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13034
13035 if (IS_CHERRYVIEW(dev)) {
13036 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13037 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13038 PORT_D);
13039 /* eDP not supported on port D, so don't check VBT */
13040 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13041 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13042 }
13043
13044 intel_dsi_init(dev);
13045 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13046 bool found = false;
13047
13048 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13049 DRM_DEBUG_KMS("probing SDVOB\n");
13050 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13051 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13052 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13053 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13054 }
13055
13056 if (!found && SUPPORTS_INTEGRATED_DP(dev))
13057 intel_dp_init(dev, DP_B, PORT_B);
13058 }
13059
13060 /* Before G4X SDVOC doesn't have its own detect register */
13061
13062 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13063 DRM_DEBUG_KMS("probing SDVOC\n");
13064 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13065 }
13066
13067 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13068
13069 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13070 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13071 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13072 }
13073 if (SUPPORTS_INTEGRATED_DP(dev))
13074 intel_dp_init(dev, DP_C, PORT_C);
13075 }
13076
13077 if (SUPPORTS_INTEGRATED_DP(dev) &&
13078 (I915_READ(DP_D) & DP_DETECTED))
13079 intel_dp_init(dev, DP_D, PORT_D);
13080 } else if (IS_GEN2(dev))
13081 intel_dvo_init(dev);
13082
13083 if (SUPPORTS_TV(dev))
13084 intel_tv_init(dev);
13085
13086 /*
13087 * FIXME: We don't have full atomic support yet, but we want to be
13088 * able to enable/test plane updates via the atomic interface in the
13089 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
13090 * will take some atomic codepaths to lookup properties during
13091 * drmModeGetConnector() that unconditionally dereference
13092 * connector->state.
13093 *
13094 * We create a dummy connector state here for each connector to ensure
13095 * the DRM core doesn't try to dereference a NULL connector->state.
13096 * The actual connector properties will never be updated or contain
13097 * useful information, but since we're doing this specifically for
13098 * testing/debug of the plane operations (and only when a specific
13099 * kernel module option is given), that shouldn't really matter.
13100 *
13101 * We are also relying on these states to convert the legacy mode set
13102 * to use a drm_atomic_state struct. The states are kept consistent
13103 * with actual state, so that it is safe to rely on that instead of
13104 * the staged config.
13105 *
13106 * Once atomic support for crtc's + connectors lands, this loop should
13107 * be removed since we'll be setting up real connector state, which
13108 * will contain Intel-specific properties.
13109 */
13110 list_for_each_entry(connector,
13111 &dev->mode_config.connector_list,
13112 head) {
13113 if (!WARN_ON(connector->state)) {
13114 connector->state = kzalloc(sizeof(*connector->state),
13115 GFP_KERNEL);
13116 }
13117 }
13118
13119 intel_psr_init(dev);
13120
13121 for_each_intel_encoder(dev, encoder) {
13122 encoder->base.possible_crtcs = encoder->crtc_mask;
13123 encoder->base.possible_clones =
13124 intel_encoder_clones(encoder);
13125 }
13126
13127 intel_init_pch_refclk(dev);
13128
13129 drm_helper_move_panel_connectors_to_head(dev);
13130 }
13131
13132 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13133 {
13134 struct drm_device *dev = fb->dev;
13135 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13136
13137 drm_framebuffer_cleanup(fb);
13138 mutex_lock(&dev->struct_mutex);
13139 WARN_ON(!intel_fb->obj->framebuffer_references--);
13140 drm_gem_object_unreference(&intel_fb->obj->base);
13141 mutex_unlock(&dev->struct_mutex);
13142 kfree(intel_fb);
13143 }
13144
13145 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13146 struct drm_file *file,
13147 unsigned int *handle)
13148 {
13149 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13150 struct drm_i915_gem_object *obj = intel_fb->obj;
13151
13152 return drm_gem_handle_create(file, &obj->base, handle);
13153 }
13154
13155 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13156 .destroy = intel_user_framebuffer_destroy,
13157 .create_handle = intel_user_framebuffer_create_handle,
13158 };
13159
13160 static
13161 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13162 uint32_t pixel_format)
13163 {
13164 u32 gen = INTEL_INFO(dev)->gen;
13165
13166 if (gen >= 9) {
13167 /* "The stride in bytes must not exceed the of the size of 8K
13168 * pixels and 32K bytes."
