drm/i915/skl: Implement queue_flip
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_config *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_config *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_config *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_config *pipe_config);
101
102 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
103 {
104 if (!connector->mst_port)
105 return connector->encoder;
106 else
107 return &connector->mst_port->mst_encoders[pipe]->base;
108 }
109
110 typedef struct {
111 int min, max;
112 } intel_range_t;
113
114 typedef struct {
115 int dot_limit;
116 int p2_slow, p2_fast;
117 } intel_p2_t;
118
119 typedef struct intel_limit intel_limit_t;
120 struct intel_limit {
121 intel_range_t dot, vco, n, m, m1, m2, p, p1;
122 intel_p2_t p2;
123 };
124
125 int
126 intel_pch_rawclk(struct drm_device *dev)
127 {
128 struct drm_i915_private *dev_priv = dev->dev_private;
129
130 WARN_ON(!HAS_PCH_SPLIT(dev));
131
132 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
133 }
134
135 static inline u32 /* units of 100MHz */
136 intel_fdi_link_freq(struct drm_device *dev)
137 {
138 if (IS_GEN5(dev)) {
139 struct drm_i915_private *dev_priv = dev->dev_private;
140 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
141 } else
142 return 27;
143 }
144
145 static const intel_limit_t intel_limits_i8xx_dac = {
146 .dot = { .min = 25000, .max = 350000 },
147 .vco = { .min = 908000, .max = 1512000 },
148 .n = { .min = 2, .max = 16 },
149 .m = { .min = 96, .max = 140 },
150 .m1 = { .min = 18, .max = 26 },
151 .m2 = { .min = 6, .max = 16 },
152 .p = { .min = 4, .max = 128 },
153 .p1 = { .min = 2, .max = 33 },
154 .p2 = { .dot_limit = 165000,
155 .p2_slow = 4, .p2_fast = 2 },
156 };
157
158 static const intel_limit_t intel_limits_i8xx_dvo = {
159 .dot = { .min = 25000, .max = 350000 },
160 .vco = { .min = 908000, .max = 1512000 },
161 .n = { .min = 2, .max = 16 },
162 .m = { .min = 96, .max = 140 },
163 .m1 = { .min = 18, .max = 26 },
164 .m2 = { .min = 6, .max = 16 },
165 .p = { .min = 4, .max = 128 },
166 .p1 = { .min = 2, .max = 33 },
167 .p2 = { .dot_limit = 165000,
168 .p2_slow = 4, .p2_fast = 4 },
169 };
170
171 static const intel_limit_t intel_limits_i8xx_lvds = {
172 .dot = { .min = 25000, .max = 350000 },
173 .vco = { .min = 908000, .max = 1512000 },
174 .n = { .min = 2, .max = 16 },
175 .m = { .min = 96, .max = 140 },
176 .m1 = { .min = 18, .max = 26 },
177 .m2 = { .min = 6, .max = 16 },
178 .p = { .min = 4, .max = 128 },
179 .p1 = { .min = 1, .max = 6 },
180 .p2 = { .dot_limit = 165000,
181 .p2_slow = 14, .p2_fast = 7 },
182 };
183
184 static const intel_limit_t intel_limits_i9xx_sdvo = {
185 .dot = { .min = 20000, .max = 400000 },
186 .vco = { .min = 1400000, .max = 2800000 },
187 .n = { .min = 1, .max = 6 },
188 .m = { .min = 70, .max = 120 },
189 .m1 = { .min = 8, .max = 18 },
190 .m2 = { .min = 3, .max = 7 },
191 .p = { .min = 5, .max = 80 },
192 .p1 = { .min = 1, .max = 8 },
193 .p2 = { .dot_limit = 200000,
194 .p2_slow = 10, .p2_fast = 5 },
195 };
196
197 static const intel_limit_t intel_limits_i9xx_lvds = {
198 .dot = { .min = 20000, .max = 400000 },
199 .vco = { .min = 1400000, .max = 2800000 },
200 .n = { .min = 1, .max = 6 },
201 .m = { .min = 70, .max = 120 },
202 .m1 = { .min = 8, .max = 18 },
203 .m2 = { .min = 3, .max = 7 },
204 .p = { .min = 7, .max = 98 },
205 .p1 = { .min = 1, .max = 8 },
206 .p2 = { .dot_limit = 112000,
207 .p2_slow = 14, .p2_fast = 7 },
208 };
209
210
211 static const intel_limit_t intel_limits_g4x_sdvo = {
212 .dot = { .min = 25000, .max = 270000 },
213 .vco = { .min = 1750000, .max = 3500000},
214 .n = { .min = 1, .max = 4 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 10, .max = 30 },
219 .p1 = { .min = 1, .max = 3},
220 .p2 = { .dot_limit = 270000,
221 .p2_slow = 10,
222 .p2_fast = 10
223 },
224 };
225
226 static const intel_limit_t intel_limits_g4x_hdmi = {
227 .dot = { .min = 22000, .max = 400000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 16, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 5, .max = 80 },
234 .p1 = { .min = 1, .max = 8},
235 .p2 = { .dot_limit = 165000,
236 .p2_slow = 10, .p2_fast = 5 },
237 };
238
239 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
240 .dot = { .min = 20000, .max = 115000 },
241 .vco = { .min = 1750000, .max = 3500000 },
242 .n = { .min = 1, .max = 3 },
243 .m = { .min = 104, .max = 138 },
244 .m1 = { .min = 17, .max = 23 },
245 .m2 = { .min = 5, .max = 11 },
246 .p = { .min = 28, .max = 112 },
247 .p1 = { .min = 2, .max = 8 },
248 .p2 = { .dot_limit = 0,
249 .p2_slow = 14, .p2_fast = 14
250 },
251 };
252
253 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
254 .dot = { .min = 80000, .max = 224000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 14, .max = 42 },
261 .p1 = { .min = 2, .max = 6 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 7, .p2_fast = 7
264 },
265 };
266
267 static const intel_limit_t intel_limits_pineview_sdvo = {
268 .dot = { .min = 20000, .max = 400000},
269 .vco = { .min = 1700000, .max = 3500000 },
270 /* Pineview's Ncounter is a ring counter */
271 .n = { .min = 3, .max = 6 },
272 .m = { .min = 2, .max = 256 },
273 /* Pineview only has one combined m divider, which we treat as m2. */
274 .m1 = { .min = 0, .max = 0 },
275 .m2 = { .min = 0, .max = 254 },
276 .p = { .min = 5, .max = 80 },
277 .p1 = { .min = 1, .max = 8 },
278 .p2 = { .dot_limit = 200000,
279 .p2_slow = 10, .p2_fast = 5 },
280 };
281
282 static const intel_limit_t intel_limits_pineview_lvds = {
283 .dot = { .min = 20000, .max = 400000 },
284 .vco = { .min = 1700000, .max = 3500000 },
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 .m1 = { .min = 0, .max = 0 },
288 .m2 = { .min = 0, .max = 254 },
289 .p = { .min = 7, .max = 112 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 112000,
292 .p2_slow = 14, .p2_fast = 14 },
293 };
294
295 /* Ironlake / Sandybridge
296 *
297 * We calculate clock using (register_value + 2) for N/M1/M2, so here
298 * the range value for them is (actual_value - 2).
299 */
300 static const intel_limit_t intel_limits_ironlake_dac = {
301 .dot = { .min = 25000, .max = 350000 },
302 .vco = { .min = 1760000, .max = 3510000 },
303 .n = { .min = 1, .max = 5 },
304 .m = { .min = 79, .max = 127 },
305 .m1 = { .min = 12, .max = 22 },
306 .m2 = { .min = 5, .max = 9 },
307 .p = { .min = 5, .max = 80 },
308 .p1 = { .min = 1, .max = 8 },
309 .p2 = { .dot_limit = 225000,
310 .p2_slow = 10, .p2_fast = 5 },
311 };
312
313 static const intel_limit_t intel_limits_ironlake_single_lvds = {
314 .dot = { .min = 25000, .max = 350000 },
315 .vco = { .min = 1760000, .max = 3510000 },
316 .n = { .min = 1, .max = 3 },
317 .m = { .min = 79, .max = 118 },
318 .m1 = { .min = 12, .max = 22 },
319 .m2 = { .min = 5, .max = 9 },
320 .p = { .min = 28, .max = 112 },
321 .p1 = { .min = 2, .max = 8 },
322 .p2 = { .dot_limit = 225000,
323 .p2_slow = 14, .p2_fast = 14 },
324 };
325
326 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
327 .dot = { .min = 25000, .max = 350000 },
328 .vco = { .min = 1760000, .max = 3510000 },
329 .n = { .min = 1, .max = 3 },
330 .m = { .min = 79, .max = 127 },
331 .m1 = { .min = 12, .max = 22 },
332 .m2 = { .min = 5, .max = 9 },
333 .p = { .min = 14, .max = 56 },
334 .p1 = { .min = 2, .max = 8 },
335 .p2 = { .dot_limit = 225000,
336 .p2_slow = 7, .p2_fast = 7 },
337 };
338
339 /* LVDS 100mhz refclk limits. */
340 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 2 },
344 .m = { .min = 79, .max = 126 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 28, .max = 112 },
348 .p1 = { .min = 2, .max = 8 },
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 14, .p2_fast = 14 },
351 };
352
353 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000 },
356 .n = { .min = 1, .max = 3 },
357 .m = { .min = 79, .max = 126 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 14, .max = 42 },
361 .p1 = { .min = 2, .max = 6 },
362 .p2 = { .dot_limit = 225000,
363 .p2_slow = 7, .p2_fast = 7 },
364 };
365
366 static const intel_limit_t intel_limits_vlv = {
367 /*
368 * These are the data rate limits (measured in fast clocks)
369 * since those are the strictest limits we have. The fast
370 * clock and actual rate limits are more relaxed, so checking
371 * them would make no difference.
372 */
373 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
374 .vco = { .min = 4000000, .max = 6000000 },
375 .n = { .min = 1, .max = 7 },
376 .m1 = { .min = 2, .max = 3 },
377 .m2 = { .min = 11, .max = 156 },
378 .p1 = { .min = 2, .max = 3 },
379 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
380 };
381
382 static const intel_limit_t intel_limits_chv = {
383 /*
384 * These are the data rate limits (measured in fast clocks)
385 * since those are the strictest limits we have. The fast
386 * clock and actual rate limits are more relaxed, so checking
387 * them would make no difference.
388 */
389 .dot = { .min = 25000 * 5, .max = 540000 * 5},
390 .vco = { .min = 4860000, .max = 6700000 },
391 .n = { .min = 1, .max = 1 },
392 .m1 = { .min = 2, .max = 2 },
393 .m2 = { .min = 24 << 22, .max = 175 << 22 },
394 .p1 = { .min = 2, .max = 4 },
395 .p2 = { .p2_slow = 1, .p2_fast = 14 },
396 };
397
398 static void vlv_clock(int refclk, intel_clock_t *clock)
399 {
400 clock->m = clock->m1 * clock->m2;
401 clock->p = clock->p1 * clock->p2;
402 if (WARN_ON(clock->n == 0 || clock->p == 0))
403 return;
404 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
405 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
406 }
407
408 /**
409 * Returns whether any output on the specified pipe is of the specified type
410 */
411 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
412 {
413 struct drm_device *dev = crtc->base.dev;
414 struct intel_encoder *encoder;
415
416 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
417 if (encoder->type == type)
418 return true;
419
420 return false;
421 }
422
423 /**
424 * Returns whether any output on the specified pipe will have the specified
425 * type after a staged modeset is complete, i.e., the same as
426 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
427 * encoder->crtc.
428 */
429 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
430 {
431 struct drm_device *dev = crtc->base.dev;
432 struct intel_encoder *encoder;
433
434 for_each_intel_encoder(dev, encoder)
435 if (encoder->new_crtc == crtc && encoder->type == type)
436 return true;
437
438 return false;
439 }
440
441 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
442 int refclk)
443 {
444 struct drm_device *dev = crtc->base.dev;
445 const intel_limit_t *limit;
446
447 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
448 if (intel_is_dual_link_lvds(dev)) {
449 if (refclk == 100000)
450 limit = &intel_limits_ironlake_dual_lvds_100m;
451 else
452 limit = &intel_limits_ironlake_dual_lvds;
453 } else {
454 if (refclk == 100000)
455 limit = &intel_limits_ironlake_single_lvds_100m;
456 else
457 limit = &intel_limits_ironlake_single_lvds;
458 }
459 } else
460 limit = &intel_limits_ironlake_dac;
461
462 return limit;
463 }
464
465 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
466 {
467 struct drm_device *dev = crtc->base.dev;
468 const intel_limit_t *limit;
469
470 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
471 if (intel_is_dual_link_lvds(dev))
472 limit = &intel_limits_g4x_dual_channel_lvds;
473 else
474 limit = &intel_limits_g4x_single_channel_lvds;
475 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
476 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
477 limit = &intel_limits_g4x_hdmi;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
479 limit = &intel_limits_g4x_sdvo;
480 } else /* The option is for other outputs */
481 limit = &intel_limits_i9xx_sdvo;
482
483 return limit;
484 }
485
486 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
487 {
488 struct drm_device *dev = crtc->base.dev;
489 const intel_limit_t *limit;
490
491 if (HAS_PCH_SPLIT(dev))
492 limit = intel_ironlake_limit(crtc, refclk);
493 else if (IS_G4X(dev)) {
494 limit = intel_g4x_limit(crtc);
495 } else if (IS_PINEVIEW(dev)) {
496 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
497 limit = &intel_limits_pineview_lvds;
498 else
499 limit = &intel_limits_pineview_sdvo;
500 } else if (IS_CHERRYVIEW(dev)) {
501 limit = &intel_limits_chv;
502 } else if (IS_VALLEYVIEW(dev)) {
503 limit = &intel_limits_vlv;
504 } else if (!IS_GEN2(dev)) {
505 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
506 limit = &intel_limits_i9xx_lvds;
507 else
508 limit = &intel_limits_i9xx_sdvo;
509 } else {
510 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
511 limit = &intel_limits_i8xx_lvds;
512 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
513 limit = &intel_limits_i8xx_dvo;
514 else
515 limit = &intel_limits_i8xx_dac;
516 }
517 return limit;
518 }
519
520 /* m1 is reserved as 0 in Pineview, n is a ring counter */
521 static void pineview_clock(int refclk, intel_clock_t *clock)
522 {
523 clock->m = clock->m2 + 2;
524 clock->p = clock->p1 * clock->p2;
525 if (WARN_ON(clock->n == 0 || clock->p == 0))
526 return;
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
529 }
530
531 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
532 {
533 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
534 }
535
536 static void i9xx_clock(int refclk, intel_clock_t *clock)
537 {
538 clock->m = i9xx_dpll_compute_m(clock);
539 clock->p = clock->p1 * clock->p2;
540 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
541 return;
542 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
543 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
544 }
545
546 static void chv_clock(int refclk, intel_clock_t *clock)
547 {
548 clock->m = clock->m1 * clock->m2;
549 clock->p = clock->p1 * clock->p2;
550 if (WARN_ON(clock->n == 0 || clock->p == 0))
551 return;
552 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
553 clock->n << 22);
554 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
555 }
556
557 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
558 /**
559 * Returns whether the given set of divisors are valid for a given refclk with
560 * the given connectors.
561 */
562
563 static bool intel_PLL_is_valid(struct drm_device *dev,
564 const intel_limit_t *limit,
565 const intel_clock_t *clock)
566 {
567 if (clock->n < limit->n.min || limit->n.max < clock->n)
568 INTELPllInvalid("n out of range\n");
569 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
570 INTELPllInvalid("p1 out of range\n");
571 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
572 INTELPllInvalid("m2 out of range\n");
573 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
574 INTELPllInvalid("m1 out of range\n");
575
576 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
577 if (clock->m1 <= clock->m2)
578 INTELPllInvalid("m1 <= m2\n");
579
580 if (!IS_VALLEYVIEW(dev)) {
581 if (clock->p < limit->p.min || limit->p.max < clock->p)
582 INTELPllInvalid("p out of range\n");
583 if (clock->m < limit->m.min || limit->m.max < clock->m)
584 INTELPllInvalid("m out of range\n");
585 }
586
587 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
588 INTELPllInvalid("vco out of range\n");
589 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
590 * connector, etc., rather than just a single range.
591 */
592 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
593 INTELPllInvalid("dot out of range\n");
594
595 return true;
596 }
597
598 static bool
599 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
600 int target, int refclk, intel_clock_t *match_clock,
601 intel_clock_t *best_clock)
602 {
603 struct drm_device *dev = crtc->base.dev;
604 intel_clock_t clock;
605 int err = target;
606
607 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
608 /*
609 * For LVDS just rely on its current settings for dual-channel.
610 * We haven't figured out how to reliably set up different
611 * single/dual channel state, if we even can.
612 */
613 if (intel_is_dual_link_lvds(dev))
614 clock.p2 = limit->p2.p2_fast;
615 else
616 clock.p2 = limit->p2.p2_slow;
617 } else {
618 if (target < limit->p2.dot_limit)
619 clock.p2 = limit->p2.p2_slow;
620 else
621 clock.p2 = limit->p2.p2_fast;
622 }
623
624 memset(best_clock, 0, sizeof(*best_clock));
625
626 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
627 clock.m1++) {
628 for (clock.m2 = limit->m2.min;
629 clock.m2 <= limit->m2.max; clock.m2++) {
630 if (clock.m2 >= clock.m1)
631 break;
632 for (clock.n = limit->n.min;
633 clock.n <= limit->n.max; clock.n++) {
634 for (clock.p1 = limit->p1.min;
635 clock.p1 <= limit->p1.max; clock.p1++) {
636 int this_err;
637
638 i9xx_clock(refclk, &clock);
639 if (!intel_PLL_is_valid(dev, limit,
640 &clock))
641 continue;
642 if (match_clock &&
643 clock.p != match_clock->p)
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err) {
648 *best_clock = clock;
649 err = this_err;
650 }
651 }
652 }
653 }
654 }
655
656 return (err != target);
657 }
658
659 static bool
660 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
661 int target, int refclk, intel_clock_t *match_clock,
662 intel_clock_t *best_clock)
663 {
664 struct drm_device *dev = crtc->base.dev;
665 intel_clock_t clock;
666 int err = target;
667
668 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
669 /*
670 * For LVDS just rely on its current settings for dual-channel.
671 * We haven't figured out how to reliably set up different
672 * single/dual channel state, if we even can.
673 */
674 if (intel_is_dual_link_lvds(dev))
675 clock.p2 = limit->p2.p2_fast;
676 else
677 clock.p2 = limit->p2.p2_slow;
678 } else {
679 if (target < limit->p2.dot_limit)
680 clock.p2 = limit->p2.p2_slow;
681 else
682 clock.p2 = limit->p2.p2_fast;
683 }
684
685 memset(best_clock, 0, sizeof(*best_clock));
686
687 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
688 clock.m1++) {
689 for (clock.m2 = limit->m2.min;
690 clock.m2 <= limit->m2.max; clock.m2++) {
691 for (clock.n = limit->n.min;
692 clock.n <= limit->n.max; clock.n++) {
693 for (clock.p1 = limit->p1.min;
694 clock.p1 <= limit->p1.max; clock.p1++) {
695 int this_err;
696
697 pineview_clock(refclk, &clock);
698 if (!intel_PLL_is_valid(dev, limit,
699 &clock))
700 continue;
701 if (match_clock &&
702 clock.p != match_clock->p)
703 continue;
704
705 this_err = abs(clock.dot - target);
706 if (this_err < err) {
707 *best_clock = clock;
708 err = this_err;
709 }
710 }
711 }
712 }
713 }
714
715 return (err != target);
716 }
717
718 static bool
719 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
720 int target, int refclk, intel_clock_t *match_clock,
721 intel_clock_t *best_clock)
722 {
723 struct drm_device *dev = crtc->base.dev;
724 intel_clock_t clock;
725 int max_n;
726 bool found;
727 /* approximately equals target * 0.00585 */
728 int err_most = (target >> 8) + (target >> 9);
729 found = false;
730
731 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
732 if (intel_is_dual_link_lvds(dev))
733 clock.p2 = limit->p2.p2_fast;
734 else
735 clock.p2 = limit->p2.p2_slow;
736 } else {
737 if (target < limit->p2.dot_limit)
738 clock.p2 = limit->p2.p2_slow;
739 else
740 clock.p2 = limit->p2.p2_fast;
741 }
742
743 memset(best_clock, 0, sizeof(*best_clock));
744 max_n = limit->n.max;
745 /* based on hardware requirement, prefer smaller n to precision */
746 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
747 /* based on hardware requirement, prefere larger m1,m2 */
748 for (clock.m1 = limit->m1.max;
749 clock.m1 >= limit->m1.min; clock.m1--) {
750 for (clock.m2 = limit->m2.max;
751 clock.m2 >= limit->m2.min; clock.m2--) {
752 for (clock.p1 = limit->p1.max;
753 clock.p1 >= limit->p1.min; clock.p1--) {
754 int this_err;
755
756 i9xx_clock(refclk, &clock);
757 if (!intel_PLL_is_valid(dev, limit,
758 &clock))
759 continue;
760
761 this_err = abs(clock.dot - target);
762 if (this_err < err_most) {
763 *best_clock = clock;
764 err_most = this_err;
765 max_n = clock.n;
766 found = true;
767 }
768 }
769 }
770 }
771 }
772 return found;
773 }
774
775 static bool
776 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
777 int target, int refclk, intel_clock_t *match_clock,
778 intel_clock_t *best_clock)
779 {
780 struct drm_device *dev = crtc->base.dev;
781 intel_clock_t clock;
782 unsigned int bestppm = 1000000;
783 /* min update 19.2 MHz */
784 int max_n = min(limit->n.max, refclk / 19200);
785 bool found = false;
786
787 target *= 5; /* fast clock */
788
789 memset(best_clock, 0, sizeof(*best_clock));
790
791 /* based on hardware requirement, prefer smaller n to precision */
792 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
793 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
794 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
795 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
796 clock.p = clock.p1 * clock.p2;
797 /* based on hardware requirement, prefer bigger m1,m2 values */
798 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
799 unsigned int ppm, diff;
800
801 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
802 refclk * clock.m1);
803
804 vlv_clock(refclk, &clock);
805
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
808 continue;
809
810 diff = abs(clock.dot - target);
811 ppm = div_u64(1000000ULL * diff, target);
812
813 if (ppm < 100 && clock.p > best_clock->p) {
814 bestppm = 0;
815 *best_clock = clock;
816 found = true;
817 }
818
819 if (bestppm >= 10 && ppm < bestppm - 10) {
820 bestppm = ppm;
821 *best_clock = clock;
822 found = true;
823 }
824 }
825 }
826 }
827 }
828
829 return found;
830 }
831
832 static bool
833 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
834 int target, int refclk, intel_clock_t *match_clock,
835 intel_clock_t *best_clock)
836 {
837 struct drm_device *dev = crtc->base.dev;
838 intel_clock_t clock;
839 uint64_t m2;
840 int found = false;
841
842 memset(best_clock, 0, sizeof(*best_clock));
843
844 /*
845 * Based on hardware doc, the n always set to 1, and m1 always
846 * set to 2. If requires to support 200Mhz refclk, we need to
847 * revisit this because n may not 1 anymore.
848 */
849 clock.n = 1, clock.m1 = 2;
850 target *= 5; /* fast clock */
851
852 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
853 for (clock.p2 = limit->p2.p2_fast;
854 clock.p2 >= limit->p2.p2_slow;
855 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
856
857 clock.p = clock.p1 * clock.p2;
858
859 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
860 clock.n) << 22, refclk * clock.m1);
861
862 if (m2 > INT_MAX/clock.m1)
863 continue;
864
865 clock.m2 = m2;
866
867 chv_clock(refclk, &clock);
868
869 if (!intel_PLL_is_valid(dev, limit, &clock))
870 continue;
871
872 /* based on hardware requirement, prefer bigger p
873 */
874 if (clock.p > best_clock->p) {
875 *best_clock = clock;
876 found = true;
877 }
878 }
879 }
880
881 return found;
882 }
883
884 bool intel_crtc_active(struct drm_crtc *crtc)
885 {
886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
887
888 /* Be paranoid as we can arrive here with only partial
889 * state retrieved from the hardware during setup.
890 *
891 * We can ditch the adjusted_mode.crtc_clock check as soon
892 * as Haswell has gained clock readout/fastboot support.
893 *
894 * We can ditch the crtc->primary->fb check as soon as we can
895 * properly reconstruct framebuffers.
896 */
897 return intel_crtc->active && crtc->primary->fb &&
898 intel_crtc->config.adjusted_mode.crtc_clock;
899 }
900
901 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
902 enum pipe pipe)
903 {
904 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
906
907 return intel_crtc->config.cpu_transcoder;
908 }
909
910 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
911 {
912 struct drm_i915_private *dev_priv = dev->dev_private;
913 u32 reg = PIPEDSL(pipe);
914 u32 line1, line2;
915 u32 line_mask;
916
917 if (IS_GEN2(dev))
918 line_mask = DSL_LINEMASK_GEN2;
919 else
920 line_mask = DSL_LINEMASK_GEN3;
921
922 line1 = I915_READ(reg) & line_mask;
923 mdelay(5);
924 line2 = I915_READ(reg) & line_mask;
925
926 return line1 == line2;
927 }
928
929 /*
930 * intel_wait_for_pipe_off - wait for pipe to turn off
931 * @crtc: crtc whose pipe to wait for
932 *
933 * After disabling a pipe, we can't wait for vblank in the usual way,
934 * spinning on the vblank interrupt status bit, since we won't actually
935 * see an interrupt when the pipe is disabled.
936 *
937 * On Gen4 and above:
938 * wait for the pipe register state bit to turn off
939 *
940 * Otherwise:
941 * wait for the display line value to settle (it usually
942 * ends up stopping at the start of the next frame).
943 *
944 */
945 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
946 {
947 struct drm_device *dev = crtc->base.dev;
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
950 enum pipe pipe = crtc->pipe;
951
952 if (INTEL_INFO(dev)->gen >= 4) {
953 int reg = PIPECONF(cpu_transcoder);
954
955 /* Wait for the Pipe State to go off */
956 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
957 100))
958 WARN(1, "pipe_off wait timed out\n");
959 } else {
960 /* Wait for the display line to settle */
961 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
962 WARN(1, "pipe_off wait timed out\n");
963 }
964 }
965
966 /*
967 * ibx_digital_port_connected - is the specified port connected?
968 * @dev_priv: i915 private structure
969 * @port: the port to test
970 *
971 * Returns true if @port is connected, false otherwise.
972 */
973 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
974 struct intel_digital_port *port)
975 {
976 u32 bit;
977
978 if (HAS_PCH_IBX(dev_priv->dev)) {
979 switch (port->port) {
980 case PORT_B:
981 bit = SDE_PORTB_HOTPLUG;
982 break;
983 case PORT_C:
984 bit = SDE_PORTC_HOTPLUG;
985 break;
986 case PORT_D:
987 bit = SDE_PORTD_HOTPLUG;
988 break;
989 default:
990 return true;
991 }
992 } else {
993 switch (port->port) {
994 case PORT_B:
995 bit = SDE_PORTB_HOTPLUG_CPT;
996 break;
997 case PORT_C:
998 bit = SDE_PORTC_HOTPLUG_CPT;
999 break;
1000 case PORT_D:
1001 bit = SDE_PORTD_HOTPLUG_CPT;
1002 break;
1003 default:
1004 return true;
1005 }
1006 }
1007
1008 return I915_READ(SDEISR) & bit;
1009 }
1010
1011 static const char *state_string(bool enabled)
1012 {
1013 return enabled ? "on" : "off";
1014 }
1015
1016 /* Only for pre-ILK configs */
1017 void assert_pll(struct drm_i915_private *dev_priv,
1018 enum pipe pipe, bool state)
1019 {
1020 int reg;
1021 u32 val;
1022 bool cur_state;
1023
1024 reg = DPLL(pipe);
1025 val = I915_READ(reg);
1026 cur_state = !!(val & DPLL_VCO_ENABLE);
1027 WARN(cur_state != state,
1028 "PLL state assertion failure (expected %s, current %s)\n",
1029 state_string(state), state_string(cur_state));
1030 }
1031
1032 /* XXX: the dsi pll is shared between MIPI DSI ports */
1033 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1034 {
1035 u32 val;
1036 bool cur_state;
1037
1038 mutex_lock(&dev_priv->dpio_lock);
1039 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1040 mutex_unlock(&dev_priv->dpio_lock);
1041
1042 cur_state = val & DSI_PLL_VCO_EN;
1043 WARN(cur_state != state,
1044 "DSI PLL state assertion failure (expected %s, current %s)\n",
1045 state_string(state), state_string(cur_state));
1046 }
1047 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1048 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1049
1050 struct intel_shared_dpll *
1051 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1052 {
1053 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1054
1055 if (crtc->config.shared_dpll < 0)
1056 return NULL;
1057
1058 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1059 }
1060
1061 /* For ILK+ */
1062 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1063 struct intel_shared_dpll *pll,
1064 bool state)
1065 {
1066 bool cur_state;
1067 struct intel_dpll_hw_state hw_state;
1068
1069 if (WARN (!pll,
1070 "asserting DPLL %s with no DPLL\n", state_string(state)))
1071 return;
1072
1073 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1074 WARN(cur_state != state,
1075 "%s assertion failure (expected %s, current %s)\n",
1076 pll->name, state_string(state), state_string(cur_state));
1077 }
1078
1079 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1080 enum pipe pipe, bool state)
1081 {
1082 int reg;
1083 u32 val;
1084 bool cur_state;
1085 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1086 pipe);
1087
1088 if (HAS_DDI(dev_priv->dev)) {
1089 /* DDI does not have a specific FDI_TX register */
1090 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1091 val = I915_READ(reg);
1092 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1093 } else {
1094 reg = FDI_TX_CTL(pipe);
1095 val = I915_READ(reg);
1096 cur_state = !!(val & FDI_TX_ENABLE);
1097 }
1098 WARN(cur_state != state,
1099 "FDI TX state assertion failure (expected %s, current %s)\n",
1100 state_string(state), state_string(cur_state));
1101 }
1102 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1103 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1104
1105 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1106 enum pipe pipe, bool state)
1107 {
1108 int reg;
1109 u32 val;
1110 bool cur_state;
1111
1112 reg = FDI_RX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_RX_ENABLE);
1115 WARN(cur_state != state,
1116 "FDI RX state assertion failure (expected %s, current %s)\n",
1117 state_string(state), state_string(cur_state));
1118 }
1119 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1120 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1121
1122 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1123 enum pipe pipe)
1124 {
1125 int reg;
1126 u32 val;
1127
1128 /* ILK FDI PLL is always enabled */
1129 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1130 return;
1131
1132 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1133 if (HAS_DDI(dev_priv->dev))
1134 return;
1135
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1139 }
1140
1141 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143 {
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1151 WARN(cur_state != state,
1152 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154 }
1155
1156 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1157 enum pipe pipe)
1158 {
1159 struct drm_device *dev = dev_priv->dev;
1160 int pp_reg;
1161 u32 val;
1162 enum pipe panel_pipe = PIPE_A;
1163 bool locked = true;
1164
1165 if (WARN_ON(HAS_DDI(dev)))
1166 return;
1167
1168 if (HAS_PCH_SPLIT(dev)) {
1169 u32 port_sel;
1170
1171 pp_reg = PCH_PP_CONTROL;
1172 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1173
1174 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1175 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1176 panel_pipe = PIPE_B;
1177 /* XXX: else fix for eDP */
1178 } else if (IS_VALLEYVIEW(dev)) {
1179 /* presumably write lock depends on pipe, not port select */
1180 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1181 panel_pipe = pipe;
1182 } else {
1183 pp_reg = PP_CONTROL;
1184 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1185 panel_pipe = PIPE_B;
1186 }
1187
1188 val = I915_READ(pp_reg);
1189 if (!(val & PANEL_POWER_ON) ||
1190 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1191 locked = false;
1192
1193 WARN(panel_pipe == pipe && locked,
1194 "panel assertion failure, pipe %c regs locked\n",
1195 pipe_name(pipe));
1196 }
1197
1198 static void assert_cursor(struct drm_i915_private *dev_priv,
1199 enum pipe pipe, bool state)
1200 {
1201 struct drm_device *dev = dev_priv->dev;
1202 bool cur_state;
1203
1204 if (IS_845G(dev) || IS_I865G(dev))
1205 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1206 else
1207 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1208
1209 WARN(cur_state != state,
1210 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1211 pipe_name(pipe), state_string(state), state_string(cur_state));
1212 }
1213 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1214 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1215
1216 void assert_pipe(struct drm_i915_private *dev_priv,
1217 enum pipe pipe, bool state)
1218 {
1219 int reg;
1220 u32 val;
1221 bool cur_state;
1222 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1223 pipe);
1224
1225 /* if we need the pipe quirk it must be always on */
1226 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1227 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1228 state = true;
1229
1230 if (!intel_display_power_is_enabled(dev_priv,
1231 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1232 cur_state = false;
1233 } else {
1234 reg = PIPECONF(cpu_transcoder);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & PIPECONF_ENABLE);
1237 }
1238
1239 WARN(cur_state != state,
1240 "pipe %c assertion failure (expected %s, current %s)\n",
1241 pipe_name(pipe), state_string(state), state_string(cur_state));
1242 }
1243
1244 static void assert_plane(struct drm_i915_private *dev_priv,
1245 enum plane plane, bool state)
1246 {
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1250
1251 reg = DSPCNTR(plane);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1254 WARN(cur_state != state,
1255 "plane %c assertion failure (expected %s, current %s)\n",
1256 plane_name(plane), state_string(state), state_string(cur_state));
1257 }
1258
1259 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1260 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1261
1262 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
1264 {
1265 struct drm_device *dev = dev_priv->dev;
1266 int reg, i;
1267 u32 val;
1268 int cur_pipe;
1269
1270 /* Primary planes are fixed to pipes on gen4+ */
1271 if (INTEL_INFO(dev)->gen >= 4) {
1272 reg = DSPCNTR(pipe);
1273 val = I915_READ(reg);
1274 WARN(val & DISPLAY_PLANE_ENABLE,
1275 "plane %c assertion failure, should be disabled but not\n",
1276 plane_name(pipe));
1277 return;
1278 }
1279
1280 /* Need to check both planes against the pipe */
1281 for_each_pipe(dev_priv, i) {
1282 reg = DSPCNTR(i);
1283 val = I915_READ(reg);
1284 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1285 DISPPLANE_SEL_PIPE_SHIFT;
1286 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1287 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1288 plane_name(i), pipe_name(pipe));
1289 }
1290 }
1291
1292 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe)
1294 {
1295 struct drm_device *dev = dev_priv->dev;
1296 int reg, sprite;
1297 u32 val;
1298
1299 if (INTEL_INFO(dev)->gen >= 9) {
1300 for_each_sprite(pipe, sprite) {
1301 val = I915_READ(PLANE_CTL(pipe, sprite));
1302 WARN(val & PLANE_CTL_ENABLE,
1303 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1304 sprite, pipe_name(pipe));
1305 }
1306 } else if (IS_VALLEYVIEW(dev)) {
1307 for_each_sprite(pipe, sprite) {
1308 reg = SPCNTR(pipe, sprite);
1309 val = I915_READ(reg);
1310 WARN(val & SP_ENABLE,
1311 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1312 sprite_name(pipe, sprite), pipe_name(pipe));
1313 }
1314 } else if (INTEL_INFO(dev)->gen >= 7) {
1315 reg = SPRCTL(pipe);
1316 val = I915_READ(reg);
1317 WARN(val & SPRITE_ENABLE,
1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319 plane_name(pipe), pipe_name(pipe));
1320 } else if (INTEL_INFO(dev)->gen >= 5) {
1321 reg = DVSCNTR(pipe);
1322 val = I915_READ(reg);
1323 WARN(val & DVS_ENABLE,
1324 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1325 plane_name(pipe), pipe_name(pipe));
1326 }
1327 }
1328
1329 static void assert_vblank_disabled(struct drm_crtc *crtc)
1330 {
1331 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1332 drm_crtc_vblank_put(crtc);
1333 }
1334
1335 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1336 {
1337 u32 val;
1338 bool enabled;
1339
1340 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1341
1342 val = I915_READ(PCH_DREF_CONTROL);
1343 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1344 DREF_SUPERSPREAD_SOURCE_MASK));
1345 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1346 }
1347
1348 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1349 enum pipe pipe)
1350 {
1351 int reg;
1352 u32 val;
1353 bool enabled;
1354
1355 reg = PCH_TRANSCONF(pipe);
1356 val = I915_READ(reg);
1357 enabled = !!(val & TRANS_ENABLE);
1358 WARN(enabled,
1359 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1360 pipe_name(pipe));
1361 }
1362
1363 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe, u32 port_sel, u32 val)
1365 {
1366 if ((val & DP_PORT_EN) == 0)
1367 return false;
1368
1369 if (HAS_PCH_CPT(dev_priv->dev)) {
1370 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1371 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1372 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1373 return false;
1374 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1375 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1376 return false;
1377 } else {
1378 if ((val & DP_PIPE_MASK) != (pipe << 30))
1379 return false;
1380 }
1381 return true;
1382 }
1383
1384 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, u32 val)
1386 {
1387 if ((val & SDVO_ENABLE) == 0)
1388 return false;
1389
1390 if (HAS_PCH_CPT(dev_priv->dev)) {
1391 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1392 return false;
1393 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1395 return false;
1396 } else {
1397 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1398 return false;
1399 }
1400 return true;
1401 }
1402
1403 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1404 enum pipe pipe, u32 val)
1405 {
1406 if ((val & LVDS_PORT_EN) == 0)
1407 return false;
1408
1409 if (HAS_PCH_CPT(dev_priv->dev)) {
1410 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1411 return false;
1412 } else {
1413 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1414 return false;
1415 }
1416 return true;
1417 }
1418
1419 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1420 enum pipe pipe, u32 val)
1421 {
1422 if ((val & ADPA_DAC_ENABLE) == 0)
1423 return false;
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1429 return false;
1430 }
1431 return true;
1432 }
1433
1434 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1435 enum pipe pipe, int reg, u32 port_sel)
1436 {
1437 u32 val = I915_READ(reg);
1438 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1439 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1440 reg, pipe_name(pipe));
1441
1442 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1443 && (val & DP_PIPEB_SELECT),
1444 "IBX PCH dp port still using transcoder B\n");
1445 }
1446
1447 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1448 enum pipe pipe, int reg)
1449 {
1450 u32 val = I915_READ(reg);
1451 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1452 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1453 reg, pipe_name(pipe));
1454
1455 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1456 && (val & SDVO_PIPE_B_SELECT),
1457 "IBX PCH hdmi port still using transcoder B\n");
1458 }
1459
1460 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1461 enum pipe pipe)
1462 {
1463 int reg;
1464 u32 val;
1465
1466 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1467 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1469
1470 reg = PCH_ADPA;
1471 val = I915_READ(reg);
1472 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1473 "PCH VGA enabled on transcoder %c, should be disabled\n",
1474 pipe_name(pipe));
1475
1476 reg = PCH_LVDS;
1477 val = I915_READ(reg);
1478 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1479 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1483 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1485 }
1486
1487 static void intel_init_dpio(struct drm_device *dev)
1488 {
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490
1491 if (!IS_VALLEYVIEW(dev))
1492 return;
1493
1494 /*
1495 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1496 * CHV x1 PHY (DP/HDMI D)
1497 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1498 */
1499 if (IS_CHERRYVIEW(dev)) {
1500 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1501 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1502 } else {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1504 }
1505 }
1506
1507 static void vlv_enable_pll(struct intel_crtc *crtc,
1508 const struct intel_crtc_config *pipe_config)
1509 {
1510 struct drm_device *dev = crtc->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 int reg = DPLL(crtc->pipe);
1513 u32 dpll = pipe_config->dpll_hw_state.dpll;
1514
1515 assert_pipe_disabled(dev_priv, crtc->pipe);
1516
1517 /* No really, not for ILK+ */
1518 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1519
1520 /* PLL is protected by panel, make sure we can write it */
1521 if (IS_MOBILE(dev_priv->dev))
1522 assert_panel_unlocked(dev_priv, crtc->pipe);
1523
1524 I915_WRITE(reg, dpll);
1525 POSTING_READ(reg);
1526 udelay(150);
1527
1528 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1529 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1530
1531 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1532 POSTING_READ(DPLL_MD(crtc->pipe));
1533
1534 /* We do this three times for luck */
1535 I915_WRITE(reg, dpll);
1536 POSTING_READ(reg);
1537 udelay(150); /* wait for warmup */
1538 I915_WRITE(reg, dpll);
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
1541 I915_WRITE(reg, dpll);
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544 }
1545
1546 static void chv_enable_pll(struct intel_crtc *crtc,
1547 const struct intel_crtc_config *pipe_config)
1548 {
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 int pipe = crtc->pipe;
1552 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1553 u32 tmp;
1554
1555 assert_pipe_disabled(dev_priv, crtc->pipe);
1556
1557 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1558
1559 mutex_lock(&dev_priv->dpio_lock);
1560
1561 /* Enable back the 10bit clock to display controller */
1562 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1563 tmp |= DPIO_DCLKP_EN;
1564 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1565
1566 /*
1567 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1568 */
1569 udelay(1);
1570
1571 /* Enable PLL */
1572 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1573
1574 /* Check PLL is locked */
1575 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1576 DRM_ERROR("PLL %d failed to lock\n", pipe);
1577
1578 /* not sure when this should be written */
1579 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1580 POSTING_READ(DPLL_MD(pipe));
1581
1582 mutex_unlock(&dev_priv->dpio_lock);
1583 }
1584
1585 static int intel_num_dvo_pipes(struct drm_device *dev)
1586 {
1587 struct intel_crtc *crtc;
1588 int count = 0;
1589
1590 for_each_intel_crtc(dev, crtc)
1591 count += crtc->active &&
1592 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1593
1594 return count;
1595 }
1596
1597 static void i9xx_enable_pll(struct intel_crtc *crtc)
1598 {
1599 struct drm_device *dev = crtc->base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 int reg = DPLL(crtc->pipe);
1602 u32 dpll = crtc->config.dpll_hw_state.dpll;
1603
1604 assert_pipe_disabled(dev_priv, crtc->pipe);
1605
1606 /* No really, not for ILK+ */
1607 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1608
1609 /* PLL is protected by panel, make sure we can write it */
1610 if (IS_MOBILE(dev) && !IS_I830(dev))
1611 assert_panel_unlocked(dev_priv, crtc->pipe);
1612
1613 /* Enable DVO 2x clock on both PLLs if necessary */
1614 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1615 /*
1616 * It appears to be important that we don't enable this
1617 * for the current pipe before otherwise configuring the
1618 * PLL. No idea how this should be handled if multiple
1619 * DVO outputs are enabled simultaneosly.
1620 */
1621 dpll |= DPLL_DVO_2X_MODE;
1622 I915_WRITE(DPLL(!crtc->pipe),
1623 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1624 }
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
1641
1642 /* We do this three times for luck */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 }
1653
1654 /**
1655 * i9xx_disable_pll - disable a PLL
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
1663 static void i9xx_disable_pll(struct intel_crtc *crtc)
1664 {
1665 struct drm_device *dev = crtc->base.dev;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667 enum pipe pipe = crtc->pipe;
1668
1669 /* Disable DVO 2x clock on both PLLs if necessary */
1670 if (IS_I830(dev) &&
1671 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1672 intel_num_dvo_pipes(dev) == 1) {
1673 I915_WRITE(DPLL(PIPE_B),
1674 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1675 I915_WRITE(DPLL(PIPE_A),
1676 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1677 }
1678
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
1689 }
1690
1691 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692 {
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
1702 if (pipe == PIPE_B)
1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
1706
1707 }
1708
1709 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710 {
1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1712 u32 val;
1713
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
1716
1717 /* Set PLL en = 0 */
1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
1742 mutex_unlock(&dev_priv->dpio_lock);
1743 }
1744
1745 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
1747 {
1748 u32 port_mask;
1749 int dpll_reg;
1750
1751 switch (dport->port) {
1752 case PORT_B:
1753 port_mask = DPLL_PORTB_READY_MASK;
1754 dpll_reg = DPLL(0);
1755 break;
1756 case PORT_C:
1757 port_mask = DPLL_PORTC_READY_MASK;
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
1763 break;
1764 default:
1765 BUG();
1766 }
1767
1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1770 port_name(dport->port), I915_READ(dpll_reg));
1771 }
1772
1773 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774 {
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
1782 WARN_ON(!pll->config.crtc_mask);
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790 }
1791
1792 /**
1793 * intel_enable_shared_dpll - enable PCH PLL
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
1800 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1801 {
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1805
1806 if (WARN_ON(pll == NULL))
1807 return;
1808
1809 if (WARN_ON(pll->config.crtc_mask == 0))
1810 return;
1811
1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1813 pll->name, pll->active, pll->on,
1814 crtc->base.base.id);
1815
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
1818 assert_shared_dpll_enabled(dev_priv, pll);
1819 return;
1820 }
1821 WARN_ON(pll->on);
1822
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1826 pll->enable(dev_priv, pll);
1827 pll->on = true;
1828 }
1829
1830 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1831 {
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1835
1836 /* PCH only available on ILK+ */
1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
1838 if (WARN_ON(pll == NULL))
1839 return;
1840
1841 if (WARN_ON(pll->config.crtc_mask == 0))
1842 return;
1843
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
1846 crtc->base.base.id);
1847
1848 if (WARN_ON(pll->active == 0)) {
1849 assert_shared_dpll_disabled(dev_priv, pll);
1850 return;
1851 }
1852
1853 assert_shared_dpll_enabled(dev_priv, pll);
1854 WARN_ON(!pll->on);
1855 if (--pll->active)
1856 return;
1857
1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1859 pll->disable(dev_priv, pll);
1860 pll->on = false;
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1863 }
1864
1865 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
1867 {
1868 struct drm_device *dev = dev_priv->dev;
1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1871 uint32_t reg, val, pipeconf_val;
1872
1873 /* PCH only available on ILK+ */
1874 BUG_ON(!HAS_PCH_SPLIT(dev));
1875
1876 /* Make sure PCH DPLL is enabled */
1877 assert_shared_dpll_enabled(dev_priv,
1878 intel_crtc_to_shared_dpll(intel_crtc));
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
1891 }
1892
1893 reg = PCH_TRANSCONF(pipe);
1894 val = I915_READ(reg);
1895 pipeconf_val = I915_READ(PIPECONF(pipe));
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
1904 }
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1908 if (HAS_PCH_IBX(dev_priv->dev) &&
1909 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1919 }
1920
1921 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1922 enum transcoder cpu_transcoder)
1923 {
1924 u32 val, pipeconf_val;
1925
1926 /* PCH only available on ILK+ */
1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1928
1929 /* FDI must be feeding us bits for PCH ports */
1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1932
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
1938 val = TRANS_ENABLE;
1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1940
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
1943 val |= TRANS_INTERLACED;
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1949 DRM_ERROR("Failed to enable PCH transcoder\n");
1950 }
1951
1952 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
1954 {
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
1965 reg = PCH_TRANSCONF(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
1980 }
1981
1982 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1983 {
1984 u32 val;
1985
1986 val = I915_READ(LPT_TRANSCONF);
1987 val &= ~TRANS_ENABLE;
1988 I915_WRITE(LPT_TRANSCONF, val);
1989 /* wait for PCH transcoder off, transcoder state */
1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1991 DRM_ERROR("Failed to disable PCH transcoder\n");
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1996 I915_WRITE(_TRANSA_CHICKEN2, val);
1997 }
1998
1999 /**
2000 * intel_enable_pipe - enable a pipe, asserting requirements
2001 * @crtc: crtc responsible for the pipe
2002 *
2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2005 */
2006 static void intel_enable_pipe(struct intel_crtc *crtc)
2007 {
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
2013 enum pipe pch_transcoder;
2014 int reg;
2015 u32 val;
2016
2017 assert_planes_disabled(dev_priv, pipe);
2018 assert_cursor_disabled(dev_priv, pipe);
2019 assert_sprites_disabled(dev_priv, pipe);
2020
2021 if (HAS_PCH_LPT(dev_priv->dev))
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
2032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
2036 else {
2037 if (crtc->config.has_pch_encoder) {
2038 /* if driving the PCH, we need FDI enabled */
2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
2045
2046 reg = PIPECONF(cpu_transcoder);
2047 val = I915_READ(reg);
2048 if (val & PIPECONF_ENABLE) {
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2051 return;
2052 }
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
2055 POSTING_READ(reg);
2056 }
2057
2058 /**
2059 * intel_disable_pipe - disable a pipe, asserting requirements
2060 * @crtc: crtc whose pipes is to be disabled
2061 *
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
2068 static void intel_disable_pipe(struct intel_crtc *crtc)
2069 {
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
2081 assert_cursor_disabled(dev_priv, pipe);
2082 assert_sprites_disabled(dev_priv, pipe);
2083
2084 reg = PIPECONF(cpu_transcoder);
2085 val = I915_READ(reg);
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
2104 }
2105
2106 /*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
2110 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
2112 {
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
2118 }
2119
2120 /**
2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
2124 *
2125 * Enable @plane on @crtc, making sure that the pipe is running first.
2126 */
2127 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
2129 {
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2136
2137 if (intel_crtc->primary_enabled)
2138 return;
2139
2140 intel_crtc->primary_enabled = true;
2141
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
2152 }
2153
2154 /**
2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
2158 *
2159 * Disable @plane on @crtc, making sure that the pipe is running first.
