drm/i915: Document that the pll->mode_set hook is optional
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 #define DIV_ROUND_CLOSEST_ULL(ll, d) \
77 ({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
78
79 static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
81 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
82
83 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
85 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
87
88 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
90 static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
94 static void intel_dp_set_m_n(struct intel_crtc *crtc);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
100 static void haswell_set_pipeconf(struct drm_crtc *crtc);
101 static void intel_set_pipe_csc(struct drm_crtc *crtc);
102 static void vlv_prepare_pll(struct intel_crtc *crtc);
103
104 typedef struct {
105 int min, max;
106 } intel_range_t;
107
108 typedef struct {
109 int dot_limit;
110 int p2_slow, p2_fast;
111 } intel_p2_t;
112
113 typedef struct intel_limit intel_limit_t;
114 struct intel_limit {
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
117 };
118
119 int
120 intel_pch_rawclk(struct drm_device *dev)
121 {
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127 }
128
129 static inline u32 /* units of 100MHz */
130 intel_fdi_link_freq(struct drm_device *dev)
131 {
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
137 }
138
139 static const intel_limit_t intel_limits_i8xx_dac = {
140 .dot = { .min = 25000, .max = 350000 },
141 .vco = { .min = 908000, .max = 1512000 },
142 .n = { .min = 2, .max = 16 },
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
150 };
151
152 static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
154 .vco = { .min = 908000, .max = 1512000 },
155 .n = { .min = 2, .max = 16 },
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163 };
164
165 static const intel_limit_t intel_limits_i8xx_lvds = {
166 .dot = { .min = 25000, .max = 350000 },
167 .vco = { .min = 908000, .max = 1512000 },
168 .n = { .min = 2, .max = 16 },
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
176 };
177
178 static const intel_limit_t intel_limits_i9xx_sdvo = {
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
189 };
190
191 static const intel_limit_t intel_limits_i9xx_lvds = {
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
202 };
203
204
205 static const intel_limit_t intel_limits_g4x_sdvo = {
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
217 },
218 };
219
220 static const intel_limit_t intel_limits_g4x_hdmi = {
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
231 };
232
233 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
244 },
245 };
246
247 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
258 },
259 };
260
261 static const intel_limit_t intel_limits_pineview_sdvo = {
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
264 /* Pineview's Ncounter is a ring counter */
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
267 /* Pineview only has one combined m divider, which we treat as m2. */
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
274 };
275
276 static const intel_limit_t intel_limits_pineview_lvds = {
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
287 };
288
289 /* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
294 static const intel_limit_t intel_limits_ironlake_dac = {
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
305 };
306
307 static const intel_limit_t intel_limits_ironlake_single_lvds = {
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
331 };
332
333 /* LVDS 100mhz refclk limits. */
334 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
342 .p1 = { .min = 2, .max = 8 },
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
345 };
346
347 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
355 .p1 = { .min = 2, .max = 6 },
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
358 };
359
360 static const intel_limit_t intel_limits_vlv = {
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
368 .vco = { .min = 4000000, .max = 6000000 },
369 .n = { .min = 1, .max = 7 },
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
372 .p1 = { .min = 2, .max = 3 },
373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
374 };
375
376 static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390 };
391
392 static void vlv_clock(int refclk, intel_clock_t *clock)
393 {
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
400 }
401
402 /**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405 static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406 {
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415 }
416
417 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
419 {
420 struct drm_device *dev = crtc->dev;
421 const intel_limit_t *limit;
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
424 if (intel_is_dual_link_lvds(dev)) {
425 if (refclk == 100000)
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
430 if (refclk == 100000)
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
435 } else
436 limit = &intel_limits_ironlake_dac;
437
438 return limit;
439 }
440
441 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442 {
443 struct drm_device *dev = crtc->dev;
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
447 if (intel_is_dual_link_lvds(dev))
448 limit = &intel_limits_g4x_dual_channel_lvds;
449 else
450 limit = &intel_limits_g4x_single_channel_lvds;
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
453 limit = &intel_limits_g4x_hdmi;
454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
455 limit = &intel_limits_g4x_sdvo;
456 } else /* The option is for other outputs */
457 limit = &intel_limits_i9xx_sdvo;
458
459 return limit;
460 }
461
462 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
463 {
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
467 if (HAS_PCH_SPLIT(dev))
468 limit = intel_ironlake_limit(crtc, refclk);
469 else if (IS_G4X(dev)) {
470 limit = intel_g4x_limit(crtc);
471 } else if (IS_PINEVIEW(dev)) {
472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
473 limit = &intel_limits_pineview_lvds;
474 else
475 limit = &intel_limits_pineview_sdvo;
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
478 } else if (IS_VALLEYVIEW(dev)) {
479 limit = &intel_limits_vlv;
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
487 limit = &intel_limits_i8xx_lvds;
488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
489 limit = &intel_limits_i8xx_dvo;
490 else
491 limit = &intel_limits_i8xx_dac;
492 }
493 return limit;
494 }
495
496 /* m1 is reserved as 0 in Pineview, n is a ring counter */
497 static void pineview_clock(int refclk, intel_clock_t *clock)
498 {
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
505 }
506
507 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508 {
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510 }
511
512 static void i9xx_clock(int refclk, intel_clock_t *clock)
513 {
514 clock->m = i9xx_dpll_compute_m(clock);
515 clock->p = clock->p1 * clock->p2;
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
520 }
521
522 static void chv_clock(int refclk, intel_clock_t *clock)
523 {
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531 }
532
533 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
534 /**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
539 static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
542 {
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
546 INTELPllInvalid("p1 out of range\n");
547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
548 INTELPllInvalid("m2 out of range\n");
549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
550 INTELPllInvalid("m1 out of range\n");
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
564 INTELPllInvalid("vco out of range\n");
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
569 INTELPllInvalid("dot out of range\n");
570
571 return true;
572 }
573
574 static bool
575 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
578 {
579 struct drm_device *dev = crtc->dev;
580 intel_clock_t clock;
581 int err = target;
582
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
584 /*
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
588 */
589 if (intel_is_dual_link_lvds(dev))
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
600 memset(best_clock, 0, sizeof(*best_clock));
601
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
606 if (clock.m2 >= clock.m1)
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
612 int this_err;
613
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633 }
634
635 static bool
636 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
639 {
640 struct drm_device *dev = crtc->dev;
641 intel_clock_t clock;
642 int err = target;
643
644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
645 /*
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
649 */
650 if (intel_is_dual_link_lvds(dev))
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
661 memset(best_clock, 0, sizeof(*best_clock));
662
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
671 int this_err;
672
673 pineview_clock(refclk, &clock);
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
676 continue;
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692 }
693
694 static bool
695 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
698 {
699 struct drm_device *dev = crtc->dev;
700 intel_clock_t clock;
701 int max_n;
702 bool found;
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
708 if (intel_is_dual_link_lvds(dev))
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
721 /* based on hardware requirement, prefer smaller n to precision */
722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
723 /* based on hardware requirement, prefere larger m1,m2 */
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
732 i9xx_clock(refclk, &clock);
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
735 continue;
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
748 return found;
749 }
750
751 static bool
752 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
755 {
756 struct drm_device *dev = crtc->dev;
757 intel_clock_t clock;
758 unsigned int bestppm = 1000000;
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
761 bool found = false;
762
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
766
767 /* based on hardware requirement, prefer smaller n to precision */
768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
772 clock.p = clock.p1 * clock.p2;
773 /* based on hardware requirement, prefer bigger m1,m2 values */
774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
775 unsigned int ppm, diff;
776
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
781
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
784 continue;
785
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
790 bestppm = 0;
791 *best_clock = clock;
792 found = true;
793 }
794
795 if (bestppm >= 10 && ppm < bestppm - 10) {
796 bestppm = ppm;
797 *best_clock = clock;
798 found = true;
799 }
800 }
801 }
802 }
803 }
804
805 return found;
806 }
807
808 static bool
809 chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812 {
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858 }
859
860 bool intel_crtc_active(struct drm_crtc *crtc)
861 {
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
867 * We can ditch the adjusted_mode.crtc_clock check as soon
868 * as Haswell has gained clock readout/fastboot support.
869 *
870 * We can ditch the crtc->primary->fb check as soon as we can
871 * properly reconstruct framebuffers.
872 */
873 return intel_crtc->active && crtc->primary->fb &&
874 intel_crtc->config.adjusted_mode.crtc_clock;
875 }
876
877 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879 {
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
883 return intel_crtc->config.cpu_transcoder;
884 }
885
886 static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
887 {
888 struct drm_i915_private *dev_priv = dev->dev_private;
889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
894 WARN(1, "vblank wait timed out\n");
895 }
896
897 /**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
906 {
907 struct drm_i915_private *dev_priv = dev->dev_private;
908 int pipestat_reg = PIPESTAT(pipe);
909
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
912 return;
913 }
914
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
931 /* Wait for vblank interrupt bit to set */
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936 }
937
938 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939 {
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955 }
956
957 /*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
972 *
973 */
974 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
975 {
976 struct drm_i915_private *dev_priv = dev->dev_private;
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
979
980 if (INTEL_INFO(dev)->gen >= 4) {
981 int reg = PIPECONF(cpu_transcoder);
982
983 /* Wait for the Pipe State to go off */
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
986 WARN(1, "pipe_off wait timed out\n");
987 } else {
988 /* Wait for the display line to settle */
989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
990 WARN(1, "pipe_off wait timed out\n");
991 }
992 }
993
994 /*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003 {
1004 u32 bit;
1005
1006 if (HAS_PCH_IBX(dev_priv->dev)) {
1007 switch (port->port) {
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
1021 switch (port->port) {
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037 }
1038
1039 static const char *state_string(bool enabled)
1040 {
1041 return enabled ? "on" : "off";
1042 }
1043
1044 /* Only for pre-ILK configs */
1045 void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
1047 {
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058 }
1059
1060 /* XXX: the dsi pll is shared between MIPI DSI ports */
1061 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062 {
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074 }
1075 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
1078 struct intel_shared_dpll *
1079 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080 {
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
1083 if (crtc->config.shared_dpll < 0)
1084 return NULL;
1085
1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
1087 }
1088
1089 /* For ILK+ */
1090 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
1093 {
1094 bool cur_state;
1095 struct intel_dpll_hw_state hw_state;
1096
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
1102 if (WARN (!pll,
1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
1104 return;
1105
1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1107 WARN(cur_state != state,
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
1110 }
1111
1112 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114 {
1115 int reg;
1116 u32 val;
1117 bool cur_state;
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
1120
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1124 val = I915_READ(reg);
1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134 }
1135 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140 {
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151 }
1152 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157 {
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1163 return;
1164
1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1166 if (HAS_DDI(dev_priv->dev))
1167 return;
1168
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172 }
1173
1174 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
1176 {
1177 int reg;
1178 u32 val;
1179 bool cur_state;
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
1187 }
1188
1189 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191 {
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
1195 bool locked = true;
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
1215 pipe_name(pipe));
1216 }
1217
1218 static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220 {
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
1224 if (IS_845G(dev) || IS_I865G(dev))
1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1226 else
1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232 }
1233 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
1236 void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
1238 {
1239 int reg;
1240 u32 val;
1241 bool cur_state;
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
1244
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
1249 if (!intel_display_power_enabled(dev_priv,
1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
1260 pipe_name(pipe), state_string(state), state_string(cur_state));
1261 }
1262
1263 static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
1265 {
1266 int reg;
1267 u32 val;
1268 bool cur_state;
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
1276 }
1277
1278 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
1281 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283 {
1284 struct drm_device *dev = dev_priv->dev;
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
1293 WARN(val & DISPLAY_PLANE_ENABLE,
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
1296 return;
1297 }
1298
1299 /* Need to check both planes against the pipe */
1300 for_each_pipe(i) {
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
1308 }
1309 }
1310
1311 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313 {
1314 struct drm_device *dev = dev_priv->dev;
1315 int reg, sprite;
1316 u32 val;
1317
1318 if (IS_VALLEYVIEW(dev)) {
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
1321 val = I915_READ(reg);
1322 WARN(val & SP_ENABLE,
1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1324 sprite_name(pipe, sprite), pipe_name(pipe));
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
1328 val = I915_READ(reg);
1329 WARN(val & SPRITE_ENABLE,
1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
1334 val = I915_READ(reg);
1335 WARN(val & DVS_ENABLE,
1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1337 plane_name(pipe), pipe_name(pipe));
1338 }
1339 }
1340
1341 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1342 {
1343 u32 val;
1344 bool enabled;
1345
1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1347
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352 }
1353
1354 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
1356 {
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
1361 reg = PCH_TRANSCONF(pipe);
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
1367 }
1368
1369 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
1371 {
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388 }
1389
1390 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392 {
1393 if ((val & SDVO_ENABLE) == 0)
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1398 return false;
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1402 } else {
1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1404 return false;
1405 }
1406 return true;
1407 }
1408
1409 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411 {
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423 }
1424
1425 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427 {
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438 }
1439
1440 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1441 enum pipe pipe, int reg, u32 port_sel)
1442 {
1443 u32 val = I915_READ(reg);
1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1446 reg, pipe_name(pipe));
1447
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
1450 "IBX PCH dp port still using transcoder B\n");
1451 }
1452
1453 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455 {
1456 u32 val = I915_READ(reg);
1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1459 reg, pipe_name(pipe));
1460
1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1462 && (val & SDVO_PIPE_B_SELECT),
1463 "IBX PCH hdmi port still using transcoder B\n");
1464 }
1465
1466 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468 {
1469 int reg;
1470 u32 val;
1471
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
1480 pipe_name(pipe));
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486 pipe_name(pipe));
1487
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492
1493 static void intel_init_dpio(struct drm_device *dev)
1494 {
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
1511 }
1512
1513 static void intel_reset_dpio(struct drm_device *dev)
1514 {
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
1517 if (IS_CHERRYVIEW(dev)) {
1518 enum dpio_phy phy;
1519 u32 val;
1520
1521 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1522 /* Poll for phypwrgood signal */
1523 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1524 PHY_POWERGOOD(phy), 1))
1525 DRM_ERROR("Display PHY %d is not power up\n", phy);
1526
1527 /*
1528 * Deassert common lane reset for PHY.
1529 *
1530 * This should only be done on init and resume from S3
1531 * with both PLLs disabled, or we risk losing DPIO and
1532 * PLL synchronization.
1533 */
1534 val = I915_READ(DISPLAY_PHY_CONTROL);
1535 I915_WRITE(DISPLAY_PHY_CONTROL,
1536 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1537 }
1538 }
1539 }
1540
1541 static void vlv_enable_pll(struct intel_crtc *crtc)
1542 {
1543 struct drm_device *dev = crtc->base.dev;
1544 struct drm_i915_private *dev_priv = dev->dev_private;
1545 int reg = DPLL(crtc->pipe);
1546 u32 dpll = crtc->config.dpll_hw_state.dpll;
1547
1548 assert_pipe_disabled(dev_priv, crtc->pipe);
1549
1550 /* No really, not for ILK+ */
1551 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1552
1553 /* PLL is protected by panel, make sure we can write it */
1554 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1555 assert_panel_unlocked(dev_priv, crtc->pipe);
1556
1557 I915_WRITE(reg, dpll);
1558 POSTING_READ(reg);
1559 udelay(150);
1560
1561 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1562 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1563
1564 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1565 POSTING_READ(DPLL_MD(crtc->pipe));
1566
1567 /* We do this three times for luck */
1568 I915_WRITE(reg, dpll);
1569 POSTING_READ(reg);
1570 udelay(150); /* wait for warmup */
1571 I915_WRITE(reg, dpll);
1572 POSTING_READ(reg);
1573 udelay(150); /* wait for warmup */
1574 I915_WRITE(reg, dpll);
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577 }
1578
1579 static void chv_enable_pll(struct intel_crtc *crtc)
1580 {
1581 struct drm_device *dev = crtc->base.dev;
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 int pipe = crtc->pipe;
1584 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1585 u32 tmp;
1586
1587 assert_pipe_disabled(dev_priv, crtc->pipe);
1588
1589 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1590
1591 mutex_lock(&dev_priv->dpio_lock);
1592
1593 /* Enable back the 10bit clock to display controller */
1594 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1595 tmp |= DPIO_DCLKP_EN;
1596 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1597
1598 /*
1599 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1600 */
1601 udelay(1);
1602
1603 /* Enable PLL */
1604 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
1605
1606 /* Check PLL is locked */
1607 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1608 DRM_ERROR("PLL %d failed to lock\n", pipe);
1609
1610 /* not sure when this should be written */
1611 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1612 POSTING_READ(DPLL_MD(pipe));
1613
1614 mutex_unlock(&dev_priv->dpio_lock);
1615 }
1616
1617 static void i9xx_enable_pll(struct intel_crtc *crtc)
1618 {
1619 struct drm_device *dev = crtc->base.dev;
1620 struct drm_i915_private *dev_priv = dev->dev_private;
1621 int reg = DPLL(crtc->pipe);
1622 u32 dpll = crtc->config.dpll_hw_state.dpll;
1623
1624 assert_pipe_disabled(dev_priv, crtc->pipe);
1625
1626 /* No really, not for ILK+ */
1627 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1628
1629 /* PLL is protected by panel, make sure we can write it */
1630 if (IS_MOBILE(dev) && !IS_I830(dev))
1631 assert_panel_unlocked(dev_priv, crtc->pipe);
1632
1633 I915_WRITE(reg, dpll);
1634
1635 /* Wait for the clocks to stabilize. */
1636 POSTING_READ(reg);
1637 udelay(150);
1638
1639 if (INTEL_INFO(dev)->gen >= 4) {
1640 I915_WRITE(DPLL_MD(crtc->pipe),
1641 crtc->config.dpll_hw_state.dpll_md);
1642 } else {
1643 /* The pixel multiplier can only be updated once the
1644 * DPLL is enabled and the clocks are stable.
1645 *
1646 * So write it again.
1647 */
1648 I915_WRITE(reg, dpll);
1649 }
1650
1651 /* We do this three times for luck */
1652 I915_WRITE(reg, dpll);
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655 I915_WRITE(reg, dpll);
1656 POSTING_READ(reg);
1657 udelay(150); /* wait for warmup */
1658 I915_WRITE(reg, dpll);
1659 POSTING_READ(reg);
1660 udelay(150); /* wait for warmup */
1661 }
1662
1663 /**
1664 * i9xx_disable_pll - disable a PLL
1665 * @dev_priv: i915 private structure
1666 * @pipe: pipe PLL to disable
1667 *
1668 * Disable the PLL for @pipe, making sure the pipe is off first.
1669 *
1670 * Note! This is for pre-ILK only.
1671 */
1672 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1673 {
1674 /* Don't disable pipe A or pipe A PLLs if needed */
1675 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1676 return;
1677
1678 /* Make sure the pipe isn't still relying on us */
1679 assert_pipe_disabled(dev_priv, pipe);
1680
1681 I915_WRITE(DPLL(pipe), 0);
1682 POSTING_READ(DPLL(pipe));
1683 }
1684
1685 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1686 {
1687 u32 val = 0;
1688
1689 /* Make sure the pipe isn't still relying on us */
1690 assert_pipe_disabled(dev_priv, pipe);
1691
1692 /*
1693 * Leave integrated clock source and reference clock enabled for pipe B.
1694 * The latter is needed for VGA hotplug / manual detection.
1695 */
1696 if (pipe == PIPE_B)
1697 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1698 I915_WRITE(DPLL(pipe), val);
1699 POSTING_READ(DPLL(pipe));
1700
1701 }
1702
1703 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1704 {
1705 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1706 u32 val;
1707
1708 /* Make sure the pipe isn't still relying on us */
1709 assert_pipe_disabled(dev_priv, pipe);
1710
1711 /* Set PLL en = 0 */
1712 val = DPLL_SSC_REF_CLOCK_CHV;
1713 if (pipe != PIPE_A)
1714 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1715 I915_WRITE(DPLL(pipe), val);
1716 POSTING_READ(DPLL(pipe));
1717
1718 mutex_lock(&dev_priv->dpio_lock);
1719
1720 /* Disable 10bit clock to display controller */
1721 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1722 val &= ~DPIO_DCLKP_EN;
1723 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1724
1725 /* disable left/right clock distribution */
1726 if (pipe != PIPE_B) {
1727 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1728 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1729 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1730 } else {
1731 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1732 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1733 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1734 }
1735
1736 mutex_unlock(&dev_priv->dpio_lock);
1737 }
1738
1739 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1740 struct intel_digital_port *dport)
1741 {
1742 u32 port_mask;
1743 int dpll_reg;
1744
1745 switch (dport->port) {
1746 case PORT_B:
1747 port_mask = DPLL_PORTB_READY_MASK;
1748 dpll_reg = DPLL(0);
1749 break;
1750 case PORT_C:
1751 port_mask = DPLL_PORTC_READY_MASK;
1752 dpll_reg = DPLL(0);
1753 break;
1754 case PORT_D:
1755 port_mask = DPLL_PORTD_READY_MASK;
1756 dpll_reg = DPIO_PHY_STATUS;
1757 break;
1758 default:
1759 BUG();
1760 }
1761
1762 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1763 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1764 port_name(dport->port), I915_READ(dpll_reg));
1765 }
1766
1767 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1768 {
1769 struct drm_device *dev = crtc->base.dev;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1772
1773 if (WARN_ON(pll == NULL))
1774 return;
1775
1776 WARN_ON(!pll->refcount);
1777 if (pll->active == 0) {
1778 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1779 WARN_ON(pll->on);
1780 assert_shared_dpll_disabled(dev_priv, pll);
1781
1782 pll->mode_set(dev_priv, pll);
1783 }
1784 }
1785
1786 /**
1787 * intel_enable_shared_dpll - enable PCH PLL
1788 * @dev_priv: i915 private structure
1789 * @pipe: pipe PLL to enable
1790 *
1791 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1792 * drives the transcoder clock.
1793 */
1794 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1795 {
1796 struct drm_device *dev = crtc->base.dev;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
1798 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1799
1800 if (WARN_ON(pll == NULL))
1801 return;
1802
1803 if (WARN_ON(pll->refcount == 0))
1804 return;
1805
1806 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1807 pll->name, pll->active, pll->on,
1808 crtc->base.base.id);
1809
1810 if (pll->active++) {
1811 WARN_ON(!pll->on);
1812 assert_shared_dpll_enabled(dev_priv, pll);
1813 return;
1814 }
1815 WARN_ON(pll->on);
1816
1817 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1818 pll->enable(dev_priv, pll);
1819 pll->on = true;
1820 }
1821
1822 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1823 {
1824 struct drm_device *dev = crtc->base.dev;
1825 struct drm_i915_private *dev_priv = dev->dev_private;
1826 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1827
1828 /* PCH only available on ILK+ */
1829 BUG_ON(INTEL_INFO(dev)->gen < 5);
1830 if (WARN_ON(pll == NULL))
1831 return;
1832
1833 if (WARN_ON(pll->refcount == 0))
1834 return;
1835
1836 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1837 pll->name, pll->active, pll->on,
1838 crtc->base.base.id);
1839
1840 if (WARN_ON(pll->active == 0)) {
1841 assert_shared_dpll_disabled(dev_priv, pll);
1842 return;
1843 }
1844
1845 assert_shared_dpll_enabled(dev_priv, pll);
1846 WARN_ON(!pll->on);
1847 if (--pll->active)
1848 return;
1849
1850 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1851 pll->disable(dev_priv, pll);
1852 pll->on = false;
1853 }
1854
1855 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1856 enum pipe pipe)
1857 {
1858 struct drm_device *dev = dev_priv->dev;
1859 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1861 uint32_t reg, val, pipeconf_val;
1862
1863 /* PCH only available on ILK+ */
1864 BUG_ON(INTEL_INFO(dev)->gen < 5);
1865
1866 /* Make sure PCH DPLL is enabled */
1867 assert_shared_dpll_enabled(dev_priv,
1868 intel_crtc_to_shared_dpll(intel_crtc));
1869
1870 /* FDI must be feeding us bits for PCH ports */
1871 assert_fdi_tx_enabled(dev_priv, pipe);
1872 assert_fdi_rx_enabled(dev_priv, pipe);
1873
1874 if (HAS_PCH_CPT(dev)) {
1875 /* Workaround: Set the timing override bit before enabling the
1876 * pch transcoder. */
1877 reg = TRANS_CHICKEN2(pipe);
1878 val = I915_READ(reg);
1879 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1880 I915_WRITE(reg, val);
1881 }
1882
1883 reg = PCH_TRANSCONF(pipe);
1884 val = I915_READ(reg);
1885 pipeconf_val = I915_READ(PIPECONF(pipe));
1886
1887 if (HAS_PCH_IBX(dev_priv->dev)) {
1888 /*
1889 * make the BPC in transcoder be consistent with
1890 * that in pipeconf reg.
1891 */
1892 val &= ~PIPECONF_BPC_MASK;
1893 val |= pipeconf_val & PIPECONF_BPC_MASK;
1894 }
1895
1896 val &= ~TRANS_INTERLACE_MASK;
1897 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1898 if (HAS_PCH_IBX(dev_priv->dev) &&
1899 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1900 val |= TRANS_LEGACY_INTERLACED_ILK;
1901 else
1902 val |= TRANS_INTERLACED;
1903 else
1904 val |= TRANS_PROGRESSIVE;
1905
1906 I915_WRITE(reg, val | TRANS_ENABLE);
1907 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1908 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1909 }
1910
1911 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1912 enum transcoder cpu_transcoder)
1913 {
1914 u32 val, pipeconf_val;
1915
1916 /* PCH only available on ILK+ */
1917 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
1918
1919 /* FDI must be feeding us bits for PCH ports */
1920 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1921 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1922
1923 /* Workaround: set timing override bit. */
1924 val = I915_READ(_TRANSA_CHICKEN2);
1925 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 I915_WRITE(_TRANSA_CHICKEN2, val);
1927
1928 val = TRANS_ENABLE;
1929 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1930
1931 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1932 PIPECONF_INTERLACED_ILK)
1933 val |= TRANS_INTERLACED;
1934 else
1935 val |= TRANS_PROGRESSIVE;
1936
1937 I915_WRITE(LPT_TRANSCONF, val);
1938 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1939 DRM_ERROR("Failed to enable PCH transcoder\n");
1940 }
1941
1942 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1943 enum pipe pipe)
1944 {
1945 struct drm_device *dev = dev_priv->dev;
1946 uint32_t reg, val;
1947
1948 /* FDI relies on the transcoder */
1949 assert_fdi_tx_disabled(dev_priv, pipe);
1950 assert_fdi_rx_disabled(dev_priv, pipe);
1951
1952 /* Ports must be off as well */
1953 assert_pch_ports_disabled(dev_priv, pipe);
1954
1955 reg = PCH_TRANSCONF(pipe);
1956 val = I915_READ(reg);
1957 val &= ~TRANS_ENABLE;
1958 I915_WRITE(reg, val);
1959 /* wait for PCH transcoder off, transcoder state */
1960 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1961 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1962
1963 if (!HAS_PCH_IBX(dev)) {
1964 /* Workaround: Clear the timing override chicken bit again. */
1965 reg = TRANS_CHICKEN2(pipe);
1966 val = I915_READ(reg);
1967 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1968 I915_WRITE(reg, val);
1969 }
1970 }
1971
1972 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1973 {
1974 u32 val;
1975
1976 val = I915_READ(LPT_TRANSCONF);
1977 val &= ~TRANS_ENABLE;
1978 I915_WRITE(LPT_TRANSCONF, val);
1979 /* wait for PCH transcoder off, transcoder state */
1980 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1981 DRM_ERROR("Failed to disable PCH transcoder\n");
1982
1983 /* Workaround: clear timing override bit. */
1984 val = I915_READ(_TRANSA_CHICKEN2);
1985 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1986 I915_WRITE(_TRANSA_CHICKEN2, val);
1987 }
1988
1989 /**
1990 * intel_enable_pipe - enable a pipe, asserting requirements
1991 * @crtc: crtc responsible for the pipe
1992 *
1993 * Enable @crtc's pipe, making sure that various hardware specific requirements
1994 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1995 */
1996 static void intel_enable_pipe(struct intel_crtc *crtc)
1997 {
1998 struct drm_device *dev = crtc->base.dev;
1999 struct drm_i915_private *dev_priv = dev->dev_private;
2000 enum pipe pipe = crtc->pipe;
2001 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2002 pipe);
2003 enum pipe pch_transcoder;
2004 int reg;
2005 u32 val;
2006
2007 assert_planes_disabled(dev_priv, pipe);
2008 assert_cursor_disabled(dev_priv, pipe);
2009 assert_sprites_disabled(dev_priv, pipe);
2010
2011 if (HAS_PCH_LPT(dev_priv->dev))
2012 pch_transcoder = TRANSCODER_A;
2013 else
2014 pch_transcoder = pipe;
2015
2016 /*
2017 * A pipe without a PLL won't actually be able to drive bits from
2018 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2019 * need the check.
2020 */
2021 if (!HAS_PCH_SPLIT(dev_priv->dev))
2022 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
2023 assert_dsi_pll_enabled(dev_priv);
2024 else
2025 assert_pll_enabled(dev_priv, pipe);
2026 else {
2027 if (crtc->config.has_pch_encoder) {
2028 /* if driving the PCH, we need FDI enabled */
2029 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2030 assert_fdi_tx_pll_enabled(dev_priv,
2031 (enum pipe) cpu_transcoder);
2032 }
2033 /* FIXME: assert CPU port conditions for SNB+ */
2034 }
2035
2036 reg = PIPECONF(cpu_transcoder);
2037 val = I915_READ(reg);
2038 if (val & PIPECONF_ENABLE) {
2039 WARN_ON(!(pipe == PIPE_A &&
2040 dev_priv->quirks & QUIRK_PIPEA_FORCE));
2041 return;
2042 }
2043
2044 I915_WRITE(reg, val | PIPECONF_ENABLE);
2045 POSTING_READ(reg);
2046 }
2047
2048 /**
2049 * intel_disable_pipe - disable a pipe, asserting requirements
2050 * @dev_priv: i915 private structure
2051 * @pipe: pipe to disable
2052 *
2053 * Disable @pipe, making sure that various hardware specific requirements
2054 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2055 *
2056 * @pipe should be %PIPE_A or %PIPE_B.
2057 *
2058 * Will wait until the pipe has shut down before returning.
2059 */
2060 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
2062 {
2063 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2064 pipe);
2065 int reg;
2066 u32 val;
2067
2068 /*
2069 * Make sure planes won't keep trying to pump pixels to us,
2070 * or we might hang the display.
2071 */
2072 assert_planes_disabled(dev_priv, pipe);
2073 assert_cursor_disabled(dev_priv, pipe);
2074 assert_sprites_disabled(dev_priv, pipe);
2075
2076 /* Don't disable pipe A or pipe A PLLs if needed */
2077 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2078 return;
2079
2080 reg = PIPECONF(cpu_transcoder);
2081 val = I915_READ(reg);
2082 if ((val & PIPECONF_ENABLE) == 0)
2083 return;
2084
2085 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
2086 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2087 }
2088
2089 /*
2090 * Plane regs are double buffered, going from enabled->disabled needs a
2091 * trigger in order to latch. The display address reg provides this.
2092 */
2093 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2094 enum plane plane)
2095 {
2096 struct drm_device *dev = dev_priv->dev;
2097 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2098
2099 I915_WRITE(reg, I915_READ(reg));
2100 POSTING_READ(reg);
2101 }
2102
2103 /**
2104 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2105 * @dev_priv: i915 private structure
2106 * @plane: plane to enable
2107 * @pipe: pipe being fed
2108 *
2109 * Enable @plane on @pipe, making sure that @pipe is running first.