13169 */
13170 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13171 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13172 return 32*1024;
13173 } else if (gen >= 4) {
13174 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13175 return 16*1024;
13176 else
13177 return 32*1024;
13178 } else if (gen >= 3) {
13179 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13180 return 8*1024;
13181 else
13182 return 16*1024;
13183 } else {
13184 /* XXX DSPC is limited to 4k tiled */
13185 return 8*1024;
13186 }
13187 }
13188
13189 static int intel_framebuffer_init(struct drm_device *dev,
13190 struct intel_framebuffer *intel_fb,
13191 struct drm_mode_fb_cmd2 *mode_cmd,
13192 struct drm_i915_gem_object *obj)
13193 {
13194 unsigned int aligned_height;
13195 int ret;
13196 u32 pitch_limit, stride_alignment;
13197
13198 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13199
13200 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13201 /* Enforce that fb modifier and tiling mode match, but only for
13202 * X-tiled. This is needed for FBC. */
13203 if (!!(obj->tiling_mode == I915_TILING_X) !=
13204 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13205 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13206 return -EINVAL;
13207 }
13208 } else {
13209 if (obj->tiling_mode == I915_TILING_X)
13210 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13211 else if (obj->tiling_mode == I915_TILING_Y) {
13212 DRM_DEBUG("No Y tiling for legacy addfb\n");
13213 return -EINVAL;
13214 }
13215 }
13216
13217 /* Passed in modifier sanity checking. */
13218 switch (mode_cmd->modifier[0]) {
13219 case I915_FORMAT_MOD_Y_TILED:
13220 case I915_FORMAT_MOD_Yf_TILED:
13221 if (INTEL_INFO(dev)->gen < 9) {
13222 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
13223 mode_cmd->modifier[0]);
13224 return -EINVAL;
13225 }
13226 case DRM_FORMAT_MOD_NONE:
13227 case I915_FORMAT_MOD_X_TILED:
13228 break;
13229 default:
13230 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
13231 mode_cmd->modifier[0]);
13232 return -EINVAL;
13233 }
13234
13235 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
13236 mode_cmd->pixel_format);
13237 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
13238 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
13239 mode_cmd->pitches[0], stride_alignment);
13240 return -EINVAL;
13241 }
13242
13243 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
13244 mode_cmd->pixel_format);
13245 if (mode_cmd->pitches[0] > pitch_limit) {
13246 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
13247 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
13248 "tiled" : "linear",
13249 mode_cmd->pitches[0], pitch_limit);
13250 return -EINVAL;
13251 }
13252
13253 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
13254 mode_cmd->pitches[0] != obj->stride) {
13255 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
13256 mode_cmd->pitches[0], obj->stride);
13257 return -EINVAL;
13258 }
13259
13260 /* Reject formats not supported by any plane early. */
13261 switch (mode_cmd->pixel_format) {
13262 case DRM_FORMAT_C8:
13263 case DRM_FORMAT_RGB565:
13264 case DRM_FORMAT_XRGB8888:
13265 case DRM_FORMAT_ARGB8888:
13266 break;
13267 case DRM_FORMAT_XRGB1555:
13268 case DRM_FORMAT_ARGB1555:
13269 if (INTEL_INFO(dev)->gen > 3) {
13270 DRM_DEBUG("unsupported pixel format: %s\n",
13271 drm_get_format_name(mode_cmd->pixel_format));
13272 return -EINVAL;
13273 }
13274 break;
13275 case DRM_FORMAT_XBGR8888:
13276 case DRM_FORMAT_ABGR8888:
13277 case DRM_FORMAT_XRGB2101010:
13278 case DRM_FORMAT_ARGB2101010:
13279 case DRM_FORMAT_XBGR2101010:
13280 case DRM_FORMAT_ABGR2101010:
13281 if (INTEL_INFO(dev)->gen < 4) {
13282 DRM_DEBUG("unsupported pixel format: %s\n",
13283 drm_get_format_name(mode_cmd->pixel_format));
13284 return -EINVAL;
13285 }
13286 break;
13287 case DRM_FORMAT_YUYV:
13288 case DRM_FORMAT_UYVY:
13289 case DRM_FORMAT_YVYU:
13290 case DRM_FORMAT_VYUY:
13291 if (INTEL_INFO(dev)->gen < 5) {
13292 DRM_DEBUG("unsupported pixel format: %s\n",
13293 drm_get_format_name(mode_cmd->pixel_format));
13294 return -EINVAL;
13295 }
13296 break;
13297 default:
13298 DRM_DEBUG("unsupported pixel format: %s\n",
13299 drm_get_format_name(mode_cmd->pixel_format));
13300 return -EINVAL;
13301 }
13302
13303 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
13304 if (mode_cmd->offsets[0] != 0)
13305 return -EINVAL;
13306
13307 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
13308 mode_cmd->pixel_format,
13309 mode_cmd->modifier[0]);
13310 /* FIXME drm helper for size checks (especially planar formats)? */
13311 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
13312 return -EINVAL;
13313
13314 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
13315 intel_fb->obj = obj;
13316 intel_fb->obj->framebuffer_references++;
13317
13318 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
13319 if (ret) {
13320 DRM_ERROR("framebuffer init failed %d\n", ret);
13321 return ret;
13322 }
13323
13324 return 0;
13325 }
13326
13327 static struct drm_framebuffer *
13328 intel_user_framebuffer_create(struct drm_device *dev,
13329 struct drm_file *filp,
13330 struct drm_mode_fb_cmd2 *mode_cmd)
13331 {
13332 struct drm_i915_gem_object *obj;
13333
13334 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
13335 mode_cmd->handles[0]));
13336 if (&obj->base == NULL)
13337 return ERR_PTR(-ENOENT);
13338
13339 return intel_framebuffer_create(dev, mode_cmd, obj);
13340 }
13341
13342 #ifndef CONFIG_DRM_I915_FBDEV
13343 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
13344 {
13345 }
13346 #endif
13347
13348 static const struct drm_mode_config_funcs intel_mode_funcs = {
13349 .fb_create = intel_user_framebuffer_create,
13350 .output_poll_changed = intel_fbdev_output_poll_changed,
13351 .atomic_check = intel_atomic_check,
13352 .atomic_commit = intel_atomic_commit,
13353 };
13354
13355 /* Set up chip specific display functions */
13356 static void intel_init_display(struct drm_device *dev)
13357 {
13358 struct drm_i915_private *dev_priv = dev->dev_private;
13359
13360 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
13361 dev_priv->display.find_dpll = g4x_find_best_dpll;
13362 else if (IS_CHERRYVIEW(dev))
13363 dev_priv->display.find_dpll = chv_find_best_dpll;
13364 else if (IS_VALLEYVIEW(dev))
13365 dev_priv->display.find_dpll = vlv_find_best_dpll;
13366 else if (IS_PINEVIEW(dev))
13367 dev_priv->display.find_dpll = pnv_find_best_dpll;
13368 else
13369 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13370
13371 if (INTEL_INFO(dev)->gen >= 9) {
13372 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13373 dev_priv->display.get_initial_plane_config =
13374 skylake_get_initial_plane_config;
13375 dev_priv->display.crtc_compute_clock =
13376 haswell_crtc_compute_clock;
13377 dev_priv->display.crtc_enable = haswell_crtc_enable;
13378 dev_priv->display.crtc_disable = haswell_crtc_disable;
13379 dev_priv->display.off = ironlake_crtc_off;
13380 dev_priv->display.update_primary_plane =
