drm/i915: Remove the PCH paths from the pre-Ironlake crtc_mode_set().
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
60
61 typedef struct {
62 int min, max;
63 } intel_range_t;
64
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
77 };
78
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
102
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
141
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
162
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
181
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
200
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
219
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
238
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
242 */
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
252
253 /* We have parameter ranges for different type of outputs. */
254
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
266
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
278
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
290
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
302
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
314
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
327
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
330
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
337
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
344
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
347 {
348 if (IS_GEN5(dev)) {
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
351 } else
352 return 27;
353 }
354
355 static const intel_limit_t intel_limits_i8xx_dvo = {
356 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
357 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
358 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
359 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
360 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
361 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
362 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
363 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
364 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
365 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
366 .find_pll = intel_find_best_PLL,
367 };
368
369 static const intel_limit_t intel_limits_i8xx_lvds = {
370 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
371 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
372 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
373 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
374 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
375 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
376 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
377 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
378 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
379 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
380 .find_pll = intel_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_i9xx_sdvo = {
384 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
385 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
386 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
387 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
388 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
389 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
390 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
391 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
392 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
393 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
394 .find_pll = intel_find_best_PLL,
395 };
396
397 static const intel_limit_t intel_limits_i9xx_lvds = {
398 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
399 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
400 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
401 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
402 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
403 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
404 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
405 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
406 /* The single-channel range is 25-112Mhz, and dual-channel
407 * is 80-224Mhz. Prefer single channel as much as possible.
408 */
409 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
410 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
411 .find_pll = intel_find_best_PLL,
412 };
413
414 /* below parameter and function is for G4X Chipset Family*/
415 static const intel_limit_t intel_limits_g4x_sdvo = {
416 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
419 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
420 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
421 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
422 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
423 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
424 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
425 .p2_slow = G4X_P2_SDVO_SLOW,
426 .p2_fast = G4X_P2_SDVO_FAST
427 },
428 .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_hdmi = {
432 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
433 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
434 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
435 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
436 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
437 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
438 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
439 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
440 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
441 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
442 .p2_fast = G4X_P2_HDMI_DAC_FAST
443 },
444 .find_pll = intel_g4x_find_best_PLL,
445 };
446
447 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
448 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
449 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
450 .vco = { .min = G4X_VCO_MIN,
451 .max = G4X_VCO_MAX },
452 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
453 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
454 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
455 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
456 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
457 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
458 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
459 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
460 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
461 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
462 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
463 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
464 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
465 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
466 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
467 },
468 .find_pll = intel_g4x_find_best_PLL,
469 };
470
471 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
472 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
473 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
474 .vco = { .min = G4X_VCO_MIN,
475 .max = G4X_VCO_MAX },
476 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
477 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
478 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
479 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
480 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
481 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
482 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
483 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
484 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
485 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
486 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
487 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
488 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
489 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
490 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
491 },
492 .find_pll = intel_g4x_find_best_PLL,
493 };
494
495 static const intel_limit_t intel_limits_g4x_display_port = {
496 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
497 .max = G4X_DOT_DISPLAY_PORT_MAX },
498 .vco = { .min = G4X_VCO_MIN,
499 .max = G4X_VCO_MAX},
500 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
501 .max = G4X_N_DISPLAY_PORT_MAX },
502 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
503 .max = G4X_M_DISPLAY_PORT_MAX },
504 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
505 .max = G4X_M1_DISPLAY_PORT_MAX },
506 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
507 .max = G4X_M2_DISPLAY_PORT_MAX },
508 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
509 .max = G4X_P_DISPLAY_PORT_MAX },
510 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
511 .max = G4X_P1_DISPLAY_PORT_MAX},
512 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
513 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
514 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
515 .find_pll = intel_find_pll_g4x_dp,
516 };
517
518 static const intel_limit_t intel_limits_pineview_sdvo = {
519 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
520 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
521 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
522 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
523 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
524 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
525 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
526 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
527 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
528 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
529 .find_pll = intel_find_best_PLL,
530 };
531
532 static const intel_limit_t intel_limits_pineview_lvds = {
533 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
534 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
535 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
536 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
537 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
538 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
539 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
540 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
541 /* Pineview only supports single-channel mode. */
542 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
543 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
544 .find_pll = intel_find_best_PLL,
545 };
546
547 static const intel_limit_t intel_limits_ironlake_dac = {
548 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
549 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
550 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
551 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
552 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
553 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
554 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
555 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
556 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
557 .p2_slow = IRONLAKE_DAC_P2_SLOW,
558 .p2_fast = IRONLAKE_DAC_P2_FAST },
559 .find_pll = intel_g4x_find_best_PLL,
560 };
561
562 static const intel_limit_t intel_limits_ironlake_single_lvds = {
563 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
564 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
565 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
566 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
567 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
568 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
569 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
570 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
571 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
572 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
573 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
574 .find_pll = intel_g4x_find_best_PLL,
575 };
576
577 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
578 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
579 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
580 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
581 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
582 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
583 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
584 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
585 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
586 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
587 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
588 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
589 .find_pll = intel_g4x_find_best_PLL,
590 };
591
592 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
593 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
594 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
595 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
596 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
597 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
598 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
599 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
600 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
601 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
602 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
603 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
604 .find_pll = intel_g4x_find_best_PLL,
605 };
606
607 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
608 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
610 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
611 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
612 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
613 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
614 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
615 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
616 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
617 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
618 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
619 .find_pll = intel_g4x_find_best_PLL,
620 };
621
622 static const intel_limit_t intel_limits_ironlake_display_port = {
623 .dot = { .min = IRONLAKE_DOT_MIN,
624 .max = IRONLAKE_DOT_MAX },
625 .vco = { .min = IRONLAKE_VCO_MIN,
626 .max = IRONLAKE_VCO_MAX},
627 .n = { .min = IRONLAKE_DP_N_MIN,
628 .max = IRONLAKE_DP_N_MAX },
629 .m = { .min = IRONLAKE_DP_M_MIN,
630 .max = IRONLAKE_DP_M_MAX },
631 .m1 = { .min = IRONLAKE_M1_MIN,
632 .max = IRONLAKE_M1_MAX },
633 .m2 = { .min = IRONLAKE_M2_MIN,
634 .max = IRONLAKE_M2_MAX },
635 .p = { .min = IRONLAKE_DP_P_MIN,
636 .max = IRONLAKE_DP_P_MAX },
637 .p1 = { .min = IRONLAKE_DP_P1_MIN,
638 .max = IRONLAKE_DP_P1_MAX},
639 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
640 .p2_slow = IRONLAKE_DP_P2_SLOW,
641 .p2_fast = IRONLAKE_DP_P2_FAST },
642 .find_pll = intel_find_pll_ironlake_dp,
643 };
644
645 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
646 int refclk)
647 {
648 struct drm_device *dev = crtc->dev;
649 struct drm_i915_private *dev_priv = dev->dev_private;
650 const intel_limit_t *limit;
651
652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
653 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654 LVDS_CLKB_POWER_UP) {
655 /* LVDS dual channel */
656 if (refclk == 100000)
657 limit = &intel_limits_ironlake_dual_lvds_100m;
658 else
659 limit = &intel_limits_ironlake_dual_lvds;
660 } else {
661 if (refclk == 100000)
662 limit = &intel_limits_ironlake_single_lvds_100m;
663 else
664 limit = &intel_limits_ironlake_single_lvds;
665 }
666 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667 HAS_eDP)
668 limit = &intel_limits_ironlake_display_port;
669 else
670 limit = &intel_limits_ironlake_dac;
671
672 return limit;
673 }
674
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
676 {
677 struct drm_device *dev = crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 const intel_limit_t *limit;
680
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683 LVDS_CLKB_POWER_UP)
684 /* LVDS with dual channel */
685 limit = &intel_limits_g4x_dual_channel_lvds;
686 else
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_single_channel_lvds;
689 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691 limit = &intel_limits_g4x_hdmi;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693 limit = &intel_limits_g4x_sdvo;
694 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695 limit = &intel_limits_g4x_display_port;
696 } else /* The option is for other outputs */
697 limit = &intel_limits_i9xx_sdvo;
698
699 return limit;
700 }
701
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
703 {
704 struct drm_device *dev = crtc->dev;
705 const intel_limit_t *limit;
706
707 if (HAS_PCH_SPLIT(dev))
708 limit = intel_ironlake_limit(crtc, refclk);
709 else if (IS_G4X(dev)) {
710 limit = intel_g4x_limit(crtc);
711 } else if (IS_PINEVIEW(dev)) {
712 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713 limit = &intel_limits_pineview_lvds;
714 else
715 limit = &intel_limits_pineview_sdvo;
716 } else if (!IS_GEN2(dev)) {
717 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718 limit = &intel_limits_i9xx_lvds;
719 else
720 limit = &intel_limits_i9xx_sdvo;
721 } else {
722 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723 limit = &intel_limits_i8xx_lvds;
724 else
725 limit = &intel_limits_i8xx_dvo;
726 }
727 return limit;
728 }
729
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
732 {
733 clock->m = clock->m2 + 2;
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / clock->n;
736 clock->dot = clock->vco / clock->p;
737 }
738
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
740 {
741 if (IS_PINEVIEW(dev)) {
742 pineview_clock(refclk, clock);
743 return;
744 }
745 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746 clock->p = clock->p1 * clock->p2;
747 clock->vco = refclk * clock->m / (clock->n + 2);
748 clock->dot = clock->vco / clock->p;
749 }
750
751 /**
752 * Returns whether any output on the specified pipe is of the specified type
753 */
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
755 {
756 struct drm_device *dev = crtc->dev;
757 struct drm_mode_config *mode_config = &dev->mode_config;
758 struct intel_encoder *encoder;
759
760 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761 if (encoder->base.crtc == crtc && encoder->type == type)
762 return true;
763
764 return false;
765 }
766
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
768 /**
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
771 */
772
773 static bool intel_PLL_is_valid(struct drm_device *dev,
774 const intel_limit_t *limit,
775 const intel_clock_t *clock)
776 {
777 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
778 INTELPllInvalid ("p1 out of range\n");
779 if (clock->p < limit->p.min || limit->p.max < clock->p)
780 INTELPllInvalid ("p out of range\n");
781 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
782 INTELPllInvalid ("m2 out of range\n");
783 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
784 INTELPllInvalid ("m1 out of range\n");
785 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
786 INTELPllInvalid ("m1 <= m2\n");
787 if (clock->m < limit->m.min || limit->m.max < clock->m)
788 INTELPllInvalid ("m out of range\n");
789 if (clock->n < limit->n.min || limit->n.max < clock->n)
790 INTELPllInvalid ("n out of range\n");
791 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
792 INTELPllInvalid ("vco out of range\n");
793 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
794 * connector, etc., rather than just a single range.
795 */
796 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
797 INTELPllInvalid ("dot out of range\n");
798
799 return true;
800 }
801
802 static bool
803 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
804 int target, int refclk, intel_clock_t *best_clock)
805
806 {
807 struct drm_device *dev = crtc->dev;
808 struct drm_i915_private *dev_priv = dev->dev_private;
809 intel_clock_t clock;
810 int err = target;
811
812 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
813 (I915_READ(LVDS)) != 0) {
814 /*
815 * For LVDS, if the panel is on, just rely on its current
816 * settings for dual-channel. We haven't figured out how to
817 * reliably set up different single/dual channel state, if we
818 * even can.
819 */
820 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
821 LVDS_CLKB_POWER_UP)
822 clock.p2 = limit->p2.p2_fast;
823 else
824 clock.p2 = limit->p2.p2_slow;
825 } else {
826 if (target < limit->p2.dot_limit)
827 clock.p2 = limit->p2.p2_slow;
828 else
829 clock.p2 = limit->p2.p2_fast;
830 }
831
832 memset (best_clock, 0, sizeof (*best_clock));
833
834 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
835 clock.m1++) {
836 for (clock.m2 = limit->m2.min;
837 clock.m2 <= limit->m2.max; clock.m2++) {
838 /* m1 is always 0 in Pineview */
839 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
840 break;
841 for (clock.n = limit->n.min;
842 clock.n <= limit->n.max; clock.n++) {
843 for (clock.p1 = limit->p1.min;
844 clock.p1 <= limit->p1.max; clock.p1++) {
845 int this_err;
846
847 intel_clock(dev, refclk, &clock);
848 if (!intel_PLL_is_valid(dev, limit,
849 &clock))
850 continue;
851
852 this_err = abs(clock.dot - target);
853 if (this_err < err) {
854 *best_clock = clock;
855 err = this_err;
856 }
857 }
858 }
859 }
860 }
861
862 return (err != target);
863 }
864
865 static bool
866 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
867 int target, int refclk, intel_clock_t *best_clock)
868 {
869 struct drm_device *dev = crtc->dev;
870 struct drm_i915_private *dev_priv = dev->dev_private;
871 intel_clock_t clock;
872 int max_n;
873 bool found;
874 /* approximately equals target * 0.00585 */
875 int err_most = (target >> 8) + (target >> 9);
876 found = false;
877
878 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879 int lvds_reg;
880
881 if (HAS_PCH_SPLIT(dev))
882 lvds_reg = PCH_LVDS;
883 else
884 lvds_reg = LVDS;
885 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
886 LVDS_CLKB_POWER_UP)
887 clock.p2 = limit->p2.p2_fast;
888 else
889 clock.p2 = limit->p2.p2_slow;
890 } else {
891 if (target < limit->p2.dot_limit)
892 clock.p2 = limit->p2.p2_slow;
893 else
894 clock.p2 = limit->p2.p2_fast;
895 }
896
897 memset(best_clock, 0, sizeof(*best_clock));
898 max_n = limit->n.max;
899 /* based on hardware requirement, prefer smaller n to precision */
900 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
901 /* based on hardware requirement, prefere larger m1,m2 */
902 for (clock.m1 = limit->m1.max;
903 clock.m1 >= limit->m1.min; clock.m1--) {
904 for (clock.m2 = limit->m2.max;
905 clock.m2 >= limit->m2.min; clock.m2--) {
906 for (clock.p1 = limit->p1.max;
907 clock.p1 >= limit->p1.min; clock.p1--) {
908 int this_err;
909
910 intel_clock(dev, refclk, &clock);
911 if (!intel_PLL_is_valid(dev, limit,
912 &clock))
913 continue;
914
915 this_err = abs(clock.dot - target);
916 if (this_err < err_most) {
917 *best_clock = clock;
918 err_most = this_err;
919 max_n = clock.n;
920 found = true;
921 }
922 }
923 }
924 }
925 }
926 return found;
927 }
928
929 static bool
930 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
931 int target, int refclk, intel_clock_t *best_clock)
932 {
933 struct drm_device *dev = crtc->dev;
934 intel_clock_t clock;
935
936 if (target < 200000) {
937 clock.n = 1;
938 clock.p1 = 2;
939 clock.p2 = 10;
940 clock.m1 = 12;
941 clock.m2 = 9;
942 } else {
943 clock.n = 2;
944 clock.p1 = 1;
945 clock.p2 = 10;
946 clock.m1 = 14;
947 clock.m2 = 8;
948 }
949 intel_clock(dev, refclk, &clock);
950 memcpy(best_clock, &clock, sizeof(intel_clock_t));
951 return true;
952 }
953
954 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 static bool
956 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
957 int target, int refclk, intel_clock_t *best_clock)
958 {
959 intel_clock_t clock;
960 if (target < 200000) {
961 clock.p1 = 2;
962 clock.p2 = 10;
963 clock.n = 2;
964 clock.m1 = 23;
965 clock.m2 = 8;
966 } else {
967 clock.p1 = 1;
968 clock.p2 = 10;
969 clock.n = 1;
970 clock.m1 = 14;
971 clock.m2 = 2;
972 }
973 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
974 clock.p = (clock.p1 * clock.p2);
975 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
976 clock.vco = 0;
977 memcpy(best_clock, &clock, sizeof(intel_clock_t));
978 return true;
979 }
980
981 /**
982 * intel_wait_for_vblank - wait for vblank on a given pipe
983 * @dev: drm device
984 * @pipe: pipe to wait for
985 *
986 * Wait for vblank to occur on a given pipe. Needed for various bits of
987 * mode setting code.
988 */
989 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 {
991 struct drm_i915_private *dev_priv = dev->dev_private;
992 int pipestat_reg = PIPESTAT(pipe);
993
994 /* Clear existing vblank status. Note this will clear any other
995 * sticky status fields as well.
996 *
997 * This races with i915_driver_irq_handler() with the result
998 * that either function could miss a vblank event. Here it is not
999 * fatal, as we will either wait upon the next vblank interrupt or
1000 * timeout. Generally speaking intel_wait_for_vblank() is only
1001 * called during modeset at which time the GPU should be idle and
1002 * should *not* be performing page flips and thus not waiting on
1003 * vblanks...
1004 * Currently, the result of us stealing a vblank from the irq
1005 * handler is that a single frame will be skipped during swapbuffers.
1006 */
1007 I915_WRITE(pipestat_reg,
1008 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009
1010 /* Wait for vblank interrupt bit to set */
1011 if (wait_for(I915_READ(pipestat_reg) &
1012 PIPE_VBLANK_INTERRUPT_STATUS,
1013 50))
1014 DRM_DEBUG_KMS("vblank wait timed out\n");
1015 }
1016
1017 /*
1018 * intel_wait_for_pipe_off - wait for pipe to turn off
1019 * @dev: drm device
1020 * @pipe: pipe to wait for
1021 *
1022 * After disabling a pipe, we can't wait for vblank in the usual way,
1023 * spinning on the vblank interrupt status bit, since we won't actually
1024 * see an interrupt when the pipe is disabled.
1025 *
1026 * On Gen4 and above:
1027 * wait for the pipe register state bit to turn off
1028 *
1029 * Otherwise:
1030 * wait for the display line value to settle (it usually
1031 * ends up stopping at the start of the next frame).
1032 *
1033 */
1034 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1035 {
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1037
1038 if (INTEL_INFO(dev)->gen >= 4) {
1039 int reg = PIPECONF(pipe);
1040
1041 /* Wait for the Pipe State to go off */
1042 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1043 100))
1044 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1045 } else {
1046 u32 last_line;
1047 int reg = PIPEDSL(pipe);
1048 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1049
1050 /* Wait for the display line to settle */
1051 do {
1052 last_line = I915_READ(reg) & DSL_LINEMASK;
1053 mdelay(5);
1054 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1055 time_after(timeout, jiffies));
1056 if (time_after(jiffies, timeout))
1057 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1058 }
1059 }
1060
1061 static const char *state_string(bool enabled)
1062 {
1063 return enabled ? "on" : "off";
1064 }
1065
1066 /* Only for pre-ILK configs */
1067 static void assert_pll(struct drm_i915_private *dev_priv,
1068 enum pipe pipe, bool state)
1069 {
1070 int reg;
1071 u32 val;
1072 bool cur_state;
1073
1074 reg = DPLL(pipe);
1075 val = I915_READ(reg);
1076 cur_state = !!(val & DPLL_VCO_ENABLE);
1077 WARN(cur_state != state,
1078 "PLL state assertion failure (expected %s, current %s)\n",
1079 state_string(state), state_string(cur_state));
1080 }
1081 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1082 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1083
1084 /* For ILK+ */
1085 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1086 enum pipe pipe, bool state)
1087 {
1088 int reg;
1089 u32 val;
1090 bool cur_state;
1091
1092 reg = PCH_DPLL(pipe);
1093 val = I915_READ(reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state assertion failure (expected %s, current %s)\n",
1097 state_string(state), state_string(cur_state));
1098 }
1099 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
1100 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
1101
1102 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1103 enum pipe pipe, bool state)
1104 {
1105 int reg;
1106 u32 val;
1107 bool cur_state;
1108
1109 reg = FDI_TX_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & FDI_TX_ENABLE);
1112 WARN(cur_state != state,
1113 "FDI TX state assertion failure (expected %s, current %s)\n",
1114 state_string(state), state_string(cur_state));
1115 }
1116 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1117 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1118
1119 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1120 enum pipe pipe, bool state)
1121 {
1122 int reg;
1123 u32 val;
1124 bool cur_state;
1125
1126 reg = FDI_RX_CTL(pipe);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & FDI_RX_ENABLE);
1129 WARN(cur_state != state,
1130 "FDI RX state assertion failure (expected %s, current %s)\n",
1131 state_string(state), state_string(cur_state));
1132 }
1133 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1134 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1135
1136 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1137 enum pipe pipe)
1138 {
1139 int reg;
1140 u32 val;
1141
1142 /* ILK FDI PLL is always enabled */
1143 if (dev_priv->info->gen == 5)
1144 return;
1145
1146 reg = FDI_TX_CTL(pipe);
1147 val = I915_READ(reg);
1148 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1149 }
1150
1151 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1152 enum pipe pipe)
1153 {
1154 int reg;
1155 u32 val;
1156
1157 reg = FDI_RX_CTL(pipe);
1158 val = I915_READ(reg);
1159 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1160 }
1161
1162 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1163 enum pipe pipe)
1164 {
1165 int pp_reg, lvds_reg;
1166 u32 val;
1167 enum pipe panel_pipe = PIPE_A;
1168 bool locked = locked;
1169
1170 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1171 pp_reg = PCH_PP_CONTROL;
1172 lvds_reg = PCH_LVDS;
1173 } else {
1174 pp_reg = PP_CONTROL;
1175 lvds_reg = LVDS;
1176 }
1177
1178 val = I915_READ(pp_reg);
1179 if (!(val & PANEL_POWER_ON) ||
1180 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1181 locked = false;
1182
1183 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1184 panel_pipe = PIPE_B;
1185
1186 WARN(panel_pipe == pipe && locked,
1187 "panel assertion failure, pipe %c regs locked\n",
1188 pipe_name(pipe));
1189 }
1190
1191 static void assert_pipe(struct drm_i915_private *dev_priv,
1192 enum pipe pipe, bool state)
1193 {
1194 int reg;
1195 u32 val;
1196 bool cur_state;
1197
1198 reg = PIPECONF(pipe);
1199 val = I915_READ(reg);
1200 cur_state = !!(val & PIPECONF_ENABLE);
1201 WARN(cur_state != state,
1202 "pipe %c assertion failure (expected %s, current %s)\n",
1203 pipe_name(pipe), state_string(state), state_string(cur_state));
1204 }
1205 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
1206 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
1207
1208 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
1209 enum plane plane)
1210 {
1211 int reg;
1212 u32 val;
1213
1214 reg = DSPCNTR(plane);
1215 val = I915_READ(reg);
1216 WARN(!(val & DISPLAY_PLANE_ENABLE),
1217 "plane %c assertion failure, should be active but is disabled\n",
1218 plane_name(plane));
1219 }
1220
1221 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1222 enum pipe pipe)
1223 {
1224 int reg, i;
1225 u32 val;
1226 int cur_pipe;
1227
1228 /* Planes are fixed to pipes on ILK+ */
1229 if (HAS_PCH_SPLIT(dev_priv->dev))
1230 return;
1231
1232 /* Need to check both planes against the pipe */
1233 for (i = 0; i < 2; i++) {
1234 reg = DSPCNTR(i);
1235 val = I915_READ(reg);
1236 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1237 DISPPLANE_SEL_PIPE_SHIFT;
1238 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1239 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1240 plane_name(i), pipe_name(pipe));
1241 }
1242 }
1243
1244 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1245 {
1246 u32 val;
1247 bool enabled;
1248
1249 val = I915_READ(PCH_DREF_CONTROL);
1250 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1251 DREF_SUPERSPREAD_SOURCE_MASK));
1252 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1253 }
1254
1255 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1256 enum pipe pipe)
1257 {
1258 int reg;
1259 u32 val;
1260 bool enabled;
1261
1262 reg = TRANSCONF(pipe);
1263 val = I915_READ(reg);
1264 enabled = !!(val & TRANS_ENABLE);
1265 WARN(enabled,
1266 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1267 pipe_name(pipe));
1268 }
1269
1270 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1271 enum pipe pipe, int reg)
1272 {
1273 u32 val = I915_READ(reg);
1274 WARN(DP_PIPE_ENABLED(val, pipe),
1275 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1276 reg, pipe_name(pipe));
1277 }
1278
1279 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1280 enum pipe pipe, int reg)
1281 {
1282 u32 val = I915_READ(reg);
1283 WARN(HDMI_PIPE_ENABLED(val, pipe),
1284 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1285 reg, pipe_name(pipe));
1286 }
1287
1288 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1289 enum pipe pipe)
1290 {
1291 int reg;
1292 u32 val;
1293
1294 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1295 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1296 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1297
1298 reg = PCH_ADPA;
1299 val = I915_READ(reg);
1300 WARN(ADPA_PIPE_ENABLED(val, pipe),
1301 "PCH VGA enabled on transcoder %c, should be disabled\n",
1302 pipe_name(pipe));
1303
1304 reg = PCH_LVDS;
1305 val = I915_READ(reg);
1306 WARN(LVDS_PIPE_ENABLED(val, pipe),
1307 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1308 pipe_name(pipe));
1309
1310 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1311 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1312 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1313 }
1314
1315 /**
1316 * intel_enable_pll - enable a PLL
1317 * @dev_priv: i915 private structure
1318 * @pipe: pipe PLL to enable
1319 *
1320 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1321 * make sure the PLL reg is writable first though, since the panel write
1322 * protect mechanism may be enabled.
1323 *
1324 * Note! This is for pre-ILK only.
1325 */
1326 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1327 {
1328 int reg;
1329 u32 val;
1330
1331 /* No really, not for ILK+ */
1332 BUG_ON(dev_priv->info->gen >= 5);
1333
1334 /* PLL is protected by panel, make sure we can write it */
1335 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1336 assert_panel_unlocked(dev_priv, pipe);
1337
1338 reg = DPLL(pipe);
1339 val = I915_READ(reg);
1340 val |= DPLL_VCO_ENABLE;
1341
1342 /* We do this three times for luck */
1343 I915_WRITE(reg, val);
1344 POSTING_READ(reg);
1345 udelay(150); /* wait for warmup */
1346 I915_WRITE(reg, val);
1347 POSTING_READ(reg);
1348 udelay(150); /* wait for warmup */
1349 I915_WRITE(reg, val);
1350 POSTING_READ(reg);
1351 udelay(150); /* wait for warmup */
1352 }
1353
1354 /**
1355 * intel_disable_pll - disable a PLL
1356 * @dev_priv: i915 private structure
1357 * @pipe: pipe PLL to disable
1358 *
1359 * Disable the PLL for @pipe, making sure the pipe is off first.
1360 *
1361 * Note! This is for pre-ILK only.
1362 */
1363 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1364 {
1365 int reg;
1366 u32 val;
1367
1368 /* Don't disable pipe A or pipe A PLLs if needed */
1369 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1370 return;
1371
1372 /* Make sure the pipe isn't still relying on us */
1373 assert_pipe_disabled(dev_priv, pipe);
1374
1375 reg = DPLL(pipe);
1376 val = I915_READ(reg);
1377 val &= ~DPLL_VCO_ENABLE;
1378 I915_WRITE(reg, val);
1379 POSTING_READ(reg);
1380 }
1381
1382 /**
1383 * intel_enable_pch_pll - enable PCH PLL
1384 * @dev_priv: i915 private structure
1385 * @pipe: pipe PLL to enable
1386 *
1387 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1388 * drives the transcoder clock.
1389 */
1390 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1391 enum pipe pipe)
1392 {
1393 int reg;
1394 u32 val;
1395
1396 /* PCH only available on ILK+ */
1397 BUG_ON(dev_priv->info->gen < 5);
1398
1399 /* PCH refclock must be enabled first */
1400 assert_pch_refclk_enabled(dev_priv);
1401
1402 reg = PCH_DPLL(pipe);
1403 val = I915_READ(reg);
1404 val |= DPLL_VCO_ENABLE;
1405 I915_WRITE(reg, val);
1406 POSTING_READ(reg);
1407 udelay(200);
1408 }
1409
1410 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1411 enum pipe pipe)
1412 {
1413 int reg;
1414 u32 val;
1415
1416 /* PCH only available on ILK+ */
1417 BUG_ON(dev_priv->info->gen < 5);
1418
1419 /* Make sure transcoder isn't still depending on us */
1420 assert_transcoder_disabled(dev_priv, pipe);
1421
1422 reg = PCH_DPLL(pipe);
1423 val = I915_READ(reg);
1424 val &= ~DPLL_VCO_ENABLE;
1425 I915_WRITE(reg, val);
1426 POSTING_READ(reg);
1427 udelay(200);
1428 }
1429
1430 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1431 enum pipe pipe)
1432 {
1433 int reg;
1434 u32 val;
1435
1436 /* PCH only available on ILK+ */
1437 BUG_ON(dev_priv->info->gen < 5);
1438
1439 /* Make sure PCH DPLL is enabled */
1440 assert_pch_pll_enabled(dev_priv, pipe);
1441
1442 /* FDI must be feeding us bits for PCH ports */
1443 assert_fdi_tx_enabled(dev_priv, pipe);
1444 assert_fdi_rx_enabled(dev_priv, pipe);
1445
1446 reg = TRANSCONF(pipe);
1447 val = I915_READ(reg);
1448 /*
1449 * make the BPC in transcoder be consistent with
1450 * that in pipeconf reg.