2160 */
2161 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
2163 {
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2169
2170 if (!intel_crtc->primary_enabled)
2171 return;
2172
2173 intel_crtc->primary_enabled = false;
2174
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
2177 }
2178
2179 static bool need_vtd_wa(struct drm_device *dev)
2180 {
2181 #ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184 #endif
2185 return false;
2186 }
2187
2188 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189 {
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194 }
2195
2196 int
2197 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2198 struct drm_framebuffer *fb,
2199 struct intel_engine_cs *pipelined)
2200 {
2201 struct drm_device *dev = fb->dev;
2202 struct drm_i915_private *dev_priv = dev->dev_private;
2203 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2204 u32 alignment;
2205 int ret;
2206
2207 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2208
2209 switch (obj->tiling_mode) {
2210 case I915_TILING_NONE:
2211 if (INTEL_INFO(dev)->gen >= 9)
2212 alignment = 256 * 1024;
2213 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2214 alignment = 128 * 1024;
2215 else if (INTEL_INFO(dev)->gen >= 4)
2216 alignment = 4 * 1024;
2217 else
2218 alignment = 64 * 1024;
2219 break;
2220 case I915_TILING_X:
2221 if (INTEL_INFO(dev)->gen >= 9)
2222 alignment = 256 * 1024;
2223 else {
2224 /* pin() will align the object as required by fence */
2225 alignment = 0;
2226 }
2227 break;
2228 case I915_TILING_Y:
2229 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2230 return -EINVAL;
2231 default:
2232 BUG();
2233 }
2234
2235 /* Note that the w/a also requires 64 PTE of padding following the
2236 * bo. We currently fill all unused PTE with the shadow page and so
2237 * we should always have valid PTE following the scanout preventing
2238 * the VT-d warning.
2239 */
2240 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2241 alignment = 256 * 1024;
2242
2243 /*
2244 * Global gtt pte registers are special registers which actually forward
2245 * writes to a chunk of system memory. Which means that there is no risk
2246 * that the register values disappear as soon as we call
2247 * intel_runtime_pm_put(), so it is correct to wrap only the
2248 * pin/unpin/fence and not more.
2249 */
2250 intel_runtime_pm_get(dev_priv);
2251
2252 dev_priv->mm.interruptible = false;
2253 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2254 if (ret)
2255 goto err_interruptible;
2256
2257 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2258 * fence, whereas 965+ only requires a fence if using
2259 * framebuffer compression. For simplicity, we always install
2260 * a fence as the cost is not that onerous.
2261 */
2262 ret = i915_gem_object_get_fence(obj);
2263 if (ret)
2264 goto err_unpin;
2265
2266 i915_gem_object_pin_fence(obj);
2267
2268 dev_priv->mm.interruptible = true;
2269 intel_runtime_pm_put(dev_priv);
2270 return 0;
2271
2272 err_unpin:
2273 i915_gem_object_unpin_from_display_plane(obj);
2274 err_interruptible:
2275 dev_priv->mm.interruptible = true;
2276 intel_runtime_pm_put(dev_priv);
2277 return ret;
2278 }
2279
2280 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2281 {
2282 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2283
2284 i915_gem_object_unpin_fence(obj);
2285 i915_gem_object_unpin_from_display_plane(obj);
2286 }
2287
2288 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2289 * is assumed to be a power-of-two. */
2290 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2291 unsigned int tiling_mode,
2292 unsigned int cpp,
2293 unsigned int pitch)
2294 {
2295 if (tiling_mode != I915_TILING_NONE) {
2296 unsigned int tile_rows, tiles;
2297
2298 tile_rows = *y / 8;
2299 *y %= 8;
2300
2301 tiles = *x / (512/cpp);
2302 *x %= 512/cpp;
2303
2304 return tile_rows * pitch * 8 + tiles * 4096;
2305 } else {
2306 unsigned int offset;
2307
2308 offset = *y * pitch + *x * cpp;
2309 *y = 0;
2310 *x = (offset & 4095) / cpp;
2311 return offset & -4096;
2312 }
2313 }
2314
2315 int intel_format_to_fourcc(int format)
2316 {
2317 switch (format) {
2318 case DISPPLANE_8BPP:
2319 return DRM_FORMAT_C8;
2320 case DISPPLANE_BGRX555:
2321 return DRM_FORMAT_XRGB1555;
2322 case DISPPLANE_BGRX565:
2323 return DRM_FORMAT_RGB565;
2324 default:
2325 case DISPPLANE_BGRX888:
2326 return DRM_FORMAT_XRGB8888;
2327 case DISPPLANE_RGBX888:
2328 return DRM_FORMAT_XBGR8888;
2329 case DISPPLANE_BGRX101010:
2330 return DRM_FORMAT_XRGB2101010;
2331 case DISPPLANE_RGBX101010:
2332 return DRM_FORMAT_XBGR2101010;
2333 }
2334 }
2335
2336 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2337 struct intel_plane_config *plane_config)
2338 {
2339 struct drm_device *dev = crtc->base.dev;
2340 struct drm_i915_gem_object *obj = NULL;
2341 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2342 u32 base = plane_config->base;
2343
2344 if (plane_config->size == 0)
2345 return false;
2346
2347 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2348 plane_config->size);
2349 if (!obj)
2350 return false;
2351
2352 if (plane_config->tiled) {
2353 obj->tiling_mode = I915_TILING_X;
2354 obj->stride = crtc->base.primary->fb->pitches[0];
2355 }
2356
2357 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2358 mode_cmd.width = crtc->base.primary->fb->width;
2359 mode_cmd.height = crtc->base.primary->fb->height;
2360 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2361
2362 mutex_lock(&dev->struct_mutex);
2363
2364 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2365 &mode_cmd, obj)) {
2366 DRM_DEBUG_KMS("intel fb init failed\n");
2367 goto out_unref_obj;
2368 }
2369
2370 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2371 mutex_unlock(&dev->struct_mutex);
2372
2373 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2374 return true;
2375
2376 out_unref_obj:
2377 drm_gem_object_unreference(&obj->base);
2378 mutex_unlock(&dev->struct_mutex);
2379 return false;
2380 }
2381
2382 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2383 struct intel_plane_config *plane_config)
2384 {
2385 struct drm_device *dev = intel_crtc->base.dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct drm_crtc *c;
2388 struct intel_crtc *i;
2389 struct drm_i915_gem_object *obj;
2390
2391 if (!intel_crtc->base.primary->fb)
2392 return;
2393
2394 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2395 return;
2396
2397 kfree(intel_crtc->base.primary->fb);
2398 intel_crtc->base.primary->fb = NULL;
2399
2400 /*
2401 * Failed to alloc the obj, check to see if we should share
2402 * an fb with another CRTC instead
2403 */
2404 for_each_crtc(dev, c) {
2405 i = to_intel_crtc(c);
2406
2407 if (c == &intel_crtc->base)
2408 continue;
2409
2410 if (!i->active)
2411 continue;
2412
2413 obj = intel_fb_obj(c->primary->fb);
2414 if (obj == NULL)
2415 continue;
2416
2417 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2418 if (obj->tiling_mode != I915_TILING_NONE)
2419 dev_priv->preserve_bios_swizzle = true;
2420
2421 drm_framebuffer_reference(c->primary->fb);
2422 intel_crtc->base.primary->fb = c->primary->fb;
2423 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2424 break;
2425 }
2426 }
2427 }
2428
2429 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2430 struct drm_framebuffer *fb,
2431 int x, int y)
2432 {
2433 struct drm_device *dev = crtc->dev;
2434 struct drm_i915_private *dev_priv = dev->dev_private;
2435 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2436 struct drm_i915_gem_object *obj;
2437 int plane = intel_crtc->plane;
2438 unsigned long linear_offset;
2439 u32 dspcntr;
2440 u32 reg = DSPCNTR(plane);
2441 int pixel_size;
2442
2443 if (!intel_crtc->primary_enabled) {
2444 I915_WRITE(reg, 0);
2445 if (INTEL_INFO(dev)->gen >= 4)
2446 I915_WRITE(DSPSURF(plane), 0);
2447 else
2448 I915_WRITE(DSPADDR(plane), 0);
2449 POSTING_READ(reg);
2450 return;
2451 }
2452
2453 obj = intel_fb_obj(fb);
2454 if (WARN_ON(obj == NULL))
2455 return;
2456
2457 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2458
2459 dspcntr = DISPPLANE_GAMMA_ENABLE;
2460
2461 dspcntr |= DISPLAY_PLANE_ENABLE;
2462
2463 if (INTEL_INFO(dev)->gen < 4) {
2464 if (intel_crtc->pipe == PIPE_B)
2465 dspcntr |= DISPPLANE_SEL_PIPE_B;
2466
2467 /* pipesrc and dspsize control the size that is scaled from,
2468 * which should always be the user's requested size.
2469 */
2470 I915_WRITE(DSPSIZE(plane),
2471 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2472 (intel_crtc->config.pipe_src_w - 1));
2473 I915_WRITE(DSPPOS(plane), 0);
2474 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2475 I915_WRITE(PRIMSIZE(plane),
2476 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2477 (intel_crtc->config.pipe_src_w - 1));
2478 I915_WRITE(PRIMPOS(plane), 0);
2479 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2480 }
2481
2482 switch (fb->pixel_format) {
2483 case DRM_FORMAT_C8:
2484 dspcntr |= DISPPLANE_8BPP;
2485 break;
2486 case DRM_FORMAT_XRGB1555:
2487 case DRM_FORMAT_ARGB1555:
2488 dspcntr |= DISPPLANE_BGRX555;
2489 break;
2490 case DRM_FORMAT_RGB565:
2491 dspcntr |= DISPPLANE_BGRX565;
2492 break;
2493 case DRM_FORMAT_XRGB8888:
2494 case DRM_FORMAT_ARGB8888:
2495 dspcntr |= DISPPLANE_BGRX888;
2496 break;
2497 case DRM_FORMAT_XBGR8888:
2498 case DRM_FORMAT_ABGR8888:
2499 dspcntr |= DISPPLANE_RGBX888;
2500 break;
2501 case DRM_FORMAT_XRGB2101010:
2502 case DRM_FORMAT_ARGB2101010:
2503 dspcntr |= DISPPLANE_BGRX101010;
2504 break;
2505 case DRM_FORMAT_XBGR2101010:
2506 case DRM_FORMAT_ABGR2101010:
2507 dspcntr |= DISPPLANE_RGBX101010;
2508 break;
2509 default:
2510 BUG();
2511 }
2512
2513 if (INTEL_INFO(dev)->gen >= 4 &&
2514 obj->tiling_mode != I915_TILING_NONE)
2515 dspcntr |= DISPPLANE_TILED;
2516
2517 if (IS_G4X(dev))
2518 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2519
2520 linear_offset = y * fb->pitches[0] + x * pixel_size;
2521
2522 if (INTEL_INFO(dev)->gen >= 4) {
2523 intel_crtc->dspaddr_offset =
2524 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525 pixel_size,
2526 fb->pitches[0]);
2527 linear_offset -= intel_crtc->dspaddr_offset;
2528 } else {
2529 intel_crtc->dspaddr_offset = linear_offset;
2530 }
2531
2532 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2533 dspcntr |= DISPPLANE_ROTATE_180;
2534
2535 x += (intel_crtc->config.pipe_src_w - 1);
2536 y += (intel_crtc->config.pipe_src_h - 1);
2537
2538 /* Finding the last pixel of the last line of the display
2539 data and adding to linear_offset*/
2540 linear_offset +=
2541 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2542 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2543 }
2544
2545 I915_WRITE(reg, dspcntr);
2546
2547 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2548 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2549 fb->pitches[0]);
2550 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2551 if (INTEL_INFO(dev)->gen >= 4) {
2552 I915_WRITE(DSPSURF(plane),
2553 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2554 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2555 I915_WRITE(DSPLINOFF(plane), linear_offset);
2556 } else
2557 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2558 POSTING_READ(reg);
2559 }
2560
2561 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2562 struct drm_framebuffer *fb,
2563 int x, int y)
2564 {
2565 struct drm_device *dev = crtc->dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2568 struct drm_i915_gem_object *obj;
2569 int plane = intel_crtc->plane;
2570 unsigned long linear_offset;
2571 u32 dspcntr;
2572 u32 reg = DSPCNTR(plane);
2573 int pixel_size;
2574
2575 if (!intel_crtc->primary_enabled) {
2576 I915_WRITE(reg, 0);
2577 I915_WRITE(DSPSURF(plane), 0);
2578 POSTING_READ(reg);
2579 return;
2580 }
2581
2582 obj = intel_fb_obj(fb);
2583 if (WARN_ON(obj == NULL))
2584 return;
2585
2586 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2587
2588 dspcntr = DISPPLANE_GAMMA_ENABLE;
2589
2590 dspcntr |= DISPLAY_PLANE_ENABLE;
2591
2592 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2593 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2594
2595 switch (fb->pixel_format) {
2596 case DRM_FORMAT_C8:
2597 dspcntr |= DISPPLANE_8BPP;
2598 break;
2599 case DRM_FORMAT_RGB565:
2600 dspcntr |= DISPPLANE_BGRX565;
2601 break;
2602 case DRM_FORMAT_XRGB8888:
2603 case DRM_FORMAT_ARGB8888:
2604 dspcntr |= DISPPLANE_BGRX888;
2605 break;
2606 case DRM_FORMAT_XBGR8888:
2607 case DRM_FORMAT_ABGR8888:
2608 dspcntr |= DISPPLANE_RGBX888;
2609 break;
2610 case DRM_FORMAT_XRGB2101010:
2611 case DRM_FORMAT_ARGB2101010:
2612 dspcntr |= DISPPLANE_BGRX101010;
2613 break;
2614 case DRM_FORMAT_XBGR2101010:
2615 case DRM_FORMAT_ABGR2101010:
2616 dspcntr |= DISPPLANE_RGBX101010;
2617 break;
2618 default:
2619 BUG();
2620 }
2621
2622 if (obj->tiling_mode != I915_TILING_NONE)
2623 dspcntr |= DISPPLANE_TILED;
2624
2625 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2626 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2627
2628 linear_offset = y * fb->pitches[0] + x * pixel_size;
2629 intel_crtc->dspaddr_offset =
2630 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2631 pixel_size,
2632 fb->pitches[0]);
2633 linear_offset -= intel_crtc->dspaddr_offset;
2634 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2635 dspcntr |= DISPPLANE_ROTATE_180;
2636
2637 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2638 x += (intel_crtc->config.pipe_src_w - 1);
2639 y += (intel_crtc->config.pipe_src_h - 1);
2640
2641 /* Finding the last pixel of the last line of the display
2642 data and adding to linear_offset*/
2643 linear_offset +=
2644 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2645 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2646 }
2647 }
2648
2649 I915_WRITE(reg, dspcntr);
2650
2651 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2652 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2653 fb->pitches[0]);
2654 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2655 I915_WRITE(DSPSURF(plane),
2656 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2657 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2658 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2659 } else {
2660 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2661 I915_WRITE(DSPLINOFF(plane), linear_offset);
2662 }
2663 POSTING_READ(reg);
2664 }
2665
2666 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2667 struct drm_framebuffer *fb,
2668 int x, int y)
2669 {
2670 struct drm_device *dev = crtc->dev;
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2673 struct intel_framebuffer *intel_fb;
2674 struct drm_i915_gem_object *obj;
2675 int pipe = intel_crtc->pipe;
2676 u32 plane_ctl, stride;
2677
2678 if (!intel_crtc->primary_enabled) {
2679 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2680 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2681 POSTING_READ(PLANE_CTL(pipe, 0));
2682 return;
2683 }
2684
2685 plane_ctl = PLANE_CTL_ENABLE |
2686 PLANE_CTL_PIPE_GAMMA_ENABLE |
2687 PLANE_CTL_PIPE_CSC_ENABLE;
2688
2689 switch (fb->pixel_format) {
2690 case DRM_FORMAT_RGB565:
2691 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2692 break;
2693 case DRM_FORMAT_XRGB8888:
2694 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2695 break;
2696 case DRM_FORMAT_XBGR8888:
2697 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2698 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2699 break;
2700 case DRM_FORMAT_XRGB2101010:
2701 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2702 break;
2703 case DRM_FORMAT_XBGR2101010:
2704 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2705 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2706 break;
2707 default:
2708 BUG();
2709 }
2710
2711 intel_fb = to_intel_framebuffer(fb);
2712 obj = intel_fb->obj;
2713
2714 /*
2715 * The stride is either expressed as a multiple of 64 bytes chunks for
2716 * linear buffers or in number of tiles for tiled buffers.
2717 */
2718 switch (obj->tiling_mode) {
2719 case I915_TILING_NONE:
2720 stride = fb->pitches[0] >> 6;
2721 break;
2722 case I915_TILING_X:
2723 plane_ctl |= PLANE_CTL_TILED_X;
2724 stride = fb->pitches[0] >> 9;
2725 break;
2726 default:
2727 BUG();
2728 }
2729
2730 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2731 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2732 plane_ctl |= PLANE_CTL_ROTATE_180;
2733
2734 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2735
2736 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2737 i915_gem_obj_ggtt_offset(obj),
2738 x, y, fb->width, fb->height,
2739 fb->pitches[0]);
2740
2741 I915_WRITE(PLANE_POS(pipe, 0), 0);
2742 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2743 I915_WRITE(PLANE_SIZE(pipe, 0),
2744 (intel_crtc->config.pipe_src_h - 1) << 16 |
2745 (intel_crtc->config.pipe_src_w - 1));
2746 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2747 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2748
2749 POSTING_READ(PLANE_SURF(pipe, 0));
2750 }
2751
2752 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2753 static int
2754 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2755 int x, int y, enum mode_set_atomic state)
2756 {
2757 struct drm_device *dev = crtc->dev;
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759
2760 if (dev_priv->display.disable_fbc)
2761 dev_priv->display.disable_fbc(dev);
2762
2763 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2764
2765 return 0;
2766 }
2767
2768 void intel_display_handle_reset(struct drm_device *dev)
2769 {
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771 struct drm_crtc *crtc;
2772
2773 /*
2774 * Flips in the rings have been nuked by the reset,
2775 * so complete all pending flips so that user space
2776 * will get its events and not get stuck.
2777 *
2778 * Also update the base address of all primary
2779 * planes to the the last fb to make sure we're
2780 * showing the correct fb after a reset.
2781 *
2782 * Need to make two loops over the crtcs so that we
2783 * don't try to grab a crtc mutex before the
2784 * pending_flip_queue really got woken up.
2785 */
2786
2787 for_each_crtc(dev, crtc) {
2788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2789 enum plane plane = intel_crtc->plane;
2790
2791 intel_prepare_page_flip(dev, plane);
2792 intel_finish_page_flip_plane(dev, plane);
2793 }
2794
2795 for_each_crtc(dev, crtc) {
2796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797
2798 drm_modeset_lock(&crtc->mutex, NULL);
2799 /*
2800 * FIXME: Once we have proper support for primary planes (and
2801 * disabling them without disabling the entire crtc) allow again
2802 * a NULL crtc->primary->fb.
2803 */
2804 if (intel_crtc->active && crtc->primary->fb)
2805 dev_priv->display.update_primary_plane(crtc,
2806 crtc->primary->fb,
2807 crtc->x,
2808 crtc->y);
2809 drm_modeset_unlock(&crtc->mutex);
2810 }
2811 }
2812
2813 static int
2814 intel_finish_fb(struct drm_framebuffer *old_fb)
2815 {
2816 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2817 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2818 bool was_interruptible = dev_priv->mm.interruptible;
2819 int ret;
2820
2821 /* Big Hammer, we also need to ensure that any pending
2822 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2823 * current scanout is retired before unpinning the old
2824 * framebuffer.
2825 *
2826 * This should only fail upon a hung GPU, in which case we
2827 * can safely continue.
2828 */
2829 dev_priv->mm.interruptible = false;
2830 ret = i915_gem_object_finish_gpu(obj);
2831 dev_priv->mm.interruptible = was_interruptible;
2832
2833 return ret;
2834 }
2835
2836 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2837 {
2838 struct drm_device *dev = crtc->dev;
2839 struct drm_i915_private *dev_priv = dev->dev_private;
2840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2841 bool pending;
2842
2843 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2844 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2845 return false;
2846
2847 spin_lock_irq(&dev->event_lock);
2848 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2849 spin_unlock_irq(&dev->event_lock);
2850
2851 return pending;
2852 }
2853
2854 static void intel_update_pipe_size(struct intel_crtc *crtc)
2855 {
2856 struct drm_device *dev = crtc->base.dev;
2857 struct drm_i915_private *dev_priv = dev->dev_private;
2858 const struct drm_display_mode *adjusted_mode;
2859
2860 if (!i915.fastboot)
2861 return;
2862
2863 /*
2864 * Update pipe size and adjust fitter if needed: the reason for this is
2865 * that in compute_mode_changes we check the native mode (not the pfit
2866 * mode) to see if we can flip rather than do a full mode set. In the
2867 * fastboot case, we'll flip, but if we don't update the pipesrc and
2868 * pfit state, we'll end up with a big fb scanned out into the wrong
2869 * sized surface.
2870 *
2871 * To fix this properly, we need to hoist the checks up into
2872 * compute_mode_changes (or above), check the actual pfit state and
2873 * whether the platform allows pfit disable with pipe active, and only
2874 * then update the pipesrc and pfit state, even on the flip path.
2875 */
2876
2877 adjusted_mode = &crtc->config.adjusted_mode;
2878
2879 I915_WRITE(PIPESRC(crtc->pipe),
2880 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2881 (adjusted_mode->crtc_vdisplay - 1));
2882 if (!crtc->config.pch_pfit.enabled &&
2883 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2884 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2885 I915_WRITE(PF_CTL(crtc->pipe), 0);
2886 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2887 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2888 }
2889 crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2890 crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2891 }
2892
2893 static int
2894 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2895 struct drm_framebuffer *fb)
2896 {
2897 struct drm_device *dev = crtc->dev;
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2900 enum pipe pipe = intel_crtc->pipe;
2901 struct drm_framebuffer *old_fb = crtc->primary->fb;
2902 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2903 int ret;
2904
2905 if (intel_crtc_has_pending_flip(crtc)) {
2906 DRM_ERROR("pipe is still busy with an old pageflip\n");
2907 return -EBUSY;
2908 }
2909
2910 /* no fb bound */
2911 if (!fb) {
2912 DRM_ERROR("No FB bound\n");
2913 return 0;
2914 }
2915
2916 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2917 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2918 plane_name(intel_crtc->plane),
2919 INTEL_INFO(dev)->num_pipes);
2920 return -EINVAL;
2921 }
2922
2923 mutex_lock(&dev->struct_mutex);
2924 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
2925 if (ret == 0)
2926 i915_gem_track_fb(old_obj, intel_fb_obj(fb),
2927 INTEL_FRONTBUFFER_PRIMARY(pipe));
2928 mutex_unlock(&dev->struct_mutex);
2929 if (ret != 0) {
2930 DRM_ERROR("pin & fence failed\n");
2931 return ret;
2932 }
2933
2934 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2935
2936 if (intel_crtc->active)
2937 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2938
2939 crtc->primary->fb = fb;
2940 crtc->x = x;
2941 crtc->y = y;
2942
2943 if (old_fb) {
2944 if (intel_crtc->active && old_fb != fb)
2945 intel_wait_for_vblank(dev, intel_crtc->pipe);
2946 mutex_lock(&dev->struct_mutex);
2947 intel_unpin_fb_obj(old_obj);
2948 mutex_unlock(&dev->struct_mutex);
2949 }
2950
2951 mutex_lock(&dev->struct_mutex);
2952 intel_update_fbc(dev);
2953 mutex_unlock(&dev->struct_mutex);
2954
2955 return 0;
2956 }
2957
2958 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2959 {
2960 struct drm_device *dev = crtc->dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2963 int pipe = intel_crtc->pipe;
2964 u32 reg, temp;
2965
2966 /* enable normal train */
2967 reg = FDI_TX_CTL(pipe);
2968 temp = I915_READ(reg);
2969 if (IS_IVYBRIDGE(dev)) {
2970 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2971 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2972 } else {
2973 temp &= ~FDI_LINK_TRAIN_NONE;
2974 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2975 }
2976 I915_WRITE(reg, temp);
2977
2978 reg = FDI_RX_CTL(pipe);
2979 temp = I915_READ(reg);
2980 if (HAS_PCH_CPT(dev)) {
2981 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2982 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2983 } else {
2984 temp &= ~FDI_LINK_TRAIN_NONE;
2985 temp |= FDI_LINK_TRAIN_NONE;
2986 }
2987 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2988
2989 /* wait one idle pattern time */
2990 POSTING_READ(reg);
2991 udelay(1000);
2992
2993 /* IVB wants error correction enabled */
2994 if (IS_IVYBRIDGE(dev))
2995 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2996 FDI_FE_ERRC_ENABLE);
2997 }
2998
2999 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3000 {
3001 return crtc->base.enabled && crtc->active &&
3002 crtc->config.has_pch_encoder;
3003 }
3004
3005 static void ivb_modeset_global_resources(struct drm_device *dev)
3006 {
3007 struct drm_i915_private *dev_priv = dev->dev_private;
3008 struct intel_crtc *pipe_B_crtc =
3009 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3010 struct intel_crtc *pipe_C_crtc =
3011 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3012 uint32_t temp;
3013
3014 /*
3015 * When everything is off disable fdi C so that we could enable fdi B
3016 * with all lanes. Note that we don't care about enabled pipes without
3017 * an enabled pch encoder.
3018 */
3019 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3020 !pipe_has_enabled_pch(pipe_C_crtc)) {
3021 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3022 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3023
3024 temp = I915_READ(SOUTH_CHICKEN1);
3025 temp &= ~FDI_BC_BIFURCATION_SELECT;
3026 DRM_DEBUG_KMS("disabling fdi C rx\n");
3027 I915_WRITE(SOUTH_CHICKEN1, temp);
3028 }
3029 }
3030
3031 /* The FDI link training functions for ILK/Ibexpeak. */
3032 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3033 {
3034 struct drm_device *dev = crtc->dev;
3035 struct drm_i915_private *dev_priv = dev->dev_private;
3036 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3037 int pipe = intel_crtc->pipe;
3038 u32 reg, temp, tries;
3039
3040 /* FDI needs bits from pipe first */
3041 assert_pipe_enabled(dev_priv, pipe);
3042
3043 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3044 for train result */
3045 reg = FDI_RX_IMR(pipe);
3046 temp = I915_READ(reg);
3047 temp &= ~FDI_RX_SYMBOL_LOCK;
3048 temp &= ~FDI_RX_BIT_LOCK;
3049 I915_WRITE(reg, temp);
3050 I915_READ(reg);
3051 udelay(150);
3052
3053 /* enable CPU FDI TX and PCH FDI RX */
3054 reg = FDI_TX_CTL(pipe);
3055 temp = I915_READ(reg);
3056 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3057 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3058 temp &= ~FDI_LINK_TRAIN_NONE;
3059 temp |= FDI_LINK_TRAIN_PATTERN_1;
3060 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3061
3062 reg = FDI_RX_CTL(pipe);
3063 temp = I915_READ(reg);
3064 temp &= ~FDI_LINK_TRAIN_NONE;
3065 temp |= FDI_LINK_TRAIN_PATTERN_1;
3066 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3067
3068 POSTING_READ(reg);
3069 udelay(150);
3070
3071 /* Ironlake workaround, enable clock pointer after FDI enable*/
3072 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3073 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3074 FDI_RX_PHASE_SYNC_POINTER_EN);
3075
3076 reg = FDI_RX_IIR(pipe);
3077 for (tries = 0; tries < 5; tries++) {
3078 temp = I915_READ(reg);
3079 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3080
3081 if ((temp & FDI_RX_BIT_LOCK)) {
3082 DRM_DEBUG_KMS("FDI train 1 done.\n");
3083 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3084 break;
3085 }
3086 }
3087 if (tries == 5)
3088 DRM_ERROR("FDI train 1 fail!\n");
3089
3090 /* Train 2 */
3091 reg = FDI_TX_CTL(pipe);
3092 temp = I915_READ(reg);
3093 temp &= ~FDI_LINK_TRAIN_NONE;
3094 temp |= FDI_LINK_TRAIN_PATTERN_2;
3095 I915_WRITE(reg, temp);
3096
3097 reg = FDI_RX_CTL(pipe);
3098 temp = I915_READ(reg);
3099 temp &= ~FDI_LINK_TRAIN_NONE;
3100 temp |= FDI_LINK_TRAIN_PATTERN_2;
3101 I915_WRITE(reg, temp);
3102
3103 POSTING_READ(reg);
3104 udelay(150);
3105
3106 reg = FDI_RX_IIR(pipe);
3107 for (tries = 0; tries < 5; tries++) {
3108 temp = I915_READ(reg);
3109 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3110
3111 if (temp & FDI_RX_SYMBOL_LOCK) {
3112 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3113 DRM_DEBUG_KMS("FDI train 2 done.\n");
3114 break;
3115 }
3116 }
3117 if (tries == 5)
3118 DRM_ERROR("FDI train 2 fail!\n");
3119
3120 DRM_DEBUG_KMS("FDI train done\n");
3121
3122 }
3123
3124 static const int snb_b_fdi_train_param[] = {
3125 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3126 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3127 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3128 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3129 };
3130
3131 /* The FDI link training functions for SNB/Cougarpoint. */
3132 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3133 {
3134 struct drm_device *dev = crtc->dev;
3135 struct drm_i915_private *dev_priv = dev->dev_private;
3136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3137 int pipe = intel_crtc->pipe;
3138 u32 reg, temp, i, retry;
3139
3140 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3141 for train result */
3142 reg = FDI_RX_IMR(pipe);
3143 temp = I915_READ(reg);
3144 temp &= ~FDI_RX_SYMBOL_LOCK;
3145 temp &= ~FDI_RX_BIT_LOCK;
3146 I915_WRITE(reg, temp);
3147
3148 POSTING_READ(reg);
3149 udelay(150);
3150
3151 /* enable CPU FDI TX and PCH FDI RX */
3152 reg = FDI_TX_CTL(pipe);
3153 temp = I915_READ(reg);
3154 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3155 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3156 temp &= ~FDI_LINK_TRAIN_NONE;
3157 temp |= FDI_LINK_TRAIN_PATTERN_1;
3158 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3159 /* SNB-B */
3160 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3161 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3162
3163 I915_WRITE(FDI_RX_MISC(pipe),
3164 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3165
3166 reg = FDI_RX_CTL(pipe);
3167 temp = I915_READ(reg);
3168 if (HAS_PCH_CPT(dev)) {
3169 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3170 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3171 } else {
3172 temp &= ~FDI_LINK_TRAIN_NONE;
3173 temp |= FDI_LINK_TRAIN_PATTERN_1;
3174 }
3175 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3176
3177 POSTING_READ(reg);
3178 udelay(150);
3179
3180 for (i = 0; i < 4; i++) {
3181 reg = FDI_TX_CTL(pipe);
3182 temp = I915_READ(reg);
3183 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3184 temp |= snb_b_fdi_train_param[i];
3185 I915_WRITE(reg, temp);
3186
3187 POSTING_READ(reg);
3188 udelay(500);
3189
3190 for (retry = 0; retry < 5; retry++) {
3191 reg = FDI_RX_IIR(pipe);
3192 temp = I915_READ(reg);
3193 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3194 if (temp & FDI_RX_BIT_LOCK) {
3195 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3196 DRM_DEBUG_KMS("FDI train 1 done.\n");
3197 break;
3198 }
3199 udelay(50);
3200 }
3201 if (retry < 5)
3202 break;
3203 }
3204 if (i == 4)
3205 DRM_ERROR("FDI train 1 fail!\n");
3206
3207 /* Train 2 */
3208 reg = FDI_TX_CTL(pipe);
3209 temp = I915_READ(reg);
3210 temp &= ~FDI_LINK_TRAIN_NONE;
3211 temp |= FDI_LINK_TRAIN_PATTERN_2;
3212 if (IS_GEN6(dev)) {
3213 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3214 /* SNB-B */
3215 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3216 }
3217 I915_WRITE(reg, temp);
3218
3219 reg = FDI_RX_CTL(pipe);
3220 temp = I915_READ(reg);
3221 if (HAS_PCH_CPT(dev)) {
3222 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3223 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3224 } else {
3225 temp &= ~FDI_LINK_TRAIN_NONE;
3226 temp |= FDI_LINK_TRAIN_PATTERN_2;
3227 }
3228 I915_WRITE(reg, temp);
3229
3230 POSTING_READ(reg);
3231 udelay(150);
3232
3233 for (i = 0; i < 4; i++) {
3234 reg = FDI_TX_CTL(pipe);
3235 temp = I915_READ(reg);
3236 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3237 temp |= snb_b_fdi_train_param[i];
3238 I915_WRITE(reg, temp);
3239
3240 POSTING_READ(reg);
3241 udelay(500);
3242
3243 for (retry = 0; retry < 5; retry++) {
3244 reg = FDI_RX_IIR(pipe);
3245 temp = I915_READ(reg);
3246 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3247 if (temp & FDI_RX_SYMBOL_LOCK) {
3248 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3249 DRM_DEBUG_KMS("FDI train 2 done.\n");
3250 break;
3251 }
3252 udelay(50);
3253 }
3254 if (retry < 5)
3255 break;
3256 }
3257 if (i == 4)
3258 DRM_ERROR("FDI train 2 fail!\n");
3259
3260 DRM_DEBUG_KMS("FDI train done.\n");
3261 }
3262
3263 /* Manual link training for Ivy Bridge A0 parts */
3264 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3265 {
3266 struct drm_device *dev = crtc->dev;
3267 struct drm_i915_private *dev_priv = dev->dev_private;
3268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3269 int pipe = intel_crtc->pipe;
3270 u32 reg, temp, i, j;
3271
3272 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3273 for train result */
3274 reg = FDI_RX_IMR(pipe);
3275 temp = I915_READ(reg);
3276 temp &= ~FDI_RX_SYMBOL_LOCK;
3277 temp &= ~FDI_RX_BIT_LOCK;
3278 I915_WRITE(reg, temp);
3279
3280 POSTING_READ(reg);
3281 udelay(150);
3282
3283 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3284 I915_READ(FDI_RX_IIR(pipe)));
3285
3286 /* Try each vswing and preemphasis setting twice before moving on */
3287 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3288 /* disable first in case we need to retry */
3289 reg = FDI_TX_CTL(pipe);
3290 temp = I915_READ(reg);
3291 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3292 temp &= ~FDI_TX_ENABLE;
3293 I915_WRITE(reg, temp);
3294
3295 reg = FDI_RX_CTL(pipe);
3296 temp = I915_READ(reg);
3297 temp &= ~FDI_LINK_TRAIN_AUTO;
3298 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3299 temp &= ~FDI_RX_ENABLE;
3300 I915_WRITE(reg, temp);
3301
3302 /* enable CPU FDI TX and PCH FDI RX */
3303 reg = FDI_TX_CTL(pipe);
3304 temp = I915_READ(reg);
3305 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3306 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3307 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3308 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3309 temp |= snb_b_fdi_train_param[j/2];
3310 temp |= FDI_COMPOSITE_SYNC;
3311 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3312
3313 I915_WRITE(FDI_RX_MISC(pipe),
3314 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3315
3316 reg = FDI_RX_CTL(pipe);
3317 temp = I915_READ(reg);
3318 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3319 temp |= FDI_COMPOSITE_SYNC;
3320 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3321
3322 POSTING_READ(reg);
3323 udelay(1); /* should be 0.5us */
3324
3325 for (i = 0; i < 4; i++) {
3326 reg = FDI_RX_IIR(pipe);
3327 temp = I915_READ(reg);
3328 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3329
3330 if (temp & FDI_RX_BIT_LOCK ||
3331 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3332 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3333 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3334 i);
3335 break;
3336 }
3337 udelay(1); /* should be 0.5us */
3338 }
3339 if (i == 4) {
3340 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3341 continue;
3342 }
3343
3344 /* Train 2 */
3345 reg = FDI_TX_CTL(pipe);
3346 temp = I915_READ(reg);
3347 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3348 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3349 I915_WRITE(reg, temp);
3350
3351 reg = FDI_RX_CTL(pipe);
3352 temp = I915_READ(reg);
3353 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3354 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3355 I915_WRITE(reg, temp);
3356
3357 POSTING_READ(reg);
3358 udelay(2); /* should be 1.5us */
3359
3360 for (i = 0; i < 4; i++) {
3361 reg = FDI_RX_IIR(pipe);
3362 temp = I915_READ(reg);
3363 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3364
3365 if (temp & FDI_RX_SYMBOL_LOCK ||
3366 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3367 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3368 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3369 i);
3370 goto train_done;
3371 }
3372 udelay(2); /* should be 1.5us */
3373 }
3374 if (i == 4)
3375 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3376 }
3377
3378 train_done:
3379 DRM_DEBUG_KMS("FDI train done.\n");
3380 }
3381
3382 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3383 {
3384 struct drm_device *dev = intel_crtc->base.dev;
3385 struct drm_i915_private *dev_priv = dev->dev_private;
3386 int pipe = intel_crtc->pipe;
3387 u32 reg, temp;
3388
3389
3390 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3391 reg = FDI_RX_CTL(pipe);
3392 temp = I915_READ(reg);
3393 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3394 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3395 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3396 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3397
3398 POSTING_READ(reg);
3399 udelay(200);
3400
3401 /* Switch from Rawclk to PCDclk */
3402 temp = I915_READ(reg);
3403 I915_WRITE(reg, temp | FDI_PCDCLK);
3404
3405 POSTING_READ(reg);
3406 udelay(200);
3407
3408 /* Enable CPU FDI TX PLL, always on for Ironlake */
3409 reg = FDI_TX_CTL(pipe);
3410 temp = I915_READ(reg);
3411 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3412 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3413
3414 POSTING_READ(reg);
3415 udelay(100);
3416 }
3417 }
3418
3419 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3420 {
3421 struct drm_device *dev = intel_crtc->base.dev;
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 int pipe = intel_crtc->pipe;
3424 u32 reg, temp;
3425
3426 /* Switch from PCDclk to Rawclk */
3427 reg = FDI_RX_CTL(pipe);
3428 temp = I915_READ(reg);
3429 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3430
3431 /* Disable CPU FDI TX PLL */
3432 reg = FDI_TX_CTL(pipe);
3433 temp = I915_READ(reg);
3434 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3435
3436 POSTING_READ(reg);
3437 udelay(100);
3438
3439 reg = FDI_RX_CTL(pipe);
3440 temp = I915_READ(reg);
3441 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3442
3443 /* Wait for the clocks to turn off. */
3444 POSTING_READ(reg);
3445 udelay(100);
3446 }
3447
3448 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3449 {
3450 struct drm_device *dev = crtc->dev;
3451 struct drm_i915_private *dev_priv = dev->dev_private;
3452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3453 int pipe = intel_crtc->pipe;
3454 u32 reg, temp;
3455
3456 /* disable CPU FDI tx and PCH FDI rx */
3457 reg = FDI_TX_CTL(pipe);
3458 temp = I915_READ(reg);
3459 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3460 POSTING_READ(reg);
3461
3462 reg = FDI_RX_CTL(pipe);
3463 temp = I915_READ(reg);
3464 temp &= ~(0x7 << 16);
3465 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3466 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3467
3468 POSTING_READ(reg);
3469 udelay(100);
3470
3471 /* Ironlake workaround, disable clock pointer after downing FDI */
3472 if (HAS_PCH_IBX(dev))
3473 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3474
3475 /* still set train pattern 1 */
3476 reg = FDI_TX_CTL(pipe);
3477 temp = I915_READ(reg);
3478 temp &= ~FDI_LINK_TRAIN_NONE;
3479 temp |= FDI_LINK_TRAIN_PATTERN_1;
3480 I915_WRITE(reg, temp);
3481
3482 reg = FDI_RX_CTL(pipe);
3483 temp = I915_READ(reg);
3484 if (HAS_PCH_CPT(dev)) {
3485 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3486 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3487 } else {
3488 temp &= ~FDI_LINK_TRAIN_NONE;
3489 temp |= FDI_LINK_TRAIN_PATTERN_1;
3490 }
3491 /* BPC in FDI rx is consistent with that in PIPECONF */
3492 temp &= ~(0x07 << 16);
3493 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3494 I915_WRITE(reg, temp);
3495
3496 POSTING_READ(reg);
3497 udelay(100);
3498 }
3499
3500 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3501 {
3502 struct intel_crtc *crtc;
3503
3504 /* Note that we don't need to be called with mode_config.lock here
3505 * as our list of CRTC objects is static for the lifetime of the
3506 * device and so cannot disappear as we iterate. Similarly, we can
3507 * happily treat the predicates as racy, atomic checks as userspace
3508 * cannot claim and pin a new fb without at least acquring the
3509 * struct_mutex and so serialising with us.
3510 */
3511 for_each_intel_crtc(dev, crtc) {
3512 if (atomic_read(&crtc->unpin_work_count) == 0)
3513 continue;
3514
3515 if (crtc->unpin_work)
3516 intel_wait_for_vblank(dev, crtc->pipe);
3517
3518 return true;
3519 }
3520
3521 return false;
3522 }
3523
3524 static void page_flip_completed(struct intel_crtc *intel_crtc)
3525 {
3526 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3527 struct intel_unpin_work *work = intel_crtc->unpin_work;
3528
3529 /* ensure that the unpin work is consistent wrt ->pending. */
3530 smp_rmb();
3531 intel_crtc->unpin_work = NULL;
3532
3533 if (work->event)
3534 drm_send_vblank_event(intel_crtc->base.dev,
3535 intel_crtc->pipe,
3536 work->event);
3537
3538 drm_crtc_vblank_put(&intel_crtc->base);
3539
3540 wake_up_all(&dev_priv->pending_flip_queue);
3541 queue_work(dev_priv->wq, &work->work);
3542
3543 trace_i915_flip_complete(intel_crtc->plane,
3544 work->pending_flip_obj);
3545 }
3546
3547 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3548 {
3549 struct drm_device *dev = crtc->dev;
3550 struct drm_i915_private *dev_priv = dev->dev_private;
3551
3552 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3553 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3554 !intel_crtc_has_pending_flip(crtc),
3555 60*HZ) == 0)) {
3556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3557
3558 spin_lock_irq(&dev->event_lock);
3559 if (intel_crtc->unpin_work) {
3560 WARN_ONCE(1, "Removing stuck page flip\n");
3561 page_flip_completed(intel_crtc);
3562 }
3563 spin_unlock_irq(&dev->event_lock);
3564 }
3565
3566 if (crtc->primary->fb) {
3567 mutex_lock(&dev->struct_mutex);
3568 intel_finish_fb(crtc->primary->fb);
3569 mutex_unlock(&dev->struct_mutex);
3570 }
3571 }
3572
3573 /* Program iCLKIP clock to the desired frequency */
3574 static void lpt_program_iclkip(struct drm_crtc *crtc)
3575 {
3576 struct drm_device *dev = crtc->dev;
3577 struct drm_i915_private *dev_priv = dev->dev_private;
3578 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3579 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3580 u32 temp;
3581
3582 mutex_lock(&dev_priv->dpio_lock);
3583
3584 /* It is necessary to ungate the pixclk gate prior to programming
3585 * the divisors, and gate it back when it is done.
3586 */
3587 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3588
3589 /* Disable SSCCTL */
3590 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3591 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3592 SBI_SSCCTL_DISABLE,
3593 SBI_ICLK);
3594
3595 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3596 if (clock == 20000) {
3597 auxdiv = 1;
3598 divsel = 0x41;
3599 phaseinc = 0x20;
3600 } else {
3601 /* The iCLK virtual clock root frequency is in MHz,
3602 * but the adjusted_mode->crtc_clock in in KHz. To get the
3603 * divisors, it is necessary to divide one by another, so we
3604 * convert the virtual clock precision to KHz here for higher
3605 * precision.
3606 */
3607 u32 iclk_virtual_root_freq = 172800 * 1000;
3608 u32 iclk_pi_range = 64;
3609 u32 desired_divisor, msb_divisor_value, pi_value;
3610
3611 desired_divisor = (iclk_virtual_root_freq / clock);
3612 msb_divisor_value = desired_divisor / iclk_pi_range;
3613 pi_value = desired_divisor % iclk_pi_range;
3614
3615 auxdiv = 0;
3616 divsel = msb_divisor_value - 2;
3617 phaseinc = pi_value;
3618 }
3619
3620 /* This should not happen with any sane values */
3621 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3622 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3623 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3624 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3625
3626 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3627 clock,
3628 auxdiv,
3629 divsel,
3630 phasedir,
3631 phaseinc);
3632
3633 /* Program SSCDIVINTPHASE6 */
3634 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3635 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3636 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3637 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3638 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3639 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3640 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3641 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3642
3643 /* Program SSCAUXDIV */
3644 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3645 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3646 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3647 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3648
3649 /* Enable modulator and associated divider */
3650 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3651 temp &= ~SBI_SSCCTL_DISABLE;
3652 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3653
3654 /* Wait for initialization time */
3655 udelay(24);
3656
3657 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3658
3659 mutex_unlock(&dev_priv->dpio_lock);
3660 }
3661
3662 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3663 enum pipe pch_transcoder)
3664 {
3665 struct drm_device *dev = crtc->base.dev;
3666 struct drm_i915_private *dev_priv = dev->dev_private;
3667 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3668
3669 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3670 I915_READ(HTOTAL(cpu_transcoder)));
3671 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3672 I915_READ(HBLANK(cpu_transcoder)));
3673 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3674 I915_READ(HSYNC(cpu_transcoder)));
3675
3676 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3677 I915_READ(VTOTAL(cpu_transcoder)));
3678 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3679 I915_READ(VBLANK(cpu_transcoder)));
3680 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3681 I915_READ(VSYNC(cpu_transcoder)));
3682 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3683 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3684 }
3685
3686 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3687 {
3688 struct drm_i915_private *dev_priv = dev->dev_private;
3689 uint32_t temp;
3690
3691 temp = I915_READ(SOUTH_CHICKEN1);
3692 if (temp & FDI_BC_BIFURCATION_SELECT)
3693 return;
3694
3695 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3696 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3697
3698 temp |= FDI_BC_BIFURCATION_SELECT;
3699 DRM_DEBUG_KMS("enabling fdi C rx\n");
3700 I915_WRITE(SOUTH_CHICKEN1, temp);
3701 POSTING_READ(SOUTH_CHICKEN1);
3702 }
3703
3704 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3705 {
3706 struct drm_device *dev = intel_crtc->base.dev;
3707 struct drm_i915_private *dev_priv = dev->dev_private;
3708
3709 switch (intel_crtc->pipe) {
3710 case PIPE_A:
3711 break;
3712 case PIPE_B:
3713 if (intel_crtc->config.fdi_lanes > 2)
3714 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3715 else
3716 cpt_enable_fdi_bc_bifurcation(dev);
3717
3718 break;
3719 case PIPE_C:
3720 cpt_enable_fdi_bc_bifurcation(dev);
3721
3722 break;
3723 default:
3724 BUG();
3725 }
3726 }
3727
3728 /*
3729 * Enable PCH resources required for PCH ports:
3730 * - PCH PLLs
3731 * - FDI training & RX/TX
3732 * - update transcoder timings
3733 * - DP transcoding bits
3734 * - transcoder
3735 */
3736 static void ironlake_pch_enable(struct drm_crtc *crtc)
3737 {
3738 struct drm_device *dev = crtc->dev;
3739 struct drm_i915_private *dev_priv = dev->dev_private;
3740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3741 int pipe = intel_crtc->pipe;
3742 u32 reg, temp;
3743
3744 assert_pch_transcoder_disabled(dev_priv, pipe);
3745
3746 if (IS_IVYBRIDGE(dev))
3747 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3748
3749 /* Write the TU size bits before fdi link training, so that error
3750 * detection works. */
3751 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3752 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3753
3754 /* For PCH output, training FDI link */
3755 dev_priv->display.fdi_link_train(crtc);
3756
3757 /* We need to program the right clock selection before writing the pixel
3758 * mutliplier into the DPLL. */
3759 if (HAS_PCH_CPT(dev)) {
3760 u32 sel;
3761
3762 temp = I915_READ(PCH_DPLL_SEL);
3763 temp |= TRANS_DPLL_ENABLE(pipe);
3764 sel = TRANS_DPLLB_SEL(pipe);
3765 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3766 temp |= sel;
3767 else
3768 temp &= ~sel;
3769 I915_WRITE(PCH_DPLL_SEL, temp);
3770 }
3771
3772 /* XXX: pch pll's can be enabled any time before we enable the PCH
3773 * transcoder, and we actually should do this to not upset any PCH
3774 * transcoder that already use the clock when we share it.