13381 skylake_update_primary_plane;
13382 } else if (HAS_DDI(dev)) {
13383 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13384 dev_priv->display.get_initial_plane_config =
13385 ironlake_get_initial_plane_config;
13386 dev_priv->display.crtc_compute_clock =
13387 haswell_crtc_compute_clock;
13388 dev_priv->display.crtc_enable = haswell_crtc_enable;
13389 dev_priv->display.crtc_disable = haswell_crtc_disable;
13390 dev_priv->display.off = ironlake_crtc_off;
13391 dev_priv->display.update_primary_plane =
13392 ironlake_update_primary_plane;
13393 } else if (HAS_PCH_SPLIT(dev)) {
13394 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13395 dev_priv->display.get_initial_plane_config =
13396 ironlake_get_initial_plane_config;
13397 dev_priv->display.crtc_compute_clock =
13398 ironlake_crtc_compute_clock;
13399 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13400 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13401 dev_priv->display.off = ironlake_crtc_off;
13402 dev_priv->display.update_primary_plane =
13403 ironlake_update_primary_plane;
13404 } else if (IS_VALLEYVIEW(dev)) {
13405 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13406 dev_priv->display.get_initial_plane_config =
13407 i9xx_get_initial_plane_config;
13408 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13409 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13410 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13411 dev_priv->display.off = i9xx_crtc_off;
13412 dev_priv->display.update_primary_plane =
13413 i9xx_update_primary_plane;
13414 } else {
13415 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13416 dev_priv->display.get_initial_plane_config =
13417 i9xx_get_initial_plane_config;
13418 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13419 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13420 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13421 dev_priv->display.off = i9xx_crtc_off;
13422 dev_priv->display.update_primary_plane =
13423 i9xx_update_primary_plane;
13424 }
13425
13426 /* Returns the core display clock speed */
13427 if (IS_VALLEYVIEW(dev))
13428 dev_priv->display.get_display_clock_speed =
13429 valleyview_get_display_clock_speed;
13430 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13431 dev_priv->display.get_display_clock_speed =
13432 i945_get_display_clock_speed;
13433 else if (IS_I915G(dev))
13434 dev_priv->display.get_display_clock_speed =
13435 i915_get_display_clock_speed;
13436 else if (IS_I945GM(dev) || IS_845G(dev))
13437 dev_priv->display.get_display_clock_speed =
13438 i9xx_misc_get_display_clock_speed;
13439 else if (IS_PINEVIEW(dev))
13440 dev_priv->display.get_display_clock_speed =
13441 pnv_get_display_clock_speed;
13442 else if (IS_I915GM(dev))
13443 dev_priv->display.get_display_clock_speed =
13444 i915gm_get_display_clock_speed;
13445 else if (IS_I865G(dev))
13446 dev_priv->display.get_display_clock_speed =
13447 i865_get_display_clock_speed;
13448 else if (IS_I85X(dev))
13449 dev_priv->display.get_display_clock_speed =
13450 i855_get_display_clock_speed;
13451 else /* 852, 830 */
13452 dev_priv->display.get_display_clock_speed =
13453 i830_get_display_clock_speed;
13454
13455 if (IS_GEN5(dev)) {
13456 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13457 } else if (IS_GEN6(dev)) {
13458 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13459 } else if (IS_IVYBRIDGE(dev)) {
13460 /* FIXME: detect B0+ stepping and use auto training */
13461 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13462 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13463 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13464 } else if (IS_VALLEYVIEW(dev)) {
13465 dev_priv->display.modeset_global_resources =
13466 valleyview_modeset_global_resources;
13467 }
13468
13469 switch (INTEL_INFO(dev)->gen) {
13470 case 2:
13471 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13472 break;
13473
13474 case 3:
13475 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13476 break;
13477
13478 case 4:
13479 case 5:
13480 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13481 break;
13482
13483 case 6:
13484 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13485 break;
13486 case 7:
13487 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13488 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13489 break;
13490 case 9:
13491 /* Drop through - unsupported since execlist only. */
13492 default:
13493 /* Default just returns -ENODEV to indicate unsupported */
13494 dev_priv->display.queue_flip = intel_default_queue_flip;
13495 }
13496
13497 intel_panel_init_backlight_funcs(dev);
13498
13499 mutex_init(&dev_priv->pps_mutex);
13500 }
13501
13502 /*
13503 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13504 * resume, or other times. This quirk makes sure that's the case for
13505 * affected systems.
13506 */
13507 static void quirk_pipea_force(struct drm_device *dev)
13508 {
13509 struct drm_i915_private *dev_priv = dev->dev_private;
13510
13511 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13512 DRM_INFO("applying pipe a force quirk\n");
13513 }
13514
13515 static void quirk_pipeb_force(struct drm_device *dev)
13516 {
13517 struct drm_i915_private *dev_priv = dev->dev_private;
13518
13519 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13520 DRM_INFO("applying pipe b force quirk\n");
13521 }
13522
13523 /*
13524 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13525 */
13526 static void quirk_ssc_force_disable(struct drm_device *dev)
13527 {
13528 struct drm_i915_private *dev_priv = dev->dev_private;
13529 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13530 DRM_INFO("applying lvds SSC disable quirk\n");
13531 }
13532
13533 /*
13534 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13535 * brightness value
13536 */
13537 static void quirk_invert_brightness(struct drm_device *dev)
13538 {
13539 struct drm_i915_private *dev_priv = dev->dev_private;
13540 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13541 DRM_INFO("applying inverted panel brightness quirk\n");
13542 }
13543
13544 /* Some VBT's incorrectly indicate no backlight is present */
13545 static void quirk_backlight_present(struct drm_device *dev)
13546 {
13547 struct drm_i915_private *dev_priv = dev->dev_private;
13548 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13549 DRM_INFO("applying backlight present quirk\n");
13550 }
13551
13552 struct intel_quirk {
13553 int device;
13554 int subsystem_vendor;
13555 int subsystem_device;
13556 void (*hook)(struct drm_device *dev);
13557 };
13558
13559 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13560 struct intel_dmi_quirk {
13561 void (*hook)(struct drm_device *dev);
13562 const struct dmi_system_id (*dmi_id_list)[];
13563 };
13564
13565 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13566 {
13567 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13568 return 1;
13569 }
13570
13571 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13572 {