2110 */
2111 static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2112 enum plane plane, enum pipe pipe)
2113 {
2114 struct drm_device *dev = dev_priv->dev;
2115 struct intel_crtc *intel_crtc =
2116 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2117 int reg;
2118 u32 val;
2119
2120 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2121 assert_pipe_enabled(dev_priv, pipe);
2122
2123 if (intel_crtc->primary_enabled)
2124 return;
2125
2126 intel_crtc->primary_enabled = true;
2127
2128 reg = DSPCNTR(plane);
2129 val = I915_READ(reg);
2130 WARN_ON(val & DISPLAY_PLANE_ENABLE);
2131
2132 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
2133 intel_flush_primary_plane(dev_priv, plane);
2134
2135 /*
2136 * BDW signals flip done immediately if the plane
2137 * is disabled, even if the plane enable is already
2138 * armed to occur at the next vblank :(
2139 */
2140 if (IS_BROADWELL(dev))
2141 intel_wait_for_vblank(dev, intel_crtc->pipe);
2142 }
2143
2144 /**
2145 * intel_disable_primary_hw_plane - disable the primary hardware plane
2146 * @dev_priv: i915 private structure
2147 * @plane: plane to disable
2148 * @pipe: pipe consuming the data
2149 *
2150 * Disable @plane; should be an independent operation.
2151 */
2152 static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2153 enum plane plane, enum pipe pipe)
2154 {
2155 struct intel_crtc *intel_crtc =
2156 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
2157 int reg;
2158 u32 val;
2159
2160 if (!intel_crtc->primary_enabled)
2161 return;
2162
2163 intel_crtc->primary_enabled = false;
2164
2165 reg = DSPCNTR(plane);
2166 val = I915_READ(reg);
2167 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
2168
2169 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
2170 intel_flush_primary_plane(dev_priv, plane);
2171 }
2172
2173 static bool need_vtd_wa(struct drm_device *dev)
2174 {
2175 #ifdef CONFIG_INTEL_IOMMU
2176 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2177 return true;
2178 #endif
2179 return false;
2180 }
2181
2182 static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2183 {
2184 int tile_height;
2185
2186 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2187 return ALIGN(height, tile_height);
2188 }
2189
2190 int
2191 intel_pin_and_fence_fb_obj(struct drm_device *dev,
2192 struct drm_i915_gem_object *obj,
2193 struct intel_engine_cs *pipelined)
2194 {
2195 struct drm_i915_private *dev_priv = dev->dev_private;
2196 u32 alignment;
2197 int ret;
2198
2199 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2200
2201 switch (obj->tiling_mode) {
2202 case I915_TILING_NONE:
2203 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2204 alignment = 128 * 1024;
2205 else if (INTEL_INFO(dev)->gen >= 4)
2206 alignment = 4 * 1024;
2207 else
2208 alignment = 64 * 1024;
2209 break;
2210 case I915_TILING_X:
2211 /* pin() will align the object as required by fence */
2212 alignment = 0;
2213 break;
2214 case I915_TILING_Y:
2215 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2216 return -EINVAL;
2217 default:
2218 BUG();
2219 }
2220
2221 /* Note that the w/a also requires 64 PTE of padding following the
2222 * bo. We currently fill all unused PTE with the shadow page and so
2223 * we should always have valid PTE following the scanout preventing
2224 * the VT-d warning.
2225 */
2226 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2227 alignment = 256 * 1024;
2228
2229 dev_priv->mm.interruptible = false;
2230 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2231 if (ret)
2232 goto err_interruptible;
2233
2234 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2235 * fence, whereas 965+ only requires a fence if using
2236 * framebuffer compression. For simplicity, we always install
2237 * a fence as the cost is not that onerous.
2238 */
2239 ret = i915_gem_object_get_fence(obj);
2240 if (ret)
2241 goto err_unpin;
2242
2243 i915_gem_object_pin_fence(obj);
2244
2245 dev_priv->mm.interruptible = true;
2246 return 0;
2247
2248 err_unpin:
2249 i915_gem_object_unpin_from_display_plane(obj);
2250 err_interruptible:
2251 dev_priv->mm.interruptible = true;
2252 return ret;
2253 }
2254
2255 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2256 {
2257 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2258
2259 i915_gem_object_unpin_fence(obj);
2260 i915_gem_object_unpin_from_display_plane(obj);
2261 }
2262
2263 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2264 * is assumed to be a power-of-two. */
2265 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2266 unsigned int tiling_mode,
2267 unsigned int cpp,
2268 unsigned int pitch)
2269 {
2270 if (tiling_mode != I915_TILING_NONE) {
2271 unsigned int tile_rows, tiles;
2272
2273 tile_rows = *y / 8;
2274 *y %= 8;
2275
2276 tiles = *x / (512/cpp);
2277 *x %= 512/cpp;
2278
2279 return tile_rows * pitch * 8 + tiles * 4096;
2280 } else {
2281 unsigned int offset;
2282
2283 offset = *y * pitch + *x * cpp;
2284 *y = 0;
2285 *x = (offset & 4095) / cpp;
2286 return offset & -4096;
2287 }
2288 }
2289
2290 int intel_format_to_fourcc(int format)
2291 {
2292 switch (format) {
2293 case DISPPLANE_8BPP:
2294 return DRM_FORMAT_C8;
2295 case DISPPLANE_BGRX555:
2296 return DRM_FORMAT_XRGB1555;
2297 case DISPPLANE_BGRX565:
2298 return DRM_FORMAT_RGB565;
2299 default:
2300 case DISPPLANE_BGRX888:
2301 return DRM_FORMAT_XRGB8888;
2302 case DISPPLANE_RGBX888:
2303 return DRM_FORMAT_XBGR8888;
2304 case DISPPLANE_BGRX101010:
2305 return DRM_FORMAT_XRGB2101010;
2306 case DISPPLANE_RGBX101010:
2307 return DRM_FORMAT_XBGR2101010;
2308 }
2309 }
2310
2311 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2312 struct intel_plane_config *plane_config)
2313 {
2314 struct drm_device *dev = crtc->base.dev;
2315 struct drm_i915_gem_object *obj = NULL;
2316 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2317 u32 base = plane_config->base;
2318
2319 if (plane_config->size == 0)
2320 return false;
2321
2322 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2323 plane_config->size);
2324 if (!obj)
2325 return false;
2326
2327 if (plane_config->tiled) {
2328 obj->tiling_mode = I915_TILING_X;
2329 obj->stride = crtc->base.primary->fb->pitches[0];
2330 }
2331
2332 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2333 mode_cmd.width = crtc->base.primary->fb->width;
2334 mode_cmd.height = crtc->base.primary->fb->height;
2335 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2336
2337 mutex_lock(&dev->struct_mutex);
2338
2339 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2340 &mode_cmd, obj)) {
2341 DRM_DEBUG_KMS("intel fb init failed\n");
2342 goto out_unref_obj;
2343 }
2344
2345 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2346 mutex_unlock(&dev->struct_mutex);
2347
2348 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2349 return true;
2350
2351 out_unref_obj:
2352 drm_gem_object_unreference(&obj->base);
2353 mutex_unlock(&dev->struct_mutex);
2354 return false;
2355 }
2356
2357 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2358 struct intel_plane_config *plane_config)
2359 {
2360 struct drm_device *dev = intel_crtc->base.dev;
2361 struct drm_crtc *c;
2362 struct intel_crtc *i;
2363 struct drm_i915_gem_object *obj;
2364
2365 if (!intel_crtc->base.primary->fb)
2366 return;
2367
2368 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2369 return;
2370
2371 kfree(intel_crtc->base.primary->fb);
2372 intel_crtc->base.primary->fb = NULL;
2373
2374 /*
2375 * Failed to alloc the obj, check to see if we should share
2376 * an fb with another CRTC instead
2377 */
2378 for_each_crtc(dev, c) {
2379 i = to_intel_crtc(c);
2380
2381 if (c == &intel_crtc->base)
2382 continue;
2383
2384 if (!i->active)
2385 continue;
2386
2387 obj = intel_fb_obj(c->primary->fb);
2388 if (obj == NULL)
2389 continue;
2390
2391 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2392 drm_framebuffer_reference(c->primary->fb);
2393 intel_crtc->base.primary->fb = c->primary->fb;
2394 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2395 break;
2396 }
2397 }
2398 }
2399
2400 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2401 struct drm_framebuffer *fb,
2402 int x, int y)
2403 {
2404 struct drm_device *dev = crtc->dev;
2405 struct drm_i915_private *dev_priv = dev->dev_private;
2406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2407 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2408 int plane = intel_crtc->plane;
2409 unsigned long linear_offset;
2410 u32 dspcntr;
2411 u32 reg;
2412
2413 reg = DSPCNTR(plane);
2414 dspcntr = I915_READ(reg);
2415 /* Mask out pixel format bits in case we change it */
2416 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2417 switch (fb->pixel_format) {
2418 case DRM_FORMAT_C8:
2419 dspcntr |= DISPPLANE_8BPP;
2420 break;
2421 case DRM_FORMAT_XRGB1555:
2422 case DRM_FORMAT_ARGB1555:
2423 dspcntr |= DISPPLANE_BGRX555;
2424 break;
2425 case DRM_FORMAT_RGB565:
2426 dspcntr |= DISPPLANE_BGRX565;
2427 break;
2428 case DRM_FORMAT_XRGB8888:
2429 case DRM_FORMAT_ARGB8888:
2430 dspcntr |= DISPPLANE_BGRX888;
2431 break;
2432 case DRM_FORMAT_XBGR8888:
2433 case DRM_FORMAT_ABGR8888:
2434 dspcntr |= DISPPLANE_RGBX888;
2435 break;
2436 case DRM_FORMAT_XRGB2101010:
2437 case DRM_FORMAT_ARGB2101010:
2438 dspcntr |= DISPPLANE_BGRX101010;
2439 break;
2440 case DRM_FORMAT_XBGR2101010:
2441 case DRM_FORMAT_ABGR2101010:
2442 dspcntr |= DISPPLANE_RGBX101010;
2443 break;
2444 default:
2445 BUG();
2446 }
2447
2448 if (INTEL_INFO(dev)->gen >= 4) {
2449 if (obj->tiling_mode != I915_TILING_NONE)
2450 dspcntr |= DISPPLANE_TILED;
2451 else
2452 dspcntr &= ~DISPPLANE_TILED;
2453 }
2454
2455 if (IS_G4X(dev))
2456 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2457
2458 I915_WRITE(reg, dspcntr);
2459
2460 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2461
2462 if (INTEL_INFO(dev)->gen >= 4) {
2463 intel_crtc->dspaddr_offset =
2464 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2465 fb->bits_per_pixel / 8,
2466 fb->pitches[0]);
2467 linear_offset -= intel_crtc->dspaddr_offset;
2468 } else {
2469 intel_crtc->dspaddr_offset = linear_offset;
2470 }
2471
2472 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2473 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2474 fb->pitches[0]);
2475 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2476 if (INTEL_INFO(dev)->gen >= 4) {
2477 I915_WRITE(DSPSURF(plane),
2478 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2479 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2480 I915_WRITE(DSPLINOFF(plane), linear_offset);
2481 } else
2482 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2483 POSTING_READ(reg);
2484 }
2485
2486 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2487 struct drm_framebuffer *fb,
2488 int x, int y)
2489 {
2490 struct drm_device *dev = crtc->dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2493 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2494 int plane = intel_crtc->plane;
2495 unsigned long linear_offset;
2496 u32 dspcntr;
2497 u32 reg;
2498
2499 reg = DSPCNTR(plane);
2500 dspcntr = I915_READ(reg);
2501 /* Mask out pixel format bits in case we change it */
2502 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2503 switch (fb->pixel_format) {
2504 case DRM_FORMAT_C8:
2505 dspcntr |= DISPPLANE_8BPP;
2506 break;
2507 case DRM_FORMAT_RGB565:
2508 dspcntr |= DISPPLANE_BGRX565;
2509 break;
2510 case DRM_FORMAT_XRGB8888:
2511 case DRM_FORMAT_ARGB8888:
2512 dspcntr |= DISPPLANE_BGRX888;
2513 break;
2514 case DRM_FORMAT_XBGR8888:
2515 case DRM_FORMAT_ABGR8888:
2516 dspcntr |= DISPPLANE_RGBX888;
2517 break;
2518 case DRM_FORMAT_XRGB2101010:
2519 case DRM_FORMAT_ARGB2101010:
2520 dspcntr |= DISPPLANE_BGRX101010;
2521 break;
2522 case DRM_FORMAT_XBGR2101010:
2523 case DRM_FORMAT_ABGR2101010:
2524 dspcntr |= DISPPLANE_RGBX101010;
2525 break;
2526 default:
2527 BUG();
2528 }
2529
2530 if (obj->tiling_mode != I915_TILING_NONE)
2531 dspcntr |= DISPPLANE_TILED;
2532 else
2533 dspcntr &= ~DISPPLANE_TILED;
2534
2535 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2536 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2537 else
2538 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2539
2540 I915_WRITE(reg, dspcntr);
2541
2542 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2543 intel_crtc->dspaddr_offset =
2544 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2545 fb->bits_per_pixel / 8,
2546 fb->pitches[0]);
2547 linear_offset -= intel_crtc->dspaddr_offset;
2548
2549 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2550 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2551 fb->pitches[0]);
2552 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2553 I915_WRITE(DSPSURF(plane),
2554 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2555 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2556 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2557 } else {
2558 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2559 I915_WRITE(DSPLINOFF(plane), linear_offset);
2560 }
2561 POSTING_READ(reg);
2562 }
2563
2564 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2565 static int
2566 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2567 int x, int y, enum mode_set_atomic state)
2568 {
2569 struct drm_device *dev = crtc->dev;
2570 struct drm_i915_private *dev_priv = dev->dev_private;
2571
2572 if (dev_priv->display.disable_fbc)
2573 dev_priv->display.disable_fbc(dev);
2574 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
2575
2576 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2577
2578 return 0;
2579 }
2580
2581 void intel_display_handle_reset(struct drm_device *dev)
2582 {
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 struct drm_crtc *crtc;
2585
2586 /*
2587 * Flips in the rings have been nuked by the reset,
2588 * so complete all pending flips so that user space
2589 * will get its events and not get stuck.
2590 *
2591 * Also update the base address of all primary
2592 * planes to the the last fb to make sure we're
2593 * showing the correct fb after a reset.
2594 *
2595 * Need to make two loops over the crtcs so that we
2596 * don't try to grab a crtc mutex before the
2597 * pending_flip_queue really got woken up.
2598 */
2599
2600 for_each_crtc(dev, crtc) {
2601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2602 enum plane plane = intel_crtc->plane;
2603
2604 intel_prepare_page_flip(dev, plane);
2605 intel_finish_page_flip_plane(dev, plane);
2606 }
2607
2608 for_each_crtc(dev, crtc) {
2609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2610
2611 drm_modeset_lock(&crtc->mutex, NULL);
2612 /*
2613 * FIXME: Once we have proper support for primary planes (and
2614 * disabling them without disabling the entire crtc) allow again
2615 * a NULL crtc->primary->fb.
2616 */
2617 if (intel_crtc->active && crtc->primary->fb)
2618 dev_priv->display.update_primary_plane(crtc,
2619 crtc->primary->fb,
2620 crtc->x,
2621 crtc->y);
2622 drm_modeset_unlock(&crtc->mutex);
2623 }
2624 }
2625
2626 static int
2627 intel_finish_fb(struct drm_framebuffer *old_fb)
2628 {
2629 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2630 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2631 bool was_interruptible = dev_priv->mm.interruptible;
2632 int ret;
2633
2634 /* Big Hammer, we also need to ensure that any pending
2635 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2636 * current scanout is retired before unpinning the old
2637 * framebuffer.
2638 *
2639 * This should only fail upon a hung GPU, in which case we
2640 * can safely continue.
2641 */
2642 dev_priv->mm.interruptible = false;
2643 ret = i915_gem_object_finish_gpu(obj);
2644 dev_priv->mm.interruptible = was_interruptible;
2645
2646 return ret;
2647 }
2648
2649 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2650 {
2651 struct drm_device *dev = crtc->dev;
2652 struct drm_i915_private *dev_priv = dev->dev_private;
2653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2654 unsigned long flags;
2655 bool pending;
2656
2657 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2658 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2659 return false;
2660
2661 spin_lock_irqsave(&dev->event_lock, flags);
2662 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2663 spin_unlock_irqrestore(&dev->event_lock, flags);
2664
2665 return pending;
2666 }
2667
2668 static int
2669 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2670 struct drm_framebuffer *fb)
2671 {
2672 struct drm_device *dev = crtc->dev;
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2675 enum pipe pipe = intel_crtc->pipe;
2676 struct drm_framebuffer *old_fb = crtc->primary->fb;
2677 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2678 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
2679 int ret;
2680
2681 if (intel_crtc_has_pending_flip(crtc)) {
2682 DRM_ERROR("pipe is still busy with an old pageflip\n");
2683 return -EBUSY;
2684 }
2685
2686 /* no fb bound */
2687 if (!fb) {
2688 DRM_ERROR("No FB bound\n");
2689 return 0;
2690 }
2691
2692 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2693 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2694 plane_name(intel_crtc->plane),
2695 INTEL_INFO(dev)->num_pipes);
2696 return -EINVAL;
2697 }
2698
2699 mutex_lock(&dev->struct_mutex);
2700 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2701 if (ret == 0)
2702 i915_gem_track_fb(old_obj, obj,
2703 INTEL_FRONTBUFFER_PRIMARY(pipe));
2704 mutex_unlock(&dev->struct_mutex);
2705 if (ret != 0) {
2706 DRM_ERROR("pin & fence failed\n");
2707 return ret;
2708 }
2709
2710 /*
2711 * Update pipe size and adjust fitter if needed: the reason for this is
2712 * that in compute_mode_changes we check the native mode (not the pfit
2713 * mode) to see if we can flip rather than do a full mode set. In the
2714 * fastboot case, we'll flip, but if we don't update the pipesrc and
2715 * pfit state, we'll end up with a big fb scanned out into the wrong
2716 * sized surface.
2717 *
2718 * To fix this properly, we need to hoist the checks up into
2719 * compute_mode_changes (or above), check the actual pfit state and
2720 * whether the platform allows pfit disable with pipe active, and only
2721 * then update the pipesrc and pfit state, even on the flip path.
2722 */
2723 if (i915.fastboot) {
2724 const struct drm_display_mode *adjusted_mode =
2725 &intel_crtc->config.adjusted_mode;
2726
2727 I915_WRITE(PIPESRC(intel_crtc->pipe),
2728 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2729 (adjusted_mode->crtc_vdisplay - 1));
2730 if (!intel_crtc->config.pch_pfit.enabled &&
2731 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2732 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2733 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2734 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2735 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2736 }
2737 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2738 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2739 }
2740
2741 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2742
2743 if (intel_crtc->active)
2744 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2745
2746 crtc->primary->fb = fb;
2747 crtc->x = x;
2748 crtc->y = y;
2749
2750 if (old_fb) {
2751 if (intel_crtc->active && old_fb != fb)
2752 intel_wait_for_vblank(dev, intel_crtc->pipe);
2753 mutex_lock(&dev->struct_mutex);
2754 intel_unpin_fb_obj(old_obj);
2755 mutex_unlock(&dev->struct_mutex);
2756 }
2757
2758 mutex_lock(&dev->struct_mutex);
2759 intel_update_fbc(dev);
2760 mutex_unlock(&dev->struct_mutex);
2761
2762 return 0;
2763 }
2764
2765 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2766 {
2767 struct drm_device *dev = crtc->dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770 int pipe = intel_crtc->pipe;
2771 u32 reg, temp;
2772
2773 /* enable normal train */
2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 if (IS_IVYBRIDGE(dev)) {
2777 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2778 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2779 } else {
2780 temp &= ~FDI_LINK_TRAIN_NONE;
2781 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2782 }
2783 I915_WRITE(reg, temp);
2784
2785 reg = FDI_RX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 if (HAS_PCH_CPT(dev)) {
2788 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2789 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2790 } else {
2791 temp &= ~FDI_LINK_TRAIN_NONE;
2792 temp |= FDI_LINK_TRAIN_NONE;
2793 }
2794 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2795
2796 /* wait one idle pattern time */
2797 POSTING_READ(reg);
2798 udelay(1000);
2799
2800 /* IVB wants error correction enabled */
2801 if (IS_IVYBRIDGE(dev))
2802 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2803 FDI_FE_ERRC_ENABLE);
2804 }
2805
2806 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2807 {
2808 return crtc->base.enabled && crtc->active &&
2809 crtc->config.has_pch_encoder;
2810 }
2811
2812 static void ivb_modeset_global_resources(struct drm_device *dev)
2813 {
2814 struct drm_i915_private *dev_priv = dev->dev_private;
2815 struct intel_crtc *pipe_B_crtc =
2816 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2817 struct intel_crtc *pipe_C_crtc =
2818 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2819 uint32_t temp;
2820
2821 /*
2822 * When everything is off disable fdi C so that we could enable fdi B
2823 * with all lanes. Note that we don't care about enabled pipes without
2824 * an enabled pch encoder.
2825 */
2826 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2827 !pipe_has_enabled_pch(pipe_C_crtc)) {
2828 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2829 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2830
2831 temp = I915_READ(SOUTH_CHICKEN1);
2832 temp &= ~FDI_BC_BIFURCATION_SELECT;
2833 DRM_DEBUG_KMS("disabling fdi C rx\n");
2834 I915_WRITE(SOUTH_CHICKEN1, temp);
2835 }
2836 }
2837
2838 /* The FDI link training functions for ILK/Ibexpeak. */
2839 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2840 {
2841 struct drm_device *dev = crtc->dev;
2842 struct drm_i915_private *dev_priv = dev->dev_private;
2843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2844 int pipe = intel_crtc->pipe;
2845 u32 reg, temp, tries;
2846
2847 /* FDI needs bits from pipe first */
2848 assert_pipe_enabled(dev_priv, pipe);
2849
2850 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2851 for train result */
2852 reg = FDI_RX_IMR(pipe);
2853 temp = I915_READ(reg);
2854 temp &= ~FDI_RX_SYMBOL_LOCK;
2855 temp &= ~FDI_RX_BIT_LOCK;
2856 I915_WRITE(reg, temp);
2857 I915_READ(reg);
2858 udelay(150);
2859
2860 /* enable CPU FDI TX and PCH FDI RX */
2861 reg = FDI_TX_CTL(pipe);
2862 temp = I915_READ(reg);
2863 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2864 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2865 temp &= ~FDI_LINK_TRAIN_NONE;
2866 temp |= FDI_LINK_TRAIN_PATTERN_1;
2867 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2868
2869 reg = FDI_RX_CTL(pipe);
2870 temp = I915_READ(reg);
2871 temp &= ~FDI_LINK_TRAIN_NONE;
2872 temp |= FDI_LINK_TRAIN_PATTERN_1;
2873 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2874
2875 POSTING_READ(reg);
2876 udelay(150);
2877
2878 /* Ironlake workaround, enable clock pointer after FDI enable*/
2879 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2880 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2881 FDI_RX_PHASE_SYNC_POINTER_EN);
2882
2883 reg = FDI_RX_IIR(pipe);
2884 for (tries = 0; tries < 5; tries++) {
2885 temp = I915_READ(reg);
2886 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2887
2888 if ((temp & FDI_RX_BIT_LOCK)) {
2889 DRM_DEBUG_KMS("FDI train 1 done.\n");
2890 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2891 break;
2892 }
2893 }
2894 if (tries == 5)
2895 DRM_ERROR("FDI train 1 fail!\n");
2896
2897 /* Train 2 */
2898 reg = FDI_TX_CTL(pipe);
2899 temp = I915_READ(reg);
2900 temp &= ~FDI_LINK_TRAIN_NONE;
2901 temp |= FDI_LINK_TRAIN_PATTERN_2;
2902 I915_WRITE(reg, temp);
2903
2904 reg = FDI_RX_CTL(pipe);
2905 temp = I915_READ(reg);
2906 temp &= ~FDI_LINK_TRAIN_NONE;
2907 temp |= FDI_LINK_TRAIN_PATTERN_2;
2908 I915_WRITE(reg, temp);
2909
2910 POSTING_READ(reg);
2911 udelay(150);
2912
2913 reg = FDI_RX_IIR(pipe);
2914 for (tries = 0; tries < 5; tries++) {
2915 temp = I915_READ(reg);
2916 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2917
2918 if (temp & FDI_RX_SYMBOL_LOCK) {
2919 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2920 DRM_DEBUG_KMS("FDI train 2 done.\n");
2921 break;
2922 }
2923 }
2924 if (tries == 5)
2925 DRM_ERROR("FDI train 2 fail!\n");
2926
2927 DRM_DEBUG_KMS("FDI train done\n");
2928
2929 }
2930
2931 static const int snb_b_fdi_train_param[] = {
2932 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2933 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2934 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2935 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2936 };
2937
2938 /* The FDI link training functions for SNB/Cougarpoint. */
2939 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2940 {
2941 struct drm_device *dev = crtc->dev;
2942 struct drm_i915_private *dev_priv = dev->dev_private;
2943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2944 int pipe = intel_crtc->pipe;
2945 u32 reg, temp, i, retry;
2946
2947 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2948 for train result */
2949 reg = FDI_RX_IMR(pipe);
2950 temp = I915_READ(reg);
2951 temp &= ~FDI_RX_SYMBOL_LOCK;
2952 temp &= ~FDI_RX_BIT_LOCK;
2953 I915_WRITE(reg, temp);
2954
2955 POSTING_READ(reg);
2956 udelay(150);
2957
2958 /* enable CPU FDI TX and PCH FDI RX */
2959 reg = FDI_TX_CTL(pipe);
2960 temp = I915_READ(reg);
2961 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2962 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2963 temp &= ~FDI_LINK_TRAIN_NONE;
2964 temp |= FDI_LINK_TRAIN_PATTERN_1;
2965 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2966 /* SNB-B */
2967 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2968 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2969
2970 I915_WRITE(FDI_RX_MISC(pipe),
2971 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2972
2973 reg = FDI_RX_CTL(pipe);
2974 temp = I915_READ(reg);
2975 if (HAS_PCH_CPT(dev)) {
2976 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2977 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2978 } else {
2979 temp &= ~FDI_LINK_TRAIN_NONE;
2980 temp |= FDI_LINK_TRAIN_PATTERN_1;
2981 }
2982 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2983
2984 POSTING_READ(reg);
2985 udelay(150);
2986
2987 for (i = 0; i < 4; i++) {
2988 reg = FDI_TX_CTL(pipe);
2989 temp = I915_READ(reg);
2990 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2991 temp |= snb_b_fdi_train_param[i];
2992 I915_WRITE(reg, temp);
2993
2994 POSTING_READ(reg);
2995 udelay(500);
2996
2997 for (retry = 0; retry < 5; retry++) {
2998 reg = FDI_RX_IIR(pipe);
2999 temp = I915_READ(reg);
3000 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3001 if (temp & FDI_RX_BIT_LOCK) {
3002 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3003 DRM_DEBUG_KMS("FDI train 1 done.\n");
3004 break;
3005 }
3006 udelay(50);
3007 }
3008 if (retry < 5)
3009 break;
3010 }
3011 if (i == 4)
3012 DRM_ERROR("FDI train 1 fail!\n");
3013
3014 /* Train 2 */
3015 reg = FDI_TX_CTL(pipe);
3016 temp = I915_READ(reg);
3017 temp &= ~FDI_LINK_TRAIN_NONE;
3018 temp |= FDI_LINK_TRAIN_PATTERN_2;
3019 if (IS_GEN6(dev)) {
3020 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3021 /* SNB-B */
3022 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3023 }
3024 I915_WRITE(reg, temp);
3025
3026 reg = FDI_RX_CTL(pipe);
3027 temp = I915_READ(reg);
3028 if (HAS_PCH_CPT(dev)) {
3029 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3030 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3031 } else {
3032 temp &= ~FDI_LINK_TRAIN_NONE;
3033 temp |= FDI_LINK_TRAIN_PATTERN_2;
3034 }
3035 I915_WRITE(reg, temp);
3036
3037 POSTING_READ(reg);
3038 udelay(150);
3039
3040 for (i = 0; i < 4; i++) {
3041 reg = FDI_TX_CTL(pipe);
3042 temp = I915_READ(reg);
3043 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3044 temp |= snb_b_fdi_train_param[i];
3045 I915_WRITE(reg, temp);
3046
3047 POSTING_READ(reg);
3048 udelay(500);
3049
3050 for (retry = 0; retry < 5; retry++) {
3051 reg = FDI_RX_IIR(pipe);
3052 temp = I915_READ(reg);
3053 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3054 if (temp & FDI_RX_SYMBOL_LOCK) {
3055 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3056 DRM_DEBUG_KMS("FDI train 2 done.\n");
3057 break;
3058 }
3059 udelay(50);
3060 }
3061 if (retry < 5)
3062 break;
3063 }
3064 if (i == 4)
3065 DRM_ERROR("FDI train 2 fail!\n");
3066
3067 DRM_DEBUG_KMS("FDI train done.\n");
3068 }
3069
3070 /* Manual link training for Ivy Bridge A0 parts */
3071 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3072 {
3073 struct drm_device *dev = crtc->dev;
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3076 int pipe = intel_crtc->pipe;
3077 u32 reg, temp, i, j;
3078
3079 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3080 for train result */
3081 reg = FDI_RX_IMR(pipe);
3082 temp = I915_READ(reg);
3083 temp &= ~FDI_RX_SYMBOL_LOCK;
3084 temp &= ~FDI_RX_BIT_LOCK;
3085 I915_WRITE(reg, temp);
3086
3087 POSTING_READ(reg);
3088 udelay(150);
3089
3090 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3091 I915_READ(FDI_RX_IIR(pipe)));
3092
3093 /* Try each vswing and preemphasis setting twice before moving on */
3094 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3095 /* disable first in case we need to retry */
3096 reg = FDI_TX_CTL(pipe);
3097 temp = I915_READ(reg);
3098 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3099 temp &= ~FDI_TX_ENABLE;
3100 I915_WRITE(reg, temp);
3101
3102 reg = FDI_RX_CTL(pipe);
3103 temp = I915_READ(reg);
3104 temp &= ~FDI_LINK_TRAIN_AUTO;
3105 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3106 temp &= ~FDI_RX_ENABLE;
3107 I915_WRITE(reg, temp);
3108
3109 /* enable CPU FDI TX and PCH FDI RX */
3110 reg = FDI_TX_CTL(pipe);
3111 temp = I915_READ(reg);
3112 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3113 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3114 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3115 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3116 temp |= snb_b_fdi_train_param[j/2];
3117 temp |= FDI_COMPOSITE_SYNC;
3118 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3119
3120 I915_WRITE(FDI_RX_MISC(pipe),
3121 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3122
3123 reg = FDI_RX_CTL(pipe);
3124 temp = I915_READ(reg);
3125 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3126 temp |= FDI_COMPOSITE_SYNC;
3127 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3128
3129 POSTING_READ(reg);
3130 udelay(1); /* should be 0.5us */
3131
3132 for (i = 0; i < 4; i++) {
3133 reg = FDI_RX_IIR(pipe);
3134 temp = I915_READ(reg);
3135 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3136
3137 if (temp & FDI_RX_BIT_LOCK ||
3138 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3139 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3140 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3141 i);
3142 break;
3143 }
3144 udelay(1); /* should be 0.5us */
3145 }
3146 if (i == 4) {
3147 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3148 continue;
3149 }
3150
3151 /* Train 2 */
3152 reg = FDI_TX_CTL(pipe);
3153 temp = I915_READ(reg);
3154 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3155 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3156 I915_WRITE(reg, temp);
3157
3158 reg = FDI_RX_CTL(pipe);
3159 temp = I915_READ(reg);
3160 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3161 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3162 I915_WRITE(reg, temp);
3163
3164 POSTING_READ(reg);
3165 udelay(2); /* should be 1.5us */
3166
3167 for (i = 0; i < 4; i++) {
3168 reg = FDI_RX_IIR(pipe);
3169 temp = I915_READ(reg);
3170 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3171
3172 if (temp & FDI_RX_SYMBOL_LOCK ||
3173 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3174 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3175 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3176 i);
3177 goto train_done;
3178 }
3179 udelay(2); /* should be 1.5us */
3180 }
3181 if (i == 4)
3182 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3183 }
3184
3185 train_done:
3186 DRM_DEBUG_KMS("FDI train done.\n");
3187 }
3188
3189 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3190 {
3191 struct drm_device *dev = intel_crtc->base.dev;
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 int pipe = intel_crtc->pipe;
3194 u32 reg, temp;
3195
3196
3197 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3198 reg = FDI_RX_CTL(pipe);
3199 temp = I915_READ(reg);
3200 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3201 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3202 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3203 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3204
3205 POSTING_READ(reg);
3206 udelay(200);
3207
3208 /* Switch from Rawclk to PCDclk */
3209 temp = I915_READ(reg);
3210 I915_WRITE(reg, temp | FDI_PCDCLK);
3211
3212 POSTING_READ(reg);
3213 udelay(200);
3214
3215 /* Enable CPU FDI TX PLL, always on for Ironlake */
3216 reg = FDI_TX_CTL(pipe);
3217 temp = I915_READ(reg);
3218 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3219 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3220
3221 POSTING_READ(reg);
3222 udelay(100);
3223 }
3224 }
3225
3226 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3227 {
3228 struct drm_device *dev = intel_crtc->base.dev;
3229 struct drm_i915_private *dev_priv = dev->dev_private;
3230 int pipe = intel_crtc->pipe;
3231 u32 reg, temp;
3232
3233 /* Switch from PCDclk to Rawclk */
3234 reg = FDI_RX_CTL(pipe);
3235 temp = I915_READ(reg);
3236 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3237
3238 /* Disable CPU FDI TX PLL */
3239 reg = FDI_TX_CTL(pipe);
3240 temp = I915_READ(reg);
3241 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3242
3243 POSTING_READ(reg);
3244 udelay(100);
3245
3246 reg = FDI_RX_CTL(pipe);
3247 temp = I915_READ(reg);
3248 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3249
3250 /* Wait for the clocks to turn off. */
3251 POSTING_READ(reg);
3252 udelay(100);
3253 }
3254
3255 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3256 {
3257 struct drm_device *dev = crtc->dev;
3258 struct drm_i915_private *dev_priv = dev->dev_private;
3259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3260 int pipe = intel_crtc->pipe;
3261 u32 reg, temp;
3262
3263 /* disable CPU FDI tx and PCH FDI rx */
3264 reg = FDI_TX_CTL(pipe);
3265 temp = I915_READ(reg);
3266 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3267 POSTING_READ(reg);
3268
3269 reg = FDI_RX_CTL(pipe);
3270 temp = I915_READ(reg);
3271 temp &= ~(0x7 << 16);
3272 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3273 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3274
3275 POSTING_READ(reg);
3276 udelay(100);
3277
3278 /* Ironlake workaround, disable clock pointer after downing FDI */
3279 if (HAS_PCH_IBX(dev))
3280 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3281
3282 /* still set train pattern 1 */
3283 reg = FDI_TX_CTL(pipe);
3284 temp = I915_READ(reg);
3285 temp &= ~FDI_LINK_TRAIN_NONE;
3286 temp |= FDI_LINK_TRAIN_PATTERN_1;
3287 I915_WRITE(reg, temp);
3288
3289 reg = FDI_RX_CTL(pipe);
3290 temp = I915_READ(reg);
3291 if (HAS_PCH_CPT(dev)) {
3292 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3293 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3294 } else {
3295 temp &= ~FDI_LINK_TRAIN_NONE;
3296 temp |= FDI_LINK_TRAIN_PATTERN_1;
3297 }
3298 /* BPC in FDI rx is consistent with that in PIPECONF */
3299 temp &= ~(0x07 << 16);
3300 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3301 I915_WRITE(reg, temp);
3302
3303 POSTING_READ(reg);
3304 udelay(100);
3305 }
3306
3307 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3308 {
3309 struct intel_crtc *crtc;
3310
3311 /* Note that we don't need to be called with mode_config.lock here
3312 * as our list of CRTC objects is static for the lifetime of the
3313 * device and so cannot disappear as we iterate. Similarly, we can
3314 * happily treat the predicates as racy, atomic checks as userspace
3315 * cannot claim and pin a new fb without at least acquring the
3316 * struct_mutex and so serialising with us.
