drm/i915: use transcoder select bits on VGA and HDMI on CPT
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41
42 #include "drm_crtc_helper.h"
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
62
63 typedef struct {
64 int min, max;
65 } intel_range_t;
66
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
71
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *);
79 };
80
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *best_clock);
90
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *best_clock);
97
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
100 {
101 if (IS_GEN5(dev)) {
102 struct drm_i915_private *dev_priv = dev->dev_private;
103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 } else
105 return 27;
106 }
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 2 },
119 .find_pll = intel_find_best_PLL,
120 };
121
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123 .dot = { .min = 25000, .max = 350000 },
124 .vco = { .min = 930000, .max = 1400000 },
125 .n = { .min = 3, .max = 16 },
126 .m = { .min = 96, .max = 140 },
127 .m1 = { .min = 18, .max = 26 },
128 .m2 = { .min = 6, .max = 16 },
129 .p = { .min = 4, .max = 128 },
130 .p1 = { .min = 1, .max = 6 },
131 .p2 = { .dot_limit = 165000,
132 .p2_slow = 14, .p2_fast = 7 },
133 .find_pll = intel_find_best_PLL,
134 };
135
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137 .dot = { .min = 20000, .max = 400000 },
138 .vco = { .min = 1400000, .max = 2800000 },
139 .n = { .min = 1, .max = 6 },
140 .m = { .min = 70, .max = 120 },
141 .m1 = { .min = 10, .max = 22 },
142 .m2 = { .min = 5, .max = 9 },
143 .p = { .min = 5, .max = 80 },
144 .p1 = { .min = 1, .max = 8 },
145 .p2 = { .dot_limit = 200000,
146 .p2_slow = 10, .p2_fast = 5 },
147 .find_pll = intel_find_best_PLL,
148 };
149
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151 .dot = { .min = 20000, .max = 400000 },
152 .vco = { .min = 1400000, .max = 2800000 },
153 .n = { .min = 1, .max = 6 },
154 .m = { .min = 70, .max = 120 },
155 .m1 = { .min = 10, .max = 22 },
156 .m2 = { .min = 5, .max = 9 },
157 .p = { .min = 7, .max = 98 },
158 .p1 = { .min = 1, .max = 8 },
159 .p2 = { .dot_limit = 112000,
160 .p2_slow = 14, .p2_fast = 7 },
161 .find_pll = intel_find_best_PLL,
162 };
163
164
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166 .dot = { .min = 25000, .max = 270000 },
167 .vco = { .min = 1750000, .max = 3500000},
168 .n = { .min = 1, .max = 4 },
169 .m = { .min = 104, .max = 138 },
170 .m1 = { .min = 17, .max = 23 },
171 .m2 = { .min = 5, .max = 11 },
172 .p = { .min = 10, .max = 30 },
173 .p1 = { .min = 1, .max = 3},
174 .p2 = { .dot_limit = 270000,
175 .p2_slow = 10,
176 .p2_fast = 10
177 },
178 .find_pll = intel_g4x_find_best_PLL,
179 };
180
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182 .dot = { .min = 22000, .max = 400000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 16, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8},
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 10, .p2_fast = 5 },
192 .find_pll = intel_g4x_find_best_PLL,
193 };
194
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196 .dot = { .min = 20000, .max = 115000 },
197 .vco = { .min = 1750000, .max = 3500000 },
198 .n = { .min = 1, .max = 3 },
199 .m = { .min = 104, .max = 138 },
200 .m1 = { .min = 17, .max = 23 },
201 .m2 = { .min = 5, .max = 11 },
202 .p = { .min = 28, .max = 112 },
203 .p1 = { .min = 2, .max = 8 },
204 .p2 = { .dot_limit = 0,
205 .p2_slow = 14, .p2_fast = 14
206 },
207 .find_pll = intel_g4x_find_best_PLL,
208 };
209
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211 .dot = { .min = 80000, .max = 224000 },
212 .vco = { .min = 1750000, .max = 3500000 },
213 .n = { .min = 1, .max = 3 },
214 .m = { .min = 104, .max = 138 },
215 .m1 = { .min = 17, .max = 23 },
216 .m2 = { .min = 5, .max = 11 },
217 .p = { .min = 14, .max = 42 },
218 .p1 = { .min = 2, .max = 6 },
219 .p2 = { .dot_limit = 0,
220 .p2_slow = 7, .p2_fast = 7
221 },
222 .find_pll = intel_g4x_find_best_PLL,
223 };
224
225 static const intel_limit_t intel_limits_g4x_display_port = {
226 .dot = { .min = 161670, .max = 227000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 2 },
229 .m = { .min = 97, .max = 108 },
230 .m1 = { .min = 0x10, .max = 0x12 },
231 .m2 = { .min = 0x05, .max = 0x06 },
232 .p = { .min = 10, .max = 20 },
233 .p1 = { .min = 1, .max = 2},
234 .p2 = { .dot_limit = 0,
235 .p2_slow = 10, .p2_fast = 10 },
236 .find_pll = intel_find_pll_g4x_dp,
237 };
238
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240 .dot = { .min = 20000, .max = 400000},
241 .vco = { .min = 1700000, .max = 3500000 },
242 /* Pineview's Ncounter is a ring counter */
243 .n = { .min = 3, .max = 6 },
244 .m = { .min = 2, .max = 256 },
245 /* Pineview only has one combined m divider, which we treat as m2. */
246 .m1 = { .min = 0, .max = 0 },
247 .m2 = { .min = 0, .max = 254 },
248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8 },
250 .p2 = { .dot_limit = 200000,
251 .p2_slow = 10, .p2_fast = 5 },
252 .find_pll = intel_find_best_PLL,
253 };
254
255 static const intel_limit_t intel_limits_pineview_lvds = {
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1700000, .max = 3500000 },
258 .n = { .min = 3, .max = 6 },
259 .m = { .min = 2, .max = 256 },
260 .m1 = { .min = 0, .max = 0 },
261 .m2 = { .min = 0, .max = 254 },
262 .p = { .min = 7, .max = 112 },
263 .p1 = { .min = 1, .max = 8 },
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 14 },
266 .find_pll = intel_find_best_PLL,
267 };
268
269 /* Ironlake / Sandybridge
270 *
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
273 */
274 static const intel_limit_t intel_limits_ironlake_dac = {
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 5 },
278 .m = { .min = 79, .max = 127 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 10, .p2_fast = 5 },
285 .find_pll = intel_g4x_find_best_PLL,
286 };
287
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 1760000, .max = 3510000 },
291 .n = { .min = 1, .max = 3 },
292 .m = { .min = 79, .max = 118 },
293 .m1 = { .min = 12, .max = 22 },
294 .m2 = { .min = 5, .max = 9 },
295 .p = { .min = 28, .max = 112 },
296 .p1 = { .min = 2, .max = 8 },
297 .p2 = { .dot_limit = 225000,
298 .p2_slow = 14, .p2_fast = 14 },
299 .find_pll = intel_g4x_find_best_PLL,
300 };
301
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 56 },
310 .p1 = { .min = 2, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
313 .find_pll = intel_g4x_find_best_PLL,
314 };
315
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 2 },
321 .m = { .min = 79, .max = 126 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
325 .p1 = { .min = 2, .max = 8 },
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
328 .find_pll = intel_g4x_find_best_PLL,
329 };
330
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 126 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 42 },
339 .p1 = { .min = 2, .max = 6 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
342 .find_pll = intel_g4x_find_best_PLL,
343 };
344
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000},
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 81, .max = 90 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 10, .max = 20 },
353 .p1 = { .min = 1, .max = 2},
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 10, .p2_fast = 10 },
356 .find_pll = intel_find_pll_ironlake_dp,
357 };
358
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 int refclk)
361 {
362 struct drm_device *dev = crtc->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 const intel_limit_t *limit;
365
366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 LVDS_CLKB_POWER_UP) {
369 /* LVDS dual channel */
370 if (refclk == 100000)
371 limit = &intel_limits_ironlake_dual_lvds_100m;
372 else
373 limit = &intel_limits_ironlake_dual_lvds;
374 } else {
375 if (refclk == 100000)
376 limit = &intel_limits_ironlake_single_lvds_100m;
377 else
378 limit = &intel_limits_ironlake_single_lvds;
379 }
380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381 HAS_eDP)
382 limit = &intel_limits_ironlake_display_port;
383 else
384 limit = &intel_limits_ironlake_dac;
385
386 return limit;
387 }
388
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390 {
391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit;
394
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */
399 limit = &intel_limits_g4x_dual_channel_lvds;
400 else
401 /* LVDS with dual channel */
402 limit = &intel_limits_g4x_single_channel_lvds;
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405 limit = &intel_limits_g4x_hdmi;
406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407 limit = &intel_limits_g4x_sdvo;
408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409 limit = &intel_limits_g4x_display_port;
410 } else /* The option is for other outputs */
411 limit = &intel_limits_i9xx_sdvo;
412
413 return limit;
414 }
415
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
417 {
418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit;
420
421 if (HAS_PCH_SPLIT(dev))
422 limit = intel_ironlake_limit(crtc, refclk);
423 else if (IS_G4X(dev)) {
424 limit = intel_g4x_limit(crtc);
425 } else if (IS_PINEVIEW(dev)) {
426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427 limit = &intel_limits_pineview_lvds;
428 else
429 limit = &intel_limits_pineview_sdvo;
430 } else if (!IS_GEN2(dev)) {
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 limit = &intel_limits_i9xx_lvds;
433 else
434 limit = &intel_limits_i9xx_sdvo;
435 } else {
436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437 limit = &intel_limits_i8xx_lvds;
438 else
439 limit = &intel_limits_i8xx_dvo;
440 }
441 return limit;
442 }
443
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
446 {
447 clock->m = clock->m2 + 2;
448 clock->p = clock->p1 * clock->p2;
449 clock->vco = refclk * clock->m / clock->n;
450 clock->dot = clock->vco / clock->p;
451 }
452
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454 {
455 if (IS_PINEVIEW(dev)) {
456 pineview_clock(refclk, clock);
457 return;
458 }
459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 clock->p = clock->p1 * clock->p2;
461 clock->vco = refclk * clock->m / (clock->n + 2);
462 clock->dot = clock->vco / clock->p;
463 }
464
465 /**
466 * Returns whether any output on the specified pipe is of the specified type
467 */
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
469 {
470 struct drm_device *dev = crtc->dev;
471 struct drm_mode_config *mode_config = &dev->mode_config;
472 struct intel_encoder *encoder;
473
474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 if (encoder->base.crtc == crtc && encoder->type == type)
476 return true;
477
478 return false;
479 }
480
481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
482 /**
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
485 */
486
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488 const intel_limit_t *limit,
489 const intel_clock_t *clock)
490 {
491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
492 INTELPllInvalid("p1 out of range\n");
493 if (clock->p < limit->p.min || limit->p.max < clock->p)
494 INTELPllInvalid("p out of range\n");
495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
496 INTELPllInvalid("m2 out of range\n");
497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
498 INTELPllInvalid("m1 out of range\n");
499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500 INTELPllInvalid("m1 <= m2\n");
501 if (clock->m < limit->m.min || limit->m.max < clock->m)
502 INTELPllInvalid("m out of range\n");
503 if (clock->n < limit->n.min || limit->n.max < clock->n)
504 INTELPllInvalid("n out of range\n");
505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506 INTELPllInvalid("vco out of range\n");
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
509 */
510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511 INTELPllInvalid("dot out of range\n");
512
513 return true;
514 }
515
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 int target, int refclk, intel_clock_t *best_clock)
519
520 {
521 struct drm_device *dev = crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 intel_clock_t clock;
524 int err = target;
525
526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527 (I915_READ(LVDS)) != 0) {
528 /*
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
532 * even can.
533 */
534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 LVDS_CLKB_POWER_UP)
536 clock.p2 = limit->p2.p2_fast;
537 else
538 clock.p2 = limit->p2.p2_slow;
539 } else {
540 if (target < limit->p2.dot_limit)
541 clock.p2 = limit->p2.p2_slow;
542 else
543 clock.p2 = limit->p2.p2_fast;
544 }
545
546 memset(best_clock, 0, sizeof(*best_clock));
547
548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 clock.m1++) {
550 for (clock.m2 = limit->m2.min;
551 clock.m2 <= limit->m2.max; clock.m2++) {
552 /* m1 is always 0 in Pineview */
553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554 break;
555 for (clock.n = limit->n.min;
556 clock.n <= limit->n.max; clock.n++) {
557 for (clock.p1 = limit->p1.min;
558 clock.p1 <= limit->p1.max; clock.p1++) {
559 int this_err;
560
561 intel_clock(dev, refclk, &clock);
562 if (!intel_PLL_is_valid(dev, limit,
563 &clock))
564 continue;
565
566 this_err = abs(clock.dot - target);
567 if (this_err < err) {
568 *best_clock = clock;
569 err = this_err;
570 }
571 }
572 }
573 }
574 }
575
576 return (err != target);
577 }
578
579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 int target, int refclk, intel_clock_t *best_clock)
582 {
583 struct drm_device *dev = crtc->dev;
584 struct drm_i915_private *dev_priv = dev->dev_private;
585 intel_clock_t clock;
586 int max_n;
587 bool found;
588 /* approximately equals target * 0.00585 */
589 int err_most = (target >> 8) + (target >> 9);
590 found = false;
591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593 int lvds_reg;
594
595 if (HAS_PCH_SPLIT(dev))
596 lvds_reg = PCH_LVDS;
597 else
598 lvds_reg = LVDS;
599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600 LVDS_CLKB_POWER_UP)
601 clock.p2 = limit->p2.p2_fast;
602 else
603 clock.p2 = limit->p2.p2_slow;
604 } else {
605 if (target < limit->p2.dot_limit)
606 clock.p2 = limit->p2.p2_slow;
607 else
608 clock.p2 = limit->p2.p2_fast;
609 }
610
611 memset(best_clock, 0, sizeof(*best_clock));
612 max_n = limit->n.max;
613 /* based on hardware requirement, prefer smaller n to precision */
614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615 /* based on hardware requirement, prefere larger m1,m2 */
616 for (clock.m1 = limit->m1.max;
617 clock.m1 >= limit->m1.min; clock.m1--) {
618 for (clock.m2 = limit->m2.max;
619 clock.m2 >= limit->m2.min; clock.m2--) {
620 for (clock.p1 = limit->p1.max;
621 clock.p1 >= limit->p1.min; clock.p1--) {
622 int this_err;
623
624 intel_clock(dev, refclk, &clock);
625 if (!intel_PLL_is_valid(dev, limit,
626 &clock))
627 continue;
628
629 this_err = abs(clock.dot - target);
630 if (this_err < err_most) {
631 *best_clock = clock;
632 err_most = this_err;
633 max_n = clock.n;
634 found = true;
635 }
636 }
637 }
638 }
639 }
640 return found;
641 }
642
643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *best_clock)
646 {
647 struct drm_device *dev = crtc->dev;
648 intel_clock_t clock;
649
650 if (target < 200000) {
651 clock.n = 1;
652 clock.p1 = 2;
653 clock.p2 = 10;
654 clock.m1 = 12;
655 clock.m2 = 9;
656 } else {
657 clock.n = 2;
658 clock.p1 = 1;
659 clock.p2 = 10;
660 clock.m1 = 14;
661 clock.m2 = 8;
662 }
663 intel_clock(dev, refclk, &clock);
664 memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 return true;
666 }
667
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 int target, int refclk, intel_clock_t *best_clock)
672 {
673 intel_clock_t clock;
674 if (target < 200000) {
675 clock.p1 = 2;
676 clock.p2 = 10;
677 clock.n = 2;
678 clock.m1 = 23;
679 clock.m2 = 8;
680 } else {
681 clock.p1 = 1;
682 clock.p2 = 10;
683 clock.n = 1;
684 clock.m1 = 14;
685 clock.m2 = 2;
686 }
687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 clock.p = (clock.p1 * clock.p2);
689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 clock.vco = 0;
691 memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 return true;
693 }
694
695 /**
696 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @dev: drm device
698 * @pipe: pipe to wait for
699 *
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
701 * mode setting code.
702 */
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
704 {
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 int pipestat_reg = PIPESTAT(pipe);
707
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
710 *
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
717 * vblanks...
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
720 */
721 I915_WRITE(pipestat_reg,
722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
724 /* Wait for vblank interrupt bit to set */
725 if (wait_for(I915_READ(pipestat_reg) &
726 PIPE_VBLANK_INTERRUPT_STATUS,
727 50))
728 DRM_DEBUG_KMS("vblank wait timed out\n");
729 }
730
731 /*
732 * intel_wait_for_pipe_off - wait for pipe to turn off
733 * @dev: drm device
734 * @pipe: pipe to wait for
735 *
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
739 *
740 * On Gen4 and above:
741 * wait for the pipe register state bit to turn off
742 *
743 * Otherwise:
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
746 *
747 */
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
749 {
750 struct drm_i915_private *dev_priv = dev->dev_private;
751
752 if (INTEL_INFO(dev)->gen >= 4) {
753 int reg = PIPECONF(pipe);
754
755 /* Wait for the Pipe State to go off */
756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 100))
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 } else {
760 u32 last_line;
761 int reg = PIPEDSL(pipe);
762 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764 /* Wait for the display line to settle */
765 do {
766 last_line = I915_READ(reg) & DSL_LINEMASK;
767 mdelay(5);
768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769 time_after(timeout, jiffies));
770 if (time_after(jiffies, timeout))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
772 }
773 }
774
775 static const char *state_string(bool enabled)
776 {
777 return enabled ? "on" : "off";
778 }
779
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv,
782 enum pipe pipe, bool state)
783 {
784 int reg;
785 u32 val;
786 bool cur_state;
787
788 reg = DPLL(pipe);
789 val = I915_READ(reg);
790 cur_state = !!(val & DPLL_VCO_ENABLE);
791 WARN(cur_state != state,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state), state_string(cur_state));
794 }
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 enum pipe pipe, bool state)
801 {
802 int reg;
803 u32 val;
804 bool cur_state;
805
806 reg = PCH_DPLL(pipe);
807 val = I915_READ(reg);
808 cur_state = !!(val & DPLL_VCO_ENABLE);
809 WARN(cur_state != state,
810 "PCH PLL state assertion failure (expected %s, current %s)\n",
811 state_string(state), state_string(cur_state));
812 }
813 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
814 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
815
816 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
817 enum pipe pipe, bool state)
818 {
819 int reg;
820 u32 val;
821 bool cur_state;
822
823 reg = FDI_TX_CTL(pipe);
824 val = I915_READ(reg);
825 cur_state = !!(val & FDI_TX_ENABLE);
826 WARN(cur_state != state,
827 "FDI TX state assertion failure (expected %s, current %s)\n",
828 state_string(state), state_string(cur_state));
829 }
830 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
831 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
832
833 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
834 enum pipe pipe, bool state)
835 {
836 int reg;
837 u32 val;
838 bool cur_state;
839
840 reg = FDI_RX_CTL(pipe);
841 val = I915_READ(reg);
842 cur_state = !!(val & FDI_RX_ENABLE);
843 WARN(cur_state != state,
844 "FDI RX state assertion failure (expected %s, current %s)\n",
845 state_string(state), state_string(cur_state));
846 }
847 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
848 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
849
850 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
851 enum pipe pipe)
852 {
853 int reg;
854 u32 val;
855
856 /* ILK FDI PLL is always enabled */
857 if (dev_priv->info->gen == 5)
858 return;
859
860 reg = FDI_TX_CTL(pipe);
861 val = I915_READ(reg);
862 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
863 }
864
865 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
866 enum pipe pipe)
867 {
868 int reg;
869 u32 val;
870
871 reg = FDI_RX_CTL(pipe);
872 val = I915_READ(reg);
873 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
874 }
875
876 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
877 enum pipe pipe)
878 {
879 int pp_reg, lvds_reg;
880 u32 val;
881 enum pipe panel_pipe = PIPE_A;
882 bool locked = true;
883
884 if (HAS_PCH_SPLIT(dev_priv->dev)) {
885 pp_reg = PCH_PP_CONTROL;
886 lvds_reg = PCH_LVDS;
887 } else {
888 pp_reg = PP_CONTROL;
889 lvds_reg = LVDS;
890 }
891
892 val = I915_READ(pp_reg);
893 if (!(val & PANEL_POWER_ON) ||
894 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
895 locked = false;
896
897 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
898 panel_pipe = PIPE_B;
899
900 WARN(panel_pipe == pipe && locked,
901 "panel assertion failure, pipe %c regs locked\n",
902 pipe_name(pipe));
903 }
904
905 static void assert_pipe(struct drm_i915_private *dev_priv,
906 enum pipe pipe, bool state)
907 {
908 int reg;
909 u32 val;
910 bool cur_state;
911
912 reg = PIPECONF(pipe);
913 val = I915_READ(reg);
914 cur_state = !!(val & PIPECONF_ENABLE);
915 WARN(cur_state != state,
916 "pipe %c assertion failure (expected %s, current %s)\n",
917 pipe_name(pipe), state_string(state), state_string(cur_state));
918 }
919 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
920 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
921
922 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
923 enum plane plane)
924 {
925 int reg;
926 u32 val;
927
928 reg = DSPCNTR(plane);
929 val = I915_READ(reg);
930 WARN(!(val & DISPLAY_PLANE_ENABLE),
931 "plane %c assertion failure, should be active but is disabled\n",
932 plane_name(plane));
933 }
934
935 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
936 enum pipe pipe)
937 {
938 int reg, i;
939 u32 val;
940 int cur_pipe;
941
942 /* Planes are fixed to pipes on ILK+ */
943 if (HAS_PCH_SPLIT(dev_priv->dev))
944 return;
945
946 /* Need to check both planes against the pipe */
947 for (i = 0; i < 2; i++) {
948 reg = DSPCNTR(i);
949 val = I915_READ(reg);
950 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
951 DISPPLANE_SEL_PIPE_SHIFT;
952 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
953 "plane %c assertion failure, should be off on pipe %c but is still active\n",
954 plane_name(i), pipe_name(pipe));
955 }
956 }
957
958 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
959 {
960 u32 val;
961 bool enabled;
962
963 val = I915_READ(PCH_DREF_CONTROL);
964 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
965 DREF_SUPERSPREAD_SOURCE_MASK));
966 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
967 }
968
969 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
970 enum pipe pipe)
971 {
972 int reg;
973 u32 val;
974 bool enabled;
975
976 reg = TRANSCONF(pipe);
977 val = I915_READ(reg);
978 enabled = !!(val & TRANS_ENABLE);
979 WARN(enabled,
980 "transcoder assertion failed, should be off on pipe %c but is still active\n",
981 pipe_name(pipe));
982 }
983
984 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
985 enum pipe pipe, u32 port_sel, u32 val)
986 {
987 if ((val & DP_PORT_EN) == 0)
988 return false;
989
990 if (HAS_PCH_CPT(dev_priv->dev)) {
991 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
992 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
993 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
994 return false;
995 } else {
996 if ((val & DP_PIPE_MASK) != (pipe << 30))
997 return false;
998 }
999 return true;
1000 }
1001
1002 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1003 enum pipe pipe, u32 val)
1004 {
1005 if ((val & PORT_ENABLE) == 0)
1006 return false;
1007
1008 if (HAS_PCH_CPT(dev_priv->dev)) {
1009 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1010 return false;
1011 } else {
1012 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1013 return false;
1014 }
1015 return true;
1016 }
1017
1018 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1019 enum pipe pipe, u32 val)
1020 {
1021 if ((val & LVDS_PORT_EN) == 0)
1022 return false;
1023
1024 if (HAS_PCH_CPT(dev_priv->dev)) {
1025 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1026 return false;
1027 } else {
1028 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1029 return false;
1030 }
1031 return true;
1032 }
1033
1034 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1035 enum pipe pipe, u32 val)
1036 {
1037 if ((val & ADPA_DAC_ENABLE) == 0)
1038 return false;
1039 if (HAS_PCH_CPT(dev_priv->dev)) {
1040 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1041 return false;
1042 } else {
1043 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1044 return false;
1045 }
1046 return true;
1047 }
1048
1049 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1050 enum pipe pipe, int reg, u32 port_sel)
1051 {
1052 u32 val = I915_READ(reg);
1053 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1054 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1055 reg, pipe_name(pipe));
1056 }
1057
1058 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, int reg)
1060 {
1061 u32 val = I915_READ(reg);
1062 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1063 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1064 reg, pipe_name(pipe));
1065 }
1066
1067 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1068 enum pipe pipe)
1069 {
1070 int reg;
1071 u32 val;
1072
1073 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1074 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1075 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1076
1077 reg = PCH_ADPA;
1078 val = I915_READ(reg);
1079 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1080 "PCH VGA enabled on transcoder %c, should be disabled\n",
1081 pipe_name(pipe));
1082
1083 reg = PCH_LVDS;
1084 val = I915_READ(reg);
1085 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1086 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1087 pipe_name(pipe));
1088
1089 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1090 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1091 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1092 }
1093
1094 /**
1095 * intel_enable_pll - enable a PLL
1096 * @dev_priv: i915 private structure
1097 * @pipe: pipe PLL to enable
1098 *
1099 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1100 * make sure the PLL reg is writable first though, since the panel write
1101 * protect mechanism may be enabled.
1102 *
1103 * Note! This is for pre-ILK only.
1104 */
1105 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1106 {
1107 int reg;
1108 u32 val;
1109
1110 /* No really, not for ILK+ */
1111 BUG_ON(dev_priv->info->gen >= 5);
1112
1113 /* PLL is protected by panel, make sure we can write it */
1114 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1115 assert_panel_unlocked(dev_priv, pipe);
1116
1117 reg = DPLL(pipe);
1118 val = I915_READ(reg);
1119 val |= DPLL_VCO_ENABLE;
1120
1121 /* We do this three times for luck */
1122 I915_WRITE(reg, val);
1123 POSTING_READ(reg);
1124 udelay(150); /* wait for warmup */
1125 I915_WRITE(reg, val);
1126 POSTING_READ(reg);
1127 udelay(150); /* wait for warmup */
1128 I915_WRITE(reg, val);
1129 POSTING_READ(reg);
1130 udelay(150); /* wait for warmup */
1131 }
1132
1133 /**
1134 * intel_disable_pll - disable a PLL
1135 * @dev_priv: i915 private structure
1136 * @pipe: pipe PLL to disable
1137 *
1138 * Disable the PLL for @pipe, making sure the pipe is off first.
1139 *
1140 * Note! This is for pre-ILK only.
1141 */
1142 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1143 {
1144 int reg;
1145 u32 val;
1146
1147 /* Don't disable pipe A or pipe A PLLs if needed */
1148 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1149 return;
1150
1151 /* Make sure the pipe isn't still relying on us */
1152 assert_pipe_disabled(dev_priv, pipe);
1153
1154 reg = DPLL(pipe);
1155 val = I915_READ(reg);
1156 val &= ~DPLL_VCO_ENABLE;
1157 I915_WRITE(reg, val);
1158 POSTING_READ(reg);
1159 }
1160
1161 /**
1162 * intel_enable_pch_pll - enable PCH PLL
1163 * @dev_priv: i915 private structure
1164 * @pipe: pipe PLL to enable
1165 *
1166 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1167 * drives the transcoder clock.
1168 */
1169 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171 {
1172 int reg;
1173 u32 val;
1174
1175 if (pipe > 1)
1176 return;
1177
1178 /* PCH only available on ILK+ */
1179 BUG_ON(dev_priv->info->gen < 5);
1180
1181 /* PCH refclock must be enabled first */
1182 assert_pch_refclk_enabled(dev_priv);
1183
1184 reg = PCH_DPLL(pipe);
1185 val = I915_READ(reg);
1186 val |= DPLL_VCO_ENABLE;
1187 I915_WRITE(reg, val);
1188 POSTING_READ(reg);
1189 udelay(200);
1190 }
1191
1192 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194 {
1195 int reg;
1196 u32 val;
1197
1198 if (pipe > 1)
1199 return;
1200
1201 /* PCH only available on ILK+ */
1202 BUG_ON(dev_priv->info->gen < 5);
1203
1204 /* Make sure transcoder isn't still depending on us */
1205 assert_transcoder_disabled(dev_priv, pipe);
1206
1207 reg = PCH_DPLL(pipe);
1208 val = I915_READ(reg);
1209 val &= ~DPLL_VCO_ENABLE;
1210 I915_WRITE(reg, val);
1211 POSTING_READ(reg);
1212 udelay(200);
1213 }
1214
1215 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1216 enum pipe pipe)
1217 {
1218 int reg;
1219 u32 val;
1220
1221 /* PCH only available on ILK+ */
1222 BUG_ON(dev_priv->info->gen < 5);
1223
1224 /* Make sure PCH DPLL is enabled */
1225 assert_pch_pll_enabled(dev_priv, pipe);
1226
1227 /* FDI must be feeding us bits for PCH ports */
1228 assert_fdi_tx_enabled(dev_priv, pipe);
1229 assert_fdi_rx_enabled(dev_priv, pipe);
1230
1231 reg = TRANSCONF(pipe);
1232 val = I915_READ(reg);
1233
1234 if (HAS_PCH_IBX(dev_priv->dev)) {
1235 /*
1236 * make the BPC in transcoder be consistent with
1237 * that in pipeconf reg.
1238 */
1239 val &= ~PIPE_BPC_MASK;
1240 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1241 }
1242 I915_WRITE(reg, val | TRANS_ENABLE);
1243 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1244 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1245 }
1246
1247 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1248 enum pipe pipe)
1249 {
1250 int reg;
1251 u32 val;
1252
1253 /* FDI relies on the transcoder */
1254 assert_fdi_tx_disabled(dev_priv, pipe);
1255 assert_fdi_rx_disabled(dev_priv, pipe);
1256
1257 /* Ports must be off as well */
1258 assert_pch_ports_disabled(dev_priv, pipe);
1259
1260 reg = TRANSCONF(pipe);
1261 val = I915_READ(reg);
1262 val &= ~TRANS_ENABLE;
1263 I915_WRITE(reg, val);
1264 /* wait for PCH transcoder off, transcoder state */
1265 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1266 DRM_ERROR("failed to disable transcoder\n");
1267 }
1268
1269 /**
1270 * intel_enable_pipe - enable a pipe, asserting requirements
1271 * @dev_priv: i915 private structure
1272 * @pipe: pipe to enable
1273 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1274 *
1275 * Enable @pipe, making sure that various hardware specific requirements
1276 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1277 *
1278 * @pipe should be %PIPE_A or %PIPE_B.
1279 *
1280 * Will wait until the pipe is actually running (i.e. first vblank) before
1281 * returning.
1282 */
1283 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1284 bool pch_port)
1285 {
1286 int reg;
1287 u32 val;
1288
1289 /*
1290 * A pipe without a PLL won't actually be able to drive bits from
1291 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1292 * need the check.
1293 */
1294 if (!HAS_PCH_SPLIT(dev_priv->dev))
1295 assert_pll_enabled(dev_priv, pipe);
1296 else {
1297 if (pch_port) {
1298 /* if driving the PCH, we need FDI enabled */
1299 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1300 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1301 }
1302 /* FIXME: assert CPU port conditions for SNB+ */
1303 }
1304
1305 reg = PIPECONF(pipe);
1306 val = I915_READ(reg);
1307 if (val & PIPECONF_ENABLE)
1308 return;
1309
1310 I915_WRITE(reg, val | PIPECONF_ENABLE);
1311 intel_wait_for_vblank(dev_priv->dev, pipe);
1312 }
1313
1314 /**
1315 * intel_disable_pipe - disable a pipe, asserting requirements
1316 * @dev_priv: i915 private structure
1317 * @pipe: pipe to disable
1318 *
1319 * Disable @pipe, making sure that various hardware specific requirements
1320 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1321 *
1322 * @pipe should be %PIPE_A or %PIPE_B.
1323 *
1324 * Will wait until the pipe has shut down before returning.
1325 */
1326 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1327 enum pipe pipe)
1328 {
1329 int reg;
1330 u32 val;
1331
1332 /*
1333 * Make sure planes won't keep trying to pump pixels to us,
1334 * or we might hang the display.
1335 */
1336 assert_planes_disabled(dev_priv, pipe);
1337
1338 /* Don't disable pipe A or pipe A PLLs if needed */
1339 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1340 return;
1341
1342 reg = PIPECONF(pipe);
1343 val = I915_READ(reg);
1344 if ((val & PIPECONF_ENABLE) == 0)
1345 return;
1346
1347 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1348 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1349 }
1350
1351 /*
1352 * Plane regs are double buffered, going from enabled->disabled needs a
1353 * trigger in order to latch. The display address reg provides this.
1354 */
1355 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1356 enum plane plane)
1357 {
1358 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1359 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1360 }
1361
1362 /**
1363 * intel_enable_plane - enable a display plane on a given pipe
1364 * @dev_priv: i915 private structure
1365 * @plane: plane to enable
1366 * @pipe: pipe being fed
1367 *
1368 * Enable @plane on @pipe, making sure that @pipe is running first.