1451 */
1452 val &= ~PIPE_BPC_MASK;
1453 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1454 I915_WRITE(reg, val | TRANS_ENABLE);
1455 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1456 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1457 }
1458
1459 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1460 enum pipe pipe)
1461 {
1462 int reg;
1463 u32 val;
1464
1465 /* FDI relies on the transcoder */
1466 assert_fdi_tx_disabled(dev_priv, pipe);
1467 assert_fdi_rx_disabled(dev_priv, pipe);
1468
1469 /* Ports must be off as well */
1470 assert_pch_ports_disabled(dev_priv, pipe);
1471
1472 reg = TRANSCONF(pipe);
1473 val = I915_READ(reg);
1474 val &= ~TRANS_ENABLE;
1475 I915_WRITE(reg, val);
1476 /* wait for PCH transcoder off, transcoder state */
1477 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1478 DRM_ERROR("failed to disable transcoder\n");
1479 }
1480
1481 /**
1482 * intel_enable_pipe - enable a pipe, asserting requirements
1483 * @dev_priv: i915 private structure
1484 * @pipe: pipe to enable
1485 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1486 *
1487 * Enable @pipe, making sure that various hardware specific requirements
1488 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1489 *
1490 * @pipe should be %PIPE_A or %PIPE_B.
1491 *
1492 * Will wait until the pipe is actually running (i.e. first vblank) before
1493 * returning.
1494 */
1495 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1496 bool pch_port)
1497 {
1498 int reg;
1499 u32 val;
1500
1501 /*
1502 * A pipe without a PLL won't actually be able to drive bits from
1503 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1504 * need the check.
1505 */
1506 if (!HAS_PCH_SPLIT(dev_priv->dev))
1507 assert_pll_enabled(dev_priv, pipe);
1508 else {
1509 if (pch_port) {
1510 /* if driving the PCH, we need FDI enabled */
1511 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1512 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1513 }
1514 /* FIXME: assert CPU port conditions for SNB+ */
1515 }
1516
1517 reg = PIPECONF(pipe);
1518 val = I915_READ(reg);
1519 if (val & PIPECONF_ENABLE)
1520 return;
1521
1522 I915_WRITE(reg, val | PIPECONF_ENABLE);
1523 intel_wait_for_vblank(dev_priv->dev, pipe);
1524 }
1525
1526 /**
1527 * intel_disable_pipe - disable a pipe, asserting requirements
1528 * @dev_priv: i915 private structure
1529 * @pipe: pipe to disable
1530 *
1531 * Disable @pipe, making sure that various hardware specific requirements
1532 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1533 *
1534 * @pipe should be %PIPE_A or %PIPE_B.
1535 *
1536 * Will wait until the pipe has shut down before returning.
1537 */
1538 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1539 enum pipe pipe)
1540 {
1541 int reg;
1542 u32 val;
1543
1544 /*
1545 * Make sure planes won't keep trying to pump pixels to us,
1546 * or we might hang the display.
1547 */
1548 assert_planes_disabled(dev_priv, pipe);
1549
1550 /* Don't disable pipe A or pipe A PLLs if needed */
1551 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1552 return;
1553
1554 reg = PIPECONF(pipe);
1555 val = I915_READ(reg);
1556 if ((val & PIPECONF_ENABLE) == 0)
1557 return;
1558
1559 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1560 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1561 }
1562
1563 /**
1564 * intel_enable_plane - enable a display plane on a given pipe
1565 * @dev_priv: i915 private structure
1566 * @plane: plane to enable
1567 * @pipe: pipe being fed
1568 *
1569 * Enable @plane on @pipe, making sure that @pipe is running first.
1570 */
1571 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1572 enum plane plane, enum pipe pipe)
1573 {
1574 int reg;
1575 u32 val;
1576
1577 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1578 assert_pipe_enabled(dev_priv, pipe);
1579
1580 reg = DSPCNTR(plane);
1581 val = I915_READ(reg);
1582 if (val & DISPLAY_PLANE_ENABLE)
1583 return;
1584
1585 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1586 intel_wait_for_vblank(dev_priv->dev, pipe);
1587 }
1588
1589 /*
1590 * Plane regs are double buffered, going from enabled->disabled needs a
1591 * trigger in order to latch. The display address reg provides this.
1592 */
1593 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1594 enum plane plane)
1595 {
1596 u32 reg = DSPADDR(plane);
1597 I915_WRITE(reg, I915_READ(reg));
1598 }
1599
1600 /**
1601 * intel_disable_plane - disable a display plane
1602 * @dev_priv: i915 private structure
1603 * @plane: plane to disable
1604 * @pipe: pipe consuming the data
1605 *
1606 * Disable @plane; should be an independent operation.
1607 */
1608 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1609 enum plane plane, enum pipe pipe)
1610 {
1611 int reg;
1612 u32 val;
1613
1614 reg = DSPCNTR(plane);
1615 val = I915_READ(reg);
1616 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1617 return;
1618
1619 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1620 intel_flush_display_plane(dev_priv, plane);
1621 intel_wait_for_vblank(dev_priv->dev, pipe);
1622 }
1623
1624 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1625 enum pipe pipe, int reg)
1626 {
1627 u32 val = I915_READ(reg);
1628 if (DP_PIPE_ENABLED(val, pipe))
1629 I915_WRITE(reg, val & ~DP_PORT_EN);
1630 }
1631
1632 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1633 enum pipe pipe, int reg)
1634 {
1635 u32 val = I915_READ(reg);
1636 if (HDMI_PIPE_ENABLED(val, pipe))
1637 I915_WRITE(reg, val & ~PORT_ENABLE);
1638 }
1639
1640 /* Disable any ports connected to this transcoder */
1641 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1642 enum pipe pipe)
1643 {
1644 u32 reg, val;
1645
1646 val = I915_READ(PCH_PP_CONTROL);
1647 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1648
1649 disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1650 disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1651 disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1652
1653 reg = PCH_ADPA;
1654 val = I915_READ(reg);
1655 if (ADPA_PIPE_ENABLED(val, pipe))
1656 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1657
1658 reg = PCH_LVDS;
1659 val = I915_READ(reg);
1660 if (LVDS_PIPE_ENABLED(val, pipe)) {
1661 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1662 POSTING_READ(reg);
1663 udelay(100);
1664 }
1665
1666 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1667 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1668 disable_pch_hdmi(dev_priv, pipe, HDMID);
1669 }
1670
1671 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1672 {
1673 struct drm_device *dev = crtc->dev;
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 struct drm_framebuffer *fb = crtc->fb;
1676 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1677 struct drm_i915_gem_object *obj = intel_fb->obj;
1678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1679 int plane, i;
1680 u32 fbc_ctl, fbc_ctl2;
1681
1682 if (fb->pitch == dev_priv->cfb_pitch &&
1683 obj->fence_reg == dev_priv->cfb_fence &&
1684 intel_crtc->plane == dev_priv->cfb_plane &&
1685 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1686 return;
1687
1688 i8xx_disable_fbc(dev);
1689
1690 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1691
1692 if (fb->pitch < dev_priv->cfb_pitch)
1693 dev_priv->cfb_pitch = fb->pitch;
1694
1695 /* FBC_CTL wants 64B units */
1696 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1697 dev_priv->cfb_fence = obj->fence_reg;
1698 dev_priv->cfb_plane = intel_crtc->plane;
1699 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1700
1701 /* Clear old tags */
1702 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1703 I915_WRITE(FBC_TAG + (i * 4), 0);
1704
1705 /* Set it up... */
1706 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1707 if (obj->tiling_mode != I915_TILING_NONE)
1708 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1709 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1710 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1711
1712 /* enable it... */
1713 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1714 if (IS_I945GM(dev))
1715 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1716 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1717 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1718 if (obj->tiling_mode != I915_TILING_NONE)
1719 fbc_ctl |= dev_priv->cfb_fence;
1720 I915_WRITE(FBC_CONTROL, fbc_ctl);
1721
1722 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1723 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1724 }
1725
1726 void i8xx_disable_fbc(struct drm_device *dev)
1727 {
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 fbc_ctl;
1730
1731 /* Disable compression */
1732 fbc_ctl = I915_READ(FBC_CONTROL);
1733 if ((fbc_ctl & FBC_CTL_EN) == 0)
1734 return;
1735
1736 fbc_ctl &= ~FBC_CTL_EN;
1737 I915_WRITE(FBC_CONTROL, fbc_ctl);
1738
1739 /* Wait for compressing bit to clear */
1740 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1741 DRM_DEBUG_KMS("FBC idle timed out\n");
1742 return;
1743 }
1744
1745 DRM_DEBUG_KMS("disabled FBC\n");
1746 }
1747
1748 static bool i8xx_fbc_enabled(struct drm_device *dev)
1749 {
1750 struct drm_i915_private *dev_priv = dev->dev_private;
1751
1752 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1753 }
1754
1755 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1756 {
1757 struct drm_device *dev = crtc->dev;
1758 struct drm_i915_private *dev_priv = dev->dev_private;
1759 struct drm_framebuffer *fb = crtc->fb;
1760 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1761 struct drm_i915_gem_object *obj = intel_fb->obj;
1762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1763 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1764 unsigned long stall_watermark = 200;
1765 u32 dpfc_ctl;
1766
1767 dpfc_ctl = I915_READ(DPFC_CONTROL);
1768 if (dpfc_ctl & DPFC_CTL_EN) {
1769 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1770 dev_priv->cfb_fence == obj->fence_reg &&
1771 dev_priv->cfb_plane == intel_crtc->plane &&
1772 dev_priv->cfb_y == crtc->y)
1773 return;
1774
1775 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1776 intel_wait_for_vblank(dev, intel_crtc->pipe);
1777 }
1778
1779 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1780 dev_priv->cfb_fence = obj->fence_reg;
1781 dev_priv->cfb_plane = intel_crtc->plane;
1782 dev_priv->cfb_y = crtc->y;
1783
1784 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1785 if (obj->tiling_mode != I915_TILING_NONE) {
1786 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1787 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1788 } else {
1789 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1790 }
1791
1792 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1793 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1794 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1795 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1796
1797 /* enable it... */
1798 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1799
1800 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1801 }
1802
1803 void g4x_disable_fbc(struct drm_device *dev)
1804 {
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 u32 dpfc_ctl;
1807
1808 /* Disable compression */
1809 dpfc_ctl = I915_READ(DPFC_CONTROL);
1810 if (dpfc_ctl & DPFC_CTL_EN) {
1811 dpfc_ctl &= ~DPFC_CTL_EN;
1812 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1813
1814 DRM_DEBUG_KMS("disabled FBC\n");
1815 }
1816 }
1817
1818 static bool g4x_fbc_enabled(struct drm_device *dev)
1819 {
1820 struct drm_i915_private *dev_priv = dev->dev_private;
1821
1822 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1823 }
1824
1825 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1826 {
1827 struct drm_i915_private *dev_priv = dev->dev_private;
1828 u32 blt_ecoskpd;
1829
1830 /* Make sure blitter notifies FBC of writes */
1831 __gen6_gt_force_wake_get(dev_priv);
1832 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1833 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1834 GEN6_BLITTER_LOCK_SHIFT;
1835 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1836 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1837 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1838 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1839 GEN6_BLITTER_LOCK_SHIFT);
1840 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1841 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1842 __gen6_gt_force_wake_put(dev_priv);
1843 }
1844
1845 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1846 {
1847 struct drm_device *dev = crtc->dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1849 struct drm_framebuffer *fb = crtc->fb;
1850 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1851 struct drm_i915_gem_object *obj = intel_fb->obj;
1852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1853 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1854 unsigned long stall_watermark = 200;
1855 u32 dpfc_ctl;
1856
1857 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1858 if (dpfc_ctl & DPFC_CTL_EN) {
1859 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1860 dev_priv->cfb_fence == obj->fence_reg &&
1861 dev_priv->cfb_plane == intel_crtc->plane &&
1862 dev_priv->cfb_offset == obj->gtt_offset &&
1863 dev_priv->cfb_y == crtc->y)
1864 return;
1865
1866 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1867 intel_wait_for_vblank(dev, intel_crtc->pipe);
1868 }
1869
1870 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1871 dev_priv->cfb_fence = obj->fence_reg;
1872 dev_priv->cfb_plane = intel_crtc->plane;
1873 dev_priv->cfb_offset = obj->gtt_offset;
1874 dev_priv->cfb_y = crtc->y;
1875
1876 dpfc_ctl &= DPFC_RESERVED;
1877 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1878 if (obj->tiling_mode != I915_TILING_NONE) {
1879 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1880 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1881 } else {
1882 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1883 }
1884
1885 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1886 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1887 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1888 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1889 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1890 /* enable it... */
1891 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1892
1893 if (IS_GEN6(dev)) {
1894 I915_WRITE(SNB_DPFC_CTL_SA,
1895 SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1896 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1897 sandybridge_blit_fbc_update(dev);
1898 }
1899
1900 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1901 }
1902
1903 void ironlake_disable_fbc(struct drm_device *dev)
1904 {
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 u32 dpfc_ctl;
1907
1908 /* Disable compression */
1909 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1910 if (dpfc_ctl & DPFC_CTL_EN) {
1911 dpfc_ctl &= ~DPFC_CTL_EN;
1912 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1913
1914 DRM_DEBUG_KMS("disabled FBC\n");
1915 }
1916 }
1917
1918 static bool ironlake_fbc_enabled(struct drm_device *dev)
1919 {
1920 struct drm_i915_private *dev_priv = dev->dev_private;
1921
1922 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1923 }
1924
1925 bool intel_fbc_enabled(struct drm_device *dev)
1926 {
1927 struct drm_i915_private *dev_priv = dev->dev_private;
1928
1929 if (!dev_priv->display.fbc_enabled)
1930 return false;
1931
1932 return dev_priv->display.fbc_enabled(dev);
1933 }
1934
1935 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1936 {
1937 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1938
1939 if (!dev_priv->display.enable_fbc)
1940 return;
1941
1942 dev_priv->display.enable_fbc(crtc, interval);
1943 }
1944
1945 void intel_disable_fbc(struct drm_device *dev)
1946 {
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948
1949 if (!dev_priv->display.disable_fbc)
1950 return;
1951
1952 dev_priv->display.disable_fbc(dev);
1953 }
1954
1955 /**
1956 * intel_update_fbc - enable/disable FBC as needed
1957 * @dev: the drm_device
1958 *
1959 * Set up the framebuffer compression hardware at mode set time. We
1960 * enable it if possible:
1961 * - plane A only (on pre-965)
1962 * - no pixel mulitply/line duplication
1963 * - no alpha buffer discard
1964 * - no dual wide
1965 * - framebuffer <= 2048 in width, 1536 in height
1966 *
1967 * We can't assume that any compression will take place (worst case),
1968 * so the compressed buffer has to be the same size as the uncompressed
1969 * one. It also must reside (along with the line length buffer) in
1970 * stolen memory.
1971 *
1972 * We need to enable/disable FBC on a global basis.
1973 */
1974 static void intel_update_fbc(struct drm_device *dev)
1975 {
1976 struct drm_i915_private *dev_priv = dev->dev_private;
1977 struct drm_crtc *crtc = NULL, *tmp_crtc;
1978 struct intel_crtc *intel_crtc;
1979 struct drm_framebuffer *fb;
1980 struct intel_framebuffer *intel_fb;
1981 struct drm_i915_gem_object *obj;
1982
1983 DRM_DEBUG_KMS("\n");
1984
1985 if (!i915_powersave)
1986 return;
1987
1988 if (!I915_HAS_FBC(dev))
1989 return;
1990
1991 /*
1992 * If FBC is already on, we just have to verify that we can
1993 * keep it that way...
1994 * Need to disable if:
1995 * - more than one pipe is active
1996 * - changing FBC params (stride, fence, mode)
1997 * - new fb is too large to fit in compressed buffer
1998 * - going to an unsupported config (interlace, pixel multiply, etc.)
1999 */
2000 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
2001 if (tmp_crtc->enabled && tmp_crtc->fb) {
2002 if (crtc) {
2003 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
2004 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
2005 goto out_disable;
2006 }
2007 crtc = tmp_crtc;
2008 }
2009 }
2010
2011 if (!crtc || crtc->fb == NULL) {
2012 DRM_DEBUG_KMS("no output, disabling\n");
2013 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
2014 goto out_disable;
2015 }
2016
2017 intel_crtc = to_intel_crtc(crtc);
2018 fb = crtc->fb;
2019 intel_fb = to_intel_framebuffer(fb);
2020 obj = intel_fb->obj;
2021
2022 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
2023 DRM_DEBUG_KMS("framebuffer too large, disabling "
2024 "compression\n");
2025 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
2026 goto out_disable;
2027 }
2028 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
2029 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
2030 DRM_DEBUG_KMS("mode incompatible with compression, "
2031 "disabling\n");
2032 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
2033 goto out_disable;
2034 }
2035 if ((crtc->mode.hdisplay > 2048) ||
2036 (crtc->mode.vdisplay > 1536)) {
2037 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
2038 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
2039 goto out_disable;
2040 }
2041 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
2042 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
2043 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
2044 goto out_disable;
2045 }
2046 if (obj->tiling_mode != I915_TILING_X) {
2047 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
2048 dev_priv->no_fbc_reason = FBC_NOT_TILED;
2049 goto out_disable;
2050 }
2051
2052 /* If the kernel debugger is active, always disable compression */
2053 if (in_dbg_master())
2054 goto out_disable;
2055
2056 intel_enable_fbc(crtc, 500);
2057 return;
2058
2059 out_disable:
2060 /* Multiple disables should be harmless */
2061 if (intel_fbc_enabled(dev)) {
2062 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2063 intel_disable_fbc(dev);
2064 }
2065 }
2066
2067 int
2068 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2069 struct drm_i915_gem_object *obj,
2070 struct intel_ring_buffer *pipelined)
2071 {
2072 struct drm_i915_private *dev_priv = dev->dev_private;
2073 u32 alignment;
2074 int ret;
2075
2076 switch (obj->tiling_mode) {
2077 case I915_TILING_NONE:
2078 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2079 alignment = 128 * 1024;
2080 else if (INTEL_INFO(dev)->gen >= 4)
2081 alignment = 4 * 1024;
2082 else
2083 alignment = 64 * 1024;
2084 break;
2085 case I915_TILING_X:
2086 /* pin() will align the object as required by fence */
2087 alignment = 0;
2088 break;
2089 case I915_TILING_Y:
2090 /* FIXME: Is this true? */
2091 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2092 return -EINVAL;
2093 default:
2094 BUG();
2095 }
2096
2097 dev_priv->mm.interruptible = false;
2098 ret = i915_gem_object_pin(obj, alignment, true);
2099 if (ret)
2100 goto err_interruptible;
2101
2102 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
2103 if (ret)
2104 goto err_unpin;
2105
2106 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2107 * fence, whereas 965+ only requires a fence if using
2108 * framebuffer compression. For simplicity, we always install
2109 * a fence as the cost is not that onerous.
2110 */
2111 if (obj->tiling_mode != I915_TILING_NONE) {
2112 ret = i915_gem_object_get_fence(obj, pipelined);
2113 if (ret)
2114 goto err_unpin;
2115 }
2116
2117 dev_priv->mm.interruptible = true;
2118 return 0;
2119
2120 err_unpin:
2121 i915_gem_object_unpin(obj);
2122 err_interruptible:
2123 dev_priv->mm.interruptible = true;
2124 return ret;
2125 }
2126
2127 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2128 static int
2129 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2130 int x, int y, enum mode_set_atomic state)
2131 {
2132 struct drm_device *dev = crtc->dev;
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2135 struct intel_framebuffer *intel_fb;
2136 struct drm_i915_gem_object *obj;
2137 int plane = intel_crtc->plane;
2138 unsigned long Start, Offset;
2139 u32 dspcntr;
2140 u32 reg;
2141
2142 switch (plane) {
2143 case 0:
2144 case 1:
2145 break;
2146 default:
2147 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2148 return -EINVAL;
2149 }
2150
2151 intel_fb = to_intel_framebuffer(fb);
2152 obj = intel_fb->obj;
2153
2154 reg = DSPCNTR(plane);
2155 dspcntr = I915_READ(reg);
2156 /* Mask out pixel format bits in case we change it */
2157 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2158 switch (fb->bits_per_pixel) {
2159 case 8:
2160 dspcntr |= DISPPLANE_8BPP;
2161 break;
2162 case 16:
2163 if (fb->depth == 15)
2164 dspcntr |= DISPPLANE_15_16BPP;
2165 else
2166 dspcntr |= DISPPLANE_16BPP;
2167 break;
2168 case 24:
2169 case 32:
2170 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2171 break;
2172 default:
2173 DRM_ERROR("Unknown color depth\n");
2174 return -EINVAL;
2175 }
2176 if (INTEL_INFO(dev)->gen >= 4) {
2177 if (obj->tiling_mode != I915_TILING_NONE)
2178 dspcntr |= DISPPLANE_TILED;
2179 else
2180 dspcntr &= ~DISPPLANE_TILED;
2181 }
2182
2183 if (HAS_PCH_SPLIT(dev))
2184 /* must disable */
2185 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2186
2187 I915_WRITE(reg, dspcntr);
2188
2189 Start = obj->gtt_offset;
2190 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2191
2192 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2193 Start, Offset, x, y, fb->pitch);
2194 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2195 if (INTEL_INFO(dev)->gen >= 4) {
2196 I915_WRITE(DSPSURF(plane), Start);
2197 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2198 I915_WRITE(DSPADDR(plane), Offset);
2199 } else
2200 I915_WRITE(DSPADDR(plane), Start + Offset);
2201 POSTING_READ(reg);
2202
2203 intel_update_fbc(dev);
2204 intel_increase_pllclock(crtc);
2205
2206 return 0;
2207 }
2208
2209 static int
2210 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2211 struct drm_framebuffer *old_fb)
2212 {
2213 struct drm_device *dev = crtc->dev;
2214 struct drm_i915_master_private *master_priv;
2215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2216 int ret;
2217
2218 /* no fb bound */
2219 if (!crtc->fb) {
2220 DRM_DEBUG_KMS("No FB bound\n");
2221 return 0;
2222 }
2223
2224 switch (intel_crtc->plane) {
2225 case 0:
2226 case 1:
2227 break;
2228 default:
2229 return -EINVAL;
2230 }
2231
2232 mutex_lock(&dev->struct_mutex);
2233 ret = intel_pin_and_fence_fb_obj(dev,
2234 to_intel_framebuffer(crtc->fb)->obj,
2235 NULL);
2236 if (ret != 0) {
2237 mutex_unlock(&dev->struct_mutex);
2238 return ret;
2239 }
2240
2241 if (old_fb) {
2242 struct drm_i915_private *dev_priv = dev->dev_private;
2243 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2244
2245 wait_event(dev_priv->pending_flip_queue,
2246 atomic_read(&dev_priv->mm.wedged) ||
2247 atomic_read(&obj->pending_flip) == 0);
2248
2249 /* Big Hammer, we also need to ensure that any pending
2250 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2251 * current scanout is retired before unpinning the old
2252 * framebuffer.
2253 *
2254 * This should only fail upon a hung GPU, in which case we
2255 * can safely continue.
2256 */
2257 ret = i915_gem_object_flush_gpu(obj);
2258 (void) ret;
2259 }
2260
2261 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2262 LEAVE_ATOMIC_MODE_SET);
2263 if (ret) {
2264 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2265 mutex_unlock(&dev->struct_mutex);
2266 return ret;
2267 }
2268
2269 if (old_fb) {
2270 intel_wait_for_vblank(dev, intel_crtc->pipe);
2271 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2272 }
2273
2274 mutex_unlock(&dev->struct_mutex);
2275
2276 if (!dev->primary->master)
2277 return 0;
2278
2279 master_priv = dev->primary->master->driver_priv;
2280 if (!master_priv->sarea_priv)
2281 return 0;
2282
2283 if (intel_crtc->pipe) {
2284 master_priv->sarea_priv->pipeB_x = x;
2285 master_priv->sarea_priv->pipeB_y = y;
2286 } else {
2287 master_priv->sarea_priv->pipeA_x = x;
2288 master_priv->sarea_priv->pipeA_y = y;
2289 }
2290
2291 return 0;
2292 }
2293
2294 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2295 {
2296 struct drm_device *dev = crtc->dev;
2297 struct drm_i915_private *dev_priv = dev->dev_private;
2298 u32 dpa_ctl;
2299
2300 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2301 dpa_ctl = I915_READ(DP_A);
2302 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2303
2304 if (clock < 200000) {
2305 u32 temp;
2306 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2307 /* workaround for 160Mhz:
2308 1) program 0x4600c bits 15:0 = 0x8124
2309 2) program 0x46010 bit 0 = 1
2310 3) program 0x46034 bit 24 = 1
2311 4) program 0x64000 bit 14 = 1
2312 */
2313 temp = I915_READ(0x4600c);
2314 temp &= 0xffff0000;
2315 I915_WRITE(0x4600c, temp | 0x8124);
2316
2317 temp = I915_READ(0x46010);
2318 I915_WRITE(0x46010, temp | 1);
2319
2320 temp = I915_READ(0x46034);
2321 I915_WRITE(0x46034, temp | (1 << 24));
2322 } else {
2323 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2324 }
2325 I915_WRITE(DP_A, dpa_ctl);
2326
2327 POSTING_READ(DP_A);
2328 udelay(500);
2329 }
2330
2331 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2332 {
2333 struct drm_device *dev = crtc->dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2336 int pipe = intel_crtc->pipe;
2337 u32 reg, temp;
2338
2339 /* enable normal train */
2340 reg = FDI_TX_CTL(pipe);
2341 temp = I915_READ(reg);
2342 temp &= ~FDI_LINK_TRAIN_NONE;
2343 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2344 I915_WRITE(reg, temp);
2345
2346 reg = FDI_RX_CTL(pipe);
2347 temp = I915_READ(reg);
2348 if (HAS_PCH_CPT(dev)) {
2349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2350 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2351 } else {
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_NONE;
2354 }
2355 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2356
2357 /* wait one idle pattern time */
2358 POSTING_READ(reg);
2359 udelay(1000);
2360 }
2361
2362 /* The FDI link training functions for ILK/Ibexpeak. */
2363 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2364 {
2365 struct drm_device *dev = crtc->dev;
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368 int pipe = intel_crtc->pipe;
2369 int plane = intel_crtc->plane;
2370 u32 reg, temp, tries;
2371
2372 /* FDI needs bits from pipe & plane first */
2373 assert_pipe_enabled(dev_priv, pipe);
2374 assert_plane_enabled(dev_priv, plane);
2375
2376 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2377 for train result */
2378 reg = FDI_RX_IMR(pipe);
2379 temp = I915_READ(reg);
2380 temp &= ~FDI_RX_SYMBOL_LOCK;
2381 temp &= ~FDI_RX_BIT_LOCK;
2382 I915_WRITE(reg, temp);
2383 I915_READ(reg);
2384 udelay(150);
2385
2386 /* enable CPU FDI TX and PCH FDI RX */
2387 reg = FDI_TX_CTL(pipe);
2388 temp = I915_READ(reg);
2389 temp &= ~(7 << 19);
2390 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2391 temp &= ~FDI_LINK_TRAIN_NONE;
2392 temp |= FDI_LINK_TRAIN_PATTERN_1;
2393 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2394
2395 reg = FDI_RX_CTL(pipe);
2396 temp = I915_READ(reg);
2397 temp &= ~FDI_LINK_TRAIN_NONE;
2398 temp |= FDI_LINK_TRAIN_PATTERN_1;
2399 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2400
2401 POSTING_READ(reg);
2402 udelay(150);
2403
2404 /* Ironlake workaround, enable clock pointer after FDI enable*/
2405 if (HAS_PCH_IBX(dev)) {
2406 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2407 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2408 FDI_RX_PHASE_SYNC_POINTER_EN);
2409 }
2410
2411 reg = FDI_RX_IIR(pipe);
2412 for (tries = 0; tries < 5; tries++) {
2413 temp = I915_READ(reg);
2414 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2415
2416 if ((temp & FDI_RX_BIT_LOCK)) {
2417 DRM_DEBUG_KMS("FDI train 1 done.\n");
2418 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2419 break;
2420 }
2421 }
2422 if (tries == 5)
2423 DRM_ERROR("FDI train 1 fail!\n");
2424
2425 /* Train 2 */
2426 reg = FDI_TX_CTL(pipe);
2427 temp = I915_READ(reg);
2428 temp &= ~FDI_LINK_TRAIN_NONE;
2429 temp |= FDI_LINK_TRAIN_PATTERN_2;
2430 I915_WRITE(reg, temp);
2431
2432 reg = FDI_RX_CTL(pipe);
2433 temp = I915_READ(reg);
2434 temp &= ~FDI_LINK_TRAIN_NONE;
2435 temp |= FDI_LINK_TRAIN_PATTERN_2;
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
2439 udelay(150);
2440
2441 reg = FDI_RX_IIR(pipe);
2442 for (tries = 0; tries < 5; tries++) {
2443 temp = I915_READ(reg);
2444 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2445
2446 if (temp & FDI_RX_SYMBOL_LOCK) {
2447 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2448 DRM_DEBUG_KMS("FDI train 2 done.\n");
2449 break;
2450 }
2451 }
2452 if (tries == 5)
2453 DRM_ERROR("FDI train 2 fail!\n");
2454
2455 DRM_DEBUG_KMS("FDI train done\n");
2456
2457 }
2458
2459 static const int snb_b_fdi_train_param [] = {
2460 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2461 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2462 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2463 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2464 };
2465
2466 /* The FDI link training functions for SNB/Cougarpoint. */
2467 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2468 {
2469 struct drm_device *dev = crtc->dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2472 int pipe = intel_crtc->pipe;
2473 u32 reg, temp, i;
2474
2475 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2476 for train result */
2477 reg = FDI_RX_IMR(pipe);
2478 temp = I915_READ(reg);
2479 temp &= ~FDI_RX_SYMBOL_LOCK;
2480 temp &= ~FDI_RX_BIT_LOCK;
2481 I915_WRITE(reg, temp);
2482
2483 POSTING_READ(reg);
2484 udelay(150);
2485
2486 /* enable CPU FDI TX and PCH FDI RX */
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~(7 << 19);
2490 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2494 /* SNB-B */
2495 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2496 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2497
2498 reg = FDI_RX_CTL(pipe);
2499 temp = I915_READ(reg);
2500 if (HAS_PCH_CPT(dev)) {
2501 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2503 } else {
2504 temp &= ~FDI_LINK_TRAIN_NONE;
2505 temp |= FDI_LINK_TRAIN_PATTERN_1;
2506 }
2507 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2508
2509 POSTING_READ(reg);
2510 udelay(150);
2511
2512 for (i = 0; i < 4; i++ ) {
2513 reg = FDI_TX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516 temp |= snb_b_fdi_train_param[i];
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(500);
2521
2522 reg = FDI_RX_IIR(pipe);
2523 temp = I915_READ(reg);
2524 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2525
2526 if (temp & FDI_RX_BIT_LOCK) {
2527 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529 break;
2530 }
2531 }
2532 if (i == 4)
2533 DRM_ERROR("FDI train 1 fail!\n");
2534
2535 /* Train 2 */
2536 reg = FDI_TX_CTL(pipe);
2537 temp = I915_READ(reg);
2538 temp &= ~FDI_LINK_TRAIN_NONE;
2539 temp |= FDI_LINK_TRAIN_PATTERN_2;
2540 if (IS_GEN6(dev)) {
2541 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2542 /* SNB-B */
2543 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2544 }
2545 I915_WRITE(reg, temp);
2546
2547 reg = FDI_RX_CTL(pipe);
2548 temp = I915_READ(reg);
2549 if (HAS_PCH_CPT(dev)) {
2550 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2551 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2552 } else {
2553 temp &= ~FDI_LINK_TRAIN_NONE;
2554 temp |= FDI_LINK_TRAIN_PATTERN_2;
2555 }
2556 I915_WRITE(reg, temp);
2557
2558 POSTING_READ(reg);
2559 udelay(150);
2560
2561 for (i = 0; i < 4; i++ ) {
2562 reg = FDI_TX_CTL(pipe);
2563 temp = I915_READ(reg);
2564 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2565 temp |= snb_b_fdi_train_param[i];
2566 I915_WRITE(reg, temp);
2567
2568 POSTING_READ(reg);
2569 udelay(500);
2570
2571 reg = FDI_RX_IIR(pipe);
2572 temp = I915_READ(reg);
2573 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2574
2575 if (temp & FDI_RX_SYMBOL_LOCK) {
2576 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2577 DRM_DEBUG_KMS("FDI train 2 done.\n");
2578 break;
2579 }
2580 }
2581 if (i == 4)
2582 DRM_ERROR("FDI train 2 fail!\n");
2583
2584 DRM_DEBUG_KMS("FDI train done.\n");
2585 }
2586
2587 static void ironlake_fdi_enable(struct drm_crtc *crtc)
2588 {
2589 struct drm_device *dev = crtc->dev;
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2592 int pipe = intel_crtc->pipe;
2593 u32 reg, temp;
2594
2595 /* Write the TU size bits so error detection works */
2596 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2597 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2598
2599 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2600 reg = FDI_RX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~((0x7 << 19) | (0x7 << 16));
2603 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2604 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2605 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2606
2607 POSTING_READ(reg);
2608 udelay(200);
2609
2610 /* Switch from Rawclk to PCDclk */
2611 temp = I915_READ(reg);
2612 I915_WRITE(reg, temp | FDI_PCDCLK);
2613
2614 POSTING_READ(reg);
2615 udelay(200);
2616
2617 /* Enable CPU FDI TX PLL, always on for Ironlake */
2618 reg = FDI_TX_CTL(pipe);
2619 temp = I915_READ(reg);
2620 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2621 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2622
2623 POSTING_READ(reg);
2624 udelay(100);
2625 }
2626 }
2627
2628 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2629 {
2630 struct drm_device *dev = crtc->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2633 int pipe = intel_crtc->pipe;
2634 u32 reg, temp;
2635
2636 /* disable CPU FDI tx and PCH FDI rx */
2637 reg = FDI_TX_CTL(pipe);
2638 temp = I915_READ(reg);
2639 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2640 POSTING_READ(reg);
2641
2642 reg = FDI_RX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~(0x7 << 16);
2645 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2646 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2647
2648 POSTING_READ(reg);
2649 udelay(100);
2650
2651 /* Ironlake workaround, disable clock pointer after downing FDI */
2652 if (HAS_PCH_IBX(dev)) {
2653 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2654 I915_WRITE(FDI_RX_CHICKEN(pipe),
2655 I915_READ(FDI_RX_CHICKEN(pipe) &
2656 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2657 }
2658
2659 /* still set train pattern 1 */
2660 reg = FDI_TX_CTL(pipe);
2661 temp = I915_READ(reg);
2662 temp &= ~FDI_LINK_TRAIN_NONE;
2663 temp |= FDI_LINK_TRAIN_PATTERN_1;
2664 I915_WRITE(reg, temp);
2665
2666 reg = FDI_RX_CTL(pipe);
2667 temp = I915_READ(reg);
2668 if (HAS_PCH_CPT(dev)) {
2669 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2670 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2671 } else {
2672 temp &= ~FDI_LINK_TRAIN_NONE;
2673 temp |= FDI_LINK_TRAIN_PATTERN_1;
2674 }
2675 /* BPC in FDI rx is consistent with that in PIPECONF */
2676 temp &= ~(0x07 << 16);
2677 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2678 I915_WRITE(reg, temp);
2679
2680 POSTING_READ(reg);
2681 udelay(100);
2682 }
2683
2684 /*
2685 * When we disable a pipe, we need to clear any pending scanline wait events
2686 * to avoid hanging the ring, which we assume we are waiting on.