3317 */
3318 for_each_intel_crtc(dev, crtc) {
3319 if (atomic_read(&crtc->unpin_work_count) == 0)
3320 continue;
3321
3322 if (crtc->unpin_work)
3323 intel_wait_for_vblank(dev, crtc->pipe);
3324
3325 return true;
3326 }
3327
3328 return false;
3329 }
3330
3331 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3332 {
3333 struct drm_device *dev = crtc->dev;
3334 struct drm_i915_private *dev_priv = dev->dev_private;
3335
3336 if (crtc->primary->fb == NULL)
3337 return;
3338
3339 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3340
3341 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3342 !intel_crtc_has_pending_flip(crtc),
3343 60*HZ) == 0);
3344
3345 mutex_lock(&dev->struct_mutex);
3346 intel_finish_fb(crtc->primary->fb);
3347 mutex_unlock(&dev->struct_mutex);
3348 }
3349
3350 /* Program iCLKIP clock to the desired frequency */
3351 static void lpt_program_iclkip(struct drm_crtc *crtc)
3352 {
3353 struct drm_device *dev = crtc->dev;
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3356 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3357 u32 temp;
3358
3359 mutex_lock(&dev_priv->dpio_lock);
3360
3361 /* It is necessary to ungate the pixclk gate prior to programming
3362 * the divisors, and gate it back when it is done.
3363 */
3364 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3365
3366 /* Disable SSCCTL */
3367 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3368 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3369 SBI_SSCCTL_DISABLE,
3370 SBI_ICLK);
3371
3372 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3373 if (clock == 20000) {
3374 auxdiv = 1;
3375 divsel = 0x41;
3376 phaseinc = 0x20;
3377 } else {
3378 /* The iCLK virtual clock root frequency is in MHz,
3379 * but the adjusted_mode->crtc_clock in in KHz. To get the
3380 * divisors, it is necessary to divide one by another, so we
3381 * convert the virtual clock precision to KHz here for higher
3382 * precision.
3383 */
3384 u32 iclk_virtual_root_freq = 172800 * 1000;
3385 u32 iclk_pi_range = 64;
3386 u32 desired_divisor, msb_divisor_value, pi_value;
3387
3388 desired_divisor = (iclk_virtual_root_freq / clock);
3389 msb_divisor_value = desired_divisor / iclk_pi_range;
3390 pi_value = desired_divisor % iclk_pi_range;
3391
3392 auxdiv = 0;
3393 divsel = msb_divisor_value - 2;
3394 phaseinc = pi_value;
3395 }
3396
3397 /* This should not happen with any sane values */
3398 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3399 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3400 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3401 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3402
3403 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3404 clock,
3405 auxdiv,
3406 divsel,
3407 phasedir,
3408 phaseinc);
3409
3410 /* Program SSCDIVINTPHASE6 */
3411 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3412 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3413 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3414 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3415 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3416 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3417 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3418 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3419
3420 /* Program SSCAUXDIV */
3421 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3422 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3423 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3424 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3425
3426 /* Enable modulator and associated divider */
3427 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3428 temp &= ~SBI_SSCCTL_DISABLE;
3429 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3430
3431 /* Wait for initialization time */
3432 udelay(24);
3433
3434 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3435
3436 mutex_unlock(&dev_priv->dpio_lock);
3437 }
3438
3439 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3440 enum pipe pch_transcoder)
3441 {
3442 struct drm_device *dev = crtc->base.dev;
3443 struct drm_i915_private *dev_priv = dev->dev_private;
3444 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3445
3446 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3447 I915_READ(HTOTAL(cpu_transcoder)));
3448 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3449 I915_READ(HBLANK(cpu_transcoder)));
3450 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3451 I915_READ(HSYNC(cpu_transcoder)));
3452
3453 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3454 I915_READ(VTOTAL(cpu_transcoder)));
3455 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3456 I915_READ(VBLANK(cpu_transcoder)));
3457 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3458 I915_READ(VSYNC(cpu_transcoder)));
3459 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3460 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3461 }
3462
3463 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3464 {
3465 struct drm_i915_private *dev_priv = dev->dev_private;
3466 uint32_t temp;
3467
3468 temp = I915_READ(SOUTH_CHICKEN1);
3469 if (temp & FDI_BC_BIFURCATION_SELECT)
3470 return;
3471
3472 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3473 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3474
3475 temp |= FDI_BC_BIFURCATION_SELECT;
3476 DRM_DEBUG_KMS("enabling fdi C rx\n");
3477 I915_WRITE(SOUTH_CHICKEN1, temp);
3478 POSTING_READ(SOUTH_CHICKEN1);
3479 }
3480
3481 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3482 {
3483 struct drm_device *dev = intel_crtc->base.dev;
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485
3486 switch (intel_crtc->pipe) {
3487 case PIPE_A:
3488 break;
3489 case PIPE_B:
3490 if (intel_crtc->config.fdi_lanes > 2)
3491 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3492 else
3493 cpt_enable_fdi_bc_bifurcation(dev);
3494
3495 break;
3496 case PIPE_C:
3497 cpt_enable_fdi_bc_bifurcation(dev);
3498
3499 break;
3500 default:
3501 BUG();
3502 }
3503 }
3504
3505 /*
3506 * Enable PCH resources required for PCH ports:
3507 * - PCH PLLs
3508 * - FDI training & RX/TX
3509 * - update transcoder timings
3510 * - DP transcoding bits
3511 * - transcoder
3512 */
3513 static void ironlake_pch_enable(struct drm_crtc *crtc)
3514 {
3515 struct drm_device *dev = crtc->dev;
3516 struct drm_i915_private *dev_priv = dev->dev_private;
3517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3518 int pipe = intel_crtc->pipe;
3519 u32 reg, temp;
3520
3521 assert_pch_transcoder_disabled(dev_priv, pipe);
3522
3523 if (IS_IVYBRIDGE(dev))
3524 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3525
3526 /* Write the TU size bits before fdi link training, so that error
3527 * detection works. */
3528 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3529 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3530
3531 /* For PCH output, training FDI link */
3532 dev_priv->display.fdi_link_train(crtc);
3533
3534 /* We need to program the right clock selection before writing the pixel
3535 * mutliplier into the DPLL. */
3536 if (HAS_PCH_CPT(dev)) {
3537 u32 sel;
3538
3539 temp = I915_READ(PCH_DPLL_SEL);
3540 temp |= TRANS_DPLL_ENABLE(pipe);
3541 sel = TRANS_DPLLB_SEL(pipe);
3542 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3543 temp |= sel;
3544 else
3545 temp &= ~sel;
3546 I915_WRITE(PCH_DPLL_SEL, temp);
3547 }
3548
3549 /* XXX: pch pll's can be enabled any time before we enable the PCH
3550 * transcoder, and we actually should do this to not upset any PCH
3551 * transcoder that already use the clock when we share it.
3552 *
3553 * Note that enable_shared_dpll tries to do the right thing, but
3554 * get_shared_dpll unconditionally resets the pll - we need that to have
3555 * the right LVDS enable sequence. */
3556 intel_enable_shared_dpll(intel_crtc);
3557
3558 /* set transcoder timing, panel must allow it */
3559 assert_panel_unlocked(dev_priv, pipe);
3560 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3561
3562 intel_fdi_normal_train(crtc);
3563
3564 /* For PCH DP, enable TRANS_DP_CTL */
3565 if (HAS_PCH_CPT(dev) &&
3566 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3567 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3568 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3569 reg = TRANS_DP_CTL(pipe);
3570 temp = I915_READ(reg);
3571 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3572 TRANS_DP_SYNC_MASK |
3573 TRANS_DP_BPC_MASK);
3574 temp |= (TRANS_DP_OUTPUT_ENABLE |
3575 TRANS_DP_ENH_FRAMING);
3576 temp |= bpc << 9; /* same format but at 11:9 */
3577
3578 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3579 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3580 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3581 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3582
3583 switch (intel_trans_dp_port_sel(crtc)) {
3584 case PCH_DP_B:
3585 temp |= TRANS_DP_PORT_SEL_B;
3586 break;
3587 case PCH_DP_C:
3588 temp |= TRANS_DP_PORT_SEL_C;
3589 break;
3590 case PCH_DP_D:
3591 temp |= TRANS_DP_PORT_SEL_D;
3592 break;
3593 default:
3594 BUG();
3595 }
3596
3597 I915_WRITE(reg, temp);
3598 }
3599
3600 ironlake_enable_pch_transcoder(dev_priv, pipe);
3601 }
3602
3603 static void lpt_pch_enable(struct drm_crtc *crtc)
3604 {
3605 struct drm_device *dev = crtc->dev;
3606 struct drm_i915_private *dev_priv = dev->dev_private;
3607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3608 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3609
3610 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3611
3612 lpt_program_iclkip(crtc);
3613
3614 /* Set transcoder timing. */
3615 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3616
3617 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3618 }
3619
3620 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3621 {
3622 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3623
3624 if (pll == NULL)
3625 return;
3626
3627 if (pll->refcount == 0) {
3628 WARN(1, "bad %s refcount\n", pll->name);
3629 return;
3630 }
3631
3632 if (--pll->refcount == 0) {
3633 WARN_ON(pll->on);
3634 WARN_ON(pll->active);
3635 }
3636
3637 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3638 }
3639
3640 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3641 {
3642 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3643 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3644 enum intel_dpll_id i;
3645
3646 if (pll) {
3647 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3648 crtc->base.base.id, pll->name);
3649 intel_put_shared_dpll(crtc);
3650 }
3651
3652 if (HAS_PCH_IBX(dev_priv->dev)) {
3653 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3654 i = (enum intel_dpll_id) crtc->pipe;
3655 pll = &dev_priv->shared_dplls[i];
3656
3657 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3658 crtc->base.base.id, pll->name);
3659
3660 WARN_ON(pll->refcount);
3661
3662 goto found;
3663 }
3664
3665 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3666 pll = &dev_priv->shared_dplls[i];
3667
3668 /* Only want to check enabled timings first */
3669 if (pll->refcount == 0)
3670 continue;
3671
3672 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3673 sizeof(pll->hw_state)) == 0) {
3674 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3675 crtc->base.base.id,
3676 pll->name, pll->refcount, pll->active);
3677
3678 goto found;
3679 }
3680 }
3681
3682 /* Ok no matching timings, maybe there's a free one? */
3683 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3684 pll = &dev_priv->shared_dplls[i];
3685 if (pll->refcount == 0) {
3686 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3687 crtc->base.base.id, pll->name);
3688 goto found;
3689 }
3690 }
3691
3692 return NULL;
3693
3694 found:
3695 if (pll->refcount == 0)
3696 pll->hw_state = crtc->config.dpll_hw_state;
3697
3698 crtc->config.shared_dpll = i;
3699 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3700 pipe_name(crtc->pipe));
3701
3702 pll->refcount++;
3703
3704 return pll;
3705 }
3706
3707 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3708 {
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710 int dslreg = PIPEDSL(pipe);
3711 u32 temp;
3712
3713 temp = I915_READ(dslreg);
3714 udelay(500);
3715 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3716 if (wait_for(I915_READ(dslreg) != temp, 5))
3717 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3718 }
3719 }
3720
3721 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3722 {
3723 struct drm_device *dev = crtc->base.dev;
3724 struct drm_i915_private *dev_priv = dev->dev_private;
3725 int pipe = crtc->pipe;
3726
3727 if (crtc->config.pch_pfit.enabled) {
3728 /* Force use of hard-coded filter coefficients
3729 * as some pre-programmed values are broken,
3730 * e.g. x201.
3731 */
3732 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3733 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3734 PF_PIPE_SEL_IVB(pipe));
3735 else
3736 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3737 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3738 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3739 }
3740 }
3741
3742 static void intel_enable_planes(struct drm_crtc *crtc)
3743 {
3744 struct drm_device *dev = crtc->dev;
3745 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3746 struct drm_plane *plane;
3747 struct intel_plane *intel_plane;
3748
3749 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3750 intel_plane = to_intel_plane(plane);
3751 if (intel_plane->pipe == pipe)
3752 intel_plane_restore(&intel_plane->base);
3753 }
3754 }
3755
3756 static void intel_disable_planes(struct drm_crtc *crtc)
3757 {
3758 struct drm_device *dev = crtc->dev;
3759 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3760 struct drm_plane *plane;
3761 struct intel_plane *intel_plane;
3762
3763 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3764 intel_plane = to_intel_plane(plane);
3765 if (intel_plane->pipe == pipe)
3766 intel_plane_disable(&intel_plane->base);
3767 }
3768 }
3769
3770 void hsw_enable_ips(struct intel_crtc *crtc)
3771 {
3772 struct drm_device *dev = crtc->base.dev;
3773 struct drm_i915_private *dev_priv = dev->dev_private;
3774
3775 if (!crtc->config.ips_enabled)
3776 return;
3777
3778 /* We can only enable IPS after we enable a plane and wait for a vblank */
3779 intel_wait_for_vblank(dev, crtc->pipe);
3780
3781 assert_plane_enabled(dev_priv, crtc->plane);
3782 if (IS_BROADWELL(dev)) {
3783 mutex_lock(&dev_priv->rps.hw_lock);
3784 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3785 mutex_unlock(&dev_priv->rps.hw_lock);
3786 /* Quoting Art Runyan: "its not safe to expect any particular
3787 * value in IPS_CTL bit 31 after enabling IPS through the
3788 * mailbox." Moreover, the mailbox may return a bogus state,
3789 * so we need to just enable it and continue on.
3790 */
3791 } else {
3792 I915_WRITE(IPS_CTL, IPS_ENABLE);
3793 /* The bit only becomes 1 in the next vblank, so this wait here
3794 * is essentially intel_wait_for_vblank. If we don't have this
3795 * and don't wait for vblanks until the end of crtc_enable, then
3796 * the HW state readout code will complain that the expected
3797 * IPS_CTL value is not the one we read. */
3798 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3799 DRM_ERROR("Timed out waiting for IPS enable\n");
3800 }
3801 }
3802
3803 void hsw_disable_ips(struct intel_crtc *crtc)
3804 {
3805 struct drm_device *dev = crtc->base.dev;
3806 struct drm_i915_private *dev_priv = dev->dev_private;
3807
3808 if (!crtc->config.ips_enabled)
3809 return;
3810
3811 assert_plane_enabled(dev_priv, crtc->plane);
3812 if (IS_BROADWELL(dev)) {
3813 mutex_lock(&dev_priv->rps.hw_lock);
3814 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3815 mutex_unlock(&dev_priv->rps.hw_lock);
3816 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3817 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3818 DRM_ERROR("Timed out waiting for IPS disable\n");
3819 } else {
3820 I915_WRITE(IPS_CTL, 0);
3821 POSTING_READ(IPS_CTL);
3822 }
3823
3824 /* We need to wait for a vblank before we can disable the plane. */
3825 intel_wait_for_vblank(dev, crtc->pipe);
3826 }
3827
3828 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3829 static void intel_crtc_load_lut(struct drm_crtc *crtc)
3830 {
3831 struct drm_device *dev = crtc->dev;
3832 struct drm_i915_private *dev_priv = dev->dev_private;
3833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3834 enum pipe pipe = intel_crtc->pipe;
3835 int palreg = PALETTE(pipe);
3836 int i;
3837 bool reenable_ips = false;
3838
3839 /* The clocks have to be on to load the palette. */
3840 if (!crtc->enabled || !intel_crtc->active)
3841 return;
3842
3843 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3844 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3845 assert_dsi_pll_enabled(dev_priv);
3846 else
3847 assert_pll_enabled(dev_priv, pipe);
3848 }
3849
3850 /* use legacy palette for Ironlake */
3851 if (HAS_PCH_SPLIT(dev))
3852 palreg = LGC_PALETTE(pipe);
3853
3854 /* Workaround : Do not read or write the pipe palette/gamma data while
3855 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3856 */
3857 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
3858 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3859 GAMMA_MODE_MODE_SPLIT)) {
3860 hsw_disable_ips(intel_crtc);
3861 reenable_ips = true;
3862 }
3863
3864 for (i = 0; i < 256; i++) {
3865 I915_WRITE(palreg + 4 * i,
3866 (intel_crtc->lut_r[i] << 16) |
3867 (intel_crtc->lut_g[i] << 8) |
3868 intel_crtc->lut_b[i]);
3869 }
3870
3871 if (reenable_ips)
3872 hsw_enable_ips(intel_crtc);
3873 }
3874
3875 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3876 {
3877 if (!enable && intel_crtc->overlay) {
3878 struct drm_device *dev = intel_crtc->base.dev;
3879 struct drm_i915_private *dev_priv = dev->dev_private;
3880
3881 mutex_lock(&dev->struct_mutex);
3882 dev_priv->mm.interruptible = false;
3883 (void) intel_overlay_switch_off(intel_crtc->overlay);
3884 dev_priv->mm.interruptible = true;
3885 mutex_unlock(&dev->struct_mutex);
3886 }
3887
3888 /* Let userspace switch the overlay on again. In most cases userspace
3889 * has to recompute where to put it anyway.
3890 */
3891 }
3892
3893 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
3894 {
3895 struct drm_device *dev = crtc->dev;
3896 struct drm_i915_private *dev_priv = dev->dev_private;
3897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3898 int pipe = intel_crtc->pipe;
3899 int plane = intel_crtc->plane;
3900
3901 drm_vblank_on(dev, pipe);
3902
3903 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3904 intel_enable_planes(crtc);
3905 intel_crtc_update_cursor(crtc, true);
3906 intel_crtc_dpms_overlay(intel_crtc, true);
3907
3908 hsw_enable_ips(intel_crtc);
3909
3910 mutex_lock(&dev->struct_mutex);
3911 intel_update_fbc(dev);
3912 mutex_unlock(&dev->struct_mutex);
3913
3914 /*
3915 * FIXME: Once we grow proper nuclear flip support out of this we need
3916 * to compute the mask of flip planes precisely. For the time being
3917 * consider this a flip from a NULL plane.
3918 */
3919 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3920 }
3921
3922 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
3923 {
3924 struct drm_device *dev = crtc->dev;
3925 struct drm_i915_private *dev_priv = dev->dev_private;
3926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3927 int pipe = intel_crtc->pipe;
3928 int plane = intel_crtc->plane;
3929
3930 intel_crtc_wait_for_pending_flips(crtc);
3931
3932 if (dev_priv->fbc.plane == plane)
3933 intel_disable_fbc(dev);
3934
3935 hsw_disable_ips(intel_crtc);
3936
3937 intel_crtc_dpms_overlay(intel_crtc, false);
3938 intel_crtc_update_cursor(crtc, false);
3939 intel_disable_planes(crtc);
3940 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
3941
3942 /*
3943 * FIXME: Once we grow proper nuclear flip support out of this we need
3944 * to compute the mask of flip planes precisely. For the time being
3945 * consider this a flip to a NULL plane.
3946 */
3947 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3948
3949 drm_vblank_off(dev, pipe);
3950 }
3951
3952 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3953 {
3954 struct drm_device *dev = crtc->dev;
3955 struct drm_i915_private *dev_priv = dev->dev_private;
3956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3957 struct intel_encoder *encoder;
3958 int pipe = intel_crtc->pipe;
3959 enum plane plane = intel_crtc->plane;
3960
3961 WARN_ON(!crtc->enabled);
3962
3963 if (intel_crtc->active)
3964 return;
3965
3966 if (intel_crtc->config.has_pch_encoder)
3967 intel_prepare_shared_dpll(intel_crtc);
3968
3969 if (intel_crtc->config.has_dp_encoder)
3970 intel_dp_set_m_n(intel_crtc);
3971
3972 intel_set_pipe_timings(intel_crtc);
3973
3974 if (intel_crtc->config.has_pch_encoder) {
3975 intel_cpu_transcoder_set_m_n(intel_crtc,
3976 &intel_crtc->config.fdi_m_n);
3977 }
3978
3979 ironlake_set_pipeconf(crtc);
3980
3981 /* Set up the display plane register */
3982 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3983 POSTING_READ(DSPCNTR(plane));
3984
3985 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3986 crtc->x, crtc->y);
3987
3988 intel_crtc->active = true;
3989
3990 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3991 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3992
3993 for_each_encoder_on_crtc(dev, crtc, encoder)
3994 if (encoder->pre_enable)
3995 encoder->pre_enable(encoder);
3996
3997 if (intel_crtc->config.has_pch_encoder) {
3998 /* Note: FDI PLL enabling _must_ be done before we enable the
3999 * cpu pipes, hence this is separate from all the other fdi/pch
4000 * enabling. */
4001 ironlake_fdi_pll_enable(intel_crtc);
4002 } else {
4003 assert_fdi_tx_disabled(dev_priv, pipe);
4004 assert_fdi_rx_disabled(dev_priv, pipe);
4005 }
4006
4007 ironlake_pfit_enable(intel_crtc);
4008
4009 /*
4010 * On ILK+ LUT must be loaded before the pipe is running but with
4011 * clocks enabled
4012 */
4013 intel_crtc_load_lut(crtc);
4014
4015 intel_update_watermarks(crtc);
4016 intel_enable_pipe(intel_crtc);
4017
4018 if (intel_crtc->config.has_pch_encoder)
4019 ironlake_pch_enable(crtc);
4020
4021 for_each_encoder_on_crtc(dev, crtc, encoder)
4022 encoder->enable(encoder);
4023
4024 if (HAS_PCH_CPT(dev))
4025 cpt_verify_modeset(dev, intel_crtc->pipe);
4026
4027 intel_crtc_enable_planes(crtc);
4028 }
4029
4030 /* IPS only exists on ULT machines and is tied to pipe A. */
4031 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4032 {
4033 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4034 }
4035
4036 /*
4037 * This implements the workaround described in the "notes" section of the mode
4038 * set sequence documentation. When going from no pipes or single pipe to
4039 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4040 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4041 */
4042 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4043 {
4044 struct drm_device *dev = crtc->base.dev;
4045 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4046
4047 /* We want to get the other_active_crtc only if there's only 1 other
4048 * active crtc. */
4049 for_each_intel_crtc(dev, crtc_it) {
4050 if (!crtc_it->active || crtc_it == crtc)
4051 continue;
4052
4053 if (other_active_crtc)
4054 return;
4055
4056 other_active_crtc = crtc_it;
4057 }
4058 if (!other_active_crtc)
4059 return;
4060
4061 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4062 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4063 }
4064
4065 static void haswell_crtc_enable(struct drm_crtc *crtc)
4066 {
4067 struct drm_device *dev = crtc->dev;
4068 struct drm_i915_private *dev_priv = dev->dev_private;
4069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4070 struct intel_encoder *encoder;
4071 int pipe = intel_crtc->pipe;
4072 enum plane plane = intel_crtc->plane;
4073
4074 WARN_ON(!crtc->enabled);
4075
4076 if (intel_crtc->active)
4077 return;
4078
4079 if (intel_crtc->config.has_dp_encoder)
4080 intel_dp_set_m_n(intel_crtc);
4081
4082 intel_set_pipe_timings(intel_crtc);
4083
4084 if (intel_crtc->config.has_pch_encoder) {
4085 intel_cpu_transcoder_set_m_n(intel_crtc,
4086 &intel_crtc->config.fdi_m_n);
4087 }
4088
4089 haswell_set_pipeconf(crtc);
4090
4091 intel_set_pipe_csc(crtc);
4092
4093 /* Set up the display plane register */
4094 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4095 POSTING_READ(DSPCNTR(plane));
4096
4097 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4098 crtc->x, crtc->y);
4099
4100 intel_crtc->active = true;
4101
4102 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4103 for_each_encoder_on_crtc(dev, crtc, encoder)
4104 if (encoder->pre_enable)
4105 encoder->pre_enable(encoder);
4106
4107 if (intel_crtc->config.has_pch_encoder) {
4108 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4109 dev_priv->display.fdi_link_train(crtc);
4110 }
4111
4112 intel_ddi_enable_pipe_clock(intel_crtc);
4113
4114 ironlake_pfit_enable(intel_crtc);
4115
4116 /*
4117 * On ILK+ LUT must be loaded before the pipe is running but with
4118 * clocks enabled
4119 */
4120 intel_crtc_load_lut(crtc);
4121
4122 intel_ddi_set_pipe_settings(crtc);
4123 intel_ddi_enable_transcoder_func(crtc);
4124
4125 intel_update_watermarks(crtc);
4126 intel_enable_pipe(intel_crtc);
4127
4128 if (intel_crtc->config.has_pch_encoder)
4129 lpt_pch_enable(crtc);
4130
4131 for_each_encoder_on_crtc(dev, crtc, encoder) {
4132 encoder->enable(encoder);
4133 intel_opregion_notify_encoder(encoder, true);
4134 }
4135
4136 /* If we change the relative order between pipe/planes enabling, we need
4137 * to change the workaround. */
4138 haswell_mode_set_planes_workaround(intel_crtc);
4139 intel_crtc_enable_planes(crtc);
4140 }
4141
4142 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4143 {
4144 struct drm_device *dev = crtc->base.dev;
4145 struct drm_i915_private *dev_priv = dev->dev_private;
4146 int pipe = crtc->pipe;
4147
4148 /* To avoid upsetting the power well on haswell only disable the pfit if
4149 * it's in use. The hw state code will make sure we get this right. */
4150 if (crtc->config.pch_pfit.enabled) {
4151 I915_WRITE(PF_CTL(pipe), 0);
4152 I915_WRITE(PF_WIN_POS(pipe), 0);
4153 I915_WRITE(PF_WIN_SZ(pipe), 0);
4154 }
4155 }
4156
4157 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4158 {
4159 struct drm_device *dev = crtc->dev;
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4162 struct intel_encoder *encoder;
4163 int pipe = intel_crtc->pipe;
4164 u32 reg, temp;
4165
4166 if (!intel_crtc->active)
4167 return;
4168
4169 intel_crtc_disable_planes(crtc);
4170
4171 for_each_encoder_on_crtc(dev, crtc, encoder)
4172 encoder->disable(encoder);
4173
4174 if (intel_crtc->config.has_pch_encoder)
4175 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4176
4177 intel_disable_pipe(dev_priv, pipe);
4178
4179 ironlake_pfit_disable(intel_crtc);
4180
4181 for_each_encoder_on_crtc(dev, crtc, encoder)
4182 if (encoder->post_disable)
4183 encoder->post_disable(encoder);
4184
4185 if (intel_crtc->config.has_pch_encoder) {
4186 ironlake_fdi_disable(crtc);
4187
4188 ironlake_disable_pch_transcoder(dev_priv, pipe);
4189 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4190
4191 if (HAS_PCH_CPT(dev)) {
4192 /* disable TRANS_DP_CTL */
4193 reg = TRANS_DP_CTL(pipe);
4194 temp = I915_READ(reg);
4195 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4196 TRANS_DP_PORT_SEL_MASK);
4197 temp |= TRANS_DP_PORT_SEL_NONE;
4198 I915_WRITE(reg, temp);
4199
4200 /* disable DPLL_SEL */
4201 temp = I915_READ(PCH_DPLL_SEL);
4202 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4203 I915_WRITE(PCH_DPLL_SEL, temp);
4204 }
4205
4206 /* disable PCH DPLL */
4207 intel_disable_shared_dpll(intel_crtc);
4208
4209 ironlake_fdi_pll_disable(intel_crtc);
4210 }
4211
4212 intel_crtc->active = false;
4213 intel_update_watermarks(crtc);
4214
4215 mutex_lock(&dev->struct_mutex);
4216 intel_update_fbc(dev);
4217 mutex_unlock(&dev->struct_mutex);
4218 }
4219
4220 static void haswell_crtc_disable(struct drm_crtc *crtc)
4221 {
4222 struct drm_device *dev = crtc->dev;
4223 struct drm_i915_private *dev_priv = dev->dev_private;
4224 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4225 struct intel_encoder *encoder;
4226 int pipe = intel_crtc->pipe;
4227 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4228
4229 if (!intel_crtc->active)
4230 return;
4231
4232 intel_crtc_disable_planes(crtc);
4233
4234 for_each_encoder_on_crtc(dev, crtc, encoder) {
4235 intel_opregion_notify_encoder(encoder, false);
4236 encoder->disable(encoder);
4237 }
4238
4239 if (intel_crtc->config.has_pch_encoder)
4240 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4241 intel_disable_pipe(dev_priv, pipe);
4242
4243 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4244
4245 ironlake_pfit_disable(intel_crtc);
4246
4247 intel_ddi_disable_pipe_clock(intel_crtc);
4248
4249 if (intel_crtc->config.has_pch_encoder) {
4250 lpt_disable_pch_transcoder(dev_priv);
4251 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4252 intel_ddi_fdi_disable(crtc);
4253 }
4254
4255 for_each_encoder_on_crtc(dev, crtc, encoder)
4256 if (encoder->post_disable)
4257 encoder->post_disable(encoder);
4258
4259 intel_crtc->active = false;
4260 intel_update_watermarks(crtc);
4261
4262 mutex_lock(&dev->struct_mutex);
4263 intel_update_fbc(dev);
4264 mutex_unlock(&dev->struct_mutex);
4265 }
4266
4267 static void ironlake_crtc_off(struct drm_crtc *crtc)
4268 {
4269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4270 intel_put_shared_dpll(intel_crtc);
4271 }
4272
4273 static void haswell_crtc_off(struct drm_crtc *crtc)
4274 {
4275 intel_ddi_put_crtc_pll(crtc);
4276 }
4277
4278 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4279 {
4280 struct drm_device *dev = crtc->base.dev;
4281 struct drm_i915_private *dev_priv = dev->dev_private;
4282 struct intel_crtc_config *pipe_config = &crtc->config;
4283
4284 if (!crtc->config.gmch_pfit.control)
4285 return;
4286
4287 /*
4288 * The panel fitter should only be adjusted whilst the pipe is disabled,
4289 * according to register description and PRM.
