drm/i915: Disable double wide even when leaving the pipe on
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
96 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103 static void chv_prepare_pll(struct intel_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415 {
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424 }
425
426 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
428 {
429 struct drm_device *dev = crtc->dev;
430 const intel_limit_t *limit;
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
433 if (intel_is_dual_link_lvds(dev)) {
434 if (refclk == 100000)
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
439 if (refclk == 100000)
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
444 } else
445 limit = &intel_limits_ironlake_dac;
446
447 return limit;
448 }
449
450 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451 {
452 struct drm_device *dev = crtc->dev;
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
456 if (intel_is_dual_link_lvds(dev))
457 limit = &intel_limits_g4x_dual_channel_lvds;
458 else
459 limit = &intel_limits_g4x_single_channel_lvds;
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
462 limit = &intel_limits_g4x_hdmi;
463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
464 limit = &intel_limits_g4x_sdvo;
465 } else /* The option is for other outputs */
466 limit = &intel_limits_i9xx_sdvo;
467
468 return limit;
469 }
470
471 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
472 {
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
476 if (HAS_PCH_SPLIT(dev))
477 limit = intel_ironlake_limit(crtc, refclk);
478 else if (IS_G4X(dev)) {
479 limit = intel_g4x_limit(crtc);
480 } else if (IS_PINEVIEW(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_pineview_lvds;
483 else
484 limit = &intel_limits_pineview_sdvo;
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
487 } else if (IS_VALLEYVIEW(dev)) {
488 limit = &intel_limits_vlv;
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
496 limit = &intel_limits_i8xx_lvds;
497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
498 limit = &intel_limits_i8xx_dvo;
499 else
500 limit = &intel_limits_i8xx_dac;
501 }
502 return limit;
503 }
504
505 /* m1 is reserved as 0 in Pineview, n is a ring counter */
506 static void pineview_clock(int refclk, intel_clock_t *clock)
507 {
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
514 }
515
516 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517 {
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519 }
520
521 static void i9xx_clock(int refclk, intel_clock_t *clock)
522 {
523 clock->m = i9xx_dpll_compute_m(clock);
524 clock->p = clock->p1 * clock->p2;
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static void chv_clock(int refclk, intel_clock_t *clock)
532 {
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540 }
541
542 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
543 /**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
548 static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
551 {
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
555 INTELPllInvalid("p1 out of range\n");
556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
557 INTELPllInvalid("m2 out of range\n");
558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
559 INTELPllInvalid("m1 out of range\n");
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
573 INTELPllInvalid("vco out of range\n");
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
578 INTELPllInvalid("dot out of range\n");
579
580 return true;
581 }
582
583 static bool
584 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
587 {
588 struct drm_device *dev = crtc->dev;
589 intel_clock_t clock;
590 int err = target;
591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593 /*
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
597 */
598 if (intel_is_dual_link_lvds(dev))
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
609 memset(best_clock, 0, sizeof(*best_clock));
610
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
615 if (clock.m2 >= clock.m1)
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
621 int this_err;
622
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642 }
643
644 static bool
645 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
648 {
649 struct drm_device *dev = crtc->dev;
650 intel_clock_t clock;
651 int err = target;
652
653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
654 /*
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
658 */
659 if (intel_is_dual_link_lvds(dev))
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
670 memset(best_clock, 0, sizeof(*best_clock));
671
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
680 int this_err;
681
682 pineview_clock(refclk, &clock);
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
685 continue;
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701 }
702
703 static bool
704 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
707 {
708 struct drm_device *dev = crtc->dev;
709 intel_clock_t clock;
710 int max_n;
711 bool found;
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
717 if (intel_is_dual_link_lvds(dev))
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
730 /* based on hardware requirement, prefer smaller n to precision */
731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732 /* based on hardware requirement, prefere larger m1,m2 */
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
741 i9xx_clock(refclk, &clock);
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
744 continue;
745
746 this_err = abs(clock.dot - target);
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
757 return found;
758 }
759
760 static bool
761 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
764 {
765 struct drm_device *dev = crtc->dev;
766 intel_clock_t clock;
767 unsigned int bestppm = 1000000;
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
770 bool found = false;
771
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
775
776 /* based on hardware requirement, prefer smaller n to precision */
777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
781 clock.p = clock.p1 * clock.p2;
782 /* based on hardware requirement, prefer bigger m1,m2 values */
783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
784 unsigned int ppm, diff;
785
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
790
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
793 continue;
794
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
799 bestppm = 0;
800 *best_clock = clock;
801 found = true;
802 }
803
804 if (bestppm >= 10 && ppm < bestppm - 10) {
805 bestppm = ppm;
806 *best_clock = clock;
807 found = true;
808 }
809 }
810 }
811 }
812 }
813
814 return found;
815 }
816
817 static bool
818 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821 {
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867 }
868
869 bool intel_crtc_active(struct drm_crtc *crtc)
870 {
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
876 * We can ditch the adjusted_mode.crtc_clock check as soon
877 * as Haswell has gained clock readout/fastboot support.
878 *
879 * We can ditch the crtc->primary->fb check as soon as we can
880 * properly reconstruct framebuffers.
881 */
882 return intel_crtc->active && crtc->primary->fb &&
883 intel_crtc->config.adjusted_mode.crtc_clock;
884 }
885
886 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888 {
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
892 return intel_crtc->config.cpu_transcoder;
893 }
894
895 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
896 {
897 struct drm_i915_private *dev_priv = dev->dev_private;
898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
905 }
906
907 /**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
916 {
917 struct drm_i915_private *dev_priv = dev->dev_private;
918 int pipestat_reg = PIPESTAT(pipe);
919
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
922 return;
923 }
924
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
941 /* Wait for vblank interrupt bit to set */
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
947 }
948
949 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966 }
967
968 /*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
970 * @crtc: crtc whose pipe to wait for
971 *
972 * After disabling a pipe, we can't wait for vblank in the usual way,
973 * spinning on the vblank interrupt status bit, since we won't actually
974 * see an interrupt when the pipe is disabled.
975 *
976 * On Gen4 and above:
977 * wait for the pipe register state bit to turn off
978 *
979 * Otherwise:
980 * wait for the display line value to settle (it usually
981 * ends up stopping at the start of the next frame).
982 *
983 */
984 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
985 {
986 struct drm_device *dev = crtc->base.dev;
987 struct drm_i915_private *dev_priv = dev->dev_private;
988 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989 enum pipe pipe = crtc->pipe;
990
991 if (INTEL_INFO(dev)->gen >= 4) {
992 int reg = PIPECONF(cpu_transcoder);
993
994 /* Wait for the Pipe State to go off */
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
997 WARN(1, "pipe_off wait timed out\n");
998 } else {
999 /* Wait for the display line to settle */
1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1001 WARN(1, "pipe_off wait timed out\n");
1002 }
1003 }
1004
1005 /*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014 {
1015 u32 bit;
1016
1017 if (HAS_PCH_IBX(dev_priv->dev)) {
1018 switch (port->port) {
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
1032 switch (port->port) {
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048 }
1049
1050 static const char *state_string(bool enabled)
1051 {
1052 return enabled ? "on" : "off";
1053 }
1054
1055 /* Only for pre-ILK configs */
1056 void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
1058 {
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069 }
1070
1071 /* XXX: the dsi pll is shared between MIPI DSI ports */
1072 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073 {
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085 }
1086 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
1089 struct intel_shared_dpll *
1090 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091 {
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
1094 if (crtc->config.shared_dpll < 0)
1095 return NULL;
1096
1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1098 }
1099
1100 /* For ILK+ */
1101 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
1104 {
1105 bool cur_state;
1106 struct intel_dpll_hw_state hw_state;
1107
1108 if (WARN (!pll,
1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
1110 return;
1111
1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1113 WARN(cur_state != state,
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
1116 }
1117
1118 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120 {
1121 int reg;
1122 u32 val;
1123 bool cur_state;
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
1126
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140 }
1141 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146 {
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157 }
1158 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163 {
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1169 return;
1170
1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1172 if (HAS_DDI(dev_priv->dev))
1173 return;
1174
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178 }
1179
1180 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
1182 {
1183 int reg;
1184 u32 val;
1185 bool cur_state;
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
1193 }
1194
1195 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197 {
1198 struct drm_device *dev = dev_priv->dev;
1199 int pp_reg;
1200 u32 val;
1201 enum pipe panel_pipe = PIPE_A;
1202 bool locked = true;
1203
1204 if (WARN_ON(HAS_DDI(dev)))
1205 return;
1206
1207 if (HAS_PCH_SPLIT(dev)) {
1208 u32 port_sel;
1209
1210 pp_reg = PCH_PP_CONTROL;
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220 panel_pipe = pipe;
1221 } else {
1222 pp_reg = PP_CONTROL;
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
1225 }
1226
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1230 locked = false;
1231
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
1234 pipe_name(pipe));
1235 }
1236
1237 static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1239 {
1240 struct drm_device *dev = dev_priv->dev;
1241 bool cur_state;
1242
1243 if (IS_845G(dev) || IS_I865G(dev))
1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1245 else
1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1247
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
1255 void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
1257 {
1258 int reg;
1259 u32 val;
1260 bool cur_state;
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262 pipe);
1263
1264 /* if we need the pipe A quirk it must be always on */
1265 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1266 state = true;
1267
1268 if (!intel_display_power_enabled(dev_priv,
1269 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1270 cur_state = false;
1271 } else {
1272 reg = PIPECONF(cpu_transcoder);
1273 val = I915_READ(reg);
1274 cur_state = !!(val & PIPECONF_ENABLE);
1275 }
1276
1277 WARN(cur_state != state,
1278 "pipe %c assertion failure (expected %s, current %s)\n",
1279 pipe_name(pipe), state_string(state), state_string(cur_state));
1280 }
1281
1282 static void assert_plane(struct drm_i915_private *dev_priv,
1283 enum plane plane, bool state)
1284 {
1285 int reg;
1286 u32 val;
1287 bool cur_state;
1288
1289 reg = DSPCNTR(plane);
1290 val = I915_READ(reg);
1291 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1292 WARN(cur_state != state,
1293 "plane %c assertion failure (expected %s, current %s)\n",
1294 plane_name(plane), state_string(state), state_string(cur_state));
1295 }
1296
1297 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1298 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1299
1300 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1301 enum pipe pipe)
1302 {
1303 struct drm_device *dev = dev_priv->dev;
1304 int reg, i;
1305 u32 val;
1306 int cur_pipe;
1307
1308 /* Primary planes are fixed to pipes on gen4+ */
1309 if (INTEL_INFO(dev)->gen >= 4) {
1310 reg = DSPCNTR(pipe);
1311 val = I915_READ(reg);
1312 WARN(val & DISPLAY_PLANE_ENABLE,
1313 "plane %c assertion failure, should be disabled but not\n",
1314 plane_name(pipe));
1315 return;
1316 }
1317
1318 /* Need to check both planes against the pipe */
1319 for_each_pipe(dev_priv, i) {
1320 reg = DSPCNTR(i);
1321 val = I915_READ(reg);
1322 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1323 DISPPLANE_SEL_PIPE_SHIFT;
1324 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1325 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1326 plane_name(i), pipe_name(pipe));
1327 }
1328 }
1329
1330 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1331 enum pipe pipe)
1332 {
1333 struct drm_device *dev = dev_priv->dev;
1334 int reg, sprite;
1335 u32 val;
1336
1337 if (IS_VALLEYVIEW(dev)) {
1338 for_each_sprite(pipe, sprite) {
1339 reg = SPCNTR(pipe, sprite);
1340 val = I915_READ(reg);
1341 WARN(val & SP_ENABLE,
1342 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1343 sprite_name(pipe, sprite), pipe_name(pipe));
1344 }
1345 } else if (INTEL_INFO(dev)->gen >= 7) {
1346 reg = SPRCTL(pipe);
1347 val = I915_READ(reg);
1348 WARN(val & SPRITE_ENABLE,
1349 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1350 plane_name(pipe), pipe_name(pipe));
1351 } else if (INTEL_INFO(dev)->gen >= 5) {
1352 reg = DVSCNTR(pipe);
1353 val = I915_READ(reg);
1354 WARN(val & DVS_ENABLE,
1355 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1356 plane_name(pipe), pipe_name(pipe));
1357 }
1358 }
1359
1360 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1361 {
1362 u32 val;
1363 bool enabled;
1364
1365 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1366
1367 val = I915_READ(PCH_DREF_CONTROL);
1368 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1369 DREF_SUPERSPREAD_SOURCE_MASK));
1370 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1371 }
1372
1373 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1374 enum pipe pipe)
1375 {
1376 int reg;
1377 u32 val;
1378 bool enabled;
1379
1380 reg = PCH_TRANSCONF(pipe);
1381 val = I915_READ(reg);
1382 enabled = !!(val & TRANS_ENABLE);
1383 WARN(enabled,
1384 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1385 pipe_name(pipe));
1386 }
1387
1388 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1389 enum pipe pipe, u32 port_sel, u32 val)
1390 {
1391 if ((val & DP_PORT_EN) == 0)
1392 return false;
1393
1394 if (HAS_PCH_CPT(dev_priv->dev)) {
1395 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1396 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1397 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1398 return false;
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1401 return false;
1402 } else {
1403 if ((val & DP_PIPE_MASK) != (pipe << 30))
1404 return false;
1405 }
1406 return true;
1407 }
1408
1409 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411 {
1412 if ((val & SDVO_ENABLE) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1417 return false;
1418 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1419 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1420 return false;
1421 } else {
1422 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1423 return false;
1424 }
1425 return true;
1426 }
1427
1428 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1429 enum pipe pipe, u32 val)
1430 {
1431 if ((val & LVDS_PORT_EN) == 0)
1432 return false;
1433
1434 if (HAS_PCH_CPT(dev_priv->dev)) {
1435 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1436 return false;
1437 } else {
1438 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1439 return false;
1440 }
1441 return true;
1442 }
1443
1444 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1445 enum pipe pipe, u32 val)
1446 {
1447 if ((val & ADPA_DAC_ENABLE) == 0)
1448 return false;
1449 if (HAS_PCH_CPT(dev_priv->dev)) {
1450 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1451 return false;
1452 } else {
1453 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1454 return false;
1455 }
1456 return true;
1457 }
1458
1459 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1460 enum pipe pipe, int reg, u32 port_sel)
1461 {
1462 u32 val = I915_READ(reg);
1463 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1464 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1465 reg, pipe_name(pipe));
1466
1467 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1468 && (val & DP_PIPEB_SELECT),
1469 "IBX PCH dp port still using transcoder B\n");
1470 }
1471
1472 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1473 enum pipe pipe, int reg)
1474 {
1475 u32 val = I915_READ(reg);
1476 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1477 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1478 reg, pipe_name(pipe));
1479
1480 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1481 && (val & SDVO_PIPE_B_SELECT),
1482 "IBX PCH hdmi port still using transcoder B\n");
1483 }
1484
1485 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1486 enum pipe pipe)
1487 {
1488 int reg;
1489 u32 val;
1490
1491 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1492 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1493 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1494
1495 reg = PCH_ADPA;
1496 val = I915_READ(reg);
1497 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1498 "PCH VGA enabled on transcoder %c, should be disabled\n",
1499 pipe_name(pipe));
1500
1501 reg = PCH_LVDS;
1502 val = I915_READ(reg);
1503 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1504 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1505 pipe_name(pipe));
1506
1507 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1508 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1509 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1510 }
1511
1512 static void intel_init_dpio(struct drm_device *dev)
1513 {
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515
1516 if (!IS_VALLEYVIEW(dev))
1517 return;
1518
1519 /*
1520 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1521 * CHV x1 PHY (DP/HDMI D)
1522 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1523 */
1524 if (IS_CHERRYVIEW(dev)) {
1525 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1526 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1527 } else {
1528 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1529 }
1530 }
1531
1532 static void vlv_enable_pll(struct intel_crtc *crtc)
1533 {
1534 struct drm_device *dev = crtc->base.dev;
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 int reg = DPLL(crtc->pipe);
1537 u32 dpll = crtc->config.dpll_hw_state.dpll;
1538
1539 assert_pipe_disabled(dev_priv, crtc->pipe);
1540
1541 /* No really, not for ILK+ */
1542 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1543
1544 /* PLL is protected by panel, make sure we can write it */
1545 if (IS_MOBILE(dev_priv->dev))
1546 assert_panel_unlocked(dev_priv, crtc->pipe);
1547
1548 I915_WRITE(reg, dpll);
1549 POSTING_READ(reg);
1550 udelay(150);
1551
1552 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1553 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1554
1555 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1556 POSTING_READ(DPLL_MD(crtc->pipe));
1557
1558 /* We do this three times for luck */
1559 I915_WRITE(reg, dpll);
1560 POSTING_READ(reg);
1561 udelay(150); /* wait for warmup */
1562 I915_WRITE(reg, dpll);
1563 POSTING_READ(reg);
1564 udelay(150); /* wait for warmup */
1565 I915_WRITE(reg, dpll);
1566 POSTING_READ(reg);
1567 udelay(150); /* wait for warmup */
1568 }
1569
1570 static void chv_enable_pll(struct intel_crtc *crtc)
1571 {
1572 struct drm_device *dev = crtc->base.dev;
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 int pipe = crtc->pipe;
1575 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1576 u32 tmp;
1577
1578 assert_pipe_disabled(dev_priv, crtc->pipe);
1579
1580 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1581
1582 mutex_lock(&dev_priv->dpio_lock);
1583
1584 /* Enable back the 10bit clock to display controller */
1585 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1586 tmp |= DPIO_DCLKP_EN;
1587 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1588
1589 /*
1590 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1591 */
1592 udelay(1);
1593
1594 /* Enable PLL */
1595 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1596
1597 /* Check PLL is locked */
1598 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1599 DRM_ERROR("PLL %d failed to lock\n", pipe);
1600
1601 /* not sure when this should be written */
1602 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1603 POSTING_READ(DPLL_MD(pipe));
1604
1605 mutex_unlock(&dev_priv->dpio_lock);
1606 }
1607
1608 static void i9xx_enable_pll(struct intel_crtc *crtc)
1609 {
1610 struct drm_device *dev = crtc->base.dev;
1611 struct drm_i915_private *dev_priv = dev->dev_private;
1612 int reg = DPLL(crtc->pipe);
1613 u32 dpll = crtc->config.dpll_hw_state.dpll;
1614
1615 assert_pipe_disabled(dev_priv, crtc->pipe);
1616
1617 /* No really, not for ILK+ */
1618 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1619
1620 /* PLL is protected by panel, make sure we can write it */
1621 if (IS_MOBILE(dev) && !IS_I830(dev))
1622 assert_panel_unlocked(dev_priv, crtc->pipe);
1623
1624 I915_WRITE(reg, dpll);
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
1641
1642 /* We do this three times for luck */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655 * i9xx_disable_pll - disable a PLL
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1663 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1664 {
1665 /* Don't disable pipe A or pipe A PLLs if needed */
1666 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1667 return;
1668
1669 /* Make sure the pipe isn't still relying on us */
1670 assert_pipe_disabled(dev_priv, pipe);
1671
1672 I915_WRITE(DPLL(pipe), 0);
1673 POSTING_READ(DPLL(pipe));
1674 }
1675
1676 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1677 {
1678 u32 val = 0;
1679
1680 /* Make sure the pipe isn't still relying on us */
1681 assert_pipe_disabled(dev_priv, pipe);
1682
1683 /*
1684 * Leave integrated clock source and reference clock enabled for pipe B.
1685 * The latter is needed for VGA hotplug / manual detection.
1686 */
1687 if (pipe == PIPE_B)
1688 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1689 I915_WRITE(DPLL(pipe), val);
1690 POSTING_READ(DPLL(pipe));
1691
1692 }
1693
1694 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695 {
1696 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1697 u32 val;
1698
1699 /* Make sure the pipe isn't still relying on us */
1700 assert_pipe_disabled(dev_priv, pipe);
1701
1702 /* Set PLL en = 0 */
1703 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1704 if (pipe != PIPE_A)
1705 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1706 I915_WRITE(DPLL(pipe), val);
1707 POSTING_READ(DPLL(pipe));
1708
1709 mutex_lock(&dev_priv->dpio_lock);
1710
1711 /* Disable 10bit clock to display controller */
1712 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1713 val &= ~DPIO_DCLKP_EN;
1714 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1715
1716 /* disable left/right clock distribution */
1717 if (pipe != PIPE_B) {
1718 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1719 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1720 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1721 } else {
1722 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1723 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1724 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1725 }
1726
1727 mutex_unlock(&dev_priv->dpio_lock);
1728 }
1729
1730 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1731 struct intel_digital_port *dport)
1732 {
1733 u32 port_mask;
1734 int dpll_reg;
1735
1736 switch (dport->port) {
1737 case PORT_B:
1738 port_mask = DPLL_PORTB_READY_MASK;
1739 dpll_reg = DPLL(0);
1740 break;
1741 case PORT_C:
1742 port_mask = DPLL_PORTC_READY_MASK;
1743 dpll_reg = DPLL(0);
1744 break;
1745 case PORT_D:
1746 port_mask = DPLL_PORTD_READY_MASK;
1747 dpll_reg = DPIO_PHY_STATUS;
1748 break;
1749 default:
1750 BUG();
1751 }
1752
1753 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1754 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1755 port_name(dport->port), I915_READ(dpll_reg));
1756 }
1757
1758 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1759 {
1760 struct drm_device *dev = crtc->base.dev;
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1763
1764 if (WARN_ON(pll == NULL))
1765 return;
1766
1767 WARN_ON(!pll->refcount);
1768 if (pll->active == 0) {
1769 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1770 WARN_ON(pll->on);
1771 assert_shared_dpll_disabled(dev_priv, pll);
1772
1773 pll->mode_set(dev_priv, pll);
1774 }
1775 }
1776
1777 /**
1778 * intel_enable_shared_dpll - enable PCH PLL
1779 * @dev_priv: i915 private structure
1780 * @pipe: pipe PLL to enable
1781 *
1782 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1783 * drives the transcoder clock.
1784 */
1785 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1786 {
1787 struct drm_device *dev = crtc->base.dev;
1788 struct drm_i915_private *dev_priv = dev->dev_private;
1789 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1790
1791 if (WARN_ON(pll == NULL))
1792 return;
1793
1794 if (WARN_ON(pll->refcount == 0))
1795 return;
1796
1797 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1798 pll->name, pll->active, pll->on,
1799 crtc->base.base.id);
1800
1801 if (pll->active++) {
1802 WARN_ON(!pll->on);
1803 assert_shared_dpll_enabled(dev_priv, pll);
1804 return;
1805 }
1806 WARN_ON(pll->on);
1807
1808 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1809
1810 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1811 pll->enable(dev_priv, pll);
1812 pll->on = true;
1813 }
1814
1815 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1816 {
1817 struct drm_device *dev = crtc->base.dev;
1818 struct drm_i915_private *dev_priv = dev->dev_private;
1819 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1820
1821 /* PCH only available on ILK+ */
1822 BUG_ON(INTEL_INFO(dev)->gen < 5);
1823 if (WARN_ON(pll == NULL))
1824 return;
1825
1826 if (WARN_ON(pll->refcount == 0))
1827 return;
1828
1829 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1830 pll->name, pll->active, pll->on,
1831 crtc->base.base.id);
1832
1833 if (WARN_ON(pll->active == 0)) {
1834 assert_shared_dpll_disabled(dev_priv, pll);
1835 return;
1836 }
1837
1838 assert_shared_dpll_enabled(dev_priv, pll);
1839 WARN_ON(!pll->on);
1840 if (--pll->active)
1841 return;
1842
1843 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1844 pll->disable(dev_priv, pll);
1845 pll->on = false;
1846
1847 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1848 }
1849
1850 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1851 enum pipe pipe)
1852 {
1853 struct drm_device *dev = dev_priv->dev;
1854 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1856 uint32_t reg, val, pipeconf_val;
1857
1858 /* PCH only available on ILK+ */
1859 BUG_ON(INTEL_INFO(dev)->gen < 5);
1860
1861 /* Make sure PCH DPLL is enabled */
1862 assert_shared_dpll_enabled(dev_priv,
1863 intel_crtc_to_shared_dpll(intel_crtc));
1864
1865 /* FDI must be feeding us bits for PCH ports */
1866 assert_fdi_tx_enabled(dev_priv, pipe);
1867 assert_fdi_rx_enabled(dev_priv, pipe);
1868
1869 if (HAS_PCH_CPT(dev)) {
1870 /* Workaround: Set the timing override bit before enabling the
1871 * pch transcoder. */
1872 reg = TRANS_CHICKEN2(pipe);
1873 val = I915_READ(reg);
1874 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1875 I915_WRITE(reg, val);
1876 }
1877
1878 reg = PCH_TRANSCONF(pipe);
1879 val = I915_READ(reg);
1880 pipeconf_val = I915_READ(PIPECONF(pipe));
1881
1882 if (HAS_PCH_IBX(dev_priv->dev)) {
1883 /*
1884 * make the BPC in transcoder be consistent with
1885 * that in pipeconf reg.
1886 */
1887 val &= ~PIPECONF_BPC_MASK;
1888 val |= pipeconf_val & PIPECONF_BPC_MASK;
1889 }
1890
1891 val &= ~TRANS_INTERLACE_MASK;
1892 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1893 if (HAS_PCH_IBX(dev_priv->dev) &&
1894 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1895 val |= TRANS_LEGACY_INTERLACED_ILK;
1896 else
1897 val |= TRANS_INTERLACED;
1898 else
1899 val |= TRANS_PROGRESSIVE;
1900
1901 I915_WRITE(reg, val | TRANS_ENABLE);
1902 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1903 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1904 }
1905
1906 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1907 enum transcoder cpu_transcoder)
1908 {
1909 u32 val, pipeconf_val;
1910
1911 /* PCH only available on ILK+ */
1912 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1913
1914 /* FDI must be feeding us bits for PCH ports */
1915 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1916 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1917
1918 /* Workaround: set timing override bit. */
1919 val = I915_READ(_TRANSA_CHICKEN2);
1920 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1921 I915_WRITE(_TRANSA_CHICKEN2, val);
1922
1923 val = TRANS_ENABLE;
1924 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1925
1926 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1927 PIPECONF_INTERLACED_ILK)
1928 val |= TRANS_INTERLACED;
1929 else
1930 val |= TRANS_PROGRESSIVE;
1931
1932 I915_WRITE(LPT_TRANSCONF, val);
1933 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1934 DRM_ERROR("Failed to enable PCH transcoder\n");
1935 }
1936
1937 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1938 enum pipe pipe)
1939 {
1940 struct drm_device *dev = dev_priv->dev;
1941 uint32_t reg, val;
1942
1943 /* FDI relies on the transcoder */
1944 assert_fdi_tx_disabled(dev_priv, pipe);
1945 assert_fdi_rx_disabled(dev_priv, pipe);
1946
1947 /* Ports must be off as well */
1948 assert_pch_ports_disabled(dev_priv, pipe);
1949
1950 reg = PCH_TRANSCONF(pipe);
1951 val = I915_READ(reg);
1952 val &= ~TRANS_ENABLE;
1953 I915_WRITE(reg, val);
1954 /* wait for PCH transcoder off, transcoder state */
1955 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1956 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1957
1958 if (!HAS_PCH_IBX(dev)) {
1959 /* Workaround: Clear the timing override chicken bit again. */
1960 reg = TRANS_CHICKEN2(pipe);
1961 val = I915_READ(reg);
1962 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1963 I915_WRITE(reg, val);
1964 }
1965 }
1966
1967 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1968 {
1969 u32 val;
1970
1971 val = I915_READ(LPT_TRANSCONF);
1972 val &= ~TRANS_ENABLE;
1973 I915_WRITE(LPT_TRANSCONF, val);
1974 /* wait for PCH transcoder off, transcoder state */
1975 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1976 DRM_ERROR("Failed to disable PCH transcoder\n");
1977
1978 /* Workaround: clear timing override bit. */
1979 val = I915_READ(_TRANSA_CHICKEN2);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(_TRANSA_CHICKEN2, val);
1982 }
1983
1984 /**
1985 * intel_enable_pipe - enable a pipe, asserting requirements
1986 * @crtc: crtc responsible for the pipe
1987 *
1988 * Enable @crtc's pipe, making sure that various hardware specific requirements
1989 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1990 */
1991 static void intel_enable_pipe(struct intel_crtc *crtc)
1992 {
1993 struct drm_device *dev = crtc->base.dev;
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995 enum pipe pipe = crtc->pipe;
1996 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1997 pipe);
1998 enum pipe pch_transcoder;
1999 int reg;
2000 u32 val;
2001
2002 assert_planes_disabled(dev_priv, pipe);
2003 assert_cursor_disabled(dev_priv, pipe);
2004 assert_sprites_disabled(dev_priv, pipe);
2005
2006 if (HAS_PCH_LPT(dev_priv->dev))
2007 pch_transcoder = TRANSCODER_A;
2008 else
2009 pch_transcoder = pipe;
2010
2011 /*
2012 * A pipe without a PLL won't actually be able to drive bits from
2013 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2014 * need the check.
2015 */
2016 if (!HAS_PCH_SPLIT(dev_priv->dev))
2017 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2018 assert_dsi_pll_enabled(dev_priv);
2019 else
2020 assert_pll_enabled(dev_priv, pipe);
2021 else {
2022 if (crtc->config.has_pch_encoder) {
2023 /* if driving the PCH, we need FDI enabled */
2024 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2025 assert_fdi_tx_pll_enabled(dev_priv,
2026 (enum pipe) cpu_transcoder);
2027 }
2028 /* FIXME: assert CPU port conditions for SNB+ */
2029 }
2030
2031 reg = PIPECONF(cpu_transcoder);
2032 val = I915_READ(reg);
2033 if (val & PIPECONF_ENABLE) {
2034 WARN_ON(!(pipe == PIPE_A &&
2035 dev_priv->quirks & QUIRK_PIPEA_FORCE));
2036 return;
2037 }
2038
2039 I915_WRITE(reg, val | PIPECONF_ENABLE);
2040 POSTING_READ(reg);
2041 }
2042
2043 /**
2044 * intel_disable_pipe - disable a pipe, asserting requirements
2045 * @crtc: crtc whose pipes is to be disabled
2046 *
2047 * Disable the pipe of @crtc, making sure that various hardware
2048 * specific requirements are met, if applicable, e.g. plane
2049 * disabled, panel fitter off, etc.
2050 *
2051 * Will wait until the pipe has shut down before returning.
2052 */
2053 static void intel_disable_pipe(struct intel_crtc *crtc)
2054 {
2055 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2056 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2057 enum pipe pipe = crtc->pipe;
2058 int reg;
2059 u32 val;
2060
2061 /*
2062 * Make sure planes won't keep trying to pump pixels to us,
2063 * or we might hang the display.
2064 */
2065 assert_planes_disabled(dev_priv, pipe);
2066 assert_cursor_disabled(dev_priv, pipe);
2067 assert_sprites_disabled(dev_priv, pipe);
2068
2069 reg = PIPECONF(cpu_transcoder);
2070 val = I915_READ(reg);
2071 if ((val & PIPECONF_ENABLE) == 0)
2072 return;
2073
2074 /*
2075 * Double wide has implications for planes
2076 * so best keep it disabled when not needed.
2077 */
2078 if (crtc->config.double_wide)
2079 val &= ~PIPECONF_DOUBLE_WIDE;
2080
2081 /* Don't disable pipe or pipe PLLs if needed */
2082 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE))
2083 val &= ~PIPECONF_ENABLE;
2084
2085 I915_WRITE(reg, val);
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 intel_wait_for_pipe_off(crtc);
2088 }
2089
2090 /*
2091 * Plane regs are double buffered, going from enabled->disabled needs a
2092 * trigger in order to latch. The display address reg provides this.
2093 */
2094 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2095 enum plane plane)
2096 {
2097 struct drm_device *dev = dev_priv->dev;
2098 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2099
2100 I915_WRITE(reg, I915_READ(reg));
2101 POSTING_READ(reg);
2102 }
2103
2104 /**
2105 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2106 * @plane: plane to be enabled
2107 * @crtc: crtc for the plane
2108 *
2109 * Enable @plane on @crtc, making sure that the pipe is running first.
2110 */
2111 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2112 struct drm_crtc *crtc)
2113 {
2114 struct drm_device *dev = plane->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2117
2118 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2119 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2120
2121 if (intel_crtc->primary_enabled)
2122 return;
2123
2124 intel_crtc->primary_enabled = true;
2125
2126 dev_priv->display.update_primary_plane(crtc, plane->fb,
2127 crtc->x, crtc->y);
2128
2129 /*
2130 * BDW signals flip done immediately if the plane
2131 * is disabled, even if the plane enable is already
2132 * armed to occur at the next vblank :(
2133 */
2134 if (IS_BROADWELL(dev))
2135 intel_wait_for_vblank(dev, intel_crtc->pipe);
2136 }
2137
2138 /**
2139 * intel_disable_primary_hw_plane - disable the primary hardware plane
2140 * @plane: plane to be disabled
2141 * @crtc: crtc for the plane
2142 *
2143 * Disable @plane on @crtc, making sure that the pipe is running first.
2144 */
2145 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2146 struct drm_crtc *crtc)
2147 {
2148 struct drm_device *dev = plane->dev;
2149 struct drm_i915_private *dev_priv = dev->dev_private;
2150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2151
2152 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2153
2154 if (!intel_crtc->primary_enabled)
2155 return;
2156
2157 intel_crtc->primary_enabled = false;
2158
2159 dev_priv->display.update_primary_plane(crtc, plane->fb,
2160 crtc->x, crtc->y);
2161 }
2162
2163 static bool need_vtd_wa(struct drm_device *dev)
2164 {
2165 #ifdef CONFIG_INTEL_IOMMU
2166 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2167 return true;
2168 #endif
2169 return false;
2170 }
2171
2172 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2173 {
2174 int tile_height;
2175
2176 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2177 return ALIGN(height, tile_height);
2178 }
2179
2180 int
2181 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2182 struct drm_i915_gem_object *obj,
2183 struct intel_engine_cs *pipelined)
2184 {
2185 struct drm_i915_private *dev_priv = dev->dev_private;
2186 u32 alignment;
2187 int ret;
2188
2189 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2190
2191 switch (obj->tiling_mode) {
2192 case I915_TILING_NONE:
2193 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2194 alignment = 128 * 1024;
2195 else if (INTEL_INFO(dev)->gen >= 4)
2196 alignment = 4 * 1024;
2197 else
2198 alignment = 64 * 1024;
2199 break;
2200 case I915_TILING_X:
2201 /* pin() will align the object as required by fence */
2202 alignment = 0;
2203 break;
2204 case I915_TILING_Y:
2205 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2206 return -EINVAL;
2207 default:
2208 BUG();
2209 }
2210
2211 /* Note that the w/a also requires 64 PTE of padding following the
2212 * bo. We currently fill all unused PTE with the shadow page and so
2213 * we should always have valid PTE following the scanout preventing
2214 * the VT-d warning.
2215 */
2216 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2217 alignment = 256 * 1024;
2218
2219 dev_priv->mm.interruptible = false;
2220 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2221 if (ret)
2222 goto err_interruptible;
2223
2224 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2225 * fence, whereas 965+ only requires a fence if using
2226 * framebuffer compression. For simplicity, we always install
2227 * a fence as the cost is not that onerous.
2228 */
2229 ret = i915_gem_object_get_fence(obj);
2230 if (ret)
2231 goto err_unpin;
2232
2233 i915_gem_object_pin_fence(obj);
2234
2235 dev_priv->mm.interruptible = true;
2236 return 0;
2237
2238 err_unpin:
2239 i915_gem_object_unpin_from_display_plane(obj);
2240 err_interruptible:
2241 dev_priv->mm.interruptible = true;
2242 return ret;
2243 }
2244
2245 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2246 {
2247 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2248
2249 i915_gem_object_unpin_fence(obj);
2250 i915_gem_object_unpin_from_display_plane(obj);
2251 }
2252
2253 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2254 * is assumed to be a power-of-two. */
2255 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2256 unsigned int tiling_mode,
2257 unsigned int cpp,
2258 unsigned int pitch)
2259 {
2260 if (tiling_mode != I915_TILING_NONE) {
2261 unsigned int tile_rows, tiles;
2262
2263 tile_rows = *y / 8;
2264 *y %= 8;
2265
2266 tiles = *x / (512/cpp);
2267 *x %= 512/cpp;
2268
2269 return tile_rows * pitch * 8 + tiles * 4096;
2270 } else {
2271 unsigned int offset;
2272
2273 offset = *y * pitch + *x * cpp;
2274 *y = 0;
2275 *x = (offset & 4095) / cpp;
2276 return offset & -4096;
2277 }
2278 }
2279
2280 int intel_format_to_fourcc(int format)
2281 {
2282 switch (format) {
2283 case DISPPLANE_8BPP:
2284 return DRM_FORMAT_C8;
2285 case DISPPLANE_BGRX555:
2286 return DRM_FORMAT_XRGB1555;
2287 case DISPPLANE_BGRX565:
2288 return DRM_FORMAT_RGB565;
2289 default:
2290 case DISPPLANE_BGRX888:
2291 return DRM_FORMAT_XRGB8888;
2292 case DISPPLANE_RGBX888:
2293 return DRM_FORMAT_XBGR8888;
2294 case DISPPLANE_BGRX101010:
2295 return DRM_FORMAT_XRGB2101010;
2296 case DISPPLANE_RGBX101010:
2297 return DRM_FORMAT_XBGR2101010;
2298 }
2299 }
2300
2301 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2302 struct intel_plane_config *plane_config)
2303 {
2304 struct drm_device *dev = crtc->base.dev;
2305 struct drm_i915_gem_object *obj = NULL;
2306 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2307 u32 base = plane_config->base;
2308
2309 if (plane_config->size == 0)
2310 return false;
2311
2312 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2313 plane_config->size);
2314 if (!obj)
2315 return false;
2316
2317 if (plane_config->tiled) {
2318 obj->tiling_mode = I915_TILING_X;
2319 obj->stride = crtc->base.primary->fb->pitches[0];
2320 }
2321
2322 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2323 mode_cmd.width = crtc->base.primary->fb->width;
2324 mode_cmd.height = crtc->base.primary->fb->height;
2325 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2326
2327 mutex_lock(&dev->struct_mutex);
2328
2329 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2330 &mode_cmd, obj)) {
2331 DRM_DEBUG_KMS("intel fb init failed\n");
2332 goto out_unref_obj;
2333 }
2334
2335 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2336 mutex_unlock(&dev->struct_mutex);
2337
2338 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2339 return true;
2340
2341 out_unref_obj:
2342 drm_gem_object_unreference(&obj->base);
2343 mutex_unlock(&dev->struct_mutex);
2344 return false;
2345 }
2346
2347 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2348 struct intel_plane_config *plane_config)
2349 {
2350 struct drm_device *dev = intel_crtc->base.dev;
2351 struct drm_crtc *c;
2352 struct intel_crtc *i;
2353 struct drm_i915_gem_object *obj;
2354
2355 if (!intel_crtc->base.primary->fb)
2356 return;
2357
2358 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2359 return;
2360
2361 kfree(intel_crtc->base.primary->fb);
2362 intel_crtc->base.primary->fb = NULL;
2363
2364 /*
2365 * Failed to alloc the obj, check to see if we should share
2366 * an fb with another CRTC instead
2367 */
2368 for_each_crtc(dev, c) {
2369 i = to_intel_crtc(c);
2370
2371 if (c == &intel_crtc->base)
2372 continue;
2373
2374 if (!i->active)
2375 continue;
2376
2377 obj = intel_fb_obj(c->primary->fb);
2378 if (obj == NULL)
2379 continue;
2380
2381 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2382 drm_framebuffer_reference(c->primary->fb);
2383 intel_crtc->base.primary->fb = c->primary->fb;
2384 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2385 break;
2386 }
2387 }
2388 }
2389
2390 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2391 struct drm_framebuffer *fb,
2392 int x, int y)
2393 {
2394 struct drm_device *dev = crtc->dev;
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2397 struct drm_i915_gem_object *obj;
2398 int plane = intel_crtc->plane;
2399 unsigned long linear_offset;
2400 u32 dspcntr;
2401 u32 reg = DSPCNTR(plane);
2402 int pixel_size;
2403
2404 if (!intel_crtc->primary_enabled) {
2405 I915_WRITE(reg, 0);
2406 if (INTEL_INFO(dev)->gen >= 4)
2407 I915_WRITE(DSPSURF(plane), 0);
2408 else
2409 I915_WRITE(DSPADDR(plane), 0);
2410 POSTING_READ(reg);
2411 return;
2412 }
2413
2414 obj = intel_fb_obj(fb);
2415 if (WARN_ON(obj == NULL))
2416 return;
2417
2418 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2419
2420 dspcntr = DISPPLANE_GAMMA_ENABLE;
2421
2422 dspcntr |= DISPLAY_PLANE_ENABLE;
2423
2424 if (INTEL_INFO(dev)->gen < 4) {
2425 if (intel_crtc->pipe == PIPE_B)
2426 dspcntr |= DISPPLANE_SEL_PIPE_B;
2427
2428 /* pipesrc and dspsize control the size that is scaled from,
2429 * which should always be the user's requested size.
2430 */
2431 I915_WRITE(DSPSIZE(plane),
2432 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2433 (intel_crtc->config.pipe_src_w - 1));
2434 I915_WRITE(DSPPOS(plane), 0);
2435 }
2436
2437 switch (fb->pixel_format) {
2438 case DRM_FORMAT_C8:
2439 dspcntr |= DISPPLANE_8BPP;
2440 break;
2441 case DRM_FORMAT_XRGB1555:
2442 case DRM_FORMAT_ARGB1555:
2443 dspcntr |= DISPPLANE_BGRX555;
2444 break;
2445 case DRM_FORMAT_RGB565:
2446 dspcntr |= DISPPLANE_BGRX565;
2447 break;
2448 case DRM_FORMAT_XRGB8888:
2449 case DRM_FORMAT_ARGB8888:
2450 dspcntr |= DISPPLANE_BGRX888;
2451 break;
2452 case DRM_FORMAT_XBGR8888:
2453 case DRM_FORMAT_ABGR8888:
2454 dspcntr |= DISPPLANE_RGBX888;
2455 break;
2456 case DRM_FORMAT_XRGB2101010:
2457 case DRM_FORMAT_ARGB2101010:
2458 dspcntr |= DISPPLANE_BGRX101010;
2459 break;
2460 case DRM_FORMAT_XBGR2101010:
2461 case DRM_FORMAT_ABGR2101010:
2462 dspcntr |= DISPPLANE_RGBX101010;
2463 break;
2464 default:
2465 BUG();
2466 }
2467
2468 if (INTEL_INFO(dev)->gen >= 4 &&
2469 obj->tiling_mode != I915_TILING_NONE)
2470 dspcntr |= DISPPLANE_TILED;
2471
2472 if (IS_G4X(dev))
2473 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2474
2475 linear_offset = y * fb->pitches[0] + x * pixel_size;
2476
2477 if (INTEL_INFO(dev)->gen >= 4) {
2478 intel_crtc->dspaddr_offset =
2479 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2480 pixel_size,
2481 fb->pitches[0]);
2482 linear_offset -= intel_crtc->dspaddr_offset;
2483 } else {
2484 intel_crtc->dspaddr_offset = linear_offset;
2485 }
2486
2487 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2488 dspcntr |= DISPPLANE_ROTATE_180;
2489
2490 x += (intel_crtc->config.pipe_src_w - 1);
2491 y += (intel_crtc->config.pipe_src_h - 1);
2492
2493 /* Finding the last pixel of the last line of the display
2494 data and adding to linear_offset*/
2495 linear_offset +=
2496 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2497 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2498 }
2499
2500 I915_WRITE(reg, dspcntr);
2501
2502 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2503 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2504 fb->pitches[0]);
2505 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2506 if (INTEL_INFO(dev)->gen >= 4) {
2507 I915_WRITE(DSPSURF(plane),
2508 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2509 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2510 I915_WRITE(DSPLINOFF(plane), linear_offset);
2511 } else
2512 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2513 POSTING_READ(reg);
2514 }
2515
2516 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2517 struct drm_framebuffer *fb,
2518 int x, int y)
2519 {
2520 struct drm_device *dev = crtc->dev;
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2523 struct drm_i915_gem_object *obj;
2524 int plane = intel_crtc->plane;
2525 unsigned long linear_offset;
2526 u32 dspcntr;
2527 u32 reg = DSPCNTR(plane);
2528 int pixel_size;
2529
2530 if (!intel_crtc->primary_enabled) {
2531 I915_WRITE(reg, 0);
2532 I915_WRITE(DSPSURF(plane), 0);
2533 POSTING_READ(reg);
2534 return;
2535 }
2536
2537 obj = intel_fb_obj(fb);
2538 if (WARN_ON(obj == NULL))
2539 return;
2540
2541 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2542
2543 dspcntr = DISPPLANE_GAMMA_ENABLE;
2544
2545 dspcntr |= DISPLAY_PLANE_ENABLE;
2546
2547 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2548 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2549
2550 switch (fb->pixel_format) {
2551 case DRM_FORMAT_C8:
2552 dspcntr |= DISPPLANE_8BPP;
2553 break;
2554 case DRM_FORMAT_RGB565:
2555 dspcntr |= DISPPLANE_BGRX565;
2556 break;
2557 case DRM_FORMAT_XRGB8888:
2558 case DRM_FORMAT_ARGB8888:
2559 dspcntr |= DISPPLANE_BGRX888;
2560 break;
2561 case DRM_FORMAT_XBGR8888:
2562 case DRM_FORMAT_ABGR8888:
2563 dspcntr |= DISPPLANE_RGBX888;
2564 break;
2565 case DRM_FORMAT_XRGB2101010:
2566 case DRM_FORMAT_ARGB2101010:
2567 dspcntr |= DISPPLANE_BGRX101010;
2568 break;
2569 case DRM_FORMAT_XBGR2101010:
2570 case DRM_FORMAT_ABGR2101010:
2571 dspcntr |= DISPPLANE_RGBX101010;
2572 break;
2573 default:
2574 BUG();
2575 }
2576
2577 if (obj->tiling_mode != I915_TILING_NONE)
2578 dspcntr |= DISPPLANE_TILED;
2579
2580 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2581 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2582
2583 linear_offset = y * fb->pitches[0] + x * pixel_size;
2584 intel_crtc->dspaddr_offset =
2585 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2586 pixel_size,
2587 fb->pitches[0]);
2588 linear_offset -= intel_crtc->dspaddr_offset;
2589 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2590 dspcntr |= DISPPLANE_ROTATE_180;
2591
2592 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2593 x += (intel_crtc->config.pipe_src_w - 1);
2594 y += (intel_crtc->config.pipe_src_h - 1);
2595
2596 /* Finding the last pixel of the last line of the display
2597 data and adding to linear_offset*/
2598 linear_offset +=
2599 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2600 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2601 }
2602 }
2603
2604 I915_WRITE(reg, dspcntr);
2605
2606 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2607 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2608 fb->pitches[0]);
2609 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2610 I915_WRITE(DSPSURF(plane),
2611 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2612 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2613 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2614 } else {
2615 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2616 I915_WRITE(DSPLINOFF(plane), linear_offset);
2617 }
2618 POSTING_READ(reg);
2619 }
2620
2621 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2622 static int
2623 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2624 int x, int y, enum mode_set_atomic state)
2625 {
2626 struct drm_device *dev = crtc->dev;
2627 struct drm_i915_private *dev_priv = dev->dev_private;
2628
2629 if (dev_priv->display.disable_fbc)
2630 dev_priv->display.disable_fbc(dev);
2631 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2632
2633 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2634
2635 return 0;
2636 }
2637
2638 void intel_display_handle_reset(struct drm_device *dev)
2639 {
2640 struct drm_i915_private *dev_priv = dev->dev_private;
2641 struct drm_crtc *crtc;
2642
2643 /*
2644 * Flips in the rings have been nuked by the reset,
2645 * so complete all pending flips so that user space
2646 * will get its events and not get stuck.