2687 */
2688 static void intel_clear_scanline_wait(struct drm_device *dev)
2689 {
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 struct intel_ring_buffer *ring;
2692 u32 tmp;
2693
2694 if (IS_GEN2(dev))
2695 /* Can't break the hang on i8xx */
2696 return;
2697
2698 ring = LP_RING(dev_priv);
2699 tmp = I915_READ_CTL(ring);
2700 if (tmp & RING_WAIT)
2701 I915_WRITE_CTL(ring, tmp);
2702 }
2703
2704 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2705 {
2706 struct drm_i915_gem_object *obj;
2707 struct drm_i915_private *dev_priv;
2708
2709 if (crtc->fb == NULL)
2710 return;
2711
2712 obj = to_intel_framebuffer(crtc->fb)->obj;
2713 dev_priv = crtc->dev->dev_private;
2714 wait_event(dev_priv->pending_flip_queue,
2715 atomic_read(&obj->pending_flip) == 0);
2716 }
2717
2718 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2719 {
2720 struct drm_device *dev = crtc->dev;
2721 struct drm_mode_config *mode_config = &dev->mode_config;
2722 struct intel_encoder *encoder;
2723
2724 /*
2725 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2726 * must be driven by its own crtc; no sharing is possible.
2727 */
2728 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2729 if (encoder->base.crtc != crtc)
2730 continue;
2731
2732 switch (encoder->type) {
2733 case INTEL_OUTPUT_EDP:
2734 if (!intel_encoder_is_pch_edp(&encoder->base))
2735 return false;
2736 continue;
2737 }
2738 }
2739
2740 return true;
2741 }
2742
2743 /*
2744 * Enable PCH resources required for PCH ports:
2745 * - PCH PLLs
2746 * - FDI training & RX/TX
2747 * - update transcoder timings
2748 * - DP transcoding bits
2749 * - transcoder
2750 */
2751 static void ironlake_pch_enable(struct drm_crtc *crtc)
2752 {
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* For PCH output, training FDI link */
2760 if (IS_GEN6(dev))
2761 gen6_fdi_link_train(crtc);
2762 else
2763 ironlake_fdi_link_train(crtc);
2764
2765 intel_enable_pch_pll(dev_priv, pipe);
2766
2767 if (HAS_PCH_CPT(dev)) {
2768 /* Be sure PCH DPLL SEL is set */
2769 temp = I915_READ(PCH_DPLL_SEL);
2770 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2771 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2772 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2773 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2774 I915_WRITE(PCH_DPLL_SEL, temp);
2775 }
2776
2777 /* set transcoder timing, panel must allow it */
2778 assert_panel_unlocked(dev_priv, pipe);
2779 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2780 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2781 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2782
2783 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2784 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2785 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2786
2787 intel_fdi_normal_train(crtc);
2788
2789 /* For PCH DP, enable TRANS_DP_CTL */
2790 if (HAS_PCH_CPT(dev) &&
2791 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2792 reg = TRANS_DP_CTL(pipe);
2793 temp = I915_READ(reg);
2794 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2795 TRANS_DP_SYNC_MASK |
2796 TRANS_DP_BPC_MASK);
2797 temp |= (TRANS_DP_OUTPUT_ENABLE |
2798 TRANS_DP_ENH_FRAMING);
2799 temp |= TRANS_DP_8BPC;
2800
2801 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2802 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2803 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2804 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2805
2806 switch (intel_trans_dp_port_sel(crtc)) {
2807 case PCH_DP_B:
2808 temp |= TRANS_DP_PORT_SEL_B;
2809 break;
2810 case PCH_DP_C:
2811 temp |= TRANS_DP_PORT_SEL_C;
2812 break;
2813 case PCH_DP_D:
2814 temp |= TRANS_DP_PORT_SEL_D;
2815 break;
2816 default:
2817 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2818 temp |= TRANS_DP_PORT_SEL_B;
2819 break;
2820 }
2821
2822 I915_WRITE(reg, temp);
2823 }
2824
2825 intel_enable_transcoder(dev_priv, pipe);
2826 }
2827
2828 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2829 {
2830 struct drm_device *dev = crtc->dev;
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2833 int pipe = intel_crtc->pipe;
2834 int plane = intel_crtc->plane;
2835 u32 temp;
2836 bool is_pch_port;
2837
2838 if (intel_crtc->active)
2839 return;
2840
2841 intel_crtc->active = true;
2842 intel_update_watermarks(dev);
2843
2844 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2845 temp = I915_READ(PCH_LVDS);
2846 if ((temp & LVDS_PORT_EN) == 0)
2847 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2848 }
2849
2850 is_pch_port = intel_crtc_driving_pch(crtc);
2851
2852 if (is_pch_port)
2853 ironlake_fdi_enable(crtc);
2854 else
2855 ironlake_fdi_disable(crtc);
2856
2857 /* Enable panel fitting for LVDS */
2858 if (dev_priv->pch_pf_size &&
2859 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2860 /* Force use of hard-coded filter coefficients
2861 * as some pre-programmed values are broken,
2862 * e.g. x201.
2863 */
2864 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2865 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2866 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2867 }
2868
2869 intel_enable_pipe(dev_priv, pipe, is_pch_port);
2870 intel_enable_plane(dev_priv, plane, pipe);
2871
2872 if (is_pch_port)
2873 ironlake_pch_enable(crtc);
2874
2875 intel_crtc_load_lut(crtc);
2876 intel_update_fbc(dev);
2877 intel_crtc_update_cursor(crtc, true);
2878 }
2879
2880 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2881 {
2882 struct drm_device *dev = crtc->dev;
2883 struct drm_i915_private *dev_priv = dev->dev_private;
2884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2885 int pipe = intel_crtc->pipe;
2886 int plane = intel_crtc->plane;
2887 u32 reg, temp;
2888
2889 if (!intel_crtc->active)
2890 return;
2891
2892 intel_crtc_wait_for_pending_flips(crtc);
2893 drm_vblank_off(dev, pipe);
2894 intel_crtc_update_cursor(crtc, false);
2895
2896 intel_disable_plane(dev_priv, plane, pipe);
2897
2898 if (dev_priv->cfb_plane == plane &&
2899 dev_priv->display.disable_fbc)
2900 dev_priv->display.disable_fbc(dev);
2901
2902 intel_disable_pipe(dev_priv, pipe);
2903
2904 /* Disable PF */
2905 I915_WRITE(PF_CTL(pipe), 0);
2906 I915_WRITE(PF_WIN_SZ(pipe), 0);
2907
2908 ironlake_fdi_disable(crtc);
2909
2910 /* This is a horrible layering violation; we should be doing this in
2911 * the connector/encoder ->prepare instead, but we don't always have
2912 * enough information there about the config to know whether it will
2913 * actually be necessary or just cause undesired flicker.
2914 */
2915 intel_disable_pch_ports(dev_priv, pipe);
2916
2917 intel_disable_transcoder(dev_priv, pipe);
2918
2919 if (HAS_PCH_CPT(dev)) {
2920 /* disable TRANS_DP_CTL */
2921 reg = TRANS_DP_CTL(pipe);
2922 temp = I915_READ(reg);
2923 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2924 temp |= TRANS_DP_PORT_SEL_NONE;
2925 I915_WRITE(reg, temp);
2926
2927 /* disable DPLL_SEL */
2928 temp = I915_READ(PCH_DPLL_SEL);
2929 switch (pipe) {
2930 case 0:
2931 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2932 break;
2933 case 1:
2934 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2935 break;
2936 case 2:
2937 /* FIXME: manage transcoder PLLs? */
2938 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2939 break;
2940 default:
2941 BUG(); /* wtf */
2942 }
2943 I915_WRITE(PCH_DPLL_SEL, temp);
2944 }
2945
2946 /* disable PCH DPLL */
2947 intel_disable_pch_pll(dev_priv, pipe);
2948
2949 /* Switch from PCDclk to Rawclk */
2950 reg = FDI_RX_CTL(pipe);
2951 temp = I915_READ(reg);
2952 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2953
2954 /* Disable CPU FDI TX PLL */
2955 reg = FDI_TX_CTL(pipe);
2956 temp = I915_READ(reg);
2957 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2958
2959 POSTING_READ(reg);
2960 udelay(100);
2961
2962 reg = FDI_RX_CTL(pipe);
2963 temp = I915_READ(reg);
2964 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2965
2966 /* Wait for the clocks to turn off. */
2967 POSTING_READ(reg);
2968 udelay(100);
2969
2970 intel_crtc->active = false;
2971 intel_update_watermarks(dev);
2972 intel_update_fbc(dev);
2973 intel_clear_scanline_wait(dev);
2974 }
2975
2976 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2977 {
2978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2979 int pipe = intel_crtc->pipe;
2980 int plane = intel_crtc->plane;
2981
2982 /* XXX: When our outputs are all unaware of DPMS modes other than off
2983 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2984 */
2985 switch (mode) {
2986 case DRM_MODE_DPMS_ON:
2987 case DRM_MODE_DPMS_STANDBY:
2988 case DRM_MODE_DPMS_SUSPEND:
2989 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2990 ironlake_crtc_enable(crtc);
2991 break;
2992
2993 case DRM_MODE_DPMS_OFF:
2994 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2995 ironlake_crtc_disable(crtc);
2996 break;
2997 }
2998 }
2999
3000 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3001 {
3002 if (!enable && intel_crtc->overlay) {
3003 struct drm_device *dev = intel_crtc->base.dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005
3006 mutex_lock(&dev->struct_mutex);
3007 dev_priv->mm.interruptible = false;
3008 (void) intel_overlay_switch_off(intel_crtc->overlay);
3009 dev_priv->mm.interruptible = true;
3010 mutex_unlock(&dev->struct_mutex);
3011 }
3012
3013 /* Let userspace switch the overlay on again. In most cases userspace
3014 * has to recompute where to put it anyway.
3015 */
3016 }
3017
3018 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3019 {
3020 struct drm_device *dev = crtc->dev;
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3023 int pipe = intel_crtc->pipe;
3024 int plane = intel_crtc->plane;
3025
3026 if (intel_crtc->active)
3027 return;
3028
3029 intel_crtc->active = true;
3030 intel_update_watermarks(dev);
3031
3032 intel_enable_pll(dev_priv, pipe);
3033 intel_enable_pipe(dev_priv, pipe, false);
3034 intel_enable_plane(dev_priv, plane, pipe);
3035
3036 intel_crtc_load_lut(crtc);
3037 intel_update_fbc(dev);
3038
3039 /* Give the overlay scaler a chance to enable if it's on this pipe */
3040 intel_crtc_dpms_overlay(intel_crtc, true);
3041 intel_crtc_update_cursor(crtc, true);
3042 }
3043
3044 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3045 {
3046 struct drm_device *dev = crtc->dev;
3047 struct drm_i915_private *dev_priv = dev->dev_private;
3048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3049 int pipe = intel_crtc->pipe;
3050 int plane = intel_crtc->plane;
3051
3052 if (!intel_crtc->active)
3053 return;
3054
3055 /* Give the overlay scaler a chance to disable if it's on this pipe */
3056 intel_crtc_wait_for_pending_flips(crtc);
3057 drm_vblank_off(dev, pipe);
3058 intel_crtc_dpms_overlay(intel_crtc, false);
3059 intel_crtc_update_cursor(crtc, false);
3060
3061 if (dev_priv->cfb_plane == plane &&
3062 dev_priv->display.disable_fbc)
3063 dev_priv->display.disable_fbc(dev);
3064
3065 intel_disable_plane(dev_priv, plane, pipe);
3066 intel_disable_pipe(dev_priv, pipe);
3067 intel_disable_pll(dev_priv, pipe);
3068
3069 intel_crtc->active = false;
3070 intel_update_fbc(dev);
3071 intel_update_watermarks(dev);
3072 intel_clear_scanline_wait(dev);
3073 }
3074
3075 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3076 {
3077 /* XXX: When our outputs are all unaware of DPMS modes other than off
3078 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3079 */
3080 switch (mode) {
3081 case DRM_MODE_DPMS_ON:
3082 case DRM_MODE_DPMS_STANDBY:
3083 case DRM_MODE_DPMS_SUSPEND:
3084 i9xx_crtc_enable(crtc);
3085 break;
3086 case DRM_MODE_DPMS_OFF:
3087 i9xx_crtc_disable(crtc);
3088 break;
3089 }
3090 }
3091
3092 /**
3093 * Sets the power management mode of the pipe and plane.
3094 */
3095 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3096 {
3097 struct drm_device *dev = crtc->dev;
3098 struct drm_i915_private *dev_priv = dev->dev_private;
3099 struct drm_i915_master_private *master_priv;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
3102 bool enabled;
3103
3104 if (intel_crtc->dpms_mode == mode)
3105 return;
3106
3107 intel_crtc->dpms_mode = mode;
3108
3109 dev_priv->display.dpms(crtc, mode);
3110
3111 if (!dev->primary->master)
3112 return;
3113
3114 master_priv = dev->primary->master->driver_priv;
3115 if (!master_priv->sarea_priv)
3116 return;
3117
3118 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3119
3120 switch (pipe) {
3121 case 0:
3122 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3123 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3124 break;
3125 case 1:
3126 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3127 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3128 break;
3129 default:
3130 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3131 break;
3132 }
3133 }
3134
3135 static void intel_crtc_disable(struct drm_crtc *crtc)
3136 {
3137 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3138 struct drm_device *dev = crtc->dev;
3139
3140 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3141
3142 if (crtc->fb) {
3143 mutex_lock(&dev->struct_mutex);
3144 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3145 mutex_unlock(&dev->struct_mutex);
3146 }
3147 }
3148
3149 /* Prepare for a mode set.
3150 *
3151 * Note we could be a lot smarter here. We need to figure out which outputs
3152 * will be enabled, which disabled (in short, how the config will changes)
3153 * and perform the minimum necessary steps to accomplish that, e.g. updating
3154 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3155 * panel fitting is in the proper state, etc.
3156 */
3157 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3158 {
3159 i9xx_crtc_disable(crtc);
3160 }
3161
3162 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3163 {
3164 i9xx_crtc_enable(crtc);
3165 }
3166
3167 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3168 {
3169 ironlake_crtc_disable(crtc);
3170 }
3171
3172 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3173 {
3174 ironlake_crtc_enable(crtc);
3175 }
3176
3177 void intel_encoder_prepare (struct drm_encoder *encoder)
3178 {
3179 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3180 /* lvds has its own version of prepare see intel_lvds_prepare */
3181 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3182 }
3183
3184 void intel_encoder_commit (struct drm_encoder *encoder)
3185 {
3186 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3187 /* lvds has its own version of commit see intel_lvds_commit */
3188 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3189 }
3190
3191 void intel_encoder_destroy(struct drm_encoder *encoder)
3192 {
3193 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3194
3195 drm_encoder_cleanup(encoder);
3196 kfree(intel_encoder);
3197 }
3198
3199 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3200 struct drm_display_mode *mode,
3201 struct drm_display_mode *adjusted_mode)
3202 {
3203 struct drm_device *dev = crtc->dev;
3204
3205 if (HAS_PCH_SPLIT(dev)) {
3206 /* FDI link clock is fixed at 2.7G */
3207 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3208 return false;
3209 }
3210
3211 /* XXX some encoders set the crtcinfo, others don't.
3212 * Obviously we need some form of conflict resolution here...
3213 */
3214 if (adjusted_mode->crtc_htotal == 0)
3215 drm_mode_set_crtcinfo(adjusted_mode, 0);
3216
3217 return true;
3218 }
3219
3220 static int i945_get_display_clock_speed(struct drm_device *dev)
3221 {
3222 return 400000;
3223 }
3224
3225 static int i915_get_display_clock_speed(struct drm_device *dev)
3226 {
3227 return 333000;
3228 }
3229
3230 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3231 {
3232 return 200000;
3233 }
3234
3235 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3236 {
3237 u16 gcfgc = 0;
3238
3239 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3240
3241 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3242 return 133000;
3243 else {
3244 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3245 case GC_DISPLAY_CLOCK_333_MHZ:
3246 return 333000;
3247 default:
3248 case GC_DISPLAY_CLOCK_190_200_MHZ:
3249 return 190000;
3250 }
3251 }
3252 }
3253
3254 static int i865_get_display_clock_speed(struct drm_device *dev)
3255 {
3256 return 266000;
3257 }
3258
3259 static int i855_get_display_clock_speed(struct drm_device *dev)
3260 {
3261 u16 hpllcc = 0;
3262 /* Assume that the hardware is in the high speed state. This
3263 * should be the default.
3264 */
3265 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3266 case GC_CLOCK_133_200:
3267 case GC_CLOCK_100_200:
3268 return 200000;
3269 case GC_CLOCK_166_250:
3270 return 250000;
3271 case GC_CLOCK_100_133:
3272 return 133000;
3273 }
3274
3275 /* Shouldn't happen */
3276 return 0;
3277 }
3278
3279 static int i830_get_display_clock_speed(struct drm_device *dev)
3280 {
3281 return 133000;
3282 }
3283
3284 struct fdi_m_n {
3285 u32 tu;
3286 u32 gmch_m;
3287 u32 gmch_n;
3288 u32 link_m;
3289 u32 link_n;
3290 };
3291
3292 static void
3293 fdi_reduce_ratio(u32 *num, u32 *den)
3294 {
3295 while (*num > 0xffffff || *den > 0xffffff) {
3296 *num >>= 1;
3297 *den >>= 1;
3298 }
3299 }
3300
3301 static void
3302 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3303 int link_clock, struct fdi_m_n *m_n)
3304 {
3305 m_n->tu = 64; /* default size */
3306
3307 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3308 m_n->gmch_m = bits_per_pixel * pixel_clock;
3309 m_n->gmch_n = link_clock * nlanes * 8;
3310 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3311
3312 m_n->link_m = pixel_clock;
3313 m_n->link_n = link_clock;
3314 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3315 }
3316
3317
3318 struct intel_watermark_params {
3319 unsigned long fifo_size;
3320 unsigned long max_wm;
3321 unsigned long default_wm;
3322 unsigned long guard_size;
3323 unsigned long cacheline_size;
3324 };
3325
3326 /* Pineview has different values for various configs */
3327 static const struct intel_watermark_params pineview_display_wm = {
3328 PINEVIEW_DISPLAY_FIFO,
3329 PINEVIEW_MAX_WM,
3330 PINEVIEW_DFT_WM,
3331 PINEVIEW_GUARD_WM,
3332 PINEVIEW_FIFO_LINE_SIZE
3333 };
3334 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3335 PINEVIEW_DISPLAY_FIFO,
3336 PINEVIEW_MAX_WM,
3337 PINEVIEW_DFT_HPLLOFF_WM,
3338 PINEVIEW_GUARD_WM,
3339 PINEVIEW_FIFO_LINE_SIZE
3340 };
3341 static const struct intel_watermark_params pineview_cursor_wm = {
3342 PINEVIEW_CURSOR_FIFO,
3343 PINEVIEW_CURSOR_MAX_WM,
3344 PINEVIEW_CURSOR_DFT_WM,
3345 PINEVIEW_CURSOR_GUARD_WM,
3346 PINEVIEW_FIFO_LINE_SIZE,
3347 };
3348 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3349 PINEVIEW_CURSOR_FIFO,
3350 PINEVIEW_CURSOR_MAX_WM,
3351 PINEVIEW_CURSOR_DFT_WM,
3352 PINEVIEW_CURSOR_GUARD_WM,
3353 PINEVIEW_FIFO_LINE_SIZE
3354 };
3355 static const struct intel_watermark_params g4x_wm_info = {
3356 G4X_FIFO_SIZE,
3357 G4X_MAX_WM,
3358 G4X_MAX_WM,
3359 2,
3360 G4X_FIFO_LINE_SIZE,
3361 };
3362 static const struct intel_watermark_params g4x_cursor_wm_info = {
3363 I965_CURSOR_FIFO,
3364 I965_CURSOR_MAX_WM,
3365 I965_CURSOR_DFT_WM,
3366 2,
3367 G4X_FIFO_LINE_SIZE,
3368 };
3369 static const struct intel_watermark_params i965_cursor_wm_info = {
3370 I965_CURSOR_FIFO,
3371 I965_CURSOR_MAX_WM,
3372 I965_CURSOR_DFT_WM,
3373 2,
3374 I915_FIFO_LINE_SIZE,
3375 };
3376 static const struct intel_watermark_params i945_wm_info = {
3377 I945_FIFO_SIZE,
3378 I915_MAX_WM,
3379 1,
3380 2,
3381 I915_FIFO_LINE_SIZE
3382 };
3383 static const struct intel_watermark_params i915_wm_info = {
3384 I915_FIFO_SIZE,
3385 I915_MAX_WM,
3386 1,
3387 2,
3388 I915_FIFO_LINE_SIZE
3389 };
3390 static const struct intel_watermark_params i855_wm_info = {
3391 I855GM_FIFO_SIZE,
3392 I915_MAX_WM,
3393 1,
3394 2,
3395 I830_FIFO_LINE_SIZE
3396 };
3397 static const struct intel_watermark_params i830_wm_info = {
3398 I830_FIFO_SIZE,
3399 I915_MAX_WM,
3400 1,
3401 2,
3402 I830_FIFO_LINE_SIZE
3403 };
3404
3405 static const struct intel_watermark_params ironlake_display_wm_info = {
3406 ILK_DISPLAY_FIFO,
3407 ILK_DISPLAY_MAXWM,
3408 ILK_DISPLAY_DFTWM,
3409 2,
3410 ILK_FIFO_LINE_SIZE
3411 };
3412 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3413 ILK_CURSOR_FIFO,
3414 ILK_CURSOR_MAXWM,
3415 ILK_CURSOR_DFTWM,
3416 2,
3417 ILK_FIFO_LINE_SIZE
3418 };
3419 static const struct intel_watermark_params ironlake_display_srwm_info = {
3420 ILK_DISPLAY_SR_FIFO,
3421 ILK_DISPLAY_MAX_SRWM,
3422 ILK_DISPLAY_DFT_SRWM,
3423 2,
3424 ILK_FIFO_LINE_SIZE
3425 };
3426 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3427 ILK_CURSOR_SR_FIFO,
3428 ILK_CURSOR_MAX_SRWM,
3429 ILK_CURSOR_DFT_SRWM,
3430 2,
3431 ILK_FIFO_LINE_SIZE
3432 };
3433
3434 static const struct intel_watermark_params sandybridge_display_wm_info = {
3435 SNB_DISPLAY_FIFO,
3436 SNB_DISPLAY_MAXWM,
3437 SNB_DISPLAY_DFTWM,
3438 2,
3439 SNB_FIFO_LINE_SIZE
3440 };
3441 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3442 SNB_CURSOR_FIFO,
3443 SNB_CURSOR_MAXWM,
3444 SNB_CURSOR_DFTWM,
3445 2,
3446 SNB_FIFO_LINE_SIZE
3447 };
3448 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3449 SNB_DISPLAY_SR_FIFO,
3450 SNB_DISPLAY_MAX_SRWM,
3451 SNB_DISPLAY_DFT_SRWM,
3452 2,
3453 SNB_FIFO_LINE_SIZE
3454 };
3455 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3456 SNB_CURSOR_SR_FIFO,
3457 SNB_CURSOR_MAX_SRWM,
3458 SNB_CURSOR_DFT_SRWM,
3459 2,
3460 SNB_FIFO_LINE_SIZE
3461 };
3462
3463
3464 /**
3465 * intel_calculate_wm - calculate watermark level
3466 * @clock_in_khz: pixel clock
3467 * @wm: chip FIFO params
3468 * @pixel_size: display pixel size
3469 * @latency_ns: memory latency for the platform
3470 *
3471 * Calculate the watermark level (the level at which the display plane will
3472 * start fetching from memory again). Each chip has a different display
3473 * FIFO size and allocation, so the caller needs to figure that out and pass
3474 * in the correct intel_watermark_params structure.
3475 *
3476 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3477 * on the pixel size. When it reaches the watermark level, it'll start
3478 * fetching FIFO line sized based chunks from memory until the FIFO fills
3479 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3480 * will occur, and a display engine hang could result.
3481 */
3482 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3483 const struct intel_watermark_params *wm,
3484 int fifo_size,
3485 int pixel_size,
3486 unsigned long latency_ns)
3487 {
3488 long entries_required, wm_size;
3489
3490 /*
3491 * Note: we need to make sure we don't overflow for various clock &
3492 * latency values.
3493 * clocks go from a few thousand to several hundred thousand.