4290 */
4291 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4292 assert_pipe_disabled(dev_priv, crtc->pipe);
4293
4294 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4295 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4296
4297 /* Border color in case we don't scale up to the full screen. Black by
4298 * default, change to something else for debugging. */
4299 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4300 }
4301
4302 #define for_each_power_domain(domain, mask) \
4303 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4304 if ((1 << (domain)) & (mask))
4305
4306 enum intel_display_power_domain
4307 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4308 {
4309 struct drm_device *dev = intel_encoder->base.dev;
4310 struct intel_digital_port *intel_dig_port;
4311
4312 switch (intel_encoder->type) {
4313 case INTEL_OUTPUT_UNKNOWN:
4314 /* Only DDI platforms should ever use this output type */
4315 WARN_ON_ONCE(!HAS_DDI(dev));
4316 case INTEL_OUTPUT_DISPLAYPORT:
4317 case INTEL_OUTPUT_HDMI:
4318 case INTEL_OUTPUT_EDP:
4319 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4320 switch (intel_dig_port->port) {
4321 case PORT_A:
4322 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4323 case PORT_B:
4324 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4325 case PORT_C:
4326 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4327 case PORT_D:
4328 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4329 default:
4330 WARN_ON_ONCE(1);
4331 return POWER_DOMAIN_PORT_OTHER;
4332 }
4333 case INTEL_OUTPUT_ANALOG:
4334 return POWER_DOMAIN_PORT_CRT;
4335 case INTEL_OUTPUT_DSI:
4336 return POWER_DOMAIN_PORT_DSI;
4337 default:
4338 return POWER_DOMAIN_PORT_OTHER;
4339 }
4340 }
4341
4342 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4343 {
4344 struct drm_device *dev = crtc->dev;
4345 struct intel_encoder *intel_encoder;
4346 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4347 enum pipe pipe = intel_crtc->pipe;
4348 unsigned long mask;
4349 enum transcoder transcoder;
4350
4351 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4352
4353 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4354 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4355 if (intel_crtc->config.pch_pfit.enabled ||
4356 intel_crtc->config.pch_pfit.force_thru)
4357 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4358
4359 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4360 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4361
4362 return mask;
4363 }
4364
4365 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4366 bool enable)
4367 {
4368 if (dev_priv->power_domains.init_power_on == enable)
4369 return;
4370
4371 if (enable)
4372 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4373 else
4374 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4375
4376 dev_priv->power_domains.init_power_on = enable;
4377 }
4378
4379 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4380 {
4381 struct drm_i915_private *dev_priv = dev->dev_private;
4382 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4383 struct intel_crtc *crtc;
4384
4385 /*
4386 * First get all needed power domains, then put all unneeded, to avoid
4387 * any unnecessary toggling of the power wells.
4388 */
4389 for_each_intel_crtc(dev, crtc) {
4390 enum intel_display_power_domain domain;
4391
4392 if (!crtc->base.enabled)
4393 continue;
4394
4395 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4396
4397 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4398 intel_display_power_get(dev_priv, domain);
4399 }
4400
4401 for_each_intel_crtc(dev, crtc) {
4402 enum intel_display_power_domain domain;
4403
4404 for_each_power_domain(domain, crtc->enabled_power_domains)
4405 intel_display_power_put(dev_priv, domain);
4406
4407 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4408 }
4409
4410 intel_display_set_init_power(dev_priv, false);
4411 }
4412
4413 /* returns HPLL frequency in kHz */
4414 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4415 {
4416 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4417
4418 /* Obtain SKU information */
4419 mutex_lock(&dev_priv->dpio_lock);
4420 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4421 CCK_FUSE_HPLL_FREQ_MASK;
4422 mutex_unlock(&dev_priv->dpio_lock);
4423
4424 return vco_freq[hpll_freq] * 1000;
4425 }
4426
4427 static void vlv_update_cdclk(struct drm_device *dev)
4428 {
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430
4431 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4432 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4433 dev_priv->vlv_cdclk_freq);
4434
4435 /*
4436 * Program the gmbus_freq based on the cdclk frequency.
4437 * BSpec erroneously claims we should aim for 4MHz, but
4438 * in fact 1MHz is the correct frequency.
4439 */
4440 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4441 }
4442
4443 /* Adjust CDclk dividers to allow high res or save power if possible */
4444 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4445 {
4446 struct drm_i915_private *dev_priv = dev->dev_private;
4447 u32 val, cmd;
4448
4449 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4450
4451 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4452 cmd = 2;
4453 else if (cdclk == 266667)
4454 cmd = 1;
4455 else
4456 cmd = 0;
4457
4458 mutex_lock(&dev_priv->rps.hw_lock);
4459 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4460 val &= ~DSPFREQGUAR_MASK;
4461 val |= (cmd << DSPFREQGUAR_SHIFT);
4462 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4463 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4464 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4465 50)) {
4466 DRM_ERROR("timed out waiting for CDclk change\n");
4467 }
4468 mutex_unlock(&dev_priv->rps.hw_lock);
4469
4470 if (cdclk == 400000) {
4471 u32 divider, vco;
4472
4473 vco = valleyview_get_vco(dev_priv);
4474 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
4475
4476 mutex_lock(&dev_priv->dpio_lock);
4477 /* adjust cdclk divider */
4478 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4479 val &= ~DISPLAY_FREQUENCY_VALUES;
4480 val |= divider;
4481 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4482
4483 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4484 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4485 50))
4486 DRM_ERROR("timed out waiting for CDclk change\n");
4487 mutex_unlock(&dev_priv->dpio_lock);
4488 }
4489
4490 mutex_lock(&dev_priv->dpio_lock);
4491 /* adjust self-refresh exit latency value */
4492 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4493 val &= ~0x7f;
4494
4495 /*
4496 * For high bandwidth configs, we set a higher latency in the bunit
4497 * so that the core display fetch happens in time to avoid underruns.
4498 */
4499 if (cdclk == 400000)
4500 val |= 4500 / 250; /* 4.5 usec */
4501 else
4502 val |= 3000 / 250; /* 3.0 usec */
4503 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4504 mutex_unlock(&dev_priv->dpio_lock);
4505
4506 vlv_update_cdclk(dev);
4507 }
4508
4509 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4510 int max_pixclk)
4511 {
4512 int vco = valleyview_get_vco(dev_priv);
4513 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4514
4515 /*
4516 * Really only a few cases to deal with, as only 4 CDclks are supported:
4517 * 200MHz
4518 * 267MHz
4519 * 320/333MHz (depends on HPLL freq)
4520 * 400MHz
4521 * So we check to see whether we're above 90% of the lower bin and
4522 * adjust if needed.
4523 *
4524 * We seem to get an unstable or solid color picture at 200MHz.
4525 * Not sure what's wrong. For now use 200MHz only when all pipes
4526 * are off.
4527 */
4528 if (max_pixclk > freq_320*9/10)
4529 return 400000;
4530 else if (max_pixclk > 266667*9/10)
4531 return freq_320;
4532 else if (max_pixclk > 0)
4533 return 266667;
4534 else
4535 return 200000;
4536 }
4537
4538 /* compute the max pixel clock for new configuration */
4539 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4540 {
4541 struct drm_device *dev = dev_priv->dev;
4542 struct intel_crtc *intel_crtc;
4543 int max_pixclk = 0;
4544
4545 for_each_intel_crtc(dev, intel_crtc) {
4546 if (intel_crtc->new_enabled)
4547 max_pixclk = max(max_pixclk,
4548 intel_crtc->new_config->adjusted_mode.crtc_clock);
4549 }
4550
4551 return max_pixclk;
4552 }
4553
4554 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4555 unsigned *prepare_pipes)
4556 {
4557 struct drm_i915_private *dev_priv = dev->dev_private;
4558 struct intel_crtc *intel_crtc;
4559 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4560
4561 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4562 dev_priv->vlv_cdclk_freq)
4563 return;
4564
4565 /* disable/enable all currently active pipes while we change cdclk */
4566 for_each_intel_crtc(dev, intel_crtc)
4567 if (intel_crtc->base.enabled)
4568 *prepare_pipes |= (1 << intel_crtc->pipe);
4569 }
4570
4571 static void valleyview_modeset_global_resources(struct drm_device *dev)
4572 {
4573 struct drm_i915_private *dev_priv = dev->dev_private;
4574 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4575 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4576
4577 if (req_cdclk != dev_priv->vlv_cdclk_freq)
4578 valleyview_set_cdclk(dev, req_cdclk);
4579 modeset_update_crtc_power_domains(dev);
4580 }
4581
4582 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4583 {
4584 struct drm_device *dev = crtc->dev;
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4587 struct intel_encoder *encoder;
4588 int pipe = intel_crtc->pipe;
4589 int plane = intel_crtc->plane;
4590 bool is_dsi;
4591 u32 dspcntr;
4592
4593 WARN_ON(!crtc->enabled);
4594
4595 if (intel_crtc->active)
4596 return;
4597
4598 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4599
4600 if (!is_dsi && !IS_CHERRYVIEW(dev))
4601 vlv_prepare_pll(intel_crtc);
4602
4603 /* Set up the display plane register */
4604 dspcntr = DISPPLANE_GAMMA_ENABLE;
4605
4606 if (intel_crtc->config.has_dp_encoder)
4607 intel_dp_set_m_n(intel_crtc);
4608
4609 intel_set_pipe_timings(intel_crtc);
4610
4611 /* pipesrc and dspsize control the size that is scaled from,
4612 * which should always be the user's requested size.
4613 */
4614 I915_WRITE(DSPSIZE(plane),
4615 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4616 (intel_crtc->config.pipe_src_w - 1));
4617 I915_WRITE(DSPPOS(plane), 0);
4618
4619 i9xx_set_pipeconf(intel_crtc);
4620
4621 I915_WRITE(DSPCNTR(plane), dspcntr);
4622 POSTING_READ(DSPCNTR(plane));
4623
4624 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4625 crtc->x, crtc->y);
4626
4627 intel_crtc->active = true;
4628
4629 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4630
4631 for_each_encoder_on_crtc(dev, crtc, encoder)
4632 if (encoder->pre_pll_enable)
4633 encoder->pre_pll_enable(encoder);
4634
4635 if (!is_dsi) {
4636 if (IS_CHERRYVIEW(dev))
4637 chv_enable_pll(intel_crtc);
4638 else
4639 vlv_enable_pll(intel_crtc);
4640 }
4641
4642 for_each_encoder_on_crtc(dev, crtc, encoder)
4643 if (encoder->pre_enable)
4644 encoder->pre_enable(encoder);
4645
4646 i9xx_pfit_enable(intel_crtc);
4647
4648 intel_crtc_load_lut(crtc);
4649
4650 intel_update_watermarks(crtc);
4651 intel_enable_pipe(intel_crtc);
4652
4653 for_each_encoder_on_crtc(dev, crtc, encoder)
4654 encoder->enable(encoder);
4655
4656 intel_crtc_enable_planes(crtc);
4657
4658 /* Underruns don't raise interrupts, so check manually. */
4659 i9xx_check_fifo_underruns(dev);
4660 }
4661
4662 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4663 {
4664 struct drm_device *dev = crtc->base.dev;
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666
4667 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4668 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4669 }
4670
4671 static void i9xx_crtc_enable(struct drm_crtc *crtc)
4672 {
4673 struct drm_device *dev = crtc->dev;
4674 struct drm_i915_private *dev_priv = dev->dev_private;
4675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4676 struct intel_encoder *encoder;
4677 int pipe = intel_crtc->pipe;
4678 int plane = intel_crtc->plane;
4679 u32 dspcntr;
4680
4681 WARN_ON(!crtc->enabled);
4682
4683 if (intel_crtc->active)
4684 return;
4685
4686 i9xx_set_pll_dividers(intel_crtc);
4687
4688 /* Set up the display plane register */
4689 dspcntr = DISPPLANE_GAMMA_ENABLE;
4690
4691 if (pipe == 0)
4692 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4693 else
4694 dspcntr |= DISPPLANE_SEL_PIPE_B;
4695
4696 if (intel_crtc->config.has_dp_encoder)
4697 intel_dp_set_m_n(intel_crtc);
4698
4699 intel_set_pipe_timings(intel_crtc);
4700
4701 /* pipesrc and dspsize control the size that is scaled from,
4702 * which should always be the user's requested size.
4703 */
4704 I915_WRITE(DSPSIZE(plane),
4705 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4706 (intel_crtc->config.pipe_src_w - 1));
4707 I915_WRITE(DSPPOS(plane), 0);
4708
4709 i9xx_set_pipeconf(intel_crtc);
4710
4711 I915_WRITE(DSPCNTR(plane), dspcntr);
4712 POSTING_READ(DSPCNTR(plane));
4713
4714 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4715 crtc->x, crtc->y);
4716
4717 intel_crtc->active = true;
4718
4719 if (!IS_GEN2(dev))
4720 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4721
4722 for_each_encoder_on_crtc(dev, crtc, encoder)
4723 if (encoder->pre_enable)
4724 encoder->pre_enable(encoder);
4725
4726 i9xx_enable_pll(intel_crtc);
4727
4728 i9xx_pfit_enable(intel_crtc);
4729
4730 intel_crtc_load_lut(crtc);
4731
4732 intel_update_watermarks(crtc);
4733 intel_enable_pipe(intel_crtc);
4734
4735 for_each_encoder_on_crtc(dev, crtc, encoder)
4736 encoder->enable(encoder);
4737
4738 intel_crtc_enable_planes(crtc);
4739
4740 /*
4741 * Gen2 reports pipe underruns whenever all planes are disabled.
4742 * So don't enable underrun reporting before at least some planes
4743 * are enabled.
4744 * FIXME: Need to fix the logic to work when we turn off all planes
4745 * but leave the pipe running.
4746 */
4747 if (IS_GEN2(dev))
4748 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4749
4750 /* Underruns don't raise interrupts, so check manually. */
4751 i9xx_check_fifo_underruns(dev);
4752 }
4753
4754 static void i9xx_pfit_disable(struct intel_crtc *crtc)
4755 {
4756 struct drm_device *dev = crtc->base.dev;
4757 struct drm_i915_private *dev_priv = dev->dev_private;
4758
4759 if (!crtc->config.gmch_pfit.control)
4760 return;
4761
4762 assert_pipe_disabled(dev_priv, crtc->pipe);
4763
4764 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4765 I915_READ(PFIT_CONTROL));
4766 I915_WRITE(PFIT_CONTROL, 0);
4767 }
4768
4769 static void i9xx_crtc_disable(struct drm_crtc *crtc)
4770 {
4771 struct drm_device *dev = crtc->dev;
4772 struct drm_i915_private *dev_priv = dev->dev_private;
4773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4774 struct intel_encoder *encoder;
4775 int pipe = intel_crtc->pipe;
4776
4777 if (!intel_crtc->active)
4778 return;
4779
4780 /*
4781 * Gen2 reports pipe underruns whenever all planes are disabled.
4782 * So diasble underrun reporting before all the planes get disabled.
4783 * FIXME: Need to fix the logic to work when we turn off all planes
4784 * but leave the pipe running.
4785 */
4786 if (IS_GEN2(dev))
4787 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4788
4789 /*
4790 * Vblank time updates from the shadow to live plane control register
4791 * are blocked if the memory self-refresh mode is active at that
4792 * moment. So to make sure the plane gets truly disabled, disable
4793 * first the self-refresh mode. The self-refresh enable bit in turn
4794 * will be checked/applied by the HW only at the next frame start
4795 * event which is after the vblank start event, so we need to have a
4796 * wait-for-vblank between disabling the plane and the pipe.
4797 */
4798 intel_set_memory_cxsr(dev_priv, false);
4799 intel_crtc_disable_planes(crtc);
4800
4801 for_each_encoder_on_crtc(dev, crtc, encoder)
4802 encoder->disable(encoder);
4803
4804 /*
4805 * On gen2 planes are double buffered but the pipe isn't, so we must
4806 * wait for planes to fully turn off before disabling the pipe.
4807 * We also need to wait on all gmch platforms because of the
4808 * self-refresh mode constraint explained above.
4809 */
4810 intel_wait_for_vblank(dev, pipe);
4811
4812 intel_disable_pipe(dev_priv, pipe);
4813
4814 i9xx_pfit_disable(intel_crtc);
4815
4816 for_each_encoder_on_crtc(dev, crtc, encoder)
4817 if (encoder->post_disable)
4818 encoder->post_disable(encoder);
4819
4820 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4821 if (IS_CHERRYVIEW(dev))
4822 chv_disable_pll(dev_priv, pipe);
4823 else if (IS_VALLEYVIEW(dev))
4824 vlv_disable_pll(dev_priv, pipe);
4825 else
4826 i9xx_disable_pll(dev_priv, pipe);
4827 }
4828
4829 if (!IS_GEN2(dev))
4830 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4831
4832 intel_crtc->active = false;
4833 intel_update_watermarks(crtc);
4834
4835 mutex_lock(&dev->struct_mutex);
4836 intel_update_fbc(dev);
4837 mutex_unlock(&dev->struct_mutex);
4838 }
4839
4840 static void i9xx_crtc_off(struct drm_crtc *crtc)
4841 {
4842 }
4843
4844 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4845 bool enabled)
4846 {
4847 struct drm_device *dev = crtc->dev;
4848 struct drm_i915_master_private *master_priv;
4849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4850 int pipe = intel_crtc->pipe;
4851
4852 if (!dev->primary->master)
4853 return;
4854
4855 master_priv = dev->primary->master->driver_priv;
4856 if (!master_priv->sarea_priv)
4857 return;
4858
4859 switch (pipe) {
4860 case 0:
4861 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4862 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4863 break;
4864 case 1:
4865 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4866 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4867 break;
4868 default:
4869 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4870 break;
4871 }
4872 }
4873
4874 /**
4875 * Sets the power management mode of the pipe and plane.
4876 */
4877 void intel_crtc_update_dpms(struct drm_crtc *crtc)
4878 {
4879 struct drm_device *dev = crtc->dev;
4880 struct drm_i915_private *dev_priv = dev->dev_private;
4881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4882 struct intel_encoder *intel_encoder;
4883 enum intel_display_power_domain domain;
4884 unsigned long domains;
4885 bool enable = false;
4886
4887 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4888 enable |= intel_encoder->connectors_active;
4889
4890 if (enable) {
4891 if (!intel_crtc->active) {
4892 /*
4893 * FIXME: DDI plls and relevant code isn't converted
4894 * yet, so do runtime PM for DPMS only for all other
4895 * platforms for now.
4896 */
4897 if (!HAS_DDI(dev)) {
4898 domains = get_crtc_power_domains(crtc);
4899 for_each_power_domain(domain, domains)
4900 intel_display_power_get(dev_priv, domain);
4901 intel_crtc->enabled_power_domains = domains;
4902 }
4903
4904 dev_priv->display.crtc_enable(crtc);
4905 }
4906 } else {
4907 if (intel_crtc->active) {
4908 dev_priv->display.crtc_disable(crtc);
4909
4910 if (!HAS_DDI(dev)) {
4911 domains = intel_crtc->enabled_power_domains;
4912 for_each_power_domain(domain, domains)
4913 intel_display_power_put(dev_priv, domain);
4914 intel_crtc->enabled_power_domains = 0;
4915 }
4916 }
4917 }
4918
4919 intel_crtc_update_sarea(crtc, enable);
4920 }
4921
4922 static void intel_crtc_disable(struct drm_crtc *crtc)
4923 {
4924 struct drm_device *dev = crtc->dev;
4925 struct drm_connector *connector;
4926 struct drm_i915_private *dev_priv = dev->dev_private;
4927 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
4928 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4929
4930 /* crtc should still be enabled when we disable it. */
4931 WARN_ON(!crtc->enabled);
4932
4933 dev_priv->display.crtc_disable(crtc);
4934 intel_crtc_update_sarea(crtc, false);
4935 dev_priv->display.off(crtc);
4936
4937 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4938 assert_cursor_disabled(dev_priv, pipe);
4939 assert_pipe_disabled(dev->dev_private, pipe);
4940
4941 if (crtc->primary->fb) {
4942 mutex_lock(&dev->struct_mutex);
4943 intel_unpin_fb_obj(old_obj);
4944 i915_gem_track_fb(old_obj, NULL,
4945 INTEL_FRONTBUFFER_PRIMARY(pipe));
4946 mutex_unlock(&dev->struct_mutex);
4947 crtc->primary->fb = NULL;
4948 }
4949
4950 /* Update computed state. */
4951 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4952 if (!connector->encoder || !connector->encoder->crtc)
4953 continue;
4954
4955 if (connector->encoder->crtc != crtc)
4956 continue;
4957
4958 connector->dpms = DRM_MODE_DPMS_OFF;
4959 to_intel_encoder(connector->encoder)->connectors_active = false;
4960 }
4961 }
4962
4963 void intel_encoder_destroy(struct drm_encoder *encoder)
4964 {
4965 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4966
4967 drm_encoder_cleanup(encoder);
4968 kfree(intel_encoder);
4969 }
4970
4971 /* Simple dpms helper for encoders with just one connector, no cloning and only
4972 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4973 * state of the entire output pipe. */
4974 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4975 {
4976 if (mode == DRM_MODE_DPMS_ON) {
4977 encoder->connectors_active = true;
4978
4979 intel_crtc_update_dpms(encoder->base.crtc);
4980 } else {
4981 encoder->connectors_active = false;
4982
4983 intel_crtc_update_dpms(encoder->base.crtc);
4984 }
4985 }
4986
4987 /* Cross check the actual hw state with our own modeset state tracking (and it's
4988 * internal consistency). */
4989 static void intel_connector_check_state(struct intel_connector *connector)
4990 {
4991 if (connector->get_hw_state(connector)) {
4992 struct intel_encoder *encoder = connector->encoder;
4993 struct drm_crtc *crtc;
4994 bool encoder_enabled;
4995 enum pipe pipe;
4996
4997 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4998 connector->base.base.id,
4999 connector->base.name);
5000
5001 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5002 "wrong connector dpms state\n");
5003 WARN(connector->base.encoder != &encoder->base,
5004 "active connector not linked to encoder\n");
5005 WARN(!encoder->connectors_active,
5006 "encoder->connectors_active not set\n");
5007
5008 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5009 WARN(!encoder_enabled, "encoder not enabled\n");
5010 if (WARN_ON(!encoder->base.crtc))
5011 return;
5012
5013 crtc = encoder->base.crtc;
5014
5015 WARN(!crtc->enabled, "crtc not enabled\n");
5016 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5017 WARN(pipe != to_intel_crtc(crtc)->pipe,
5018 "encoder active on the wrong pipe\n");
5019 }
5020 }
5021
5022 /* Even simpler default implementation, if there's really no special case to
5023 * consider. */
5024 void intel_connector_dpms(struct drm_connector *connector, int mode)
5025 {
5026 /* All the simple cases only support two dpms states. */
5027 if (mode != DRM_MODE_DPMS_ON)
5028 mode = DRM_MODE_DPMS_OFF;
5029
5030 if (mode == connector->dpms)
5031 return;
5032
5033 connector->dpms = mode;
5034
5035 /* Only need to change hw state when actually enabled */
5036 if (connector->encoder)
5037 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5038
5039 intel_modeset_check_state(connector->dev);
5040 }
5041
5042 /* Simple connector->get_hw_state implementation for encoders that support only
5043 * one connector and no cloning and hence the encoder state determines the state
5044 * of the connector. */
5045 bool intel_connector_get_hw_state(struct intel_connector *connector)
5046 {
5047 enum pipe pipe = 0;
5048 struct intel_encoder *encoder = connector->encoder;
5049
5050 return encoder->get_hw_state(encoder, &pipe);
5051 }
5052
5053 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5054 struct intel_crtc_config *pipe_config)
5055 {
5056 struct drm_i915_private *dev_priv = dev->dev_private;
5057 struct intel_crtc *pipe_B_crtc =
5058 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5059
5060 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5061 pipe_name(pipe), pipe_config->fdi_lanes);
5062 if (pipe_config->fdi_lanes > 4) {
5063 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5064 pipe_name(pipe), pipe_config->fdi_lanes);
5065 return false;
5066 }
5067
5068 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5069 if (pipe_config->fdi_lanes > 2) {
5070 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5071 pipe_config->fdi_lanes);
5072 return false;
5073 } else {
5074 return true;
5075 }
5076 }
5077
5078 if (INTEL_INFO(dev)->num_pipes == 2)
5079 return true;
5080
5081 /* Ivybridge 3 pipe is really complicated */
5082 switch (pipe) {
5083 case PIPE_A:
5084 return true;
5085 case PIPE_B:
5086 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5087 pipe_config->fdi_lanes > 2) {
5088 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5089 pipe_name(pipe), pipe_config->fdi_lanes);
5090 return false;
5091 }
5092 return true;
5093 case PIPE_C:
5094 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5095 pipe_B_crtc->config.fdi_lanes <= 2) {
5096 if (pipe_config->fdi_lanes > 2) {
5097 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5098 pipe_name(pipe), pipe_config->fdi_lanes);
5099 return false;
5100 }
5101 } else {
5102 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5103 return false;
5104 }
5105 return true;
5106 default:
5107 BUG();
5108 }
5109 }
5110
5111 #define RETRY 1
5112 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5113 struct intel_crtc_config *pipe_config)
5114 {
5115 struct drm_device *dev = intel_crtc->base.dev;
5116 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5117 int lane, link_bw, fdi_dotclock;
5118 bool setup_ok, needs_recompute = false;
5119
5120 retry:
5121 /* FDI is a binary signal running at ~2.7GHz, encoding
5122 * each output octet as 10 bits. The actual frequency
5123 * is stored as a divider into a 100MHz clock, and the
5124 * mode pixel clock is stored in units of 1KHz.
5125 * Hence the bw of each lane in terms of the mode signal
5126 * is:
5127 */
5128 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5129
5130 fdi_dotclock = adjusted_mode->crtc_clock;
5131
5132 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5133 pipe_config->pipe_bpp);
5134
5135 pipe_config->fdi_lanes = lane;
5136
5137 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5138 link_bw, &pipe_config->fdi_m_n);
5139
5140 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5141 intel_crtc->pipe, pipe_config);
5142 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5143 pipe_config->pipe_bpp -= 2*3;
5144 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5145 pipe_config->pipe_bpp);
5146 needs_recompute = true;
5147 pipe_config->bw_constrained = true;
5148
5149 goto retry;
5150 }
5151
5152 if (needs_recompute)
5153 return RETRY;
5154
5155 return setup_ok ? 0 : -EINVAL;
5156 }
5157
5158 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5159 struct intel_crtc_config *pipe_config)
5160 {
5161 pipe_config->ips_enabled = i915.enable_ips &&
5162 hsw_crtc_supports_ips(crtc) &&
5163 pipe_config->pipe_bpp <= 24;
5164 }
5165
5166 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5167 struct intel_crtc_config *pipe_config)
5168 {
5169 struct drm_device *dev = crtc->base.dev;
5170 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
5171
5172 /* FIXME should check pixel clock limits on all platforms */
5173 if (INTEL_INFO(dev)->gen < 4) {
5174 struct drm_i915_private *dev_priv = dev->dev_private;
5175 int clock_limit =
5176 dev_priv->display.get_display_clock_speed(dev);
5177
5178 /*
5179 * Enable pixel doubling when the dot clock
5180 * is > 90% of the (display) core speed.
5181 *
5182 * GDG double wide on either pipe,
5183 * otherwise pipe A only.
5184 */
5185 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5186 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5187 clock_limit *= 2;
5188 pipe_config->double_wide = true;
5189 }
5190
5191 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5192 return -EINVAL;
5193 }
5194
5195 /*
5196 * Pipe horizontal size must be even in:
5197 * - DVO ganged mode
5198 * - LVDS dual channel mode
5199 * - Double wide pipe
5200 */
5201 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5202 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5203 pipe_config->pipe_src_w &= ~1;
5204
5205 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5206 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5207 */
5208 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5209 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5210 return -EINVAL;
5211
5212 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5213 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5214 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5215 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5216 * for lvds. */
5217 pipe_config->pipe_bpp = 8*3;
5218 }
5219
5220 if (HAS_IPS(dev))
5221 hsw_compute_ips_config(crtc, pipe_config);
5222
5223 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5224 * clock survives for now. */
5225 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5226 pipe_config->shared_dpll = crtc->config.shared_dpll;
5227
5228 if (pipe_config->has_pch_encoder)
5229 return ironlake_fdi_compute_config(crtc, pipe_config);
5230
5231 return 0;
5232 }
5233
5234 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5235 {
5236 struct drm_i915_private *dev_priv = dev->dev_private;
5237 int vco = valleyview_get_vco(dev_priv);
5238 u32 val;
5239 int divider;
5240
5241 mutex_lock(&dev_priv->dpio_lock);
5242 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5243 mutex_unlock(&dev_priv->dpio_lock);
5244
5245 divider = val & DISPLAY_FREQUENCY_VALUES;
5246
5247 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5248 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5249 "cdclk change in progress\n");
5250
5251 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
5252 }
5253
5254 static int i945_get_display_clock_speed(struct drm_device *dev)
5255 {
5256 return 400000;
5257 }
5258
5259 static int i915_get_display_clock_speed(struct drm_device *dev)
5260 {
5261 return 333000;
5262 }
5263
5264 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5265 {
5266 return 200000;
5267 }
5268
5269 static int pnv_get_display_clock_speed(struct drm_device *dev)
5270 {
5271 u16 gcfgc = 0;
5272
5273 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5274
5275 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5276 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5277 return 267000;
5278 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5279 return 333000;
5280 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5281 return 444000;
5282 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5283 return 200000;
5284 default:
5285 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5286 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5287 return 133000;
5288 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5289 return 167000;
5290 }
5291 }
5292
5293 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5294 {
5295 u16 gcfgc = 0;
5296
5297 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5298
5299 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5300 return 133000;
5301 else {
5302 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5303 case GC_DISPLAY_CLOCK_333_MHZ:
5304 return 333000;
5305 default:
5306 case GC_DISPLAY_CLOCK_190_200_MHZ:
5307 return 190000;
5308 }
5309 }
5310 }
5311
5312 static int i865_get_display_clock_speed(struct drm_device *dev)
5313 {
5314 return 266000;
5315 }
5316
5317 static int i855_get_display_clock_speed(struct drm_device *dev)
5318 {
5319 u16 hpllcc = 0;
5320 /* Assume that the hardware is in the high speed state. This
5321 * should be the default.