3775 *
3776 * Note that enable_shared_dpll tries to do the right thing, but
3777 * get_shared_dpll unconditionally resets the pll - we need that to have
3778 * the right LVDS enable sequence. */
3779 intel_enable_shared_dpll(intel_crtc);
3780
3781 /* set transcoder timing, panel must allow it */
3782 assert_panel_unlocked(dev_priv, pipe);
3783 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3784
3785 intel_fdi_normal_train(crtc);
3786
3787 /* For PCH DP, enable TRANS_DP_CTL */
3788 if (HAS_PCH_CPT(dev) && intel_crtc->config.has_dp_encoder) {
3789 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3790 reg = TRANS_DP_CTL(pipe);
3791 temp = I915_READ(reg);
3792 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3793 TRANS_DP_SYNC_MASK |
3794 TRANS_DP_BPC_MASK);
3795 temp |= (TRANS_DP_OUTPUT_ENABLE |
3796 TRANS_DP_ENH_FRAMING);
3797 temp |= bpc << 9; /* same format but at 11:9 */
3798
3799 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3800 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3801 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3802 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3803
3804 switch (intel_trans_dp_port_sel(crtc)) {
3805 case PCH_DP_B:
3806 temp |= TRANS_DP_PORT_SEL_B;
3807 break;
3808 case PCH_DP_C:
3809 temp |= TRANS_DP_PORT_SEL_C;
3810 break;
3811 case PCH_DP_D:
3812 temp |= TRANS_DP_PORT_SEL_D;
3813 break;
3814 default:
3815 BUG();
3816 }
3817
3818 I915_WRITE(reg, temp);
3819 }
3820
3821 ironlake_enable_pch_transcoder(dev_priv, pipe);
3822 }
3823
3824 static void lpt_pch_enable(struct drm_crtc *crtc)
3825 {
3826 struct drm_device *dev = crtc->dev;
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3829 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3830
3831 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3832
3833 lpt_program_iclkip(crtc);
3834
3835 /* Set transcoder timing. */
3836 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3837
3838 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3839 }
3840
3841 void intel_put_shared_dpll(struct intel_crtc *crtc)
3842 {
3843 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3844
3845 if (pll == NULL)
3846 return;
3847
3848 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3849 WARN(1, "bad %s crtc mask\n", pll->name);
3850 return;
3851 }
3852
3853 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3854 if (pll->config.crtc_mask == 0) {
3855 WARN_ON(pll->on);
3856 WARN_ON(pll->active);
3857 }
3858
3859 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3860 }
3861
3862 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3863 {
3864 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3865 struct intel_shared_dpll *pll;
3866 enum intel_dpll_id i;
3867
3868 if (HAS_PCH_IBX(dev_priv->dev)) {
3869 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3870 i = (enum intel_dpll_id) crtc->pipe;
3871 pll = &dev_priv->shared_dplls[i];
3872
3873 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3874 crtc->base.base.id, pll->name);
3875
3876 WARN_ON(pll->new_config->crtc_mask);
3877
3878 goto found;
3879 }
3880
3881 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3882 pll = &dev_priv->shared_dplls[i];
3883
3884 /* Only want to check enabled timings first */
3885 if (pll->new_config->crtc_mask == 0)
3886 continue;
3887
3888 if (memcmp(&crtc->new_config->dpll_hw_state,
3889 &pll->new_config->hw_state,
3890 sizeof(pll->new_config->hw_state)) == 0) {
3891 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3892 crtc->base.base.id, pll->name,
3893 pll->new_config->crtc_mask,
3894 pll->active);
3895 goto found;
3896 }
3897 }
3898
3899 /* Ok no matching timings, maybe there's a free one? */
3900 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3901 pll = &dev_priv->shared_dplls[i];
3902 if (pll->new_config->crtc_mask == 0) {
3903 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3904 crtc->base.base.id, pll->name);
3905 goto found;
3906 }
3907 }
3908
3909 return NULL;
3910
3911 found:
3912 if (pll->new_config->crtc_mask == 0)
3913 pll->new_config->hw_state = crtc->new_config->dpll_hw_state;
3914
3915 crtc->new_config->shared_dpll = i;
3916 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3917 pipe_name(crtc->pipe));
3918
3919 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3920
3921 return pll;
3922 }
3923
3924 /**
3925 * intel_shared_dpll_start_config - start a new PLL staged config
3926 * @dev_priv: DRM device
3927 * @clear_pipes: mask of pipes that will have their PLLs freed
3928 *
3929 * Starts a new PLL staged config, copying the current config but
3930 * releasing the references of pipes specified in clear_pipes.
3931 */
3932 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3933 unsigned clear_pipes)
3934 {
3935 struct intel_shared_dpll *pll;
3936 enum intel_dpll_id i;
3937
3938 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3939 pll = &dev_priv->shared_dplls[i];
3940
3941 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3942 GFP_KERNEL);
3943 if (!pll->new_config)
3944 goto cleanup;
3945
3946 pll->new_config->crtc_mask &= ~clear_pipes;
3947 }
3948
3949 return 0;
3950
3951 cleanup:
3952 while (--i >= 0) {
3953 pll = &dev_priv->shared_dplls[i];
3954 kfree(pll->new_config);
3955 pll->new_config = NULL;
3956 }
3957
3958 return -ENOMEM;
3959 }
3960
3961 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3962 {
3963 struct intel_shared_dpll *pll;
3964 enum intel_dpll_id i;
3965
3966 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3967 pll = &dev_priv->shared_dplls[i];
3968
3969 WARN_ON(pll->new_config == &pll->config);
3970
3971 pll->config = *pll->new_config;
3972 kfree(pll->new_config);
3973 pll->new_config = NULL;
3974 }
3975 }
3976
3977 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3978 {
3979 struct intel_shared_dpll *pll;
3980 enum intel_dpll_id i;
3981
3982 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3983 pll = &dev_priv->shared_dplls[i];
3984
3985 WARN_ON(pll->new_config == &pll->config);
3986
3987 kfree(pll->new_config);
3988 pll->new_config = NULL;
3989 }
3990 }
3991
3992 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3993 {
3994 struct drm_i915_private *dev_priv = dev->dev_private;
3995 int dslreg = PIPEDSL(pipe);
3996 u32 temp;
3997
3998 temp = I915_READ(dslreg);
3999 udelay(500);
4000 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4001 if (wait_for(I915_READ(dslreg) != temp, 5))
4002 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4003 }
4004 }
4005
4006 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4007 {
4008 struct drm_device *dev = crtc->base.dev;
4009 struct drm_i915_private *dev_priv = dev->dev_private;
4010 int pipe = crtc->pipe;
4011
4012 if (crtc->config.pch_pfit.enabled) {
4013 /* Force use of hard-coded filter coefficients
4014 * as some pre-programmed values are broken,
4015 * e.g. x201.
4016 */
4017 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4018 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4019 PF_PIPE_SEL_IVB(pipe));
4020 else
4021 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4022 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
4023 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
4024 }
4025 }
4026
4027 static void intel_enable_planes(struct drm_crtc *crtc)
4028 {
4029 struct drm_device *dev = crtc->dev;
4030 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4031 struct drm_plane *plane;
4032 struct intel_plane *intel_plane;
4033
4034 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4035 intel_plane = to_intel_plane(plane);
4036 if (intel_plane->pipe == pipe)
4037 intel_plane_restore(&intel_plane->base);
4038 }
4039 }
4040
4041 static void intel_disable_planes(struct drm_crtc *crtc)
4042 {
4043 struct drm_device *dev = crtc->dev;
4044 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4045 struct drm_plane *plane;
4046 struct intel_plane *intel_plane;
4047
4048 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4049 intel_plane = to_intel_plane(plane);
4050 if (intel_plane->pipe == pipe)
4051 intel_plane_disable(&intel_plane->base);
4052 }
4053 }
4054
4055 void hsw_enable_ips(struct intel_crtc *crtc)
4056 {
4057 struct drm_device *dev = crtc->base.dev;
4058 struct drm_i915_private *dev_priv = dev->dev_private;
4059
4060 if (!crtc->config.ips_enabled)
4061 return;
4062
4063 /* We can only enable IPS after we enable a plane and wait for a vblank */
4064 intel_wait_for_vblank(dev, crtc->pipe);
4065
4066 assert_plane_enabled(dev_priv, crtc->plane);
4067 if (IS_BROADWELL(dev)) {
4068 mutex_lock(&dev_priv->rps.hw_lock);
4069 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4070 mutex_unlock(&dev_priv->rps.hw_lock);
4071 /* Quoting Art Runyan: "its not safe to expect any particular
4072 * value in IPS_CTL bit 31 after enabling IPS through the
4073 * mailbox." Moreover, the mailbox may return a bogus state,
4074 * so we need to just enable it and continue on.
4075 */
4076 } else {
4077 I915_WRITE(IPS_CTL, IPS_ENABLE);
4078 /* The bit only becomes 1 in the next vblank, so this wait here
4079 * is essentially intel_wait_for_vblank. If we don't have this
4080 * and don't wait for vblanks until the end of crtc_enable, then
4081 * the HW state readout code will complain that the expected
4082 * IPS_CTL value is not the one we read. */
4083 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4084 DRM_ERROR("Timed out waiting for IPS enable\n");
4085 }
4086 }
4087
4088 void hsw_disable_ips(struct intel_crtc *crtc)
4089 {
4090 struct drm_device *dev = crtc->base.dev;
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093 if (!crtc->config.ips_enabled)
4094 return;
4095
4096 assert_plane_enabled(dev_priv, crtc->plane);
4097 if (IS_BROADWELL(dev)) {
4098 mutex_lock(&dev_priv->rps.hw_lock);
4099 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4100 mutex_unlock(&dev_priv->rps.hw_lock);
4101 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4102 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4103 DRM_ERROR("Timed out waiting for IPS disable\n");
4104 } else {
4105 I915_WRITE(IPS_CTL, 0);
4106 POSTING_READ(IPS_CTL);
4107 }
4108
4109 /* We need to wait for a vblank before we can disable the plane. */
4110 intel_wait_for_vblank(dev, crtc->pipe);
4111 }
4112
4113 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4114 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4115 {
4116 struct drm_device *dev = crtc->dev;
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4119 enum pipe pipe = intel_crtc->pipe;
4120 int palreg = PALETTE(pipe);
4121 int i;
4122 bool reenable_ips = false;
4123
4124 /* The clocks have to be on to load the palette. */
4125 if (!crtc->enabled || !intel_crtc->active)
4126 return;
4127
4128 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4129 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4130 assert_dsi_pll_enabled(dev_priv);
4131 else
4132 assert_pll_enabled(dev_priv, pipe);
4133 }
4134
4135 /* use legacy palette for Ironlake */
4136 if (!HAS_GMCH_DISPLAY(dev))
4137 palreg = LGC_PALETTE(pipe);
4138
4139 /* Workaround : Do not read or write the pipe palette/gamma data while
4140 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4141 */
4142 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
4143 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4144 GAMMA_MODE_MODE_SPLIT)) {
4145 hsw_disable_ips(intel_crtc);
4146 reenable_ips = true;
4147 }
4148
4149 for (i = 0; i < 256; i++) {
4150 I915_WRITE(palreg + 4 * i,
4151 (intel_crtc->lut_r[i] << 16) |
4152 (intel_crtc->lut_g[i] << 8) |
4153 intel_crtc->lut_b[i]);
4154 }
4155
4156 if (reenable_ips)
4157 hsw_enable_ips(intel_crtc);
4158 }
4159
4160 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4161 {
4162 if (!enable && intel_crtc->overlay) {
4163 struct drm_device *dev = intel_crtc->base.dev;
4164 struct drm_i915_private *dev_priv = dev->dev_private;
4165
4166 mutex_lock(&dev->struct_mutex);
4167 dev_priv->mm.interruptible = false;
4168 (void) intel_overlay_switch_off(intel_crtc->overlay);
4169 dev_priv->mm.interruptible = true;
4170 mutex_unlock(&dev->struct_mutex);
4171 }
4172
4173 /* Let userspace switch the overlay on again. In most cases userspace
4174 * has to recompute where to put it anyway.
4175 */
4176 }
4177
4178 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4179 {
4180 struct drm_device *dev = crtc->dev;
4181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182 int pipe = intel_crtc->pipe;
4183
4184 intel_enable_primary_hw_plane(crtc->primary, crtc);
4185 intel_enable_planes(crtc);
4186 intel_crtc_update_cursor(crtc, true);
4187 intel_crtc_dpms_overlay(intel_crtc, true);
4188
4189 hsw_enable_ips(intel_crtc);
4190
4191 mutex_lock(&dev->struct_mutex);
4192 intel_update_fbc(dev);
4193 mutex_unlock(&dev->struct_mutex);
4194
4195 /*
4196 * FIXME: Once we grow proper nuclear flip support out of this we need
4197 * to compute the mask of flip planes precisely. For the time being
4198 * consider this a flip from a NULL plane.
4199 */
4200 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4201 }
4202
4203 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4204 {
4205 struct drm_device *dev = crtc->dev;
4206 struct drm_i915_private *dev_priv = dev->dev_private;
4207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4208 int pipe = intel_crtc->pipe;
4209 int plane = intel_crtc->plane;
4210
4211 intel_crtc_wait_for_pending_flips(crtc);
4212
4213 if (dev_priv->fbc.plane == plane)
4214 intel_disable_fbc(dev);
4215
4216 hsw_disable_ips(intel_crtc);
4217
4218 intel_crtc_dpms_overlay(intel_crtc, false);
4219 intel_crtc_update_cursor(crtc, false);
4220 intel_disable_planes(crtc);
4221 intel_disable_primary_hw_plane(crtc->primary, crtc);
4222
4223 /*
4224 * FIXME: Once we grow proper nuclear flip support out of this we need
4225 * to compute the mask of flip planes precisely. For the time being
4226 * consider this a flip to a NULL plane.
4227 */
4228 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4229 }
4230
4231 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4232 {
4233 struct drm_device *dev = crtc->dev;
4234 struct drm_i915_private *dev_priv = dev->dev_private;
4235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4236 struct intel_encoder *encoder;
4237 int pipe = intel_crtc->pipe;
4238
4239 WARN_ON(!crtc->enabled);
4240
4241 if (intel_crtc->active)
4242 return;
4243
4244 if (intel_crtc->config.has_pch_encoder)
4245 intel_prepare_shared_dpll(intel_crtc);
4246
4247 if (intel_crtc->config.has_dp_encoder)
4248 intel_dp_set_m_n(intel_crtc);
4249
4250 intel_set_pipe_timings(intel_crtc);
4251
4252 if (intel_crtc->config.has_pch_encoder) {
4253 intel_cpu_transcoder_set_m_n(intel_crtc,
4254 &intel_crtc->config.fdi_m_n, NULL);
4255 }
4256
4257 ironlake_set_pipeconf(crtc);
4258
4259 intel_crtc->active = true;
4260
4261 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4262 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4263
4264 for_each_encoder_on_crtc(dev, crtc, encoder)
4265 if (encoder->pre_enable)
4266 encoder->pre_enable(encoder);
4267
4268 if (intel_crtc->config.has_pch_encoder) {
4269 /* Note: FDI PLL enabling _must_ be done before we enable the
4270 * cpu pipes, hence this is separate from all the other fdi/pch
4271 * enabling. */
4272 ironlake_fdi_pll_enable(intel_crtc);
4273 } else {
4274 assert_fdi_tx_disabled(dev_priv, pipe);
4275 assert_fdi_rx_disabled(dev_priv, pipe);
4276 }
4277
4278 ironlake_pfit_enable(intel_crtc);
4279
4280 /*
4281 * On ILK+ LUT must be loaded before the pipe is running but with
4282 * clocks enabled
4283 */
4284 intel_crtc_load_lut(crtc);
4285
4286 intel_update_watermarks(crtc);
4287 intel_enable_pipe(intel_crtc);
4288
4289 if (intel_crtc->config.has_pch_encoder)
4290 ironlake_pch_enable(crtc);
4291
4292 for_each_encoder_on_crtc(dev, crtc, encoder)
4293 encoder->enable(encoder);
4294
4295 if (HAS_PCH_CPT(dev))
4296 cpt_verify_modeset(dev, intel_crtc->pipe);
4297
4298 assert_vblank_disabled(crtc);
4299 drm_crtc_vblank_on(crtc);
4300
4301 intel_crtc_enable_planes(crtc);
4302 }
4303
4304 /* IPS only exists on ULT machines and is tied to pipe A. */
4305 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4306 {
4307 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4308 }
4309
4310 /*
4311 * This implements the workaround described in the "notes" section of the mode
4312 * set sequence documentation. When going from no pipes or single pipe to
4313 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4314 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4315 */
4316 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4317 {
4318 struct drm_device *dev = crtc->base.dev;
4319 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4320
4321 /* We want to get the other_active_crtc only if there's only 1 other
4322 * active crtc. */
4323 for_each_intel_crtc(dev, crtc_it) {
4324 if (!crtc_it->active || crtc_it == crtc)
4325 continue;
4326
4327 if (other_active_crtc)
4328 return;
4329
4330 other_active_crtc = crtc_it;
4331 }
4332 if (!other_active_crtc)
4333 return;
4334
4335 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4336 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4337 }
4338
4339 static void haswell_crtc_enable(struct drm_crtc *crtc)
4340 {
4341 struct drm_device *dev = crtc->dev;
4342 struct drm_i915_private *dev_priv = dev->dev_private;
4343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4344 struct intel_encoder *encoder;
4345 int pipe = intel_crtc->pipe;
4346
4347 WARN_ON(!crtc->enabled);
4348
4349 if (intel_crtc->active)
4350 return;
4351
4352 if (intel_crtc_to_shared_dpll(intel_crtc))
4353 intel_enable_shared_dpll(intel_crtc);
4354
4355 if (intel_crtc->config.has_dp_encoder)
4356 intel_dp_set_m_n(intel_crtc);
4357
4358 intel_set_pipe_timings(intel_crtc);
4359
4360 if (intel_crtc->config.cpu_transcoder != TRANSCODER_EDP) {
4361 I915_WRITE(PIPE_MULT(intel_crtc->config.cpu_transcoder),
4362 intel_crtc->config.pixel_multiplier - 1);
4363 }
4364
4365 if (intel_crtc->config.has_pch_encoder) {
4366 intel_cpu_transcoder_set_m_n(intel_crtc,
4367 &intel_crtc->config.fdi_m_n, NULL);
4368 }
4369
4370 haswell_set_pipeconf(crtc);
4371
4372 intel_set_pipe_csc(crtc);
4373
4374 intel_crtc->active = true;
4375
4376 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4377 for_each_encoder_on_crtc(dev, crtc, encoder)
4378 if (encoder->pre_enable)
4379 encoder->pre_enable(encoder);
4380
4381 if (intel_crtc->config.has_pch_encoder) {
4382 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4383 true);
4384 dev_priv->display.fdi_link_train(crtc);
4385 }
4386
4387 intel_ddi_enable_pipe_clock(intel_crtc);
4388
4389 ironlake_pfit_enable(intel_crtc);
4390
4391 /*
4392 * On ILK+ LUT must be loaded before the pipe is running but with
4393 * clocks enabled
4394 */
4395 intel_crtc_load_lut(crtc);
4396
4397 intel_ddi_set_pipe_settings(crtc);
4398 intel_ddi_enable_transcoder_func(crtc);
4399
4400 intel_update_watermarks(crtc);
4401 intel_enable_pipe(intel_crtc);
4402
4403 if (intel_crtc->config.has_pch_encoder)
4404 lpt_pch_enable(crtc);
4405
4406 if (intel_crtc->config.dp_encoder_is_mst)
4407 intel_ddi_set_vc_payload_alloc(crtc, true);
4408
4409 for_each_encoder_on_crtc(dev, crtc, encoder) {
4410 encoder->enable(encoder);
4411 intel_opregion_notify_encoder(encoder, true);
4412 }
4413
4414 assert_vblank_disabled(crtc);
4415 drm_crtc_vblank_on(crtc);
4416
4417 /* If we change the relative order between pipe/planes enabling, we need
4418 * to change the workaround. */
4419 haswell_mode_set_planes_workaround(intel_crtc);
4420 intel_crtc_enable_planes(crtc);
4421 }
4422
4423 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4424 {
4425 struct drm_device *dev = crtc->base.dev;
4426 struct drm_i915_private *dev_priv = dev->dev_private;
4427 int pipe = crtc->pipe;
4428
4429 /* To avoid upsetting the power well on haswell only disable the pfit if
4430 * it's in use. The hw state code will make sure we get this right. */
4431 if (crtc->config.pch_pfit.enabled) {
4432 I915_WRITE(PF_CTL(pipe), 0);
4433 I915_WRITE(PF_WIN_POS(pipe), 0);
4434 I915_WRITE(PF_WIN_SZ(pipe), 0);
4435 }
4436 }
4437
4438 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4439 {
4440 struct drm_device *dev = crtc->dev;
4441 struct drm_i915_private *dev_priv = dev->dev_private;
4442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4443 struct intel_encoder *encoder;
4444 int pipe = intel_crtc->pipe;
4445 u32 reg, temp;
4446
4447 if (!intel_crtc->active)
4448 return;
4449
4450 intel_crtc_disable_planes(crtc);
4451
4452 drm_crtc_vblank_off(crtc);
4453 assert_vblank_disabled(crtc);
4454
4455 for_each_encoder_on_crtc(dev, crtc, encoder)
4456 encoder->disable(encoder);
4457
4458 if (intel_crtc->config.has_pch_encoder)
4459 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4460
4461 intel_disable_pipe(intel_crtc);
4462
4463 ironlake_pfit_disable(intel_crtc);
4464
4465 for_each_encoder_on_crtc(dev, crtc, encoder)
4466 if (encoder->post_disable)
4467 encoder->post_disable(encoder);
4468
4469 if (intel_crtc->config.has_pch_encoder) {
4470 ironlake_fdi_disable(crtc);
4471
4472 ironlake_disable_pch_transcoder(dev_priv, pipe);
4473 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4474
4475 if (HAS_PCH_CPT(dev)) {
4476 /* disable TRANS_DP_CTL */
4477 reg = TRANS_DP_CTL(pipe);
4478 temp = I915_READ(reg);
4479 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4480 TRANS_DP_PORT_SEL_MASK);
4481 temp |= TRANS_DP_PORT_SEL_NONE;
4482 I915_WRITE(reg, temp);
4483
4484 /* disable DPLL_SEL */
4485 temp = I915_READ(PCH_DPLL_SEL);
4486 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4487 I915_WRITE(PCH_DPLL_SEL, temp);
4488 }
4489
4490 /* disable PCH DPLL */
4491 intel_disable_shared_dpll(intel_crtc);
4492
4493 ironlake_fdi_pll_disable(intel_crtc);
4494 }
4495
4496 intel_crtc->active = false;
4497 intel_update_watermarks(crtc);
4498
4499 mutex_lock(&dev->struct_mutex);
4500 intel_update_fbc(dev);
4501 mutex_unlock(&dev->struct_mutex);
4502 }
4503
4504 static void haswell_crtc_disable(struct drm_crtc *crtc)
4505 {
4506 struct drm_device *dev = crtc->dev;
4507 struct drm_i915_private *dev_priv = dev->dev_private;
4508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4509 struct intel_encoder *encoder;
4510 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4511
4512 if (!intel_crtc->active)
4513 return;
4514
4515 intel_crtc_disable_planes(crtc);
4516
4517 drm_crtc_vblank_off(crtc);
4518 assert_vblank_disabled(crtc);
4519
4520 for_each_encoder_on_crtc(dev, crtc, encoder) {
4521 intel_opregion_notify_encoder(encoder, false);
4522 encoder->disable(encoder);
4523 }
4524
4525 if (intel_crtc->config.has_pch_encoder)
4526 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4527 false);
4528 intel_disable_pipe(intel_crtc);
4529
4530 if (intel_crtc->config.dp_encoder_is_mst)
4531 intel_ddi_set_vc_payload_alloc(crtc, false);
4532
4533 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4534
4535 ironlake_pfit_disable(intel_crtc);
4536
4537 intel_ddi_disable_pipe_clock(intel_crtc);
4538
4539 if (intel_crtc->config.has_pch_encoder) {
4540 lpt_disable_pch_transcoder(dev_priv);
4541 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4542 true);
4543 intel_ddi_fdi_disable(crtc);
4544 }
4545
4546 for_each_encoder_on_crtc(dev, crtc, encoder)
4547 if (encoder->post_disable)
4548 encoder->post_disable(encoder);
4549
4550 intel_crtc->active = false;
4551 intel_update_watermarks(crtc);
4552
4553 mutex_lock(&dev->struct_mutex);
4554 intel_update_fbc(dev);
4555 mutex_unlock(&dev->struct_mutex);
4556
4557 if (intel_crtc_to_shared_dpll(intel_crtc))
4558 intel_disable_shared_dpll(intel_crtc);
4559 }
4560
4561 static void ironlake_crtc_off(struct drm_crtc *crtc)
4562 {
4563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4564 intel_put_shared_dpll(intel_crtc);
4565 }
4566
4567
4568 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4569 {
4570 struct drm_device *dev = crtc->base.dev;
4571 struct drm_i915_private *dev_priv = dev->dev_private;
4572 struct intel_crtc_config *pipe_config = &crtc->config;
4573
4574 if (!crtc->config.gmch_pfit.control)
4575 return;
4576
4577 /*
4578 * The panel fitter should only be adjusted whilst the pipe is disabled,
4579 * according to register description and PRM.
4580 */
4581 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4582 assert_pipe_disabled(dev_priv, crtc->pipe);
4583
4584 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4585 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4586
4587 /* Border color in case we don't scale up to the full screen. Black by
4588 * default, change to something else for debugging. */
4589 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4590 }
4591
4592 static enum intel_display_power_domain port_to_power_domain(enum port port)
4593 {
4594 switch (port) {
4595 case PORT_A:
4596 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4597 case PORT_B:
4598 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4599 case PORT_C:
4600 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4601 case PORT_D:
4602 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4603 default:
4604 WARN_ON_ONCE(1);
4605 return POWER_DOMAIN_PORT_OTHER;
4606 }
4607 }
4608
4609 #define for_each_power_domain(domain, mask) \
4610 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4611 if ((1 << (domain)) & (mask))
4612
4613 enum intel_display_power_domain
4614 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4615 {
4616 struct drm_device *dev = intel_encoder->base.dev;
4617 struct intel_digital_port *intel_dig_port;
4618
4619 switch (intel_encoder->type) {
4620 case INTEL_OUTPUT_UNKNOWN:
4621 /* Only DDI platforms should ever use this output type */
4622 WARN_ON_ONCE(!HAS_DDI(dev));
4623 case INTEL_OUTPUT_DISPLAYPORT:
4624 case INTEL_OUTPUT_HDMI:
4625 case INTEL_OUTPUT_EDP:
4626 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4627 return port_to_power_domain(intel_dig_port->port);
4628 case INTEL_OUTPUT_DP_MST:
4629 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4630 return port_to_power_domain(intel_dig_port->port);
4631 case INTEL_OUTPUT_ANALOG:
4632 return POWER_DOMAIN_PORT_CRT;
4633 case INTEL_OUTPUT_DSI:
4634 return POWER_DOMAIN_PORT_DSI;
4635 default:
4636 return POWER_DOMAIN_PORT_OTHER;
4637 }
4638 }
4639
4640 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4641 {
4642 struct drm_device *dev = crtc->dev;
4643 struct intel_encoder *intel_encoder;
4644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4645 enum pipe pipe = intel_crtc->pipe;
4646 unsigned long mask;
4647 enum transcoder transcoder;
4648
4649 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4650
4651 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4652 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4653 if (intel_crtc->config.pch_pfit.enabled ||
4654 intel_crtc->config.pch_pfit.force_thru)
4655 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4656
4657 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4658 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4659
4660 return mask;
4661 }
4662
4663 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4664 {
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4667 struct intel_crtc *crtc;
4668
4669 /*
4670 * First get all needed power domains, then put all unneeded, to avoid
4671 * any unnecessary toggling of the power wells.
4672 */
4673 for_each_intel_crtc(dev, crtc) {
4674 enum intel_display_power_domain domain;
4675
4676 if (!crtc->base.enabled)
4677 continue;
4678
4679 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4680
4681 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4682 intel_display_power_get(dev_priv, domain);
4683 }
4684
4685 if (dev_priv->display.modeset_global_resources)
4686 dev_priv->display.modeset_global_resources(dev);
4687
4688 for_each_intel_crtc(dev, crtc) {
4689 enum intel_display_power_domain domain;
4690
4691 for_each_power_domain(domain, crtc->enabled_power_domains)
4692 intel_display_power_put(dev_priv, domain);
4693
4694 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4695 }
4696
4697 intel_display_set_init_power(dev_priv, false);
4698 }
4699
4700 /* returns HPLL frequency in kHz */
4701 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4702 {
4703 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4704
4705 /* Obtain SKU information */
4706 mutex_lock(&dev_priv->dpio_lock);
4707 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4708 CCK_FUSE_HPLL_FREQ_MASK;
4709 mutex_unlock(&dev_priv->dpio_lock);
4710
4711 return vco_freq[hpll_freq] * 1000;
4712 }
4713
4714 static void vlv_update_cdclk(struct drm_device *dev)
4715 {
4716 struct drm_i915_private *dev_priv = dev->dev_private;
4717
4718 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4719 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4720 dev_priv->vlv_cdclk_freq);
4721
4722 /*
4723 * Program the gmbus_freq based on the cdclk frequency.
4724 * BSpec erroneously claims we should aim for 4MHz, but
4725 * in fact 1MHz is the correct frequency.
4726 */
4727 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4728 }
4729
4730 /* Adjust CDclk dividers to allow high res or save power if possible */
4731 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4732 {
4733 struct drm_i915_private *dev_priv = dev->dev_private;
4734 u32 val, cmd;
4735
4736 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4737
4738 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4739 cmd = 2;
4740 else if (cdclk == 266667)
4741 cmd = 1;
4742 else
4743 cmd = 0;
4744
4745 mutex_lock(&dev_priv->rps.hw_lock);
4746 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4747 val &= ~DSPFREQGUAR_MASK;
4748 val |= (cmd << DSPFREQGUAR_SHIFT);
4749 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4750 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4751 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4752 50)) {
4753 DRM_ERROR("timed out waiting for CDclk change\n");
4754 }
4755 mutex_unlock(&dev_priv->rps.hw_lock);
4756
4757 if (cdclk == 400000) {
4758 u32 divider;
4759
4760 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4761
4762 mutex_lock(&dev_priv->dpio_lock);
4763 /* adjust cdclk divider */
4764 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4765 val &= ~DISPLAY_FREQUENCY_VALUES;
4766 val |= divider;
4767 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4768
4769 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4770 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4771 50))
4772 DRM_ERROR("timed out waiting for CDclk change\n");
4773 mutex_unlock(&dev_priv->dpio_lock);
4774 }
4775
4776 mutex_lock(&dev_priv->dpio_lock);
4777 /* adjust self-refresh exit latency value */
4778 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4779 val &= ~0x7f;
4780
4781 /*
4782 * For high bandwidth configs, we set a higher latency in the bunit
4783 * so that the core display fetch happens in time to avoid underruns.
4784 */
4785 if (cdclk == 400000)
4786 val |= 4500 / 250; /* 4.5 usec */
4787 else
4788 val |= 3000 / 250; /* 3.0 usec */
4789 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4790 mutex_unlock(&dev_priv->dpio_lock);
4791
4792 vlv_update_cdclk(dev);
4793 }
4794
4795 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4796 {
4797 struct drm_i915_private *dev_priv = dev->dev_private;
4798 u32 val, cmd;
4799
4800 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4801
4802 switch (cdclk) {
4803 case 400000:
4804 cmd = 3;
4805 break;
4806 case 333333:
4807 case 320000:
4808 cmd = 2;
4809 break;
4810 case 266667:
4811 cmd = 1;
4812 break;
4813 case 200000:
4814 cmd = 0;
4815 break;
4816 default:
4817 WARN_ON(1);
4818 return;
4819 }
4820
4821 mutex_lock(&dev_priv->rps.hw_lock);
4822 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4823 val &= ~DSPFREQGUAR_MASK_CHV;
4824 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4825 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4826 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4827 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4828 50)) {
4829 DRM_ERROR("timed out waiting for CDclk change\n");
4830 }
4831 mutex_unlock(&dev_priv->rps.hw_lock);
4832
4833 vlv_update_cdclk(dev);
4834 }
4835
4836 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4837 int max_pixclk)
4838 {
4839 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4840
4841 /* FIXME: Punit isn't quite ready yet */
4842 if (IS_CHERRYVIEW(dev_priv->dev))
4843 return 400000;
4844
4845 /*
4846 * Really only a few cases to deal with, as only 4 CDclks are supported:
4847 * 200MHz
4848 * 267MHz
4849 * 320/333MHz (depends on HPLL freq)
4850 * 400MHz
4851 * So we check to see whether we're above 90% of the lower bin and
4852 * adjust if needed.
4853 *
4854 * We seem to get an unstable or solid color picture at 200MHz.
4855 * Not sure what's wrong. For now use 200MHz only when all pipes
4856 * are off.
4857 */
4858 if (max_pixclk > freq_320*9/10)
4859 return 400000;
4860 else if (max_pixclk > 266667*9/10)
4861 return freq_320;
4862 else if (max_pixclk > 0)
4863 return 266667;
4864 else
4865 return 200000;
4866 }
4867
4868 /* compute the max pixel clock for new configuration */
4869 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4870 {
4871 struct drm_device *dev = dev_priv->dev;
4872 struct intel_crtc *intel_crtc;
4873 int max_pixclk = 0;
4874
4875 for_each_intel_crtc(dev, intel_crtc) {
4876 if (intel_crtc->new_enabled)
4877 max_pixclk = max(max_pixclk,
4878 intel_crtc->new_config->adjusted_mode.crtc_clock);
4879 }
4880
4881 return max_pixclk;
4882 }
4883
4884 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4885 unsigned *prepare_pipes)
4886 {
4887 struct drm_i915_private *dev_priv = dev->dev_private;
4888 struct intel_crtc *intel_crtc;
4889 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4890
4891 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4892 dev_priv->vlv_cdclk_freq)
4893 return;
4894
4895 /* disable/enable all currently active pipes while we change cdclk */
4896 for_each_intel_crtc(dev, intel_crtc)
4897 if (intel_crtc->base.enabled)
4898 *prepare_pipes |= (1 << intel_crtc->pipe);
4899 }
4900
4901 static void valleyview_modeset_global_resources(struct drm_device *dev)
4902 {
4903 struct drm_i915_private *dev_priv = dev->dev_private;
4904 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4905 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4906
4907 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4908 if (IS_CHERRYVIEW(dev))
4909 cherryview_set_cdclk(dev, req_cdclk);
4910 else
4911 valleyview_set_cdclk(dev, req_cdclk);
4912 }
4913 }
4914
4915 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4916 {
4917 struct drm_device *dev = crtc->dev;
4918 struct drm_i915_private *dev_priv = to_i915(dev);
4919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4920 struct intel_encoder *encoder;
4921 int pipe = intel_crtc->pipe;
4922 bool is_dsi;
4923
4924 WARN_ON(!crtc->enabled);
4925
4926 if (intel_crtc->active)
4927 return;
4928
4929 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4930
4931 if (!is_dsi) {
4932 if (IS_CHERRYVIEW(dev))
4933 chv_prepare_pll(intel_crtc, &intel_crtc->config);
4934 else
4935 vlv_prepare_pll(intel_crtc, &intel_crtc->config);
4936 }
4937
4938 if (intel_crtc->config.has_dp_encoder)
4939 intel_dp_set_m_n(intel_crtc);
4940
4941 intel_set_pipe_timings(intel_crtc);
4942
4943 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4944 struct drm_i915_private *dev_priv = dev->dev_private;
4945
4946 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4947 I915_WRITE(CHV_CANVAS(pipe), 0);
4948 }
4949
4950 i9xx_set_pipeconf(intel_crtc);
4951
4952 intel_crtc->active = true;
4953
4954 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4955
4956 for_each_encoder_on_crtc(dev, crtc, encoder)
4957 if (encoder->pre_pll_enable)
4958 encoder->pre_pll_enable(encoder);
4959
4960 if (!is_dsi) {
4961 if (IS_CHERRYVIEW(dev))
4962 chv_enable_pll(intel_crtc, &intel_crtc->config);
4963 else
4964 vlv_enable_pll(intel_crtc, &intel_crtc->config);
4965 }
4966
4967 for_each_encoder_on_crtc(dev, crtc, encoder)
4968 if (encoder->pre_enable)
4969 encoder->pre_enable(encoder);
4970
4971 i9xx_pfit_enable(intel_crtc);
4972
4973 intel_crtc_load_lut(crtc);
4974
4975 intel_update_watermarks(crtc);
4976 intel_enable_pipe(intel_crtc);
4977
4978 for_each_encoder_on_crtc(dev, crtc, encoder)
4979 encoder->enable(encoder);
4980
4981 assert_vblank_disabled(crtc);
4982 drm_crtc_vblank_on(crtc);
4983
4984 intel_crtc_enable_planes(crtc);
4985
4986 /* Underruns don't raise interrupts, so check manually. */
4987 i9xx_check_fifo_underruns(dev_priv);
4988 }
4989
4990 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4991 {
4992 struct drm_device *dev = crtc->base.dev;
4993 struct drm_i915_private *dev_priv = dev->dev_private;
4994
4995 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4996 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4997 }
4998
4999 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5000 {
5001 struct drm_device *dev = crtc->dev;
5002 struct drm_i915_private *dev_priv = to_i915(dev);
5003 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5004 struct intel_encoder *encoder;
5005 int pipe = intel_crtc->pipe;
5006
5007 WARN_ON(!crtc->enabled);
5008
5009 if (intel_crtc->active)
5010 return;
5011
5012 i9xx_set_pll_dividers(intel_crtc);
5013
5014 if (intel_crtc->config.has_dp_encoder)
5015 intel_dp_set_m_n(intel_crtc);
5016
5017 intel_set_pipe_timings(intel_crtc);
5018
5019 i9xx_set_pipeconf(intel_crtc);
5020
5021 intel_crtc->active = true;
5022
5023 if (!IS_GEN2(dev))
5024 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5025
5026 for_each_encoder_on_crtc(dev, crtc, encoder)
5027 if (encoder->pre_enable)
5028 encoder->pre_enable(encoder);
5029
5030 i9xx_enable_pll(intel_crtc);
5031
5032 i9xx_pfit_enable(intel_crtc);
5033
5034 intel_crtc_load_lut(crtc);
5035
5036 intel_update_watermarks(crtc);
5037 intel_enable_pipe(intel_crtc);
5038
5039 for_each_encoder_on_crtc(dev, crtc, encoder)
5040 encoder->enable(encoder);
5041
5042 assert_vblank_disabled(crtc);
5043 drm_crtc_vblank_on(crtc);
5044
5045 intel_crtc_enable_planes(crtc);
5046
5047 /*
5048 * Gen2 reports pipe underruns whenever all planes are disabled.
5049 * So don't enable underrun reporting before at least some planes
5050 * are enabled.
5051 * FIXME: Need to fix the logic to work when we turn off all planes
5052 * but leave the pipe running.
5053 */
5054 if (IS_GEN2(dev))
5055 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5056
5057 /* Underruns don't raise interrupts, so check manually. */
5058 i9xx_check_fifo_underruns(dev_priv);
5059 }
5060
5061 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5062 {
5063 struct drm_device *dev = crtc->base.dev;
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065
5066 if (!crtc->config.gmch_pfit.control)
5067 return;
5068
5069 assert_pipe_disabled(dev_priv, crtc->pipe);
5070
5071 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5072 I915_READ(PFIT_CONTROL));
5073 I915_WRITE(PFIT_CONTROL, 0);
5074 }
5075
5076 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5077 {
5078 struct drm_device *dev = crtc->dev;
5079 struct drm_i915_private *dev_priv = dev->dev_private;
5080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5081 struct intel_encoder *encoder;
5082 int pipe = intel_crtc->pipe;
5083
5084 if (!intel_crtc->active)
5085 return;
5086
5087 /*
5088 * Gen2 reports pipe underruns whenever all planes are disabled.
5089 * So diasble underrun reporting before all the planes get disabled.
5090 * FIXME: Need to fix the logic to work when we turn off all planes
5091 * but leave the pipe running.
5092 */
5093 if (IS_GEN2(dev))
5094 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5095
5096 /*
5097 * Vblank time updates from the shadow to live plane control register
5098 * are blocked if the memory self-refresh mode is active at that
5099 * moment. So to make sure the plane gets truly disabled, disable
5100 * first the self-refresh mode. The self-refresh enable bit in turn
5101 * will be checked/applied by the HW only at the next frame start
5102 * event which is after the vblank start event, so we need to have a
5103 * wait-for-vblank between disabling the plane and the pipe.
5104 */
5105 intel_set_memory_cxsr(dev_priv, false);
5106 intel_crtc_disable_planes(crtc);
5107
5108 /*
5109 * On gen2 planes are double buffered but the pipe isn't, so we must
5110 * wait for planes to fully turn off before disabling the pipe.
5111 * We also need to wait on all gmch platforms because of the
5112 * self-refresh mode constraint explained above.
5113 */
5114 intel_wait_for_vblank(dev, pipe);
5115
5116 drm_crtc_vblank_off(crtc);
5117 assert_vblank_disabled(crtc);
5118
5119 for_each_encoder_on_crtc(dev, crtc, encoder)
5120 encoder->disable(encoder);
5121
5122 intel_disable_pipe(intel_crtc);
5123
5124 i9xx_pfit_disable(intel_crtc);
5125
5126 for_each_encoder_on_crtc(dev, crtc, encoder)
5127 if (encoder->post_disable)
5128 encoder->post_disable(encoder);
5129
5130 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5131 if (IS_CHERRYVIEW(dev))
5132 chv_disable_pll(dev_priv, pipe);
5133 else if (IS_VALLEYVIEW(dev))
5134 vlv_disable_pll(dev_priv, pipe);
5135 else
5136 i9xx_disable_pll(intel_crtc);
5137 }
5138
5139 if (!IS_GEN2(dev))
5140 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5141
5142 intel_crtc->active = false;
5143 intel_update_watermarks(crtc);
5144
5145 mutex_lock(&dev->struct_mutex);
5146 intel_update_fbc(dev);
5147 mutex_unlock(&dev->struct_mutex);
5148 }
5149
5150 static void i9xx_crtc_off(struct drm_crtc *crtc)
5151 {
5152 }
5153
5154 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5155 bool enabled)
5156 {
5157 struct drm_device *dev = crtc->dev;
5158 struct drm_i915_master_private *master_priv;
5159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5160 int pipe = intel_crtc->pipe;
5161
5162 if (!dev->primary->master)
5163 return;
5164
5165 master_priv = dev->primary->master->driver_priv;
5166 if (!master_priv->sarea_priv)
5167 return;
5168
5169 switch (pipe) {
5170 case 0:
5171 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5172 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5173 break;
5174 case 1:
5175 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5176 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5177 break;
5178 default:
5179 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
5180 break;
5181 }
5182 }
5183
5184 /* Master function to enable/disable CRTC and corresponding power wells */
5185 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5186 {
5187 struct drm_device *dev = crtc->dev;
5188 struct drm_i915_private *dev_priv = dev->dev_private;
5189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5190 enum intel_display_power_domain domain;
5191 unsigned long domains;
5192
5193 if (enable) {
5194 if (!intel_crtc->active) {
5195 domains = get_crtc_power_domains(crtc);
5196 for_each_power_domain(domain, domains)
5197 intel_display_power_get(dev_priv, domain);
5198 intel_crtc->enabled_power_domains = domains;
5199
5200 dev_priv->display.crtc_enable(crtc);
5201 }
5202 } else {
5203 if (intel_crtc->active) {
5204 dev_priv->display.crtc_disable(crtc);
5205
5206 domains = intel_crtc->enabled_power_domains;
5207 for_each_power_domain(domain, domains)
5208 intel_display_power_put(dev_priv, domain);
5209 intel_crtc->enabled_power_domains = 0;
5210 }
5211 }
5212 }
5213
5214 /**
5215 * Sets the power management mode of the pipe and plane.
5216 */
5217 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5218 {
5219 struct drm_device *dev = crtc->dev;
5220 struct intel_encoder *intel_encoder;
5221 bool enable = false;
5222
5223 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5224 enable |= intel_encoder->connectors_active;
5225
5226 intel_crtc_control(crtc, enable);
5227
5228 intel_crtc_update_sarea(crtc, enable);
5229 }
5230
5231 static void intel_crtc_disable(struct drm_crtc *crtc)
5232 {
5233 struct drm_device *dev = crtc->dev;
5234 struct drm_connector *connector;
5235 struct drm_i915_private *dev_priv = dev->dev_private;
5236 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
5237 enum pipe pipe = to_intel_crtc(crtc)->pipe;
5238
5239 /* crtc should still be enabled when we disable it. */
5240 WARN_ON(!crtc->enabled);
5241
5242 dev_priv->display.crtc_disable(crtc);
5243 intel_crtc_update_sarea(crtc, false);
5244 dev_priv->display.off(crtc);
5245
5246 if (crtc->primary->fb) {
5247 mutex_lock(&dev->struct_mutex);
5248 intel_unpin_fb_obj(old_obj);
5249 i915_gem_track_fb(old_obj, NULL,
5250 INTEL_FRONTBUFFER_PRIMARY(pipe));
5251 mutex_unlock(&dev->struct_mutex);
5252 crtc->primary->fb = NULL;
5253 }
5254
5255 /* Update computed state. */
5256 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5257 if (!connector->encoder || !connector->encoder->crtc)
5258 continue;
5259
5260 if (connector->encoder->crtc != crtc)
5261 continue;
5262
5263 connector->dpms = DRM_MODE_DPMS_OFF;
5264 to_intel_encoder(connector->encoder)->connectors_active = false;
5265 }
5266 }
5267
5268 void intel_encoder_destroy(struct drm_encoder *encoder)
5269 {
5270 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5271
5272 drm_encoder_cleanup(encoder);
5273 kfree(intel_encoder);
5274 }
5275
5276 /* Simple dpms helper for encoders with just one connector, no cloning and only
5277 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5278 * state of the entire output pipe. */
5279 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5280 {
5281 if (mode == DRM_MODE_DPMS_ON) {
5282 encoder->connectors_active = true;
5283
5284 intel_crtc_update_dpms(encoder->base.crtc);
5285 } else {
5286 encoder->connectors_active = false;
5287
5288 intel_crtc_update_dpms(encoder->base.crtc);
5289 }
5290 }
5291
5292 /* Cross check the actual hw state with our own modeset state tracking (and it's
5293 * internal consistency). */
5294 static void intel_connector_check_state(struct intel_connector *connector)
5295 {
5296 if (connector->get_hw_state(connector)) {
5297 struct intel_encoder *encoder = connector->encoder;
5298 struct drm_crtc *crtc;
5299 bool encoder_enabled;
5300 enum pipe pipe;
5301
5302 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5303 connector->base.base.id,
5304 connector->base.name);
5305
5306 /* there is no real hw state for MST connectors */
5307 if (connector->mst_port)
5308 return;
5309
5310 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5311 "wrong connector dpms state\n");
5312 WARN(connector->base.encoder != &encoder->base,
5313 "active connector not linked to encoder\n");
5314
5315 if (encoder) {
5316 WARN(!encoder->connectors_active,
5317 "encoder->connectors_active not set\n");
5318
5319 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5320 WARN(!encoder_enabled, "encoder not enabled\n");
5321 if (WARN_ON(!encoder->base.crtc))
5322 return;
5323
5324 crtc = encoder->base.crtc;
5325
5326 WARN(!crtc->enabled, "crtc not enabled\n");
5327 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5328 WARN(pipe != to_intel_crtc(crtc)->pipe,
5329 "encoder active on the wrong pipe\n");
5330 }
5331 }
5332 }
5333
5334 /* Even simpler default implementation, if there's really no special case to
5335 * consider. */
5336 void intel_connector_dpms(struct drm_connector *connector, int mode)
5337 {
5338 /* All the simple cases only support two dpms states. */
5339 if (mode != DRM_MODE_DPMS_ON)
5340 mode = DRM_MODE_DPMS_OFF;
5341
5342 if (mode == connector->dpms)
5343 return;
5344
5345 connector->dpms = mode;
5346
5347 /* Only need to change hw state when actually enabled */
5348 if (connector->encoder)
5349 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5350
5351 intel_modeset_check_state(connector->dev);
5352 }
5353
5354 /* Simple connector->get_hw_state implementation for encoders that support only
5355 * one connector and no cloning and hence the encoder state determines the state
5356 * of the connector. */
5357 bool intel_connector_get_hw_state(struct intel_connector *connector)
5358 {
5359 enum pipe pipe = 0;
5360 struct intel_encoder *encoder = connector->encoder;
5361
5362 return encoder->get_hw_state(encoder, &pipe);
5363 }
5364
5365 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5366 struct intel_crtc_config *pipe_config)
5367 {
5368 struct drm_i915_private *dev_priv = dev->dev_private;
5369 struct intel_crtc *pipe_B_crtc =
5370 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5371
5372 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5373 pipe_name(pipe), pipe_config->fdi_lanes);
5374 if (pipe_config->fdi_lanes > 4) {
5375 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5376 pipe_name(pipe), pipe_config->fdi_lanes);
5377 return false;
5378 }
5379
5380 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5381 if (pipe_config->fdi_lanes > 2) {
5382 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5383 pipe_config->fdi_lanes);
5384 return false;
5385 } else {
5386 return true;
5387 }
5388 }
5389
5390 if (INTEL_INFO(dev)->num_pipes == 2)
5391 return true;
5392
5393 /* Ivybridge 3 pipe is really complicated */
5394 switch (pipe) {
5395 case PIPE_A:
5396 return true;
5397 case PIPE_B:
5398 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5399 pipe_config->fdi_lanes > 2) {
5400 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5401 pipe_name(pipe), pipe_config->fdi_lanes);
5402 return false;
5403 }
5404 return true;
5405 case PIPE_C:
5406 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5407 pipe_B_crtc->config.fdi_lanes <= 2) {
5408 if (pipe_config->fdi_lanes > 2) {
5409 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5410 pipe_name(pipe), pipe_config->fdi_lanes);
5411 return false;
5412 }
5413 } else {
5414 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5415 return false;
5416 }
5417 return true;
5418 default:
5419 BUG();
5420 }
5421 }
5422
5423 #define RETRY 1
5424 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5425 struct intel_crtc_config *pipe_config)
5426 {
5427 struct drm_device *dev = intel_crtc->base.dev;
5428 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5429 int lane, link_bw, fdi_dotclock;
5430 bool setup_ok, needs_recompute = false;
5431
5432 retry:
5433 /* FDI is a binary signal running at ~2.7GHz, encoding
5434 * each output octet as 10 bits. The actual frequency
5435 * is stored as a divider into a 100MHz clock, and the
5436 * mode pixel clock is stored in units of 1KHz.