1369 */
1370 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1371 enum plane plane, enum pipe pipe)
1372 {
1373 int reg;
1374 u32 val;
1375
1376 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1377 assert_pipe_enabled(dev_priv, pipe);
1378
1379 reg = DSPCNTR(plane);
1380 val = I915_READ(reg);
1381 if (val & DISPLAY_PLANE_ENABLE)
1382 return;
1383
1384 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1385 intel_flush_display_plane(dev_priv, plane);
1386 intel_wait_for_vblank(dev_priv->dev, pipe);
1387 }
1388
1389 /**
1390 * intel_disable_plane - disable a display plane
1391 * @dev_priv: i915 private structure
1392 * @plane: plane to disable
1393 * @pipe: pipe consuming the data
1394 *
1395 * Disable @plane; should be an independent operation.
1396 */
1397 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1398 enum plane plane, enum pipe pipe)
1399 {
1400 int reg;
1401 u32 val;
1402
1403 reg = DSPCNTR(plane);
1404 val = I915_READ(reg);
1405 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1406 return;
1407
1408 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1409 intel_flush_display_plane(dev_priv, plane);
1410 intel_wait_for_vblank(dev_priv->dev, pipe);
1411 }
1412
1413 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1414 enum pipe pipe, int reg, u32 port_sel)
1415 {
1416 u32 val = I915_READ(reg);
1417 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1418 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1419 I915_WRITE(reg, val & ~DP_PORT_EN);
1420 }
1421 }
1422
1423 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1424 enum pipe pipe, int reg)
1425 {
1426 u32 val = I915_READ(reg);
1427 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1428 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1429 reg, pipe);
1430 I915_WRITE(reg, val & ~PORT_ENABLE);
1431 }
1432 }
1433
1434 /* Disable any ports connected to this transcoder */
1435 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1436 enum pipe pipe)
1437 {
1438 u32 reg, val;
1439
1440 val = I915_READ(PCH_PP_CONTROL);
1441 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1442
1443 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1444 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1445 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1446
1447 reg = PCH_ADPA;
1448 val = I915_READ(reg);
1449 if (adpa_pipe_enabled(dev_priv, val, pipe))
1450 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1451
1452 reg = PCH_LVDS;
1453 val = I915_READ(reg);
1454 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1455 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1456 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1457 POSTING_READ(reg);
1458 udelay(100);
1459 }
1460
1461 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1462 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1463 disable_pch_hdmi(dev_priv, pipe, HDMID);
1464 }
1465
1466 static void i8xx_disable_fbc(struct drm_device *dev)
1467 {
1468 struct drm_i915_private *dev_priv = dev->dev_private;
1469 u32 fbc_ctl;
1470
1471 /* Disable compression */
1472 fbc_ctl = I915_READ(FBC_CONTROL);
1473 if ((fbc_ctl & FBC_CTL_EN) == 0)
1474 return;
1475
1476 fbc_ctl &= ~FBC_CTL_EN;
1477 I915_WRITE(FBC_CONTROL, fbc_ctl);
1478
1479 /* Wait for compressing bit to clear */
1480 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1481 DRM_DEBUG_KMS("FBC idle timed out\n");
1482 return;
1483 }
1484
1485 DRM_DEBUG_KMS("disabled FBC\n");
1486 }
1487
1488 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1489 {
1490 struct drm_device *dev = crtc->dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 struct drm_framebuffer *fb = crtc->fb;
1493 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1494 struct drm_i915_gem_object *obj = intel_fb->obj;
1495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1496 int cfb_pitch;
1497 int plane, i;
1498 u32 fbc_ctl, fbc_ctl2;
1499
1500 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1501 if (fb->pitch < cfb_pitch)
1502 cfb_pitch = fb->pitch;
1503
1504 /* FBC_CTL wants 64B units */
1505 cfb_pitch = (cfb_pitch / 64) - 1;
1506 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1507
1508 /* Clear old tags */
1509 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1510 I915_WRITE(FBC_TAG + (i * 4), 0);
1511
1512 /* Set it up... */
1513 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1514 fbc_ctl2 |= plane;
1515 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1516 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1517
1518 /* enable it... */
1519 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1520 if (IS_I945GM(dev))
1521 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1522 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1523 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1524 fbc_ctl |= obj->fence_reg;
1525 I915_WRITE(FBC_CONTROL, fbc_ctl);
1526
1527 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1528 cfb_pitch, crtc->y, intel_crtc->plane);
1529 }
1530
1531 static bool i8xx_fbc_enabled(struct drm_device *dev)
1532 {
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534
1535 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1536 }
1537
1538 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1539 {
1540 struct drm_device *dev = crtc->dev;
1541 struct drm_i915_private *dev_priv = dev->dev_private;
1542 struct drm_framebuffer *fb = crtc->fb;
1543 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1544 struct drm_i915_gem_object *obj = intel_fb->obj;
1545 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1546 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1547 unsigned long stall_watermark = 200;
1548 u32 dpfc_ctl;
1549
1550 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1551 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1552 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1553
1554 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1555 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1556 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1557 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1558
1559 /* enable it... */
1560 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1561
1562 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1563 }
1564
1565 static void g4x_disable_fbc(struct drm_device *dev)
1566 {
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 u32 dpfc_ctl;
1569
1570 /* Disable compression */
1571 dpfc_ctl = I915_READ(DPFC_CONTROL);
1572 if (dpfc_ctl & DPFC_CTL_EN) {
1573 dpfc_ctl &= ~DPFC_CTL_EN;
1574 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1575
1576 DRM_DEBUG_KMS("disabled FBC\n");
1577 }
1578 }
1579
1580 static bool g4x_fbc_enabled(struct drm_device *dev)
1581 {
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583
1584 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1585 }
1586
1587 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1588 {
1589 struct drm_i915_private *dev_priv = dev->dev_private;
1590 u32 blt_ecoskpd;
1591
1592 /* Make sure blitter notifies FBC of writes */
1593 gen6_gt_force_wake_get(dev_priv);
1594 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1595 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1596 GEN6_BLITTER_LOCK_SHIFT;
1597 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1598 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1599 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1600 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1601 GEN6_BLITTER_LOCK_SHIFT);
1602 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1603 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1604 gen6_gt_force_wake_put(dev_priv);
1605 }
1606
1607 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1608 {
1609 struct drm_device *dev = crtc->dev;
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 struct drm_framebuffer *fb = crtc->fb;
1612 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1613 struct drm_i915_gem_object *obj = intel_fb->obj;
1614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1615 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1616 unsigned long stall_watermark = 200;
1617 u32 dpfc_ctl;
1618
1619 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1620 dpfc_ctl &= DPFC_RESERVED;
1621 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1622 /* Set persistent mode for front-buffer rendering, ala X. */
1623 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1624 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1625 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1626
1627 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1628 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1629 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1630 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1631 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1632 /* enable it... */
1633 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1634
1635 if (IS_GEN6(dev)) {
1636 I915_WRITE(SNB_DPFC_CTL_SA,
1637 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1638 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1639 sandybridge_blit_fbc_update(dev);
1640 }
1641
1642 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1643 }
1644
1645 static void ironlake_disable_fbc(struct drm_device *dev)
1646 {
1647 struct drm_i915_private *dev_priv = dev->dev_private;
1648 u32 dpfc_ctl;
1649
1650 /* Disable compression */
1651 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1652 if (dpfc_ctl & DPFC_CTL_EN) {
1653 dpfc_ctl &= ~DPFC_CTL_EN;
1654 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1655
1656 DRM_DEBUG_KMS("disabled FBC\n");
1657 }
1658 }
1659
1660 static bool ironlake_fbc_enabled(struct drm_device *dev)
1661 {
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663
1664 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1665 }
1666
1667 bool intel_fbc_enabled(struct drm_device *dev)
1668 {
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670
1671 if (!dev_priv->display.fbc_enabled)
1672 return false;
1673
1674 return dev_priv->display.fbc_enabled(dev);
1675 }
1676
1677 static void intel_fbc_work_fn(struct work_struct *__work)
1678 {
1679 struct intel_fbc_work *work =
1680 container_of(to_delayed_work(__work),
1681 struct intel_fbc_work, work);
1682 struct drm_device *dev = work->crtc->dev;
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684
1685 mutex_lock(&dev->struct_mutex);
1686 if (work == dev_priv->fbc_work) {
1687 /* Double check that we haven't switched fb without cancelling
1688 * the prior work.
1689 */
1690 if (work->crtc->fb == work->fb) {
1691 dev_priv->display.enable_fbc(work->crtc,
1692 work->interval);
1693
1694 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1695 dev_priv->cfb_fb = work->crtc->fb->base.id;
1696 dev_priv->cfb_y = work->crtc->y;
1697 }
1698
1699 dev_priv->fbc_work = NULL;
1700 }
1701 mutex_unlock(&dev->struct_mutex);
1702
1703 kfree(work);
1704 }
1705
1706 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1707 {
1708 if (dev_priv->fbc_work == NULL)
1709 return;
1710
1711 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1712
1713 /* Synchronisation is provided by struct_mutex and checking of
1714 * dev_priv->fbc_work, so we can perform the cancellation
1715 * entirely asynchronously.
1716 */
1717 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1718 /* tasklet was killed before being run, clean up */
1719 kfree(dev_priv->fbc_work);
1720
1721 /* Mark the work as no longer wanted so that if it does
1722 * wake-up (because the work was already running and waiting
1723 * for our mutex), it will discover that is no longer
1724 * necessary to run.
1725 */
1726 dev_priv->fbc_work = NULL;
1727 }
1728
1729 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1730 {
1731 struct intel_fbc_work *work;
1732 struct drm_device *dev = crtc->dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734
1735 if (!dev_priv->display.enable_fbc)
1736 return;
1737
1738 intel_cancel_fbc_work(dev_priv);
1739
1740 work = kzalloc(sizeof *work, GFP_KERNEL);
1741 if (work == NULL) {
1742 dev_priv->display.enable_fbc(crtc, interval);
1743 return;
1744 }
1745
1746 work->crtc = crtc;
1747 work->fb = crtc->fb;
1748 work->interval = interval;
1749 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1750
1751 dev_priv->fbc_work = work;
1752
1753 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1754
1755 /* Delay the actual enabling to let pageflipping cease and the
1756 * display to settle before starting the compression. Note that
1757 * this delay also serves a second purpose: it allows for a
1758 * vblank to pass after disabling the FBC before we attempt
1759 * to modify the control registers.
1760 *
1761 * A more complicated solution would involve tracking vblanks
1762 * following the termination of the page-flipping sequence
1763 * and indeed performing the enable as a co-routine and not
1764 * waiting synchronously upon the vblank.
1765 */
1766 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1767 }
1768
1769 void intel_disable_fbc(struct drm_device *dev)
1770 {
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772
1773 intel_cancel_fbc_work(dev_priv);
1774
1775 if (!dev_priv->display.disable_fbc)
1776 return;
1777
1778 dev_priv->display.disable_fbc(dev);
1779 dev_priv->cfb_plane = -1;
1780 }
1781
1782 /**
1783 * intel_update_fbc - enable/disable FBC as needed
1784 * @dev: the drm_device
1785 *
1786 * Set up the framebuffer compression hardware at mode set time. We
1787 * enable it if possible:
1788 * - plane A only (on pre-965)
1789 * - no pixel mulitply/line duplication
1790 * - no alpha buffer discard
1791 * - no dual wide
1792 * - framebuffer <= 2048 in width, 1536 in height
1793 *
1794 * We can't assume that any compression will take place (worst case),
1795 * so the compressed buffer has to be the same size as the uncompressed
1796 * one. It also must reside (along with the line length buffer) in
1797 * stolen memory.
1798 *
1799 * We need to enable/disable FBC on a global basis.
1800 */
1801 static void intel_update_fbc(struct drm_device *dev)
1802 {
1803 struct drm_i915_private *dev_priv = dev->dev_private;
1804 struct drm_crtc *crtc = NULL, *tmp_crtc;
1805 struct intel_crtc *intel_crtc;
1806 struct drm_framebuffer *fb;
1807 struct intel_framebuffer *intel_fb;
1808 struct drm_i915_gem_object *obj;
1809 int enable_fbc;
1810
1811 DRM_DEBUG_KMS("\n");
1812
1813 if (!i915_powersave)
1814 return;
1815
1816 if (!I915_HAS_FBC(dev))
1817 return;
1818
1819 /*
1820 * If FBC is already on, we just have to verify that we can
1821 * keep it that way...
1822 * Need to disable if:
1823 * - more than one pipe is active
1824 * - changing FBC params (stride, fence, mode)
1825 * - new fb is too large to fit in compressed buffer
1826 * - going to an unsupported config (interlace, pixel multiply, etc.)
1827 */
1828 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1829 if (tmp_crtc->enabled && tmp_crtc->fb) {
1830 if (crtc) {
1831 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1832 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1833 goto out_disable;
1834 }
1835 crtc = tmp_crtc;
1836 }
1837 }
1838
1839 if (!crtc || crtc->fb == NULL) {
1840 DRM_DEBUG_KMS("no output, disabling\n");
1841 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1842 goto out_disable;
1843 }
1844
1845 intel_crtc = to_intel_crtc(crtc);
1846 fb = crtc->fb;
1847 intel_fb = to_intel_framebuffer(fb);
1848 obj = intel_fb->obj;
1849
1850 enable_fbc = i915_enable_fbc;
1851 if (enable_fbc < 0) {
1852 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1853 enable_fbc = 1;
1854 if (INTEL_INFO(dev)->gen <= 5)
1855 enable_fbc = 0;
1856 }
1857 if (!enable_fbc) {
1858 DRM_DEBUG_KMS("fbc disabled per module param\n");
1859 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1860 goto out_disable;
1861 }
1862 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1863 DRM_DEBUG_KMS("framebuffer too large, disabling "
1864 "compression\n");
1865 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1866 goto out_disable;
1867 }
1868 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1869 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1870 DRM_DEBUG_KMS("mode incompatible with compression, "
1871 "disabling\n");
1872 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1873 goto out_disable;
1874 }
1875 if ((crtc->mode.hdisplay > 2048) ||
1876 (crtc->mode.vdisplay > 1536)) {
1877 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1878 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1879 goto out_disable;
1880 }
1881 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1882 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1883 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1884 goto out_disable;
1885 }
1886
1887 /* The use of a CPU fence is mandatory in order to detect writes
1888 * by the CPU to the scanout and trigger updates to the FBC.
1889 */
1890 if (obj->tiling_mode != I915_TILING_X ||
1891 obj->fence_reg == I915_FENCE_REG_NONE) {
1892 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1893 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1894 goto out_disable;
1895 }
1896
1897 /* If the kernel debugger is active, always disable compression */
1898 if (in_dbg_master())
1899 goto out_disable;
1900
1901 /* If the scanout has not changed, don't modify the FBC settings.
1902 * Note that we make the fundamental assumption that the fb->obj
1903 * cannot be unpinned (and have its GTT offset and fence revoked)
1904 * without first being decoupled from the scanout and FBC disabled.
1905 */
1906 if (dev_priv->cfb_plane == intel_crtc->plane &&
1907 dev_priv->cfb_fb == fb->base.id &&
1908 dev_priv->cfb_y == crtc->y)
1909 return;
1910
1911 if (intel_fbc_enabled(dev)) {
1912 /* We update FBC along two paths, after changing fb/crtc
1913 * configuration (modeswitching) and after page-flipping
1914 * finishes. For the latter, we know that not only did
1915 * we disable the FBC at the start of the page-flip
1916 * sequence, but also more than one vblank has passed.
1917 *
1918 * For the former case of modeswitching, it is possible
1919 * to switch between two FBC valid configurations
1920 * instantaneously so we do need to disable the FBC
1921 * before we can modify its control registers. We also
1922 * have to wait for the next vblank for that to take
1923 * effect. However, since we delay enabling FBC we can
1924 * assume that a vblank has passed since disabling and
1925 * that we can safely alter the registers in the deferred
1926 * callback.
1927 *
1928 * In the scenario that we go from a valid to invalid
1929 * and then back to valid FBC configuration we have
1930 * no strict enforcement that a vblank occurred since
1931 * disabling the FBC. However, along all current pipe
1932 * disabling paths we do need to wait for a vblank at
1933 * some point. And we wait before enabling FBC anyway.
1934 */
1935 DRM_DEBUG_KMS("disabling active FBC for update\n");
1936 intel_disable_fbc(dev);
1937 }
1938
1939 intel_enable_fbc(crtc, 500);
1940 return;
1941
1942 out_disable:
1943 /* Multiple disables should be harmless */
1944 if (intel_fbc_enabled(dev)) {
1945 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1946 intel_disable_fbc(dev);
1947 }
1948 }
1949
1950 int
1951 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1952 struct drm_i915_gem_object *obj,
1953 struct intel_ring_buffer *pipelined)
1954 {
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 u32 alignment;
1957 int ret;
1958
1959 switch (obj->tiling_mode) {
1960 case I915_TILING_NONE:
1961 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1962 alignment = 128 * 1024;
1963 else if (INTEL_INFO(dev)->gen >= 4)
1964 alignment = 4 * 1024;
1965 else
1966 alignment = 64 * 1024;
1967 break;
1968 case I915_TILING_X:
1969 /* pin() will align the object as required by fence */
1970 alignment = 0;
1971 break;
1972 case I915_TILING_Y:
1973 /* FIXME: Is this true? */
1974 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1975 return -EINVAL;
1976 default:
1977 BUG();
1978 }
1979
1980 dev_priv->mm.interruptible = false;
1981 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1982 if (ret)
1983 goto err_interruptible;
1984
1985 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1986 * fence, whereas 965+ only requires a fence if using
1987 * framebuffer compression. For simplicity, we always install
1988 * a fence as the cost is not that onerous.
1989 */
1990 if (obj->tiling_mode != I915_TILING_NONE) {
1991 ret = i915_gem_object_get_fence(obj, pipelined);
1992 if (ret)
1993 goto err_unpin;
1994 }
1995
1996 dev_priv->mm.interruptible = true;
1997 return 0;
1998
1999 err_unpin:
2000 i915_gem_object_unpin(obj);
2001 err_interruptible:
2002 dev_priv->mm.interruptible = true;
2003 return ret;
2004 }
2005
2006 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2007 int x, int y)
2008 {
2009 struct drm_device *dev = crtc->dev;
2010 struct drm_i915_private *dev_priv = dev->dev_private;
2011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2012 struct intel_framebuffer *intel_fb;
2013 struct drm_i915_gem_object *obj;
2014 int plane = intel_crtc->plane;
2015 unsigned long Start, Offset;
2016 u32 dspcntr;
2017 u32 reg;
2018
2019 switch (plane) {
2020 case 0:
2021 case 1:
2022 break;
2023 default:
2024 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2025 return -EINVAL;
2026 }
2027
2028 intel_fb = to_intel_framebuffer(fb);
2029 obj = intel_fb->obj;
2030
2031 reg = DSPCNTR(plane);
2032 dspcntr = I915_READ(reg);
2033 /* Mask out pixel format bits in case we change it */
2034 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2035 switch (fb->bits_per_pixel) {
2036 case 8:
2037 dspcntr |= DISPPLANE_8BPP;
2038 break;
2039 case 16:
2040 if (fb->depth == 15)
2041 dspcntr |= DISPPLANE_15_16BPP;
2042 else
2043 dspcntr |= DISPPLANE_16BPP;
2044 break;
2045 case 24:
2046 case 32:
2047 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2048 break;
2049 default:
2050 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2051 return -EINVAL;
2052 }
2053 if (INTEL_INFO(dev)->gen >= 4) {
2054 if (obj->tiling_mode != I915_TILING_NONE)
2055 dspcntr |= DISPPLANE_TILED;
2056 else
2057 dspcntr &= ~DISPPLANE_TILED;
2058 }
2059
2060 I915_WRITE(reg, dspcntr);
2061
2062 Start = obj->gtt_offset;
2063 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2064
2065 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2066 Start, Offset, x, y, fb->pitch);
2067 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2068 if (INTEL_INFO(dev)->gen >= 4) {
2069 I915_WRITE(DSPSURF(plane), Start);
2070 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2071 I915_WRITE(DSPADDR(plane), Offset);
2072 } else
2073 I915_WRITE(DSPADDR(plane), Start + Offset);
2074 POSTING_READ(reg);
2075
2076 return 0;
2077 }
2078
2079 static int ironlake_update_plane(struct drm_crtc *crtc,
2080 struct drm_framebuffer *fb, int x, int y)
2081 {
2082 struct drm_device *dev = crtc->dev;
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085 struct intel_framebuffer *intel_fb;
2086 struct drm_i915_gem_object *obj;
2087 int plane = intel_crtc->plane;
2088 unsigned long Start, Offset;
2089 u32 dspcntr;
2090 u32 reg;
2091
2092 switch (plane) {
2093 case 0:
2094 case 1:
2095 case 2:
2096 break;
2097 default:
2098 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2099 return -EINVAL;
2100 }
2101
2102 intel_fb = to_intel_framebuffer(fb);
2103 obj = intel_fb->obj;
2104
2105 reg = DSPCNTR(plane);
2106 dspcntr = I915_READ(reg);
2107 /* Mask out pixel format bits in case we change it */
2108 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2109 switch (fb->bits_per_pixel) {
2110 case 8:
2111 dspcntr |= DISPPLANE_8BPP;
2112 break;
2113 case 16:
2114 if (fb->depth != 16)
2115 return -EINVAL;
2116
2117 dspcntr |= DISPPLANE_16BPP;
2118 break;
2119 case 24:
2120 case 32:
2121 if (fb->depth == 24)
2122 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2123 else if (fb->depth == 30)
2124 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2125 else
2126 return -EINVAL;
2127 break;
2128 default:
2129 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2130 return -EINVAL;
2131 }
2132
2133 if (obj->tiling_mode != I915_TILING_NONE)
2134 dspcntr |= DISPPLANE_TILED;
2135 else
2136 dspcntr &= ~DISPPLANE_TILED;
2137
2138 /* must disable */
2139 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2140
2141 I915_WRITE(reg, dspcntr);
2142
2143 Start = obj->gtt_offset;
2144 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2145
2146 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2147 Start, Offset, x, y, fb->pitch);
2148 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2149 I915_WRITE(DSPSURF(plane), Start);
2150 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2151 I915_WRITE(DSPADDR(plane), Offset);
2152 POSTING_READ(reg);
2153
2154 return 0;
2155 }
2156
2157 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2158 static int
2159 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2160 int x, int y, enum mode_set_atomic state)
2161 {
2162 struct drm_device *dev = crtc->dev;
2163 struct drm_i915_private *dev_priv = dev->dev_private;
2164 int ret;
2165
2166 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2167 if (ret)
2168 return ret;
2169
2170 intel_update_fbc(dev);
2171 intel_increase_pllclock(crtc);
2172
2173 return 0;
2174 }
2175
2176 static int
2177 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2178 struct drm_framebuffer *old_fb)
2179 {
2180 struct drm_device *dev = crtc->dev;
2181 struct drm_i915_master_private *master_priv;
2182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2183 int ret;
2184
2185 /* no fb bound */
2186 if (!crtc->fb) {
2187 DRM_ERROR("No FB bound\n");
2188 return 0;
2189 }
2190
2191 switch (intel_crtc->plane) {
2192 case 0:
2193 case 1:
2194 break;
2195 case 2:
2196 if (IS_IVYBRIDGE(dev))
2197 break;
2198 /* fall through otherwise */
2199 default:
2200 DRM_ERROR("no plane for crtc\n");
2201 return -EINVAL;
2202 }
2203
2204 mutex_lock(&dev->struct_mutex);
2205 ret = intel_pin_and_fence_fb_obj(dev,
2206 to_intel_framebuffer(crtc->fb)->obj,
2207 NULL);
2208 if (ret != 0) {
2209 mutex_unlock(&dev->struct_mutex);
2210 DRM_ERROR("pin & fence failed\n");
2211 return ret;
2212 }
2213
2214 if (old_fb) {
2215 struct drm_i915_private *dev_priv = dev->dev_private;
2216 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2217
2218 wait_event(dev_priv->pending_flip_queue,
2219 atomic_read(&dev_priv->mm.wedged) ||
2220 atomic_read(&obj->pending_flip) == 0);
2221
2222 /* Big Hammer, we also need to ensure that any pending
2223 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2224 * current scanout is retired before unpinning the old
2225 * framebuffer.
2226 *
2227 * This should only fail upon a hung GPU, in which case we
2228 * can safely continue.