5322 */
5323 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5324 case GC_CLOCK_133_200:
5325 case GC_CLOCK_100_200:
5326 return 200000;
5327 case GC_CLOCK_166_250:
5328 return 250000;
5329 case GC_CLOCK_100_133:
5330 return 133000;
5331 }
5332
5333 /* Shouldn't happen */
5334 return 0;
5335 }
5336
5337 static int i830_get_display_clock_speed(struct drm_device *dev)
5338 {
5339 return 133000;
5340 }
5341
5342 static void
5343 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5344 {
5345 while (*num > DATA_LINK_M_N_MASK ||
5346 *den > DATA_LINK_M_N_MASK) {
5347 *num >>= 1;
5348 *den >>= 1;
5349 }
5350 }
5351
5352 static void compute_m_n(unsigned int m, unsigned int n,
5353 uint32_t *ret_m, uint32_t *ret_n)
5354 {
5355 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5356 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5357 intel_reduce_m_n_ratio(ret_m, ret_n);
5358 }
5359
5360 void
5361 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5362 int pixel_clock, int link_clock,
5363 struct intel_link_m_n *m_n)
5364 {
5365 m_n->tu = 64;
5366
5367 compute_m_n(bits_per_pixel * pixel_clock,
5368 link_clock * nlanes * 8,
5369 &m_n->gmch_m, &m_n->gmch_n);
5370
5371 compute_m_n(pixel_clock, link_clock,
5372 &m_n->link_m, &m_n->link_n);
5373 }
5374
5375 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5376 {
5377 if (i915.panel_use_ssc >= 0)
5378 return i915.panel_use_ssc != 0;
5379 return dev_priv->vbt.lvds_use_ssc
5380 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5381 }
5382
5383 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5384 {
5385 struct drm_device *dev = crtc->dev;
5386 struct drm_i915_private *dev_priv = dev->dev_private;
5387 int refclk;
5388
5389 if (IS_VALLEYVIEW(dev)) {
5390 refclk = 100000;
5391 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5392 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5393 refclk = dev_priv->vbt.lvds_ssc_freq;
5394 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5395 } else if (!IS_GEN2(dev)) {
5396 refclk = 96000;
5397 } else {
5398 refclk = 48000;
5399 }
5400
5401 return refclk;
5402 }
5403
5404 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5405 {
5406 return (1 << dpll->n) << 16 | dpll->m2;
5407 }
5408
5409 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5410 {
5411 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5412 }
5413
5414 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5415 intel_clock_t *reduced_clock)
5416 {
5417 struct drm_device *dev = crtc->base.dev;
5418 u32 fp, fp2 = 0;
5419
5420 if (IS_PINEVIEW(dev)) {
5421 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
5422 if (reduced_clock)
5423 fp2 = pnv_dpll_compute_fp(reduced_clock);
5424 } else {
5425 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
5426 if (reduced_clock)
5427 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5428 }
5429
5430 crtc->config.dpll_hw_state.fp0 = fp;
5431
5432 crtc->lowfreq_avail = false;
5433 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5434 reduced_clock && i915.powersave) {
5435 crtc->config.dpll_hw_state.fp1 = fp2;
5436 crtc->lowfreq_avail = true;
5437 } else {
5438 crtc->config.dpll_hw_state.fp1 = fp;
5439 }
5440 }
5441
5442 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5443 pipe)
5444 {
5445 u32 reg_val;
5446
5447 /*
5448 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5449 * and set it to a reasonable value instead.
5450 */
5451 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5452 reg_val &= 0xffffff00;
5453 reg_val |= 0x00000030;
5454 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5455
5456 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5457 reg_val &= 0x8cffffff;
5458 reg_val = 0x8c000000;
5459 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5460
5461 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5462 reg_val &= 0xffffff00;
5463 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5464
5465 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5466 reg_val &= 0x00ffffff;
5467 reg_val |= 0xb0000000;
5468 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5469 }
5470
5471 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5472 struct intel_link_m_n *m_n)
5473 {
5474 struct drm_device *dev = crtc->base.dev;
5475 struct drm_i915_private *dev_priv = dev->dev_private;
5476 int pipe = crtc->pipe;
5477
5478 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5479 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5480 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5481 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5482 }
5483
5484 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5485 struct intel_link_m_n *m_n)
5486 {
5487 struct drm_device *dev = crtc->base.dev;
5488 struct drm_i915_private *dev_priv = dev->dev_private;
5489 int pipe = crtc->pipe;
5490 enum transcoder transcoder = crtc->config.cpu_transcoder;
5491
5492 if (INTEL_INFO(dev)->gen >= 5) {
5493 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5494 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5495 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5496 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5497 } else {
5498 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5499 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5500 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5501 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5502 }
5503 }
5504
5505 static void intel_dp_set_m_n(struct intel_crtc *crtc)
5506 {
5507 if (crtc->config.has_pch_encoder)
5508 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5509 else
5510 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5511 }
5512
5513 static void vlv_update_pll(struct intel_crtc *crtc)
5514 {
5515 u32 dpll, dpll_md;
5516
5517 /*
5518 * Enable DPIO clock input. We should never disable the reference
5519 * clock for pipe B, since VGA hotplug / manual detection depends
5520 * on it.
5521 */
5522 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5523 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5524 /* We should never disable this, set it here for state tracking */
5525 if (crtc->pipe == PIPE_B)
5526 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5527 dpll |= DPLL_VCO_ENABLE;
5528 crtc->config.dpll_hw_state.dpll = dpll;
5529
5530 dpll_md = (crtc->config.pixel_multiplier - 1)
5531 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5532 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5533 }
5534
5535 static void vlv_prepare_pll(struct intel_crtc *crtc)
5536 {
5537 struct drm_device *dev = crtc->base.dev;
5538 struct drm_i915_private *dev_priv = dev->dev_private;
5539 int pipe = crtc->pipe;
5540 u32 mdiv;
5541 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5542 u32 coreclk, reg_val;
5543
5544 mutex_lock(&dev_priv->dpio_lock);
5545
5546 bestn = crtc->config.dpll.n;
5547 bestm1 = crtc->config.dpll.m1;
5548 bestm2 = crtc->config.dpll.m2;
5549 bestp1 = crtc->config.dpll.p1;
5550 bestp2 = crtc->config.dpll.p2;
5551
5552 /* See eDP HDMI DPIO driver vbios notes doc */
5553
5554 /* PLL B needs special handling */
5555 if (pipe == PIPE_B)
5556 vlv_pllb_recal_opamp(dev_priv, pipe);
5557
5558 /* Set up Tx target for periodic Rcomp update */
5559 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5560
5561 /* Disable target IRef on PLL */
5562 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5563 reg_val &= 0x00ffffff;
5564 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5565
5566 /* Disable fast lock */
5567 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5568
5569 /* Set idtafcrecal before PLL is enabled */
5570 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5571 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5572 mdiv |= ((bestn << DPIO_N_SHIFT));
5573 mdiv |= (1 << DPIO_K_SHIFT);
5574
5575 /*
5576 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5577 * but we don't support that).
5578 * Note: don't use the DAC post divider as it seems unstable.
5579 */
5580 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5581 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5582
5583 mdiv |= DPIO_ENABLE_CALIBRATION;
5584 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5585
5586 /* Set HBR and RBR LPF coefficients */
5587 if (crtc->config.port_clock == 162000 ||
5588 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
5589 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
5590 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5591 0x009f0003);
5592 else
5593 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5594 0x00d0000f);
5595
5596 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5597 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5598 /* Use SSC source */
5599 if (pipe == PIPE_A)
5600 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5601 0x0df40000);
5602 else
5603 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5604 0x0df70000);
5605 } else { /* HDMI or VGA */
5606 /* Use bend source */
5607 if (pipe == PIPE_A)
5608 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5609 0x0df70000);
5610 else
5611 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5612 0x0df40000);
5613 }
5614
5615 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5616 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5617 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5618 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5619 coreclk |= 0x01000000;
5620 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5621
5622 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5623 mutex_unlock(&dev_priv->dpio_lock);
5624 }
5625
5626 static void chv_update_pll(struct intel_crtc *crtc)
5627 {
5628 struct drm_device *dev = crtc->base.dev;
5629 struct drm_i915_private *dev_priv = dev->dev_private;
5630 int pipe = crtc->pipe;
5631 int dpll_reg = DPLL(crtc->pipe);
5632 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5633 u32 loopfilter, intcoeff;
5634 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5635 int refclk;
5636
5637 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5638 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5639 DPLL_VCO_ENABLE;
5640 if (pipe != PIPE_A)
5641 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5642
5643 crtc->config.dpll_hw_state.dpll_md =
5644 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5645
5646 bestn = crtc->config.dpll.n;
5647 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5648 bestm1 = crtc->config.dpll.m1;
5649 bestm2 = crtc->config.dpll.m2 >> 22;
5650 bestp1 = crtc->config.dpll.p1;
5651 bestp2 = crtc->config.dpll.p2;
5652
5653 /*
5654 * Enable Refclk and SSC
5655 */
5656 I915_WRITE(dpll_reg,
5657 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5658
5659 mutex_lock(&dev_priv->dpio_lock);
5660
5661 /* p1 and p2 divider */
5662 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5663 5 << DPIO_CHV_S1_DIV_SHIFT |
5664 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5665 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5666 1 << DPIO_CHV_K_DIV_SHIFT);
5667
5668 /* Feedback post-divider - m2 */
5669 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5670
5671 /* Feedback refclk divider - n and m1 */
5672 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5673 DPIO_CHV_M1_DIV_BY_2 |
5674 1 << DPIO_CHV_N_DIV_SHIFT);
5675
5676 /* M2 fraction division */
5677 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5678
5679 /* M2 fraction division enable */
5680 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5681 DPIO_CHV_FRAC_DIV_EN |
5682 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5683
5684 /* Loop filter */
5685 refclk = i9xx_get_refclk(&crtc->base, 0);
5686 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5687 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5688 if (refclk == 100000)
5689 intcoeff = 11;
5690 else if (refclk == 38400)
5691 intcoeff = 10;
5692 else
5693 intcoeff = 9;
5694 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5695 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5696
5697 /* AFC Recal */
5698 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5699 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5700 DPIO_AFC_RECAL);
5701
5702 mutex_unlock(&dev_priv->dpio_lock);
5703 }
5704
5705 static void i9xx_update_pll(struct intel_crtc *crtc,
5706 intel_clock_t *reduced_clock,
5707 int num_connectors)
5708 {
5709 struct drm_device *dev = crtc->base.dev;
5710 struct drm_i915_private *dev_priv = dev->dev_private;
5711 u32 dpll;
5712 bool is_sdvo;
5713 struct dpll *clock = &crtc->config.dpll;
5714
5715 i9xx_update_pll_dividers(crtc, reduced_clock);
5716
5717 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5718 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5719
5720 dpll = DPLL_VGA_MODE_DIS;
5721
5722 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5723 dpll |= DPLLB_MODE_LVDS;
5724 else
5725 dpll |= DPLLB_MODE_DAC_SERIAL;
5726
5727 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5728 dpll |= (crtc->config.pixel_multiplier - 1)
5729 << SDVO_MULTIPLIER_SHIFT_HIRES;
5730 }
5731
5732 if (is_sdvo)
5733 dpll |= DPLL_SDVO_HIGH_SPEED;
5734
5735 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5736 dpll |= DPLL_SDVO_HIGH_SPEED;
5737
5738 /* compute bitmask from p1 value */
5739 if (IS_PINEVIEW(dev))
5740 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5741 else {
5742 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5743 if (IS_G4X(dev) && reduced_clock)
5744 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5745 }
5746 switch (clock->p2) {
5747 case 5:
5748 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5749 break;
5750 case 7:
5751 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5752 break;
5753 case 10:
5754 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5755 break;
5756 case 14:
5757 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5758 break;
5759 }
5760 if (INTEL_INFO(dev)->gen >= 4)
5761 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5762
5763 if (crtc->config.sdvo_tv_clock)
5764 dpll |= PLL_REF_INPUT_TVCLKINBC;
5765 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5766 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5767 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5768 else
5769 dpll |= PLL_REF_INPUT_DREFCLK;
5770
5771 dpll |= DPLL_VCO_ENABLE;
5772 crtc->config.dpll_hw_state.dpll = dpll;
5773
5774 if (INTEL_INFO(dev)->gen >= 4) {
5775 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5776 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5777 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5778 }
5779 }
5780
5781 static void i8xx_update_pll(struct intel_crtc *crtc,
5782 intel_clock_t *reduced_clock,
5783 int num_connectors)
5784 {
5785 struct drm_device *dev = crtc->base.dev;
5786 struct drm_i915_private *dev_priv = dev->dev_private;
5787 u32 dpll;
5788 struct dpll *clock = &crtc->config.dpll;
5789
5790 i9xx_update_pll_dividers(crtc, reduced_clock);
5791
5792 dpll = DPLL_VGA_MODE_DIS;
5793
5794 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5795 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5796 } else {
5797 if (clock->p1 == 2)
5798 dpll |= PLL_P1_DIVIDE_BY_TWO;
5799 else
5800 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5801 if (clock->p2 == 4)
5802 dpll |= PLL_P2_DIVIDE_BY_4;
5803 }
5804
5805 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5806 dpll |= DPLL_DVO_2X_MODE;
5807
5808 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5809 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5810 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5811 else
5812 dpll |= PLL_REF_INPUT_DREFCLK;
5813
5814 dpll |= DPLL_VCO_ENABLE;
5815 crtc->config.dpll_hw_state.dpll = dpll;
5816 }
5817
5818 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5819 {
5820 struct drm_device *dev = intel_crtc->base.dev;
5821 struct drm_i915_private *dev_priv = dev->dev_private;
5822 enum pipe pipe = intel_crtc->pipe;
5823 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5824 struct drm_display_mode *adjusted_mode =
5825 &intel_crtc->config.adjusted_mode;
5826 uint32_t crtc_vtotal, crtc_vblank_end;
5827 int vsyncshift = 0;
5828
5829 /* We need to be careful not to changed the adjusted mode, for otherwise
5830 * the hw state checker will get angry at the mismatch. */
5831 crtc_vtotal = adjusted_mode->crtc_vtotal;
5832 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5833
5834 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5835 /* the chip adds 2 halflines automatically */
5836 crtc_vtotal -= 1;
5837 crtc_vblank_end -= 1;
5838
5839 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5840 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5841 else
5842 vsyncshift = adjusted_mode->crtc_hsync_start -
5843 adjusted_mode->crtc_htotal / 2;
5844 if (vsyncshift < 0)
5845 vsyncshift += adjusted_mode->crtc_htotal;
5846 }
5847
5848 if (INTEL_INFO(dev)->gen > 3)
5849 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5850
5851 I915_WRITE(HTOTAL(cpu_transcoder),
5852 (adjusted_mode->crtc_hdisplay - 1) |
5853 ((adjusted_mode->crtc_htotal - 1) << 16));
5854 I915_WRITE(HBLANK(cpu_transcoder),
5855 (adjusted_mode->crtc_hblank_start - 1) |
5856 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5857 I915_WRITE(HSYNC(cpu_transcoder),
5858 (adjusted_mode->crtc_hsync_start - 1) |
5859 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5860
5861 I915_WRITE(VTOTAL(cpu_transcoder),
5862 (adjusted_mode->crtc_vdisplay - 1) |
5863 ((crtc_vtotal - 1) << 16));
5864 I915_WRITE(VBLANK(cpu_transcoder),
5865 (adjusted_mode->crtc_vblank_start - 1) |
5866 ((crtc_vblank_end - 1) << 16));
5867 I915_WRITE(VSYNC(cpu_transcoder),
5868 (adjusted_mode->crtc_vsync_start - 1) |
5869 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5870
5871 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5872 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5873 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5874 * bits. */
5875 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5876 (pipe == PIPE_B || pipe == PIPE_C))
5877 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5878
5879 /* pipesrc controls the size that is scaled from, which should
5880 * always be the user's requested size.
5881 */
5882 I915_WRITE(PIPESRC(pipe),
5883 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5884 (intel_crtc->config.pipe_src_h - 1));
5885 }
5886
5887 static void intel_get_pipe_timings(struct intel_crtc *crtc,
5888 struct intel_crtc_config *pipe_config)
5889 {
5890 struct drm_device *dev = crtc->base.dev;
5891 struct drm_i915_private *dev_priv = dev->dev_private;
5892 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5893 uint32_t tmp;
5894
5895 tmp = I915_READ(HTOTAL(cpu_transcoder));
5896 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5897 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5898 tmp = I915_READ(HBLANK(cpu_transcoder));
5899 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5900 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5901 tmp = I915_READ(HSYNC(cpu_transcoder));
5902 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5903 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5904
5905 tmp = I915_READ(VTOTAL(cpu_transcoder));
5906 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5907 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5908 tmp = I915_READ(VBLANK(cpu_transcoder));
5909 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5910 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5911 tmp = I915_READ(VSYNC(cpu_transcoder));
5912 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5913 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5914
5915 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5916 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5917 pipe_config->adjusted_mode.crtc_vtotal += 1;
5918 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5919 }
5920
5921 tmp = I915_READ(PIPESRC(crtc->pipe));
5922 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5923 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5924
5925 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5926 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5927 }
5928
5929 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5930 struct intel_crtc_config *pipe_config)
5931 {
5932 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5933 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5934 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5935 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5936
5937 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5938 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5939 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5940 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5941
5942 mode->flags = pipe_config->adjusted_mode.flags;
5943
5944 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5945 mode->flags |= pipe_config->adjusted_mode.flags;
5946 }
5947
5948 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5949 {
5950 struct drm_device *dev = intel_crtc->base.dev;
5951 struct drm_i915_private *dev_priv = dev->dev_private;
5952 uint32_t pipeconf;
5953
5954 pipeconf = 0;
5955
5956 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5957 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5958 pipeconf |= PIPECONF_ENABLE;
5959
5960 if (intel_crtc->config.double_wide)
5961 pipeconf |= PIPECONF_DOUBLE_WIDE;
5962
5963 /* only g4x and later have fancy bpc/dither controls */
5964 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5965 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5966 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5967 pipeconf |= PIPECONF_DITHER_EN |
5968 PIPECONF_DITHER_TYPE_SP;
5969
5970 switch (intel_crtc->config.pipe_bpp) {
5971 case 18:
5972 pipeconf |= PIPECONF_6BPC;
5973 break;
5974 case 24:
5975 pipeconf |= PIPECONF_8BPC;
5976 break;
5977 case 30:
5978 pipeconf |= PIPECONF_10BPC;
5979 break;
5980 default:
5981 /* Case prevented by intel_choose_pipe_bpp_dither. */
5982 BUG();
5983 }
5984 }
5985
5986 if (HAS_PIPE_CXSR(dev)) {
5987 if (intel_crtc->lowfreq_avail) {
5988 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5989 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5990 } else {
5991 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5992 }
5993 }
5994
5995 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
5996 if (INTEL_INFO(dev)->gen < 4 ||
5997 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5998 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5999 else
6000 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6001 } else
6002 pipeconf |= PIPECONF_PROGRESSIVE;
6003
6004 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6005 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6006
6007 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6008 POSTING_READ(PIPECONF(intel_crtc->pipe));
6009 }
6010
6011 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
6012 int x, int y,
6013 struct drm_framebuffer *fb)
6014 {
6015 struct drm_device *dev = crtc->dev;
6016 struct drm_i915_private *dev_priv = dev->dev_private;
6017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6018 int refclk, num_connectors = 0;
6019 intel_clock_t clock, reduced_clock;
6020 bool ok, has_reduced_clock = false;
6021 bool is_lvds = false, is_dsi = false;
6022 struct intel_encoder *encoder;
6023 const intel_limit_t *limit;
6024
6025 for_each_encoder_on_crtc(dev, crtc, encoder) {
6026 switch (encoder->type) {
6027 case INTEL_OUTPUT_LVDS:
6028 is_lvds = true;
6029 break;
6030 case INTEL_OUTPUT_DSI:
6031 is_dsi = true;
6032 break;
6033 }
6034
6035 num_connectors++;
6036 }
6037
6038 if (is_dsi)
6039 return 0;
6040
6041 if (!intel_crtc->config.clock_set) {
6042 refclk = i9xx_get_refclk(crtc, num_connectors);
6043
6044 /*
6045 * Returns a set of divisors for the desired target clock with
6046 * the given refclk, or FALSE. The returned values represent
6047 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6048 * 2) / p1 / p2.
6049 */
6050 limit = intel_limit(crtc, refclk);
6051 ok = dev_priv->display.find_dpll(limit, crtc,
6052 intel_crtc->config.port_clock,
6053 refclk, NULL, &clock);
6054 if (!ok) {
6055 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6056 return -EINVAL;
6057 }
6058
6059 if (is_lvds && dev_priv->lvds_downclock_avail) {
6060 /*
6061 * Ensure we match the reduced clock's P to the target
6062 * clock. If the clocks don't match, we can't switch
6063 * the display clock by using the FP0/FP1. In such case
6064 * we will disable the LVDS downclock feature.
6065 */
6066 has_reduced_clock =
6067 dev_priv->display.find_dpll(limit, crtc,
6068 dev_priv->lvds_downclock,
6069 refclk, &clock,
6070 &reduced_clock);
6071 }
6072 /* Compat-code for transition, will disappear. */
6073 intel_crtc->config.dpll.n = clock.n;
6074 intel_crtc->config.dpll.m1 = clock.m1;
6075 intel_crtc->config.dpll.m2 = clock.m2;
6076 intel_crtc->config.dpll.p1 = clock.p1;
6077 intel_crtc->config.dpll.p2 = clock.p2;
6078 }
6079
6080 if (IS_GEN2(dev)) {
6081 i8xx_update_pll(intel_crtc,
6082 has_reduced_clock ? &reduced_clock : NULL,
6083 num_connectors);
6084 } else if (IS_CHERRYVIEW(dev)) {
6085 chv_update_pll(intel_crtc);
6086 } else if (IS_VALLEYVIEW(dev)) {
6087 vlv_update_pll(intel_crtc);
6088 } else {
6089 i9xx_update_pll(intel_crtc,
6090 has_reduced_clock ? &reduced_clock : NULL,
6091 num_connectors);
6092 }
6093
6094 return 0;
6095 }
6096
6097 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6098 struct intel_crtc_config *pipe_config)
6099 {
6100 struct drm_device *dev = crtc->base.dev;
6101 struct drm_i915_private *dev_priv = dev->dev_private;
6102 uint32_t tmp;
6103
6104 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6105 return;
6106
6107 tmp = I915_READ(PFIT_CONTROL);
6108 if (!(tmp & PFIT_ENABLE))
6109 return;
6110
6111 /* Check whether the pfit is attached to our pipe. */
6112 if (INTEL_INFO(dev)->gen < 4) {
6113 if (crtc->pipe != PIPE_B)
6114 return;
6115 } else {
6116 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6117 return;
6118 }
6119
6120 pipe_config->gmch_pfit.control = tmp;
6121 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6122 if (INTEL_INFO(dev)->gen < 5)
6123 pipe_config->gmch_pfit.lvds_border_bits =
6124 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6125 }
6126
6127 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6128 struct intel_crtc_config *pipe_config)
6129 {
6130 struct drm_device *dev = crtc->base.dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 int pipe = pipe_config->cpu_transcoder;
6133 intel_clock_t clock;
6134 u32 mdiv;
6135 int refclk = 100000;
6136
6137 mutex_lock(&dev_priv->dpio_lock);
6138 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6139 mutex_unlock(&dev_priv->dpio_lock);
6140
6141 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6142 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6143 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6144 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6145 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6146
6147 vlv_clock(refclk, &clock);
6148
6149 /* clock.dot is the fast clock */
6150 pipe_config->port_clock = clock.dot / 5;
6151 }
6152
6153 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6154 struct intel_plane_config *plane_config)
6155 {
6156 struct drm_device *dev = crtc->base.dev;
6157 struct drm_i915_private *dev_priv = dev->dev_private;
6158 u32 val, base, offset;
6159 int pipe = crtc->pipe, plane = crtc->plane;
6160 int fourcc, pixel_format;
6161 int aligned_height;
6162
6163 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6164 if (!crtc->base.primary->fb) {
6165 DRM_DEBUG_KMS("failed to alloc fb\n");
6166 return;
6167 }
6168
6169 val = I915_READ(DSPCNTR(plane));
6170
6171 if (INTEL_INFO(dev)->gen >= 4)
6172 if (val & DISPPLANE_TILED)
6173 plane_config->tiled = true;
6174
6175 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6176 fourcc = intel_format_to_fourcc(pixel_format);
6177 crtc->base.primary->fb->pixel_format = fourcc;
6178 crtc->base.primary->fb->bits_per_pixel =
6179 drm_format_plane_cpp(fourcc, 0) * 8;
6180
6181 if (INTEL_INFO(dev)->gen >= 4) {
6182 if (plane_config->tiled)
6183 offset = I915_READ(DSPTILEOFF(plane));
6184 else
6185 offset = I915_READ(DSPLINOFF(plane));
6186 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6187 } else {
6188 base = I915_READ(DSPADDR(plane));
6189 }
6190 plane_config->base = base;
6191
6192 val = I915_READ(PIPESRC(pipe));
6193 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6194 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
6195
6196 val = I915_READ(DSPSTRIDE(pipe));
6197 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
6198
6199 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
6200 plane_config->tiled);
6201
6202 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6203 aligned_height);
6204
6205 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6206 pipe, plane, crtc->base.primary->fb->width,
6207 crtc->base.primary->fb->height,
6208 crtc->base.primary->fb->bits_per_pixel, base,
6209 crtc->base.primary->fb->pitches[0],
6210 plane_config->size);
6211
6212 }
6213
6214 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6215 struct intel_crtc_config *pipe_config)
6216 {
6217 struct drm_device *dev = crtc->base.dev;
6218 struct drm_i915_private *dev_priv = dev->dev_private;
6219 int pipe = pipe_config->cpu_transcoder;
6220 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6221 intel_clock_t clock;
6222 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6223 int refclk = 100000;
6224
6225 mutex_lock(&dev_priv->dpio_lock);
6226 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6227 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6228 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6229 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6230 mutex_unlock(&dev_priv->dpio_lock);
6231
6232 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6233 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6234 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6235 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6236 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6237
6238 chv_clock(refclk, &clock);
6239
6240 /* clock.dot is the fast clock */
6241 pipe_config->port_clock = clock.dot / 5;
6242 }
6243
6244 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6245 struct intel_crtc_config *pipe_config)
6246 {
6247 struct drm_device *dev = crtc->base.dev;
6248 struct drm_i915_private *dev_priv = dev->dev_private;
6249 uint32_t tmp;
6250
6251 if (!intel_display_power_enabled(dev_priv,
6252 POWER_DOMAIN_PIPE(crtc->pipe)))
6253 return false;
6254
6255 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6256 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6257
6258 tmp = I915_READ(PIPECONF(crtc->pipe));
6259 if (!(tmp & PIPECONF_ENABLE))
6260 return false;
6261
6262 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6263 switch (tmp & PIPECONF_BPC_MASK) {
6264 case PIPECONF_6BPC:
6265 pipe_config->pipe_bpp = 18;
6266 break;
6267 case PIPECONF_8BPC:
6268 pipe_config->pipe_bpp = 24;
6269 break;
6270 case PIPECONF_10BPC:
6271 pipe_config->pipe_bpp = 30;
6272 break;
6273 default:
6274 break;
6275 }
6276 }
6277
6278 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6279 pipe_config->limited_color_range = true;
6280
6281 if (INTEL_INFO(dev)->gen < 4)
6282 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6283
6284 intel_get_pipe_timings(crtc, pipe_config);
6285
6286 i9xx_get_pfit_config(crtc, pipe_config);
6287
6288 if (INTEL_INFO(dev)->gen >= 4) {
6289 tmp = I915_READ(DPLL_MD(crtc->pipe));
6290 pipe_config->pixel_multiplier =
6291 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6292 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6293 pipe_config->dpll_hw_state.dpll_md = tmp;
6294 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6295 tmp = I915_READ(DPLL(crtc->pipe));
6296 pipe_config->pixel_multiplier =
6297 ((tmp & SDVO_MULTIPLIER_MASK)
6298 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6299 } else {
6300 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6301 * port and will be fixed up in the encoder->get_config
6302 * function. */
6303 pipe_config->pixel_multiplier = 1;
6304 }
6305 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6306 if (!IS_VALLEYVIEW(dev)) {
6307 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6308 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6309 } else {
6310 /* Mask out read-only status bits. */
6311 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6312 DPLL_PORTC_READY_MASK |
6313 DPLL_PORTB_READY_MASK);
6314 }
6315
6316 if (IS_CHERRYVIEW(dev))
6317 chv_crtc_clock_get(crtc, pipe_config);
6318 else if (IS_VALLEYVIEW(dev))
6319 vlv_crtc_clock_get(crtc, pipe_config);
6320 else
6321 i9xx_crtc_clock_get(crtc, pipe_config);
6322
6323 return true;
6324 }
6325
6326 static void ironlake_init_pch_refclk(struct drm_device *dev)
6327 {
6328 struct drm_i915_private *dev_priv = dev->dev_private;
6329 struct drm_mode_config *mode_config = &dev->mode_config;
6330 struct intel_encoder *encoder;
6331 u32 val, final;
6332 bool has_lvds = false;
6333 bool has_cpu_edp = false;
6334 bool has_panel = false;
6335 bool has_ck505 = false;
6336 bool can_ssc = false;
6337
6338 /* We need to take the global config into account */
6339 list_for_each_entry(encoder, &mode_config->encoder_list,
6340 base.head) {
6341 switch (encoder->type) {
6342 case INTEL_OUTPUT_LVDS:
6343 has_panel = true;
6344 has_lvds = true;
6345 break;
6346 case INTEL_OUTPUT_EDP:
6347 has_panel = true;
6348 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6349 has_cpu_edp = true;
6350 break;
6351 }
6352 }
6353
6354 if (HAS_PCH_IBX(dev)) {
6355 has_ck505 = dev_priv->vbt.display_clock_mode;
6356 can_ssc = has_ck505;
6357 } else {
6358 has_ck505 = false;
6359 can_ssc = true;
6360 }
6361
6362 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6363 has_panel, has_lvds, has_ck505);
6364
6365 /* Ironlake: try to setup display ref clock before DPLL
6366 * enabling. This is only under driver's control after
6367 * PCH B stepping, previous chipset stepping should be
6368 * ignoring this setting.
6369 */
6370 val = I915_READ(PCH_DREF_CONTROL);
6371
6372 /* As we must carefully and slowly disable/enable each source in turn,
6373 * compute the final state we want first and check if we need to
6374 * make any changes at all.