5437 * Hence the bw of each lane in terms of the mode signal
5438 * is:
5439 */
5440 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5441
5442 fdi_dotclock = adjusted_mode->crtc_clock;
5443
5444 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5445 pipe_config->pipe_bpp);
5446
5447 pipe_config->fdi_lanes = lane;
5448
5449 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5450 link_bw, &pipe_config->fdi_m_n);
5451
5452 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5453 intel_crtc->pipe, pipe_config);
5454 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5455 pipe_config->pipe_bpp -= 2*3;
5456 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5457 pipe_config->pipe_bpp);
5458 needs_recompute = true;
5459 pipe_config->bw_constrained = true;
5460
5461 goto retry;
5462 }
5463
5464 if (needs_recompute)
5465 return RETRY;
5466
5467 return setup_ok ? 0 : -EINVAL;
5468 }
5469
5470 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5471 struct intel_crtc_config *pipe_config)
5472 {
5473 pipe_config->ips_enabled = i915.enable_ips &&
5474 hsw_crtc_supports_ips(crtc) &&
5475 pipe_config->pipe_bpp <= 24;
5476 }
5477
5478 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5479 struct intel_crtc_config *pipe_config)
5480 {
5481 struct drm_device *dev = crtc->base.dev;
5482 struct drm_i915_private *dev_priv = dev->dev_private;
5483 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5484
5485 /* FIXME should check pixel clock limits on all platforms */
5486 if (INTEL_INFO(dev)->gen < 4) {
5487 int clock_limit =
5488 dev_priv->display.get_display_clock_speed(dev);
5489
5490 /*
5491 * Enable pixel doubling when the dot clock
5492 * is > 90% of the (display) core speed.
5493 *
5494 * GDG double wide on either pipe,
5495 * otherwise pipe A only.
5496 */
5497 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5498 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5499 clock_limit *= 2;
5500 pipe_config->double_wide = true;
5501 }
5502
5503 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5504 return -EINVAL;
5505 }
5506
5507 /*
5508 * Pipe horizontal size must be even in:
5509 * - DVO ganged mode
5510 * - LVDS dual channel mode
5511 * - Double wide pipe
5512 */
5513 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5514 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5515 pipe_config->pipe_src_w &= ~1;
5516
5517 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5518 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5519 */
5520 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5521 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5522 return -EINVAL;
5523
5524 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5525 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5526 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5527 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5528 * for lvds. */
5529 pipe_config->pipe_bpp = 8*3;
5530 }
5531
5532 if (HAS_IPS(dev))
5533 hsw_compute_ips_config(crtc, pipe_config);
5534
5535 if (pipe_config->has_pch_encoder)
5536 return ironlake_fdi_compute_config(crtc, pipe_config);
5537
5538 return 0;
5539 }
5540
5541 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5542 {
5543 struct drm_i915_private *dev_priv = dev->dev_private;
5544 u32 val;
5545 int divider;
5546
5547 /* FIXME: Punit isn't quite ready yet */
5548 if (IS_CHERRYVIEW(dev))
5549 return 400000;
5550
5551 if (dev_priv->hpll_freq == 0)
5552 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5553
5554 mutex_lock(&dev_priv->dpio_lock);
5555 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5556 mutex_unlock(&dev_priv->dpio_lock);
5557
5558 divider = val & DISPLAY_FREQUENCY_VALUES;
5559
5560 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5561 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5562 "cdclk change in progress\n");
5563
5564 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5565 }
5566
5567 static int i945_get_display_clock_speed(struct drm_device *dev)
5568 {
5569 return 400000;
5570 }
5571
5572 static int i915_get_display_clock_speed(struct drm_device *dev)
5573 {
5574 return 333000;
5575 }
5576
5577 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5578 {
5579 return 200000;
5580 }
5581
5582 static int pnv_get_display_clock_speed(struct drm_device *dev)
5583 {
5584 u16 gcfgc = 0;
5585
5586 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5587
5588 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5589 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5590 return 267000;
5591 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5592 return 333000;
5593 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5594 return 444000;
5595 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5596 return 200000;
5597 default:
5598 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5599 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5600 return 133000;
5601 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5602 return 167000;
5603 }
5604 }
5605
5606 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5607 {
5608 u16 gcfgc = 0;
5609
5610 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5611
5612 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5613 return 133000;
5614 else {
5615 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5616 case GC_DISPLAY_CLOCK_333_MHZ:
5617 return 333000;
5618 default:
5619 case GC_DISPLAY_CLOCK_190_200_MHZ:
5620 return 190000;
5621 }
5622 }
5623 }
5624
5625 static int i865_get_display_clock_speed(struct drm_device *dev)
5626 {
5627 return 266000;
5628 }
5629
5630 static int i855_get_display_clock_speed(struct drm_device *dev)
5631 {
5632 u16 hpllcc = 0;
5633 /* Assume that the hardware is in the high speed state. This
5634 * should be the default.
5635 */
5636 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5637 case GC_CLOCK_133_200:
5638 case GC_CLOCK_100_200:
5639 return 200000;
5640 case GC_CLOCK_166_250:
5641 return 250000;
5642 case GC_CLOCK_100_133:
5643 return 133000;
5644 }
5645
5646 /* Shouldn't happen */
5647 return 0;
5648 }
5649
5650 static int i830_get_display_clock_speed(struct drm_device *dev)
5651 {
5652 return 133000;
5653 }
5654
5655 static void
5656 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5657 {
5658 while (*num > DATA_LINK_M_N_MASK ||
5659 *den > DATA_LINK_M_N_MASK) {
5660 *num >>= 1;
5661 *den >>= 1;
5662 }
5663 }
5664
5665 static void compute_m_n(unsigned int m, unsigned int n,
5666 uint32_t *ret_m, uint32_t *ret_n)
5667 {
5668 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5669 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5670 intel_reduce_m_n_ratio(ret_m, ret_n);
5671 }
5672
5673 void
5674 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5675 int pixel_clock, int link_clock,
5676 struct intel_link_m_n *m_n)
5677 {
5678 m_n->tu = 64;
5679
5680 compute_m_n(bits_per_pixel * pixel_clock,
5681 link_clock * nlanes * 8,
5682 &m_n->gmch_m, &m_n->gmch_n);
5683
5684 compute_m_n(pixel_clock, link_clock,
5685 &m_n->link_m, &m_n->link_n);
5686 }
5687
5688 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5689 {
5690 if (i915.panel_use_ssc >= 0)
5691 return i915.panel_use_ssc != 0;
5692 return dev_priv->vbt.lvds_use_ssc
5693 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5694 }
5695
5696 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5697 {
5698 struct drm_device *dev = crtc->base.dev;
5699 struct drm_i915_private *dev_priv = dev->dev_private;
5700 int refclk;
5701
5702 if (IS_VALLEYVIEW(dev)) {
5703 refclk = 100000;
5704 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5705 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5706 refclk = dev_priv->vbt.lvds_ssc_freq;
5707 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5708 } else if (!IS_GEN2(dev)) {
5709 refclk = 96000;
5710 } else {
5711 refclk = 48000;
5712 }
5713
5714 return refclk;
5715 }
5716
5717 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5718 {
5719 return (1 << dpll->n) << 16 | dpll->m2;
5720 }
5721
5722 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5723 {
5724 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5725 }
5726
5727 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5728 intel_clock_t *reduced_clock)
5729 {
5730 struct drm_device *dev = crtc->base.dev;
5731 u32 fp, fp2 = 0;
5732
5733 if (IS_PINEVIEW(dev)) {
5734 fp = pnv_dpll_compute_fp(&crtc->new_config->dpll);
5735 if (reduced_clock)
5736 fp2 = pnv_dpll_compute_fp(reduced_clock);
5737 } else {
5738 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
5739 if (reduced_clock)
5740 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5741 }
5742
5743 crtc->new_config->dpll_hw_state.fp0 = fp;
5744
5745 crtc->lowfreq_avail = false;
5746 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5747 reduced_clock && i915.powersave) {
5748 crtc->new_config->dpll_hw_state.fp1 = fp2;
5749 crtc->lowfreq_avail = true;
5750 } else {
5751 crtc->new_config->dpll_hw_state.fp1 = fp;
5752 }
5753 }
5754
5755 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5756 pipe)
5757 {
5758 u32 reg_val;
5759
5760 /*
5761 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5762 * and set it to a reasonable value instead.
5763 */
5764 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5765 reg_val &= 0xffffff00;
5766 reg_val |= 0x00000030;
5767 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5768
5769 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5770 reg_val &= 0x8cffffff;
5771 reg_val = 0x8c000000;
5772 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5773
5774 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5775 reg_val &= 0xffffff00;
5776 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5777
5778 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5779 reg_val &= 0x00ffffff;
5780 reg_val |= 0xb0000000;
5781 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5782 }
5783
5784 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5785 struct intel_link_m_n *m_n)
5786 {
5787 struct drm_device *dev = crtc->base.dev;
5788 struct drm_i915_private *dev_priv = dev->dev_private;
5789 int pipe = crtc->pipe;
5790
5791 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5792 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5793 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5794 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5795 }
5796
5797 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5798 struct intel_link_m_n *m_n,
5799 struct intel_link_m_n *m2_n2)
5800 {
5801 struct drm_device *dev = crtc->base.dev;
5802 struct drm_i915_private *dev_priv = dev->dev_private;
5803 int pipe = crtc->pipe;
5804 enum transcoder transcoder = crtc->config.cpu_transcoder;
5805
5806 if (INTEL_INFO(dev)->gen >= 5) {
5807 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5808 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5809 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5810 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5811 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5812 * for gen < 8) and if DRRS is supported (to make sure the
5813 * registers are not unnecessarily accessed).
5814 */
5815 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5816 crtc->config.has_drrs) {
5817 I915_WRITE(PIPE_DATA_M2(transcoder),
5818 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5819 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5820 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5821 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5822 }
5823 } else {
5824 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5825 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5826 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5827 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5828 }
5829 }
5830
5831 void intel_dp_set_m_n(struct intel_crtc *crtc)
5832 {
5833 if (crtc->config.has_pch_encoder)
5834 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5835 else
5836 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5837 &crtc->config.dp_m2_n2);
5838 }
5839
5840 static void vlv_update_pll(struct intel_crtc *crtc,
5841 struct intel_crtc_config *pipe_config)
5842 {
5843 u32 dpll, dpll_md;
5844
5845 /*
5846 * Enable DPIO clock input. We should never disable the reference
5847 * clock for pipe B, since VGA hotplug / manual detection depends
5848 * on it.
5849 */
5850 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5851 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5852 /* We should never disable this, set it here for state tracking */
5853 if (crtc->pipe == PIPE_B)
5854 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5855 dpll |= DPLL_VCO_ENABLE;
5856 pipe_config->dpll_hw_state.dpll = dpll;
5857
5858 dpll_md = (pipe_config->pixel_multiplier - 1)
5859 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5860 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5861 }
5862
5863 static void vlv_prepare_pll(struct intel_crtc *crtc,
5864 const struct intel_crtc_config *pipe_config)
5865 {
5866 struct drm_device *dev = crtc->base.dev;
5867 struct drm_i915_private *dev_priv = dev->dev_private;
5868 int pipe = crtc->pipe;
5869 u32 mdiv;
5870 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5871 u32 coreclk, reg_val;
5872
5873 mutex_lock(&dev_priv->dpio_lock);
5874
5875 bestn = pipe_config->dpll.n;
5876 bestm1 = pipe_config->dpll.m1;
5877 bestm2 = pipe_config->dpll.m2;
5878 bestp1 = pipe_config->dpll.p1;
5879 bestp2 = pipe_config->dpll.p2;
5880
5881 /* See eDP HDMI DPIO driver vbios notes doc */
5882
5883 /* PLL B needs special handling */
5884 if (pipe == PIPE_B)
5885 vlv_pllb_recal_opamp(dev_priv, pipe);
5886
5887 /* Set up Tx target for periodic Rcomp update */
5888 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5889
5890 /* Disable target IRef on PLL */
5891 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5892 reg_val &= 0x00ffffff;
5893 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5894
5895 /* Disable fast lock */
5896 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5897
5898 /* Set idtafcrecal before PLL is enabled */
5899 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5900 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5901 mdiv |= ((bestn << DPIO_N_SHIFT));
5902 mdiv |= (1 << DPIO_K_SHIFT);
5903
5904 /*
5905 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5906 * but we don't support that).
5907 * Note: don't use the DAC post divider as it seems unstable.
5908 */
5909 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5910 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5911
5912 mdiv |= DPIO_ENABLE_CALIBRATION;
5913 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5914
5915 /* Set HBR and RBR LPF coefficients */
5916 if (pipe_config->port_clock == 162000 ||
5917 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5918 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5919 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5920 0x009f0003);
5921 else
5922 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5923 0x00d0000f);
5924
5925 if (crtc->config.has_dp_encoder) {
5926 /* Use SSC source */
5927 if (pipe == PIPE_A)
5928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5929 0x0df40000);
5930 else
5931 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5932 0x0df70000);
5933 } else { /* HDMI or VGA */
5934 /* Use bend source */
5935 if (pipe == PIPE_A)
5936 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5937 0x0df70000);
5938 else
5939 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5940 0x0df40000);
5941 }
5942
5943 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5944 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5945 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5946 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5947 coreclk |= 0x01000000;
5948 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5949
5950 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5951 mutex_unlock(&dev_priv->dpio_lock);
5952 }
5953
5954 static void chv_update_pll(struct intel_crtc *crtc,
5955 struct intel_crtc_config *pipe_config)
5956 {
5957 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5958 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5959 DPLL_VCO_ENABLE;
5960 if (crtc->pipe != PIPE_A)
5961 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5962
5963 pipe_config->dpll_hw_state.dpll_md =
5964 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5965 }
5966
5967 static void chv_prepare_pll(struct intel_crtc *crtc,
5968 const struct intel_crtc_config *pipe_config)
5969 {
5970 struct drm_device *dev = crtc->base.dev;
5971 struct drm_i915_private *dev_priv = dev->dev_private;
5972 int pipe = crtc->pipe;
5973 int dpll_reg = DPLL(crtc->pipe);
5974 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5975 u32 loopfilter, intcoeff;
5976 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5977 int refclk;
5978
5979 bestn = pipe_config->dpll.n;
5980 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5981 bestm1 = pipe_config->dpll.m1;
5982 bestm2 = pipe_config->dpll.m2 >> 22;
5983 bestp1 = pipe_config->dpll.p1;
5984 bestp2 = pipe_config->dpll.p2;
5985
5986 /*
5987 * Enable Refclk and SSC
5988 */
5989 I915_WRITE(dpll_reg,
5990 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5991
5992 mutex_lock(&dev_priv->dpio_lock);
5993
5994 /* p1 and p2 divider */
5995 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5996 5 << DPIO_CHV_S1_DIV_SHIFT |
5997 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5998 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5999 1 << DPIO_CHV_K_DIV_SHIFT);
6000
6001 /* Feedback post-divider - m2 */
6002 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6003
6004 /* Feedback refclk divider - n and m1 */
6005 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6006 DPIO_CHV_M1_DIV_BY_2 |
6007 1 << DPIO_CHV_N_DIV_SHIFT);
6008
6009 /* M2 fraction division */
6010 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6011
6012 /* M2 fraction division enable */
6013 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6014 DPIO_CHV_FRAC_DIV_EN |
6015 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6016
6017 /* Loop filter */
6018 refclk = i9xx_get_refclk(crtc, 0);
6019 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6020 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6021 if (refclk == 100000)
6022 intcoeff = 11;
6023 else if (refclk == 38400)
6024 intcoeff = 10;
6025 else
6026 intcoeff = 9;
6027 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6028 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6029
6030 /* AFC Recal */
6031 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6032 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6033 DPIO_AFC_RECAL);
6034
6035 mutex_unlock(&dev_priv->dpio_lock);
6036 }
6037
6038 /**
6039 * vlv_force_pll_on - forcibly enable just the PLL
6040 * @dev_priv: i915 private structure
6041 * @pipe: pipe PLL to enable
6042 * @dpll: PLL configuration
6043 *
6044 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6045 * in cases where we need the PLL enabled even when @pipe is not going to
6046 * be enabled.
6047 */
6048 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6049 const struct dpll *dpll)
6050 {
6051 struct intel_crtc *crtc =
6052 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6053 struct intel_crtc_config pipe_config = {
6054 .pixel_multiplier = 1,
6055 .dpll = *dpll,
6056 };
6057
6058 if (IS_CHERRYVIEW(dev)) {
6059 chv_update_pll(crtc, &pipe_config);
6060 chv_prepare_pll(crtc, &pipe_config);
6061 chv_enable_pll(crtc, &pipe_config);
6062 } else {
6063 vlv_update_pll(crtc, &pipe_config);
6064 vlv_prepare_pll(crtc, &pipe_config);
6065 vlv_enable_pll(crtc, &pipe_config);
6066 }
6067 }
6068
6069 /**
6070 * vlv_force_pll_off - forcibly disable just the PLL
6071 * @dev_priv: i915 private structure
6072 * @pipe: pipe PLL to disable
6073 *
6074 * Disable the PLL for @pipe. To be used in cases where we need
6075 * the PLL enabled even when @pipe is not going to be enabled.
6076 */
6077 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6078 {
6079 if (IS_CHERRYVIEW(dev))
6080 chv_disable_pll(to_i915(dev), pipe);
6081 else
6082 vlv_disable_pll(to_i915(dev), pipe);
6083 }
6084
6085 static void i9xx_update_pll(struct intel_crtc *crtc,
6086 intel_clock_t *reduced_clock,
6087 int num_connectors)
6088 {
6089 struct drm_device *dev = crtc->base.dev;
6090 struct drm_i915_private *dev_priv = dev->dev_private;
6091 u32 dpll;
6092 bool is_sdvo;
6093 struct dpll *clock = &crtc->new_config->dpll;
6094
6095 i9xx_update_pll_dividers(crtc, reduced_clock);
6096
6097 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6098 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6099
6100 dpll = DPLL_VGA_MODE_DIS;
6101
6102 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6103 dpll |= DPLLB_MODE_LVDS;
6104 else
6105 dpll |= DPLLB_MODE_DAC_SERIAL;
6106
6107 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6108 dpll |= (crtc->new_config->pixel_multiplier - 1)
6109 << SDVO_MULTIPLIER_SHIFT_HIRES;
6110 }
6111
6112 if (is_sdvo)
6113 dpll |= DPLL_SDVO_HIGH_SPEED;
6114
6115 if (crtc->new_config->has_dp_encoder)
6116 dpll |= DPLL_SDVO_HIGH_SPEED;
6117
6118 /* compute bitmask from p1 value */
6119 if (IS_PINEVIEW(dev))
6120 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6121 else {
6122 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6123 if (IS_G4X(dev) && reduced_clock)
6124 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6125 }
6126 switch (clock->p2) {
6127 case 5:
6128 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6129 break;
6130 case 7:
6131 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6132 break;
6133 case 10:
6134 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6135 break;
6136 case 14:
6137 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6138 break;
6139 }
6140 if (INTEL_INFO(dev)->gen >= 4)
6141 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6142
6143 if (crtc->new_config->sdvo_tv_clock)
6144 dpll |= PLL_REF_INPUT_TVCLKINBC;
6145 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6146 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6147 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6148 else
6149 dpll |= PLL_REF_INPUT_DREFCLK;
6150
6151 dpll |= DPLL_VCO_ENABLE;
6152 crtc->new_config->dpll_hw_state.dpll = dpll;
6153
6154 if (INTEL_INFO(dev)->gen >= 4) {
6155 u32 dpll_md = (crtc->new_config->pixel_multiplier - 1)
6156 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6157 crtc->new_config->dpll_hw_state.dpll_md = dpll_md;
6158 }
6159 }
6160
6161 static void i8xx_update_pll(struct intel_crtc *crtc,
6162 intel_clock_t *reduced_clock,
6163 int num_connectors)
6164 {
6165 struct drm_device *dev = crtc->base.dev;
6166 struct drm_i915_private *dev_priv = dev->dev_private;
6167 u32 dpll;
6168 struct dpll *clock = &crtc->new_config->dpll;
6169
6170 i9xx_update_pll_dividers(crtc, reduced_clock);
6171
6172 dpll = DPLL_VGA_MODE_DIS;
6173
6174 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6175 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6176 } else {
6177 if (clock->p1 == 2)
6178 dpll |= PLL_P1_DIVIDE_BY_TWO;
6179 else
6180 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6181 if (clock->p2 == 4)
6182 dpll |= PLL_P2_DIVIDE_BY_4;
6183 }
6184
6185 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6186 dpll |= DPLL_DVO_2X_MODE;
6187
6188 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6189 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6190 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6191 else
6192 dpll |= PLL_REF_INPUT_DREFCLK;
6193
6194 dpll |= DPLL_VCO_ENABLE;
6195 crtc->new_config->dpll_hw_state.dpll = dpll;
6196 }
6197
6198 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6199 {
6200 struct drm_device *dev = intel_crtc->base.dev;
6201 struct drm_i915_private *dev_priv = dev->dev_private;
6202 enum pipe pipe = intel_crtc->pipe;
6203 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6204 struct drm_display_mode *adjusted_mode =
6205 &intel_crtc->config.adjusted_mode;
6206 uint32_t crtc_vtotal, crtc_vblank_end;
6207 int vsyncshift = 0;
6208
6209 /* We need to be careful not to changed the adjusted mode, for otherwise
6210 * the hw state checker will get angry at the mismatch. */
6211 crtc_vtotal = adjusted_mode->crtc_vtotal;
6212 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6213
6214 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6215 /* the chip adds 2 halflines automatically */
6216 crtc_vtotal -= 1;
6217 crtc_vblank_end -= 1;
6218
6219 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6220 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6221 else
6222 vsyncshift = adjusted_mode->crtc_hsync_start -
6223 adjusted_mode->crtc_htotal / 2;
6224 if (vsyncshift < 0)
6225 vsyncshift += adjusted_mode->crtc_htotal;
6226 }
6227
6228 if (INTEL_INFO(dev)->gen > 3)
6229 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6230
6231 I915_WRITE(HTOTAL(cpu_transcoder),
6232 (adjusted_mode->crtc_hdisplay - 1) |
6233 ((adjusted_mode->crtc_htotal - 1) << 16));
6234 I915_WRITE(HBLANK(cpu_transcoder),
6235 (adjusted_mode->crtc_hblank_start - 1) |
6236 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6237 I915_WRITE(HSYNC(cpu_transcoder),
6238 (adjusted_mode->crtc_hsync_start - 1) |
6239 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6240
6241 I915_WRITE(VTOTAL(cpu_transcoder),
6242 (adjusted_mode->crtc_vdisplay - 1) |
6243 ((crtc_vtotal - 1) << 16));
6244 I915_WRITE(VBLANK(cpu_transcoder),
6245 (adjusted_mode->crtc_vblank_start - 1) |
6246 ((crtc_vblank_end - 1) << 16));
6247 I915_WRITE(VSYNC(cpu_transcoder),
6248 (adjusted_mode->crtc_vsync_start - 1) |
6249 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6250
6251 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6252 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6253 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6254 * bits. */
6255 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6256 (pipe == PIPE_B || pipe == PIPE_C))
6257 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6258
6259 /* pipesrc controls the size that is scaled from, which should
6260 * always be the user's requested size.
6261 */
6262 I915_WRITE(PIPESRC(pipe),
6263 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6264 (intel_crtc->config.pipe_src_h - 1));
6265 }
6266
6267 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6268 struct intel_crtc_config *pipe_config)
6269 {
6270 struct drm_device *dev = crtc->base.dev;
6271 struct drm_i915_private *dev_priv = dev->dev_private;
6272 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6273 uint32_t tmp;
6274
6275 tmp = I915_READ(HTOTAL(cpu_transcoder));
6276 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6277 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6278 tmp = I915_READ(HBLANK(cpu_transcoder));
6279 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6280 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6281 tmp = I915_READ(HSYNC(cpu_transcoder));
6282 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6283 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6284
6285 tmp = I915_READ(VTOTAL(cpu_transcoder));
6286 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6287 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6288 tmp = I915_READ(VBLANK(cpu_transcoder));
6289 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6290 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6291 tmp = I915_READ(VSYNC(cpu_transcoder));
6292 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6293 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6294
6295 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6296 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6297 pipe_config->adjusted_mode.crtc_vtotal += 1;
6298 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6299 }
6300
6301 tmp = I915_READ(PIPESRC(crtc->pipe));
6302 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6303 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6304
6305 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6306 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
6307 }
6308
6309 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6310 struct intel_crtc_config *pipe_config)
6311 {
6312 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6313 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6314 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6315 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
6316
6317 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6318 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6319 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6320 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
6321
6322 mode->flags = pipe_config->adjusted_mode.flags;
6323
6324 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6325 mode->flags |= pipe_config->adjusted_mode.flags;
6326 }
6327
6328 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6329 {
6330 struct drm_device *dev = intel_crtc->base.dev;
6331 struct drm_i915_private *dev_priv = dev->dev_private;
6332 uint32_t pipeconf;
6333
6334 pipeconf = 0;
6335
6336 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6337 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6338 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6339
6340 if (intel_crtc->config.double_wide)
6341 pipeconf |= PIPECONF_DOUBLE_WIDE;
6342
6343 /* only g4x and later have fancy bpc/dither controls */
6344 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6345 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6346 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6347 pipeconf |= PIPECONF_DITHER_EN |
6348 PIPECONF_DITHER_TYPE_SP;
6349
6350 switch (intel_crtc->config.pipe_bpp) {
6351 case 18:
6352 pipeconf |= PIPECONF_6BPC;
6353 break;
6354 case 24:
6355 pipeconf |= PIPECONF_8BPC;
6356 break;
6357 case 30:
6358 pipeconf |= PIPECONF_10BPC;
6359 break;
6360 default:
6361 /* Case prevented by intel_choose_pipe_bpp_dither. */
6362 BUG();
6363 }
6364 }
6365
6366 if (HAS_PIPE_CXSR(dev)) {
6367 if (intel_crtc->lowfreq_avail) {
6368 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6369 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6370 } else {
6371 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6372 }
6373 }
6374
6375 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6376 if (INTEL_INFO(dev)->gen < 4 ||
6377 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6378 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6379 else
6380 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6381 } else
6382 pipeconf |= PIPECONF_PROGRESSIVE;
6383
6384 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6385 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6386
6387 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6388 POSTING_READ(PIPECONF(intel_crtc->pipe));
6389 }
6390
6391 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc)
6392 {
6393 struct drm_device *dev = crtc->base.dev;
6394 struct drm_i915_private *dev_priv = dev->dev_private;
6395 int refclk, num_connectors = 0;
6396 intel_clock_t clock, reduced_clock;
6397 bool ok, has_reduced_clock = false;
6398 bool is_lvds = false, is_dsi = false;
6399 struct intel_encoder *encoder;
6400 const intel_limit_t *limit;
6401
6402 for_each_intel_encoder(dev, encoder) {
6403 if (encoder->new_crtc != crtc)
6404 continue;
6405
6406 switch (encoder->type) {
6407 case INTEL_OUTPUT_LVDS:
6408 is_lvds = true;
6409 break;
6410 case INTEL_OUTPUT_DSI:
6411 is_dsi = true;
6412 break;
6413 default:
6414 break;
6415 }
6416
6417 num_connectors++;
6418 }
6419
6420 if (is_dsi)
6421 return 0;
6422
6423 if (!crtc->new_config->clock_set) {
6424 refclk = i9xx_get_refclk(crtc, num_connectors);
6425
6426 /*
6427 * Returns a set of divisors for the desired target clock with
6428 * the given refclk, or FALSE. The returned values represent
6429 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6430 * 2) / p1 / p2.
6431 */
6432 limit = intel_limit(crtc, refclk);
6433 ok = dev_priv->display.find_dpll(limit, crtc,
6434 crtc->new_config->port_clock,
6435 refclk, NULL, &clock);
6436 if (!ok) {
6437 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6438 return -EINVAL;
6439 }
6440
6441 if (is_lvds && dev_priv->lvds_downclock_avail) {
6442 /*
6443 * Ensure we match the reduced clock's P to the target
6444 * clock. If the clocks don't match, we can't switch
6445 * the display clock by using the FP0/FP1. In such case
6446 * we will disable the LVDS downclock feature.
6447 */
6448 has_reduced_clock =
6449 dev_priv->display.find_dpll(limit, crtc,
6450 dev_priv->lvds_downclock,
6451 refclk, &clock,
6452 &reduced_clock);
6453 }
6454 /* Compat-code for transition, will disappear. */
6455 crtc->new_config->dpll.n = clock.n;
6456 crtc->new_config->dpll.m1 = clock.m1;
6457 crtc->new_config->dpll.m2 = clock.m2;
6458 crtc->new_config->dpll.p1 = clock.p1;
6459 crtc->new_config->dpll.p2 = clock.p2;
6460 }
6461
6462 if (IS_GEN2(dev)) {
6463 i8xx_update_pll(crtc,
6464 has_reduced_clock ? &reduced_clock : NULL,
6465 num_connectors);
6466 } else if (IS_CHERRYVIEW(dev)) {
6467 chv_update_pll(crtc, crtc->new_config);
6468 } else if (IS_VALLEYVIEW(dev)) {
6469 vlv_update_pll(crtc, crtc->new_config);
6470 } else {
6471 i9xx_update_pll(crtc,
6472 has_reduced_clock ? &reduced_clock : NULL,
6473 num_connectors);
6474 }
6475
6476 return 0;
6477 }
6478
6479 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6480 struct intel_crtc_config *pipe_config)
6481 {
6482 struct drm_device *dev = crtc->base.dev;
6483 struct drm_i915_private *dev_priv = dev->dev_private;
6484 uint32_t tmp;
6485
6486 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6487 return;
6488
6489 tmp = I915_READ(PFIT_CONTROL);
6490 if (!(tmp & PFIT_ENABLE))
6491 return;
6492
6493 /* Check whether the pfit is attached to our pipe. */
6494 if (INTEL_INFO(dev)->gen < 4) {
6495 if (crtc->pipe != PIPE_B)
6496 return;
6497 } else {
6498 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6499 return;
6500 }
6501
6502 pipe_config->gmch_pfit.control = tmp;
6503 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6504 if (INTEL_INFO(dev)->gen < 5)
6505 pipe_config->gmch_pfit.lvds_border_bits =
6506 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6507 }
6508
6509 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6510 struct intel_crtc_config *pipe_config)
6511 {
6512 struct drm_device *dev = crtc->base.dev;
6513 struct drm_i915_private *dev_priv = dev->dev_private;
6514 int pipe = pipe_config->cpu_transcoder;
6515 intel_clock_t clock;
6516 u32 mdiv;
6517 int refclk = 100000;
6518
6519 /* In case of MIPI DPLL will not even be used */
6520 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6521 return;
6522
6523 mutex_lock(&dev_priv->dpio_lock);
6524 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6525 mutex_unlock(&dev_priv->dpio_lock);
6526
6527 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6528 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6529 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6530 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6531 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6532
6533 vlv_clock(refclk, &clock);
6534
6535 /* clock.dot is the fast clock */
6536 pipe_config->port_clock = clock.dot / 5;
6537 }
6538
6539 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6540 struct intel_plane_config *plane_config)
6541 {
6542 struct drm_device *dev = crtc->base.dev;
6543 struct drm_i915_private *dev_priv = dev->dev_private;
6544 u32 val, base, offset;
6545 int pipe = crtc->pipe, plane = crtc->plane;
6546 int fourcc, pixel_format;
6547 int aligned_height;
6548
6549 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6550 if (!crtc->base.primary->fb) {
6551 DRM_DEBUG_KMS("failed to alloc fb\n");
6552 return;
6553 }
6554
6555 val = I915_READ(DSPCNTR(plane));
6556
6557 if (INTEL_INFO(dev)->gen >= 4)
6558 if (val & DISPPLANE_TILED)
6559 plane_config->tiled = true;
6560
6561 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6562 fourcc = intel_format_to_fourcc(pixel_format);
6563 crtc->base.primary->fb->pixel_format = fourcc;
6564 crtc->base.primary->fb->bits_per_pixel =
6565 drm_format_plane_cpp(fourcc, 0) * 8;
6566
6567 if (INTEL_INFO(dev)->gen >= 4) {
6568 if (plane_config->tiled)
6569 offset = I915_READ(DSPTILEOFF(plane));
6570 else
6571 offset = I915_READ(DSPLINOFF(plane));
6572 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6573 } else {
6574 base = I915_READ(DSPADDR(plane));
6575 }
6576 plane_config->base = base;
6577
6578 val = I915_READ(PIPESRC(pipe));
6579 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6580 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6581
6582 val = I915_READ(DSPSTRIDE(pipe));
6583 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
6584
6585 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6586 plane_config->tiled);
6587
6588 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6589 aligned_height);
6590
6591 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6592 pipe, plane, crtc->base.primary->fb->width,
6593 crtc->base.primary->fb->height,
6594 crtc->base.primary->fb->bits_per_pixel, base,
6595 crtc->base.primary->fb->pitches[0],
6596 plane_config->size);
6597
6598 }
6599
6600 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6601 struct intel_crtc_config *pipe_config)
6602 {
6603 struct drm_device *dev = crtc->base.dev;
6604 struct drm_i915_private *dev_priv = dev->dev_private;
6605 int pipe = pipe_config->cpu_transcoder;
6606 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6607 intel_clock_t clock;
6608 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6609 int refclk = 100000;
6610
6611 mutex_lock(&dev_priv->dpio_lock);
6612 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6613 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6614 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6615 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6616 mutex_unlock(&dev_priv->dpio_lock);
6617
6618 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6619 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6620 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6621 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6622 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6623
6624 chv_clock(refclk, &clock);
6625
6626 /* clock.dot is the fast clock */
6627 pipe_config->port_clock = clock.dot / 5;
6628 }
6629
6630 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6631 struct intel_crtc_config *pipe_config)
6632 {
6633 struct drm_device *dev = crtc->base.dev;
6634 struct drm_i915_private *dev_priv = dev->dev_private;
6635 uint32_t tmp;
6636
6637 if (!intel_display_power_is_enabled(dev_priv,
6638 POWER_DOMAIN_PIPE(crtc->pipe)))
6639 return false;
6640
6641 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6642 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6643
6644 tmp = I915_READ(PIPECONF(crtc->pipe));
6645 if (!(tmp & PIPECONF_ENABLE))
6646 return false;
6647
6648 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6649 switch (tmp & PIPECONF_BPC_MASK) {
6650 case PIPECONF_6BPC:
6651 pipe_config->pipe_bpp = 18;
6652 break;
6653 case PIPECONF_8BPC:
6654 pipe_config->pipe_bpp = 24;
6655 break;
6656 case PIPECONF_10BPC:
6657 pipe_config->pipe_bpp = 30;
6658 break;
6659 default:
6660 break;
6661 }
6662 }
6663
6664 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6665 pipe_config->limited_color_range = true;
6666
6667 if (INTEL_INFO(dev)->gen < 4)
6668 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6669
6670 intel_get_pipe_timings(crtc, pipe_config);
6671
6672 i9xx_get_pfit_config(crtc, pipe_config);
6673
6674 if (INTEL_INFO(dev)->gen >= 4) {
6675 tmp = I915_READ(DPLL_MD(crtc->pipe));
6676 pipe_config->pixel_multiplier =
6677 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6678 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6679 pipe_config->dpll_hw_state.dpll_md = tmp;
6680 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6681 tmp = I915_READ(DPLL(crtc->pipe));
6682 pipe_config->pixel_multiplier =
6683 ((tmp & SDVO_MULTIPLIER_MASK)
6684 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6685 } else {
6686 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6687 * port and will be fixed up in the encoder->get_config
6688 * function. */
6689 pipe_config->pixel_multiplier = 1;
6690 }
6691 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6692 if (!IS_VALLEYVIEW(dev)) {
6693 /*
6694 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6695 * on 830. Filter it out here so that we don't
6696 * report errors due to that.
6697 */
6698 if (IS_I830(dev))
6699 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6700
6701 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6702 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6703 } else {
6704 /* Mask out read-only status bits. */
6705 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6706 DPLL_PORTC_READY_MASK |
6707 DPLL_PORTB_READY_MASK);
6708 }
6709
6710 if (IS_CHERRYVIEW(dev))
6711 chv_crtc_clock_get(crtc, pipe_config);
6712 else if (IS_VALLEYVIEW(dev))
6713 vlv_crtc_clock_get(crtc, pipe_config);
6714 else
6715 i9xx_crtc_clock_get(crtc, pipe_config);
6716
6717 return true;
6718 }
6719
6720 static void ironlake_init_pch_refclk(struct drm_device *dev)
6721 {
6722 struct drm_i915_private *dev_priv = dev->dev_private;
6723 struct intel_encoder *encoder;
6724 u32 val, final;
6725 bool has_lvds = false;
6726 bool has_cpu_edp = false;
6727 bool has_panel = false;
6728 bool has_ck505 = false;
6729 bool can_ssc = false;
6730
6731 /* We need to take the global config into account */
6732 for_each_intel_encoder(dev, encoder) {
6733 switch (encoder->type) {
6734 case INTEL_OUTPUT_LVDS:
6735 has_panel = true;
6736 has_lvds = true;
6737 break;
6738 case INTEL_OUTPUT_EDP:
6739 has_panel = true;
6740 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6741 has_cpu_edp = true;
6742 break;
6743 default:
6744 break;
6745 }
6746 }
6747
6748 if (HAS_PCH_IBX(dev)) {
6749 has_ck505 = dev_priv->vbt.display_clock_mode;
6750 can_ssc = has_ck505;
6751 } else {
6752 has_ck505 = false;
6753 can_ssc = true;
6754 }
6755
6756 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6757 has_panel, has_lvds, has_ck505);
6758
6759 /* Ironlake: try to setup display ref clock before DPLL
6760 * enabling. This is only under driver's control after
6761 * PCH B stepping, previous chipset stepping should be
6762 * ignoring this setting.
6763 */
6764 val = I915_READ(PCH_DREF_CONTROL);
6765
6766 /* As we must carefully and slowly disable/enable each source in turn,
6767 * compute the final state we want first and check if we need to
6768 * make any changes at all.
6769 */
6770 final = val;
6771 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6772 if (has_ck505)
6773 final |= DREF_NONSPREAD_CK505_ENABLE;
6774 else
6775 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6776
6777 final &= ~DREF_SSC_SOURCE_MASK;
6778 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6779 final &= ~DREF_SSC1_ENABLE;
6780
6781 if (has_panel) {
6782 final |= DREF_SSC_SOURCE_ENABLE;
6783
6784 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6785 final |= DREF_SSC1_ENABLE;
6786
6787 if (has_cpu_edp) {
6788 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6789 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6790 else
6791 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6792 } else
6793 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6794 } else {
6795 final |= DREF_SSC_SOURCE_DISABLE;
6796 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6797 }
6798
6799 if (final == val)
6800 return;
6801
6802 /* Always enable nonspread source */
6803 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6804
6805 if (has_ck505)
6806 val |= DREF_NONSPREAD_CK505_ENABLE;
6807 else
6808 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6809
6810 if (has_panel) {
6811 val &= ~DREF_SSC_SOURCE_MASK;
6812 val |= DREF_SSC_SOURCE_ENABLE;
6813
6814 /* SSC must be turned on before enabling the CPU output */
6815 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6816 DRM_DEBUG_KMS("Using SSC on panel\n");
6817 val |= DREF_SSC1_ENABLE;
6818 } else
6819 val &= ~DREF_SSC1_ENABLE;
6820
6821 /* Get SSC going before enabling the outputs */
6822 I915_WRITE(PCH_DREF_CONTROL, val);
6823 POSTING_READ(PCH_DREF_CONTROL);
6824 udelay(200);
6825
6826 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6827
6828 /* Enable CPU source on CPU attached eDP */
6829 if (has_cpu_edp) {
6830 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6831 DRM_DEBUG_KMS("Using SSC on eDP\n");
6832 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6833 } else
6834 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6835 } else
6836 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6837
6838 I915_WRITE(PCH_DREF_CONTROL, val);
6839 POSTING_READ(PCH_DREF_CONTROL);
6840 udelay(200);
6841 } else {
6842 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6843
6844 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6845
6846 /* Turn off CPU output */
6847 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6848
6849 I915_WRITE(PCH_DREF_CONTROL, val);
6850 POSTING_READ(PCH_DREF_CONTROL);
6851 udelay(200);
6852
6853 /* Turn off the SSC source */
6854 val &= ~DREF_SSC_SOURCE_MASK;
6855 val |= DREF_SSC_SOURCE_DISABLE;
6856
6857 /* Turn off SSC1 */
6858 val &= ~DREF_SSC1_ENABLE;
6859
6860 I915_WRITE(PCH_DREF_CONTROL, val);
6861 POSTING_READ(PCH_DREF_CONTROL);
6862 udelay(200);
6863 }
6864
6865 BUG_ON(val != final);
6866 }
6867
6868 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6869 {
6870 uint32_t tmp;
6871
6872 tmp = I915_READ(SOUTH_CHICKEN2);
6873 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6874 I915_WRITE(SOUTH_CHICKEN2, tmp);
6875
6876 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6877 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6878 DRM_ERROR("FDI mPHY reset assert timeout\n");
6879
6880 tmp = I915_READ(SOUTH_CHICKEN2);
6881 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6882 I915_WRITE(SOUTH_CHICKEN2, tmp);
6883
6884 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6885 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6886 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6887 }
6888
6889 /* WaMPhyProgramming:hsw */
6890 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6891 {
6892 uint32_t tmp;
6893
6894 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6895 tmp &= ~(0xFF << 24);
6896 tmp |= (0x12 << 24);
6897 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6898
6899 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6900 tmp |= (1 << 11);
6901 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6902
6903 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6904 tmp |= (1 << 11);
6905 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6906
6907 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6908 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6909 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6910
6911 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6912 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6913 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6914
6915 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6916 tmp &= ~(7 << 13);
6917 tmp |= (5 << 13);
6918 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6919
6920 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6921 tmp &= ~(7 << 13);
6922 tmp |= (5 << 13);
6923 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6924
6925 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6926 tmp &= ~0xFF;
6927 tmp |= 0x1C;
6928 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6929
6930 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6931 tmp &= ~0xFF;
6932 tmp |= 0x1C;
6933 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6934
6935 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6936 tmp &= ~(0xFF << 16);
6937 tmp |= (0x1C << 16);
6938 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6939
6940 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6941 tmp &= ~(0xFF << 16);
6942 tmp |= (0x1C << 16);
6943 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6944
6945 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6946 tmp |= (1 << 27);
6947 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6948
6949 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6950 tmp |= (1 << 27);
6951 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6952
6953 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6954 tmp &= ~(0xF << 28);
6955 tmp |= (4 << 28);
6956 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6957
6958 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6959 tmp &= ~(0xF << 28);
6960 tmp |= (4 << 28);
6961 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6962 }
6963
6964 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6965 * Programming" based on the parameters passed:
6966 * - Sequence to enable CLKOUT_DP
6967 * - Sequence to enable CLKOUT_DP without spread
6968 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6969 */
6970 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6971 bool with_fdi)
6972 {
6973 struct drm_i915_private *dev_priv = dev->dev_private;
6974 uint32_t reg, tmp;
6975
6976 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6977 with_spread = true;
6978 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6979 with_fdi, "LP PCH doesn't have FDI\n"))
6980 with_fdi = false;
6981
6982 mutex_lock(&dev_priv->dpio_lock);
6983
6984 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6985 tmp &= ~SBI_SSCCTL_DISABLE;
6986 tmp |= SBI_SSCCTL_PATHALT;
6987 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6988
6989 udelay(24);
6990
6991 if (with_spread) {
6992 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6993 tmp &= ~SBI_SSCCTL_PATHALT;
6994 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6995
6996 if (with_fdi) {
6997 lpt_reset_fdi_mphy(dev_priv);
6998 lpt_program_fdi_mphy(dev_priv);
6999 }
7000 }
7001
7002 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7003 SBI_GEN0 : SBI_DBUFF0;
7004 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7005 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7006 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7007
7008 mutex_unlock(&dev_priv->dpio_lock);
7009 }
7010
7011 /* Sequence to disable CLKOUT_DP */
7012 static void lpt_disable_clkout_dp(struct drm_device *dev)
7013 {
7014 struct drm_i915_private *dev_priv = dev->dev_private;
7015 uint32_t reg, tmp;
7016
7017 mutex_lock(&dev_priv->dpio_lock);
7018
7019 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7020 SBI_GEN0 : SBI_DBUFF0;
7021 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7022 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7023 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7024
7025 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7026 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7027 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7028 tmp |= SBI_SSCCTL_PATHALT;
7029 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7030 udelay(32);
7031 }
7032 tmp |= SBI_SSCCTL_DISABLE;
7033 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7034 }
7035
7036 mutex_unlock(&dev_priv->dpio_lock);
7037 }
7038
7039 static void lpt_init_pch_refclk(struct drm_device *dev)
7040 {
7041 struct intel_encoder *encoder;
7042 bool has_vga = false;
7043
7044 for_each_intel_encoder(dev, encoder) {
7045 switch (encoder->type) {
7046 case INTEL_OUTPUT_ANALOG:
7047 has_vga = true;
7048 break;
7049 default:
7050 break;
7051 }
7052 }
7053
7054 if (has_vga)
7055 lpt_enable_clkout_dp(dev, true, true);
7056 else
7057 lpt_disable_clkout_dp(dev);
7058 }
7059
7060 /*
7061 * Initialize reference clocks when the driver loads
7062 */
7063 void intel_init_pch_refclk(struct drm_device *dev)
7064 {
7065 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7066 ironlake_init_pch_refclk(dev);
7067 else if (HAS_PCH_LPT(dev))
7068 lpt_init_pch_refclk(dev);
7069 }
7070
7071 static int ironlake_get_refclk(struct drm_crtc *crtc)
7072 {
7073 struct drm_device *dev = crtc->dev;
7074 struct drm_i915_private *dev_priv = dev->dev_private;
7075 struct intel_encoder *encoder;
7076 int num_connectors = 0;
7077 bool is_lvds = false;
7078
7079 for_each_intel_encoder(dev, encoder) {
7080 if (encoder->new_crtc != to_intel_crtc(crtc))
7081 continue;
7082
7083 switch (encoder->type) {
7084 case INTEL_OUTPUT_LVDS:
7085 is_lvds = true;
7086 break;
7087 default:
7088 break;
7089 }
7090 num_connectors++;
7091 }
7092
7093 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7094 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7095 dev_priv->vbt.lvds_ssc_freq);
7096 return dev_priv->vbt.lvds_ssc_freq;
7097 }
7098
7099 return 120000;
7100 }
7101
7102 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7103 {
7104 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7106 int pipe = intel_crtc->pipe;
7107 uint32_t val;
7108
7109 val = 0;
7110
7111 switch (intel_crtc->config.pipe_bpp) {
7112 case 18:
7113 val |= PIPECONF_6BPC;
7114 break;
7115 case 24:
7116 val |= PIPECONF_8BPC;
7117 break;
7118 case 30:
7119 val |= PIPECONF_10BPC;
7120 break;
7121 case 36:
7122 val |= PIPECONF_12BPC;
7123 break;
7124 default:
7125 /* Case prevented by intel_choose_pipe_bpp_dither. */
7126 BUG();
7127 }
7128
7129 if (intel_crtc->config.dither)
7130 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7131
7132 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7133 val |= PIPECONF_INTERLACED_ILK;
7134 else
7135 val |= PIPECONF_PROGRESSIVE;
7136
7137 if (intel_crtc->config.limited_color_range)
7138 val |= PIPECONF_COLOR_RANGE_SELECT;
7139
7140 I915_WRITE(PIPECONF(pipe), val);
7141 POSTING_READ(PIPECONF(pipe));
7142 }
7143
7144 /*
7145 * Set up the pipe CSC unit.
7146 *
7147 * Currently only full range RGB to limited range RGB conversion
7148 * is supported, but eventually this should handle various
7149 * RGB<->YCbCr scenarios as well.
7150 */
7151 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7152 {
7153 struct drm_device *dev = crtc->dev;
7154 struct drm_i915_private *dev_priv = dev->dev_private;
7155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7156 int pipe = intel_crtc->pipe;
7157 uint16_t coeff = 0x7800; /* 1.0 */
7158
7159 /*
7160 * TODO: Check what kind of values actually come out of the pipe
7161 * with these coeff/postoff values and adjust to get the best
7162 * accuracy. Perhaps we even need to take the bpc value into
7163 * consideration.
7164 */
7165
7166 if (intel_crtc->config.limited_color_range)
7167 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7168
7169 /*
7170 * GY/GU and RY/RU should be the other way around according
7171 * to BSpec, but reality doesn't agree. Just set them up in
7172 * a way that results in the correct picture.