2647 *
2648 * Also update the base address of all primary
2649 * planes to the the last fb to make sure we're
2650 * showing the correct fb after a reset.
2651 *
2652 * Need to make two loops over the crtcs so that we
2653 * don't try to grab a crtc mutex before the
2654 * pending_flip_queue really got woken up.
2655 */
2656
2657 for_each_crtc(dev, crtc) {
2658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2659 enum plane plane = intel_crtc->plane;
2660
2661 intel_prepare_page_flip(dev, plane);
2662 intel_finish_page_flip_plane(dev, plane);
2663 }
2664
2665 for_each_crtc(dev, crtc) {
2666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2667
2668 drm_modeset_lock(&crtc->mutex, NULL);
2669 /*
2670 * FIXME: Once we have proper support for primary planes (and
2671 * disabling them without disabling the entire crtc) allow again
2672 * a NULL crtc->primary->fb.
2673 */
2674 if (intel_crtc->active && crtc->primary->fb)
2675 dev_priv->display.update_primary_plane(crtc,
2676 crtc->primary->fb,
2677 crtc->x,
2678 crtc->y);
2679 drm_modeset_unlock(&crtc->mutex);
2680 }
2681 }
2682
2683 static int
2684 intel_finish_fb(struct drm_framebuffer *old_fb)
2685 {
2686 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2687 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2688 bool was_interruptible = dev_priv->mm.interruptible;
2689 int ret;
2690
2691 /* Big Hammer, we also need to ensure that any pending
2692 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2693 * current scanout is retired before unpinning the old
2694 * framebuffer.
2695 *
2696 * This should only fail upon a hung GPU, in which case we
2697 * can safely continue.
2698 */
2699 dev_priv->mm.interruptible = false;
2700 ret = i915_gem_object_finish_gpu(obj);
2701 dev_priv->mm.interruptible = was_interruptible;
2702
2703 return ret;
2704 }
2705
2706 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2707 {
2708 struct drm_device *dev = crtc->dev;
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2711 unsigned long flags;
2712 bool pending;
2713
2714 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2715 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2716 return false;
2717
2718 spin_lock_irqsave(&dev->event_lock, flags);
2719 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2720 spin_unlock_irqrestore(&dev->event_lock, flags);
2721
2722 return pending;
2723 }
2724
2725 static int
2726 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2727 struct drm_framebuffer *fb)
2728 {
2729 struct drm_device *dev = crtc->dev;
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2732 enum pipe pipe = intel_crtc->pipe;
2733 struct drm_framebuffer *old_fb = crtc->primary->fb;
2734 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2735 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2736 int ret;
2737
2738 if (intel_crtc_has_pending_flip(crtc)) {
2739 DRM_ERROR("pipe is still busy with an old pageflip\n");
2740 return -EBUSY;
2741 }
2742
2743 /* no fb bound */
2744 if (!fb) {
2745 DRM_ERROR("No FB bound\n");
2746 return 0;
2747 }
2748
2749 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2750 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2751 plane_name(intel_crtc->plane),
2752 INTEL_INFO(dev)->num_pipes);
2753 return -EINVAL;
2754 }
2755
2756 mutex_lock(&dev->struct_mutex);
2757 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2758 if (ret == 0)
2759 i915_gem_track_fb(old_obj, obj,
2760 INTEL_FRONTBUFFER_PRIMARY(pipe));
2761 mutex_unlock(&dev->struct_mutex);
2762 if (ret != 0) {
2763 DRM_ERROR("pin & fence failed\n");
2764 return ret;
2765 }
2766
2767 /*
2768 * Update pipe size and adjust fitter if needed: the reason for this is
2769 * that in compute_mode_changes we check the native mode (not the pfit
2770 * mode) to see if we can flip rather than do a full mode set. In the
2771 * fastboot case, we'll flip, but if we don't update the pipesrc and
2772 * pfit state, we'll end up with a big fb scanned out into the wrong
2773 * sized surface.
2774 *
2775 * To fix this properly, we need to hoist the checks up into
2776 * compute_mode_changes (or above), check the actual pfit state and
2777 * whether the platform allows pfit disable with pipe active, and only
2778 * then update the pipesrc and pfit state, even on the flip path.
2779 */
2780 if (i915.fastboot) {
2781 const struct drm_display_mode *adjusted_mode =
2782 &intel_crtc->config.adjusted_mode;
2783
2784 I915_WRITE(PIPESRC(intel_crtc->pipe),
2785 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2786 (adjusted_mode->crtc_vdisplay - 1));
2787 if (!intel_crtc->config.pch_pfit.enabled &&
2788 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2789 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2790 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2791 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2792 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2793 }
2794 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2795 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2796 }
2797
2798 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2799
2800 if (intel_crtc->active)
2801 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2802
2803 crtc->primary->fb = fb;
2804 crtc->x = x;
2805 crtc->y = y;
2806
2807 if (old_fb) {
2808 if (intel_crtc->active && old_fb != fb)
2809 intel_wait_for_vblank(dev, intel_crtc->pipe);
2810 mutex_lock(&dev->struct_mutex);
2811 intel_unpin_fb_obj(old_obj);
2812 mutex_unlock(&dev->struct_mutex);
2813 }
2814
2815 mutex_lock(&dev->struct_mutex);
2816 intel_update_fbc(dev);
2817 mutex_unlock(&dev->struct_mutex);
2818
2819 return 0;
2820 }
2821
2822 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2823 {
2824 struct drm_device *dev = crtc->dev;
2825 struct drm_i915_private *dev_priv = dev->dev_private;
2826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2827 int pipe = intel_crtc->pipe;
2828 u32 reg, temp;
2829
2830 /* enable normal train */
2831 reg = FDI_TX_CTL(pipe);
2832 temp = I915_READ(reg);
2833 if (IS_IVYBRIDGE(dev)) {
2834 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2835 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2836 } else {
2837 temp &= ~FDI_LINK_TRAIN_NONE;
2838 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2839 }
2840 I915_WRITE(reg, temp);
2841
2842 reg = FDI_RX_CTL(pipe);
2843 temp = I915_READ(reg);
2844 if (HAS_PCH_CPT(dev)) {
2845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2846 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2847 } else {
2848 temp &= ~FDI_LINK_TRAIN_NONE;
2849 temp |= FDI_LINK_TRAIN_NONE;
2850 }
2851 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2852
2853 /* wait one idle pattern time */
2854 POSTING_READ(reg);
2855 udelay(1000);
2856
2857 /* IVB wants error correction enabled */
2858 if (IS_IVYBRIDGE(dev))
2859 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2860 FDI_FE_ERRC_ENABLE);
2861 }
2862
2863 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2864 {
2865 return crtc->base.enabled && crtc->active &&
2866 crtc->config.has_pch_encoder;
2867 }
2868
2869 static void ivb_modeset_global_resources(struct drm_device *dev)
2870 {
2871 struct drm_i915_private *dev_priv = dev->dev_private;
2872 struct intel_crtc *pipe_B_crtc =
2873 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2874 struct intel_crtc *pipe_C_crtc =
2875 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2876 uint32_t temp;
2877
2878 /*
2879 * When everything is off disable fdi C so that we could enable fdi B
2880 * with all lanes. Note that we don't care about enabled pipes without
2881 * an enabled pch encoder.
2882 */
2883 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2884 !pipe_has_enabled_pch(pipe_C_crtc)) {
2885 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2886 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2887
2888 temp = I915_READ(SOUTH_CHICKEN1);
2889 temp &= ~FDI_BC_BIFURCATION_SELECT;
2890 DRM_DEBUG_KMS("disabling fdi C rx\n");
2891 I915_WRITE(SOUTH_CHICKEN1, temp);
2892 }
2893 }
2894
2895 /* The FDI link training functions for ILK/Ibexpeak. */
2896 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2897 {
2898 struct drm_device *dev = crtc->dev;
2899 struct drm_i915_private *dev_priv = dev->dev_private;
2900 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2901 int pipe = intel_crtc->pipe;
2902 u32 reg, temp, tries;
2903
2904 /* FDI needs bits from pipe first */
2905 assert_pipe_enabled(dev_priv, pipe);
2906
2907 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2908 for train result */
2909 reg = FDI_RX_IMR(pipe);
2910 temp = I915_READ(reg);
2911 temp &= ~FDI_RX_SYMBOL_LOCK;
2912 temp &= ~FDI_RX_BIT_LOCK;
2913 I915_WRITE(reg, temp);
2914 I915_READ(reg);
2915 udelay(150);
2916
2917 /* enable CPU FDI TX and PCH FDI RX */
2918 reg = FDI_TX_CTL(pipe);
2919 temp = I915_READ(reg);
2920 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2921 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2922 temp &= ~FDI_LINK_TRAIN_NONE;
2923 temp |= FDI_LINK_TRAIN_PATTERN_1;
2924 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2925
2926 reg = FDI_RX_CTL(pipe);
2927 temp = I915_READ(reg);
2928 temp &= ~FDI_LINK_TRAIN_NONE;
2929 temp |= FDI_LINK_TRAIN_PATTERN_1;
2930 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2931
2932 POSTING_READ(reg);
2933 udelay(150);
2934
2935 /* Ironlake workaround, enable clock pointer after FDI enable*/
2936 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2937 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2938 FDI_RX_PHASE_SYNC_POINTER_EN);
2939
2940 reg = FDI_RX_IIR(pipe);
2941 for (tries = 0; tries < 5; tries++) {
2942 temp = I915_READ(reg);
2943 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2944
2945 if ((temp & FDI_RX_BIT_LOCK)) {
2946 DRM_DEBUG_KMS("FDI train 1 done.\n");
2947 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2948 break;
2949 }
2950 }
2951 if (tries == 5)
2952 DRM_ERROR("FDI train 1 fail!\n");
2953
2954 /* Train 2 */
2955 reg = FDI_TX_CTL(pipe);
2956 temp = I915_READ(reg);
2957 temp &= ~FDI_LINK_TRAIN_NONE;
2958 temp |= FDI_LINK_TRAIN_PATTERN_2;
2959 I915_WRITE(reg, temp);
2960
2961 reg = FDI_RX_CTL(pipe);
2962 temp = I915_READ(reg);
2963 temp &= ~FDI_LINK_TRAIN_NONE;
2964 temp |= FDI_LINK_TRAIN_PATTERN_2;
2965 I915_WRITE(reg, temp);
2966
2967 POSTING_READ(reg);
2968 udelay(150);
2969
2970 reg = FDI_RX_IIR(pipe);
2971 for (tries = 0; tries < 5; tries++) {
2972 temp = I915_READ(reg);
2973 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2974
2975 if (temp & FDI_RX_SYMBOL_LOCK) {
2976 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2977 DRM_DEBUG_KMS("FDI train 2 done.\n");
2978 break;
2979 }
2980 }
2981 if (tries == 5)
2982 DRM_ERROR("FDI train 2 fail!\n");
2983
2984 DRM_DEBUG_KMS("FDI train done\n");
2985
2986 }
2987
2988 static const int snb_b_fdi_train_param[] = {
2989 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2990 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2991 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2992 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2993 };
2994
2995 /* The FDI link training functions for SNB/Cougarpoint. */
2996 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2997 {
2998 struct drm_device *dev = crtc->dev;
2999 struct drm_i915_private *dev_priv = dev->dev_private;
3000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3001 int pipe = intel_crtc->pipe;
3002 u32 reg, temp, i, retry;
3003
3004 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3005 for train result */
3006 reg = FDI_RX_IMR(pipe);
3007 temp = I915_READ(reg);
3008 temp &= ~FDI_RX_SYMBOL_LOCK;
3009 temp &= ~FDI_RX_BIT_LOCK;
3010 I915_WRITE(reg, temp);
3011
3012 POSTING_READ(reg);
3013 udelay(150);
3014
3015 /* enable CPU FDI TX and PCH FDI RX */
3016 reg = FDI_TX_CTL(pipe);
3017 temp = I915_READ(reg);
3018 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3019 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3020 temp &= ~FDI_LINK_TRAIN_NONE;
3021 temp |= FDI_LINK_TRAIN_PATTERN_1;
3022 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3023 /* SNB-B */
3024 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3025 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3026
3027 I915_WRITE(FDI_RX_MISC(pipe),
3028 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3029
3030 reg = FDI_RX_CTL(pipe);
3031 temp = I915_READ(reg);
3032 if (HAS_PCH_CPT(dev)) {
3033 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3034 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3035 } else {
3036 temp &= ~FDI_LINK_TRAIN_NONE;
3037 temp |= FDI_LINK_TRAIN_PATTERN_1;
3038 }
3039 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3040
3041 POSTING_READ(reg);
3042 udelay(150);
3043
3044 for (i = 0; i < 4; i++) {
3045 reg = FDI_TX_CTL(pipe);
3046 temp = I915_READ(reg);
3047 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3048 temp |= snb_b_fdi_train_param[i];
3049 I915_WRITE(reg, temp);
3050
3051 POSTING_READ(reg);
3052 udelay(500);
3053
3054 for (retry = 0; retry < 5; retry++) {
3055 reg = FDI_RX_IIR(pipe);
3056 temp = I915_READ(reg);
3057 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3058 if (temp & FDI_RX_BIT_LOCK) {
3059 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3060 DRM_DEBUG_KMS("FDI train 1 done.\n");
3061 break;
3062 }
3063 udelay(50);
3064 }
3065 if (retry < 5)
3066 break;
3067 }
3068 if (i == 4)
3069 DRM_ERROR("FDI train 1 fail!\n");
3070
3071 /* Train 2 */
3072 reg = FDI_TX_CTL(pipe);
3073 temp = I915_READ(reg);
3074 temp &= ~FDI_LINK_TRAIN_NONE;
3075 temp |= FDI_LINK_TRAIN_PATTERN_2;
3076 if (IS_GEN6(dev)) {
3077 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3078 /* SNB-B */
3079 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3080 }
3081 I915_WRITE(reg, temp);
3082
3083 reg = FDI_RX_CTL(pipe);
3084 temp = I915_READ(reg);
3085 if (HAS_PCH_CPT(dev)) {
3086 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3087 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3088 } else {
3089 temp &= ~FDI_LINK_TRAIN_NONE;
3090 temp |= FDI_LINK_TRAIN_PATTERN_2;
3091 }
3092 I915_WRITE(reg, temp);
3093
3094 POSTING_READ(reg);
3095 udelay(150);
3096
3097 for (i = 0; i < 4; i++) {
3098 reg = FDI_TX_CTL(pipe);
3099 temp = I915_READ(reg);
3100 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3101 temp |= snb_b_fdi_train_param[i];
3102 I915_WRITE(reg, temp);
3103
3104 POSTING_READ(reg);
3105 udelay(500);
3106
3107 for (retry = 0; retry < 5; retry++) {
3108 reg = FDI_RX_IIR(pipe);
3109 temp = I915_READ(reg);
3110 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111 if (temp & FDI_RX_SYMBOL_LOCK) {
3112 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3113 DRM_DEBUG_KMS("FDI train 2 done.\n");
3114 break;
3115 }
3116 udelay(50);
3117 }
3118 if (retry < 5)
3119 break;
3120 }
3121 if (i == 4)
3122 DRM_ERROR("FDI train 2 fail!\n");
3123
3124 DRM_DEBUG_KMS("FDI train done.\n");
3125 }
3126
3127 /* Manual link training for Ivy Bridge A0 parts */
3128 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3129 {
3130 struct drm_device *dev = crtc->dev;
3131 struct drm_i915_private *dev_priv = dev->dev_private;
3132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3133 int pipe = intel_crtc->pipe;
3134 u32 reg, temp, i, j;
3135
3136 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3137 for train result */
3138 reg = FDI_RX_IMR(pipe);
3139 temp = I915_READ(reg);
3140 temp &= ~FDI_RX_SYMBOL_LOCK;
3141 temp &= ~FDI_RX_BIT_LOCK;
3142 I915_WRITE(reg, temp);
3143
3144 POSTING_READ(reg);
3145 udelay(150);
3146
3147 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3148 I915_READ(FDI_RX_IIR(pipe)));
3149
3150 /* Try each vswing and preemphasis setting twice before moving on */
3151 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3152 /* disable first in case we need to retry */
3153 reg = FDI_TX_CTL(pipe);
3154 temp = I915_READ(reg);
3155 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3156 temp &= ~FDI_TX_ENABLE;
3157 I915_WRITE(reg, temp);
3158
3159 reg = FDI_RX_CTL(pipe);
3160 temp = I915_READ(reg);
3161 temp &= ~FDI_LINK_TRAIN_AUTO;
3162 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3163 temp &= ~FDI_RX_ENABLE;
3164 I915_WRITE(reg, temp);
3165
3166 /* enable CPU FDI TX and PCH FDI RX */
3167 reg = FDI_TX_CTL(pipe);
3168 temp = I915_READ(reg);
3169 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3170 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3171 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3172 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3173 temp |= snb_b_fdi_train_param[j/2];
3174 temp |= FDI_COMPOSITE_SYNC;
3175 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3176
3177 I915_WRITE(FDI_RX_MISC(pipe),
3178 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3179
3180 reg = FDI_RX_CTL(pipe);
3181 temp = I915_READ(reg);
3182 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3183 temp |= FDI_COMPOSITE_SYNC;
3184 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3185
3186 POSTING_READ(reg);
3187 udelay(1); /* should be 0.5us */
3188
3189 for (i = 0; i < 4; i++) {
3190 reg = FDI_RX_IIR(pipe);
3191 temp = I915_READ(reg);
3192 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3193
3194 if (temp & FDI_RX_BIT_LOCK ||
3195 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3196 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3197 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3198 i);
3199 break;
3200 }
3201 udelay(1); /* should be 0.5us */
3202 }
3203 if (i == 4) {
3204 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3205 continue;
3206 }
3207
3208 /* Train 2 */
3209 reg = FDI_TX_CTL(pipe);
3210 temp = I915_READ(reg);
3211 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3212 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3213 I915_WRITE(reg, temp);
3214
3215 reg = FDI_RX_CTL(pipe);
3216 temp = I915_READ(reg);
3217 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3218 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3219 I915_WRITE(reg, temp);
3220
3221 POSTING_READ(reg);
3222 udelay(2); /* should be 1.5us */
3223
3224 for (i = 0; i < 4; i++) {
3225 reg = FDI_RX_IIR(pipe);
3226 temp = I915_READ(reg);
3227 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3228
3229 if (temp & FDI_RX_SYMBOL_LOCK ||
3230 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3231 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3232 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3233 i);
3234 goto train_done;
3235 }
3236 udelay(2); /* should be 1.5us */
3237 }
3238 if (i == 4)
3239 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3240 }
3241
3242 train_done:
3243 DRM_DEBUG_KMS("FDI train done.\n");
3244 }
3245
3246 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3247 {
3248 struct drm_device *dev = intel_crtc->base.dev;
3249 struct drm_i915_private *dev_priv = dev->dev_private;
3250 int pipe = intel_crtc->pipe;
3251 u32 reg, temp;
3252
3253
3254 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3255 reg = FDI_RX_CTL(pipe);
3256 temp = I915_READ(reg);
3257 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3258 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3259 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3260 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3261
3262 POSTING_READ(reg);
3263 udelay(200);
3264
3265 /* Switch from Rawclk to PCDclk */
3266 temp = I915_READ(reg);
3267 I915_WRITE(reg, temp | FDI_PCDCLK);
3268
3269 POSTING_READ(reg);
3270 udelay(200);
3271
3272 /* Enable CPU FDI TX PLL, always on for Ironlake */
3273 reg = FDI_TX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3276 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3277
3278 POSTING_READ(reg);
3279 udelay(100);
3280 }
3281 }
3282
3283 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3284 {
3285 struct drm_device *dev = intel_crtc->base.dev;
3286 struct drm_i915_private *dev_priv = dev->dev_private;
3287 int pipe = intel_crtc->pipe;
3288 u32 reg, temp;
3289
3290 /* Switch from PCDclk to Rawclk */
3291 reg = FDI_RX_CTL(pipe);
3292 temp = I915_READ(reg);
3293 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3294
3295 /* Disable CPU FDI TX PLL */
3296 reg = FDI_TX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3299
3300 POSTING_READ(reg);
3301 udelay(100);
3302
3303 reg = FDI_RX_CTL(pipe);
3304 temp = I915_READ(reg);
3305 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3306
3307 /* Wait for the clocks to turn off. */
3308 POSTING_READ(reg);
3309 udelay(100);
3310 }
3311
3312 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3313 {
3314 struct drm_device *dev = crtc->dev;
3315 struct drm_i915_private *dev_priv = dev->dev_private;
3316 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3317 int pipe = intel_crtc->pipe;
3318 u32 reg, temp;
3319
3320 /* disable CPU FDI tx and PCH FDI rx */
3321 reg = FDI_TX_CTL(pipe);
3322 temp = I915_READ(reg);
3323 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3324 POSTING_READ(reg);
3325
3326 reg = FDI_RX_CTL(pipe);
3327 temp = I915_READ(reg);
3328 temp &= ~(0x7 << 16);
3329 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3330 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3331
3332 POSTING_READ(reg);
3333 udelay(100);
3334
3335 /* Ironlake workaround, disable clock pointer after downing FDI */
3336 if (HAS_PCH_IBX(dev))
3337 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3338
3339 /* still set train pattern 1 */
3340 reg = FDI_TX_CTL(pipe);
3341 temp = I915_READ(reg);
3342 temp &= ~FDI_LINK_TRAIN_NONE;
3343 temp |= FDI_LINK_TRAIN_PATTERN_1;
3344 I915_WRITE(reg, temp);
3345
3346 reg = FDI_RX_CTL(pipe);
3347 temp = I915_READ(reg);
3348 if (HAS_PCH_CPT(dev)) {
3349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3350 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3351 } else {
3352 temp &= ~FDI_LINK_TRAIN_NONE;
3353 temp |= FDI_LINK_TRAIN_PATTERN_1;
3354 }
3355 /* BPC in FDI rx is consistent with that in PIPECONF */
3356 temp &= ~(0x07 << 16);
3357 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3358 I915_WRITE(reg, temp);
3359
3360 POSTING_READ(reg);
3361 udelay(100);
3362 }
3363
3364 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3365 {
3366 struct intel_crtc *crtc;
3367
3368 /* Note that we don't need to be called with mode_config.lock here
3369 * as our list of CRTC objects is static for the lifetime of the
3370 * device and so cannot disappear as we iterate. Similarly, we can
3371 * happily treat the predicates as racy, atomic checks as userspace
3372 * cannot claim and pin a new fb without at least acquring the
3373 * struct_mutex and so serialising with us.
3374 */
3375 for_each_intel_crtc(dev, crtc) {
3376 if (atomic_read(&crtc->unpin_work_count) == 0)
3377 continue;
3378
3379 if (crtc->unpin_work)
3380 intel_wait_for_vblank(dev, crtc->pipe);
3381
3382 return true;
3383 }
3384
3385 return false;
3386 }
3387
3388 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3389 {
3390 struct drm_device *dev = crtc->dev;
3391 struct drm_i915_private *dev_priv = dev->dev_private;
3392
3393 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3394 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3395 !intel_crtc_has_pending_flip(crtc),
3396 60*HZ) == 0);
3397
3398 if (crtc->primary->fb) {
3399 mutex_lock(&dev->struct_mutex);
3400 intel_finish_fb(crtc->primary->fb);
3401 mutex_unlock(&dev->struct_mutex);
3402 }
3403 }
3404
3405 /* Program iCLKIP clock to the desired frequency */
3406 static void lpt_program_iclkip(struct drm_crtc *crtc)
3407 {
3408 struct drm_device *dev = crtc->dev;
3409 struct drm_i915_private *dev_priv = dev->dev_private;
3410 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3411 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3412 u32 temp;
3413
3414 mutex_lock(&dev_priv->dpio_lock);
3415
3416 /* It is necessary to ungate the pixclk gate prior to programming
3417 * the divisors, and gate it back when it is done.
3418 */
3419 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3420
3421 /* Disable SSCCTL */
3422 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3423 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3424 SBI_SSCCTL_DISABLE,
3425 SBI_ICLK);
3426
3427 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3428 if (clock == 20000) {
3429 auxdiv = 1;
3430 divsel = 0x41;
3431 phaseinc = 0x20;
3432 } else {
3433 /* The iCLK virtual clock root frequency is in MHz,
3434 * but the adjusted_mode->crtc_clock in in KHz. To get the
3435 * divisors, it is necessary to divide one by another, so we
3436 * convert the virtual clock precision to KHz here for higher
3437 * precision.
3438 */
3439 u32 iclk_virtual_root_freq = 172800 * 1000;
3440 u32 iclk_pi_range = 64;
3441 u32 desired_divisor, msb_divisor_value, pi_value;
3442
3443 desired_divisor = (iclk_virtual_root_freq / clock);
3444 msb_divisor_value = desired_divisor / iclk_pi_range;
3445 pi_value = desired_divisor % iclk_pi_range;
3446
3447 auxdiv = 0;
3448 divsel = msb_divisor_value - 2;
3449 phaseinc = pi_value;
3450 }
3451
3452 /* This should not happen with any sane values */
3453 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3454 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3455 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3456 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3457
3458 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3459 clock,
3460 auxdiv,
3461 divsel,
3462 phasedir,
3463 phaseinc);
3464
3465 /* Program SSCDIVINTPHASE6 */
3466 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3467 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3468 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3469 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3470 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3471 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3472 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3473 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3474
3475 /* Program SSCAUXDIV */
3476 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3477 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3478 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3479 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3480
3481 /* Enable modulator and associated divider */
3482 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3483 temp &= ~SBI_SSCCTL_DISABLE;
3484 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3485
3486 /* Wait for initialization time */
3487 udelay(24);
3488
3489 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3490
3491 mutex_unlock(&dev_priv->dpio_lock);
3492 }
3493
3494 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3495 enum pipe pch_transcoder)
3496 {
3497 struct drm_device *dev = crtc->base.dev;
3498 struct drm_i915_private *dev_priv = dev->dev_private;
3499 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3500
3501 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3502 I915_READ(HTOTAL(cpu_transcoder)));
3503 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3504 I915_READ(HBLANK(cpu_transcoder)));
3505 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3506 I915_READ(HSYNC(cpu_transcoder)));
3507
3508 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3509 I915_READ(VTOTAL(cpu_transcoder)));
3510 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3511 I915_READ(VBLANK(cpu_transcoder)));
3512 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3513 I915_READ(VSYNC(cpu_transcoder)));
3514 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3515 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3516 }
3517
3518 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3519 {
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 uint32_t temp;
3522
3523 temp = I915_READ(SOUTH_CHICKEN1);
3524 if (temp & FDI_BC_BIFURCATION_SELECT)
3525 return;
3526
3527 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3528 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3529
3530 temp |= FDI_BC_BIFURCATION_SELECT;
3531 DRM_DEBUG_KMS("enabling fdi C rx\n");
3532 I915_WRITE(SOUTH_CHICKEN1, temp);
3533 POSTING_READ(SOUTH_CHICKEN1);
3534 }
3535
3536 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3537 {
3538 struct drm_device *dev = intel_crtc->base.dev;
3539 struct drm_i915_private *dev_priv = dev->dev_private;
3540
3541 switch (intel_crtc->pipe) {
3542 case PIPE_A:
3543 break;
3544 case PIPE_B:
3545 if (intel_crtc->config.fdi_lanes > 2)
3546 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3547 else
3548 cpt_enable_fdi_bc_bifurcation(dev);
3549
3550 break;
3551 case PIPE_C:
3552 cpt_enable_fdi_bc_bifurcation(dev);
3553
3554 break;
3555 default:
3556 BUG();
3557 }
3558 }
3559
3560 /*
3561 * Enable PCH resources required for PCH ports:
3562 * - PCH PLLs
3563 * - FDI training & RX/TX
3564 * - update transcoder timings
3565 * - DP transcoding bits
3566 * - transcoder
3567 */
3568 static void ironlake_pch_enable(struct drm_crtc *crtc)
3569 {
3570 struct drm_device *dev = crtc->dev;
3571 struct drm_i915_private *dev_priv = dev->dev_private;
3572 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3573 int pipe = intel_crtc->pipe;
3574 u32 reg, temp;
3575
3576 assert_pch_transcoder_disabled(dev_priv, pipe);
3577
3578 if (IS_IVYBRIDGE(dev))
3579 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3580
3581 /* Write the TU size bits before fdi link training, so that error
3582 * detection works. */
3583 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3584 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3585
3586 /* For PCH output, training FDI link */
3587 dev_priv->display.fdi_link_train(crtc);
3588
3589 /* We need to program the right clock selection before writing the pixel
3590 * mutliplier into the DPLL. */
3591 if (HAS_PCH_CPT(dev)) {
3592 u32 sel;
3593
3594 temp = I915_READ(PCH_DPLL_SEL);
3595 temp |= TRANS_DPLL_ENABLE(pipe);
3596 sel = TRANS_DPLLB_SEL(pipe);
3597 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3598 temp |= sel;
3599 else
3600 temp &= ~sel;
3601 I915_WRITE(PCH_DPLL_SEL, temp);
3602 }
3603
3604 /* XXX: pch pll's can be enabled any time before we enable the PCH
3605 * transcoder, and we actually should do this to not upset any PCH
3606 * transcoder that already use the clock when we share it.
3607 *
3608 * Note that enable_shared_dpll tries to do the right thing, but
3609 * get_shared_dpll unconditionally resets the pll - we need that to have
3610 * the right LVDS enable sequence. */
3611 intel_enable_shared_dpll(intel_crtc);
3612
3613 /* set transcoder timing, panel must allow it */
3614 assert_panel_unlocked(dev_priv, pipe);
3615 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3616
3617 intel_fdi_normal_train(crtc);
3618
3619 /* For PCH DP, enable TRANS_DP_CTL */
3620 if (HAS_PCH_CPT(dev) &&
3621 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3622 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3623 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3624 reg = TRANS_DP_CTL(pipe);
3625 temp = I915_READ(reg);
3626 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3627 TRANS_DP_SYNC_MASK |
3628 TRANS_DP_BPC_MASK);
3629 temp |= (TRANS_DP_OUTPUT_ENABLE |
3630 TRANS_DP_ENH_FRAMING);
3631 temp |= bpc << 9; /* same format but at 11:9 */
3632
3633 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3634 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3635 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3636 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3637
3638 switch (intel_trans_dp_port_sel(crtc)) {
3639 case PCH_DP_B:
3640 temp |= TRANS_DP_PORT_SEL_B;
3641 break;
3642 case PCH_DP_C:
3643 temp |= TRANS_DP_PORT_SEL_C;
3644 break;
3645 case PCH_DP_D:
3646 temp |= TRANS_DP_PORT_SEL_D;
3647 break;
3648 default:
3649 BUG();
3650 }
3651
3652 I915_WRITE(reg, temp);
3653 }
3654
3655 ironlake_enable_pch_transcoder(dev_priv, pipe);
3656 }
3657
3658 static void lpt_pch_enable(struct drm_crtc *crtc)
3659 {
3660 struct drm_device *dev = crtc->dev;
3661 struct drm_i915_private *dev_priv = dev->dev_private;
3662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3663 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3664
3665 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3666
3667 lpt_program_iclkip(crtc);
3668
3669 /* Set transcoder timing. */
3670 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3671
3672 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3673 }
3674
3675 void intel_put_shared_dpll(struct intel_crtc *crtc)
3676 {
3677 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3678
3679 if (pll == NULL)
3680 return;
3681
3682 if (pll->refcount == 0) {
3683 WARN(1, "bad %s refcount\n", pll->name);
3684 return;
3685 }
3686
3687 if (--pll->refcount == 0) {
3688 WARN_ON(pll->on);
3689 WARN_ON(pll->active);
3690 }
3691
3692 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3693 }
3694
3695 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3696 {
3697 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3698 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3699 enum intel_dpll_id i;
3700
3701 if (pll) {
3702 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3703 crtc->base.base.id, pll->name);
3704 intel_put_shared_dpll(crtc);
3705 }
3706
3707 if (HAS_PCH_IBX(dev_priv->dev)) {
3708 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3709 i = (enum intel_dpll_id) crtc->pipe;
3710 pll = &dev_priv->shared_dplls[i];
3711
3712 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3713 crtc->base.base.id, pll->name);
3714
3715 WARN_ON(pll->refcount);
3716
3717 goto found;
3718 }
3719
3720 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3721 pll = &dev_priv->shared_dplls[i];
3722
3723 /* Only want to check enabled timings first */
3724 if (pll->refcount == 0)
3725 continue;
3726
3727 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3728 sizeof(pll->hw_state)) == 0) {
3729 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3730 crtc->base.base.id,
3731 pll->name, pll->refcount, pll->active);
3732
3733 goto found;
3734 }
3735 }
3736
3737 /* Ok no matching timings, maybe there's a free one? */
3738 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3739 pll = &dev_priv->shared_dplls[i];
3740 if (pll->refcount == 0) {
3741 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3742 crtc->base.base.id, pll->name);
3743 goto found;
3744 }
3745 }
3746
3747 return NULL;
3748
3749 found:
3750 if (pll->refcount == 0)
3751 pll->hw_state = crtc->config.dpll_hw_state;
3752
3753 crtc->config.shared_dpll = i;
3754 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3755 pipe_name(crtc->pipe));
3756
3757 pll->refcount++;
3758
3759 return pll;
3760 }
3761
3762 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3763 {
3764 struct drm_i915_private *dev_priv = dev->dev_private;
3765 int dslreg = PIPEDSL(pipe);
3766 u32 temp;
3767
3768 temp = I915_READ(dslreg);
3769 udelay(500);
3770 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3771 if (wait_for(I915_READ(dslreg) != temp, 5))
3772 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3773 }
3774 }
3775
3776 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3777 {
3778 struct drm_device *dev = crtc->base.dev;
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780 int pipe = crtc->pipe;
3781
3782 if (crtc->config.pch_pfit.enabled) {
3783 /* Force use of hard-coded filter coefficients
3784 * as some pre-programmed values are broken,
3785 * e.g. x201.
3786 */
3787 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3788 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3789 PF_PIPE_SEL_IVB(pipe));
3790 else
3791 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3792 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3793 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3794 }
3795 }
3796
3797 static void intel_enable_planes(struct drm_crtc *crtc)
3798 {
3799 struct drm_device *dev = crtc->dev;
3800 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3801 struct drm_plane *plane;
3802 struct intel_plane *intel_plane;
3803
3804 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3805 intel_plane = to_intel_plane(plane);
3806 if (intel_plane->pipe == pipe)
3807 intel_plane_restore(&intel_plane->base);
3808 }
3809 }
3810
3811 static void intel_disable_planes(struct drm_crtc *crtc)
3812 {
3813 struct drm_device *dev = crtc->dev;
3814 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3815 struct drm_plane *plane;
3816 struct intel_plane *intel_plane;
3817
3818 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3819 intel_plane = to_intel_plane(plane);
3820 if (intel_plane->pipe == pipe)
3821 intel_plane_disable(&intel_plane->base);
3822 }
3823 }
3824
3825 void hsw_enable_ips(struct intel_crtc *crtc)
3826 {
3827 struct drm_device *dev = crtc->base.dev;
3828 struct drm_i915_private *dev_priv = dev->dev_private;
3829
3830 if (!crtc->config.ips_enabled)
3831 return;
3832
3833 /* We can only enable IPS after we enable a plane and wait for a vblank */
3834 intel_wait_for_vblank(dev, crtc->pipe);
3835
3836 assert_plane_enabled(dev_priv, crtc->plane);
3837 if (IS_BROADWELL(dev)) {
3838 mutex_lock(&dev_priv->rps.hw_lock);
3839 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3840 mutex_unlock(&dev_priv->rps.hw_lock);
3841 /* Quoting Art Runyan: "its not safe to expect any particular
3842 * value in IPS_CTL bit 31 after enabling IPS through the
3843 * mailbox." Moreover, the mailbox may return a bogus state,
3844 * so we need to just enable it and continue on.
3845 */
3846 } else {
3847 I915_WRITE(IPS_CTL, IPS_ENABLE);
3848 /* The bit only becomes 1 in the next vblank, so this wait here
3849 * is essentially intel_wait_for_vblank. If we don't have this
3850 * and don't wait for vblanks until the end of crtc_enable, then
3851 * the HW state readout code will complain that the expected
3852 * IPS_CTL value is not the one we read. */
3853 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3854 DRM_ERROR("Timed out waiting for IPS enable\n");
3855 }
3856 }
3857
3858 void hsw_disable_ips(struct intel_crtc *crtc)
3859 {
3860 struct drm_device *dev = crtc->base.dev;
3861 struct drm_i915_private *dev_priv = dev->dev_private;
3862
3863 if (!crtc->config.ips_enabled)
3864 return;
3865
3866 assert_plane_enabled(dev_priv, crtc->plane);
3867 if (IS_BROADWELL(dev)) {
3868 mutex_lock(&dev_priv->rps.hw_lock);
3869 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3870 mutex_unlock(&dev_priv->rps.hw_lock);
3871 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3872 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3873 DRM_ERROR("Timed out waiting for IPS disable\n");
3874 } else {
3875 I915_WRITE(IPS_CTL, 0);
3876 POSTING_READ(IPS_CTL);
3877 }
3878
3879 /* We need to wait for a vblank before we can disable the plane. */
3880 intel_wait_for_vblank(dev, crtc->pipe);
3881 }
3882
3883 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3884 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3885 {
3886 struct drm_device *dev = crtc->dev;
3887 struct drm_i915_private *dev_priv = dev->dev_private;
3888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3889 enum pipe pipe = intel_crtc->pipe;
3890 int palreg = PALETTE(pipe);
3891 int i;
3892 bool reenable_ips = false;
3893
3894 /* The clocks have to be on to load the palette. */
3895 if (!crtc->enabled || !intel_crtc->active)
3896 return;
3897
3898 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3899 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3900 assert_dsi_pll_enabled(dev_priv);
3901 else
3902 assert_pll_enabled(dev_priv, pipe);
3903 }
3904
3905 /* use legacy palette for Ironlake */
3906 if (!HAS_GMCH_DISPLAY(dev))
3907 palreg = LGC_PALETTE(pipe);
3908
3909 /* Workaround : Do not read or write the pipe palette/gamma data while
3910 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3911 */
3912 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3913 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3914 GAMMA_MODE_MODE_SPLIT)) {
3915 hsw_disable_ips(intel_crtc);
3916 reenable_ips = true;
3917 }
3918
3919 for (i = 0; i < 256; i++) {
3920 I915_WRITE(palreg + 4 * i,
3921 (intel_crtc->lut_r[i] << 16) |
3922 (intel_crtc->lut_g[i] << 8) |
3923 intel_crtc->lut_b[i]);
3924 }
3925
3926 if (reenable_ips)
3927 hsw_enable_ips(intel_crtc);
3928 }
3929
3930 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3931 {
3932 if (!enable && intel_crtc->overlay) {
3933 struct drm_device *dev = intel_crtc->base.dev;
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935
3936 mutex_lock(&dev->struct_mutex);
3937 dev_priv->mm.interruptible = false;
3938 (void) intel_overlay_switch_off(intel_crtc->overlay);
3939 dev_priv->mm.interruptible = true;
3940 mutex_unlock(&dev->struct_mutex);
3941 }
3942
3943 /* Let userspace switch the overlay on again. In most cases userspace
3944 * has to recompute where to put it anyway.
3945 */
3946 }
3947
3948 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3949 {
3950 struct drm_device *dev = crtc->dev;
3951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3952 int pipe = intel_crtc->pipe;
3953
3954 drm_vblank_on(dev, pipe);
3955
3956 intel_enable_primary_hw_plane(crtc->primary, crtc);
3957 intel_enable_planes(crtc);
3958 intel_crtc_update_cursor(crtc, true);
3959 intel_crtc_dpms_overlay(intel_crtc, true);
3960
3961 hsw_enable_ips(intel_crtc);
3962
3963 mutex_lock(&dev->struct_mutex);
3964 intel_update_fbc(dev);
3965 mutex_unlock(&dev->struct_mutex);
3966
3967 /*
3968 * FIXME: Once we grow proper nuclear flip support out of this we need
3969 * to compute the mask of flip planes precisely. For the time being
3970 * consider this a flip from a NULL plane.
3971 */
3972 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3973 }
3974
3975 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3976 {
3977 struct drm_device *dev = crtc->dev;
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3980 int pipe = intel_crtc->pipe;
3981 int plane = intel_crtc->plane;
3982
3983 intel_crtc_wait_for_pending_flips(crtc);
3984
3985 if (dev_priv->fbc.plane == plane)
3986 intel_disable_fbc(dev);
3987
3988 hsw_disable_ips(intel_crtc);
3989
3990 intel_crtc_dpms_overlay(intel_crtc, false);
3991 intel_crtc_update_cursor(crtc, false);
3992 intel_disable_planes(crtc);
3993 intel_disable_primary_hw_plane(crtc->primary, crtc);
3994
3995 /*
3996 * FIXME: Once we grow proper nuclear flip support out of this we need
3997 * to compute the mask of flip planes precisely. For the time being
3998 * consider this a flip to a NULL plane.