6375 */
6376 final = val;
6377 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6378 if (has_ck505)
6379 final |= DREF_NONSPREAD_CK505_ENABLE;
6380 else
6381 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6382
6383 final &= ~DREF_SSC_SOURCE_MASK;
6384 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6385 final &= ~DREF_SSC1_ENABLE;
6386
6387 if (has_panel) {
6388 final |= DREF_SSC_SOURCE_ENABLE;
6389
6390 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6391 final |= DREF_SSC1_ENABLE;
6392
6393 if (has_cpu_edp) {
6394 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6395 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6396 else
6397 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6398 } else
6399 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6400 } else {
6401 final |= DREF_SSC_SOURCE_DISABLE;
6402 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6403 }
6404
6405 if (final == val)
6406 return;
6407
6408 /* Always enable nonspread source */
6409 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6410
6411 if (has_ck505)
6412 val |= DREF_NONSPREAD_CK505_ENABLE;
6413 else
6414 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6415
6416 if (has_panel) {
6417 val &= ~DREF_SSC_SOURCE_MASK;
6418 val |= DREF_SSC_SOURCE_ENABLE;
6419
6420 /* SSC must be turned on before enabling the CPU output */
6421 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6422 DRM_DEBUG_KMS("Using SSC on panel\n");
6423 val |= DREF_SSC1_ENABLE;
6424 } else
6425 val &= ~DREF_SSC1_ENABLE;
6426
6427 /* Get SSC going before enabling the outputs */
6428 I915_WRITE(PCH_DREF_CONTROL, val);
6429 POSTING_READ(PCH_DREF_CONTROL);
6430 udelay(200);
6431
6432 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6433
6434 /* Enable CPU source on CPU attached eDP */
6435 if (has_cpu_edp) {
6436 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6437 DRM_DEBUG_KMS("Using SSC on eDP\n");
6438 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6439 } else
6440 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6441 } else
6442 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6443
6444 I915_WRITE(PCH_DREF_CONTROL, val);
6445 POSTING_READ(PCH_DREF_CONTROL);
6446 udelay(200);
6447 } else {
6448 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6449
6450 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6451
6452 /* Turn off CPU output */
6453 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6454
6455 I915_WRITE(PCH_DREF_CONTROL, val);
6456 POSTING_READ(PCH_DREF_CONTROL);
6457 udelay(200);
6458
6459 /* Turn off the SSC source */
6460 val &= ~DREF_SSC_SOURCE_MASK;
6461 val |= DREF_SSC_SOURCE_DISABLE;
6462
6463 /* Turn off SSC1 */
6464 val &= ~DREF_SSC1_ENABLE;
6465
6466 I915_WRITE(PCH_DREF_CONTROL, val);
6467 POSTING_READ(PCH_DREF_CONTROL);
6468 udelay(200);
6469 }
6470
6471 BUG_ON(val != final);
6472 }
6473
6474 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6475 {
6476 uint32_t tmp;
6477
6478 tmp = I915_READ(SOUTH_CHICKEN2);
6479 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6480 I915_WRITE(SOUTH_CHICKEN2, tmp);
6481
6482 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6483 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6484 DRM_ERROR("FDI mPHY reset assert timeout\n");
6485
6486 tmp = I915_READ(SOUTH_CHICKEN2);
6487 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6488 I915_WRITE(SOUTH_CHICKEN2, tmp);
6489
6490 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6491 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6492 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6493 }
6494
6495 /* WaMPhyProgramming:hsw */
6496 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6497 {
6498 uint32_t tmp;
6499
6500 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6501 tmp &= ~(0xFF << 24);
6502 tmp |= (0x12 << 24);
6503 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6504
6505 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6506 tmp |= (1 << 11);
6507 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6508
6509 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6510 tmp |= (1 << 11);
6511 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6512
6513 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6514 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6515 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6516
6517 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6518 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6519 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6520
6521 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6522 tmp &= ~(7 << 13);
6523 tmp |= (5 << 13);
6524 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6525
6526 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6527 tmp &= ~(7 << 13);
6528 tmp |= (5 << 13);
6529 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6530
6531 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6532 tmp &= ~0xFF;
6533 tmp |= 0x1C;
6534 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6535
6536 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6537 tmp &= ~0xFF;
6538 tmp |= 0x1C;
6539 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6540
6541 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6542 tmp &= ~(0xFF << 16);
6543 tmp |= (0x1C << 16);
6544 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6545
6546 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6547 tmp &= ~(0xFF << 16);
6548 tmp |= (0x1C << 16);
6549 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6550
6551 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6552 tmp |= (1 << 27);
6553 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6554
6555 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6556 tmp |= (1 << 27);
6557 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6558
6559 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6560 tmp &= ~(0xF << 28);
6561 tmp |= (4 << 28);
6562 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6563
6564 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6565 tmp &= ~(0xF << 28);
6566 tmp |= (4 << 28);
6567 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6568 }
6569
6570 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6571 * Programming" based on the parameters passed:
6572 * - Sequence to enable CLKOUT_DP
6573 * - Sequence to enable CLKOUT_DP without spread
6574 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6575 */
6576 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6577 bool with_fdi)
6578 {
6579 struct drm_i915_private *dev_priv = dev->dev_private;
6580 uint32_t reg, tmp;
6581
6582 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6583 with_spread = true;
6584 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6585 with_fdi, "LP PCH doesn't have FDI\n"))
6586 with_fdi = false;
6587
6588 mutex_lock(&dev_priv->dpio_lock);
6589
6590 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6591 tmp &= ~SBI_SSCCTL_DISABLE;
6592 tmp |= SBI_SSCCTL_PATHALT;
6593 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6594
6595 udelay(24);
6596
6597 if (with_spread) {
6598 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6599 tmp &= ~SBI_SSCCTL_PATHALT;
6600 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6601
6602 if (with_fdi) {
6603 lpt_reset_fdi_mphy(dev_priv);
6604 lpt_program_fdi_mphy(dev_priv);
6605 }
6606 }
6607
6608 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6609 SBI_GEN0 : SBI_DBUFF0;
6610 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6611 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6612 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6613
6614 mutex_unlock(&dev_priv->dpio_lock);
6615 }
6616
6617 /* Sequence to disable CLKOUT_DP */
6618 static void lpt_disable_clkout_dp(struct drm_device *dev)
6619 {
6620 struct drm_i915_private *dev_priv = dev->dev_private;
6621 uint32_t reg, tmp;
6622
6623 mutex_lock(&dev_priv->dpio_lock);
6624
6625 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6626 SBI_GEN0 : SBI_DBUFF0;
6627 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6628 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6629 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6630
6631 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6632 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6633 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6634 tmp |= SBI_SSCCTL_PATHALT;
6635 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6636 udelay(32);
6637 }
6638 tmp |= SBI_SSCCTL_DISABLE;
6639 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6640 }
6641
6642 mutex_unlock(&dev_priv->dpio_lock);
6643 }
6644
6645 static void lpt_init_pch_refclk(struct drm_device *dev)
6646 {
6647 struct drm_mode_config *mode_config = &dev->mode_config;
6648 struct intel_encoder *encoder;
6649 bool has_vga = false;
6650
6651 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6652 switch (encoder->type) {
6653 case INTEL_OUTPUT_ANALOG:
6654 has_vga = true;
6655 break;
6656 }
6657 }
6658
6659 if (has_vga)
6660 lpt_enable_clkout_dp(dev, true, true);
6661 else
6662 lpt_disable_clkout_dp(dev);
6663 }
6664
6665 /*
6666 * Initialize reference clocks when the driver loads
6667 */
6668 void intel_init_pch_refclk(struct drm_device *dev)
6669 {
6670 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6671 ironlake_init_pch_refclk(dev);
6672 else if (HAS_PCH_LPT(dev))
6673 lpt_init_pch_refclk(dev);
6674 }
6675
6676 static int ironlake_get_refclk(struct drm_crtc *crtc)
6677 {
6678 struct drm_device *dev = crtc->dev;
6679 struct drm_i915_private *dev_priv = dev->dev_private;
6680 struct intel_encoder *encoder;
6681 int num_connectors = 0;
6682 bool is_lvds = false;
6683
6684 for_each_encoder_on_crtc(dev, crtc, encoder) {
6685 switch (encoder->type) {
6686 case INTEL_OUTPUT_LVDS:
6687 is_lvds = true;
6688 break;
6689 }
6690 num_connectors++;
6691 }
6692
6693 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6694 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
6695 dev_priv->vbt.lvds_ssc_freq);
6696 return dev_priv->vbt.lvds_ssc_freq;
6697 }
6698
6699 return 120000;
6700 }
6701
6702 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
6703 {
6704 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
6705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6706 int pipe = intel_crtc->pipe;
6707 uint32_t val;
6708
6709 val = 0;
6710
6711 switch (intel_crtc->config.pipe_bpp) {
6712 case 18:
6713 val |= PIPECONF_6BPC;
6714 break;
6715 case 24:
6716 val |= PIPECONF_8BPC;
6717 break;
6718 case 30:
6719 val |= PIPECONF_10BPC;
6720 break;
6721 case 36:
6722 val |= PIPECONF_12BPC;
6723 break;
6724 default:
6725 /* Case prevented by intel_choose_pipe_bpp_dither. */
6726 BUG();
6727 }
6728
6729 if (intel_crtc->config.dither)
6730 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6731
6732 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6733 val |= PIPECONF_INTERLACED_ILK;
6734 else
6735 val |= PIPECONF_PROGRESSIVE;
6736
6737 if (intel_crtc->config.limited_color_range)
6738 val |= PIPECONF_COLOR_RANGE_SELECT;
6739
6740 I915_WRITE(PIPECONF(pipe), val);
6741 POSTING_READ(PIPECONF(pipe));
6742 }
6743
6744 /*
6745 * Set up the pipe CSC unit.
6746 *
6747 * Currently only full range RGB to limited range RGB conversion
6748 * is supported, but eventually this should handle various
6749 * RGB<->YCbCr scenarios as well.
6750 */
6751 static void intel_set_pipe_csc(struct drm_crtc *crtc)
6752 {
6753 struct drm_device *dev = crtc->dev;
6754 struct drm_i915_private *dev_priv = dev->dev_private;
6755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6756 int pipe = intel_crtc->pipe;
6757 uint16_t coeff = 0x7800; /* 1.0 */
6758
6759 /*
6760 * TODO: Check what kind of values actually come out of the pipe
6761 * with these coeff/postoff values and adjust to get the best
6762 * accuracy. Perhaps we even need to take the bpc value into
6763 * consideration.
6764 */
6765
6766 if (intel_crtc->config.limited_color_range)
6767 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6768
6769 /*
6770 * GY/GU and RY/RU should be the other way around according
6771 * to BSpec, but reality doesn't agree. Just set them up in
6772 * a way that results in the correct picture.
6773 */
6774 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6775 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6776
6777 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6778 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6779
6780 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6781 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6782
6783 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6784 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6785 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6786
6787 if (INTEL_INFO(dev)->gen > 6) {
6788 uint16_t postoff = 0;
6789
6790 if (intel_crtc->config.limited_color_range)
6791 postoff = (16 * (1 << 12) / 255) & 0x1fff;
6792
6793 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6794 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6795 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6796
6797 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6798 } else {
6799 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6800
6801 if (intel_crtc->config.limited_color_range)
6802 mode |= CSC_BLACK_SCREEN_OFFSET;
6803
6804 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6805 }
6806 }
6807
6808 static void haswell_set_pipeconf(struct drm_crtc *crtc)
6809 {
6810 struct drm_device *dev = crtc->dev;
6811 struct drm_i915_private *dev_priv = dev->dev_private;
6812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6813 enum pipe pipe = intel_crtc->pipe;
6814 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6815 uint32_t val;
6816
6817 val = 0;
6818
6819 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6820 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6821
6822 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6823 val |= PIPECONF_INTERLACED_ILK;
6824 else
6825 val |= PIPECONF_PROGRESSIVE;
6826
6827 I915_WRITE(PIPECONF(cpu_transcoder), val);
6828 POSTING_READ(PIPECONF(cpu_transcoder));
6829
6830 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6831 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6832
6833 if (IS_BROADWELL(dev)) {
6834 val = 0;
6835
6836 switch (intel_crtc->config.pipe_bpp) {
6837 case 18:
6838 val |= PIPEMISC_DITHER_6_BPC;
6839 break;
6840 case 24:
6841 val |= PIPEMISC_DITHER_8_BPC;
6842 break;
6843 case 30:
6844 val |= PIPEMISC_DITHER_10_BPC;
6845 break;
6846 case 36:
6847 val |= PIPEMISC_DITHER_12_BPC;
6848 break;
6849 default:
6850 /* Case prevented by pipe_config_set_bpp. */
6851 BUG();
6852 }
6853
6854 if (intel_crtc->config.dither)
6855 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6856
6857 I915_WRITE(PIPEMISC(pipe), val);
6858 }
6859 }
6860
6861 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6862 intel_clock_t *clock,
6863 bool *has_reduced_clock,
6864 intel_clock_t *reduced_clock)
6865 {
6866 struct drm_device *dev = crtc->dev;
6867 struct drm_i915_private *dev_priv = dev->dev_private;
6868 struct intel_encoder *intel_encoder;
6869 int refclk;
6870 const intel_limit_t *limit;
6871 bool ret, is_lvds = false;
6872
6873 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6874 switch (intel_encoder->type) {
6875 case INTEL_OUTPUT_LVDS:
6876 is_lvds = true;
6877 break;
6878 }
6879 }
6880
6881 refclk = ironlake_get_refclk(crtc);
6882
6883 /*
6884 * Returns a set of divisors for the desired target clock with the given
6885 * refclk, or FALSE. The returned values represent the clock equation:
6886 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6887 */
6888 limit = intel_limit(crtc, refclk);
6889 ret = dev_priv->display.find_dpll(limit, crtc,
6890 to_intel_crtc(crtc)->config.port_clock,
6891 refclk, NULL, clock);
6892 if (!ret)
6893 return false;
6894
6895 if (is_lvds && dev_priv->lvds_downclock_avail) {
6896 /*
6897 * Ensure we match the reduced clock's P to the target clock.
6898 * If the clocks don't match, we can't switch the display clock
6899 * by using the FP0/FP1. In such case we will disable the LVDS
6900 * downclock feature.
6901 */
6902 *has_reduced_clock =
6903 dev_priv->display.find_dpll(limit, crtc,
6904 dev_priv->lvds_downclock,
6905 refclk, clock,
6906 reduced_clock);
6907 }
6908
6909 return true;
6910 }
6911
6912 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6913 {
6914 /*
6915 * Account for spread spectrum to avoid
6916 * oversubscribing the link. Max center spread
6917 * is 2.5%; use 5% for safety's sake.
6918 */
6919 u32 bps = target_clock * bpp * 21 / 20;
6920 return DIV_ROUND_UP(bps, link_bw * 8);
6921 }
6922
6923 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6924 {
6925 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6926 }
6927
6928 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6929 u32 *fp,
6930 intel_clock_t *reduced_clock, u32 *fp2)
6931 {
6932 struct drm_crtc *crtc = &intel_crtc->base;
6933 struct drm_device *dev = crtc->dev;
6934 struct drm_i915_private *dev_priv = dev->dev_private;
6935 struct intel_encoder *intel_encoder;
6936 uint32_t dpll;
6937 int factor, num_connectors = 0;
6938 bool is_lvds = false, is_sdvo = false;
6939
6940 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6941 switch (intel_encoder->type) {
6942 case INTEL_OUTPUT_LVDS:
6943 is_lvds = true;
6944 break;
6945 case INTEL_OUTPUT_SDVO:
6946 case INTEL_OUTPUT_HDMI:
6947 is_sdvo = true;
6948 break;
6949 }
6950
6951 num_connectors++;
6952 }
6953
6954 /* Enable autotuning of the PLL clock (if permissible) */
6955 factor = 21;
6956 if (is_lvds) {
6957 if ((intel_panel_use_ssc(dev_priv) &&
6958 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6959 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6960 factor = 25;
6961 } else if (intel_crtc->config.sdvo_tv_clock)
6962 factor = 20;
6963
6964 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6965 *fp |= FP_CB_TUNE;
6966
6967 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6968 *fp2 |= FP_CB_TUNE;
6969
6970 dpll = 0;
6971
6972 if (is_lvds)
6973 dpll |= DPLLB_MODE_LVDS;
6974 else
6975 dpll |= DPLLB_MODE_DAC_SERIAL;
6976
6977 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6978 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6979
6980 if (is_sdvo)
6981 dpll |= DPLL_SDVO_HIGH_SPEED;
6982 if (intel_crtc->config.has_dp_encoder)
6983 dpll |= DPLL_SDVO_HIGH_SPEED;
6984
6985 /* compute bitmask from p1 value */
6986 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6987 /* also FPA1 */
6988 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6989
6990 switch (intel_crtc->config.dpll.p2) {
6991 case 5:
6992 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6993 break;
6994 case 7:
6995 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6996 break;
6997 case 10:
6998 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6999 break;
7000 case 14:
7001 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7002 break;
7003 }
7004
7005 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7006 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7007 else
7008 dpll |= PLL_REF_INPUT_DREFCLK;
7009
7010 return dpll | DPLL_VCO_ENABLE;
7011 }
7012
7013 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
7014 int x, int y,
7015 struct drm_framebuffer *fb)
7016 {
7017 struct drm_device *dev = crtc->dev;
7018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7019 int num_connectors = 0;
7020 intel_clock_t clock, reduced_clock;
7021 u32 dpll = 0, fp = 0, fp2 = 0;
7022 bool ok, has_reduced_clock = false;
7023 bool is_lvds = false;
7024 struct intel_encoder *encoder;
7025 struct intel_shared_dpll *pll;
7026
7027 for_each_encoder_on_crtc(dev, crtc, encoder) {
7028 switch (encoder->type) {
7029 case INTEL_OUTPUT_LVDS:
7030 is_lvds = true;
7031 break;
7032 }
7033
7034 num_connectors++;
7035 }
7036
7037 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7038 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7039
7040 ok = ironlake_compute_clocks(crtc, &clock,
7041 &has_reduced_clock, &reduced_clock);
7042 if (!ok && !intel_crtc->config.clock_set) {
7043 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7044 return -EINVAL;
7045 }
7046 /* Compat-code for transition, will disappear. */
7047 if (!intel_crtc->config.clock_set) {
7048 intel_crtc->config.dpll.n = clock.n;
7049 intel_crtc->config.dpll.m1 = clock.m1;
7050 intel_crtc->config.dpll.m2 = clock.m2;
7051 intel_crtc->config.dpll.p1 = clock.p1;
7052 intel_crtc->config.dpll.p2 = clock.p2;
7053 }
7054
7055 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7056 if (intel_crtc->config.has_pch_encoder) {
7057 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
7058 if (has_reduced_clock)
7059 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7060
7061 dpll = ironlake_compute_dpll(intel_crtc,
7062 &fp, &reduced_clock,
7063 has_reduced_clock ? &fp2 : NULL);
7064
7065 intel_crtc->config.dpll_hw_state.dpll = dpll;
7066 intel_crtc->config.dpll_hw_state.fp0 = fp;
7067 if (has_reduced_clock)
7068 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7069 else
7070 intel_crtc->config.dpll_hw_state.fp1 = fp;
7071
7072 pll = intel_get_shared_dpll(intel_crtc);
7073 if (pll == NULL) {
7074 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7075 pipe_name(intel_crtc->pipe));
7076 return -EINVAL;
7077 }
7078 } else
7079 intel_put_shared_dpll(intel_crtc);
7080
7081 if (is_lvds && has_reduced_clock && i915.powersave)
7082 intel_crtc->lowfreq_avail = true;
7083 else
7084 intel_crtc->lowfreq_avail = false;
7085
7086 return 0;
7087 }
7088
7089 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7090 struct intel_link_m_n *m_n)
7091 {
7092 struct drm_device *dev = crtc->base.dev;
7093 struct drm_i915_private *dev_priv = dev->dev_private;
7094 enum pipe pipe = crtc->pipe;
7095
7096 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7097 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7098 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7099 & ~TU_SIZE_MASK;
7100 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7101 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7102 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7103 }
7104
7105 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7106 enum transcoder transcoder,
7107 struct intel_link_m_n *m_n)
7108 {
7109 struct drm_device *dev = crtc->base.dev;
7110 struct drm_i915_private *dev_priv = dev->dev_private;
7111 enum pipe pipe = crtc->pipe;
7112
7113 if (INTEL_INFO(dev)->gen >= 5) {
7114 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7115 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7116 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7117 & ~TU_SIZE_MASK;
7118 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7119 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7120 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7121 } else {
7122 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7123 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7124 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7125 & ~TU_SIZE_MASK;
7126 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7127 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7128 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7129 }
7130 }
7131
7132 void intel_dp_get_m_n(struct intel_crtc *crtc,
7133 struct intel_crtc_config *pipe_config)
7134 {
7135 if (crtc->config.has_pch_encoder)
7136 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7137 else
7138 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7139 &pipe_config->dp_m_n);
7140 }
7141
7142 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7143 struct intel_crtc_config *pipe_config)
7144 {
7145 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7146 &pipe_config->fdi_m_n);
7147 }
7148
7149 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7150 struct intel_crtc_config *pipe_config)
7151 {
7152 struct drm_device *dev = crtc->base.dev;
7153 struct drm_i915_private *dev_priv = dev->dev_private;
7154 uint32_t tmp;
7155
7156 tmp = I915_READ(PF_CTL(crtc->pipe));
7157
7158 if (tmp & PF_ENABLE) {
7159 pipe_config->pch_pfit.enabled = true;
7160 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7161 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7162
7163 /* We currently do not free assignements of panel fitters on
7164 * ivb/hsw (since we don't use the higher upscaling modes which
7165 * differentiates them) so just WARN about this case for now. */
7166 if (IS_GEN7(dev)) {
7167 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7168 PF_PIPE_SEL_IVB(crtc->pipe));
7169 }
7170 }
7171 }
7172
7173 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7174 struct intel_plane_config *plane_config)
7175 {
7176 struct drm_device *dev = crtc->base.dev;
7177 struct drm_i915_private *dev_priv = dev->dev_private;
7178 u32 val, base, offset;
7179 int pipe = crtc->pipe, plane = crtc->plane;
7180 int fourcc, pixel_format;
7181 int aligned_height;
7182
7183 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7184 if (!crtc->base.primary->fb) {
7185 DRM_DEBUG_KMS("failed to alloc fb\n");
7186 return;
7187 }
7188
7189 val = I915_READ(DSPCNTR(plane));
7190
7191 if (INTEL_INFO(dev)->gen >= 4)
7192 if (val & DISPPLANE_TILED)
7193 plane_config->tiled = true;
7194
7195 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7196 fourcc = intel_format_to_fourcc(pixel_format);
7197 crtc->base.primary->fb->pixel_format = fourcc;
7198 crtc->base.primary->fb->bits_per_pixel =
7199 drm_format_plane_cpp(fourcc, 0) * 8;
7200
7201 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7202 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7203 offset = I915_READ(DSPOFFSET(plane));
7204 } else {
7205 if (plane_config->tiled)
7206 offset = I915_READ(DSPTILEOFF(plane));
7207 else
7208 offset = I915_READ(DSPLINOFF(plane));
7209 }
7210 plane_config->base = base;
7211
7212 val = I915_READ(PIPESRC(pipe));
7213 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7214 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
7215
7216 val = I915_READ(DSPSTRIDE(pipe));
7217 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
7218
7219 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
7220 plane_config->tiled);
7221
7222 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7223 aligned_height);
7224
7225 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7226 pipe, plane, crtc->base.primary->fb->width,
7227 crtc->base.primary->fb->height,
7228 crtc->base.primary->fb->bits_per_pixel, base,
7229 crtc->base.primary->fb->pitches[0],
7230 plane_config->size);
7231 }
7232
7233 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7234 struct intel_crtc_config *pipe_config)
7235 {
7236 struct drm_device *dev = crtc->base.dev;
7237 struct drm_i915_private *dev_priv = dev->dev_private;
7238 uint32_t tmp;
7239
7240 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7241 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7242
7243 tmp = I915_READ(PIPECONF(crtc->pipe));
7244 if (!(tmp & PIPECONF_ENABLE))
7245 return false;
7246
7247 switch (tmp & PIPECONF_BPC_MASK) {
7248 case PIPECONF_6BPC:
7249 pipe_config->pipe_bpp = 18;
7250 break;
7251 case PIPECONF_8BPC:
7252 pipe_config->pipe_bpp = 24;
7253 break;
7254 case PIPECONF_10BPC:
7255 pipe_config->pipe_bpp = 30;
7256 break;
7257 case PIPECONF_12BPC:
7258 pipe_config->pipe_bpp = 36;
7259 break;
7260 default:
7261 break;
7262 }
7263
7264 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7265 pipe_config->limited_color_range = true;
7266
7267 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7268 struct intel_shared_dpll *pll;
7269
7270 pipe_config->has_pch_encoder = true;
7271
7272 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7273 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7274 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7275
7276 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7277
7278 if (HAS_PCH_IBX(dev_priv->dev)) {
7279 pipe_config->shared_dpll =
7280 (enum intel_dpll_id) crtc->pipe;
7281 } else {
7282 tmp = I915_READ(PCH_DPLL_SEL);
7283 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7284 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7285 else
7286 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7287 }
7288
7289 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7290
7291 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7292 &pipe_config->dpll_hw_state));
7293
7294 tmp = pipe_config->dpll_hw_state.dpll;
7295 pipe_config->pixel_multiplier =
7296 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7297 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7298
7299 ironlake_pch_clock_get(crtc, pipe_config);
7300 } else {
7301 pipe_config->pixel_multiplier = 1;
7302 }
7303
7304 intel_get_pipe_timings(crtc, pipe_config);
7305
7306 ironlake_get_pfit_config(crtc, pipe_config);
7307
7308 return true;
7309 }
7310
7311 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7312 {
7313 struct drm_device *dev = dev_priv->dev;
7314 struct intel_crtc *crtc;
7315
7316 for_each_intel_crtc(dev, crtc)
7317 WARN(crtc->active, "CRTC for pipe %c enabled\n",
7318 pipe_name(crtc->pipe));
7319
7320 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7321 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7322 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7323 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7324 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7325 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7326 "CPU PWM1 enabled\n");
7327 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7328 "CPU PWM2 enabled\n");
7329 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7330 "PCH PWM1 enabled\n");
7331 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7332 "Utility pin enabled\n");
7333 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7334
7335 /*
7336 * In theory we can still leave IRQs enabled, as long as only the HPD
7337 * interrupts remain enabled. We used to check for that, but since it's
7338 * gen-specific and since we only disable LCPLL after we fully disable
7339 * the interrupts, the check below should be enough.
7340 */
7341 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
7342 }
7343
7344 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7345 {
7346 struct drm_device *dev = dev_priv->dev;
7347
7348 if (IS_HASWELL(dev))
7349 return I915_READ(D_COMP_HSW);
7350 else
7351 return I915_READ(D_COMP_BDW);
7352 }
7353
7354 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7355 {
7356 struct drm_device *dev = dev_priv->dev;
7357
7358 if (IS_HASWELL(dev)) {
7359 mutex_lock(&dev_priv->rps.hw_lock);
7360 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7361 val))
7362 DRM_ERROR("Failed to write to D_COMP\n");
7363 mutex_unlock(&dev_priv->rps.hw_lock);
7364 } else {
7365 I915_WRITE(D_COMP_BDW, val);
7366 POSTING_READ(D_COMP_BDW);
7367 }
7368 }
7369
7370 /*
7371 * This function implements pieces of two sequences from BSpec:
7372 * - Sequence for display software to disable LCPLL
7373 * - Sequence for display software to allow package C8+
7374 * The steps implemented here are just the steps that actually touch the LCPLL
7375 * register. Callers should take care of disabling all the display engine
7376 * functions, doing the mode unset, fixing interrupts, etc.
7377 */
7378 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7379 bool switch_to_fclk, bool allow_power_down)
7380 {
7381 uint32_t val;
7382
7383 assert_can_disable_lcpll(dev_priv);
7384
7385 val = I915_READ(LCPLL_CTL);
7386
7387 if (switch_to_fclk) {
7388 val |= LCPLL_CD_SOURCE_FCLK;
7389 I915_WRITE(LCPLL_CTL, val);
7390
7391 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7392 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7393 DRM_ERROR("Switching to FCLK failed\n");
7394
7395 val = I915_READ(LCPLL_CTL);
7396 }
7397
7398 val |= LCPLL_PLL_DISABLE;
7399 I915_WRITE(LCPLL_CTL, val);
7400 POSTING_READ(LCPLL_CTL);
7401
7402 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7403 DRM_ERROR("LCPLL still locked\n");
7404
7405 val = hsw_read_dcomp(dev_priv);
7406 val |= D_COMP_COMP_DISABLE;
7407 hsw_write_dcomp(dev_priv, val);
7408 ndelay(100);
7409
7410 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7411 1))
7412 DRM_ERROR("D_COMP RCOMP still in progress\n");
7413
7414 if (allow_power_down) {
7415 val = I915_READ(LCPLL_CTL);
7416 val |= LCPLL_POWER_DOWN_ALLOW;
7417 I915_WRITE(LCPLL_CTL, val);
7418 POSTING_READ(LCPLL_CTL);
7419 }
7420 }
7421
7422 /*
7423 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7424 * source.
7425 */
7426 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7427 {
7428 uint32_t val;
7429 unsigned long irqflags;
7430
7431 val = I915_READ(LCPLL_CTL);
7432
7433 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7434 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7435 return;
7436
7437 /*
7438 * Make sure we're not on PC8 state before disabling PC8, otherwise
7439 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7440 *
7441 * The other problem is that hsw_restore_lcpll() is called as part of
7442 * the runtime PM resume sequence, so we can't just call
7443 * gen6_gt_force_wake_get() because that function calls
7444 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7445 * while we are on the resume sequence. So to solve this problem we have
7446 * to call special forcewake code that doesn't touch runtime PM and
7447 * doesn't enable the forcewake delayed work.
7448 */
7449 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7450 if (dev_priv->uncore.forcewake_count++ == 0)
7451 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7452 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7453
7454 if (val & LCPLL_POWER_DOWN_ALLOW) {
7455 val &= ~LCPLL_POWER_DOWN_ALLOW;
7456 I915_WRITE(LCPLL_CTL, val);
7457 POSTING_READ(LCPLL_CTL);
7458 }
7459
7460 val = hsw_read_dcomp(dev_priv);
7461 val |= D_COMP_COMP_FORCE;
7462 val &= ~D_COMP_COMP_DISABLE;
7463 hsw_write_dcomp(dev_priv, val);
7464
7465 val = I915_READ(LCPLL_CTL);
7466 val &= ~LCPLL_PLL_DISABLE;
7467 I915_WRITE(LCPLL_CTL, val);
7468
7469 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7470 DRM_ERROR("LCPLL not locked yet\n");
7471
7472 if (val & LCPLL_CD_SOURCE_FCLK) {
7473 val = I915_READ(LCPLL_CTL);
7474 val &= ~LCPLL_CD_SOURCE_FCLK;
7475 I915_WRITE(LCPLL_CTL, val);
7476
7477 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7478 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7479 DRM_ERROR("Switching back to LCPLL failed\n");
7480 }
7481
7482 /* See the big comment above. */
7483 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7484 if (--dev_priv->uncore.forcewake_count == 0)
7485 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7486 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
7487 }
7488
7489 /*
7490 * Package states C8 and deeper are really deep PC states that can only be
7491 * reached when all the devices on the system allow it, so even if the graphics
7492 * device allows PC8+, it doesn't mean the system will actually get to these
7493 * states. Our driver only allows PC8+ when going into runtime PM.
7494 *
7495 * The requirements for PC8+ are that all the outputs are disabled, the power
7496 * well is disabled and most interrupts are disabled, and these are also
7497 * requirements for runtime PM. When these conditions are met, we manually do
7498 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7499 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7500 * hang the machine.
7501 *
7502 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7503 * the state of some registers, so when we come back from PC8+ we need to
7504 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7505 * need to take care of the registers kept by RC6. Notice that this happens even
7506 * if we don't put the device in PCI D3 state (which is what currently happens
7507 * because of the runtime PM support).
7508 *
7509 * For more, read "Display Sequences for Package C8" on the hardware
7510 * documentation.