2229 */
2230 ret = i915_gem_object_finish_gpu(obj);
2231 (void) ret;
2232 }
2233
2234 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2235 LEAVE_ATOMIC_MODE_SET);
2236 if (ret) {
2237 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2238 mutex_unlock(&dev->struct_mutex);
2239 DRM_ERROR("failed to update base address\n");
2240 return ret;
2241 }
2242
2243 if (old_fb) {
2244 intel_wait_for_vblank(dev, intel_crtc->pipe);
2245 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2246 }
2247
2248 mutex_unlock(&dev->struct_mutex);
2249
2250 if (!dev->primary->master)
2251 return 0;
2252
2253 master_priv = dev->primary->master->driver_priv;
2254 if (!master_priv->sarea_priv)
2255 return 0;
2256
2257 if (intel_crtc->pipe) {
2258 master_priv->sarea_priv->pipeB_x = x;
2259 master_priv->sarea_priv->pipeB_y = y;
2260 } else {
2261 master_priv->sarea_priv->pipeA_x = x;
2262 master_priv->sarea_priv->pipeA_y = y;
2263 }
2264
2265 return 0;
2266 }
2267
2268 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2269 {
2270 struct drm_device *dev = crtc->dev;
2271 struct drm_i915_private *dev_priv = dev->dev_private;
2272 u32 dpa_ctl;
2273
2274 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2275 dpa_ctl = I915_READ(DP_A);
2276 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2277
2278 if (clock < 200000) {
2279 u32 temp;
2280 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2281 /* workaround for 160Mhz:
2282 1) program 0x4600c bits 15:0 = 0x8124
2283 2) program 0x46010 bit 0 = 1
2284 3) program 0x46034 bit 24 = 1
2285 4) program 0x64000 bit 14 = 1
2286 */
2287 temp = I915_READ(0x4600c);
2288 temp &= 0xffff0000;
2289 I915_WRITE(0x4600c, temp | 0x8124);
2290
2291 temp = I915_READ(0x46010);
2292 I915_WRITE(0x46010, temp | 1);
2293
2294 temp = I915_READ(0x46034);
2295 I915_WRITE(0x46034, temp | (1 << 24));
2296 } else {
2297 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2298 }
2299 I915_WRITE(DP_A, dpa_ctl);
2300
2301 POSTING_READ(DP_A);
2302 udelay(500);
2303 }
2304
2305 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2306 {
2307 struct drm_device *dev = crtc->dev;
2308 struct drm_i915_private *dev_priv = dev->dev_private;
2309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2310 int pipe = intel_crtc->pipe;
2311 u32 reg, temp;
2312
2313 /* enable normal train */
2314 reg = FDI_TX_CTL(pipe);
2315 temp = I915_READ(reg);
2316 if (IS_IVYBRIDGE(dev)) {
2317 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2318 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2319 } else {
2320 temp &= ~FDI_LINK_TRAIN_NONE;
2321 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2322 }
2323 I915_WRITE(reg, temp);
2324
2325 reg = FDI_RX_CTL(pipe);
2326 temp = I915_READ(reg);
2327 if (HAS_PCH_CPT(dev)) {
2328 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2329 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2330 } else {
2331 temp &= ~FDI_LINK_TRAIN_NONE;
2332 temp |= FDI_LINK_TRAIN_NONE;
2333 }
2334 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2335
2336 /* wait one idle pattern time */
2337 POSTING_READ(reg);
2338 udelay(1000);
2339
2340 /* IVB wants error correction enabled */
2341 if (IS_IVYBRIDGE(dev))
2342 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2343 FDI_FE_ERRC_ENABLE);
2344 }
2345
2346 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2347 {
2348 struct drm_i915_private *dev_priv = dev->dev_private;
2349 u32 flags = I915_READ(SOUTH_CHICKEN1);
2350
2351 flags |= FDI_PHASE_SYNC_OVR(pipe);
2352 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2353 flags |= FDI_PHASE_SYNC_EN(pipe);
2354 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2355 POSTING_READ(SOUTH_CHICKEN1);
2356 }
2357
2358 /* The FDI link training functions for ILK/Ibexpeak. */
2359 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2360 {
2361 struct drm_device *dev = crtc->dev;
2362 struct drm_i915_private *dev_priv = dev->dev_private;
2363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2364 int pipe = intel_crtc->pipe;
2365 int plane = intel_crtc->plane;
2366 u32 reg, temp, tries;
2367
2368 /* FDI needs bits from pipe & plane first */
2369 assert_pipe_enabled(dev_priv, pipe);
2370 assert_plane_enabled(dev_priv, plane);
2371
2372 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2373 for train result */
2374 reg = FDI_RX_IMR(pipe);
2375 temp = I915_READ(reg);
2376 temp &= ~FDI_RX_SYMBOL_LOCK;
2377 temp &= ~FDI_RX_BIT_LOCK;
2378 I915_WRITE(reg, temp);
2379 I915_READ(reg);
2380 udelay(150);
2381
2382 /* enable CPU FDI TX and PCH FDI RX */
2383 reg = FDI_TX_CTL(pipe);
2384 temp = I915_READ(reg);
2385 temp &= ~(7 << 19);
2386 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2387 temp &= ~FDI_LINK_TRAIN_NONE;
2388 temp |= FDI_LINK_TRAIN_PATTERN_1;
2389 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2390
2391 reg = FDI_RX_CTL(pipe);
2392 temp = I915_READ(reg);
2393 temp &= ~FDI_LINK_TRAIN_NONE;
2394 temp |= FDI_LINK_TRAIN_PATTERN_1;
2395 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2396
2397 POSTING_READ(reg);
2398 udelay(150);
2399
2400 /* Ironlake workaround, enable clock pointer after FDI enable*/
2401 if (HAS_PCH_IBX(dev)) {
2402 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2403 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2404 FDI_RX_PHASE_SYNC_POINTER_EN);
2405 }
2406
2407 reg = FDI_RX_IIR(pipe);
2408 for (tries = 0; tries < 5; tries++) {
2409 temp = I915_READ(reg);
2410 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2411
2412 if ((temp & FDI_RX_BIT_LOCK)) {
2413 DRM_DEBUG_KMS("FDI train 1 done.\n");
2414 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2415 break;
2416 }
2417 }
2418 if (tries == 5)
2419 DRM_ERROR("FDI train 1 fail!\n");
2420
2421 /* Train 2 */
2422 reg = FDI_TX_CTL(pipe);
2423 temp = I915_READ(reg);
2424 temp &= ~FDI_LINK_TRAIN_NONE;
2425 temp |= FDI_LINK_TRAIN_PATTERN_2;
2426 I915_WRITE(reg, temp);
2427
2428 reg = FDI_RX_CTL(pipe);
2429 temp = I915_READ(reg);
2430 temp &= ~FDI_LINK_TRAIN_NONE;
2431 temp |= FDI_LINK_TRAIN_PATTERN_2;
2432 I915_WRITE(reg, temp);
2433
2434 POSTING_READ(reg);
2435 udelay(150);
2436
2437 reg = FDI_RX_IIR(pipe);
2438 for (tries = 0; tries < 5; tries++) {
2439 temp = I915_READ(reg);
2440 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2441
2442 if (temp & FDI_RX_SYMBOL_LOCK) {
2443 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2444 DRM_DEBUG_KMS("FDI train 2 done.\n");
2445 break;
2446 }
2447 }
2448 if (tries == 5)
2449 DRM_ERROR("FDI train 2 fail!\n");
2450
2451 DRM_DEBUG_KMS("FDI train done\n");
2452
2453 }
2454
2455 static const int snb_b_fdi_train_param[] = {
2456 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2457 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2458 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2459 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2460 };
2461
2462 /* The FDI link training functions for SNB/Cougarpoint. */
2463 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2464 {
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468 int pipe = intel_crtc->pipe;
2469 u32 reg, temp, i;
2470
2471 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2472 for train result */
2473 reg = FDI_RX_IMR(pipe);
2474 temp = I915_READ(reg);
2475 temp &= ~FDI_RX_SYMBOL_LOCK;
2476 temp &= ~FDI_RX_BIT_LOCK;
2477 I915_WRITE(reg, temp);
2478
2479 POSTING_READ(reg);
2480 udelay(150);
2481
2482 /* enable CPU FDI TX and PCH FDI RX */
2483 reg = FDI_TX_CTL(pipe);
2484 temp = I915_READ(reg);
2485 temp &= ~(7 << 19);
2486 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2487 temp &= ~FDI_LINK_TRAIN_NONE;
2488 temp |= FDI_LINK_TRAIN_PATTERN_1;
2489 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2490 /* SNB-B */
2491 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2492 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2493
2494 reg = FDI_RX_CTL(pipe);
2495 temp = I915_READ(reg);
2496 if (HAS_PCH_CPT(dev)) {
2497 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2498 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2499 } else {
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 }
2503 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2504
2505 POSTING_READ(reg);
2506 udelay(150);
2507
2508 if (HAS_PCH_CPT(dev))
2509 cpt_phase_pointer_enable(dev, pipe);
2510
2511 for (i = 0; i < 4; i++) {
2512 reg = FDI_TX_CTL(pipe);
2513 temp = I915_READ(reg);
2514 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2515 temp |= snb_b_fdi_train_param[i];
2516 I915_WRITE(reg, temp);
2517
2518 POSTING_READ(reg);
2519 udelay(500);
2520
2521 reg = FDI_RX_IIR(pipe);
2522 temp = I915_READ(reg);
2523 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2524
2525 if (temp & FDI_RX_BIT_LOCK) {
2526 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2527 DRM_DEBUG_KMS("FDI train 1 done.\n");
2528 break;
2529 }
2530 }
2531 if (i == 4)
2532 DRM_ERROR("FDI train 1 fail!\n");
2533
2534 /* Train 2 */
2535 reg = FDI_TX_CTL(pipe);
2536 temp = I915_READ(reg);
2537 temp &= ~FDI_LINK_TRAIN_NONE;
2538 temp |= FDI_LINK_TRAIN_PATTERN_2;
2539 if (IS_GEN6(dev)) {
2540 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2541 /* SNB-B */
2542 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2543 }
2544 I915_WRITE(reg, temp);
2545
2546 reg = FDI_RX_CTL(pipe);
2547 temp = I915_READ(reg);
2548 if (HAS_PCH_CPT(dev)) {
2549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2550 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2551 } else {
2552 temp &= ~FDI_LINK_TRAIN_NONE;
2553 temp |= FDI_LINK_TRAIN_PATTERN_2;
2554 }
2555 I915_WRITE(reg, temp);
2556
2557 POSTING_READ(reg);
2558 udelay(150);
2559
2560 for (i = 0; i < 4; i++) {
2561 reg = FDI_TX_CTL(pipe);
2562 temp = I915_READ(reg);
2563 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2564 temp |= snb_b_fdi_train_param[i];
2565 I915_WRITE(reg, temp);
2566
2567 POSTING_READ(reg);
2568 udelay(500);
2569
2570 reg = FDI_RX_IIR(pipe);
2571 temp = I915_READ(reg);
2572 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2573
2574 if (temp & FDI_RX_SYMBOL_LOCK) {
2575 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2576 DRM_DEBUG_KMS("FDI train 2 done.\n");
2577 break;
2578 }
2579 }
2580 if (i == 4)
2581 DRM_ERROR("FDI train 2 fail!\n");
2582
2583 DRM_DEBUG_KMS("FDI train done.\n");
2584 }
2585
2586 /* Manual link training for Ivy Bridge A0 parts */
2587 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2588 {
2589 struct drm_device *dev = crtc->dev;
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592 int pipe = intel_crtc->pipe;
2593 u32 reg, temp, i;
2594
2595 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2596 for train result */
2597 reg = FDI_RX_IMR(pipe);
2598 temp = I915_READ(reg);
2599 temp &= ~FDI_RX_SYMBOL_LOCK;
2600 temp &= ~FDI_RX_BIT_LOCK;
2601 I915_WRITE(reg, temp);
2602
2603 POSTING_READ(reg);
2604 udelay(150);
2605
2606 /* enable CPU FDI TX and PCH FDI RX */
2607 reg = FDI_TX_CTL(pipe);
2608 temp = I915_READ(reg);
2609 temp &= ~(7 << 19);
2610 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2611 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2612 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2613 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2614 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2615 temp |= FDI_COMPOSITE_SYNC;
2616 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2617
2618 reg = FDI_RX_CTL(pipe);
2619 temp = I915_READ(reg);
2620 temp &= ~FDI_LINK_TRAIN_AUTO;
2621 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2622 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2623 temp |= FDI_COMPOSITE_SYNC;
2624 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2625
2626 POSTING_READ(reg);
2627 udelay(150);
2628
2629 if (HAS_PCH_CPT(dev))
2630 cpt_phase_pointer_enable(dev, pipe);
2631
2632 for (i = 0; i < 4; i++) {
2633 reg = FDI_TX_CTL(pipe);
2634 temp = I915_READ(reg);
2635 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2636 temp |= snb_b_fdi_train_param[i];
2637 I915_WRITE(reg, temp);
2638
2639 POSTING_READ(reg);
2640 udelay(500);
2641
2642 reg = FDI_RX_IIR(pipe);
2643 temp = I915_READ(reg);
2644 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2645
2646 if (temp & FDI_RX_BIT_LOCK ||
2647 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2648 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2649 DRM_DEBUG_KMS("FDI train 1 done.\n");
2650 break;
2651 }
2652 }
2653 if (i == 4)
2654 DRM_ERROR("FDI train 1 fail!\n");
2655
2656 /* Train 2 */
2657 reg = FDI_TX_CTL(pipe);
2658 temp = I915_READ(reg);
2659 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2660 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2661 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2662 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2663 I915_WRITE(reg, temp);
2664
2665 reg = FDI_RX_CTL(pipe);
2666 temp = I915_READ(reg);
2667 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2668 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2669 I915_WRITE(reg, temp);
2670
2671 POSTING_READ(reg);
2672 udelay(150);
2673
2674 for (i = 0; i < 4; i++) {
2675 reg = FDI_TX_CTL(pipe);
2676 temp = I915_READ(reg);
2677 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2678 temp |= snb_b_fdi_train_param[i];
2679 I915_WRITE(reg, temp);
2680
2681 POSTING_READ(reg);
2682 udelay(500);
2683
2684 reg = FDI_RX_IIR(pipe);
2685 temp = I915_READ(reg);
2686 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2687
2688 if (temp & FDI_RX_SYMBOL_LOCK) {
2689 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2690 DRM_DEBUG_KMS("FDI train 2 done.\n");
2691 break;
2692 }
2693 }
2694 if (i == 4)
2695 DRM_ERROR("FDI train 2 fail!\n");
2696
2697 DRM_DEBUG_KMS("FDI train done.\n");
2698 }
2699
2700 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2701 {
2702 struct drm_device *dev = crtc->dev;
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2705 int pipe = intel_crtc->pipe;
2706 u32 reg, temp;
2707
2708 /* Write the TU size bits so error detection works */
2709 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2710 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2711
2712 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2713 reg = FDI_RX_CTL(pipe);
2714 temp = I915_READ(reg);
2715 temp &= ~((0x7 << 19) | (0x7 << 16));
2716 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2717 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2718 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2719
2720 POSTING_READ(reg);
2721 udelay(200);
2722
2723 /* Switch from Rawclk to PCDclk */
2724 temp = I915_READ(reg);
2725 I915_WRITE(reg, temp | FDI_PCDCLK);
2726
2727 POSTING_READ(reg);
2728 udelay(200);
2729
2730 /* Enable CPU FDI TX PLL, always on for Ironlake */
2731 reg = FDI_TX_CTL(pipe);
2732 temp = I915_READ(reg);
2733 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2734 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2735
2736 POSTING_READ(reg);
2737 udelay(100);
2738 }
2739 }
2740
2741 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2742 {
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 u32 flags = I915_READ(SOUTH_CHICKEN1);
2745
2746 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2747 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2748 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2749 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2750 POSTING_READ(SOUTH_CHICKEN1);
2751 }
2752 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2753 {
2754 struct drm_device *dev = crtc->dev;
2755 struct drm_i915_private *dev_priv = dev->dev_private;
2756 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2757 int pipe = intel_crtc->pipe;
2758 u32 reg, temp;
2759
2760 /* disable CPU FDI tx and PCH FDI rx */
2761 reg = FDI_TX_CTL(pipe);
2762 temp = I915_READ(reg);
2763 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2764 POSTING_READ(reg);
2765
2766 reg = FDI_RX_CTL(pipe);
2767 temp = I915_READ(reg);
2768 temp &= ~(0x7 << 16);
2769 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2770 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2771
2772 POSTING_READ(reg);
2773 udelay(100);
2774
2775 /* Ironlake workaround, disable clock pointer after downing FDI */
2776 if (HAS_PCH_IBX(dev)) {
2777 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2778 I915_WRITE(FDI_RX_CHICKEN(pipe),
2779 I915_READ(FDI_RX_CHICKEN(pipe) &
2780 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2781 } else if (HAS_PCH_CPT(dev)) {
2782 cpt_phase_pointer_disable(dev, pipe);
2783 }
2784
2785 /* still set train pattern 1 */
2786 reg = FDI_TX_CTL(pipe);
2787 temp = I915_READ(reg);
2788 temp &= ~FDI_LINK_TRAIN_NONE;
2789 temp |= FDI_LINK_TRAIN_PATTERN_1;
2790 I915_WRITE(reg, temp);
2791
2792 reg = FDI_RX_CTL(pipe);
2793 temp = I915_READ(reg);
2794 if (HAS_PCH_CPT(dev)) {
2795 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2796 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2797 } else {
2798 temp &= ~FDI_LINK_TRAIN_NONE;
2799 temp |= FDI_LINK_TRAIN_PATTERN_1;
2800 }
2801 /* BPC in FDI rx is consistent with that in PIPECONF */
2802 temp &= ~(0x07 << 16);
2803 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2804 I915_WRITE(reg, temp);
2805
2806 POSTING_READ(reg);
2807 udelay(100);
2808 }
2809
2810 /*
2811 * When we disable a pipe, we need to clear any pending scanline wait events
2812 * to avoid hanging the ring, which we assume we are waiting on.
2813 */
2814 static void intel_clear_scanline_wait(struct drm_device *dev)
2815 {
2816 struct drm_i915_private *dev_priv = dev->dev_private;
2817 struct intel_ring_buffer *ring;
2818 u32 tmp;
2819
2820 if (IS_GEN2(dev))
2821 /* Can't break the hang on i8xx */
2822 return;
2823
2824 ring = LP_RING(dev_priv);
2825 tmp = I915_READ_CTL(ring);
2826 if (tmp & RING_WAIT)
2827 I915_WRITE_CTL(ring, tmp);
2828 }
2829
2830 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2831 {
2832 struct drm_i915_gem_object *obj;
2833 struct drm_i915_private *dev_priv;
2834
2835 if (crtc->fb == NULL)
2836 return;
2837
2838 obj = to_intel_framebuffer(crtc->fb)->obj;
2839 dev_priv = crtc->dev->dev_private;
2840 wait_event(dev_priv->pending_flip_queue,
2841 atomic_read(&obj->pending_flip) == 0);
2842 }
2843
2844 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2845 {
2846 struct drm_device *dev = crtc->dev;
2847 struct drm_mode_config *mode_config = &dev->mode_config;
2848 struct intel_encoder *encoder;
2849
2850 /*
2851 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2852 * must be driven by its own crtc; no sharing is possible.
2853 */
2854 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2855 if (encoder->base.crtc != crtc)
2856 continue;
2857
2858 switch (encoder->type) {
2859 case INTEL_OUTPUT_EDP:
2860 if (!intel_encoder_is_pch_edp(&encoder->base))
2861 return false;
2862 continue;
2863 }
2864 }
2865
2866 return true;
2867 }
2868
2869 /*
2870 * Enable PCH resources required for PCH ports:
2871 * - PCH PLLs
2872 * - FDI training & RX/TX
2873 * - update transcoder timings
2874 * - DP transcoding bits
2875 * - transcoder
2876 */
2877 static void ironlake_pch_enable(struct drm_crtc *crtc)
2878 {
2879 struct drm_device *dev = crtc->dev;
2880 struct drm_i915_private *dev_priv = dev->dev_private;
2881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2882 int pipe = intel_crtc->pipe;
2883 u32 reg, temp;
2884
2885 /* For PCH output, training FDI link */
2886 dev_priv->display.fdi_link_train(crtc);
2887
2888 intel_enable_pch_pll(dev_priv, pipe);
2889
2890 if (HAS_PCH_CPT(dev)) {
2891 /* Be sure PCH DPLL SEL is set */
2892 temp = I915_READ(PCH_DPLL_SEL);
2893 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2894 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2895 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2896 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2897 else if (pipe == 2 && (temp & TRANSC_DPLL_ENABLE) == 0)
2898 temp |= (TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2899 I915_WRITE(PCH_DPLL_SEL, temp);
2900 }
2901
2902 /* set transcoder timing, panel must allow it */
2903 assert_panel_unlocked(dev_priv, pipe);
2904 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2905 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2906 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2907
2908 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2909 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2910 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2911
2912 intel_fdi_normal_train(crtc);
2913
2914 /* For PCH DP, enable TRANS_DP_CTL */
2915 if (HAS_PCH_CPT(dev) &&
2916 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2917 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2918 reg = TRANS_DP_CTL(pipe);
2919 temp = I915_READ(reg);
2920 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2921 TRANS_DP_SYNC_MASK |
2922 TRANS_DP_BPC_MASK);
2923 temp |= (TRANS_DP_OUTPUT_ENABLE |
2924 TRANS_DP_ENH_FRAMING);
2925 temp |= bpc << 9; /* same format but at 11:9 */
2926
2927 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2928 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2929 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2930 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2931
2932 switch (intel_trans_dp_port_sel(crtc)) {
2933 case PCH_DP_B:
2934 temp |= TRANS_DP_PORT_SEL_B;
2935 break;
2936 case PCH_DP_C:
2937 temp |= TRANS_DP_PORT_SEL_C;
2938 break;
2939 case PCH_DP_D:
2940 temp |= TRANS_DP_PORT_SEL_D;
2941 break;
2942 default:
2943 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2944 temp |= TRANS_DP_PORT_SEL_B;
2945 break;
2946 }
2947
2948 I915_WRITE(reg, temp);
2949 }
2950
2951 intel_enable_transcoder(dev_priv, pipe);
2952 }
2953
2954 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2955 {
2956 struct drm_device *dev = crtc->dev;
2957 struct drm_i915_private *dev_priv = dev->dev_private;
2958 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2959 int pipe = intel_crtc->pipe;
2960 int plane = intel_crtc->plane;
2961 u32 temp;
2962 bool is_pch_port;
2963
2964 if (intel_crtc->active)
2965 return;
2966
2967 intel_crtc->active = true;
2968 intel_update_watermarks(dev);
2969
2970 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2971 temp = I915_READ(PCH_LVDS);
2972 if ((temp & LVDS_PORT_EN) == 0)
2973 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2974 }
2975
2976 is_pch_port = intel_crtc_driving_pch(crtc);
2977
2978 if (is_pch_port)
2979 ironlake_fdi_pll_enable(crtc);
2980 else
2981 ironlake_fdi_disable(crtc);
2982
2983 /* Enable panel fitting for LVDS */
2984 if (dev_priv->pch_pf_size &&
2985 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2986 /* Force use of hard-coded filter coefficients
2987 * as some pre-programmed values are broken,
2988 * e.g. x201.
2989 */
2990 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2991 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2992 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2993 }
2994
2995 /*
2996 * On ILK+ LUT must be loaded before the pipe is running but with
2997 * clocks enabled
2998 */
2999 intel_crtc_load_lut(crtc);
3000
3001 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3002 intel_enable_plane(dev_priv, plane, pipe);
3003
3004 if (is_pch_port)
3005 ironlake_pch_enable(crtc);
3006
3007 mutex_lock(&dev->struct_mutex);
3008 intel_update_fbc(dev);
3009 mutex_unlock(&dev->struct_mutex);
3010
3011 intel_crtc_update_cursor(crtc, true);
3012 }
3013
3014 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3015 {
3016 struct drm_device *dev = crtc->dev;
3017 struct drm_i915_private *dev_priv = dev->dev_private;
3018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3019 int pipe = intel_crtc->pipe;
3020 int plane = intel_crtc->plane;
3021 u32 reg, temp;
3022
3023 if (!intel_crtc->active)
3024 return;
3025
3026 intel_crtc_wait_for_pending_flips(crtc);
3027 drm_vblank_off(dev, pipe);
3028 intel_crtc_update_cursor(crtc, false);
3029
3030 intel_disable_plane(dev_priv, plane, pipe);
3031
3032 if (dev_priv->cfb_plane == plane)
3033 intel_disable_fbc(dev);
3034
3035 intel_disable_pipe(dev_priv, pipe);
3036
3037 /* Disable PF */
3038 I915_WRITE(PF_CTL(pipe), 0);
3039 I915_WRITE(PF_WIN_SZ(pipe), 0);
3040
3041 ironlake_fdi_disable(crtc);
3042
3043 /* This is a horrible layering violation; we should be doing this in
3044 * the connector/encoder ->prepare instead, but we don't always have
3045 * enough information there about the config to know whether it will
3046 * actually be necessary or just cause undesired flicker.
3047 */
3048 intel_disable_pch_ports(dev_priv, pipe);
3049
3050 intel_disable_transcoder(dev_priv, pipe);
3051
3052 if (HAS_PCH_CPT(dev)) {
3053 /* disable TRANS_DP_CTL */
3054 reg = TRANS_DP_CTL(pipe);
3055 temp = I915_READ(reg);
3056 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3057 temp |= TRANS_DP_PORT_SEL_NONE;
3058 I915_WRITE(reg, temp);
3059
3060 /* disable DPLL_SEL */
3061 temp = I915_READ(PCH_DPLL_SEL);
3062 switch (pipe) {
3063 case 0:
3064 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3065 break;
3066 case 1:
3067 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3068 break;
3069 case 2:
3070 /* FIXME: manage transcoder PLLs? */
3071 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3072 break;
3073 default:
3074 BUG(); /* wtf */
3075 }
3076 I915_WRITE(PCH_DPLL_SEL, temp);
3077 }
3078
3079 /* disable PCH DPLL */
3080 intel_disable_pch_pll(dev_priv, pipe);
3081
3082 /* Switch from PCDclk to Rawclk */
3083 reg = FDI_RX_CTL(pipe);
3084 temp = I915_READ(reg);
3085 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3086
3087 /* Disable CPU FDI TX PLL */
3088 reg = FDI_TX_CTL(pipe);
3089 temp = I915_READ(reg);
3090 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3091
3092 POSTING_READ(reg);
3093 udelay(100);
3094
3095 reg = FDI_RX_CTL(pipe);
3096 temp = I915_READ(reg);
3097 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3098
3099 /* Wait for the clocks to turn off. */
3100 POSTING_READ(reg);
3101 udelay(100);
3102
3103 intel_crtc->active = false;
3104 intel_update_watermarks(dev);
3105
3106 mutex_lock(&dev->struct_mutex);
3107 intel_update_fbc(dev);
3108 intel_clear_scanline_wait(dev);
3109 mutex_unlock(&dev->struct_mutex);
3110 }
3111
3112 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3113 {
3114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3115 int pipe = intel_crtc->pipe;
3116 int plane = intel_crtc->plane;
3117
3118 /* XXX: When our outputs are all unaware of DPMS modes other than off
3119 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3120 */
3121 switch (mode) {
3122 case DRM_MODE_DPMS_ON:
3123 case DRM_MODE_DPMS_STANDBY:
3124 case DRM_MODE_DPMS_SUSPEND:
3125 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3126 ironlake_crtc_enable(crtc);
3127 break;
3128
3129 case DRM_MODE_DPMS_OFF:
3130 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3131 ironlake_crtc_disable(crtc);
3132 break;
3133 }
3134 }
3135
3136 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3137 {
3138 if (!enable && intel_crtc->overlay) {
3139 struct drm_device *dev = intel_crtc->base.dev;
3140 struct drm_i915_private *dev_priv = dev->dev_private;
3141
3142 mutex_lock(&dev->struct_mutex);
3143 dev_priv->mm.interruptible = false;
3144 (void) intel_overlay_switch_off(intel_crtc->overlay);
3145 dev_priv->mm.interruptible = true;
3146 mutex_unlock(&dev->struct_mutex);
3147 }
3148
3149 /* Let userspace switch the overlay on again. In most cases userspace
3150 * has to recompute where to put it anyway.
3151 */
3152 }
3153
3154 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3155 {
3156 struct drm_device *dev = crtc->dev;
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3159 int pipe = intel_crtc->pipe;
3160 int plane = intel_crtc->plane;
3161
3162 if (intel_crtc->active)
3163 return;
3164
3165 intel_crtc->active = true;
3166 intel_update_watermarks(dev);
3167
3168 intel_enable_pll(dev_priv, pipe);
3169 intel_enable_pipe(dev_priv, pipe, false);
3170 intel_enable_plane(dev_priv, plane, pipe);
3171
3172 intel_crtc_load_lut(crtc);
3173 intel_update_fbc(dev);
3174
3175 /* Give the overlay scaler a chance to enable if it's on this pipe */
3176 intel_crtc_dpms_overlay(intel_crtc, true);
3177 intel_crtc_update_cursor(crtc, true);
3178 }
3179
3180 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3181 {
3182 struct drm_device *dev = crtc->dev;
3183 struct drm_i915_private *dev_priv = dev->dev_private;
3184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3185 int pipe = intel_crtc->pipe;
3186 int plane = intel_crtc->plane;
3187
3188 if (!intel_crtc->active)
3189 return;
3190
3191 /* Give the overlay scaler a chance to disable if it's on this pipe */
3192 intel_crtc_wait_for_pending_flips(crtc);
3193 drm_vblank_off(dev, pipe);
3194 intel_crtc_dpms_overlay(intel_crtc, false);
3195 intel_crtc_update_cursor(crtc, false);
3196
3197 if (dev_priv->cfb_plane == plane)
3198 intel_disable_fbc(dev);
3199
3200 intel_disable_plane(dev_priv, plane, pipe);
3201 intel_disable_pipe(dev_priv, pipe);
3202 intel_disable_pll(dev_priv, pipe);
3203
3204 intel_crtc->active = false;
3205 intel_update_fbc(dev);
3206 intel_update_watermarks(dev);
3207 intel_clear_scanline_wait(dev);
3208 }
3209
3210 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3211 {
3212 /* XXX: When our outputs are all unaware of DPMS modes other than off
3213 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3214 */
3215 switch (mode) {
3216 case DRM_MODE_DPMS_ON:
3217 case DRM_MODE_DPMS_STANDBY:
3218 case DRM_MODE_DPMS_SUSPEND:
3219 i9xx_crtc_enable(crtc);
3220 break;
3221 case DRM_MODE_DPMS_OFF:
3222 i9xx_crtc_disable(crtc);
3223 break;
3224 }
3225 }
3226
3227 /**
3228 * Sets the power management mode of the pipe and plane.
3229 */
3230 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3231 {
3232 struct drm_device *dev = crtc->dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
3234 struct drm_i915_master_private *master_priv;
3235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3236 int pipe = intel_crtc->pipe;
3237 bool enabled;
3238
3239 if (intel_crtc->dpms_mode == mode)
3240 return;
3241
3242 intel_crtc->dpms_mode = mode;
3243
3244 dev_priv->display.dpms(crtc, mode);
3245
3246 if (!dev->primary->master)
3247 return;
3248
3249 master_priv = dev->primary->master->driver_priv;
3250 if (!master_priv->sarea_priv)
3251 return;
3252
3253 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3254
3255 switch (pipe) {
3256 case 0:
3257 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3258 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3259 break;
3260 case 1:
3261 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3262 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3263 break;
3264 default:
3265 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3266 break;
3267 }
3268 }
3269
3270 static void intel_crtc_disable(struct drm_crtc *crtc)
3271 {
3272 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3273 struct drm_device *dev = crtc->dev;
3274
3275 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3276
3277 if (crtc->fb) {
3278 mutex_lock(&dev->struct_mutex);
3279 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3280 mutex_unlock(&dev->struct_mutex);
3281 }
3282 }
3283
3284 /* Prepare for a mode set.
3285 *
3286 * Note we could be a lot smarter here. We need to figure out which outputs
3287 * will be enabled, which disabled (in short, how the config will changes)
3288 * and perform the minimum necessary steps to accomplish that, e.g. updating
3289 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3290 * panel fitting is in the proper state, etc.
3291 */
3292 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3293 {
3294 i9xx_crtc_disable(crtc);
3295 }
3296
3297 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3298 {
3299 i9xx_crtc_enable(crtc);
3300 }
3301
3302 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3303 {
3304 ironlake_crtc_disable(crtc);
3305 }
3306
3307 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3308 {
3309 ironlake_crtc_enable(crtc);
3310 }
3311
3312 void intel_encoder_prepare(struct drm_encoder *encoder)
3313 {
3314 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3315 /* lvds has its own version of prepare see intel_lvds_prepare */
3316 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3317 }
3318
3319 void intel_encoder_commit(struct drm_encoder *encoder)
3320 {
3321 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3322 /* lvds has its own version of commit see intel_lvds_commit */
3323 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3324 }
3325
3326 void intel_encoder_destroy(struct drm_encoder *encoder)
3327 {
3328 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3329
3330 drm_encoder_cleanup(encoder);
3331 kfree(intel_encoder);
3332 }
3333
3334 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3335 struct drm_display_mode *mode,
3336 struct drm_display_mode *adjusted_mode)
3337 {
3338 struct drm_device *dev = crtc->dev;
3339
3340 if (HAS_PCH_SPLIT(dev)) {
3341 /* FDI link clock is fixed at 2.7G */
3342 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3343 return false;
3344 }
3345
3346 /* XXX some encoders set the crtcinfo, others don't.
3347 * Obviously we need some form of conflict resolution here...
3348 */
3349 if (adjusted_mode->crtc_htotal == 0)
3350 drm_mode_set_crtcinfo(adjusted_mode, 0);
3351
3352 return true;
3353 }
3354
3355 static int i945_get_display_clock_speed(struct drm_device *dev)
3356 {
3357 return 400000;
3358 }
3359
3360 static int i915_get_display_clock_speed(struct drm_device *dev)
3361 {
3362 return 333000;
3363 }
3364
3365 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3366 {
3367 return 200000;
3368 }
3369
3370 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3371 {
3372 u16 gcfgc = 0;
3373
3374 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3375
3376 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3377 return 133000;
3378 else {
3379 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3380 case GC_DISPLAY_CLOCK_333_MHZ:
3381 return 333000;
3382 default:
3383 case GC_DISPLAY_CLOCK_190_200_MHZ:
3384 return 190000;
3385 }
3386 }
3387 }
3388
3389 static int i865_get_display_clock_speed(struct drm_device *dev)
3390 {
3391 return 266000;
3392 }
3393
3394 static int i855_get_display_clock_speed(struct drm_device *dev)
3395 {
3396 u16 hpllcc = 0;
3397 /* Assume that the hardware is in the high speed state. This
3398 * should be the default.
3399 */
3400 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3401 case GC_CLOCK_133_200:
3402 case GC_CLOCK_100_200:
3403 return 200000;
3404 case GC_CLOCK_166_250:
3405 return 250000;
3406 case GC_CLOCK_100_133:
3407 return 133000;
3408 }
3409
3410 /* Shouldn't happen */
3411 return 0;
3412 }
3413
3414 static int i830_get_display_clock_speed(struct drm_device *dev)
3415 {
3416 return 133000;
3417 }
3418
3419 struct fdi_m_n {
3420 u32 tu;
3421 u32 gmch_m;
3422 u32 gmch_n;
3423 u32 link_m;
3424 u32 link_n;
3425 };
3426
3427 static void
3428 fdi_reduce_ratio(u32 *num, u32 *den)
3429 {
3430 while (*num > 0xffffff || *den > 0xffffff) {
3431 *num >>= 1;
3432 *den >>= 1;
3433 }
3434 }
3435
3436 static void
3437 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3438 int link_clock, struct fdi_m_n *m_n)
3439 {
3440 m_n->tu = 64; /* default size */
3441
3442 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3443 m_n->gmch_m = bits_per_pixel * pixel_clock;
3444 m_n->gmch_n = link_clock * nlanes * 8;
3445 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3446
3447 m_n->link_m = pixel_clock;
3448 m_n->link_n = link_clock;
3449 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3450 }
3451
3452
3453 struct intel_watermark_params {
3454 unsigned long fifo_size;
3455 unsigned long max_wm;
3456 unsigned long default_wm;
3457 unsigned long guard_size;
3458 unsigned long cacheline_size;
3459 };
3460
3461 /* Pineview has different values for various configs */
3462 static const struct intel_watermark_params pineview_display_wm = {
3463 PINEVIEW_DISPLAY_FIFO,
3464 PINEVIEW_MAX_WM,
3465 PINEVIEW_DFT_WM,
3466 PINEVIEW_GUARD_WM,
3467 PINEVIEW_FIFO_LINE_SIZE
3468 };
3469 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3470 PINEVIEW_DISPLAY_FIFO,
3471 PINEVIEW_MAX_WM,
3472 PINEVIEW_DFT_HPLLOFF_WM,
3473 PINEVIEW_GUARD_WM,
3474 PINEVIEW_FIFO_LINE_SIZE
3475 };
3476 static const struct intel_watermark_params pineview_cursor_wm = {
3477 PINEVIEW_CURSOR_FIFO,
3478 PINEVIEW_CURSOR_MAX_WM,
3479 PINEVIEW_CURSOR_DFT_WM,
3480 PINEVIEW_CURSOR_GUARD_WM,
3481 PINEVIEW_FIFO_LINE_SIZE,
3482 };
3483 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3484 PINEVIEW_CURSOR_FIFO,
3485 PINEVIEW_CURSOR_MAX_WM,
3486 PINEVIEW_CURSOR_DFT_WM,
3487 PINEVIEW_CURSOR_GUARD_WM,
3488 PINEVIEW_FIFO_LINE_SIZE
3489 };
3490 static const struct intel_watermark_params g4x_wm_info = {
3491 G4X_FIFO_SIZE,
3492 G4X_MAX_WM,
3493 G4X_MAX_WM,
3494 2,
3495 G4X_FIFO_LINE_SIZE,
3496 };
3497 static const struct intel_watermark_params g4x_cursor_wm_info = {
3498 I965_CURSOR_FIFO,
3499 I965_CURSOR_MAX_WM,
3500 I965_CURSOR_DFT_WM,
3501 2,
3502 G4X_FIFO_LINE_SIZE,
3503 };
3504 static const struct intel_watermark_params i965_cursor_wm_info = {
3505 I965_CURSOR_FIFO,
3506 I965_CURSOR_MAX_WM,
3507 I965_CURSOR_DFT_WM,
3508 2,
3509 I915_FIFO_LINE_SIZE,
3510 };
3511 static const struct intel_watermark_params i945_wm_info = {
3512 I945_FIFO_SIZE,
3513 I915_MAX_WM,
3514 1,
3515 2,
3516 I915_FIFO_LINE_SIZE
3517 };
3518 static const struct intel_watermark_params i915_wm_info = {
3519 I915_FIFO_SIZE,
3520 I915_MAX_WM,
3521 1,
3522 2,
3523 I915_FIFO_LINE_SIZE
3524 };
3525 static const struct intel_watermark_params i855_wm_info = {
3526 I855GM_FIFO_SIZE,
3527 I915_MAX_WM,
3528 1,
3529 2,
3530 I830_FIFO_LINE_SIZE
3531 };
3532 static const struct intel_watermark_params i830_wm_info = {
3533 I830_FIFO_SIZE,
3534 I915_MAX_WM,
3535 1,
3536 2,
3537 I830_FIFO_LINE_SIZE
3538 };
3539
3540 static const struct intel_watermark_params ironlake_display_wm_info = {
3541 ILK_DISPLAY_FIFO,
3542 ILK_DISPLAY_MAXWM,
3543 ILK_DISPLAY_DFTWM,
3544 2,
3545 ILK_FIFO_LINE_SIZE
3546 };
3547 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3548 ILK_CURSOR_FIFO,
3549 ILK_CURSOR_MAXWM,
3550 ILK_CURSOR_DFTWM,
3551 2,
3552 ILK_FIFO_LINE_SIZE
3553 };
3554 static const struct intel_watermark_params ironlake_display_srwm_info = {
3555 ILK_DISPLAY_SR_FIFO,
3556 ILK_DISPLAY_MAX_SRWM,
3557 ILK_DISPLAY_DFT_SRWM,
3558 2,
3559 ILK_FIFO_LINE_SIZE
3560 };
3561 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3562 ILK_CURSOR_SR_FIFO,
3563 ILK_CURSOR_MAX_SRWM,
3564 ILK_CURSOR_DFT_SRWM,
3565 2,
3566 ILK_FIFO_LINE_SIZE
3567 };
3568
3569 static const struct intel_watermark_params sandybridge_display_wm_info = {
3570 SNB_DISPLAY_FIFO,
3571 SNB_DISPLAY_MAXWM,
3572 SNB_DISPLAY_DFTWM,
3573 2,
3574 SNB_FIFO_LINE_SIZE
3575 };
3576 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3577 SNB_CURSOR_FIFO,
3578 SNB_CURSOR_MAXWM,
3579 SNB_CURSOR_DFTWM,
3580 2,
3581 SNB_FIFO_LINE_SIZE
3582 };
3583 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3584 SNB_DISPLAY_SR_FIFO,
3585 SNB_DISPLAY_MAX_SRWM,
3586 SNB_DISPLAY_DFT_SRWM,
3587 2,
3588 SNB_FIFO_LINE_SIZE
3589 };
3590 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3591 SNB_CURSOR_SR_FIFO,
3592 SNB_CURSOR_MAX_SRWM,
3593 SNB_CURSOR_DFT_SRWM,
3594 2,
3595 SNB_FIFO_LINE_SIZE
3596 };
3597
3598
3599 /**
3600 * intel_calculate_wm - calculate watermark level
3601 * @clock_in_khz: pixel clock
3602 * @wm: chip FIFO params
3603 * @pixel_size: display pixel size
3604 * @latency_ns: memory latency for the platform
3605 *
3606 * Calculate the watermark level (the level at which the display plane will
3607 * start fetching from memory again). Each chip has a different display
3608 * FIFO size and allocation, so the caller needs to figure that out and pass
3609 * in the correct intel_watermark_params structure.