3494 * latency is usually a few thousand
3495 */
3496 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3497 1000;
3498 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3499
3500 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
3501
3502 wm_size = fifo_size - (entries_required + wm->guard_size);
3503
3504 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
3505
3506 /* Don't promote wm_size to unsigned... */
3507 if (wm_size > (long)wm->max_wm)
3508 wm_size = wm->max_wm;
3509 if (wm_size <= 0)
3510 wm_size = wm->default_wm;
3511 return wm_size;
3512 }
3513
3514 struct cxsr_latency {
3515 int is_desktop;
3516 int is_ddr3;
3517 unsigned long fsb_freq;
3518 unsigned long mem_freq;
3519 unsigned long display_sr;
3520 unsigned long display_hpll_disable;
3521 unsigned long cursor_sr;
3522 unsigned long cursor_hpll_disable;
3523 };
3524
3525 static const struct cxsr_latency cxsr_latency_table[] = {
3526 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3527 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3528 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3529 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3530 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3531
3532 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3533 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3534 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3535 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3536 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3537
3538 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3539 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3540 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3541 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3542 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3543
3544 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3545 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3546 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3547 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3548 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3549
3550 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3551 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3552 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3553 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3554 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3555
3556 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3557 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3558 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3559 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3560 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3561 };
3562
3563 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3564 int is_ddr3,
3565 int fsb,
3566 int mem)
3567 {
3568 const struct cxsr_latency *latency;
3569 int i;
3570
3571 if (fsb == 0 || mem == 0)
3572 return NULL;
3573
3574 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3575 latency = &cxsr_latency_table[i];
3576 if (is_desktop == latency->is_desktop &&
3577 is_ddr3 == latency->is_ddr3 &&
3578 fsb == latency->fsb_freq && mem == latency->mem_freq)
3579 return latency;
3580 }
3581
3582 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3583
3584 return NULL;
3585 }
3586
3587 static void pineview_disable_cxsr(struct drm_device *dev)
3588 {
3589 struct drm_i915_private *dev_priv = dev->dev_private;
3590
3591 /* deactivate cxsr */
3592 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3593 }
3594
3595 /*
3596 * Latency for FIFO fetches is dependent on several factors:
3597 * - memory configuration (speed, channels)
3598 * - chipset
3599 * - current MCH state
3600 * It can be fairly high in some situations, so here we assume a fairly
3601 * pessimal value. It's a tradeoff between extra memory fetches (if we
3602 * set this value too high, the FIFO will fetch frequently to stay full)
3603 * and power consumption (set it too low to save power and we might see
3604 * FIFO underruns and display "flicker").
3605 *
3606 * A value of 5us seems to be a good balance; safe for very low end
3607 * platforms but not overly aggressive on lower latency configs.
3608 */
3609 static const int latency_ns = 5000;
3610
3611 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3612 {
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614 uint32_t dsparb = I915_READ(DSPARB);
3615 int size;
3616
3617 size = dsparb & 0x7f;
3618 if (plane)
3619 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3620
3621 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3622 plane ? "B" : "A", size);
3623
3624 return size;
3625 }
3626
3627 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3628 {
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630 uint32_t dsparb = I915_READ(DSPARB);
3631 int size;
3632
3633 size = dsparb & 0x1ff;
3634 if (plane)
3635 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3636 size >>= 1; /* Convert to cachelines */
3637
3638 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3639 plane ? "B" : "A", size);
3640
3641 return size;
3642 }
3643
3644 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3645 {
3646 struct drm_i915_private *dev_priv = dev->dev_private;
3647 uint32_t dsparb = I915_READ(DSPARB);
3648 int size;
3649
3650 size = dsparb & 0x7f;
3651 size >>= 2; /* Convert to cachelines */
3652
3653 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3654 plane ? "B" : "A",
3655 size);
3656
3657 return size;
3658 }
3659
3660 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3661 {
3662 struct drm_i915_private *dev_priv = dev->dev_private;
3663 uint32_t dsparb = I915_READ(DSPARB);
3664 int size;
3665
3666 size = dsparb & 0x7f;
3667 size >>= 1; /* Convert to cachelines */
3668
3669 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3670 plane ? "B" : "A", size);
3671
3672 return size;
3673 }
3674
3675 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3676 {
3677 struct drm_crtc *crtc, *enabled = NULL;
3678
3679 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3680 if (crtc->enabled && crtc->fb) {
3681 if (enabled)
3682 return NULL;
3683 enabled = crtc;
3684 }
3685 }
3686
3687 return enabled;
3688 }
3689
3690 static void pineview_update_wm(struct drm_device *dev)
3691 {
3692 struct drm_i915_private *dev_priv = dev->dev_private;
3693 struct drm_crtc *crtc;
3694 const struct cxsr_latency *latency;
3695 u32 reg;
3696 unsigned long wm;
3697
3698 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3699 dev_priv->fsb_freq, dev_priv->mem_freq);
3700 if (!latency) {
3701 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3702 pineview_disable_cxsr(dev);
3703 return;
3704 }
3705
3706 crtc = single_enabled_crtc(dev);
3707 if (crtc) {
3708 int clock = crtc->mode.clock;
3709 int pixel_size = crtc->fb->bits_per_pixel / 8;
3710
3711 /* Display SR */
3712 wm = intel_calculate_wm(clock, &pineview_display_wm,
3713 pineview_display_wm.fifo_size,
3714 pixel_size, latency->display_sr);
3715 reg = I915_READ(DSPFW1);
3716 reg &= ~DSPFW_SR_MASK;
3717 reg |= wm << DSPFW_SR_SHIFT;
3718 I915_WRITE(DSPFW1, reg);
3719 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3720
3721 /* cursor SR */
3722 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3723 pineview_display_wm.fifo_size,
3724 pixel_size, latency->cursor_sr);
3725 reg = I915_READ(DSPFW3);
3726 reg &= ~DSPFW_CURSOR_SR_MASK;
3727 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3728 I915_WRITE(DSPFW3, reg);
3729
3730 /* Display HPLL off SR */
3731 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3732 pineview_display_hplloff_wm.fifo_size,
3733 pixel_size, latency->display_hpll_disable);
3734 reg = I915_READ(DSPFW3);
3735 reg &= ~DSPFW_HPLL_SR_MASK;
3736 reg |= wm & DSPFW_HPLL_SR_MASK;
3737 I915_WRITE(DSPFW3, reg);
3738
3739 /* cursor HPLL off SR */
3740 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3741 pineview_display_hplloff_wm.fifo_size,
3742 pixel_size, latency->cursor_hpll_disable);
3743 reg = I915_READ(DSPFW3);
3744 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3745 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3746 I915_WRITE(DSPFW3, reg);
3747 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3748
3749 /* activate cxsr */
3750 I915_WRITE(DSPFW3,
3751 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3752 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3753 } else {
3754 pineview_disable_cxsr(dev);
3755 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3756 }
3757 }
3758
3759 static bool g4x_compute_wm0(struct drm_device *dev,
3760 int plane,
3761 const struct intel_watermark_params *display,
3762 int display_latency_ns,
3763 const struct intel_watermark_params *cursor,
3764 int cursor_latency_ns,
3765 int *plane_wm,
3766 int *cursor_wm)
3767 {
3768 struct drm_crtc *crtc;
3769 int htotal, hdisplay, clock, pixel_size;
3770 int line_time_us, line_count;
3771 int entries, tlb_miss;
3772
3773 crtc = intel_get_crtc_for_plane(dev, plane);
3774 if (crtc->fb == NULL || !crtc->enabled) {
3775 *cursor_wm = cursor->guard_size;
3776 *plane_wm = display->guard_size;
3777 return false;
3778 }
3779
3780 htotal = crtc->mode.htotal;
3781 hdisplay = crtc->mode.hdisplay;
3782 clock = crtc->mode.clock;
3783 pixel_size = crtc->fb->bits_per_pixel / 8;
3784
3785 /* Use the small buffer method to calculate plane watermark */
3786 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3787 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3788 if (tlb_miss > 0)
3789 entries += tlb_miss;
3790 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3791 *plane_wm = entries + display->guard_size;
3792 if (*plane_wm > (int)display->max_wm)
3793 *plane_wm = display->max_wm;
3794
3795 /* Use the large buffer method to calculate cursor watermark */
3796 line_time_us = ((htotal * 1000) / clock);
3797 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3798 entries = line_count * 64 * pixel_size;
3799 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3800 if (tlb_miss > 0)
3801 entries += tlb_miss;
3802 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3803 *cursor_wm = entries + cursor->guard_size;
3804 if (*cursor_wm > (int)cursor->max_wm)
3805 *cursor_wm = (int)cursor->max_wm;
3806
3807 return true;
3808 }
3809
3810 /*
3811 * Check the wm result.
3812 *
3813 * If any calculated watermark values is larger than the maximum value that
3814 * can be programmed into the associated watermark register, that watermark
3815 * must be disabled.
3816 */
3817 static bool g4x_check_srwm(struct drm_device *dev,
3818 int display_wm, int cursor_wm,
3819 const struct intel_watermark_params *display,
3820 const struct intel_watermark_params *cursor)
3821 {
3822 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3823 display_wm, cursor_wm);
3824
3825 if (display_wm > display->max_wm) {
3826 DRM_DEBUG_KMS("display watermark is too large(%d), disabling\n",
3827 display_wm, display->max_wm);
3828 return false;
3829 }
3830
3831 if (cursor_wm > cursor->max_wm) {
3832 DRM_DEBUG_KMS("cursor watermark is too large(%d), disabling\n",
3833 cursor_wm, cursor->max_wm);
3834 return false;
3835 }
3836
3837 if (!(display_wm || cursor_wm)) {
3838 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3839 return false;
3840 }
3841
3842 return true;
3843 }
3844
3845 static bool g4x_compute_srwm(struct drm_device *dev,
3846 int plane,
3847 int latency_ns,
3848 const struct intel_watermark_params *display,
3849 const struct intel_watermark_params *cursor,
3850 int *display_wm, int *cursor_wm)
3851 {
3852 struct drm_crtc *crtc;
3853 int hdisplay, htotal, pixel_size, clock;
3854 unsigned long line_time_us;
3855 int line_count, line_size;
3856 int small, large;
3857 int entries;
3858
3859 if (!latency_ns) {
3860 *display_wm = *cursor_wm = 0;
3861 return false;
3862 }
3863
3864 crtc = intel_get_crtc_for_plane(dev, plane);
3865 hdisplay = crtc->mode.hdisplay;
3866 htotal = crtc->mode.htotal;
3867 clock = crtc->mode.clock;
3868 pixel_size = crtc->fb->bits_per_pixel / 8;
3869
3870 line_time_us = (htotal * 1000) / clock;
3871 line_count = (latency_ns / line_time_us + 1000) / 1000;
3872 line_size = hdisplay * pixel_size;
3873
3874 /* Use the minimum of the small and large buffer method for primary */
3875 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3876 large = line_count * line_size;
3877
3878 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3879 *display_wm = entries + display->guard_size;
3880
3881 /* calculate the self-refresh watermark for display cursor */
3882 entries = line_count * pixel_size * 64;
3883 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3884 *cursor_wm = entries + cursor->guard_size;
3885
3886 return g4x_check_srwm(dev,
3887 *display_wm, *cursor_wm,
3888 display, cursor);
3889 }
3890
3891 #define single_plane_enabled(mask) is_power_of_2(mask)
3892
3893 static void g4x_update_wm(struct drm_device *dev)
3894 {
3895 static const int sr_latency_ns = 12000;
3896 struct drm_i915_private *dev_priv = dev->dev_private;
3897 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3898 int plane_sr, cursor_sr;
3899 unsigned int enabled = 0;
3900
3901 if (g4x_compute_wm0(dev, 0,
3902 &g4x_wm_info, latency_ns,
3903 &g4x_cursor_wm_info, latency_ns,
3904 &planea_wm, &cursora_wm))
3905 enabled |= 1;
3906
3907 if (g4x_compute_wm0(dev, 1,
3908 &g4x_wm_info, latency_ns,
3909 &g4x_cursor_wm_info, latency_ns,
3910 &planeb_wm, &cursorb_wm))
3911 enabled |= 2;
3912
3913 plane_sr = cursor_sr = 0;
3914 if (single_plane_enabled(enabled) &&
3915 g4x_compute_srwm(dev, ffs(enabled) - 1,
3916 sr_latency_ns,
3917 &g4x_wm_info,
3918 &g4x_cursor_wm_info,
3919 &plane_sr, &cursor_sr))
3920 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3921 else
3922 I915_WRITE(FW_BLC_SELF,
3923 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3924
3925 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3926 planea_wm, cursora_wm,
3927 planeb_wm, cursorb_wm,
3928 plane_sr, cursor_sr);
3929
3930 I915_WRITE(DSPFW1,
3931 (plane_sr << DSPFW_SR_SHIFT) |
3932 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3933 (planeb_wm << DSPFW_PLANEB_SHIFT) |
3934 planea_wm);
3935 I915_WRITE(DSPFW2,
3936 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3937 (cursora_wm << DSPFW_CURSORA_SHIFT));
3938 /* HPLL off in SR has some issues on G4x... disable it */
3939 I915_WRITE(DSPFW3,
3940 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3941 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3942 }
3943
3944 static void i965_update_wm(struct drm_device *dev)
3945 {
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947 struct drm_crtc *crtc;
3948 int srwm = 1;
3949 int cursor_sr = 16;
3950
3951 /* Calc sr entries for one plane configs */
3952 crtc = single_enabled_crtc(dev);
3953 if (crtc) {
3954 /* self-refresh has much higher latency */
3955 static const int sr_latency_ns = 12000;
3956 int clock = crtc->mode.clock;
3957 int htotal = crtc->mode.htotal;
3958 int hdisplay = crtc->mode.hdisplay;
3959 int pixel_size = crtc->fb->bits_per_pixel / 8;
3960 unsigned long line_time_us;
3961 int entries;
3962
3963 line_time_us = ((htotal * 1000) / clock);
3964
3965 /* Use ns/us then divide to preserve precision */
3966 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3967 pixel_size * hdisplay;
3968 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3969 srwm = I965_FIFO_SIZE - entries;
3970 if (srwm < 0)
3971 srwm = 1;
3972 srwm &= 0x1ff;
3973 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3974 entries, srwm);
3975
3976 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3977 pixel_size * 64;
3978 entries = DIV_ROUND_UP(entries,
3979 i965_cursor_wm_info.cacheline_size);
3980 cursor_sr = i965_cursor_wm_info.fifo_size -
3981 (entries + i965_cursor_wm_info.guard_size);
3982
3983 if (cursor_sr > i965_cursor_wm_info.max_wm)
3984 cursor_sr = i965_cursor_wm_info.max_wm;
3985
3986 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3987 "cursor %d\n", srwm, cursor_sr);
3988
3989 if (IS_CRESTLINE(dev))
3990 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3991 } else {
3992 /* Turn off self refresh if both pipes are enabled */
3993 if (IS_CRESTLINE(dev))
3994 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3995 & ~FW_BLC_SELF_EN);
3996 }
3997
3998 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3999 srwm);
4000
4001 /* 965 has limitations... */
4002 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4003 (8 << 16) | (8 << 8) | (8 << 0));
4004 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4005 /* update cursor SR watermark */
4006 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4007 }
4008
4009 static void i9xx_update_wm(struct drm_device *dev)
4010 {
4011 struct drm_i915_private *dev_priv = dev->dev_private;
4012 const struct intel_watermark_params *wm_info;
4013 uint32_t fwater_lo;
4014 uint32_t fwater_hi;
4015 int cwm, srwm = 1;
4016 int fifo_size;
4017 int planea_wm, planeb_wm;
4018 struct drm_crtc *crtc, *enabled = NULL;
4019
4020 if (IS_I945GM(dev))
4021 wm_info = &i945_wm_info;
4022 else if (!IS_GEN2(dev))
4023 wm_info = &i915_wm_info;
4024 else
4025 wm_info = &i855_wm_info;
4026
4027 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4028 crtc = intel_get_crtc_for_plane(dev, 0);
4029 if (crtc->enabled && crtc->fb) {
4030 planea_wm = intel_calculate_wm(crtc->mode.clock,
4031 wm_info, fifo_size,
4032 crtc->fb->bits_per_pixel / 8,
4033 latency_ns);
4034 enabled = crtc;
4035 } else
4036 planea_wm = fifo_size - wm_info->guard_size;
4037
4038 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4039 crtc = intel_get_crtc_for_plane(dev, 1);
4040 if (crtc->enabled && crtc->fb) {
4041 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4042 wm_info, fifo_size,
4043 crtc->fb->bits_per_pixel / 8,
4044 latency_ns);
4045 if (enabled == NULL)
4046 enabled = crtc;
4047 else
4048 enabled = NULL;
4049 } else
4050 planeb_wm = fifo_size - wm_info->guard_size;
4051
4052 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4053
4054 /*
4055 * Overlay gets an aggressive default since video jitter is bad.
4056 */
4057 cwm = 2;
4058
4059 /* Play safe and disable self-refresh before adjusting watermarks. */
4060 if (IS_I945G(dev) || IS_I945GM(dev))
4061 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4062 else if (IS_I915GM(dev))
4063 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4064
4065 /* Calc sr entries for one plane configs */
4066 if (HAS_FW_BLC(dev) && enabled) {
4067 /* self-refresh has much higher latency */
4068 static const int sr_latency_ns = 6000;
4069 int clock = enabled->mode.clock;
4070 int htotal = enabled->mode.htotal;
4071 int hdisplay = enabled->mode.hdisplay;
4072 int pixel_size = enabled->fb->bits_per_pixel / 8;
4073 unsigned long line_time_us;
4074 int entries;
4075
4076 line_time_us = (htotal * 1000) / clock;
4077
4078 /* Use ns/us then divide to preserve precision */
4079 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4080 pixel_size * hdisplay;
4081 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4082 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4083 srwm = wm_info->fifo_size - entries;
4084 if (srwm < 0)
4085 srwm = 1;
4086
4087 if (IS_I945G(dev) || IS_I945GM(dev))
4088 I915_WRITE(FW_BLC_SELF,
4089 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4090 else if (IS_I915GM(dev))
4091 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4092 }
4093
4094 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4095 planea_wm, planeb_wm, cwm, srwm);
4096
4097 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4098 fwater_hi = (cwm & 0x1f);
4099
4100 /* Set request length to 8 cachelines per fetch */
4101 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4102 fwater_hi = fwater_hi | (1 << 8);
4103
4104 I915_WRITE(FW_BLC, fwater_lo);
4105 I915_WRITE(FW_BLC2, fwater_hi);
4106
4107 if (HAS_FW_BLC(dev)) {
4108 if (enabled) {
4109 if (IS_I945G(dev) || IS_I945GM(dev))
4110 I915_WRITE(FW_BLC_SELF,
4111 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4112 else if (IS_I915GM(dev))
4113 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4114 DRM_DEBUG_KMS("memory self refresh enabled\n");
4115 } else
4116 DRM_DEBUG_KMS("memory self refresh disabled\n");
4117 }
4118 }
4119
4120 static void i830_update_wm(struct drm_device *dev)
4121 {
4122 struct drm_i915_private *dev_priv = dev->dev_private;
4123 struct drm_crtc *crtc;
4124 uint32_t fwater_lo;
4125 int planea_wm;
4126
4127 crtc = single_enabled_crtc(dev);
4128 if (crtc == NULL)
4129 return;
4130
4131 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4132 dev_priv->display.get_fifo_size(dev, 0),
4133 crtc->fb->bits_per_pixel / 8,
4134 latency_ns);
4135 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4136 fwater_lo |= (3<<8) | planea_wm;
4137
4138 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4139
4140 I915_WRITE(FW_BLC, fwater_lo);
4141 }
4142
4143 #define ILK_LP0_PLANE_LATENCY 700
4144 #define ILK_LP0_CURSOR_LATENCY 1300
4145
4146 static bool ironlake_compute_wm0(struct drm_device *dev,
4147 int pipe,
4148 const struct intel_watermark_params *display,
4149 int display_latency_ns,
4150 const struct intel_watermark_params *cursor,
4151 int cursor_latency_ns,
4152 int *plane_wm,
4153 int *cursor_wm)
4154 {
4155 struct drm_crtc *crtc;
4156 int htotal, hdisplay, clock, pixel_size;
4157 int line_time_us, line_count;
4158 int entries, tlb_miss;
4159
4160 crtc = intel_get_crtc_for_pipe(dev, pipe);
4161 if (crtc->fb == NULL || !crtc->enabled)
4162 return false;
4163
4164 htotal = crtc->mode.htotal;
4165 hdisplay = crtc->mode.hdisplay;
4166 clock = crtc->mode.clock;
4167 pixel_size = crtc->fb->bits_per_pixel / 8;
4168
4169 /* Use the small buffer method to calculate plane watermark */
4170 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4171 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4172 if (tlb_miss > 0)
4173 entries += tlb_miss;
4174 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4175 *plane_wm = entries + display->guard_size;
4176 if (*plane_wm > (int)display->max_wm)
4177 *plane_wm = display->max_wm;
4178
4179 /* Use the large buffer method to calculate cursor watermark */
4180 line_time_us = ((htotal * 1000) / clock);
4181 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4182 entries = line_count * 64 * pixel_size;
4183 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4184 if (tlb_miss > 0)
4185 entries += tlb_miss;
4186 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4187 *cursor_wm = entries + cursor->guard_size;
4188 if (*cursor_wm > (int)cursor->max_wm)
4189 *cursor_wm = (int)cursor->max_wm;
4190
4191 return true;
4192 }
4193
4194 /*
4195 * Check the wm result.
4196 *
4197 * If any calculated watermark values is larger than the maximum value that
4198 * can be programmed into the associated watermark register, that watermark
4199 * must be disabled.
4200 */
4201 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4202 int fbc_wm, int display_wm, int cursor_wm,
4203 const struct intel_watermark_params *display,
4204 const struct intel_watermark_params *cursor)
4205 {
4206 struct drm_i915_private *dev_priv = dev->dev_private;
4207
4208 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4209 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4210
4211 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4212 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4213 fbc_wm, SNB_FBC_MAX_SRWM, level);
4214
4215 /* fbc has it's own way to disable FBC WM */
4216 I915_WRITE(DISP_ARB_CTL,
4217 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4218 return false;
4219 }
4220
4221 if (display_wm > display->max_wm) {
4222 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4223 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4224 return false;
4225 }
4226
4227 if (cursor_wm > cursor->max_wm) {
4228 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4229 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4230 return false;
4231 }
4232
4233 if (!(fbc_wm || display_wm || cursor_wm)) {
4234 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4235 return false;
4236 }
4237
4238 return true;
4239 }
4240
4241 /*
4242 * Compute watermark values of WM[1-3],
4243 */
4244 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4245 int latency_ns,
4246 const struct intel_watermark_params *display,
4247 const struct intel_watermark_params *cursor,
4248 int *fbc_wm, int *display_wm, int *cursor_wm)
4249 {
4250 struct drm_crtc *crtc;
4251 unsigned long line_time_us;
4252 int hdisplay, htotal, pixel_size, clock;
4253 int line_count, line_size;
4254 int small, large;
4255 int entries;
4256
4257 if (!latency_ns) {
4258 *fbc_wm = *display_wm = *cursor_wm = 0;
4259 return false;
4260 }
4261
4262 crtc = intel_get_crtc_for_plane(dev, plane);
4263 hdisplay = crtc->mode.hdisplay;
4264 htotal = crtc->mode.htotal;
4265 clock = crtc->mode.clock;
4266 pixel_size = crtc->fb->bits_per_pixel / 8;
4267
4268 line_time_us = (htotal * 1000) / clock;
4269 line_count = (latency_ns / line_time_us + 1000) / 1000;
4270 line_size = hdisplay * pixel_size;
4271
4272 /* Use the minimum of the small and large buffer method for primary */
4273 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4274 large = line_count * line_size;
4275
4276 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4277 *display_wm = entries + display->guard_size;
4278
4279 /*
4280 * Spec says:
4281 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4282 */
4283 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4284
4285 /* calculate the self-refresh watermark for display cursor */
4286 entries = line_count * pixel_size * 64;
4287 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4288 *cursor_wm = entries + cursor->guard_size;
4289
4290 return ironlake_check_srwm(dev, level,
4291 *fbc_wm, *display_wm, *cursor_wm,
4292 display, cursor);
4293 }
4294
4295 static void ironlake_update_wm(struct drm_device *dev)
4296 {
4297 struct drm_i915_private *dev_priv = dev->dev_private;
4298 int fbc_wm, plane_wm, cursor_wm;
4299 unsigned int enabled;
4300
4301 enabled = 0;
4302 if (ironlake_compute_wm0(dev, 0,
4303 &ironlake_display_wm_info,
4304 ILK_LP0_PLANE_LATENCY,
4305 &ironlake_cursor_wm_info,
4306 ILK_LP0_CURSOR_LATENCY,
4307 &plane_wm, &cursor_wm)) {
4308 I915_WRITE(WM0_PIPEA_ILK,
4309 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4310 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4311 " plane %d, " "cursor: %d\n",
4312 plane_wm, cursor_wm);
4313 enabled |= 1;
4314 }
4315
4316 if (ironlake_compute_wm0(dev, 1,
4317 &ironlake_display_wm_info,
4318 ILK_LP0_PLANE_LATENCY,
4319 &ironlake_cursor_wm_info,
4320 ILK_LP0_CURSOR_LATENCY,
4321 &plane_wm, &cursor_wm)) {
4322 I915_WRITE(WM0_PIPEB_ILK,
4323 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4324 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4325 " plane %d, cursor: %d\n",
4326 plane_wm, cursor_wm);
4327 enabled |= 2;
4328 }
4329
4330 /*
4331 * Calculate and update the self-refresh watermark only when one
4332 * display plane is used.
4333 */
4334 I915_WRITE(WM3_LP_ILK, 0);
4335 I915_WRITE(WM2_LP_ILK, 0);
4336 I915_WRITE(WM1_LP_ILK, 0);
4337
4338 if (!single_plane_enabled(enabled))
4339 return;
4340 enabled = ffs(enabled) - 1;
4341
4342 /* WM1 */
4343 if (!ironlake_compute_srwm(dev, 1, enabled,
4344 ILK_READ_WM1_LATENCY() * 500,
4345 &ironlake_display_srwm_info,
4346 &ironlake_cursor_srwm_info,
4347 &fbc_wm, &plane_wm, &cursor_wm))
4348 return;
4349
4350 I915_WRITE(WM1_LP_ILK,
4351 WM1_LP_SR_EN |
4352 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4353 (fbc_wm << WM1_LP_FBC_SHIFT) |
4354 (plane_wm << WM1_LP_SR_SHIFT) |
4355 cursor_wm);
4356
4357 /* WM2 */
4358 if (!ironlake_compute_srwm(dev, 2, enabled,
4359 ILK_READ_WM2_LATENCY() * 500,
4360 &ironlake_display_srwm_info,
4361 &ironlake_cursor_srwm_info,
4362 &fbc_wm, &plane_wm, &cursor_wm))
4363 return;
4364
4365 I915_WRITE(WM2_LP_ILK,
4366 WM2_LP_EN |
4367 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4368 (fbc_wm << WM1_LP_FBC_SHIFT) |
4369 (plane_wm << WM1_LP_SR_SHIFT) |
4370 cursor_wm);
4371
4372 /*
4373 * WM3 is unsupported on ILK, probably because we don't have latency
4374 * data for that power state
4375 */
4376 }
4377
4378 static void sandybridge_update_wm(struct drm_device *dev)
4379 {
4380 struct drm_i915_private *dev_priv = dev->dev_private;
4381 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4382 int fbc_wm, plane_wm, cursor_wm;
4383 unsigned int enabled;
4384
4385 enabled = 0;
4386 if (ironlake_compute_wm0(dev, 0,
4387 &sandybridge_display_wm_info, latency,
4388 &sandybridge_cursor_wm_info, latency,
4389 &plane_wm, &cursor_wm)) {
4390 I915_WRITE(WM0_PIPEA_ILK,
4391 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4392 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4393 " plane %d, " "cursor: %d\n",
4394 plane_wm, cursor_wm);
4395 enabled |= 1;
4396 }
4397
4398 if (ironlake_compute_wm0(dev, 1,
4399 &sandybridge_display_wm_info, latency,
4400 &sandybridge_cursor_wm_info, latency,
4401 &plane_wm, &cursor_wm)) {
4402 I915_WRITE(WM0_PIPEB_ILK,
4403 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4404 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4405 " plane %d, cursor: %d\n",
4406 plane_wm, cursor_wm);
4407 enabled |= 2;
4408 }
4409
4410 /*
4411 * Calculate and update the self-refresh watermark only when one
4412 * display plane is used.
4413 *
4414 * SNB support 3 levels of watermark.