3999 */
4000 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4001
4002 drm_vblank_off(dev, pipe);
4003 }
4004
4005 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4006 {
4007 struct drm_device *dev = crtc->dev;
4008 struct drm_i915_private *dev_priv = dev->dev_private;
4009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4010 struct intel_encoder *encoder;
4011 int pipe = intel_crtc->pipe;
4012
4013 WARN_ON(!crtc->enabled);
4014
4015 if (intel_crtc->active)
4016 return;
4017
4018 if (intel_crtc->config.has_pch_encoder)
4019 intel_prepare_shared_dpll(intel_crtc);
4020
4021 if (intel_crtc->config.has_dp_encoder)
4022 intel_dp_set_m_n(intel_crtc);
4023
4024 intel_set_pipe_timings(intel_crtc);
4025
4026 if (intel_crtc->config.has_pch_encoder) {
4027 intel_cpu_transcoder_set_m_n(intel_crtc,
4028 &intel_crtc->config.fdi_m_n, NULL);
4029 }
4030
4031 ironlake_set_pipeconf(crtc);
4032
4033 intel_crtc->active = true;
4034
4035 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4036 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4037
4038 for_each_encoder_on_crtc(dev, crtc, encoder)
4039 if (encoder->pre_enable)
4040 encoder->pre_enable(encoder);
4041
4042 if (intel_crtc->config.has_pch_encoder) {
4043 /* Note: FDI PLL enabling _must_ be done before we enable the
4044 * cpu pipes, hence this is separate from all the other fdi/pch
4045 * enabling. */
4046 ironlake_fdi_pll_enable(intel_crtc);
4047 } else {
4048 assert_fdi_tx_disabled(dev_priv, pipe);
4049 assert_fdi_rx_disabled(dev_priv, pipe);
4050 }
4051
4052 ironlake_pfit_enable(intel_crtc);
4053
4054 /*
4055 * On ILK+ LUT must be loaded before the pipe is running but with
4056 * clocks enabled
4057 */
4058 intel_crtc_load_lut(crtc);
4059
4060 intel_update_watermarks(crtc);
4061 intel_enable_pipe(intel_crtc);
4062
4063 if (intel_crtc->config.has_pch_encoder)
4064 ironlake_pch_enable(crtc);
4065
4066 for_each_encoder_on_crtc(dev, crtc, encoder)
4067 encoder->enable(encoder);
4068
4069 if (HAS_PCH_CPT(dev))
4070 cpt_verify_modeset(dev, intel_crtc->pipe);
4071
4072 intel_crtc_enable_planes(crtc);
4073 }
4074
4075 /* IPS only exists on ULT machines and is tied to pipe A. */
4076 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4077 {
4078 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4079 }
4080
4081 /*
4082 * This implements the workaround described in the "notes" section of the mode
4083 * set sequence documentation. When going from no pipes or single pipe to
4084 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4085 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4086 */
4087 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4088 {
4089 struct drm_device *dev = crtc->base.dev;
4090 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4091
4092 /* We want to get the other_active_crtc only if there's only 1 other
4093 * active crtc. */
4094 for_each_intel_crtc(dev, crtc_it) {
4095 if (!crtc_it->active || crtc_it == crtc)
4096 continue;
4097
4098 if (other_active_crtc)
4099 return;
4100
4101 other_active_crtc = crtc_it;
4102 }
4103 if (!other_active_crtc)
4104 return;
4105
4106 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4107 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4108 }
4109
4110 static void haswell_crtc_enable(struct drm_crtc *crtc)
4111 {
4112 struct drm_device *dev = crtc->dev;
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4115 struct intel_encoder *encoder;
4116 int pipe = intel_crtc->pipe;
4117
4118 WARN_ON(!crtc->enabled);
4119
4120 if (intel_crtc->active)
4121 return;
4122
4123 if (intel_crtc_to_shared_dpll(intel_crtc))
4124 intel_enable_shared_dpll(intel_crtc);
4125
4126 if (intel_crtc->config.has_dp_encoder)
4127 intel_dp_set_m_n(intel_crtc);
4128
4129 intel_set_pipe_timings(intel_crtc);
4130
4131 if (intel_crtc->config.has_pch_encoder) {
4132 intel_cpu_transcoder_set_m_n(intel_crtc,
4133 &intel_crtc->config.fdi_m_n, NULL);
4134 }
4135
4136 haswell_set_pipeconf(crtc);
4137
4138 intel_set_pipe_csc(crtc);
4139
4140 intel_crtc->active = true;
4141
4142 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4143 for_each_encoder_on_crtc(dev, crtc, encoder)
4144 if (encoder->pre_enable)
4145 encoder->pre_enable(encoder);
4146
4147 if (intel_crtc->config.has_pch_encoder) {
4148 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4149 dev_priv->display.fdi_link_train(crtc);
4150 }
4151
4152 intel_ddi_enable_pipe_clock(intel_crtc);
4153
4154 ironlake_pfit_enable(intel_crtc);
4155
4156 /*
4157 * On ILK+ LUT must be loaded before the pipe is running but with
4158 * clocks enabled
4159 */
4160 intel_crtc_load_lut(crtc);
4161
4162 intel_ddi_set_pipe_settings(crtc);
4163 intel_ddi_enable_transcoder_func(crtc);
4164
4165 intel_update_watermarks(crtc);
4166 intel_enable_pipe(intel_crtc);
4167
4168 if (intel_crtc->config.has_pch_encoder)
4169 lpt_pch_enable(crtc);
4170
4171 if (intel_crtc->config.dp_encoder_is_mst)
4172 intel_ddi_set_vc_payload_alloc(crtc, true);
4173
4174 for_each_encoder_on_crtc(dev, crtc, encoder) {
4175 encoder->enable(encoder);
4176 intel_opregion_notify_encoder(encoder, true);
4177 }
4178
4179 /* If we change the relative order between pipe/planes enabling, we need
4180 * to change the workaround. */
4181 haswell_mode_set_planes_workaround(intel_crtc);
4182 intel_crtc_enable_planes(crtc);
4183 }
4184
4185 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4186 {
4187 struct drm_device *dev = crtc->base.dev;
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 int pipe = crtc->pipe;
4190
4191 /* To avoid upsetting the power well on haswell only disable the pfit if
4192 * it's in use. The hw state code will make sure we get this right. */
4193 if (crtc->config.pch_pfit.enabled) {
4194 I915_WRITE(PF_CTL(pipe), 0);
4195 I915_WRITE(PF_WIN_POS(pipe), 0);
4196 I915_WRITE(PF_WIN_SZ(pipe), 0);
4197 }
4198 }
4199
4200 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4201 {
4202 struct drm_device *dev = crtc->dev;
4203 struct drm_i915_private *dev_priv = dev->dev_private;
4204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4205 struct intel_encoder *encoder;
4206 int pipe = intel_crtc->pipe;
4207 u32 reg, temp;
4208
4209 if (!intel_crtc->active)
4210 return;
4211
4212 intel_crtc_disable_planes(crtc);
4213
4214 for_each_encoder_on_crtc(dev, crtc, encoder)
4215 encoder->disable(encoder);
4216
4217 if (intel_crtc->config.has_pch_encoder)
4218 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4219
4220 intel_disable_pipe(intel_crtc);
4221
4222 if (intel_crtc->config.dp_encoder_is_mst)
4223 intel_ddi_set_vc_payload_alloc(crtc, false);
4224
4225 ironlake_pfit_disable(intel_crtc);
4226
4227 for_each_encoder_on_crtc(dev, crtc, encoder)
4228 if (encoder->post_disable)
4229 encoder->post_disable(encoder);
4230
4231 if (intel_crtc->config.has_pch_encoder) {
4232 ironlake_fdi_disable(crtc);
4233
4234 ironlake_disable_pch_transcoder(dev_priv, pipe);
4235 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4236
4237 if (HAS_PCH_CPT(dev)) {
4238 /* disable TRANS_DP_CTL */
4239 reg = TRANS_DP_CTL(pipe);
4240 temp = I915_READ(reg);
4241 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4242 TRANS_DP_PORT_SEL_MASK);
4243 temp |= TRANS_DP_PORT_SEL_NONE;
4244 I915_WRITE(reg, temp);
4245
4246 /* disable DPLL_SEL */
4247 temp = I915_READ(PCH_DPLL_SEL);
4248 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4249 I915_WRITE(PCH_DPLL_SEL, temp);
4250 }
4251
4252 /* disable PCH DPLL */
4253 intel_disable_shared_dpll(intel_crtc);
4254
4255 ironlake_fdi_pll_disable(intel_crtc);
4256 }
4257
4258 intel_crtc->active = false;
4259 intel_update_watermarks(crtc);
4260
4261 mutex_lock(&dev->struct_mutex);
4262 intel_update_fbc(dev);
4263 mutex_unlock(&dev->struct_mutex);
4264 }
4265
4266 static void haswell_crtc_disable(struct drm_crtc *crtc)
4267 {
4268 struct drm_device *dev = crtc->dev;
4269 struct drm_i915_private *dev_priv = dev->dev_private;
4270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4271 struct intel_encoder *encoder;
4272 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4273
4274 if (!intel_crtc->active)
4275 return;
4276
4277 intel_crtc_disable_planes(crtc);
4278
4279 for_each_encoder_on_crtc(dev, crtc, encoder) {
4280 intel_opregion_notify_encoder(encoder, false);
4281 encoder->disable(encoder);
4282 }
4283
4284 if (intel_crtc->config.has_pch_encoder)
4285 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4286 intel_disable_pipe(intel_crtc);
4287
4288 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4289
4290 ironlake_pfit_disable(intel_crtc);
4291
4292 intel_ddi_disable_pipe_clock(intel_crtc);
4293
4294 if (intel_crtc->config.has_pch_encoder) {
4295 lpt_disable_pch_transcoder(dev_priv);
4296 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4297 intel_ddi_fdi_disable(crtc);
4298 }
4299
4300 for_each_encoder_on_crtc(dev, crtc, encoder)
4301 if (encoder->post_disable)
4302 encoder->post_disable(encoder);
4303
4304 intel_crtc->active = false;
4305 intel_update_watermarks(crtc);
4306
4307 mutex_lock(&dev->struct_mutex);
4308 intel_update_fbc(dev);
4309 mutex_unlock(&dev->struct_mutex);
4310
4311 if (intel_crtc_to_shared_dpll(intel_crtc))
4312 intel_disable_shared_dpll(intel_crtc);
4313 }
4314
4315 static void ironlake_crtc_off(struct drm_crtc *crtc)
4316 {
4317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4318 intel_put_shared_dpll(intel_crtc);
4319 }
4320
4321
4322 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4323 {
4324 struct drm_device *dev = crtc->base.dev;
4325 struct drm_i915_private *dev_priv = dev->dev_private;
4326 struct intel_crtc_config *pipe_config = &crtc->config;
4327
4328 if (!crtc->config.gmch_pfit.control)
4329 return;
4330
4331 /*
4332 * The panel fitter should only be adjusted whilst the pipe is disabled,
4333 * according to register description and PRM.
4334 */
4335 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4336 assert_pipe_disabled(dev_priv, crtc->pipe);
4337
4338 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4339 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4340
4341 /* Border color in case we don't scale up to the full screen. Black by
4342 * default, change to something else for debugging. */
4343 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4344 }
4345
4346 static enum intel_display_power_domain port_to_power_domain(enum port port)
4347 {
4348 switch (port) {
4349 case PORT_A:
4350 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4351 case PORT_B:
4352 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4353 case PORT_C:
4354 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4355 case PORT_D:
4356 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4357 default:
4358 WARN_ON_ONCE(1);
4359 return POWER_DOMAIN_PORT_OTHER;
4360 }
4361 }
4362
4363 #define for_each_power_domain(domain, mask) \
4364 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4365 if ((1 << (domain)) & (mask))
4366
4367 enum intel_display_power_domain
4368 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4369 {
4370 struct drm_device *dev = intel_encoder->base.dev;
4371 struct intel_digital_port *intel_dig_port;
4372
4373 switch (intel_encoder->type) {
4374 case INTEL_OUTPUT_UNKNOWN:
4375 /* Only DDI platforms should ever use this output type */
4376 WARN_ON_ONCE(!HAS_DDI(dev));
4377 case INTEL_OUTPUT_DISPLAYPORT:
4378 case INTEL_OUTPUT_HDMI:
4379 case INTEL_OUTPUT_EDP:
4380 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4381 return port_to_power_domain(intel_dig_port->port);
4382 case INTEL_OUTPUT_DP_MST:
4383 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4384 return port_to_power_domain(intel_dig_port->port);
4385 case INTEL_OUTPUT_ANALOG:
4386 return POWER_DOMAIN_PORT_CRT;
4387 case INTEL_OUTPUT_DSI:
4388 return POWER_DOMAIN_PORT_DSI;
4389 default:
4390 return POWER_DOMAIN_PORT_OTHER;
4391 }
4392 }
4393
4394 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4395 {
4396 struct drm_device *dev = crtc->dev;
4397 struct intel_encoder *intel_encoder;
4398 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4399 enum pipe pipe = intel_crtc->pipe;
4400 unsigned long mask;
4401 enum transcoder transcoder;
4402
4403 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4404
4405 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4406 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4407 if (intel_crtc->config.pch_pfit.enabled ||
4408 intel_crtc->config.pch_pfit.force_thru)
4409 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4410
4411 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4412 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4413
4414 return mask;
4415 }
4416
4417 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4418 bool enable)
4419 {
4420 if (dev_priv->power_domains.init_power_on == enable)
4421 return;
4422
4423 if (enable)
4424 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4425 else
4426 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4427
4428 dev_priv->power_domains.init_power_on = enable;
4429 }
4430
4431 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4432 {
4433 struct drm_i915_private *dev_priv = dev->dev_private;
4434 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4435 struct intel_crtc *crtc;
4436
4437 /*
4438 * First get all needed power domains, then put all unneeded, to avoid
4439 * any unnecessary toggling of the power wells.
4440 */
4441 for_each_intel_crtc(dev, crtc) {
4442 enum intel_display_power_domain domain;
4443
4444 if (!crtc->base.enabled)
4445 continue;
4446
4447 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4448
4449 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4450 intel_display_power_get(dev_priv, domain);
4451 }
4452
4453 for_each_intel_crtc(dev, crtc) {
4454 enum intel_display_power_domain domain;
4455
4456 for_each_power_domain(domain, crtc->enabled_power_domains)
4457 intel_display_power_put(dev_priv, domain);
4458
4459 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4460 }
4461
4462 intel_display_set_init_power(dev_priv, false);
4463 }
4464
4465 /* returns HPLL frequency in kHz */
4466 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4467 {
4468 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4469
4470 /* Obtain SKU information */
4471 mutex_lock(&dev_priv->dpio_lock);
4472 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4473 CCK_FUSE_HPLL_FREQ_MASK;
4474 mutex_unlock(&dev_priv->dpio_lock);
4475
4476 return vco_freq[hpll_freq] * 1000;
4477 }
4478
4479 static void vlv_update_cdclk(struct drm_device *dev)
4480 {
4481 struct drm_i915_private *dev_priv = dev->dev_private;
4482
4483 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4484 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4485 dev_priv->vlv_cdclk_freq);
4486
4487 /*
4488 * Program the gmbus_freq based on the cdclk frequency.
4489 * BSpec erroneously claims we should aim for 4MHz, but
4490 * in fact 1MHz is the correct frequency.
4491 */
4492 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4493 }
4494
4495 /* Adjust CDclk dividers to allow high res or save power if possible */
4496 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4497 {
4498 struct drm_i915_private *dev_priv = dev->dev_private;
4499 u32 val, cmd;
4500
4501 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4502
4503 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4504 cmd = 2;
4505 else if (cdclk == 266667)
4506 cmd = 1;
4507 else
4508 cmd = 0;
4509
4510 mutex_lock(&dev_priv->rps.hw_lock);
4511 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4512 val &= ~DSPFREQGUAR_MASK;
4513 val |= (cmd << DSPFREQGUAR_SHIFT);
4514 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4515 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4516 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4517 50)) {
4518 DRM_ERROR("timed out waiting for CDclk change\n");
4519 }
4520 mutex_unlock(&dev_priv->rps.hw_lock);
4521
4522 if (cdclk == 400000) {
4523 u32 divider, vco;
4524
4525 vco = valleyview_get_vco(dev_priv);
4526 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4527
4528 mutex_lock(&dev_priv->dpio_lock);
4529 /* adjust cdclk divider */
4530 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4531 val &= ~DISPLAY_FREQUENCY_VALUES;
4532 val |= divider;
4533 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4534
4535 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4536 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4537 50))
4538 DRM_ERROR("timed out waiting for CDclk change\n");
4539 mutex_unlock(&dev_priv->dpio_lock);
4540 }
4541
4542 mutex_lock(&dev_priv->dpio_lock);
4543 /* adjust self-refresh exit latency value */
4544 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4545 val &= ~0x7f;
4546
4547 /*
4548 * For high bandwidth configs, we set a higher latency in the bunit
4549 * so that the core display fetch happens in time to avoid underruns.
4550 */
4551 if (cdclk == 400000)
4552 val |= 4500 / 250; /* 4.5 usec */
4553 else
4554 val |= 3000 / 250; /* 3.0 usec */
4555 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4556 mutex_unlock(&dev_priv->dpio_lock);
4557
4558 vlv_update_cdclk(dev);
4559 }
4560
4561 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4562 {
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564 u32 val, cmd;
4565
4566 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4567
4568 switch (cdclk) {
4569 case 400000:
4570 cmd = 3;
4571 break;
4572 case 333333:
4573 case 320000:
4574 cmd = 2;
4575 break;
4576 case 266667:
4577 cmd = 1;
4578 break;
4579 case 200000:
4580 cmd = 0;
4581 break;
4582 default:
4583 WARN_ON(1);
4584 return;
4585 }
4586
4587 mutex_lock(&dev_priv->rps.hw_lock);
4588 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4589 val &= ~DSPFREQGUAR_MASK_CHV;
4590 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4591 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4592 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4593 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4594 50)) {
4595 DRM_ERROR("timed out waiting for CDclk change\n");
4596 }
4597 mutex_unlock(&dev_priv->rps.hw_lock);
4598
4599 vlv_update_cdclk(dev);
4600 }
4601
4602 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4603 int max_pixclk)
4604 {
4605 int vco = valleyview_get_vco(dev_priv);
4606 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4607
4608 /* FIXME: Punit isn't quite ready yet */
4609 if (IS_CHERRYVIEW(dev_priv->dev))
4610 return 400000;
4611
4612 /*
4613 * Really only a few cases to deal with, as only 4 CDclks are supported:
4614 * 200MHz
4615 * 267MHz
4616 * 320/333MHz (depends on HPLL freq)
4617 * 400MHz
4618 * So we check to see whether we're above 90% of the lower bin and
4619 * adjust if needed.
4620 *
4621 * We seem to get an unstable or solid color picture at 200MHz.
4622 * Not sure what's wrong. For now use 200MHz only when all pipes
4623 * are off.
4624 */
4625 if (max_pixclk > freq_320*9/10)
4626 return 400000;
4627 else if (max_pixclk > 266667*9/10)
4628 return freq_320;
4629 else if (max_pixclk > 0)
4630 return 266667;
4631 else
4632 return 200000;
4633 }
4634
4635 /* compute the max pixel clock for new configuration */
4636 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4637 {
4638 struct drm_device *dev = dev_priv->dev;
4639 struct intel_crtc *intel_crtc;
4640 int max_pixclk = 0;
4641
4642 for_each_intel_crtc(dev, intel_crtc) {
4643 if (intel_crtc->new_enabled)
4644 max_pixclk = max(max_pixclk,
4645 intel_crtc->new_config->adjusted_mode.crtc_clock);
4646 }
4647
4648 return max_pixclk;
4649 }
4650
4651 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4652 unsigned *prepare_pipes)
4653 {
4654 struct drm_i915_private *dev_priv = dev->dev_private;
4655 struct intel_crtc *intel_crtc;
4656 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4657
4658 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4659 dev_priv->vlv_cdclk_freq)
4660 return;
4661
4662 /* disable/enable all currently active pipes while we change cdclk */
4663 for_each_intel_crtc(dev, intel_crtc)
4664 if (intel_crtc->base.enabled)
4665 *prepare_pipes |= (1 << intel_crtc->pipe);
4666 }
4667
4668 static void valleyview_modeset_global_resources(struct drm_device *dev)
4669 {
4670 struct drm_i915_private *dev_priv = dev->dev_private;
4671 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4672 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4673
4674 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4675 if (IS_CHERRYVIEW(dev))
4676 cherryview_set_cdclk(dev, req_cdclk);
4677 else
4678 valleyview_set_cdclk(dev, req_cdclk);
4679 }
4680
4681 modeset_update_crtc_power_domains(dev);
4682 }
4683
4684 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4685 {
4686 struct drm_device *dev = crtc->dev;
4687 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4688 struct intel_encoder *encoder;
4689 int pipe = intel_crtc->pipe;
4690 bool is_dsi;
4691
4692 WARN_ON(!crtc->enabled);
4693
4694 if (intel_crtc->active)
4695 return;
4696
4697 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4698
4699 if (!is_dsi) {
4700 if (IS_CHERRYVIEW(dev))
4701 chv_prepare_pll(intel_crtc);
4702 else
4703 vlv_prepare_pll(intel_crtc);
4704 }
4705
4706 if (intel_crtc->config.has_dp_encoder)
4707 intel_dp_set_m_n(intel_crtc);
4708
4709 intel_set_pipe_timings(intel_crtc);
4710
4711 i9xx_set_pipeconf(intel_crtc);
4712
4713 intel_crtc->active = true;
4714
4715 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4716
4717 for_each_encoder_on_crtc(dev, crtc, encoder)
4718 if (encoder->pre_pll_enable)
4719 encoder->pre_pll_enable(encoder);
4720
4721 if (!is_dsi) {
4722 if (IS_CHERRYVIEW(dev))
4723 chv_enable_pll(intel_crtc);
4724 else
4725 vlv_enable_pll(intel_crtc);
4726 }
4727
4728 for_each_encoder_on_crtc(dev, crtc, encoder)
4729 if (encoder->pre_enable)
4730 encoder->pre_enable(encoder);
4731
4732 i9xx_pfit_enable(intel_crtc);
4733
4734 intel_crtc_load_lut(crtc);
4735
4736 intel_update_watermarks(crtc);
4737 intel_enable_pipe(intel_crtc);
4738
4739 for_each_encoder_on_crtc(dev, crtc, encoder)
4740 encoder->enable(encoder);
4741
4742 intel_crtc_enable_planes(crtc);
4743
4744 /* Underruns don't raise interrupts, so check manually. */
4745 i9xx_check_fifo_underruns(dev);
4746 }
4747
4748 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4749 {
4750 struct drm_device *dev = crtc->base.dev;
4751 struct drm_i915_private *dev_priv = dev->dev_private;
4752
4753 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4754 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4755 }
4756
4757 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4758 {
4759 struct drm_device *dev = crtc->dev;
4760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4761 struct intel_encoder *encoder;
4762 int pipe = intel_crtc->pipe;
4763
4764 WARN_ON(!crtc->enabled);
4765
4766 if (intel_crtc->active)
4767 return;
4768
4769 i9xx_set_pll_dividers(intel_crtc);
4770
4771 if (intel_crtc->config.has_dp_encoder)
4772 intel_dp_set_m_n(intel_crtc);
4773
4774 intel_set_pipe_timings(intel_crtc);
4775
4776 i9xx_set_pipeconf(intel_crtc);
4777
4778 intel_crtc->active = true;
4779
4780 if (!IS_GEN2(dev))
4781 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4782
4783 for_each_encoder_on_crtc(dev, crtc, encoder)
4784 if (encoder->pre_enable)
4785 encoder->pre_enable(encoder);
4786
4787 i9xx_enable_pll(intel_crtc);
4788
4789 i9xx_pfit_enable(intel_crtc);
4790
4791 intel_crtc_load_lut(crtc);
4792
4793 intel_update_watermarks(crtc);
4794 intel_enable_pipe(intel_crtc);
4795
4796 for_each_encoder_on_crtc(dev, crtc, encoder)
4797 encoder->enable(encoder);
4798
4799 intel_crtc_enable_planes(crtc);
4800
4801 /*
4802 * Gen2 reports pipe underruns whenever all planes are disabled.
4803 * So don't enable underrun reporting before at least some planes
4804 * are enabled.
4805 * FIXME: Need to fix the logic to work when we turn off all planes
4806 * but leave the pipe running.
4807 */
4808 if (IS_GEN2(dev))
4809 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4810
4811 /* Underruns don't raise interrupts, so check manually. */
4812 i9xx_check_fifo_underruns(dev);
4813 }
4814
4815 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4816 {
4817 struct drm_device *dev = crtc->base.dev;
4818 struct drm_i915_private *dev_priv = dev->dev_private;
4819
4820 if (!crtc->config.gmch_pfit.control)
4821 return;
4822
4823 assert_pipe_disabled(dev_priv, crtc->pipe);
4824
4825 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4826 I915_READ(PFIT_CONTROL));
4827 I915_WRITE(PFIT_CONTROL, 0);
4828 }
4829
4830 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4831 {
4832 struct drm_device *dev = crtc->dev;
4833 struct drm_i915_private *dev_priv = dev->dev_private;
4834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4835 struct intel_encoder *encoder;
4836 int pipe = intel_crtc->pipe;
4837
4838 if (!intel_crtc->active)
4839 return;
4840
4841 /*
4842 * Gen2 reports pipe underruns whenever all planes are disabled.
4843 * So diasble underrun reporting before all the planes get disabled.
4844 * FIXME: Need to fix the logic to work when we turn off all planes
4845 * but leave the pipe running.
4846 */
4847 if (IS_GEN2(dev))
4848 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4849
4850 /*
4851 * Vblank time updates from the shadow to live plane control register
4852 * are blocked if the memory self-refresh mode is active at that
4853 * moment. So to make sure the plane gets truly disabled, disable
4854 * first the self-refresh mode. The self-refresh enable bit in turn
4855 * will be checked/applied by the HW only at the next frame start
4856 * event which is after the vblank start event, so we need to have a
4857 * wait-for-vblank between disabling the plane and the pipe.
4858 */
4859 intel_set_memory_cxsr(dev_priv, false);
4860 intel_crtc_disable_planes(crtc);
4861
4862 for_each_encoder_on_crtc(dev, crtc, encoder)
4863 encoder->disable(encoder);
4864
4865 /*
4866 * On gen2 planes are double buffered but the pipe isn't, so we must
4867 * wait for planes to fully turn off before disabling the pipe.
4868 * We also need to wait on all gmch platforms because of the
4869 * self-refresh mode constraint explained above.
4870 */
4871 intel_wait_for_vblank(dev, pipe);
4872
4873 intel_disable_pipe(intel_crtc);
4874
4875 i9xx_pfit_disable(intel_crtc);
4876
4877 for_each_encoder_on_crtc(dev, crtc, encoder)
4878 if (encoder->post_disable)
4879 encoder->post_disable(encoder);
4880
4881 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4882 if (IS_CHERRYVIEW(dev))
4883 chv_disable_pll(dev_priv, pipe);
4884 else if (IS_VALLEYVIEW(dev))
4885 vlv_disable_pll(dev_priv, pipe);
4886 else
4887 i9xx_disable_pll(dev_priv, pipe);
4888 }
4889
4890 if (!IS_GEN2(dev))
4891 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4892
4893 intel_crtc->active = false;
4894 intel_update_watermarks(crtc);
4895
4896 mutex_lock(&dev->struct_mutex);
4897 intel_update_fbc(dev);
4898 mutex_unlock(&dev->struct_mutex);
4899 }
4900
4901 static void i9xx_crtc_off(struct drm_crtc *crtc)
4902 {
4903 }
4904
4905 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4906 bool enabled)
4907 {
4908 struct drm_device *dev = crtc->dev;
4909 struct drm_i915_master_private *master_priv;
4910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4911 int pipe = intel_crtc->pipe;
4912
4913 if (!dev->primary->master)
4914 return;
4915
4916 master_priv = dev->primary->master->driver_priv;
4917 if (!master_priv->sarea_priv)
4918 return;
4919
4920 switch (pipe) {
4921 case 0:
4922 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4923 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4924 break;
4925 case 1:
4926 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4927 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4928 break;
4929 default:
4930 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4931 break;
4932 }
4933 }
4934
4935 /* Master function to enable/disable CRTC and corresponding power wells */
4936 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
4937 {
4938 struct drm_device *dev = crtc->dev;
4939 struct drm_i915_private *dev_priv = dev->dev_private;
4940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4941 enum intel_display_power_domain domain;
4942 unsigned long domains;
4943
4944 if (enable) {
4945 if (!intel_crtc->active) {
4946 domains = get_crtc_power_domains(crtc);
4947 for_each_power_domain(domain, domains)
4948 intel_display_power_get(dev_priv, domain);
4949 intel_crtc->enabled_power_domains = domains;
4950
4951 dev_priv->display.crtc_enable(crtc);
4952 }
4953 } else {
4954 if (intel_crtc->active) {
4955 dev_priv->display.crtc_disable(crtc);
4956
4957 domains = intel_crtc->enabled_power_domains;
4958 for_each_power_domain(domain, domains)
4959 intel_display_power_put(dev_priv, domain);
4960 intel_crtc->enabled_power_domains = 0;
4961 }
4962 }
4963 }
4964
4965 /**
4966 * Sets the power management mode of the pipe and plane.
4967 */
4968 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4969 {
4970 struct drm_device *dev = crtc->dev;
4971 struct intel_encoder *intel_encoder;
4972 bool enable = false;
4973
4974 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4975 enable |= intel_encoder->connectors_active;
4976
4977 intel_crtc_control(crtc, enable);
4978
4979 intel_crtc_update_sarea(crtc, enable);
4980 }
4981
4982 static void intel_crtc_disable(struct drm_crtc *crtc)
4983 {
4984 struct drm_device *dev = crtc->dev;
4985 struct drm_connector *connector;
4986 struct drm_i915_private *dev_priv = dev->dev_private;
4987 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4988 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4989
4990 /* crtc should still be enabled when we disable it. */
4991 WARN_ON(!crtc->enabled);
4992
4993 dev_priv->display.crtc_disable(crtc);
4994 intel_crtc_update_sarea(crtc, false);
4995 dev_priv->display.off(crtc);
4996
4997 if (crtc->primary->fb) {
4998 mutex_lock(&dev->struct_mutex);
4999 intel_unpin_fb_obj(old_obj);
5000 i915_gem_track_fb(old_obj, NULL,
5001 INTEL_FRONTBUFFER_PRIMARY(pipe));
5002 mutex_unlock(&dev->struct_mutex);
5003 crtc->primary->fb = NULL;
5004 }
5005
5006 /* Update computed state. */
5007 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5008 if (!connector->encoder || !connector->encoder->crtc)
5009 continue;
5010
5011 if (connector->encoder->crtc != crtc)
5012 continue;
5013
5014 connector->dpms = DRM_MODE_DPMS_OFF;
5015 to_intel_encoder(connector->encoder)->connectors_active = false;
5016 }
5017 }
5018
5019 void intel_encoder_destroy(struct drm_encoder *encoder)
5020 {
5021 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5022
5023 drm_encoder_cleanup(encoder);
5024 kfree(intel_encoder);
5025 }
5026
5027 /* Simple dpms helper for encoders with just one connector, no cloning and only
5028 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5029 * state of the entire output pipe. */
5030 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5031 {
5032 if (mode == DRM_MODE_DPMS_ON) {
5033 encoder->connectors_active = true;
5034
5035 intel_crtc_update_dpms(encoder->base.crtc);
5036 } else {
5037 encoder->connectors_active = false;
5038
5039 intel_crtc_update_dpms(encoder->base.crtc);
5040 }
5041 }
5042
5043 /* Cross check the actual hw state with our own modeset state tracking (and it's
5044 * internal consistency). */
5045 static void intel_connector_check_state(struct intel_connector *connector)
5046 {
5047 if (connector->get_hw_state(connector)) {
5048 struct intel_encoder *encoder = connector->encoder;
5049 struct drm_crtc *crtc;
5050 bool encoder_enabled;
5051 enum pipe pipe;
5052
5053 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5054 connector->base.base.id,
5055 connector->base.name);
5056
5057 /* there is no real hw state for MST connectors */
5058 if (connector->mst_port)
5059 return;
5060
5061 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5062 "wrong connector dpms state\n");
5063 WARN(connector->base.encoder != &encoder->base,
5064 "active connector not linked to encoder\n");
5065
5066 if (encoder) {
5067 WARN(!encoder->connectors_active,
5068 "encoder->connectors_active not set\n");
5069
5070 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5071 WARN(!encoder_enabled, "encoder not enabled\n");
5072 if (WARN_ON(!encoder->base.crtc))
5073 return;
5074
5075 crtc = encoder->base.crtc;
5076
5077 WARN(!crtc->enabled, "crtc not enabled\n");
5078 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5079 WARN(pipe != to_intel_crtc(crtc)->pipe,
5080 "encoder active on the wrong pipe\n");
5081 }
5082 }
5083 }
5084
5085 /* Even simpler default implementation, if there's really no special case to
5086 * consider. */
5087 void intel_connector_dpms(struct drm_connector *connector, int mode)
5088 {
5089 /* All the simple cases only support two dpms states. */
5090 if (mode != DRM_MODE_DPMS_ON)
5091 mode = DRM_MODE_DPMS_OFF;
5092
5093 if (mode == connector->dpms)
5094 return;
5095
5096 connector->dpms = mode;
5097
5098 /* Only need to change hw state when actually enabled */
5099 if (connector->encoder)
5100 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5101
5102 intel_modeset_check_state(connector->dev);
5103 }
5104
5105 /* Simple connector->get_hw_state implementation for encoders that support only
5106 * one connector and no cloning and hence the encoder state determines the state
5107 * of the connector. */
5108 bool intel_connector_get_hw_state(struct intel_connector *connector)
5109 {
5110 enum pipe pipe = 0;
5111 struct intel_encoder *encoder = connector->encoder;
5112
5113 return encoder->get_hw_state(encoder, &pipe);
5114 }
5115
5116 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5117 struct intel_crtc_config *pipe_config)
5118 {
5119 struct drm_i915_private *dev_priv = dev->dev_private;
5120 struct intel_crtc *pipe_B_crtc =
5121 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5122
5123 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5124 pipe_name(pipe), pipe_config->fdi_lanes);
5125 if (pipe_config->fdi_lanes > 4) {
5126 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5127 pipe_name(pipe), pipe_config->fdi_lanes);
5128 return false;
5129 }
5130
5131 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5132 if (pipe_config->fdi_lanes > 2) {
5133 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5134 pipe_config->fdi_lanes);
5135 return false;
5136 } else {
5137 return true;
5138 }
5139 }
5140
5141 if (INTEL_INFO(dev)->num_pipes == 2)
5142 return true;
5143
5144 /* Ivybridge 3 pipe is really complicated */
5145 switch (pipe) {
5146 case PIPE_A:
5147 return true;
5148 case PIPE_B:
5149 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5150 pipe_config->fdi_lanes > 2) {
5151 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5152 pipe_name(pipe), pipe_config->fdi_lanes);
5153 return false;
5154 }
5155 return true;
5156 case PIPE_C:
5157 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5158 pipe_B_crtc->config.fdi_lanes <= 2) {
5159 if (pipe_config->fdi_lanes > 2) {
5160 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5161 pipe_name(pipe), pipe_config->fdi_lanes);
5162 return false;
5163 }
5164 } else {
5165 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5166 return false;
5167 }
5168 return true;
5169 default:
5170 BUG();
5171 }
5172 }
5173
5174 #define RETRY 1
5175 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5176 struct intel_crtc_config *pipe_config)
5177 {
5178 struct drm_device *dev = intel_crtc->base.dev;
5179 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5180 int lane, link_bw, fdi_dotclock;
5181 bool setup_ok, needs_recompute = false;
5182
5183 retry:
5184 /* FDI is a binary signal running at ~2.7GHz, encoding
5185 * each output octet as 10 bits. The actual frequency
5186 * is stored as a divider into a 100MHz clock, and the
5187 * mode pixel clock is stored in units of 1KHz.
5188 * Hence the bw of each lane in terms of the mode signal
5189 * is:
5190 */
5191 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5192
5193 fdi_dotclock = adjusted_mode->crtc_clock;
5194
5195 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5196 pipe_config->pipe_bpp);
5197
5198 pipe_config->fdi_lanes = lane;
5199
5200 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5201 link_bw, &pipe_config->fdi_m_n);
5202
5203 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5204 intel_crtc->pipe, pipe_config);
5205 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5206 pipe_config->pipe_bpp -= 2*3;
5207 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5208 pipe_config->pipe_bpp);
5209 needs_recompute = true;
5210 pipe_config->bw_constrained = true;
5211
5212 goto retry;
5213 }
5214
5215 if (needs_recompute)
5216 return RETRY;
5217
5218 return setup_ok ? 0 : -EINVAL;
5219 }
5220
5221 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5222 struct intel_crtc_config *pipe_config)
5223 {
5224 pipe_config->ips_enabled = i915.enable_ips &&
5225 hsw_crtc_supports_ips(crtc) &&
5226 pipe_config->pipe_bpp <= 24;
5227 }
5228
5229 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5230 struct intel_crtc_config *pipe_config)
5231 {
5232 struct drm_device *dev = crtc->base.dev;
5233 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5234
5235 /* FIXME should check pixel clock limits on all platforms */
5236 if (INTEL_INFO(dev)->gen < 4) {
5237 struct drm_i915_private *dev_priv = dev->dev_private;
5238 int clock_limit =
5239 dev_priv->display.get_display_clock_speed(dev);
5240
5241 /*
5242 * Enable pixel doubling when the dot clock
5243 * is > 90% of the (display) core speed.
5244 *
5245 * GDG double wide on either pipe,
5246 * otherwise pipe A only.
5247 */
5248 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5249 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5250 clock_limit *= 2;
5251 pipe_config->double_wide = true;
5252 }
5253
5254 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5255 return -EINVAL;
5256 }
5257
5258 /*
5259 * Pipe horizontal size must be even in:
5260 * - DVO ganged mode
5261 * - LVDS dual channel mode
5262 * - Double wide pipe
5263 */
5264 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5265 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5266 pipe_config->pipe_src_w &= ~1;
5267
5268 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5269 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5270 */
5271 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5272 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5273 return -EINVAL;
5274
5275 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5276 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5277 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5278 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5279 * for lvds. */
5280 pipe_config->pipe_bpp = 8*3;
5281 }
5282
5283 if (HAS_IPS(dev))
5284 hsw_compute_ips_config(crtc, pipe_config);
5285
5286 /*
5287 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5288 * old clock survives for now.
5289 */
5290 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
5291 pipe_config->shared_dpll = crtc->config.shared_dpll;
5292
5293 if (pipe_config->has_pch_encoder)
5294 return ironlake_fdi_compute_config(crtc, pipe_config);
5295
5296 return 0;
5297 }
5298
5299 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5300 {
5301 struct drm_i915_private *dev_priv = dev->dev_private;
5302 int vco = valleyview_get_vco(dev_priv);
5303 u32 val;
5304 int divider;
5305
5306 /* FIXME: Punit isn't quite ready yet */
5307 if (IS_CHERRYVIEW(dev))
5308 return 400000;
5309
5310 mutex_lock(&dev_priv->dpio_lock);
5311 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5312 mutex_unlock(&dev_priv->dpio_lock);
5313
5314 divider = val & DISPLAY_FREQUENCY_VALUES;
5315
5316 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5317 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5318 "cdclk change in progress\n");
5319
5320 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5321 }
5322
5323 static int i945_get_display_clock_speed(struct drm_device *dev)
5324 {
5325 return 400000;
5326 }
5327
5328 static int i915_get_display_clock_speed(struct drm_device *dev)
5329 {
5330 return 333000;
5331 }
5332
5333 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5334 {
5335 return 200000;
5336 }
5337
5338 static int pnv_get_display_clock_speed(struct drm_device *dev)
5339 {
5340 u16 gcfgc = 0;
5341
5342 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5343
5344 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5345 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5346 return 267000;
5347 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5348 return 333000;
5349 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5350 return 444000;
5351 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5352 return 200000;
5353 default:
5354 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5355 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5356 return 133000;
5357 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5358 return 167000;
5359 }
5360 }
5361
5362 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5363 {
5364 u16 gcfgc = 0;
5365
5366 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5367
5368 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5369 return 133000;
5370 else {
5371 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5372 case GC_DISPLAY_CLOCK_333_MHZ:
5373 return 333000;
5374 default:
5375 case GC_DISPLAY_CLOCK_190_200_MHZ:
5376 return 190000;
5377 }
5378 }
5379 }
5380
5381 static int i865_get_display_clock_speed(struct drm_device *dev)
5382 {
5383 return 266000;
5384 }
5385
5386 static int i855_get_display_clock_speed(struct drm_device *dev)
5387 {
5388 u16 hpllcc = 0;
5389 /* Assume that the hardware is in the high speed state. This
5390 * should be the default.
5391 */
5392 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5393 case GC_CLOCK_133_200:
5394 case GC_CLOCK_100_200:
5395 return 200000;
5396 case GC_CLOCK_166_250:
5397 return 250000;
5398 case GC_CLOCK_100_133:
5399 return 133000;
5400 }
5401
5402 /* Shouldn't happen */
5403 return 0;
5404 }
5405
5406 static int i830_get_display_clock_speed(struct drm_device *dev)
5407 {
5408 return 133000;
5409 }
5410
5411 static void
5412 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5413 {
5414 while (*num > DATA_LINK_M_N_MASK ||
5415 *den > DATA_LINK_M_N_MASK) {
5416 *num >>= 1;
5417 *den >>= 1;
5418 }
5419 }
5420
5421 static void compute_m_n(unsigned int m, unsigned int n,
5422 uint32_t *ret_m, uint32_t *ret_n)
5423 {
5424 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5425 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5426 intel_reduce_m_n_ratio(ret_m, ret_n);
5427 }
5428
5429 void
5430 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5431 int pixel_clock, int link_clock,
5432 struct intel_link_m_n *m_n)
5433 {
5434 m_n->tu = 64;
5435
5436 compute_m_n(bits_per_pixel * pixel_clock,
5437 link_clock * nlanes * 8,
5438 &m_n->gmch_m, &m_n->gmch_n);
5439
5440 compute_m_n(pixel_clock, link_clock,
5441 &m_n->link_m, &m_n->link_n);
5442 }
5443
5444 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5445 {
5446 if (i915.panel_use_ssc >= 0)
5447 return i915.panel_use_ssc != 0;
5448 return dev_priv->vbt.lvds_use_ssc
5449 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5450 }
5451
5452 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5453 {
5454 struct drm_device *dev = crtc->dev;
5455 struct drm_i915_private *dev_priv = dev->dev_private;
5456 int refclk;
5457
5458 if (IS_VALLEYVIEW(dev)) {
5459 refclk = 100000;
5460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5461 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5462 refclk = dev_priv->vbt.lvds_ssc_freq;
5463 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5464 } else if (!IS_GEN2(dev)) {
5465 refclk = 96000;
5466 } else {
5467 refclk = 48000;
5468 }
5469
5470 return refclk;
5471 }
5472
5473 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5474 {
5475 return (1 << dpll->n) << 16 | dpll->m2;
5476 }
5477
5478 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5479 {
5480 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5481 }
5482
5483 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5484 intel_clock_t *reduced_clock)
5485 {
5486 struct drm_device *dev = crtc->base.dev;
5487 u32 fp, fp2 = 0;
5488
5489 if (IS_PINEVIEW(dev)) {
5490 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5491 if (reduced_clock)
5492 fp2 = pnv_dpll_compute_fp(reduced_clock);
5493 } else {
5494 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5495 if (reduced_clock)
5496 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5497 }
5498
5499 crtc->config.dpll_hw_state.fp0 = fp;
5500
5501 crtc->lowfreq_avail = false;
5502 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5503 reduced_clock && i915.powersave) {
5504 crtc->config.dpll_hw_state.fp1 = fp2;
5505 crtc->lowfreq_avail = true;
5506 } else {
5507 crtc->config.dpll_hw_state.fp1 = fp;
5508 }
5509 }
5510
5511 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5512 pipe)
5513 {
5514 u32 reg_val;
5515
5516 /*
5517 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5518 * and set it to a reasonable value instead.
5519 */
5520 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5521 reg_val &= 0xffffff00;
5522 reg_val |= 0x00000030;
5523 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5524
5525 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5526 reg_val &= 0x8cffffff;
5527 reg_val = 0x8c000000;
5528 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5529
5530 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5531 reg_val &= 0xffffff00;
5532 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5533
5534 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5535 reg_val &= 0x00ffffff;
5536 reg_val |= 0xb0000000;
5537 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5538 }
5539
5540 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5541 struct intel_link_m_n *m_n)
5542 {
5543 struct drm_device *dev = crtc->base.dev;
5544 struct drm_i915_private *dev_priv = dev->dev_private;
5545 int pipe = crtc->pipe;
5546
5547 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5548 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5549 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5550 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5551 }
5552
5553 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5554 struct intel_link_m_n *m_n,
5555 struct intel_link_m_n *m2_n2)
5556 {
5557 struct drm_device *dev = crtc->base.dev;
5558 struct drm_i915_private *dev_priv = dev->dev_private;
5559 int pipe = crtc->pipe;
5560 enum transcoder transcoder = crtc->config.cpu_transcoder;
5561
5562 if (INTEL_INFO(dev)->gen >= 5) {
5563 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5564 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5565 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5566 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5567 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5568 * for gen < 8) and if DRRS is supported (to make sure the
5569 * registers are not unnecessarily accessed).
5570 */
5571 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5572 crtc->config.has_drrs) {
5573 I915_WRITE(PIPE_DATA_M2(transcoder),
5574 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5575 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5576 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5577 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5578 }
5579 } else {
5580 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5581 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5582 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5583 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5584 }
5585 }
5586
5587 void intel_dp_set_m_n(struct intel_crtc *crtc)
5588 {
5589 if (crtc->config.has_pch_encoder)
5590 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5591 else
5592 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5593 &crtc->config.dp_m2_n2);
5594 }
5595
5596 static void vlv_update_pll(struct intel_crtc *crtc)
5597 {
5598 u32 dpll, dpll_md;
5599
5600 /*
5601 * Enable DPIO clock input. We should never disable the reference
5602 * clock for pipe B, since VGA hotplug / manual detection depends
5603 * on it.
5604 */
5605 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5606 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5607 /* We should never disable this, set it here for state tracking */
5608 if (crtc->pipe == PIPE_B)
5609 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5610 dpll |= DPLL_VCO_ENABLE;
5611 crtc->config.dpll_hw_state.dpll = dpll;
5612
5613 dpll_md = (crtc->config.pixel_multiplier - 1)
5614 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5615 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5616 }
5617
5618 static void vlv_prepare_pll(struct intel_crtc *crtc)
5619 {
5620 struct drm_device *dev = crtc->base.dev;
5621 struct drm_i915_private *dev_priv = dev->dev_private;
5622 int pipe = crtc->pipe;
5623 u32 mdiv;
5624 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5625 u32 coreclk, reg_val;
5626
5627 mutex_lock(&dev_priv->dpio_lock);
5628
5629 bestn = crtc->config.dpll.n;
5630 bestm1 = crtc->config.dpll.m1;
5631 bestm2 = crtc->config.dpll.m2;
5632 bestp1 = crtc->config.dpll.p1;
5633 bestp2 = crtc->config.dpll.p2;
5634
5635 /* See eDP HDMI DPIO driver vbios notes doc */
5636
5637 /* PLL B needs special handling */
5638 if (pipe == PIPE_B)
5639 vlv_pllb_recal_opamp(dev_priv, pipe);
5640
5641 /* Set up Tx target for periodic Rcomp update */
5642 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5643
5644 /* Disable target IRef on PLL */
5645 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5646 reg_val &= 0x00ffffff;
5647 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5648
5649 /* Disable fast lock */
5650 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5651
5652 /* Set idtafcrecal before PLL is enabled */
5653 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5654 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5655 mdiv |= ((bestn << DPIO_N_SHIFT));
5656 mdiv |= (1 << DPIO_K_SHIFT);
5657
5658 /*
5659 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5660 * but we don't support that).
5661 * Note: don't use the DAC post divider as it seems unstable.