7173 */
7174 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7175 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7176
7177 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7178 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7179
7180 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7181 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7182
7183 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7184 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7185 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7186
7187 if (INTEL_INFO(dev)->gen > 6) {
7188 uint16_t postoff = 0;
7189
7190 if (intel_crtc->config.limited_color_range)
7191 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7192
7193 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7194 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7195 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7196
7197 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7198 } else {
7199 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7200
7201 if (intel_crtc->config.limited_color_range)
7202 mode |= CSC_BLACK_SCREEN_OFFSET;
7203
7204 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7205 }
7206 }
7207
7208 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7209 {
7210 struct drm_device *dev = crtc->dev;
7211 struct drm_i915_private *dev_priv = dev->dev_private;
7212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7213 enum pipe pipe = intel_crtc->pipe;
7214 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7215 uint32_t val;
7216
7217 val = 0;
7218
7219 if (IS_HASWELL(dev) && intel_crtc->config.dither)
7220 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7221
7222 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7223 val |= PIPECONF_INTERLACED_ILK;
7224 else
7225 val |= PIPECONF_PROGRESSIVE;
7226
7227 I915_WRITE(PIPECONF(cpu_transcoder), val);
7228 POSTING_READ(PIPECONF(cpu_transcoder));
7229
7230 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7231 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7232
7233 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7234 val = 0;
7235
7236 switch (intel_crtc->config.pipe_bpp) {
7237 case 18:
7238 val |= PIPEMISC_DITHER_6_BPC;
7239 break;
7240 case 24:
7241 val |= PIPEMISC_DITHER_8_BPC;
7242 break;
7243 case 30:
7244 val |= PIPEMISC_DITHER_10_BPC;
7245 break;
7246 case 36:
7247 val |= PIPEMISC_DITHER_12_BPC;
7248 break;
7249 default:
7250 /* Case prevented by pipe_config_set_bpp. */
7251 BUG();
7252 }
7253
7254 if (intel_crtc->config.dither)
7255 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7256
7257 I915_WRITE(PIPEMISC(pipe), val);
7258 }
7259 }
7260
7261 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7262 intel_clock_t *clock,
7263 bool *has_reduced_clock,
7264 intel_clock_t *reduced_clock)
7265 {
7266 struct drm_device *dev = crtc->dev;
7267 struct drm_i915_private *dev_priv = dev->dev_private;
7268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7269 int refclk;
7270 const intel_limit_t *limit;
7271 bool ret, is_lvds = false;
7272
7273 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7274
7275 refclk = ironlake_get_refclk(crtc);
7276
7277 /*
7278 * Returns a set of divisors for the desired target clock with the given
7279 * refclk, or FALSE. The returned values represent the clock equation:
7280 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7281 */
7282 limit = intel_limit(intel_crtc, refclk);
7283 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7284 intel_crtc->new_config->port_clock,
7285 refclk, NULL, clock);
7286 if (!ret)
7287 return false;
7288
7289 if (is_lvds && dev_priv->lvds_downclock_avail) {
7290 /*
7291 * Ensure we match the reduced clock's P to the target clock.
7292 * If the clocks don't match, we can't switch the display clock
7293 * by using the FP0/FP1. In such case we will disable the LVDS
7294 * downclock feature.
7295 */
7296 *has_reduced_clock =
7297 dev_priv->display.find_dpll(limit, intel_crtc,
7298 dev_priv->lvds_downclock,
7299 refclk, clock,
7300 reduced_clock);
7301 }
7302
7303 return true;
7304 }
7305
7306 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7307 {
7308 /*
7309 * Account for spread spectrum to avoid
7310 * oversubscribing the link. Max center spread
7311 * is 2.5%; use 5% for safety's sake.
7312 */
7313 u32 bps = target_clock * bpp * 21 / 20;
7314 return DIV_ROUND_UP(bps, link_bw * 8);
7315 }
7316
7317 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7318 {
7319 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7320 }
7321
7322 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7323 u32 *fp,
7324 intel_clock_t *reduced_clock, u32 *fp2)
7325 {
7326 struct drm_crtc *crtc = &intel_crtc->base;
7327 struct drm_device *dev = crtc->dev;
7328 struct drm_i915_private *dev_priv = dev->dev_private;
7329 struct intel_encoder *intel_encoder;
7330 uint32_t dpll;
7331 int factor, num_connectors = 0;
7332 bool is_lvds = false, is_sdvo = false;
7333
7334 for_each_intel_encoder(dev, intel_encoder) {
7335 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7336 continue;
7337
7338 switch (intel_encoder->type) {
7339 case INTEL_OUTPUT_LVDS:
7340 is_lvds = true;
7341 break;
7342 case INTEL_OUTPUT_SDVO:
7343 case INTEL_OUTPUT_HDMI:
7344 is_sdvo = true;
7345 break;
7346 default:
7347 break;
7348 }
7349
7350 num_connectors++;
7351 }
7352
7353 /* Enable autotuning of the PLL clock (if permissible) */
7354 factor = 21;
7355 if (is_lvds) {
7356 if ((intel_panel_use_ssc(dev_priv) &&
7357 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7358 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7359 factor = 25;
7360 } else if (intel_crtc->new_config->sdvo_tv_clock)
7361 factor = 20;
7362
7363 if (ironlake_needs_fb_cb_tune(&intel_crtc->new_config->dpll, factor))
7364 *fp |= FP_CB_TUNE;
7365
7366 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7367 *fp2 |= FP_CB_TUNE;
7368
7369 dpll = 0;
7370
7371 if (is_lvds)
7372 dpll |= DPLLB_MODE_LVDS;
7373 else
7374 dpll |= DPLLB_MODE_DAC_SERIAL;
7375
7376 dpll |= (intel_crtc->new_config->pixel_multiplier - 1)
7377 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7378
7379 if (is_sdvo)
7380 dpll |= DPLL_SDVO_HIGH_SPEED;
7381 if (intel_crtc->new_config->has_dp_encoder)
7382 dpll |= DPLL_SDVO_HIGH_SPEED;
7383
7384 /* compute bitmask from p1 value */
7385 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7386 /* also FPA1 */
7387 dpll |= (1 << (intel_crtc->new_config->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7388
7389 switch (intel_crtc->new_config->dpll.p2) {
7390 case 5:
7391 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7392 break;
7393 case 7:
7394 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7395 break;
7396 case 10:
7397 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7398 break;
7399 case 14:
7400 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7401 break;
7402 }
7403
7404 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7405 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7406 else
7407 dpll |= PLL_REF_INPUT_DREFCLK;
7408
7409 return dpll | DPLL_VCO_ENABLE;
7410 }
7411
7412 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc)
7413 {
7414 struct drm_device *dev = crtc->base.dev;
7415 intel_clock_t clock, reduced_clock;
7416 u32 dpll = 0, fp = 0, fp2 = 0;
7417 bool ok, has_reduced_clock = false;
7418 bool is_lvds = false;
7419 struct intel_shared_dpll *pll;
7420
7421 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7422
7423 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7424 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7425
7426 ok = ironlake_compute_clocks(&crtc->base, &clock,
7427 &has_reduced_clock, &reduced_clock);
7428 if (!ok && !crtc->new_config->clock_set) {
7429 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7430 return -EINVAL;
7431 }
7432 /* Compat-code for transition, will disappear. */
7433 if (!crtc->new_config->clock_set) {
7434 crtc->new_config->dpll.n = clock.n;
7435 crtc->new_config->dpll.m1 = clock.m1;
7436 crtc->new_config->dpll.m2 = clock.m2;
7437 crtc->new_config->dpll.p1 = clock.p1;
7438 crtc->new_config->dpll.p2 = clock.p2;
7439 }
7440
7441 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7442 if (crtc->new_config->has_pch_encoder) {
7443 fp = i9xx_dpll_compute_fp(&crtc->new_config->dpll);
7444 if (has_reduced_clock)
7445 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7446
7447 dpll = ironlake_compute_dpll(crtc,
7448 &fp, &reduced_clock,
7449 has_reduced_clock ? &fp2 : NULL);
7450
7451 crtc->new_config->dpll_hw_state.dpll = dpll;
7452 crtc->new_config->dpll_hw_state.fp0 = fp;
7453 if (has_reduced_clock)
7454 crtc->new_config->dpll_hw_state.fp1 = fp2;
7455 else
7456 crtc->new_config->dpll_hw_state.fp1 = fp;
7457
7458 pll = intel_get_shared_dpll(crtc);
7459 if (pll == NULL) {
7460 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7461 pipe_name(crtc->pipe));
7462 return -EINVAL;
7463 }
7464 }
7465
7466 if (is_lvds && has_reduced_clock && i915.powersave)
7467 crtc->lowfreq_avail = true;
7468 else
7469 crtc->lowfreq_avail = false;
7470
7471 return 0;
7472 }
7473
7474 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7475 struct intel_link_m_n *m_n)
7476 {
7477 struct drm_device *dev = crtc->base.dev;
7478 struct drm_i915_private *dev_priv = dev->dev_private;
7479 enum pipe pipe = crtc->pipe;
7480
7481 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7482 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7483 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7484 & ~TU_SIZE_MASK;
7485 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7486 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7487 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7488 }
7489
7490 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7491 enum transcoder transcoder,
7492 struct intel_link_m_n *m_n,
7493 struct intel_link_m_n *m2_n2)
7494 {
7495 struct drm_device *dev = crtc->base.dev;
7496 struct drm_i915_private *dev_priv = dev->dev_private;
7497 enum pipe pipe = crtc->pipe;
7498
7499 if (INTEL_INFO(dev)->gen >= 5) {
7500 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7501 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7502 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7503 & ~TU_SIZE_MASK;
7504 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7505 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7506 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7507 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7508 * gen < 8) and if DRRS is supported (to make sure the
7509 * registers are not unnecessarily read).
7510 */
7511 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7512 crtc->config.has_drrs) {
7513 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7514 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7515 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7516 & ~TU_SIZE_MASK;
7517 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7518 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7519 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7520 }
7521 } else {
7522 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7523 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7524 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7525 & ~TU_SIZE_MASK;
7526 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7527 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7528 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7529 }
7530 }
7531
7532 void intel_dp_get_m_n(struct intel_crtc *crtc,
7533 struct intel_crtc_config *pipe_config)
7534 {
7535 if (crtc->config.has_pch_encoder)
7536 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7537 else
7538 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7539 &pipe_config->dp_m_n,
7540 &pipe_config->dp_m2_n2);
7541 }
7542
7543 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7544 struct intel_crtc_config *pipe_config)
7545 {
7546 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7547 &pipe_config->fdi_m_n, NULL);
7548 }
7549
7550 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7551 struct intel_crtc_config *pipe_config)
7552 {
7553 struct drm_device *dev = crtc->base.dev;
7554 struct drm_i915_private *dev_priv = dev->dev_private;
7555 uint32_t tmp;
7556
7557 tmp = I915_READ(PF_CTL(crtc->pipe));
7558
7559 if (tmp & PF_ENABLE) {
7560 pipe_config->pch_pfit.enabled = true;
7561 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7562 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7563
7564 /* We currently do not free assignements of panel fitters on
7565 * ivb/hsw (since we don't use the higher upscaling modes which
7566 * differentiates them) so just WARN about this case for now. */
7567 if (IS_GEN7(dev)) {
7568 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7569 PF_PIPE_SEL_IVB(crtc->pipe));
7570 }
7571 }
7572 }
7573
7574 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7575 struct intel_plane_config *plane_config)
7576 {
7577 struct drm_device *dev = crtc->base.dev;
7578 struct drm_i915_private *dev_priv = dev->dev_private;
7579 u32 val, base, offset;
7580 int pipe = crtc->pipe, plane = crtc->plane;
7581 int fourcc, pixel_format;
7582 int aligned_height;
7583
7584 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7585 if (!crtc->base.primary->fb) {
7586 DRM_DEBUG_KMS("failed to alloc fb\n");
7587 return;
7588 }
7589
7590 val = I915_READ(DSPCNTR(plane));
7591
7592 if (INTEL_INFO(dev)->gen >= 4)
7593 if (val & DISPPLANE_TILED)
7594 plane_config->tiled = true;
7595
7596 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7597 fourcc = intel_format_to_fourcc(pixel_format);
7598 crtc->base.primary->fb->pixel_format = fourcc;
7599 crtc->base.primary->fb->bits_per_pixel =
7600 drm_format_plane_cpp(fourcc, 0) * 8;
7601
7602 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7603 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7604 offset = I915_READ(DSPOFFSET(plane));
7605 } else {
7606 if (plane_config->tiled)
7607 offset = I915_READ(DSPTILEOFF(plane));
7608 else
7609 offset = I915_READ(DSPLINOFF(plane));
7610 }
7611 plane_config->base = base;
7612
7613 val = I915_READ(PIPESRC(pipe));
7614 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7615 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7616
7617 val = I915_READ(DSPSTRIDE(pipe));
7618 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
7619
7620 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7621 plane_config->tiled);
7622
7623 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7624 aligned_height);
7625
7626 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7627 pipe, plane, crtc->base.primary->fb->width,
7628 crtc->base.primary->fb->height,
7629 crtc->base.primary->fb->bits_per_pixel, base,
7630 crtc->base.primary->fb->pitches[0],
7631 plane_config->size);
7632 }
7633
7634 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7635 struct intel_crtc_config *pipe_config)
7636 {
7637 struct drm_device *dev = crtc->base.dev;
7638 struct drm_i915_private *dev_priv = dev->dev_private;
7639 uint32_t tmp;
7640
7641 if (!intel_display_power_is_enabled(dev_priv,
7642 POWER_DOMAIN_PIPE(crtc->pipe)))
7643 return false;
7644
7645 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7646 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7647
7648 tmp = I915_READ(PIPECONF(crtc->pipe));
7649 if (!(tmp & PIPECONF_ENABLE))
7650 return false;
7651
7652 switch (tmp & PIPECONF_BPC_MASK) {
7653 case PIPECONF_6BPC:
7654 pipe_config->pipe_bpp = 18;
7655 break;
7656 case PIPECONF_8BPC:
7657 pipe_config->pipe_bpp = 24;
7658 break;
7659 case PIPECONF_10BPC:
7660 pipe_config->pipe_bpp = 30;
7661 break;
7662 case PIPECONF_12BPC:
7663 pipe_config->pipe_bpp = 36;
7664 break;
7665 default:
7666 break;
7667 }
7668
7669 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7670 pipe_config->limited_color_range = true;
7671
7672 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7673 struct intel_shared_dpll *pll;
7674
7675 pipe_config->has_pch_encoder = true;
7676
7677 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7678 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7679 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7680
7681 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7682
7683 if (HAS_PCH_IBX(dev_priv->dev)) {
7684 pipe_config->shared_dpll =
7685 (enum intel_dpll_id) crtc->pipe;
7686 } else {
7687 tmp = I915_READ(PCH_DPLL_SEL);
7688 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7689 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7690 else
7691 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7692 }
7693
7694 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7695
7696 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7697 &pipe_config->dpll_hw_state));
7698
7699 tmp = pipe_config->dpll_hw_state.dpll;
7700 pipe_config->pixel_multiplier =
7701 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7702 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7703
7704 ironlake_pch_clock_get(crtc, pipe_config);
7705 } else {
7706 pipe_config->pixel_multiplier = 1;
7707 }
7708
7709 intel_get_pipe_timings(crtc, pipe_config);
7710
7711 ironlake_get_pfit_config(crtc, pipe_config);
7712
7713 return true;
7714 }
7715
7716 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7717 {
7718 struct drm_device *dev = dev_priv->dev;
7719 struct intel_crtc *crtc;
7720
7721 for_each_intel_crtc(dev, crtc)
7722 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7723 pipe_name(crtc->pipe));
7724
7725 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7726 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7727 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7728 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7729 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7730 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7731 "CPU PWM1 enabled\n");
7732 if (IS_HASWELL(dev))
7733 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7734 "CPU PWM2 enabled\n");
7735 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7736 "PCH PWM1 enabled\n");
7737 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7738 "Utility pin enabled\n");
7739 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7740
7741 /*
7742 * In theory we can still leave IRQs enabled, as long as only the HPD
7743 * interrupts remain enabled. We used to check for that, but since it's
7744 * gen-specific and since we only disable LCPLL after we fully disable
7745 * the interrupts, the check below should be enough.
7746 */
7747 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7748 }
7749
7750 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7751 {
7752 struct drm_device *dev = dev_priv->dev;
7753
7754 if (IS_HASWELL(dev))
7755 return I915_READ(D_COMP_HSW);
7756 else
7757 return I915_READ(D_COMP_BDW);
7758 }
7759
7760 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7761 {
7762 struct drm_device *dev = dev_priv->dev;
7763
7764 if (IS_HASWELL(dev)) {
7765 mutex_lock(&dev_priv->rps.hw_lock);
7766 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7767 val))
7768 DRM_ERROR("Failed to write to D_COMP\n");
7769 mutex_unlock(&dev_priv->rps.hw_lock);
7770 } else {
7771 I915_WRITE(D_COMP_BDW, val);
7772 POSTING_READ(D_COMP_BDW);
7773 }
7774 }
7775
7776 /*
7777 * This function implements pieces of two sequences from BSpec:
7778 * - Sequence for display software to disable LCPLL
7779 * - Sequence for display software to allow package C8+
7780 * The steps implemented here are just the steps that actually touch the LCPLL
7781 * register. Callers should take care of disabling all the display engine
7782 * functions, doing the mode unset, fixing interrupts, etc.
7783 */
7784 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7785 bool switch_to_fclk, bool allow_power_down)
7786 {
7787 uint32_t val;
7788
7789 assert_can_disable_lcpll(dev_priv);
7790
7791 val = I915_READ(LCPLL_CTL);
7792
7793 if (switch_to_fclk) {
7794 val |= LCPLL_CD_SOURCE_FCLK;
7795 I915_WRITE(LCPLL_CTL, val);
7796
7797 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7798 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7799 DRM_ERROR("Switching to FCLK failed\n");
7800
7801 val = I915_READ(LCPLL_CTL);
7802 }
7803
7804 val |= LCPLL_PLL_DISABLE;
7805 I915_WRITE(LCPLL_CTL, val);
7806 POSTING_READ(LCPLL_CTL);
7807
7808 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7809 DRM_ERROR("LCPLL still locked\n");
7810
7811 val = hsw_read_dcomp(dev_priv);
7812 val |= D_COMP_COMP_DISABLE;
7813 hsw_write_dcomp(dev_priv, val);
7814 ndelay(100);
7815
7816 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7817 1))
7818 DRM_ERROR("D_COMP RCOMP still in progress\n");
7819
7820 if (allow_power_down) {
7821 val = I915_READ(LCPLL_CTL);
7822 val |= LCPLL_POWER_DOWN_ALLOW;
7823 I915_WRITE(LCPLL_CTL, val);
7824 POSTING_READ(LCPLL_CTL);
7825 }
7826 }
7827
7828 /*
7829 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7830 * source.
7831 */
7832 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7833 {
7834 uint32_t val;
7835
7836 val = I915_READ(LCPLL_CTL);
7837
7838 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7839 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7840 return;
7841
7842 /*
7843 * Make sure we're not on PC8 state before disabling PC8, otherwise
7844 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7845 *
7846 * The other problem is that hsw_restore_lcpll() is called as part of
7847 * the runtime PM resume sequence, so we can't just call
7848 * gen6_gt_force_wake_get() because that function calls
7849 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7850 * while we are on the resume sequence. So to solve this problem we have
7851 * to call special forcewake code that doesn't touch runtime PM and
7852 * doesn't enable the forcewake delayed work.
7853 */
7854 spin_lock_irq(&dev_priv->uncore.lock);
7855 if (dev_priv->uncore.forcewake_count++ == 0)
7856 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7857 spin_unlock_irq(&dev_priv->uncore.lock);
7858
7859 if (val & LCPLL_POWER_DOWN_ALLOW) {
7860 val &= ~LCPLL_POWER_DOWN_ALLOW;
7861 I915_WRITE(LCPLL_CTL, val);
7862 POSTING_READ(LCPLL_CTL);
7863 }
7864
7865 val = hsw_read_dcomp(dev_priv);
7866 val |= D_COMP_COMP_FORCE;
7867 val &= ~D_COMP_COMP_DISABLE;
7868 hsw_write_dcomp(dev_priv, val);
7869
7870 val = I915_READ(LCPLL_CTL);
7871 val &= ~LCPLL_PLL_DISABLE;
7872 I915_WRITE(LCPLL_CTL, val);
7873
7874 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7875 DRM_ERROR("LCPLL not locked yet\n");
7876
7877 if (val & LCPLL_CD_SOURCE_FCLK) {
7878 val = I915_READ(LCPLL_CTL);
7879 val &= ~LCPLL_CD_SOURCE_FCLK;
7880 I915_WRITE(LCPLL_CTL, val);
7881
7882 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7883 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7884 DRM_ERROR("Switching back to LCPLL failed\n");
7885 }
7886
7887 /* See the big comment above. */
7888 spin_lock_irq(&dev_priv->uncore.lock);
7889 if (--dev_priv->uncore.forcewake_count == 0)
7890 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7891 spin_unlock_irq(&dev_priv->uncore.lock);
7892 }
7893
7894 /*
7895 * Package states C8 and deeper are really deep PC states that can only be
7896 * reached when all the devices on the system allow it, so even if the graphics
7897 * device allows PC8+, it doesn't mean the system will actually get to these
7898 * states. Our driver only allows PC8+ when going into runtime PM.
7899 *
7900 * The requirements for PC8+ are that all the outputs are disabled, the power
7901 * well is disabled and most interrupts are disabled, and these are also
7902 * requirements for runtime PM. When these conditions are met, we manually do
7903 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7904 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7905 * hang the machine.
7906 *
7907 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7908 * the state of some registers, so when we come back from PC8+ we need to
7909 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7910 * need to take care of the registers kept by RC6. Notice that this happens even
7911 * if we don't put the device in PCI D3 state (which is what currently happens
7912 * because of the runtime PM support).
7913 *
7914 * For more, read "Display Sequences for Package C8" on the hardware
7915 * documentation.
7916 */
7917 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7918 {
7919 struct drm_device *dev = dev_priv->dev;
7920 uint32_t val;
7921
7922 DRM_DEBUG_KMS("Enabling package C8+\n");
7923
7924 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7925 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7926 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7927 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7928 }
7929
7930 lpt_disable_clkout_dp(dev);
7931 hsw_disable_lcpll(dev_priv, true, true);
7932 }
7933
7934 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7935 {
7936 struct drm_device *dev = dev_priv->dev;
7937 uint32_t val;
7938
7939 DRM_DEBUG_KMS("Disabling package C8+\n");
7940
7941 hsw_restore_lcpll(dev_priv);
7942 lpt_init_pch_refclk(dev);
7943
7944 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7945 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7946 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7947 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7948 }
7949
7950 intel_prepare_ddi(dev);
7951 }
7952
7953 static int haswell_crtc_compute_clock(struct intel_crtc *crtc)
7954 {
7955 if (!intel_ddi_pll_select(crtc))
7956 return -EINVAL;
7957
7958 crtc->lowfreq_avail = false;
7959
7960 return 0;
7961 }
7962
7963 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
7964 enum port port,
7965 struct intel_crtc_config *pipe_config)
7966 {
7967 u32 temp;
7968
7969 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
7970 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
7971
7972 switch (pipe_config->ddi_pll_sel) {
7973 case SKL_DPLL1:
7974 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
7975 break;
7976 case SKL_DPLL2:
7977 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
7978 break;
7979 case SKL_DPLL3:
7980 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
7981 break;
7982 default:
7983 WARN(1, "Unknown DPLL programmed\n");
7984 }
7985 }
7986
7987 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7988 enum port port,
7989 struct intel_crtc_config *pipe_config)
7990 {
7991 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7992
7993 switch (pipe_config->ddi_pll_sel) {
7994 case PORT_CLK_SEL_WRPLL1:
7995 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7996 break;
7997 case PORT_CLK_SEL_WRPLL2:
7998 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7999 break;
8000 }
8001 }
8002
8003 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8004 struct intel_crtc_config *pipe_config)
8005 {
8006 struct drm_device *dev = crtc->base.dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008 struct intel_shared_dpll *pll;
8009 enum port port;
8010 uint32_t tmp;
8011
8012 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8013
8014 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8015
8016 if (IS_SKYLAKE(dev))
8017 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8018 else
8019 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8020
8021 if (pipe_config->shared_dpll >= 0) {
8022 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8023
8024 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8025 &pipe_config->dpll_hw_state));
8026 }
8027
8028 /*
8029 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8030 * DDI E. So just check whether this pipe is wired to DDI E and whether
8031 * the PCH transcoder is on.
8032 */
8033 if (INTEL_INFO(dev)->gen < 9 &&
8034 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8035 pipe_config->has_pch_encoder = true;
8036
8037 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8038 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8039 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8040
8041 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8042 }
8043 }
8044
8045 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8046 struct intel_crtc_config *pipe_config)
8047 {
8048 struct drm_device *dev = crtc->base.dev;
8049 struct drm_i915_private *dev_priv = dev->dev_private;
8050 enum intel_display_power_domain pfit_domain;
8051 uint32_t tmp;
8052
8053 if (!intel_display_power_is_enabled(dev_priv,
8054 POWER_DOMAIN_PIPE(crtc->pipe)))
8055 return false;
8056
8057 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8058 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8059
8060 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8061 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8062 enum pipe trans_edp_pipe;
8063 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8064 default:
8065 WARN(1, "unknown pipe linked to edp transcoder\n");
8066 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8067 case TRANS_DDI_EDP_INPUT_A_ON:
8068 trans_edp_pipe = PIPE_A;
8069 break;
8070 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8071 trans_edp_pipe = PIPE_B;
8072 break;
8073 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8074 trans_edp_pipe = PIPE_C;
8075 break;
8076 }
8077
8078 if (trans_edp_pipe == crtc->pipe)
8079 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8080 }
8081
8082 if (!intel_display_power_is_enabled(dev_priv,
8083 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8084 return false;
8085
8086 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8087 if (!(tmp & PIPECONF_ENABLE))
8088 return false;
8089
8090 haswell_get_ddi_port_state(crtc, pipe_config);
8091
8092 intel_get_pipe_timings(crtc, pipe_config);
8093
8094 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8095 if (intel_display_power_is_enabled(dev_priv, pfit_domain))
8096 ironlake_get_pfit_config(crtc, pipe_config);
8097
8098 if (IS_HASWELL(dev))
8099 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8100 (I915_READ(IPS_CTL) & IPS_ENABLE);
8101
8102 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8103 pipe_config->pixel_multiplier =
8104 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8105 } else {
8106 pipe_config->pixel_multiplier = 1;
8107 }
8108
8109 return true;
8110 }
8111
8112 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8113 {
8114 struct drm_device *dev = crtc->dev;
8115 struct drm_i915_private *dev_priv = dev->dev_private;
8116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8117 uint32_t cntl = 0, size = 0;
8118
8119 if (base) {
8120 unsigned int width = intel_crtc->cursor_width;
8121 unsigned int height = intel_crtc->cursor_height;
8122 unsigned int stride = roundup_pow_of_two(width) * 4;
8123
8124 switch (stride) {
8125 default:
8126 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8127 width, stride);
8128 stride = 256;
8129 /* fallthrough */
8130 case 256:
8131 case 512:
8132 case 1024:
8133 case 2048:
8134 break;
8135 }
8136
8137 cntl |= CURSOR_ENABLE |
8138 CURSOR_GAMMA_ENABLE |
8139 CURSOR_FORMAT_ARGB |
8140 CURSOR_STRIDE(stride);
8141
8142 size = (height << 12) | width;
8143 }
8144
8145 if (intel_crtc->cursor_cntl != 0 &&
8146 (intel_crtc->cursor_base != base ||
8147 intel_crtc->cursor_size != size ||
8148 intel_crtc->cursor_cntl != cntl)) {
8149 /* On these chipsets we can only modify the base/size/stride
8150 * whilst the cursor is disabled.
8151 */
8152 I915_WRITE(_CURACNTR, 0);
8153 POSTING_READ(_CURACNTR);
8154 intel_crtc->cursor_cntl = 0;
8155 }
8156
8157 if (intel_crtc->cursor_base != base) {
8158 I915_WRITE(_CURABASE, base);
8159 intel_crtc->cursor_base = base;
8160 }
8161
8162 if (intel_crtc->cursor_size != size) {
8163 I915_WRITE(CURSIZE, size);
8164 intel_crtc->cursor_size = size;
8165 }
8166
8167 if (intel_crtc->cursor_cntl != cntl) {
8168 I915_WRITE(_CURACNTR, cntl);
8169 POSTING_READ(_CURACNTR);
8170 intel_crtc->cursor_cntl = cntl;
8171 }
8172 }
8173
8174 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8175 {
8176 struct drm_device *dev = crtc->dev;
8177 struct drm_i915_private *dev_priv = dev->dev_private;
8178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8179 int pipe = intel_crtc->pipe;
8180 uint32_t cntl;
8181
8182 cntl = 0;
8183 if (base) {
8184 cntl = MCURSOR_GAMMA_ENABLE;
8185 switch (intel_crtc->cursor_width) {
8186 case 64:
8187 cntl |= CURSOR_MODE_64_ARGB_AX;
8188 break;
8189 case 128:
8190 cntl |= CURSOR_MODE_128_ARGB_AX;
8191 break;
8192 case 256:
8193 cntl |= CURSOR_MODE_256_ARGB_AX;
8194 break;
8195 default:
8196 WARN_ON(1);
8197 return;
8198 }
8199 cntl |= pipe << 28; /* Connect to correct pipe */
8200
8201 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8202 cntl |= CURSOR_PIPE_CSC_ENABLE;
8203 }
8204
8205 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8206 cntl |= CURSOR_ROTATE_180;
8207
8208 if (intel_crtc->cursor_cntl != cntl) {
8209 I915_WRITE(CURCNTR(pipe), cntl);
8210 POSTING_READ(CURCNTR(pipe));
8211 intel_crtc->cursor_cntl = cntl;
8212 }
8213
8214 /* and commit changes on next vblank */
8215 I915_WRITE(CURBASE(pipe), base);
8216 POSTING_READ(CURBASE(pipe));
8217
8218 intel_crtc->cursor_base = base;
8219 }
8220
8221 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8222 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8223 bool on)
8224 {
8225 struct drm_device *dev = crtc->dev;
8226 struct drm_i915_private *dev_priv = dev->dev_private;
8227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8228 int pipe = intel_crtc->pipe;
8229 int x = crtc->cursor_x;
8230 int y = crtc->cursor_y;
8231 u32 base = 0, pos = 0;
8232
8233 if (on)
8234 base = intel_crtc->cursor_addr;
8235
8236 if (x >= intel_crtc->config.pipe_src_w)
8237 base = 0;
8238
8239 if (y >= intel_crtc->config.pipe_src_h)
8240 base = 0;
8241
8242 if (x < 0) {
8243 if (x + intel_crtc->cursor_width <= 0)
8244 base = 0;
8245
8246 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8247 x = -x;
8248 }
8249 pos |= x << CURSOR_X_SHIFT;
8250
8251 if (y < 0) {
8252 if (y + intel_crtc->cursor_height <= 0)
8253 base = 0;
8254
8255 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8256 y = -y;
8257 }
8258 pos |= y << CURSOR_Y_SHIFT;
8259
8260 if (base == 0 && intel_crtc->cursor_base == 0)
8261 return;
8262
8263 I915_WRITE(CURPOS(pipe), pos);
8264
8265 /* ILK+ do this automagically */
8266 if (HAS_GMCH_DISPLAY(dev) &&
8267 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8268 base += (intel_crtc->cursor_height *
8269 intel_crtc->cursor_width - 1) * 4;
8270 }
8271
8272 if (IS_845G(dev) || IS_I865G(dev))
8273 i845_update_cursor(crtc, base);
8274 else
8275 i9xx_update_cursor(crtc, base);
8276 }
8277
8278 static bool cursor_size_ok(struct drm_device *dev,
8279 uint32_t width, uint32_t height)
8280 {
8281 if (width == 0 || height == 0)
8282 return false;
8283
8284 /*
8285 * 845g/865g are special in that they are only limited by
8286 * the width of their cursors, the height is arbitrary up to
8287 * the precision of the register. Everything else requires
8288 * square cursors, limited to a few power-of-two sizes.
8289 */
8290 if (IS_845G(dev) || IS_I865G(dev)) {
8291 if ((width & 63) != 0)
8292 return false;
8293
8294 if (width > (IS_845G(dev) ? 64 : 512))
8295 return false;
8296
8297 if (height > 1023)
8298 return false;
8299 } else {
8300 switch (width | height) {
8301 case 256:
8302 case 128:
8303 if (IS_GEN2(dev))
8304 return false;
8305 case 64:
8306 break;
8307 default:
8308 return false;
8309 }
8310 }
8311
8312 return true;
8313 }
8314
8315 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8316 struct drm_i915_gem_object *obj,
8317 uint32_t width, uint32_t height)
8318 {
8319 struct drm_device *dev = crtc->dev;
8320 struct drm_i915_private *dev_priv = dev->dev_private;
8321 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8322 enum pipe pipe = intel_crtc->pipe;
8323 unsigned old_width;
8324 uint32_t addr;
8325 int ret;
8326
8327 /* if we want to turn off the cursor ignore width and height */
8328 if (!obj) {
8329 DRM_DEBUG_KMS("cursor off\n");
8330 addr = 0;
8331 mutex_lock(&dev->struct_mutex);
8332 goto finish;
8333 }
8334
8335 /* we only need to pin inside GTT if cursor is non-phy */
8336 mutex_lock(&dev->struct_mutex);
8337 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8338 unsigned alignment;
8339
8340 /*
8341 * Global gtt pte registers are special registers which actually
8342 * forward writes to a chunk of system memory. Which means that
8343 * there is no risk that the register values disappear as soon
8344 * as we call intel_runtime_pm_put(), so it is correct to wrap
8345 * only the pin/unpin/fence and not more.
8346 */
8347 intel_runtime_pm_get(dev_priv);
8348
8349 /* Note that the w/a also requires 2 PTE of padding following
8350 * the bo. We currently fill all unused PTE with the shadow
8351 * page and so we should always have valid PTE following the
8352 * cursor preventing the VT-d warning.
8353 */
8354 alignment = 0;
8355 if (need_vtd_wa(dev))
8356 alignment = 64*1024;
8357
8358 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8359 if (ret) {
8360 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8361 intel_runtime_pm_put(dev_priv);
8362 goto fail_locked;
8363 }
8364
8365 ret = i915_gem_object_put_fence(obj);
8366 if (ret) {
8367 DRM_DEBUG_KMS("failed to release fence for cursor");
8368 intel_runtime_pm_put(dev_priv);
8369 goto fail_unpin;
8370 }
8371
8372 addr = i915_gem_obj_ggtt_offset(obj);
8373
8374 intel_runtime_pm_put(dev_priv);
8375 } else {
8376 int align = IS_I830(dev) ? 16 * 1024 : 256;
8377 ret = i915_gem_object_attach_phys(obj, align);
8378 if (ret) {
8379 DRM_DEBUG_KMS("failed to attach phys object\n");
8380 goto fail_locked;
8381 }
8382 addr = obj->phys_handle->busaddr;
8383 }
8384
8385 finish:
8386 if (intel_crtc->cursor_bo) {
8387 if (!INTEL_INFO(dev)->cursor_needs_physical)
8388 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8389 }
8390
8391 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8392 INTEL_FRONTBUFFER_CURSOR(pipe));
8393 mutex_unlock(&dev->struct_mutex);
8394
8395 old_width = intel_crtc->cursor_width;
8396
8397 intel_crtc->cursor_addr = addr;
8398 intel_crtc->cursor_bo = obj;
8399 intel_crtc->cursor_width = width;
8400 intel_crtc->cursor_height = height;
8401
8402 if (intel_crtc->active) {
8403 if (old_width != width)
8404 intel_update_watermarks(crtc);
8405 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8406
8407 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8408 }
8409
8410 return 0;
8411 fail_unpin:
8412 i915_gem_object_unpin_from_display_plane(obj);
8413 fail_locked:
8414 mutex_unlock(&dev->struct_mutex);
8415 return ret;
8416 }
8417
8418 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8419 u16 *blue, uint32_t start, uint32_t size)
8420 {
8421 int end = (start + size > 256) ? 256 : start + size, i;
8422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8423
8424 for (i = start; i < end; i++) {
8425 intel_crtc->lut_r[i] = red[i] >> 8;
8426 intel_crtc->lut_g[i] = green[i] >> 8;
8427 intel_crtc->lut_b[i] = blue[i] >> 8;
8428 }
8429
8430 intel_crtc_load_lut(crtc);
8431 }
8432
8433 /* VESA 640x480x72Hz mode to set on the pipe */
8434 static struct drm_display_mode load_detect_mode = {
8435 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8436 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8437 };
8438
8439 struct drm_framebuffer *
8440 __intel_framebuffer_create(struct drm_device *dev,
8441 struct drm_mode_fb_cmd2 *mode_cmd,
8442 struct drm_i915_gem_object *obj)
8443 {
8444 struct intel_framebuffer *intel_fb;
8445 int ret;
8446
8447 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8448 if (!intel_fb) {
8449 drm_gem_object_unreference(&obj->base);
8450 return ERR_PTR(-ENOMEM);
8451 }
8452
8453 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8454 if (ret)
8455 goto err;
8456
8457 return &intel_fb->base;
8458 err:
8459 drm_gem_object_unreference(&obj->base);
8460 kfree(intel_fb);
8461
8462 return ERR_PTR(ret);
8463 }
8464
8465 static struct drm_framebuffer *
8466 intel_framebuffer_create(struct drm_device *dev,
8467 struct drm_mode_fb_cmd2 *mode_cmd,
8468 struct drm_i915_gem_object *obj)
8469 {
8470 struct drm_framebuffer *fb;
8471 int ret;
8472
8473 ret = i915_mutex_lock_interruptible(dev);
8474 if (ret)
8475 return ERR_PTR(ret);
8476 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8477 mutex_unlock(&dev->struct_mutex);
8478
8479 return fb;
8480 }
8481
8482 static u32
8483 intel_framebuffer_pitch_for_width(int width, int bpp)
8484 {
8485 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8486 return ALIGN(pitch, 64);
8487 }
8488
8489 static u32
8490 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8491 {
8492 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8493 return PAGE_ALIGN(pitch * mode->vdisplay);
8494 }
8495
8496 static struct drm_framebuffer *
8497 intel_framebuffer_create_for_mode(struct drm_device *dev,
8498 struct drm_display_mode *mode,
8499 int depth, int bpp)
8500 {
8501 struct drm_i915_gem_object *obj;
8502 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8503
8504 obj = i915_gem_alloc_object(dev,
8505 intel_framebuffer_size_for_mode(mode, bpp));
8506 if (obj == NULL)
8507 return ERR_PTR(-ENOMEM);
8508
8509 mode_cmd.width = mode->hdisplay;
8510 mode_cmd.height = mode->vdisplay;
8511 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8512 bpp);
8513 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8514
8515 return intel_framebuffer_create(dev, &mode_cmd, obj);
8516 }
8517
8518 static struct drm_framebuffer *
8519 mode_fits_in_fbdev(struct drm_device *dev,
8520 struct drm_display_mode *mode)
8521 {
8522 #ifdef CONFIG_DRM_I915_FBDEV
8523 struct drm_i915_private *dev_priv = dev->dev_private;
8524 struct drm_i915_gem_object *obj;
8525 struct drm_framebuffer *fb;
8526
8527 if (!dev_priv->fbdev)
8528 return NULL;
8529
8530 if (!dev_priv->fbdev->fb)
8531 return NULL;
8532
8533 obj = dev_priv->fbdev->fb->obj;
8534 BUG_ON(!obj);
8535
8536 fb = &dev_priv->fbdev->fb->base;
8537 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8538 fb->bits_per_pixel))
8539 return NULL;
8540
8541 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8542 return NULL;
8543
8544 return fb;
8545 #else
8546 return NULL;
8547 #endif
8548 }
8549
8550 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8551 struct drm_display_mode *mode,
8552 struct intel_load_detect_pipe *old,
8553 struct drm_modeset_acquire_ctx *ctx)
8554 {
8555 struct intel_crtc *intel_crtc;
8556 struct intel_encoder *intel_encoder =
8557 intel_attached_encoder(connector);
8558 struct drm_crtc *possible_crtc;
8559 struct drm_encoder *encoder = &intel_encoder->base;
8560 struct drm_crtc *crtc = NULL;
8561 struct drm_device *dev = encoder->dev;
8562 struct drm_framebuffer *fb;
8563 struct drm_mode_config *config = &dev->mode_config;
8564 int ret, i = -1;
8565
8566 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8567 connector->base.id, connector->name,
8568 encoder->base.id, encoder->name);
8569
8570 retry:
8571 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8572 if (ret)
8573 goto fail_unlock;
8574
8575 /*
8576 * Algorithm gets a little messy:
8577 *
8578 * - if the connector already has an assigned crtc, use it (but make
8579 * sure it's on first)
8580 *
8581 * - try to find the first unused crtc that can drive this connector,
8582 * and use that if we find one
8583 */
8584
8585 /* See if we already have a CRTC for this connector */
8586 if (encoder->crtc) {
8587 crtc = encoder->crtc;
8588
8589 ret = drm_modeset_lock(&crtc->mutex, ctx);
8590 if (ret)
8591 goto fail_unlock;
8592
8593 old->dpms_mode = connector->dpms;
8594 old->load_detect_temp = false;
8595
8596 /* Make sure the crtc and connector are running */
8597 if (connector->dpms != DRM_MODE_DPMS_ON)
8598 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8599
8600 return true;
8601 }
8602
8603 /* Find an unused one (if possible) */
8604 for_each_crtc(dev, possible_crtc) {
8605 i++;
8606 if (!(encoder->possible_crtcs & (1 << i)))
8607 continue;
8608 if (possible_crtc->enabled)
8609 continue;
8610 /* This can occur when applying the pipe A quirk on resume. */
8611 if (to_intel_crtc(possible_crtc)->new_enabled)
8612 continue;
8613
8614 crtc = possible_crtc;
8615 break;
8616 }
8617
8618 /*
8619 * If we didn't find an unused CRTC, don't use any.
8620 */
8621 if (!crtc) {
8622 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8623 goto fail_unlock;
8624 }
8625
8626 ret = drm_modeset_lock(&crtc->mutex, ctx);
8627 if (ret)
8628 goto fail_unlock;
8629 intel_encoder->new_crtc = to_intel_crtc(crtc);
8630 to_intel_connector(connector)->new_encoder = intel_encoder;
8631
8632 intel_crtc = to_intel_crtc(crtc);
8633 intel_crtc->new_enabled = true;
8634 intel_crtc->new_config = &intel_crtc->config;
8635 old->dpms_mode = connector->dpms;
8636 old->load_detect_temp = true;
8637 old->release_fb = NULL;
8638
8639 if (!mode)
8640 mode = &load_detect_mode;
8641
8642 /* We need a framebuffer large enough to accommodate all accesses
8643 * that the plane may generate whilst we perform load detection.
8644 * We can not rely on the fbcon either being present (we get called
8645 * during its initialisation to detect all boot displays, or it may
8646 * not even exist) or that it is large enough to satisfy the
8647 * requested mode.
8648 */
8649 fb = mode_fits_in_fbdev(dev, mode);
8650 if (fb == NULL) {
8651 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8652 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8653 old->release_fb = fb;
8654 } else
8655 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8656 if (IS_ERR(fb)) {
8657 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8658 goto fail;
8659 }
8660
8661 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8662 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8663 if (old->release_fb)
8664 old->release_fb->funcs->destroy(old->release_fb);
8665 goto fail;
8666 }
8667
8668 /* let the connector get through one full cycle before testing */
8669 intel_wait_for_vblank(dev, intel_crtc->pipe);
8670 return true;
8671
8672 fail:
8673 intel_crtc->new_enabled = crtc->enabled;
8674 if (intel_crtc->new_enabled)
8675 intel_crtc->new_config = &intel_crtc->config;
8676 else
8677 intel_crtc->new_config = NULL;
8678 fail_unlock:
8679 if (ret == -EDEADLK) {
8680 drm_modeset_backoff(ctx);
8681 goto retry;
8682 }
8683
8684 return false;
8685 }
8686
8687 void intel_release_load_detect_pipe(struct drm_connector *connector,
8688 struct intel_load_detect_pipe *old)
8689 {
8690 struct intel_encoder *intel_encoder =
8691 intel_attached_encoder(connector);
8692 struct drm_encoder *encoder = &intel_encoder->base;
8693 struct drm_crtc *crtc = encoder->crtc;
8694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8695
8696 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8697 connector->base.id, connector->name,
8698 encoder->base.id, encoder->name);
8699
8700 if (old->load_detect_temp) {
8701 to_intel_connector(connector)->new_encoder = NULL;
8702 intel_encoder->new_crtc = NULL;
8703 intel_crtc->new_enabled = false;
8704 intel_crtc->new_config = NULL;
8705 intel_set_mode(crtc, NULL, 0, 0, NULL);
8706
8707 if (old->release_fb) {
8708 drm_framebuffer_unregister_private(old->release_fb);
8709 drm_framebuffer_unreference(old->release_fb);
8710 }
8711
8712 return;
8713 }
8714
8715 /* Switch crtc and encoder back off if necessary */
8716 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8717 connector->funcs->dpms(connector, old->dpms_mode);
8718 }
8719
8720 static int i9xx_pll_refclk(struct drm_device *dev,
8721 const struct intel_crtc_config *pipe_config)
8722 {
8723 struct drm_i915_private *dev_priv = dev->dev_private;
8724 u32 dpll = pipe_config->dpll_hw_state.dpll;
8725
8726 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8727 return dev_priv->vbt.lvds_ssc_freq;
8728 else if (HAS_PCH_SPLIT(dev))
8729 return 120000;
8730 else if (!IS_GEN2(dev))
8731 return 96000;
8732 else
8733 return 48000;
8734 }
8735
8736 /* Returns the clock of the currently programmed mode of the given pipe. */
8737 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8738 struct intel_crtc_config *pipe_config)
8739 {
8740 struct drm_device *dev = crtc->base.dev;
8741 struct drm_i915_private *dev_priv = dev->dev_private;
8742 int pipe = pipe_config->cpu_transcoder;
8743 u32 dpll = pipe_config->dpll_hw_state.dpll;
8744 u32 fp;
8745 intel_clock_t clock;
8746 int refclk = i9xx_pll_refclk(dev, pipe_config);
8747
8748 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8749 fp = pipe_config->dpll_hw_state.fp0;
8750 else
8751 fp = pipe_config->dpll_hw_state.fp1;
8752
8753 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8754 if (IS_PINEVIEW(dev)) {
8755 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8756 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8757 } else {
8758 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8759 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8760 }
8761
8762 if (!IS_GEN2(dev)) {
8763 if (IS_PINEVIEW(dev))
8764 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8765 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8766 else
8767 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8768 DPLL_FPA01_P1_POST_DIV_SHIFT);
8769
8770 switch (dpll & DPLL_MODE_MASK) {
8771 case DPLLB_MODE_DAC_SERIAL:
8772 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8773 5 : 10;
8774 break;
8775 case DPLLB_MODE_LVDS:
8776 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8777 7 : 14;
8778 break;
8779 default:
8780 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8781 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8782 return;
8783 }
8784
8785 if (IS_PINEVIEW(dev))
8786 pineview_clock(refclk, &clock);
8787 else
8788 i9xx_clock(refclk, &clock);
8789 } else {
8790 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8791 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8792
8793 if (is_lvds) {
8794 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8795 DPLL_FPA01_P1_POST_DIV_SHIFT);
8796
8797 if (lvds & LVDS_CLKB_POWER_UP)
8798 clock.p2 = 7;
8799 else
8800 clock.p2 = 14;
8801 } else {
8802 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8803 clock.p1 = 2;
8804 else {
8805 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8806 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8807 }
8808 if (dpll & PLL_P2_DIVIDE_BY_4)
8809 clock.p2 = 4;
8810 else
8811 clock.p2 = 2;
8812 }
8813
8814 i9xx_clock(refclk, &clock);
8815 }
8816
8817 /*
8818 * This value includes pixel_multiplier. We will use
8819 * port_clock to compute adjusted_mode.crtc_clock in the
8820 * encoder's get_config() function.
8821 */
8822 pipe_config->port_clock = clock.dot;
8823 }
8824
8825 int intel_dotclock_calculate(int link_freq,
8826 const struct intel_link_m_n *m_n)
8827 {
8828 /*
8829 * The calculation for the data clock is:
8830 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8831 * But we want to avoid losing precison if possible, so:
8832 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8833 *
8834 * and the link clock is simpler:
8835 * link_clock = (m * link_clock) / n
8836 */
8837
8838 if (!m_n->link_n)
8839 return 0;
8840
8841 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8842 }
8843
8844 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8845 struct intel_crtc_config *pipe_config)
8846 {
8847 struct drm_device *dev = crtc->base.dev;
8848
8849 /* read out port_clock from the DPLL */
8850 i9xx_crtc_clock_get(crtc, pipe_config);
8851
8852 /*
8853 * This value does not include pixel_multiplier.
8854 * We will check that port_clock and adjusted_mode.crtc_clock
8855 * agree once we know their relationship in the encoder's
8856 * get_config() function.
8857 */
8858 pipe_config->adjusted_mode.crtc_clock =
8859 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8860 &pipe_config->fdi_m_n);
8861 }
8862
8863 /** Returns the currently programmed mode of the given pipe. */
8864 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8865 struct drm_crtc *crtc)
8866 {
8867 struct drm_i915_private *dev_priv = dev->dev_private;
8868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8869 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8870 struct drm_display_mode *mode;
8871 struct intel_crtc_config pipe_config;
8872 int htot = I915_READ(HTOTAL(cpu_transcoder));
8873 int hsync = I915_READ(HSYNC(cpu_transcoder));
8874 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8875 int vsync = I915_READ(VSYNC(cpu_transcoder));
8876 enum pipe pipe = intel_crtc->pipe;
8877
8878 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8879 if (!mode)
8880 return NULL;
8881
8882 /*
8883 * Construct a pipe_config sufficient for getting the clock info
8884 * back out of crtc_clock_get.
8885 *
8886 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8887 * to use a real value here instead.
8888 */
8889 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8890 pipe_config.pixel_multiplier = 1;
8891 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8892 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8893 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8894 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8895
8896 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8897 mode->hdisplay = (htot & 0xffff) + 1;
8898 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8899 mode->hsync_start = (hsync & 0xffff) + 1;
8900 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8901 mode->vdisplay = (vtot & 0xffff) + 1;
8902 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8903 mode->vsync_start = (vsync & 0xffff) + 1;
8904 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8905
8906 drm_mode_set_name(mode);
8907
8908 return mode;
8909 }
8910
8911 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8912 {
8913 struct drm_device *dev = crtc->dev;
8914 struct drm_i915_private *dev_priv = dev->dev_private;
8915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8916
8917 if (!HAS_GMCH_DISPLAY(dev))
8918 return;
8919
8920 if (!dev_priv->lvds_downclock_avail)
8921 return;
8922
8923 /*
8924 * Since this is called by a timer, we should never get here in
8925 * the manual case.