3610 *
3611 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3612 * on the pixel size. When it reaches the watermark level, it'll start
3613 * fetching FIFO line sized based chunks from memory until the FIFO fills
3614 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3615 * will occur, and a display engine hang could result.
3616 */
3617 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3618 const struct intel_watermark_params *wm,
3619 int fifo_size,
3620 int pixel_size,
3621 unsigned long latency_ns)
3622 {
3623 long entries_required, wm_size;
3624
3625 /*
3626 * Note: we need to make sure we don't overflow for various clock &
3627 * latency values.
3628 * clocks go from a few thousand to several hundred thousand.
3629 * latency is usually a few thousand
3630 */
3631 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3632 1000;
3633 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3634
3635 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3636
3637 wm_size = fifo_size - (entries_required + wm->guard_size);
3638
3639 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3640
3641 /* Don't promote wm_size to unsigned... */
3642 if (wm_size > (long)wm->max_wm)
3643 wm_size = wm->max_wm;
3644 if (wm_size <= 0)
3645 wm_size = wm->default_wm;
3646 return wm_size;
3647 }
3648
3649 struct cxsr_latency {
3650 int is_desktop;
3651 int is_ddr3;
3652 unsigned long fsb_freq;
3653 unsigned long mem_freq;
3654 unsigned long display_sr;
3655 unsigned long display_hpll_disable;
3656 unsigned long cursor_sr;
3657 unsigned long cursor_hpll_disable;
3658 };
3659
3660 static const struct cxsr_latency cxsr_latency_table[] = {
3661 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3662 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3663 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3664 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3665 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3666
3667 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3668 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3669 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3670 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3671 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3672
3673 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3674 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3675 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3676 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3677 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3678
3679 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3680 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3681 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3682 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3683 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3684
3685 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3686 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3687 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3688 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3689 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3690
3691 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3692 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3693 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3694 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3695 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3696 };
3697
3698 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3699 int is_ddr3,
3700 int fsb,
3701 int mem)
3702 {
3703 const struct cxsr_latency *latency;
3704 int i;
3705
3706 if (fsb == 0 || mem == 0)
3707 return NULL;
3708
3709 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3710 latency = &cxsr_latency_table[i];
3711 if (is_desktop == latency->is_desktop &&
3712 is_ddr3 == latency->is_ddr3 &&
3713 fsb == latency->fsb_freq && mem == latency->mem_freq)
3714 return latency;
3715 }
3716
3717 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3718
3719 return NULL;
3720 }
3721
3722 static void pineview_disable_cxsr(struct drm_device *dev)
3723 {
3724 struct drm_i915_private *dev_priv = dev->dev_private;
3725
3726 /* deactivate cxsr */
3727 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3728 }
3729
3730 /*
3731 * Latency for FIFO fetches is dependent on several factors:
3732 * - memory configuration (speed, channels)
3733 * - chipset
3734 * - current MCH state
3735 * It can be fairly high in some situations, so here we assume a fairly
3736 * pessimal value. It's a tradeoff between extra memory fetches (if we
3737 * set this value too high, the FIFO will fetch frequently to stay full)
3738 * and power consumption (set it too low to save power and we might see
3739 * FIFO underruns and display "flicker").
3740 *
3741 * A value of 5us seems to be a good balance; safe for very low end
3742 * platforms but not overly aggressive on lower latency configs.
3743 */
3744 static const int latency_ns = 5000;
3745
3746 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3747 {
3748 struct drm_i915_private *dev_priv = dev->dev_private;
3749 uint32_t dsparb = I915_READ(DSPARB);
3750 int size;
3751
3752 size = dsparb & 0x7f;
3753 if (plane)
3754 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3755
3756 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3757 plane ? "B" : "A", size);
3758
3759 return size;
3760 }
3761
3762 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3763 {
3764 struct drm_i915_private *dev_priv = dev->dev_private;
3765 uint32_t dsparb = I915_READ(DSPARB);
3766 int size;
3767
3768 size = dsparb & 0x1ff;
3769 if (plane)
3770 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3771 size >>= 1; /* Convert to cachelines */
3772
3773 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3774 plane ? "B" : "A", size);
3775
3776 return size;
3777 }
3778
3779 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3780 {
3781 struct drm_i915_private *dev_priv = dev->dev_private;
3782 uint32_t dsparb = I915_READ(DSPARB);
3783 int size;
3784
3785 size = dsparb & 0x7f;
3786 size >>= 2; /* Convert to cachelines */
3787
3788 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3789 plane ? "B" : "A",
3790 size);
3791
3792 return size;
3793 }
3794
3795 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3796 {
3797 struct drm_i915_private *dev_priv = dev->dev_private;
3798 uint32_t dsparb = I915_READ(DSPARB);
3799 int size;
3800
3801 size = dsparb & 0x7f;
3802 size >>= 1; /* Convert to cachelines */
3803
3804 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3805 plane ? "B" : "A", size);
3806
3807 return size;
3808 }
3809
3810 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3811 {
3812 struct drm_crtc *crtc, *enabled = NULL;
3813
3814 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3815 if (crtc->enabled && crtc->fb) {
3816 if (enabled)
3817 return NULL;
3818 enabled = crtc;
3819 }
3820 }
3821
3822 return enabled;
3823 }
3824
3825 static void pineview_update_wm(struct drm_device *dev)
3826 {
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 struct drm_crtc *crtc;
3829 const struct cxsr_latency *latency;
3830 u32 reg;
3831 unsigned long wm;
3832
3833 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3834 dev_priv->fsb_freq, dev_priv->mem_freq);
3835 if (!latency) {
3836 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3837 pineview_disable_cxsr(dev);
3838 return;
3839 }
3840
3841 crtc = single_enabled_crtc(dev);
3842 if (crtc) {
3843 int clock = crtc->mode.clock;
3844 int pixel_size = crtc->fb->bits_per_pixel / 8;
3845
3846 /* Display SR */
3847 wm = intel_calculate_wm(clock, &pineview_display_wm,
3848 pineview_display_wm.fifo_size,
3849 pixel_size, latency->display_sr);
3850 reg = I915_READ(DSPFW1);
3851 reg &= ~DSPFW_SR_MASK;
3852 reg |= wm << DSPFW_SR_SHIFT;
3853 I915_WRITE(DSPFW1, reg);
3854 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3855
3856 /* cursor SR */
3857 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3858 pineview_display_wm.fifo_size,
3859 pixel_size, latency->cursor_sr);
3860 reg = I915_READ(DSPFW3);
3861 reg &= ~DSPFW_CURSOR_SR_MASK;
3862 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3863 I915_WRITE(DSPFW3, reg);
3864
3865 /* Display HPLL off SR */
3866 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3867 pineview_display_hplloff_wm.fifo_size,
3868 pixel_size, latency->display_hpll_disable);
3869 reg = I915_READ(DSPFW3);
3870 reg &= ~DSPFW_HPLL_SR_MASK;
3871 reg |= wm & DSPFW_HPLL_SR_MASK;
3872 I915_WRITE(DSPFW3, reg);
3873
3874 /* cursor HPLL off SR */
3875 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3876 pineview_display_hplloff_wm.fifo_size,
3877 pixel_size, latency->cursor_hpll_disable);
3878 reg = I915_READ(DSPFW3);
3879 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3880 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3881 I915_WRITE(DSPFW3, reg);
3882 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3883
3884 /* activate cxsr */
3885 I915_WRITE(DSPFW3,
3886 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3887 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3888 } else {
3889 pineview_disable_cxsr(dev);
3890 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3891 }
3892 }
3893
3894 static bool g4x_compute_wm0(struct drm_device *dev,
3895 int plane,
3896 const struct intel_watermark_params *display,
3897 int display_latency_ns,
3898 const struct intel_watermark_params *cursor,
3899 int cursor_latency_ns,
3900 int *plane_wm,
3901 int *cursor_wm)
3902 {
3903 struct drm_crtc *crtc;
3904 int htotal, hdisplay, clock, pixel_size;
3905 int line_time_us, line_count;
3906 int entries, tlb_miss;
3907
3908 crtc = intel_get_crtc_for_plane(dev, plane);
3909 if (crtc->fb == NULL || !crtc->enabled) {
3910 *cursor_wm = cursor->guard_size;
3911 *plane_wm = display->guard_size;
3912 return false;
3913 }
3914
3915 htotal = crtc->mode.htotal;
3916 hdisplay = crtc->mode.hdisplay;
3917 clock = crtc->mode.clock;
3918 pixel_size = crtc->fb->bits_per_pixel / 8;
3919
3920 /* Use the small buffer method to calculate plane watermark */
3921 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3922 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3923 if (tlb_miss > 0)
3924 entries += tlb_miss;
3925 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3926 *plane_wm = entries + display->guard_size;
3927 if (*plane_wm > (int)display->max_wm)
3928 *plane_wm = display->max_wm;
3929
3930 /* Use the large buffer method to calculate cursor watermark */
3931 line_time_us = ((htotal * 1000) / clock);
3932 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3933 entries = line_count * 64 * pixel_size;
3934 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3935 if (tlb_miss > 0)
3936 entries += tlb_miss;
3937 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3938 *cursor_wm = entries + cursor->guard_size;
3939 if (*cursor_wm > (int)cursor->max_wm)
3940 *cursor_wm = (int)cursor->max_wm;
3941
3942 return true;
3943 }
3944
3945 /*
3946 * Check the wm result.
3947 *
3948 * If any calculated watermark values is larger than the maximum value that
3949 * can be programmed into the associated watermark register, that watermark
3950 * must be disabled.
3951 */
3952 static bool g4x_check_srwm(struct drm_device *dev,
3953 int display_wm, int cursor_wm,
3954 const struct intel_watermark_params *display,
3955 const struct intel_watermark_params *cursor)
3956 {
3957 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3958 display_wm, cursor_wm);
3959
3960 if (display_wm > display->max_wm) {
3961 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3962 display_wm, display->max_wm);
3963 return false;
3964 }
3965
3966 if (cursor_wm > cursor->max_wm) {
3967 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3968 cursor_wm, cursor->max_wm);
3969 return false;
3970 }
3971
3972 if (!(display_wm || cursor_wm)) {
3973 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3974 return false;
3975 }
3976
3977 return true;
3978 }
3979
3980 static bool g4x_compute_srwm(struct drm_device *dev,
3981 int plane,
3982 int latency_ns,
3983 const struct intel_watermark_params *display,
3984 const struct intel_watermark_params *cursor,
3985 int *display_wm, int *cursor_wm)
3986 {
3987 struct drm_crtc *crtc;
3988 int hdisplay, htotal, pixel_size, clock;
3989 unsigned long line_time_us;
3990 int line_count, line_size;
3991 int small, large;
3992 int entries;
3993
3994 if (!latency_ns) {
3995 *display_wm = *cursor_wm = 0;
3996 return false;
3997 }
3998
3999 crtc = intel_get_crtc_for_plane(dev, plane);
4000 hdisplay = crtc->mode.hdisplay;
4001 htotal = crtc->mode.htotal;
4002 clock = crtc->mode.clock;
4003 pixel_size = crtc->fb->bits_per_pixel / 8;
4004
4005 line_time_us = (htotal * 1000) / clock;
4006 line_count = (latency_ns / line_time_us + 1000) / 1000;
4007 line_size = hdisplay * pixel_size;
4008
4009 /* Use the minimum of the small and large buffer method for primary */
4010 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4011 large = line_count * line_size;
4012
4013 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4014 *display_wm = entries + display->guard_size;
4015
4016 /* calculate the self-refresh watermark for display cursor */
4017 entries = line_count * pixel_size * 64;
4018 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4019 *cursor_wm = entries + cursor->guard_size;
4020
4021 return g4x_check_srwm(dev,
4022 *display_wm, *cursor_wm,
4023 display, cursor);
4024 }
4025
4026 #define single_plane_enabled(mask) is_power_of_2(mask)
4027
4028 static void g4x_update_wm(struct drm_device *dev)
4029 {
4030 static const int sr_latency_ns = 12000;
4031 struct drm_i915_private *dev_priv = dev->dev_private;
4032 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4033 int plane_sr, cursor_sr;
4034 unsigned int enabled = 0;
4035
4036 if (g4x_compute_wm0(dev, 0,
4037 &g4x_wm_info, latency_ns,
4038 &g4x_cursor_wm_info, latency_ns,
4039 &planea_wm, &cursora_wm))
4040 enabled |= 1;
4041
4042 if (g4x_compute_wm0(dev, 1,
4043 &g4x_wm_info, latency_ns,
4044 &g4x_cursor_wm_info, latency_ns,
4045 &planeb_wm, &cursorb_wm))
4046 enabled |= 2;
4047
4048 plane_sr = cursor_sr = 0;
4049 if (single_plane_enabled(enabled) &&
4050 g4x_compute_srwm(dev, ffs(enabled) - 1,
4051 sr_latency_ns,
4052 &g4x_wm_info,
4053 &g4x_cursor_wm_info,
4054 &plane_sr, &cursor_sr))
4055 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4056 else
4057 I915_WRITE(FW_BLC_SELF,
4058 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4059
4060 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4061 planea_wm, cursora_wm,
4062 planeb_wm, cursorb_wm,
4063 plane_sr, cursor_sr);
4064
4065 I915_WRITE(DSPFW1,
4066 (plane_sr << DSPFW_SR_SHIFT) |
4067 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4068 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4069 planea_wm);
4070 I915_WRITE(DSPFW2,
4071 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4072 (cursora_wm << DSPFW_CURSORA_SHIFT));
4073 /* HPLL off in SR has some issues on G4x... disable it */
4074 I915_WRITE(DSPFW3,
4075 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4076 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4077 }
4078
4079 static void i965_update_wm(struct drm_device *dev)
4080 {
4081 struct drm_i915_private *dev_priv = dev->dev_private;
4082 struct drm_crtc *crtc;
4083 int srwm = 1;
4084 int cursor_sr = 16;
4085
4086 /* Calc sr entries for one plane configs */
4087 crtc = single_enabled_crtc(dev);
4088 if (crtc) {
4089 /* self-refresh has much higher latency */
4090 static const int sr_latency_ns = 12000;
4091 int clock = crtc->mode.clock;
4092 int htotal = crtc->mode.htotal;
4093 int hdisplay = crtc->mode.hdisplay;
4094 int pixel_size = crtc->fb->bits_per_pixel / 8;
4095 unsigned long line_time_us;
4096 int entries;
4097
4098 line_time_us = ((htotal * 1000) / clock);
4099
4100 /* Use ns/us then divide to preserve precision */
4101 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4102 pixel_size * hdisplay;
4103 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4104 srwm = I965_FIFO_SIZE - entries;
4105 if (srwm < 0)
4106 srwm = 1;
4107 srwm &= 0x1ff;
4108 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4109 entries, srwm);
4110
4111 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4112 pixel_size * 64;
4113 entries = DIV_ROUND_UP(entries,
4114 i965_cursor_wm_info.cacheline_size);
4115 cursor_sr = i965_cursor_wm_info.fifo_size -
4116 (entries + i965_cursor_wm_info.guard_size);
4117
4118 if (cursor_sr > i965_cursor_wm_info.max_wm)
4119 cursor_sr = i965_cursor_wm_info.max_wm;
4120
4121 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4122 "cursor %d\n", srwm, cursor_sr);
4123
4124 if (IS_CRESTLINE(dev))
4125 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4126 } else {
4127 /* Turn off self refresh if both pipes are enabled */
4128 if (IS_CRESTLINE(dev))
4129 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4130 & ~FW_BLC_SELF_EN);
4131 }
4132
4133 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4134 srwm);
4135
4136 /* 965 has limitations... */
4137 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4138 (8 << 16) | (8 << 8) | (8 << 0));
4139 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4140 /* update cursor SR watermark */
4141 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4142 }
4143
4144 static void i9xx_update_wm(struct drm_device *dev)
4145 {
4146 struct drm_i915_private *dev_priv = dev->dev_private;
4147 const struct intel_watermark_params *wm_info;
4148 uint32_t fwater_lo;
4149 uint32_t fwater_hi;
4150 int cwm, srwm = 1;
4151 int fifo_size;
4152 int planea_wm, planeb_wm;
4153 struct drm_crtc *crtc, *enabled = NULL;
4154
4155 if (IS_I945GM(dev))
4156 wm_info = &i945_wm_info;
4157 else if (!IS_GEN2(dev))
4158 wm_info = &i915_wm_info;
4159 else
4160 wm_info = &i855_wm_info;
4161
4162 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4163 crtc = intel_get_crtc_for_plane(dev, 0);
4164 if (crtc->enabled && crtc->fb) {
4165 planea_wm = intel_calculate_wm(crtc->mode.clock,
4166 wm_info, fifo_size,
4167 crtc->fb->bits_per_pixel / 8,
4168 latency_ns);
4169 enabled = crtc;
4170 } else
4171 planea_wm = fifo_size - wm_info->guard_size;
4172
4173 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4174 crtc = intel_get_crtc_for_plane(dev, 1);
4175 if (crtc->enabled && crtc->fb) {
4176 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4177 wm_info, fifo_size,
4178 crtc->fb->bits_per_pixel / 8,
4179 latency_ns);
4180 if (enabled == NULL)
4181 enabled = crtc;
4182 else
4183 enabled = NULL;
4184 } else
4185 planeb_wm = fifo_size - wm_info->guard_size;
4186
4187 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4188
4189 /*
4190 * Overlay gets an aggressive default since video jitter is bad.
4191 */
4192 cwm = 2;
4193
4194 /* Play safe and disable self-refresh before adjusting watermarks. */
4195 if (IS_I945G(dev) || IS_I945GM(dev))
4196 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4197 else if (IS_I915GM(dev))
4198 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4199
4200 /* Calc sr entries for one plane configs */
4201 if (HAS_FW_BLC(dev) && enabled) {
4202 /* self-refresh has much higher latency */
4203 static const int sr_latency_ns = 6000;
4204 int clock = enabled->mode.clock;
4205 int htotal = enabled->mode.htotal;
4206 int hdisplay = enabled->mode.hdisplay;
4207 int pixel_size = enabled->fb->bits_per_pixel / 8;
4208 unsigned long line_time_us;
4209 int entries;
4210
4211 line_time_us = (htotal * 1000) / clock;
4212
4213 /* Use ns/us then divide to preserve precision */
4214 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4215 pixel_size * hdisplay;
4216 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4217 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4218 srwm = wm_info->fifo_size - entries;
4219 if (srwm < 0)
4220 srwm = 1;
4221
4222 if (IS_I945G(dev) || IS_I945GM(dev))
4223 I915_WRITE(FW_BLC_SELF,
4224 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4225 else if (IS_I915GM(dev))
4226 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4227 }
4228
4229 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4230 planea_wm, planeb_wm, cwm, srwm);
4231
4232 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4233 fwater_hi = (cwm & 0x1f);
4234
4235 /* Set request length to 8 cachelines per fetch */
4236 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4237 fwater_hi = fwater_hi | (1 << 8);
4238
4239 I915_WRITE(FW_BLC, fwater_lo);
4240 I915_WRITE(FW_BLC2, fwater_hi);
4241
4242 if (HAS_FW_BLC(dev)) {
4243 if (enabled) {
4244 if (IS_I945G(dev) || IS_I945GM(dev))
4245 I915_WRITE(FW_BLC_SELF,
4246 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4247 else if (IS_I915GM(dev))
4248 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4249 DRM_DEBUG_KMS("memory self refresh enabled\n");
4250 } else
4251 DRM_DEBUG_KMS("memory self refresh disabled\n");
4252 }
4253 }
4254
4255 static void i830_update_wm(struct drm_device *dev)
4256 {
4257 struct drm_i915_private *dev_priv = dev->dev_private;
4258 struct drm_crtc *crtc;
4259 uint32_t fwater_lo;
4260 int planea_wm;
4261
4262 crtc = single_enabled_crtc(dev);
4263 if (crtc == NULL)
4264 return;
4265
4266 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4267 dev_priv->display.get_fifo_size(dev, 0),
4268 crtc->fb->bits_per_pixel / 8,
4269 latency_ns);
4270 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4271 fwater_lo |= (3<<8) | planea_wm;
4272
4273 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4274
4275 I915_WRITE(FW_BLC, fwater_lo);
4276 }
4277
4278 #define ILK_LP0_PLANE_LATENCY 700
4279 #define ILK_LP0_CURSOR_LATENCY 1300
4280
4281 /*
4282 * Check the wm result.
4283 *
4284 * If any calculated watermark values is larger than the maximum value that
4285 * can be programmed into the associated watermark register, that watermark
4286 * must be disabled.
4287 */
4288 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4289 int fbc_wm, int display_wm, int cursor_wm,
4290 const struct intel_watermark_params *display,
4291 const struct intel_watermark_params *cursor)
4292 {
4293 struct drm_i915_private *dev_priv = dev->dev_private;
4294
4295 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4296 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4297
4298 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4299 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4300 fbc_wm, SNB_FBC_MAX_SRWM, level);
4301
4302 /* fbc has it's own way to disable FBC WM */
4303 I915_WRITE(DISP_ARB_CTL,
4304 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4305 return false;
4306 }
4307
4308 if (display_wm > display->max_wm) {
4309 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4310 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4311 return false;
4312 }
4313
4314 if (cursor_wm > cursor->max_wm) {
4315 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4316 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4317 return false;
4318 }
4319
4320 if (!(fbc_wm || display_wm || cursor_wm)) {
4321 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4322 return false;
4323 }
4324
4325 return true;
4326 }
4327
4328 /*
4329 * Compute watermark values of WM[1-3],
4330 */
4331 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4332 int latency_ns,
4333 const struct intel_watermark_params *display,
4334 const struct intel_watermark_params *cursor,
4335 int *fbc_wm, int *display_wm, int *cursor_wm)
4336 {
4337 struct drm_crtc *crtc;
4338 unsigned long line_time_us;
4339 int hdisplay, htotal, pixel_size, clock;
4340 int line_count, line_size;
4341 int small, large;
4342 int entries;
4343
4344 if (!latency_ns) {
4345 *fbc_wm = *display_wm = *cursor_wm = 0;
4346 return false;
4347 }
4348
4349 crtc = intel_get_crtc_for_plane(dev, plane);
4350 hdisplay = crtc->mode.hdisplay;
4351 htotal = crtc->mode.htotal;
4352 clock = crtc->mode.clock;
4353 pixel_size = crtc->fb->bits_per_pixel / 8;
4354
4355 line_time_us = (htotal * 1000) / clock;
4356 line_count = (latency_ns / line_time_us + 1000) / 1000;
4357 line_size = hdisplay * pixel_size;
4358
4359 /* Use the minimum of the small and large buffer method for primary */
4360 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4361 large = line_count * line_size;
4362
4363 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4364 *display_wm = entries + display->guard_size;
4365
4366 /*
4367 * Spec says:
4368 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4369 */
4370 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4371
4372 /* calculate the self-refresh watermark for display cursor */
4373 entries = line_count * pixel_size * 64;
4374 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4375 *cursor_wm = entries + cursor->guard_size;
4376
4377 return ironlake_check_srwm(dev, level,
4378 *fbc_wm, *display_wm, *cursor_wm,
4379 display, cursor);
4380 }
4381
4382 static void ironlake_update_wm(struct drm_device *dev)
4383 {
4384 struct drm_i915_private *dev_priv = dev->dev_private;
4385 int fbc_wm, plane_wm, cursor_wm;
4386 unsigned int enabled;
4387
4388 enabled = 0;
4389 if (g4x_compute_wm0(dev, 0,
4390 &ironlake_display_wm_info,
4391 ILK_LP0_PLANE_LATENCY,
4392 &ironlake_cursor_wm_info,
4393 ILK_LP0_CURSOR_LATENCY,
4394 &plane_wm, &cursor_wm)) {
4395 I915_WRITE(WM0_PIPEA_ILK,
4396 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4397 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4398 " plane %d, " "cursor: %d\n",
4399 plane_wm, cursor_wm);
4400 enabled |= 1;
4401 }
4402
4403 if (g4x_compute_wm0(dev, 1,
4404 &ironlake_display_wm_info,
4405 ILK_LP0_PLANE_LATENCY,
4406 &ironlake_cursor_wm_info,
4407 ILK_LP0_CURSOR_LATENCY,
4408 &plane_wm, &cursor_wm)) {
4409 I915_WRITE(WM0_PIPEB_ILK,
4410 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4411 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4412 " plane %d, cursor: %d\n",
4413 plane_wm, cursor_wm);
4414 enabled |= 2;
4415 }
4416
4417 /*
4418 * Calculate and update the self-refresh watermark only when one
4419 * display plane is used.
4420 */
4421 I915_WRITE(WM3_LP_ILK, 0);
4422 I915_WRITE(WM2_LP_ILK, 0);
4423 I915_WRITE(WM1_LP_ILK, 0);
4424
4425 if (!single_plane_enabled(enabled))
4426 return;
4427 enabled = ffs(enabled) - 1;
4428
4429 /* WM1 */
4430 if (!ironlake_compute_srwm(dev, 1, enabled,
4431 ILK_READ_WM1_LATENCY() * 500,
4432 &ironlake_display_srwm_info,
4433 &ironlake_cursor_srwm_info,
4434 &fbc_wm, &plane_wm, &cursor_wm))
4435 return;
4436
4437 I915_WRITE(WM1_LP_ILK,
4438 WM1_LP_SR_EN |
4439 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4440 (fbc_wm << WM1_LP_FBC_SHIFT) |
4441 (plane_wm << WM1_LP_SR_SHIFT) |
4442 cursor_wm);
4443
4444 /* WM2 */
4445 if (!ironlake_compute_srwm(dev, 2, enabled,
4446 ILK_READ_WM2_LATENCY() * 500,
4447 &ironlake_display_srwm_info,
4448 &ironlake_cursor_srwm_info,
4449 &fbc_wm, &plane_wm, &cursor_wm))
4450 return;
4451
4452 I915_WRITE(WM2_LP_ILK,
4453 WM2_LP_EN |
4454 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4455 (fbc_wm << WM1_LP_FBC_SHIFT) |
4456 (plane_wm << WM1_LP_SR_SHIFT) |
4457 cursor_wm);
4458
4459 /*
4460 * WM3 is unsupported on ILK, probably because we don't have latency
4461 * data for that power state
4462 */
4463 }
4464
4465 static void sandybridge_update_wm(struct drm_device *dev)
4466 {
4467 struct drm_i915_private *dev_priv = dev->dev_private;
4468 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4469 int fbc_wm, plane_wm, cursor_wm;
4470 unsigned int enabled;
4471
4472 enabled = 0;
4473 if (g4x_compute_wm0(dev, 0,
4474 &sandybridge_display_wm_info, latency,
4475 &sandybridge_cursor_wm_info, latency,
4476 &plane_wm, &cursor_wm)) {
4477 I915_WRITE(WM0_PIPEA_ILK,
4478 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4479 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4480 " plane %d, " "cursor: %d\n",
4481 plane_wm, cursor_wm);
4482 enabled |= 1;
4483 }
4484
4485 if (g4x_compute_wm0(dev, 1,
4486 &sandybridge_display_wm_info, latency,
4487 &sandybridge_cursor_wm_info, latency,
4488 &plane_wm, &cursor_wm)) {
4489 I915_WRITE(WM0_PIPEB_ILK,
4490 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4491 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4492 " plane %d, cursor: %d\n",
4493 plane_wm, cursor_wm);
4494 enabled |= 2;
4495 }
4496
4497 /*
4498 * Calculate and update the self-refresh watermark only when one
4499 * display plane is used.
4500 *
4501 * SNB support 3 levels of watermark.
4502 *
4503 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4504 * and disabled in the descending order
4505 *
4506 */
4507 I915_WRITE(WM3_LP_ILK, 0);
4508 I915_WRITE(WM2_LP_ILK, 0);
4509 I915_WRITE(WM1_LP_ILK, 0);
4510
4511 if (!single_plane_enabled(enabled))
4512 return;
4513 enabled = ffs(enabled) - 1;
4514
4515 /* WM1 */
4516 if (!ironlake_compute_srwm(dev, 1, enabled,
4517 SNB_READ_WM1_LATENCY() * 500,
4518 &sandybridge_display_srwm_info,
4519 &sandybridge_cursor_srwm_info,
4520 &fbc_wm, &plane_wm, &cursor_wm))
4521 return;
4522
4523 I915_WRITE(WM1_LP_ILK,
4524 WM1_LP_SR_EN |
4525 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4526 (fbc_wm << WM1_LP_FBC_SHIFT) |
4527 (plane_wm << WM1_LP_SR_SHIFT) |
4528 cursor_wm);
4529
4530 /* WM2 */
4531 if (!ironlake_compute_srwm(dev, 2, enabled,
4532 SNB_READ_WM2_LATENCY() * 500,
4533 &sandybridge_display_srwm_info,
4534 &sandybridge_cursor_srwm_info,
4535 &fbc_wm, &plane_wm, &cursor_wm))
4536 return;
4537
4538 I915_WRITE(WM2_LP_ILK,
4539 WM2_LP_EN |
4540 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4541 (fbc_wm << WM1_LP_FBC_SHIFT) |
4542 (plane_wm << WM1_LP_SR_SHIFT) |
4543 cursor_wm);
4544
4545 /* WM3 */
4546 if (!ironlake_compute_srwm(dev, 3, enabled,
4547 SNB_READ_WM3_LATENCY() * 500,
4548 &sandybridge_display_srwm_info,
4549 &sandybridge_cursor_srwm_info,
4550 &fbc_wm, &plane_wm, &cursor_wm))
4551 return;
4552
4553 I915_WRITE(WM3_LP_ILK,
4554 WM3_LP_EN |
4555 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4556 (fbc_wm << WM1_LP_FBC_SHIFT) |
4557 (plane_wm << WM1_LP_SR_SHIFT) |
4558 cursor_wm);
4559 }
4560
4561 /**
4562 * intel_update_watermarks - update FIFO watermark values based on current modes
4563 *
4564 * Calculate watermark values for the various WM regs based on current mode
4565 * and plane configuration.
4566 *
4567 * There are several cases to deal with here:
4568 * - normal (i.e. non-self-refresh)
4569 * - self-refresh (SR) mode
4570 * - lines are large relative to FIFO size (buffer can hold up to 2)
4571 * - lines are small relative to FIFO size (buffer can hold more than 2
4572 * lines), so need to account for TLB latency
4573 *
4574 * The normal calculation is:
4575 * watermark = dotclock * bytes per pixel * latency
4576 * where latency is platform & configuration dependent (we assume pessimal
4577 * values here).
4578 *
4579 * The SR calculation is:
4580 * watermark = (trunc(latency/line time)+1) * surface width *
4581 * bytes per pixel
4582 * where
4583 * line time = htotal / dotclock
4584 * surface width = hdisplay for normal plane and 64 for cursor
4585 * and latency is assumed to be high, as above.
4586 *
4587 * The final value programmed to the register should always be rounded up,
4588 * and include an extra 2 entries to account for clock crossings.
4589 *
4590 * We don't use the sprite, so we can ignore that. And on Crestline we have
4591 * to set the non-SR watermarks to 8.
4592 */
4593 static void intel_update_watermarks(struct drm_device *dev)
4594 {
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596
4597 if (dev_priv->display.update_wm)
4598 dev_priv->display.update_wm(dev);
4599 }
4600
4601 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4602 {
4603 if (i915_panel_use_ssc >= 0)
4604 return i915_panel_use_ssc != 0;
4605 return dev_priv->lvds_use_ssc
4606 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4607 }
4608
4609 /**
4610 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4611 * @crtc: CRTC structure
4612 *
4613 * A pipe may be connected to one or more outputs. Based on the depth of the
4614 * attached framebuffer, choose a good color depth to use on the pipe.