5662 */
5663 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5664 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5665
5666 mdiv |= DPIO_ENABLE_CALIBRATION;
5667 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5668
5669 /* Set HBR and RBR LPF coefficients */
5670 if (crtc->config.port_clock == 162000 ||
5671 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5672 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5673 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5674 0x009f0003);
5675 else
5676 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5677 0x00d0000f);
5678
5679 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5680 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5681 /* Use SSC source */
5682 if (pipe == PIPE_A)
5683 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5684 0x0df40000);
5685 else
5686 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5687 0x0df70000);
5688 } else { /* HDMI or VGA */
5689 /* Use bend source */
5690 if (pipe == PIPE_A)
5691 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5692 0x0df70000);
5693 else
5694 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5695 0x0df40000);
5696 }
5697
5698 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5699 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5700 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5701 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5702 coreclk |= 0x01000000;
5703 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5704
5705 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5706 mutex_unlock(&dev_priv->dpio_lock);
5707 }
5708
5709 static void chv_update_pll(struct intel_crtc *crtc)
5710 {
5711 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5712 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5713 DPLL_VCO_ENABLE;
5714 if (crtc->pipe != PIPE_A)
5715 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5716
5717 crtc->config.dpll_hw_state.dpll_md =
5718 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5719 }
5720
5721 static void chv_prepare_pll(struct intel_crtc *crtc)
5722 {
5723 struct drm_device *dev = crtc->base.dev;
5724 struct drm_i915_private *dev_priv = dev->dev_private;
5725 int pipe = crtc->pipe;
5726 int dpll_reg = DPLL(crtc->pipe);
5727 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5728 u32 loopfilter, intcoeff;
5729 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5730 int refclk;
5731
5732 bestn = crtc->config.dpll.n;
5733 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5734 bestm1 = crtc->config.dpll.m1;
5735 bestm2 = crtc->config.dpll.m2 >> 22;
5736 bestp1 = crtc->config.dpll.p1;
5737 bestp2 = crtc->config.dpll.p2;
5738
5739 /*
5740 * Enable Refclk and SSC
5741 */
5742 I915_WRITE(dpll_reg,
5743 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5744
5745 mutex_lock(&dev_priv->dpio_lock);
5746
5747 /* p1 and p2 divider */
5748 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5749 5 << DPIO_CHV_S1_DIV_SHIFT |
5750 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5751 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5752 1 << DPIO_CHV_K_DIV_SHIFT);
5753
5754 /* Feedback post-divider - m2 */
5755 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5756
5757 /* Feedback refclk divider - n and m1 */
5758 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5759 DPIO_CHV_M1_DIV_BY_2 |
5760 1 << DPIO_CHV_N_DIV_SHIFT);
5761
5762 /* M2 fraction division */
5763 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5764
5765 /* M2 fraction division enable */
5766 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5767 DPIO_CHV_FRAC_DIV_EN |
5768 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5769
5770 /* Loop filter */
5771 refclk = i9xx_get_refclk(&crtc->base, 0);
5772 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5773 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5774 if (refclk == 100000)
5775 intcoeff = 11;
5776 else if (refclk == 38400)
5777 intcoeff = 10;
5778 else
5779 intcoeff = 9;
5780 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5781 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5782
5783 /* AFC Recal */
5784 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5785 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5786 DPIO_AFC_RECAL);
5787
5788 mutex_unlock(&dev_priv->dpio_lock);
5789 }
5790
5791 static void i9xx_update_pll(struct intel_crtc *crtc,
5792 intel_clock_t *reduced_clock,
5793 int num_connectors)
5794 {
5795 struct drm_device *dev = crtc->base.dev;
5796 struct drm_i915_private *dev_priv = dev->dev_private;
5797 u32 dpll;
5798 bool is_sdvo;
5799 struct dpll *clock = &crtc->config.dpll;
5800
5801 i9xx_update_pll_dividers(crtc, reduced_clock);
5802
5803 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5804 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5805
5806 dpll = DPLL_VGA_MODE_DIS;
5807
5808 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5809 dpll |= DPLLB_MODE_LVDS;
5810 else
5811 dpll |= DPLLB_MODE_DAC_SERIAL;
5812
5813 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5814 dpll |= (crtc->config.pixel_multiplier - 1)
5815 << SDVO_MULTIPLIER_SHIFT_HIRES;
5816 }
5817
5818 if (is_sdvo)
5819 dpll |= DPLL_SDVO_HIGH_SPEED;
5820
5821 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5822 dpll |= DPLL_SDVO_HIGH_SPEED;
5823
5824 /* compute bitmask from p1 value */
5825 if (IS_PINEVIEW(dev))
5826 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5827 else {
5828 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5829 if (IS_G4X(dev) && reduced_clock)
5830 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5831 }
5832 switch (clock->p2) {
5833 case 5:
5834 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5835 break;
5836 case 7:
5837 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5838 break;
5839 case 10:
5840 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5841 break;
5842 case 14:
5843 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5844 break;
5845 }
5846 if (INTEL_INFO(dev)->gen >= 4)
5847 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5848
5849 if (crtc->config.sdvo_tv_clock)
5850 dpll |= PLL_REF_INPUT_TVCLKINBC;
5851 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5852 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5853 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5854 else
5855 dpll |= PLL_REF_INPUT_DREFCLK;
5856
5857 dpll |= DPLL_VCO_ENABLE;
5858 crtc->config.dpll_hw_state.dpll = dpll;
5859
5860 if (INTEL_INFO(dev)->gen >= 4) {
5861 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5862 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5863 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5864 }
5865 }
5866
5867 static void i8xx_update_pll(struct intel_crtc *crtc,
5868 intel_clock_t *reduced_clock,
5869 int num_connectors)
5870 {
5871 struct drm_device *dev = crtc->base.dev;
5872 struct drm_i915_private *dev_priv = dev->dev_private;
5873 u32 dpll;
5874 struct dpll *clock = &crtc->config.dpll;
5875
5876 i9xx_update_pll_dividers(crtc, reduced_clock);
5877
5878 dpll = DPLL_VGA_MODE_DIS;
5879
5880 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5881 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5882 } else {
5883 if (clock->p1 == 2)
5884 dpll |= PLL_P1_DIVIDE_BY_TWO;
5885 else
5886 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5887 if (clock->p2 == 4)
5888 dpll |= PLL_P2_DIVIDE_BY_4;
5889 }
5890
5891 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5892 dpll |= DPLL_DVO_2X_MODE;
5893
5894 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5895 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5896 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5897 else
5898 dpll |= PLL_REF_INPUT_DREFCLK;
5899
5900 dpll |= DPLL_VCO_ENABLE;
5901 crtc->config.dpll_hw_state.dpll = dpll;
5902 }
5903
5904 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5905 {
5906 struct drm_device *dev = intel_crtc->base.dev;
5907 struct drm_i915_private *dev_priv = dev->dev_private;
5908 enum pipe pipe = intel_crtc->pipe;
5909 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5910 struct drm_display_mode *adjusted_mode =
5911 &intel_crtc->config.adjusted_mode;
5912 uint32_t crtc_vtotal, crtc_vblank_end;
5913 int vsyncshift = 0;
5914
5915 /* We need to be careful not to changed the adjusted mode, for otherwise
5916 * the hw state checker will get angry at the mismatch. */
5917 crtc_vtotal = adjusted_mode->crtc_vtotal;
5918 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5919
5920 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5921 /* the chip adds 2 halflines automatically */
5922 crtc_vtotal -= 1;
5923 crtc_vblank_end -= 1;
5924
5925 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5926 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5927 else
5928 vsyncshift = adjusted_mode->crtc_hsync_start -
5929 adjusted_mode->crtc_htotal / 2;
5930 if (vsyncshift < 0)
5931 vsyncshift += adjusted_mode->crtc_htotal;
5932 }
5933
5934 if (INTEL_INFO(dev)->gen > 3)
5935 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5936
5937 I915_WRITE(HTOTAL(cpu_transcoder),
5938 (adjusted_mode->crtc_hdisplay - 1) |
5939 ((adjusted_mode->crtc_htotal - 1) << 16));
5940 I915_WRITE(HBLANK(cpu_transcoder),
5941 (adjusted_mode->crtc_hblank_start - 1) |
5942 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5943 I915_WRITE(HSYNC(cpu_transcoder),
5944 (adjusted_mode->crtc_hsync_start - 1) |
5945 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5946
5947 I915_WRITE(VTOTAL(cpu_transcoder),
5948 (adjusted_mode->crtc_vdisplay - 1) |
5949 ((crtc_vtotal - 1) << 16));
5950 I915_WRITE(VBLANK(cpu_transcoder),
5951 (adjusted_mode->crtc_vblank_start - 1) |
5952 ((crtc_vblank_end - 1) << 16));
5953 I915_WRITE(VSYNC(cpu_transcoder),
5954 (adjusted_mode->crtc_vsync_start - 1) |
5955 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5956
5957 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5958 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5959 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5960 * bits. */
5961 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5962 (pipe == PIPE_B || pipe == PIPE_C))
5963 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5964
5965 /* pipesrc controls the size that is scaled from, which should
5966 * always be the user's requested size.
5967 */
5968 I915_WRITE(PIPESRC(pipe),
5969 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5970 (intel_crtc->config.pipe_src_h - 1));
5971 }
5972
5973 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5974 struct intel_crtc_config *pipe_config)
5975 {
5976 struct drm_device *dev = crtc->base.dev;
5977 struct drm_i915_private *dev_priv = dev->dev_private;
5978 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5979 uint32_t tmp;
5980
5981 tmp = I915_READ(HTOTAL(cpu_transcoder));
5982 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5983 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5984 tmp = I915_READ(HBLANK(cpu_transcoder));
5985 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5986 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5987 tmp = I915_READ(HSYNC(cpu_transcoder));
5988 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5989 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5990
5991 tmp = I915_READ(VTOTAL(cpu_transcoder));
5992 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5993 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5994 tmp = I915_READ(VBLANK(cpu_transcoder));
5995 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5996 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5997 tmp = I915_READ(VSYNC(cpu_transcoder));
5998 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5999 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6000
6001 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6002 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6003 pipe_config->adjusted_mode.crtc_vtotal += 1;
6004 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6005 }
6006
6007 tmp = I915_READ(PIPESRC(crtc->pipe));
6008 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6009 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6010
6011 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6012 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6013 }
6014
6015 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6016 struct intel_crtc_config *pipe_config)
6017 {
6018 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6019 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6020 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6021 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6022
6023 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6024 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6025 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6026 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6027
6028 mode->flags = pipe_config->adjusted_mode.flags;
6029
6030 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6031 mode->flags |= pipe_config->adjusted_mode.flags;
6032 }
6033
6034 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6035 {
6036 struct drm_device *dev = intel_crtc->base.dev;
6037 struct drm_i915_private *dev_priv = dev->dev_private;
6038 uint32_t pipeconf;
6039
6040 pipeconf = 0;
6041
6042 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
6043 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
6044 pipeconf |= PIPECONF_ENABLE;
6045
6046 if (intel_crtc->config.double_wide)
6047 pipeconf |= PIPECONF_DOUBLE_WIDE;
6048
6049 /* only g4x and later have fancy bpc/dither controls */
6050 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6051 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6052 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6053 pipeconf |= PIPECONF_DITHER_EN |
6054 PIPECONF_DITHER_TYPE_SP;
6055
6056 switch (intel_crtc->config.pipe_bpp) {
6057 case 18:
6058 pipeconf |= PIPECONF_6BPC;
6059 break;
6060 case 24:
6061 pipeconf |= PIPECONF_8BPC;
6062 break;
6063 case 30:
6064 pipeconf |= PIPECONF_10BPC;
6065 break;
6066 default:
6067 /* Case prevented by intel_choose_pipe_bpp_dither. */
6068 BUG();
6069 }
6070 }
6071
6072 if (HAS_PIPE_CXSR(dev)) {
6073 if (intel_crtc->lowfreq_avail) {
6074 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6075 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6076 } else {
6077 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6078 }
6079 }
6080
6081 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6082 if (INTEL_INFO(dev)->gen < 4 ||
6083 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6084 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6085 else
6086 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6087 } else
6088 pipeconf |= PIPECONF_PROGRESSIVE;
6089
6090 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6091 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6092
6093 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6094 POSTING_READ(PIPECONF(intel_crtc->pipe));
6095 }
6096
6097 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6098 int x, int y,
6099 struct drm_framebuffer *fb)
6100 {
6101 struct drm_device *dev = crtc->dev;
6102 struct drm_i915_private *dev_priv = dev->dev_private;
6103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6104 int refclk, num_connectors = 0;
6105 intel_clock_t clock, reduced_clock;
6106 bool ok, has_reduced_clock = false;
6107 bool is_lvds = false, is_dsi = false;
6108 struct intel_encoder *encoder;
6109 const intel_limit_t *limit;
6110
6111 for_each_encoder_on_crtc(dev, crtc, encoder) {
6112 switch (encoder->type) {
6113 case INTEL_OUTPUT_LVDS:
6114 is_lvds = true;
6115 break;
6116 case INTEL_OUTPUT_DSI:
6117 is_dsi = true;
6118 break;
6119 }
6120
6121 num_connectors++;
6122 }
6123
6124 if (is_dsi)
6125 return 0;
6126
6127 if (!intel_crtc->config.clock_set) {
6128 refclk = i9xx_get_refclk(crtc, num_connectors);
6129
6130 /*
6131 * Returns a set of divisors for the desired target clock with
6132 * the given refclk, or FALSE. The returned values represent
6133 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6134 * 2) / p1 / p2.
6135 */
6136 limit = intel_limit(crtc, refclk);
6137 ok = dev_priv->display.find_dpll(limit, crtc,
6138 intel_crtc->config.port_clock,
6139 refclk, NULL, &clock);
6140 if (!ok) {
6141 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6142 return -EINVAL;
6143 }
6144
6145 if (is_lvds && dev_priv->lvds_downclock_avail) {
6146 /*
6147 * Ensure we match the reduced clock's P to the target
6148 * clock. If the clocks don't match, we can't switch
6149 * the display clock by using the FP0/FP1. In such case
6150 * we will disable the LVDS downclock feature.
6151 */
6152 has_reduced_clock =
6153 dev_priv->display.find_dpll(limit, crtc,
6154 dev_priv->lvds_downclock,
6155 refclk, &clock,
6156 &reduced_clock);
6157 }
6158 /* Compat-code for transition, will disappear. */
6159 intel_crtc->config.dpll.n = clock.n;
6160 intel_crtc->config.dpll.m1 = clock.m1;
6161 intel_crtc->config.dpll.m2 = clock.m2;
6162 intel_crtc->config.dpll.p1 = clock.p1;
6163 intel_crtc->config.dpll.p2 = clock.p2;
6164 }
6165
6166 if (IS_GEN2(dev)) {
6167 i8xx_update_pll(intel_crtc,
6168 has_reduced_clock ? &reduced_clock : NULL,
6169 num_connectors);
6170 } else if (IS_CHERRYVIEW(dev)) {
6171 chv_update_pll(intel_crtc);
6172 } else if (IS_VALLEYVIEW(dev)) {
6173 vlv_update_pll(intel_crtc);
6174 } else {
6175 i9xx_update_pll(intel_crtc,
6176 has_reduced_clock ? &reduced_clock : NULL,
6177 num_connectors);
6178 }
6179
6180 return 0;
6181 }
6182
6183 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6184 struct intel_crtc_config *pipe_config)
6185 {
6186 struct drm_device *dev = crtc->base.dev;
6187 struct drm_i915_private *dev_priv = dev->dev_private;
6188 uint32_t tmp;
6189
6190 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6191 return;
6192
6193 tmp = I915_READ(PFIT_CONTROL);
6194 if (!(tmp & PFIT_ENABLE))
6195 return;
6196
6197 /* Check whether the pfit is attached to our pipe. */
6198 if (INTEL_INFO(dev)->gen < 4) {
6199 if (crtc->pipe != PIPE_B)
6200 return;
6201 } else {
6202 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6203 return;
6204 }
6205
6206 pipe_config->gmch_pfit.control = tmp;
6207 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6208 if (INTEL_INFO(dev)->gen < 5)
6209 pipe_config->gmch_pfit.lvds_border_bits =
6210 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6211 }
6212
6213 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6214 struct intel_crtc_config *pipe_config)
6215 {
6216 struct drm_device *dev = crtc->base.dev;
6217 struct drm_i915_private *dev_priv = dev->dev_private;
6218 int pipe = pipe_config->cpu_transcoder;
6219 intel_clock_t clock;
6220 u32 mdiv;
6221 int refclk = 100000;
6222
6223 /* In case of MIPI DPLL will not even be used */
6224 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6225 return;
6226
6227 mutex_lock(&dev_priv->dpio_lock);
6228 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6229 mutex_unlock(&dev_priv->dpio_lock);
6230
6231 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6232 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6233 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6234 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6235 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6236
6237 vlv_clock(refclk, &clock);
6238
6239 /* clock.dot is the fast clock */
6240 pipe_config->port_clock = clock.dot / 5;
6241 }
6242
6243 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6244 struct intel_plane_config *plane_config)
6245 {
6246 struct drm_device *dev = crtc->base.dev;
6247 struct drm_i915_private *dev_priv = dev->dev_private;
6248 u32 val, base, offset;
6249 int pipe = crtc->pipe, plane = crtc->plane;
6250 int fourcc, pixel_format;
6251 int aligned_height;
6252
6253 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6254 if (!crtc->base.primary->fb) {
6255 DRM_DEBUG_KMS("failed to alloc fb\n");
6256 return;
6257 }
6258
6259 val = I915_READ(DSPCNTR(plane));
6260
6261 if (INTEL_INFO(dev)->gen >= 4)
6262 if (val & DISPPLANE_TILED)
6263 plane_config->tiled = true;
6264
6265 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6266 fourcc = intel_format_to_fourcc(pixel_format);
6267 crtc->base.primary->fb->pixel_format = fourcc;
6268 crtc->base.primary->fb->bits_per_pixel =
6269 drm_format_plane_cpp(fourcc, 0) * 8;
6270
6271 if (INTEL_INFO(dev)->gen >= 4) {
6272 if (plane_config->tiled)
6273 offset = I915_READ(DSPTILEOFF(plane));
6274 else
6275 offset = I915_READ(DSPLINOFF(plane));
6276 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6277 } else {
6278 base = I915_READ(DSPADDR(plane));
6279 }
6280 plane_config->base = base;
6281
6282 val = I915_READ(PIPESRC(pipe));
6283 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6284 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6285
6286 val = I915_READ(DSPSTRIDE(pipe));
6287 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6288
6289 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6290 plane_config->tiled);
6291
6292 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6293 aligned_height);
6294
6295 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6296 pipe, plane, crtc->base.primary->fb->width,
6297 crtc->base.primary->fb->height,
6298 crtc->base.primary->fb->bits_per_pixel, base,
6299 crtc->base.primary->fb->pitches[0],
6300 plane_config->size);
6301
6302 }
6303
6304 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6305 struct intel_crtc_config *pipe_config)
6306 {
6307 struct drm_device *dev = crtc->base.dev;
6308 struct drm_i915_private *dev_priv = dev->dev_private;
6309 int pipe = pipe_config->cpu_transcoder;
6310 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6311 intel_clock_t clock;
6312 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6313 int refclk = 100000;
6314
6315 mutex_lock(&dev_priv->dpio_lock);
6316 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6317 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6318 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6319 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6320 mutex_unlock(&dev_priv->dpio_lock);
6321
6322 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6323 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6324 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6325 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6326 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6327
6328 chv_clock(refclk, &clock);
6329
6330 /* clock.dot is the fast clock */
6331 pipe_config->port_clock = clock.dot / 5;
6332 }
6333
6334 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6335 struct intel_crtc_config *pipe_config)
6336 {
6337 struct drm_device *dev = crtc->base.dev;
6338 struct drm_i915_private *dev_priv = dev->dev_private;
6339 uint32_t tmp;
6340
6341 if (!intel_display_power_enabled(dev_priv,
6342 POWER_DOMAIN_PIPE(crtc->pipe)))
6343 return false;
6344
6345 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6346 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6347
6348 tmp = I915_READ(PIPECONF(crtc->pipe));
6349 if (!(tmp & PIPECONF_ENABLE))
6350 return false;
6351
6352 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6353 switch (tmp & PIPECONF_BPC_MASK) {
6354 case PIPECONF_6BPC:
6355 pipe_config->pipe_bpp = 18;
6356 break;
6357 case PIPECONF_8BPC:
6358 pipe_config->pipe_bpp = 24;
6359 break;
6360 case PIPECONF_10BPC:
6361 pipe_config->pipe_bpp = 30;
6362 break;
6363 default:
6364 break;
6365 }
6366 }
6367
6368 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6369 pipe_config->limited_color_range = true;
6370
6371 if (INTEL_INFO(dev)->gen < 4)
6372 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6373
6374 intel_get_pipe_timings(crtc, pipe_config);
6375
6376 i9xx_get_pfit_config(crtc, pipe_config);
6377
6378 if (INTEL_INFO(dev)->gen >= 4) {
6379 tmp = I915_READ(DPLL_MD(crtc->pipe));
6380 pipe_config->pixel_multiplier =
6381 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6382 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6383 pipe_config->dpll_hw_state.dpll_md = tmp;
6384 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6385 tmp = I915_READ(DPLL(crtc->pipe));
6386 pipe_config->pixel_multiplier =
6387 ((tmp & SDVO_MULTIPLIER_MASK)
6388 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6389 } else {
6390 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6391 * port and will be fixed up in the encoder->get_config
6392 * function. */
6393 pipe_config->pixel_multiplier = 1;
6394 }
6395 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6396 if (!IS_VALLEYVIEW(dev)) {
6397 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6398 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6399 } else {
6400 /* Mask out read-only status bits. */
6401 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6402 DPLL_PORTC_READY_MASK |
6403 DPLL_PORTB_READY_MASK);
6404 }
6405
6406 if (IS_CHERRYVIEW(dev))
6407 chv_crtc_clock_get(crtc, pipe_config);
6408 else if (IS_VALLEYVIEW(dev))
6409 vlv_crtc_clock_get(crtc, pipe_config);
6410 else
6411 i9xx_crtc_clock_get(crtc, pipe_config);
6412
6413 return true;
6414 }
6415
6416 static void ironlake_init_pch_refclk(struct drm_device *dev)
6417 {
6418 struct drm_i915_private *dev_priv = dev->dev_private;
6419 struct intel_encoder *encoder;
6420 u32 val, final;
6421 bool has_lvds = false;
6422 bool has_cpu_edp = false;
6423 bool has_panel = false;
6424 bool has_ck505 = false;
6425 bool can_ssc = false;
6426
6427 /* We need to take the global config into account */
6428 for_each_intel_encoder(dev, encoder) {
6429 switch (encoder->type) {
6430 case INTEL_OUTPUT_LVDS:
6431 has_panel = true;
6432 has_lvds = true;
6433 break;
6434 case INTEL_OUTPUT_EDP:
6435 has_panel = true;
6436 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6437 has_cpu_edp = true;
6438 break;
6439 }
6440 }
6441
6442 if (HAS_PCH_IBX(dev)) {
6443 has_ck505 = dev_priv->vbt.display_clock_mode;
6444 can_ssc = has_ck505;
6445 } else {
6446 has_ck505 = false;
6447 can_ssc = true;
6448 }
6449
6450 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6451 has_panel, has_lvds, has_ck505);
6452
6453 /* Ironlake: try to setup display ref clock before DPLL
6454 * enabling. This is only under driver's control after
6455 * PCH B stepping, previous chipset stepping should be
6456 * ignoring this setting.
6457 */
6458 val = I915_READ(PCH_DREF_CONTROL);
6459
6460 /* As we must carefully and slowly disable/enable each source in turn,
6461 * compute the final state we want first and check if we need to
6462 * make any changes at all.
6463 */
6464 final = val;
6465 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6466 if (has_ck505)
6467 final |= DREF_NONSPREAD_CK505_ENABLE;
6468 else
6469 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6470
6471 final &= ~DREF_SSC_SOURCE_MASK;
6472 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6473 final &= ~DREF_SSC1_ENABLE;
6474
6475 if (has_panel) {
6476 final |= DREF_SSC_SOURCE_ENABLE;
6477
6478 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6479 final |= DREF_SSC1_ENABLE;
6480
6481 if (has_cpu_edp) {
6482 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6483 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6484 else
6485 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6486 } else
6487 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6488 } else {
6489 final |= DREF_SSC_SOURCE_DISABLE;
6490 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6491 }
6492
6493 if (final == val)
6494 return;
6495
6496 /* Always enable nonspread source */
6497 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6498
6499 if (has_ck505)
6500 val |= DREF_NONSPREAD_CK505_ENABLE;
6501 else
6502 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6503
6504 if (has_panel) {
6505 val &= ~DREF_SSC_SOURCE_MASK;
6506 val |= DREF_SSC_SOURCE_ENABLE;
6507
6508 /* SSC must be turned on before enabling the CPU output */
6509 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6510 DRM_DEBUG_KMS("Using SSC on panel\n");
6511 val |= DREF_SSC1_ENABLE;
6512 } else
6513 val &= ~DREF_SSC1_ENABLE;
6514
6515 /* Get SSC going before enabling the outputs */
6516 I915_WRITE(PCH_DREF_CONTROL, val);
6517 POSTING_READ(PCH_DREF_CONTROL);
6518 udelay(200);
6519
6520 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6521
6522 /* Enable CPU source on CPU attached eDP */
6523 if (has_cpu_edp) {
6524 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6525 DRM_DEBUG_KMS("Using SSC on eDP\n");
6526 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6527 } else
6528 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6529 } else
6530 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6531
6532 I915_WRITE(PCH_DREF_CONTROL, val);
6533 POSTING_READ(PCH_DREF_CONTROL);
6534 udelay(200);
6535 } else {
6536 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6537
6538 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6539
6540 /* Turn off CPU output */
6541 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6542
6543 I915_WRITE(PCH_DREF_CONTROL, val);
6544 POSTING_READ(PCH_DREF_CONTROL);
6545 udelay(200);
6546
6547 /* Turn off the SSC source */
6548 val &= ~DREF_SSC_SOURCE_MASK;
6549 val |= DREF_SSC_SOURCE_DISABLE;
6550
6551 /* Turn off SSC1 */
6552 val &= ~DREF_SSC1_ENABLE;
6553
6554 I915_WRITE(PCH_DREF_CONTROL, val);
6555 POSTING_READ(PCH_DREF_CONTROL);
6556 udelay(200);
6557 }
6558
6559 BUG_ON(val != final);
6560 }
6561
6562 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6563 {
6564 uint32_t tmp;
6565
6566 tmp = I915_READ(SOUTH_CHICKEN2);
6567 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6568 I915_WRITE(SOUTH_CHICKEN2, tmp);
6569
6570 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6571 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6572 DRM_ERROR("FDI mPHY reset assert timeout\n");
6573
6574 tmp = I915_READ(SOUTH_CHICKEN2);
6575 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6576 I915_WRITE(SOUTH_CHICKEN2, tmp);
6577
6578 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6579 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6580 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6581 }
6582
6583 /* WaMPhyProgramming:hsw */
6584 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6585 {
6586 uint32_t tmp;
6587
6588 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6589 tmp &= ~(0xFF << 24);
6590 tmp |= (0x12 << 24);
6591 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6592
6593 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6594 tmp |= (1 << 11);
6595 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6596
6597 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6598 tmp |= (1 << 11);
6599 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6600
6601 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6602 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6603 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6604
6605 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6606 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6607 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6608
6609 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6610 tmp &= ~(7 << 13);
6611 tmp |= (5 << 13);
6612 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6613
6614 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6615 tmp &= ~(7 << 13);
6616 tmp |= (5 << 13);
6617 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6618
6619 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6620 tmp &= ~0xFF;
6621 tmp |= 0x1C;
6622 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6623
6624 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6625 tmp &= ~0xFF;
6626 tmp |= 0x1C;
6627 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6628
6629 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6630 tmp &= ~(0xFF << 16);
6631 tmp |= (0x1C << 16);
6632 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6633
6634 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6635 tmp &= ~(0xFF << 16);
6636 tmp |= (0x1C << 16);
6637 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6638
6639 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6640 tmp |= (1 << 27);
6641 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6642
6643 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6644 tmp |= (1 << 27);
6645 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6646
6647 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6648 tmp &= ~(0xF << 28);
6649 tmp |= (4 << 28);
6650 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6651
6652 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6653 tmp &= ~(0xF << 28);
6654 tmp |= (4 << 28);
6655 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6656 }
6657
6658 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6659 * Programming" based on the parameters passed:
6660 * - Sequence to enable CLKOUT_DP
6661 * - Sequence to enable CLKOUT_DP without spread
6662 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6663 */
6664 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6665 bool with_fdi)
6666 {
6667 struct drm_i915_private *dev_priv = dev->dev_private;
6668 uint32_t reg, tmp;
6669
6670 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6671 with_spread = true;
6672 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6673 with_fdi, "LP PCH doesn't have FDI\n"))
6674 with_fdi = false;
6675
6676 mutex_lock(&dev_priv->dpio_lock);
6677
6678 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6679 tmp &= ~SBI_SSCCTL_DISABLE;
6680 tmp |= SBI_SSCCTL_PATHALT;
6681 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6682
6683 udelay(24);
6684
6685 if (with_spread) {
6686 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6687 tmp &= ~SBI_SSCCTL_PATHALT;
6688 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6689
6690 if (with_fdi) {
6691 lpt_reset_fdi_mphy(dev_priv);
6692 lpt_program_fdi_mphy(dev_priv);
6693 }
6694 }
6695
6696 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6697 SBI_GEN0 : SBI_DBUFF0;
6698 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6699 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6700 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6701
6702 mutex_unlock(&dev_priv->dpio_lock);
6703 }
6704
6705 /* Sequence to disable CLKOUT_DP */
6706 static void lpt_disable_clkout_dp(struct drm_device *dev)
6707 {
6708 struct drm_i915_private *dev_priv = dev->dev_private;
6709 uint32_t reg, tmp;
6710
6711 mutex_lock(&dev_priv->dpio_lock);
6712
6713 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6714 SBI_GEN0 : SBI_DBUFF0;
6715 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6716 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6717 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6718
6719 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6720 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6721 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6722 tmp |= SBI_SSCCTL_PATHALT;
6723 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6724 udelay(32);
6725 }
6726 tmp |= SBI_SSCCTL_DISABLE;
6727 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6728 }
6729
6730 mutex_unlock(&dev_priv->dpio_lock);
6731 }
6732
6733 static void lpt_init_pch_refclk(struct drm_device *dev)
6734 {
6735 struct intel_encoder *encoder;
6736 bool has_vga = false;
6737
6738 for_each_intel_encoder(dev, encoder) {
6739 switch (encoder->type) {
6740 case INTEL_OUTPUT_ANALOG:
6741 has_vga = true;
6742 break;
6743 }
6744 }
6745
6746 if (has_vga)
6747 lpt_enable_clkout_dp(dev, true, true);
6748 else
6749 lpt_disable_clkout_dp(dev);
6750 }
6751
6752 /*
6753 * Initialize reference clocks when the driver loads
6754 */
6755 void intel_init_pch_refclk(struct drm_device *dev)
6756 {
6757 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6758 ironlake_init_pch_refclk(dev);
6759 else if (HAS_PCH_LPT(dev))
6760 lpt_init_pch_refclk(dev);
6761 }
6762
6763 static int ironlake_get_refclk(struct drm_crtc *crtc)
6764 {
6765 struct drm_device *dev = crtc->dev;
6766 struct drm_i915_private *dev_priv = dev->dev_private;
6767 struct intel_encoder *encoder;
6768 int num_connectors = 0;
6769 bool is_lvds = false;
6770
6771 for_each_encoder_on_crtc(dev, crtc, encoder) {
6772 switch (encoder->type) {
6773 case INTEL_OUTPUT_LVDS:
6774 is_lvds = true;
6775 break;
6776 }
6777 num_connectors++;
6778 }
6779
6780 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6781 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6782 dev_priv->vbt.lvds_ssc_freq);
6783 return dev_priv->vbt.lvds_ssc_freq;
6784 }
6785
6786 return 120000;
6787 }
6788
6789 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6790 {
6791 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6793 int pipe = intel_crtc->pipe;
6794 uint32_t val;
6795
6796 val = 0;
6797
6798 switch (intel_crtc->config.pipe_bpp) {
6799 case 18:
6800 val |= PIPECONF_6BPC;
6801 break;
6802 case 24:
6803 val |= PIPECONF_8BPC;
6804 break;
6805 case 30:
6806 val |= PIPECONF_10BPC;
6807 break;
6808 case 36:
6809 val |= PIPECONF_12BPC;
6810 break;
6811 default:
6812 /* Case prevented by intel_choose_pipe_bpp_dither. */
6813 BUG();
6814 }
6815
6816 if (intel_crtc->config.dither)
6817 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6818
6819 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6820 val |= PIPECONF_INTERLACED_ILK;
6821 else
6822 val |= PIPECONF_PROGRESSIVE;
6823
6824 if (intel_crtc->config.limited_color_range)
6825 val |= PIPECONF_COLOR_RANGE_SELECT;
6826
6827 I915_WRITE(PIPECONF(pipe), val);
6828 POSTING_READ(PIPECONF(pipe));
6829 }
6830
6831 /*
6832 * Set up the pipe CSC unit.
6833 *
6834 * Currently only full range RGB to limited range RGB conversion
6835 * is supported, but eventually this should handle various
6836 * RGB<->YCbCr scenarios as well.
6837 */
6838 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6839 {
6840 struct drm_device *dev = crtc->dev;
6841 struct drm_i915_private *dev_priv = dev->dev_private;
6842 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6843 int pipe = intel_crtc->pipe;
6844 uint16_t coeff = 0x7800; /* 1.0 */
6845
6846 /*
6847 * TODO: Check what kind of values actually come out of the pipe
6848 * with these coeff/postoff values and adjust to get the best
6849 * accuracy. Perhaps we even need to take the bpc value into
6850 * consideration.
6851 */
6852
6853 if (intel_crtc->config.limited_color_range)
6854 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6855
6856 /*
6857 * GY/GU and RY/RU should be the other way around according
6858 * to BSpec, but reality doesn't agree. Just set them up in
6859 * a way that results in the correct picture.
6860 */
6861 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6862 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6863
6864 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6865 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6866
6867 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6868 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6869
6870 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6871 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6872 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6873
6874 if (INTEL_INFO(dev)->gen > 6) {
6875 uint16_t postoff = 0;
6876
6877 if (intel_crtc->config.limited_color_range)
6878 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6879
6880 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6881 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6882 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6883
6884 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6885 } else {
6886 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6887
6888 if (intel_crtc->config.limited_color_range)
6889 mode |= CSC_BLACK_SCREEN_OFFSET;
6890
6891 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6892 }
6893 }
6894
6895 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6896 {
6897 struct drm_device *dev = crtc->dev;
6898 struct drm_i915_private *dev_priv = dev->dev_private;
6899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6900 enum pipe pipe = intel_crtc->pipe;
6901 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6902 uint32_t val;
6903
6904 val = 0;
6905
6906 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6907 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6908
6909 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6910 val |= PIPECONF_INTERLACED_ILK;
6911 else
6912 val |= PIPECONF_PROGRESSIVE;
6913
6914 I915_WRITE(PIPECONF(cpu_transcoder), val);
6915 POSTING_READ(PIPECONF(cpu_transcoder));
6916
6917 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6918 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6919
6920 if (IS_BROADWELL(dev)) {
6921 val = 0;
6922
6923 switch (intel_crtc->config.pipe_bpp) {
6924 case 18:
6925 val |= PIPEMISC_DITHER_6_BPC;
6926 break;
6927 case 24:
6928 val |= PIPEMISC_DITHER_8_BPC;
6929 break;
6930 case 30:
6931 val |= PIPEMISC_DITHER_10_BPC;
6932 break;
6933 case 36:
6934 val |= PIPEMISC_DITHER_12_BPC;
6935 break;
6936 default:
6937 /* Case prevented by pipe_config_set_bpp. */
6938 BUG();
6939 }
6940
6941 if (intel_crtc->config.dither)
6942 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6943
6944 I915_WRITE(PIPEMISC(pipe), val);
6945 }
6946 }
6947
6948 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6949 intel_clock_t *clock,
6950 bool *has_reduced_clock,
6951 intel_clock_t *reduced_clock)
6952 {
6953 struct drm_device *dev = crtc->dev;
6954 struct drm_i915_private *dev_priv = dev->dev_private;
6955 struct intel_encoder *intel_encoder;
6956 int refclk;
6957 const intel_limit_t *limit;
6958 bool ret, is_lvds = false;
6959
6960 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6961 switch (intel_encoder->type) {
6962 case INTEL_OUTPUT_LVDS:
6963 is_lvds = true;
6964 break;
6965 }
6966 }
6967
6968 refclk = ironlake_get_refclk(crtc);
6969
6970 /*
6971 * Returns a set of divisors for the desired target clock with the given
6972 * refclk, or FALSE. The returned values represent the clock equation:
6973 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6974 */
6975 limit = intel_limit(crtc, refclk);
6976 ret = dev_priv->display.find_dpll(limit, crtc,
6977 to_intel_crtc(crtc)->config.port_clock,
6978 refclk, NULL, clock);
6979 if (!ret)
6980 return false;
6981
6982 if (is_lvds && dev_priv->lvds_downclock_avail) {
6983 /*
6984 * Ensure we match the reduced clock's P to the target clock.
6985 * If the clocks don't match, we can't switch the display clock
6986 * by using the FP0/FP1. In such case we will disable the LVDS
6987 * downclock feature.
6988 */
6989 *has_reduced_clock =
6990 dev_priv->display.find_dpll(limit, crtc,
6991 dev_priv->lvds_downclock,
6992 refclk, clock,
6993 reduced_clock);
6994 }
6995
6996 return true;
6997 }
6998
6999 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7000 {
7001 /*
7002 * Account for spread spectrum to avoid
7003 * oversubscribing the link. Max center spread
7004 * is 2.5%; use 5% for safety's sake.
7005 */
7006 u32 bps = target_clock * bpp * 21 / 20;
7007 return DIV_ROUND_UP(bps, link_bw * 8);
7008 }
7009
7010 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7011 {
7012 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7013 }
7014
7015 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7016 u32 *fp,
7017 intel_clock_t *reduced_clock, u32 *fp2)
7018 {
7019 struct drm_crtc *crtc = &intel_crtc->base;
7020 struct drm_device *dev = crtc->dev;
7021 struct drm_i915_private *dev_priv = dev->dev_private;
7022 struct intel_encoder *intel_encoder;
7023 uint32_t dpll;
7024 int factor, num_connectors = 0;
7025 bool is_lvds = false, is_sdvo = false;
7026
7027 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7028 switch (intel_encoder->type) {
7029 case INTEL_OUTPUT_LVDS:
7030 is_lvds = true;
7031 break;
7032 case INTEL_OUTPUT_SDVO:
7033 case INTEL_OUTPUT_HDMI:
7034 is_sdvo = true;
7035 break;
7036 }
7037
7038 num_connectors++;
7039 }
7040
7041 /* Enable autotuning of the PLL clock (if permissible) */
7042 factor = 21;
7043 if (is_lvds) {
7044 if ((intel_panel_use_ssc(dev_priv) &&
7045 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7046 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7047 factor = 25;
7048 } else if (intel_crtc->config.sdvo_tv_clock)
7049 factor = 20;
7050
7051 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7052 *fp |= FP_CB_TUNE;
7053
7054 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7055 *fp2 |= FP_CB_TUNE;
7056
7057 dpll = 0;
7058
7059 if (is_lvds)
7060 dpll |= DPLLB_MODE_LVDS;
7061 else
7062 dpll |= DPLLB_MODE_DAC_SERIAL;
7063
7064 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7065 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7066
7067 if (is_sdvo)
7068 dpll |= DPLL_SDVO_HIGH_SPEED;
7069 if (intel_crtc->config.has_dp_encoder)
7070 dpll |= DPLL_SDVO_HIGH_SPEED;
7071
7072 /* compute bitmask from p1 value */
7073 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7074 /* also FPA1 */
7075 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7076
7077 switch (intel_crtc->config.dpll.p2) {
7078 case 5:
7079 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7080 break;
7081 case 7:
7082 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7083 break;
7084 case 10:
7085 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7086 break;
7087 case 14:
7088 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7089 break;
7090 }
7091
7092 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7093 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7094 else
7095 dpll |= PLL_REF_INPUT_DREFCLK;
7096
7097 return dpll | DPLL_VCO_ENABLE;
7098 }
7099
7100 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7101 int x, int y,
7102 struct drm_framebuffer *fb)
7103 {
7104 struct drm_device *dev = crtc->dev;
7105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7106 int num_connectors = 0;
7107 intel_clock_t clock, reduced_clock;
7108 u32 dpll = 0, fp = 0, fp2 = 0;
7109 bool ok, has_reduced_clock = false;
7110 bool is_lvds = false;
7111 struct intel_encoder *encoder;
7112 struct intel_shared_dpll *pll;
7113
7114 for_each_encoder_on_crtc(dev, crtc, encoder) {
7115 switch (encoder->type) {
7116 case INTEL_OUTPUT_LVDS:
7117 is_lvds = true;
7118 break;
7119 }
7120
7121 num_connectors++;
7122 }
7123
7124 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7125 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7126
7127 ok = ironlake_compute_clocks(crtc, &clock,
7128 &has_reduced_clock, &reduced_clock);
7129 if (!ok && !intel_crtc->config.clock_set) {
7130 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7131 return -EINVAL;
7132 }
7133 /* Compat-code for transition, will disappear. */
7134 if (!intel_crtc->config.clock_set) {
7135 intel_crtc->config.dpll.n = clock.n;
7136 intel_crtc->config.dpll.m1 = clock.m1;
7137 intel_crtc->config.dpll.m2 = clock.m2;
7138 intel_crtc->config.dpll.p1 = clock.p1;
7139 intel_crtc->config.dpll.p2 = clock.p2;
7140 }
7141
7142 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7143 if (intel_crtc->config.has_pch_encoder) {
7144 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7145 if (has_reduced_clock)
7146 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7147
7148 dpll = ironlake_compute_dpll(intel_crtc,
7149 &fp, &reduced_clock,
7150 has_reduced_clock ? &fp2 : NULL);
7151
7152 intel_crtc->config.dpll_hw_state.dpll = dpll;
7153 intel_crtc->config.dpll_hw_state.fp0 = fp;
7154 if (has_reduced_clock)
7155 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7156 else
7157 intel_crtc->config.dpll_hw_state.fp1 = fp;
7158
7159 pll = intel_get_shared_dpll(intel_crtc);
7160 if (pll == NULL) {
7161 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7162 pipe_name(intel_crtc->pipe));
7163 return -EINVAL;
7164 }
7165 } else
7166 intel_put_shared_dpll(intel_crtc);
7167
7168 if (is_lvds && has_reduced_clock && i915.powersave)
7169 intel_crtc->lowfreq_avail = true;
7170 else
7171 intel_crtc->lowfreq_avail = false;
7172
7173 return 0;
7174 }
7175
7176 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7177 struct intel_link_m_n *m_n)
7178 {
7179 struct drm_device *dev = crtc->base.dev;
7180 struct drm_i915_private *dev_priv = dev->dev_private;
7181 enum pipe pipe = crtc->pipe;
7182
7183 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7184 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7185 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7186 & ~TU_SIZE_MASK;
7187 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7188 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7189 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7190 }
7191
7192 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7193 enum transcoder transcoder,
7194 struct intel_link_m_n *m_n,
7195 struct intel_link_m_n *m2_n2)
7196 {
7197 struct drm_device *dev = crtc->base.dev;
7198 struct drm_i915_private *dev_priv = dev->dev_private;
7199 enum pipe pipe = crtc->pipe;
7200
7201 if (INTEL_INFO(dev)->gen >= 5) {
7202 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7203 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7204 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7205 & ~TU_SIZE_MASK;
7206 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7207 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7208 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7209 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7210 * gen < 8) and if DRRS is supported (to make sure the
7211 * registers are not unnecessarily read).
7212 */
7213 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7214 crtc->config.has_drrs) {
7215 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7216 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7217 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7218 & ~TU_SIZE_MASK;
7219 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7220 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7221 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7222 }
7223 } else {
7224 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7225 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7226 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7227 & ~TU_SIZE_MASK;
7228 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7229 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7230 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7231 }
7232 }
7233
7234 void intel_dp_get_m_n(struct intel_crtc *crtc,
7235 struct intel_crtc_config *pipe_config)
7236 {
7237 if (crtc->config.has_pch_encoder)
7238 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7239 else
7240 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7241 &pipe_config->dp_m_n,
7242 &pipe_config->dp_m2_n2);
7243 }
7244
7245 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7246 struct intel_crtc_config *pipe_config)
7247 {
7248 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7249 &pipe_config->fdi_m_n, NULL);
7250 }
7251
7252 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7253 struct intel_crtc_config *pipe_config)
7254 {
7255 struct drm_device *dev = crtc->base.dev;
7256 struct drm_i915_private *dev_priv = dev->dev_private;
7257 uint32_t tmp;
7258
7259 tmp = I915_READ(PF_CTL(crtc->pipe));
7260
7261 if (tmp & PF_ENABLE) {
7262 pipe_config->pch_pfit.enabled = true;
7263 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7264 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7265
7266 /* We currently do not free assignements of panel fitters on
7267 * ivb/hsw (since we don't use the higher upscaling modes which
7268 * differentiates them) so just WARN about this case for now. */
7269 if (IS_GEN7(dev)) {
7270 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7271 PF_PIPE_SEL_IVB(crtc->pipe));
7272 }
7273 }
7274 }
7275
7276 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7277 struct intel_plane_config *plane_config)
7278 {
7279 struct drm_device *dev = crtc->base.dev;
7280 struct drm_i915_private *dev_priv = dev->dev_private;
7281 u32 val, base, offset;
7282 int pipe = crtc->pipe, plane = crtc->plane;
7283 int fourcc, pixel_format;
7284 int aligned_height;
7285
7286 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7287 if (!crtc->base.primary->fb) {
7288 DRM_DEBUG_KMS("failed to alloc fb\n");
7289 return;
7290 }
7291
7292 val = I915_READ(DSPCNTR(plane));
7293
7294 if (INTEL_INFO(dev)->gen >= 4)
7295 if (val & DISPPLANE_TILED)
7296 plane_config->tiled = true;
7297
7298 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7299 fourcc = intel_format_to_fourcc(pixel_format);
7300 crtc->base.primary->fb->pixel_format = fourcc;
7301 crtc->base.primary->fb->bits_per_pixel =
7302 drm_format_plane_cpp(fourcc, 0) * 8;
7303
7304 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7305 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7306 offset = I915_READ(DSPOFFSET(plane));
7307 } else {
7308 if (plane_config->tiled)
7309 offset = I915_READ(DSPTILEOFF(plane));
7310 else
7311 offset = I915_READ(DSPLINOFF(plane));
7312 }
7313 plane_config->base = base;
7314
7315 val = I915_READ(PIPESRC(pipe));
7316 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7317 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7318
7319 val = I915_READ(DSPSTRIDE(pipe));
7320 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7321
7322 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7323 plane_config->tiled);
7324
7325 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7326 aligned_height);
7327
7328 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7329 pipe, plane, crtc->base.primary->fb->width,
7330 crtc->base.primary->fb->height,
7331 crtc->base.primary->fb->bits_per_pixel, base,
7332 crtc->base.primary->fb->pitches[0],
7333 plane_config->size);
7334 }
7335
7336 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7337 struct intel_crtc_config *pipe_config)
7338 {
7339 struct drm_device *dev = crtc->base.dev;
7340 struct drm_i915_private *dev_priv = dev->dev_private;
7341 uint32_t tmp;
7342
7343 if (!intel_display_power_enabled(dev_priv,
7344 POWER_DOMAIN_PIPE(crtc->pipe)))
7345 return false;
7346
7347 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7348 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7349
7350 tmp = I915_READ(PIPECONF(crtc->pipe));
7351 if (!(tmp & PIPECONF_ENABLE))
7352 return false;
7353
7354 switch (tmp & PIPECONF_BPC_MASK) {
7355 case PIPECONF_6BPC:
7356 pipe_config->pipe_bpp = 18;
7357 break;
7358 case PIPECONF_8BPC:
7359 pipe_config->pipe_bpp = 24;
7360 break;
7361 case PIPECONF_10BPC:
7362 pipe_config->pipe_bpp = 30;
7363 break;
7364 case PIPECONF_12BPC:
7365 pipe_config->pipe_bpp = 36;
7366 break;
7367 default:
7368 break;
7369 }
7370
7371 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7372 pipe_config->limited_color_range = true;
7373
7374 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7375 struct intel_shared_dpll *pll;
7376
7377 pipe_config->has_pch_encoder = true;
7378
7379 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7380 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7381 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7382
7383 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7384
7385 if (HAS_PCH_IBX(dev_priv->dev)) {
7386 pipe_config->shared_dpll =
7387 (enum intel_dpll_id) crtc->pipe;
7388 } else {
7389 tmp = I915_READ(PCH_DPLL_SEL);
7390 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7391 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7392 else
7393 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7394 }
7395
7396 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7397
7398 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7399 &pipe_config->dpll_hw_state));
7400
7401 tmp = pipe_config->dpll_hw_state.dpll;
7402 pipe_config->pixel_multiplier =
7403 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7404 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7405
7406 ironlake_pch_clock_get(crtc, pipe_config);
7407 } else {
7408 pipe_config->pixel_multiplier = 1;
7409 }
7410
7411 intel_get_pipe_timings(crtc, pipe_config);
7412
7413 ironlake_get_pfit_config(crtc, pipe_config);
7414
7415 return true;
7416 }
7417
7418 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7419 {
7420 struct drm_device *dev = dev_priv->dev;
7421 struct intel_crtc *crtc;
7422
7423 for_each_intel_crtc(dev, crtc)
7424 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7425 pipe_name(crtc->pipe));
7426
7427 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7428 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7429 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7430 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7431 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7432 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7433 "CPU PWM1 enabled\n");
7434 if (IS_HASWELL(dev))
7435 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7436 "CPU PWM2 enabled\n");
7437 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7438 "PCH PWM1 enabled\n");
7439 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7440 "Utility pin enabled\n");
7441 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7442
7443 /*
7444 * In theory we can still leave IRQs enabled, as long as only the HPD
7445 * interrupts remain enabled. We used to check for that, but since it's
7446 * gen-specific and since we only disable LCPLL after we fully disable
7447 * the interrupts, the check below should be enough.