4415 *
4416 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4417 * and disabled in the descending order
4418 *
4419 */
4420 I915_WRITE(WM3_LP_ILK, 0);
4421 I915_WRITE(WM2_LP_ILK, 0);
4422 I915_WRITE(WM1_LP_ILK, 0);
4423
4424 if (!single_plane_enabled(enabled))
4425 return;
4426 enabled = ffs(enabled) - 1;
4427
4428 /* WM1 */
4429 if (!ironlake_compute_srwm(dev, 1, enabled,
4430 SNB_READ_WM1_LATENCY() * 500,
4431 &sandybridge_display_srwm_info,
4432 &sandybridge_cursor_srwm_info,
4433 &fbc_wm, &plane_wm, &cursor_wm))
4434 return;
4435
4436 I915_WRITE(WM1_LP_ILK,
4437 WM1_LP_SR_EN |
4438 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4439 (fbc_wm << WM1_LP_FBC_SHIFT) |
4440 (plane_wm << WM1_LP_SR_SHIFT) |
4441 cursor_wm);
4442
4443 /* WM2 */
4444 if (!ironlake_compute_srwm(dev, 2, enabled,
4445 SNB_READ_WM2_LATENCY() * 500,
4446 &sandybridge_display_srwm_info,
4447 &sandybridge_cursor_srwm_info,
4448 &fbc_wm, &plane_wm, &cursor_wm))
4449 return;
4450
4451 I915_WRITE(WM2_LP_ILK,
4452 WM2_LP_EN |
4453 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4454 (fbc_wm << WM1_LP_FBC_SHIFT) |
4455 (plane_wm << WM1_LP_SR_SHIFT) |
4456 cursor_wm);
4457
4458 /* WM3 */
4459 if (!ironlake_compute_srwm(dev, 3, enabled,
4460 SNB_READ_WM3_LATENCY() * 500,
4461 &sandybridge_display_srwm_info,
4462 &sandybridge_cursor_srwm_info,
4463 &fbc_wm, &plane_wm, &cursor_wm))
4464 return;
4465
4466 I915_WRITE(WM3_LP_ILK,
4467 WM3_LP_EN |
4468 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4469 (fbc_wm << WM1_LP_FBC_SHIFT) |
4470 (plane_wm << WM1_LP_SR_SHIFT) |
4471 cursor_wm);
4472 }
4473
4474 /**
4475 * intel_update_watermarks - update FIFO watermark values based on current modes
4476 *
4477 * Calculate watermark values for the various WM regs based on current mode
4478 * and plane configuration.
4479 *
4480 * There are several cases to deal with here:
4481 * - normal (i.e. non-self-refresh)
4482 * - self-refresh (SR) mode
4483 * - lines are large relative to FIFO size (buffer can hold up to 2)
4484 * - lines are small relative to FIFO size (buffer can hold more than 2
4485 * lines), so need to account for TLB latency
4486 *
4487 * The normal calculation is:
4488 * watermark = dotclock * bytes per pixel * latency
4489 * where latency is platform & configuration dependent (we assume pessimal
4490 * values here).
4491 *
4492 * The SR calculation is:
4493 * watermark = (trunc(latency/line time)+1) * surface width *
4494 * bytes per pixel
4495 * where
4496 * line time = htotal / dotclock
4497 * surface width = hdisplay for normal plane and 64 for cursor
4498 * and latency is assumed to be high, as above.
4499 *
4500 * The final value programmed to the register should always be rounded up,
4501 * and include an extra 2 entries to account for clock crossings.
4502 *
4503 * We don't use the sprite, so we can ignore that. And on Crestline we have
4504 * to set the non-SR watermarks to 8.
4505 */
4506 static void intel_update_watermarks(struct drm_device *dev)
4507 {
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509
4510 if (dev_priv->display.update_wm)
4511 dev_priv->display.update_wm(dev);
4512 }
4513
4514 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4515 {
4516 return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4517 }
4518
4519 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4520 struct drm_display_mode *mode,
4521 struct drm_display_mode *adjusted_mode,
4522 int x, int y,
4523 struct drm_framebuffer *old_fb)
4524 {
4525 struct drm_device *dev = crtc->dev;
4526 struct drm_i915_private *dev_priv = dev->dev_private;
4527 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4528 int pipe = intel_crtc->pipe;
4529 int plane = intel_crtc->plane;
4530 u32 fp_reg, dpll_reg;
4531 int refclk, num_connectors = 0;
4532 intel_clock_t clock, reduced_clock;
4533 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4534 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4535 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4536 struct intel_encoder *has_edp_encoder = NULL;
4537 struct drm_mode_config *mode_config = &dev->mode_config;
4538 struct intel_encoder *encoder;
4539 const intel_limit_t *limit;
4540 int ret;
4541 u32 reg, temp;
4542 u32 lvds_sync = 0;
4543
4544 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4545 if (encoder->base.crtc != crtc)
4546 continue;
4547
4548 switch (encoder->type) {
4549 case INTEL_OUTPUT_LVDS:
4550 is_lvds = true;
4551 break;
4552 case INTEL_OUTPUT_SDVO:
4553 case INTEL_OUTPUT_HDMI:
4554 is_sdvo = true;
4555 if (encoder->needs_tv_clock)
4556 is_tv = true;
4557 break;
4558 case INTEL_OUTPUT_DVO:
4559 is_dvo = true;
4560 break;
4561 case INTEL_OUTPUT_TVOUT:
4562 is_tv = true;
4563 break;
4564 case INTEL_OUTPUT_ANALOG:
4565 is_crt = true;
4566 break;
4567 case INTEL_OUTPUT_DISPLAYPORT:
4568 is_dp = true;
4569 break;
4570 case INTEL_OUTPUT_EDP:
4571 has_edp_encoder = encoder;
4572 break;
4573 }
4574
4575 num_connectors++;
4576 }
4577
4578 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4579 refclk = dev_priv->lvds_ssc_freq * 1000;
4580 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4581 refclk / 1000);
4582 } else if (!IS_GEN2(dev)) {
4583 refclk = 96000;
4584 } else {
4585 refclk = 48000;
4586 }
4587
4588 /*
4589 * Returns a set of divisors for the desired target clock with the given
4590 * refclk, or FALSE. The returned values represent the clock equation:
4591 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4592 */
4593 limit = intel_limit(crtc, refclk);
4594 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4595 if (!ok) {
4596 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4597 return -EINVAL;
4598 }
4599
4600 /* Ensure that the cursor is valid for the new mode before changing... */
4601 intel_crtc_update_cursor(crtc, true);
4602
4603 if (is_lvds && dev_priv->lvds_downclock_avail) {
4604 has_reduced_clock = limit->find_pll(limit, crtc,
4605 dev_priv->lvds_downclock,
4606 refclk,
4607 &reduced_clock);
4608 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4609 /*
4610 * If the different P is found, it means that we can't
4611 * switch the display clock by using the FP0/FP1.
4612 * In such case we will disable the LVDS downclock
4613 * feature.
4614 */
4615 DRM_DEBUG_KMS("Different P is found for "
4616 "LVDS clock/downclock\n");
4617 has_reduced_clock = 0;
4618 }
4619 }
4620 /* SDVO TV has fixed PLL values depend on its clock range,
4621 this mirrors vbios setting. */
4622 if (is_sdvo && is_tv) {
4623 if (adjusted_mode->clock >= 100000
4624 && adjusted_mode->clock < 140500) {
4625 clock.p1 = 2;
4626 clock.p2 = 10;
4627 clock.n = 3;
4628 clock.m1 = 16;
4629 clock.m2 = 8;
4630 } else if (adjusted_mode->clock >= 140500
4631 && adjusted_mode->clock <= 200000) {
4632 clock.p1 = 1;
4633 clock.p2 = 10;
4634 clock.n = 6;
4635 clock.m1 = 12;
4636 clock.m2 = 8;
4637 }
4638 }
4639
4640 if (IS_PINEVIEW(dev)) {
4641 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4642 if (has_reduced_clock)
4643 fp2 = (1 << reduced_clock.n) << 16 |
4644 reduced_clock.m1 << 8 | reduced_clock.m2;
4645 } else {
4646 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4647 if (has_reduced_clock)
4648 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4649 reduced_clock.m2;
4650 }
4651
4652 dpll = DPLL_VGA_MODE_DIS;
4653
4654 if (!IS_GEN2(dev)) {
4655 if (is_lvds)
4656 dpll |= DPLLB_MODE_LVDS;
4657 else
4658 dpll |= DPLLB_MODE_DAC_SERIAL;
4659 if (is_sdvo) {
4660 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4661 if (pixel_multiplier > 1) {
4662 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4663 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4664 }
4665 dpll |= DPLL_DVO_HIGH_SPEED;
4666 }
4667 if (is_dp)
4668 dpll |= DPLL_DVO_HIGH_SPEED;
4669
4670 /* compute bitmask from p1 value */
4671 if (IS_PINEVIEW(dev))
4672 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4673 else {
4674 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4675 if (IS_G4X(dev) && has_reduced_clock)
4676 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4677 }
4678 switch (clock.p2) {
4679 case 5:
4680 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4681 break;
4682 case 7:
4683 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4684 break;
4685 case 10:
4686 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4687 break;
4688 case 14:
4689 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4690 break;
4691 }
4692 if (INTEL_INFO(dev)->gen >= 4)
4693 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4694 } else {
4695 if (is_lvds) {
4696 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4697 } else {
4698 if (clock.p1 == 2)
4699 dpll |= PLL_P1_DIVIDE_BY_TWO;
4700 else
4701 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4702 if (clock.p2 == 4)
4703 dpll |= PLL_P2_DIVIDE_BY_4;
4704 }
4705 }
4706
4707 if (is_sdvo && is_tv)
4708 dpll |= PLL_REF_INPUT_TVCLKINBC;
4709 else if (is_tv)
4710 /* XXX: just matching BIOS for now */
4711 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4712 dpll |= 3;
4713 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4714 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4715 else
4716 dpll |= PLL_REF_INPUT_DREFCLK;
4717
4718 /* setup pipeconf */
4719 pipeconf = I915_READ(PIPECONF(pipe));
4720
4721 /* Set up the display plane register */
4722 dspcntr = DISPPLANE_GAMMA_ENABLE;
4723
4724 /* Ironlake's plane is forced to pipe, bit 24 is to
4725 enable color space conversion */
4726 if (pipe == 0)
4727 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4728 else
4729 dspcntr |= DISPPLANE_SEL_PIPE_B;
4730
4731 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4732 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4733 * core speed.
4734 *
4735 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4736 * pipe == 0 check?
4737 */
4738 if (mode->clock >
4739 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4740 pipeconf |= PIPECONF_DOUBLE_WIDE;
4741 else
4742 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4743 }
4744
4745 dpll |= DPLL_VCO_ENABLE;
4746
4747 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4748 drm_mode_debug_printmodeline(mode);
4749
4750 fp_reg = FP0(pipe);
4751 dpll_reg = DPLL(pipe);
4752
4753 /* PCH eDP needs FDI, but CPU eDP does not */
4754 if (!has_edp_encoder) {
4755 I915_WRITE(fp_reg, fp);
4756 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
4757
4758 POSTING_READ(dpll_reg);
4759 udelay(150);
4760 }
4761
4762 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4763 * This is an exception to the general rule that mode_set doesn't turn
4764 * things on.
4765 */
4766 if (is_lvds) {
4767 reg = LVDS;
4768
4769 temp = I915_READ(reg);
4770 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4771 if (pipe == 1) {
4772 temp |= LVDS_PIPEB_SELECT;
4773 } else {
4774 temp &= ~LVDS_PIPEB_SELECT;
4775 }
4776 /* set the corresponsding LVDS_BORDER bit */
4777 temp |= dev_priv->lvds_border_bits;
4778 /* Set the B0-B3 data pairs corresponding to whether we're going to
4779 * set the DPLLs for dual-channel mode or not.
4780 */
4781 if (clock.p2 == 7)
4782 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4783 else
4784 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4785
4786 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4787 * appropriately here, but we need to look more thoroughly into how
4788 * panels behave in the two modes.
4789 */
4790 /* set the dithering flag on LVDS as needed */
4791 if (INTEL_INFO(dev)->gen >= 4) {
4792 if (dev_priv->lvds_dither)
4793 temp |= LVDS_ENABLE_DITHER;
4794 else
4795 temp &= ~LVDS_ENABLE_DITHER;
4796 }
4797 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4798 lvds_sync |= LVDS_HSYNC_POLARITY;
4799 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4800 lvds_sync |= LVDS_VSYNC_POLARITY;
4801 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4802 != lvds_sync) {
4803 char flags[2] = "-+";
4804 DRM_INFO("Changing LVDS panel from "
4805 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4806 flags[!(temp & LVDS_HSYNC_POLARITY)],
4807 flags[!(temp & LVDS_VSYNC_POLARITY)],
4808 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4809 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4810 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4811 temp |= lvds_sync;
4812 }
4813 I915_WRITE(reg, temp);
4814 }
4815
4816 if (is_dp) {
4817 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4818 }
4819
4820 if (!has_edp_encoder) {
4821 I915_WRITE(dpll_reg, dpll);
4822
4823 /* Wait for the clocks to stabilize. */
4824 POSTING_READ(dpll_reg);
4825 udelay(150);
4826
4827 if (INTEL_INFO(dev)->gen >= 4) {
4828 temp = 0;
4829 if (is_sdvo) {
4830 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4831 if (temp > 1)
4832 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4833 else
4834 temp = 0;
4835 }
4836 I915_WRITE(DPLL_MD(pipe), temp);
4837 } else {
4838 /* The pixel multiplier can only be updated once the
4839 * DPLL is enabled and the clocks are stable.
4840 *
4841 * So write it again.
4842 */
4843 I915_WRITE(dpll_reg, dpll);
4844 }
4845 }
4846
4847 intel_crtc->lowfreq_avail = false;
4848 if (is_lvds && has_reduced_clock && i915_powersave) {
4849 I915_WRITE(fp_reg + 4, fp2);
4850 intel_crtc->lowfreq_avail = true;
4851 if (HAS_PIPE_CXSR(dev)) {
4852 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4853 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4854 }
4855 } else {
4856 I915_WRITE(fp_reg + 4, fp);
4857 if (HAS_PIPE_CXSR(dev)) {
4858 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4859 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4860 }
4861 }
4862
4863 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4864 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4865 /* the chip adds 2 halflines automatically */
4866 adjusted_mode->crtc_vdisplay -= 1;
4867 adjusted_mode->crtc_vtotal -= 1;
4868 adjusted_mode->crtc_vblank_start -= 1;
4869 adjusted_mode->crtc_vblank_end -= 1;
4870 adjusted_mode->crtc_vsync_end -= 1;
4871 adjusted_mode->crtc_vsync_start -= 1;
4872 } else
4873 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4874
4875 I915_WRITE(HTOTAL(pipe),
4876 (adjusted_mode->crtc_hdisplay - 1) |
4877 ((adjusted_mode->crtc_htotal - 1) << 16));
4878 I915_WRITE(HBLANK(pipe),
4879 (adjusted_mode->crtc_hblank_start - 1) |
4880 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4881 I915_WRITE(HSYNC(pipe),
4882 (adjusted_mode->crtc_hsync_start - 1) |
4883 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4884
4885 I915_WRITE(VTOTAL(pipe),
4886 (adjusted_mode->crtc_vdisplay - 1) |
4887 ((adjusted_mode->crtc_vtotal - 1) << 16));
4888 I915_WRITE(VBLANK(pipe),
4889 (adjusted_mode->crtc_vblank_start - 1) |
4890 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4891 I915_WRITE(VSYNC(pipe),
4892 (adjusted_mode->crtc_vsync_start - 1) |
4893 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4894
4895 /* pipesrc and dspsize control the size that is scaled from,
4896 * which should always be the user's requested size.
4897 */
4898 I915_WRITE(DSPSIZE(plane),
4899 ((mode->vdisplay - 1) << 16) |
4900 (mode->hdisplay - 1));
4901 I915_WRITE(DSPPOS(plane), 0);
4902 I915_WRITE(PIPESRC(pipe),
4903 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4904
4905 I915_WRITE(PIPECONF(pipe), pipeconf);
4906 POSTING_READ(PIPECONF(pipe));
4907 intel_enable_pipe(dev_priv, pipe, false);
4908
4909 intel_wait_for_vblank(dev, pipe);
4910
4911 if (IS_GEN5(dev)) {
4912 /* enable address swizzle for tiling buffer */
4913 temp = I915_READ(DISP_ARB_CTL);
4914 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4915 }
4916
4917 I915_WRITE(DSPCNTR(plane), dspcntr);
4918 POSTING_READ(DSPCNTR(plane));
4919
4920 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4921
4922 intel_update_watermarks(dev);
4923
4924 return ret;
4925 }
4926
4927 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4928 struct drm_display_mode *mode,
4929 struct drm_display_mode *adjusted_mode,
4930 int x, int y,
4931 struct drm_framebuffer *old_fb)
4932 {
4933 struct drm_device *dev = crtc->dev;
4934 struct drm_i915_private *dev_priv = dev->dev_private;
4935 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4936 int pipe = intel_crtc->pipe;
4937 int plane = intel_crtc->plane;
4938 u32 fp_reg, dpll_reg;
4939 int refclk, num_connectors = 0;
4940 intel_clock_t clock, reduced_clock;
4941 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4942 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4943 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4944 struct intel_encoder *has_edp_encoder = NULL;
4945 struct drm_mode_config *mode_config = &dev->mode_config;
4946 struct intel_encoder *encoder;
4947 const intel_limit_t *limit;
4948 int ret;
4949 struct fdi_m_n m_n = {0};
4950 u32 reg, temp;
4951 u32 lvds_sync = 0;
4952 int target_clock;
4953
4954 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4955 if (encoder->base.crtc != crtc)
4956 continue;
4957
4958 switch (encoder->type) {
4959 case INTEL_OUTPUT_LVDS:
4960 is_lvds = true;
4961 break;
4962 case INTEL_OUTPUT_SDVO:
4963 case INTEL_OUTPUT_HDMI:
4964 is_sdvo = true;
4965 if (encoder->needs_tv_clock)
4966 is_tv = true;
4967 break;
4968 case INTEL_OUTPUT_DVO:
4969 is_dvo = true;
4970 break;
4971 case INTEL_OUTPUT_TVOUT:
4972 is_tv = true;
4973 break;
4974 case INTEL_OUTPUT_ANALOG:
4975 is_crt = true;
4976 break;
4977 case INTEL_OUTPUT_DISPLAYPORT:
4978 is_dp = true;
4979 break;
4980 case INTEL_OUTPUT_EDP:
4981 has_edp_encoder = encoder;
4982 break;
4983 }
4984
4985 num_connectors++;
4986 }
4987
4988 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4989 refclk = dev_priv->lvds_ssc_freq * 1000;
4990 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4991 refclk / 1000);
4992 } else if (!IS_GEN2(dev)) {
4993 refclk = 96000;
4994 if (HAS_PCH_SPLIT(dev) &&
4995 (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)))
4996 refclk = 120000; /* 120Mhz refclk */
4997 } else {
4998 refclk = 48000;
4999 }
5000
5001 /*
5002 * Returns a set of divisors for the desired target clock with the given
5003 * refclk, or FALSE. The returned values represent the clock equation:
5004 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5005 */
5006 limit = intel_limit(crtc, refclk);
5007 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5008 if (!ok) {
5009 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5010 return -EINVAL;
5011 }
5012
5013 /* Ensure that the cursor is valid for the new mode before changing... */
5014 intel_crtc_update_cursor(crtc, true);
5015
5016 if (is_lvds && dev_priv->lvds_downclock_avail) {
5017 has_reduced_clock = limit->find_pll(limit, crtc,
5018 dev_priv->lvds_downclock,
5019 refclk,
5020 &reduced_clock);
5021 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5022 /*
5023 * If the different P is found, it means that we can't
5024 * switch the display clock by using the FP0/FP1.
5025 * In such case we will disable the LVDS downclock
5026 * feature.
5027 */
5028 DRM_DEBUG_KMS("Different P is found for "
5029 "LVDS clock/downclock\n");
5030 has_reduced_clock = 0;
5031 }
5032 }
5033 /* SDVO TV has fixed PLL values depend on its clock range,
5034 this mirrors vbios setting. */
5035 if (is_sdvo && is_tv) {
5036 if (adjusted_mode->clock >= 100000
5037 && adjusted_mode->clock < 140500) {
5038 clock.p1 = 2;
5039 clock.p2 = 10;
5040 clock.n = 3;
5041 clock.m1 = 16;
5042 clock.m2 = 8;
5043 } else if (adjusted_mode->clock >= 140500
5044 && adjusted_mode->clock <= 200000) {
5045 clock.p1 = 1;
5046 clock.p2 = 10;
5047 clock.n = 6;
5048 clock.m1 = 12;
5049 clock.m2 = 8;
5050 }
5051 }
5052
5053 /* FDI link */
5054 if (HAS_PCH_SPLIT(dev)) {
5055 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5056 int lane = 0, link_bw, bpp;
5057 /* CPU eDP doesn't require FDI link, so just set DP M/N
5058 according to current link config */
5059 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5060 target_clock = mode->clock;
5061 intel_edp_link_config(has_edp_encoder,
5062 &lane, &link_bw);
5063 } else {
5064 /* [e]DP over FDI requires target mode clock
5065 instead of link clock */
5066 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5067 target_clock = mode->clock;
5068 else
5069 target_clock = adjusted_mode->clock;
5070
5071 /* FDI is a binary signal running at ~2.7GHz, encoding
5072 * each output octet as 10 bits. The actual frequency
5073 * is stored as a divider into a 100MHz clock, and the
5074 * mode pixel clock is stored in units of 1KHz.
5075 * Hence the bw of each lane in terms of the mode signal
5076 * is:
5077 */
5078 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5079 }
5080
5081 /* determine panel color depth */
5082 temp = I915_READ(PIPECONF(pipe));
5083 temp &= ~PIPE_BPC_MASK;
5084 if (is_lvds) {
5085 /* the BPC will be 6 if it is 18-bit LVDS panel */
5086 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
5087 temp |= PIPE_8BPC;
5088 else
5089 temp |= PIPE_6BPC;
5090 } else if (has_edp_encoder) {
5091 switch (dev_priv->edp.bpp/3) {
5092 case 8:
5093 temp |= PIPE_8BPC;
5094 break;
5095 case 10:
5096 temp |= PIPE_10BPC;
5097 break;
5098 case 6:
5099 temp |= PIPE_6BPC;
5100 break;
5101 case 12:
5102 temp |= PIPE_12BPC;
5103 break;
5104 }
5105 } else
5106 temp |= PIPE_8BPC;
5107 I915_WRITE(PIPECONF(pipe), temp);
5108
5109 switch (temp & PIPE_BPC_MASK) {
5110 case PIPE_8BPC:
5111 bpp = 24;
5112 break;
5113 case PIPE_10BPC:
5114 bpp = 30;
5115 break;
5116 case PIPE_6BPC:
5117 bpp = 18;
5118 break;
5119 case PIPE_12BPC:
5120 bpp = 36;
5121 break;
5122 default:
5123 DRM_ERROR("unknown pipe bpc value\n");
5124 bpp = 24;
5125 }
5126
5127 if (!lane) {
5128 /*
5129 * Account for spread spectrum to avoid
5130 * oversubscribing the link. Max center spread
5131 * is 2.5%; use 5% for safety's sake.
5132 */
5133 u32 bps = target_clock * bpp * 21 / 20;
5134 lane = bps / (link_bw * 8) + 1;
5135 }
5136
5137 intel_crtc->fdi_lanes = lane;
5138
5139 if (pixel_multiplier > 1)
5140 link_bw *= pixel_multiplier;
5141 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
5142 }
5143
5144 /* Ironlake: try to setup display ref clock before DPLL
5145 * enabling. This is only under driver's control after
5146 * PCH B stepping, previous chipset stepping should be
5147 * ignoring this setting.
5148 */
5149 if (HAS_PCH_SPLIT(dev)) {
5150 temp = I915_READ(PCH_DREF_CONTROL);
5151 /* Always enable nonspread source */
5152 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5153 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5154 temp &= ~DREF_SSC_SOURCE_MASK;
5155 temp |= DREF_SSC_SOURCE_ENABLE;
5156 I915_WRITE(PCH_DREF_CONTROL, temp);
5157
5158 POSTING_READ(PCH_DREF_CONTROL);
5159 udelay(200);
5160
5161 if (has_edp_encoder) {
5162 if (intel_panel_use_ssc(dev_priv)) {
5163 temp |= DREF_SSC1_ENABLE;
5164 I915_WRITE(PCH_DREF_CONTROL, temp);
5165
5166 POSTING_READ(PCH_DREF_CONTROL);
5167 udelay(200);
5168 }
5169 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5170
5171 /* Enable CPU source on CPU attached eDP */
5172 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5173 if (intel_panel_use_ssc(dev_priv))
5174 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5175 else
5176 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5177 } else {
5178 /* Enable SSC on PCH eDP if needed */
5179 if (intel_panel_use_ssc(dev_priv)) {
5180 DRM_ERROR("enabling SSC on PCH\n");
5181 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
5182 }
5183 }
5184 I915_WRITE(PCH_DREF_CONTROL, temp);
5185 POSTING_READ(PCH_DREF_CONTROL);
5186 udelay(200);
5187 }
5188 }
5189
5190 if (IS_PINEVIEW(dev)) {
5191 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
5192 if (has_reduced_clock)
5193 fp2 = (1 << reduced_clock.n) << 16 |
5194 reduced_clock.m1 << 8 | reduced_clock.m2;
5195 } else {
5196 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5197 if (has_reduced_clock)
5198 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5199 reduced_clock.m2;
5200 }
5201
5202 /* Enable autotuning of the PLL clock (if permissible) */
5203 if (HAS_PCH_SPLIT(dev)) {
5204 int factor = 21;
5205
5206 if (is_lvds) {
5207 if ((intel_panel_use_ssc(dev_priv) &&
5208 dev_priv->lvds_ssc_freq == 100) ||
5209 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5210 factor = 25;
5211 } else if (is_sdvo && is_tv)
5212 factor = 20;
5213
5214 if (clock.m1 < factor * clock.n)
5215 fp |= FP_CB_TUNE;
5216 }
5217
5218 dpll = 0;
5219 if (!HAS_PCH_SPLIT(dev))
5220 dpll = DPLL_VGA_MODE_DIS;
5221
5222 if (!IS_GEN2(dev)) {
5223 if (is_lvds)
5224 dpll |= DPLLB_MODE_LVDS;
5225 else
5226 dpll |= DPLLB_MODE_DAC_SERIAL;
5227 if (is_sdvo) {
5228 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5229 if (pixel_multiplier > 1) {
5230 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5231 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5232 else if (HAS_PCH_SPLIT(dev))
5233 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5234 }
5235 dpll |= DPLL_DVO_HIGH_SPEED;
5236 }
5237 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5238 dpll |= DPLL_DVO_HIGH_SPEED;
5239
5240 /* compute bitmask from p1 value */
5241 if (IS_PINEVIEW(dev))
5242 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5243 else {
5244 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5245 /* also FPA1 */
5246 if (HAS_PCH_SPLIT(dev))
5247 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5248 if (IS_G4X(dev) && has_reduced_clock)
5249 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5250 }
5251 switch (clock.p2) {
5252 case 5:
5253 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5254 break;
5255 case 7:
5256 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5257 break;
5258 case 10:
5259 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5260 break;
5261 case 14:
5262 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5263 break;
5264 }
5265 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
5266 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5267 } else {
5268 if (is_lvds) {
5269 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5270 } else {
5271 if (clock.p1 == 2)
5272 dpll |= PLL_P1_DIVIDE_BY_TWO;
5273 else
5274 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5275 if (clock.p2 == 4)
5276 dpll |= PLL_P2_DIVIDE_BY_4;
5277 }
5278 }
5279
5280 if (is_sdvo && is_tv)
5281 dpll |= PLL_REF_INPUT_TVCLKINBC;
5282 else if (is_tv)
5283 /* XXX: just matching BIOS for now */
5284 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5285 dpll |= 3;
5286 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5287 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5288 else
5289 dpll |= PLL_REF_INPUT_DREFCLK;
5290
5291 /* setup pipeconf */
5292 pipeconf = I915_READ(PIPECONF(pipe));
5293
5294 /* Set up the display plane register */
5295 dspcntr = DISPPLANE_GAMMA_ENABLE;
5296
5297 /* Ironlake's plane is forced to pipe, bit 24 is to
5298 enable color space conversion */
5299 if (!HAS_PCH_SPLIT(dev)) {
5300 if (pipe == 0)
5301 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5302 else
5303 dspcntr |= DISPPLANE_SEL_PIPE_B;
5304 }
5305
5306 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5307 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5308 * core speed.
5309 *
5310 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5311 * pipe == 0 check?
5312 */
5313 if (mode->clock >
5314 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5315 pipeconf |= PIPECONF_DOUBLE_WIDE;
5316 else
5317 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5318 }
5319
5320 if (!HAS_PCH_SPLIT(dev))
5321 dpll |= DPLL_VCO_ENABLE;
5322
5323 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5324 drm_mode_debug_printmodeline(mode);
5325
5326 /* assign to Ironlake registers */
5327 if (HAS_PCH_SPLIT(dev)) {
5328 fp_reg = PCH_FP0(pipe);
5329 dpll_reg = PCH_DPLL(pipe);
5330 } else {
5331 fp_reg = FP0(pipe);
5332 dpll_reg = DPLL(pipe);
5333 }
5334
5335 /* PCH eDP needs FDI, but CPU eDP does not */
5336 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5337 I915_WRITE(fp_reg, fp);
5338 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
5339
5340 POSTING_READ(dpll_reg);
5341 udelay(150);
5342 }
5343
5344 /* enable transcoder DPLL */
5345 if (HAS_PCH_CPT(dev)) {
5346 temp = I915_READ(PCH_DPLL_SEL);
5347 switch (pipe) {
5348 case 0:
5349 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
5350 break;
5351 case 1:
5352 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
5353 break;
5354 case 2:
5355 /* FIXME: manage transcoder PLLs? */
5356 temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
5357 break;
5358 default:
5359 BUG();
5360 }
5361 I915_WRITE(PCH_DPLL_SEL, temp);
5362
5363 POSTING_READ(PCH_DPLL_SEL);
5364 udelay(150);
5365 }
5366
5367 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5368 * This is an exception to the general rule that mode_set doesn't turn
5369 * things on.