4615 *
4616 * If possible, match the pipe depth to the fb depth. In some cases, this
4617 * isn't ideal, because the connected output supports a lesser or restricted
4618 * set of depths. Resolve that here:
4619 * LVDS typically supports only 6bpc, so clamp down in that case
4620 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4621 * Displays may support a restricted set as well, check EDID and clamp as
4622 * appropriate.
4623 *
4624 * RETURNS:
4625 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4626 * true if they don't match).
4627 */
4628 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4629 unsigned int *pipe_bpp)
4630 {
4631 struct drm_device *dev = crtc->dev;
4632 struct drm_i915_private *dev_priv = dev->dev_private;
4633 struct drm_encoder *encoder;
4634 struct drm_connector *connector;
4635 unsigned int display_bpc = UINT_MAX, bpc;
4636
4637 /* Walk the encoders & connectors on this crtc, get min bpc */
4638 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4639 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4640
4641 if (encoder->crtc != crtc)
4642 continue;
4643
4644 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4645 unsigned int lvds_bpc;
4646
4647 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4648 LVDS_A3_POWER_UP)
4649 lvds_bpc = 8;
4650 else
4651 lvds_bpc = 6;
4652
4653 if (lvds_bpc < display_bpc) {
4654 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4655 display_bpc = lvds_bpc;
4656 }
4657 continue;
4658 }
4659
4660 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4661 /* Use VBT settings if we have an eDP panel */
4662 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4663
4664 if (edp_bpc < display_bpc) {
4665 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4666 display_bpc = edp_bpc;
4667 }
4668 continue;
4669 }
4670
4671 /* Not one of the known troublemakers, check the EDID */
4672 list_for_each_entry(connector, &dev->mode_config.connector_list,
4673 head) {
4674 if (connector->encoder != encoder)
4675 continue;
4676
4677 /* Don't use an invalid EDID bpc value */
4678 if (connector->display_info.bpc &&
4679 connector->display_info.bpc < display_bpc) {
4680 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4681 display_bpc = connector->display_info.bpc;
4682 }
4683 }
4684
4685 /*
4686 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4687 * through, clamp it down. (Note: >12bpc will be caught below.)
4688 */
4689 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4690 if (display_bpc > 8 && display_bpc < 12) {
4691 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4692 display_bpc = 12;
4693 } else {
4694 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4695 display_bpc = 8;
4696 }
4697 }
4698 }
4699
4700 /*
4701 * We could just drive the pipe at the highest bpc all the time and
4702 * enable dithering as needed, but that costs bandwidth. So choose
4703 * the minimum value that expresses the full color range of the fb but
4704 * also stays within the max display bpc discovered above.
4705 */
4706
4707 switch (crtc->fb->depth) {
4708 case 8:
4709 bpc = 8; /* since we go through a colormap */
4710 break;
4711 case 15:
4712 case 16:
4713 bpc = 6; /* min is 18bpp */
4714 break;
4715 case 24:
4716 bpc = 8;
4717 break;
4718 case 30:
4719 bpc = 10;
4720 break;
4721 case 48:
4722 bpc = 12;
4723 break;
4724 default:
4725 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4726 bpc = min((unsigned int)8, display_bpc);
4727 break;
4728 }
4729
4730 display_bpc = min(display_bpc, bpc);
4731
4732 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4733 bpc, display_bpc);
4734
4735 *pipe_bpp = display_bpc * 3;
4736
4737 return display_bpc != bpc;
4738 }
4739
4740 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4741 struct drm_display_mode *mode,
4742 struct drm_display_mode *adjusted_mode,
4743 int x, int y,
4744 struct drm_framebuffer *old_fb)
4745 {
4746 struct drm_device *dev = crtc->dev;
4747 struct drm_i915_private *dev_priv = dev->dev_private;
4748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4749 int pipe = intel_crtc->pipe;
4750 int plane = intel_crtc->plane;
4751 int refclk, num_connectors = 0;
4752 intel_clock_t clock, reduced_clock;
4753 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4754 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4755 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4756 struct drm_mode_config *mode_config = &dev->mode_config;
4757 struct intel_encoder *encoder;
4758 const intel_limit_t *limit;
4759 int ret;
4760 u32 temp;
4761 u32 lvds_sync = 0;
4762
4763 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4764 if (encoder->base.crtc != crtc)
4765 continue;
4766
4767 switch (encoder->type) {
4768 case INTEL_OUTPUT_LVDS:
4769 is_lvds = true;
4770 break;
4771 case INTEL_OUTPUT_SDVO:
4772 case INTEL_OUTPUT_HDMI:
4773 is_sdvo = true;
4774 if (encoder->needs_tv_clock)
4775 is_tv = true;
4776 break;
4777 case INTEL_OUTPUT_DVO:
4778 is_dvo = true;
4779 break;
4780 case INTEL_OUTPUT_TVOUT:
4781 is_tv = true;
4782 break;
4783 case INTEL_OUTPUT_ANALOG:
4784 is_crt = true;
4785 break;
4786 case INTEL_OUTPUT_DISPLAYPORT:
4787 is_dp = true;
4788 break;
4789 }
4790
4791 num_connectors++;
4792 }
4793
4794 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4795 refclk = dev_priv->lvds_ssc_freq * 1000;
4796 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4797 refclk / 1000);
4798 } else if (!IS_GEN2(dev)) {
4799 refclk = 96000;
4800 } else {
4801 refclk = 48000;
4802 }
4803
4804 /*
4805 * Returns a set of divisors for the desired target clock with the given
4806 * refclk, or FALSE. The returned values represent the clock equation:
4807 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4808 */
4809 limit = intel_limit(crtc, refclk);
4810 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4811 if (!ok) {
4812 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4813 return -EINVAL;
4814 }
4815
4816 /* Ensure that the cursor is valid for the new mode before changing... */
4817 intel_crtc_update_cursor(crtc, true);
4818
4819 if (is_lvds && dev_priv->lvds_downclock_avail) {
4820 has_reduced_clock = limit->find_pll(limit, crtc,
4821 dev_priv->lvds_downclock,
4822 refclk,
4823 &reduced_clock);
4824 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4825 /*
4826 * If the different P is found, it means that we can't
4827 * switch the display clock by using the FP0/FP1.
4828 * In such case we will disable the LVDS downclock
4829 * feature.
4830 */
4831 DRM_DEBUG_KMS("Different P is found for "
4832 "LVDS clock/downclock\n");
4833 has_reduced_clock = 0;
4834 }
4835 }
4836 /* SDVO TV has fixed PLL values depend on its clock range,
4837 this mirrors vbios setting. */
4838 if (is_sdvo && is_tv) {
4839 if (adjusted_mode->clock >= 100000
4840 && adjusted_mode->clock < 140500) {
4841 clock.p1 = 2;
4842 clock.p2 = 10;
4843 clock.n = 3;
4844 clock.m1 = 16;
4845 clock.m2 = 8;
4846 } else if (adjusted_mode->clock >= 140500
4847 && adjusted_mode->clock <= 200000) {
4848 clock.p1 = 1;
4849 clock.p2 = 10;
4850 clock.n = 6;
4851 clock.m1 = 12;
4852 clock.m2 = 8;
4853 }
4854 }
4855
4856 if (IS_PINEVIEW(dev)) {
4857 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4858 if (has_reduced_clock)
4859 fp2 = (1 << reduced_clock.n) << 16 |
4860 reduced_clock.m1 << 8 | reduced_clock.m2;
4861 } else {
4862 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4863 if (has_reduced_clock)
4864 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4865 reduced_clock.m2;
4866 }
4867
4868 dpll = DPLL_VGA_MODE_DIS;
4869
4870 if (!IS_GEN2(dev)) {
4871 if (is_lvds)
4872 dpll |= DPLLB_MODE_LVDS;
4873 else
4874 dpll |= DPLLB_MODE_DAC_SERIAL;
4875 if (is_sdvo) {
4876 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4877 if (pixel_multiplier > 1) {
4878 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4879 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4880 }
4881 dpll |= DPLL_DVO_HIGH_SPEED;
4882 }
4883 if (is_dp)
4884 dpll |= DPLL_DVO_HIGH_SPEED;
4885
4886 /* compute bitmask from p1 value */
4887 if (IS_PINEVIEW(dev))
4888 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4889 else {
4890 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4891 if (IS_G4X(dev) && has_reduced_clock)
4892 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4893 }
4894 switch (clock.p2) {
4895 case 5:
4896 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4897 break;
4898 case 7:
4899 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4900 break;
4901 case 10:
4902 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4903 break;
4904 case 14:
4905 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4906 break;
4907 }
4908 if (INTEL_INFO(dev)->gen >= 4)
4909 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4910 } else {
4911 if (is_lvds) {
4912 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4913 } else {
4914 if (clock.p1 == 2)
4915 dpll |= PLL_P1_DIVIDE_BY_TWO;
4916 else
4917 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4918 if (clock.p2 == 4)
4919 dpll |= PLL_P2_DIVIDE_BY_4;
4920 }
4921 }
4922
4923 if (is_sdvo && is_tv)
4924 dpll |= PLL_REF_INPUT_TVCLKINBC;
4925 else if (is_tv)
4926 /* XXX: just matching BIOS for now */
4927 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4928 dpll |= 3;
4929 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4930 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4931 else
4932 dpll |= PLL_REF_INPUT_DREFCLK;
4933
4934 /* setup pipeconf */
4935 pipeconf = I915_READ(PIPECONF(pipe));
4936
4937 /* Set up the display plane register */
4938 dspcntr = DISPPLANE_GAMMA_ENABLE;
4939
4940 /* Ironlake's plane is forced to pipe, bit 24 is to
4941 enable color space conversion */
4942 if (pipe == 0)
4943 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4944 else
4945 dspcntr |= DISPPLANE_SEL_PIPE_B;
4946
4947 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4948 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4949 * core speed.
4950 *
4951 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4952 * pipe == 0 check?
4953 */
4954 if (mode->clock >
4955 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4956 pipeconf |= PIPECONF_DOUBLE_WIDE;
4957 else
4958 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4959 }
4960
4961 dpll |= DPLL_VCO_ENABLE;
4962
4963 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4964 drm_mode_debug_printmodeline(mode);
4965
4966 I915_WRITE(FP0(pipe), fp);
4967 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4968
4969 POSTING_READ(DPLL(pipe));
4970 udelay(150);
4971
4972 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4973 * This is an exception to the general rule that mode_set doesn't turn
4974 * things on.
4975 */
4976 if (is_lvds) {
4977 temp = I915_READ(LVDS);
4978 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4979 if (pipe == 1) {
4980 temp |= LVDS_PIPEB_SELECT;
4981 } else {
4982 temp &= ~LVDS_PIPEB_SELECT;
4983 }
4984 /* set the corresponsding LVDS_BORDER bit */
4985 temp |= dev_priv->lvds_border_bits;
4986 /* Set the B0-B3 data pairs corresponding to whether we're going to
4987 * set the DPLLs for dual-channel mode or not.
4988 */
4989 if (clock.p2 == 7)
4990 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4991 else
4992 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4993
4994 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4995 * appropriately here, but we need to look more thoroughly into how
4996 * panels behave in the two modes.
4997 */
4998 /* set the dithering flag on LVDS as needed */
4999 if (INTEL_INFO(dev)->gen >= 4) {
5000 if (dev_priv->lvds_dither)
5001 temp |= LVDS_ENABLE_DITHER;
5002 else
5003 temp &= ~LVDS_ENABLE_DITHER;
5004 }
5005 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5006 lvds_sync |= LVDS_HSYNC_POLARITY;
5007 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5008 lvds_sync |= LVDS_VSYNC_POLARITY;
5009 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5010 != lvds_sync) {
5011 char flags[2] = "-+";
5012 DRM_INFO("Changing LVDS panel from "
5013 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5014 flags[!(temp & LVDS_HSYNC_POLARITY)],
5015 flags[!(temp & LVDS_VSYNC_POLARITY)],
5016 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5017 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5018 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5019 temp |= lvds_sync;
5020 }
5021 I915_WRITE(LVDS, temp);
5022 }
5023
5024 if (is_dp) {
5025 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5026 }
5027
5028 I915_WRITE(DPLL(pipe), dpll);
5029
5030 /* Wait for the clocks to stabilize. */
5031 POSTING_READ(DPLL(pipe));
5032 udelay(150);
5033
5034 if (INTEL_INFO(dev)->gen >= 4) {
5035 temp = 0;
5036 if (is_sdvo) {
5037 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5038 if (temp > 1)
5039 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5040 else
5041 temp = 0;
5042 }
5043 I915_WRITE(DPLL_MD(pipe), temp);
5044 } else {
5045 /* The pixel multiplier can only be updated once the
5046 * DPLL is enabled and the clocks are stable.
5047 *
5048 * So write it again.
5049 */
5050 I915_WRITE(DPLL(pipe), dpll);
5051 }
5052
5053 intel_crtc->lowfreq_avail = false;
5054 if (is_lvds && has_reduced_clock && i915_powersave) {
5055 I915_WRITE(FP1(pipe), fp2);
5056 intel_crtc->lowfreq_avail = true;
5057 if (HAS_PIPE_CXSR(dev)) {
5058 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5059 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5060 }
5061 } else {
5062 I915_WRITE(FP1(pipe), fp);
5063 if (HAS_PIPE_CXSR(dev)) {
5064 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5065 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5066 }
5067 }
5068
5069 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5070 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5071 /* the chip adds 2 halflines automatically */
5072 adjusted_mode->crtc_vdisplay -= 1;
5073 adjusted_mode->crtc_vtotal -= 1;
5074 adjusted_mode->crtc_vblank_start -= 1;
5075 adjusted_mode->crtc_vblank_end -= 1;
5076 adjusted_mode->crtc_vsync_end -= 1;
5077 adjusted_mode->crtc_vsync_start -= 1;
5078 } else
5079 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5080
5081 I915_WRITE(HTOTAL(pipe),
5082 (adjusted_mode->crtc_hdisplay - 1) |
5083 ((adjusted_mode->crtc_htotal - 1) << 16));
5084 I915_WRITE(HBLANK(pipe),
5085 (adjusted_mode->crtc_hblank_start - 1) |
5086 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5087 I915_WRITE(HSYNC(pipe),
5088 (adjusted_mode->crtc_hsync_start - 1) |
5089 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5090
5091 I915_WRITE(VTOTAL(pipe),
5092 (adjusted_mode->crtc_vdisplay - 1) |
5093 ((adjusted_mode->crtc_vtotal - 1) << 16));
5094 I915_WRITE(VBLANK(pipe),
5095 (adjusted_mode->crtc_vblank_start - 1) |
5096 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5097 I915_WRITE(VSYNC(pipe),
5098 (adjusted_mode->crtc_vsync_start - 1) |
5099 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5100
5101 /* pipesrc and dspsize control the size that is scaled from,
5102 * which should always be the user's requested size.
5103 */
5104 I915_WRITE(DSPSIZE(plane),
5105 ((mode->vdisplay - 1) << 16) |
5106 (mode->hdisplay - 1));
5107 I915_WRITE(DSPPOS(plane), 0);
5108 I915_WRITE(PIPESRC(pipe),
5109 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5110
5111 I915_WRITE(PIPECONF(pipe), pipeconf);
5112 POSTING_READ(PIPECONF(pipe));
5113 intel_enable_pipe(dev_priv, pipe, false);
5114
5115 intel_wait_for_vblank(dev, pipe);
5116
5117 I915_WRITE(DSPCNTR(plane), dspcntr);
5118 POSTING_READ(DSPCNTR(plane));
5119 intel_enable_plane(dev_priv, plane, pipe);
5120
5121 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5122
5123 intel_update_watermarks(dev);
5124
5125 return ret;
5126 }
5127
5128 /*
5129 * Initialize reference clocks when the driver loads
5130 */
5131 void ironlake_init_pch_refclk(struct drm_device *dev)
5132 {
5133 struct drm_i915_private *dev_priv = dev->dev_private;
5134 struct drm_mode_config *mode_config = &dev->mode_config;
5135 struct intel_encoder *encoder;
5136 u32 temp;
5137 bool has_lvds = false;
5138 bool has_cpu_edp = false;
5139 bool has_pch_edp = false;
5140 bool has_panel = false;
5141 bool has_ck505 = false;
5142 bool can_ssc = false;
5143
5144 /* We need to take the global config into account */
5145 list_for_each_entry(encoder, &mode_config->encoder_list,
5146 base.head) {
5147 switch (encoder->type) {
5148 case INTEL_OUTPUT_LVDS:
5149 has_panel = true;
5150 has_lvds = true;
5151 break;
5152 case INTEL_OUTPUT_EDP:
5153 has_panel = true;
5154 if (intel_encoder_is_pch_edp(&encoder->base))
5155 has_pch_edp = true;
5156 else
5157 has_cpu_edp = true;
5158 break;
5159 }
5160 }
5161
5162 if (HAS_PCH_IBX(dev)) {
5163 has_ck505 = dev_priv->display_clock_mode;
5164 can_ssc = has_ck505;
5165 } else {
5166 has_ck505 = false;
5167 can_ssc = true;
5168 }
5169
5170 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5171 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5172 has_ck505);
5173
5174 /* Ironlake: try to setup display ref clock before DPLL
5175 * enabling. This is only under driver's control after
5176 * PCH B stepping, previous chipset stepping should be
5177 * ignoring this setting.
5178 */
5179 temp = I915_READ(PCH_DREF_CONTROL);
5180 /* Always enable nonspread source */
5181 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5182
5183 if (has_ck505)
5184 temp |= DREF_NONSPREAD_CK505_ENABLE;
5185 else
5186 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5187
5188 if (has_panel) {
5189 temp &= ~DREF_SSC_SOURCE_MASK;
5190 temp |= DREF_SSC_SOURCE_ENABLE;
5191
5192 /* SSC must be turned on before enabling the CPU output */
5193 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5194 DRM_DEBUG_KMS("Using SSC on panel\n");
5195 temp |= DREF_SSC1_ENABLE;
5196 }
5197
5198 /* Get SSC going before enabling the outputs */
5199 I915_WRITE(PCH_DREF_CONTROL, temp);
5200 POSTING_READ(PCH_DREF_CONTROL);
5201 udelay(200);
5202
5203 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5204
5205 /* Enable CPU source on CPU attached eDP */
5206 if (has_cpu_edp) {
5207 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5208 DRM_DEBUG_KMS("Using SSC on eDP\n");
5209 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5210 }
5211 else
5212 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5213 } else
5214 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5215
5216 I915_WRITE(PCH_DREF_CONTROL, temp);
5217 POSTING_READ(PCH_DREF_CONTROL);
5218 udelay(200);
5219 } else {
5220 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5221
5222 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5223
5224 /* Turn off CPU output */
5225 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5226
5227 I915_WRITE(PCH_DREF_CONTROL, temp);
5228 POSTING_READ(PCH_DREF_CONTROL);
5229 udelay(200);
5230
5231 /* Turn off the SSC source */
5232 temp &= ~DREF_SSC_SOURCE_MASK;
5233 temp |= DREF_SSC_SOURCE_DISABLE;
5234
5235 /* Turn off SSC1 */
5236 temp &= ~ DREF_SSC1_ENABLE;
5237
5238 I915_WRITE(PCH_DREF_CONTROL, temp);
5239 POSTING_READ(PCH_DREF_CONTROL);
5240 udelay(200);
5241 }
5242 }
5243
5244 static int ironlake_get_refclk(struct drm_crtc *crtc)
5245 {
5246 struct drm_device *dev = crtc->dev;
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 struct intel_encoder *encoder;
5249 struct drm_mode_config *mode_config = &dev->mode_config;
5250 struct intel_encoder *edp_encoder = NULL;
5251 int num_connectors = 0;
5252 bool is_lvds = false;
5253
5254 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5255 if (encoder->base.crtc != crtc)
5256 continue;
5257
5258 switch (encoder->type) {
5259 case INTEL_OUTPUT_LVDS:
5260 is_lvds = true;
5261 break;
5262 case INTEL_OUTPUT_EDP:
5263 edp_encoder = encoder;
5264 break;
5265 }
5266 num_connectors++;
5267 }
5268
5269 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5270 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5271 dev_priv->lvds_ssc_freq);
5272 return dev_priv->lvds_ssc_freq * 1000;
5273 }
5274
5275 return 120000;
5276 }
5277
5278 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5279 struct drm_display_mode *mode,
5280 struct drm_display_mode *adjusted_mode,
5281 int x, int y,
5282 struct drm_framebuffer *old_fb)
5283 {
5284 struct drm_device *dev = crtc->dev;
5285 struct drm_i915_private *dev_priv = dev->dev_private;
5286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5287 int pipe = intel_crtc->pipe;
5288 int plane = intel_crtc->plane;
5289 int refclk, num_connectors = 0;
5290 intel_clock_t clock, reduced_clock;
5291 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5292 bool ok, has_reduced_clock = false, is_sdvo = false;
5293 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5294 struct intel_encoder *has_edp_encoder = NULL;
5295 struct drm_mode_config *mode_config = &dev->mode_config;
5296 struct intel_encoder *encoder;
5297 const intel_limit_t *limit;
5298 int ret;
5299 struct fdi_m_n m_n = {0};
5300 u32 temp;
5301 u32 lvds_sync = 0;
5302 int target_clock, pixel_multiplier, lane, link_bw, factor;
5303 unsigned int pipe_bpp;
5304 bool dither;
5305
5306 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5307 if (encoder->base.crtc != crtc)
5308 continue;
5309
5310 switch (encoder->type) {
5311 case INTEL_OUTPUT_LVDS:
5312 is_lvds = true;
5313 break;
5314 case INTEL_OUTPUT_SDVO:
5315 case INTEL_OUTPUT_HDMI:
5316 is_sdvo = true;
5317 if (encoder->needs_tv_clock)
5318 is_tv = true;
5319 break;
5320 case INTEL_OUTPUT_TVOUT:
5321 is_tv = true;
5322 break;
5323 case INTEL_OUTPUT_ANALOG:
5324 is_crt = true;
5325 break;
5326 case INTEL_OUTPUT_DISPLAYPORT:
5327 is_dp = true;
5328 break;
5329 case INTEL_OUTPUT_EDP:
5330 has_edp_encoder = encoder;
5331 break;
5332 }
5333
5334 num_connectors++;
5335 }
5336
5337 refclk = ironlake_get_refclk(crtc);
5338
5339 /*
5340 * Returns a set of divisors for the desired target clock with the given
5341 * refclk, or FALSE. The returned values represent the clock equation:
5342 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5343 */
5344 limit = intel_limit(crtc, refclk);
5345 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5346 if (!ok) {
5347 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5348 return -EINVAL;
5349 }
5350
5351 /* Ensure that the cursor is valid for the new mode before changing... */
5352 intel_crtc_update_cursor(crtc, true);
5353
5354 if (is_lvds && dev_priv->lvds_downclock_avail) {
5355 has_reduced_clock = limit->find_pll(limit, crtc,
5356 dev_priv->lvds_downclock,
5357 refclk,
5358 &reduced_clock);
5359 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5360 /*
5361 * If the different P is found, it means that we can't
5362 * switch the display clock by using the FP0/FP1.
5363 * In such case we will disable the LVDS downclock
5364 * feature.
5365 */
5366 DRM_DEBUG_KMS("Different P is found for "
5367 "LVDS clock/downclock\n");
5368 has_reduced_clock = 0;
5369 }
5370 }
5371 /* SDVO TV has fixed PLL values depend on its clock range,
5372 this mirrors vbios setting. */
5373 if (is_sdvo && is_tv) {
5374 if (adjusted_mode->clock >= 100000
5375 && adjusted_mode->clock < 140500) {
5376 clock.p1 = 2;
5377 clock.p2 = 10;
5378 clock.n = 3;
5379 clock.m1 = 16;
5380 clock.m2 = 8;
5381 } else if (adjusted_mode->clock >= 140500
5382 && adjusted_mode->clock <= 200000) {
5383 clock.p1 = 1;
5384 clock.p2 = 10;
5385 clock.n = 6;
5386 clock.m1 = 12;
5387 clock.m2 = 8;
5388 }
5389 }
5390
5391 /* FDI link */
5392 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5393 lane = 0;
5394 /* CPU eDP doesn't require FDI link, so just set DP M/N
5395 according to current link config */
5396 if (has_edp_encoder &&
5397 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5398 target_clock = mode->clock;
5399 intel_edp_link_config(has_edp_encoder,
5400 &lane, &link_bw);
5401 } else {
5402 /* [e]DP over FDI requires target mode clock
5403 instead of link clock */
5404 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5405 target_clock = mode->clock;
5406 else
5407 target_clock = adjusted_mode->clock;
5408
5409 /* FDI is a binary signal running at ~2.7GHz, encoding
5410 * each output octet as 10 bits. The actual frequency
5411 * is stored as a divider into a 100MHz clock, and the
5412 * mode pixel clock is stored in units of 1KHz.
5413 * Hence the bw of each lane in terms of the mode signal
5414 * is:
5415 */
5416 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5417 }
5418
5419 /* determine panel color depth */
5420 temp = I915_READ(PIPECONF(pipe));
5421 temp &= ~PIPE_BPC_MASK;
5422 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5423 switch (pipe_bpp) {
5424 case 18:
5425 temp |= PIPE_6BPC;
5426 break;
5427 case 24:
5428 temp |= PIPE_8BPC;
5429 break;
5430 case 30:
5431 temp |= PIPE_10BPC;
5432 break;
5433 case 36:
5434 temp |= PIPE_12BPC;
5435 break;
5436 default:
5437 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5438 pipe_bpp);
5439 temp |= PIPE_8BPC;
5440 pipe_bpp = 24;
5441 break;
5442 }
5443
5444 intel_crtc->bpp = pipe_bpp;
5445 I915_WRITE(PIPECONF(pipe), temp);
5446
5447 if (!lane) {
5448 /*
5449 * Account for spread spectrum to avoid
5450 * oversubscribing the link. Max center spread
5451 * is 2.5%; use 5% for safety's sake.
5452 */
5453 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5454 lane = bps / (link_bw * 8) + 1;
5455 }
5456
5457 intel_crtc->fdi_lanes = lane;
5458
5459 if (pixel_multiplier > 1)
5460 link_bw *= pixel_multiplier;
5461 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5462 &m_n);
5463
5464 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5465 if (has_reduced_clock)
5466 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5467 reduced_clock.m2;
5468
5469 /* Enable autotuning of the PLL clock (if permissible) */
5470 factor = 21;
5471 if (is_lvds) {
5472 if ((intel_panel_use_ssc(dev_priv) &&
5473 dev_priv->lvds_ssc_freq == 100) ||
5474 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5475 factor = 25;
5476 } else if (is_sdvo && is_tv)
5477 factor = 20;
5478
5479 if (clock.m < factor * clock.n)
5480 fp |= FP_CB_TUNE;
5481
5482 dpll = 0;
5483
5484 if (is_lvds)
5485 dpll |= DPLLB_MODE_LVDS;
5486 else
5487 dpll |= DPLLB_MODE_DAC_SERIAL;
5488 if (is_sdvo) {
5489 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5490 if (pixel_multiplier > 1) {
5491 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5492 }
5493 dpll |= DPLL_DVO_HIGH_SPEED;
5494 }
5495 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5496 dpll |= DPLL_DVO_HIGH_SPEED;
5497
5498 /* compute bitmask from p1 value */
5499 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5500 /* also FPA1 */
5501 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5502
5503 switch (clock.p2) {
5504 case 5:
5505 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5506 break;
5507 case 7:
5508 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5509 break;
5510 case 10:
5511 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5512 break;
5513 case 14:
5514 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5515 break;
5516 }
5517
5518 if (is_sdvo && is_tv)
5519 dpll |= PLL_REF_INPUT_TVCLKINBC;
5520 else if (is_tv)
5521 /* XXX: just matching BIOS for now */
5522 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5523 dpll |= 3;
5524 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5525 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5526 else
5527 dpll |= PLL_REF_INPUT_DREFCLK;
5528
5529 /* setup pipeconf */
5530 pipeconf = I915_READ(PIPECONF(pipe));
5531
5532 /* Set up the display plane register */
5533 dspcntr = DISPPLANE_GAMMA_ENABLE;
5534
5535 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5536 drm_mode_debug_printmodeline(mode);
5537
5538 /* PCH eDP needs FDI, but CPU eDP does not */
5539 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5540 I915_WRITE(PCH_FP0(pipe), fp);
5541 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5542
5543 POSTING_READ(PCH_DPLL(pipe));
5544 udelay(150);
5545 }
5546
5547 /* enable transcoder DPLL */
5548 if (HAS_PCH_CPT(dev)) {
5549 temp = I915_READ(PCH_DPLL_SEL);
5550 switch (pipe) {
5551 case 0:
5552 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5553 break;
5554 case 1:
5555 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5556 break;
5557 case 2:
5558 /* FIXME: manage transcoder PLLs? */
5559 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5560 break;
5561 default:
5562 BUG();
5563 }
5564 I915_WRITE(PCH_DPLL_SEL, temp);
5565
5566 POSTING_READ(PCH_DPLL_SEL);
5567 udelay(150);
5568 }
5569
5570 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5571 * This is an exception to the general rule that mode_set doesn't turn
5572 * things on.
5573 */
5574 if (is_lvds) {
5575 temp = I915_READ(PCH_LVDS);
5576 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5577 if (pipe == 1) {
5578 if (HAS_PCH_CPT(dev))
5579 temp |= PORT_TRANS_B_SEL_CPT;
5580 else
5581 temp |= LVDS_PIPEB_SELECT;
5582 } else {
5583 if (HAS_PCH_CPT(dev))
5584 temp &= ~PORT_TRANS_SEL_MASK;
5585 else
5586 temp &= ~LVDS_PIPEB_SELECT;
5587 }
5588 /* set the corresponsding LVDS_BORDER bit */
5589 temp |= dev_priv->lvds_border_bits;
5590 /* Set the B0-B3 data pairs corresponding to whether we're going to
5591 * set the DPLLs for dual-channel mode or not.
5592 */
5593 if (clock.p2 == 7)
5594 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5595 else
5596 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5597
5598 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5599 * appropriately here, but we need to look more thoroughly into how
5600 * panels behave in the two modes.
5601 */
5602 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5603 lvds_sync |= LVDS_HSYNC_POLARITY;
5604 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5605 lvds_sync |= LVDS_VSYNC_POLARITY;
5606 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5607 != lvds_sync) {
5608 char flags[2] = "-+";
5609 DRM_INFO("Changing LVDS panel from "
5610 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5611 flags[!(temp & LVDS_HSYNC_POLARITY)],
5612 flags[!(temp & LVDS_VSYNC_POLARITY)],
5613 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5614 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5615 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5616 temp |= lvds_sync;
5617 }
5618 I915_WRITE(PCH_LVDS, temp);
5619 }
5620
5621 pipeconf &= ~PIPECONF_DITHER_EN;
5622 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5623 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5624 pipeconf |= PIPECONF_DITHER_EN;
5625 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5626 }
5627 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5628 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5629 } else {
5630 /* For non-DP output, clear any trans DP clock recovery setting.*/
5631 I915_WRITE(TRANSDATA_M1(pipe), 0);
5632 I915_WRITE(TRANSDATA_N1(pipe), 0);
5633 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5634 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5635 }
5636
5637 if (!has_edp_encoder ||
5638 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5639 I915_WRITE(PCH_DPLL(pipe), dpll);
5640
5641 /* Wait for the clocks to stabilize. */
5642 POSTING_READ(PCH_DPLL(pipe));
5643 udelay(150);
5644
5645 /* The pixel multiplier can only be updated once the
5646 * DPLL is enabled and the clocks are stable.
5647 *
5648 * So write it again.
5649 */
5650 I915_WRITE(PCH_DPLL(pipe), dpll);
5651 }
5652
5653 intel_crtc->lowfreq_avail = false;
5654 if (is_lvds && has_reduced_clock && i915_powersave) {
5655 I915_WRITE(PCH_FP1(pipe), fp2);
5656 intel_crtc->lowfreq_avail = true;
5657 if (HAS_PIPE_CXSR(dev)) {
5658 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5659 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5660 }
5661 } else {
5662 I915_WRITE(PCH_FP1(pipe), fp);
5663 if (HAS_PIPE_CXSR(dev)) {
5664 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5665 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5666 }
5667 }
5668
5669 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5670 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5671 /* the chip adds 2 halflines automatically */
5672 adjusted_mode->crtc_vdisplay -= 1;
5673 adjusted_mode->crtc_vtotal -= 1;
5674 adjusted_mode->crtc_vblank_start -= 1;
5675 adjusted_mode->crtc_vblank_end -= 1;
5676 adjusted_mode->crtc_vsync_end -= 1;
5677 adjusted_mode->crtc_vsync_start -= 1;
5678 } else
5679 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5680
5681 I915_WRITE(HTOTAL(pipe),
5682 (adjusted_mode->crtc_hdisplay - 1) |
5683 ((adjusted_mode->crtc_htotal - 1) << 16));
5684 I915_WRITE(HBLANK(pipe),
5685 (adjusted_mode->crtc_hblank_start - 1) |
5686 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5687 I915_WRITE(HSYNC(pipe),
5688 (adjusted_mode->crtc_hsync_start - 1) |
5689 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5690
5691 I915_WRITE(VTOTAL(pipe),
5692 (adjusted_mode->crtc_vdisplay - 1) |
5693 ((adjusted_mode->crtc_vtotal - 1) << 16));
5694 I915_WRITE(VBLANK(pipe),
5695 (adjusted_mode->crtc_vblank_start - 1) |
5696 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5697 I915_WRITE(VSYNC(pipe),
5698 (adjusted_mode->crtc_vsync_start - 1) |
5699 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5700
5701 /* pipesrc controls the size that is scaled from, which should
5702 * always be the user's requested size.