7448 */
7449 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7450 }
7451
7452 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7453 {
7454 struct drm_device *dev = dev_priv->dev;
7455
7456 if (IS_HASWELL(dev))
7457 return I915_READ(D_COMP_HSW);
7458 else
7459 return I915_READ(D_COMP_BDW);
7460 }
7461
7462 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7463 {
7464 struct drm_device *dev = dev_priv->dev;
7465
7466 if (IS_HASWELL(dev)) {
7467 mutex_lock(&dev_priv->rps.hw_lock);
7468 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7469 val))
7470 DRM_ERROR("Failed to write to D_COMP\n");
7471 mutex_unlock(&dev_priv->rps.hw_lock);
7472 } else {
7473 I915_WRITE(D_COMP_BDW, val);
7474 POSTING_READ(D_COMP_BDW);
7475 }
7476 }
7477
7478 /*
7479 * This function implements pieces of two sequences from BSpec:
7480 * - Sequence for display software to disable LCPLL
7481 * - Sequence for display software to allow package C8+
7482 * The steps implemented here are just the steps that actually touch the LCPLL
7483 * register. Callers should take care of disabling all the display engine
7484 * functions, doing the mode unset, fixing interrupts, etc.
7485 */
7486 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7487 bool switch_to_fclk, bool allow_power_down)
7488 {
7489 uint32_t val;
7490
7491 assert_can_disable_lcpll(dev_priv);
7492
7493 val = I915_READ(LCPLL_CTL);
7494
7495 if (switch_to_fclk) {
7496 val |= LCPLL_CD_SOURCE_FCLK;
7497 I915_WRITE(LCPLL_CTL, val);
7498
7499 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7500 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7501 DRM_ERROR("Switching to FCLK failed\n");
7502
7503 val = I915_READ(LCPLL_CTL);
7504 }
7505
7506 val |= LCPLL_PLL_DISABLE;
7507 I915_WRITE(LCPLL_CTL, val);
7508 POSTING_READ(LCPLL_CTL);
7509
7510 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7511 DRM_ERROR("LCPLL still locked\n");
7512
7513 val = hsw_read_dcomp(dev_priv);
7514 val |= D_COMP_COMP_DISABLE;
7515 hsw_write_dcomp(dev_priv, val);
7516 ndelay(100);
7517
7518 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7519 1))
7520 DRM_ERROR("D_COMP RCOMP still in progress\n");
7521
7522 if (allow_power_down) {
7523 val = I915_READ(LCPLL_CTL);
7524 val |= LCPLL_POWER_DOWN_ALLOW;
7525 I915_WRITE(LCPLL_CTL, val);
7526 POSTING_READ(LCPLL_CTL);
7527 }
7528 }
7529
7530 /*
7531 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7532 * source.
7533 */
7534 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7535 {
7536 uint32_t val;
7537 unsigned long irqflags;
7538
7539 val = I915_READ(LCPLL_CTL);
7540
7541 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7542 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7543 return;
7544
7545 /*
7546 * Make sure we're not on PC8 state before disabling PC8, otherwise
7547 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7548 *
7549 * The other problem is that hsw_restore_lcpll() is called as part of
7550 * the runtime PM resume sequence, so we can't just call
7551 * gen6_gt_force_wake_get() because that function calls
7552 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7553 * while we are on the resume sequence. So to solve this problem we have
7554 * to call special forcewake code that doesn't touch runtime PM and
7555 * doesn't enable the forcewake delayed work.
7556 */
7557 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7558 if (dev_priv->uncore.forcewake_count++ == 0)
7559 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7560 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7561
7562 if (val & LCPLL_POWER_DOWN_ALLOW) {
7563 val &= ~LCPLL_POWER_DOWN_ALLOW;
7564 I915_WRITE(LCPLL_CTL, val);
7565 POSTING_READ(LCPLL_CTL);
7566 }
7567
7568 val = hsw_read_dcomp(dev_priv);
7569 val |= D_COMP_COMP_FORCE;
7570 val &= ~D_COMP_COMP_DISABLE;
7571 hsw_write_dcomp(dev_priv, val);
7572
7573 val = I915_READ(LCPLL_CTL);
7574 val &= ~LCPLL_PLL_DISABLE;
7575 I915_WRITE(LCPLL_CTL, val);
7576
7577 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7578 DRM_ERROR("LCPLL not locked yet\n");
7579
7580 if (val & LCPLL_CD_SOURCE_FCLK) {
7581 val = I915_READ(LCPLL_CTL);
7582 val &= ~LCPLL_CD_SOURCE_FCLK;
7583 I915_WRITE(LCPLL_CTL, val);
7584
7585 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7586 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7587 DRM_ERROR("Switching back to LCPLL failed\n");
7588 }
7589
7590 /* See the big comment above. */
7591 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7592 if (--dev_priv->uncore.forcewake_count == 0)
7593 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7594 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7595 }
7596
7597 /*
7598 * Package states C8 and deeper are really deep PC states that can only be
7599 * reached when all the devices on the system allow it, so even if the graphics
7600 * device allows PC8+, it doesn't mean the system will actually get to these
7601 * states. Our driver only allows PC8+ when going into runtime PM.
7602 *
7603 * The requirements for PC8+ are that all the outputs are disabled, the power
7604 * well is disabled and most interrupts are disabled, and these are also
7605 * requirements for runtime PM. When these conditions are met, we manually do
7606 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7607 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7608 * hang the machine.
7609 *
7610 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7611 * the state of some registers, so when we come back from PC8+ we need to
7612 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7613 * need to take care of the registers kept by RC6. Notice that this happens even
7614 * if we don't put the device in PCI D3 state (which is what currently happens
7615 * because of the runtime PM support).
7616 *
7617 * For more, read "Display Sequences for Package C8" on the hardware
7618 * documentation.
7619 */
7620 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7621 {
7622 struct drm_device *dev = dev_priv->dev;
7623 uint32_t val;
7624
7625 DRM_DEBUG_KMS("Enabling package C8+\n");
7626
7627 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7628 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7629 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7630 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7631 }
7632
7633 lpt_disable_clkout_dp(dev);
7634 hsw_disable_lcpll(dev_priv, true, true);
7635 }
7636
7637 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7638 {
7639 struct drm_device *dev = dev_priv->dev;
7640 uint32_t val;
7641
7642 DRM_DEBUG_KMS("Disabling package C8+\n");
7643
7644 hsw_restore_lcpll(dev_priv);
7645 lpt_init_pch_refclk(dev);
7646
7647 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7648 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7649 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7650 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7651 }
7652
7653 intel_prepare_ddi(dev);
7654 }
7655
7656 static void snb_modeset_global_resources(struct drm_device *dev)
7657 {
7658 modeset_update_crtc_power_domains(dev);
7659 }
7660
7661 static void haswell_modeset_global_resources(struct drm_device *dev)
7662 {
7663 modeset_update_crtc_power_domains(dev);
7664 }
7665
7666 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7667 int x, int y,
7668 struct drm_framebuffer *fb)
7669 {
7670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7671
7672 if (!intel_ddi_pll_select(intel_crtc))
7673 return -EINVAL;
7674
7675 intel_crtc->lowfreq_avail = false;
7676
7677 return 0;
7678 }
7679
7680 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7681 enum port port,
7682 struct intel_crtc_config *pipe_config)
7683 {
7684 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7685
7686 switch (pipe_config->ddi_pll_sel) {
7687 case PORT_CLK_SEL_WRPLL1:
7688 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7689 break;
7690 case PORT_CLK_SEL_WRPLL2:
7691 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7692 break;
7693 }
7694 }
7695
7696 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7697 struct intel_crtc_config *pipe_config)
7698 {
7699 struct drm_device *dev = crtc->base.dev;
7700 struct drm_i915_private *dev_priv = dev->dev_private;
7701 struct intel_shared_dpll *pll;
7702 enum port port;
7703 uint32_t tmp;
7704
7705 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7706
7707 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7708
7709 haswell_get_ddi_pll(dev_priv, port, pipe_config);
7710
7711 if (pipe_config->shared_dpll >= 0) {
7712 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7713
7714 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7715 &pipe_config->dpll_hw_state));
7716 }
7717
7718 /*
7719 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7720 * DDI E. So just check whether this pipe is wired to DDI E and whether
7721 * the PCH transcoder is on.
7722 */
7723 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7724 pipe_config->has_pch_encoder = true;
7725
7726 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7727 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7728 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7729
7730 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7731 }
7732 }
7733
7734 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7735 struct intel_crtc_config *pipe_config)
7736 {
7737 struct drm_device *dev = crtc->base.dev;
7738 struct drm_i915_private *dev_priv = dev->dev_private;
7739 enum intel_display_power_domain pfit_domain;
7740 uint32_t tmp;
7741
7742 if (!intel_display_power_enabled(dev_priv,
7743 POWER_DOMAIN_PIPE(crtc->pipe)))
7744 return false;
7745
7746 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7747 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7748
7749 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7750 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7751 enum pipe trans_edp_pipe;
7752 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7753 default:
7754 WARN(1, "unknown pipe linked to edp transcoder\n");
7755 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7756 case TRANS_DDI_EDP_INPUT_A_ON:
7757 trans_edp_pipe = PIPE_A;
7758 break;
7759 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7760 trans_edp_pipe = PIPE_B;
7761 break;
7762 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7763 trans_edp_pipe = PIPE_C;
7764 break;
7765 }
7766
7767 if (trans_edp_pipe == crtc->pipe)
7768 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7769 }
7770
7771 if (!intel_display_power_enabled(dev_priv,
7772 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7773 return false;
7774
7775 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7776 if (!(tmp & PIPECONF_ENABLE))
7777 return false;
7778
7779 haswell_get_ddi_port_state(crtc, pipe_config);
7780
7781 intel_get_pipe_timings(crtc, pipe_config);
7782
7783 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7784 if (intel_display_power_enabled(dev_priv, pfit_domain))
7785 ironlake_get_pfit_config(crtc, pipe_config);
7786
7787 if (IS_HASWELL(dev))
7788 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7789 (I915_READ(IPS_CTL) & IPS_ENABLE);
7790
7791 pipe_config->pixel_multiplier = 1;
7792
7793 return true;
7794 }
7795
7796 static struct {
7797 int clock;
7798 u32 config;
7799 } hdmi_audio_clock[] = {
7800 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7801 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7802 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7803 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7804 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7805 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7806 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7807 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7808 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7809 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7810 };
7811
7812 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7813 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7814 {
7815 int i;
7816
7817 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7818 if (mode->clock == hdmi_audio_clock[i].clock)
7819 break;
7820 }
7821
7822 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7823 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7824 i = 1;
7825 }
7826
7827 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7828 hdmi_audio_clock[i].clock,
7829 hdmi_audio_clock[i].config);
7830
7831 return hdmi_audio_clock[i].config;
7832 }
7833
7834 static bool intel_eld_uptodate(struct drm_connector *connector,
7835 int reg_eldv, uint32_t bits_eldv,
7836 int reg_elda, uint32_t bits_elda,
7837 int reg_edid)
7838 {
7839 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7840 uint8_t *eld = connector->eld;
7841 uint32_t i;
7842
7843 i = I915_READ(reg_eldv);
7844 i &= bits_eldv;
7845
7846 if (!eld[0])
7847 return !i;
7848
7849 if (!i)
7850 return false;
7851
7852 i = I915_READ(reg_elda);
7853 i &= ~bits_elda;
7854 I915_WRITE(reg_elda, i);
7855
7856 for (i = 0; i < eld[2]; i++)
7857 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7858 return false;
7859
7860 return true;
7861 }
7862
7863 static void g4x_write_eld(struct drm_connector *connector,
7864 struct drm_crtc *crtc,
7865 struct drm_display_mode *mode)
7866 {
7867 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7868 uint8_t *eld = connector->eld;
7869 uint32_t eldv;
7870 uint32_t len;
7871 uint32_t i;
7872
7873 i = I915_READ(G4X_AUD_VID_DID);
7874
7875 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7876 eldv = G4X_ELDV_DEVCL_DEVBLC;
7877 else
7878 eldv = G4X_ELDV_DEVCTG;
7879
7880 if (intel_eld_uptodate(connector,
7881 G4X_AUD_CNTL_ST, eldv,
7882 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7883 G4X_HDMIW_HDMIEDID))
7884 return;
7885
7886 i = I915_READ(G4X_AUD_CNTL_ST);
7887 i &= ~(eldv | G4X_ELD_ADDR);
7888 len = (i >> 9) & 0x1f; /* ELD buffer size */
7889 I915_WRITE(G4X_AUD_CNTL_ST, i);
7890
7891 if (!eld[0])
7892 return;
7893
7894 len = min_t(uint8_t, eld[2], len);
7895 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7896 for (i = 0; i < len; i++)
7897 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7898
7899 i = I915_READ(G4X_AUD_CNTL_ST);
7900 i |= eldv;
7901 I915_WRITE(G4X_AUD_CNTL_ST, i);
7902 }
7903
7904 static void haswell_write_eld(struct drm_connector *connector,
7905 struct drm_crtc *crtc,
7906 struct drm_display_mode *mode)
7907 {
7908 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7909 uint8_t *eld = connector->eld;
7910 uint32_t eldv;
7911 uint32_t i;
7912 int len;
7913 int pipe = to_intel_crtc(crtc)->pipe;
7914 int tmp;
7915
7916 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7917 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7918 int aud_config = HSW_AUD_CFG(pipe);
7919 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7920
7921 /* Audio output enable */
7922 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7923 tmp = I915_READ(aud_cntrl_st2);
7924 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7925 I915_WRITE(aud_cntrl_st2, tmp);
7926 POSTING_READ(aud_cntrl_st2);
7927
7928 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7929
7930 /* Set ELD valid state */
7931 tmp = I915_READ(aud_cntrl_st2);
7932 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7933 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7934 I915_WRITE(aud_cntrl_st2, tmp);
7935 tmp = I915_READ(aud_cntrl_st2);
7936 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7937
7938 /* Enable HDMI mode */
7939 tmp = I915_READ(aud_config);
7940 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7941 /* clear N_programing_enable and N_value_index */
7942 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7943 I915_WRITE(aud_config, tmp);
7944
7945 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7946
7947 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7948
7949 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7950 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7951 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7952 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7953 } else {
7954 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7955 }
7956
7957 if (intel_eld_uptodate(connector,
7958 aud_cntrl_st2, eldv,
7959 aud_cntl_st, IBX_ELD_ADDRESS,
7960 hdmiw_hdmiedid))
7961 return;
7962
7963 i = I915_READ(aud_cntrl_st2);
7964 i &= ~eldv;
7965 I915_WRITE(aud_cntrl_st2, i);
7966
7967 if (!eld[0])
7968 return;
7969
7970 i = I915_READ(aud_cntl_st);
7971 i &= ~IBX_ELD_ADDRESS;
7972 I915_WRITE(aud_cntl_st, i);
7973 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7974 DRM_DEBUG_DRIVER("port num:%d\n", i);
7975
7976 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7977 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7978 for (i = 0; i < len; i++)
7979 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7980
7981 i = I915_READ(aud_cntrl_st2);
7982 i |= eldv;
7983 I915_WRITE(aud_cntrl_st2, i);
7984
7985 }
7986
7987 static void ironlake_write_eld(struct drm_connector *connector,
7988 struct drm_crtc *crtc,
7989 struct drm_display_mode *mode)
7990 {
7991 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7992 uint8_t *eld = connector->eld;
7993 uint32_t eldv;
7994 uint32_t i;
7995 int len;
7996 int hdmiw_hdmiedid;
7997 int aud_config;
7998 int aud_cntl_st;
7999 int aud_cntrl_st2;
8000 int pipe = to_intel_crtc(crtc)->pipe;
8001
8002 if (HAS_PCH_IBX(connector->dev)) {
8003 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8004 aud_config = IBX_AUD_CFG(pipe);
8005 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
8006 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
8007 } else if (IS_VALLEYVIEW(connector->dev)) {
8008 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8009 aud_config = VLV_AUD_CFG(pipe);
8010 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8011 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
8012 } else {
8013 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8014 aud_config = CPT_AUD_CFG(pipe);
8015 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
8016 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
8017 }
8018
8019 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8020
8021 if (IS_VALLEYVIEW(connector->dev)) {
8022 struct intel_encoder *intel_encoder;
8023 struct intel_digital_port *intel_dig_port;
8024
8025 intel_encoder = intel_attached_encoder(connector);
8026 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8027 i = intel_dig_port->port;
8028 } else {
8029 i = I915_READ(aud_cntl_st);
8030 i = (i >> 29) & DIP_PORT_SEL_MASK;
8031 /* DIP_Port_Select, 0x1 = PortB */
8032 }
8033
8034 if (!i) {
8035 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8036 /* operate blindly on all ports */
8037 eldv = IBX_ELD_VALIDB;
8038 eldv |= IBX_ELD_VALIDB << 4;
8039 eldv |= IBX_ELD_VALIDB << 8;
8040 } else {
8041 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
8042 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
8043 }
8044
8045 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8046 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8047 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8048 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
8049 } else {
8050 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8051 }
8052
8053 if (intel_eld_uptodate(connector,
8054 aud_cntrl_st2, eldv,
8055 aud_cntl_st, IBX_ELD_ADDRESS,
8056 hdmiw_hdmiedid))
8057 return;
8058
8059 i = I915_READ(aud_cntrl_st2);
8060 i &= ~eldv;
8061 I915_WRITE(aud_cntrl_st2, i);
8062
8063 if (!eld[0])
8064 return;
8065
8066 i = I915_READ(aud_cntl_st);
8067 i &= ~IBX_ELD_ADDRESS;
8068 I915_WRITE(aud_cntl_st, i);
8069
8070 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8071 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8072 for (i = 0; i < len; i++)
8073 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8074
8075 i = I915_READ(aud_cntrl_st2);
8076 i |= eldv;
8077 I915_WRITE(aud_cntrl_st2, i);
8078 }
8079
8080 void intel_write_eld(struct drm_encoder *encoder,
8081 struct drm_display_mode *mode)
8082 {
8083 struct drm_crtc *crtc = encoder->crtc;
8084 struct drm_connector *connector;
8085 struct drm_device *dev = encoder->dev;
8086 struct drm_i915_private *dev_priv = dev->dev_private;
8087
8088 connector = drm_select_eld(encoder, mode);
8089 if (!connector)
8090 return;
8091
8092 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8093 connector->base.id,
8094 connector->name,
8095 connector->encoder->base.id,
8096 connector->encoder->name);
8097
8098 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8099
8100 if (dev_priv->display.write_eld)
8101 dev_priv->display.write_eld(connector, crtc, mode);
8102 }
8103
8104 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8105 {
8106 struct drm_device *dev = crtc->dev;
8107 struct drm_i915_private *dev_priv = dev->dev_private;
8108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8109 uint32_t cntl = 0, size = 0;
8110
8111 if (base) {
8112 unsigned int width = intel_crtc->cursor_width;
8113 unsigned int height = intel_crtc->cursor_height;
8114 unsigned int stride = roundup_pow_of_two(width) * 4;
8115
8116 switch (stride) {
8117 default:
8118 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8119 width, stride);
8120 stride = 256;
8121 /* fallthrough */
8122 case 256:
8123 case 512:
8124 case 1024:
8125 case 2048:
8126 break;
8127 }
8128
8129 cntl |= CURSOR_ENABLE |
8130 CURSOR_GAMMA_ENABLE |
8131 CURSOR_FORMAT_ARGB |
8132 CURSOR_STRIDE(stride);
8133
8134 size = (height << 12) | width;
8135 }
8136
8137 if (intel_crtc->cursor_cntl != 0 &&
8138 (intel_crtc->cursor_base != base ||
8139 intel_crtc->cursor_size != size ||
8140 intel_crtc->cursor_cntl != cntl)) {
8141 /* On these chipsets we can only modify the base/size/stride
8142 * whilst the cursor is disabled.
8143 */
8144 I915_WRITE(_CURACNTR, 0);
8145 POSTING_READ(_CURACNTR);
8146 intel_crtc->cursor_cntl = 0;
8147 }
8148
8149 if (intel_crtc->cursor_base != base)
8150 I915_WRITE(_CURABASE, base);
8151
8152 if (intel_crtc->cursor_size != size) {
8153 I915_WRITE(CURSIZE, size);
8154 intel_crtc->cursor_size = size;
8155 }
8156
8157 if (intel_crtc->cursor_cntl != cntl) {
8158 I915_WRITE(_CURACNTR, cntl);
8159 POSTING_READ(_CURACNTR);
8160 intel_crtc->cursor_cntl = cntl;
8161 }
8162 }
8163
8164 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8165 {
8166 struct drm_device *dev = crtc->dev;
8167 struct drm_i915_private *dev_priv = dev->dev_private;
8168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8169 int pipe = intel_crtc->pipe;
8170 uint32_t cntl;
8171
8172 cntl = 0;
8173 if (base) {
8174 cntl = MCURSOR_GAMMA_ENABLE;
8175 switch (intel_crtc->cursor_width) {
8176 case 64:
8177 cntl |= CURSOR_MODE_64_ARGB_AX;
8178 break;
8179 case 128:
8180 cntl |= CURSOR_MODE_128_ARGB_AX;
8181 break;
8182 case 256:
8183 cntl |= CURSOR_MODE_256_ARGB_AX;
8184 break;
8185 default:
8186 WARN_ON(1);
8187 return;
8188 }
8189 cntl |= pipe << 28; /* Connect to correct pipe */
8190 }
8191 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8192 cntl |= CURSOR_PIPE_CSC_ENABLE;
8193
8194 if (intel_crtc->cursor_cntl != cntl) {
8195 I915_WRITE(CURCNTR(pipe), cntl);
8196 POSTING_READ(CURCNTR(pipe));
8197 intel_crtc->cursor_cntl = cntl;
8198 }
8199
8200 /* and commit changes on next vblank */
8201 I915_WRITE(CURBASE(pipe), base);
8202 POSTING_READ(CURBASE(pipe));
8203 }
8204
8205 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8206 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8207 bool on)
8208 {
8209 struct drm_device *dev = crtc->dev;
8210 struct drm_i915_private *dev_priv = dev->dev_private;
8211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8212 int pipe = intel_crtc->pipe;
8213 int x = crtc->cursor_x;
8214 int y = crtc->cursor_y;
8215 u32 base = 0, pos = 0;
8216
8217 if (on)
8218 base = intel_crtc->cursor_addr;
8219
8220 if (x >= intel_crtc->config.pipe_src_w)
8221 base = 0;
8222
8223 if (y >= intel_crtc->config.pipe_src_h)
8224 base = 0;
8225
8226 if (x < 0) {
8227 if (x + intel_crtc->cursor_width <= 0)
8228 base = 0;
8229
8230 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8231 x = -x;
8232 }
8233 pos |= x << CURSOR_X_SHIFT;
8234
8235 if (y < 0) {
8236 if (y + intel_crtc->cursor_height <= 0)
8237 base = 0;
8238
8239 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8240 y = -y;
8241 }
8242 pos |= y << CURSOR_Y_SHIFT;
8243
8244 if (base == 0 && intel_crtc->cursor_base == 0)
8245 return;
8246
8247 I915_WRITE(CURPOS(pipe), pos);
8248
8249 if (IS_845G(dev) || IS_I865G(dev))
8250 i845_update_cursor(crtc, base);
8251 else
8252 i9xx_update_cursor(crtc, base);
8253 intel_crtc->cursor_base = base;
8254 }
8255
8256 static bool cursor_size_ok(struct drm_device *dev,
8257 uint32_t width, uint32_t height)
8258 {
8259 if (width == 0 || height == 0)
8260 return false;
8261
8262 /*
8263 * 845g/865g are special in that they are only limited by
8264 * the width of their cursors, the height is arbitrary up to
8265 * the precision of the register. Everything else requires
8266 * square cursors, limited to a few power-of-two sizes.
8267 */
8268 if (IS_845G(dev) || IS_I865G(dev)) {
8269 if ((width & 63) != 0)
8270 return false;
8271
8272 if (width > (IS_845G(dev) ? 64 : 512))
8273 return false;
8274
8275 if (height > 1023)
8276 return false;
8277 } else {
8278 switch (width | height) {
8279 case 256:
8280 case 128:
8281 if (IS_GEN2(dev))
8282 return false;
8283 case 64:
8284 break;
8285 default:
8286 return false;
8287 }
8288 }
8289
8290 return true;
8291 }
8292
8293 /*
8294 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8295 *
8296 * Note that the object's reference will be consumed if the update fails. If
8297 * the update succeeds, the reference of the old object (if any) will be
8298 * consumed.
8299 */
8300 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8301 struct drm_i915_gem_object *obj,
8302 uint32_t width, uint32_t height)
8303 {
8304 struct drm_device *dev = crtc->dev;
8305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8306 enum pipe pipe = intel_crtc->pipe;
8307 unsigned old_width, stride;
8308 uint32_t addr;
8309 int ret;
8310
8311 /* if we want to turn off the cursor ignore width and height */
8312 if (!obj) {
8313 DRM_DEBUG_KMS("cursor off\n");
8314 addr = 0;
8315 mutex_lock(&dev->struct_mutex);
8316 goto finish;
8317 }
8318
8319 /* Check for which cursor types we support */
8320 if (!cursor_size_ok(dev, width, height)) {
8321 DRM_DEBUG("Cursor dimension not supported\n");
8322 return -EINVAL;
8323 }
8324
8325 stride = roundup_pow_of_two(width) * 4;
8326 if (obj->base.size < stride * height) {
8327 DRM_DEBUG_KMS("buffer is too small\n");
8328 ret = -ENOMEM;
8329 goto fail;
8330 }
8331
8332 /* we only need to pin inside GTT if cursor is non-phy */
8333 mutex_lock(&dev->struct_mutex);
8334 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8335 unsigned alignment;
8336
8337 if (obj->tiling_mode) {
8338 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8339 ret = -EINVAL;
8340 goto fail_locked;
8341 }
8342
8343 /* Note that the w/a also requires 2 PTE of padding following
8344 * the bo. We currently fill all unused PTE with the shadow
8345 * page and so we should always have valid PTE following the
8346 * cursor preventing the VT-d warning.
8347 */
8348 alignment = 0;
8349 if (need_vtd_wa(dev))
8350 alignment = 64*1024;
8351
8352 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8353 if (ret) {
8354 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8355 goto fail_locked;
8356 }
8357
8358 ret = i915_gem_object_put_fence(obj);
8359 if (ret) {
8360 DRM_DEBUG_KMS("failed to release fence for cursor");
8361 goto fail_unpin;
8362 }
8363
8364 addr = i915_gem_obj_ggtt_offset(obj);
8365 } else {
8366 int align = IS_I830(dev) ? 16 * 1024 : 256;
8367 ret = i915_gem_object_attach_phys(obj, align);
8368 if (ret) {
8369 DRM_DEBUG_KMS("failed to attach phys object\n");
8370 goto fail_locked;
8371 }
8372 addr = obj->phys_handle->busaddr;
8373 }
8374
8375 finish:
8376 if (intel_crtc->cursor_bo) {
8377 if (!INTEL_INFO(dev)->cursor_needs_physical)
8378 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8379 }
8380
8381 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8382 INTEL_FRONTBUFFER_CURSOR(pipe));
8383 mutex_unlock(&dev->struct_mutex);
8384
8385 old_width = intel_crtc->cursor_width;
8386
8387 intel_crtc->cursor_addr = addr;
8388 intel_crtc->cursor_bo = obj;
8389 intel_crtc->cursor_width = width;
8390 intel_crtc->cursor_height = height;
8391
8392 if (intel_crtc->active) {
8393 if (old_width != width)
8394 intel_update_watermarks(crtc);
8395 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8396 }
8397
8398 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8399
8400 return 0;
8401 fail_unpin:
8402 i915_gem_object_unpin_from_display_plane(obj);
8403 fail_locked:
8404 mutex_unlock(&dev->struct_mutex);
8405 fail:
8406 drm_gem_object_unreference_unlocked(&obj->base);
8407 return ret;
8408 }
8409
8410 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8411 u16 *blue, uint32_t start, uint32_t size)
8412 {
8413 int end = (start + size > 256) ? 256 : start + size, i;
8414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8415
8416 for (i = start; i < end; i++) {
8417 intel_crtc->lut_r[i] = red[i] >> 8;
8418 intel_crtc->lut_g[i] = green[i] >> 8;
8419 intel_crtc->lut_b[i] = blue[i] >> 8;
8420 }
8421
8422 intel_crtc_load_lut(crtc);
8423 }
8424
8425 /* VESA 640x480x72Hz mode to set on the pipe */
8426 static struct drm_display_mode load_detect_mode = {
8427 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8428 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8429 };
8430
8431 struct drm_framebuffer *
8432 __intel_framebuffer_create(struct drm_device *dev,
8433 struct drm_mode_fb_cmd2 *mode_cmd,
8434 struct drm_i915_gem_object *obj)
8435 {
8436 struct intel_framebuffer *intel_fb;
8437 int ret;
8438
8439 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8440 if (!intel_fb) {
8441 drm_gem_object_unreference_unlocked(&obj->base);
8442 return ERR_PTR(-ENOMEM);
8443 }
8444
8445 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8446 if (ret)
8447 goto err;
8448
8449 return &intel_fb->base;
8450 err:
8451 drm_gem_object_unreference_unlocked(&obj->base);
8452 kfree(intel_fb);
8453
8454 return ERR_PTR(ret);
8455 }
8456
8457 static struct drm_framebuffer *
8458 intel_framebuffer_create(struct drm_device *dev,
8459 struct drm_mode_fb_cmd2 *mode_cmd,
8460 struct drm_i915_gem_object *obj)
8461 {
8462 struct drm_framebuffer *fb;
8463 int ret;
8464
8465 ret = i915_mutex_lock_interruptible(dev);
8466 if (ret)
8467 return ERR_PTR(ret);
8468 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8469 mutex_unlock(&dev->struct_mutex);
8470
8471 return fb;
8472 }
8473
8474 static u32
8475 intel_framebuffer_pitch_for_width(int width, int bpp)
8476 {
8477 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8478 return ALIGN(pitch, 64);
8479 }
8480
8481 static u32
8482 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8483 {
8484 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8485 return PAGE_ALIGN(pitch * mode->vdisplay);
8486 }
8487
8488 static struct drm_framebuffer *
8489 intel_framebuffer_create_for_mode(struct drm_device *dev,
8490 struct drm_display_mode *mode,
8491 int depth, int bpp)
8492 {
8493 struct drm_i915_gem_object *obj;
8494 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8495
8496 obj = i915_gem_alloc_object(dev,
8497 intel_framebuffer_size_for_mode(mode, bpp));
8498 if (obj == NULL)
8499 return ERR_PTR(-ENOMEM);
8500
8501 mode_cmd.width = mode->hdisplay;
8502 mode_cmd.height = mode->vdisplay;
8503 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8504 bpp);
8505 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8506
8507 return intel_framebuffer_create(dev, &mode_cmd, obj);
8508 }
8509
8510 static struct drm_framebuffer *
8511 mode_fits_in_fbdev(struct drm_device *dev,
8512 struct drm_display_mode *mode)
8513 {
8514 #ifdef CONFIG_DRM_I915_FBDEV
8515 struct drm_i915_private *dev_priv = dev->dev_private;
8516 struct drm_i915_gem_object *obj;
8517 struct drm_framebuffer *fb;
8518
8519 if (!dev_priv->fbdev)
8520 return NULL;
8521
8522 if (!dev_priv->fbdev->fb)
8523 return NULL;
8524
8525 obj = dev_priv->fbdev->fb->obj;
8526 BUG_ON(!obj);
8527
8528 fb = &dev_priv->fbdev->fb->base;
8529 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8530 fb->bits_per_pixel))
8531 return NULL;
8532
8533 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8534 return NULL;
8535
8536 return fb;
8537 #else
8538 return NULL;
8539 #endif
8540 }
8541
8542 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8543 struct drm_display_mode *mode,
8544 struct intel_load_detect_pipe *old,
8545 struct drm_modeset_acquire_ctx *ctx)
8546 {
8547 struct intel_crtc *intel_crtc;
8548 struct intel_encoder *intel_encoder =
8549 intel_attached_encoder(connector);
8550 struct drm_crtc *possible_crtc;
8551 struct drm_encoder *encoder = &intel_encoder->base;
8552 struct drm_crtc *crtc = NULL;
8553 struct drm_device *dev = encoder->dev;
8554 struct drm_framebuffer *fb;
8555 struct drm_mode_config *config = &dev->mode_config;
8556 int ret, i = -1;
8557
8558 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8559 connector->base.id, connector->name,
8560 encoder->base.id, encoder->name);
8561
8562 retry:
8563 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8564 if (ret)
8565 goto fail_unlock;
8566
8567 /*
8568 * Algorithm gets a little messy:
8569 *
8570 * - if the connector already has an assigned crtc, use it (but make
8571 * sure it's on first)
8572 *
8573 * - try to find the first unused crtc that can drive this connector,
8574 * and use that if we find one
8575 */
8576
8577 /* See if we already have a CRTC for this connector */
8578 if (encoder->crtc) {
8579 crtc = encoder->crtc;
8580
8581 ret = drm_modeset_lock(&crtc->mutex, ctx);
8582 if (ret)
8583 goto fail_unlock;
8584
8585 old->dpms_mode = connector->dpms;
8586 old->load_detect_temp = false;
8587
8588 /* Make sure the crtc and connector are running */
8589 if (connector->dpms != DRM_MODE_DPMS_ON)
8590 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8591
8592 return true;
8593 }
8594
8595 /* Find an unused one (if possible) */
8596 for_each_crtc(dev, possible_crtc) {
8597 i++;
8598 if (!(encoder->possible_crtcs & (1 << i)))
8599 continue;
8600 if (possible_crtc->enabled)
8601 continue;
8602 /* This can occur when applying the pipe A quirk on resume. */
8603 if (to_intel_crtc(possible_crtc)->new_enabled)
8604 continue;
8605
8606 crtc = possible_crtc;
8607 break;
8608 }
8609
8610 /*
8611 * If we didn't find an unused CRTC, don't use any.
8612 */
8613 if (!crtc) {
8614 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8615 goto fail_unlock;
8616 }
8617
8618 ret = drm_modeset_lock(&crtc->mutex, ctx);
8619 if (ret)
8620 goto fail_unlock;
8621 intel_encoder->new_crtc = to_intel_crtc(crtc);
8622 to_intel_connector(connector)->new_encoder = intel_encoder;
8623
8624 intel_crtc = to_intel_crtc(crtc);
8625 intel_crtc->new_enabled = true;
8626 intel_crtc->new_config = &intel_crtc->config;
8627 old->dpms_mode = connector->dpms;
8628 old->load_detect_temp = true;
8629 old->release_fb = NULL;
8630
8631 if (!mode)
8632 mode = &load_detect_mode;
8633
8634 /* We need a framebuffer large enough to accommodate all accesses
8635 * that the plane may generate whilst we perform load detection.
8636 * We can not rely on the fbcon either being present (we get called
8637 * during its initialisation to detect all boot displays, or it may
8638 * not even exist) or that it is large enough to satisfy the
8639 * requested mode.
8640 */
8641 fb = mode_fits_in_fbdev(dev, mode);
8642 if (fb == NULL) {
8643 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8644 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8645 old->release_fb = fb;
8646 } else
8647 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8648 if (IS_ERR(fb)) {
8649 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8650 goto fail;
8651 }
8652
8653 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8654 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8655 if (old->release_fb)
8656 old->release_fb->funcs->destroy(old->release_fb);
8657 goto fail;
8658 }
8659
8660 /* let the connector get through one full cycle before testing */
8661 intel_wait_for_vblank(dev, intel_crtc->pipe);
8662 return true;
8663
8664 fail:
8665 intel_crtc->new_enabled = crtc->enabled;
8666 if (intel_crtc->new_enabled)
8667 intel_crtc->new_config = &intel_crtc->config;
8668 else
8669 intel_crtc->new_config = NULL;
8670 fail_unlock:
8671 if (ret == -EDEADLK) {
8672 drm_modeset_backoff(ctx);
8673 goto retry;
8674 }
8675
8676 return false;
8677 }
8678
8679 void intel_release_load_detect_pipe(struct drm_connector *connector,
8680 struct intel_load_detect_pipe *old)
8681 {
8682 struct intel_encoder *intel_encoder =
8683 intel_attached_encoder(connector);
8684 struct drm_encoder *encoder = &intel_encoder->base;
8685 struct drm_crtc *crtc = encoder->crtc;
8686 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8687
8688 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8689 connector->base.id, connector->name,
8690 encoder->base.id, encoder->name);
8691
8692 if (old->load_detect_temp) {
8693 to_intel_connector(connector)->new_encoder = NULL;
8694 intel_encoder->new_crtc = NULL;
8695 intel_crtc->new_enabled = false;
8696 intel_crtc->new_config = NULL;
8697 intel_set_mode(crtc, NULL, 0, 0, NULL);
8698
8699 if (old->release_fb) {
8700 drm_framebuffer_unregister_private(old->release_fb);
8701 drm_framebuffer_unreference(old->release_fb);
8702 }
8703
8704 return;
8705 }
8706
8707 /* Switch crtc and encoder back off if necessary */
8708 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8709 connector->funcs->dpms(connector, old->dpms_mode);
8710 }
8711
8712 static int i9xx_pll_refclk(struct drm_device *dev,
8713 const struct intel_crtc_config *pipe_config)
8714 {
8715 struct drm_i915_private *dev_priv = dev->dev_private;
8716 u32 dpll = pipe_config->dpll_hw_state.dpll;
8717
8718 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8719 return dev_priv->vbt.lvds_ssc_freq;
8720 else if (HAS_PCH_SPLIT(dev))
8721 return 120000;
8722 else if (!IS_GEN2(dev))
8723 return 96000;
8724 else
8725 return 48000;
8726 }
8727
8728 /* Returns the clock of the currently programmed mode of the given pipe. */
8729 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8730 struct intel_crtc_config *pipe_config)
8731 {
8732 struct drm_device *dev = crtc->base.dev;
8733 struct drm_i915_private *dev_priv = dev->dev_private;
8734 int pipe = pipe_config->cpu_transcoder;
8735 u32 dpll = pipe_config->dpll_hw_state.dpll;
8736 u32 fp;
8737 intel_clock_t clock;
8738 int refclk = i9xx_pll_refclk(dev, pipe_config);
8739
8740 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8741 fp = pipe_config->dpll_hw_state.fp0;
8742 else
8743 fp = pipe_config->dpll_hw_state.fp1;
8744
8745 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8746 if (IS_PINEVIEW(dev)) {
8747 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8748 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8749 } else {
8750 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8751 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8752 }
8753
8754 if (!IS_GEN2(dev)) {
8755 if (IS_PINEVIEW(dev))
8756 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8757 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8758 else
8759 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8760 DPLL_FPA01_P1_POST_DIV_SHIFT);
8761
8762 switch (dpll & DPLL_MODE_MASK) {
8763 case DPLLB_MODE_DAC_SERIAL:
8764 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8765 5 : 10;
8766 break;
8767 case DPLLB_MODE_LVDS:
8768 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8769 7 : 14;
8770 break;
8771 default:
8772 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8773 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8774 return;
8775 }
8776
8777 if (IS_PINEVIEW(dev))
8778 pineview_clock(refclk, &clock);
8779 else
8780 i9xx_clock(refclk, &clock);
8781 } else {
8782 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8783 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8784
8785 if (is_lvds) {
8786 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8787 DPLL_FPA01_P1_POST_DIV_SHIFT);
8788
8789 if (lvds & LVDS_CLKB_POWER_UP)
8790 clock.p2 = 7;
8791 else
8792 clock.p2 = 14;
8793 } else {
8794 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8795 clock.p1 = 2;
8796 else {
8797 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8798 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8799 }
8800 if (dpll & PLL_P2_DIVIDE_BY_4)
8801 clock.p2 = 4;
8802 else
8803 clock.p2 = 2;
8804 }
8805
8806 i9xx_clock(refclk, &clock);
8807 }
8808
8809 /*
8810 * This value includes pixel_multiplier. We will use
8811 * port_clock to compute adjusted_mode.crtc_clock in the
8812 * encoder's get_config() function.
8813 */
8814 pipe_config->port_clock = clock.dot;
8815 }
8816
8817 int intel_dotclock_calculate(int link_freq,
8818 const struct intel_link_m_n *m_n)
8819 {
8820 /*
8821 * The calculation for the data clock is:
8822 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8823 * But we want to avoid losing precison if possible, so:
8824 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8825 *
8826 * and the link clock is simpler:
8827 * link_clock = (m * link_clock) / n
8828 */
8829
8830 if (!m_n->link_n)
8831 return 0;
8832
8833 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8834 }
8835
8836 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8837 struct intel_crtc_config *pipe_config)
8838 {
8839 struct drm_device *dev = crtc->base.dev;
8840
8841 /* read out port_clock from the DPLL */
8842 i9xx_crtc_clock_get(crtc, pipe_config);
8843
8844 /*
8845 * This value does not include pixel_multiplier.
8846 * We will check that port_clock and adjusted_mode.crtc_clock
8847 * agree once we know their relationship in the encoder's
8848 * get_config() function.
8849 */
8850 pipe_config->adjusted_mode.crtc_clock =
8851 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8852 &pipe_config->fdi_m_n);
8853 }
8854
8855 /** Returns the currently programmed mode of the given pipe. */
8856 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8857 struct drm_crtc *crtc)
8858 {
8859 struct drm_i915_private *dev_priv = dev->dev_private;
8860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8861 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8862 struct drm_display_mode *mode;
8863 struct intel_crtc_config pipe_config;
8864 int htot = I915_READ(HTOTAL(cpu_transcoder));
8865 int hsync = I915_READ(HSYNC(cpu_transcoder));
8866 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8867 int vsync = I915_READ(VSYNC(cpu_transcoder));
8868 enum pipe pipe = intel_crtc->pipe;
8869
8870 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8871 if (!mode)
8872 return NULL;
8873
8874 /*
8875 * Construct a pipe_config sufficient for getting the clock info
8876 * back out of crtc_clock_get.
8877 *
8878 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8879 * to use a real value here instead.
8880 */
8881 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8882 pipe_config.pixel_multiplier = 1;
8883 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8884 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8885 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8886 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8887
8888 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8889 mode->hdisplay = (htot & 0xffff) + 1;
8890 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8891 mode->hsync_start = (hsync & 0xffff) + 1;
8892 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8893 mode->vdisplay = (vtot & 0xffff) + 1;
8894 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8895 mode->vsync_start = (vsync & 0xffff) + 1;
8896 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8897
8898 drm_mode_set_name(mode);
8899
8900 return mode;
8901 }
8902
8903 static void intel_increase_pllclock(struct drm_device *dev,
8904 enum pipe pipe)
8905 {
8906 struct drm_i915_private *dev_priv = dev->dev_private;
8907 int dpll_reg = DPLL(pipe);
8908 int dpll;
8909
8910 if (!HAS_GMCH_DISPLAY(dev))
8911 return;
8912
8913 if (!dev_priv->lvds_downclock_avail)
8914 return;
8915
8916 dpll = I915_READ(dpll_reg);
8917 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8918 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8919
8920 assert_panel_unlocked(dev_priv, pipe);
8921
8922 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8923 I915_WRITE(dpll_reg, dpll);
8924 intel_wait_for_vblank(dev, pipe);
8925
8926 dpll = I915_READ(dpll_reg);
8927 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8928 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8929 }
8930 }
8931
8932 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8933 {
8934 struct drm_device *dev = crtc->dev;
8935 struct drm_i915_private *dev_priv = dev->dev_private;
8936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8937
8938 if (!HAS_GMCH_DISPLAY(dev))
8939 return;
8940
8941 if (!dev_priv->lvds_downclock_avail)
8942 return;
8943
8944 /*
8945 * Since this is called by a timer, we should never get here in
8946 * the manual case.