5370 */
5371 if (is_lvds) {
5372 reg = LVDS;
5373 if (HAS_PCH_SPLIT(dev))
5374 reg = PCH_LVDS;
5375
5376 temp = I915_READ(reg);
5377 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5378 if (pipe == 1) {
5379 if (HAS_PCH_CPT(dev))
5380 temp |= PORT_TRANS_B_SEL_CPT;
5381 else
5382 temp |= LVDS_PIPEB_SELECT;
5383 } else {
5384 if (HAS_PCH_CPT(dev))
5385 temp &= ~PORT_TRANS_SEL_MASK;
5386 else
5387 temp &= ~LVDS_PIPEB_SELECT;
5388 }
5389 /* set the corresponsding LVDS_BORDER bit */
5390 temp |= dev_priv->lvds_border_bits;
5391 /* Set the B0-B3 data pairs corresponding to whether we're going to
5392 * set the DPLLs for dual-channel mode or not.
5393 */
5394 if (clock.p2 == 7)
5395 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5396 else
5397 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5398
5399 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5400 * appropriately here, but we need to look more thoroughly into how
5401 * panels behave in the two modes.
5402 */
5403 /* set the dithering flag on non-PCH LVDS as needed */
5404 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
5405 if (dev_priv->lvds_dither)
5406 temp |= LVDS_ENABLE_DITHER;
5407 else
5408 temp &= ~LVDS_ENABLE_DITHER;
5409 }
5410 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5411 lvds_sync |= LVDS_HSYNC_POLARITY;
5412 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5413 lvds_sync |= LVDS_VSYNC_POLARITY;
5414 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5415 != lvds_sync) {
5416 char flags[2] = "-+";
5417 DRM_INFO("Changing LVDS panel from "
5418 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5419 flags[!(temp & LVDS_HSYNC_POLARITY)],
5420 flags[!(temp & LVDS_VSYNC_POLARITY)],
5421 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5422 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5423 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5424 temp |= lvds_sync;
5425 }
5426 I915_WRITE(reg, temp);
5427 }
5428
5429 /* set the dithering flag and clear for anything other than a panel. */
5430 if (HAS_PCH_SPLIT(dev)) {
5431 pipeconf &= ~PIPECONF_DITHER_EN;
5432 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5433 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5434 pipeconf |= PIPECONF_DITHER_EN;
5435 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5436 }
5437 }
5438
5439 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5440 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5441 } else if (HAS_PCH_SPLIT(dev)) {
5442 /* For non-DP output, clear any trans DP clock recovery setting.*/
5443 I915_WRITE(TRANSDATA_M1(pipe), 0);
5444 I915_WRITE(TRANSDATA_N1(pipe), 0);
5445 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5446 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5447 }
5448
5449 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5450 I915_WRITE(dpll_reg, dpll);
5451
5452 /* Wait for the clocks to stabilize. */
5453 POSTING_READ(dpll_reg);
5454 udelay(150);
5455
5456 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
5457 temp = 0;
5458 if (is_sdvo) {
5459 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5460 if (temp > 1)
5461 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5462 else
5463 temp = 0;
5464 }
5465 I915_WRITE(DPLL_MD(pipe), temp);
5466 } else {
5467 /* The pixel multiplier can only be updated once the
5468 * DPLL is enabled and the clocks are stable.
5469 *
5470 * So write it again.
5471 */
5472 I915_WRITE(dpll_reg, dpll);
5473 }
5474 }
5475
5476 intel_crtc->lowfreq_avail = false;
5477 if (is_lvds && has_reduced_clock && i915_powersave) {
5478 I915_WRITE(fp_reg + 4, fp2);
5479 intel_crtc->lowfreq_avail = true;
5480 if (HAS_PIPE_CXSR(dev)) {
5481 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5482 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5483 }
5484 } else {
5485 I915_WRITE(fp_reg + 4, fp);
5486 if (HAS_PIPE_CXSR(dev)) {
5487 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5488 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5489 }
5490 }
5491
5492 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5493 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5494 /* the chip adds 2 halflines automatically */
5495 adjusted_mode->crtc_vdisplay -= 1;
5496 adjusted_mode->crtc_vtotal -= 1;
5497 adjusted_mode->crtc_vblank_start -= 1;
5498 adjusted_mode->crtc_vblank_end -= 1;
5499 adjusted_mode->crtc_vsync_end -= 1;
5500 adjusted_mode->crtc_vsync_start -= 1;
5501 } else
5502 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5503
5504 I915_WRITE(HTOTAL(pipe),
5505 (adjusted_mode->crtc_hdisplay - 1) |
5506 ((adjusted_mode->crtc_htotal - 1) << 16));
5507 I915_WRITE(HBLANK(pipe),
5508 (adjusted_mode->crtc_hblank_start - 1) |
5509 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5510 I915_WRITE(HSYNC(pipe),
5511 (adjusted_mode->crtc_hsync_start - 1) |
5512 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5513
5514 I915_WRITE(VTOTAL(pipe),
5515 (adjusted_mode->crtc_vdisplay - 1) |
5516 ((adjusted_mode->crtc_vtotal - 1) << 16));
5517 I915_WRITE(VBLANK(pipe),
5518 (adjusted_mode->crtc_vblank_start - 1) |
5519 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5520 I915_WRITE(VSYNC(pipe),
5521 (adjusted_mode->crtc_vsync_start - 1) |
5522 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5523
5524 /* pipesrc and dspsize control the size that is scaled from,
5525 * which should always be the user's requested size.
5526 */
5527 if (!HAS_PCH_SPLIT(dev)) {
5528 I915_WRITE(DSPSIZE(plane),
5529 ((mode->vdisplay - 1) << 16) |
5530 (mode->hdisplay - 1));
5531 I915_WRITE(DSPPOS(plane), 0);
5532 }
5533 I915_WRITE(PIPESRC(pipe),
5534 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5535
5536 if (HAS_PCH_SPLIT(dev)) {
5537 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5538 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5539 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5540 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5541
5542 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5543 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5544 }
5545 }
5546
5547 I915_WRITE(PIPECONF(pipe), pipeconf);
5548 POSTING_READ(PIPECONF(pipe));
5549 if (!HAS_PCH_SPLIT(dev))
5550 intel_enable_pipe(dev_priv, pipe, false);
5551
5552 intel_wait_for_vblank(dev, pipe);
5553
5554 if (IS_GEN5(dev)) {
5555 /* enable address swizzle for tiling buffer */
5556 temp = I915_READ(DISP_ARB_CTL);
5557 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5558 }
5559
5560 I915_WRITE(DSPCNTR(plane), dspcntr);
5561 POSTING_READ(DSPCNTR(plane));
5562
5563 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5564
5565 intel_update_watermarks(dev);
5566
5567 return ret;
5568 }
5569
5570 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5571 struct drm_display_mode *mode,
5572 struct drm_display_mode *adjusted_mode,
5573 int x, int y,
5574 struct drm_framebuffer *old_fb)
5575 {
5576 struct drm_device *dev = crtc->dev;
5577 struct drm_i915_private *dev_priv = dev->dev_private;
5578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5579 int pipe = intel_crtc->pipe;
5580 int ret;
5581
5582 drm_vblank_pre_modeset(dev, pipe);
5583
5584 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5585 x, y, old_fb);
5586
5587 drm_vblank_post_modeset(dev, pipe);
5588
5589 return ret;
5590 }
5591
5592 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5593 void intel_crtc_load_lut(struct drm_crtc *crtc)
5594 {
5595 struct drm_device *dev = crtc->dev;
5596 struct drm_i915_private *dev_priv = dev->dev_private;
5597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5598 int palreg = PALETTE(intel_crtc->pipe);
5599 int i;
5600
5601 /* The clocks have to be on to load the palette. */
5602 if (!crtc->enabled)
5603 return;
5604
5605 /* use legacy palette for Ironlake */
5606 if (HAS_PCH_SPLIT(dev))
5607 palreg = LGC_PALETTE(intel_crtc->pipe);
5608
5609 for (i = 0; i < 256; i++) {
5610 I915_WRITE(palreg + 4 * i,
5611 (intel_crtc->lut_r[i] << 16) |
5612 (intel_crtc->lut_g[i] << 8) |
5613 intel_crtc->lut_b[i]);
5614 }
5615 }
5616
5617 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5618 {
5619 struct drm_device *dev = crtc->dev;
5620 struct drm_i915_private *dev_priv = dev->dev_private;
5621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5622 bool visible = base != 0;
5623 u32 cntl;
5624
5625 if (intel_crtc->cursor_visible == visible)
5626 return;
5627
5628 cntl = I915_READ(_CURACNTR);
5629 if (visible) {
5630 /* On these chipsets we can only modify the base whilst
5631 * the cursor is disabled.
5632 */
5633 I915_WRITE(_CURABASE, base);
5634
5635 cntl &= ~(CURSOR_FORMAT_MASK);
5636 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5637 cntl |= CURSOR_ENABLE |
5638 CURSOR_GAMMA_ENABLE |
5639 CURSOR_FORMAT_ARGB;
5640 } else
5641 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5642 I915_WRITE(_CURACNTR, cntl);
5643
5644 intel_crtc->cursor_visible = visible;
5645 }
5646
5647 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5648 {
5649 struct drm_device *dev = crtc->dev;
5650 struct drm_i915_private *dev_priv = dev->dev_private;
5651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5652 int pipe = intel_crtc->pipe;
5653 bool visible = base != 0;
5654
5655 if (intel_crtc->cursor_visible != visible) {
5656 uint32_t cntl = I915_READ(CURCNTR(pipe));
5657 if (base) {
5658 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5659 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5660 cntl |= pipe << 28; /* Connect to correct pipe */
5661 } else {
5662 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5663 cntl |= CURSOR_MODE_DISABLE;
5664 }
5665 I915_WRITE(CURCNTR(pipe), cntl);
5666
5667 intel_crtc->cursor_visible = visible;
5668 }
5669 /* and commit changes on next vblank */
5670 I915_WRITE(CURBASE(pipe), base);
5671 }
5672
5673 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5674 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5675 bool on)
5676 {
5677 struct drm_device *dev = crtc->dev;
5678 struct drm_i915_private *dev_priv = dev->dev_private;
5679 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5680 int pipe = intel_crtc->pipe;
5681 int x = intel_crtc->cursor_x;
5682 int y = intel_crtc->cursor_y;
5683 u32 base, pos;
5684 bool visible;
5685
5686 pos = 0;
5687
5688 if (on && crtc->enabled && crtc->fb) {
5689 base = intel_crtc->cursor_addr;
5690 if (x > (int) crtc->fb->width)
5691 base = 0;
5692
5693 if (y > (int) crtc->fb->height)
5694 base = 0;
5695 } else
5696 base = 0;
5697
5698 if (x < 0) {
5699 if (x + intel_crtc->cursor_width < 0)
5700 base = 0;
5701
5702 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5703 x = -x;
5704 }
5705 pos |= x << CURSOR_X_SHIFT;
5706
5707 if (y < 0) {
5708 if (y + intel_crtc->cursor_height < 0)
5709 base = 0;
5710
5711 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5712 y = -y;
5713 }
5714 pos |= y << CURSOR_Y_SHIFT;
5715
5716 visible = base != 0;
5717 if (!visible && !intel_crtc->cursor_visible)
5718 return;
5719
5720 I915_WRITE(CURPOS(pipe), pos);
5721 if (IS_845G(dev) || IS_I865G(dev))
5722 i845_update_cursor(crtc, base);
5723 else
5724 i9xx_update_cursor(crtc, base);
5725
5726 if (visible)
5727 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5728 }
5729
5730 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5731 struct drm_file *file,
5732 uint32_t handle,
5733 uint32_t width, uint32_t height)
5734 {
5735 struct drm_device *dev = crtc->dev;
5736 struct drm_i915_private *dev_priv = dev->dev_private;
5737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5738 struct drm_i915_gem_object *obj;
5739 uint32_t addr;
5740 int ret;
5741
5742 DRM_DEBUG_KMS("\n");
5743
5744 /* if we want to turn off the cursor ignore width and height */
5745 if (!handle) {
5746 DRM_DEBUG_KMS("cursor off\n");
5747 addr = 0;
5748 obj = NULL;
5749 mutex_lock(&dev->struct_mutex);
5750 goto finish;
5751 }
5752
5753 /* Currently we only support 64x64 cursors */
5754 if (width != 64 || height != 64) {
5755 DRM_ERROR("we currently only support 64x64 cursors\n");
5756 return -EINVAL;
5757 }
5758
5759 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5760 if (&obj->base == NULL)
5761 return -ENOENT;
5762
5763 if (obj->base.size < width * height * 4) {
5764 DRM_ERROR("buffer is to small\n");
5765 ret = -ENOMEM;
5766 goto fail;
5767 }
5768
5769 /* we only need to pin inside GTT if cursor is non-phy */
5770 mutex_lock(&dev->struct_mutex);
5771 if (!dev_priv->info->cursor_needs_physical) {
5772 if (obj->tiling_mode) {
5773 DRM_ERROR("cursor cannot be tiled\n");
5774 ret = -EINVAL;
5775 goto fail_locked;
5776 }
5777
5778 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5779 if (ret) {
5780 DRM_ERROR("failed to pin cursor bo\n");
5781 goto fail_locked;
5782 }
5783
5784 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5785 if (ret) {
5786 DRM_ERROR("failed to move cursor bo into the GTT\n");
5787 goto fail_unpin;
5788 }
5789
5790 ret = i915_gem_object_put_fence(obj);
5791 if (ret) {
5792 DRM_ERROR("failed to move cursor bo into the GTT\n");
5793 goto fail_unpin;
5794 }
5795
5796 addr = obj->gtt_offset;
5797 } else {
5798 int align = IS_I830(dev) ? 16 * 1024 : 256;
5799 ret = i915_gem_attach_phys_object(dev, obj,
5800 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5801 align);
5802 if (ret) {
5803 DRM_ERROR("failed to attach phys object\n");
5804 goto fail_locked;
5805 }
5806 addr = obj->phys_obj->handle->busaddr;
5807 }
5808
5809 if (IS_GEN2(dev))
5810 I915_WRITE(CURSIZE, (height << 12) | width);
5811
5812 finish:
5813 if (intel_crtc->cursor_bo) {
5814 if (dev_priv->info->cursor_needs_physical) {
5815 if (intel_crtc->cursor_bo != obj)
5816 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5817 } else
5818 i915_gem_object_unpin(intel_crtc->cursor_bo);
5819 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5820 }
5821
5822 mutex_unlock(&dev->struct_mutex);
5823
5824 intel_crtc->cursor_addr = addr;
5825 intel_crtc->cursor_bo = obj;
5826 intel_crtc->cursor_width = width;
5827 intel_crtc->cursor_height = height;
5828
5829 intel_crtc_update_cursor(crtc, true);
5830
5831 return 0;
5832 fail_unpin:
5833 i915_gem_object_unpin(obj);
5834 fail_locked:
5835 mutex_unlock(&dev->struct_mutex);
5836 fail:
5837 drm_gem_object_unreference_unlocked(&obj->base);
5838 return ret;
5839 }
5840
5841 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5842 {
5843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5844
5845 intel_crtc->cursor_x = x;
5846 intel_crtc->cursor_y = y;
5847
5848 intel_crtc_update_cursor(crtc, true);
5849
5850 return 0;
5851 }
5852
5853 /** Sets the color ramps on behalf of RandR */
5854 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5855 u16 blue, int regno)
5856 {
5857 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5858
5859 intel_crtc->lut_r[regno] = red >> 8;
5860 intel_crtc->lut_g[regno] = green >> 8;
5861 intel_crtc->lut_b[regno] = blue >> 8;
5862 }
5863
5864 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5865 u16 *blue, int regno)
5866 {
5867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5868
5869 *red = intel_crtc->lut_r[regno] << 8;
5870 *green = intel_crtc->lut_g[regno] << 8;
5871 *blue = intel_crtc->lut_b[regno] << 8;
5872 }
5873
5874 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5875 u16 *blue, uint32_t start, uint32_t size)
5876 {
5877 int end = (start + size > 256) ? 256 : start + size, i;
5878 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5879
5880 for (i = start; i < end; i++) {
5881 intel_crtc->lut_r[i] = red[i] >> 8;
5882 intel_crtc->lut_g[i] = green[i] >> 8;
5883 intel_crtc->lut_b[i] = blue[i] >> 8;
5884 }
5885
5886 intel_crtc_load_lut(crtc);
5887 }
5888
5889 /**
5890 * Get a pipe with a simple mode set on it for doing load-based monitor
5891 * detection.
5892 *
5893 * It will be up to the load-detect code to adjust the pipe as appropriate for
5894 * its requirements. The pipe will be connected to no other encoders.
5895 *
5896 * Currently this code will only succeed if there is a pipe with no encoders
5897 * configured for it. In the future, it could choose to temporarily disable
5898 * some outputs to free up a pipe for its use.
5899 *
5900 * \return crtc, or NULL if no pipes are available.
5901 */
5902
5903 /* VESA 640x480x72Hz mode to set on the pipe */
5904 static struct drm_display_mode load_detect_mode = {
5905 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5906 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5907 };
5908
5909 static struct drm_framebuffer *
5910 intel_framebuffer_create(struct drm_device *dev,
5911 struct drm_mode_fb_cmd *mode_cmd,
5912 struct drm_i915_gem_object *obj)
5913 {
5914 struct intel_framebuffer *intel_fb;
5915 int ret;
5916
5917 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5918 if (!intel_fb) {
5919 drm_gem_object_unreference_unlocked(&obj->base);
5920 return ERR_PTR(-ENOMEM);
5921 }
5922
5923 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5924 if (ret) {
5925 drm_gem_object_unreference_unlocked(&obj->base);
5926 kfree(intel_fb);
5927 return ERR_PTR(ret);
5928 }
5929
5930 return &intel_fb->base;
5931 }
5932
5933 static u32
5934 intel_framebuffer_pitch_for_width(int width, int bpp)
5935 {
5936 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5937 return ALIGN(pitch, 64);
5938 }
5939
5940 static u32
5941 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5942 {
5943 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5944 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5945 }
5946
5947 static struct drm_framebuffer *
5948 intel_framebuffer_create_for_mode(struct drm_device *dev,
5949 struct drm_display_mode *mode,
5950 int depth, int bpp)
5951 {
5952 struct drm_i915_gem_object *obj;
5953 struct drm_mode_fb_cmd mode_cmd;
5954
5955 obj = i915_gem_alloc_object(dev,
5956 intel_framebuffer_size_for_mode(mode, bpp));
5957 if (obj == NULL)
5958 return ERR_PTR(-ENOMEM);
5959
5960 mode_cmd.width = mode->hdisplay;
5961 mode_cmd.height = mode->vdisplay;
5962 mode_cmd.depth = depth;
5963 mode_cmd.bpp = bpp;
5964 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5965
5966 return intel_framebuffer_create(dev, &mode_cmd, obj);
5967 }
5968
5969 static struct drm_framebuffer *
5970 mode_fits_in_fbdev(struct drm_device *dev,
5971 struct drm_display_mode *mode)
5972 {
5973 struct drm_i915_private *dev_priv = dev->dev_private;
5974 struct drm_i915_gem_object *obj;
5975 struct drm_framebuffer *fb;
5976
5977 if (dev_priv->fbdev == NULL)
5978 return NULL;
5979
5980 obj = dev_priv->fbdev->ifb.obj;
5981 if (obj == NULL)
5982 return NULL;
5983
5984 fb = &dev_priv->fbdev->ifb.base;
5985 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5986 fb->bits_per_pixel))
5987 return NULL;
5988
5989 if (obj->base.size < mode->vdisplay * fb->pitch)
5990 return NULL;
5991
5992 return fb;
5993 }
5994
5995 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5996 struct drm_connector *connector,
5997 struct drm_display_mode *mode,
5998 struct intel_load_detect_pipe *old)
5999 {
6000 struct intel_crtc *intel_crtc;
6001 struct drm_crtc *possible_crtc;
6002 struct drm_encoder *encoder = &intel_encoder->base;
6003 struct drm_crtc *crtc = NULL;
6004 struct drm_device *dev = encoder->dev;
6005 struct drm_framebuffer *old_fb;
6006 int i = -1;
6007
6008 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6009 connector->base.id, drm_get_connector_name(connector),
6010 encoder->base.id, drm_get_encoder_name(encoder));
6011
6012 /*
6013 * Algorithm gets a little messy:
6014 *
6015 * - if the connector already has an assigned crtc, use it (but make
6016 * sure it's on first)
6017 *
6018 * - try to find the first unused crtc that can drive this connector,
6019 * and use that if we find one
6020 */
6021
6022 /* See if we already have a CRTC for this connector */
6023 if (encoder->crtc) {
6024 crtc = encoder->crtc;
6025
6026 intel_crtc = to_intel_crtc(crtc);
6027 old->dpms_mode = intel_crtc->dpms_mode;
6028 old->load_detect_temp = false;
6029
6030 /* Make sure the crtc and connector are running */
6031 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6032 struct drm_encoder_helper_funcs *encoder_funcs;
6033 struct drm_crtc_helper_funcs *crtc_funcs;
6034
6035 crtc_funcs = crtc->helper_private;
6036 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6037
6038 encoder_funcs = encoder->helper_private;
6039 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6040 }
6041
6042 return true;
6043 }
6044
6045 /* Find an unused one (if possible) */
6046 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6047 i++;
6048 if (!(encoder->possible_crtcs & (1 << i)))
6049 continue;
6050 if (!possible_crtc->enabled) {
6051 crtc = possible_crtc;
6052 break;
6053 }
6054 }
6055
6056 /*
6057 * If we didn't find an unused CRTC, don't use any.
6058 */
6059 if (!crtc) {
6060 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6061 return false;
6062 }
6063
6064 encoder->crtc = crtc;
6065 connector->encoder = encoder;
6066
6067 intel_crtc = to_intel_crtc(crtc);
6068 old->dpms_mode = intel_crtc->dpms_mode;
6069 old->load_detect_temp = true;
6070 old->release_fb = NULL;
6071
6072 if (!mode)
6073 mode = &load_detect_mode;
6074
6075 old_fb = crtc->fb;
6076
6077 /* We need a framebuffer large enough to accommodate all accesses
6078 * that the plane may generate whilst we perform load detection.
6079 * We can not rely on the fbcon either being present (we get called
6080 * during its initialisation to detect all boot displays, or it may
6081 * not even exist) or that it is large enough to satisfy the
6082 * requested mode.
6083 */
6084 crtc->fb = mode_fits_in_fbdev(dev, mode);
6085 if (crtc->fb == NULL) {
6086 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6087 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6088 old->release_fb = crtc->fb;
6089 } else
6090 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6091 if (IS_ERR(crtc->fb)) {
6092 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6093 crtc->fb = old_fb;
6094 return false;
6095 }
6096
6097 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6098 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6099 if (old->release_fb)
6100 old->release_fb->funcs->destroy(old->release_fb);
6101 crtc->fb = old_fb;
6102 return false;
6103 }
6104
6105 /* let the connector get through one full cycle before testing */
6106 intel_wait_for_vblank(dev, intel_crtc->pipe);
6107
6108 return true;
6109 }
6110
6111 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6112 struct drm_connector *connector,
6113 struct intel_load_detect_pipe *old)
6114 {
6115 struct drm_encoder *encoder = &intel_encoder->base;
6116 struct drm_device *dev = encoder->dev;
6117 struct drm_crtc *crtc = encoder->crtc;
6118 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6119 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6120
6121 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6122 connector->base.id, drm_get_connector_name(connector),
6123 encoder->base.id, drm_get_encoder_name(encoder));
6124
6125 if (old->load_detect_temp) {
6126 connector->encoder = NULL;
6127 drm_helper_disable_unused_functions(dev);
6128
6129 if (old->release_fb)
6130 old->release_fb->funcs->destroy(old->release_fb);
6131
6132 return;
6133 }
6134
6135 /* Switch crtc and encoder back off if necessary */
6136 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6137 encoder_funcs->dpms(encoder, old->dpms_mode);
6138 crtc_funcs->dpms(crtc, old->dpms_mode);
6139 }
6140 }
6141
6142 /* Returns the clock of the currently programmed mode of the given pipe. */
6143 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6144 {
6145 struct drm_i915_private *dev_priv = dev->dev_private;
6146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6147 int pipe = intel_crtc->pipe;
6148 u32 dpll = I915_READ(DPLL(pipe));
6149 u32 fp;
6150 intel_clock_t clock;
6151
6152 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6153 fp = I915_READ(FP0(pipe));
6154 else
6155 fp = I915_READ(FP1(pipe));
6156
6157 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6158 if (IS_PINEVIEW(dev)) {
6159 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6160 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6161 } else {
6162 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6163 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6164 }
6165
6166 if (!IS_GEN2(dev)) {
6167 if (IS_PINEVIEW(dev))
6168 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6169 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6170 else
6171 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6172 DPLL_FPA01_P1_POST_DIV_SHIFT);
6173
6174 switch (dpll & DPLL_MODE_MASK) {
6175 case DPLLB_MODE_DAC_SERIAL:
6176 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6177 5 : 10;
6178 break;
6179 case DPLLB_MODE_LVDS:
6180 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6181 7 : 14;
6182 break;
6183 default:
6184 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6185 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6186 return 0;
6187 }
6188
6189 /* XXX: Handle the 100Mhz refclk */
6190 intel_clock(dev, 96000, &clock);
6191 } else {
6192 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6193
6194 if (is_lvds) {
6195 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6196 DPLL_FPA01_P1_POST_DIV_SHIFT);
6197 clock.p2 = 14;
6198
6199 if ((dpll & PLL_REF_INPUT_MASK) ==
6200 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6201 /* XXX: might not be 66MHz */
6202 intel_clock(dev, 66000, &clock);
6203 } else
6204 intel_clock(dev, 48000, &clock);
6205 } else {
6206 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6207 clock.p1 = 2;
6208 else {
6209 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6210 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6211 }
6212 if (dpll & PLL_P2_DIVIDE_BY_4)
6213 clock.p2 = 4;
6214 else
6215 clock.p2 = 2;
6216
6217 intel_clock(dev, 48000, &clock);
6218 }
6219 }
6220
6221 /* XXX: It would be nice to validate the clocks, but we can't reuse
6222 * i830PllIsValid() because it relies on the xf86_config connector
6223 * configuration being accurate, which it isn't necessarily.
6224 */
6225
6226 return clock.dot;
6227 }
6228
6229 /** Returns the currently programmed mode of the given pipe. */
6230 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6231 struct drm_crtc *crtc)
6232 {
6233 struct drm_i915_private *dev_priv = dev->dev_private;
6234 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6235 int pipe = intel_crtc->pipe;
6236 struct drm_display_mode *mode;
6237 int htot = I915_READ(HTOTAL(pipe));
6238 int hsync = I915_READ(HSYNC(pipe));
6239 int vtot = I915_READ(VTOTAL(pipe));
6240 int vsync = I915_READ(VSYNC(pipe));
6241
6242 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6243 if (!mode)
6244 return NULL;
6245
6246 mode->clock = intel_crtc_clock_get(dev, crtc);
6247 mode->hdisplay = (htot & 0xffff) + 1;
6248 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6249 mode->hsync_start = (hsync & 0xffff) + 1;
6250 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6251 mode->vdisplay = (vtot & 0xffff) + 1;
6252 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6253 mode->vsync_start = (vsync & 0xffff) + 1;
6254 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6255
6256 drm_mode_set_name(mode);
6257 drm_mode_set_crtcinfo(mode, 0);
6258
6259 return mode;
6260 }
6261
6262 #define GPU_IDLE_TIMEOUT 500 /* ms */
6263
6264 /* When this timer fires, we've been idle for awhile */
6265 static void intel_gpu_idle_timer(unsigned long arg)
6266 {
6267 struct drm_device *dev = (struct drm_device *)arg;
6268 drm_i915_private_t *dev_priv = dev->dev_private;
6269
6270 if (!list_empty(&dev_priv->mm.active_list)) {
6271 /* Still processing requests, so just re-arm the timer. */
6272 mod_timer(&dev_priv->idle_timer, jiffies +
6273 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6274 return;
6275 }
6276
6277 dev_priv->busy = false;
6278 queue_work(dev_priv->wq, &dev_priv->idle_work);
6279 }
6280
6281 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6282
6283 static void intel_crtc_idle_timer(unsigned long arg)
6284 {
6285 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6286 struct drm_crtc *crtc = &intel_crtc->base;
6287 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6288 struct intel_framebuffer *intel_fb;
6289
6290 intel_fb = to_intel_framebuffer(crtc->fb);
6291 if (intel_fb && intel_fb->obj->active) {
6292 /* The framebuffer is still being accessed by the GPU. */
6293 mod_timer(&intel_crtc->idle_timer, jiffies +
6294 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6295 return;
6296 }
6297
6298 intel_crtc->busy = false;
6299 queue_work(dev_priv->wq, &dev_priv->idle_work);
6300 }
6301
6302 static void intel_increase_pllclock(struct drm_crtc *crtc)
6303 {
6304 struct drm_device *dev = crtc->dev;
6305 drm_i915_private_t *dev_priv = dev->dev_private;
6306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6307 int pipe = intel_crtc->pipe;
6308 int dpll_reg = DPLL(pipe);
6309 int dpll;
6310
6311 if (HAS_PCH_SPLIT(dev))
6312 return;
6313
6314 if (!dev_priv->lvds_downclock_avail)
6315 return;
6316
6317 dpll = I915_READ(dpll_reg);
6318 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6319 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6320
6321 /* Unlock panel regs */
6322 I915_WRITE(PP_CONTROL,
6323 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6324
6325 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6326 I915_WRITE(dpll_reg, dpll);
6327 intel_wait_for_vblank(dev, pipe);
6328
6329 dpll = I915_READ(dpll_reg);
6330 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6331 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6332
6333 /* ...and lock them again */
6334 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6335 }
6336
6337 /* Schedule downclock */
6338 mod_timer(&intel_crtc->idle_timer, jiffies +
6339 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6340 }
6341
6342 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6343 {
6344 struct drm_device *dev = crtc->dev;
6345 drm_i915_private_t *dev_priv = dev->dev_private;
6346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6347 int pipe = intel_crtc->pipe;
6348 int dpll_reg = DPLL(pipe);
6349 int dpll = I915_READ(dpll_reg);
6350
6351 if (HAS_PCH_SPLIT(dev))
6352 return;
6353
6354 if (!dev_priv->lvds_downclock_avail)
6355 return;
6356
6357 /*
6358 * Since this is called by a timer, we should never get here in
6359 * the manual case.