7511 */
7512 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7513 {
7514 struct drm_device *dev = dev_priv->dev;
7515 uint32_t val;
7516
7517 DRM_DEBUG_KMS("Enabling package C8+\n");
7518
7519 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7520 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7521 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7522 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7523 }
7524
7525 lpt_disable_clkout_dp(dev);
7526 hsw_disable_lcpll(dev_priv, true, true);
7527 }
7528
7529 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7530 {
7531 struct drm_device *dev = dev_priv->dev;
7532 uint32_t val;
7533
7534 DRM_DEBUG_KMS("Disabling package C8+\n");
7535
7536 hsw_restore_lcpll(dev_priv);
7537 lpt_init_pch_refclk(dev);
7538
7539 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7540 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7541 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7542 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7543 }
7544
7545 intel_prepare_ddi(dev);
7546 }
7547
7548 static void snb_modeset_global_resources(struct drm_device *dev)
7549 {
7550 modeset_update_crtc_power_domains(dev);
7551 }
7552
7553 static void haswell_modeset_global_resources(struct drm_device *dev)
7554 {
7555 modeset_update_crtc_power_domains(dev);
7556 }
7557
7558 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
7559 int x, int y,
7560 struct drm_framebuffer *fb)
7561 {
7562 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7563
7564 if (!intel_ddi_pll_select(intel_crtc))
7565 return -EINVAL;
7566 intel_ddi_pll_enable(intel_crtc);
7567
7568 intel_crtc->lowfreq_avail = false;
7569
7570 return 0;
7571 }
7572
7573 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7574 struct intel_crtc_config *pipe_config)
7575 {
7576 struct drm_device *dev = crtc->base.dev;
7577 struct drm_i915_private *dev_priv = dev->dev_private;
7578 enum port port;
7579 uint32_t tmp;
7580
7581 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7582
7583 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7584
7585 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7586
7587 switch (pipe_config->ddi_pll_sel) {
7588 case PORT_CLK_SEL_WRPLL1:
7589 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7590 break;
7591 case PORT_CLK_SEL_WRPLL2:
7592 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7593 break;
7594 }
7595
7596 /*
7597 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7598 * DDI E. So just check whether this pipe is wired to DDI E and whether
7599 * the PCH transcoder is on.
7600 */
7601 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7602 pipe_config->has_pch_encoder = true;
7603
7604 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7605 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7606 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7607
7608 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7609 }
7610 }
7611
7612 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7613 struct intel_crtc_config *pipe_config)
7614 {
7615 struct drm_device *dev = crtc->base.dev;
7616 struct drm_i915_private *dev_priv = dev->dev_private;
7617 enum intel_display_power_domain pfit_domain;
7618 uint32_t tmp;
7619
7620 if (!intel_display_power_enabled(dev_priv,
7621 POWER_DOMAIN_PIPE(crtc->pipe)))
7622 return false;
7623
7624 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7625 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7626
7627 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7628 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7629 enum pipe trans_edp_pipe;
7630 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7631 default:
7632 WARN(1, "unknown pipe linked to edp transcoder\n");
7633 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7634 case TRANS_DDI_EDP_INPUT_A_ON:
7635 trans_edp_pipe = PIPE_A;
7636 break;
7637 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7638 trans_edp_pipe = PIPE_B;
7639 break;
7640 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7641 trans_edp_pipe = PIPE_C;
7642 break;
7643 }
7644
7645 if (trans_edp_pipe == crtc->pipe)
7646 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7647 }
7648
7649 if (!intel_display_power_enabled(dev_priv,
7650 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
7651 return false;
7652
7653 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
7654 if (!(tmp & PIPECONF_ENABLE))
7655 return false;
7656
7657 haswell_get_ddi_port_state(crtc, pipe_config);
7658
7659 intel_get_pipe_timings(crtc, pipe_config);
7660
7661 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7662 if (intel_display_power_enabled(dev_priv, pfit_domain))
7663 ironlake_get_pfit_config(crtc, pipe_config);
7664
7665 if (IS_HASWELL(dev))
7666 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7667 (I915_READ(IPS_CTL) & IPS_ENABLE);
7668
7669 pipe_config->pixel_multiplier = 1;
7670
7671 return true;
7672 }
7673
7674 static struct {
7675 int clock;
7676 u32 config;
7677 } hdmi_audio_clock[] = {
7678 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7679 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7680 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7681 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7682 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7683 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7684 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7685 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7686 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7687 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7688 };
7689
7690 /* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7691 static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7692 {
7693 int i;
7694
7695 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7696 if (mode->clock == hdmi_audio_clock[i].clock)
7697 break;
7698 }
7699
7700 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7701 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7702 i = 1;
7703 }
7704
7705 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7706 hdmi_audio_clock[i].clock,
7707 hdmi_audio_clock[i].config);
7708
7709 return hdmi_audio_clock[i].config;
7710 }
7711
7712 static bool intel_eld_uptodate(struct drm_connector *connector,
7713 int reg_eldv, uint32_t bits_eldv,
7714 int reg_elda, uint32_t bits_elda,
7715 int reg_edid)
7716 {
7717 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7718 uint8_t *eld = connector->eld;
7719 uint32_t i;
7720
7721 i = I915_READ(reg_eldv);
7722 i &= bits_eldv;
7723
7724 if (!eld[0])
7725 return !i;
7726
7727 if (!i)
7728 return false;
7729
7730 i = I915_READ(reg_elda);
7731 i &= ~bits_elda;
7732 I915_WRITE(reg_elda, i);
7733
7734 for (i = 0; i < eld[2]; i++)
7735 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7736 return false;
7737
7738 return true;
7739 }
7740
7741 static void g4x_write_eld(struct drm_connector *connector,
7742 struct drm_crtc *crtc,
7743 struct drm_display_mode *mode)
7744 {
7745 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7746 uint8_t *eld = connector->eld;
7747 uint32_t eldv;
7748 uint32_t len;
7749 uint32_t i;
7750
7751 i = I915_READ(G4X_AUD_VID_DID);
7752
7753 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7754 eldv = G4X_ELDV_DEVCL_DEVBLC;
7755 else
7756 eldv = G4X_ELDV_DEVCTG;
7757
7758 if (intel_eld_uptodate(connector,
7759 G4X_AUD_CNTL_ST, eldv,
7760 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7761 G4X_HDMIW_HDMIEDID))
7762 return;
7763
7764 i = I915_READ(G4X_AUD_CNTL_ST);
7765 i &= ~(eldv | G4X_ELD_ADDR);
7766 len = (i >> 9) & 0x1f; /* ELD buffer size */
7767 I915_WRITE(G4X_AUD_CNTL_ST, i);
7768
7769 if (!eld[0])
7770 return;
7771
7772 len = min_t(uint8_t, eld[2], len);
7773 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7774 for (i = 0; i < len; i++)
7775 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7776
7777 i = I915_READ(G4X_AUD_CNTL_ST);
7778 i |= eldv;
7779 I915_WRITE(G4X_AUD_CNTL_ST, i);
7780 }
7781
7782 static void haswell_write_eld(struct drm_connector *connector,
7783 struct drm_crtc *crtc,
7784 struct drm_display_mode *mode)
7785 {
7786 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7787 uint8_t *eld = connector->eld;
7788 uint32_t eldv;
7789 uint32_t i;
7790 int len;
7791 int pipe = to_intel_crtc(crtc)->pipe;
7792 int tmp;
7793
7794 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7795 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7796 int aud_config = HSW_AUD_CFG(pipe);
7797 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7798
7799 /* Audio output enable */
7800 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7801 tmp = I915_READ(aud_cntrl_st2);
7802 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7803 I915_WRITE(aud_cntrl_st2, tmp);
7804 POSTING_READ(aud_cntrl_st2);
7805
7806 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
7807
7808 /* Set ELD valid state */
7809 tmp = I915_READ(aud_cntrl_st2);
7810 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7811 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7812 I915_WRITE(aud_cntrl_st2, tmp);
7813 tmp = I915_READ(aud_cntrl_st2);
7814 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7815
7816 /* Enable HDMI mode */
7817 tmp = I915_READ(aud_config);
7818 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7819 /* clear N_programing_enable and N_value_index */
7820 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7821 I915_WRITE(aud_config, tmp);
7822
7823 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7824
7825 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7826
7827 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7828 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7829 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7830 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7831 } else {
7832 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7833 }
7834
7835 if (intel_eld_uptodate(connector,
7836 aud_cntrl_st2, eldv,
7837 aud_cntl_st, IBX_ELD_ADDRESS,
7838 hdmiw_hdmiedid))
7839 return;
7840
7841 i = I915_READ(aud_cntrl_st2);
7842 i &= ~eldv;
7843 I915_WRITE(aud_cntrl_st2, i);
7844
7845 if (!eld[0])
7846 return;
7847
7848 i = I915_READ(aud_cntl_st);
7849 i &= ~IBX_ELD_ADDRESS;
7850 I915_WRITE(aud_cntl_st, i);
7851 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7852 DRM_DEBUG_DRIVER("port num:%d\n", i);
7853
7854 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7855 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7856 for (i = 0; i < len; i++)
7857 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7858
7859 i = I915_READ(aud_cntrl_st2);
7860 i |= eldv;
7861 I915_WRITE(aud_cntrl_st2, i);
7862
7863 }
7864
7865 static void ironlake_write_eld(struct drm_connector *connector,
7866 struct drm_crtc *crtc,
7867 struct drm_display_mode *mode)
7868 {
7869 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7870 uint8_t *eld = connector->eld;
7871 uint32_t eldv;
7872 uint32_t i;
7873 int len;
7874 int hdmiw_hdmiedid;
7875 int aud_config;
7876 int aud_cntl_st;
7877 int aud_cntrl_st2;
7878 int pipe = to_intel_crtc(crtc)->pipe;
7879
7880 if (HAS_PCH_IBX(connector->dev)) {
7881 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7882 aud_config = IBX_AUD_CFG(pipe);
7883 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7884 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7885 } else if (IS_VALLEYVIEW(connector->dev)) {
7886 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7887 aud_config = VLV_AUD_CFG(pipe);
7888 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7889 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7890 } else {
7891 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7892 aud_config = CPT_AUD_CFG(pipe);
7893 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7894 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7895 }
7896
7897 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7898
7899 if (IS_VALLEYVIEW(connector->dev)) {
7900 struct intel_encoder *intel_encoder;
7901 struct intel_digital_port *intel_dig_port;
7902
7903 intel_encoder = intel_attached_encoder(connector);
7904 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7905 i = intel_dig_port->port;
7906 } else {
7907 i = I915_READ(aud_cntl_st);
7908 i = (i >> 29) & DIP_PORT_SEL_MASK;
7909 /* DIP_Port_Select, 0x1 = PortB */
7910 }
7911
7912 if (!i) {
7913 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7914 /* operate blindly on all ports */
7915 eldv = IBX_ELD_VALIDB;
7916 eldv |= IBX_ELD_VALIDB << 4;
7917 eldv |= IBX_ELD_VALIDB << 8;
7918 } else {
7919 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7920 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7921 }
7922
7923 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7924 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7925 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7926 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7927 } else {
7928 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7929 }
7930
7931 if (intel_eld_uptodate(connector,
7932 aud_cntrl_st2, eldv,
7933 aud_cntl_st, IBX_ELD_ADDRESS,
7934 hdmiw_hdmiedid))
7935 return;
7936
7937 i = I915_READ(aud_cntrl_st2);
7938 i &= ~eldv;
7939 I915_WRITE(aud_cntrl_st2, i);
7940
7941 if (!eld[0])
7942 return;
7943
7944 i = I915_READ(aud_cntl_st);
7945 i &= ~IBX_ELD_ADDRESS;
7946 I915_WRITE(aud_cntl_st, i);
7947
7948 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7949 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7950 for (i = 0; i < len; i++)
7951 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7952
7953 i = I915_READ(aud_cntrl_st2);
7954 i |= eldv;
7955 I915_WRITE(aud_cntrl_st2, i);
7956 }
7957
7958 void intel_write_eld(struct drm_encoder *encoder,
7959 struct drm_display_mode *mode)
7960 {
7961 struct drm_crtc *crtc = encoder->crtc;
7962 struct drm_connector *connector;
7963 struct drm_device *dev = encoder->dev;
7964 struct drm_i915_private *dev_priv = dev->dev_private;
7965
7966 connector = drm_select_eld(encoder, mode);
7967 if (!connector)
7968 return;
7969
7970 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7971 connector->base.id,
7972 connector->name,
7973 connector->encoder->base.id,
7974 connector->encoder->name);
7975
7976 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7977
7978 if (dev_priv->display.write_eld)
7979 dev_priv->display.write_eld(connector, crtc, mode);
7980 }
7981
7982 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7983 {
7984 struct drm_device *dev = crtc->dev;
7985 struct drm_i915_private *dev_priv = dev->dev_private;
7986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7987 uint32_t cntl;
7988
7989 if (base != intel_crtc->cursor_base) {
7990 /* On these chipsets we can only modify the base whilst
7991 * the cursor is disabled.
7992 */
7993 if (intel_crtc->cursor_cntl) {
7994 I915_WRITE(_CURACNTR, 0);
7995 POSTING_READ(_CURACNTR);
7996 intel_crtc->cursor_cntl = 0;
7997 }
7998
7999 I915_WRITE(_CURABASE, base);
8000 POSTING_READ(_CURABASE);
8001 }
8002
8003 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8004 cntl = 0;
8005 if (base)
8006 cntl = (CURSOR_ENABLE |
8007 CURSOR_GAMMA_ENABLE |
8008 CURSOR_FORMAT_ARGB);
8009 if (intel_crtc->cursor_cntl != cntl) {
8010 I915_WRITE(_CURACNTR, cntl);
8011 POSTING_READ(_CURACNTR);
8012 intel_crtc->cursor_cntl = cntl;
8013 }
8014 }
8015
8016 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8017 {
8018 struct drm_device *dev = crtc->dev;
8019 struct drm_i915_private *dev_priv = dev->dev_private;
8020 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8021 int pipe = intel_crtc->pipe;
8022 uint32_t cntl;
8023
8024 cntl = 0;
8025 if (base) {
8026 cntl = MCURSOR_GAMMA_ENABLE;
8027 switch (intel_crtc->cursor_width) {
8028 case 64:
8029 cntl |= CURSOR_MODE_64_ARGB_AX;
8030 break;
8031 case 128:
8032 cntl |= CURSOR_MODE_128_ARGB_AX;
8033 break;
8034 case 256:
8035 cntl |= CURSOR_MODE_256_ARGB_AX;
8036 break;
8037 default:
8038 WARN_ON(1);
8039 return;
8040 }
8041 cntl |= pipe << 28; /* Connect to correct pipe */
8042 }
8043 if (intel_crtc->cursor_cntl != cntl) {
8044 I915_WRITE(CURCNTR(pipe), cntl);
8045 POSTING_READ(CURCNTR(pipe));
8046 intel_crtc->cursor_cntl = cntl;
8047 }
8048
8049 /* and commit changes on next vblank */
8050 I915_WRITE(CURBASE(pipe), base);
8051 POSTING_READ(CURBASE(pipe));
8052 }
8053
8054 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8055 {
8056 struct drm_device *dev = crtc->dev;
8057 struct drm_i915_private *dev_priv = dev->dev_private;
8058 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8059 int pipe = intel_crtc->pipe;
8060 uint32_t cntl;
8061
8062 cntl = 0;
8063 if (base) {
8064 cntl = MCURSOR_GAMMA_ENABLE;
8065 switch (intel_crtc->cursor_width) {
8066 case 64:
8067 cntl |= CURSOR_MODE_64_ARGB_AX;
8068 break;
8069 case 128:
8070 cntl |= CURSOR_MODE_128_ARGB_AX;
8071 break;
8072 case 256:
8073 cntl |= CURSOR_MODE_256_ARGB_AX;
8074 break;
8075 default:
8076 WARN_ON(1);
8077 return;
8078 }
8079 }
8080 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8081 cntl |= CURSOR_PIPE_CSC_ENABLE;
8082
8083 if (intel_crtc->cursor_cntl != cntl) {
8084 I915_WRITE(CURCNTR(pipe), cntl);
8085 POSTING_READ(CURCNTR(pipe));
8086 intel_crtc->cursor_cntl = cntl;
8087 }
8088
8089 /* and commit changes on next vblank */
8090 I915_WRITE(CURBASE(pipe), base);
8091 POSTING_READ(CURBASE(pipe));
8092 }
8093
8094 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8095 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8096 bool on)
8097 {
8098 struct drm_device *dev = crtc->dev;
8099 struct drm_i915_private *dev_priv = dev->dev_private;
8100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8101 int pipe = intel_crtc->pipe;
8102 int x = crtc->cursor_x;
8103 int y = crtc->cursor_y;
8104 u32 base = 0, pos = 0;
8105
8106 if (on)
8107 base = intel_crtc->cursor_addr;
8108
8109 if (x >= intel_crtc->config.pipe_src_w)
8110 base = 0;
8111
8112 if (y >= intel_crtc->config.pipe_src_h)
8113 base = 0;
8114
8115 if (x < 0) {
8116 if (x + intel_crtc->cursor_width <= 0)
8117 base = 0;
8118
8119 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8120 x = -x;
8121 }
8122 pos |= x << CURSOR_X_SHIFT;
8123
8124 if (y < 0) {
8125 if (y + intel_crtc->cursor_height <= 0)
8126 base = 0;
8127
8128 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8129 y = -y;
8130 }
8131 pos |= y << CURSOR_Y_SHIFT;
8132
8133 if (base == 0 && intel_crtc->cursor_base == 0)
8134 return;
8135
8136 I915_WRITE(CURPOS(pipe), pos);
8137
8138 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
8139 ivb_update_cursor(crtc, base);
8140 else if (IS_845G(dev) || IS_I865G(dev))
8141 i845_update_cursor(crtc, base);
8142 else
8143 i9xx_update_cursor(crtc, base);
8144 intel_crtc->cursor_base = base;
8145 }
8146
8147 /*
8148 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8149 *
8150 * Note that the object's reference will be consumed if the update fails. If
8151 * the update succeeds, the reference of the old object (if any) will be
8152 * consumed.
8153 */
8154 static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8155 struct drm_i915_gem_object *obj,
8156 uint32_t width, uint32_t height)
8157 {
8158 struct drm_device *dev = crtc->dev;
8159 struct drm_i915_private *dev_priv = dev->dev_private;
8160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8161 enum pipe pipe = intel_crtc->pipe;
8162 unsigned old_width;
8163 uint32_t addr;
8164 int ret;
8165
8166 /* if we want to turn off the cursor ignore width and height */
8167 if (!obj) {
8168 DRM_DEBUG_KMS("cursor off\n");
8169 addr = 0;
8170 obj = NULL;
8171 mutex_lock(&dev->struct_mutex);
8172 goto finish;
8173 }
8174
8175 /* Check for which cursor types we support */
8176 if (!((width == 64 && height == 64) ||
8177 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8178 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8179 DRM_DEBUG("Cursor dimension not supported\n");
8180 return -EINVAL;
8181 }
8182
8183 if (obj->base.size < width * height * 4) {
8184 DRM_DEBUG_KMS("buffer is too small\n");
8185 ret = -ENOMEM;
8186 goto fail;
8187 }
8188
8189 /* we only need to pin inside GTT if cursor is non-phy */
8190 mutex_lock(&dev->struct_mutex);
8191 if (!INTEL_INFO(dev)->cursor_needs_physical) {
8192 unsigned alignment;
8193
8194 if (obj->tiling_mode) {
8195 DRM_DEBUG_KMS("cursor cannot be tiled\n");
8196 ret = -EINVAL;
8197 goto fail_locked;
8198 }
8199
8200 /* Note that the w/a also requires 2 PTE of padding following
8201 * the bo. We currently fill all unused PTE with the shadow
8202 * page and so we should always have valid PTE following the
8203 * cursor preventing the VT-d warning.
8204 */
8205 alignment = 0;
8206 if (need_vtd_wa(dev))
8207 alignment = 64*1024;
8208
8209 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
8210 if (ret) {
8211 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
8212 goto fail_locked;
8213 }
8214
8215 ret = i915_gem_object_put_fence(obj);
8216 if (ret) {
8217 DRM_DEBUG_KMS("failed to release fence for cursor");
8218 goto fail_unpin;
8219 }
8220
8221 addr = i915_gem_obj_ggtt_offset(obj);
8222 } else {
8223 int align = IS_I830(dev) ? 16 * 1024 : 256;
8224 ret = i915_gem_object_attach_phys(obj, align);
8225 if (ret) {
8226 DRM_DEBUG_KMS("failed to attach phys object\n");
8227 goto fail_locked;
8228 }
8229 addr = obj->phys_handle->busaddr;
8230 }
8231
8232 if (IS_GEN2(dev))
8233 I915_WRITE(CURSIZE, (height << 12) | width);
8234
8235 finish:
8236 if (intel_crtc->cursor_bo) {
8237 if (!INTEL_INFO(dev)->cursor_needs_physical)
8238 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
8239 }
8240
8241 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8242 INTEL_FRONTBUFFER_CURSOR(pipe));
8243 mutex_unlock(&dev->struct_mutex);
8244
8245 old_width = intel_crtc->cursor_width;
8246
8247 intel_crtc->cursor_addr = addr;
8248 intel_crtc->cursor_bo = obj;
8249 intel_crtc->cursor_width = width;
8250 intel_crtc->cursor_height = height;
8251
8252 if (intel_crtc->active) {
8253 if (old_width != width)
8254 intel_update_watermarks(crtc);
8255 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
8256 }
8257
8258 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8259
8260 return 0;
8261 fail_unpin:
8262 i915_gem_object_unpin_from_display_plane(obj);
8263 fail_locked:
8264 mutex_unlock(&dev->struct_mutex);
8265 fail:
8266 drm_gem_object_unreference_unlocked(&obj->base);
8267 return ret;
8268 }
8269
8270 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8271 u16 *blue, uint32_t start, uint32_t size)
8272 {
8273 int end = (start + size > 256) ? 256 : start + size, i;
8274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8275
8276 for (i = start; i < end; i++) {
8277 intel_crtc->lut_r[i] = red[i] >> 8;
8278 intel_crtc->lut_g[i] = green[i] >> 8;
8279 intel_crtc->lut_b[i] = blue[i] >> 8;
8280 }
8281
8282 intel_crtc_load_lut(crtc);
8283 }
8284
8285 /* VESA 640x480x72Hz mode to set on the pipe */
8286 static struct drm_display_mode load_detect_mode = {
8287 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8288 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8289 };
8290
8291 struct drm_framebuffer *
8292 __intel_framebuffer_create(struct drm_device *dev,
8293 struct drm_mode_fb_cmd2 *mode_cmd,
8294 struct drm_i915_gem_object *obj)
8295 {
8296 struct intel_framebuffer *intel_fb;
8297 int ret;
8298
8299 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8300 if (!intel_fb) {
8301 drm_gem_object_unreference_unlocked(&obj->base);
8302 return ERR_PTR(-ENOMEM);
8303 }
8304
8305 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8306 if (ret)
8307 goto err;
8308
8309 return &intel_fb->base;
8310 err:
8311 drm_gem_object_unreference_unlocked(&obj->base);
8312 kfree(intel_fb);
8313
8314 return ERR_PTR(ret);
8315 }
8316
8317 static struct drm_framebuffer *
8318 intel_framebuffer_create(struct drm_device *dev,
8319 struct drm_mode_fb_cmd2 *mode_cmd,
8320 struct drm_i915_gem_object *obj)
8321 {
8322 struct drm_framebuffer *fb;
8323 int ret;
8324
8325 ret = i915_mutex_lock_interruptible(dev);
8326 if (ret)
8327 return ERR_PTR(ret);
8328 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8329 mutex_unlock(&dev->struct_mutex);
8330
8331 return fb;
8332 }
8333
8334 static u32
8335 intel_framebuffer_pitch_for_width(int width, int bpp)
8336 {
8337 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8338 return ALIGN(pitch, 64);
8339 }
8340
8341 static u32
8342 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8343 {
8344 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8345 return PAGE_ALIGN(pitch * mode->vdisplay);
8346 }
8347
8348 static struct drm_framebuffer *
8349 intel_framebuffer_create_for_mode(struct drm_device *dev,
8350 struct drm_display_mode *mode,
8351 int depth, int bpp)
8352 {
8353 struct drm_i915_gem_object *obj;
8354 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8355
8356 obj = i915_gem_alloc_object(dev,
8357 intel_framebuffer_size_for_mode(mode, bpp));
8358 if (obj == NULL)
8359 return ERR_PTR(-ENOMEM);
8360
8361 mode_cmd.width = mode->hdisplay;
8362 mode_cmd.height = mode->vdisplay;
8363 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8364 bpp);
8365 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8366
8367 return intel_framebuffer_create(dev, &mode_cmd, obj);
8368 }
8369
8370 static struct drm_framebuffer *
8371 mode_fits_in_fbdev(struct drm_device *dev,
8372 struct drm_display_mode *mode)
8373 {
8374 #ifdef CONFIG_DRM_I915_FBDEV
8375 struct drm_i915_private *dev_priv = dev->dev_private;
8376 struct drm_i915_gem_object *obj;
8377 struct drm_framebuffer *fb;
8378
8379 if (!dev_priv->fbdev)
8380 return NULL;
8381
8382 if (!dev_priv->fbdev->fb)
8383 return NULL;
8384
8385 obj = dev_priv->fbdev->fb->obj;
8386 BUG_ON(!obj);
8387
8388 fb = &dev_priv->fbdev->fb->base;
8389 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8390 fb->bits_per_pixel))
8391 return NULL;
8392
8393 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8394 return NULL;
8395
8396 return fb;
8397 #else
8398 return NULL;
8399 #endif
8400 }
8401
8402 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8403 struct drm_display_mode *mode,
8404 struct intel_load_detect_pipe *old,
8405 struct drm_modeset_acquire_ctx *ctx)
8406 {
8407 struct intel_crtc *intel_crtc;
8408 struct intel_encoder *intel_encoder =
8409 intel_attached_encoder(connector);
8410 struct drm_crtc *possible_crtc;
8411 struct drm_encoder *encoder = &intel_encoder->base;
8412 struct drm_crtc *crtc = NULL;
8413 struct drm_device *dev = encoder->dev;
8414 struct drm_framebuffer *fb;
8415 struct drm_mode_config *config = &dev->mode_config;
8416 int ret, i = -1;
8417
8418 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8419 connector->base.id, connector->name,
8420 encoder->base.id, encoder->name);
8421
8422 drm_modeset_acquire_init(ctx, 0);
8423
8424 retry:
8425 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8426 if (ret)
8427 goto fail_unlock;
8428
8429 /*
8430 * Algorithm gets a little messy:
8431 *
8432 * - if the connector already has an assigned crtc, use it (but make
8433 * sure it's on first)
8434 *
8435 * - try to find the first unused crtc that can drive this connector,
8436 * and use that if we find one
8437 */
8438
8439 /* See if we already have a CRTC for this connector */
8440 if (encoder->crtc) {
8441 crtc = encoder->crtc;
8442
8443 ret = drm_modeset_lock(&crtc->mutex, ctx);
8444 if (ret)
8445 goto fail_unlock;
8446
8447 old->dpms_mode = connector->dpms;
8448 old->load_detect_temp = false;
8449
8450 /* Make sure the crtc and connector are running */
8451 if (connector->dpms != DRM_MODE_DPMS_ON)
8452 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8453
8454 return true;
8455 }
8456
8457 /* Find an unused one (if possible) */
8458 for_each_crtc(dev, possible_crtc) {
8459 i++;
8460 if (!(encoder->possible_crtcs & (1 << i)))
8461 continue;
8462 if (!possible_crtc->enabled) {
8463 crtc = possible_crtc;
8464 break;
8465 }
8466 }
8467
8468 /*
8469 * If we didn't find an unused CRTC, don't use any.
8470 */
8471 if (!crtc) {
8472 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8473 goto fail_unlock;
8474 }
8475
8476 ret = drm_modeset_lock(&crtc->mutex, ctx);
8477 if (ret)
8478 goto fail_unlock;
8479 intel_encoder->new_crtc = to_intel_crtc(crtc);
8480 to_intel_connector(connector)->new_encoder = intel_encoder;
8481
8482 intel_crtc = to_intel_crtc(crtc);
8483 intel_crtc->new_enabled = true;
8484 intel_crtc->new_config = &intel_crtc->config;
8485 old->dpms_mode = connector->dpms;
8486 old->load_detect_temp = true;
8487 old->release_fb = NULL;
8488
8489 if (!mode)
8490 mode = &load_detect_mode;
8491
8492 /* We need a framebuffer large enough to accommodate all accesses
8493 * that the plane may generate whilst we perform load detection.
8494 * We can not rely on the fbcon either being present (we get called
8495 * during its initialisation to detect all boot displays, or it may
8496 * not even exist) or that it is large enough to satisfy the
8497 * requested mode.
8498 */
8499 fb = mode_fits_in_fbdev(dev, mode);
8500 if (fb == NULL) {
8501 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8502 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8503 old->release_fb = fb;
8504 } else
8505 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8506 if (IS_ERR(fb)) {
8507 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8508 goto fail;
8509 }
8510
8511 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8512 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8513 if (old->release_fb)
8514 old->release_fb->funcs->destroy(old->release_fb);
8515 goto fail;
8516 }
8517
8518 /* let the connector get through one full cycle before testing */
8519 intel_wait_for_vblank(dev, intel_crtc->pipe);
8520 return true;
8521
8522 fail:
8523 intel_crtc->new_enabled = crtc->enabled;
8524 if (intel_crtc->new_enabled)
8525 intel_crtc->new_config = &intel_crtc->config;
8526 else
8527 intel_crtc->new_config = NULL;
8528 fail_unlock:
8529 if (ret == -EDEADLK) {
8530 drm_modeset_backoff(ctx);
8531 goto retry;
8532 }
8533
8534 drm_modeset_drop_locks(ctx);
8535 drm_modeset_acquire_fini(ctx);
8536
8537 return false;
8538 }
8539
8540 void intel_release_load_detect_pipe(struct drm_connector *connector,
8541 struct intel_load_detect_pipe *old,
8542 struct drm_modeset_acquire_ctx *ctx)
8543 {
8544 struct intel_encoder *intel_encoder =
8545 intel_attached_encoder(connector);
8546 struct drm_encoder *encoder = &intel_encoder->base;
8547 struct drm_crtc *crtc = encoder->crtc;
8548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8549
8550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8551 connector->base.id, connector->name,
8552 encoder->base.id, encoder->name);
8553
8554 if (old->load_detect_temp) {
8555 to_intel_connector(connector)->new_encoder = NULL;
8556 intel_encoder->new_crtc = NULL;
8557 intel_crtc->new_enabled = false;
8558 intel_crtc->new_config = NULL;
8559 intel_set_mode(crtc, NULL, 0, 0, NULL);
8560
8561 if (old->release_fb) {
8562 drm_framebuffer_unregister_private(old->release_fb);
8563 drm_framebuffer_unreference(old->release_fb);
8564 }
8565
8566 goto unlock;
8567 return;
8568 }
8569
8570 /* Switch crtc and encoder back off if necessary */
8571 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8572 connector->funcs->dpms(connector, old->dpms_mode);
8573
8574 unlock:
8575 drm_modeset_drop_locks(ctx);
8576 drm_modeset_acquire_fini(ctx);
8577 }
8578
8579 static int i9xx_pll_refclk(struct drm_device *dev,
8580 const struct intel_crtc_config *pipe_config)
8581 {
8582 struct drm_i915_private *dev_priv = dev->dev_private;
8583 u32 dpll = pipe_config->dpll_hw_state.dpll;
8584
8585 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8586 return dev_priv->vbt.lvds_ssc_freq;
8587 else if (HAS_PCH_SPLIT(dev))
8588 return 120000;
8589 else if (!IS_GEN2(dev))
8590 return 96000;
8591 else
8592 return 48000;
8593 }
8594
8595 /* Returns the clock of the currently programmed mode of the given pipe. */
8596 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8597 struct intel_crtc_config *pipe_config)
8598 {
8599 struct drm_device *dev = crtc->base.dev;
8600 struct drm_i915_private *dev_priv = dev->dev_private;
8601 int pipe = pipe_config->cpu_transcoder;
8602 u32 dpll = pipe_config->dpll_hw_state.dpll;
8603 u32 fp;
8604 intel_clock_t clock;
8605 int refclk = i9xx_pll_refclk(dev, pipe_config);
8606
8607 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8608 fp = pipe_config->dpll_hw_state.fp0;
8609 else
8610 fp = pipe_config->dpll_hw_state.fp1;
8611
8612 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8613 if (IS_PINEVIEW(dev)) {
8614 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8615 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8616 } else {
8617 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8618 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8619 }
8620
8621 if (!IS_GEN2(dev)) {
8622 if (IS_PINEVIEW(dev))
8623 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8624 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8625 else
8626 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8627 DPLL_FPA01_P1_POST_DIV_SHIFT);
8628
8629 switch (dpll & DPLL_MODE_MASK) {
8630 case DPLLB_MODE_DAC_SERIAL:
8631 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8632 5 : 10;
8633 break;
8634 case DPLLB_MODE_LVDS:
8635 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8636 7 : 14;
8637 break;
8638 default:
8639 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8640 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8641 return;
8642 }
8643
8644 if (IS_PINEVIEW(dev))
8645 pineview_clock(refclk, &clock);
8646 else
8647 i9xx_clock(refclk, &clock);
8648 } else {
8649 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8650 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8651
8652 if (is_lvds) {
8653 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8654 DPLL_FPA01_P1_POST_DIV_SHIFT);
8655
8656 if (lvds & LVDS_CLKB_POWER_UP)
8657 clock.p2 = 7;
8658 else
8659 clock.p2 = 14;
8660 } else {
8661 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8662 clock.p1 = 2;
8663 else {
8664 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8665 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8666 }
8667 if (dpll & PLL_P2_DIVIDE_BY_4)
8668 clock.p2 = 4;
8669 else
8670 clock.p2 = 2;
8671 }
8672
8673 i9xx_clock(refclk, &clock);
8674 }
8675
8676 /*
8677 * This value includes pixel_multiplier. We will use
8678 * port_clock to compute adjusted_mode.crtc_clock in the
8679 * encoder's get_config() function.