5703 */
5704 I915_WRITE(PIPESRC(pipe),
5705 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5706
5707 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5708 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5709 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5710 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5711
5712 if (has_edp_encoder &&
5713 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5714 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5715 }
5716
5717 I915_WRITE(PIPECONF(pipe), pipeconf);
5718 POSTING_READ(PIPECONF(pipe));
5719
5720 intel_wait_for_vblank(dev, pipe);
5721
5722 if (IS_GEN5(dev)) {
5723 /* enable address swizzle for tiling buffer */
5724 temp = I915_READ(DISP_ARB_CTL);
5725 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5726 }
5727
5728 I915_WRITE(DSPCNTR(plane), dspcntr);
5729 POSTING_READ(DSPCNTR(plane));
5730
5731 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5732
5733 intel_update_watermarks(dev);
5734
5735 return ret;
5736 }
5737
5738 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5739 struct drm_display_mode *mode,
5740 struct drm_display_mode *adjusted_mode,
5741 int x, int y,
5742 struct drm_framebuffer *old_fb)
5743 {
5744 struct drm_device *dev = crtc->dev;
5745 struct drm_i915_private *dev_priv = dev->dev_private;
5746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5747 int pipe = intel_crtc->pipe;
5748 int ret;
5749
5750 drm_vblank_pre_modeset(dev, pipe);
5751
5752 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5753 x, y, old_fb);
5754
5755 drm_vblank_post_modeset(dev, pipe);
5756
5757 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5758
5759 return ret;
5760 }
5761
5762 static void g4x_write_eld(struct drm_connector *connector,
5763 struct drm_crtc *crtc)
5764 {
5765 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5766 uint8_t *eld = connector->eld;
5767 uint32_t eldv;
5768 uint32_t len;
5769 uint32_t i;
5770
5771 i = I915_READ(G4X_AUD_VID_DID);
5772
5773 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5774 eldv = G4X_ELDV_DEVCL_DEVBLC;
5775 else
5776 eldv = G4X_ELDV_DEVCTG;
5777
5778 i = I915_READ(G4X_AUD_CNTL_ST);
5779 i &= ~(eldv | G4X_ELD_ADDR);
5780 len = (i >> 9) & 0x1f; /* ELD buffer size */
5781 I915_WRITE(G4X_AUD_CNTL_ST, i);
5782
5783 if (!eld[0])
5784 return;
5785
5786 len = min_t(uint8_t, eld[2], len);
5787 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5788 for (i = 0; i < len; i++)
5789 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5790
5791 i = I915_READ(G4X_AUD_CNTL_ST);
5792 i |= eldv;
5793 I915_WRITE(G4X_AUD_CNTL_ST, i);
5794 }
5795
5796 static void ironlake_write_eld(struct drm_connector *connector,
5797 struct drm_crtc *crtc)
5798 {
5799 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5800 uint8_t *eld = connector->eld;
5801 uint32_t eldv;
5802 uint32_t i;
5803 int len;
5804 int hdmiw_hdmiedid;
5805 int aud_cntl_st;
5806 int aud_cntrl_st2;
5807
5808 if (IS_IVYBRIDGE(connector->dev)) {
5809 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5810 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5811 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5812 } else {
5813 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5814 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5815 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5816 }
5817
5818 i = to_intel_crtc(crtc)->pipe;
5819 hdmiw_hdmiedid += i * 0x100;
5820 aud_cntl_st += i * 0x100;
5821
5822 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5823
5824 i = I915_READ(aud_cntl_st);
5825 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5826 if (!i) {
5827 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5828 /* operate blindly on all ports */
5829 eldv = GEN5_ELD_VALIDB;
5830 eldv |= GEN5_ELD_VALIDB << 4;
5831 eldv |= GEN5_ELD_VALIDB << 8;
5832 } else {
5833 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5834 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5835 }
5836
5837 i = I915_READ(aud_cntrl_st2);
5838 i &= ~eldv;
5839 I915_WRITE(aud_cntrl_st2, i);
5840
5841 if (!eld[0])
5842 return;
5843
5844 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5845 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5846 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5847 }
5848
5849 i = I915_READ(aud_cntl_st);
5850 i &= ~GEN5_ELD_ADDRESS;
5851 I915_WRITE(aud_cntl_st, i);
5852
5853 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5854 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5855 for (i = 0; i < len; i++)
5856 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5857
5858 i = I915_READ(aud_cntrl_st2);
5859 i |= eldv;
5860 I915_WRITE(aud_cntrl_st2, i);
5861 }
5862
5863 void intel_write_eld(struct drm_encoder *encoder,
5864 struct drm_display_mode *mode)
5865 {
5866 struct drm_crtc *crtc = encoder->crtc;
5867 struct drm_connector *connector;
5868 struct drm_device *dev = encoder->dev;
5869 struct drm_i915_private *dev_priv = dev->dev_private;
5870
5871 connector = drm_select_eld(encoder, mode);
5872 if (!connector)
5873 return;
5874
5875 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5876 connector->base.id,
5877 drm_get_connector_name(connector),
5878 connector->encoder->base.id,
5879 drm_get_encoder_name(connector->encoder));
5880
5881 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5882
5883 if (dev_priv->display.write_eld)
5884 dev_priv->display.write_eld(connector, crtc);
5885 }
5886
5887 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5888 void intel_crtc_load_lut(struct drm_crtc *crtc)
5889 {
5890 struct drm_device *dev = crtc->dev;
5891 struct drm_i915_private *dev_priv = dev->dev_private;
5892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5893 int palreg = PALETTE(intel_crtc->pipe);
5894 int i;
5895
5896 /* The clocks have to be on to load the palette. */
5897 if (!crtc->enabled)
5898 return;
5899
5900 /* use legacy palette for Ironlake */
5901 if (HAS_PCH_SPLIT(dev))
5902 palreg = LGC_PALETTE(intel_crtc->pipe);
5903
5904 for (i = 0; i < 256; i++) {
5905 I915_WRITE(palreg + 4 * i,
5906 (intel_crtc->lut_r[i] << 16) |
5907 (intel_crtc->lut_g[i] << 8) |
5908 intel_crtc->lut_b[i]);
5909 }
5910 }
5911
5912 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5913 {
5914 struct drm_device *dev = crtc->dev;
5915 struct drm_i915_private *dev_priv = dev->dev_private;
5916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5917 bool visible = base != 0;
5918 u32 cntl;
5919
5920 if (intel_crtc->cursor_visible == visible)
5921 return;
5922
5923 cntl = I915_READ(_CURACNTR);
5924 if (visible) {
5925 /* On these chipsets we can only modify the base whilst
5926 * the cursor is disabled.
5927 */
5928 I915_WRITE(_CURABASE, base);
5929
5930 cntl &= ~(CURSOR_FORMAT_MASK);
5931 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5932 cntl |= CURSOR_ENABLE |
5933 CURSOR_GAMMA_ENABLE |
5934 CURSOR_FORMAT_ARGB;
5935 } else
5936 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5937 I915_WRITE(_CURACNTR, cntl);
5938
5939 intel_crtc->cursor_visible = visible;
5940 }
5941
5942 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5943 {
5944 struct drm_device *dev = crtc->dev;
5945 struct drm_i915_private *dev_priv = dev->dev_private;
5946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5947 int pipe = intel_crtc->pipe;
5948 bool visible = base != 0;
5949
5950 if (intel_crtc->cursor_visible != visible) {
5951 uint32_t cntl = I915_READ(CURCNTR(pipe));
5952 if (base) {
5953 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5954 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5955 cntl |= pipe << 28; /* Connect to correct pipe */
5956 } else {
5957 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5958 cntl |= CURSOR_MODE_DISABLE;
5959 }
5960 I915_WRITE(CURCNTR(pipe), cntl);
5961
5962 intel_crtc->cursor_visible = visible;
5963 }
5964 /* and commit changes on next vblank */
5965 I915_WRITE(CURBASE(pipe), base);
5966 }
5967
5968 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5969 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5970 bool on)
5971 {
5972 struct drm_device *dev = crtc->dev;
5973 struct drm_i915_private *dev_priv = dev->dev_private;
5974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5975 int pipe = intel_crtc->pipe;
5976 int x = intel_crtc->cursor_x;
5977 int y = intel_crtc->cursor_y;
5978 u32 base, pos;
5979 bool visible;
5980
5981 pos = 0;
5982
5983 if (on && crtc->enabled && crtc->fb) {
5984 base = intel_crtc->cursor_addr;
5985 if (x > (int) crtc->fb->width)
5986 base = 0;
5987
5988 if (y > (int) crtc->fb->height)
5989 base = 0;
5990 } else
5991 base = 0;
5992
5993 if (x < 0) {
5994 if (x + intel_crtc->cursor_width < 0)
5995 base = 0;
5996
5997 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5998 x = -x;
5999 }
6000 pos |= x << CURSOR_X_SHIFT;
6001
6002 if (y < 0) {
6003 if (y + intel_crtc->cursor_height < 0)
6004 base = 0;
6005
6006 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6007 y = -y;
6008 }
6009 pos |= y << CURSOR_Y_SHIFT;
6010
6011 visible = base != 0;
6012 if (!visible && !intel_crtc->cursor_visible)
6013 return;
6014
6015 I915_WRITE(CURPOS(pipe), pos);
6016 if (IS_845G(dev) || IS_I865G(dev))
6017 i845_update_cursor(crtc, base);
6018 else
6019 i9xx_update_cursor(crtc, base);
6020
6021 if (visible)
6022 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6023 }
6024
6025 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6026 struct drm_file *file,
6027 uint32_t handle,
6028 uint32_t width, uint32_t height)
6029 {
6030 struct drm_device *dev = crtc->dev;
6031 struct drm_i915_private *dev_priv = dev->dev_private;
6032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6033 struct drm_i915_gem_object *obj;
6034 uint32_t addr;
6035 int ret;
6036
6037 DRM_DEBUG_KMS("\n");
6038
6039 /* if we want to turn off the cursor ignore width and height */
6040 if (!handle) {
6041 DRM_DEBUG_KMS("cursor off\n");
6042 addr = 0;
6043 obj = NULL;
6044 mutex_lock(&dev->struct_mutex);
6045 goto finish;
6046 }
6047
6048 /* Currently we only support 64x64 cursors */
6049 if (width != 64 || height != 64) {
6050 DRM_ERROR("we currently only support 64x64 cursors\n");
6051 return -EINVAL;
6052 }
6053
6054 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6055 if (&obj->base == NULL)
6056 return -ENOENT;
6057
6058 if (obj->base.size < width * height * 4) {
6059 DRM_ERROR("buffer is to small\n");
6060 ret = -ENOMEM;
6061 goto fail;
6062 }
6063
6064 /* we only need to pin inside GTT if cursor is non-phy */
6065 mutex_lock(&dev->struct_mutex);
6066 if (!dev_priv->info->cursor_needs_physical) {
6067 if (obj->tiling_mode) {
6068 DRM_ERROR("cursor cannot be tiled\n");
6069 ret = -EINVAL;
6070 goto fail_locked;
6071 }
6072
6073 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6074 if (ret) {
6075 DRM_ERROR("failed to move cursor bo into the GTT\n");
6076 goto fail_locked;
6077 }
6078
6079 ret = i915_gem_object_put_fence(obj);
6080 if (ret) {
6081 DRM_ERROR("failed to release fence for cursor");
6082 goto fail_unpin;
6083 }
6084
6085 addr = obj->gtt_offset;
6086 } else {
6087 int align = IS_I830(dev) ? 16 * 1024 : 256;
6088 ret = i915_gem_attach_phys_object(dev, obj,
6089 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6090 align);
6091 if (ret) {
6092 DRM_ERROR("failed to attach phys object\n");
6093 goto fail_locked;
6094 }
6095 addr = obj->phys_obj->handle->busaddr;
6096 }
6097
6098 if (IS_GEN2(dev))
6099 I915_WRITE(CURSIZE, (height << 12) | width);
6100
6101 finish:
6102 if (intel_crtc->cursor_bo) {
6103 if (dev_priv->info->cursor_needs_physical) {
6104 if (intel_crtc->cursor_bo != obj)
6105 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6106 } else
6107 i915_gem_object_unpin(intel_crtc->cursor_bo);
6108 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6109 }
6110
6111 mutex_unlock(&dev->struct_mutex);
6112
6113 intel_crtc->cursor_addr = addr;
6114 intel_crtc->cursor_bo = obj;
6115 intel_crtc->cursor_width = width;
6116 intel_crtc->cursor_height = height;
6117
6118 intel_crtc_update_cursor(crtc, true);
6119
6120 return 0;
6121 fail_unpin:
6122 i915_gem_object_unpin(obj);
6123 fail_locked:
6124 mutex_unlock(&dev->struct_mutex);
6125 fail:
6126 drm_gem_object_unreference_unlocked(&obj->base);
6127 return ret;
6128 }
6129
6130 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6131 {
6132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6133
6134 intel_crtc->cursor_x = x;
6135 intel_crtc->cursor_y = y;
6136
6137 intel_crtc_update_cursor(crtc, true);
6138
6139 return 0;
6140 }
6141
6142 /** Sets the color ramps on behalf of RandR */
6143 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6144 u16 blue, int regno)
6145 {
6146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6147
6148 intel_crtc->lut_r[regno] = red >> 8;
6149 intel_crtc->lut_g[regno] = green >> 8;
6150 intel_crtc->lut_b[regno] = blue >> 8;
6151 }
6152
6153 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6154 u16 *blue, int regno)
6155 {
6156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6157
6158 *red = intel_crtc->lut_r[regno] << 8;
6159 *green = intel_crtc->lut_g[regno] << 8;
6160 *blue = intel_crtc->lut_b[regno] << 8;
6161 }
6162
6163 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6164 u16 *blue, uint32_t start, uint32_t size)
6165 {
6166 int end = (start + size > 256) ? 256 : start + size, i;
6167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6168
6169 for (i = start; i < end; i++) {
6170 intel_crtc->lut_r[i] = red[i] >> 8;
6171 intel_crtc->lut_g[i] = green[i] >> 8;
6172 intel_crtc->lut_b[i] = blue[i] >> 8;
6173 }
6174
6175 intel_crtc_load_lut(crtc);
6176 }
6177
6178 /**
6179 * Get a pipe with a simple mode set on it for doing load-based monitor
6180 * detection.
6181 *
6182 * It will be up to the load-detect code to adjust the pipe as appropriate for
6183 * its requirements. The pipe will be connected to no other encoders.
6184 *
6185 * Currently this code will only succeed if there is a pipe with no encoders
6186 * configured for it. In the future, it could choose to temporarily disable
6187 * some outputs to free up a pipe for its use.
6188 *
6189 * \return crtc, or NULL if no pipes are available.
6190 */
6191
6192 /* VESA 640x480x72Hz mode to set on the pipe */
6193 static struct drm_display_mode load_detect_mode = {
6194 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6195 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6196 };
6197
6198 static struct drm_framebuffer *
6199 intel_framebuffer_create(struct drm_device *dev,
6200 struct drm_mode_fb_cmd *mode_cmd,
6201 struct drm_i915_gem_object *obj)
6202 {
6203 struct intel_framebuffer *intel_fb;
6204 int ret;
6205
6206 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6207 if (!intel_fb) {
6208 drm_gem_object_unreference_unlocked(&obj->base);
6209 return ERR_PTR(-ENOMEM);
6210 }
6211
6212 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6213 if (ret) {
6214 drm_gem_object_unreference_unlocked(&obj->base);
6215 kfree(intel_fb);
6216 return ERR_PTR(ret);
6217 }
6218
6219 return &intel_fb->base;
6220 }
6221
6222 static u32
6223 intel_framebuffer_pitch_for_width(int width, int bpp)
6224 {
6225 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6226 return ALIGN(pitch, 64);
6227 }
6228
6229 static u32
6230 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6231 {
6232 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6233 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6234 }
6235
6236 static struct drm_framebuffer *
6237 intel_framebuffer_create_for_mode(struct drm_device *dev,
6238 struct drm_display_mode *mode,
6239 int depth, int bpp)
6240 {
6241 struct drm_i915_gem_object *obj;
6242 struct drm_mode_fb_cmd mode_cmd;
6243
6244 obj = i915_gem_alloc_object(dev,
6245 intel_framebuffer_size_for_mode(mode, bpp));
6246 if (obj == NULL)
6247 return ERR_PTR(-ENOMEM);
6248
6249 mode_cmd.width = mode->hdisplay;
6250 mode_cmd.height = mode->vdisplay;
6251 mode_cmd.depth = depth;
6252 mode_cmd.bpp = bpp;
6253 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6254
6255 return intel_framebuffer_create(dev, &mode_cmd, obj);
6256 }
6257
6258 static struct drm_framebuffer *
6259 mode_fits_in_fbdev(struct drm_device *dev,
6260 struct drm_display_mode *mode)
6261 {
6262 struct drm_i915_private *dev_priv = dev->dev_private;
6263 struct drm_i915_gem_object *obj;
6264 struct drm_framebuffer *fb;
6265
6266 if (dev_priv->fbdev == NULL)
6267 return NULL;
6268
6269 obj = dev_priv->fbdev->ifb.obj;
6270 if (obj == NULL)
6271 return NULL;
6272
6273 fb = &dev_priv->fbdev->ifb.base;
6274 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6275 fb->bits_per_pixel))
6276 return NULL;
6277
6278 if (obj->base.size < mode->vdisplay * fb->pitch)
6279 return NULL;
6280
6281 return fb;
6282 }
6283
6284 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6285 struct drm_connector *connector,
6286 struct drm_display_mode *mode,
6287 struct intel_load_detect_pipe *old)
6288 {
6289 struct intel_crtc *intel_crtc;
6290 struct drm_crtc *possible_crtc;
6291 struct drm_encoder *encoder = &intel_encoder->base;
6292 struct drm_crtc *crtc = NULL;
6293 struct drm_device *dev = encoder->dev;
6294 struct drm_framebuffer *old_fb;
6295 int i = -1;
6296
6297 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6298 connector->base.id, drm_get_connector_name(connector),
6299 encoder->base.id, drm_get_encoder_name(encoder));
6300
6301 /*
6302 * Algorithm gets a little messy:
6303 *
6304 * - if the connector already has an assigned crtc, use it (but make
6305 * sure it's on first)
6306 *
6307 * - try to find the first unused crtc that can drive this connector,
6308 * and use that if we find one
6309 */
6310
6311 /* See if we already have a CRTC for this connector */
6312 if (encoder->crtc) {
6313 crtc = encoder->crtc;
6314
6315 intel_crtc = to_intel_crtc(crtc);
6316 old->dpms_mode = intel_crtc->dpms_mode;
6317 old->load_detect_temp = false;
6318
6319 /* Make sure the crtc and connector are running */
6320 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6321 struct drm_encoder_helper_funcs *encoder_funcs;
6322 struct drm_crtc_helper_funcs *crtc_funcs;
6323
6324 crtc_funcs = crtc->helper_private;
6325 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6326
6327 encoder_funcs = encoder->helper_private;
6328 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6329 }
6330
6331 return true;
6332 }
6333
6334 /* Find an unused one (if possible) */
6335 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6336 i++;
6337 if (!(encoder->possible_crtcs & (1 << i)))
6338 continue;
6339 if (!possible_crtc->enabled) {
6340 crtc = possible_crtc;
6341 break;
6342 }
6343 }
6344
6345 /*
6346 * If we didn't find an unused CRTC, don't use any.
6347 */
6348 if (!crtc) {
6349 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6350 return false;
6351 }
6352
6353 encoder->crtc = crtc;
6354 connector->encoder = encoder;
6355
6356 intel_crtc = to_intel_crtc(crtc);
6357 old->dpms_mode = intel_crtc->dpms_mode;
6358 old->load_detect_temp = true;
6359 old->release_fb = NULL;
6360
6361 if (!mode)
6362 mode = &load_detect_mode;
6363
6364 old_fb = crtc->fb;
6365
6366 /* We need a framebuffer large enough to accommodate all accesses
6367 * that the plane may generate whilst we perform load detection.
6368 * We can not rely on the fbcon either being present (we get called
6369 * during its initialisation to detect all boot displays, or it may
6370 * not even exist) or that it is large enough to satisfy the
6371 * requested mode.
6372 */
6373 crtc->fb = mode_fits_in_fbdev(dev, mode);
6374 if (crtc->fb == NULL) {
6375 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6376 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6377 old->release_fb = crtc->fb;
6378 } else
6379 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6380 if (IS_ERR(crtc->fb)) {
6381 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6382 crtc->fb = old_fb;
6383 return false;
6384 }
6385
6386 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6387 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6388 if (old->release_fb)
6389 old->release_fb->funcs->destroy(old->release_fb);
6390 crtc->fb = old_fb;
6391 return false;
6392 }
6393
6394 /* let the connector get through one full cycle before testing */
6395 intel_wait_for_vblank(dev, intel_crtc->pipe);
6396
6397 return true;
6398 }
6399
6400 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6401 struct drm_connector *connector,
6402 struct intel_load_detect_pipe *old)
6403 {
6404 struct drm_encoder *encoder = &intel_encoder->base;
6405 struct drm_device *dev = encoder->dev;
6406 struct drm_crtc *crtc = encoder->crtc;
6407 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6408 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6409
6410 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6411 connector->base.id, drm_get_connector_name(connector),
6412 encoder->base.id, drm_get_encoder_name(encoder));
6413
6414 if (old->load_detect_temp) {
6415 connector->encoder = NULL;
6416 drm_helper_disable_unused_functions(dev);
6417
6418 if (old->release_fb)
6419 old->release_fb->funcs->destroy(old->release_fb);
6420
6421 return;
6422 }
6423
6424 /* Switch crtc and encoder back off if necessary */
6425 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6426 encoder_funcs->dpms(encoder, old->dpms_mode);
6427 crtc_funcs->dpms(crtc, old->dpms_mode);
6428 }
6429 }
6430
6431 /* Returns the clock of the currently programmed mode of the given pipe. */
6432 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6433 {
6434 struct drm_i915_private *dev_priv = dev->dev_private;
6435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6436 int pipe = intel_crtc->pipe;
6437 u32 dpll = I915_READ(DPLL(pipe));
6438 u32 fp;
6439 intel_clock_t clock;
6440
6441 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6442 fp = I915_READ(FP0(pipe));
6443 else
6444 fp = I915_READ(FP1(pipe));
6445
6446 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6447 if (IS_PINEVIEW(dev)) {
6448 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6449 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6450 } else {
6451 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6452 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6453 }
6454
6455 if (!IS_GEN2(dev)) {
6456 if (IS_PINEVIEW(dev))
6457 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6458 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6459 else
6460 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6461 DPLL_FPA01_P1_POST_DIV_SHIFT);
6462
6463 switch (dpll & DPLL_MODE_MASK) {
6464 case DPLLB_MODE_DAC_SERIAL:
6465 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6466 5 : 10;
6467 break;
6468 case DPLLB_MODE_LVDS:
6469 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6470 7 : 14;
6471 break;
6472 default:
6473 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6474 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6475 return 0;
6476 }
6477
6478 /* XXX: Handle the 100Mhz refclk */
6479 intel_clock(dev, 96000, &clock);
6480 } else {
6481 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6482
6483 if (is_lvds) {
6484 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6485 DPLL_FPA01_P1_POST_DIV_SHIFT);
6486 clock.p2 = 14;
6487
6488 if ((dpll & PLL_REF_INPUT_MASK) ==
6489 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6490 /* XXX: might not be 66MHz */
6491 intel_clock(dev, 66000, &clock);
6492 } else
6493 intel_clock(dev, 48000, &clock);
6494 } else {
6495 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6496 clock.p1 = 2;
6497 else {
6498 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6499 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6500 }
6501 if (dpll & PLL_P2_DIVIDE_BY_4)
6502 clock.p2 = 4;
6503 else
6504 clock.p2 = 2;
6505
6506 intel_clock(dev, 48000, &clock);
6507 }
6508 }
6509
6510 /* XXX: It would be nice to validate the clocks, but we can't reuse
6511 * i830PllIsValid() because it relies on the xf86_config connector
6512 * configuration being accurate, which it isn't necessarily.
6513 */
6514
6515 return clock.dot;
6516 }
6517
6518 /** Returns the currently programmed mode of the given pipe. */
6519 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6520 struct drm_crtc *crtc)
6521 {
6522 struct drm_i915_private *dev_priv = dev->dev_private;
6523 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6524 int pipe = intel_crtc->pipe;
6525 struct drm_display_mode *mode;
6526 int htot = I915_READ(HTOTAL(pipe));
6527 int hsync = I915_READ(HSYNC(pipe));
6528 int vtot = I915_READ(VTOTAL(pipe));
6529 int vsync = I915_READ(VSYNC(pipe));
6530
6531 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6532 if (!mode)
6533 return NULL;
6534
6535 mode->clock = intel_crtc_clock_get(dev, crtc);
6536 mode->hdisplay = (htot & 0xffff) + 1;
6537 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6538 mode->hsync_start = (hsync & 0xffff) + 1;
6539 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6540 mode->vdisplay = (vtot & 0xffff) + 1;
6541 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6542 mode->vsync_start = (vsync & 0xffff) + 1;
6543 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6544
6545 drm_mode_set_name(mode);
6546 drm_mode_set_crtcinfo(mode, 0);
6547
6548 return mode;
6549 }
6550
6551 #define GPU_IDLE_TIMEOUT 500 /* ms */
6552
6553 /* When this timer fires, we've been idle for awhile */
6554 static void intel_gpu_idle_timer(unsigned long arg)
6555 {
6556 struct drm_device *dev = (struct drm_device *)arg;
6557 drm_i915_private_t *dev_priv = dev->dev_private;
6558
6559 if (!list_empty(&dev_priv->mm.active_list)) {
6560 /* Still processing requests, so just re-arm the timer. */
6561 mod_timer(&dev_priv->idle_timer, jiffies +
6562 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6563 return;
6564 }
6565
6566 dev_priv->busy = false;
6567 queue_work(dev_priv->wq, &dev_priv->idle_work);
6568 }
6569
6570 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6571
6572 static void intel_crtc_idle_timer(unsigned long arg)
6573 {
6574 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6575 struct drm_crtc *crtc = &intel_crtc->base;
6576 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6577 struct intel_framebuffer *intel_fb;
6578
6579 intel_fb = to_intel_framebuffer(crtc->fb);
6580 if (intel_fb && intel_fb->obj->active) {
6581 /* The framebuffer is still being accessed by the GPU. */
6582 mod_timer(&intel_crtc->idle_timer, jiffies +
6583 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6584 return;
6585 }
6586
6587 intel_crtc->busy = false;
6588 queue_work(dev_priv->wq, &dev_priv->idle_work);
6589 }
6590
6591 static void intel_increase_pllclock(struct drm_crtc *crtc)
6592 {
6593 struct drm_device *dev = crtc->dev;
6594 drm_i915_private_t *dev_priv = dev->dev_private;
6595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6596 int pipe = intel_crtc->pipe;
6597 int dpll_reg = DPLL(pipe);
6598 int dpll;
6599
6600 if (HAS_PCH_SPLIT(dev))
6601 return;
6602
6603 if (!dev_priv->lvds_downclock_avail)
6604 return;
6605
6606 dpll = I915_READ(dpll_reg);
6607 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6608 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6609
6610 /* Unlock panel regs */
6611 I915_WRITE(PP_CONTROL,
6612 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6613
6614 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6615 I915_WRITE(dpll_reg, dpll);
6616 intel_wait_for_vblank(dev, pipe);
6617
6618 dpll = I915_READ(dpll_reg);
6619 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6620 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6621
6622 /* ...and lock them again */
6623 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6624 }
6625
6626 /* Schedule downclock */
6627 mod_timer(&intel_crtc->idle_timer, jiffies +
6628 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6629 }
6630
6631 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6632 {
6633 struct drm_device *dev = crtc->dev;
6634 drm_i915_private_t *dev_priv = dev->dev_private;
6635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6636 int pipe = intel_crtc->pipe;
6637 int dpll_reg = DPLL(pipe);
6638 int dpll = I915_READ(dpll_reg);
6639
6640 if (HAS_PCH_SPLIT(dev))
6641 return;
6642
6643 if (!dev_priv->lvds_downclock_avail)
6644 return;
6645
6646 /*
6647 * Since this is called by a timer, we should never get here in
6648 * the manual case.
6649 */
6650 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6651 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6652
6653 /* Unlock panel regs */
6654 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6655 PANEL_UNLOCK_REGS);
6656
6657 dpll |= DISPLAY_RATE_SELECT_FPA1;
6658 I915_WRITE(dpll_reg, dpll);
6659 intel_wait_for_vblank(dev, pipe);
6660 dpll = I915_READ(dpll_reg);
6661 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6662 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6663
6664 /* ...and lock them again */
6665 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6666 }
6667
6668 }
6669
6670 /**
6671 * intel_idle_update - adjust clocks for idleness
6672 * @work: work struct
6673 *
6674 * Either the GPU or display (or both) went idle. Check the busy status
6675 * here and adjust the CRTC and GPU clocks as necessary.
6676 */
6677 static void intel_idle_update(struct work_struct *work)
6678 {
6679 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6680 idle_work);
6681 struct drm_device *dev = dev_priv->dev;
6682 struct drm_crtc *crtc;
6683 struct intel_crtc *intel_crtc;
6684
6685 if (!i915_powersave)
6686 return;
6687
6688 mutex_lock(&dev->struct_mutex);
6689
6690 i915_update_gfx_val(dev_priv);
6691
6692 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6693 /* Skip inactive CRTCs */
6694 if (!crtc->fb)
6695 continue;
6696
6697 intel_crtc = to_intel_crtc(crtc);
6698 if (!intel_crtc->busy)
6699 intel_decrease_pllclock(crtc);
6700 }
6701
6702
6703 mutex_unlock(&dev->struct_mutex);
6704 }
6705
6706 /**
6707 * intel_mark_busy - mark the GPU and possibly the display busy
6708 * @dev: drm device
6709 * @obj: object we're operating on
6710 *
6711 * Callers can use this function to indicate that the GPU is busy processing
6712 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6713 * buffer), we'll also mark the display as busy, so we know to increase its
6714 * clock frequency.
6715 */
6716 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6717 {
6718 drm_i915_private_t *dev_priv = dev->dev_private;
6719 struct drm_crtc *crtc = NULL;
6720 struct intel_framebuffer *intel_fb;
6721 struct intel_crtc *intel_crtc;
6722
6723 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6724 return;
6725
6726 if (!dev_priv->busy)
6727 dev_priv->busy = true;
6728 else
6729 mod_timer(&dev_priv->idle_timer, jiffies +
6730 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6731
6732 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6733 if (!crtc->fb)
6734 continue;
6735
6736 intel_crtc = to_intel_crtc(crtc);
6737 intel_fb = to_intel_framebuffer(crtc->fb);
6738 if (intel_fb->obj == obj) {
6739 if (!intel_crtc->busy) {
6740 /* Non-busy -> busy, upclock */
6741 intel_increase_pllclock(crtc);
6742 intel_crtc->busy = true;
6743 } else {
6744 /* Busy -> busy, put off timer */
6745 mod_timer(&intel_crtc->idle_timer, jiffies +
6746 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6747 }
6748 }
6749 }
6750 }
6751
6752 static void intel_crtc_destroy(struct drm_crtc *crtc)
6753 {
6754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6755 struct drm_device *dev = crtc->dev;
6756 struct intel_unpin_work *work;
6757 unsigned long flags;
6758
6759 spin_lock_irqsave(&dev->event_lock, flags);
6760 work = intel_crtc->unpin_work;
6761 intel_crtc->unpin_work = NULL;
6762 spin_unlock_irqrestore(&dev->event_lock, flags);
6763
6764 if (work) {
6765 cancel_work_sync(&work->work);
6766 kfree(work);
6767 }
6768
6769 drm_crtc_cleanup(crtc);
6770
6771 kfree(intel_crtc);
6772 }
6773
6774 static void intel_unpin_work_fn(struct work_struct *__work)
6775 {
6776 struct intel_unpin_work *work =
6777 container_of(__work, struct intel_unpin_work, work);
6778
6779 mutex_lock(&work->dev->struct_mutex);
6780 i915_gem_object_unpin(work->old_fb_obj);
6781 drm_gem_object_unreference(&work->pending_flip_obj->base);
6782 drm_gem_object_unreference(&work->old_fb_obj->base);
6783
6784 intel_update_fbc(work->dev);
6785 mutex_unlock(&work->dev->struct_mutex);
6786 kfree(work);
6787 }
6788
6789 static void do_intel_finish_page_flip(struct drm_device *dev,
6790 struct drm_crtc *crtc)
6791 {
6792 drm_i915_private_t *dev_priv = dev->dev_private;
6793 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6794 struct intel_unpin_work *work;
6795 struct drm_i915_gem_object *obj;
6796 struct drm_pending_vblank_event *e;
6797 struct timeval tnow, tvbl;
6798 unsigned long flags;
6799
6800 /* Ignore early vblank irqs */
6801 if (intel_crtc == NULL)
6802 return;
6803
6804 do_gettimeofday(&tnow);
6805
6806 spin_lock_irqsave(&dev->event_lock, flags);
6807 work = intel_crtc->unpin_work;
6808 if (work == NULL || !work->pending) {
6809 spin_unlock_irqrestore(&dev->event_lock, flags);
6810 return;
6811 }
6812
6813 intel_crtc->unpin_work = NULL;
6814
6815 if (work->event) {
6816 e = work->event;
6817 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6818
6819 /* Called before vblank count and timestamps have
6820 * been updated for the vblank interval of flip
6821 * completion? Need to increment vblank count and
6822 * add one videorefresh duration to returned timestamp
6823 * to account for this. We assume this happened if we
6824 * get called over 0.9 frame durations after the last
6825 * timestamped vblank.