6360 */
6361 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6362 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6363
6364 /* Unlock panel regs */
6365 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6366 PANEL_UNLOCK_REGS);
6367
6368 dpll |= DISPLAY_RATE_SELECT_FPA1;
6369 I915_WRITE(dpll_reg, dpll);
6370 intel_wait_for_vblank(dev, pipe);
6371 dpll = I915_READ(dpll_reg);
6372 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6373 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6374
6375 /* ...and lock them again */
6376 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6377 }
6378
6379 }
6380
6381 /**
6382 * intel_idle_update - adjust clocks for idleness
6383 * @work: work struct
6384 *
6385 * Either the GPU or display (or both) went idle. Check the busy status
6386 * here and adjust the CRTC and GPU clocks as necessary.
6387 */
6388 static void intel_idle_update(struct work_struct *work)
6389 {
6390 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6391 idle_work);
6392 struct drm_device *dev = dev_priv->dev;
6393 struct drm_crtc *crtc;
6394 struct intel_crtc *intel_crtc;
6395
6396 if (!i915_powersave)
6397 return;
6398
6399 mutex_lock(&dev->struct_mutex);
6400
6401 i915_update_gfx_val(dev_priv);
6402
6403 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6404 /* Skip inactive CRTCs */
6405 if (!crtc->fb)
6406 continue;
6407
6408 intel_crtc = to_intel_crtc(crtc);
6409 if (!intel_crtc->busy)
6410 intel_decrease_pllclock(crtc);
6411 }
6412
6413
6414 mutex_unlock(&dev->struct_mutex);
6415 }
6416
6417 /**
6418 * intel_mark_busy - mark the GPU and possibly the display busy
6419 * @dev: drm device
6420 * @obj: object we're operating on
6421 *
6422 * Callers can use this function to indicate that the GPU is busy processing
6423 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6424 * buffer), we'll also mark the display as busy, so we know to increase its
6425 * clock frequency.
6426 */
6427 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6428 {
6429 drm_i915_private_t *dev_priv = dev->dev_private;
6430 struct drm_crtc *crtc = NULL;
6431 struct intel_framebuffer *intel_fb;
6432 struct intel_crtc *intel_crtc;
6433
6434 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6435 return;
6436
6437 if (!dev_priv->busy)
6438 dev_priv->busy = true;
6439 else
6440 mod_timer(&dev_priv->idle_timer, jiffies +
6441 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6442
6443 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6444 if (!crtc->fb)
6445 continue;
6446
6447 intel_crtc = to_intel_crtc(crtc);
6448 intel_fb = to_intel_framebuffer(crtc->fb);
6449 if (intel_fb->obj == obj) {
6450 if (!intel_crtc->busy) {
6451 /* Non-busy -> busy, upclock */
6452 intel_increase_pllclock(crtc);
6453 intel_crtc->busy = true;
6454 } else {
6455 /* Busy -> busy, put off timer */
6456 mod_timer(&intel_crtc->idle_timer, jiffies +
6457 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6458 }
6459 }
6460 }
6461 }
6462
6463 static void intel_crtc_destroy(struct drm_crtc *crtc)
6464 {
6465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6466 struct drm_device *dev = crtc->dev;
6467 struct intel_unpin_work *work;
6468 unsigned long flags;
6469
6470 spin_lock_irqsave(&dev->event_lock, flags);
6471 work = intel_crtc->unpin_work;
6472 intel_crtc->unpin_work = NULL;
6473 spin_unlock_irqrestore(&dev->event_lock, flags);
6474
6475 if (work) {
6476 cancel_work_sync(&work->work);
6477 kfree(work);
6478 }
6479
6480 drm_crtc_cleanup(crtc);
6481
6482 kfree(intel_crtc);
6483 }
6484
6485 static void intel_unpin_work_fn(struct work_struct *__work)
6486 {
6487 struct intel_unpin_work *work =
6488 container_of(__work, struct intel_unpin_work, work);
6489
6490 mutex_lock(&work->dev->struct_mutex);
6491 i915_gem_object_unpin(work->old_fb_obj);
6492 drm_gem_object_unreference(&work->pending_flip_obj->base);
6493 drm_gem_object_unreference(&work->old_fb_obj->base);
6494
6495 mutex_unlock(&work->dev->struct_mutex);
6496 kfree(work);
6497 }
6498
6499 static void do_intel_finish_page_flip(struct drm_device *dev,
6500 struct drm_crtc *crtc)
6501 {
6502 drm_i915_private_t *dev_priv = dev->dev_private;
6503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6504 struct intel_unpin_work *work;
6505 struct drm_i915_gem_object *obj;
6506 struct drm_pending_vblank_event *e;
6507 struct timeval tnow, tvbl;
6508 unsigned long flags;
6509
6510 /* Ignore early vblank irqs */
6511 if (intel_crtc == NULL)
6512 return;
6513
6514 do_gettimeofday(&tnow);
6515
6516 spin_lock_irqsave(&dev->event_lock, flags);
6517 work = intel_crtc->unpin_work;
6518 if (work == NULL || !work->pending) {
6519 spin_unlock_irqrestore(&dev->event_lock, flags);
6520 return;
6521 }
6522
6523 intel_crtc->unpin_work = NULL;
6524
6525 if (work->event) {
6526 e = work->event;
6527 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6528
6529 /* Called before vblank count and timestamps have
6530 * been updated for the vblank interval of flip
6531 * completion? Need to increment vblank count and
6532 * add one videorefresh duration to returned timestamp
6533 * to account for this. We assume this happened if we
6534 * get called over 0.9 frame durations after the last
6535 * timestamped vblank.
6536 *
6537 * This calculation can not be used with vrefresh rates
6538 * below 5Hz (10Hz to be on the safe side) without
6539 * promoting to 64 integers.
6540 */
6541 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6542 9 * crtc->framedur_ns) {
6543 e->event.sequence++;
6544 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6545 crtc->framedur_ns);
6546 }
6547
6548 e->event.tv_sec = tvbl.tv_sec;
6549 e->event.tv_usec = tvbl.tv_usec;
6550
6551 list_add_tail(&e->base.link,
6552 &e->base.file_priv->event_list);
6553 wake_up_interruptible(&e->base.file_priv->event_wait);
6554 }
6555
6556 drm_vblank_put(dev, intel_crtc->pipe);
6557
6558 spin_unlock_irqrestore(&dev->event_lock, flags);
6559
6560 obj = work->old_fb_obj;
6561
6562 atomic_clear_mask(1 << intel_crtc->plane,
6563 &obj->pending_flip.counter);
6564 if (atomic_read(&obj->pending_flip) == 0)
6565 wake_up(&dev_priv->pending_flip_queue);
6566
6567 schedule_work(&work->work);
6568
6569 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6570 }
6571
6572 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6573 {
6574 drm_i915_private_t *dev_priv = dev->dev_private;
6575 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6576
6577 do_intel_finish_page_flip(dev, crtc);
6578 }
6579
6580 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6581 {
6582 drm_i915_private_t *dev_priv = dev->dev_private;
6583 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6584
6585 do_intel_finish_page_flip(dev, crtc);
6586 }
6587
6588 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6589 {
6590 drm_i915_private_t *dev_priv = dev->dev_private;
6591 struct intel_crtc *intel_crtc =
6592 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6593 unsigned long flags;
6594
6595 spin_lock_irqsave(&dev->event_lock, flags);
6596 if (intel_crtc->unpin_work) {
6597 if ((++intel_crtc->unpin_work->pending) > 1)
6598 DRM_ERROR("Prepared flip multiple times\n");
6599 } else {
6600 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6601 }
6602 spin_unlock_irqrestore(&dev->event_lock, flags);
6603 }
6604
6605 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6606 struct drm_framebuffer *fb,
6607 struct drm_pending_vblank_event *event)
6608 {
6609 struct drm_device *dev = crtc->dev;
6610 struct drm_i915_private *dev_priv = dev->dev_private;
6611 struct intel_framebuffer *intel_fb;
6612 struct drm_i915_gem_object *obj;
6613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6614 struct intel_unpin_work *work;
6615 unsigned long flags, offset;
6616 int pipe = intel_crtc->pipe;
6617 u32 pf, pipesrc;
6618 int ret;
6619
6620 work = kzalloc(sizeof *work, GFP_KERNEL);
6621 if (work == NULL)
6622 return -ENOMEM;
6623
6624 work->event = event;
6625 work->dev = crtc->dev;
6626 intel_fb = to_intel_framebuffer(crtc->fb);
6627 work->old_fb_obj = intel_fb->obj;
6628 INIT_WORK(&work->work, intel_unpin_work_fn);
6629
6630 /* We borrow the event spin lock for protecting unpin_work */
6631 spin_lock_irqsave(&dev->event_lock, flags);
6632 if (intel_crtc->unpin_work) {
6633 spin_unlock_irqrestore(&dev->event_lock, flags);
6634 kfree(work);
6635
6636 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6637 return -EBUSY;
6638 }
6639 intel_crtc->unpin_work = work;
6640 spin_unlock_irqrestore(&dev->event_lock, flags);
6641
6642 intel_fb = to_intel_framebuffer(fb);
6643 obj = intel_fb->obj;
6644
6645 mutex_lock(&dev->struct_mutex);
6646 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6647 if (ret)
6648 goto cleanup_work;
6649
6650 /* Reference the objects for the scheduled work. */
6651 drm_gem_object_reference(&work->old_fb_obj->base);
6652 drm_gem_object_reference(&obj->base);
6653
6654 crtc->fb = fb;
6655
6656 ret = drm_vblank_get(dev, intel_crtc->pipe);
6657 if (ret)
6658 goto cleanup_objs;
6659
6660 if (IS_GEN3(dev) || IS_GEN2(dev)) {
6661 u32 flip_mask;
6662
6663 /* Can't queue multiple flips, so wait for the previous
6664 * one to finish before executing the next.
6665 */
6666 ret = BEGIN_LP_RING(2);
6667 if (ret)
6668 goto cleanup_objs;
6669
6670 if (intel_crtc->plane)
6671 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6672 else
6673 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6674 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6675 OUT_RING(MI_NOOP);
6676 ADVANCE_LP_RING();
6677 }
6678
6679 work->pending_flip_obj = obj;
6680
6681 work->enable_stall_check = true;
6682
6683 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6684 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6685
6686 ret = BEGIN_LP_RING(4);
6687 if (ret)
6688 goto cleanup_objs;
6689
6690 /* Block clients from rendering to the new back buffer until
6691 * the flip occurs and the object is no longer visible.
6692 */
6693 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6694
6695 switch (INTEL_INFO(dev)->gen) {
6696 case 2:
6697 OUT_RING(MI_DISPLAY_FLIP |
6698 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6699 OUT_RING(fb->pitch);
6700 OUT_RING(obj->gtt_offset + offset);
6701 OUT_RING(MI_NOOP);
6702 break;
6703
6704 case 3:
6705 OUT_RING(MI_DISPLAY_FLIP_I915 |
6706 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6707 OUT_RING(fb->pitch);
6708 OUT_RING(obj->gtt_offset + offset);
6709 OUT_RING(MI_NOOP);
6710 break;
6711
6712 case 4:
6713 case 5:
6714 /* i965+ uses the linear or tiled offsets from the
6715 * Display Registers (which do not change across a page-flip)
6716 * so we need only reprogram the base address.
6717 */
6718 OUT_RING(MI_DISPLAY_FLIP |
6719 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6720 OUT_RING(fb->pitch);
6721 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6722
6723 /* XXX Enabling the panel-fitter across page-flip is so far
6724 * untested on non-native modes, so ignore it for now.
6725 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6726 */
6727 pf = 0;
6728 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6729 OUT_RING(pf | pipesrc);
6730 break;
6731
6732 case 6:
6733 OUT_RING(MI_DISPLAY_FLIP |
6734 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6735 OUT_RING(fb->pitch | obj->tiling_mode);
6736 OUT_RING(obj->gtt_offset);
6737
6738 pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
6739 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6740 OUT_RING(pf | pipesrc);
6741 break;
6742 }
6743 ADVANCE_LP_RING();
6744
6745 mutex_unlock(&dev->struct_mutex);
6746
6747 trace_i915_flip_request(intel_crtc->plane, obj);
6748
6749 return 0;
6750
6751 cleanup_objs:
6752 drm_gem_object_unreference(&work->old_fb_obj->base);
6753 drm_gem_object_unreference(&obj->base);
6754 cleanup_work:
6755 mutex_unlock(&dev->struct_mutex);
6756
6757 spin_lock_irqsave(&dev->event_lock, flags);
6758 intel_crtc->unpin_work = NULL;
6759 spin_unlock_irqrestore(&dev->event_lock, flags);
6760
6761 kfree(work);
6762
6763 return ret;
6764 }
6765
6766 static void intel_sanitize_modesetting(struct drm_device *dev,
6767 int pipe, int plane)
6768 {
6769 struct drm_i915_private *dev_priv = dev->dev_private;
6770 u32 reg, val;
6771
6772 if (HAS_PCH_SPLIT(dev))
6773 return;
6774
6775 /* Who knows what state these registers were left in by the BIOS or
6776 * grub?
6777 *
6778 * If we leave the registers in a conflicting state (e.g. with the
6779 * display plane reading from the other pipe than the one we intend
6780 * to use) then when we attempt to teardown the active mode, we will
6781 * not disable the pipes and planes in the correct order -- leaving
6782 * a plane reading from a disabled pipe and possibly leading to
6783 * undefined behaviour.
6784 */
6785
6786 reg = DSPCNTR(plane);
6787 val = I915_READ(reg);
6788
6789 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6790 return;
6791 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6792 return;
6793
6794 /* This display plane is active and attached to the other CPU pipe. */
6795 pipe = !pipe;
6796
6797 /* Disable the plane and wait for it to stop reading from the pipe. */
6798 intel_disable_plane(dev_priv, plane, pipe);
6799 intel_disable_pipe(dev_priv, pipe);
6800 }
6801
6802 static void intel_crtc_reset(struct drm_crtc *crtc)
6803 {
6804 struct drm_device *dev = crtc->dev;
6805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6806
6807 /* Reset flags back to the 'unknown' status so that they
6808 * will be correctly set on the initial modeset.
6809 */
6810 intel_crtc->dpms_mode = -1;
6811
6812 /* We need to fix up any BIOS configuration that conflicts with
6813 * our expectations.
6814 */
6815 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6816 }
6817
6818 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6819 .dpms = intel_crtc_dpms,
6820 .mode_fixup = intel_crtc_mode_fixup,
6821 .mode_set = intel_crtc_mode_set,
6822 .mode_set_base = intel_pipe_set_base,
6823 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6824 .load_lut = intel_crtc_load_lut,
6825 .disable = intel_crtc_disable,
6826 };
6827
6828 static const struct drm_crtc_funcs intel_crtc_funcs = {
6829 .reset = intel_crtc_reset,
6830 .cursor_set = intel_crtc_cursor_set,
6831 .cursor_move = intel_crtc_cursor_move,
6832 .gamma_set = intel_crtc_gamma_set,
6833 .set_config = drm_crtc_helper_set_config,
6834 .destroy = intel_crtc_destroy,
6835 .page_flip = intel_crtc_page_flip,
6836 };
6837
6838 static void intel_crtc_init(struct drm_device *dev, int pipe)
6839 {
6840 drm_i915_private_t *dev_priv = dev->dev_private;
6841 struct intel_crtc *intel_crtc;
6842 int i;
6843
6844 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6845 if (intel_crtc == NULL)
6846 return;
6847
6848 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6849
6850 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6851 for (i = 0; i < 256; i++) {
6852 intel_crtc->lut_r[i] = i;
6853 intel_crtc->lut_g[i] = i;
6854 intel_crtc->lut_b[i] = i;
6855 }
6856
6857 /* Swap pipes & planes for FBC on pre-965 */
6858 intel_crtc->pipe = pipe;
6859 intel_crtc->plane = pipe;
6860 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6861 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6862 intel_crtc->plane = !pipe;
6863 }
6864
6865 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6866 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6867 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6868 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6869
6870 intel_crtc_reset(&intel_crtc->base);
6871 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6872
6873 if (HAS_PCH_SPLIT(dev)) {
6874 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6875 intel_helper_funcs.commit = ironlake_crtc_commit;
6876 } else {
6877 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6878 intel_helper_funcs.commit = i9xx_crtc_commit;
6879 }
6880
6881 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6882
6883 intel_crtc->busy = false;
6884
6885 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6886 (unsigned long)intel_crtc);
6887 }
6888
6889 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6890 struct drm_file *file)
6891 {
6892 drm_i915_private_t *dev_priv = dev->dev_private;
6893 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6894 struct drm_mode_object *drmmode_obj;
6895 struct intel_crtc *crtc;
6896
6897 if (!dev_priv) {
6898 DRM_ERROR("called with no initialization\n");
6899 return -EINVAL;
6900 }
6901
6902 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6903 DRM_MODE_OBJECT_CRTC);
6904
6905 if (!drmmode_obj) {
6906 DRM_ERROR("no such CRTC id\n");
6907 return -EINVAL;
6908 }
6909
6910 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6911 pipe_from_crtc_id->pipe = crtc->pipe;
6912
6913 return 0;
6914 }
6915
6916 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6917 {
6918 struct intel_encoder *encoder;
6919 int index_mask = 0;
6920 int entry = 0;
6921
6922 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6923 if (type_mask & encoder->clone_mask)
6924 index_mask |= (1 << entry);
6925 entry++;
6926 }
6927
6928 return index_mask;
6929 }
6930
6931 static bool has_edp_a(struct drm_device *dev)
6932 {
6933 struct drm_i915_private *dev_priv = dev->dev_private;
6934
6935 if (!IS_MOBILE(dev))
6936 return false;
6937
6938 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6939 return false;
6940
6941 if (IS_GEN5(dev) &&
6942 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6943 return false;
6944
6945 return true;
6946 }
6947
6948 static void intel_setup_outputs(struct drm_device *dev)
6949 {
6950 struct drm_i915_private *dev_priv = dev->dev_private;
6951 struct intel_encoder *encoder;
6952 bool dpd_is_edp = false;
6953 bool has_lvds = false;
6954
6955 if (IS_MOBILE(dev) && !IS_I830(dev))
6956 has_lvds = intel_lvds_init(dev);
6957 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6958 /* disable the panel fitter on everything but LVDS */
6959 I915_WRITE(PFIT_CONTROL, 0);
6960 }
6961
6962 if (HAS_PCH_SPLIT(dev)) {
6963 dpd_is_edp = intel_dpd_is_edp(dev);
6964
6965 if (has_edp_a(dev))
6966 intel_dp_init(dev, DP_A);
6967
6968 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6969 intel_dp_init(dev, PCH_DP_D);
6970 }
6971
6972 intel_crt_init(dev);
6973
6974 if (HAS_PCH_SPLIT(dev)) {
6975 int found;
6976
6977 if (I915_READ(HDMIB) & PORT_DETECTED) {
6978 /* PCH SDVOB multiplex with HDMIB */
6979 found = intel_sdvo_init(dev, PCH_SDVOB);
6980 if (!found)
6981 intel_hdmi_init(dev, HDMIB);
6982 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6983 intel_dp_init(dev, PCH_DP_B);
6984 }
6985
6986 if (I915_READ(HDMIC) & PORT_DETECTED)
6987 intel_hdmi_init(dev, HDMIC);
6988
6989 if (I915_READ(HDMID) & PORT_DETECTED)
6990 intel_hdmi_init(dev, HDMID);
6991
6992 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6993 intel_dp_init(dev, PCH_DP_C);
6994
6995 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6996 intel_dp_init(dev, PCH_DP_D);
6997
6998 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6999 bool found = false;
7000
7001 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7002 DRM_DEBUG_KMS("probing SDVOB\n");
7003 found = intel_sdvo_init(dev, SDVOB);
7004 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7005 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7006 intel_hdmi_init(dev, SDVOB);
7007 }
7008
7009 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7010 DRM_DEBUG_KMS("probing DP_B\n");
7011 intel_dp_init(dev, DP_B);
7012 }
7013 }
7014
7015 /* Before G4X SDVOC doesn't have its own detect register */
7016
7017 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7018 DRM_DEBUG_KMS("probing SDVOC\n");
7019 found = intel_sdvo_init(dev, SDVOC);
7020 }
7021
7022 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7023
7024 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7025 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7026 intel_hdmi_init(dev, SDVOC);
7027 }
7028 if (SUPPORTS_INTEGRATED_DP(dev)) {
7029 DRM_DEBUG_KMS("probing DP_C\n");
7030 intel_dp_init(dev, DP_C);
7031 }
7032 }
7033
7034 if (SUPPORTS_INTEGRATED_DP(dev) &&
7035 (I915_READ(DP_D) & DP_DETECTED)) {
7036 DRM_DEBUG_KMS("probing DP_D\n");
7037 intel_dp_init(dev, DP_D);
7038 }
7039 } else if (IS_GEN2(dev))
7040 intel_dvo_init(dev);
7041
7042 if (SUPPORTS_TV(dev))
7043 intel_tv_init(dev);
7044
7045 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7046 encoder->base.possible_crtcs = encoder->crtc_mask;
7047 encoder->base.possible_clones =
7048 intel_encoder_clones(dev, encoder->clone_mask);
7049 }
7050
7051 intel_panel_setup_backlight(dev);
7052 }
7053
7054 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7055 {
7056 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7057
7058 drm_framebuffer_cleanup(fb);
7059 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7060
7061 kfree(intel_fb);
7062 }
7063
7064 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7065 struct drm_file *file,
7066 unsigned int *handle)
7067 {
7068 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7069 struct drm_i915_gem_object *obj = intel_fb->obj;
7070
7071 return drm_gem_handle_create(file, &obj->base, handle);
7072 }
7073
7074 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7075 .destroy = intel_user_framebuffer_destroy,
7076 .create_handle = intel_user_framebuffer_create_handle,
7077 };
7078
7079 int intel_framebuffer_init(struct drm_device *dev,
7080 struct intel_framebuffer *intel_fb,
7081 struct drm_mode_fb_cmd *mode_cmd,
7082 struct drm_i915_gem_object *obj)
7083 {
7084 int ret;
7085
7086 if (obj->tiling_mode == I915_TILING_Y)
7087 return -EINVAL;
7088
7089 if (mode_cmd->pitch & 63)
7090 return -EINVAL;
7091
7092 switch (mode_cmd->bpp) {
7093 case 8:
7094 case 16:
7095 case 24:
7096 case 32:
7097 break;
7098 default:
7099 return -EINVAL;
7100 }
7101
7102 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7103 if (ret) {
7104 DRM_ERROR("framebuffer init failed %d\n", ret);
7105 return ret;
7106 }
7107
7108 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7109 intel_fb->obj = obj;
7110 return 0;
7111 }
7112
7113 static struct drm_framebuffer *
7114 intel_user_framebuffer_create(struct drm_device *dev,
7115 struct drm_file *filp,
7116 struct drm_mode_fb_cmd *mode_cmd)
7117 {
7118 struct drm_i915_gem_object *obj;
7119
7120 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
7121 if (&obj->base == NULL)
7122 return ERR_PTR(-ENOENT);
7123
7124 return intel_framebuffer_create(dev, mode_cmd, obj);
7125 }
7126
7127 static const struct drm_mode_config_funcs intel_mode_funcs = {
7128 .fb_create = intel_user_framebuffer_create,
7129 .output_poll_changed = intel_fb_output_poll_changed,
7130 };
7131
7132 static struct drm_i915_gem_object *
7133 intel_alloc_context_page(struct drm_device *dev)
7134 {
7135 struct drm_i915_gem_object *ctx;
7136 int ret;
7137
7138 ctx = i915_gem_alloc_object(dev, 4096);
7139 if (!ctx) {
7140 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7141 return NULL;
7142 }
7143
7144 mutex_lock(&dev->struct_mutex);
7145 ret = i915_gem_object_pin(ctx, 4096, true);
7146 if (ret) {
7147 DRM_ERROR("failed to pin power context: %d\n", ret);
7148 goto err_unref;
7149 }
7150
7151 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7152 if (ret) {
7153 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7154 goto err_unpin;
7155 }
7156 mutex_unlock(&dev->struct_mutex);
7157
7158 return ctx;
7159
7160 err_unpin:
7161 i915_gem_object_unpin(ctx);
7162 err_unref:
7163 drm_gem_object_unreference(&ctx->base);
7164 mutex_unlock(&dev->struct_mutex);
7165 return NULL;
7166 }
7167
7168 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7169 {
7170 struct drm_i915_private *dev_priv = dev->dev_private;
7171 u16 rgvswctl;
7172
7173 rgvswctl = I915_READ16(MEMSWCTL);
7174 if (rgvswctl & MEMCTL_CMD_STS) {
7175 DRM_DEBUG("gpu busy, RCS change rejected\n");
7176 return false; /* still busy with another command */
7177 }
7178
7179 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7180 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7181 I915_WRITE16(MEMSWCTL, rgvswctl);
7182 POSTING_READ16(MEMSWCTL);
7183
7184 rgvswctl |= MEMCTL_CMD_STS;
7185 I915_WRITE16(MEMSWCTL, rgvswctl);
7186
7187 return true;
7188 }
7189
7190 void ironlake_enable_drps(struct drm_device *dev)
7191 {
7192 struct drm_i915_private *dev_priv = dev->dev_private;
7193 u32 rgvmodectl = I915_READ(MEMMODECTL);
7194 u8 fmax, fmin, fstart, vstart;
7195
7196 /* Enable temp reporting */
7197 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7198 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7199
7200 /* 100ms RC evaluation intervals */
7201 I915_WRITE(RCUPEI, 100000);
7202 I915_WRITE(RCDNEI, 100000);
7203
7204 /* Set max/min thresholds to 90ms and 80ms respectively */
7205 I915_WRITE(RCBMAXAVG, 90000);
7206 I915_WRITE(RCBMINAVG, 80000);
7207
7208 I915_WRITE(MEMIHYST, 1);
7209
7210 /* Set up min, max, and cur for interrupt handling */
7211 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7212 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7213 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7214 MEMMODE_FSTART_SHIFT;
7215
7216 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7217 PXVFREQ_PX_SHIFT;
7218
7219 dev_priv->fmax = fmax; /* IPS callback will increase this */
7220 dev_priv->fstart = fstart;
7221
7222 dev_priv->max_delay = fstart;
7223 dev_priv->min_delay = fmin;
7224 dev_priv->cur_delay = fstart;
7225
7226 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7227 fmax, fmin, fstart);
7228
7229 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7230
7231 /*
7232 * Interrupts will be enabled in ironlake_irq_postinstall
7233 */
7234
7235 I915_WRITE(VIDSTART, vstart);
7236 POSTING_READ(VIDSTART);
7237
7238 rgvmodectl |= MEMMODE_SWMODE_EN;
7239 I915_WRITE(MEMMODECTL, rgvmodectl);
7240
7241 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7242 DRM_ERROR("stuck trying to change perf mode\n");
7243 msleep(1);
7244
7245 ironlake_set_drps(dev, fstart);
7246
7247 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7248 I915_READ(0x112e0);
7249 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7250 dev_priv->last_count2 = I915_READ(0x112f4);
7251 getrawmonotonic(&dev_priv->last_time2);
7252 }
7253
7254 void ironlake_disable_drps(struct drm_device *dev)
7255 {
7256 struct drm_i915_private *dev_priv = dev->dev_private;
7257 u16 rgvswctl = I915_READ16(MEMSWCTL);
7258
7259 /* Ack interrupts, disable EFC interrupt */
7260 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7261 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7262 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7263 I915_WRITE(DEIIR, DE_PCU_EVENT);
7264 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7265
7266 /* Go back to the starting frequency */
7267 ironlake_set_drps(dev, dev_priv->fstart);
7268 msleep(1);
7269 rgvswctl |= MEMCTL_CMD_STS;
7270 I915_WRITE(MEMSWCTL, rgvswctl);
7271 msleep(1);
7272
7273 }
7274
7275 void gen6_set_rps(struct drm_device *dev, u8 val)
7276 {
7277 struct drm_i915_private *dev_priv = dev->dev_private;
7278 u32 swreq;
7279
7280 swreq = (val & 0x3ff) << 25;
7281 I915_WRITE(GEN6_RPNSWREQ, swreq);
7282 }
7283
7284 void gen6_disable_rps(struct drm_device *dev)
7285 {
7286 struct drm_i915_private *dev_priv = dev->dev_private;
7287
7288 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7289 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7290 I915_WRITE(GEN6_PMIER, 0);
7291 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7292 }
7293
7294 static unsigned long intel_pxfreq(u32 vidfreq)
7295 {
7296 unsigned long freq;
7297 int div = (vidfreq & 0x3f0000) >> 16;
7298 int post = (vidfreq & 0x3000) >> 12;
7299 int pre = (vidfreq & 0x7);
7300
7301 if (!pre)
7302 return 0;
7303
7304 freq = ((div * 133333) / ((1<<post) * pre));
7305
7306 return freq;
7307 }
7308
7309 void intel_init_emon(struct drm_device *dev)
7310 {
7311 struct drm_i915_private *dev_priv = dev->dev_private;
7312 u32 lcfuse;
7313 u8 pxw[16];
7314 int i;
7315
7316 /* Disable to program */
7317 I915_WRITE(ECR, 0);
7318 POSTING_READ(ECR);
7319
7320 /* Program energy weights for various events */
7321 I915_WRITE(SDEW, 0x15040d00);
7322 I915_WRITE(CSIEW0, 0x007f0000);
7323 I915_WRITE(CSIEW1, 0x1e220004);
7324 I915_WRITE(CSIEW2, 0x04000004);
7325
7326 for (i = 0; i < 5; i++)
7327 I915_WRITE(PEW + (i * 4), 0);
7328 for (i = 0; i < 3; i++)
7329 I915_WRITE(DEW + (i * 4), 0);
7330
7331 /* Program P-state weights to account for frequency power adjustment */
7332 for (i = 0; i < 16; i++) {
7333 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7334 unsigned long freq = intel_pxfreq(pxvidfreq);
7335 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7336 PXVFREQ_PX_SHIFT;
7337 unsigned long val;
7338
7339 val = vid * vid;
7340 val *= (freq / 1000);
7341 val *= 255;
7342 val /= (127*127*900);
7343 if (val > 0xff)
7344 DRM_ERROR("bad pxval: %ld\n", val);
7345 pxw[i] = val;
7346 }
7347 /* Render standby states get 0 weight */
7348 pxw[14] = 0;
7349 pxw[15] = 0;
7350
7351 for (i = 0; i < 4; i++) {
7352 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7353 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7354 I915_WRITE(PXW + (i * 4), val);
7355 }
7356
7357 /* Adjust magic regs to magic values (more experimental results) */
7358 I915_WRITE(OGW0, 0);
7359 I915_WRITE(OGW1, 0);
7360 I915_WRITE(EG0, 0x00007f00);
7361 I915_WRITE(EG1, 0x0000000e);
7362 I915_WRITE(EG2, 0x000e0000);
7363 I915_WRITE(EG3, 0x68000300);
7364 I915_WRITE(EG4, 0x42000000);
7365 I915_WRITE(EG5, 0x00140031);
7366 I915_WRITE(EG6, 0);
7367 I915_WRITE(EG7, 0);
7368
7369 for (i = 0; i < 8; i++)
7370 I915_WRITE(PXWL + (i * 4), 0);
7371
7372 /* Enable PMON + select events */
7373 I915_WRITE(ECR, 0x80000019);
7374
7375 lcfuse = I915_READ(LCFUSE02);
7376
7377 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7378 }
7379
7380 void gen6_enable_rps(struct drm_i915_private *dev_priv)
7381 {
7382 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7383 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7384 u32 pcu_mbox;
7385 int cur_freq, min_freq, max_freq;
7386 int i;
7387
7388 /* Here begins a magic sequence of register writes to enable
7389 * auto-downclocking.