8926 */
8927 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8928 int pipe = intel_crtc->pipe;
8929 int dpll_reg = DPLL(pipe);
8930 int dpll;
8931
8932 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8933
8934 assert_panel_unlocked(dev_priv, pipe);
8935
8936 dpll = I915_READ(dpll_reg);
8937 dpll |= DISPLAY_RATE_SELECT_FPA1;
8938 I915_WRITE(dpll_reg, dpll);
8939 intel_wait_for_vblank(dev, pipe);
8940 dpll = I915_READ(dpll_reg);
8941 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8942 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8943 }
8944
8945 }
8946
8947 void intel_mark_busy(struct drm_device *dev)
8948 {
8949 struct drm_i915_private *dev_priv = dev->dev_private;
8950
8951 if (dev_priv->mm.busy)
8952 return;
8953
8954 intel_runtime_pm_get(dev_priv);
8955 i915_update_gfx_val(dev_priv);
8956 dev_priv->mm.busy = true;
8957 }
8958
8959 void intel_mark_idle(struct drm_device *dev)
8960 {
8961 struct drm_i915_private *dev_priv = dev->dev_private;
8962 struct drm_crtc *crtc;
8963
8964 if (!dev_priv->mm.busy)
8965 return;
8966
8967 dev_priv->mm.busy = false;
8968
8969 if (!i915.powersave)
8970 goto out;
8971
8972 for_each_crtc(dev, crtc) {
8973 if (!crtc->primary->fb)
8974 continue;
8975
8976 intel_decrease_pllclock(crtc);
8977 }
8978
8979 if (INTEL_INFO(dev)->gen >= 6)
8980 gen6_rps_idle(dev->dev_private);
8981
8982 out:
8983 intel_runtime_pm_put(dev_priv);
8984 }
8985
8986 static void intel_crtc_destroy(struct drm_crtc *crtc)
8987 {
8988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8989 struct drm_device *dev = crtc->dev;
8990 struct intel_unpin_work *work;
8991
8992 spin_lock_irq(&dev->event_lock);
8993 work = intel_crtc->unpin_work;
8994 intel_crtc->unpin_work = NULL;
8995 spin_unlock_irq(&dev->event_lock);
8996
8997 if (work) {
8998 cancel_work_sync(&work->work);
8999 kfree(work);
9000 }
9001
9002 drm_crtc_cleanup(crtc);
9003
9004 kfree(intel_crtc);
9005 }
9006
9007 static void intel_unpin_work_fn(struct work_struct *__work)
9008 {
9009 struct intel_unpin_work *work =
9010 container_of(__work, struct intel_unpin_work, work);
9011 struct drm_device *dev = work->crtc->dev;
9012 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9013
9014 mutex_lock(&dev->struct_mutex);
9015 intel_unpin_fb_obj(work->old_fb_obj);
9016 drm_gem_object_unreference(&work->pending_flip_obj->base);
9017 drm_gem_object_unreference(&work->old_fb_obj->base);
9018
9019 intel_update_fbc(dev);
9020 mutex_unlock(&dev->struct_mutex);
9021
9022 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9023
9024 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9025 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9026
9027 kfree(work);
9028 }
9029
9030 static void do_intel_finish_page_flip(struct drm_device *dev,
9031 struct drm_crtc *crtc)
9032 {
9033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9034 struct intel_unpin_work *work;
9035 unsigned long flags;
9036
9037 /* Ignore early vblank irqs */
9038 if (intel_crtc == NULL)
9039 return;
9040
9041 /*
9042 * This is called both by irq handlers and the reset code (to complete
9043 * lost pageflips) so needs the full irqsave spinlocks.
9044 */
9045 spin_lock_irqsave(&dev->event_lock, flags);
9046 work = intel_crtc->unpin_work;
9047
9048 /* Ensure we don't miss a work->pending update ... */
9049 smp_rmb();
9050
9051 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9052 spin_unlock_irqrestore(&dev->event_lock, flags);
9053 return;
9054 }
9055
9056 page_flip_completed(intel_crtc);
9057
9058 spin_unlock_irqrestore(&dev->event_lock, flags);
9059 }
9060
9061 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9062 {
9063 struct drm_i915_private *dev_priv = dev->dev_private;
9064 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9065
9066 do_intel_finish_page_flip(dev, crtc);
9067 }
9068
9069 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9070 {
9071 struct drm_i915_private *dev_priv = dev->dev_private;
9072 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9073
9074 do_intel_finish_page_flip(dev, crtc);
9075 }
9076
9077 /* Is 'a' after or equal to 'b'? */
9078 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9079 {
9080 return !((a - b) & 0x80000000);
9081 }
9082
9083 static bool page_flip_finished(struct intel_crtc *crtc)
9084 {
9085 struct drm_device *dev = crtc->base.dev;
9086 struct drm_i915_private *dev_priv = dev->dev_private;
9087
9088 /*
9089 * The relevant registers doen't exist on pre-ctg.
9090 * As the flip done interrupt doesn't trigger for mmio
9091 * flips on gmch platforms, a flip count check isn't
9092 * really needed there. But since ctg has the registers,
9093 * include it in the check anyway.
9094 */
9095 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9096 return true;
9097
9098 /*
9099 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9100 * used the same base address. In that case the mmio flip might
9101 * have completed, but the CS hasn't even executed the flip yet.
9102 *
9103 * A flip count check isn't enough as the CS might have updated
9104 * the base address just after start of vblank, but before we
9105 * managed to process the interrupt. This means we'd complete the
9106 * CS flip too soon.
9107 *
9108 * Combining both checks should get us a good enough result. It may
9109 * still happen that the CS flip has been executed, but has not
9110 * yet actually completed. But in case the base address is the same
9111 * anyway, we don't really care.
9112 */
9113 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9114 crtc->unpin_work->gtt_offset &&
9115 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9116 crtc->unpin_work->flip_count);
9117 }
9118
9119 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9120 {
9121 struct drm_i915_private *dev_priv = dev->dev_private;
9122 struct intel_crtc *intel_crtc =
9123 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9124 unsigned long flags;
9125
9126
9127 /*
9128 * This is called both by irq handlers and the reset code (to complete
9129 * lost pageflips) so needs the full irqsave spinlocks.
9130 *
9131 * NB: An MMIO update of the plane base pointer will also
9132 * generate a page-flip completion irq, i.e. every modeset
9133 * is also accompanied by a spurious intel_prepare_page_flip().
9134 */
9135 spin_lock_irqsave(&dev->event_lock, flags);
9136 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9137 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9138 spin_unlock_irqrestore(&dev->event_lock, flags);
9139 }
9140
9141 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9142 {
9143 /* Ensure that the work item is consistent when activating it ... */
9144 smp_wmb();
9145 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9146 /* and that it is marked active as soon as the irq could fire. */
9147 smp_wmb();
9148 }
9149
9150 static int intel_gen2_queue_flip(struct drm_device *dev,
9151 struct drm_crtc *crtc,
9152 struct drm_framebuffer *fb,
9153 struct drm_i915_gem_object *obj,
9154 struct intel_engine_cs *ring,
9155 uint32_t flags)
9156 {
9157 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9158 u32 flip_mask;
9159 int ret;
9160
9161 ret = intel_ring_begin(ring, 6);
9162 if (ret)
9163 return ret;
9164
9165 /* Can't queue multiple flips, so wait for the previous
9166 * one to finish before executing the next.
9167 */
9168 if (intel_crtc->plane)
9169 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9170 else
9171 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9172 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9173 intel_ring_emit(ring, MI_NOOP);
9174 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9175 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9176 intel_ring_emit(ring, fb->pitches[0]);
9177 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9178 intel_ring_emit(ring, 0); /* aux display base address, unused */
9179
9180 intel_mark_page_flip_active(intel_crtc);
9181 __intel_ring_advance(ring);
9182 return 0;
9183 }
9184
9185 static int intel_gen3_queue_flip(struct drm_device *dev,
9186 struct drm_crtc *crtc,
9187 struct drm_framebuffer *fb,
9188 struct drm_i915_gem_object *obj,
9189 struct intel_engine_cs *ring,
9190 uint32_t flags)
9191 {
9192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9193 u32 flip_mask;
9194 int ret;
9195
9196 ret = intel_ring_begin(ring, 6);
9197 if (ret)
9198 return ret;
9199
9200 if (intel_crtc->plane)
9201 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9202 else
9203 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9204 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9205 intel_ring_emit(ring, MI_NOOP);
9206 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9207 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9208 intel_ring_emit(ring, fb->pitches[0]);
9209 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9210 intel_ring_emit(ring, MI_NOOP);
9211
9212 intel_mark_page_flip_active(intel_crtc);
9213 __intel_ring_advance(ring);
9214 return 0;
9215 }
9216
9217 static int intel_gen4_queue_flip(struct drm_device *dev,
9218 struct drm_crtc *crtc,
9219 struct drm_framebuffer *fb,
9220 struct drm_i915_gem_object *obj,
9221 struct intel_engine_cs *ring,
9222 uint32_t flags)
9223 {
9224 struct drm_i915_private *dev_priv = dev->dev_private;
9225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9226 uint32_t pf, pipesrc;
9227 int ret;
9228
9229 ret = intel_ring_begin(ring, 4);
9230 if (ret)
9231 return ret;
9232
9233 /* i965+ uses the linear or tiled offsets from the
9234 * Display Registers (which do not change across a page-flip)
9235 * so we need only reprogram the base address.
9236 */
9237 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9238 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9239 intel_ring_emit(ring, fb->pitches[0]);
9240 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9241 obj->tiling_mode);
9242
9243 /* XXX Enabling the panel-fitter across page-flip is so far
9244 * untested on non-native modes, so ignore it for now.
9245 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9246 */
9247 pf = 0;
9248 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9249 intel_ring_emit(ring, pf | pipesrc);
9250
9251 intel_mark_page_flip_active(intel_crtc);
9252 __intel_ring_advance(ring);
9253 return 0;
9254 }
9255
9256 static int intel_gen6_queue_flip(struct drm_device *dev,
9257 struct drm_crtc *crtc,
9258 struct drm_framebuffer *fb,
9259 struct drm_i915_gem_object *obj,
9260 struct intel_engine_cs *ring,
9261 uint32_t flags)
9262 {
9263 struct drm_i915_private *dev_priv = dev->dev_private;
9264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9265 uint32_t pf, pipesrc;
9266 int ret;
9267
9268 ret = intel_ring_begin(ring, 4);
9269 if (ret)
9270 return ret;
9271
9272 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9273 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9274 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9275 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9276
9277 /* Contrary to the suggestions in the documentation,
9278 * "Enable Panel Fitter" does not seem to be required when page
9279 * flipping with a non-native mode, and worse causes a normal
9280 * modeset to fail.
9281 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9282 */
9283 pf = 0;
9284 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9285 intel_ring_emit(ring, pf | pipesrc);
9286
9287 intel_mark_page_flip_active(intel_crtc);
9288 __intel_ring_advance(ring);
9289 return 0;
9290 }
9291
9292 static int intel_gen7_queue_flip(struct drm_device *dev,
9293 struct drm_crtc *crtc,
9294 struct drm_framebuffer *fb,
9295 struct drm_i915_gem_object *obj,
9296 struct intel_engine_cs *ring,
9297 uint32_t flags)
9298 {
9299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9300 uint32_t plane_bit = 0;
9301 int len, ret;
9302
9303 switch (intel_crtc->plane) {
9304 case PLANE_A:
9305 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9306 break;
9307 case PLANE_B:
9308 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9309 break;
9310 case PLANE_C:
9311 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9312 break;
9313 default:
9314 WARN_ONCE(1, "unknown plane in flip command\n");
9315 return -ENODEV;
9316 }
9317
9318 len = 4;
9319 if (ring->id == RCS) {
9320 len += 6;
9321 /*
9322 * On Gen 8, SRM is now taking an extra dword to accommodate
9323 * 48bits addresses, and we need a NOOP for the batch size to
9324 * stay even.
9325 */
9326 if (IS_GEN8(dev))
9327 len += 2;
9328 }
9329
9330 /*
9331 * BSpec MI_DISPLAY_FLIP for IVB:
9332 * "The full packet must be contained within the same cache line."
9333 *
9334 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9335 * cacheline, if we ever start emitting more commands before
9336 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9337 * then do the cacheline alignment, and finally emit the
9338 * MI_DISPLAY_FLIP.
9339 */
9340 ret = intel_ring_cacheline_align(ring);
9341 if (ret)
9342 return ret;
9343
9344 ret = intel_ring_begin(ring, len);
9345 if (ret)
9346 return ret;
9347
9348 /* Unmask the flip-done completion message. Note that the bspec says that
9349 * we should do this for both the BCS and RCS, and that we must not unmask
9350 * more than one flip event at any time (or ensure that one flip message
9351 * can be sent by waiting for flip-done prior to queueing new flips).
9352 * Experimentation says that BCS works despite DERRMR masking all
9353 * flip-done completion events and that unmasking all planes at once
9354 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9355 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9356 */
9357 if (ring->id == RCS) {
9358 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9359 intel_ring_emit(ring, DERRMR);
9360 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9361 DERRMR_PIPEB_PRI_FLIP_DONE |
9362 DERRMR_PIPEC_PRI_FLIP_DONE));
9363 if (IS_GEN8(dev))
9364 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9365 MI_SRM_LRM_GLOBAL_GTT);
9366 else
9367 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9368 MI_SRM_LRM_GLOBAL_GTT);
9369 intel_ring_emit(ring, DERRMR);
9370 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9371 if (IS_GEN8(dev)) {
9372 intel_ring_emit(ring, 0);
9373 intel_ring_emit(ring, MI_NOOP);
9374 }
9375 }
9376
9377 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9378 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9379 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9380 intel_ring_emit(ring, (MI_NOOP));
9381
9382 intel_mark_page_flip_active(intel_crtc);
9383 __intel_ring_advance(ring);
9384 return 0;
9385 }
9386
9387 static bool use_mmio_flip(struct intel_engine_cs *ring,
9388 struct drm_i915_gem_object *obj)
9389 {
9390 /*
9391 * This is not being used for older platforms, because
9392 * non-availability of flip done interrupt forces us to use
9393 * CS flips. Older platforms derive flip done using some clever
9394 * tricks involving the flip_pending status bits and vblank irqs.
9395 * So using MMIO flips there would disrupt this mechanism.
9396 */
9397
9398 if (ring == NULL)
9399 return true;
9400
9401 if (INTEL_INFO(ring->dev)->gen < 5)
9402 return false;
9403
9404 if (i915.use_mmio_flip < 0)
9405 return false;
9406 else if (i915.use_mmio_flip > 0)
9407 return true;
9408 else if (i915.enable_execlists)
9409 return true;
9410 else
9411 return ring != obj->ring;
9412 }
9413
9414 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9415 {
9416 struct drm_device *dev = intel_crtc->base.dev;
9417 struct drm_i915_private *dev_priv = dev->dev_private;
9418 struct intel_framebuffer *intel_fb =
9419 to_intel_framebuffer(intel_crtc->base.primary->fb);
9420 struct drm_i915_gem_object *obj = intel_fb->obj;
9421 bool atomic_update;
9422 u32 start_vbl_count;
9423 u32 dspcntr;
9424 u32 reg;
9425
9426 intel_mark_page_flip_active(intel_crtc);
9427
9428 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9429
9430 reg = DSPCNTR(intel_crtc->plane);
9431 dspcntr = I915_READ(reg);
9432
9433 if (obj->tiling_mode != I915_TILING_NONE)
9434 dspcntr |= DISPPLANE_TILED;
9435 else
9436 dspcntr &= ~DISPPLANE_TILED;
9437
9438 I915_WRITE(reg, dspcntr);
9439
9440 I915_WRITE(DSPSURF(intel_crtc->plane),
9441 intel_crtc->unpin_work->gtt_offset);
9442 POSTING_READ(DSPSURF(intel_crtc->plane));
9443
9444 if (atomic_update)
9445 intel_pipe_update_end(intel_crtc, start_vbl_count);
9446 }
9447
9448 static void intel_mmio_flip_work_func(struct work_struct *work)
9449 {
9450 struct intel_crtc *intel_crtc =
9451 container_of(work, struct intel_crtc, mmio_flip.work);
9452 struct intel_engine_cs *ring;
9453 uint32_t seqno;
9454
9455 seqno = intel_crtc->mmio_flip.seqno;
9456 ring = intel_crtc->mmio_flip.ring;
9457
9458 if (seqno)
9459 WARN_ON(__i915_wait_seqno(ring, seqno,
9460 intel_crtc->reset_counter,
9461 false, NULL, NULL) != 0);
9462
9463 intel_do_mmio_flip(intel_crtc);
9464 }
9465
9466 static int intel_queue_mmio_flip(struct drm_device *dev,
9467 struct drm_crtc *crtc,
9468 struct drm_framebuffer *fb,
9469 struct drm_i915_gem_object *obj,
9470 struct intel_engine_cs *ring,
9471 uint32_t flags)
9472 {
9473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9474
9475 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9476 intel_crtc->mmio_flip.ring = obj->ring;
9477
9478 schedule_work(&intel_crtc->mmio_flip.work);
9479
9480 return 0;
9481 }
9482
9483 static int intel_gen9_queue_flip(struct drm_device *dev,
9484 struct drm_crtc *crtc,
9485 struct drm_framebuffer *fb,
9486 struct drm_i915_gem_object *obj,
9487 struct intel_engine_cs *ring,
9488 uint32_t flags)
9489 {
9490 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9491 uint32_t plane = 0, stride;
9492 int ret;
9493
9494 switch(intel_crtc->pipe) {
9495 case PIPE_A:
9496 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9497 break;
9498 case PIPE_B:
9499 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9500 break;
9501 case PIPE_C:
9502 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9503 break;
9504 default:
9505 WARN_ONCE(1, "unknown plane in flip command\n");
9506 return -ENODEV;
9507 }
9508
9509 switch (obj->tiling_mode) {
9510 case I915_TILING_NONE:
9511 stride = fb->pitches[0] >> 6;
9512 break;
9513 case I915_TILING_X:
9514 stride = fb->pitches[0] >> 9;
9515 break;
9516 default:
9517 WARN_ONCE(1, "unknown tiling in flip command\n");
9518 return -ENODEV;
9519 }
9520
9521 ret = intel_ring_begin(ring, 10);
9522 if (ret)
9523 return ret;
9524
9525 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9526 intel_ring_emit(ring, DERRMR);
9527 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9528 DERRMR_PIPEB_PRI_FLIP_DONE |
9529 DERRMR_PIPEC_PRI_FLIP_DONE));
9530 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9531 MI_SRM_LRM_GLOBAL_GTT);
9532 intel_ring_emit(ring, DERRMR);
9533 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9534 intel_ring_emit(ring, 0);
9535
9536 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9537 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9538 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9539
9540 intel_mark_page_flip_active(intel_crtc);
9541 __intel_ring_advance(ring);
9542
9543 return 0;
9544 }
9545
9546 static int intel_default_queue_flip(struct drm_device *dev,
9547 struct drm_crtc *crtc,
9548 struct drm_framebuffer *fb,
9549 struct drm_i915_gem_object *obj,
9550 struct intel_engine_cs *ring,
9551 uint32_t flags)
9552 {
9553 return -ENODEV;
9554 }
9555
9556 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9557 struct drm_crtc *crtc)
9558 {
9559 struct drm_i915_private *dev_priv = dev->dev_private;
9560 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9561 struct intel_unpin_work *work = intel_crtc->unpin_work;
9562 u32 addr;
9563
9564 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9565 return true;
9566
9567 if (!work->enable_stall_check)
9568 return false;
9569
9570 if (work->flip_ready_vblank == 0) {
9571 if (work->flip_queued_ring &&
9572 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9573 work->flip_queued_seqno))
9574 return false;
9575
9576 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9577 }
9578
9579 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9580 return false;
9581
9582 /* Potential stall - if we see that the flip has happened,
9583 * assume a missed interrupt. */
9584 if (INTEL_INFO(dev)->gen >= 4)
9585 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9586 else
9587 addr = I915_READ(DSPADDR(intel_crtc->plane));
9588
9589 /* There is a potential issue here with a false positive after a flip
9590 * to the same address. We could address this by checking for a
9591 * non-incrementing frame counter.
9592 */
9593 return addr == work->gtt_offset;
9594 }
9595
9596 void intel_check_page_flip(struct drm_device *dev, int pipe)
9597 {
9598 struct drm_i915_private *dev_priv = dev->dev_private;
9599 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9601
9602 WARN_ON(!in_irq());
9603
9604 if (crtc == NULL)
9605 return;
9606
9607 spin_lock(&dev->event_lock);
9608 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9609 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9610 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9611 page_flip_completed(intel_crtc);
9612 }
9613 spin_unlock(&dev->event_lock);
9614 }
9615
9616 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9617 struct drm_framebuffer *fb,
9618 struct drm_pending_vblank_event *event,
9619 uint32_t page_flip_flags)
9620 {
9621 struct drm_device *dev = crtc->dev;
9622 struct drm_i915_private *dev_priv = dev->dev_private;
9623 struct drm_framebuffer *old_fb = crtc->primary->fb;
9624 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9626 enum pipe pipe = intel_crtc->pipe;
9627 struct intel_unpin_work *work;
9628 struct intel_engine_cs *ring;
9629 int ret;
9630
9631 /*
9632 * drm_mode_page_flip_ioctl() should already catch this, but double
9633 * check to be safe. In the future we may enable pageflipping from
9634 * a disabled primary plane.
9635 */
9636 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9637 return -EBUSY;
9638
9639 /* Can't change pixel format via MI display flips. */
9640 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9641 return -EINVAL;
9642
9643 /*
9644 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9645 * Note that pitch changes could also affect these register.
9646 */
9647 if (INTEL_INFO(dev)->gen > 3 &&
9648 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9649 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9650 return -EINVAL;
9651
9652 if (i915_terminally_wedged(&dev_priv->gpu_error))
9653 goto out_hang;
9654
9655 work = kzalloc(sizeof(*work), GFP_KERNEL);
9656 if (work == NULL)
9657 return -ENOMEM;
9658
9659 work->event = event;
9660 work->crtc = crtc;
9661 work->old_fb_obj = intel_fb_obj(old_fb);
9662 INIT_WORK(&work->work, intel_unpin_work_fn);
9663
9664 ret = drm_crtc_vblank_get(crtc);
9665 if (ret)
9666 goto free_work;
9667
9668 /* We borrow the event spin lock for protecting unpin_work */
9669 spin_lock_irq(&dev->event_lock);
9670 if (intel_crtc->unpin_work) {
9671 /* Before declaring the flip queue wedged, check if
9672 * the hardware completed the operation behind our backs.
9673 */
9674 if (__intel_pageflip_stall_check(dev, crtc)) {
9675 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9676 page_flip_completed(intel_crtc);
9677 } else {
9678 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9679 spin_unlock_irq(&dev->event_lock);
9680
9681 drm_crtc_vblank_put(crtc);
9682 kfree(work);
9683 return -EBUSY;
9684 }
9685 }
9686 intel_crtc->unpin_work = work;
9687 spin_unlock_irq(&dev->event_lock);
9688
9689 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9690 flush_workqueue(dev_priv->wq);
9691
9692 ret = i915_mutex_lock_interruptible(dev);
9693 if (ret)
9694 goto cleanup;
9695
9696 /* Reference the objects for the scheduled work. */
9697 drm_gem_object_reference(&work->old_fb_obj->base);
9698 drm_gem_object_reference(&obj->base);
9699
9700 crtc->primary->fb = fb;
9701
9702 work->pending_flip_obj = obj;
9703
9704 atomic_inc(&intel_crtc->unpin_work_count);
9705 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9706
9707 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9708 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9709
9710 if (IS_VALLEYVIEW(dev)) {
9711 ring = &dev_priv->ring[BCS];
9712 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9713 /* vlv: DISPLAY_FLIP fails to change tiling */
9714 ring = NULL;
9715 } else if (IS_IVYBRIDGE(dev)) {
9716 ring = &dev_priv->ring[BCS];
9717 } else if (INTEL_INFO(dev)->gen >= 7) {
9718 ring = obj->ring;
9719 if (ring == NULL || ring->id != RCS)
9720 ring = &dev_priv->ring[BCS];
9721 } else {
9722 ring = &dev_priv->ring[RCS];
9723 }
9724
9725 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9726 if (ret)
9727 goto cleanup_pending;
9728
9729 work->gtt_offset =
9730 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9731
9732 if (use_mmio_flip(ring, obj)) {
9733 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9734 page_flip_flags);
9735 if (ret)
9736 goto cleanup_unpin;
9737
9738 work->flip_queued_seqno = obj->last_write_seqno;
9739 work->flip_queued_ring = obj->ring;
9740 } else {
9741 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9742 page_flip_flags);
9743 if (ret)
9744 goto cleanup_unpin;
9745
9746 work->flip_queued_seqno = intel_ring_get_seqno(ring);
9747 work->flip_queued_ring = ring;
9748 }
9749
9750 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9751 work->enable_stall_check = true;
9752
9753 i915_gem_track_fb(work->old_fb_obj, obj,
9754 INTEL_FRONTBUFFER_PRIMARY(pipe));
9755
9756 intel_disable_fbc(dev);
9757 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9758 mutex_unlock(&dev->struct_mutex);
9759
9760 trace_i915_flip_request(intel_crtc->plane, obj);
9761
9762 return 0;
9763
9764 cleanup_unpin:
9765 intel_unpin_fb_obj(obj);
9766 cleanup_pending:
9767 atomic_dec(&intel_crtc->unpin_work_count);
9768 crtc->primary->fb = old_fb;
9769 drm_gem_object_unreference(&work->old_fb_obj->base);
9770 drm_gem_object_unreference(&obj->base);
9771 mutex_unlock(&dev->struct_mutex);
9772
9773 cleanup:
9774 spin_lock_irq(&dev->event_lock);
9775 intel_crtc->unpin_work = NULL;
9776 spin_unlock_irq(&dev->event_lock);
9777
9778 drm_crtc_vblank_put(crtc);
9779 free_work:
9780 kfree(work);
9781
9782 if (ret == -EIO) {
9783 out_hang:
9784 intel_crtc_wait_for_pending_flips(crtc);
9785 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9786 if (ret == 0 && event) {
9787 spin_lock_irq(&dev->event_lock);
9788 drm_send_vblank_event(dev, pipe, event);
9789 spin_unlock_irq(&dev->event_lock);
9790 }
9791 }
9792 return ret;
9793 }
9794
9795 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9796 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9797 .load_lut = intel_crtc_load_lut,
9798 };
9799
9800 /**
9801 * intel_modeset_update_staged_output_state
9802 *
9803 * Updates the staged output configuration state, e.g. after we've read out the
9804 * current hw state.
9805 */
9806 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9807 {
9808 struct intel_crtc *crtc;
9809 struct intel_encoder *encoder;
9810 struct intel_connector *connector;
9811
9812 list_for_each_entry(connector, &dev->mode_config.connector_list,
9813 base.head) {
9814 connector->new_encoder =
9815 to_intel_encoder(connector->base.encoder);
9816 }
9817
9818 for_each_intel_encoder(dev, encoder) {
9819 encoder->new_crtc =
9820 to_intel_crtc(encoder->base.crtc);
9821 }
9822
9823 for_each_intel_crtc(dev, crtc) {
9824 crtc->new_enabled = crtc->base.enabled;
9825
9826 if (crtc->new_enabled)
9827 crtc->new_config = &crtc->config;
9828 else
9829 crtc->new_config = NULL;
9830 }
9831 }
9832
9833 /**
9834 * intel_modeset_commit_output_state
9835 *
9836 * This function copies the stage display pipe configuration to the real one.
9837 */
9838 static void intel_modeset_commit_output_state(struct drm_device *dev)
9839 {
9840 struct intel_crtc *crtc;
9841 struct intel_encoder *encoder;
9842 struct intel_connector *connector;
9843
9844 list_for_each_entry(connector, &dev->mode_config.connector_list,
9845 base.head) {
9846 connector->base.encoder = &connector->new_encoder->base;
9847 }
9848
9849 for_each_intel_encoder(dev, encoder) {
9850 encoder->base.crtc = &encoder->new_crtc->base;
9851 }
9852
9853 for_each_intel_crtc(dev, crtc) {
9854 crtc->base.enabled = crtc->new_enabled;
9855 }
9856 }
9857
9858 static void
9859 connected_sink_compute_bpp(struct intel_connector *connector,
9860 struct intel_crtc_config *pipe_config)
9861 {
9862 int bpp = pipe_config->pipe_bpp;
9863
9864 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9865 connector->base.base.id,
9866 connector->base.name);
9867
9868 /* Don't use an invalid EDID bpc value */
9869 if (connector->base.display_info.bpc &&
9870 connector->base.display_info.bpc * 3 < bpp) {
9871 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9872 bpp, connector->base.display_info.bpc*3);
9873 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9874 }
9875
9876 /* Clamp bpp to 8 on screens without EDID 1.4 */
9877 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9878 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9879 bpp);
9880 pipe_config->pipe_bpp = 24;
9881 }
9882 }
9883
9884 static int
9885 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9886 struct drm_framebuffer *fb,
9887 struct intel_crtc_config *pipe_config)
9888 {
9889 struct drm_device *dev = crtc->base.dev;
9890 struct intel_connector *connector;
9891 int bpp;
9892
9893 switch (fb->pixel_format) {
9894 case DRM_FORMAT_C8:
9895 bpp = 8*3; /* since we go through a colormap */
9896 break;
9897 case DRM_FORMAT_XRGB1555:
9898 case DRM_FORMAT_ARGB1555:
9899 /* checked in intel_framebuffer_init already */
9900 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9901 return -EINVAL;
9902 case DRM_FORMAT_RGB565:
9903 bpp = 6*3; /* min is 18bpp */
9904 break;
9905 case DRM_FORMAT_XBGR8888:
9906 case DRM_FORMAT_ABGR8888:
9907 /* checked in intel_framebuffer_init already */
9908 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9909 return -EINVAL;
9910 case DRM_FORMAT_XRGB8888:
9911 case DRM_FORMAT_ARGB8888:
9912 bpp = 8*3;
9913 break;
9914 case DRM_FORMAT_XRGB2101010:
9915 case DRM_FORMAT_ARGB2101010:
9916 case DRM_FORMAT_XBGR2101010:
9917 case DRM_FORMAT_ABGR2101010:
9918 /* checked in intel_framebuffer_init already */
9919 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9920 return -EINVAL;
9921 bpp = 10*3;
9922 break;
9923 /* TODO: gen4+ supports 16 bpc floating point, too. */
9924 default:
9925 DRM_DEBUG_KMS("unsupported depth\n");
9926 return -EINVAL;
9927 }
9928
9929 pipe_config->pipe_bpp = bpp;
9930
9931 /* Clamp display bpp to EDID value */
9932 list_for_each_entry(connector, &dev->mode_config.connector_list,
9933 base.head) {
9934 if (!connector->new_encoder ||
9935 connector->new_encoder->new_crtc != crtc)
9936 continue;
9937
9938 connected_sink_compute_bpp(connector, pipe_config);
9939 }
9940
9941 return bpp;
9942 }
9943
9944 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9945 {
9946 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9947 "type: 0x%x flags: 0x%x\n",
9948 mode->crtc_clock,
9949 mode->crtc_hdisplay, mode->crtc_hsync_start,
9950 mode->crtc_hsync_end, mode->crtc_htotal,
9951 mode->crtc_vdisplay, mode->crtc_vsync_start,
9952 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9953 }
9954
9955 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9956 struct intel_crtc_config *pipe_config,
9957 const char *context)
9958 {
9959 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9960 context, pipe_name(crtc->pipe));
9961
9962 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9963 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9964 pipe_config->pipe_bpp, pipe_config->dither);
9965 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9966 pipe_config->has_pch_encoder,
9967 pipe_config->fdi_lanes,
9968 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9969 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9970 pipe_config->fdi_m_n.tu);
9971 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9972 pipe_config->has_dp_encoder,
9973 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9974 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9975 pipe_config->dp_m_n.tu);
9976
9977 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9978 pipe_config->has_dp_encoder,
9979 pipe_config->dp_m2_n2.gmch_m,
9980 pipe_config->dp_m2_n2.gmch_n,
9981 pipe_config->dp_m2_n2.link_m,
9982 pipe_config->dp_m2_n2.link_n,
9983 pipe_config->dp_m2_n2.tu);
9984
9985 DRM_DEBUG_KMS("requested mode:\n");
9986 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9987 DRM_DEBUG_KMS("adjusted mode:\n");
9988 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9989 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9990 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9991 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9992 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9993 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9994 pipe_config->gmch_pfit.control,
9995 pipe_config->gmch_pfit.pgm_ratios,
9996 pipe_config->gmch_pfit.lvds_border_bits);
9997 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9998 pipe_config->pch_pfit.pos,
9999 pipe_config->pch_pfit.size,
10000 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10001 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10002 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10003 }
10004
10005 static bool encoders_cloneable(const struct intel_encoder *a,
10006 const struct intel_encoder *b)
10007 {
10008 /* masks could be asymmetric, so check both ways */
10009 return a == b || (a->cloneable & (1 << b->type) &&
10010 b->cloneable & (1 << a->type));
10011 }
10012
10013 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10014 struct intel_encoder *encoder)
10015 {
10016 struct drm_device *dev = crtc->base.dev;
10017 struct intel_encoder *source_encoder;
10018
10019 for_each_intel_encoder(dev, source_encoder) {
10020 if (source_encoder->new_crtc != crtc)
10021 continue;
10022
10023 if (!encoders_cloneable(encoder, source_encoder))
10024 return false;
10025 }
10026
10027 return true;
10028 }
10029
10030 static bool check_encoder_cloning(struct intel_crtc *crtc)
10031 {
10032 struct drm_device *dev = crtc->base.dev;
10033 struct intel_encoder *encoder;
10034
10035 for_each_intel_encoder(dev, encoder) {
10036 if (encoder->new_crtc != crtc)
10037 continue;
10038
10039 if (!check_single_encoder_cloning(crtc, encoder))
10040 return false;
10041 }
10042
10043 return true;
10044 }
10045
10046 static struct intel_crtc_config *
10047 intel_modeset_pipe_config(struct drm_crtc *crtc,
10048 struct drm_framebuffer *fb,
10049 struct drm_display_mode *mode)
10050 {
10051 struct drm_device *dev = crtc->dev;
10052 struct intel_encoder *encoder;
10053 struct intel_crtc_config *pipe_config;
10054 int plane_bpp, ret = -EINVAL;
10055 bool retry = true;
10056
10057 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10058 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10059 return ERR_PTR(-EINVAL);
10060 }
10061
10062 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10063 if (!pipe_config)
10064 return ERR_PTR(-ENOMEM);
10065
10066 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10067 drm_mode_copy(&pipe_config->requested_mode, mode);
10068
10069 pipe_config->cpu_transcoder =
10070 (enum transcoder) to_intel_crtc(crtc)->pipe;
10071 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10072
10073 /*
10074 * Sanitize sync polarity flags based on requested ones. If neither
10075 * positive or negative polarity is requested, treat this as meaning
10076 * negative polarity.
10077 */
10078 if (!(pipe_config->adjusted_mode.flags &
10079 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10080 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10081
10082 if (!(pipe_config->adjusted_mode.flags &
10083 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10084 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10085
10086 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10087 * plane pixel format and any sink constraints into account. Returns the
10088 * source plane bpp so that dithering can be selected on mismatches
10089 * after encoders and crtc also have had their say. */
10090 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10091 fb, pipe_config);
10092 if (plane_bpp < 0)
10093 goto fail;
10094
10095 /*
10096 * Determine the real pipe dimensions. Note that stereo modes can
10097 * increase the actual pipe size due to the frame doubling and
10098 * insertion of additional space for blanks between the frame. This
10099 * is stored in the crtc timings. We use the requested mode to do this
10100 * computation to clearly distinguish it from the adjusted mode, which
10101 * can be changed by the connectors in the below retry loop.
10102 */
10103 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10104 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10105 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10106
10107 encoder_retry:
10108 /* Ensure the port clock defaults are reset when retrying. */
10109 pipe_config->port_clock = 0;
10110 pipe_config->pixel_multiplier = 1;
10111
10112 /* Fill in default crtc timings, allow encoders to overwrite them. */
10113 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10114
10115 /* Pass our mode to the connectors and the CRTC to give them a chance to
10116 * adjust it according to limitations or connector properties, and also
10117 * a chance to reject the mode entirely.
10118 */
10119 for_each_intel_encoder(dev, encoder) {
10120
10121 if (&encoder->new_crtc->base != crtc)
10122 continue;
10123
10124 if (!(encoder->compute_config(encoder, pipe_config))) {
10125 DRM_DEBUG_KMS("Encoder config failure\n");
10126 goto fail;
10127 }
10128 }
10129
10130 /* Set default port clock if not overwritten by the encoder. Needs to be
10131 * done afterwards in case the encoder adjusts the mode. */
10132 if (!pipe_config->port_clock)
10133 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10134 * pipe_config->pixel_multiplier;
10135
10136 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10137 if (ret < 0) {
10138 DRM_DEBUG_KMS("CRTC fixup failed\n");
10139 goto fail;
10140 }
10141
10142 if (ret == RETRY) {
10143 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10144 ret = -EINVAL;
10145 goto fail;
10146 }
10147
10148 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10149 retry = false;
10150 goto encoder_retry;
10151 }
10152
10153 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10154 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10155 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10156
10157 return pipe_config;
10158 fail:
10159 kfree(pipe_config);
10160 return ERR_PTR(ret);
10161 }
10162
10163 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10164 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10165 static void
10166 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10167 unsigned *prepare_pipes, unsigned *disable_pipes)
10168 {
10169 struct intel_crtc *intel_crtc;
10170 struct drm_device *dev = crtc->dev;
10171 struct intel_encoder *encoder;
10172 struct intel_connector *connector;
10173 struct drm_crtc *tmp_crtc;
10174
10175 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10176
10177 /* Check which crtcs have changed outputs connected to them, these need
10178 * to be part of the prepare_pipes mask. We don't (yet) support global
10179 * modeset across multiple crtcs, so modeset_pipes will only have one
10180 * bit set at most. */
10181 list_for_each_entry(connector, &dev->mode_config.connector_list,
10182 base.head) {
10183 if (connector->base.encoder == &connector->new_encoder->base)
10184 continue;
10185
10186 if (connector->base.encoder) {
10187 tmp_crtc = connector->base.encoder->crtc;
10188
10189 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10190 }
10191
10192 if (connector->new_encoder)
10193 *prepare_pipes |=
10194 1 << connector->new_encoder->new_crtc->pipe;
10195 }
10196
10197 for_each_intel_encoder(dev, encoder) {
10198 if (encoder->base.crtc == &encoder->new_crtc->base)
10199 continue;
10200
10201 if (encoder->base.crtc) {
10202 tmp_crtc = encoder->base.crtc;
10203
10204 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10205 }
10206
10207 if (encoder->new_crtc)
10208 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10209 }
10210
10211 /* Check for pipes that will be enabled/disabled ... */
10212 for_each_intel_crtc(dev, intel_crtc) {
10213 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10214 continue;
10215
10216 if (!intel_crtc->new_enabled)
10217 *disable_pipes |= 1 << intel_crtc->pipe;
10218 else
10219 *prepare_pipes |= 1 << intel_crtc->pipe;
10220 }
10221
10222
10223 /* set_mode is also used to update properties on life display pipes. */
10224 intel_crtc = to_intel_crtc(crtc);
10225 if (intel_crtc->new_enabled)
10226 *prepare_pipes |= 1 << intel_crtc->pipe;
10227
10228 /*
10229 * For simplicity do a full modeset on any pipe where the output routing
10230 * changed. We could be more clever, but that would require us to be
10231 * more careful with calling the relevant encoder->mode_set functions.
10232 */
10233 if (*prepare_pipes)
10234 *modeset_pipes = *prepare_pipes;
10235
10236 /* ... and mask these out. */
10237 *modeset_pipes &= ~(*disable_pipes);
10238 *prepare_pipes &= ~(*disable_pipes);
10239
10240 /*
10241 * HACK: We don't (yet) fully support global modesets. intel_set_config
10242 * obies this rule, but the modeset restore mode of
10243 * intel_modeset_setup_hw_state does not.
10244 */
10245 *modeset_pipes &= 1 << intel_crtc->pipe;
10246 *prepare_pipes &= 1 << intel_crtc->pipe;
10247
10248 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10249 *modeset_pipes, *prepare_pipes, *disable_pipes);
10250 }
10251
10252 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10253 {
10254 struct drm_encoder *encoder;
10255 struct drm_device *dev = crtc->dev;
10256
10257 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10258 if (encoder->crtc == crtc)
10259 return true;
10260
10261 return false;
10262 }
10263
10264 static void
10265 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10266 {
10267 struct drm_i915_private *dev_priv = dev->dev_private;
10268 struct intel_encoder *intel_encoder;
10269 struct intel_crtc *intel_crtc;
10270 struct drm_connector *connector;
10271
10272 intel_shared_dpll_commit(dev_priv);
10273
10274 for_each_intel_encoder(dev, intel_encoder) {
10275 if (!intel_encoder->base.crtc)
10276 continue;
10277
10278 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10279
10280 if (prepare_pipes & (1 << intel_crtc->pipe))
10281 intel_encoder->connectors_active = false;
10282 }
10283
10284 intel_modeset_commit_output_state(dev);
10285
10286 /* Double check state. */
10287 for_each_intel_crtc(dev, intel_crtc) {
10288 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10289 WARN_ON(intel_crtc->new_config &&
10290 intel_crtc->new_config != &intel_crtc->config);
10291 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10292 }
10293
10294 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10295 if (!connector->encoder || !connector->encoder->crtc)
10296 continue;
10297
10298 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10299
10300 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10301 struct drm_property *dpms_property =
10302 dev->mode_config.dpms_property;
10303
10304 connector->dpms = DRM_MODE_DPMS_ON;
10305 drm_object_property_set_value(&connector->base,
10306 dpms_property,
10307 DRM_MODE_DPMS_ON);
10308
10309 intel_encoder = to_intel_encoder(connector->encoder);
10310 intel_encoder->connectors_active = true;
10311 }
10312 }
10313
10314 }
10315
10316 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10317 {
10318 int diff;
10319
10320 if (clock1 == clock2)
10321 return true;
10322
10323 if (!clock1 || !clock2)
10324 return false;
10325
10326 diff = abs(clock1 - clock2);
10327
10328 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10329 return true;
10330
10331 return false;
10332 }
10333
10334 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10335 list_for_each_entry((intel_crtc), \
10336 &(dev)->mode_config.crtc_list, \
10337 base.head) \
10338 if (mask & (1 <<(intel_crtc)->pipe))
10339
10340 static bool
10341 intel_pipe_config_compare(struct drm_device *dev,
10342 struct intel_crtc_config *current_config,
10343 struct intel_crtc_config *pipe_config)
10344 {
10345 #define PIPE_CONF_CHECK_X(name) \
10346 if (current_config->name != pipe_config->name) { \
10347 DRM_ERROR("mismatch in " #name " " \
10348 "(expected 0x%08x, found 0x%08x)\n", \
10349 current_config->name, \
10350 pipe_config->name); \
10351 return false; \
10352 }
10353
10354 #define PIPE_CONF_CHECK_I(name) \
10355 if (current_config->name != pipe_config->name) { \
10356 DRM_ERROR("mismatch in " #name " " \
10357 "(expected %i, found %i)\n", \
10358 current_config->name, \
10359 pipe_config->name); \
10360 return false; \
10361 }
10362
10363 /* This is required for BDW+ where there is only one set of registers for
10364 * switching between high and low RR.
10365 * This macro can be used whenever a comparison has to be made between one
10366 * hw state and multiple sw state variables.
10367 */
10368 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10369 if ((current_config->name != pipe_config->name) && \
10370 (current_config->alt_name != pipe_config->name)) { \
10371 DRM_ERROR("mismatch in " #name " " \
10372 "(expected %i or %i, found %i)\n", \
10373 current_config->name, \
10374 current_config->alt_name, \
10375 pipe_config->name); \
10376 return false; \
10377 }
10378
10379 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10380 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10381 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10382 "(expected %i, found %i)\n", \
10383 current_config->name & (mask), \
10384 pipe_config->name & (mask)); \
10385 return false; \
10386 }
10387
10388 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10389 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10390 DRM_ERROR("mismatch in " #name " " \
10391 "(expected %i, found %i)\n", \
10392 current_config->name, \
10393 pipe_config->name); \
10394 return false; \
10395 }
10396
10397 #define PIPE_CONF_QUIRK(quirk) \
10398 ((current_config->quirks | pipe_config->quirks) & (quirk))
10399
10400 PIPE_CONF_CHECK_I(cpu_transcoder);
10401
10402 PIPE_CONF_CHECK_I(has_pch_encoder);
10403 PIPE_CONF_CHECK_I(fdi_lanes);
10404 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10405 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10406 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10407 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10408 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10409
10410 PIPE_CONF_CHECK_I(has_dp_encoder);
10411
10412 if (INTEL_INFO(dev)->gen < 8) {
10413 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10414 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10415 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10416 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10417 PIPE_CONF_CHECK_I(dp_m_n.tu);
10418
10419 if (current_config->has_drrs) {
10420 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10421 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10422 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10423 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10424 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10425 }
10426 } else {
10427 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10428 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10429 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10430 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10431 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10432 }
10433
10434 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10435 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10436 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10437 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10438 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10439 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10440
10441 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10442 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10443 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10444 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10445 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10446 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10447
10448 PIPE_CONF_CHECK_I(pixel_multiplier);
10449 PIPE_CONF_CHECK_I(has_hdmi_sink);
10450 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10451 IS_VALLEYVIEW(dev))
10452 PIPE_CONF_CHECK_I(limited_color_range);
10453 PIPE_CONF_CHECK_I(has_infoframe);
10454
10455 PIPE_CONF_CHECK_I(has_audio);
10456
10457 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10458 DRM_MODE_FLAG_INTERLACE);
10459
10460 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10461 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10462 DRM_MODE_FLAG_PHSYNC);
10463 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10464 DRM_MODE_FLAG_NHSYNC);
10465 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10466 DRM_MODE_FLAG_PVSYNC);
10467 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10468 DRM_MODE_FLAG_NVSYNC);
10469 }
10470
10471 PIPE_CONF_CHECK_I(pipe_src_w);
10472 PIPE_CONF_CHECK_I(pipe_src_h);
10473
10474 /*
10475 * FIXME: BIOS likes to set up a cloned config with lvds+external
10476 * screen. Since we don't yet re-compute the pipe config when moving
10477 * just the lvds port away to another pipe the sw tracking won't match.
10478 *
10479 * Proper atomic modesets with recomputed global state will fix this.
10480 * Until then just don't check gmch state for inherited modes.
10481 */
10482 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10483 PIPE_CONF_CHECK_I(gmch_pfit.control);
10484 /* pfit ratios are autocomputed by the hw on gen4+ */
10485 if (INTEL_INFO(dev)->gen < 4)
10486 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10487 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10488 }
10489
10490 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10491 if (current_config->pch_pfit.enabled) {
10492 PIPE_CONF_CHECK_I(pch_pfit.pos);
10493 PIPE_CONF_CHECK_I(pch_pfit.size);
10494 }
10495
10496 /* BDW+ don't expose a synchronous way to read the state */
10497 if (IS_HASWELL(dev))
10498 PIPE_CONF_CHECK_I(ips_enabled);
10499
10500 PIPE_CONF_CHECK_I(double_wide);
10501
10502 PIPE_CONF_CHECK_X(ddi_pll_sel);
10503
10504 PIPE_CONF_CHECK_I(shared_dpll);
10505 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10506 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10507 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10508 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10509 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10510 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10511 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10512 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10513
10514 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10515 PIPE_CONF_CHECK_I(pipe_bpp);
10516
10517 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10518 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10519
10520 #undef PIPE_CONF_CHECK_X
10521 #undef PIPE_CONF_CHECK_I
10522 #undef PIPE_CONF_CHECK_I_ALT
10523 #undef PIPE_CONF_CHECK_FLAGS
10524 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10525 #undef PIPE_CONF_QUIRK
10526
10527 return true;
10528 }
10529
10530 static void check_wm_state(struct drm_device *dev)
10531 {
10532 struct drm_i915_private *dev_priv = dev->dev_private;
10533 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10534 struct intel_crtc *intel_crtc;
10535 int plane;
10536
10537 if (INTEL_INFO(dev)->gen < 9)
10538 return;
10539
10540 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10541 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10542
10543 for_each_intel_crtc(dev, intel_crtc) {
10544 struct skl_ddb_entry *hw_entry, *sw_entry;
10545 const enum pipe pipe = intel_crtc->pipe;
10546
10547 if (!intel_crtc->active)
10548 continue;
10549
10550 /* planes */
10551 for_each_plane(pipe, plane) {
10552 hw_entry = &hw_ddb.plane[pipe][plane];
10553 sw_entry = &sw_ddb->plane[pipe][plane];
10554
10555 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10556 continue;
10557
10558 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10559 "(expected (%u,%u), found (%u,%u))\n",
10560 pipe_name(pipe), plane + 1,
10561 sw_entry->start, sw_entry->end,
10562 hw_entry->start, hw_entry->end);
10563 }
10564
10565 /* cursor */
10566 hw_entry = &hw_ddb.cursor[pipe];
10567 sw_entry = &sw_ddb->cursor[pipe];
10568
10569 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10570 continue;
10571
10572 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10573 "(expected (%u,%u), found (%u,%u))\n",
10574 pipe_name(pipe),
10575 sw_entry->start, sw_entry->end,
10576 hw_entry->start, hw_entry->end);
10577 }
10578 }
10579
10580 static void
10581 check_connector_state(struct drm_device *dev)
10582 {
10583 struct intel_connector *connector;
10584
10585 list_for_each_entry(connector, &dev->mode_config.connector_list,
10586 base.head) {
10587 /* This also checks the encoder/connector hw state with the
10588 * ->get_hw_state callbacks. */
10589 intel_connector_check_state(connector);
10590
10591 WARN(&connector->new_encoder->base != connector->base.encoder,
10592 "connector's staged encoder doesn't match current encoder\n");
10593 }
10594 }
10595
10596 static void
10597 check_encoder_state(struct drm_device *dev)
10598 {
10599 struct intel_encoder *encoder;
10600 struct intel_connector *connector;
10601
10602 for_each_intel_encoder(dev, encoder) {
10603 bool enabled = false;
10604 bool active = false;
10605 enum pipe pipe, tracked_pipe;
10606
10607 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10608 encoder->base.base.id,
10609 encoder->base.name);
10610
10611 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10612 "encoder's stage crtc doesn't match current crtc\n");
10613 WARN(encoder->connectors_active && !encoder->base.crtc,
10614 "encoder's active_connectors set, but no crtc\n");
10615
10616 list_for_each_entry(connector, &dev->mode_config.connector_list,
10617 base.head) {
10618 if (connector->base.encoder != &encoder->base)
10619 continue;
10620 enabled = true;
10621 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10622 active = true;
10623 }
10624 /*
10625 * for MST connectors if we unplug the connector is gone
10626 * away but the encoder is still connected to a crtc
10627 * until a modeset happens in response to the hotplug.