13573 .dmi_id_list = &(const struct dmi_system_id[]) {
13574 {
13575 .callback = intel_dmi_reverse_brightness,
13576 .ident = "NCR Corporation",
13577 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13578 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13579 },
13580 },
13581 { } /* terminating entry */
13582 },
13583 .hook = quirk_invert_brightness,
13584 },
13585 };
13586
13587 static struct intel_quirk intel_quirks[] = {
13588 /* HP Mini needs pipe A force quirk (LP: #322104) */
13589 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13590
13591 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13592 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13593
13594 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13595 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13596
13597 /* 830 needs to leave pipe A & dpll A up */
13598 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13599
13600 /* 830 needs to leave pipe B & dpll B up */
13601 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13602
13603 /* Lenovo U160 cannot use SSC on LVDS */
13604 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13605
13606 /* Sony Vaio Y cannot use SSC on LVDS */
13607 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13608
13609 /* Acer Aspire 5734Z must invert backlight brightness */
13610 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13611
13612 /* Acer/eMachines G725 */
13613 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13614
13615 /* Acer/eMachines e725 */
13616 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13617
13618 /* Acer/Packard Bell NCL20 */
13619 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13620
13621 /* Acer Aspire 4736Z */
13622 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13623
13624 /* Acer Aspire 5336 */
13625 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13626
13627 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13628 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13629
13630 /* Acer C720 Chromebook (Core i3 4005U) */
13631 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13632
13633 /* Apple Macbook 2,1 (Core 2 T7400) */
13634 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13635
13636 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13637 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13638
13639 /* HP Chromebook 14 (Celeron 2955U) */
13640 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13641
13642 /* Dell Chromebook 11 */
13643 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13644 };
13645
13646 static void intel_init_quirks(struct drm_device *dev)
13647 {
13648 struct pci_dev *d = dev->pdev;
13649 int i;
13650
13651 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13652 struct intel_quirk *q = &intel_quirks[i];
13653
13654 if (d->device == q->device &&
13655 (d->subsystem_vendor == q->subsystem_vendor ||
13656 q->subsystem_vendor == PCI_ANY_ID) &&
13657 (d->subsystem_device == q->subsystem_device ||
13658 q->subsystem_device == PCI_ANY_ID))
13659 q->hook(dev);
13660 }
13661 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13662 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13663 intel_dmi_quirks[i].hook(dev);
13664 }
13665 }
13666
13667 /* Disable the VGA plane that we never use */
13668 static void i915_disable_vga(struct drm_device *dev)
13669 {
13670 struct drm_i915_private *dev_priv = dev->dev_private;
13671 u8 sr1;
13672 u32 vga_reg = i915_vgacntrl_reg(dev);
13673
13674 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13675 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13676 outb(SR01, VGA_SR_INDEX);
13677 sr1 = inb(VGA_SR_DATA);
13678 outb(sr1 | 1<<5, VGA_SR_DATA);
13679 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13680 udelay(300);
13681
13682 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13683 POSTING_READ(vga_reg);
13684 }
13685
13686 void intel_modeset_init_hw(struct drm_device *dev)
13687 {
13688 intel_prepare_ddi(dev);
13689
13690 if (IS_VALLEYVIEW(dev))
13691 vlv_update_cdclk(dev);
13692
13693 intel_init_clock_gating(dev);
13694
13695 intel_enable_gt_powersave(dev);
13696 }
13697
13698 void intel_modeset_init(struct drm_device *dev)
13699 {
13700 struct drm_i915_private *dev_priv = dev->dev_private;
13701 int sprite, ret;
13702 enum pipe pipe;
13703 struct intel_crtc *crtc;
13704
13705 drm_mode_config_init(dev);
13706
13707 dev->mode_config.min_width = 0;
13708 dev->mode_config.min_height = 0;
13709
13710 dev->mode_config.preferred_depth = 24;
13711 dev->mode_config.prefer_shadow = 1;
13712
13713 dev->mode_config.allow_fb_modifiers = true;
13714
13715 dev->mode_config.funcs = &intel_mode_funcs;
13716
13717 intel_init_quirks(dev);
13718
13719 intel_init_pm(dev);
13720
13721 if (INTEL_INFO(dev)->num_pipes == 0)
13722 return;
13723
13724 intel_init_display(dev);
13725 intel_init_audio(dev);
13726
13727 if (IS_GEN2(dev)) {
13728 dev->mode_config.max_width = 2048;
13729 dev->mode_config.max_height = 2048;
13730 } else if (IS_GEN3(dev)) {
13731 dev->mode_config.max_width = 4096;
13732 dev->mode_config.max_height = 4096;
13733 } else {
13734 dev->mode_config.max_width = 8192;
13735 dev->mode_config.max_height = 8192;
13736 }
13737
13738 if (IS_845G(dev) || IS_I865G(dev)) {
13739 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13740 dev->mode_config.cursor_height = 1023;
13741 } else if (IS_GEN2(dev)) {
13742 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13743 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13744 } else {
13745 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13746 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13747 }
13748
13749 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13750
13751 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13752 INTEL_INFO(dev)->num_pipes,
13753 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13754
13755 for_each_pipe(dev_priv, pipe) {
13756 intel_crtc_init(dev, pipe);
13757 for_each_sprite(dev_priv, pipe, sprite) {
13758 ret = intel_plane_init(dev, pipe, sprite);
13759 if (ret)
13760 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13761 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13762 }
13763 }
13764
13765 intel_init_dpio(dev);
13766
13767 intel_shared_dpll_init(dev);
13768
13769 /* Just disable it once at startup */
13770 i915_disable_vga(dev);
13771 intel_setup_outputs(dev);
13772
13773 /* Just in case the BIOS is doing something questionable. */
13774 intel_fbc_disable(dev);
13775
13776 drm_modeset_lock_all(dev);
13777 intel_modeset_setup_hw_state(dev, false);
13778 drm_modeset_unlock_all(dev);
13779
13780 for_each_intel_crtc(dev, crtc) {
13781 if (!crtc->active)
13782 continue;
13783
13784 /*
13785 * Note that reserving the BIOS fb up front prevents us
13786 * from stuffing other stolen allocations like the ring
13787 * on top. This prevents some ugliness at boot time, and
13788 * can even allow for smooth boot transitions if the BIOS
13789 * fb is large enough for the active pipe configuration.