6826 *
6827 * This calculation can not be used with vrefresh rates
6828 * below 5Hz (10Hz to be on the safe side) without
6829 * promoting to 64 integers.
6830 */
6831 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6832 9 * crtc->framedur_ns) {
6833 e->event.sequence++;
6834 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6835 crtc->framedur_ns);
6836 }
6837
6838 e->event.tv_sec = tvbl.tv_sec;
6839 e->event.tv_usec = tvbl.tv_usec;
6840
6841 list_add_tail(&e->base.link,
6842 &e->base.file_priv->event_list);
6843 wake_up_interruptible(&e->base.file_priv->event_wait);
6844 }
6845
6846 drm_vblank_put(dev, intel_crtc->pipe);
6847
6848 spin_unlock_irqrestore(&dev->event_lock, flags);
6849
6850 obj = work->old_fb_obj;
6851
6852 atomic_clear_mask(1 << intel_crtc->plane,
6853 &obj->pending_flip.counter);
6854 if (atomic_read(&obj->pending_flip) == 0)
6855 wake_up(&dev_priv->pending_flip_queue);
6856
6857 schedule_work(&work->work);
6858
6859 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6860 }
6861
6862 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6863 {
6864 drm_i915_private_t *dev_priv = dev->dev_private;
6865 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6866
6867 do_intel_finish_page_flip(dev, crtc);
6868 }
6869
6870 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6871 {
6872 drm_i915_private_t *dev_priv = dev->dev_private;
6873 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6874
6875 do_intel_finish_page_flip(dev, crtc);
6876 }
6877
6878 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6879 {
6880 drm_i915_private_t *dev_priv = dev->dev_private;
6881 struct intel_crtc *intel_crtc =
6882 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6883 unsigned long flags;
6884
6885 spin_lock_irqsave(&dev->event_lock, flags);
6886 if (intel_crtc->unpin_work) {
6887 if ((++intel_crtc->unpin_work->pending) > 1)
6888 DRM_ERROR("Prepared flip multiple times\n");
6889 } else {
6890 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6891 }
6892 spin_unlock_irqrestore(&dev->event_lock, flags);
6893 }
6894
6895 static int intel_gen2_queue_flip(struct drm_device *dev,
6896 struct drm_crtc *crtc,
6897 struct drm_framebuffer *fb,
6898 struct drm_i915_gem_object *obj)
6899 {
6900 struct drm_i915_private *dev_priv = dev->dev_private;
6901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6902 unsigned long offset;
6903 u32 flip_mask;
6904 int ret;
6905
6906 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6907 if (ret)
6908 goto out;
6909
6910 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6911 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6912
6913 ret = BEGIN_LP_RING(6);
6914 if (ret)
6915 goto out;
6916
6917 /* Can't queue multiple flips, so wait for the previous
6918 * one to finish before executing the next.
6919 */
6920 if (intel_crtc->plane)
6921 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6922 else
6923 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6924 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6925 OUT_RING(MI_NOOP);
6926 OUT_RING(MI_DISPLAY_FLIP |
6927 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6928 OUT_RING(fb->pitch);
6929 OUT_RING(obj->gtt_offset + offset);
6930 OUT_RING(MI_NOOP);
6931 ADVANCE_LP_RING();
6932 out:
6933 return ret;
6934 }
6935
6936 static int intel_gen3_queue_flip(struct drm_device *dev,
6937 struct drm_crtc *crtc,
6938 struct drm_framebuffer *fb,
6939 struct drm_i915_gem_object *obj)
6940 {
6941 struct drm_i915_private *dev_priv = dev->dev_private;
6942 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6943 unsigned long offset;
6944 u32 flip_mask;
6945 int ret;
6946
6947 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6948 if (ret)
6949 goto out;
6950
6951 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6952 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6953
6954 ret = BEGIN_LP_RING(6);
6955 if (ret)
6956 goto out;
6957
6958 if (intel_crtc->plane)
6959 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6960 else
6961 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6962 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6963 OUT_RING(MI_NOOP);
6964 OUT_RING(MI_DISPLAY_FLIP_I915 |
6965 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6966 OUT_RING(fb->pitch);
6967 OUT_RING(obj->gtt_offset + offset);
6968 OUT_RING(MI_NOOP);
6969
6970 ADVANCE_LP_RING();
6971 out:
6972 return ret;
6973 }
6974
6975 static int intel_gen4_queue_flip(struct drm_device *dev,
6976 struct drm_crtc *crtc,
6977 struct drm_framebuffer *fb,
6978 struct drm_i915_gem_object *obj)
6979 {
6980 struct drm_i915_private *dev_priv = dev->dev_private;
6981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6982 uint32_t pf, pipesrc;
6983 int ret;
6984
6985 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6986 if (ret)
6987 goto out;
6988
6989 ret = BEGIN_LP_RING(4);
6990 if (ret)
6991 goto out;
6992
6993 /* i965+ uses the linear or tiled offsets from the
6994 * Display Registers (which do not change across a page-flip)
6995 * so we need only reprogram the base address.
6996 */
6997 OUT_RING(MI_DISPLAY_FLIP |
6998 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6999 OUT_RING(fb->pitch);
7000 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7001
7002 /* XXX Enabling the panel-fitter across page-flip is so far
7003 * untested on non-native modes, so ignore it for now.
7004 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7005 */
7006 pf = 0;
7007 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7008 OUT_RING(pf | pipesrc);
7009 ADVANCE_LP_RING();
7010 out:
7011 return ret;
7012 }
7013
7014 static int intel_gen6_queue_flip(struct drm_device *dev,
7015 struct drm_crtc *crtc,
7016 struct drm_framebuffer *fb,
7017 struct drm_i915_gem_object *obj)
7018 {
7019 struct drm_i915_private *dev_priv = dev->dev_private;
7020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7021 uint32_t pf, pipesrc;
7022 int ret;
7023
7024 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7025 if (ret)
7026 goto out;
7027
7028 ret = BEGIN_LP_RING(4);
7029 if (ret)
7030 goto out;
7031
7032 OUT_RING(MI_DISPLAY_FLIP |
7033 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7034 OUT_RING(fb->pitch | obj->tiling_mode);
7035 OUT_RING(obj->gtt_offset);
7036
7037 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7038 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7039 OUT_RING(pf | pipesrc);
7040 ADVANCE_LP_RING();
7041 out:
7042 return ret;
7043 }
7044
7045 /*
7046 * On gen7 we currently use the blit ring because (in early silicon at least)
7047 * the render ring doesn't give us interrpts for page flip completion, which
7048 * means clients will hang after the first flip is queued. Fortunately the
7049 * blit ring generates interrupts properly, so use it instead.
7050 */
7051 static int intel_gen7_queue_flip(struct drm_device *dev,
7052 struct drm_crtc *crtc,
7053 struct drm_framebuffer *fb,
7054 struct drm_i915_gem_object *obj)
7055 {
7056 struct drm_i915_private *dev_priv = dev->dev_private;
7057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7058 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7059 int ret;
7060
7061 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7062 if (ret)
7063 goto out;
7064
7065 ret = intel_ring_begin(ring, 4);
7066 if (ret)
7067 goto out;
7068
7069 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7070 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7071 intel_ring_emit(ring, (obj->gtt_offset));
7072 intel_ring_emit(ring, (MI_NOOP));
7073 intel_ring_advance(ring);
7074 out:
7075 return ret;
7076 }
7077
7078 static int intel_default_queue_flip(struct drm_device *dev,
7079 struct drm_crtc *crtc,
7080 struct drm_framebuffer *fb,
7081 struct drm_i915_gem_object *obj)
7082 {
7083 return -ENODEV;
7084 }
7085
7086 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7087 struct drm_framebuffer *fb,
7088 struct drm_pending_vblank_event *event)
7089 {
7090 struct drm_device *dev = crtc->dev;
7091 struct drm_i915_private *dev_priv = dev->dev_private;
7092 struct intel_framebuffer *intel_fb;
7093 struct drm_i915_gem_object *obj;
7094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7095 struct intel_unpin_work *work;
7096 unsigned long flags;
7097 int ret;
7098
7099 work = kzalloc(sizeof *work, GFP_KERNEL);
7100 if (work == NULL)
7101 return -ENOMEM;
7102
7103 work->event = event;
7104 work->dev = crtc->dev;
7105 intel_fb = to_intel_framebuffer(crtc->fb);
7106 work->old_fb_obj = intel_fb->obj;
7107 INIT_WORK(&work->work, intel_unpin_work_fn);
7108
7109 /* We borrow the event spin lock for protecting unpin_work */
7110 spin_lock_irqsave(&dev->event_lock, flags);
7111 if (intel_crtc->unpin_work) {
7112 spin_unlock_irqrestore(&dev->event_lock, flags);
7113 kfree(work);
7114
7115 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7116 return -EBUSY;
7117 }
7118 intel_crtc->unpin_work = work;
7119 spin_unlock_irqrestore(&dev->event_lock, flags);
7120
7121 intel_fb = to_intel_framebuffer(fb);
7122 obj = intel_fb->obj;
7123
7124 mutex_lock(&dev->struct_mutex);
7125
7126 /* Reference the objects for the scheduled work. */
7127 drm_gem_object_reference(&work->old_fb_obj->base);
7128 drm_gem_object_reference(&obj->base);
7129
7130 crtc->fb = fb;
7131
7132 ret = drm_vblank_get(dev, intel_crtc->pipe);
7133 if (ret)
7134 goto cleanup_objs;
7135
7136 work->pending_flip_obj = obj;
7137
7138 work->enable_stall_check = true;
7139
7140 /* Block clients from rendering to the new back buffer until
7141 * the flip occurs and the object is no longer visible.
7142 */
7143 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7144
7145 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7146 if (ret)
7147 goto cleanup_pending;
7148
7149 intel_disable_fbc(dev);
7150 mutex_unlock(&dev->struct_mutex);
7151
7152 trace_i915_flip_request(intel_crtc->plane, obj);
7153
7154 return 0;
7155
7156 cleanup_pending:
7157 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7158 cleanup_objs:
7159 drm_gem_object_unreference(&work->old_fb_obj->base);
7160 drm_gem_object_unreference(&obj->base);
7161 mutex_unlock(&dev->struct_mutex);
7162
7163 spin_lock_irqsave(&dev->event_lock, flags);
7164 intel_crtc->unpin_work = NULL;
7165 spin_unlock_irqrestore(&dev->event_lock, flags);
7166
7167 kfree(work);
7168
7169 return ret;
7170 }
7171
7172 static void intel_sanitize_modesetting(struct drm_device *dev,
7173 int pipe, int plane)
7174 {
7175 struct drm_i915_private *dev_priv = dev->dev_private;
7176 u32 reg, val;
7177
7178 if (HAS_PCH_SPLIT(dev))
7179 return;
7180
7181 /* Who knows what state these registers were left in by the BIOS or
7182 * grub?
7183 *
7184 * If we leave the registers in a conflicting state (e.g. with the
7185 * display plane reading from the other pipe than the one we intend
7186 * to use) then when we attempt to teardown the active mode, we will
7187 * not disable the pipes and planes in the correct order -- leaving
7188 * a plane reading from a disabled pipe and possibly leading to
7189 * undefined behaviour.
7190 */
7191
7192 reg = DSPCNTR(plane);
7193 val = I915_READ(reg);
7194
7195 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7196 return;
7197 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7198 return;
7199
7200 /* This display plane is active and attached to the other CPU pipe. */
7201 pipe = !pipe;
7202
7203 /* Disable the plane and wait for it to stop reading from the pipe. */
7204 intel_disable_plane(dev_priv, plane, pipe);
7205 intel_disable_pipe(dev_priv, pipe);
7206 }
7207
7208 static void intel_crtc_reset(struct drm_crtc *crtc)
7209 {
7210 struct drm_device *dev = crtc->dev;
7211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7212
7213 /* Reset flags back to the 'unknown' status so that they
7214 * will be correctly set on the initial modeset.
7215 */
7216 intel_crtc->dpms_mode = -1;
7217
7218 /* We need to fix up any BIOS configuration that conflicts with
7219 * our expectations.
7220 */
7221 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7222 }
7223
7224 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7225 .dpms = intel_crtc_dpms,
7226 .mode_fixup = intel_crtc_mode_fixup,
7227 .mode_set = intel_crtc_mode_set,
7228 .mode_set_base = intel_pipe_set_base,
7229 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7230 .load_lut = intel_crtc_load_lut,
7231 .disable = intel_crtc_disable,
7232 };
7233
7234 static const struct drm_crtc_funcs intel_crtc_funcs = {
7235 .reset = intel_crtc_reset,
7236 .cursor_set = intel_crtc_cursor_set,
7237 .cursor_move = intel_crtc_cursor_move,
7238 .gamma_set = intel_crtc_gamma_set,
7239 .set_config = drm_crtc_helper_set_config,
7240 .destroy = intel_crtc_destroy,
7241 .page_flip = intel_crtc_page_flip,
7242 };
7243
7244 static void intel_crtc_init(struct drm_device *dev, int pipe)
7245 {
7246 drm_i915_private_t *dev_priv = dev->dev_private;
7247 struct intel_crtc *intel_crtc;
7248 int i;
7249
7250 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7251 if (intel_crtc == NULL)
7252 return;
7253
7254 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7255
7256 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7257 for (i = 0; i < 256; i++) {
7258 intel_crtc->lut_r[i] = i;
7259 intel_crtc->lut_g[i] = i;
7260 intel_crtc->lut_b[i] = i;
7261 }
7262
7263 /* Swap pipes & planes for FBC on pre-965 */
7264 intel_crtc->pipe = pipe;
7265 intel_crtc->plane = pipe;
7266 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7267 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7268 intel_crtc->plane = !pipe;
7269 }
7270
7271 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7272 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7273 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7274 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7275
7276 intel_crtc_reset(&intel_crtc->base);
7277 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7278 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7279
7280 if (HAS_PCH_SPLIT(dev)) {
7281 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7282 intel_helper_funcs.commit = ironlake_crtc_commit;
7283 } else {
7284 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7285 intel_helper_funcs.commit = i9xx_crtc_commit;
7286 }
7287
7288 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7289
7290 intel_crtc->busy = false;
7291
7292 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7293 (unsigned long)intel_crtc);
7294 }
7295
7296 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7297 struct drm_file *file)
7298 {
7299 drm_i915_private_t *dev_priv = dev->dev_private;
7300 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7301 struct drm_mode_object *drmmode_obj;
7302 struct intel_crtc *crtc;
7303
7304 if (!dev_priv) {
7305 DRM_ERROR("called with no initialization\n");
7306 return -EINVAL;
7307 }
7308
7309 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7310 DRM_MODE_OBJECT_CRTC);
7311
7312 if (!drmmode_obj) {
7313 DRM_ERROR("no such CRTC id\n");
7314 return -EINVAL;
7315 }
7316
7317 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7318 pipe_from_crtc_id->pipe = crtc->pipe;
7319
7320 return 0;
7321 }
7322
7323 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7324 {
7325 struct intel_encoder *encoder;
7326 int index_mask = 0;
7327 int entry = 0;
7328
7329 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7330 if (type_mask & encoder->clone_mask)
7331 index_mask |= (1 << entry);
7332 entry++;
7333 }
7334
7335 return index_mask;
7336 }
7337
7338 static bool has_edp_a(struct drm_device *dev)
7339 {
7340 struct drm_i915_private *dev_priv = dev->dev_private;
7341
7342 if (!IS_MOBILE(dev))
7343 return false;
7344
7345 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7346 return false;
7347
7348 if (IS_GEN5(dev) &&
7349 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7350 return false;
7351
7352 return true;
7353 }
7354
7355 static void intel_setup_outputs(struct drm_device *dev)
7356 {
7357 struct drm_i915_private *dev_priv = dev->dev_private;
7358 struct intel_encoder *encoder;
7359 bool dpd_is_edp = false;
7360 bool has_lvds = false;
7361
7362 if (IS_MOBILE(dev) && !IS_I830(dev))
7363 has_lvds = intel_lvds_init(dev);
7364 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7365 /* disable the panel fitter on everything but LVDS */
7366 I915_WRITE(PFIT_CONTROL, 0);
7367 }
7368
7369 if (HAS_PCH_SPLIT(dev)) {
7370 dpd_is_edp = intel_dpd_is_edp(dev);
7371
7372 if (has_edp_a(dev))
7373 intel_dp_init(dev, DP_A);
7374
7375 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7376 intel_dp_init(dev, PCH_DP_D);
7377 }
7378
7379 intel_crt_init(dev);
7380
7381 if (HAS_PCH_SPLIT(dev)) {
7382 int found;
7383
7384 if (I915_READ(HDMIB) & PORT_DETECTED) {
7385 /* PCH SDVOB multiplex with HDMIB */
7386 found = intel_sdvo_init(dev, PCH_SDVOB);
7387 if (!found)
7388 intel_hdmi_init(dev, HDMIB);
7389 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7390 intel_dp_init(dev, PCH_DP_B);
7391 }
7392
7393 if (I915_READ(HDMIC) & PORT_DETECTED)
7394 intel_hdmi_init(dev, HDMIC);
7395
7396 if (I915_READ(HDMID) & PORT_DETECTED)
7397 intel_hdmi_init(dev, HDMID);
7398
7399 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7400 intel_dp_init(dev, PCH_DP_C);
7401
7402 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7403 intel_dp_init(dev, PCH_DP_D);
7404
7405 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7406 bool found = false;
7407
7408 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7409 DRM_DEBUG_KMS("probing SDVOB\n");
7410 found = intel_sdvo_init(dev, SDVOB);
7411 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7412 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7413 intel_hdmi_init(dev, SDVOB);
7414 }
7415
7416 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7417 DRM_DEBUG_KMS("probing DP_B\n");
7418 intel_dp_init(dev, DP_B);
7419 }
7420 }
7421
7422 /* Before G4X SDVOC doesn't have its own detect register */
7423
7424 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7425 DRM_DEBUG_KMS("probing SDVOC\n");
7426 found = intel_sdvo_init(dev, SDVOC);
7427 }
7428
7429 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7430
7431 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7432 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7433 intel_hdmi_init(dev, SDVOC);
7434 }
7435 if (SUPPORTS_INTEGRATED_DP(dev)) {
7436 DRM_DEBUG_KMS("probing DP_C\n");
7437 intel_dp_init(dev, DP_C);
7438 }
7439 }
7440
7441 if (SUPPORTS_INTEGRATED_DP(dev) &&
7442 (I915_READ(DP_D) & DP_DETECTED)) {
7443 DRM_DEBUG_KMS("probing DP_D\n");
7444 intel_dp_init(dev, DP_D);
7445 }
7446 } else if (IS_GEN2(dev))
7447 intel_dvo_init(dev);
7448
7449 if (SUPPORTS_TV(dev))
7450 intel_tv_init(dev);
7451
7452 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7453 encoder->base.possible_crtcs = encoder->crtc_mask;
7454 encoder->base.possible_clones =
7455 intel_encoder_clones(dev, encoder->clone_mask);
7456 }
7457
7458 /* disable all the possible outputs/crtcs before entering KMS mode */
7459 drm_helper_disable_unused_functions(dev);
7460
7461 if (HAS_PCH_SPLIT(dev))
7462 ironlake_init_pch_refclk(dev);
7463 }
7464
7465 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7466 {
7467 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7468
7469 drm_framebuffer_cleanup(fb);
7470 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7471
7472 kfree(intel_fb);
7473 }
7474
7475 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7476 struct drm_file *file,
7477 unsigned int *handle)
7478 {
7479 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7480 struct drm_i915_gem_object *obj = intel_fb->obj;
7481
7482 return drm_gem_handle_create(file, &obj->base, handle);
7483 }
7484
7485 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7486 .destroy = intel_user_framebuffer_destroy,
7487 .create_handle = intel_user_framebuffer_create_handle,
7488 };
7489
7490 int intel_framebuffer_init(struct drm_device *dev,
7491 struct intel_framebuffer *intel_fb,
7492 struct drm_mode_fb_cmd *mode_cmd,
7493 struct drm_i915_gem_object *obj)
7494 {
7495 int ret;
7496
7497 if (obj->tiling_mode == I915_TILING_Y)
7498 return -EINVAL;
7499
7500 if (mode_cmd->pitch & 63)
7501 return -EINVAL;
7502
7503 switch (mode_cmd->bpp) {
7504 case 8:
7505 case 16:
7506 /* Only pre-ILK can handle 5:5:5 */
7507 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7508 return -EINVAL;
7509 break;
7510
7511 case 24:
7512 case 32:
7513 break;
7514 default:
7515 return -EINVAL;
7516 }
7517
7518 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7519 if (ret) {
7520 DRM_ERROR("framebuffer init failed %d\n", ret);
7521 return ret;
7522 }
7523
7524 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7525 intel_fb->obj = obj;
7526 return 0;
7527 }
7528
7529 static struct drm_framebuffer *
7530 intel_user_framebuffer_create(struct drm_device *dev,
7531 struct drm_file *filp,
7532 struct drm_mode_fb_cmd *mode_cmd)
7533 {
7534 struct drm_i915_gem_object *obj;
7535
7536 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7537 if (&obj->base == NULL)
7538 return ERR_PTR(-ENOENT);
7539
7540 return intel_framebuffer_create(dev, mode_cmd, obj);
7541 }
7542
7543 static const struct drm_mode_config_funcs intel_mode_funcs = {
7544 .fb_create = intel_user_framebuffer_create,
7545 .output_poll_changed = intel_fb_output_poll_changed,
7546 };
7547
7548 static struct drm_i915_gem_object *
7549 intel_alloc_context_page(struct drm_device *dev)
7550 {
7551 struct drm_i915_gem_object *ctx;
7552 int ret;
7553
7554 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7555
7556 ctx = i915_gem_alloc_object(dev, 4096);
7557 if (!ctx) {
7558 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7559 return NULL;
7560 }
7561
7562 ret = i915_gem_object_pin(ctx, 4096, true);
7563 if (ret) {
7564 DRM_ERROR("failed to pin power context: %d\n", ret);
7565 goto err_unref;
7566 }
7567
7568 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7569 if (ret) {
7570 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7571 goto err_unpin;
7572 }
7573
7574 return ctx;
7575
7576 err_unpin:
7577 i915_gem_object_unpin(ctx);
7578 err_unref:
7579 drm_gem_object_unreference(&ctx->base);
7580 mutex_unlock(&dev->struct_mutex);
7581 return NULL;
7582 }
7583
7584 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7585 {
7586 struct drm_i915_private *dev_priv = dev->dev_private;
7587 u16 rgvswctl;
7588
7589 rgvswctl = I915_READ16(MEMSWCTL);
7590 if (rgvswctl & MEMCTL_CMD_STS) {
7591 DRM_DEBUG("gpu busy, RCS change rejected\n");
7592 return false; /* still busy with another command */
7593 }
7594
7595 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7596 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7597 I915_WRITE16(MEMSWCTL, rgvswctl);
7598 POSTING_READ16(MEMSWCTL);
7599
7600 rgvswctl |= MEMCTL_CMD_STS;
7601 I915_WRITE16(MEMSWCTL, rgvswctl);
7602
7603 return true;
7604 }
7605
7606 void ironlake_enable_drps(struct drm_device *dev)
7607 {
7608 struct drm_i915_private *dev_priv = dev->dev_private;
7609 u32 rgvmodectl = I915_READ(MEMMODECTL);
7610 u8 fmax, fmin, fstart, vstart;
7611
7612 /* Enable temp reporting */
7613 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7614 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7615
7616 /* 100ms RC evaluation intervals */
7617 I915_WRITE(RCUPEI, 100000);
7618 I915_WRITE(RCDNEI, 100000);
7619
7620 /* Set max/min thresholds to 90ms and 80ms respectively */
7621 I915_WRITE(RCBMAXAVG, 90000);
7622 I915_WRITE(RCBMINAVG, 80000);
7623
7624 I915_WRITE(MEMIHYST, 1);
7625
7626 /* Set up min, max, and cur for interrupt handling */
7627 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7628 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7629 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7630 MEMMODE_FSTART_SHIFT;
7631
7632 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7633 PXVFREQ_PX_SHIFT;
7634
7635 dev_priv->fmax = fmax; /* IPS callback will increase this */
7636 dev_priv->fstart = fstart;
7637
7638 dev_priv->max_delay = fstart;
7639 dev_priv->min_delay = fmin;
7640 dev_priv->cur_delay = fstart;
7641
7642 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7643 fmax, fmin, fstart);
7644
7645 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7646
7647 /*
7648 * Interrupts will be enabled in ironlake_irq_postinstall
7649 */
7650
7651 I915_WRITE(VIDSTART, vstart);
7652 POSTING_READ(VIDSTART);
7653
7654 rgvmodectl |= MEMMODE_SWMODE_EN;
7655 I915_WRITE(MEMMODECTL, rgvmodectl);
7656
7657 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7658 DRM_ERROR("stuck trying to change perf mode\n");
7659 msleep(1);
7660
7661 ironlake_set_drps(dev, fstart);
7662
7663 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7664 I915_READ(0x112e0);
7665 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7666 dev_priv->last_count2 = I915_READ(0x112f4);
7667 getrawmonotonic(&dev_priv->last_time2);
7668 }
7669
7670 void ironlake_disable_drps(struct drm_device *dev)
7671 {
7672 struct drm_i915_private *dev_priv = dev->dev_private;
7673 u16 rgvswctl = I915_READ16(MEMSWCTL);
7674
7675 /* Ack interrupts, disable EFC interrupt */
7676 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7677 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7678 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7679 I915_WRITE(DEIIR, DE_PCU_EVENT);
7680 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7681
7682 /* Go back to the starting frequency */
7683 ironlake_set_drps(dev, dev_priv->fstart);
7684 msleep(1);
7685 rgvswctl |= MEMCTL_CMD_STS;
7686 I915_WRITE(MEMSWCTL, rgvswctl);
7687 msleep(1);
7688
7689 }
7690
7691 void gen6_set_rps(struct drm_device *dev, u8 val)
7692 {
7693 struct drm_i915_private *dev_priv = dev->dev_private;
7694 u32 swreq;
7695
7696 swreq = (val & 0x3ff) << 25;
7697 I915_WRITE(GEN6_RPNSWREQ, swreq);
7698 }
7699
7700 void gen6_disable_rps(struct drm_device *dev)
7701 {
7702 struct drm_i915_private *dev_priv = dev->dev_private;
7703
7704 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7705 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7706 I915_WRITE(GEN6_PMIER, 0);
7707 /* Complete PM interrupt masking here doesn't race with the rps work
7708 * item again unmasking PM interrupts because that is using a different
7709 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7710 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
7711
7712 spin_lock_irq(&dev_priv->rps_lock);
7713 dev_priv->pm_iir = 0;
7714 spin_unlock_irq(&dev_priv->rps_lock);
7715
7716 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7717 }
7718
7719 static unsigned long intel_pxfreq(u32 vidfreq)
7720 {
7721 unsigned long freq;
7722 int div = (vidfreq & 0x3f0000) >> 16;
7723 int post = (vidfreq & 0x3000) >> 12;
7724 int pre = (vidfreq & 0x7);
7725
7726 if (!pre)
7727 return 0;
7728
7729 freq = ((div * 133333) / ((1<<post) * pre));
7730
7731 return freq;
7732 }
7733
7734 void intel_init_emon(struct drm_device *dev)
7735 {
7736 struct drm_i915_private *dev_priv = dev->dev_private;
7737 u32 lcfuse;
7738 u8 pxw[16];
7739 int i;
7740
7741 /* Disable to program */
7742 I915_WRITE(ECR, 0);
7743 POSTING_READ(ECR);
7744
7745 /* Program energy weights for various events */
7746 I915_WRITE(SDEW, 0x15040d00);
7747 I915_WRITE(CSIEW0, 0x007f0000);
7748 I915_WRITE(CSIEW1, 0x1e220004);
7749 I915_WRITE(CSIEW2, 0x04000004);
7750
7751 for (i = 0; i < 5; i++)
7752 I915_WRITE(PEW + (i * 4), 0);
7753 for (i = 0; i < 3; i++)
7754 I915_WRITE(DEW + (i * 4), 0);
7755
7756 /* Program P-state weights to account for frequency power adjustment */
7757 for (i = 0; i < 16; i++) {
7758 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7759 unsigned long freq = intel_pxfreq(pxvidfreq);
7760 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7761 PXVFREQ_PX_SHIFT;
7762 unsigned long val;
7763
7764 val = vid * vid;
7765 val *= (freq / 1000);
7766 val *= 255;
7767 val /= (127*127*900);
7768 if (val > 0xff)
7769 DRM_ERROR("bad pxval: %ld\n", val);
7770 pxw[i] = val;
7771 }
7772 /* Render standby states get 0 weight */
7773 pxw[14] = 0;
7774 pxw[15] = 0;
7775
7776 for (i = 0; i < 4; i++) {
7777 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7778 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7779 I915_WRITE(PXW + (i * 4), val);
7780 }
7781
7782 /* Adjust magic regs to magic values (more experimental results) */
7783 I915_WRITE(OGW0, 0);
7784 I915_WRITE(OGW1, 0);
7785 I915_WRITE(EG0, 0x00007f00);
7786 I915_WRITE(EG1, 0x0000000e);
7787 I915_WRITE(EG2, 0x000e0000);
7788 I915_WRITE(EG3, 0x68000300);
7789 I915_WRITE(EG4, 0x42000000);
7790 I915_WRITE(EG5, 0x00140031);
7791 I915_WRITE(EG6, 0);
7792 I915_WRITE(EG7, 0);
7793
7794 for (i = 0; i < 8; i++)
7795 I915_WRITE(PXWL + (i * 4), 0);
7796
7797 /* Enable PMON + select events */
7798 I915_WRITE(ECR, 0x80000019);
7799
7800 lcfuse = I915_READ(LCFUSE02);
7801
7802 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7803 }
7804
7805 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7806 {
7807 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7808 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7809 u32 pcu_mbox, rc6_mask = 0;
7810 int cur_freq, min_freq, max_freq;
7811 int i;
7812
7813 /* Here begins a magic sequence of register writes to enable
7814 * auto-downclocking.
7815 *
7816 * Perhaps there might be some value in exposing these to
7817 * userspace...