10628 */
10629 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10630 continue;
10631
10632 WARN(!!encoder->base.crtc != enabled,
10633 "encoder's enabled state mismatch "
10634 "(expected %i, found %i)\n",
10635 !!encoder->base.crtc, enabled);
10636 WARN(active && !encoder->base.crtc,
10637 "active encoder with no crtc\n");
10638
10639 WARN(encoder->connectors_active != active,
10640 "encoder's computed active state doesn't match tracked active state "
10641 "(expected %i, found %i)\n", active, encoder->connectors_active);
10642
10643 active = encoder->get_hw_state(encoder, &pipe);
10644 WARN(active != encoder->connectors_active,
10645 "encoder's hw state doesn't match sw tracking "
10646 "(expected %i, found %i)\n",
10647 encoder->connectors_active, active);
10648
10649 if (!encoder->base.crtc)
10650 continue;
10651
10652 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10653 WARN(active && pipe != tracked_pipe,
10654 "active encoder's pipe doesn't match"
10655 "(expected %i, found %i)\n",
10656 tracked_pipe, pipe);
10657
10658 }
10659 }
10660
10661 static void
10662 check_crtc_state(struct drm_device *dev)
10663 {
10664 struct drm_i915_private *dev_priv = dev->dev_private;
10665 struct intel_crtc *crtc;
10666 struct intel_encoder *encoder;
10667 struct intel_crtc_config pipe_config;
10668
10669 for_each_intel_crtc(dev, crtc) {
10670 bool enabled = false;
10671 bool active = false;
10672
10673 memset(&pipe_config, 0, sizeof(pipe_config));
10674
10675 DRM_DEBUG_KMS("[CRTC:%d]\n",
10676 crtc->base.base.id);
10677
10678 WARN(crtc->active && !crtc->base.enabled,
10679 "active crtc, but not enabled in sw tracking\n");
10680
10681 for_each_intel_encoder(dev, encoder) {
10682 if (encoder->base.crtc != &crtc->base)
10683 continue;
10684 enabled = true;
10685 if (encoder->connectors_active)
10686 active = true;
10687 }
10688
10689 WARN(active != crtc->active,
10690 "crtc's computed active state doesn't match tracked active state "
10691 "(expected %i, found %i)\n", active, crtc->active);
10692 WARN(enabled != crtc->base.enabled,
10693 "crtc's computed enabled state doesn't match tracked enabled state "
10694 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10695
10696 active = dev_priv->display.get_pipe_config(crtc,
10697 &pipe_config);
10698
10699 /* hw state is inconsistent with the pipe quirk */
10700 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10701 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10702 active = crtc->active;
10703
10704 for_each_intel_encoder(dev, encoder) {
10705 enum pipe pipe;
10706 if (encoder->base.crtc != &crtc->base)
10707 continue;
10708 if (encoder->get_hw_state(encoder, &pipe))
10709 encoder->get_config(encoder, &pipe_config);
10710 }
10711
10712 WARN(crtc->active != active,
10713 "crtc active state doesn't match with hw state "
10714 "(expected %i, found %i)\n", crtc->active, active);
10715
10716 if (active &&
10717 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10718 WARN(1, "pipe state doesn't match!\n");
10719 intel_dump_pipe_config(crtc, &pipe_config,
10720 "[hw state]");
10721 intel_dump_pipe_config(crtc, &crtc->config,
10722 "[sw state]");
10723 }
10724 }
10725 }
10726
10727 static void
10728 check_shared_dpll_state(struct drm_device *dev)
10729 {
10730 struct drm_i915_private *dev_priv = dev->dev_private;
10731 struct intel_crtc *crtc;
10732 struct intel_dpll_hw_state dpll_hw_state;
10733 int i;
10734
10735 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10736 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10737 int enabled_crtcs = 0, active_crtcs = 0;
10738 bool active;
10739
10740 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10741
10742 DRM_DEBUG_KMS("%s\n", pll->name);
10743
10744 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10745
10746 WARN(pll->active > hweight32(pll->config.crtc_mask),
10747 "more active pll users than references: %i vs %i\n",
10748 pll->active, hweight32(pll->config.crtc_mask));
10749 WARN(pll->active && !pll->on,
10750 "pll in active use but not on in sw tracking\n");
10751 WARN(pll->on && !pll->active,
10752 "pll in on but not on in use in sw tracking\n");
10753 WARN(pll->on != active,
10754 "pll on state mismatch (expected %i, found %i)\n",
10755 pll->on, active);
10756
10757 for_each_intel_crtc(dev, crtc) {
10758 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10759 enabled_crtcs++;
10760 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10761 active_crtcs++;
10762 }
10763 WARN(pll->active != active_crtcs,
10764 "pll active crtcs mismatch (expected %i, found %i)\n",
10765 pll->active, active_crtcs);
10766 WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10767 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10768 hweight32(pll->config.crtc_mask), enabled_crtcs);
10769
10770 WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10771 sizeof(dpll_hw_state)),
10772 "pll hw state mismatch\n");
10773 }
10774 }
10775
10776 void
10777 intel_modeset_check_state(struct drm_device *dev)
10778 {
10779 check_wm_state(dev);
10780 check_connector_state(dev);
10781 check_encoder_state(dev);
10782 check_crtc_state(dev);
10783 check_shared_dpll_state(dev);
10784 }
10785
10786 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10787 int dotclock)
10788 {
10789 /*
10790 * FDI already provided one idea for the dotclock.
10791 * Yell if the encoder disagrees.
10792 */
10793 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10794 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10795 pipe_config->adjusted_mode.crtc_clock, dotclock);
10796 }
10797
10798 static void update_scanline_offset(struct intel_crtc *crtc)
10799 {
10800 struct drm_device *dev = crtc->base.dev;
10801
10802 /*
10803 * The scanline counter increments at the leading edge of hsync.
10804 *
10805 * On most platforms it starts counting from vtotal-1 on the
10806 * first active line. That means the scanline counter value is
10807 * always one less than what we would expect. Ie. just after
10808 * start of vblank, which also occurs at start of hsync (on the
10809 * last active line), the scanline counter will read vblank_start-1.
10810 *
10811 * On gen2 the scanline counter starts counting from 1 instead
10812 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10813 * to keep the value positive), instead of adding one.
10814 *
10815 * On HSW+ the behaviour of the scanline counter depends on the output
10816 * type. For DP ports it behaves like most other platforms, but on HDMI
10817 * there's an extra 1 line difference. So we need to add two instead of
10818 * one to the value.
10819 */
10820 if (IS_GEN2(dev)) {
10821 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10822 int vtotal;
10823
10824 vtotal = mode->crtc_vtotal;
10825 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10826 vtotal /= 2;
10827
10828 crtc->scanline_offset = vtotal - 1;
10829 } else if (HAS_DDI(dev) &&
10830 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10831 crtc->scanline_offset = 2;
10832 } else
10833 crtc->scanline_offset = 1;
10834 }
10835
10836 static struct intel_crtc_config *
10837 intel_modeset_compute_config(struct drm_crtc *crtc,
10838 struct drm_display_mode *mode,
10839 struct drm_framebuffer *fb,
10840 unsigned *modeset_pipes,
10841 unsigned *prepare_pipes,
10842 unsigned *disable_pipes)
10843 {
10844 struct intel_crtc_config *pipe_config = NULL;
10845
10846 intel_modeset_affected_pipes(crtc, modeset_pipes,
10847 prepare_pipes, disable_pipes);
10848
10849 if ((*modeset_pipes) == 0)
10850 goto out;
10851
10852 /*
10853 * Note this needs changes when we start tracking multiple modes
10854 * and crtcs. At that point we'll need to compute the whole config
10855 * (i.e. one pipe_config for each crtc) rather than just the one
10856 * for this crtc.
10857 */
10858 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10859 if (IS_ERR(pipe_config)) {
10860 goto out;
10861 }
10862 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10863 "[modeset]");
10864 to_intel_crtc(crtc)->new_config = pipe_config;
10865
10866 out:
10867 return pipe_config;
10868 }
10869
10870 static int __intel_set_mode(struct drm_crtc *crtc,
10871 struct drm_display_mode *mode,
10872 int x, int y, struct drm_framebuffer *fb,
10873 struct intel_crtc_config *pipe_config,
10874 unsigned modeset_pipes,
10875 unsigned prepare_pipes,
10876 unsigned disable_pipes)
10877 {
10878 struct drm_device *dev = crtc->dev;
10879 struct drm_i915_private *dev_priv = dev->dev_private;
10880 struct drm_display_mode *saved_mode;
10881 struct intel_crtc *intel_crtc;
10882 int ret = 0;
10883
10884 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10885 if (!saved_mode)
10886 return -ENOMEM;
10887
10888 *saved_mode = crtc->mode;
10889
10890 /*
10891 * See if the config requires any additional preparation, e.g.
10892 * to adjust global state with pipes off. We need to do this
10893 * here so we can get the modeset_pipe updated config for the new
10894 * mode set on this crtc. For other crtcs we need to use the
10895 * adjusted_mode bits in the crtc directly.
10896 */
10897 if (IS_VALLEYVIEW(dev)) {
10898 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10899
10900 /* may have added more to prepare_pipes than we should */
10901 prepare_pipes &= ~disable_pipes;
10902 }
10903
10904 if (dev_priv->display.crtc_compute_clock) {
10905 unsigned clear_pipes = modeset_pipes | disable_pipes;
10906
10907 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10908 if (ret)
10909 goto done;
10910
10911 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10912 ret = dev_priv->display.crtc_compute_clock(intel_crtc);
10913 if (ret) {
10914 intel_shared_dpll_abort_config(dev_priv);
10915 goto done;
10916 }
10917 }
10918 }
10919
10920 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10921 intel_crtc_disable(&intel_crtc->base);
10922
10923 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10924 if (intel_crtc->base.enabled)
10925 dev_priv->display.crtc_disable(&intel_crtc->base);
10926 }
10927
10928 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10929 * to set it here already despite that we pass it down the callchain.
10930 *
10931 * Note we'll need to fix this up when we start tracking multiple
10932 * pipes; here we assume a single modeset_pipe and only track the
10933 * single crtc and mode.
10934 */
10935 if (modeset_pipes) {
10936 crtc->mode = *mode;
10937 /* mode_set/enable/disable functions rely on a correct pipe
10938 * config. */
10939 to_intel_crtc(crtc)->config = *pipe_config;
10940 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10941
10942 /*
10943 * Calculate and store various constants which
10944 * are later needed by vblank and swap-completion
10945 * timestamping. They are derived from true hwmode.
10946 */
10947 drm_calc_timestamping_constants(crtc,
10948 &pipe_config->adjusted_mode);
10949 }
10950
10951 /* Only after disabling all output pipelines that will be changed can we
10952 * update the the output configuration. */
10953 intel_modeset_update_state(dev, prepare_pipes);
10954
10955 modeset_update_crtc_power_domains(dev);
10956
10957 /* Set up the DPLL and any encoders state that needs to adjust or depend
10958 * on the DPLL.
10959 */
10960 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10961 struct drm_framebuffer *old_fb = crtc->primary->fb;
10962 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10963 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10964
10965 mutex_lock(&dev->struct_mutex);
10966 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, NULL);
10967 if (ret != 0) {
10968 DRM_ERROR("pin & fence failed\n");
10969 mutex_unlock(&dev->struct_mutex);
10970 goto done;
10971 }
10972 if (old_fb)
10973 intel_unpin_fb_obj(old_obj);
10974 i915_gem_track_fb(old_obj, obj,
10975 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10976 mutex_unlock(&dev->struct_mutex);
10977
10978 crtc->primary->fb = fb;
10979 crtc->x = x;
10980 crtc->y = y;
10981 }
10982
10983 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10984 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10985 update_scanline_offset(intel_crtc);
10986
10987 dev_priv->display.crtc_enable(&intel_crtc->base);
10988 }
10989
10990 /* FIXME: add subpixel order */
10991 done:
10992 if (ret && crtc->enabled)
10993 crtc->mode = *saved_mode;
10994
10995 kfree(pipe_config);
10996 kfree(saved_mode);
10997 return ret;
10998 }
10999
11000 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11001 struct drm_display_mode *mode,
11002 int x, int y, struct drm_framebuffer *fb,
11003 struct intel_crtc_config *pipe_config,
11004 unsigned modeset_pipes,
11005 unsigned prepare_pipes,
11006 unsigned disable_pipes)
11007 {
11008 int ret;
11009
11010 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11011 prepare_pipes, disable_pipes);
11012
11013 if (ret == 0)
11014 intel_modeset_check_state(crtc->dev);
11015
11016 return ret;
11017 }
11018
11019 static int intel_set_mode(struct drm_crtc *crtc,
11020 struct drm_display_mode *mode,
11021 int x, int y, struct drm_framebuffer *fb)
11022 {
11023 struct intel_crtc_config *pipe_config;
11024 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11025
11026 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11027 &modeset_pipes,
11028 &prepare_pipes,
11029 &disable_pipes);
11030
11031 if (IS_ERR(pipe_config))
11032 return PTR_ERR(pipe_config);
11033
11034 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11035 modeset_pipes, prepare_pipes,
11036 disable_pipes);
11037 }
11038
11039 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11040 {
11041 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11042 }
11043
11044 #undef for_each_intel_crtc_masked
11045
11046 static void intel_set_config_free(struct intel_set_config *config)
11047 {
11048 if (!config)
11049 return;
11050
11051 kfree(config->save_connector_encoders);
11052 kfree(config->save_encoder_crtcs);
11053 kfree(config->save_crtc_enabled);
11054 kfree(config);
11055 }
11056
11057 static int intel_set_config_save_state(struct drm_device *dev,
11058 struct intel_set_config *config)
11059 {
11060 struct drm_crtc *crtc;
11061 struct drm_encoder *encoder;
11062 struct drm_connector *connector;
11063 int count;
11064
11065 config->save_crtc_enabled =
11066 kcalloc(dev->mode_config.num_crtc,
11067 sizeof(bool), GFP_KERNEL);
11068 if (!config->save_crtc_enabled)
11069 return -ENOMEM;
11070
11071 config->save_encoder_crtcs =
11072 kcalloc(dev->mode_config.num_encoder,
11073 sizeof(struct drm_crtc *), GFP_KERNEL);
11074 if (!config->save_encoder_crtcs)
11075 return -ENOMEM;
11076
11077 config->save_connector_encoders =
11078 kcalloc(dev->mode_config.num_connector,
11079 sizeof(struct drm_encoder *), GFP_KERNEL);
11080 if (!config->save_connector_encoders)
11081 return -ENOMEM;
11082
11083 /* Copy data. Note that driver private data is not affected.
11084 * Should anything bad happen only the expected state is
11085 * restored, not the drivers personal bookkeeping.
11086 */
11087 count = 0;
11088 for_each_crtc(dev, crtc) {
11089 config->save_crtc_enabled[count++] = crtc->enabled;
11090 }
11091
11092 count = 0;
11093 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11094 config->save_encoder_crtcs[count++] = encoder->crtc;
11095 }
11096
11097 count = 0;
11098 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11099 config->save_connector_encoders[count++] = connector->encoder;
11100 }
11101
11102 return 0;
11103 }
11104
11105 static void intel_set_config_restore_state(struct drm_device *dev,
11106 struct intel_set_config *config)
11107 {
11108 struct intel_crtc *crtc;
11109 struct intel_encoder *encoder;
11110 struct intel_connector *connector;
11111 int count;
11112
11113 count = 0;
11114 for_each_intel_crtc(dev, crtc) {
11115 crtc->new_enabled = config->save_crtc_enabled[count++];
11116
11117 if (crtc->new_enabled)
11118 crtc->new_config = &crtc->config;
11119 else
11120 crtc->new_config = NULL;
11121 }
11122
11123 count = 0;
11124 for_each_intel_encoder(dev, encoder) {
11125 encoder->new_crtc =
11126 to_intel_crtc(config->save_encoder_crtcs[count++]);
11127 }
11128
11129 count = 0;
11130 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11131 connector->new_encoder =
11132 to_intel_encoder(config->save_connector_encoders[count++]);
11133 }
11134 }
11135
11136 static bool
11137 is_crtc_connector_off(struct drm_mode_set *set)
11138 {
11139 int i;
11140
11141 if (set->num_connectors == 0)
11142 return false;
11143
11144 if (WARN_ON(set->connectors == NULL))
11145 return false;
11146
11147 for (i = 0; i < set->num_connectors; i++)
11148 if (set->connectors[i]->encoder &&
11149 set->connectors[i]->encoder->crtc == set->crtc &&
11150 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11151 return true;
11152
11153 return false;
11154 }
11155
11156 static void
11157 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11158 struct intel_set_config *config)
11159 {
11160
11161 /* We should be able to check here if the fb has the same properties
11162 * and then just flip_or_move it */
11163 if (is_crtc_connector_off(set)) {
11164 config->mode_changed = true;
11165 } else if (set->crtc->primary->fb != set->fb) {
11166 /*
11167 * If we have no fb, we can only flip as long as the crtc is
11168 * active, otherwise we need a full mode set. The crtc may
11169 * be active if we've only disabled the primary plane, or
11170 * in fastboot situations.
11171 */
11172 if (set->crtc->primary->fb == NULL) {
11173 struct intel_crtc *intel_crtc =
11174 to_intel_crtc(set->crtc);
11175
11176 if (intel_crtc->active) {
11177 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11178 config->fb_changed = true;
11179 } else {
11180 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11181 config->mode_changed = true;
11182 }
11183 } else if (set->fb == NULL) {
11184 config->mode_changed = true;
11185 } else if (set->fb->pixel_format !=
11186 set->crtc->primary->fb->pixel_format) {
11187 config->mode_changed = true;
11188 } else {
11189 config->fb_changed = true;
11190 }
11191 }
11192
11193 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11194 config->fb_changed = true;
11195
11196 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11197 DRM_DEBUG_KMS("modes are different, full mode set\n");
11198 drm_mode_debug_printmodeline(&set->crtc->mode);
11199 drm_mode_debug_printmodeline(set->mode);
11200 config->mode_changed = true;
11201 }
11202
11203 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11204 set->crtc->base.id, config->mode_changed, config->fb_changed);
11205 }
11206
11207 static int
11208 intel_modeset_stage_output_state(struct drm_device *dev,
11209 struct drm_mode_set *set,
11210 struct intel_set_config *config)
11211 {
11212 struct intel_connector *connector;
11213 struct intel_encoder *encoder;
11214 struct intel_crtc *crtc;
11215 int ro;
11216
11217 /* The upper layers ensure that we either disable a crtc or have a list
11218 * of connectors. For paranoia, double-check this. */
11219 WARN_ON(!set->fb && (set->num_connectors != 0));
11220 WARN_ON(set->fb && (set->num_connectors == 0));
11221
11222 list_for_each_entry(connector, &dev->mode_config.connector_list,
11223 base.head) {
11224 /* Otherwise traverse passed in connector list and get encoders
11225 * for them. */
11226 for (ro = 0; ro < set->num_connectors; ro++) {
11227 if (set->connectors[ro] == &connector->base) {
11228 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11229 break;
11230 }
11231 }
11232
11233 /* If we disable the crtc, disable all its connectors. Also, if
11234 * the connector is on the changing crtc but not on the new
11235 * connector list, disable it. */
11236 if ((!set->fb || ro == set->num_connectors) &&
11237 connector->base.encoder &&
11238 connector->base.encoder->crtc == set->crtc) {
11239 connector->new_encoder = NULL;
11240
11241 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11242 connector->base.base.id,
11243 connector->base.name);
11244 }
11245
11246
11247 if (&connector->new_encoder->base != connector->base.encoder) {
11248 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11249 config->mode_changed = true;
11250 }
11251 }
11252 /* connector->new_encoder is now updated for all connectors. */
11253
11254 /* Update crtc of enabled connectors. */
11255 list_for_each_entry(connector, &dev->mode_config.connector_list,
11256 base.head) {
11257 struct drm_crtc *new_crtc;
11258
11259 if (!connector->new_encoder)
11260 continue;
11261
11262 new_crtc = connector->new_encoder->base.crtc;
11263
11264 for (ro = 0; ro < set->num_connectors; ro++) {
11265 if (set->connectors[ro] == &connector->base)
11266 new_crtc = set->crtc;
11267 }
11268
11269 /* Make sure the new CRTC will work with the encoder */
11270 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11271 new_crtc)) {
11272 return -EINVAL;
11273 }
11274 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11275
11276 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11277 connector->base.base.id,
11278 connector->base.name,
11279 new_crtc->base.id);
11280 }
11281
11282 /* Check for any encoders that needs to be disabled. */
11283 for_each_intel_encoder(dev, encoder) {
11284 int num_connectors = 0;
11285 list_for_each_entry(connector,
11286 &dev->mode_config.connector_list,
11287 base.head) {
11288 if (connector->new_encoder == encoder) {
11289 WARN_ON(!connector->new_encoder->new_crtc);
11290 num_connectors++;
11291 }
11292 }
11293
11294 if (num_connectors == 0)
11295 encoder->new_crtc = NULL;
11296 else if (num_connectors > 1)
11297 return -EINVAL;
11298
11299 /* Only now check for crtc changes so we don't miss encoders
11300 * that will be disabled. */
11301 if (&encoder->new_crtc->base != encoder->base.crtc) {
11302 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11303 config->mode_changed = true;
11304 }
11305 }
11306 /* Now we've also updated encoder->new_crtc for all encoders. */
11307 list_for_each_entry(connector, &dev->mode_config.connector_list,
11308 base.head) {
11309 if (connector->new_encoder)
11310 if (connector->new_encoder != connector->encoder)
11311 connector->encoder = connector->new_encoder;
11312 }
11313 for_each_intel_crtc(dev, crtc) {
11314 crtc->new_enabled = false;
11315
11316 for_each_intel_encoder(dev, encoder) {
11317 if (encoder->new_crtc == crtc) {
11318 crtc->new_enabled = true;
11319 break;
11320 }
11321 }
11322
11323 if (crtc->new_enabled != crtc->base.enabled) {
11324 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11325 crtc->new_enabled ? "en" : "dis");
11326 config->mode_changed = true;
11327 }
11328
11329 if (crtc->new_enabled)
11330 crtc->new_config = &crtc->config;
11331 else
11332 crtc->new_config = NULL;
11333 }
11334
11335 return 0;
11336 }
11337
11338 static void disable_crtc_nofb(struct intel_crtc *crtc)
11339 {
11340 struct drm_device *dev = crtc->base.dev;
11341 struct intel_encoder *encoder;
11342 struct intel_connector *connector;
11343
11344 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11345 pipe_name(crtc->pipe));
11346
11347 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11348 if (connector->new_encoder &&
11349 connector->new_encoder->new_crtc == crtc)
11350 connector->new_encoder = NULL;
11351 }
11352
11353 for_each_intel_encoder(dev, encoder) {
11354 if (encoder->new_crtc == crtc)
11355 encoder->new_crtc = NULL;
11356 }
11357
11358 crtc->new_enabled = false;
11359 crtc->new_config = NULL;
11360 }
11361
11362 static int intel_crtc_set_config(struct drm_mode_set *set)
11363 {
11364 struct drm_device *dev;
11365 struct drm_mode_set save_set;
11366 struct intel_set_config *config;
11367 struct intel_crtc_config *pipe_config;
11368 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11369 int ret;
11370
11371 BUG_ON(!set);
11372 BUG_ON(!set->crtc);
11373 BUG_ON(!set->crtc->helper_private);
11374
11375 /* Enforce sane interface api - has been abused by the fb helper. */
11376 BUG_ON(!set->mode && set->fb);
11377 BUG_ON(set->fb && set->num_connectors == 0);
11378
11379 if (set->fb) {
11380 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11381 set->crtc->base.id, set->fb->base.id,
11382 (int)set->num_connectors, set->x, set->y);
11383 } else {
11384 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11385 }
11386
11387 dev = set->crtc->dev;
11388
11389 ret = -ENOMEM;
11390 config = kzalloc(sizeof(*config), GFP_KERNEL);
11391 if (!config)
11392 goto out_config;
11393
11394 ret = intel_set_config_save_state(dev, config);
11395 if (ret)
11396 goto out_config;
11397
11398 save_set.crtc = set->crtc;
11399 save_set.mode = &set->crtc->mode;
11400 save_set.x = set->crtc->x;
11401 save_set.y = set->crtc->y;
11402 save_set.fb = set->crtc->primary->fb;
11403
11404 /* Compute whether we need a full modeset, only an fb base update or no
11405 * change at all. In the future we might also check whether only the
11406 * mode changed, e.g. for LVDS where we only change the panel fitter in
11407 * such cases. */
11408 intel_set_config_compute_mode_changes(set, config);
11409
11410 ret = intel_modeset_stage_output_state(dev, set, config);
11411 if (ret)
11412 goto fail;
11413
11414 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11415 set->fb,
11416 &modeset_pipes,
11417 &prepare_pipes,
11418 &disable_pipes);
11419 if (IS_ERR(pipe_config)) {
11420 goto fail;
11421 } else if (pipe_config) {
11422 if (to_intel_crtc(set->crtc)->new_config->has_audio !=
11423 to_intel_crtc(set->crtc)->config.has_audio)
11424 config->mode_changed = true;
11425
11426 /* Force mode sets for any infoframe stuff */
11427 if (to_intel_crtc(set->crtc)->new_config->has_infoframe ||
11428 to_intel_crtc(set->crtc)->config.has_infoframe)
11429 config->mode_changed = true;
11430 }
11431
11432 /* set_mode will free it in the mode_changed case */
11433 if (!config->mode_changed)
11434 kfree(pipe_config);
11435
11436 intel_update_pipe_size(to_intel_crtc(set->crtc));
11437
11438 if (config->mode_changed) {
11439 ret = intel_set_mode_pipes(set->crtc, set->mode,
11440 set->x, set->y, set->fb, pipe_config,
11441 modeset_pipes, prepare_pipes,
11442 disable_pipes);
11443 } else if (config->fb_changed) {
11444 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11445
11446 intel_crtc_wait_for_pending_flips(set->crtc);
11447
11448 ret = intel_pipe_set_base(set->crtc,
11449 set->x, set->y, set->fb);
11450
11451 /*
11452 * We need to make sure the primary plane is re-enabled if it
11453 * has previously been turned off.
11454 */
11455 if (!intel_crtc->primary_enabled && ret == 0) {
11456 WARN_ON(!intel_crtc->active);
11457 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11458 }
11459
11460 /*
11461 * In the fastboot case this may be our only check of the
11462 * state after boot. It would be better to only do it on
11463 * the first update, but we don't have a nice way of doing that
11464 * (and really, set_config isn't used much for high freq page
11465 * flipping, so increasing its cost here shouldn't be a big
11466 * deal).
11467 */
11468 if (i915.fastboot && ret == 0)
11469 intel_modeset_check_state(set->crtc->dev);
11470 }
11471
11472 if (ret) {
11473 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11474 set->crtc->base.id, ret);
11475 fail:
11476 intel_set_config_restore_state(dev, config);
11477
11478 /*
11479 * HACK: if the pipe was on, but we didn't have a framebuffer,
11480 * force the pipe off to avoid oopsing in the modeset code
11481 * due to fb==NULL. This should only happen during boot since
11482 * we don't yet reconstruct the FB from the hardware state.
11483 */
11484 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11485 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11486
11487 /* Try to restore the config */
11488 if (config->mode_changed &&
11489 intel_set_mode(save_set.crtc, save_set.mode,
11490 save_set.x, save_set.y, save_set.fb))
11491 DRM_ERROR("failed to restore config after modeset failure\n");
11492 }
11493
11494 out_config:
11495 intel_set_config_free(config);
11496 return ret;
11497 }
11498
11499 static const struct drm_crtc_funcs intel_crtc_funcs = {
11500 .gamma_set = intel_crtc_gamma_set,
11501 .set_config = intel_crtc_set_config,
11502 .destroy = intel_crtc_destroy,
11503 .page_flip = intel_crtc_page_flip,
11504 };
11505
11506 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11507 struct intel_shared_dpll *pll,
11508 struct intel_dpll_hw_state *hw_state)
11509 {
11510 uint32_t val;
11511
11512 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11513 return false;
11514
11515 val = I915_READ(PCH_DPLL(pll->id));
11516 hw_state->dpll = val;
11517 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11518 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11519
11520 return val & DPLL_VCO_ENABLE;
11521 }
11522
11523 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11524 struct intel_shared_dpll *pll)
11525 {
11526 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11527 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11528 }
11529
11530 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11531 struct intel_shared_dpll *pll)
11532 {
11533 /* PCH refclock must be enabled first */
11534 ibx_assert_pch_refclk_enabled(dev_priv);
11535
11536 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11537
11538 /* Wait for the clocks to stabilize. */
11539 POSTING_READ(PCH_DPLL(pll->id));
11540 udelay(150);
11541
11542 /* The pixel multiplier can only be updated once the
11543 * DPLL is enabled and the clocks are stable.
11544 *
11545 * So write it again.
11546 */
11547 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11548 POSTING_READ(PCH_DPLL(pll->id));
11549 udelay(200);
11550 }
11551
11552 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11553 struct intel_shared_dpll *pll)
11554 {
11555 struct drm_device *dev = dev_priv->dev;
11556 struct intel_crtc *crtc;
11557
11558 /* Make sure no transcoder isn't still depending on us. */
11559 for_each_intel_crtc(dev, crtc) {
11560 if (intel_crtc_to_shared_dpll(crtc) == pll)
11561 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11562 }
11563
11564 I915_WRITE(PCH_DPLL(pll->id), 0);
11565 POSTING_READ(PCH_DPLL(pll->id));
11566 udelay(200);
11567 }
11568
11569 static char *ibx_pch_dpll_names[] = {
11570 "PCH DPLL A",
11571 "PCH DPLL B",
11572 };
11573
11574 static void ibx_pch_dpll_init(struct drm_device *dev)
11575 {
11576 struct drm_i915_private *dev_priv = dev->dev_private;
11577 int i;
11578
11579 dev_priv->num_shared_dpll = 2;
11580
11581 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11582 dev_priv->shared_dplls[i].id = i;
11583 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11584 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11585 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11586 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11587 dev_priv->shared_dplls[i].get_hw_state =
11588 ibx_pch_dpll_get_hw_state;
11589 }
11590 }
11591
11592 static void intel_shared_dpll_init(struct drm_device *dev)
11593 {
11594 struct drm_i915_private *dev_priv = dev->dev_private;
11595
11596 if (HAS_DDI(dev))
11597 intel_ddi_pll_init(dev);
11598 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11599 ibx_pch_dpll_init(dev);
11600 else
11601 dev_priv->num_shared_dpll = 0;
11602
11603 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11604 }
11605
11606 static int
11607 intel_primary_plane_disable(struct drm_plane *plane)
11608 {
11609 struct drm_device *dev = plane->dev;
11610 struct intel_crtc *intel_crtc;
11611
11612 if (!plane->fb)
11613 return 0;
11614
11615 BUG_ON(!plane->crtc);
11616
11617 intel_crtc = to_intel_crtc(plane->crtc);
11618
11619 /*
11620 * Even though we checked plane->fb above, it's still possible that
11621 * the primary plane has been implicitly disabled because the crtc
11622 * coordinates given weren't visible, or because we detected
11623 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11624 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11625 * In either case, we need to unpin the FB and let the fb pointer get
11626 * updated, but otherwise we don't need to touch the hardware.
11627 */
11628 if (!intel_crtc->primary_enabled)
11629 goto disable_unpin;
11630
11631 intel_crtc_wait_for_pending_flips(plane->crtc);
11632 intel_disable_primary_hw_plane(plane, plane->crtc);
11633
11634 disable_unpin:
11635 mutex_lock(&dev->struct_mutex);
11636 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11637 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11638 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11639 mutex_unlock(&dev->struct_mutex);
11640 plane->fb = NULL;
11641
11642 return 0;
11643 }
11644
11645 static int
11646 intel_check_primary_plane(struct drm_plane *plane,
11647 struct intel_plane_state *state)
11648 {
11649 struct drm_crtc *crtc = state->crtc;
11650 struct drm_framebuffer *fb = state->fb;
11651 struct drm_rect *dest = &state->dst;
11652 struct drm_rect *src = &state->src;
11653 const struct drm_rect *clip = &state->clip;
11654
11655 return drm_plane_helper_check_update(plane, crtc, fb,
11656 src, dest, clip,
11657 DRM_PLANE_HELPER_NO_SCALING,
11658 DRM_PLANE_HELPER_NO_SCALING,
11659 false, true, &state->visible);
11660 }
11661
11662 static int
11663 intel_prepare_primary_plane(struct drm_plane *plane,
11664 struct intel_plane_state *state)
11665 {
11666 struct drm_crtc *crtc = state->crtc;
11667 struct drm_framebuffer *fb = state->fb;
11668 struct drm_device *dev = crtc->dev;
11669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11670 enum pipe pipe = intel_crtc->pipe;
11671 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11672 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11673 int ret;
11674
11675 intel_crtc_wait_for_pending_flips(crtc);
11676
11677 if (intel_crtc_has_pending_flip(crtc)) {
11678 DRM_ERROR("pipe is still busy with an old pageflip\n");
11679 return -EBUSY;
11680 }
11681
11682 if (old_obj != obj) {
11683 mutex_lock(&dev->struct_mutex);
11684 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11685 if (ret == 0)
11686 i915_gem_track_fb(old_obj, obj,
11687 INTEL_FRONTBUFFER_PRIMARY(pipe));
11688 mutex_unlock(&dev->struct_mutex);
11689 if (ret != 0) {
11690 DRM_DEBUG_KMS("pin & fence failed\n");
11691 return ret;
11692 }
11693 }
11694
11695 return 0;
11696 }
11697
11698 static void
11699 intel_commit_primary_plane(struct drm_plane *plane,
11700 struct intel_plane_state *state)
11701 {
11702 struct drm_crtc *crtc = state->crtc;
11703 struct drm_framebuffer *fb = state->fb;
11704 struct drm_device *dev = crtc->dev;
11705 struct drm_i915_private *dev_priv = dev->dev_private;
11706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11707 enum pipe pipe = intel_crtc->pipe;
11708 struct drm_framebuffer *old_fb = plane->fb;
11709 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11710 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11711 struct intel_plane *intel_plane = to_intel_plane(plane);
11712 struct drm_rect *src = &state->src;
11713
11714 crtc->primary->fb = fb;
11715 crtc->x = src->x1;
11716 crtc->y = src->y1;
11717
11718 intel_plane->crtc_x = state->orig_dst.x1;
11719 intel_plane->crtc_y = state->orig_dst.y1;
11720 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11721 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11722 intel_plane->src_x = state->orig_src.x1;
11723 intel_plane->src_y = state->orig_src.y1;
11724 intel_plane->src_w = drm_rect_width(&state->orig_src);
11725 intel_plane->src_h = drm_rect_height(&state->orig_src);
11726 intel_plane->obj = obj;
11727
11728 if (intel_crtc->active) {
11729 /*
11730 * FBC does not work on some platforms for rotated
11731 * planes, so disable it when rotation is not 0 and
11732 * update it when rotation is set back to 0.
11733 *
11734 * FIXME: This is redundant with the fbc update done in
11735 * the primary plane enable function except that that
11736 * one is done too late. We eventually need to unify
11737 * this.
11738 */
11739 if (intel_crtc->primary_enabled &&
11740 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11741 dev_priv->fbc.plane == intel_crtc->plane &&
11742 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11743 intel_disable_fbc(dev);
11744 }
11745
11746 if (state->visible) {
11747 bool was_enabled = intel_crtc->primary_enabled;
11748
11749 /* FIXME: kill this fastboot hack */
11750 intel_update_pipe_size(intel_crtc);
11751
11752 intel_crtc->primary_enabled = true;
11753
11754 dev_priv->display.update_primary_plane(crtc, plane->fb,
11755 crtc->x, crtc->y);
11756
11757 /*
11758 * BDW signals flip done immediately if the plane
11759 * is disabled, even if the plane enable is already
11760 * armed to occur at the next vblank :(
11761 */
11762 if (IS_BROADWELL(dev) && !was_enabled)
11763 intel_wait_for_vblank(dev, intel_crtc->pipe);
11764 } else {
11765 /*
11766 * If clipping results in a non-visible primary plane,
11767 * we'll disable the primary plane. Note that this is
11768 * a bit different than what happens if userspace
11769 * explicitly disables the plane by passing fb=0
11770 * because plane->fb still gets set and pinned.
11771 */
11772 intel_disable_primary_hw_plane(plane, crtc);
11773 }
11774
11775 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11776
11777 mutex_lock(&dev->struct_mutex);
11778 intel_update_fbc(dev);
11779 mutex_unlock(&dev->struct_mutex);
11780 }
11781
11782 if (old_fb && old_fb != fb) {
11783 if (intel_crtc->active)
11784 intel_wait_for_vblank(dev, intel_crtc->pipe);
11785
11786 mutex_lock(&dev->struct_mutex);
11787 intel_unpin_fb_obj(old_obj);
11788 mutex_unlock(&dev->struct_mutex);
11789 }
11790 }
11791
11792 static int
11793 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11794 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11795 unsigned int crtc_w, unsigned int crtc_h,
11796 uint32_t src_x, uint32_t src_y,
11797 uint32_t src_w, uint32_t src_h)
11798 {
11799 struct intel_plane_state state;
11800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11801 int ret;
11802
11803 state.crtc = crtc;
11804 state.fb = fb;
11805
11806 /* sample coordinates in 16.16 fixed point */
11807 state.src.x1 = src_x;
11808 state.src.x2 = src_x + src_w;
11809 state.src.y1 = src_y;
11810 state.src.y2 = src_y + src_h;
11811
11812 /* integer pixels */
11813 state.dst.x1 = crtc_x;
11814 state.dst.x2 = crtc_x + crtc_w;
11815 state.dst.y1 = crtc_y;
11816 state.dst.y2 = crtc_y + crtc_h;
11817
11818 state.clip.x1 = 0;
11819 state.clip.y1 = 0;
11820 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
11821 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
11822
11823 state.orig_src = state.src;
11824 state.orig_dst = state.dst;
11825
11826 ret = intel_check_primary_plane(plane, &state);
11827 if (ret)
11828 return ret;
11829
11830 ret = intel_prepare_primary_plane(plane, &state);
11831 if (ret)
11832 return ret;
11833
11834 intel_commit_primary_plane(plane, &state);
11835
11836 return 0;
11837 }
11838
11839 /* Common destruction function for both primary and cursor planes */
11840 static void intel_plane_destroy(struct drm_plane *plane)
11841 {
11842 struct intel_plane *intel_plane = to_intel_plane(plane);
11843 drm_plane_cleanup(plane);
11844 kfree(intel_plane);
11845 }
11846
11847 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11848 .update_plane = intel_primary_plane_setplane,
11849 .disable_plane = intel_primary_plane_disable,
11850 .destroy = intel_plane_destroy,
11851 .set_property = intel_plane_set_property
11852 };
11853
11854 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11855 int pipe)
11856 {
11857 struct intel_plane *primary;
11858 const uint32_t *intel_primary_formats;
11859 int num_formats;
11860
11861 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11862 if (primary == NULL)
11863 return NULL;
11864
11865 primary->can_scale = false;
11866 primary->max_downscale = 1;
11867 primary->pipe = pipe;
11868 primary->plane = pipe;
11869 primary->rotation = BIT(DRM_ROTATE_0);
11870 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11871 primary->plane = !pipe;
11872
11873 if (INTEL_INFO(dev)->gen <= 3) {
11874 intel_primary_formats = intel_primary_formats_gen2;
11875 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11876 } else {
11877 intel_primary_formats = intel_primary_formats_gen4;
11878 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11879 }
11880
11881 drm_universal_plane_init(dev, &primary->base, 0,
11882 &intel_primary_plane_funcs,
11883 intel_primary_formats, num_formats,
11884 DRM_PLANE_TYPE_PRIMARY);
11885
11886 if (INTEL_INFO(dev)->gen >= 4) {
11887 if (!dev->mode_config.rotation_property)
11888 dev->mode_config.rotation_property =
11889 drm_mode_create_rotation_property(dev,
11890 BIT(DRM_ROTATE_0) |
11891 BIT(DRM_ROTATE_180));
11892 if (dev->mode_config.rotation_property)
11893 drm_object_attach_property(&primary->base.base,
11894 dev->mode_config.rotation_property,
11895 primary->rotation);
11896 }
11897
11898 return &primary->base;
11899 }
11900
11901 static int
11902 intel_cursor_plane_disable(struct drm_plane *plane)
11903 {
11904 if (!plane->fb)
11905 return 0;
11906
11907 BUG_ON(!plane->crtc);
11908
11909 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11910 }
11911
11912 static int
11913 intel_check_cursor_plane(struct drm_plane *plane,
11914 struct intel_plane_state *state)
11915 {
11916 struct drm_crtc *crtc = state->crtc;
11917 struct drm_device *dev = crtc->dev;
11918 struct drm_framebuffer *fb = state->fb;
11919 struct drm_rect *dest = &state->dst;
11920 struct drm_rect *src = &state->src;
11921 const struct drm_rect *clip = &state->clip;
11922 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11923 int crtc_w, crtc_h;
11924 unsigned stride;
11925 int ret;
11926
11927 ret = drm_plane_helper_check_update(plane, crtc, fb,
11928 src, dest, clip,
11929 DRM_PLANE_HELPER_NO_SCALING,
11930 DRM_PLANE_HELPER_NO_SCALING,
11931 true, true, &state->visible);
11932 if (ret)
11933 return ret;
11934
11935
11936 /* if we want to turn off the cursor ignore width and height */
11937 if (!obj)
11938 return 0;
11939
11940 /* Check for which cursor types we support */
11941 crtc_w = drm_rect_width(&state->orig_dst);
11942 crtc_h = drm_rect_height(&state->orig_dst);
11943 if (!cursor_size_ok(dev, crtc_w, crtc_h)) {
11944 DRM_DEBUG("Cursor dimension not supported\n");
11945 return -EINVAL;
11946 }
11947
11948 stride = roundup_pow_of_two(crtc_w) * 4;
11949 if (obj->base.size < stride * crtc_h) {
11950 DRM_DEBUG_KMS("buffer is too small\n");
11951 return -ENOMEM;
11952 }
11953
11954 if (fb == crtc->cursor->fb)
11955 return 0;
11956
11957 /* we only need to pin inside GTT if cursor is non-phy */
11958 mutex_lock(&dev->struct_mutex);
11959 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
11960 DRM_DEBUG_KMS("cursor cannot be tiled\n");
11961 ret = -EINVAL;
11962 }
11963 mutex_unlock(&dev->struct_mutex);
11964
11965 return ret;
11966 }
11967
11968 static int
11969 intel_commit_cursor_plane(struct drm_plane *plane,
11970 struct intel_plane_state *state)
11971 {
11972 struct drm_crtc *crtc = state->crtc;
11973 struct drm_framebuffer *fb = state->fb;
11974 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11975 struct intel_plane *intel_plane = to_intel_plane(plane);
11976 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11977 struct drm_i915_gem_object *obj = intel_fb->obj;
11978 int crtc_w, crtc_h;
11979
11980 crtc->cursor_x = state->orig_dst.x1;
11981 crtc->cursor_y = state->orig_dst.y1;
11982
11983 intel_plane->crtc_x = state->orig_dst.x1;
11984 intel_plane->crtc_y = state->orig_dst.y1;
11985 intel_plane->crtc_w = drm_rect_width(&state->orig_dst);
11986 intel_plane->crtc_h = drm_rect_height(&state->orig_dst);
11987 intel_plane->src_x = state->orig_src.x1;
11988 intel_plane->src_y = state->orig_src.y1;
11989 intel_plane->src_w = drm_rect_width(&state->orig_src);
11990 intel_plane->src_h = drm_rect_height(&state->orig_src);
11991 intel_plane->obj = obj;
11992
11993 if (fb != crtc->cursor->fb) {
11994 crtc_w = drm_rect_width(&state->orig_dst);
11995 crtc_h = drm_rect_height(&state->orig_dst);
11996 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11997 } else {
11998 intel_crtc_update_cursor(crtc, state->visible);
11999
12000 intel_frontbuffer_flip(crtc->dev,
12001 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12002
12003 return 0;
12004 }
12005 }
12006
12007 static int
12008 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12009 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12010 unsigned int crtc_w, unsigned int crtc_h,
12011 uint32_t src_x, uint32_t src_y,
12012 uint32_t src_w, uint32_t src_h)
12013 {
12014 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12015 struct intel_plane_state state;
12016 int ret;
12017
12018 state.crtc = crtc;
12019 state.fb = fb;
12020
12021 /* sample coordinates in 16.16 fixed point */
12022 state.src.x1 = src_x;
12023 state.src.x2 = src_x + src_w;
12024 state.src.y1 = src_y;
12025 state.src.y2 = src_y + src_h;
12026
12027 /* integer pixels */
12028 state.dst.x1 = crtc_x;
12029 state.dst.x2 = crtc_x + crtc_w;
12030 state.dst.y1 = crtc_y;
12031 state.dst.y2 = crtc_y + crtc_h;
12032
12033 state.clip.x1 = 0;
12034 state.clip.y1 = 0;
12035 state.clip.x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0;
12036 state.clip.y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0;
12037
12038 state.orig_src = state.src;
12039 state.orig_dst = state.dst;
12040
12041 ret = intel_check_cursor_plane(plane, &state);
12042 if (ret)
12043 return ret;
12044
12045 return intel_commit_cursor_plane(plane, &state);
12046 }
12047
12048 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12049 .update_plane = intel_cursor_plane_update,
12050 .disable_plane = intel_cursor_plane_disable,
12051 .destroy = intel_plane_destroy,
12052 .set_property = intel_plane_set_property,
12053 };
12054
12055 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12056 int pipe)
12057 {
12058 struct intel_plane *cursor;
12059
12060 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12061 if (cursor == NULL)
12062 return NULL;
12063
12064 cursor->can_scale = false;
12065 cursor->max_downscale = 1;
12066 cursor->pipe = pipe;
12067 cursor->plane = pipe;
12068 cursor->rotation = BIT(DRM_ROTATE_0);
12069
12070 drm_universal_plane_init(dev, &cursor->base, 0,
12071 &intel_cursor_plane_funcs,
12072 intel_cursor_formats,
12073 ARRAY_SIZE(intel_cursor_formats),
12074 DRM_PLANE_TYPE_CURSOR);
12075
12076 if (INTEL_INFO(dev)->gen >= 4) {
12077 if (!dev->mode_config.rotation_property)
12078 dev->mode_config.rotation_property =
12079 drm_mode_create_rotation_property(dev,
12080 BIT(DRM_ROTATE_0) |
12081 BIT(DRM_ROTATE_180));
12082 if (dev->mode_config.rotation_property)
12083 drm_object_attach_property(&cursor->base.base,
12084 dev->mode_config.rotation_property,
12085 cursor->rotation);
12086 }
12087
12088 return &cursor->base;
12089 }
12090
12091 static void intel_crtc_init(struct drm_device *dev, int pipe)
12092 {
12093 struct drm_i915_private *dev_priv = dev->dev_private;
12094 struct intel_crtc *intel_crtc;
12095 struct drm_plane *primary = NULL;
12096 struct drm_plane *cursor = NULL;
12097 int i, ret;
12098
12099 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12100 if (intel_crtc == NULL)
12101 return;
12102
12103 primary = intel_primary_plane_create(dev, pipe);
12104 if (!primary)
12105 goto fail;
12106
12107 cursor = intel_cursor_plane_create(dev, pipe);
12108 if (!cursor)
12109 goto fail;
12110
12111 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12112 cursor, &intel_crtc_funcs);
12113 if (ret)
12114 goto fail;
12115
12116 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12117 for (i = 0; i < 256; i++) {
12118 intel_crtc->lut_r[i] = i;
12119 intel_crtc->lut_g[i] = i;
12120 intel_crtc->lut_b[i] = i;
12121 }
12122
12123 /*
12124 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12125 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12126 */
12127 intel_crtc->pipe = pipe;
12128 intel_crtc->plane = pipe;
12129 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12130 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12131 intel_crtc->plane = !pipe;
12132 }
12133
12134 intel_crtc->cursor_base = ~0;
12135 intel_crtc->cursor_cntl = ~0;
12136 intel_crtc->cursor_size = ~0;
12137
12138 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12139 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12140 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12141 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12142
12143 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12144
12145 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12146
12147 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12148 return;
12149
12150 fail:
12151 if (primary)
12152 drm_plane_cleanup(primary);
12153 if (cursor)
12154 drm_plane_cleanup(cursor);
12155 kfree(intel_crtc);
12156 }
12157
12158 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12159 {
12160 struct drm_encoder *encoder = connector->base.encoder;
12161 struct drm_device *dev = connector->base.dev;
12162
12163 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12164
12165 if (!encoder || WARN_ON(!encoder->crtc))
12166 return INVALID_PIPE;
12167
12168 return to_intel_crtc(encoder->crtc)->pipe;
12169 }
12170
12171 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12172 struct drm_file *file)
12173 {
12174 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12175 struct drm_crtc *drmmode_crtc;
12176 struct intel_crtc *crtc;
12177
12178 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12179 return -ENODEV;
12180
12181 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12182
12183 if (!drmmode_crtc) {
12184 DRM_ERROR("no such CRTC id\n");
12185 return -ENOENT;
12186 }
12187
12188 crtc = to_intel_crtc(drmmode_crtc);
12189 pipe_from_crtc_id->pipe = crtc->pipe;
12190
12191 return 0;
12192 }
12193
12194 static int intel_encoder_clones(struct intel_encoder *encoder)
12195 {
12196 struct drm_device *dev = encoder->base.dev;
12197 struct intel_encoder *source_encoder;
12198 int index_mask = 0;
12199 int entry = 0;
12200
12201 for_each_intel_encoder(dev, source_encoder) {
12202 if (encoders_cloneable(encoder, source_encoder))
12203 index_mask |= (1 << entry);
12204
12205 entry++;
12206 }
12207
12208 return index_mask;
12209 }
12210
12211 static bool has_edp_a(struct drm_device *dev)
12212 {
12213 struct drm_i915_private *dev_priv = dev->dev_private;
12214
12215 if (!IS_MOBILE(dev))
12216 return false;
12217
12218 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12219 return false;
12220
12221 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12222 return false;
12223
12224 return true;
12225 }
12226
12227 const char *intel_output_name(int output)
12228 {
12229 static const char *names[] = {
12230 [INTEL_OUTPUT_UNUSED] = "Unused",
12231 [INTEL_OUTPUT_ANALOG] = "Analog",
12232 [INTEL_OUTPUT_DVO] = "DVO",
12233 [INTEL_OUTPUT_SDVO] = "SDVO",
12234 [INTEL_OUTPUT_LVDS] = "LVDS",
12235 [INTEL_OUTPUT_TVOUT] = "TV",
12236 [INTEL_OUTPUT_HDMI] = "HDMI",
12237 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12238 [INTEL_OUTPUT_EDP] = "eDP",
12239 [INTEL_OUTPUT_DSI] = "DSI",
12240 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12241 };
12242
12243 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12244 return "Invalid";
12245
12246 return names[output];
12247 }
12248
12249 static bool intel_crt_present(struct drm_device *dev)
12250 {
12251 struct drm_i915_private *dev_priv = dev->dev_private;
12252
12253 if (INTEL_INFO(dev)->gen >= 9)
12254 return false;
12255
12256 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12257 return false;
12258
12259 if (IS_CHERRYVIEW(dev))
12260 return false;
12261
12262 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12263 return false;
12264
12265 return true;
12266 }
12267
12268 static void intel_setup_outputs(struct drm_device *dev)
12269 {
12270 struct drm_i915_private *dev_priv = dev->dev_private;
12271 struct intel_encoder *encoder;
12272 bool dpd_is_edp = false;
12273
12274 intel_lvds_init(dev);
12275
12276 if (intel_crt_present(dev))
12277 intel_crt_init(dev);
12278
12279 if (HAS_DDI(dev)) {
12280 int found;
12281
12282 /* Haswell uses DDI functions to detect digital outputs */
12283 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12284 /* DDI A only supports eDP */
12285 if (found)
12286 intel_ddi_init(dev, PORT_A);
12287
12288 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12289 * register */
12290 found = I915_READ(SFUSE_STRAP);
12291
12292 if (found & SFUSE_STRAP_DDIB_DETECTED)
12293 intel_ddi_init(dev, PORT_B);
12294 if (found & SFUSE_STRAP_DDIC_DETECTED)
12295 intel_ddi_init(dev, PORT_C);
12296 if (found & SFUSE_STRAP_DDID_DETECTED)
12297 intel_ddi_init(dev, PORT_D);
12298 } else if (HAS_PCH_SPLIT(dev)) {
12299 int found;
12300 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12301
12302 if (has_edp_a(dev))
12303 intel_dp_init(dev, DP_A, PORT_A);
12304
12305 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12306 /* PCH SDVOB multiplex with HDMIB */
12307 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12308 if (!found)
12309 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12310 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12311 intel_dp_init(dev, PCH_DP_B, PORT_B);
12312 }
12313
12314 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12315 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12316
12317 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12318 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12319
12320 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12321 intel_dp_init(dev, PCH_DP_C, PORT_C);
12322
12323 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12324 intel_dp_init(dev, PCH_DP_D, PORT_D);
12325 } else if (IS_VALLEYVIEW(dev)) {
12326 /*
12327 * The DP_DETECTED bit is the latched state of the DDC
12328 * SDA pin at boot. However since eDP doesn't require DDC
12329 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12330 * eDP ports may have been muxed to an alternate function.