13790 */
13791 if (dev_priv->display.get_initial_plane_config) {
13792 dev_priv->display.get_initial_plane_config(crtc,
13793 &crtc->plane_config);
13794 /*
13795 * If the fb is shared between multiple heads, we'll
13796 * just get the first one.
13797 */
13798 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
13799 }
13800 }
13801 }
13802
13803 static void intel_enable_pipe_a(struct drm_device *dev)
13804 {
13805 struct intel_connector *connector;
13806 struct drm_connector *crt = NULL;
13807 struct intel_load_detect_pipe load_detect_temp;
13808 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13809
13810 /* We can't just switch on the pipe A, we need to set things up with a
13811 * proper mode and output configuration. As a gross hack, enable pipe A
13812 * by enabling the load detect pipe once. */
13813 for_each_intel_connector(dev, connector) {
13814 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13815 crt = &connector->base;
13816 break;
13817 }
13818 }
13819
13820 if (!crt)
13821 return;
13822
13823 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13824 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
13825 }
13826
13827 static bool
13828 intel_check_plane_mapping(struct intel_crtc *crtc)
13829 {
13830 struct drm_device *dev = crtc->base.dev;
13831 struct drm_i915_private *dev_priv = dev->dev_private;
13832 u32 reg, val;
13833
13834 if (INTEL_INFO(dev)->num_pipes == 1)
13835 return true;
13836
13837 reg = DSPCNTR(!crtc->plane);
13838 val = I915_READ(reg);
13839
13840 if ((val & DISPLAY_PLANE_ENABLE) &&
13841 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13842 return false;
13843
13844 return true;
13845 }
13846
13847 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13848 {
13849 struct drm_device *dev = crtc->base.dev;
13850 struct drm_i915_private *dev_priv = dev->dev_private;
13851 u32 reg;
13852
13853 /* Clear any frame start delays used for debugging left by the BIOS */
13854 reg = PIPECONF(crtc->config->cpu_transcoder);
13855 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13856
13857 /* restore vblank interrupts to correct state */
13858 drm_crtc_vblank_reset(&crtc->base);
13859 if (crtc->active) {
13860 update_scanline_offset(crtc);
13861 drm_crtc_vblank_on(&crtc->base);
13862 }
13863
13864 /* We need to sanitize the plane -> pipe mapping first because this will
13865 * disable the crtc (and hence change the state) if it is wrong. Note
13866 * that gen4+ has a fixed plane -> pipe mapping. */
13867 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13868 struct intel_connector *connector;
13869 bool plane;
13870
13871 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13872 crtc->base.base.id);
13873
13874 /* Pipe has the wrong plane attached and the plane is active.
13875 * Temporarily change the plane mapping and disable everything
13876 * ... */
13877 plane = crtc->plane;
13878 crtc->plane = !plane;
13879 crtc->primary_enabled = true;
13880 dev_priv->display.crtc_disable(&crtc->base);
13881 crtc->plane = plane;
13882
13883 /* ... and break all links. */
13884 for_each_intel_connector(dev, connector) {
13885 if (connector->encoder->base.crtc != &crtc->base)
13886 continue;
13887
13888 connector->base.dpms = DRM_MODE_DPMS_OFF;
13889 connector->base.encoder = NULL;
13890 }
13891 /* multiple connectors may have the same encoder:
13892 * handle them and break crtc link separately */
13893 for_each_intel_connector(dev, connector)
13894 if (connector->encoder->base.crtc == &crtc->base) {
13895 connector->encoder->base.crtc = NULL;
13896 connector->encoder->connectors_active = false;
13897 }
13898
13899 WARN_ON(crtc->active);
13900 crtc->base.state->enable = false;
13901 crtc->base.enabled = false;
13902 }
13903
13904 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13905 crtc->pipe == PIPE_A && !crtc->active) {
13906 /* BIOS forgot to enable pipe A, this mostly happens after
13907 * resume. Force-enable the pipe to fix this, the update_dpms
13908 * call below we restore the pipe to the right state, but leave
13909 * the required bits on. */
13910 intel_enable_pipe_a(dev);
13911 }
13912
13913 /* Adjust the state of the output pipe according to whether we
13914 * have active connectors/encoders. */
13915 intel_crtc_update_dpms(&crtc->base);
13916
13917 if (crtc->active != crtc->base.state->enable) {
13918 struct intel_encoder *encoder;
13919
13920 /* This can happen either due to bugs in the get_hw_state
13921 * functions or because the pipe is force-enabled due to the
13922 * pipe A quirk. */
13923 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13924 crtc->base.base.id,
13925 crtc->base.state->enable ? "enabled" : "disabled",
13926 crtc->active ? "enabled" : "disabled");
13927
13928 crtc->base.state->enable = crtc->active;
13929 crtc->base.enabled = crtc->active;
13930
13931 /* Because we only establish the connector -> encoder ->
13932 * crtc links if something is active, this means the
13933 * crtc is now deactivated. Break the links. connector
13934 * -> encoder links are only establish when things are
13935 * actually up, hence no need to break them. */
13936 WARN_ON(crtc->active);
13937
13938 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13939 WARN_ON(encoder->connectors_active);
13940 encoder->base.crtc = NULL;
13941 }
13942 }
13943
13944 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13945 /*
13946 * We start out with underrun reporting disabled to avoid races.
13947 * For correct bookkeeping mark this on active crtcs.
13948 *
13949 * Also on gmch platforms we dont have any hardware bits to
13950 * disable the underrun reporting. Which means we need to start
13951 * out with underrun reporting disabled also on inactive pipes,
13952 * since otherwise we'll complain about the garbage we read when
13953 * e.g. coming up after runtime pm.
13954 *
13955 * No protection against concurrent access is required - at
13956 * worst a fifo underrun happens which also sets this to false.