8947 */
8948 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8949 int pipe = intel_crtc->pipe;
8950 int dpll_reg = DPLL(pipe);
8951 int dpll;
8952
8953 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8954
8955 assert_panel_unlocked(dev_priv, pipe);
8956
8957 dpll = I915_READ(dpll_reg);
8958 dpll |= DISPLAY_RATE_SELECT_FPA1;
8959 I915_WRITE(dpll_reg, dpll);
8960 intel_wait_for_vblank(dev, pipe);
8961 dpll = I915_READ(dpll_reg);
8962 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8963 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8964 }
8965
8966 }
8967
8968 void intel_mark_busy(struct drm_device *dev)
8969 {
8970 struct drm_i915_private *dev_priv = dev->dev_private;
8971
8972 if (dev_priv->mm.busy)
8973 return;
8974
8975 intel_runtime_pm_get(dev_priv);
8976 i915_update_gfx_val(dev_priv);
8977 dev_priv->mm.busy = true;
8978 }
8979
8980 void intel_mark_idle(struct drm_device *dev)
8981 {
8982 struct drm_i915_private *dev_priv = dev->dev_private;
8983 struct drm_crtc *crtc;
8984
8985 if (!dev_priv->mm.busy)
8986 return;
8987
8988 dev_priv->mm.busy = false;
8989
8990 if (!i915.powersave)
8991 goto out;
8992
8993 for_each_crtc(dev, crtc) {
8994 if (!crtc->primary->fb)
8995 continue;
8996
8997 intel_decrease_pllclock(crtc);
8998 }
8999
9000 if (INTEL_INFO(dev)->gen >= 6)
9001 gen6_rps_idle(dev->dev_private);
9002
9003 out:
9004 intel_runtime_pm_put(dev_priv);
9005 }
9006
9007
9008 /**
9009 * intel_mark_fb_busy - mark given planes as busy
9010 * @dev: DRM device
9011 * @frontbuffer_bits: bits for the affected planes
9012 * @ring: optional ring for asynchronous commands
9013 *
9014 * This function gets called every time the screen contents change. It can be
9015 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9016 */
9017 static void intel_mark_fb_busy(struct drm_device *dev,
9018 unsigned frontbuffer_bits,
9019 struct intel_engine_cs *ring)
9020 {
9021 struct drm_i915_private *dev_priv = dev->dev_private;
9022 enum pipe pipe;
9023
9024 if (!i915.powersave)
9025 return;
9026
9027 for_each_pipe(dev_priv, pipe) {
9028 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
9029 continue;
9030
9031 intel_increase_pllclock(dev, pipe);
9032 if (ring && intel_fbc_enabled(dev))
9033 ring->fbc_dirty = true;
9034 }
9035 }
9036
9037 /**
9038 * intel_fb_obj_invalidate - invalidate frontbuffer object
9039 * @obj: GEM object to invalidate
9040 * @ring: set for asynchronous rendering
9041 *
9042 * This function gets called every time rendering on the given object starts and
9043 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9044 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9045 * until the rendering completes or a flip on this frontbuffer plane is
9046 * scheduled.
9047 */
9048 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9049 struct intel_engine_cs *ring)
9050 {
9051 struct drm_device *dev = obj->base.dev;
9052 struct drm_i915_private *dev_priv = dev->dev_private;
9053
9054 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9055
9056 if (!obj->frontbuffer_bits)
9057 return;
9058
9059 if (ring) {
9060 mutex_lock(&dev_priv->fb_tracking.lock);
9061 dev_priv->fb_tracking.busy_bits
9062 |= obj->frontbuffer_bits;
9063 dev_priv->fb_tracking.flip_bits
9064 &= ~obj->frontbuffer_bits;
9065 mutex_unlock(&dev_priv->fb_tracking.lock);
9066 }
9067
9068 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9069
9070 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
9071 }
9072
9073 /**
9074 * intel_frontbuffer_flush - flush frontbuffer
9075 * @dev: DRM device
9076 * @frontbuffer_bits: frontbuffer plane tracking bits
9077 *
9078 * This function gets called every time rendering on the given planes has
9079 * completed and frontbuffer caching can be started again. Flushes will get
9080 * delayed if they're blocked by some oustanding asynchronous rendering.
9081 *
9082 * Can be called without any locks held.
9083 */
9084 void intel_frontbuffer_flush(struct drm_device *dev,
9085 unsigned frontbuffer_bits)
9086 {
9087 struct drm_i915_private *dev_priv = dev->dev_private;
9088
9089 /* Delay flushing when rings are still busy.*/
9090 mutex_lock(&dev_priv->fb_tracking.lock);
9091 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9092 mutex_unlock(&dev_priv->fb_tracking.lock);
9093
9094 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9095
9096 intel_edp_psr_flush(dev, frontbuffer_bits);
9097
9098 if (IS_GEN8(dev))
9099 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
9100 }
9101
9102 /**
9103 * intel_fb_obj_flush - flush frontbuffer object
9104 * @obj: GEM object to flush
9105 * @retire: set when retiring asynchronous rendering
9106 *
9107 * This function gets called every time rendering on the given object has
9108 * completed and frontbuffer caching can be started again. If @retire is true
9109 * then any delayed flushes will be unblocked.
9110 */
9111 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9112 bool retire)
9113 {
9114 struct drm_device *dev = obj->base.dev;
9115 struct drm_i915_private *dev_priv = dev->dev_private;
9116 unsigned frontbuffer_bits;
9117
9118 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9119
9120 if (!obj->frontbuffer_bits)
9121 return;
9122
9123 frontbuffer_bits = obj->frontbuffer_bits;
9124
9125 if (retire) {
9126 mutex_lock(&dev_priv->fb_tracking.lock);
9127 /* Filter out new bits since rendering started. */
9128 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9129
9130 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9131 mutex_unlock(&dev_priv->fb_tracking.lock);
9132 }
9133
9134 intel_frontbuffer_flush(dev, frontbuffer_bits);
9135 }
9136
9137 /**
9138 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9139 * @dev: DRM device
9140 * @frontbuffer_bits: frontbuffer plane tracking bits
9141 *
9142 * This function gets called after scheduling a flip on @obj. The actual
9143 * frontbuffer flushing will be delayed until completion is signalled with
9144 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9145 * flush will be cancelled.
9146 *
9147 * Can be called without any locks held.
9148 */
9149 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9150 unsigned frontbuffer_bits)
9151 {
9152 struct drm_i915_private *dev_priv = dev->dev_private;
9153
9154 mutex_lock(&dev_priv->fb_tracking.lock);
9155 dev_priv->fb_tracking.flip_bits
9156 |= frontbuffer_bits;
9157 mutex_unlock(&dev_priv->fb_tracking.lock);
9158 }
9159
9160 /**
9161 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9162 * @dev: DRM device
9163 * @frontbuffer_bits: frontbuffer plane tracking bits
9164 *
9165 * This function gets called after the flip has been latched and will complete
9166 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9167 *
9168 * Can be called without any locks held.
9169 */
9170 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9171 unsigned frontbuffer_bits)
9172 {
9173 struct drm_i915_private *dev_priv = dev->dev_private;
9174
9175 mutex_lock(&dev_priv->fb_tracking.lock);
9176 /* Mask any cancelled flips. */
9177 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9178 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9179 mutex_unlock(&dev_priv->fb_tracking.lock);
9180
9181 intel_frontbuffer_flush(dev, frontbuffer_bits);
9182 }
9183
9184 static void intel_crtc_destroy(struct drm_crtc *crtc)
9185 {
9186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9187 struct drm_device *dev = crtc->dev;
9188 struct intel_unpin_work *work;
9189 unsigned long flags;
9190
9191 spin_lock_irqsave(&dev->event_lock, flags);
9192 work = intel_crtc->unpin_work;
9193 intel_crtc->unpin_work = NULL;
9194 spin_unlock_irqrestore(&dev->event_lock, flags);
9195
9196 if (work) {
9197 cancel_work_sync(&work->work);
9198 kfree(work);
9199 }
9200
9201 drm_crtc_cleanup(crtc);
9202
9203 kfree(intel_crtc);
9204 }
9205
9206 static void intel_unpin_work_fn(struct work_struct *__work)
9207 {
9208 struct intel_unpin_work *work =
9209 container_of(__work, struct intel_unpin_work, work);
9210 struct drm_device *dev = work->crtc->dev;
9211 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9212
9213 mutex_lock(&dev->struct_mutex);
9214 intel_unpin_fb_obj(work->old_fb_obj);
9215 drm_gem_object_unreference(&work->pending_flip_obj->base);
9216 drm_gem_object_unreference(&work->old_fb_obj->base);
9217
9218 intel_update_fbc(dev);
9219 mutex_unlock(&dev->struct_mutex);
9220
9221 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9222
9223 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9224 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9225
9226 kfree(work);
9227 }
9228
9229 static void do_intel_finish_page_flip(struct drm_device *dev,
9230 struct drm_crtc *crtc)
9231 {
9232 struct drm_i915_private *dev_priv = dev->dev_private;
9233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9234 struct intel_unpin_work *work;
9235 unsigned long flags;
9236
9237 /* Ignore early vblank irqs */
9238 if (intel_crtc == NULL)
9239 return;
9240
9241 spin_lock_irqsave(&dev->event_lock, flags);
9242 work = intel_crtc->unpin_work;
9243
9244 /* Ensure we don't miss a work->pending update ... */
9245 smp_rmb();
9246
9247 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9248 spin_unlock_irqrestore(&dev->event_lock, flags);
9249 return;
9250 }
9251
9252 /* and that the unpin work is consistent wrt ->pending. */
9253 smp_rmb();
9254
9255 intel_crtc->unpin_work = NULL;
9256
9257 if (work->event)
9258 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9259
9260 drm_crtc_vblank_put(crtc);
9261
9262 spin_unlock_irqrestore(&dev->event_lock, flags);
9263
9264 wake_up_all(&dev_priv->pending_flip_queue);
9265
9266 queue_work(dev_priv->wq, &work->work);
9267
9268 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9269 }
9270
9271 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9272 {
9273 struct drm_i915_private *dev_priv = dev->dev_private;
9274 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9275
9276 do_intel_finish_page_flip(dev, crtc);
9277 }
9278
9279 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9280 {
9281 struct drm_i915_private *dev_priv = dev->dev_private;
9282 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9283
9284 do_intel_finish_page_flip(dev, crtc);
9285 }
9286
9287 /* Is 'a' after or equal to 'b'? */
9288 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9289 {
9290 return !((a - b) & 0x80000000);
9291 }
9292
9293 static bool page_flip_finished(struct intel_crtc *crtc)
9294 {
9295 struct drm_device *dev = crtc->base.dev;
9296 struct drm_i915_private *dev_priv = dev->dev_private;
9297
9298 /*
9299 * The relevant registers doen't exist on pre-ctg.
9300 * As the flip done interrupt doesn't trigger for mmio
9301 * flips on gmch platforms, a flip count check isn't
9302 * really needed there. But since ctg has the registers,
9303 * include it in the check anyway.
9304 */
9305 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9306 return true;
9307
9308 /*
9309 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9310 * used the same base address. In that case the mmio flip might
9311 * have completed, but the CS hasn't even executed the flip yet.
9312 *
9313 * A flip count check isn't enough as the CS might have updated
9314 * the base address just after start of vblank, but before we
9315 * managed to process the interrupt. This means we'd complete the
9316 * CS flip too soon.
9317 *
9318 * Combining both checks should get us a good enough result. It may
9319 * still happen that the CS flip has been executed, but has not
9320 * yet actually completed. But in case the base address is the same
9321 * anyway, we don't really care.
9322 */
9323 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9324 crtc->unpin_work->gtt_offset &&
9325 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9326 crtc->unpin_work->flip_count);
9327 }
9328
9329 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9330 {
9331 struct drm_i915_private *dev_priv = dev->dev_private;
9332 struct intel_crtc *intel_crtc =
9333 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9334 unsigned long flags;
9335
9336 /* NB: An MMIO update of the plane base pointer will also
9337 * generate a page-flip completion irq, i.e. every modeset
9338 * is also accompanied by a spurious intel_prepare_page_flip().
9339 */
9340 spin_lock_irqsave(&dev->event_lock, flags);
9341 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9342 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9343 spin_unlock_irqrestore(&dev->event_lock, flags);
9344 }
9345
9346 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9347 {
9348 /* Ensure that the work item is consistent when activating it ... */
9349 smp_wmb();
9350 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9351 /* and that it is marked active as soon as the irq could fire. */
9352 smp_wmb();
9353 }
9354
9355 static int intel_gen2_queue_flip(struct drm_device *dev,
9356 struct drm_crtc *crtc,
9357 struct drm_framebuffer *fb,
9358 struct drm_i915_gem_object *obj,
9359 struct intel_engine_cs *ring,
9360 uint32_t flags)
9361 {
9362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9363 u32 flip_mask;
9364 int ret;
9365
9366 ret = intel_ring_begin(ring, 6);
9367 if (ret)
9368 return ret;
9369
9370 /* Can't queue multiple flips, so wait for the previous
9371 * one to finish before executing the next.
9372 */
9373 if (intel_crtc->plane)
9374 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9375 else
9376 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9377 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9378 intel_ring_emit(ring, MI_NOOP);
9379 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9380 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9381 intel_ring_emit(ring, fb->pitches[0]);
9382 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9383 intel_ring_emit(ring, 0); /* aux display base address, unused */
9384
9385 intel_mark_page_flip_active(intel_crtc);
9386 __intel_ring_advance(ring);
9387 return 0;
9388 }
9389
9390 static int intel_gen3_queue_flip(struct drm_device *dev,
9391 struct drm_crtc *crtc,
9392 struct drm_framebuffer *fb,
9393 struct drm_i915_gem_object *obj,
9394 struct intel_engine_cs *ring,
9395 uint32_t flags)
9396 {
9397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9398 u32 flip_mask;
9399 int ret;
9400
9401 ret = intel_ring_begin(ring, 6);
9402 if (ret)
9403 return ret;
9404
9405 if (intel_crtc->plane)
9406 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9407 else
9408 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9409 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9410 intel_ring_emit(ring, MI_NOOP);
9411 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9412 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9413 intel_ring_emit(ring, fb->pitches[0]);
9414 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9415 intel_ring_emit(ring, MI_NOOP);
9416
9417 intel_mark_page_flip_active(intel_crtc);
9418 __intel_ring_advance(ring);
9419 return 0;
9420 }
9421
9422 static int intel_gen4_queue_flip(struct drm_device *dev,
9423 struct drm_crtc *crtc,
9424 struct drm_framebuffer *fb,
9425 struct drm_i915_gem_object *obj,
9426 struct intel_engine_cs *ring,
9427 uint32_t flags)
9428 {
9429 struct drm_i915_private *dev_priv = dev->dev_private;
9430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9431 uint32_t pf, pipesrc;
9432 int ret;
9433
9434 ret = intel_ring_begin(ring, 4);
9435 if (ret)
9436 return ret;
9437
9438 /* i965+ uses the linear or tiled offsets from the
9439 * Display Registers (which do not change across a page-flip)
9440 * so we need only reprogram the base address.
9441 */
9442 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9443 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9444 intel_ring_emit(ring, fb->pitches[0]);
9445 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9446 obj->tiling_mode);
9447
9448 /* XXX Enabling the panel-fitter across page-flip is so far
9449 * untested on non-native modes, so ignore it for now.
9450 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9451 */
9452 pf = 0;
9453 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9454 intel_ring_emit(ring, pf | pipesrc);
9455
9456 intel_mark_page_flip_active(intel_crtc);
9457 __intel_ring_advance(ring);
9458 return 0;
9459 }
9460
9461 static int intel_gen6_queue_flip(struct drm_device *dev,
9462 struct drm_crtc *crtc,
9463 struct drm_framebuffer *fb,
9464 struct drm_i915_gem_object *obj,
9465 struct intel_engine_cs *ring,
9466 uint32_t flags)
9467 {
9468 struct drm_i915_private *dev_priv = dev->dev_private;
9469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9470 uint32_t pf, pipesrc;
9471 int ret;
9472
9473 ret = intel_ring_begin(ring, 4);
9474 if (ret)
9475 return ret;
9476
9477 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9478 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9479 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9480 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9481
9482 /* Contrary to the suggestions in the documentation,
9483 * "Enable Panel Fitter" does not seem to be required when page
9484 * flipping with a non-native mode, and worse causes a normal
9485 * modeset to fail.
9486 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9487 */
9488 pf = 0;
9489 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9490 intel_ring_emit(ring, pf | pipesrc);
9491
9492 intel_mark_page_flip_active(intel_crtc);
9493 __intel_ring_advance(ring);
9494 return 0;
9495 }
9496
9497 static int intel_gen7_queue_flip(struct drm_device *dev,
9498 struct drm_crtc *crtc,
9499 struct drm_framebuffer *fb,
9500 struct drm_i915_gem_object *obj,
9501 struct intel_engine_cs *ring,
9502 uint32_t flags)
9503 {
9504 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9505 uint32_t plane_bit = 0;
9506 int len, ret;
9507
9508 switch (intel_crtc->plane) {
9509 case PLANE_A:
9510 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9511 break;
9512 case PLANE_B:
9513 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9514 break;
9515 case PLANE_C:
9516 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9517 break;
9518 default:
9519 WARN_ONCE(1, "unknown plane in flip command\n");
9520 return -ENODEV;
9521 }
9522
9523 len = 4;
9524 if (ring->id == RCS) {
9525 len += 6;
9526 /*
9527 * On Gen 8, SRM is now taking an extra dword to accommodate
9528 * 48bits addresses, and we need a NOOP for the batch size to
9529 * stay even.
9530 */
9531 if (IS_GEN8(dev))
9532 len += 2;
9533 }
9534
9535 /*
9536 * BSpec MI_DISPLAY_FLIP for IVB:
9537 * "The full packet must be contained within the same cache line."
9538 *
9539 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9540 * cacheline, if we ever start emitting more commands before
9541 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9542 * then do the cacheline alignment, and finally emit the
9543 * MI_DISPLAY_FLIP.
9544 */
9545 ret = intel_ring_cacheline_align(ring);
9546 if (ret)
9547 return ret;
9548
9549 ret = intel_ring_begin(ring, len);
9550 if (ret)
9551 return ret;
9552
9553 /* Unmask the flip-done completion message. Note that the bspec says that
9554 * we should do this for both the BCS and RCS, and that we must not unmask
9555 * more than one flip event at any time (or ensure that one flip message
9556 * can be sent by waiting for flip-done prior to queueing new flips).
9557 * Experimentation says that BCS works despite DERRMR masking all
9558 * flip-done completion events and that unmasking all planes at once
9559 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9560 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9561 */
9562 if (ring->id == RCS) {
9563 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9564 intel_ring_emit(ring, DERRMR);
9565 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9566 DERRMR_PIPEB_PRI_FLIP_DONE |
9567 DERRMR_PIPEC_PRI_FLIP_DONE));
9568 if (IS_GEN8(dev))
9569 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9570 MI_SRM_LRM_GLOBAL_GTT);
9571 else
9572 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9573 MI_SRM_LRM_GLOBAL_GTT);
9574 intel_ring_emit(ring, DERRMR);
9575 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9576 if (IS_GEN8(dev)) {
9577 intel_ring_emit(ring, 0);
9578 intel_ring_emit(ring, MI_NOOP);
9579 }
9580 }
9581
9582 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9583 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9584 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9585 intel_ring_emit(ring, (MI_NOOP));
9586
9587 intel_mark_page_flip_active(intel_crtc);
9588 __intel_ring_advance(ring);
9589 return 0;
9590 }
9591
9592 static bool use_mmio_flip(struct intel_engine_cs *ring,
9593 struct drm_i915_gem_object *obj)
9594 {
9595 /*
9596 * This is not being used for older platforms, because
9597 * non-availability of flip done interrupt forces us to use
9598 * CS flips. Older platforms derive flip done using some clever
9599 * tricks involving the flip_pending status bits and vblank irqs.
9600 * So using MMIO flips there would disrupt this mechanism.
9601 */
9602
9603 if (ring == NULL)
9604 return true;
9605
9606 if (INTEL_INFO(ring->dev)->gen < 5)
9607 return false;
9608
9609 if (i915.use_mmio_flip < 0)
9610 return false;
9611 else if (i915.use_mmio_flip > 0)
9612 return true;
9613 else if (i915.enable_execlists)
9614 return true;
9615 else
9616 return ring != obj->ring;
9617 }
9618
9619 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9620 {
9621 struct drm_device *dev = intel_crtc->base.dev;
9622 struct drm_i915_private *dev_priv = dev->dev_private;
9623 struct intel_framebuffer *intel_fb =
9624 to_intel_framebuffer(intel_crtc->base.primary->fb);
9625 struct drm_i915_gem_object *obj = intel_fb->obj;
9626 u32 dspcntr;
9627 u32 reg;
9628
9629 intel_mark_page_flip_active(intel_crtc);
9630
9631 reg = DSPCNTR(intel_crtc->plane);
9632 dspcntr = I915_READ(reg);
9633
9634 if (INTEL_INFO(dev)->gen >= 4) {
9635 if (obj->tiling_mode != I915_TILING_NONE)
9636 dspcntr |= DISPPLANE_TILED;
9637 else
9638 dspcntr &= ~DISPPLANE_TILED;
9639 }
9640 I915_WRITE(reg, dspcntr);
9641
9642 I915_WRITE(DSPSURF(intel_crtc->plane),
9643 intel_crtc->unpin_work->gtt_offset);
9644 POSTING_READ(DSPSURF(intel_crtc->plane));
9645 }
9646
9647 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9648 {
9649 struct intel_engine_cs *ring;
9650 int ret;
9651
9652 lockdep_assert_held(&obj->base.dev->struct_mutex);
9653
9654 if (!obj->last_write_seqno)
9655 return 0;
9656
9657 ring = obj->ring;
9658
9659 if (i915_seqno_passed(ring->get_seqno(ring, true),
9660 obj->last_write_seqno))
9661 return 0;
9662
9663 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9664 if (ret)
9665 return ret;
9666
9667 if (WARN_ON(!ring->irq_get(ring)))
9668 return 0;
9669
9670 return 1;
9671 }
9672
9673 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9674 {
9675 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9676 struct intel_crtc *intel_crtc;
9677 unsigned long irq_flags;
9678 u32 seqno;
9679
9680 seqno = ring->get_seqno(ring, false);
9681
9682 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9683 for_each_intel_crtc(ring->dev, intel_crtc) {
9684 struct intel_mmio_flip *mmio_flip;
9685
9686 mmio_flip = &intel_crtc->mmio_flip;
9687 if (mmio_flip->seqno == 0)
9688 continue;
9689
9690 if (ring->id != mmio_flip->ring_id)
9691 continue;
9692
9693 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9694 intel_do_mmio_flip(intel_crtc);
9695 mmio_flip->seqno = 0;
9696 ring->irq_put(ring);
9697 }
9698 }
9699 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9700 }
9701
9702 static int intel_queue_mmio_flip(struct drm_device *dev,
9703 struct drm_crtc *crtc,
9704 struct drm_framebuffer *fb,
9705 struct drm_i915_gem_object *obj,
9706 struct intel_engine_cs *ring,
9707 uint32_t flags)
9708 {
9709 struct drm_i915_private *dev_priv = dev->dev_private;
9710 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9711 unsigned long irq_flags;
9712 int ret;
9713
9714 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9715 return -EBUSY;
9716
9717 ret = intel_postpone_flip(obj);
9718 if (ret < 0)
9719 return ret;
9720 if (ret == 0) {
9721 intel_do_mmio_flip(intel_crtc);
9722 return 0;
9723 }
9724
9725 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9726 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9727 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9728 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9729
9730 /*
9731 * Double check to catch cases where irq fired before
9732 * mmio flip data was ready
9733 */
9734 intel_notify_mmio_flip(obj->ring);
9735 return 0;
9736 }
9737
9738 static int intel_default_queue_flip(struct drm_device *dev,
9739 struct drm_crtc *crtc,
9740 struct drm_framebuffer *fb,
9741 struct drm_i915_gem_object *obj,
9742 struct intel_engine_cs *ring,
9743 uint32_t flags)
9744 {
9745 return -ENODEV;
9746 }
9747
9748 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9749 struct drm_framebuffer *fb,
9750 struct drm_pending_vblank_event *event,
9751 uint32_t page_flip_flags)
9752 {
9753 struct drm_device *dev = crtc->dev;
9754 struct drm_i915_private *dev_priv = dev->dev_private;
9755 struct drm_framebuffer *old_fb = crtc->primary->fb;
9756 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9758 enum pipe pipe = intel_crtc->pipe;
9759 struct intel_unpin_work *work;
9760 struct intel_engine_cs *ring;
9761 unsigned long flags;
9762 int ret;
9763
9764 //trigger software GT busyness calculation
9765 gen8_flip_interrupt(dev);
9766
9767 /*
9768 * drm_mode_page_flip_ioctl() should already catch this, but double
9769 * check to be safe. In the future we may enable pageflipping from
9770 * a disabled primary plane.
9771 */
9772 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9773 return -EBUSY;
9774
9775 /* Can't change pixel format via MI display flips. */
9776 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9777 return -EINVAL;
9778
9779 /*
9780 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9781 * Note that pitch changes could also affect these register.
9782 */
9783 if (INTEL_INFO(dev)->gen > 3 &&
9784 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9785 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9786 return -EINVAL;
9787
9788 if (i915_terminally_wedged(&dev_priv->gpu_error))
9789 goto out_hang;
9790
9791 work = kzalloc(sizeof(*work), GFP_KERNEL);
9792 if (work == NULL)
9793 return -ENOMEM;
9794
9795 work->event = event;
9796 work->crtc = crtc;
9797 work->old_fb_obj = intel_fb_obj(old_fb);
9798 INIT_WORK(&work->work, intel_unpin_work_fn);
9799
9800 ret = drm_crtc_vblank_get(crtc);
9801 if (ret)
9802 goto free_work;
9803
9804 /* We borrow the event spin lock for protecting unpin_work */
9805 spin_lock_irqsave(&dev->event_lock, flags);
9806 if (intel_crtc->unpin_work) {
9807 spin_unlock_irqrestore(&dev->event_lock, flags);
9808 kfree(work);
9809 drm_crtc_vblank_put(crtc);
9810
9811 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9812 return -EBUSY;
9813 }
9814 intel_crtc->unpin_work = work;
9815 spin_unlock_irqrestore(&dev->event_lock, flags);
9816
9817 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9818 flush_workqueue(dev_priv->wq);
9819
9820 ret = i915_mutex_lock_interruptible(dev);
9821 if (ret)
9822 goto cleanup;
9823
9824 /* Reference the objects for the scheduled work. */
9825 drm_gem_object_reference(&work->old_fb_obj->base);
9826 drm_gem_object_reference(&obj->base);
9827
9828 crtc->primary->fb = fb;
9829
9830 work->pending_flip_obj = obj;
9831
9832 work->enable_stall_check = true;
9833
9834 atomic_inc(&intel_crtc->unpin_work_count);
9835 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9836
9837 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9838 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9839
9840 if (IS_VALLEYVIEW(dev)) {
9841 ring = &dev_priv->ring[BCS];
9842 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9843 /* vlv: DISPLAY_FLIP fails to change tiling */
9844 ring = NULL;
9845 } else if (IS_IVYBRIDGE(dev)) {
9846 ring = &dev_priv->ring[BCS];
9847 } else if (INTEL_INFO(dev)->gen >= 7) {
9848 ring = obj->ring;
9849 if (ring == NULL || ring->id != RCS)
9850 ring = &dev_priv->ring[BCS];
9851 } else {
9852 ring = &dev_priv->ring[RCS];
9853 }
9854
9855 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9856 if (ret)
9857 goto cleanup_pending;
9858
9859 work->gtt_offset =
9860 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9861
9862 if (use_mmio_flip(ring, obj))
9863 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9864 page_flip_flags);
9865 else
9866 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9867 page_flip_flags);
9868 if (ret)
9869 goto cleanup_unpin;
9870
9871 i915_gem_track_fb(work->old_fb_obj, obj,
9872 INTEL_FRONTBUFFER_PRIMARY(pipe));
9873
9874 intel_disable_fbc(dev);
9875 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9876 mutex_unlock(&dev->struct_mutex);
9877
9878 trace_i915_flip_request(intel_crtc->plane, obj);
9879
9880 return 0;
9881
9882 cleanup_unpin:
9883 intel_unpin_fb_obj(obj);
9884 cleanup_pending:
9885 atomic_dec(&intel_crtc->unpin_work_count);
9886 crtc->primary->fb = old_fb;
9887 drm_gem_object_unreference(&work->old_fb_obj->base);
9888 drm_gem_object_unreference(&obj->base);
9889 mutex_unlock(&dev->struct_mutex);
9890
9891 cleanup:
9892 spin_lock_irqsave(&dev->event_lock, flags);
9893 intel_crtc->unpin_work = NULL;
9894 spin_unlock_irqrestore(&dev->event_lock, flags);
9895
9896 drm_crtc_vblank_put(crtc);
9897 free_work:
9898 kfree(work);
9899
9900 if (ret == -EIO) {
9901 out_hang:
9902 intel_crtc_wait_for_pending_flips(crtc);
9903 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9904 if (ret == 0 && event)
9905 drm_send_vblank_event(dev, pipe, event);
9906 }
9907 return ret;
9908 }
9909
9910 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9911 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9912 .load_lut = intel_crtc_load_lut,
9913 };
9914
9915 /**
9916 * intel_modeset_update_staged_output_state
9917 *
9918 * Updates the staged output configuration state, e.g. after we've read out the
9919 * current hw state.
9920 */
9921 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9922 {
9923 struct intel_crtc *crtc;
9924 struct intel_encoder *encoder;
9925 struct intel_connector *connector;
9926
9927 list_for_each_entry(connector, &dev->mode_config.connector_list,
9928 base.head) {
9929 connector->new_encoder =
9930 to_intel_encoder(connector->base.encoder);
9931 }
9932
9933 for_each_intel_encoder(dev, encoder) {
9934 encoder->new_crtc =
9935 to_intel_crtc(encoder->base.crtc);
9936 }
9937
9938 for_each_intel_crtc(dev, crtc) {
9939 crtc->new_enabled = crtc->base.enabled;
9940
9941 if (crtc->new_enabled)
9942 crtc->new_config = &crtc->config;
9943 else
9944 crtc->new_config = NULL;
9945 }
9946 }
9947
9948 /**
9949 * intel_modeset_commit_output_state
9950 *
9951 * This function copies the stage display pipe configuration to the real one.
9952 */
9953 static void intel_modeset_commit_output_state(struct drm_device *dev)
9954 {
9955 struct intel_crtc *crtc;
9956 struct intel_encoder *encoder;
9957 struct intel_connector *connector;
9958
9959 list_for_each_entry(connector, &dev->mode_config.connector_list,
9960 base.head) {
9961 connector->base.encoder = &connector->new_encoder->base;
9962 }
9963
9964 for_each_intel_encoder(dev, encoder) {
9965 encoder->base.crtc = &encoder->new_crtc->base;
9966 }
9967
9968 for_each_intel_crtc(dev, crtc) {
9969 crtc->base.enabled = crtc->new_enabled;
9970 }
9971 }
9972
9973 static void
9974 connected_sink_compute_bpp(struct intel_connector *connector,
9975 struct intel_crtc_config *pipe_config)
9976 {
9977 int bpp = pipe_config->pipe_bpp;
9978
9979 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9980 connector->base.base.id,
9981 connector->base.name);
9982
9983 /* Don't use an invalid EDID bpc value */
9984 if (connector->base.display_info.bpc &&
9985 connector->base.display_info.bpc * 3 < bpp) {
9986 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9987 bpp, connector->base.display_info.bpc*3);
9988 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9989 }
9990
9991 /* Clamp bpp to 8 on screens without EDID 1.4 */
9992 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9993 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9994 bpp);
9995 pipe_config->pipe_bpp = 24;
9996 }
9997 }
9998
9999 static int
10000 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10001 struct drm_framebuffer *fb,
10002 struct intel_crtc_config *pipe_config)
10003 {
10004 struct drm_device *dev = crtc->base.dev;
10005 struct intel_connector *connector;
10006 int bpp;
10007
10008 switch (fb->pixel_format) {
10009 case DRM_FORMAT_C8:
10010 bpp = 8*3; /* since we go through a colormap */
10011 break;
10012 case DRM_FORMAT_XRGB1555:
10013 case DRM_FORMAT_ARGB1555:
10014 /* checked in intel_framebuffer_init already */
10015 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10016 return -EINVAL;
10017 case DRM_FORMAT_RGB565:
10018 bpp = 6*3; /* min is 18bpp */
10019 break;
10020 case DRM_FORMAT_XBGR8888:
10021 case DRM_FORMAT_ABGR8888:
10022 /* checked in intel_framebuffer_init already */
10023 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10024 return -EINVAL;
10025 case DRM_FORMAT_XRGB8888:
10026 case DRM_FORMAT_ARGB8888:
10027 bpp = 8*3;
10028 break;
10029 case DRM_FORMAT_XRGB2101010:
10030 case DRM_FORMAT_ARGB2101010:
10031 case DRM_FORMAT_XBGR2101010:
10032 case DRM_FORMAT_ABGR2101010:
10033 /* checked in intel_framebuffer_init already */
10034 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10035 return -EINVAL;
10036 bpp = 10*3;
10037 break;
10038 /* TODO: gen4+ supports 16 bpc floating point, too. */
10039 default:
10040 DRM_DEBUG_KMS("unsupported depth\n");
10041 return -EINVAL;
10042 }
10043
10044 pipe_config->pipe_bpp = bpp;
10045
10046 /* Clamp display bpp to EDID value */
10047 list_for_each_entry(connector, &dev->mode_config.connector_list,
10048 base.head) {
10049 if (!connector->new_encoder ||
10050 connector->new_encoder->new_crtc != crtc)
10051 continue;
10052
10053 connected_sink_compute_bpp(connector, pipe_config);
10054 }
10055
10056 return bpp;
10057 }
10058
10059 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10060 {
10061 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10062 "type: 0x%x flags: 0x%x\n",
10063 mode->crtc_clock,
10064 mode->crtc_hdisplay, mode->crtc_hsync_start,
10065 mode->crtc_hsync_end, mode->crtc_htotal,
10066 mode->crtc_vdisplay, mode->crtc_vsync_start,
10067 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10068 }
10069
10070 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10071 struct intel_crtc_config *pipe_config,
10072 const char *context)
10073 {
10074 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10075 context, pipe_name(crtc->pipe));
10076
10077 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10078 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10079 pipe_config->pipe_bpp, pipe_config->dither);
10080 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10081 pipe_config->has_pch_encoder,
10082 pipe_config->fdi_lanes,
10083 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10084 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10085 pipe_config->fdi_m_n.tu);
10086 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10087 pipe_config->has_dp_encoder,
10088 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10089 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10090 pipe_config->dp_m_n.tu);
10091
10092 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10093 pipe_config->has_dp_encoder,
10094 pipe_config->dp_m2_n2.gmch_m,
10095 pipe_config->dp_m2_n2.gmch_n,
10096 pipe_config->dp_m2_n2.link_m,
10097 pipe_config->dp_m2_n2.link_n,
10098 pipe_config->dp_m2_n2.tu);
10099
10100 DRM_DEBUG_KMS("requested mode:\n");
10101 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10102 DRM_DEBUG_KMS("adjusted mode:\n");
10103 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
10104 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
10105 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10106 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10107 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10108 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10109 pipe_config->gmch_pfit.control,
10110 pipe_config->gmch_pfit.pgm_ratios,
10111 pipe_config->gmch_pfit.lvds_border_bits);
10112 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10113 pipe_config->pch_pfit.pos,
10114 pipe_config->pch_pfit.size,
10115 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10116 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10117 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10118 }
10119
10120 static bool encoders_cloneable(const struct intel_encoder *a,
10121 const struct intel_encoder *b)
10122 {
10123 /* masks could be asymmetric, so check both ways */
10124 return a == b || (a->cloneable & (1 << b->type) &&
10125 b->cloneable & (1 << a->type));
10126 }
10127
10128 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10129 struct intel_encoder *encoder)
10130 {
10131 struct drm_device *dev = crtc->base.dev;
10132 struct intel_encoder *source_encoder;
10133
10134 for_each_intel_encoder(dev, source_encoder) {
10135 if (source_encoder->new_crtc != crtc)
10136 continue;
10137
10138 if (!encoders_cloneable(encoder, source_encoder))
10139 return false;
10140 }
10141
10142 return true;
10143 }
10144
10145 static bool check_encoder_cloning(struct intel_crtc *crtc)
10146 {
10147 struct drm_device *dev = crtc->base.dev;
10148 struct intel_encoder *encoder;
10149
10150 for_each_intel_encoder(dev, encoder) {
10151 if (encoder->new_crtc != crtc)
10152 continue;
10153
10154 if (!check_single_encoder_cloning(crtc, encoder))
10155 return false;
10156 }
10157
10158 return true;
10159 }
10160
10161 static struct intel_crtc_config *
10162 intel_modeset_pipe_config(struct drm_crtc *crtc,
10163 struct drm_framebuffer *fb,
10164 struct drm_display_mode *mode)
10165 {
10166 struct drm_device *dev = crtc->dev;
10167 struct intel_encoder *encoder;
10168 struct intel_crtc_config *pipe_config;
10169 int plane_bpp, ret = -EINVAL;
10170 bool retry = true;
10171
10172 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10173 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10174 return ERR_PTR(-EINVAL);
10175 }
10176
10177 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10178 if (!pipe_config)
10179 return ERR_PTR(-ENOMEM);
10180
10181 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10182 drm_mode_copy(&pipe_config->requested_mode, mode);
10183
10184 pipe_config->cpu_transcoder =
10185 (enum transcoder) to_intel_crtc(crtc)->pipe;
10186 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10187
10188 /*
10189 * Sanitize sync polarity flags based on requested ones. If neither
10190 * positive or negative polarity is requested, treat this as meaning
10191 * negative polarity.
10192 */
10193 if (!(pipe_config->adjusted_mode.flags &
10194 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10195 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10196
10197 if (!(pipe_config->adjusted_mode.flags &
10198 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10199 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10200
10201 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10202 * plane pixel format and any sink constraints into account. Returns the
10203 * source plane bpp so that dithering can be selected on mismatches
10204 * after encoders and crtc also have had their say. */
10205 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10206 fb, pipe_config);
10207 if (plane_bpp < 0)
10208 goto fail;
10209
10210 /*
10211 * Determine the real pipe dimensions. Note that stereo modes can
10212 * increase the actual pipe size due to the frame doubling and
10213 * insertion of additional space for blanks between the frame. This
10214 * is stored in the crtc timings. We use the requested mode to do this
10215 * computation to clearly distinguish it from the adjusted mode, which
10216 * can be changed by the connectors in the below retry loop.
10217 */
10218 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10219 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10220 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10221
10222 encoder_retry:
10223 /* Ensure the port clock defaults are reset when retrying. */
10224 pipe_config->port_clock = 0;
10225 pipe_config->pixel_multiplier = 1;
10226
10227 /* Fill in default crtc timings, allow encoders to overwrite them. */
10228 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10229
10230 /* Pass our mode to the connectors and the CRTC to give them a chance to
10231 * adjust it according to limitations or connector properties, and also
10232 * a chance to reject the mode entirely.
10233 */
10234 for_each_intel_encoder(dev, encoder) {
10235
10236 if (&encoder->new_crtc->base != crtc)
10237 continue;
10238
10239 if (!(encoder->compute_config(encoder, pipe_config))) {
10240 DRM_DEBUG_KMS("Encoder config failure\n");
10241 goto fail;
10242 }
10243 }
10244
10245 /* Set default port clock if not overwritten by the encoder. Needs to be
10246 * done afterwards in case the encoder adjusts the mode. */
10247 if (!pipe_config->port_clock)
10248 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10249 * pipe_config->pixel_multiplier;
10250
10251 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10252 if (ret < 0) {
10253 DRM_DEBUG_KMS("CRTC fixup failed\n");
10254 goto fail;
10255 }
10256
10257 if (ret == RETRY) {
10258 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10259 ret = -EINVAL;
10260 goto fail;
10261 }
10262
10263 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10264 retry = false;
10265 goto encoder_retry;
10266 }
10267
10268 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10269 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10270 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10271
10272 return pipe_config;
10273 fail:
10274 kfree(pipe_config);
10275 return ERR_PTR(ret);
10276 }
10277
10278 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10279 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10280 static void
10281 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10282 unsigned *prepare_pipes, unsigned *disable_pipes)
10283 {
10284 struct intel_crtc *intel_crtc;
10285 struct drm_device *dev = crtc->dev;
10286 struct intel_encoder *encoder;
10287 struct intel_connector *connector;
10288 struct drm_crtc *tmp_crtc;
10289
10290 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10291
10292 /* Check which crtcs have changed outputs connected to them, these need
10293 * to be part of the prepare_pipes mask. We don't (yet) support global
10294 * modeset across multiple crtcs, so modeset_pipes will only have one
10295 * bit set at most. */
10296 list_for_each_entry(connector, &dev->mode_config.connector_list,
10297 base.head) {
10298 if (connector->base.encoder == &connector->new_encoder->base)
10299 continue;
10300
10301 if (connector->base.encoder) {
10302 tmp_crtc = connector->base.encoder->crtc;
10303
10304 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10305 }
10306
10307 if (connector->new_encoder)
10308 *prepare_pipes |=
10309 1 << connector->new_encoder->new_crtc->pipe;
10310 }
10311
10312 for_each_intel_encoder(dev, encoder) {
10313 if (encoder->base.crtc == &encoder->new_crtc->base)
10314 continue;
10315
10316 if (encoder->base.crtc) {
10317 tmp_crtc = encoder->base.crtc;
10318
10319 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10320 }
10321
10322 if (encoder->new_crtc)
10323 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10324 }
10325
10326 /* Check for pipes that will be enabled/disabled ... */
10327 for_each_intel_crtc(dev, intel_crtc) {
10328 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10329 continue;
10330
10331 if (!intel_crtc->new_enabled)
10332 *disable_pipes |= 1 << intel_crtc->pipe;
10333 else
10334 *prepare_pipes |= 1 << intel_crtc->pipe;
10335 }
10336
10337
10338 /* set_mode is also used to update properties on life display pipes. */
10339 intel_crtc = to_intel_crtc(crtc);
10340 if (intel_crtc->new_enabled)
10341 *prepare_pipes |= 1 << intel_crtc->pipe;
10342
10343 /*
10344 * For simplicity do a full modeset on any pipe where the output routing
10345 * changed. We could be more clever, but that would require us to be
10346 * more careful with calling the relevant encoder->mode_set functions.
10347 */
10348 if (*prepare_pipes)
10349 *modeset_pipes = *prepare_pipes;
10350
10351 /* ... and mask these out. */
10352 *modeset_pipes &= ~(*disable_pipes);
10353 *prepare_pipes &= ~(*disable_pipes);
10354
10355 /*
10356 * HACK: We don't (yet) fully support global modesets. intel_set_config
10357 * obies this rule, but the modeset restore mode of
10358 * intel_modeset_setup_hw_state does not.
10359 */
10360 *modeset_pipes &= 1 << intel_crtc->pipe;
10361 *prepare_pipes &= 1 << intel_crtc->pipe;
10362
10363 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10364 *modeset_pipes, *prepare_pipes, *disable_pipes);
10365 }
10366
10367 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10368 {
10369 struct drm_encoder *encoder;
10370 struct drm_device *dev = crtc->dev;
10371
10372 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10373 if (encoder->crtc == crtc)
10374 return true;
10375
10376 return false;
10377 }
10378
10379 static void
10380 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10381 {
10382 struct intel_encoder *intel_encoder;
10383 struct intel_crtc *intel_crtc;
10384 struct drm_connector *connector;
10385
10386 for_each_intel_encoder(dev, intel_encoder) {
10387 if (!intel_encoder->base.crtc)
10388 continue;
10389
10390 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10391
10392 if (prepare_pipes & (1 << intel_crtc->pipe))
10393 intel_encoder->connectors_active = false;
10394 }
10395
10396 intel_modeset_commit_output_state(dev);
10397
10398 /* Double check state. */
10399 for_each_intel_crtc(dev, intel_crtc) {
10400 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10401 WARN_ON(intel_crtc->new_config &&
10402 intel_crtc->new_config != &intel_crtc->config);
10403 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10404 }
10405
10406 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10407 if (!connector->encoder || !connector->encoder->crtc)
10408 continue;
10409
10410 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10411
10412 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10413 struct drm_property *dpms_property =
10414 dev->mode_config.dpms_property;
10415
10416 connector->dpms = DRM_MODE_DPMS_ON;
10417 drm_object_property_set_value(&connector->base,
10418 dpms_property,
10419 DRM_MODE_DPMS_ON);
10420
10421 intel_encoder = to_intel_encoder(connector->encoder);
10422 intel_encoder->connectors_active = true;
10423 }
10424 }
10425
10426 }
10427
10428 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10429 {
10430 int diff;
10431
10432 if (clock1 == clock2)
10433 return true;
10434
10435 if (!clock1 || !clock2)
10436 return false;
10437
10438 diff = abs(clock1 - clock2);
10439
10440 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10441 return true;
10442
10443 return false;
10444 }
10445
10446 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10447 list_for_each_entry((intel_crtc), \
10448 &(dev)->mode_config.crtc_list, \
10449 base.head) \
10450 if (mask & (1 <<(intel_crtc)->pipe))
10451
10452 static bool
10453 intel_pipe_config_compare(struct drm_device *dev,
10454 struct intel_crtc_config *current_config,
10455 struct intel_crtc_config *pipe_config)
10456 {
10457 #define PIPE_CONF_CHECK_X(name) \
10458 if (current_config->name != pipe_config->name) { \
10459 DRM_ERROR("mismatch in " #name " " \
10460 "(expected 0x%08x, found 0x%08x)\n", \
10461 current_config->name, \
10462 pipe_config->name); \
10463 return false; \
10464 }
10465
10466 #define PIPE_CONF_CHECK_I(name) \
10467 if (current_config->name != pipe_config->name) { \
10468 DRM_ERROR("mismatch in " #name " " \
10469 "(expected %i, found %i)\n", \
10470 current_config->name, \
10471 pipe_config->name); \
10472 return false; \
10473 }
10474
10475 /* This is required for BDW+ where there is only one set of registers for
10476 * switching between high and low RR.
10477 * This macro can be used whenever a comparison has to be made between one
10478 * hw state and multiple sw state variables.