12331 * Thus we can't rely on the DP_DETECTED bit alone to detect
12332 * eDP ports. Consult the VBT as well as DP_DETECTED to
12333 * detect eDP ports.
12334 */
12335 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED)
12336 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12337 PORT_B);
12338 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12339 intel_dp_is_edp(dev, PORT_B))
12340 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12341
12342 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED)
12343 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12344 PORT_C);
12345 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12346 intel_dp_is_edp(dev, PORT_C))
12347 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12348
12349 if (IS_CHERRYVIEW(dev)) {
12350 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12351 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12352 PORT_D);
12353 /* eDP not supported on port D, so don't check VBT */
12354 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12355 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12356 }
12357
12358 intel_dsi_init(dev);
12359 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12360 bool found = false;
12361
12362 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12363 DRM_DEBUG_KMS("probing SDVOB\n");
12364 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12365 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12366 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12367 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12368 }
12369
12370 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12371 intel_dp_init(dev, DP_B, PORT_B);
12372 }
12373
12374 /* Before G4X SDVOC doesn't have its own detect register */
12375
12376 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12377 DRM_DEBUG_KMS("probing SDVOC\n");
12378 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12379 }
12380
12381 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12382
12383 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12384 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12385 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12386 }
12387 if (SUPPORTS_INTEGRATED_DP(dev))
12388 intel_dp_init(dev, DP_C, PORT_C);
12389 }
12390
12391 if (SUPPORTS_INTEGRATED_DP(dev) &&
12392 (I915_READ(DP_D) & DP_DETECTED))
12393 intel_dp_init(dev, DP_D, PORT_D);
12394 } else if (IS_GEN2(dev))
12395 intel_dvo_init(dev);
12396
12397 if (SUPPORTS_TV(dev))
12398 intel_tv_init(dev);
12399
12400 intel_edp_psr_init(dev);
12401
12402 for_each_intel_encoder(dev, encoder) {
12403 encoder->base.possible_crtcs = encoder->crtc_mask;
12404 encoder->base.possible_clones =
12405 intel_encoder_clones(encoder);
12406 }
12407
12408 intel_init_pch_refclk(dev);
12409
12410 drm_helper_move_panel_connectors_to_head(dev);
12411 }
12412
12413 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12414 {
12415 struct drm_device *dev = fb->dev;
12416 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12417
12418 drm_framebuffer_cleanup(fb);
12419 mutex_lock(&dev->struct_mutex);
12420 WARN_ON(!intel_fb->obj->framebuffer_references--);
12421 drm_gem_object_unreference(&intel_fb->obj->base);
12422 mutex_unlock(&dev->struct_mutex);
12423 kfree(intel_fb);
12424 }
12425
12426 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12427 struct drm_file *file,
12428 unsigned int *handle)
12429 {
12430 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12431 struct drm_i915_gem_object *obj = intel_fb->obj;
12432
12433 return drm_gem_handle_create(file, &obj->base, handle);
12434 }
12435
12436 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12437 .destroy = intel_user_framebuffer_destroy,
12438 .create_handle = intel_user_framebuffer_create_handle,
12439 };
12440
12441 static int intel_framebuffer_init(struct drm_device *dev,
12442 struct intel_framebuffer *intel_fb,
12443 struct drm_mode_fb_cmd2 *mode_cmd,
12444 struct drm_i915_gem_object *obj)
12445 {
12446 int aligned_height;
12447 int pitch_limit;
12448 int ret;
12449
12450 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12451
12452 if (obj->tiling_mode == I915_TILING_Y) {
12453 DRM_DEBUG("hardware does not support tiling Y\n");
12454 return -EINVAL;
12455 }
12456
12457 if (mode_cmd->pitches[0] & 63) {
12458 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12459 mode_cmd->pitches[0]);
12460 return -EINVAL;
12461 }
12462
12463 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12464 pitch_limit = 32*1024;
12465 } else if (INTEL_INFO(dev)->gen >= 4) {
12466 if (obj->tiling_mode)
12467 pitch_limit = 16*1024;
12468 else
12469 pitch_limit = 32*1024;
12470 } else if (INTEL_INFO(dev)->gen >= 3) {
12471 if (obj->tiling_mode)
12472 pitch_limit = 8*1024;
12473 else
12474 pitch_limit = 16*1024;
12475 } else
12476 /* XXX DSPC is limited to 4k tiled */
12477 pitch_limit = 8*1024;
12478
12479 if (mode_cmd->pitches[0] > pitch_limit) {
12480 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12481 obj->tiling_mode ? "tiled" : "linear",
12482 mode_cmd->pitches[0], pitch_limit);
12483 return -EINVAL;
12484 }
12485
12486 if (obj->tiling_mode != I915_TILING_NONE &&
12487 mode_cmd->pitches[0] != obj->stride) {
12488 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12489 mode_cmd->pitches[0], obj->stride);
12490 return -EINVAL;
12491 }
12492
12493 /* Reject formats not supported by any plane early. */
12494 switch (mode_cmd->pixel_format) {
12495 case DRM_FORMAT_C8:
12496 case DRM_FORMAT_RGB565:
12497 case DRM_FORMAT_XRGB8888:
12498 case DRM_FORMAT_ARGB8888:
12499 break;
12500 case DRM_FORMAT_XRGB1555:
12501 case DRM_FORMAT_ARGB1555:
12502 if (INTEL_INFO(dev)->gen > 3) {
12503 DRM_DEBUG("unsupported pixel format: %s\n",
12504 drm_get_format_name(mode_cmd->pixel_format));
12505 return -EINVAL;
12506 }
12507 break;
12508 case DRM_FORMAT_XBGR8888:
12509 case DRM_FORMAT_ABGR8888:
12510 case DRM_FORMAT_XRGB2101010:
12511 case DRM_FORMAT_ARGB2101010:
12512 case DRM_FORMAT_XBGR2101010:
12513 case DRM_FORMAT_ABGR2101010:
12514 if (INTEL_INFO(dev)->gen < 4) {
12515 DRM_DEBUG("unsupported pixel format: %s\n",
12516 drm_get_format_name(mode_cmd->pixel_format));
12517 return -EINVAL;
12518 }
12519 break;
12520 case DRM_FORMAT_YUYV:
12521 case DRM_FORMAT_UYVY:
12522 case DRM_FORMAT_YVYU:
12523 case DRM_FORMAT_VYUY:
12524 if (INTEL_INFO(dev)->gen < 5) {
12525 DRM_DEBUG("unsupported pixel format: %s\n",
12526 drm_get_format_name(mode_cmd->pixel_format));
12527 return -EINVAL;
12528 }
12529 break;
12530 default:
12531 DRM_DEBUG("unsupported pixel format: %s\n",
12532 drm_get_format_name(mode_cmd->pixel_format));
12533 return -EINVAL;
12534 }
12535
12536 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12537 if (mode_cmd->offsets[0] != 0)
12538 return -EINVAL;
12539
12540 aligned_height = intel_align_height(dev, mode_cmd->height,
12541 obj->tiling_mode);
12542 /* FIXME drm helper for size checks (especially planar formats)? */
12543 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12544 return -EINVAL;
12545
12546 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12547 intel_fb->obj = obj;
12548 intel_fb->obj->framebuffer_references++;
12549
12550 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12551 if (ret) {
12552 DRM_ERROR("framebuffer init failed %d\n", ret);
12553 return ret;
12554 }
12555
12556 return 0;
12557 }
12558
12559 static struct drm_framebuffer *
12560 intel_user_framebuffer_create(struct drm_device *dev,
12561 struct drm_file *filp,
12562 struct drm_mode_fb_cmd2 *mode_cmd)
12563 {
12564 struct drm_i915_gem_object *obj;
12565
12566 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12567 mode_cmd->handles[0]));
12568 if (&obj->base == NULL)
12569 return ERR_PTR(-ENOENT);
12570
12571 return intel_framebuffer_create(dev, mode_cmd, obj);
12572 }
12573
12574 #ifndef CONFIG_DRM_I915_FBDEV
12575 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12576 {
12577 }
12578 #endif
12579
12580 static const struct drm_mode_config_funcs intel_mode_funcs = {
12581 .fb_create = intel_user_framebuffer_create,
12582 .output_poll_changed = intel_fbdev_output_poll_changed,
12583 };
12584
12585 /* Set up chip specific display functions */
12586 static void intel_init_display(struct drm_device *dev)
12587 {
12588 struct drm_i915_private *dev_priv = dev->dev_private;
12589
12590 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12591 dev_priv->display.find_dpll = g4x_find_best_dpll;
12592 else if (IS_CHERRYVIEW(dev))
12593 dev_priv->display.find_dpll = chv_find_best_dpll;
12594 else if (IS_VALLEYVIEW(dev))
12595 dev_priv->display.find_dpll = vlv_find_best_dpll;
12596 else if (IS_PINEVIEW(dev))
12597 dev_priv->display.find_dpll = pnv_find_best_dpll;
12598 else
12599 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12600
12601 if (HAS_DDI(dev)) {
12602 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12603 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12604 dev_priv->display.crtc_compute_clock =
12605 haswell_crtc_compute_clock;
12606 dev_priv->display.crtc_enable = haswell_crtc_enable;
12607 dev_priv->display.crtc_disable = haswell_crtc_disable;
12608 dev_priv->display.off = ironlake_crtc_off;
12609 if (INTEL_INFO(dev)->gen >= 9)
12610 dev_priv->display.update_primary_plane =
12611 skylake_update_primary_plane;
12612 else
12613 dev_priv->display.update_primary_plane =
12614 ironlake_update_primary_plane;
12615 } else if (HAS_PCH_SPLIT(dev)) {
12616 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12617 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12618 dev_priv->display.crtc_compute_clock =
12619 ironlake_crtc_compute_clock;
12620 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12621 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12622 dev_priv->display.off = ironlake_crtc_off;
12623 dev_priv->display.update_primary_plane =
12624 ironlake_update_primary_plane;
12625 } else if (IS_VALLEYVIEW(dev)) {
12626 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12627 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12628 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12629 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12630 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12631 dev_priv->display.off = i9xx_crtc_off;
12632 dev_priv->display.update_primary_plane =
12633 i9xx_update_primary_plane;
12634 } else {
12635 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12636 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12637 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12638 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12639 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12640 dev_priv->display.off = i9xx_crtc_off;
12641 dev_priv->display.update_primary_plane =
12642 i9xx_update_primary_plane;
12643 }
12644
12645 /* Returns the core display clock speed */
12646 if (IS_VALLEYVIEW(dev))
12647 dev_priv->display.get_display_clock_speed =
12648 valleyview_get_display_clock_speed;
12649 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12650 dev_priv->display.get_display_clock_speed =
12651 i945_get_display_clock_speed;
12652 else if (IS_I915G(dev))
12653 dev_priv->display.get_display_clock_speed =
12654 i915_get_display_clock_speed;
12655 else if (IS_I945GM(dev) || IS_845G(dev))
12656 dev_priv->display.get_display_clock_speed =
12657 i9xx_misc_get_display_clock_speed;
12658 else if (IS_PINEVIEW(dev))
12659 dev_priv->display.get_display_clock_speed =
12660 pnv_get_display_clock_speed;
12661 else if (IS_I915GM(dev))
12662 dev_priv->display.get_display_clock_speed =
12663 i915gm_get_display_clock_speed;
12664 else if (IS_I865G(dev))
12665 dev_priv->display.get_display_clock_speed =
12666 i865_get_display_clock_speed;
12667 else if (IS_I85X(dev))
12668 dev_priv->display.get_display_clock_speed =
12669 i855_get_display_clock_speed;
12670 else /* 852, 830 */
12671 dev_priv->display.get_display_clock_speed =
12672 i830_get_display_clock_speed;
12673
12674 if (IS_GEN5(dev)) {
12675 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12676 } else if (IS_GEN6(dev)) {
12677 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12678 } else if (IS_IVYBRIDGE(dev)) {
12679 /* FIXME: detect B0+ stepping and use auto training */
12680 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12681 dev_priv->display.modeset_global_resources =
12682 ivb_modeset_global_resources;
12683 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12684 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12685 } else if (IS_VALLEYVIEW(dev)) {
12686 dev_priv->display.modeset_global_resources =
12687 valleyview_modeset_global_resources;
12688 }
12689
12690 /* Default just returns -ENODEV to indicate unsupported */
12691 dev_priv->display.queue_flip = intel_default_queue_flip;
12692
12693 switch (INTEL_INFO(dev)->gen) {
12694 case 2:
12695 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12696 break;
12697
12698 case 3:
12699 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12700 break;
12701
12702 case 4:
12703 case 5:
12704 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12705 break;
12706
12707 case 6:
12708 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12709 break;
12710 case 7:
12711 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12712 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12713 break;
12714 case 9:
12715 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12716 break;
12717 }
12718
12719 intel_panel_init_backlight_funcs(dev);
12720
12721 mutex_init(&dev_priv->pps_mutex);
12722 }
12723
12724 /*
12725 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12726 * resume, or other times. This quirk makes sure that's the case for
12727 * affected systems.
12728 */
12729 static void quirk_pipea_force(struct drm_device *dev)
12730 {
12731 struct drm_i915_private *dev_priv = dev->dev_private;
12732
12733 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12734 DRM_INFO("applying pipe a force quirk\n");
12735 }
12736
12737 static void quirk_pipeb_force(struct drm_device *dev)
12738 {
12739 struct drm_i915_private *dev_priv = dev->dev_private;
12740
12741 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12742 DRM_INFO("applying pipe b force quirk\n");
12743 }
12744
12745 /*
12746 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12747 */
12748 static void quirk_ssc_force_disable(struct drm_device *dev)
12749 {
12750 struct drm_i915_private *dev_priv = dev->dev_private;
12751 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12752 DRM_INFO("applying lvds SSC disable quirk\n");
12753 }
12754
12755 /*
12756 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12757 * brightness value
12758 */
12759 static void quirk_invert_brightness(struct drm_device *dev)
12760 {
12761 struct drm_i915_private *dev_priv = dev->dev_private;
12762 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12763 DRM_INFO("applying inverted panel brightness quirk\n");
12764 }
12765
12766 /* Some VBT's incorrectly indicate no backlight is present */
12767 static void quirk_backlight_present(struct drm_device *dev)
12768 {
12769 struct drm_i915_private *dev_priv = dev->dev_private;
12770 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12771 DRM_INFO("applying backlight present quirk\n");
12772 }
12773
12774 struct intel_quirk {
12775 int device;
12776 int subsystem_vendor;
12777 int subsystem_device;
12778 void (*hook)(struct drm_device *dev);
12779 };
12780
12781 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12782 struct intel_dmi_quirk {
12783 void (*hook)(struct drm_device *dev);
12784 const struct dmi_system_id (*dmi_id_list)[];
12785 };
12786
12787 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12788 {
12789 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12790 return 1;
12791 }
12792
12793 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12794 {
12795 .dmi_id_list = &(const struct dmi_system_id[]) {
12796 {
12797 .callback = intel_dmi_reverse_brightness,
12798 .ident = "NCR Corporation",
12799 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12800 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12801 },
12802 },
12803 { } /* terminating entry */
12804 },
12805 .hook = quirk_invert_brightness,
12806 },
12807 };
12808
12809 static struct intel_quirk intel_quirks[] = {
12810 /* HP Mini needs pipe A force quirk (LP: #322104) */
12811 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12812
12813 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12814 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12815
12816 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12817 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12818
12819 /* 830 needs to leave pipe A & dpll A up */
12820 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12821
12822 /* 830 needs to leave pipe B & dpll B up */
12823 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12824
12825 /* Lenovo U160 cannot use SSC on LVDS */
12826 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12827
12828 /* Sony Vaio Y cannot use SSC on LVDS */
12829 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12830
12831 /* Acer Aspire 5734Z must invert backlight brightness */
12832 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12833
12834 /* Acer/eMachines G725 */
12835 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12836
12837 /* Acer/eMachines e725 */
12838 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12839
12840 /* Acer/Packard Bell NCL20 */
12841 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12842
12843 /* Acer Aspire 4736Z */
12844 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12845
12846 /* Acer Aspire 5336 */
12847 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12848
12849 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12850 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12851
12852 /* Acer C720 Chromebook (Core i3 4005U) */
12853 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12854
12855 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12856 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12857
12858 /* HP Chromebook 14 (Celeron 2955U) */
12859 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12860 };
12861
12862 static void intel_init_quirks(struct drm_device *dev)
12863 {
12864 struct pci_dev *d = dev->pdev;
12865 int i;
12866
12867 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12868 struct intel_quirk *q = &intel_quirks[i];
12869
12870 if (d->device == q->device &&
12871 (d->subsystem_vendor == q->subsystem_vendor ||
12872 q->subsystem_vendor == PCI_ANY_ID) &&
12873 (d->subsystem_device == q->subsystem_device ||
12874 q->subsystem_device == PCI_ANY_ID))
12875 q->hook(dev);
12876 }
12877 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12878 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12879 intel_dmi_quirks[i].hook(dev);
12880 }
12881 }
12882
12883 /* Disable the VGA plane that we never use */
12884 static void i915_disable_vga(struct drm_device *dev)
12885 {
12886 struct drm_i915_private *dev_priv = dev->dev_private;
12887 u8 sr1;
12888 u32 vga_reg = i915_vgacntrl_reg(dev);
12889
12890 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12891 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12892 outb(SR01, VGA_SR_INDEX);
12893 sr1 = inb(VGA_SR_DATA);
12894 outb(sr1 | 1<<5, VGA_SR_DATA);
12895 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12896 udelay(300);
12897
12898 /*
12899 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12900 * from S3 without preserving (some of?) the other bits.
12901 */
12902 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
12903 POSTING_READ(vga_reg);
12904 }
12905
12906 void intel_modeset_init_hw(struct drm_device *dev)
12907 {
12908 intel_prepare_ddi(dev);
12909
12910 if (IS_VALLEYVIEW(dev))
12911 vlv_update_cdclk(dev);
12912
12913 intel_init_clock_gating(dev);
12914
12915 intel_enable_gt_powersave(dev);
12916 }
12917
12918 void intel_modeset_init(struct drm_device *dev)
12919 {
12920 struct drm_i915_private *dev_priv = dev->dev_private;
12921 int sprite, ret;
12922 enum pipe pipe;
12923 struct intel_crtc *crtc;
12924
12925 drm_mode_config_init(dev);
12926
12927 dev->mode_config.min_width = 0;
12928 dev->mode_config.min_height = 0;
12929
12930 dev->mode_config.preferred_depth = 24;
12931 dev->mode_config.prefer_shadow = 1;
12932
12933 dev->mode_config.funcs = &intel_mode_funcs;
12934
12935 intel_init_quirks(dev);
12936
12937 intel_init_pm(dev);
12938
12939 if (INTEL_INFO(dev)->num_pipes == 0)
12940 return;
12941
12942 intel_init_display(dev);
12943 intel_init_audio(dev);
12944
12945 if (IS_GEN2(dev)) {
12946 dev->mode_config.max_width = 2048;
12947 dev->mode_config.max_height = 2048;
12948 } else if (IS_GEN3(dev)) {
12949 dev->mode_config.max_width = 4096;
12950 dev->mode_config.max_height = 4096;
12951 } else {
12952 dev->mode_config.max_width = 8192;
12953 dev->mode_config.max_height = 8192;
12954 }
12955
12956 if (IS_845G(dev) || IS_I865G(dev)) {
12957 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12958 dev->mode_config.cursor_height = 1023;
12959 } else if (IS_GEN2(dev)) {
12960 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12961 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12962 } else {
12963 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12964 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12965 }
12966
12967 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12968
12969 DRM_DEBUG_KMS("%d display pipe%s available.\n",
12970 INTEL_INFO(dev)->num_pipes,
12971 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12972
12973 for_each_pipe(dev_priv, pipe) {
12974 intel_crtc_init(dev, pipe);
12975 for_each_sprite(pipe, sprite) {
12976 ret = intel_plane_init(dev, pipe, sprite);
12977 if (ret)
12978 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12979 pipe_name(pipe), sprite_name(pipe, sprite), ret);
12980 }
12981 }
12982
12983 intel_init_dpio(dev);
12984
12985 intel_shared_dpll_init(dev);
12986
12987 /* save the BIOS value before clobbering it */
12988 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
12989 /* Just disable it once at startup */
12990 i915_disable_vga(dev);
12991 intel_setup_outputs(dev);
12992
12993 /* Just in case the BIOS is doing something questionable. */
12994 intel_disable_fbc(dev);
12995
12996 drm_modeset_lock_all(dev);
12997 intel_modeset_setup_hw_state(dev, false);
12998 drm_modeset_unlock_all(dev);
12999
13000 for_each_intel_crtc(dev, crtc) {
13001 if (!crtc->active)
13002 continue;
13003
13004 /*
13005 * Note that reserving the BIOS fb up front prevents us
13006 * from stuffing other stolen allocations like the ring
13007 * on top. This prevents some ugliness at boot time, and
13008 * can even allow for smooth boot transitions if the BIOS
13009 * fb is large enough for the active pipe configuration.
13010 */
13011 if (dev_priv->display.get_plane_config) {
13012 dev_priv->display.get_plane_config(crtc,
13013 &crtc->plane_config);
13014 /*
13015 * If the fb is shared between multiple heads, we'll
13016 * just get the first one.
13017 */
13018 intel_find_plane_obj(crtc, &crtc->plane_config);
13019 }
13020 }
13021 }
13022
13023 static void intel_enable_pipe_a(struct drm_device *dev)
13024 {
13025 struct intel_connector *connector;
13026 struct drm_connector *crt = NULL;
13027 struct intel_load_detect_pipe load_detect_temp;
13028 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13029
13030 /* We can't just switch on the pipe A, we need to set things up with a
13031 * proper mode and output configuration. As a gross hack, enable pipe A
13032 * by enabling the load detect pipe once. */
13033 list_for_each_entry(connector,
13034 &dev->mode_config.connector_list,
13035 base.head) {
13036 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13037 crt = &connector->base;
13038 break;
13039 }
13040 }
13041
13042 if (!crt)
13043 return;
13044
13045 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13046 intel_release_load_detect_pipe(crt, &load_detect_temp);
13047 }
13048
13049 static bool
13050 intel_check_plane_mapping(struct intel_crtc *crtc)
13051 {
13052 struct drm_device *dev = crtc->base.dev;
13053 struct drm_i915_private *dev_priv = dev->dev_private;
13054 u32 reg, val;
13055
13056 if (INTEL_INFO(dev)->num_pipes == 1)
13057 return true;
13058
13059 reg = DSPCNTR(!crtc->plane);
13060 val = I915_READ(reg);
13061
13062 if ((val & DISPLAY_PLANE_ENABLE) &&
13063 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13064 return false;
13065
13066 return true;
13067 }
13068
13069 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13070 {
13071 struct drm_device *dev = crtc->base.dev;
13072 struct drm_i915_private *dev_priv = dev->dev_private;
13073 u32 reg;
13074
13075 /* Clear any frame start delays used for debugging left by the BIOS */
13076 reg = PIPECONF(crtc->config.cpu_transcoder);
13077 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13078
13079 /* restore vblank interrupts to correct state */
13080 if (crtc->active) {
13081 update_scanline_offset(crtc);
13082 drm_vblank_on(dev, crtc->pipe);
13083 } else
13084 drm_vblank_off(dev, crtc->pipe);
13085
13086 /* We need to sanitize the plane -> pipe mapping first because this will
13087 * disable the crtc (and hence change the state) if it is wrong. Note
13088 * that gen4+ has a fixed plane -> pipe mapping. */
13089 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13090 struct intel_connector *connector;
13091 bool plane;
13092
13093 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13094 crtc->base.base.id);
13095
13096 /* Pipe has the wrong plane attached and the plane is active.
13097 * Temporarily change the plane mapping and disable everything
13098 * ... */
13099 plane = crtc->plane;
13100 crtc->plane = !plane;
13101 crtc->primary_enabled = true;
13102 dev_priv->display.crtc_disable(&crtc->base);
13103 crtc->plane = plane;
13104
13105 /* ... and break all links. */
13106 list_for_each_entry(connector, &dev->mode_config.connector_list,
13107 base.head) {
13108 if (connector->encoder->base.crtc != &crtc->base)
13109 continue;
13110
13111 connector->base.dpms = DRM_MODE_DPMS_OFF;
13112 connector->base.encoder = NULL;
13113 }
13114 /* multiple connectors may have the same encoder:
13115 * handle them and break crtc link separately */
13116 list_for_each_entry(connector, &dev->mode_config.connector_list,
13117 base.head)
13118 if (connector->encoder->base.crtc == &crtc->base) {
13119 connector->encoder->base.crtc = NULL;
13120 connector->encoder->connectors_active = false;
13121 }
13122
13123 WARN_ON(crtc->active);
13124 crtc->base.enabled = false;
13125 }
13126
13127 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13128 crtc->pipe == PIPE_A && !crtc->active) {
13129 /* BIOS forgot to enable pipe A, this mostly happens after
13130 * resume. Force-enable the pipe to fix this, the update_dpms
13131 * call below we restore the pipe to the right state, but leave
13132 * the required bits on. */
13133 intel_enable_pipe_a(dev);
13134 }
13135
13136 /* Adjust the state of the output pipe according to whether we
13137 * have active connectors/encoders. */
13138 intel_crtc_update_dpms(&crtc->base);
13139
13140 if (crtc->active != crtc->base.enabled) {
13141 struct intel_encoder *encoder;
13142
13143 /* This can happen either due to bugs in the get_hw_state
13144 * functions or because the pipe is force-enabled due to the
13145 * pipe A quirk. */
13146 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13147 crtc->base.base.id,
13148 crtc->base.enabled ? "enabled" : "disabled",
13149 crtc->active ? "enabled" : "disabled");
13150
13151 crtc->base.enabled = crtc->active;
13152
13153 /* Because we only establish the connector -> encoder ->
13154 * crtc links if something is active, this means the
13155 * crtc is now deactivated. Break the links. connector
13156 * -> encoder links are only establish when things are
13157 * actually up, hence no need to break them. */
13158 WARN_ON(crtc->active);
13159
13160 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13161 WARN_ON(encoder->connectors_active);
13162 encoder->base.crtc = NULL;
13163 }
13164 }
13165
13166 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13167 /*
13168 * We start out with underrun reporting disabled to avoid races.
13169 * For correct bookkeeping mark this on active crtcs.
13170 *
13171 * Also on gmch platforms we dont have any hardware bits to
13172 * disable the underrun reporting. Which means we need to start
13173 * out with underrun reporting disabled also on inactive pipes,
13174 * since otherwise we'll complain about the garbage we read when
13175 * e.g. coming up after runtime pm.
13176 *
13177 * No protection against concurrent access is required - at
13178 * worst a fifo underrun happens which also sets this to false.
13179 */
13180 crtc->cpu_fifo_underrun_disabled = true;
13181 crtc->pch_fifo_underrun_disabled = true;
13182 }
13183 }
13184
13185 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13186 {
13187 struct intel_connector *connector;
13188 struct drm_device *dev = encoder->base.dev;
13189
13190 /* We need to check both for a crtc link (meaning that the
13191 * encoder is active and trying to read from a pipe) and the
13192 * pipe itself being active. */
13193 bool has_active_crtc = encoder->base.crtc &&
13194 to_intel_crtc(encoder->base.crtc)->active;
13195
13196 if (encoder->connectors_active && !has_active_crtc) {
13197 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13198 encoder->base.base.id,
13199 encoder->base.name);
13200
13201 /* Connector is active, but has no active pipe. This is
13202 * fallout from our resume register restoring. Disable
13203 * the encoder manually again. */
13204 if (encoder->base.crtc) {
13205 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13206 encoder->base.base.id,
13207 encoder->base.name);
13208 encoder->disable(encoder);
13209 if (encoder->post_disable)
13210 encoder->post_disable(encoder);
13211 }
13212 encoder->base.crtc = NULL;
13213 encoder->connectors_active = false;
13214
13215 /* Inconsistent output/port/pipe state happens presumably due to
13216 * a bug in one of the get_hw_state functions. Or someplace else
13217 * in our code, like the register restore mess on resume. Clamp
13218 * things to off as a safer default. */
13219 list_for_each_entry(connector,
13220 &dev->mode_config.connector_list,
13221 base.head) {
13222 if (connector->encoder != encoder)
13223 continue;
13224 connector->base.dpms = DRM_MODE_DPMS_OFF;
13225 connector->base.encoder = NULL;
13226 }
13227 }
13228 /* Enabled encoders without active connectors will be fixed in
13229 * the crtc fixup. */
13230 }
13231
13232 void i915_redisable_vga_power_on(struct drm_device *dev)
13233 {
13234 struct drm_i915_private *dev_priv = dev->dev_private;
13235 u32 vga_reg = i915_vgacntrl_reg(dev);
13236
13237 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13238 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13239 i915_disable_vga(dev);
13240 }
13241 }
13242
13243 void i915_redisable_vga(struct drm_device *dev)
13244 {
13245 struct drm_i915_private *dev_priv = dev->dev_private;
13246
13247 /* This function can be called both from intel_modeset_setup_hw_state or
13248 * at a very early point in our resume sequence, where the power well
13249 * structures are not yet restored. Since this function is at a very
13250 * paranoid "someone might have enabled VGA while we were not looking"
13251 * level, just check if the power well is enabled instead of trying to
13252 * follow the "don't touch the power well if we don't need it" policy
13253 * the rest of the driver uses. */
13254 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13255 return;
13256
13257 i915_redisable_vga_power_on(dev);
13258 }
13259
13260 static bool primary_get_hw_state(struct intel_crtc *crtc)
13261 {
13262 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13263
13264 if (!crtc->active)
13265 return false;
13266
13267 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13268 }
13269
13270 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13271 {
13272 struct drm_i915_private *dev_priv = dev->dev_private;
13273 enum pipe pipe;
13274 struct intel_crtc *crtc;
13275 struct intel_encoder *encoder;
13276 struct intel_connector *connector;
13277 int i;
13278
13279 for_each_intel_crtc(dev, crtc) {
13280 memset(&crtc->config, 0, sizeof(crtc->config));
13281
13282 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13283
13284 crtc->active = dev_priv->display.get_pipe_config(crtc,
13285 &crtc->config);
13286
13287 crtc->base.enabled = crtc->active;
13288 crtc->primary_enabled = primary_get_hw_state(crtc);
13289
13290 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13291 crtc->base.base.id,
13292 crtc->active ? "enabled" : "disabled");
13293 }
13294
13295 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13296 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13297
13298 pll->on = pll->get_hw_state(dev_priv, pll,
13299 &pll->config.hw_state);
13300 pll->active = 0;
13301 pll->config.crtc_mask = 0;
13302 for_each_intel_crtc(dev, crtc) {
13303 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13304 pll->active++;
13305 pll->config.crtc_mask |= 1 << crtc->pipe;
13306 }
13307 }
13308
13309 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13310 pll->name, pll->config.crtc_mask, pll->on);
13311
13312 if (pll->config.crtc_mask)
13313 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13314 }
13315
13316 for_each_intel_encoder(dev, encoder) {
13317 pipe = 0;
13318
13319 if (encoder->get_hw_state(encoder, &pipe)) {
13320 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13321 encoder->base.crtc = &crtc->base;
13322 encoder->get_config(encoder, &crtc->config);
13323 } else {
13324 encoder->base.crtc = NULL;
13325 }
13326
13327 encoder->connectors_active = false;
13328 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13329 encoder->base.base.id,
13330 encoder->base.name,
13331 encoder->base.crtc ? "enabled" : "disabled",
13332 pipe_name(pipe));
13333 }
13334
13335 list_for_each_entry(connector, &dev->mode_config.connector_list,
13336 base.head) {
13337 if (connector->get_hw_state(connector)) {
13338 connector->base.dpms = DRM_MODE_DPMS_ON;
13339 connector->encoder->connectors_active = true;
13340 connector->base.encoder = &connector->encoder->base;
13341 } else {
13342 connector->base.dpms = DRM_MODE_DPMS_OFF;
13343 connector->base.encoder = NULL;
13344 }
13345 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13346 connector->base.base.id,
13347 connector->base.name,
13348 connector->base.encoder ? "enabled" : "disabled");
13349 }
13350 }
13351
13352 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13353 * and i915 state tracking structures. */
13354 void intel_modeset_setup_hw_state(struct drm_device *dev,
13355 bool force_restore)
13356 {
13357 struct drm_i915_private *dev_priv = dev->dev_private;
13358 enum pipe pipe;
13359 struct intel_crtc *crtc;
13360 struct intel_encoder *encoder;
13361 int i;
13362
13363 intel_modeset_readout_hw_state(dev);
13364
13365 /*
13366 * Now that we have the config, copy it to each CRTC struct
13367 * Note that this could go away if we move to using crtc_config
13368 * checking everywhere.
13369 */
13370 for_each_intel_crtc(dev, crtc) {
13371 if (crtc->active && i915.fastboot) {
13372 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
13373 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13374 crtc->base.base.id);
13375 drm_mode_debug_printmodeline(&crtc->base.mode);
13376 }
13377 }
13378
13379 /* HW state is read out, now we need to sanitize this mess. */
13380 for_each_intel_encoder(dev, encoder) {
13381 intel_sanitize_encoder(encoder);
13382 }
13383
13384 for_each_pipe(dev_priv, pipe) {
13385 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13386 intel_sanitize_crtc(crtc);
13387 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
13388 }
13389
13390 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13391 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13392
13393 if (!pll->on || pll->active)
13394 continue;
13395
13396 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13397
13398 pll->disable(dev_priv, pll);
13399 pll->on = false;
13400 }
13401
13402 if (IS_GEN9(dev))
13403 skl_wm_get_hw_state(dev);
13404 else if (HAS_PCH_SPLIT(dev))
13405 ilk_wm_get_hw_state(dev);
13406
13407 if (force_restore) {
13408 i915_redisable_vga(dev);
13409
13410 /*
13411 * We need to use raw interfaces for restoring state to avoid
13412 * checking (bogus) intermediate states.
13413 */
13414 for_each_pipe(dev_priv, pipe) {
13415 struct drm_crtc *crtc =
13416 dev_priv->pipe_to_crtc_mapping[pipe];
13417
13418 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13419 crtc->primary->fb);
13420 }
13421 } else {
13422 intel_modeset_update_staged_output_state(dev);
13423 }
13424
13425 intel_modeset_check_state(dev);
13426 }
13427
13428 void intel_modeset_gem_init(struct drm_device *dev)
13429 {
13430 struct drm_i915_private *dev_priv = dev->dev_private;
13431 struct drm_crtc *c;
13432 struct drm_i915_gem_object *obj;
13433
13434 mutex_lock(&dev->struct_mutex);
13435 intel_init_gt_powersave(dev);
13436 mutex_unlock(&dev->struct_mutex);
13437
13438 /*
13439 * There may be no VBT; and if the BIOS enabled SSC we can
13440 * just keep using it to avoid unnecessary flicker. Whereas if the
13441 * BIOS isn't using it, don't assume it will work even if the VBT
13442 * indicates as much.
13443 */
13444 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13445 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13446 DREF_SSC1_ENABLE);
13447
13448 intel_modeset_init_hw(dev);
13449
13450 intel_setup_overlay(dev);
13451
13452 /*
13453 * Make sure any fbs we allocated at startup are properly
13454 * pinned & fenced. When we do the allocation it's too early
13455 * for this.
13456 */
13457 mutex_lock(&dev->struct_mutex);
13458 for_each_crtc(dev, c) {
13459 obj = intel_fb_obj(c->primary->fb);
13460 if (obj == NULL)
13461 continue;
13462
13463 if (intel_pin_and_fence_fb_obj(c->primary,
13464 c->primary->fb,
13465 NULL)) {
13466 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13467 to_intel_crtc(c)->pipe);
13468 drm_framebuffer_unreference(c->primary->fb);
13469 c->primary->fb = NULL;
13470 }
13471 }
13472 mutex_unlock(&dev->struct_mutex);
13473
13474 intel_backlight_register(dev);
13475 }
13476
13477 void intel_connector_unregister(struct intel_connector *intel_connector)
13478 {
13479 struct drm_connector *connector = &intel_connector->base;
13480
13481 intel_panel_destroy_backlight(connector);
13482 drm_connector_unregister(connector);
13483 }
13484
13485 void intel_modeset_cleanup(struct drm_device *dev)
13486 {
13487 struct drm_i915_private *dev_priv = dev->dev_private;
13488 struct drm_connector *connector;
13489
13490 intel_backlight_unregister(dev);
13491
13492 /*
13493 * Interrupts and polling as the first thing to avoid creating havoc.
13494 * Too much stuff here (turning of rps, connectors, ...) would
13495 * experience fancy races otherwise.
13496 */
13497 intel_irq_uninstall(dev_priv);
13498
13499 /*
13500 * Due to the hpd irq storm handling the hotplug work can re-arm the
13501 * poll handlers. Hence disable polling after hpd handling is shut down.
13502 */
13503 drm_kms_helper_poll_fini(dev);
13504
13505 mutex_lock(&dev->struct_mutex);
13506
13507 intel_unregister_dsm_handler();
13508
13509 intel_disable_fbc(dev);
13510
13511 intel_disable_gt_powersave(dev);
13512
13513 ironlake_teardown_rc6(dev);
13514
13515 mutex_unlock(&dev->struct_mutex);
13516
13517 /* flush any delayed tasks or pending work */
13518 flush_scheduled_work();
13519
13520 /* destroy the backlight and sysfs files before encoders/connectors */
13521 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13522 struct intel_connector *intel_connector;
13523
13524 intel_connector = to_intel_connector(connector);
13525 intel_connector->unregister(intel_connector);
13526 }
13527
13528 drm_mode_config_cleanup(dev);
13529
13530 intel_cleanup_overlay(dev);
13531
13532 mutex_lock(&dev->struct_mutex);
13533 intel_cleanup_gt_powersave(dev);
13534 mutex_unlock(&dev->struct_mutex);
13535 }
13536
13537 /*
13538 * Return which encoder is currently attached for connector.
13539 */
13540 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13541 {
13542 return &intel_attached_encoder(connector)->base;
13543 }
13544
13545 void intel_connector_attach_encoder(struct intel_connector *connector,
13546 struct intel_encoder *encoder)
13547 {
13548 connector->encoder = encoder;
13549 drm_mode_connector_attach_encoder(&connector->base,
13550 &encoder->base);
13551 }
13552
13553 /*
13554 * set vga decode state - true == enable VGA decode
13555 */
13556 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13557 {
13558 struct drm_i915_private *dev_priv = dev->dev_private;
13559 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13560 u16 gmch_ctrl;
13561
13562 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13563 DRM_ERROR("failed to read control word\n");
13564 return -EIO;
13565 }
13566
13567 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13568 return 0;
13569
13570 if (state)
13571 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13572 else
13573 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13574
13575 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13576 DRM_ERROR("failed to write control word\n");
13577 return -EIO;
13578 }
13579
13580 return 0;
13581 }
13582
13583 struct intel_display_error_state {
13584
13585 u32 power_well_driver;
13586
13587 int num_transcoders;
13588
13589 struct intel_cursor_error_state {
13590 u32 control;
13591 u32 position;
13592 u32 base;
13593 u32 size;
13594 } cursor[I915_MAX_PIPES];
13595
13596 struct intel_pipe_error_state {
13597 bool power_domain_on;
13598 u32 source;
13599 u32 stat;
13600 } pipe[I915_MAX_PIPES];
13601
13602 struct intel_plane_error_state {
13603 u32 control;
13604 u32 stride;
13605 u32 size;
13606 u32 pos;
13607 u32 addr;
13608 u32 surface;
13609 u32 tile_offset;
13610 } plane[I915_MAX_PIPES];
13611
13612 struct intel_transcoder_error_state {
13613 bool power_domain_on;
13614 enum transcoder cpu_transcoder;
13615
13616 u32 conf;
13617
13618 u32 htotal;
13619 u32 hblank;
13620 u32 hsync;
13621 u32 vtotal;
13622 u32 vblank;
13623 u32 vsync;
13624 } transcoder[4];
13625 };
13626
13627 struct intel_display_error_state *
13628 intel_display_capture_error_state(struct drm_device *dev)
13629 {
13630 struct drm_i915_private *dev_priv = dev->dev_private;
13631 struct intel_display_error_state *error;
13632 int transcoders[] = {
13633 TRANSCODER_A,
13634 TRANSCODER_B,
13635 TRANSCODER_C,
13636 TRANSCODER_EDP,
13637 };
13638 int i;
13639
13640 if (INTEL_INFO(dev)->num_pipes == 0)
13641 return NULL;
13642
13643 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13644 if (error == NULL)
13645 return NULL;
13646
13647 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13648 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13649
13650 for_each_pipe(dev_priv, i) {
13651 error->pipe[i].power_domain_on =
13652 __intel_display_power_is_enabled(dev_priv,
13653 POWER_DOMAIN_PIPE(i));
13654 if (!error->pipe[i].power_domain_on)
13655 continue;
13656
13657 error->cursor[i].control = I915_READ(CURCNTR(i));
13658 error->cursor[i].position = I915_READ(CURPOS(i));
13659 error->cursor[i].base = I915_READ(CURBASE(i));
13660
13661 error->plane[i].control = I915_READ(DSPCNTR(i));
13662 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13663 if (INTEL_INFO(dev)->gen <= 3) {
13664 error->plane[i].size = I915_READ(DSPSIZE(i));
13665 error->plane[i].pos = I915_READ(DSPPOS(i));
13666 }
13667 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13668 error->plane[i].addr = I915_READ(DSPADDR(i));
13669 if (INTEL_INFO(dev)->gen >= 4) {
13670 error->plane[i].surface = I915_READ(DSPSURF(i));
13671 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13672 }
13673
13674 error->pipe[i].source = I915_READ(PIPESRC(i));
13675
13676 if (HAS_GMCH_DISPLAY(dev))
13677 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13678 }
13679
13680 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13681 if (HAS_DDI(dev_priv->dev))
13682 error->num_transcoders++; /* Account for eDP. */
13683
13684 for (i = 0; i < error->num_transcoders; i++) {
13685 enum transcoder cpu_transcoder = transcoders[i];
13686
13687 error->transcoder[i].power_domain_on =
13688 __intel_display_power_is_enabled(dev_priv,
13689 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13690 if (!error->transcoder[i].power_domain_on)
13691 continue;
13692
13693 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13694
13695 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13696 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13697 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13698 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13699 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13700 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13701 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13702 }
13703
13704 return error;
13705 }
13706
13707 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13708
13709 void
13710 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13711 struct drm_device *dev,
13712 struct intel_display_error_state *error)
13713 {
13714 struct drm_i915_private *dev_priv = dev->dev_private;
13715 int i;
13716
13717 if (!error)
13718 return;
13719
13720 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13721 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13722 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13723 error->power_well_driver);
13724 for_each_pipe(dev_priv, i) {
13725 err_printf(m, "Pipe [%d]:\n", i);
13726 err_printf(m, " Power: %s\n",
13727 error->pipe[i].power_domain_on ? "on" : "off");
13728 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13729 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13730
13731 err_printf(m, "Plane [%d]:\n", i);
13732 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13733 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13734 if (INTEL_INFO(dev)->gen <= 3) {
13735 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13736 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13737 }
13738 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13739 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13740 if (INTEL_INFO(dev)->gen >= 4) {
13741 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13742 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13743 }
13744
13745 err_printf(m, "Cursor [%d]:\n", i);
13746 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13747 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13748 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13749 }
13750
13751 for (i = 0; i < error->num_transcoders; i++) {
13752 err_printf(m, "CPU transcoder: %c\n",
13753 transcoder_name(error->transcoder[i].cpu_transcoder));
13754 err_printf(m, " Power: %s\n",
13755 error->transcoder[i].power_domain_on ? "on" : "off");
13756 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13757 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13758 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13759 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13760 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13761 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13762 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13763 }
13764 }
13765
13766 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13767 {
13768 struct intel_crtc *crtc;
13769
13770 for_each_intel_crtc(dev, crtc) {
13771 struct intel_unpin_work *work;
13772
13773 spin_lock_irq(&dev->event_lock);
13774
13775 work = crtc->unpin_work;
13776
13777 if (work && work->event &&
13778 work->event->base.file_priv == file) {
13779 kfree(work->event);
13780 work->event = NULL;
13781 }
13782
13783 spin_unlock_irq(&dev->event_lock);
13784 }
13785 }
This page took 0.477126 seconds and 6 git commands to generate.