13957 */
13958 crtc->cpu_fifo_underrun_disabled = true;
13959 crtc->pch_fifo_underrun_disabled = true;
13960 }
13961 }
13962
13963 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13964 {
13965 struct intel_connector *connector;
13966 struct drm_device *dev = encoder->base.dev;
13967
13968 /* We need to check both for a crtc link (meaning that the
13969 * encoder is active and trying to read from a pipe) and the
13970 * pipe itself being active. */
13971 bool has_active_crtc = encoder->base.crtc &&
13972 to_intel_crtc(encoder->base.crtc)->active;
13973
13974 if (encoder->connectors_active && !has_active_crtc) {
13975 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13976 encoder->base.base.id,
13977 encoder->base.name);
13978
13979 /* Connector is active, but has no active pipe. This is
13980 * fallout from our resume register restoring. Disable
13981 * the encoder manually again. */
13982 if (encoder->base.crtc) {
13983 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13984 encoder->base.base.id,
13985 encoder->base.name);
13986 encoder->disable(encoder);
13987 if (encoder->post_disable)
13988 encoder->post_disable(encoder);
13989 }
13990 encoder->base.crtc = NULL;
13991 encoder->connectors_active = false;
13992
13993 /* Inconsistent output/port/pipe state happens presumably due to
13994 * a bug in one of the get_hw_state functions. Or someplace else
13995 * in our code, like the register restore mess on resume. Clamp
13996 * things to off as a safer default. */
13997 for_each_intel_connector(dev, connector) {
13998 if (connector->encoder != encoder)
13999 continue;
14000 connector->base.dpms = DRM_MODE_DPMS_OFF;
14001 connector->base.encoder = NULL;
14002 }
14003 }
14004 /* Enabled encoders without active connectors will be fixed in
14005 * the crtc fixup. */
14006 }
14007
14008 void i915_redisable_vga_power_on(struct drm_device *dev)
14009 {
14010 struct drm_i915_private *dev_priv = dev->dev_private;
14011 u32 vga_reg = i915_vgacntrl_reg(dev);
14012
14013 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14014 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14015 i915_disable_vga(dev);
14016 }
14017 }
14018
14019 void i915_redisable_vga(struct drm_device *dev)
14020 {
14021 struct drm_i915_private *dev_priv = dev->dev_private;
14022
14023 /* This function can be called both from intel_modeset_setup_hw_state or
14024 * at a very early point in our resume sequence, where the power well
14025 * structures are not yet restored. Since this function is at a very
14026 * paranoid "someone might have enabled VGA while we were not looking"
14027 * level, just check if the power well is enabled instead of trying to
14028 * follow the "don't touch the power well if we don't need it" policy
14029 * the rest of the driver uses. */
14030 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14031 return;
14032
14033 i915_redisable_vga_power_on(dev);
14034 }
14035
14036 static bool primary_get_hw_state(struct intel_crtc *crtc)
14037 {
14038 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14039
14040 if (!crtc->active)
14041 return false;
14042
14043 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14044 }
14045
14046 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14047 {
14048 struct drm_i915_private *dev_priv = dev->dev_private;
14049 enum pipe pipe;
14050 struct intel_crtc *crtc;
14051 struct intel_encoder *encoder;
14052 struct intel_connector *connector;
14053 int i;
14054
14055 for_each_intel_crtc(dev, crtc) {
14056 memset(crtc->config, 0, sizeof(*crtc->config));
14057
14058 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14059
14060 crtc->active = dev_priv->display.get_pipe_config(crtc,
14061 crtc->config);
14062
14063 crtc->base.state->enable = crtc->active;
14064 crtc->base.enabled = crtc->active;
14065 crtc->primary_enabled = primary_get_hw_state(crtc);
14066
14067 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14068 crtc->base.base.id,
14069 crtc->active ? "enabled" : "disabled");
14070 }
14071
14072 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14073 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14074
14075 pll->on = pll->get_hw_state(dev_priv, pll,
14076 &pll->config.hw_state);
14077 pll->active = 0;
14078 pll->config.crtc_mask = 0;
14079 for_each_intel_crtc(dev, crtc) {
14080 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14081 pll->active++;
14082 pll->config.crtc_mask |= 1 << crtc->pipe;
14083 }
14084 }
14085
14086 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14087 pll->name, pll->config.crtc_mask, pll->on);
14088
14089 if (pll->config.crtc_mask)
14090 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14091 }
14092
14093 for_each_intel_encoder(dev, encoder) {
14094 pipe = 0;
14095
14096 if (encoder->get_hw_state(encoder, &pipe)) {
14097 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14098 encoder->base.crtc = &crtc->base;
14099 encoder->get_config(encoder, crtc->config);
14100 } else {
14101 encoder->base.crtc = NULL;
14102 }
14103
14104 encoder->connectors_active = false;
14105 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14106 encoder->base.base.id,
14107 encoder->base.name,
14108 encoder->base.crtc ? "enabled" : "disabled",
14109 pipe_name(pipe));
14110 }
14111
14112 for_each_intel_connector(dev, connector) {
14113 if (connector->get_hw_state(connector)) {
14114 connector->base.dpms = DRM_MODE_DPMS_ON;
14115 connector->encoder->connectors_active = true;
14116 connector->base.encoder = &connector->encoder->base;
14117 } else {
14118 connector->base.dpms = DRM_MODE_DPMS_OFF;
14119 connector->base.encoder = NULL;
14120 }
14121 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14122 connector->base.base.id,
14123 connector->base.name,
14124 connector->base.encoder ? "enabled" : "disabled");
14125 }
14126 }
14127
14128 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14129 * and i915 state tracking structures. */
14130 void intel_modeset_setup_hw_state(struct drm_device *dev,
14131 bool force_restore)
14132 {
14133 struct drm_i915_private *dev_priv = dev->dev_private;
14134 enum pipe pipe;
14135 struct intel_crtc *crtc;
14136 struct intel_encoder *encoder;
14137 int i;
14138
14139 intel_modeset_readout_hw_state(dev);
14140
14141 /*
14142 * Now that we have the config, copy it to each CRTC struct
14143 * Note that this could go away if we move to using crtc_config
14144 * checking everywhere.