10479 */
10480 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10481 if ((current_config->name != pipe_config->name) && \
10482 (current_config->alt_name != pipe_config->name)) { \
10483 DRM_ERROR("mismatch in " #name " " \
10484 "(expected %i or %i, found %i)\n", \
10485 current_config->name, \
10486 current_config->alt_name, \
10487 pipe_config->name); \
10488 return false; \
10489 }
10490
10491 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10492 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10493 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10494 "(expected %i, found %i)\n", \
10495 current_config->name & (mask), \
10496 pipe_config->name & (mask)); \
10497 return false; \
10498 }
10499
10500 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10501 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10502 DRM_ERROR("mismatch in " #name " " \
10503 "(expected %i, found %i)\n", \
10504 current_config->name, \
10505 pipe_config->name); \
10506 return false; \
10507 }
10508
10509 #define PIPE_CONF_QUIRK(quirk) \
10510 ((current_config->quirks | pipe_config->quirks) & (quirk))
10511
10512 PIPE_CONF_CHECK_I(cpu_transcoder);
10513
10514 PIPE_CONF_CHECK_I(has_pch_encoder);
10515 PIPE_CONF_CHECK_I(fdi_lanes);
10516 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10517 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10518 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10519 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10520 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10521
10522 PIPE_CONF_CHECK_I(has_dp_encoder);
10523
10524 if (INTEL_INFO(dev)->gen < 8) {
10525 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10526 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10527 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10528 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10529 PIPE_CONF_CHECK_I(dp_m_n.tu);
10530
10531 if (current_config->has_drrs) {
10532 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10533 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10534 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10535 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10536 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10537 }
10538 } else {
10539 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10540 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10541 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10542 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10543 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10544 }
10545
10546 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10547 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10548 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10549 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10550 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10551 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10552
10553 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10554 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10555 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10556 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10557 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10558 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10559
10560 PIPE_CONF_CHECK_I(pixel_multiplier);
10561 PIPE_CONF_CHECK_I(has_hdmi_sink);
10562 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10563 IS_VALLEYVIEW(dev))
10564 PIPE_CONF_CHECK_I(limited_color_range);
10565
10566 PIPE_CONF_CHECK_I(has_audio);
10567
10568 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10569 DRM_MODE_FLAG_INTERLACE);
10570
10571 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10572 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10573 DRM_MODE_FLAG_PHSYNC);
10574 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10575 DRM_MODE_FLAG_NHSYNC);
10576 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10577 DRM_MODE_FLAG_PVSYNC);
10578 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10579 DRM_MODE_FLAG_NVSYNC);
10580 }
10581
10582 PIPE_CONF_CHECK_I(pipe_src_w);
10583 PIPE_CONF_CHECK_I(pipe_src_h);
10584
10585 /*
10586 * FIXME: BIOS likes to set up a cloned config with lvds+external
10587 * screen. Since we don't yet re-compute the pipe config when moving
10588 * just the lvds port away to another pipe the sw tracking won't match.
10589 *
10590 * Proper atomic modesets with recomputed global state will fix this.
10591 * Until then just don't check gmch state for inherited modes.
10592 */
10593 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10594 PIPE_CONF_CHECK_I(gmch_pfit.control);
10595 /* pfit ratios are autocomputed by the hw on gen4+ */
10596 if (INTEL_INFO(dev)->gen < 4)
10597 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10598 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10599 }
10600
10601 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10602 if (current_config->pch_pfit.enabled) {
10603 PIPE_CONF_CHECK_I(pch_pfit.pos);
10604 PIPE_CONF_CHECK_I(pch_pfit.size);
10605 }
10606
10607 /* BDW+ don't expose a synchronous way to read the state */
10608 if (IS_HASWELL(dev))
10609 PIPE_CONF_CHECK_I(ips_enabled);
10610
10611 PIPE_CONF_CHECK_I(double_wide);
10612
10613 PIPE_CONF_CHECK_X(ddi_pll_sel);
10614
10615 PIPE_CONF_CHECK_I(shared_dpll);
10616 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10617 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10618 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10619 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10620 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10621
10622 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10623 PIPE_CONF_CHECK_I(pipe_bpp);
10624
10625 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10626 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10627
10628 #undef PIPE_CONF_CHECK_X
10629 #undef PIPE_CONF_CHECK_I
10630 #undef PIPE_CONF_CHECK_I_ALT
10631 #undef PIPE_CONF_CHECK_FLAGS
10632 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10633 #undef PIPE_CONF_QUIRK
10634
10635 return true;
10636 }
10637
10638 static void
10639 check_connector_state(struct drm_device *dev)
10640 {
10641 struct intel_connector *connector;
10642
10643 list_for_each_entry(connector, &dev->mode_config.connector_list,
10644 base.head) {
10645 /* This also checks the encoder/connector hw state with the
10646 * ->get_hw_state callbacks. */
10647 intel_connector_check_state(connector);
10648
10649 WARN(&connector->new_encoder->base != connector->base.encoder,
10650 "connector's staged encoder doesn't match current encoder\n");
10651 }
10652 }
10653
10654 static void
10655 check_encoder_state(struct drm_device *dev)
10656 {
10657 struct intel_encoder *encoder;
10658 struct intel_connector *connector;
10659
10660 for_each_intel_encoder(dev, encoder) {
10661 bool enabled = false;
10662 bool active = false;
10663 enum pipe pipe, tracked_pipe;
10664
10665 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10666 encoder->base.base.id,
10667 encoder->base.name);
10668
10669 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10670 "encoder's stage crtc doesn't match current crtc\n");
10671 WARN(encoder->connectors_active && !encoder->base.crtc,
10672 "encoder's active_connectors set, but no crtc\n");
10673
10674 list_for_each_entry(connector, &dev->mode_config.connector_list,
10675 base.head) {
10676 if (connector->base.encoder != &encoder->base)
10677 continue;
10678 enabled = true;
10679 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10680 active = true;
10681 }
10682 /*
10683 * for MST connectors if we unplug the connector is gone
10684 * away but the encoder is still connected to a crtc
10685 * until a modeset happens in response to the hotplug.
10686 */
10687 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10688 continue;
10689
10690 WARN(!!encoder->base.crtc != enabled,
10691 "encoder's enabled state mismatch "
10692 "(expected %i, found %i)\n",
10693 !!encoder->base.crtc, enabled);
10694 WARN(active && !encoder->base.crtc,
10695 "active encoder with no crtc\n");
10696
10697 WARN(encoder->connectors_active != active,
10698 "encoder's computed active state doesn't match tracked active state "
10699 "(expected %i, found %i)\n", active, encoder->connectors_active);
10700
10701 active = encoder->get_hw_state(encoder, &pipe);
10702 WARN(active != encoder->connectors_active,
10703 "encoder's hw state doesn't match sw tracking "
10704 "(expected %i, found %i)\n",
10705 encoder->connectors_active, active);
10706
10707 if (!encoder->base.crtc)
10708 continue;
10709
10710 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10711 WARN(active && pipe != tracked_pipe,
10712 "active encoder's pipe doesn't match"
10713 "(expected %i, found %i)\n",
10714 tracked_pipe, pipe);
10715
10716 }
10717 }
10718
10719 static void
10720 check_crtc_state(struct drm_device *dev)
10721 {
10722 struct drm_i915_private *dev_priv = dev->dev_private;
10723 struct intel_crtc *crtc;
10724 struct intel_encoder *encoder;
10725 struct intel_crtc_config pipe_config;
10726
10727 for_each_intel_crtc(dev, crtc) {
10728 bool enabled = false;
10729 bool active = false;
10730
10731 memset(&pipe_config, 0, sizeof(pipe_config));
10732
10733 DRM_DEBUG_KMS("[CRTC:%d]\n",
10734 crtc->base.base.id);
10735
10736 WARN(crtc->active && !crtc->base.enabled,
10737 "active crtc, but not enabled in sw tracking\n");
10738
10739 for_each_intel_encoder(dev, encoder) {
10740 if (encoder->base.crtc != &crtc->base)
10741 continue;
10742 enabled = true;
10743 if (encoder->connectors_active)
10744 active = true;
10745 }
10746
10747 WARN(active != crtc->active,
10748 "crtc's computed active state doesn't match tracked active state "
10749 "(expected %i, found %i)\n", active, crtc->active);
10750 WARN(enabled != crtc->base.enabled,
10751 "crtc's computed enabled state doesn't match tracked enabled state "
10752 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10753
10754 active = dev_priv->display.get_pipe_config(crtc,
10755 &pipe_config);
10756
10757 /* hw state is inconsistent with the pipe A quirk */
10758 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10759 active = crtc->active;
10760
10761 for_each_intel_encoder(dev, encoder) {
10762 enum pipe pipe;
10763 if (encoder->base.crtc != &crtc->base)
10764 continue;
10765 if (encoder->get_hw_state(encoder, &pipe))
10766 encoder->get_config(encoder, &pipe_config);
10767 }
10768
10769 WARN(crtc->active != active,
10770 "crtc active state doesn't match with hw state "
10771 "(expected %i, found %i)\n", crtc->active, active);
10772
10773 if (active &&
10774 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10775 WARN(1, "pipe state doesn't match!\n");
10776 intel_dump_pipe_config(crtc, &pipe_config,
10777 "[hw state]");
10778 intel_dump_pipe_config(crtc, &crtc->config,
10779 "[sw state]");
10780 }
10781 }
10782 }
10783
10784 static void
10785 check_shared_dpll_state(struct drm_device *dev)
10786 {
10787 struct drm_i915_private *dev_priv = dev->dev_private;
10788 struct intel_crtc *crtc;
10789 struct intel_dpll_hw_state dpll_hw_state;
10790 int i;
10791
10792 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10793 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10794 int enabled_crtcs = 0, active_crtcs = 0;
10795 bool active;
10796
10797 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10798
10799 DRM_DEBUG_KMS("%s\n", pll->name);
10800
10801 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10802
10803 WARN(pll->active > pll->refcount,
10804 "more active pll users than references: %i vs %i\n",
10805 pll->active, pll->refcount);
10806 WARN(pll->active && !pll->on,
10807 "pll in active use but not on in sw tracking\n");
10808 WARN(pll->on && !pll->active,
10809 "pll in on but not on in use in sw tracking\n");
10810 WARN(pll->on != active,
10811 "pll on state mismatch (expected %i, found %i)\n",
10812 pll->on, active);
10813
10814 for_each_intel_crtc(dev, crtc) {
10815 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10816 enabled_crtcs++;
10817 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10818 active_crtcs++;
10819 }
10820 WARN(pll->active != active_crtcs,
10821 "pll active crtcs mismatch (expected %i, found %i)\n",
10822 pll->active, active_crtcs);
10823 WARN(pll->refcount != enabled_crtcs,
10824 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10825 pll->refcount, enabled_crtcs);
10826
10827 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10828 sizeof(dpll_hw_state)),
10829 "pll hw state mismatch\n");
10830 }
10831 }
10832
10833 void
10834 intel_modeset_check_state(struct drm_device *dev)
10835 {
10836 check_connector_state(dev);
10837 check_encoder_state(dev);
10838 check_crtc_state(dev);
10839 check_shared_dpll_state(dev);
10840 }
10841
10842 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10843 int dotclock)
10844 {
10845 /*
10846 * FDI already provided one idea for the dotclock.
10847 * Yell if the encoder disagrees.
10848 */
10849 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10850 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10851 pipe_config->adjusted_mode.crtc_clock, dotclock);
10852 }
10853
10854 static void update_scanline_offset(struct intel_crtc *crtc)
10855 {
10856 struct drm_device *dev = crtc->base.dev;
10857
10858 /*
10859 * The scanline counter increments at the leading edge of hsync.
10860 *
10861 * On most platforms it starts counting from vtotal-1 on the
10862 * first active line. That means the scanline counter value is
10863 * always one less than what we would expect. Ie. just after
10864 * start of vblank, which also occurs at start of hsync (on the
10865 * last active line), the scanline counter will read vblank_start-1.
10866 *
10867 * On gen2 the scanline counter starts counting from 1 instead
10868 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10869 * to keep the value positive), instead of adding one.
10870 *
10871 * On HSW+ the behaviour of the scanline counter depends on the output
10872 * type. For DP ports it behaves like most other platforms, but on HDMI
10873 * there's an extra 1 line difference. So we need to add two instead of
10874 * one to the value.
10875 */
10876 if (IS_GEN2(dev)) {
10877 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10878 int vtotal;
10879
10880 vtotal = mode->crtc_vtotal;
10881 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10882 vtotal /= 2;
10883
10884 crtc->scanline_offset = vtotal - 1;
10885 } else if (HAS_DDI(dev) &&
10886 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10887 crtc->scanline_offset = 2;
10888 } else
10889 crtc->scanline_offset = 1;
10890 }
10891
10892 static int __intel_set_mode(struct drm_crtc *crtc,
10893 struct drm_display_mode *mode,
10894 int x, int y, struct drm_framebuffer *fb)
10895 {
10896 struct drm_device *dev = crtc->dev;
10897 struct drm_i915_private *dev_priv = dev->dev_private;
10898 struct drm_display_mode *saved_mode;
10899 struct intel_crtc_config *pipe_config = NULL;
10900 struct intel_crtc *intel_crtc;
10901 unsigned disable_pipes, prepare_pipes, modeset_pipes;
10902 int ret = 0;
10903
10904 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10905 if (!saved_mode)
10906 return -ENOMEM;
10907
10908 intel_modeset_affected_pipes(crtc, &modeset_pipes,
10909 &prepare_pipes, &disable_pipes);
10910
10911 *saved_mode = crtc->mode;
10912
10913 /* Hack: Because we don't (yet) support global modeset on multiple
10914 * crtcs, we don't keep track of the new mode for more than one crtc.
10915 * Hence simply check whether any bit is set in modeset_pipes in all the
10916 * pieces of code that are not yet converted to deal with mutliple crtcs
10917 * changing their mode at the same time. */
10918 if (modeset_pipes) {
10919 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10920 if (IS_ERR(pipe_config)) {
10921 ret = PTR_ERR(pipe_config);
10922 pipe_config = NULL;
10923
10924 goto out;
10925 }
10926 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10927 "[modeset]");
10928 to_intel_crtc(crtc)->new_config = pipe_config;
10929 }
10930
10931 /*
10932 * See if the config requires any additional preparation, e.g.
10933 * to adjust global state with pipes off. We need to do this
10934 * here so we can get the modeset_pipe updated config for the new
10935 * mode set on this crtc. For other crtcs we need to use the
10936 * adjusted_mode bits in the crtc directly.
10937 */
10938 if (IS_VALLEYVIEW(dev)) {
10939 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10940
10941 /* may have added more to prepare_pipes than we should */
10942 prepare_pipes &= ~disable_pipes;
10943 }
10944
10945 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10946 intel_crtc_disable(&intel_crtc->base);
10947
10948 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10949 if (intel_crtc->base.enabled)
10950 dev_priv->display.crtc_disable(&intel_crtc->base);
10951 }
10952
10953 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10954 * to set it here already despite that we pass it down the callchain.
10955 */
10956 if (modeset_pipes) {
10957 crtc->mode = *mode;
10958 /* mode_set/enable/disable functions rely on a correct pipe
10959 * config. */
10960 to_intel_crtc(crtc)->config = *pipe_config;
10961 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10962
10963 /*
10964 * Calculate and store various constants which
10965 * are later needed by vblank and swap-completion
10966 * timestamping. They are derived from true hwmode.
10967 */
10968 drm_calc_timestamping_constants(crtc,
10969 &pipe_config->adjusted_mode);
10970 }
10971
10972 /* Only after disabling all output pipelines that will be changed can we
10973 * update the the output configuration. */
10974 intel_modeset_update_state(dev, prepare_pipes);
10975
10976 if (dev_priv->display.modeset_global_resources)
10977 dev_priv->display.modeset_global_resources(dev);
10978
10979 /* Set up the DPLL and any encoders state that needs to adjust or depend
10980 * on the DPLL.
10981 */
10982 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10983 struct drm_framebuffer *old_fb = crtc->primary->fb;
10984 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10985 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10986
10987 mutex_lock(&dev->struct_mutex);
10988 ret = intel_pin_and_fence_fb_obj(dev,
10989 obj,
10990 NULL);
10991 if (ret != 0) {
10992 DRM_ERROR("pin & fence failed\n");
10993 mutex_unlock(&dev->struct_mutex);
10994 goto done;
10995 }
10996 if (old_fb)
10997 intel_unpin_fb_obj(old_obj);
10998 i915_gem_track_fb(old_obj, obj,
10999 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11000 mutex_unlock(&dev->struct_mutex);
11001
11002 crtc->primary->fb = fb;
11003 crtc->x = x;
11004 crtc->y = y;
11005
11006 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11007 x, y, fb);
11008 if (ret)
11009 goto done;
11010 }
11011
11012 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11013 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11014 update_scanline_offset(intel_crtc);
11015
11016 dev_priv->display.crtc_enable(&intel_crtc->base);
11017 }
11018
11019 /* FIXME: add subpixel order */
11020 done:
11021 if (ret && crtc->enabled)
11022 crtc->mode = *saved_mode;
11023
11024 out:
11025 kfree(pipe_config);
11026 kfree(saved_mode);
11027 return ret;
11028 }
11029
11030 static int intel_set_mode(struct drm_crtc *crtc,
11031 struct drm_display_mode *mode,
11032 int x, int y, struct drm_framebuffer *fb)
11033 {
11034 int ret;
11035
11036 ret = __intel_set_mode(crtc, mode, x, y, fb);
11037
11038 if (ret == 0)
11039 intel_modeset_check_state(crtc->dev);
11040
11041 return ret;
11042 }
11043
11044 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11045 {
11046 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11047 }
11048
11049 #undef for_each_intel_crtc_masked
11050
11051 static void intel_set_config_free(struct intel_set_config *config)
11052 {
11053 if (!config)
11054 return;
11055
11056 kfree(config->save_connector_encoders);
11057 kfree(config->save_encoder_crtcs);
11058 kfree(config->save_crtc_enabled);
11059 kfree(config);
11060 }
11061
11062 static int intel_set_config_save_state(struct drm_device *dev,
11063 struct intel_set_config *config)
11064 {
11065 struct drm_crtc *crtc;
11066 struct drm_encoder *encoder;
11067 struct drm_connector *connector;
11068 int count;
11069
11070 config->save_crtc_enabled =
11071 kcalloc(dev->mode_config.num_crtc,
11072 sizeof(bool), GFP_KERNEL);
11073 if (!config->save_crtc_enabled)
11074 return -ENOMEM;
11075
11076 config->save_encoder_crtcs =
11077 kcalloc(dev->mode_config.num_encoder,
11078 sizeof(struct drm_crtc *), GFP_KERNEL);
11079 if (!config->save_encoder_crtcs)
11080 return -ENOMEM;
11081
11082 config->save_connector_encoders =
11083 kcalloc(dev->mode_config.num_connector,
11084 sizeof(struct drm_encoder *), GFP_KERNEL);
11085 if (!config->save_connector_encoders)
11086 return -ENOMEM;
11087
11088 /* Copy data. Note that driver private data is not affected.
11089 * Should anything bad happen only the expected state is
11090 * restored, not the drivers personal bookkeeping.
11091 */
11092 count = 0;
11093 for_each_crtc(dev, crtc) {
11094 config->save_crtc_enabled[count++] = crtc->enabled;
11095 }
11096
11097 count = 0;
11098 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11099 config->save_encoder_crtcs[count++] = encoder->crtc;
11100 }
11101
11102 count = 0;
11103 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11104 config->save_connector_encoders[count++] = connector->encoder;
11105 }
11106
11107 return 0;
11108 }
11109
11110 static void intel_set_config_restore_state(struct drm_device *dev,
11111 struct intel_set_config *config)
11112 {
11113 struct intel_crtc *crtc;
11114 struct intel_encoder *encoder;
11115 struct intel_connector *connector;
11116 int count;
11117
11118 count = 0;
11119 for_each_intel_crtc(dev, crtc) {
11120 crtc->new_enabled = config->save_crtc_enabled[count++];
11121
11122 if (crtc->new_enabled)
11123 crtc->new_config = &crtc->config;
11124 else
11125 crtc->new_config = NULL;
11126 }
11127
11128 count = 0;
11129 for_each_intel_encoder(dev, encoder) {
11130 encoder->new_crtc =
11131 to_intel_crtc(config->save_encoder_crtcs[count++]);
11132 }
11133
11134 count = 0;
11135 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11136 connector->new_encoder =
11137 to_intel_encoder(config->save_connector_encoders[count++]);
11138 }
11139 }
11140
11141 static bool
11142 is_crtc_connector_off(struct drm_mode_set *set)
11143 {
11144 int i;
11145
11146 if (set->num_connectors == 0)
11147 return false;
11148
11149 if (WARN_ON(set->connectors == NULL))
11150 return false;
11151
11152 for (i = 0; i < set->num_connectors; i++)
11153 if (set->connectors[i]->encoder &&
11154 set->connectors[i]->encoder->crtc == set->crtc &&
11155 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11156 return true;
11157
11158 return false;
11159 }
11160
11161 static void
11162 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11163 struct intel_set_config *config)
11164 {
11165
11166 /* We should be able to check here if the fb has the same properties
11167 * and then just flip_or_move it */
11168 if (is_crtc_connector_off(set)) {
11169 config->mode_changed = true;
11170 } else if (set->crtc->primary->fb != set->fb) {
11171 /*
11172 * If we have no fb, we can only flip as long as the crtc is
11173 * active, otherwise we need a full mode set. The crtc may
11174 * be active if we've only disabled the primary plane, or
11175 * in fastboot situations.
11176 */
11177 if (set->crtc->primary->fb == NULL) {
11178 struct intel_crtc *intel_crtc =
11179 to_intel_crtc(set->crtc);
11180
11181 if (intel_crtc->active) {
11182 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11183 config->fb_changed = true;
11184 } else {
11185 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11186 config->mode_changed = true;
11187 }
11188 } else if (set->fb == NULL) {
11189 config->mode_changed = true;
11190 } else if (set->fb->pixel_format !=
11191 set->crtc->primary->fb->pixel_format) {
11192 config->mode_changed = true;
11193 } else {
11194 config->fb_changed = true;
11195 }
11196 }
11197
11198 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11199 config->fb_changed = true;
11200
11201 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11202 DRM_DEBUG_KMS("modes are different, full mode set\n");
11203 drm_mode_debug_printmodeline(&set->crtc->mode);
11204 drm_mode_debug_printmodeline(set->mode);
11205 config->mode_changed = true;
11206 }
11207
11208 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11209 set->crtc->base.id, config->mode_changed, config->fb_changed);
11210 }
11211
11212 static int
11213 intel_modeset_stage_output_state(struct drm_device *dev,
11214 struct drm_mode_set *set,
11215 struct intel_set_config *config)
11216 {
11217 struct intel_connector *connector;
11218 struct intel_encoder *encoder;
11219 struct intel_crtc *crtc;
11220 int ro;
11221
11222 /* The upper layers ensure that we either disable a crtc or have a list
11223 * of connectors. For paranoia, double-check this. */
11224 WARN_ON(!set->fb && (set->num_connectors != 0));
11225 WARN_ON(set->fb && (set->num_connectors == 0));
11226
11227 list_for_each_entry(connector, &dev->mode_config.connector_list,
11228 base.head) {
11229 /* Otherwise traverse passed in connector list and get encoders
11230 * for them. */
11231 for (ro = 0; ro < set->num_connectors; ro++) {
11232 if (set->connectors[ro] == &connector->base) {
11233 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11234 break;
11235 }
11236 }
11237
11238 /* If we disable the crtc, disable all its connectors. Also, if
11239 * the connector is on the changing crtc but not on the new
11240 * connector list, disable it. */
11241 if ((!set->fb || ro == set->num_connectors) &&
11242 connector->base.encoder &&
11243 connector->base.encoder->crtc == set->crtc) {
11244 connector->new_encoder = NULL;
11245
11246 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11247 connector->base.base.id,
11248 connector->base.name);
11249 }
11250
11251
11252 if (&connector->new_encoder->base != connector->base.encoder) {
11253 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11254 config->mode_changed = true;
11255 }
11256 }
11257 /* connector->new_encoder is now updated for all connectors. */
11258
11259 /* Update crtc of enabled connectors. */
11260 list_for_each_entry(connector, &dev->mode_config.connector_list,
11261 base.head) {
11262 struct drm_crtc *new_crtc;
11263
11264 if (!connector->new_encoder)
11265 continue;
11266
11267 new_crtc = connector->new_encoder->base.crtc;
11268
11269 for (ro = 0; ro < set->num_connectors; ro++) {
11270 if (set->connectors[ro] == &connector->base)
11271 new_crtc = set->crtc;
11272 }
11273
11274 /* Make sure the new CRTC will work with the encoder */
11275 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11276 new_crtc)) {
11277 return -EINVAL;
11278 }
11279 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11280
11281 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11282 connector->base.base.id,
11283 connector->base.name,
11284 new_crtc->base.id);
11285 }
11286
11287 /* Check for any encoders that needs to be disabled. */
11288 for_each_intel_encoder(dev, encoder) {
11289 int num_connectors = 0;
11290 list_for_each_entry(connector,
11291 &dev->mode_config.connector_list,
11292 base.head) {
11293 if (connector->new_encoder == encoder) {
11294 WARN_ON(!connector->new_encoder->new_crtc);
11295 num_connectors++;
11296 }
11297 }
11298
11299 if (num_connectors == 0)
11300 encoder->new_crtc = NULL;
11301 else if (num_connectors > 1)
11302 return -EINVAL;
11303
11304 /* Only now check for crtc changes so we don't miss encoders
11305 * that will be disabled. */
11306 if (&encoder->new_crtc->base != encoder->base.crtc) {
11307 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11308 config->mode_changed = true;
11309 }
11310 }
11311 /* Now we've also updated encoder->new_crtc for all encoders. */
11312 list_for_each_entry(connector, &dev->mode_config.connector_list,
11313 base.head) {
11314 if (connector->new_encoder)
11315 if (connector->new_encoder != connector->encoder)
11316 connector->encoder = connector->new_encoder;
11317 }
11318 for_each_intel_crtc(dev, crtc) {
11319 crtc->new_enabled = false;
11320
11321 for_each_intel_encoder(dev, encoder) {
11322 if (encoder->new_crtc == crtc) {
11323 crtc->new_enabled = true;
11324 break;
11325 }
11326 }
11327
11328 if (crtc->new_enabled != crtc->base.enabled) {
11329 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11330 crtc->new_enabled ? "en" : "dis");
11331 config->mode_changed = true;
11332 }
11333
11334 if (crtc->new_enabled)
11335 crtc->new_config = &crtc->config;
11336 else
11337 crtc->new_config = NULL;
11338 }
11339
11340 return 0;
11341 }
11342
11343 static void disable_crtc_nofb(struct intel_crtc *crtc)
11344 {
11345 struct drm_device *dev = crtc->base.dev;
11346 struct intel_encoder *encoder;
11347 struct intel_connector *connector;
11348
11349 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11350 pipe_name(crtc->pipe));
11351
11352 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11353 if (connector->new_encoder &&
11354 connector->new_encoder->new_crtc == crtc)
11355 connector->new_encoder = NULL;
11356 }
11357
11358 for_each_intel_encoder(dev, encoder) {
11359 if (encoder->new_crtc == crtc)
11360 encoder->new_crtc = NULL;
11361 }
11362
11363 crtc->new_enabled = false;
11364 crtc->new_config = NULL;
11365 }
11366
11367 static int intel_crtc_set_config(struct drm_mode_set *set)
11368 {
11369 struct drm_device *dev;
11370 struct drm_mode_set save_set;
11371 struct intel_set_config *config;
11372 int ret;
11373
11374 BUG_ON(!set);
11375 BUG_ON(!set->crtc);
11376 BUG_ON(!set->crtc->helper_private);
11377
11378 /* Enforce sane interface api - has been abused by the fb helper. */
11379 BUG_ON(!set->mode && set->fb);
11380 BUG_ON(set->fb && set->num_connectors == 0);
11381
11382 if (set->fb) {
11383 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11384 set->crtc->base.id, set->fb->base.id,
11385 (int)set->num_connectors, set->x, set->y);
11386 } else {
11387 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11388 }
11389
11390 dev = set->crtc->dev;
11391
11392 ret = -ENOMEM;
11393 config = kzalloc(sizeof(*config), GFP_KERNEL);
11394 if (!config)
11395 goto out_config;
11396
11397 ret = intel_set_config_save_state(dev, config);
11398 if (ret)
11399 goto out_config;
11400
11401 save_set.crtc = set->crtc;
11402 save_set.mode = &set->crtc->mode;
11403 save_set.x = set->crtc->x;
11404 save_set.y = set->crtc->y;
11405 save_set.fb = set->crtc->primary->fb;
11406
11407 /* Compute whether we need a full modeset, only an fb base update or no
11408 * change at all. In the future we might also check whether only the
11409 * mode changed, e.g. for LVDS where we only change the panel fitter in
11410 * such cases. */
11411 intel_set_config_compute_mode_changes(set, config);
11412
11413 ret = intel_modeset_stage_output_state(dev, set, config);
11414 if (ret)
11415 goto fail;
11416
11417 if (config->mode_changed) {
11418 ret = intel_set_mode(set->crtc, set->mode,
11419 set->x, set->y, set->fb);
11420 } else if (config->fb_changed) {
11421 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11422
11423 intel_crtc_wait_for_pending_flips(set->crtc);
11424
11425 ret = intel_pipe_set_base(set->crtc,
11426 set->x, set->y, set->fb);
11427
11428 /*
11429 * We need to make sure the primary plane is re-enabled if it
11430 * has previously been turned off.
11431 */
11432 if (!intel_crtc->primary_enabled && ret == 0) {
11433 WARN_ON(!intel_crtc->active);
11434 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11435 }
11436
11437 /*
11438 * In the fastboot case this may be our only check of the
11439 * state after boot. It would be better to only do it on
11440 * the first update, but we don't have a nice way of doing that
11441 * (and really, set_config isn't used much for high freq page
11442 * flipping, so increasing its cost here shouldn't be a big
11443 * deal).
11444 */
11445 if (i915.fastboot && ret == 0)
11446 intel_modeset_check_state(set->crtc->dev);
11447 }
11448
11449 if (ret) {
11450 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11451 set->crtc->base.id, ret);
11452 fail:
11453 intel_set_config_restore_state(dev, config);
11454
11455 /*
11456 * HACK: if the pipe was on, but we didn't have a framebuffer,
11457 * force the pipe off to avoid oopsing in the modeset code
11458 * due to fb==NULL. This should only happen during boot since
11459 * we don't yet reconstruct the FB from the hardware state.
11460 */
11461 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11462 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11463
11464 /* Try to restore the config */
11465 if (config->mode_changed &&
11466 intel_set_mode(save_set.crtc, save_set.mode,
11467 save_set.x, save_set.y, save_set.fb))
11468 DRM_ERROR("failed to restore config after modeset failure\n");
11469 }
11470
11471 out_config:
11472 intel_set_config_free(config);
11473 return ret;
11474 }
11475
11476 static const struct drm_crtc_funcs intel_crtc_funcs = {
11477 .gamma_set = intel_crtc_gamma_set,
11478 .set_config = intel_crtc_set_config,
11479 .destroy = intel_crtc_destroy,
11480 .page_flip = intel_crtc_page_flip,
11481 };
11482
11483 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11484 struct intel_shared_dpll *pll,
11485 struct intel_dpll_hw_state *hw_state)
11486 {
11487 uint32_t val;
11488
11489 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11490 return false;
11491
11492 val = I915_READ(PCH_DPLL(pll->id));
11493 hw_state->dpll = val;
11494 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11495 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11496
11497 return val & DPLL_VCO_ENABLE;
11498 }
11499
11500 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11501 struct intel_shared_dpll *pll)
11502 {
11503 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11504 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11505 }
11506
11507 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11508 struct intel_shared_dpll *pll)
11509 {
11510 /* PCH refclock must be enabled first */
11511 ibx_assert_pch_refclk_enabled(dev_priv);
11512
11513 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11514
11515 /* Wait for the clocks to stabilize. */
11516 POSTING_READ(PCH_DPLL(pll->id));
11517 udelay(150);
11518
11519 /* The pixel multiplier can only be updated once the
11520 * DPLL is enabled and the clocks are stable.
11521 *
11522 * So write it again.
11523 */
11524 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11525 POSTING_READ(PCH_DPLL(pll->id));
11526 udelay(200);
11527 }
11528
11529 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11530 struct intel_shared_dpll *pll)
11531 {
11532 struct drm_device *dev = dev_priv->dev;
11533 struct intel_crtc *crtc;
11534
11535 /* Make sure no transcoder isn't still depending on us. */
11536 for_each_intel_crtc(dev, crtc) {
11537 if (intel_crtc_to_shared_dpll(crtc) == pll)
11538 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11539 }
11540
11541 I915_WRITE(PCH_DPLL(pll->id), 0);
11542 POSTING_READ(PCH_DPLL(pll->id));
11543 udelay(200);
11544 }
11545
11546 static char *ibx_pch_dpll_names[] = {
11547 "PCH DPLL A",
11548 "PCH DPLL B",
11549 };
11550
11551 static void ibx_pch_dpll_init(struct drm_device *dev)
11552 {
11553 struct drm_i915_private *dev_priv = dev->dev_private;
11554 int i;
11555
11556 dev_priv->num_shared_dpll = 2;
11557
11558 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11559 dev_priv->shared_dplls[i].id = i;
11560 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11561 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11562 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11563 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11564 dev_priv->shared_dplls[i].get_hw_state =
11565 ibx_pch_dpll_get_hw_state;
11566 }
11567 }
11568
11569 static void intel_shared_dpll_init(struct drm_device *dev)
11570 {
11571 struct drm_i915_private *dev_priv = dev->dev_private;
11572
11573 if (HAS_DDI(dev))
11574 intel_ddi_pll_init(dev);
11575 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11576 ibx_pch_dpll_init(dev);
11577 else
11578 dev_priv->num_shared_dpll = 0;
11579
11580 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11581 }
11582
11583 static int
11584 intel_primary_plane_disable(struct drm_plane *plane)
11585 {
11586 struct drm_device *dev = plane->dev;
11587 struct intel_crtc *intel_crtc;
11588
11589 if (!plane->fb)
11590 return 0;
11591
11592 BUG_ON(!plane->crtc);
11593
11594 intel_crtc = to_intel_crtc(plane->crtc);
11595
11596 /*
11597 * Even though we checked plane->fb above, it's still possible that
11598 * the primary plane has been implicitly disabled because the crtc
11599 * coordinates given weren't visible, or because we detected
11600 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11601 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11602 * In either case, we need to unpin the FB and let the fb pointer get
11603 * updated, but otherwise we don't need to touch the hardware.
11604 */
11605 if (!intel_crtc->primary_enabled)
11606 goto disable_unpin;
11607
11608 intel_crtc_wait_for_pending_flips(plane->crtc);
11609 intel_disable_primary_hw_plane(plane, plane->crtc);
11610
11611 disable_unpin:
11612 mutex_lock(&dev->struct_mutex);
11613 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11614 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11615 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11616 mutex_unlock(&dev->struct_mutex);
11617 plane->fb = NULL;
11618
11619 return 0;
11620 }
11621
11622 static int
11623 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11624 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11625 unsigned int crtc_w, unsigned int crtc_h,
11626 uint32_t src_x, uint32_t src_y,
11627 uint32_t src_w, uint32_t src_h)
11628 {
11629 struct drm_device *dev = crtc->dev;
11630 struct drm_i915_private *dev_priv = dev->dev_private;
11631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11632 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11633 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11634 struct drm_rect dest = {
11635 /* integer pixels */
11636 .x1 = crtc_x,
11637 .y1 = crtc_y,
11638 .x2 = crtc_x + crtc_w,
11639 .y2 = crtc_y + crtc_h,
11640 };
11641 struct drm_rect src = {
11642 /* 16.16 fixed point */
11643 .x1 = src_x,
11644 .y1 = src_y,
11645 .x2 = src_x + src_w,
11646 .y2 = src_y + src_h,
11647 };
11648 const struct drm_rect clip = {
11649 /* integer pixels */
11650 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11651 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11652 };
11653 const struct {
11654 int crtc_x, crtc_y;
11655 unsigned int crtc_w, crtc_h;
11656 uint32_t src_x, src_y, src_w, src_h;
11657 } orig = {
11658 .crtc_x = crtc_x,
11659 .crtc_y = crtc_y,
11660 .crtc_w = crtc_w,
11661 .crtc_h = crtc_h,
11662 .src_x = src_x,
11663 .src_y = src_y,
11664 .src_w = src_w,
11665 .src_h = src_h,
11666 };
11667 struct intel_plane *intel_plane = to_intel_plane(plane);
11668 bool visible;
11669 int ret;
11670
11671 ret = drm_plane_helper_check_update(plane, crtc, fb,
11672 &src, &dest, &clip,
11673 DRM_PLANE_HELPER_NO_SCALING,
11674 DRM_PLANE_HELPER_NO_SCALING,
11675 false, true, &visible);
11676
11677 if (ret)
11678 return ret;
11679
11680 /*
11681 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11682 * updating the fb pointer, and returning without touching the
11683 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11684 * turn on the display with all planes setup as desired.
11685 */
11686 if (!crtc->enabled) {
11687 mutex_lock(&dev->struct_mutex);
11688
11689 /*
11690 * If we already called setplane while the crtc was disabled,
11691 * we may have an fb pinned; unpin it.
11692 */
11693 if (plane->fb)
11694 intel_unpin_fb_obj(old_obj);
11695
11696 i915_gem_track_fb(old_obj, obj,
11697 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11698
11699 /* Pin and return without programming hardware */
11700 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11701 mutex_unlock(&dev->struct_mutex);
11702
11703 return ret;
11704 }
11705
11706 intel_crtc_wait_for_pending_flips(crtc);
11707
11708 /*
11709 * If clipping results in a non-visible primary plane, we'll disable
11710 * the primary plane. Note that this is a bit different than what
11711 * happens if userspace explicitly disables the plane by passing fb=0
11712 * because plane->fb still gets set and pinned.
11713 */
11714 if (!visible) {
11715 mutex_lock(&dev->struct_mutex);
11716
11717 /*
11718 * Try to pin the new fb first so that we can bail out if we
11719 * fail.
11720 */
11721 if (plane->fb != fb) {
11722 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11723 if (ret) {
11724 mutex_unlock(&dev->struct_mutex);
11725 return ret;
11726 }
11727 }
11728
11729 i915_gem_track_fb(old_obj, obj,
11730 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11731
11732 if (intel_crtc->primary_enabled)
11733 intel_disable_primary_hw_plane(plane, crtc);
11734
11735
11736 if (plane->fb != fb)
11737 if (plane->fb)
11738 intel_unpin_fb_obj(old_obj);
11739
11740 mutex_unlock(&dev->struct_mutex);
11741
11742 } else {
11743 if (intel_crtc && intel_crtc->active &&
11744 intel_crtc->primary_enabled) {
11745 /*
11746 * FBC does not work on some platforms for rotated
11747 * planes, so disable it when rotation is not 0 and
11748 * update it when rotation is set back to 0.
11749 *
11750 * FIXME: This is redundant with the fbc update done in
11751 * the primary plane enable function except that that
11752 * one is done too late. We eventually need to unify
11753 * this.
11754 */
11755 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11756 dev_priv->fbc.plane == intel_crtc->plane &&
11757 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11758 intel_disable_fbc(dev);
11759 }
11760 }
11761 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11762 if (ret)
11763 return ret;
11764
11765 if (!intel_crtc->primary_enabled)
11766 intel_enable_primary_hw_plane(plane, crtc);
11767 }
11768
11769 intel_plane->crtc_x = orig.crtc_x;
11770 intel_plane->crtc_y = orig.crtc_y;
11771 intel_plane->crtc_w = orig.crtc_w;
11772 intel_plane->crtc_h = orig.crtc_h;
11773 intel_plane->src_x = orig.src_x;
11774 intel_plane->src_y = orig.src_y;
11775 intel_plane->src_w = orig.src_w;
11776 intel_plane->src_h = orig.src_h;
11777 intel_plane->obj = obj;
11778
11779 return 0;
11780 }
11781
11782 /* Common destruction function for both primary and cursor planes */
11783 static void intel_plane_destroy(struct drm_plane *plane)
11784 {
11785 struct intel_plane *intel_plane = to_intel_plane(plane);
11786 drm_plane_cleanup(plane);
11787 kfree(intel_plane);
11788 }
11789
11790 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11791 .update_plane = intel_primary_plane_setplane,
11792 .disable_plane = intel_primary_plane_disable,
11793 .destroy = intel_plane_destroy,
11794 .set_property = intel_plane_set_property
11795 };
11796
11797 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11798 int pipe)
11799 {
11800 struct intel_plane *primary;
11801 const uint32_t *intel_primary_formats;
11802 int num_formats;
11803
11804 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11805 if (primary == NULL)
11806 return NULL;
11807
11808 primary->can_scale = false;
11809 primary->max_downscale = 1;
11810 primary->pipe = pipe;
11811 primary->plane = pipe;
11812 primary->rotation = BIT(DRM_ROTATE_0);
11813 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11814 primary->plane = !pipe;
11815
11816 if (INTEL_INFO(dev)->gen <= 3) {
11817 intel_primary_formats = intel_primary_formats_gen2;
11818 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11819 } else {
11820 intel_primary_formats = intel_primary_formats_gen4;
11821 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11822 }
11823
11824 drm_universal_plane_init(dev, &primary->base, 0,
11825 &intel_primary_plane_funcs,
11826 intel_primary_formats, num_formats,
11827 DRM_PLANE_TYPE_PRIMARY);
11828
11829 if (INTEL_INFO(dev)->gen >= 4) {
11830 if (!dev->mode_config.rotation_property)
11831 dev->mode_config.rotation_property =
11832 drm_mode_create_rotation_property(dev,
11833 BIT(DRM_ROTATE_0) |
11834 BIT(DRM_ROTATE_180));
11835 if (dev->mode_config.rotation_property)
11836 drm_object_attach_property(&primary->base.base,
11837 dev->mode_config.rotation_property,
11838 primary->rotation);
11839 }
11840
11841 return &primary->base;
11842 }
11843
11844 static int
11845 intel_cursor_plane_disable(struct drm_plane *plane)
11846 {
11847 if (!plane->fb)
11848 return 0;
11849
11850 BUG_ON(!plane->crtc);
11851
11852 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11853 }
11854
11855 static int
11856 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11857 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11858 unsigned int crtc_w, unsigned int crtc_h,
11859 uint32_t src_x, uint32_t src_y,
11860 uint32_t src_w, uint32_t src_h)
11861 {
11862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11863 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11864 struct drm_i915_gem_object *obj = intel_fb->obj;
11865 struct drm_rect dest = {
11866 /* integer pixels */
11867 .x1 = crtc_x,
11868 .y1 = crtc_y,
11869 .x2 = crtc_x + crtc_w,
11870 .y2 = crtc_y + crtc_h,
11871 };
11872 struct drm_rect src = {
11873 /* 16.16 fixed point */
11874 .x1 = src_x,
11875 .y1 = src_y,
11876 .x2 = src_x + src_w,
11877 .y2 = src_y + src_h,
11878 };
11879 const struct drm_rect clip = {
11880 /* integer pixels */
11881 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11882 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11883 };
11884 bool visible;
11885 int ret;
11886
11887 ret = drm_plane_helper_check_update(plane, crtc, fb,
11888 &src, &dest, &clip,
11889 DRM_PLANE_HELPER_NO_SCALING,
11890 DRM_PLANE_HELPER_NO_SCALING,
11891 true, true, &visible);
11892 if (ret)
11893 return ret;
11894
11895 crtc->cursor_x = crtc_x;
11896 crtc->cursor_y = crtc_y;
11897 if (fb != crtc->cursor->fb) {
11898 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11899 } else {
11900 intel_crtc_update_cursor(crtc, visible);
11901
11902 intel_frontbuffer_flip(crtc->dev,
11903 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11904
11905 return 0;
11906 }
11907 }
11908 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11909 .update_plane = intel_cursor_plane_update,
11910 .disable_plane = intel_cursor_plane_disable,
11911 .destroy = intel_plane_destroy,
11912 };
11913
11914 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11915 int pipe)
11916 {
11917 struct intel_plane *cursor;
11918
11919 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11920 if (cursor == NULL)
11921 return NULL;
11922
11923 cursor->can_scale = false;
11924 cursor->max_downscale = 1;
11925 cursor->pipe = pipe;
11926 cursor->plane = pipe;
11927
11928 drm_universal_plane_init(dev, &cursor->base, 0,
11929 &intel_cursor_plane_funcs,
11930 intel_cursor_formats,
11931 ARRAY_SIZE(intel_cursor_formats),
11932 DRM_PLANE_TYPE_CURSOR);
11933 return &cursor->base;
11934 }
11935
11936 static void intel_crtc_init(struct drm_device *dev, int pipe)
11937 {
11938 struct drm_i915_private *dev_priv = dev->dev_private;
11939 struct intel_crtc *intel_crtc;
11940 struct drm_plane *primary = NULL;
11941 struct drm_plane *cursor = NULL;
11942 int i, ret;
11943
11944 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11945 if (intel_crtc == NULL)
11946 return;
11947
11948 primary = intel_primary_plane_create(dev, pipe);
11949 if (!primary)
11950 goto fail;
11951
11952 cursor = intel_cursor_plane_create(dev, pipe);
11953 if (!cursor)
11954 goto fail;
11955
11956 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11957 cursor, &intel_crtc_funcs);
11958 if (ret)
11959 goto fail;
11960
11961 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11962 for (i = 0; i < 256; i++) {
11963 intel_crtc->lut_r[i] = i;
11964 intel_crtc->lut_g[i] = i;
11965 intel_crtc->lut_b[i] = i;
11966 }
11967
11968 /*
11969 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11970 * is hooked to pipe B. Hence we want plane A feeding pipe B.