7390 *
7391 * Perhaps there might be some value in exposing these to
7392 * userspace...
7393 */
7394 I915_WRITE(GEN6_RC_STATE, 0);
7395 __gen6_gt_force_wake_get(dev_priv);
7396
7397 /* disable the counters and set deterministic thresholds */
7398 I915_WRITE(GEN6_RC_CONTROL, 0);
7399
7400 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7401 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7402 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7403 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7404 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7405
7406 for (i = 0; i < I915_NUM_RINGS; i++)
7407 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7408
7409 I915_WRITE(GEN6_RC_SLEEP, 0);
7410 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7411 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7412 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7413 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7414
7415 I915_WRITE(GEN6_RC_CONTROL,
7416 GEN6_RC_CTL_RC6p_ENABLE |
7417 GEN6_RC_CTL_RC6_ENABLE |
7418 GEN6_RC_CTL_EI_MODE(1) |
7419 GEN6_RC_CTL_HW_ENABLE);
7420
7421 I915_WRITE(GEN6_RPNSWREQ,
7422 GEN6_FREQUENCY(10) |
7423 GEN6_OFFSET(0) |
7424 GEN6_AGGRESSIVE_TURBO);
7425 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7426 GEN6_FREQUENCY(12));
7427
7428 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7429 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7430 18 << 24 |
7431 6 << 16);
7432 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7433 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7434 I915_WRITE(GEN6_RP_UP_EI, 100000);
7435 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7436 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7437 I915_WRITE(GEN6_RP_CONTROL,
7438 GEN6_RP_MEDIA_TURBO |
7439 GEN6_RP_USE_NORMAL_FREQ |
7440 GEN6_RP_MEDIA_IS_GFX |
7441 GEN6_RP_ENABLE |
7442 GEN6_RP_UP_BUSY_AVG |
7443 GEN6_RP_DOWN_IDLE_CONT);
7444
7445 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7446 500))
7447 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7448
7449 I915_WRITE(GEN6_PCODE_DATA, 0);
7450 I915_WRITE(GEN6_PCODE_MAILBOX,
7451 GEN6_PCODE_READY |
7452 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7453 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7454 500))
7455 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7456
7457 min_freq = (rp_state_cap & 0xff0000) >> 16;
7458 max_freq = rp_state_cap & 0xff;
7459 cur_freq = (gt_perf_status & 0xff00) >> 8;
7460
7461 /* Check for overclock support */
7462 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7463 500))
7464 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7465 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7466 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7467 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7468 500))
7469 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7470 if (pcu_mbox & (1<<31)) { /* OC supported */
7471 max_freq = pcu_mbox & 0xff;
7472 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7473 }
7474
7475 /* In units of 100MHz */
7476 dev_priv->max_delay = max_freq;
7477 dev_priv->min_delay = min_freq;
7478 dev_priv->cur_delay = cur_freq;
7479
7480 /* requires MSI enabled */
7481 I915_WRITE(GEN6_PMIER,
7482 GEN6_PM_MBOX_EVENT |
7483 GEN6_PM_THERMAL_EVENT |
7484 GEN6_PM_RP_DOWN_TIMEOUT |
7485 GEN6_PM_RP_UP_THRESHOLD |
7486 GEN6_PM_RP_DOWN_THRESHOLD |
7487 GEN6_PM_RP_UP_EI_EXPIRED |
7488 GEN6_PM_RP_DOWN_EI_EXPIRED);
7489 I915_WRITE(GEN6_PMIMR, 0);
7490 /* enable all PM interrupts */
7491 I915_WRITE(GEN6_PMINTRMSK, 0);
7492
7493 __gen6_gt_force_wake_put(dev_priv);
7494 }
7495
7496 void intel_enable_clock_gating(struct drm_device *dev)
7497 {
7498 struct drm_i915_private *dev_priv = dev->dev_private;
7499 int pipe;
7500
7501 /*
7502 * Disable clock gating reported to work incorrectly according to the
7503 * specs, but enable as much else as we can.
7504 */
7505 if (HAS_PCH_SPLIT(dev)) {
7506 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7507
7508 if (IS_GEN5(dev)) {
7509 /* Required for FBC */
7510 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7511 DPFCRUNIT_CLOCK_GATE_DISABLE |
7512 DPFDUNIT_CLOCK_GATE_DISABLE;
7513 /* Required for CxSR */
7514 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7515
7516 I915_WRITE(PCH_3DCGDIS0,
7517 MARIUNIT_CLOCK_GATE_DISABLE |
7518 SVSMUNIT_CLOCK_GATE_DISABLE);
7519 I915_WRITE(PCH_3DCGDIS1,
7520 VFMUNIT_CLOCK_GATE_DISABLE);
7521 }
7522
7523 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7524
7525 /*
7526 * On Ibex Peak and Cougar Point, we need to disable clock
7527 * gating for the panel power sequencer or it will fail to
7528 * start up when no ports are active.
7529 */
7530 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7531
7532 /*
7533 * According to the spec the following bits should be set in
7534 * order to enable memory self-refresh
7535 * The bit 22/21 of 0x42004
7536 * The bit 5 of 0x42020
7537 * The bit 15 of 0x45000
7538 */
7539 if (IS_GEN5(dev)) {
7540 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7541 (I915_READ(ILK_DISPLAY_CHICKEN2) |
7542 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7543 I915_WRITE(ILK_DSPCLK_GATE,
7544 (I915_READ(ILK_DSPCLK_GATE) |
7545 ILK_DPARB_CLK_GATE));
7546 I915_WRITE(DISP_ARB_CTL,
7547 (I915_READ(DISP_ARB_CTL) |
7548 DISP_FBC_WM_DIS));
7549 I915_WRITE(WM3_LP_ILK, 0);
7550 I915_WRITE(WM2_LP_ILK, 0);
7551 I915_WRITE(WM1_LP_ILK, 0);
7552 }
7553 /*
7554 * Based on the document from hardware guys the following bits
7555 * should be set unconditionally in order to enable FBC.
7556 * The bit 22 of 0x42000
7557 * The bit 22 of 0x42004
7558 * The bit 7,8,9 of 0x42020.
7559 */
7560 if (IS_IRONLAKE_M(dev)) {
7561 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7562 I915_READ(ILK_DISPLAY_CHICKEN1) |
7563 ILK_FBCQ_DIS);
7564 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7565 I915_READ(ILK_DISPLAY_CHICKEN2) |
7566 ILK_DPARB_GATE);
7567 I915_WRITE(ILK_DSPCLK_GATE,
7568 I915_READ(ILK_DSPCLK_GATE) |
7569 ILK_DPFC_DIS1 |
7570 ILK_DPFC_DIS2 |
7571 ILK_CLK_FBC);
7572 }
7573
7574 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7575 I915_READ(ILK_DISPLAY_CHICKEN2) |
7576 ILK_ELPIN_409_SELECT);
7577
7578 if (IS_GEN5(dev)) {
7579 I915_WRITE(_3D_CHICKEN2,
7580 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7581 _3D_CHICKEN2_WM_READ_PIPELINED);
7582 }
7583
7584 if (IS_GEN6(dev)) {
7585 I915_WRITE(WM3_LP_ILK, 0);
7586 I915_WRITE(WM2_LP_ILK, 0);
7587 I915_WRITE(WM1_LP_ILK, 0);
7588
7589 /*
7590 * According to the spec the following bits should be
7591 * set in order to enable memory self-refresh and fbc:
7592 * The bit21 and bit22 of 0x42000
7593 * The bit21 and bit22 of 0x42004
7594 * The bit5 and bit7 of 0x42020
7595 * The bit14 of 0x70180
7596 * The bit14 of 0x71180
7597 */
7598 I915_WRITE(ILK_DISPLAY_CHICKEN1,
7599 I915_READ(ILK_DISPLAY_CHICKEN1) |
7600 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7601 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7602 I915_READ(ILK_DISPLAY_CHICKEN2) |
7603 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7604 I915_WRITE(ILK_DSPCLK_GATE,
7605 I915_READ(ILK_DSPCLK_GATE) |
7606 ILK_DPARB_CLK_GATE |
7607 ILK_DPFD_CLK_GATE);
7608
7609 for_each_pipe(pipe)
7610 I915_WRITE(DSPCNTR(pipe),
7611 I915_READ(DSPCNTR(pipe)) |
7612 DISPPLANE_TRICKLE_FEED_DISABLE);
7613 }
7614 } else if (IS_G4X(dev)) {
7615 uint32_t dspclk_gate;
7616 I915_WRITE(RENCLK_GATE_D1, 0);
7617 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7618 GS_UNIT_CLOCK_GATE_DISABLE |
7619 CL_UNIT_CLOCK_GATE_DISABLE);
7620 I915_WRITE(RAMCLK_GATE_D, 0);
7621 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7622 OVRUNIT_CLOCK_GATE_DISABLE |
7623 OVCUNIT_CLOCK_GATE_DISABLE;
7624 if (IS_GM45(dev))
7625 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7626 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7627 } else if (IS_CRESTLINE(dev)) {
7628 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7629 I915_WRITE(RENCLK_GATE_D2, 0);
7630 I915_WRITE(DSPCLK_GATE_D, 0);
7631 I915_WRITE(RAMCLK_GATE_D, 0);
7632 I915_WRITE16(DEUC, 0);
7633 } else if (IS_BROADWATER(dev)) {
7634 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7635 I965_RCC_CLOCK_GATE_DISABLE |
7636 I965_RCPB_CLOCK_GATE_DISABLE |
7637 I965_ISC_CLOCK_GATE_DISABLE |
7638 I965_FBC_CLOCK_GATE_DISABLE);
7639 I915_WRITE(RENCLK_GATE_D2, 0);
7640 } else if (IS_GEN3(dev)) {
7641 u32 dstate = I915_READ(D_STATE);
7642
7643 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7644 DSTATE_DOT_CLOCK_GATING;
7645 I915_WRITE(D_STATE, dstate);
7646 } else if (IS_I85X(dev) || IS_I865G(dev)) {
7647 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7648 } else if (IS_I830(dev)) {
7649 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7650 }
7651 }
7652
7653 static void ironlake_teardown_rc6(struct drm_device *dev)
7654 {
7655 struct drm_i915_private *dev_priv = dev->dev_private;
7656
7657 if (dev_priv->renderctx) {
7658 i915_gem_object_unpin(dev_priv->renderctx);
7659 drm_gem_object_unreference(&dev_priv->renderctx->base);
7660 dev_priv->renderctx = NULL;
7661 }
7662
7663 if (dev_priv->pwrctx) {
7664 i915_gem_object_unpin(dev_priv->pwrctx);
7665 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7666 dev_priv->pwrctx = NULL;
7667 }
7668 }
7669
7670 static void ironlake_disable_rc6(struct drm_device *dev)
7671 {
7672 struct drm_i915_private *dev_priv = dev->dev_private;
7673
7674 if (I915_READ(PWRCTXA)) {
7675 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7676 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7677 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7678 50);
7679
7680 I915_WRITE(PWRCTXA, 0);
7681 POSTING_READ(PWRCTXA);
7682
7683 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7684 POSTING_READ(RSTDBYCTL);
7685 }
7686
7687 ironlake_teardown_rc6(dev);
7688 }
7689
7690 static int ironlake_setup_rc6(struct drm_device *dev)
7691 {
7692 struct drm_i915_private *dev_priv = dev->dev_private;
7693
7694 if (dev_priv->renderctx == NULL)
7695 dev_priv->renderctx = intel_alloc_context_page(dev);
7696 if (!dev_priv->renderctx)
7697 return -ENOMEM;
7698
7699 if (dev_priv->pwrctx == NULL)
7700 dev_priv->pwrctx = intel_alloc_context_page(dev);
7701 if (!dev_priv->pwrctx) {
7702 ironlake_teardown_rc6(dev);
7703 return -ENOMEM;
7704 }
7705
7706 return 0;
7707 }
7708
7709 void ironlake_enable_rc6(struct drm_device *dev)
7710 {
7711 struct drm_i915_private *dev_priv = dev->dev_private;
7712 int ret;
7713
7714 /* rc6 disabled by default due to repeated reports of hanging during
7715 * boot and resume.
7716 */
7717 if (!i915_enable_rc6)
7718 return;
7719
7720 ret = ironlake_setup_rc6(dev);
7721 if (ret)
7722 return;
7723
7724 /*
7725 * GPU can automatically power down the render unit if given a page
7726 * to save state.
7727 */
7728 ret = BEGIN_LP_RING(6);
7729 if (ret) {
7730 ironlake_teardown_rc6(dev);
7731 return;
7732 }
7733
7734 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7735 OUT_RING(MI_SET_CONTEXT);
7736 OUT_RING(dev_priv->renderctx->gtt_offset |
7737 MI_MM_SPACE_GTT |
7738 MI_SAVE_EXT_STATE_EN |
7739 MI_RESTORE_EXT_STATE_EN |
7740 MI_RESTORE_INHIBIT);
7741 OUT_RING(MI_SUSPEND_FLUSH);
7742 OUT_RING(MI_NOOP);
7743 OUT_RING(MI_FLUSH);
7744 ADVANCE_LP_RING();
7745
7746 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7747 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7748 }
7749
7750
7751 /* Set up chip specific display functions */
7752 static void intel_init_display(struct drm_device *dev)
7753 {
7754 struct drm_i915_private *dev_priv = dev->dev_private;
7755
7756 /* We always want a DPMS function */
7757 if (HAS_PCH_SPLIT(dev)) {
7758 dev_priv->display.dpms = ironlake_crtc_dpms;
7759 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7760 } else {
7761 dev_priv->display.dpms = i9xx_crtc_dpms;
7762 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7763 }
7764
7765 if (I915_HAS_FBC(dev)) {
7766 if (HAS_PCH_SPLIT(dev)) {
7767 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7768 dev_priv->display.enable_fbc = ironlake_enable_fbc;
7769 dev_priv->display.disable_fbc = ironlake_disable_fbc;
7770 } else if (IS_GM45(dev)) {
7771 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7772 dev_priv->display.enable_fbc = g4x_enable_fbc;
7773 dev_priv->display.disable_fbc = g4x_disable_fbc;
7774 } else if (IS_CRESTLINE(dev)) {
7775 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7776 dev_priv->display.enable_fbc = i8xx_enable_fbc;
7777 dev_priv->display.disable_fbc = i8xx_disable_fbc;
7778 }
7779 /* 855GM needs testing */
7780 }
7781
7782 /* Returns the core display clock speed */
7783 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7784 dev_priv->display.get_display_clock_speed =
7785 i945_get_display_clock_speed;
7786 else if (IS_I915G(dev))
7787 dev_priv->display.get_display_clock_speed =
7788 i915_get_display_clock_speed;
7789 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7790 dev_priv->display.get_display_clock_speed =
7791 i9xx_misc_get_display_clock_speed;
7792 else if (IS_I915GM(dev))
7793 dev_priv->display.get_display_clock_speed =
7794 i915gm_get_display_clock_speed;
7795 else if (IS_I865G(dev))
7796 dev_priv->display.get_display_clock_speed =
7797 i865_get_display_clock_speed;
7798 else if (IS_I85X(dev))
7799 dev_priv->display.get_display_clock_speed =
7800 i855_get_display_clock_speed;
7801 else /* 852, 830 */
7802 dev_priv->display.get_display_clock_speed =
7803 i830_get_display_clock_speed;
7804
7805 /* For FIFO watermark updates */
7806 if (HAS_PCH_SPLIT(dev)) {
7807 if (IS_GEN5(dev)) {
7808 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7809 dev_priv->display.update_wm = ironlake_update_wm;
7810 else {
7811 DRM_DEBUG_KMS("Failed to get proper latency. "
7812 "Disable CxSR\n");
7813 dev_priv->display.update_wm = NULL;
7814 }
7815 } else if (IS_GEN6(dev)) {
7816 if (SNB_READ_WM0_LATENCY()) {
7817 dev_priv->display.update_wm = sandybridge_update_wm;
7818 } else {
7819 DRM_DEBUG_KMS("Failed to read display plane latency. "
7820 "Disable CxSR\n");
7821 dev_priv->display.update_wm = NULL;
7822 }
7823 } else
7824 dev_priv->display.update_wm = NULL;
7825 } else if (IS_PINEVIEW(dev)) {
7826 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7827 dev_priv->is_ddr3,
7828 dev_priv->fsb_freq,
7829 dev_priv->mem_freq)) {
7830 DRM_INFO("failed to find known CxSR latency "
7831 "(found ddr%s fsb freq %d, mem freq %d), "
7832 "disabling CxSR\n",
7833 (dev_priv->is_ddr3 == 1) ? "3": "2",
7834 dev_priv->fsb_freq, dev_priv->mem_freq);
7835 /* Disable CxSR and never update its watermark again */
7836 pineview_disable_cxsr(dev);
7837 dev_priv->display.update_wm = NULL;
7838 } else
7839 dev_priv->display.update_wm = pineview_update_wm;
7840 } else if (IS_G4X(dev))
7841 dev_priv->display.update_wm = g4x_update_wm;
7842 else if (IS_GEN4(dev))
7843 dev_priv->display.update_wm = i965_update_wm;
7844 else if (IS_GEN3(dev)) {
7845 dev_priv->display.update_wm = i9xx_update_wm;
7846 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7847 } else if (IS_I85X(dev)) {
7848 dev_priv->display.update_wm = i9xx_update_wm;
7849 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7850 } else {
7851 dev_priv->display.update_wm = i830_update_wm;
7852 if (IS_845G(dev))
7853 dev_priv->display.get_fifo_size = i845_get_fifo_size;
7854 else
7855 dev_priv->display.get_fifo_size = i830_get_fifo_size;
7856 }
7857 }
7858
7859 /*
7860 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7861 * resume, or other times. This quirk makes sure that's the case for
7862 * affected systems.
7863 */
7864 static void quirk_pipea_force (struct drm_device *dev)
7865 {
7866 struct drm_i915_private *dev_priv = dev->dev_private;
7867
7868 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7869 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7870 }
7871
7872 struct intel_quirk {
7873 int device;
7874 int subsystem_vendor;
7875 int subsystem_device;
7876 void (*hook)(struct drm_device *dev);
7877 };
7878
7879 struct intel_quirk intel_quirks[] = {
7880 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7881 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7882 /* HP Mini needs pipe A force quirk (LP: #322104) */
7883 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7884
7885 /* Thinkpad R31 needs pipe A force quirk */
7886 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7887 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7888 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7889
7890 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7891 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
7892 /* ThinkPad X40 needs pipe A force quirk */
7893
7894 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7895 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7896
7897 /* 855 & before need to leave pipe A & dpll A up */
7898 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7899 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7900 };
7901
7902 static void intel_init_quirks(struct drm_device *dev)
7903 {
7904 struct pci_dev *d = dev->pdev;
7905 int i;
7906
7907 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7908 struct intel_quirk *q = &intel_quirks[i];
7909
7910 if (d->device == q->device &&
7911 (d->subsystem_vendor == q->subsystem_vendor ||
7912 q->subsystem_vendor == PCI_ANY_ID) &&
7913 (d->subsystem_device == q->subsystem_device ||
7914 q->subsystem_device == PCI_ANY_ID))
7915 q->hook(dev);
7916 }
7917 }
7918
7919 /* Disable the VGA plane that we never use */
7920 static void i915_disable_vga(struct drm_device *dev)
7921 {
7922 struct drm_i915_private *dev_priv = dev->dev_private;
7923 u8 sr1;
7924 u32 vga_reg;
7925
7926 if (HAS_PCH_SPLIT(dev))
7927 vga_reg = CPU_VGACNTRL;
7928 else
7929 vga_reg = VGACNTRL;
7930
7931 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7932 outb(1, VGA_SR_INDEX);
7933 sr1 = inb(VGA_SR_DATA);
7934 outb(sr1 | 1<<5, VGA_SR_DATA);
7935 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7936 udelay(300);
7937
7938 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7939 POSTING_READ(vga_reg);
7940 }
7941
7942 void intel_modeset_init(struct drm_device *dev)
7943 {
7944 struct drm_i915_private *dev_priv = dev->dev_private;
7945 int i;
7946
7947 drm_mode_config_init(dev);
7948
7949 dev->mode_config.min_width = 0;
7950 dev->mode_config.min_height = 0;
7951
7952 dev->mode_config.funcs = (void *)&intel_mode_funcs;
7953
7954 intel_init_quirks(dev);
7955
7956 intel_init_display(dev);
7957
7958 if (IS_GEN2(dev)) {
7959 dev->mode_config.max_width = 2048;
7960 dev->mode_config.max_height = 2048;
7961 } else if (IS_GEN3(dev)) {
7962 dev->mode_config.max_width = 4096;
7963 dev->mode_config.max_height = 4096;
7964 } else {
7965 dev->mode_config.max_width = 8192;
7966 dev->mode_config.max_height = 8192;
7967 }
7968 dev->mode_config.fb_base = dev->agp->base;
7969
7970 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7971 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7972
7973 for (i = 0; i < dev_priv->num_pipe; i++) {
7974 intel_crtc_init(dev, i);
7975 }
7976
7977 intel_setup_outputs(dev);
7978
7979 intel_enable_clock_gating(dev);
7980
7981 /* Just disable it once at startup */
7982 i915_disable_vga(dev);
7983
7984 if (IS_IRONLAKE_M(dev)) {
7985 ironlake_enable_drps(dev);
7986 intel_init_emon(dev);
7987 }
7988
7989 if (IS_GEN6(dev))
7990 gen6_enable_rps(dev_priv);
7991
7992 if (IS_IRONLAKE_M(dev))
7993 ironlake_enable_rc6(dev);
7994
7995 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7996 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7997 (unsigned long)dev);
7998
7999 intel_setup_overlay(dev);
8000 }
8001
8002 void intel_modeset_cleanup(struct drm_device *dev)
8003 {
8004 struct drm_i915_private *dev_priv = dev->dev_private;
8005 struct drm_crtc *crtc;
8006 struct intel_crtc *intel_crtc;
8007
8008 drm_kms_helper_poll_fini(dev);
8009 mutex_lock(&dev->struct_mutex);
8010
8011 intel_unregister_dsm_handler();
8012
8013
8014 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8015 /* Skip inactive CRTCs */
8016 if (!crtc->fb)
8017 continue;
8018
8019 intel_crtc = to_intel_crtc(crtc);
8020 intel_increase_pllclock(crtc);
8021 }
8022
8023 if (dev_priv->display.disable_fbc)
8024 dev_priv->display.disable_fbc(dev);
8025
8026 if (IS_IRONLAKE_M(dev))
8027 ironlake_disable_drps(dev);
8028 if (IS_GEN6(dev))
8029 gen6_disable_rps(dev);
8030
8031 if (IS_IRONLAKE_M(dev))
8032 ironlake_disable_rc6(dev);
8033
8034 mutex_unlock(&dev->struct_mutex);
8035
8036 /* Disable the irq before mode object teardown, for the irq might
8037 * enqueue unpin/hotplug work. */
8038 drm_irq_uninstall(dev);
8039 cancel_work_sync(&dev_priv->hotplug_work);
8040
8041 /* Shut off idle work before the crtcs get freed. */
8042 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8043 intel_crtc = to_intel_crtc(crtc);
8044 del_timer_sync(&intel_crtc->idle_timer);
8045 }
8046 del_timer_sync(&dev_priv->idle_timer);
8047 cancel_work_sync(&dev_priv->idle_work);
8048
8049 drm_mode_config_cleanup(dev);
8050 }
8051
8052 /*
8053 * Return which encoder is currently attached for connector.
8054 */
8055 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8056 {
8057 return &intel_attached_encoder(connector)->base;
8058 }
8059
8060 void intel_connector_attach_encoder(struct intel_connector *connector,
8061 struct intel_encoder *encoder)
8062 {
8063 connector->encoder = encoder;
8064 drm_mode_connector_attach_encoder(&connector->base,
8065 &encoder->base);
8066 }
8067
8068 /*
8069 * set vga decode state - true == enable VGA decode
8070 */
8071 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8072 {
8073 struct drm_i915_private *dev_priv = dev->dev_private;
8074 u16 gmch_ctrl;
8075
8076 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8077 if (state)
8078 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8079 else
8080 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8081 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8082 return 0;
8083 }
8084
8085 #ifdef CONFIG_DEBUG_FS
8086 #include <linux/seq_file.h>
8087
8088 struct intel_display_error_state {
8089 struct intel_cursor_error_state {
8090 u32 control;
8091 u32 position;
8092 u32 base;
8093 u32 size;
8094 } cursor[2];
8095
8096 struct intel_pipe_error_state {
8097 u32 conf;
8098 u32 source;
8099
8100 u32 htotal;
8101 u32 hblank;
8102 u32 hsync;
8103 u32 vtotal;
8104 u32 vblank;
8105 u32 vsync;
8106 } pipe[2];
8107
8108 struct intel_plane_error_state {
8109 u32 control;
8110 u32 stride;
8111 u32 size;
8112 u32 pos;
8113 u32 addr;
8114 u32 surface;
8115 u32 tile_offset;
8116 } plane[2];
8117 };
8118
8119 struct intel_display_error_state *
8120 intel_display_capture_error_state(struct drm_device *dev)
8121 {
8122 drm_i915_private_t *dev_priv = dev->dev_private;
8123 struct intel_display_error_state *error;
8124 int i;
8125
8126 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8127 if (error == NULL)
8128 return NULL;
8129
8130 for (i = 0; i < 2; i++) {
8131 error->cursor[i].control = I915_READ(CURCNTR(i));
8132 error->cursor[i].position = I915_READ(CURPOS(i));
8133 error->cursor[i].base = I915_READ(CURBASE(i));
8134
8135 error->plane[i].control = I915_READ(DSPCNTR(i));
8136 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8137 error->plane[i].size = I915_READ(DSPSIZE(i));
8138 error->plane[i].pos= I915_READ(DSPPOS(i));
8139 error->plane[i].addr = I915_READ(DSPADDR(i));
8140 if (INTEL_INFO(dev)->gen >= 4) {
8141 error->plane[i].surface = I915_READ(DSPSURF(i));
8142 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8143 }
8144
8145 error->pipe[i].conf = I915_READ(PIPECONF(i));
8146 error->pipe[i].source = I915_READ(PIPESRC(i));
8147 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8148 error->pipe[i].hblank = I915_READ(HBLANK(i));
8149 error->pipe[i].hsync = I915_READ(HSYNC(i));
8150 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8151 error->pipe[i].vblank = I915_READ(VBLANK(i));
8152 error->pipe[i].vsync = I915_READ(VSYNC(i));
8153 }
8154
8155 return error;
8156 }
8157
8158 void
8159 intel_display_print_error_state(struct seq_file *m,
8160 struct drm_device *dev,
8161 struct intel_display_error_state *error)
8162 {
8163 int i;
8164
8165 for (i = 0; i < 2; i++) {
8166 seq_printf(m, "Pipe [%d]:\n", i);
8167 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8168 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8169 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8170 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8171 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8172 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8173 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8174 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8175
8176 seq_printf(m, "Plane [%d]:\n", i);
8177 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8178 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8179 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8180 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8181 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8182 if (INTEL_INFO(dev)->gen >= 4) {
8183 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8184 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8185 }
8186
8187 seq_printf(m, "Cursor [%d]:\n", i);
8188 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8189 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8190 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8191 }
8192 }
8193 #endif
This page took 0.356072 seconds and 6 git commands to generate.