14145 */
14146 for_each_intel_crtc(dev, crtc) {
14147 if (crtc->active && i915.fastboot) {
14148 intel_mode_from_pipe_config(&crtc->base.mode,
14149 crtc->config);
14150 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14151 crtc->base.base.id);
14152 drm_mode_debug_printmodeline(&crtc->base.mode);
14153 }
14154 }
14155
14156 /* HW state is read out, now we need to sanitize this mess. */
14157 for_each_intel_encoder(dev, encoder) {
14158 intel_sanitize_encoder(encoder);
14159 }
14160
14161 for_each_pipe(dev_priv, pipe) {
14162 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14163 intel_sanitize_crtc(crtc);
14164 intel_dump_pipe_config(crtc, crtc->config,
14165 "[setup_hw_state]");
14166 }
14167
14168 intel_modeset_update_connector_atomic_state(dev);
14169
14170 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14171 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14172
14173 if (!pll->on || pll->active)
14174 continue;
14175
14176 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14177
14178 pll->disable(dev_priv, pll);
14179 pll->on = false;
14180 }
14181
14182 if (IS_GEN9(dev))
14183 skl_wm_get_hw_state(dev);
14184 else if (HAS_PCH_SPLIT(dev))
14185 ilk_wm_get_hw_state(dev);
14186
14187 if (force_restore) {
14188 i915_redisable_vga(dev);
14189
14190 /*
14191 * We need to use raw interfaces for restoring state to avoid
14192 * checking (bogus) intermediate states.
14193 */
14194 for_each_pipe(dev_priv, pipe) {
14195 struct drm_crtc *crtc =
14196 dev_priv->pipe_to_crtc_mapping[pipe];
14197
14198 intel_crtc_restore_mode(crtc);
14199 }
14200 } else {
14201 intel_modeset_update_staged_output_state(dev);
14202 }
14203
14204 intel_modeset_check_state(dev);
14205 }
14206
14207 void intel_modeset_gem_init(struct drm_device *dev)
14208 {
14209 struct drm_i915_private *dev_priv = dev->dev_private;
14210 struct drm_crtc *c;
14211 struct drm_i915_gem_object *obj;
14212
14213 mutex_lock(&dev->struct_mutex);
14214 intel_init_gt_powersave(dev);
14215 mutex_unlock(&dev->struct_mutex);
14216
14217 /*
14218 * There may be no VBT; and if the BIOS enabled SSC we can
14219 * just keep using it to avoid unnecessary flicker. Whereas if the
14220 * BIOS isn't using it, don't assume it will work even if the VBT
14221 * indicates as much.
14222 */
14223 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
14224 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14225 DREF_SSC1_ENABLE);
14226
14227 intel_modeset_init_hw(dev);
14228
14229 intel_setup_overlay(dev);
14230
14231 /*
14232 * Make sure any fbs we allocated at startup are properly
14233 * pinned & fenced. When we do the allocation it's too early
14234 * for this.
14235 */
14236 mutex_lock(&dev->struct_mutex);
14237 for_each_crtc(dev, c) {
14238 obj = intel_fb_obj(c->primary->fb);
14239 if (obj == NULL)
14240 continue;
14241
14242 if (intel_pin_and_fence_fb_obj(c->primary,
14243 c->primary->fb,
14244 c->primary->state,
14245 NULL)) {
14246 DRM_ERROR("failed to pin boot fb on pipe %d\n",
14247 to_intel_crtc(c)->pipe);
14248 drm_framebuffer_unreference(c->primary->fb);
14249 c->primary->fb = NULL;
14250 update_state_fb(c->primary);
14251 }
14252 }
14253 mutex_unlock(&dev->struct_mutex);
14254
14255 intel_backlight_register(dev);
14256 }
14257
14258 void intel_connector_unregister(struct intel_connector *intel_connector)
14259 {
14260 struct drm_connector *connector = &intel_connector->base;
14261
14262 intel_panel_destroy_backlight(connector);
14263 drm_connector_unregister(connector);
14264 }
14265
14266 void intel_modeset_cleanup(struct drm_device *dev)
14267 {
14268 struct drm_i915_private *dev_priv = dev->dev_private;
14269 struct drm_connector *connector;
14270
14271 intel_disable_gt_powersave(dev);
14272
14273 intel_backlight_unregister(dev);
14274
14275 /*
14276 * Interrupts and polling as the first thing to avoid creating havoc.
14277 * Too much stuff here (turning of connectors, ...) would
14278 * experience fancy races otherwise.
14279 */
14280 intel_irq_uninstall(dev_priv);
14281
14282 /*
14283 * Due to the hpd irq storm handling the hotplug work can re-arm the
14284 * poll handlers. Hence disable polling after hpd handling is shut down.
14285 */
14286 drm_kms_helper_poll_fini(dev);
14287
14288 mutex_lock(&dev->struct_mutex);
14289
14290 intel_unregister_dsm_handler();
14291
14292 intel_fbc_disable(dev);
14293
14294 mutex_unlock(&dev->struct_mutex);
14295
14296 /* flush any delayed tasks or pending work */
14297 flush_scheduled_work();
14298
14299 /* destroy the backlight and sysfs files before encoders/connectors */
14300 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
14301 struct intel_connector *intel_connector;
14302
14303 intel_connector = to_intel_connector(connector);
14304 intel_connector->unregister(intel_connector);
14305 }
14306
14307 drm_mode_config_cleanup(dev);
14308
14309 intel_cleanup_overlay(dev);
14310
14311 mutex_lock(&dev->struct_mutex);
14312 intel_cleanup_gt_powersave(dev);
14313 mutex_unlock(&dev->struct_mutex);
14314 }
14315
14316 /*
14317 * Return which encoder is currently attached for connector.