7818 */
7819 I915_WRITE(GEN6_RC_STATE, 0);
7820 mutex_lock(&dev_priv->dev->struct_mutex);
7821 gen6_gt_force_wake_get(dev_priv);
7822
7823 /* disable the counters and set deterministic thresholds */
7824 I915_WRITE(GEN6_RC_CONTROL, 0);
7825
7826 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7827 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7828 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7829 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7830 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7831
7832 for (i = 0; i < I915_NUM_RINGS; i++)
7833 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7834
7835 I915_WRITE(GEN6_RC_SLEEP, 0);
7836 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7837 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7838 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7839 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7840
7841 if (i915_enable_rc6)
7842 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7843 GEN6_RC_CTL_RC6_ENABLE;
7844
7845 I915_WRITE(GEN6_RC_CONTROL,
7846 rc6_mask |
7847 GEN6_RC_CTL_EI_MODE(1) |
7848 GEN6_RC_CTL_HW_ENABLE);
7849
7850 I915_WRITE(GEN6_RPNSWREQ,
7851 GEN6_FREQUENCY(10) |
7852 GEN6_OFFSET(0) |
7853 GEN6_AGGRESSIVE_TURBO);
7854 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7855 GEN6_FREQUENCY(12));
7856
7857 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7858 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7859 18 << 24 |
7860 6 << 16);
7861 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7862 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7863 I915_WRITE(GEN6_RP_UP_EI, 100000);
7864 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7865 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7866 I915_WRITE(GEN6_RP_CONTROL,
7867 GEN6_RP_MEDIA_TURBO |
7868 GEN6_RP_USE_NORMAL_FREQ |
7869 GEN6_RP_MEDIA_IS_GFX |
7870 GEN6_RP_ENABLE |
7871 GEN6_RP_UP_BUSY_AVG |
7872 GEN6_RP_DOWN_IDLE_CONT);
7873
7874 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7875 500))
7876 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7877
7878 I915_WRITE(GEN6_PCODE_DATA, 0);
7879 I915_WRITE(GEN6_PCODE_MAILBOX,
7880 GEN6_PCODE_READY |
7881 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7882 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7883 500))
7884 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7885
7886 min_freq = (rp_state_cap & 0xff0000) >> 16;
7887 max_freq = rp_state_cap & 0xff;
7888 cur_freq = (gt_perf_status & 0xff00) >> 8;
7889
7890 /* Check for overclock support */
7891 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7892 500))
7893 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7894 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7895 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7896 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7897 500))
7898 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7899 if (pcu_mbox & (1<<31)) { /* OC supported */
7900 max_freq = pcu_mbox & 0xff;
7901 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7902 }
7903
7904 /* In units of 100MHz */
7905 dev_priv->max_delay = max_freq;
7906 dev_priv->min_delay = min_freq;
7907 dev_priv->cur_delay = cur_freq;
7908
7909 /* requires MSI enabled */
7910 I915_WRITE(GEN6_PMIER,
7911 GEN6_PM_MBOX_EVENT |
7912 GEN6_PM_THERMAL_EVENT |
7913 GEN6_PM_RP_DOWN_TIMEOUT |
7914 GEN6_PM_RP_UP_THRESHOLD |
7915 GEN6_PM_RP_DOWN_THRESHOLD |
7916 GEN6_PM_RP_UP_EI_EXPIRED |
7917 GEN6_PM_RP_DOWN_EI_EXPIRED);
7918 spin_lock_irq(&dev_priv->rps_lock);
7919 WARN_ON(dev_priv->pm_iir != 0);
7920 I915_WRITE(GEN6_PMIMR, 0);
7921 spin_unlock_irq(&dev_priv->rps_lock);
7922 /* enable all PM interrupts */
7923 I915_WRITE(GEN6_PMINTRMSK, 0);
7924
7925 gen6_gt_force_wake_put(dev_priv);
7926 mutex_unlock(&dev_priv->dev->struct_mutex);
7927 }
7928
7929 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7930 {
7931 int min_freq = 15;
7932 int gpu_freq, ia_freq, max_ia_freq;
7933 int scaling_factor = 180;
7934
7935 max_ia_freq = cpufreq_quick_get_max(0);
7936 /*
7937 * Default to measured freq if none found, PCU will ensure we don't go
7938 * over
7939 */
7940 if (!max_ia_freq)
7941 max_ia_freq = tsc_khz;
7942
7943 /* Convert from kHz to MHz */
7944 max_ia_freq /= 1000;
7945
7946 mutex_lock(&dev_priv->dev->struct_mutex);
7947
7948 /*
7949 * For each potential GPU frequency, load a ring frequency we'd like
7950 * to use for memory access. We do this by specifying the IA frequency
7951 * the PCU should use as a reference to determine the ring frequency.
7952 */
7953 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
7954 gpu_freq--) {
7955 int diff = dev_priv->max_delay - gpu_freq;
7956
7957 /*
7958 * For GPU frequencies less than 750MHz, just use the lowest
7959 * ring freq.
7960 */
7961 if (gpu_freq < min_freq)
7962 ia_freq = 800;
7963 else
7964 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7965 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7966
7967 I915_WRITE(GEN6_PCODE_DATA,
7968 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
7969 gpu_freq);
7970 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
7971 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7972 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
7973 GEN6_PCODE_READY) == 0, 10)) {
7974 DRM_ERROR("pcode write of freq table timed out\n");
7975 continue;
7976 }
7977 }
7978
7979 mutex_unlock(&dev_priv->dev->struct_mutex);
7980 }
7981
7982 static void ironlake_init_clock_gating(struct drm_device *dev)
7983 {
7984 struct drm_i915_private *dev_priv = dev->dev_private;
7985 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7986
7987 /* Required for FBC */
7988 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7989 DPFCRUNIT_CLOCK_GATE_DISABLE |
7990 DPFDUNIT_CLOCK_GATE_DISABLE;
7991 /* Required for CxSR */
7992 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7993
7994 I915_WRITE(PCH_3DCGDIS0,
7995 MARIUNIT_CLOCK_GATE_DISABLE |
7996 SVSMUNIT_CLOCK_GATE_DISABLE);
7997 I915_WRITE(PCH_3DCGDIS1,
7998 VFMUNIT_CLOCK_GATE_DISABLE);
7999
8000 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8001
8002 /*
8003 * According to the spec the following bits should be set in
8004 * order to enable memory self-refresh
8005 * The bit 22/21 of 0x42004
8006 * The bit 5 of 0x42020
8007 * The bit 15 of 0x45000
8008 */
8009 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8010 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8011 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8012 I915_WRITE(ILK_DSPCLK_GATE,
8013 (I915_READ(ILK_DSPCLK_GATE) |
8014 ILK_DPARB_CLK_GATE));
8015 I915_WRITE(DISP_ARB_CTL,
8016 (I915_READ(DISP_ARB_CTL) |
8017 DISP_FBC_WM_DIS));
8018 I915_WRITE(WM3_LP_ILK, 0);
8019 I915_WRITE(WM2_LP_ILK, 0);
8020 I915_WRITE(WM1_LP_ILK, 0);
8021
8022 /*
8023 * Based on the document from hardware guys the following bits
8024 * should be set unconditionally in order to enable FBC.
8025 * The bit 22 of 0x42000
8026 * The bit 22 of 0x42004
8027 * The bit 7,8,9 of 0x42020.
8028 */
8029 if (IS_IRONLAKE_M(dev)) {
8030 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8031 I915_READ(ILK_DISPLAY_CHICKEN1) |
8032 ILK_FBCQ_DIS);
8033 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8034 I915_READ(ILK_DISPLAY_CHICKEN2) |
8035 ILK_DPARB_GATE);
8036 I915_WRITE(ILK_DSPCLK_GATE,
8037 I915_READ(ILK_DSPCLK_GATE) |
8038 ILK_DPFC_DIS1 |
8039 ILK_DPFC_DIS2 |
8040 ILK_CLK_FBC);
8041 }
8042
8043 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8044 I915_READ(ILK_DISPLAY_CHICKEN2) |
8045 ILK_ELPIN_409_SELECT);
8046 I915_WRITE(_3D_CHICKEN2,
8047 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8048 _3D_CHICKEN2_WM_READ_PIPELINED);
8049 }
8050
8051 static void gen6_init_clock_gating(struct drm_device *dev)
8052 {
8053 struct drm_i915_private *dev_priv = dev->dev_private;
8054 int pipe;
8055 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8056
8057 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8058
8059 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8060 I915_READ(ILK_DISPLAY_CHICKEN2) |
8061 ILK_ELPIN_409_SELECT);
8062
8063 I915_WRITE(WM3_LP_ILK, 0);
8064 I915_WRITE(WM2_LP_ILK, 0);
8065 I915_WRITE(WM1_LP_ILK, 0);
8066
8067 /*
8068 * According to the spec the following bits should be
8069 * set in order to enable memory self-refresh and fbc:
8070 * The bit21 and bit22 of 0x42000
8071 * The bit21 and bit22 of 0x42004
8072 * The bit5 and bit7 of 0x42020
8073 * The bit14 of 0x70180
8074 * The bit14 of 0x71180
8075 */
8076 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8077 I915_READ(ILK_DISPLAY_CHICKEN1) |
8078 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8079 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8080 I915_READ(ILK_DISPLAY_CHICKEN2) |
8081 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8082 I915_WRITE(ILK_DSPCLK_GATE,
8083 I915_READ(ILK_DSPCLK_GATE) |
8084 ILK_DPARB_CLK_GATE |
8085 ILK_DPFD_CLK_GATE);
8086
8087 for_each_pipe(pipe) {
8088 I915_WRITE(DSPCNTR(pipe),
8089 I915_READ(DSPCNTR(pipe)) |
8090 DISPPLANE_TRICKLE_FEED_DISABLE);
8091 intel_flush_display_plane(dev_priv, pipe);
8092 }
8093 }
8094
8095 static void ivybridge_init_clock_gating(struct drm_device *dev)
8096 {
8097 struct drm_i915_private *dev_priv = dev->dev_private;
8098 int pipe;
8099 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8100
8101 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8102
8103 I915_WRITE(WM3_LP_ILK, 0);
8104 I915_WRITE(WM2_LP_ILK, 0);
8105 I915_WRITE(WM1_LP_ILK, 0);
8106
8107 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8108
8109 for_each_pipe(pipe) {
8110 I915_WRITE(DSPCNTR(pipe),
8111 I915_READ(DSPCNTR(pipe)) |
8112 DISPPLANE_TRICKLE_FEED_DISABLE);
8113 intel_flush_display_plane(dev_priv, pipe);
8114 }
8115 }
8116
8117 static void g4x_init_clock_gating(struct drm_device *dev)
8118 {
8119 struct drm_i915_private *dev_priv = dev->dev_private;
8120 uint32_t dspclk_gate;
8121
8122 I915_WRITE(RENCLK_GATE_D1, 0);
8123 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8124 GS_UNIT_CLOCK_GATE_DISABLE |
8125 CL_UNIT_CLOCK_GATE_DISABLE);
8126 I915_WRITE(RAMCLK_GATE_D, 0);
8127 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8128 OVRUNIT_CLOCK_GATE_DISABLE |
8129 OVCUNIT_CLOCK_GATE_DISABLE;
8130 if (IS_GM45(dev))
8131 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8132 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8133 }
8134
8135 static void crestline_init_clock_gating(struct drm_device *dev)
8136 {
8137 struct drm_i915_private *dev_priv = dev->dev_private;
8138
8139 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8140 I915_WRITE(RENCLK_GATE_D2, 0);
8141 I915_WRITE(DSPCLK_GATE_D, 0);
8142 I915_WRITE(RAMCLK_GATE_D, 0);
8143 I915_WRITE16(DEUC, 0);
8144 }
8145
8146 static void broadwater_init_clock_gating(struct drm_device *dev)
8147 {
8148 struct drm_i915_private *dev_priv = dev->dev_private;
8149
8150 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8151 I965_RCC_CLOCK_GATE_DISABLE |
8152 I965_RCPB_CLOCK_GATE_DISABLE |
8153 I965_ISC_CLOCK_GATE_DISABLE |
8154 I965_FBC_CLOCK_GATE_DISABLE);
8155 I915_WRITE(RENCLK_GATE_D2, 0);
8156 }
8157
8158 static void gen3_init_clock_gating(struct drm_device *dev)
8159 {
8160 struct drm_i915_private *dev_priv = dev->dev_private;
8161 u32 dstate = I915_READ(D_STATE);
8162
8163 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8164 DSTATE_DOT_CLOCK_GATING;
8165 I915_WRITE(D_STATE, dstate);
8166 }
8167
8168 static void i85x_init_clock_gating(struct drm_device *dev)
8169 {
8170 struct drm_i915_private *dev_priv = dev->dev_private;
8171
8172 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8173 }
8174
8175 static void i830_init_clock_gating(struct drm_device *dev)
8176 {
8177 struct drm_i915_private *dev_priv = dev->dev_private;
8178
8179 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8180 }
8181
8182 static void ibx_init_clock_gating(struct drm_device *dev)
8183 {
8184 struct drm_i915_private *dev_priv = dev->dev_private;
8185
8186 /*
8187 * On Ibex Peak and Cougar Point, we need to disable clock
8188 * gating for the panel power sequencer or it will fail to
8189 * start up when no ports are active.
8190 */
8191 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8192 }
8193
8194 static void cpt_init_clock_gating(struct drm_device *dev)
8195 {
8196 struct drm_i915_private *dev_priv = dev->dev_private;
8197 int pipe;
8198
8199 /*
8200 * On Ibex Peak and Cougar Point, we need to disable clock
8201 * gating for the panel power sequencer or it will fail to
8202 * start up when no ports are active.
8203 */
8204 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8205 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8206 DPLS_EDP_PPS_FIX_DIS);
8207 /* Without this, mode sets may fail silently on FDI */
8208 for_each_pipe(pipe)
8209 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8210 }
8211
8212 static void ironlake_teardown_rc6(struct drm_device *dev)
8213 {
8214 struct drm_i915_private *dev_priv = dev->dev_private;
8215
8216 if (dev_priv->renderctx) {
8217 i915_gem_object_unpin(dev_priv->renderctx);
8218 drm_gem_object_unreference(&dev_priv->renderctx->base);
8219 dev_priv->renderctx = NULL;
8220 }
8221
8222 if (dev_priv->pwrctx) {
8223 i915_gem_object_unpin(dev_priv->pwrctx);
8224 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8225 dev_priv->pwrctx = NULL;
8226 }
8227 }
8228
8229 static void ironlake_disable_rc6(struct drm_device *dev)
8230 {
8231 struct drm_i915_private *dev_priv = dev->dev_private;
8232
8233 if (I915_READ(PWRCTXA)) {
8234 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8235 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8236 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8237 50);
8238
8239 I915_WRITE(PWRCTXA, 0);
8240 POSTING_READ(PWRCTXA);
8241
8242 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8243 POSTING_READ(RSTDBYCTL);
8244 }
8245
8246 ironlake_teardown_rc6(dev);
8247 }
8248
8249 static int ironlake_setup_rc6(struct drm_device *dev)
8250 {
8251 struct drm_i915_private *dev_priv = dev->dev_private;
8252
8253 if (dev_priv->renderctx == NULL)
8254 dev_priv->renderctx = intel_alloc_context_page(dev);
8255 if (!dev_priv->renderctx)
8256 return -ENOMEM;
8257
8258 if (dev_priv->pwrctx == NULL)
8259 dev_priv->pwrctx = intel_alloc_context_page(dev);
8260 if (!dev_priv->pwrctx) {
8261 ironlake_teardown_rc6(dev);
8262 return -ENOMEM;
8263 }
8264
8265 return 0;
8266 }
8267
8268 void ironlake_enable_rc6(struct drm_device *dev)
8269 {
8270 struct drm_i915_private *dev_priv = dev->dev_private;
8271 int ret;
8272
8273 /* rc6 disabled by default due to repeated reports of hanging during
8274 * boot and resume.
8275 */
8276 if (!i915_enable_rc6)
8277 return;
8278
8279 mutex_lock(&dev->struct_mutex);
8280 ret = ironlake_setup_rc6(dev);
8281 if (ret) {
8282 mutex_unlock(&dev->struct_mutex);
8283 return;
8284 }
8285
8286 /*
8287 * GPU can automatically power down the render unit if given a page
8288 * to save state.
8289 */
8290 ret = BEGIN_LP_RING(6);
8291 if (ret) {
8292 ironlake_teardown_rc6(dev);
8293 mutex_unlock(&dev->struct_mutex);
8294 return;
8295 }
8296
8297 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8298 OUT_RING(MI_SET_CONTEXT);
8299 OUT_RING(dev_priv->renderctx->gtt_offset |
8300 MI_MM_SPACE_GTT |
8301 MI_SAVE_EXT_STATE_EN |
8302 MI_RESTORE_EXT_STATE_EN |
8303 MI_RESTORE_INHIBIT);
8304 OUT_RING(MI_SUSPEND_FLUSH);
8305 OUT_RING(MI_NOOP);
8306 OUT_RING(MI_FLUSH);
8307 ADVANCE_LP_RING();
8308
8309 /*
8310 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8311 * does an implicit flush, combined with MI_FLUSH above, it should be
8312 * safe to assume that renderctx is valid
8313 */
8314 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8315 if (ret) {
8316 DRM_ERROR("failed to enable ironlake power power savings\n");
8317 ironlake_teardown_rc6(dev);
8318 mutex_unlock(&dev->struct_mutex);
8319 return;
8320 }
8321
8322 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8323 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8324 mutex_unlock(&dev->struct_mutex);
8325 }
8326
8327 void intel_init_clock_gating(struct drm_device *dev)
8328 {
8329 struct drm_i915_private *dev_priv = dev->dev_private;
8330
8331 dev_priv->display.init_clock_gating(dev);
8332
8333 if (dev_priv->display.init_pch_clock_gating)
8334 dev_priv->display.init_pch_clock_gating(dev);
8335 }
8336
8337 /* Set up chip specific display functions */
8338 static void intel_init_display(struct drm_device *dev)
8339 {
8340 struct drm_i915_private *dev_priv = dev->dev_private;
8341
8342 /* We always want a DPMS function */
8343 if (HAS_PCH_SPLIT(dev)) {
8344 dev_priv->display.dpms = ironlake_crtc_dpms;
8345 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8346 dev_priv->display.update_plane = ironlake_update_plane;
8347 } else {
8348 dev_priv->display.dpms = i9xx_crtc_dpms;
8349 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8350 dev_priv->display.update_plane = i9xx_update_plane;
8351 }
8352
8353 if (I915_HAS_FBC(dev)) {
8354 if (HAS_PCH_SPLIT(dev)) {
8355 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8356 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8357 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8358 } else if (IS_GM45(dev)) {
8359 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8360 dev_priv->display.enable_fbc = g4x_enable_fbc;
8361 dev_priv->display.disable_fbc = g4x_disable_fbc;
8362 } else if (IS_CRESTLINE(dev)) {
8363 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8364 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8365 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8366 }
8367 /* 855GM needs testing */
8368 }
8369
8370 /* Returns the core display clock speed */
8371 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8372 dev_priv->display.get_display_clock_speed =
8373 i945_get_display_clock_speed;
8374 else if (IS_I915G(dev))
8375 dev_priv->display.get_display_clock_speed =
8376 i915_get_display_clock_speed;
8377 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8378 dev_priv->display.get_display_clock_speed =
8379 i9xx_misc_get_display_clock_speed;
8380 else if (IS_I915GM(dev))
8381 dev_priv->display.get_display_clock_speed =
8382 i915gm_get_display_clock_speed;
8383 else if (IS_I865G(dev))
8384 dev_priv->display.get_display_clock_speed =
8385 i865_get_display_clock_speed;
8386 else if (IS_I85X(dev))
8387 dev_priv->display.get_display_clock_speed =
8388 i855_get_display_clock_speed;
8389 else /* 852, 830 */
8390 dev_priv->display.get_display_clock_speed =
8391 i830_get_display_clock_speed;
8392
8393 /* For FIFO watermark updates */
8394 if (HAS_PCH_SPLIT(dev)) {
8395 if (HAS_PCH_IBX(dev))
8396 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8397 else if (HAS_PCH_CPT(dev))
8398 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8399
8400 if (IS_GEN5(dev)) {
8401 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8402 dev_priv->display.update_wm = ironlake_update_wm;
8403 else {
8404 DRM_DEBUG_KMS("Failed to get proper latency. "
8405 "Disable CxSR\n");
8406 dev_priv->display.update_wm = NULL;
8407 }
8408 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8409 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8410 dev_priv->display.write_eld = ironlake_write_eld;
8411 } else if (IS_GEN6(dev)) {
8412 if (SNB_READ_WM0_LATENCY()) {
8413 dev_priv->display.update_wm = sandybridge_update_wm;
8414 } else {
8415 DRM_DEBUG_KMS("Failed to read display plane latency. "
8416 "Disable CxSR\n");
8417 dev_priv->display.update_wm = NULL;
8418 }
8419 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8420 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8421 dev_priv->display.write_eld = ironlake_write_eld;
8422 } else if (IS_IVYBRIDGE(dev)) {
8423 /* FIXME: detect B0+ stepping and use auto training */
8424 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8425 if (SNB_READ_WM0_LATENCY()) {
8426 dev_priv->display.update_wm = sandybridge_update_wm;
8427 } else {
8428 DRM_DEBUG_KMS("Failed to read display plane latency. "
8429 "Disable CxSR\n");
8430 dev_priv->display.update_wm = NULL;
8431 }
8432 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8433 dev_priv->display.write_eld = ironlake_write_eld;
8434 } else
8435 dev_priv->display.update_wm = NULL;
8436 } else if (IS_PINEVIEW(dev)) {
8437 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8438 dev_priv->is_ddr3,
8439 dev_priv->fsb_freq,
8440 dev_priv->mem_freq)) {
8441 DRM_INFO("failed to find known CxSR latency "
8442 "(found ddr%s fsb freq %d, mem freq %d), "
8443 "disabling CxSR\n",
8444 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8445 dev_priv->fsb_freq, dev_priv->mem_freq);
8446 /* Disable CxSR and never update its watermark again */
8447 pineview_disable_cxsr(dev);
8448 dev_priv->display.update_wm = NULL;
8449 } else
8450 dev_priv->display.update_wm = pineview_update_wm;
8451 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8452 } else if (IS_G4X(dev)) {
8453 dev_priv->display.write_eld = g4x_write_eld;
8454 dev_priv->display.update_wm = g4x_update_wm;
8455 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8456 } else if (IS_GEN4(dev)) {
8457 dev_priv->display.update_wm = i965_update_wm;
8458 if (IS_CRESTLINE(dev))
8459 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8460 else if (IS_BROADWATER(dev))
8461 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8462 } else if (IS_GEN3(dev)) {
8463 dev_priv->display.update_wm = i9xx_update_wm;
8464 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8465 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8466 } else if (IS_I865G(dev)) {
8467 dev_priv->display.update_wm = i830_update_wm;
8468 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8469 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8470 } else if (IS_I85X(dev)) {
8471 dev_priv->display.update_wm = i9xx_update_wm;
8472 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8473 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8474 } else {
8475 dev_priv->display.update_wm = i830_update_wm;
8476 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8477 if (IS_845G(dev))
8478 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8479 else
8480 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8481 }
8482
8483 /* Default just returns -ENODEV to indicate unsupported */
8484 dev_priv->display.queue_flip = intel_default_queue_flip;
8485
8486 switch (INTEL_INFO(dev)->gen) {
8487 case 2:
8488 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8489 break;
8490
8491 case 3:
8492 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8493 break;
8494
8495 case 4:
8496 case 5:
8497 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8498 break;
8499
8500 case 6:
8501 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8502 break;
8503 case 7:
8504 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8505 break;
8506 }
8507 }
8508
8509 /*
8510 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8511 * resume, or other times. This quirk makes sure that's the case for
8512 * affected systems.
8513 */
8514 static void quirk_pipea_force(struct drm_device *dev)
8515 {
8516 struct drm_i915_private *dev_priv = dev->dev_private;
8517
8518 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8519 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8520 }
8521
8522 /*
8523 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8524 */
8525 static void quirk_ssc_force_disable(struct drm_device *dev)
8526 {
8527 struct drm_i915_private *dev_priv = dev->dev_private;
8528 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8529 }
8530
8531 struct intel_quirk {
8532 int device;
8533 int subsystem_vendor;
8534 int subsystem_device;
8535 void (*hook)(struct drm_device *dev);
8536 };
8537
8538 struct intel_quirk intel_quirks[] = {
8539 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8540 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8541 /* HP Mini needs pipe A force quirk (LP: #322104) */
8542 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8543
8544 /* Thinkpad R31 needs pipe A force quirk */
8545 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8546 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8547 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8548
8549 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8550 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8551 /* ThinkPad X40 needs pipe A force quirk */
8552
8553 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8554 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8555
8556 /* 855 & before need to leave pipe A & dpll A up */
8557 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8558 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8559
8560 /* Lenovo U160 cannot use SSC on LVDS */
8561 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8562
8563 /* Sony Vaio Y cannot use SSC on LVDS */
8564 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8565 };
8566
8567 static void intel_init_quirks(struct drm_device *dev)
8568 {
8569 struct pci_dev *d = dev->pdev;
8570 int i;
8571
8572 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8573 struct intel_quirk *q = &intel_quirks[i];
8574
8575 if (d->device == q->device &&
8576 (d->subsystem_vendor == q->subsystem_vendor ||
8577 q->subsystem_vendor == PCI_ANY_ID) &&
8578 (d->subsystem_device == q->subsystem_device ||
8579 q->subsystem_device == PCI_ANY_ID))
8580 q->hook(dev);
8581 }
8582 }
8583
8584 /* Disable the VGA plane that we never use */
8585 static void i915_disable_vga(struct drm_device *dev)
8586 {
8587 struct drm_i915_private *dev_priv = dev->dev_private;
8588 u8 sr1;
8589 u32 vga_reg;
8590
8591 if (HAS_PCH_SPLIT(dev))
8592 vga_reg = CPU_VGACNTRL;
8593 else
8594 vga_reg = VGACNTRL;
8595
8596 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8597 outb(1, VGA_SR_INDEX);
8598 sr1 = inb(VGA_SR_DATA);
8599 outb(sr1 | 1<<5, VGA_SR_DATA);
8600 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8601 udelay(300);
8602
8603 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8604 POSTING_READ(vga_reg);
8605 }
8606
8607 void intel_modeset_init(struct drm_device *dev)
8608 {
8609 struct drm_i915_private *dev_priv = dev->dev_private;
8610 int i;
8611
8612 drm_mode_config_init(dev);
8613
8614 dev->mode_config.min_width = 0;
8615 dev->mode_config.min_height = 0;
8616
8617 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8618
8619 intel_init_quirks(dev);
8620
8621 intel_init_display(dev);
8622
8623 if (IS_GEN2(dev)) {
8624 dev->mode_config.max_width = 2048;
8625 dev->mode_config.max_height = 2048;
8626 } else if (IS_GEN3(dev)) {
8627 dev->mode_config.max_width = 4096;
8628 dev->mode_config.max_height = 4096;
8629 } else {
8630 dev->mode_config.max_width = 8192;
8631 dev->mode_config.max_height = 8192;
8632 }
8633 dev->mode_config.fb_base = dev->agp->base;
8634
8635 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8636 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8637
8638 for (i = 0; i < dev_priv->num_pipe; i++) {
8639 intel_crtc_init(dev, i);
8640 }
8641
8642 /* Just disable it once at startup */
8643 i915_disable_vga(dev);
8644 intel_setup_outputs(dev);
8645
8646 intel_init_clock_gating(dev);
8647
8648 if (IS_IRONLAKE_M(dev)) {
8649 ironlake_enable_drps(dev);
8650 intel_init_emon(dev);
8651 }
8652
8653 if (IS_GEN6(dev) || IS_GEN7(dev)) {
8654 gen6_enable_rps(dev_priv);
8655 gen6_update_ring_freq(dev_priv);
8656 }
8657
8658 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8659 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8660 (unsigned long)dev);
8661 }
8662
8663 void intel_modeset_gem_init(struct drm_device *dev)
8664 {
8665 if (IS_IRONLAKE_M(dev))
8666 ironlake_enable_rc6(dev);
8667
8668 intel_setup_overlay(dev);
8669 }
8670
8671 void intel_modeset_cleanup(struct drm_device *dev)
8672 {
8673 struct drm_i915_private *dev_priv = dev->dev_private;
8674 struct drm_crtc *crtc;
8675 struct intel_crtc *intel_crtc;
8676
8677 drm_kms_helper_poll_fini(dev);
8678 mutex_lock(&dev->struct_mutex);
8679
8680 intel_unregister_dsm_handler();
8681
8682
8683 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8684 /* Skip inactive CRTCs */
8685 if (!crtc->fb)
8686 continue;
8687
8688 intel_crtc = to_intel_crtc(crtc);
8689 intel_increase_pllclock(crtc);
8690 }
8691
8692 intel_disable_fbc(dev);
8693
8694 if (IS_IRONLAKE_M(dev))
8695 ironlake_disable_drps(dev);
8696 if (IS_GEN6(dev) || IS_GEN7(dev))
8697 gen6_disable_rps(dev);
8698
8699 if (IS_IRONLAKE_M(dev))
8700 ironlake_disable_rc6(dev);
8701
8702 mutex_unlock(&dev->struct_mutex);
8703
8704 /* Disable the irq before mode object teardown, for the irq might
8705 * enqueue unpin/hotplug work. */
8706 drm_irq_uninstall(dev);
8707 cancel_work_sync(&dev_priv->hotplug_work);
8708 cancel_work_sync(&dev_priv->rps_work);
8709
8710 /* flush any delayed tasks or pending work */
8711 flush_scheduled_work();
8712
8713 /* Shut off idle work before the crtcs get freed. */
8714 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8715 intel_crtc = to_intel_crtc(crtc);
8716 del_timer_sync(&intel_crtc->idle_timer);
8717 }
8718 del_timer_sync(&dev_priv->idle_timer);
8719 cancel_work_sync(&dev_priv->idle_work);
8720
8721 drm_mode_config_cleanup(dev);
8722 }
8723
8724 /*
8725 * Return which encoder is currently attached for connector.
8726 */
8727 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8728 {
8729 return &intel_attached_encoder(connector)->base;
8730 }
8731
8732 void intel_connector_attach_encoder(struct intel_connector *connector,
8733 struct intel_encoder *encoder)
8734 {
8735 connector->encoder = encoder;
8736 drm_mode_connector_attach_encoder(&connector->base,
8737 &encoder->base);
8738 }
8739
8740 /*
8741 * set vga decode state - true == enable VGA decode
8742 */
8743 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8744 {
8745 struct drm_i915_private *dev_priv = dev->dev_private;
8746 u16 gmch_ctrl;
8747
8748 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8749 if (state)
8750 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8751 else
8752 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8753 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8754 return 0;
8755 }
8756
8757 #ifdef CONFIG_DEBUG_FS
8758 #include <linux/seq_file.h>
8759
8760 struct intel_display_error_state {
8761 struct intel_cursor_error_state {
8762 u32 control;
8763 u32 position;
8764 u32 base;
8765 u32 size;
8766 } cursor[2];
8767
8768 struct intel_pipe_error_state {
8769 u32 conf;
8770 u32 source;
8771
8772 u32 htotal;
8773 u32 hblank;
8774 u32 hsync;
8775 u32 vtotal;
8776 u32 vblank;
8777 u32 vsync;
8778 } pipe[2];
8779
8780 struct intel_plane_error_state {
8781 u32 control;
8782 u32 stride;
8783 u32 size;
8784 u32 pos;
8785 u32 addr;
8786 u32 surface;
8787 u32 tile_offset;
8788 } plane[2];
8789 };
8790
8791 struct intel_display_error_state *
8792 intel_display_capture_error_state(struct drm_device *dev)
8793 {
8794 drm_i915_private_t *dev_priv = dev->dev_private;
8795 struct intel_display_error_state *error;
8796 int i;
8797
8798 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8799 if (error == NULL)
8800 return NULL;
8801
8802 for (i = 0; i < 2; i++) {
8803 error->cursor[i].control = I915_READ(CURCNTR(i));
8804 error->cursor[i].position = I915_READ(CURPOS(i));
8805 error->cursor[i].base = I915_READ(CURBASE(i));
8806
8807 error->plane[i].control = I915_READ(DSPCNTR(i));
8808 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8809 error->plane[i].size = I915_READ(DSPSIZE(i));
8810 error->plane[i].pos = I915_READ(DSPPOS(i));
8811 error->plane[i].addr = I915_READ(DSPADDR(i));
8812 if (INTEL_INFO(dev)->gen >= 4) {
8813 error->plane[i].surface = I915_READ(DSPSURF(i));
8814 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8815 }
8816
8817 error->pipe[i].conf = I915_READ(PIPECONF(i));
8818 error->pipe[i].source = I915_READ(PIPESRC(i));
8819 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8820 error->pipe[i].hblank = I915_READ(HBLANK(i));
8821 error->pipe[i].hsync = I915_READ(HSYNC(i));
8822 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8823 error->pipe[i].vblank = I915_READ(VBLANK(i));
8824 error->pipe[i].vsync = I915_READ(VSYNC(i));
8825 }
8826
8827 return error;
8828 }
8829
8830 void
8831 intel_display_print_error_state(struct seq_file *m,
8832 struct drm_device *dev,
8833 struct intel_display_error_state *error)
8834 {
8835 int i;
8836
8837 for (i = 0; i < 2; i++) {
8838 seq_printf(m, "Pipe [%d]:\n", i);
8839 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8840 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8841 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8842 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8843 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8844 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8845 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8846 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8847
8848 seq_printf(m, "Plane [%d]:\n", i);
8849 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8850 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8851 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8852 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8853 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8854 if (INTEL_INFO(dev)->gen >= 4) {
8855 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8856 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8857 }
8858
8859 seq_printf(m, "Cursor [%d]:\n", i);
8860 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8861 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8862 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8863 }
8864 }
8865 #endif
This page took 0.238432 seconds and 6 git commands to generate.