11971 */
11972 intel_crtc->pipe = pipe;
11973 intel_crtc->plane = pipe;
11974 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11975 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11976 intel_crtc->plane = !pipe;
11977 }
11978
11979 intel_crtc->cursor_base = ~0;
11980 intel_crtc->cursor_cntl = ~0;
11981 intel_crtc->cursor_size = ~0;
11982
11983 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11984 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11985 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11986 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11987
11988 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11989
11990 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11991 return;
11992
11993 fail:
11994 if (primary)
11995 drm_plane_cleanup(primary);
11996 if (cursor)
11997 drm_plane_cleanup(cursor);
11998 kfree(intel_crtc);
11999 }
12000
12001 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12002 {
12003 struct drm_encoder *encoder = connector->base.encoder;
12004 struct drm_device *dev = connector->base.dev;
12005
12006 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12007
12008 if (!encoder)
12009 return INVALID_PIPE;
12010
12011 return to_intel_crtc(encoder->crtc)->pipe;
12012 }
12013
12014 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12015 struct drm_file *file)
12016 {
12017 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12018 struct drm_crtc *drmmode_crtc;
12019 struct intel_crtc *crtc;
12020
12021 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12022 return -ENODEV;
12023
12024 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12025
12026 if (!drmmode_crtc) {
12027 DRM_ERROR("no such CRTC id\n");
12028 return -ENOENT;
12029 }
12030
12031 crtc = to_intel_crtc(drmmode_crtc);
12032 pipe_from_crtc_id->pipe = crtc->pipe;
12033
12034 return 0;
12035 }
12036
12037 static int intel_encoder_clones(struct intel_encoder *encoder)
12038 {
12039 struct drm_device *dev = encoder->base.dev;
12040 struct intel_encoder *source_encoder;
12041 int index_mask = 0;
12042 int entry = 0;
12043
12044 for_each_intel_encoder(dev, source_encoder) {
12045 if (encoders_cloneable(encoder, source_encoder))
12046 index_mask |= (1 << entry);
12047
12048 entry++;
12049 }
12050
12051 return index_mask;
12052 }
12053
12054 static bool has_edp_a(struct drm_device *dev)
12055 {
12056 struct drm_i915_private *dev_priv = dev->dev_private;
12057
12058 if (!IS_MOBILE(dev))
12059 return false;
12060
12061 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12062 return false;
12063
12064 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12065 return false;
12066
12067 return true;
12068 }
12069
12070 const char *intel_output_name(int output)
12071 {
12072 static const char *names[] = {
12073 [INTEL_OUTPUT_UNUSED] = "Unused",
12074 [INTEL_OUTPUT_ANALOG] = "Analog",
12075 [INTEL_OUTPUT_DVO] = "DVO",
12076 [INTEL_OUTPUT_SDVO] = "SDVO",
12077 [INTEL_OUTPUT_LVDS] = "LVDS",
12078 [INTEL_OUTPUT_TVOUT] = "TV",
12079 [INTEL_OUTPUT_HDMI] = "HDMI",
12080 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12081 [INTEL_OUTPUT_EDP] = "eDP",
12082 [INTEL_OUTPUT_DSI] = "DSI",
12083 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12084 };
12085
12086 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12087 return "Invalid";
12088
12089 return names[output];
12090 }
12091
12092 static bool intel_crt_present(struct drm_device *dev)
12093 {
12094 struct drm_i915_private *dev_priv = dev->dev_private;
12095
12096 if (IS_ULT(dev))
12097 return false;
12098
12099 if (IS_CHERRYVIEW(dev))
12100 return false;
12101
12102 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12103 return false;
12104
12105 return true;
12106 }
12107
12108 static void intel_setup_outputs(struct drm_device *dev)
12109 {
12110 struct drm_i915_private *dev_priv = dev->dev_private;
12111 struct intel_encoder *encoder;
12112 bool dpd_is_edp = false;
12113
12114 intel_lvds_init(dev);
12115
12116 if (intel_crt_present(dev))
12117 intel_crt_init(dev);
12118
12119 if (HAS_DDI(dev)) {
12120 int found;
12121
12122 /* Haswell uses DDI functions to detect digital outputs */
12123 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12124 /* DDI A only supports eDP */
12125 if (found)
12126 intel_ddi_init(dev, PORT_A);
12127
12128 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12129 * register */
12130 found = I915_READ(SFUSE_STRAP);
12131
12132 if (found & SFUSE_STRAP_DDIB_DETECTED)
12133 intel_ddi_init(dev, PORT_B);
12134 if (found & SFUSE_STRAP_DDIC_DETECTED)
12135 intel_ddi_init(dev, PORT_C);
12136 if (found & SFUSE_STRAP_DDID_DETECTED)
12137 intel_ddi_init(dev, PORT_D);
12138 } else if (HAS_PCH_SPLIT(dev)) {
12139 int found;
12140 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12141
12142 if (has_edp_a(dev))
12143 intel_dp_init(dev, DP_A, PORT_A);
12144
12145 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12146 /* PCH SDVOB multiplex with HDMIB */
12147 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12148 if (!found)
12149 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12150 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12151 intel_dp_init(dev, PCH_DP_B, PORT_B);
12152 }
12153
12154 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12155 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12156
12157 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12158 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12159
12160 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12161 intel_dp_init(dev, PCH_DP_C, PORT_C);
12162
12163 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12164 intel_dp_init(dev, PCH_DP_D, PORT_D);
12165 } else if (IS_VALLEYVIEW(dev)) {
12166 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12167 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12168 PORT_B);
12169 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12170 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12171 }
12172
12173 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12174 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12175 PORT_C);
12176 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
12177 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12178 }
12179
12180 if (IS_CHERRYVIEW(dev)) {
12181 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12182 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12183 PORT_D);
12184 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12185 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12186 }
12187 }
12188
12189 intel_dsi_init(dev);
12190 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12191 bool found = false;
12192
12193 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12194 DRM_DEBUG_KMS("probing SDVOB\n");
12195 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12196 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12197 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12198 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12199 }
12200
12201 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12202 intel_dp_init(dev, DP_B, PORT_B);
12203 }
12204
12205 /* Before G4X SDVOC doesn't have its own detect register */
12206
12207 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12208 DRM_DEBUG_KMS("probing SDVOC\n");
12209 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12210 }
12211
12212 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12213
12214 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12215 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12216 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12217 }
12218 if (SUPPORTS_INTEGRATED_DP(dev))
12219 intel_dp_init(dev, DP_C, PORT_C);
12220 }
12221
12222 if (SUPPORTS_INTEGRATED_DP(dev) &&
12223 (I915_READ(DP_D) & DP_DETECTED))
12224 intel_dp_init(dev, DP_D, PORT_D);
12225 } else if (IS_GEN2(dev))
12226 intel_dvo_init(dev);
12227
12228 if (SUPPORTS_TV(dev))
12229 intel_tv_init(dev);
12230
12231 intel_edp_psr_init(dev);
12232
12233 for_each_intel_encoder(dev, encoder) {
12234 encoder->base.possible_crtcs = encoder->crtc_mask;
12235 encoder->base.possible_clones =
12236 intel_encoder_clones(encoder);
12237 }
12238
12239 intel_init_pch_refclk(dev);
12240
12241 drm_helper_move_panel_connectors_to_head(dev);
12242 }
12243
12244 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12245 {
12246 struct drm_device *dev = fb->dev;
12247 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12248
12249 drm_framebuffer_cleanup(fb);
12250 mutex_lock(&dev->struct_mutex);
12251 WARN_ON(!intel_fb->obj->framebuffer_references--);
12252 drm_gem_object_unreference(&intel_fb->obj->base);
12253 mutex_unlock(&dev->struct_mutex);
12254 kfree(intel_fb);
12255 }
12256
12257 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12258 struct drm_file *file,
12259 unsigned int *handle)
12260 {
12261 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12262 struct drm_i915_gem_object *obj = intel_fb->obj;
12263
12264 return drm_gem_handle_create(file, &obj->base, handle);
12265 }
12266
12267 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12268 .destroy = intel_user_framebuffer_destroy,
12269 .create_handle = intel_user_framebuffer_create_handle,
12270 };
12271
12272 static int intel_framebuffer_init(struct drm_device *dev,
12273 struct intel_framebuffer *intel_fb,
12274 struct drm_mode_fb_cmd2 *mode_cmd,
12275 struct drm_i915_gem_object *obj)
12276 {
12277 int aligned_height;
12278 int pitch_limit;
12279 int ret;
12280
12281 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12282
12283 if (obj->tiling_mode == I915_TILING_Y) {
12284 DRM_DEBUG("hardware does not support tiling Y\n");
12285 return -EINVAL;
12286 }
12287
12288 if (mode_cmd->pitches[0] & 63) {
12289 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12290 mode_cmd->pitches[0]);
12291 return -EINVAL;
12292 }
12293
12294 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12295 pitch_limit = 32*1024;
12296 } else if (INTEL_INFO(dev)->gen >= 4) {
12297 if (obj->tiling_mode)
12298 pitch_limit = 16*1024;
12299 else
12300 pitch_limit = 32*1024;
12301 } else if (INTEL_INFO(dev)->gen >= 3) {
12302 if (obj->tiling_mode)
12303 pitch_limit = 8*1024;
12304 else
12305 pitch_limit = 16*1024;
12306 } else
12307 /* XXX DSPC is limited to 4k tiled */
12308 pitch_limit = 8*1024;
12309
12310 if (mode_cmd->pitches[0] > pitch_limit) {
12311 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12312 obj->tiling_mode ? "tiled" : "linear",
12313 mode_cmd->pitches[0], pitch_limit);
12314 return -EINVAL;
12315 }
12316
12317 if (obj->tiling_mode != I915_TILING_NONE &&
12318 mode_cmd->pitches[0] != obj->stride) {
12319 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12320 mode_cmd->pitches[0], obj->stride);
12321 return -EINVAL;
12322 }
12323
12324 /* Reject formats not supported by any plane early. */
12325 switch (mode_cmd->pixel_format) {
12326 case DRM_FORMAT_C8:
12327 case DRM_FORMAT_RGB565:
12328 case DRM_FORMAT_XRGB8888:
12329 case DRM_FORMAT_ARGB8888:
12330 break;
12331 case DRM_FORMAT_XRGB1555:
12332 case DRM_FORMAT_ARGB1555:
12333 if (INTEL_INFO(dev)->gen > 3) {
12334 DRM_DEBUG("unsupported pixel format: %s\n",
12335 drm_get_format_name(mode_cmd->pixel_format));
12336 return -EINVAL;
12337 }
12338 break;
12339 case DRM_FORMAT_XBGR8888:
12340 case DRM_FORMAT_ABGR8888:
12341 case DRM_FORMAT_XRGB2101010:
12342 case DRM_FORMAT_ARGB2101010:
12343 case DRM_FORMAT_XBGR2101010:
12344 case DRM_FORMAT_ABGR2101010:
12345 if (INTEL_INFO(dev)->gen < 4) {
12346 DRM_DEBUG("unsupported pixel format: %s\n",
12347 drm_get_format_name(mode_cmd->pixel_format));
12348 return -EINVAL;
12349 }
12350 break;
12351 case DRM_FORMAT_YUYV:
12352 case DRM_FORMAT_UYVY:
12353 case DRM_FORMAT_YVYU:
12354 case DRM_FORMAT_VYUY:
12355 if (INTEL_INFO(dev)->gen < 5) {
12356 DRM_DEBUG("unsupported pixel format: %s\n",
12357 drm_get_format_name(mode_cmd->pixel_format));
12358 return -EINVAL;
12359 }
12360 break;
12361 default:
12362 DRM_DEBUG("unsupported pixel format: %s\n",
12363 drm_get_format_name(mode_cmd->pixel_format));
12364 return -EINVAL;
12365 }
12366
12367 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12368 if (mode_cmd->offsets[0] != 0)
12369 return -EINVAL;
12370
12371 aligned_height = intel_align_height(dev, mode_cmd->height,
12372 obj->tiling_mode);
12373 /* FIXME drm helper for size checks (especially planar formats)? */
12374 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12375 return -EINVAL;
12376
12377 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12378 intel_fb->obj = obj;
12379 intel_fb->obj->framebuffer_references++;
12380
12381 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12382 if (ret) {
12383 DRM_ERROR("framebuffer init failed %d\n", ret);
12384 return ret;
12385 }
12386
12387 return 0;
12388 }
12389
12390 static struct drm_framebuffer *
12391 intel_user_framebuffer_create(struct drm_device *dev,
12392 struct drm_file *filp,
12393 struct drm_mode_fb_cmd2 *mode_cmd)
12394 {
12395 struct drm_i915_gem_object *obj;
12396
12397 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12398 mode_cmd->handles[0]));
12399 if (&obj->base == NULL)
12400 return ERR_PTR(-ENOENT);
12401
12402 return intel_framebuffer_create(dev, mode_cmd, obj);
12403 }
12404
12405 #ifndef CONFIG_DRM_I915_FBDEV
12406 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12407 {
12408 }
12409 #endif
12410
12411 static const struct drm_mode_config_funcs intel_mode_funcs = {
12412 .fb_create = intel_user_framebuffer_create,
12413 .output_poll_changed = intel_fbdev_output_poll_changed,
12414 };
12415
12416 /* Set up chip specific display functions */
12417 static void intel_init_display(struct drm_device *dev)
12418 {
12419 struct drm_i915_private *dev_priv = dev->dev_private;
12420
12421 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12422 dev_priv->display.find_dpll = g4x_find_best_dpll;
12423 else if (IS_CHERRYVIEW(dev))
12424 dev_priv->display.find_dpll = chv_find_best_dpll;
12425 else if (IS_VALLEYVIEW(dev))
12426 dev_priv->display.find_dpll = vlv_find_best_dpll;
12427 else if (IS_PINEVIEW(dev))
12428 dev_priv->display.find_dpll = pnv_find_best_dpll;
12429 else
12430 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12431
12432 if (HAS_DDI(dev)) {
12433 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12434 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12435 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12436 dev_priv->display.crtc_enable = haswell_crtc_enable;
12437 dev_priv->display.crtc_disable = haswell_crtc_disable;
12438 dev_priv->display.off = ironlake_crtc_off;
12439 dev_priv->display.update_primary_plane =
12440 ironlake_update_primary_plane;
12441 } else if (HAS_PCH_SPLIT(dev)) {
12442 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12443 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12444 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12445 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12446 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12447 dev_priv->display.off = ironlake_crtc_off;
12448 dev_priv->display.update_primary_plane =
12449 ironlake_update_primary_plane;
12450 } else if (IS_VALLEYVIEW(dev)) {
12451 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12452 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12453 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12454 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12455 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12456 dev_priv->display.off = i9xx_crtc_off;
12457 dev_priv->display.update_primary_plane =
12458 i9xx_update_primary_plane;
12459 } else {
12460 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12461 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12462 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12463 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12464 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12465 dev_priv->display.off = i9xx_crtc_off;
12466 dev_priv->display.update_primary_plane =
12467 i9xx_update_primary_plane;
12468 }
12469
12470 /* Returns the core display clock speed */
12471 if (IS_VALLEYVIEW(dev))
12472 dev_priv->display.get_display_clock_speed =
12473 valleyview_get_display_clock_speed;
12474 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12475 dev_priv->display.get_display_clock_speed =
12476 i945_get_display_clock_speed;
12477 else if (IS_I915G(dev))
12478 dev_priv->display.get_display_clock_speed =
12479 i915_get_display_clock_speed;
12480 else if (IS_I945GM(dev) || IS_845G(dev))
12481 dev_priv->display.get_display_clock_speed =
12482 i9xx_misc_get_display_clock_speed;
12483 else if (IS_PINEVIEW(dev))
12484 dev_priv->display.get_display_clock_speed =
12485 pnv_get_display_clock_speed;
12486 else if (IS_I915GM(dev))
12487 dev_priv->display.get_display_clock_speed =
12488 i915gm_get_display_clock_speed;
12489 else if (IS_I865G(dev))
12490 dev_priv->display.get_display_clock_speed =
12491 i865_get_display_clock_speed;
12492 else if (IS_I85X(dev))
12493 dev_priv->display.get_display_clock_speed =
12494 i855_get_display_clock_speed;
12495 else /* 852, 830 */
12496 dev_priv->display.get_display_clock_speed =
12497 i830_get_display_clock_speed;
12498
12499 if (IS_G4X(dev)) {
12500 dev_priv->display.write_eld = g4x_write_eld;
12501 } else if (IS_GEN5(dev)) {
12502 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12503 dev_priv->display.write_eld = ironlake_write_eld;
12504 } else if (IS_GEN6(dev)) {
12505 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12506 dev_priv->display.write_eld = ironlake_write_eld;
12507 dev_priv->display.modeset_global_resources =
12508 snb_modeset_global_resources;
12509 } else if (IS_IVYBRIDGE(dev)) {
12510 /* FIXME: detect B0+ stepping and use auto training */
12511 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12512 dev_priv->display.write_eld = ironlake_write_eld;
12513 dev_priv->display.modeset_global_resources =
12514 ivb_modeset_global_resources;
12515 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12516 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12517 dev_priv->display.write_eld = haswell_write_eld;
12518 dev_priv->display.modeset_global_resources =
12519 haswell_modeset_global_resources;
12520 } else if (IS_VALLEYVIEW(dev)) {
12521 dev_priv->display.modeset_global_resources =
12522 valleyview_modeset_global_resources;
12523 dev_priv->display.write_eld = ironlake_write_eld;
12524 }
12525
12526 /* Default just returns -ENODEV to indicate unsupported */
12527 dev_priv->display.queue_flip = intel_default_queue_flip;
12528
12529 switch (INTEL_INFO(dev)->gen) {
12530 case 2:
12531 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12532 break;
12533
12534 case 3:
12535 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12536 break;
12537
12538 case 4:
12539 case 5:
12540 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12541 break;
12542
12543 case 6:
12544 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12545 break;
12546 case 7:
12547 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12548 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12549 break;
12550 }
12551
12552 intel_panel_init_backlight_funcs(dev);
12553 }
12554
12555 /*
12556 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12557 * resume, or other times. This quirk makes sure that's the case for
12558 * affected systems.
12559 */
12560 static void quirk_pipea_force(struct drm_device *dev)
12561 {
12562 struct drm_i915_private *dev_priv = dev->dev_private;
12563
12564 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12565 DRM_INFO("applying pipe a force quirk\n");
12566 }
12567
12568 /*
12569 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12570 */
12571 static void quirk_ssc_force_disable(struct drm_device *dev)
12572 {
12573 struct drm_i915_private *dev_priv = dev->dev_private;
12574 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12575 DRM_INFO("applying lvds SSC disable quirk\n");
12576 }
12577
12578 /*
12579 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12580 * brightness value
12581 */
12582 static void quirk_invert_brightness(struct drm_device *dev)
12583 {
12584 struct drm_i915_private *dev_priv = dev->dev_private;
12585 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12586 DRM_INFO("applying inverted panel brightness quirk\n");
12587 }
12588
12589 /* Some VBT's incorrectly indicate no backlight is present */
12590 static void quirk_backlight_present(struct drm_device *dev)
12591 {
12592 struct drm_i915_private *dev_priv = dev->dev_private;
12593 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12594 DRM_INFO("applying backlight present quirk\n");
12595 }
12596
12597 struct intel_quirk {
12598 int device;
12599 int subsystem_vendor;
12600 int subsystem_device;
12601 void (*hook)(struct drm_device *dev);
12602 };
12603
12604 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12605 struct intel_dmi_quirk {
12606 void (*hook)(struct drm_device *dev);
12607 const struct dmi_system_id (*dmi_id_list)[];
12608 };
12609
12610 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12611 {
12612 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12613 return 1;
12614 }
12615
12616 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12617 {
12618 .dmi_id_list = &(const struct dmi_system_id[]) {
12619 {
12620 .callback = intel_dmi_reverse_brightness,
12621 .ident = "NCR Corporation",
12622 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12623 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12624 },
12625 },
12626 { } /* terminating entry */
12627 },
12628 .hook = quirk_invert_brightness,
12629 },
12630 };
12631
12632 static struct intel_quirk intel_quirks[] = {
12633 /* HP Mini needs pipe A force quirk (LP: #322104) */
12634 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12635
12636 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12637 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12638
12639 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12640 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12641
12642 /* Lenovo U160 cannot use SSC on LVDS */
12643 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12644
12645 /* Sony Vaio Y cannot use SSC on LVDS */
12646 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12647
12648 /* Acer Aspire 5734Z must invert backlight brightness */
12649 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12650
12651 /* Acer/eMachines G725 */
12652 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12653
12654 /* Acer/eMachines e725 */
12655 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12656
12657 /* Acer/Packard Bell NCL20 */
12658 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12659
12660 /* Acer Aspire 4736Z */
12661 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12662
12663 /* Acer Aspire 5336 */
12664 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12665
12666 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12667 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12668
12669 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12670 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12671
12672 /* HP Chromebook 14 (Celeron 2955U) */
12673 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12674 };
12675
12676 static void intel_init_quirks(struct drm_device *dev)
12677 {
12678 struct pci_dev *d = dev->pdev;
12679 int i;
12680
12681 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12682 struct intel_quirk *q = &intel_quirks[i];
12683
12684 if (d->device == q->device &&
12685 (d->subsystem_vendor == q->subsystem_vendor ||
12686 q->subsystem_vendor == PCI_ANY_ID) &&
12687 (d->subsystem_device == q->subsystem_device ||
12688 q->subsystem_device == PCI_ANY_ID))
12689 q->hook(dev);
12690 }
12691 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12692 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12693 intel_dmi_quirks[i].hook(dev);
12694 }
12695 }
12696
12697 /* Disable the VGA plane that we never use */
12698 static void i915_disable_vga(struct drm_device *dev)
12699 {
12700 struct drm_i915_private *dev_priv = dev->dev_private;
12701 u8 sr1;
12702 u32 vga_reg = i915_vgacntrl_reg(dev);
12703
12704 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12705 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12706 outb(SR01, VGA_SR_INDEX);
12707 sr1 = inb(VGA_SR_DATA);
12708 outb(sr1 | 1<<5, VGA_SR_DATA);
12709 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12710 udelay(300);
12711
12712 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12713 POSTING_READ(vga_reg);
12714 }
12715
12716 void intel_modeset_init_hw(struct drm_device *dev)
12717 {
12718 intel_prepare_ddi(dev);
12719
12720 if (IS_VALLEYVIEW(dev))
12721 vlv_update_cdclk(dev);
12722
12723 intel_init_clock_gating(dev);
12724
12725 intel_enable_gt_powersave(dev);
12726 }
12727
12728 void intel_modeset_suspend_hw(struct drm_device *dev)
12729 {
12730 intel_suspend_hw(dev);
12731 }
12732
12733 void intel_modeset_init(struct drm_device *dev)
12734 {
12735 struct drm_i915_private *dev_priv = dev->dev_private;
12736 int sprite, ret;
12737 enum pipe pipe;
12738 struct intel_crtc *crtc;
12739
12740 drm_mode_config_init(dev);
12741
12742 dev->mode_config.min_width = 0;
12743 dev->mode_config.min_height = 0;
12744
12745 dev->mode_config.preferred_depth = 24;
12746 dev->mode_config.prefer_shadow = 1;
12747
12748 dev->mode_config.funcs = &intel_mode_funcs;
12749
12750 intel_init_quirks(dev);
12751
12752 intel_init_pm(dev);
12753
12754 if (INTEL_INFO(dev)->num_pipes == 0)
12755 return;
12756
12757 intel_init_display(dev);
12758
12759 if (IS_GEN2(dev)) {
12760 dev->mode_config.max_width = 2048;
12761 dev->mode_config.max_height = 2048;
12762 } else if (IS_GEN3(dev)) {
12763 dev->mode_config.max_width = 4096;
12764 dev->mode_config.max_height = 4096;
12765 } else {
12766 dev->mode_config.max_width = 8192;
12767 dev->mode_config.max_height = 8192;
12768 }
12769
12770 if (IS_845G(dev) || IS_I865G(dev)) {
12771 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12772 dev->mode_config.cursor_height = 1023;
12773 } else if (IS_GEN2(dev)) {
12774 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12775 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12776 } else {
12777 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12778 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12779 }
12780
12781 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12782
12783 DRM_DEBUG_KMS("%d display pipe%s available.\n",
12784 INTEL_INFO(dev)->num_pipes,
12785 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12786
12787 for_each_pipe(dev_priv, pipe) {
12788 intel_crtc_init(dev, pipe);
12789 for_each_sprite(pipe, sprite) {
12790 ret = intel_plane_init(dev, pipe, sprite);
12791 if (ret)
12792 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12793 pipe_name(pipe), sprite_name(pipe, sprite), ret);
12794 }
12795 }
12796
12797 intel_init_dpio(dev);
12798
12799 intel_shared_dpll_init(dev);
12800
12801 /* Just disable it once at startup */
12802 i915_disable_vga(dev);
12803 intel_setup_outputs(dev);
12804
12805 /* Just in case the BIOS is doing something questionable. */
12806 intel_disable_fbc(dev);
12807
12808 drm_modeset_lock_all(dev);
12809 intel_modeset_setup_hw_state(dev, false);
12810 drm_modeset_unlock_all(dev);
12811
12812 for_each_intel_crtc(dev, crtc) {
12813 if (!crtc->active)
12814 continue;
12815
12816 /*
12817 * Note that reserving the BIOS fb up front prevents us
12818 * from stuffing other stolen allocations like the ring
12819 * on top. This prevents some ugliness at boot time, and
12820 * can even allow for smooth boot transitions if the BIOS
12821 * fb is large enough for the active pipe configuration.
12822 */
12823 if (dev_priv->display.get_plane_config) {
12824 dev_priv->display.get_plane_config(crtc,
12825 &crtc->plane_config);
12826 /*
12827 * If the fb is shared between multiple heads, we'll
12828 * just get the first one.
12829 */
12830 intel_find_plane_obj(crtc, &crtc->plane_config);
12831 }
12832 }
12833 }
12834
12835 static void intel_enable_pipe_a(struct drm_device *dev)
12836 {
12837 struct intel_connector *connector;
12838 struct drm_connector *crt = NULL;
12839 struct intel_load_detect_pipe load_detect_temp;
12840 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
12841
12842 /* We can't just switch on the pipe A, we need to set things up with a
12843 * proper mode and output configuration. As a gross hack, enable pipe A
12844 * by enabling the load detect pipe once. */
12845 list_for_each_entry(connector,
12846 &dev->mode_config.connector_list,
12847 base.head) {
12848 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12849 crt = &connector->base;
12850 break;
12851 }
12852 }
12853
12854 if (!crt)
12855 return;
12856
12857 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12858 intel_release_load_detect_pipe(crt, &load_detect_temp);
12859 }
12860
12861 static bool
12862 intel_check_plane_mapping(struct intel_crtc *crtc)
12863 {
12864 struct drm_device *dev = crtc->base.dev;
12865 struct drm_i915_private *dev_priv = dev->dev_private;
12866 u32 reg, val;
12867
12868 if (INTEL_INFO(dev)->num_pipes == 1)
12869 return true;
12870
12871 reg = DSPCNTR(!crtc->plane);
12872 val = I915_READ(reg);
12873
12874 if ((val & DISPLAY_PLANE_ENABLE) &&
12875 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12876 return false;
12877
12878 return true;
12879 }
12880
12881 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12882 {
12883 struct drm_device *dev = crtc->base.dev;
12884 struct drm_i915_private *dev_priv = dev->dev_private;
12885 u32 reg;
12886
12887 /* Clear any frame start delays used for debugging left by the BIOS */
12888 reg = PIPECONF(crtc->config.cpu_transcoder);
12889 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12890
12891 /* restore vblank interrupts to correct state */
12892 if (crtc->active)
12893 drm_vblank_on(dev, crtc->pipe);
12894 else
12895 drm_vblank_off(dev, crtc->pipe);
12896
12897 /* We need to sanitize the plane -> pipe mapping first because this will
12898 * disable the crtc (and hence change the state) if it is wrong. Note
12899 * that gen4+ has a fixed plane -> pipe mapping. */
12900 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12901 struct intel_connector *connector;
12902 bool plane;
12903
12904 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12905 crtc->base.base.id);
12906
12907 /* Pipe has the wrong plane attached and the plane is active.
12908 * Temporarily change the plane mapping and disable everything
12909 * ... */
12910 plane = crtc->plane;
12911 crtc->plane = !plane;
12912 crtc->primary_enabled = true;
12913 dev_priv->display.crtc_disable(&crtc->base);
12914 crtc->plane = plane;
12915
12916 /* ... and break all links. */
12917 list_for_each_entry(connector, &dev->mode_config.connector_list,
12918 base.head) {
12919 if (connector->encoder->base.crtc != &crtc->base)
12920 continue;
12921
12922 connector->base.dpms = DRM_MODE_DPMS_OFF;
12923 connector->base.encoder = NULL;
12924 }
12925 /* multiple connectors may have the same encoder:
12926 * handle them and break crtc link separately */
12927 list_for_each_entry(connector, &dev->mode_config.connector_list,
12928 base.head)
12929 if (connector->encoder->base.crtc == &crtc->base) {
12930 connector->encoder->base.crtc = NULL;
12931 connector->encoder->connectors_active = false;
12932 }
12933
12934 WARN_ON(crtc->active);
12935 crtc->base.enabled = false;
12936 }
12937
12938 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12939 crtc->pipe == PIPE_A && !crtc->active) {
12940 /* BIOS forgot to enable pipe A, this mostly happens after
12941 * resume. Force-enable the pipe to fix this, the update_dpms
12942 * call below we restore the pipe to the right state, but leave
12943 * the required bits on. */
12944 intel_enable_pipe_a(dev);
12945 }
12946
12947 /* Adjust the state of the output pipe according to whether we
12948 * have active connectors/encoders. */
12949 intel_crtc_update_dpms(&crtc->base);
12950
12951 if (crtc->active != crtc->base.enabled) {
12952 struct intel_encoder *encoder;
12953
12954 /* This can happen either due to bugs in the get_hw_state
12955 * functions or because the pipe is force-enabled due to the
12956 * pipe A quirk. */
12957 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12958 crtc->base.base.id,
12959 crtc->base.enabled ? "enabled" : "disabled",
12960 crtc->active ? "enabled" : "disabled");
12961
12962 crtc->base.enabled = crtc->active;
12963
12964 /* Because we only establish the connector -> encoder ->
12965 * crtc links if something is active, this means the
12966 * crtc is now deactivated. Break the links. connector
12967 * -> encoder links are only establish when things are
12968 * actually up, hence no need to break them. */
12969 WARN_ON(crtc->active);
12970
12971 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12972 WARN_ON(encoder->connectors_active);
12973 encoder->base.crtc = NULL;
12974 }
12975 }
12976
12977 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12978 /*
12979 * We start out with underrun reporting disabled to avoid races.
12980 * For correct bookkeeping mark this on active crtcs.
12981 *
12982 * Also on gmch platforms we dont have any hardware bits to
12983 * disable the underrun reporting. Which means we need to start
12984 * out with underrun reporting disabled also on inactive pipes,
12985 * since otherwise we'll complain about the garbage we read when
12986 * e.g. coming up after runtime pm.
12987 *
12988 * No protection against concurrent access is required - at
12989 * worst a fifo underrun happens which also sets this to false.
12990 */
12991 crtc->cpu_fifo_underrun_disabled = true;
12992 crtc->pch_fifo_underrun_disabled = true;
12993
12994 update_scanline_offset(crtc);
12995 }
12996 }
12997
12998 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12999 {
13000 struct intel_connector *connector;
13001 struct drm_device *dev = encoder->base.dev;
13002
13003 /* We need to check both for a crtc link (meaning that the
13004 * encoder is active and trying to read from a pipe) and the
13005 * pipe itself being active. */
13006 bool has_active_crtc = encoder->base.crtc &&
13007 to_intel_crtc(encoder->base.crtc)->active;
13008
13009 if (encoder->connectors_active && !has_active_crtc) {
13010 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13011 encoder->base.base.id,
13012 encoder->base.name);
13013
13014 /* Connector is active, but has no active pipe. This is
13015 * fallout from our resume register restoring. Disable
13016 * the encoder manually again. */
13017 if (encoder->base.crtc) {
13018 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13019 encoder->base.base.id,
13020 encoder->base.name);
13021 encoder->disable(encoder);
13022 if (encoder->post_disable)
13023 encoder->post_disable(encoder);
13024 }
13025 encoder->base.crtc = NULL;
13026 encoder->connectors_active = false;
13027
13028 /* Inconsistent output/port/pipe state happens presumably due to
13029 * a bug in one of the get_hw_state functions. Or someplace else
13030 * in our code, like the register restore mess on resume. Clamp
13031 * things to off as a safer default. */
13032 list_for_each_entry(connector,
13033 &dev->mode_config.connector_list,
13034 base.head) {
13035 if (connector->encoder != encoder)
13036 continue;
13037 connector->base.dpms = DRM_MODE_DPMS_OFF;
13038 connector->base.encoder = NULL;
13039 }
13040 }
13041 /* Enabled encoders without active connectors will be fixed in
13042 * the crtc fixup. */
13043 }
13044
13045 void i915_redisable_vga_power_on(struct drm_device *dev)
13046 {
13047 struct drm_i915_private *dev_priv = dev->dev_private;
13048 u32 vga_reg = i915_vgacntrl_reg(dev);
13049
13050 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13051 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13052 i915_disable_vga(dev);
13053 }
13054 }
13055
13056 void i915_redisable_vga(struct drm_device *dev)
13057 {
13058 struct drm_i915_private *dev_priv = dev->dev_private;
13059
13060 /* This function can be called both from intel_modeset_setup_hw_state or
13061 * at a very early point in our resume sequence, where the power well
13062 * structures are not yet restored. Since this function is at a very
13063 * paranoid "someone might have enabled VGA while we were not looking"
13064 * level, just check if the power well is enabled instead of trying to
13065 * follow the "don't touch the power well if we don't need it" policy
13066 * the rest of the driver uses. */
13067 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
13068 return;
13069
13070 i915_redisable_vga_power_on(dev);
13071 }
13072
13073 static bool primary_get_hw_state(struct intel_crtc *crtc)
13074 {
13075 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13076
13077 if (!crtc->active)
13078 return false;
13079
13080 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13081 }
13082
13083 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13084 {
13085 struct drm_i915_private *dev_priv = dev->dev_private;
13086 enum pipe pipe;
13087 struct intel_crtc *crtc;
13088 struct intel_encoder *encoder;
13089 struct intel_connector *connector;
13090 int i;
13091
13092 for_each_intel_crtc(dev, crtc) {
13093 memset(&crtc->config, 0, sizeof(crtc->config));
13094
13095 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13096
13097 crtc->active = dev_priv->display.get_pipe_config(crtc,
13098 &crtc->config);
13099
13100 crtc->base.enabled = crtc->active;
13101 crtc->primary_enabled = primary_get_hw_state(crtc);
13102
13103 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13104 crtc->base.base.id,
13105 crtc->active ? "enabled" : "disabled");
13106 }
13107
13108 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13109 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13110
13111 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13112 pll->active = 0;
13113 for_each_intel_crtc(dev, crtc) {
13114 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13115 pll->active++;
13116 }
13117 pll->refcount = pll->active;
13118
13119 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13120 pll->name, pll->refcount, pll->on);
13121
13122 if (pll->refcount)
13123 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13124 }
13125
13126 for_each_intel_encoder(dev, encoder) {
13127 pipe = 0;
13128
13129 if (encoder->get_hw_state(encoder, &pipe)) {
13130 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13131 encoder->base.crtc = &crtc->base;
13132 encoder->get_config(encoder, &crtc->config);
13133 } else {
13134 encoder->base.crtc = NULL;
13135 }
13136
13137 encoder->connectors_active = false;
13138 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13139 encoder->base.base.id,
13140 encoder->base.name,
13141 encoder->base.crtc ? "enabled" : "disabled",
13142 pipe_name(pipe));
13143 }
13144
13145 list_for_each_entry(connector, &dev->mode_config.connector_list,
13146 base.head) {
13147 if (connector->get_hw_state(connector)) {
13148 connector->base.dpms = DRM_MODE_DPMS_ON;
13149 connector->encoder->connectors_active = true;
13150 connector->base.encoder = &connector->encoder->base;
13151 } else {
13152 connector->base.dpms = DRM_MODE_DPMS_OFF;
13153 connector->base.encoder = NULL;
13154 }
13155 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13156 connector->base.base.id,
13157 connector->base.name,
13158 connector->base.encoder ? "enabled" : "disabled");
13159 }
13160 }
13161
13162 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13163 * and i915 state tracking structures. */
13164 void intel_modeset_setup_hw_state(struct drm_device *dev,
13165 bool force_restore)
13166 {
13167 struct drm_i915_private *dev_priv = dev->dev_private;
13168 enum pipe pipe;
13169 struct intel_crtc *crtc;
13170 struct intel_encoder *encoder;
13171 int i;
13172
13173 intel_modeset_readout_hw_state(dev);
13174
13175 /*
13176 * Now that we have the config, copy it to each CRTC struct
13177 * Note that this could go away if we move to using crtc_config
13178 * checking everywhere.
13179 */
13180 for_each_intel_crtc(dev, crtc) {
13181 if (crtc->active && i915.fastboot) {
13182 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13183 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13184 crtc->base.base.id);
13185 drm_mode_debug_printmodeline(&crtc->base.mode);
13186 }
13187 }
13188
13189 /* HW state is read out, now we need to sanitize this mess. */
13190 for_each_intel_encoder(dev, encoder) {
13191 intel_sanitize_encoder(encoder);
13192 }
13193
13194 for_each_pipe(dev_priv, pipe) {
13195 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13196 intel_sanitize_crtc(crtc);
13197 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13198 }
13199
13200 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13201 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13202
13203 if (!pll->on || pll->active)
13204 continue;
13205
13206 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13207
13208 pll->disable(dev_priv, pll);
13209 pll->on = false;
13210 }
13211
13212 if (HAS_PCH_SPLIT(dev))
13213 ilk_wm_get_hw_state(dev);
13214
13215 if (force_restore) {
13216 i915_redisable_vga(dev);
13217
13218 /*
13219 * We need to use raw interfaces for restoring state to avoid
13220 * checking (bogus) intermediate states.
13221 */
13222 for_each_pipe(dev_priv, pipe) {
13223 struct drm_crtc *crtc =
13224 dev_priv->pipe_to_crtc_mapping[pipe];
13225
13226 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13227 crtc->primary->fb);
13228 }
13229 } else {
13230 intel_modeset_update_staged_output_state(dev);
13231 }
13232
13233 intel_modeset_check_state(dev);
13234 }
13235
13236 void intel_modeset_gem_init(struct drm_device *dev)
13237 {
13238 struct drm_crtc *c;
13239 struct drm_i915_gem_object *obj;
13240
13241 mutex_lock(&dev->struct_mutex);
13242 intel_init_gt_powersave(dev);
13243 mutex_unlock(&dev->struct_mutex);
13244
13245 intel_modeset_init_hw(dev);
13246
13247 intel_setup_overlay(dev);
13248
13249 /*
13250 * Make sure any fbs we allocated at startup are properly
13251 * pinned & fenced. When we do the allocation it's too early
13252 * for this.
13253 */
13254 mutex_lock(&dev->struct_mutex);
13255 for_each_crtc(dev, c) {
13256 obj = intel_fb_obj(c->primary->fb);
13257 if (obj == NULL)
13258 continue;
13259
13260 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13261 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13262 to_intel_crtc(c)->pipe);
13263 drm_framebuffer_unreference(c->primary->fb);
13264 c->primary->fb = NULL;
13265 }
13266 }
13267 mutex_unlock(&dev->struct_mutex);
13268 }
13269
13270 void intel_connector_unregister(struct intel_connector *intel_connector)
13271 {
13272 struct drm_connector *connector = &intel_connector->base;
13273
13274 intel_panel_destroy_backlight(connector);
13275 drm_connector_unregister(connector);
13276 }
13277
13278 void intel_modeset_cleanup(struct drm_device *dev)
13279 {
13280 struct drm_i915_private *dev_priv = dev->dev_private;
13281 struct drm_connector *connector;
13282
13283 /*
13284 * Interrupts and polling as the first thing to avoid creating havoc.
13285 * Too much stuff here (turning of rps, connectors, ...) would
13286 * experience fancy races otherwise.
13287 */
13288 drm_irq_uninstall(dev);
13289 intel_hpd_cancel_work(dev_priv);
13290 dev_priv->pm._irqs_disabled = true;
13291
13292 /*
13293 * Due to the hpd irq storm handling the hotplug work can re-arm the
13294 * poll handlers. Hence disable polling after hpd handling is shut down.
13295 */
13296 drm_kms_helper_poll_fini(dev);
13297
13298 mutex_lock(&dev->struct_mutex);
13299
13300 intel_unregister_dsm_handler();
13301
13302 intel_disable_fbc(dev);
13303
13304 intel_disable_gt_powersave(dev);
13305
13306 ironlake_teardown_rc6(dev);
13307
13308 mutex_unlock(&dev->struct_mutex);
13309
13310 /* flush any delayed tasks or pending work */
13311 flush_scheduled_work();
13312
13313 /* destroy the backlight and sysfs files before encoders/connectors */
13314 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13315 struct intel_connector *intel_connector;
13316
13317 intel_connector = to_intel_connector(connector);
13318 intel_connector->unregister(intel_connector);
13319 }
13320
13321 drm_mode_config_cleanup(dev);
13322
13323 intel_cleanup_overlay(dev);
13324
13325 mutex_lock(&dev->struct_mutex);
13326 intel_cleanup_gt_powersave(dev);
13327 mutex_unlock(&dev->struct_mutex);
13328 }
13329
13330 /*
13331 * Return which encoder is currently attached for connector.
13332 */
13333 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13334 {
13335 return &intel_attached_encoder(connector)->base;
13336 }
13337
13338 void intel_connector_attach_encoder(struct intel_connector *connector,
13339 struct intel_encoder *encoder)
13340 {
13341 connector->encoder = encoder;
13342 drm_mode_connector_attach_encoder(&connector->base,
13343 &encoder->base);
13344 }
13345
13346 /*
13347 * set vga decode state - true == enable VGA decode
13348 */
13349 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13350 {
13351 struct drm_i915_private *dev_priv = dev->dev_private;
13352 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13353 u16 gmch_ctrl;
13354
13355 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13356 DRM_ERROR("failed to read control word\n");
13357 return -EIO;
13358 }
13359
13360 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13361 return 0;
13362
13363 if (state)
13364 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13365 else
13366 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13367
13368 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13369 DRM_ERROR("failed to write control word\n");
13370 return -EIO;
13371 }
13372
13373 return 0;
13374 }
13375
13376 struct intel_display_error_state {
13377
13378 u32 power_well_driver;
13379
13380 int num_transcoders;
13381
13382 struct intel_cursor_error_state {
13383 u32 control;
13384 u32 position;
13385 u32 base;
13386 u32 size;
13387 } cursor[I915_MAX_PIPES];
13388
13389 struct intel_pipe_error_state {
13390 bool power_domain_on;
13391 u32 source;
13392 u32 stat;
13393 } pipe[I915_MAX_PIPES];
13394
13395 struct intel_plane_error_state {
13396 u32 control;
13397 u32 stride;
13398 u32 size;
13399 u32 pos;
13400 u32 addr;
13401 u32 surface;
13402 u32 tile_offset;
13403 } plane[I915_MAX_PIPES];
13404
13405 struct intel_transcoder_error_state {
13406 bool power_domain_on;
13407 enum transcoder cpu_transcoder;
13408
13409 u32 conf;
13410
13411 u32 htotal;
13412 u32 hblank;
13413 u32 hsync;
13414 u32 vtotal;
13415 u32 vblank;
13416 u32 vsync;
13417 } transcoder[4];
13418 };
13419
13420 struct intel_display_error_state *
13421 intel_display_capture_error_state(struct drm_device *dev)
13422 {
13423 struct drm_i915_private *dev_priv = dev->dev_private;
13424 struct intel_display_error_state *error;
13425 int transcoders[] = {
13426 TRANSCODER_A,
13427 TRANSCODER_B,
13428 TRANSCODER_C,
13429 TRANSCODER_EDP,
13430 };
13431 int i;
13432
13433 if (INTEL_INFO(dev)->num_pipes == 0)
13434 return NULL;
13435
13436 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13437 if (error == NULL)
13438 return NULL;
13439
13440 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13441 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13442
13443 for_each_pipe(dev_priv, i) {
13444 error->pipe[i].power_domain_on =
13445 intel_display_power_enabled_unlocked(dev_priv,
13446 POWER_DOMAIN_PIPE(i));
13447 if (!error->pipe[i].power_domain_on)
13448 continue;
13449
13450 error->cursor[i].control = I915_READ(CURCNTR(i));
13451 error->cursor[i].position = I915_READ(CURPOS(i));
13452 error->cursor[i].base = I915_READ(CURBASE(i));
13453
13454 error->plane[i].control = I915_READ(DSPCNTR(i));
13455 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13456 if (INTEL_INFO(dev)->gen <= 3) {
13457 error->plane[i].size = I915_READ(DSPSIZE(i));
13458 error->plane[i].pos = I915_READ(DSPPOS(i));
13459 }
13460 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13461 error->plane[i].addr = I915_READ(DSPADDR(i));
13462 if (INTEL_INFO(dev)->gen >= 4) {
13463 error->plane[i].surface = I915_READ(DSPSURF(i));
13464 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13465 }
13466
13467 error->pipe[i].source = I915_READ(PIPESRC(i));
13468
13469 if (HAS_GMCH_DISPLAY(dev))
13470 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13471 }
13472
13473 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13474 if (HAS_DDI(dev_priv->dev))
13475 error->num_transcoders++; /* Account for eDP. */
13476
13477 for (i = 0; i < error->num_transcoders; i++) {
13478 enum transcoder cpu_transcoder = transcoders[i];
13479
13480 error->transcoder[i].power_domain_on =
13481 intel_display_power_enabled_unlocked(dev_priv,
13482 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13483 if (!error->transcoder[i].power_domain_on)
13484 continue;
13485
13486 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13487
13488 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13489 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13490 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13491 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13492 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13493 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13494 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13495 }
13496
13497 return error;
13498 }
13499
13500 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13501
13502 void
13503 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13504 struct drm_device *dev,
13505 struct intel_display_error_state *error)
13506 {
13507 struct drm_i915_private *dev_priv = dev->dev_private;
13508 int i;
13509
13510 if (!error)
13511 return;
13512
13513 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13514 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13515 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13516 error->power_well_driver);
13517 for_each_pipe(dev_priv, i) {
13518 err_printf(m, "Pipe [%d]:\n", i);
13519 err_printf(m, " Power: %s\n",
13520 error->pipe[i].power_domain_on ? "on" : "off");
13521 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13522 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13523
13524 err_printf(m, "Plane [%d]:\n", i);
13525 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13526 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13527 if (INTEL_INFO(dev)->gen <= 3) {
13528 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13529 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13530 }
13531 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13532 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13533 if (INTEL_INFO(dev)->gen >= 4) {
13534 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13535 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13536 }
13537
13538 err_printf(m, "Cursor [%d]:\n", i);
13539 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13540 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13541 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13542 }
13543
13544 for (i = 0; i < error->num_transcoders; i++) {
13545 err_printf(m, "CPU transcoder: %c\n",
13546 transcoder_name(error->transcoder[i].cpu_transcoder));
13547 err_printf(m, " Power: %s\n",
13548 error->transcoder[i].power_domain_on ? "on" : "off");
13549 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13550 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13551 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13552 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13553 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13554 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13555 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13556 }
13557 }
13558
13559 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13560 {
13561 struct intel_crtc *crtc;
13562
13563 for_each_intel_crtc(dev, crtc) {
13564 struct intel_unpin_work *work;
13565 unsigned long irqflags;
13566
13567 spin_lock_irqsave(&dev->event_lock, irqflags);
13568
13569 work = crtc->unpin_work;
13570
13571 if (work && work->event &&
13572 work->event->base.file_priv == file) {
13573 kfree(work->event);
13574 work->event = NULL;
13575 }
13576
13577 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13578 }
13579 }
This page took 0.30251 seconds and 6 git commands to generate.