14318 */
14319 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
14320 {
14321 return &intel_attached_encoder(connector)->base;
14322 }
14323
14324 void intel_connector_attach_encoder(struct intel_connector *connector,
14325 struct intel_encoder *encoder)
14326 {
14327 connector->encoder = encoder;
14328 drm_mode_connector_attach_encoder(&connector->base,
14329 &encoder->base);
14330 }
14331
14332 /*
14333 * set vga decode state - true == enable VGA decode
14334 */
14335 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
14336 {
14337 struct drm_i915_private *dev_priv = dev->dev_private;
14338 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
14339 u16 gmch_ctrl;
14340
14341 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
14342 DRM_ERROR("failed to read control word\n");
14343 return -EIO;
14344 }
14345
14346 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
14347 return 0;
14348
14349 if (state)
14350 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
14351 else
14352 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
14353
14354 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
14355 DRM_ERROR("failed to write control word\n");
14356 return -EIO;
14357 }
14358
14359 return 0;
14360 }
14361
14362 struct intel_display_error_state {
14363
14364 u32 power_well_driver;
14365
14366 int num_transcoders;
14367
14368 struct intel_cursor_error_state {
14369 u32 control;
14370 u32 position;
14371 u32 base;
14372 u32 size;
14373 } cursor[I915_MAX_PIPES];
14374
14375 struct intel_pipe_error_state {
14376 bool power_domain_on;
14377 u32 source;
14378 u32 stat;
14379 } pipe[I915_MAX_PIPES];
14380
14381 struct intel_plane_error_state {
14382 u32 control;
14383 u32 stride;
14384 u32 size;
14385 u32 pos;
14386 u32 addr;
14387 u32 surface;
14388 u32 tile_offset;
14389 } plane[I915_MAX_PIPES];
14390
14391 struct intel_transcoder_error_state {
14392 bool power_domain_on;
14393 enum transcoder cpu_transcoder;
14394
14395 u32 conf;
14396
14397 u32 htotal;
14398 u32 hblank;
14399 u32 hsync;
14400 u32 vtotal;
14401 u32 vblank;
14402 u32 vsync;
14403 } transcoder[4];
14404 };
14405
14406 struct intel_display_error_state *
14407 intel_display_capture_error_state(struct drm_device *dev)
14408 {
14409 struct drm_i915_private *dev_priv = dev->dev_private;
14410 struct intel_display_error_state *error;
14411 int transcoders[] = {
14412 TRANSCODER_A,
14413 TRANSCODER_B,
14414 TRANSCODER_C,
14415 TRANSCODER_EDP,
14416 };
14417 int i;
14418
14419 if (INTEL_INFO(dev)->num_pipes == 0)
14420 return NULL;
14421
14422 error = kzalloc(sizeof(*error), GFP_ATOMIC);
14423 if (error == NULL)
14424 return NULL;
14425
14426 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14427 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14428
14429 for_each_pipe(dev_priv, i) {
14430 error->pipe[i].power_domain_on =
14431 __intel_display_power_is_enabled(dev_priv,
14432 POWER_DOMAIN_PIPE(i));
14433 if (!error->pipe[i].power_domain_on)
14434 continue;
14435
14436 error->cursor[i].control = I915_READ(CURCNTR(i));
14437 error->cursor[i].position = I915_READ(CURPOS(i));
14438 error->cursor[i].base = I915_READ(CURBASE(i));
14439
14440 error->plane[i].control = I915_READ(DSPCNTR(i));
14441 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14442 if (INTEL_INFO(dev)->gen <= 3) {
14443 error->plane[i].size = I915_READ(DSPSIZE(i));
14444 error->plane[i].pos = I915_READ(DSPPOS(i));
14445 }
14446 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14447 error->plane[i].addr = I915_READ(DSPADDR(i));
14448 if (INTEL_INFO(dev)->gen >= 4) {
14449 error->plane[i].surface = I915_READ(DSPSURF(i));
14450 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14451 }
14452
14453 error->pipe[i].source = I915_READ(PIPESRC(i));
14454
14455 if (HAS_GMCH_DISPLAY(dev))
14456 error->pipe[i].stat = I915_READ(PIPESTAT(i));
14457 }
14458
14459 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14460 if (HAS_DDI(dev_priv->dev))
14461 error->num_transcoders++; /* Account for eDP. */
14462
14463 for (i = 0; i < error->num_transcoders; i++) {
14464 enum transcoder cpu_transcoder = transcoders[i];
14465
14466 error->transcoder[i].power_domain_on =
14467 __intel_display_power_is_enabled(dev_priv,
14468 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14469 if (!error->transcoder[i].power_domain_on)
14470 continue;
14471
14472 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14473
14474 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14475 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14476 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14477 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14478 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14479 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14480 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14481 }
14482
14483 return error;
14484 }
14485
14486 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14487
14488 void
14489 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14490 struct drm_device *dev,
14491 struct intel_display_error_state *error)
14492 {
14493 struct drm_i915_private *dev_priv = dev->dev_private;
14494 int i;
14495
14496 if (!error)
14497 return;
14498
14499 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14500 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14501 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14502 error->power_well_driver);
14503 for_each_pipe(dev_priv, i) {
14504 err_printf(m, "Pipe [%d]:\n", i);
14505 err_printf(m, " Power: %s\n",
14506 error->pipe[i].power_domain_on ? "on" : "off");
14507 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
14508 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
14509
14510 err_printf(m, "Plane [%d]:\n", i);
14511 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14512 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
14513 if (INTEL_INFO(dev)->gen <= 3) {
14514 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14515 err_printf(m, " POS: %08x\n", error->plane[i].pos);
14516 }
14517 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14518 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
14519 if (INTEL_INFO(dev)->gen >= 4) {
14520 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14521 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14522 }
14523
14524 err_printf(m, "Cursor [%d]:\n", i);
14525 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14526 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14527 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14528 }
14529
14530 for (i = 0; i < error->num_transcoders; i++) {
14531 err_printf(m, "CPU transcoder: %c\n",
14532 transcoder_name(error->transcoder[i].cpu_transcoder));
14533 err_printf(m, " Power: %s\n",
14534 error->transcoder[i].power_domain_on ? "on" : "off");
14535 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14536 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14537 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14538 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14539 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14540 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14541 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14542 }
14543 }
14544
14545 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14546 {
14547 struct intel_crtc *crtc;
14548
14549 for_each_intel_crtc(dev, crtc) {
14550 struct intel_unpin_work *work;
14551
14552 spin_lock_irq(&dev->event_lock);
14553
14554 work = crtc->unpin_work;
14555
14556 if (work && work->event &&
14557 work->event->base.file_priv == file) {
14558 kfree(work->event);
14559 work->event = NULL;
14560 }
14561
14562 spin_unlock_irq(&dev->event_lock);
14563 }
14564 }
This page took 0.537808 seconds and 6 git commands to generate.