8680 */
8681 pipe_config->port_clock = clock.dot;
8682 }
8683
8684 int intel_dotclock_calculate(int link_freq,
8685 const struct intel_link_m_n *m_n)
8686 {
8687 /*
8688 * The calculation for the data clock is:
8689 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8690 * But we want to avoid losing precison if possible, so:
8691 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8692 *
8693 * and the link clock is simpler:
8694 * link_clock = (m * link_clock) / n
8695 */
8696
8697 if (!m_n->link_n)
8698 return 0;
8699
8700 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8701 }
8702
8703 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8704 struct intel_crtc_config *pipe_config)
8705 {
8706 struct drm_device *dev = crtc->base.dev;
8707
8708 /* read out port_clock from the DPLL */
8709 i9xx_crtc_clock_get(crtc, pipe_config);
8710
8711 /*
8712 * This value does not include pixel_multiplier.
8713 * We will check that port_clock and adjusted_mode.crtc_clock
8714 * agree once we know their relationship in the encoder's
8715 * get_config() function.
8716 */
8717 pipe_config->adjusted_mode.crtc_clock =
8718 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8719 &pipe_config->fdi_m_n);
8720 }
8721
8722 /** Returns the currently programmed mode of the given pipe. */
8723 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8724 struct drm_crtc *crtc)
8725 {
8726 struct drm_i915_private *dev_priv = dev->dev_private;
8727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8728 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8729 struct drm_display_mode *mode;
8730 struct intel_crtc_config pipe_config;
8731 int htot = I915_READ(HTOTAL(cpu_transcoder));
8732 int hsync = I915_READ(HSYNC(cpu_transcoder));
8733 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8734 int vsync = I915_READ(VSYNC(cpu_transcoder));
8735 enum pipe pipe = intel_crtc->pipe;
8736
8737 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8738 if (!mode)
8739 return NULL;
8740
8741 /*
8742 * Construct a pipe_config sufficient for getting the clock info
8743 * back out of crtc_clock_get.
8744 *
8745 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8746 * to use a real value here instead.
8747 */
8748 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8749 pipe_config.pixel_multiplier = 1;
8750 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8751 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8752 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8753 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8754
8755 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8756 mode->hdisplay = (htot & 0xffff) + 1;
8757 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8758 mode->hsync_start = (hsync & 0xffff) + 1;
8759 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8760 mode->vdisplay = (vtot & 0xffff) + 1;
8761 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8762 mode->vsync_start = (vsync & 0xffff) + 1;
8763 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8764
8765 drm_mode_set_name(mode);
8766
8767 return mode;
8768 }
8769
8770 static void intel_increase_pllclock(struct drm_device *dev,
8771 enum pipe pipe)
8772 {
8773 struct drm_i915_private *dev_priv = dev->dev_private;
8774 int dpll_reg = DPLL(pipe);
8775 int dpll;
8776
8777 if (HAS_PCH_SPLIT(dev))
8778 return;
8779
8780 if (!dev_priv->lvds_downclock_avail)
8781 return;
8782
8783 dpll = I915_READ(dpll_reg);
8784 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8785 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8786
8787 assert_panel_unlocked(dev_priv, pipe);
8788
8789 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8790 I915_WRITE(dpll_reg, dpll);
8791 intel_wait_for_vblank(dev, pipe);
8792
8793 dpll = I915_READ(dpll_reg);
8794 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8795 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8796 }
8797 }
8798
8799 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8800 {
8801 struct drm_device *dev = crtc->dev;
8802 struct drm_i915_private *dev_priv = dev->dev_private;
8803 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8804
8805 if (HAS_PCH_SPLIT(dev))
8806 return;
8807
8808 if (!dev_priv->lvds_downclock_avail)
8809 return;
8810
8811 /*
8812 * Since this is called by a timer, we should never get here in
8813 * the manual case.
8814 */
8815 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8816 int pipe = intel_crtc->pipe;
8817 int dpll_reg = DPLL(pipe);
8818 int dpll;
8819
8820 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8821
8822 assert_panel_unlocked(dev_priv, pipe);
8823
8824 dpll = I915_READ(dpll_reg);
8825 dpll |= DISPLAY_RATE_SELECT_FPA1;
8826 I915_WRITE(dpll_reg, dpll);
8827 intel_wait_for_vblank(dev, pipe);
8828 dpll = I915_READ(dpll_reg);
8829 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8830 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8831 }
8832
8833 }
8834
8835 void intel_mark_busy(struct drm_device *dev)
8836 {
8837 struct drm_i915_private *dev_priv = dev->dev_private;
8838
8839 if (dev_priv->mm.busy)
8840 return;
8841
8842 intel_runtime_pm_get(dev_priv);
8843 i915_update_gfx_val(dev_priv);
8844 dev_priv->mm.busy = true;
8845 }
8846
8847 void intel_mark_idle(struct drm_device *dev)
8848 {
8849 struct drm_i915_private *dev_priv = dev->dev_private;
8850 struct drm_crtc *crtc;
8851
8852 if (!dev_priv->mm.busy)
8853 return;
8854
8855 dev_priv->mm.busy = false;
8856
8857 if (!i915.powersave)
8858 goto out;
8859
8860 for_each_crtc(dev, crtc) {
8861 if (!crtc->primary->fb)
8862 continue;
8863
8864 intel_decrease_pllclock(crtc);
8865 }
8866
8867 if (INTEL_INFO(dev)->gen >= 6)
8868 gen6_rps_idle(dev->dev_private);
8869
8870 out:
8871 intel_runtime_pm_put(dev_priv);
8872 }
8873
8874
8875 /**
8876 * intel_mark_fb_busy - mark given planes as busy
8877 * @dev: DRM device
8878 * @frontbuffer_bits: bits for the affected planes
8879 * @ring: optional ring for asynchronous commands
8880 *
8881 * This function gets called every time the screen contents change. It can be
8882 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8883 */
8884 static void intel_mark_fb_busy(struct drm_device *dev,
8885 unsigned frontbuffer_bits,
8886 struct intel_engine_cs *ring)
8887 {
8888 enum pipe pipe;
8889
8890 if (!i915.powersave)
8891 return;
8892
8893 for_each_pipe(pipe) {
8894 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
8895 continue;
8896
8897 intel_increase_pllclock(dev, pipe);
8898 if (ring && intel_fbc_enabled(dev))
8899 ring->fbc_dirty = true;
8900 }
8901 }
8902
8903 /**
8904 * intel_fb_obj_invalidate - invalidate frontbuffer object
8905 * @obj: GEM object to invalidate
8906 * @ring: set for asynchronous rendering
8907 *
8908 * This function gets called every time rendering on the given object starts and
8909 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8910 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8911 * until the rendering completes or a flip on this frontbuffer plane is
8912 * scheduled.
8913 */
8914 void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8915 struct intel_engine_cs *ring)
8916 {
8917 struct drm_device *dev = obj->base.dev;
8918 struct drm_i915_private *dev_priv = dev->dev_private;
8919
8920 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8921
8922 if (!obj->frontbuffer_bits)
8923 return;
8924
8925 if (ring) {
8926 mutex_lock(&dev_priv->fb_tracking.lock);
8927 dev_priv->fb_tracking.busy_bits
8928 |= obj->frontbuffer_bits;
8929 dev_priv->fb_tracking.flip_bits
8930 &= ~obj->frontbuffer_bits;
8931 mutex_unlock(&dev_priv->fb_tracking.lock);
8932 }
8933
8934 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8935
8936 intel_edp_psr_exit(dev);
8937 }
8938
8939 /**
8940 * intel_frontbuffer_flush - flush frontbuffer
8941 * @dev: DRM device
8942 * @frontbuffer_bits: frontbuffer plane tracking bits
8943 *
8944 * This function gets called every time rendering on the given planes has
8945 * completed and frontbuffer caching can be started again. Flushes will get
8946 * delayed if they're blocked by some oustanding asynchronous rendering.
8947 *
8948 * Can be called without any locks held.
8949 */
8950 void intel_frontbuffer_flush(struct drm_device *dev,
8951 unsigned frontbuffer_bits)
8952 {
8953 struct drm_i915_private *dev_priv = dev->dev_private;
8954
8955 /* Delay flushing when rings are still busy.*/
8956 mutex_lock(&dev_priv->fb_tracking.lock);
8957 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8958 mutex_unlock(&dev_priv->fb_tracking.lock);
8959
8960 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8961
8962 intel_edp_psr_exit(dev);
8963 }
8964
8965 /**
8966 * intel_fb_obj_flush - flush frontbuffer object
8967 * @obj: GEM object to flush
8968 * @retire: set when retiring asynchronous rendering
8969 *
8970 * This function gets called every time rendering on the given object has
8971 * completed and frontbuffer caching can be started again. If @retire is true
8972 * then any delayed flushes will be unblocked.
8973 */
8974 void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8975 bool retire)
8976 {
8977 struct drm_device *dev = obj->base.dev;
8978 struct drm_i915_private *dev_priv = dev->dev_private;
8979 unsigned frontbuffer_bits;
8980
8981 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8982
8983 if (!obj->frontbuffer_bits)
8984 return;
8985
8986 frontbuffer_bits = obj->frontbuffer_bits;
8987
8988 if (retire) {
8989 mutex_lock(&dev_priv->fb_tracking.lock);
8990 /* Filter out new bits since rendering started. */
8991 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8992
8993 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8994 mutex_unlock(&dev_priv->fb_tracking.lock);
8995 }
8996
8997 intel_frontbuffer_flush(dev, frontbuffer_bits);
8998 }
8999
9000 /**
9001 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9002 * @dev: DRM device
9003 * @frontbuffer_bits: frontbuffer plane tracking bits
9004 *
9005 * This function gets called after scheduling a flip on @obj. The actual
9006 * frontbuffer flushing will be delayed until completion is signalled with
9007 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9008 * flush will be cancelled.
9009 *
9010 * Can be called without any locks held.
9011 */
9012 void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9013 unsigned frontbuffer_bits)
9014 {
9015 struct drm_i915_private *dev_priv = dev->dev_private;
9016
9017 mutex_lock(&dev_priv->fb_tracking.lock);
9018 dev_priv->fb_tracking.flip_bits
9019 |= frontbuffer_bits;
9020 mutex_unlock(&dev_priv->fb_tracking.lock);
9021 }
9022
9023 /**
9024 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9025 * @dev: DRM device
9026 * @frontbuffer_bits: frontbuffer plane tracking bits
9027 *
9028 * This function gets called after the flip has been latched and will complete
9029 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9030 *
9031 * Can be called without any locks held.
9032 */
9033 void intel_frontbuffer_flip_complete(struct drm_device *dev,
9034 unsigned frontbuffer_bits)
9035 {
9036 struct drm_i915_private *dev_priv = dev->dev_private;
9037
9038 mutex_lock(&dev_priv->fb_tracking.lock);
9039 /* Mask any cancelled flips. */
9040 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9041 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9042 mutex_unlock(&dev_priv->fb_tracking.lock);
9043
9044 intel_frontbuffer_flush(dev, frontbuffer_bits);
9045 }
9046
9047 static void intel_crtc_destroy(struct drm_crtc *crtc)
9048 {
9049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9050 struct drm_device *dev = crtc->dev;
9051 struct intel_unpin_work *work;
9052 unsigned long flags;
9053
9054 spin_lock_irqsave(&dev->event_lock, flags);
9055 work = intel_crtc->unpin_work;
9056 intel_crtc->unpin_work = NULL;
9057 spin_unlock_irqrestore(&dev->event_lock, flags);
9058
9059 if (work) {
9060 cancel_work_sync(&work->work);
9061 kfree(work);
9062 }
9063
9064 drm_crtc_cleanup(crtc);
9065
9066 kfree(intel_crtc);
9067 }
9068
9069 static void intel_unpin_work_fn(struct work_struct *__work)
9070 {
9071 struct intel_unpin_work *work =
9072 container_of(__work, struct intel_unpin_work, work);
9073 struct drm_device *dev = work->crtc->dev;
9074 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9075
9076 mutex_lock(&dev->struct_mutex);
9077 intel_unpin_fb_obj(work->old_fb_obj);
9078 drm_gem_object_unreference(&work->pending_flip_obj->base);
9079 drm_gem_object_unreference(&work->old_fb_obj->base);
9080
9081 intel_update_fbc(dev);
9082 mutex_unlock(&dev->struct_mutex);
9083
9084 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9085
9086 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9087 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9088
9089 kfree(work);
9090 }
9091
9092 static void do_intel_finish_page_flip(struct drm_device *dev,
9093 struct drm_crtc *crtc)
9094 {
9095 struct drm_i915_private *dev_priv = dev->dev_private;
9096 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9097 struct intel_unpin_work *work;
9098 unsigned long flags;
9099
9100 /* Ignore early vblank irqs */
9101 if (intel_crtc == NULL)
9102 return;
9103
9104 spin_lock_irqsave(&dev->event_lock, flags);
9105 work = intel_crtc->unpin_work;
9106
9107 /* Ensure we don't miss a work->pending update ... */
9108 smp_rmb();
9109
9110 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9111 spin_unlock_irqrestore(&dev->event_lock, flags);
9112 return;
9113 }
9114
9115 /* and that the unpin work is consistent wrt ->pending. */
9116 smp_rmb();
9117
9118 intel_crtc->unpin_work = NULL;
9119
9120 if (work->event)
9121 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
9122
9123 drm_crtc_vblank_put(crtc);
9124
9125 spin_unlock_irqrestore(&dev->event_lock, flags);
9126
9127 wake_up_all(&dev_priv->pending_flip_queue);
9128
9129 queue_work(dev_priv->wq, &work->work);
9130
9131 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
9132 }
9133
9134 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9135 {
9136 struct drm_i915_private *dev_priv = dev->dev_private;
9137 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9138
9139 do_intel_finish_page_flip(dev, crtc);
9140 }
9141
9142 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9143 {
9144 struct drm_i915_private *dev_priv = dev->dev_private;
9145 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9146
9147 do_intel_finish_page_flip(dev, crtc);
9148 }
9149
9150 /* Is 'a' after or equal to 'b'? */
9151 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9152 {
9153 return !((a - b) & 0x80000000);
9154 }
9155
9156 static bool page_flip_finished(struct intel_crtc *crtc)
9157 {
9158 struct drm_device *dev = crtc->base.dev;
9159 struct drm_i915_private *dev_priv = dev->dev_private;
9160
9161 /*
9162 * The relevant registers doen't exist on pre-ctg.
9163 * As the flip done interrupt doesn't trigger for mmio
9164 * flips on gmch platforms, a flip count check isn't
9165 * really needed there. But since ctg has the registers,
9166 * include it in the check anyway.
9167 */
9168 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9169 return true;
9170
9171 /*
9172 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9173 * used the same base address. In that case the mmio flip might
9174 * have completed, but the CS hasn't even executed the flip yet.
9175 *
9176 * A flip count check isn't enough as the CS might have updated
9177 * the base address just after start of vblank, but before we
9178 * managed to process the interrupt. This means we'd complete the
9179 * CS flip too soon.
9180 *
9181 * Combining both checks should get us a good enough result. It may
9182 * still happen that the CS flip has been executed, but has not
9183 * yet actually completed. But in case the base address is the same
9184 * anyway, we don't really care.
9185 */
9186 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9187 crtc->unpin_work->gtt_offset &&
9188 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9189 crtc->unpin_work->flip_count);
9190 }
9191
9192 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9193 {
9194 struct drm_i915_private *dev_priv = dev->dev_private;
9195 struct intel_crtc *intel_crtc =
9196 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9197 unsigned long flags;
9198
9199 /* NB: An MMIO update of the plane base pointer will also
9200 * generate a page-flip completion irq, i.e. every modeset
9201 * is also accompanied by a spurious intel_prepare_page_flip().
9202 */
9203 spin_lock_irqsave(&dev->event_lock, flags);
9204 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9205 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9206 spin_unlock_irqrestore(&dev->event_lock, flags);
9207 }
9208
9209 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9210 {
9211 /* Ensure that the work item is consistent when activating it ... */
9212 smp_wmb();
9213 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9214 /* and that it is marked active as soon as the irq could fire. */
9215 smp_wmb();
9216 }
9217
9218 static int intel_gen2_queue_flip(struct drm_device *dev,
9219 struct drm_crtc *crtc,
9220 struct drm_framebuffer *fb,
9221 struct drm_i915_gem_object *obj,
9222 struct intel_engine_cs *ring,
9223 uint32_t flags)
9224 {
9225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9226 u32 flip_mask;
9227 int ret;
9228
9229 ret = intel_ring_begin(ring, 6);
9230 if (ret)
9231 return ret;
9232
9233 /* Can't queue multiple flips, so wait for the previous
9234 * one to finish before executing the next.
9235 */
9236 if (intel_crtc->plane)
9237 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9238 else
9239 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9240 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9241 intel_ring_emit(ring, MI_NOOP);
9242 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9243 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9244 intel_ring_emit(ring, fb->pitches[0]);
9245 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9246 intel_ring_emit(ring, 0); /* aux display base address, unused */
9247
9248 intel_mark_page_flip_active(intel_crtc);
9249 __intel_ring_advance(ring);
9250 return 0;
9251 }
9252
9253 static int intel_gen3_queue_flip(struct drm_device *dev,
9254 struct drm_crtc *crtc,
9255 struct drm_framebuffer *fb,
9256 struct drm_i915_gem_object *obj,
9257 struct intel_engine_cs *ring,
9258 uint32_t flags)
9259 {
9260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9261 u32 flip_mask;
9262 int ret;
9263
9264 ret = intel_ring_begin(ring, 6);
9265 if (ret)
9266 return ret;
9267
9268 if (intel_crtc->plane)
9269 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9270 else
9271 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9272 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9273 intel_ring_emit(ring, MI_NOOP);
9274 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9275 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9276 intel_ring_emit(ring, fb->pitches[0]);
9277 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9278 intel_ring_emit(ring, MI_NOOP);
9279
9280 intel_mark_page_flip_active(intel_crtc);
9281 __intel_ring_advance(ring);
9282 return 0;
9283 }
9284
9285 static int intel_gen4_queue_flip(struct drm_device *dev,
9286 struct drm_crtc *crtc,
9287 struct drm_framebuffer *fb,
9288 struct drm_i915_gem_object *obj,
9289 struct intel_engine_cs *ring,
9290 uint32_t flags)
9291 {
9292 struct drm_i915_private *dev_priv = dev->dev_private;
9293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9294 uint32_t pf, pipesrc;
9295 int ret;
9296
9297 ret = intel_ring_begin(ring, 4);
9298 if (ret)
9299 return ret;
9300
9301 /* i965+ uses the linear or tiled offsets from the
9302 * Display Registers (which do not change across a page-flip)
9303 * so we need only reprogram the base address.
9304 */
9305 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9306 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9307 intel_ring_emit(ring, fb->pitches[0]);
9308 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9309 obj->tiling_mode);
9310
9311 /* XXX Enabling the panel-fitter across page-flip is so far
9312 * untested on non-native modes, so ignore it for now.
9313 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9314 */
9315 pf = 0;
9316 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9317 intel_ring_emit(ring, pf | pipesrc);
9318
9319 intel_mark_page_flip_active(intel_crtc);
9320 __intel_ring_advance(ring);
9321 return 0;
9322 }
9323
9324 static int intel_gen6_queue_flip(struct drm_device *dev,
9325 struct drm_crtc *crtc,
9326 struct drm_framebuffer *fb,
9327 struct drm_i915_gem_object *obj,
9328 struct intel_engine_cs *ring,
9329 uint32_t flags)
9330 {
9331 struct drm_i915_private *dev_priv = dev->dev_private;
9332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9333 uint32_t pf, pipesrc;
9334 int ret;
9335
9336 ret = intel_ring_begin(ring, 4);
9337 if (ret)
9338 return ret;
9339
9340 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9341 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9342 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9343 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9344
9345 /* Contrary to the suggestions in the documentation,
9346 * "Enable Panel Fitter" does not seem to be required when page
9347 * flipping with a non-native mode, and worse causes a normal
9348 * modeset to fail.
9349 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9350 */
9351 pf = 0;
9352 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9353 intel_ring_emit(ring, pf | pipesrc);
9354
9355 intel_mark_page_flip_active(intel_crtc);
9356 __intel_ring_advance(ring);
9357 return 0;
9358 }
9359
9360 static int intel_gen7_queue_flip(struct drm_device *dev,
9361 struct drm_crtc *crtc,
9362 struct drm_framebuffer *fb,
9363 struct drm_i915_gem_object *obj,
9364 struct intel_engine_cs *ring,
9365 uint32_t flags)
9366 {
9367 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9368 uint32_t plane_bit = 0;
9369 int len, ret;
9370
9371 switch (intel_crtc->plane) {
9372 case PLANE_A:
9373 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9374 break;
9375 case PLANE_B:
9376 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9377 break;
9378 case PLANE_C:
9379 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9380 break;
9381 default:
9382 WARN_ONCE(1, "unknown plane in flip command\n");
9383 return -ENODEV;
9384 }
9385
9386 len = 4;
9387 if (ring->id == RCS) {
9388 len += 6;
9389 /*
9390 * On Gen 8, SRM is now taking an extra dword to accommodate
9391 * 48bits addresses, and we need a NOOP for the batch size to
9392 * stay even.
9393 */
9394 if (IS_GEN8(dev))
9395 len += 2;
9396 }
9397
9398 /*
9399 * BSpec MI_DISPLAY_FLIP for IVB:
9400 * "The full packet must be contained within the same cache line."
9401 *
9402 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9403 * cacheline, if we ever start emitting more commands before
9404 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9405 * then do the cacheline alignment, and finally emit the
9406 * MI_DISPLAY_FLIP.
9407 */
9408 ret = intel_ring_cacheline_align(ring);
9409 if (ret)
9410 return ret;
9411
9412 ret = intel_ring_begin(ring, len);
9413 if (ret)
9414 return ret;
9415
9416 /* Unmask the flip-done completion message. Note that the bspec says that
9417 * we should do this for both the BCS and RCS, and that we must not unmask
9418 * more than one flip event at any time (or ensure that one flip message
9419 * can be sent by waiting for flip-done prior to queueing new flips).
9420 * Experimentation says that BCS works despite DERRMR masking all
9421 * flip-done completion events and that unmasking all planes at once
9422 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9423 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9424 */
9425 if (ring->id == RCS) {
9426 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9427 intel_ring_emit(ring, DERRMR);
9428 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9429 DERRMR_PIPEB_PRI_FLIP_DONE |
9430 DERRMR_PIPEC_PRI_FLIP_DONE));
9431 if (IS_GEN8(dev))
9432 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9433 MI_SRM_LRM_GLOBAL_GTT);
9434 else
9435 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9436 MI_SRM_LRM_GLOBAL_GTT);
9437 intel_ring_emit(ring, DERRMR);
9438 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9439 if (IS_GEN8(dev)) {
9440 intel_ring_emit(ring, 0);
9441 intel_ring_emit(ring, MI_NOOP);
9442 }
9443 }
9444
9445 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9446 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9447 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9448 intel_ring_emit(ring, (MI_NOOP));
9449
9450 intel_mark_page_flip_active(intel_crtc);
9451 __intel_ring_advance(ring);
9452 return 0;
9453 }
9454
9455 static bool use_mmio_flip(struct intel_engine_cs *ring,
9456 struct drm_i915_gem_object *obj)
9457 {
9458 /*
9459 * This is not being used for older platforms, because
9460 * non-availability of flip done interrupt forces us to use
9461 * CS flips. Older platforms derive flip done using some clever
9462 * tricks involving the flip_pending status bits and vblank irqs.
9463 * So using MMIO flips there would disrupt this mechanism.
9464 */
9465
9466 if (ring == NULL)
9467 return true;
9468
9469 if (INTEL_INFO(ring->dev)->gen < 5)
9470 return false;
9471
9472 if (i915.use_mmio_flip < 0)
9473 return false;
9474 else if (i915.use_mmio_flip > 0)
9475 return true;
9476 else
9477 return ring != obj->ring;
9478 }
9479
9480 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9481 {
9482 struct drm_device *dev = intel_crtc->base.dev;
9483 struct drm_i915_private *dev_priv = dev->dev_private;
9484 struct intel_framebuffer *intel_fb =
9485 to_intel_framebuffer(intel_crtc->base.primary->fb);
9486 struct drm_i915_gem_object *obj = intel_fb->obj;
9487 u32 dspcntr;
9488 u32 reg;
9489
9490 intel_mark_page_flip_active(intel_crtc);
9491
9492 reg = DSPCNTR(intel_crtc->plane);
9493 dspcntr = I915_READ(reg);
9494
9495 if (INTEL_INFO(dev)->gen >= 4) {
9496 if (obj->tiling_mode != I915_TILING_NONE)
9497 dspcntr |= DISPPLANE_TILED;
9498 else
9499 dspcntr &= ~DISPPLANE_TILED;
9500 }
9501 I915_WRITE(reg, dspcntr);
9502
9503 I915_WRITE(DSPSURF(intel_crtc->plane),
9504 intel_crtc->unpin_work->gtt_offset);
9505 POSTING_READ(DSPSURF(intel_crtc->plane));
9506 }
9507
9508 static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9509 {
9510 struct intel_engine_cs *ring;
9511 int ret;
9512
9513 lockdep_assert_held(&obj->base.dev->struct_mutex);
9514
9515 if (!obj->last_write_seqno)
9516 return 0;
9517
9518 ring = obj->ring;
9519
9520 if (i915_seqno_passed(ring->get_seqno(ring, true),
9521 obj->last_write_seqno))
9522 return 0;
9523
9524 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9525 if (ret)
9526 return ret;
9527
9528 if (WARN_ON(!ring->irq_get(ring)))
9529 return 0;
9530
9531 return 1;
9532 }
9533
9534 void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9535 {
9536 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9537 struct intel_crtc *intel_crtc;
9538 unsigned long irq_flags;
9539 u32 seqno;
9540
9541 seqno = ring->get_seqno(ring, false);
9542
9543 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9544 for_each_intel_crtc(ring->dev, intel_crtc) {
9545 struct intel_mmio_flip *mmio_flip;
9546
9547 mmio_flip = &intel_crtc->mmio_flip;
9548 if (mmio_flip->seqno == 0)
9549 continue;
9550
9551 if (ring->id != mmio_flip->ring_id)
9552 continue;
9553
9554 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9555 intel_do_mmio_flip(intel_crtc);
9556 mmio_flip->seqno = 0;
9557 ring->irq_put(ring);
9558 }
9559 }
9560 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9561 }
9562
9563 static int intel_queue_mmio_flip(struct drm_device *dev,
9564 struct drm_crtc *crtc,
9565 struct drm_framebuffer *fb,
9566 struct drm_i915_gem_object *obj,
9567 struct intel_engine_cs *ring,
9568 uint32_t flags)
9569 {
9570 struct drm_i915_private *dev_priv = dev->dev_private;
9571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9572 unsigned long irq_flags;
9573 int ret;
9574
9575 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9576 return -EBUSY;
9577
9578 ret = intel_postpone_flip(obj);
9579 if (ret < 0)
9580 return ret;
9581 if (ret == 0) {
9582 intel_do_mmio_flip(intel_crtc);
9583 return 0;
9584 }
9585
9586 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9587 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9588 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9589 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9590
9591 /*
9592 * Double check to catch cases where irq fired before
9593 * mmio flip data was ready
9594 */
9595 intel_notify_mmio_flip(obj->ring);
9596 return 0;
9597 }
9598
9599 static int intel_default_queue_flip(struct drm_device *dev,
9600 struct drm_crtc *crtc,
9601 struct drm_framebuffer *fb,
9602 struct drm_i915_gem_object *obj,
9603 struct intel_engine_cs *ring,
9604 uint32_t flags)
9605 {
9606 return -ENODEV;
9607 }
9608
9609 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9610 struct drm_framebuffer *fb,
9611 struct drm_pending_vblank_event *event,
9612 uint32_t page_flip_flags)
9613 {
9614 struct drm_device *dev = crtc->dev;
9615 struct drm_i915_private *dev_priv = dev->dev_private;
9616 struct drm_framebuffer *old_fb = crtc->primary->fb;
9617 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9618 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9619 enum pipe pipe = intel_crtc->pipe;
9620 struct intel_unpin_work *work;
9621 struct intel_engine_cs *ring;
9622 unsigned long flags;
9623 int ret;
9624
9625 /*
9626 * drm_mode_page_flip_ioctl() should already catch this, but double
9627 * check to be safe. In the future we may enable pageflipping from
9628 * a disabled primary plane.
9629 */
9630 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9631 return -EBUSY;
9632
9633 /* Can't change pixel format via MI display flips. */
9634 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9635 return -EINVAL;
9636
9637 /*
9638 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9639 * Note that pitch changes could also affect these register.
9640 */
9641 if (INTEL_INFO(dev)->gen > 3 &&
9642 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9643 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9644 return -EINVAL;
9645
9646 if (i915_terminally_wedged(&dev_priv->gpu_error))
9647 goto out_hang;
9648
9649 work = kzalloc(sizeof(*work), GFP_KERNEL);
9650 if (work == NULL)
9651 return -ENOMEM;
9652
9653 work->event = event;
9654 work->crtc = crtc;
9655 work->old_fb_obj = intel_fb_obj(old_fb);
9656 INIT_WORK(&work->work, intel_unpin_work_fn);
9657
9658 ret = drm_crtc_vblank_get(crtc);
9659 if (ret)
9660 goto free_work;
9661
9662 /* We borrow the event spin lock for protecting unpin_work */
9663 spin_lock_irqsave(&dev->event_lock, flags);
9664 if (intel_crtc->unpin_work) {
9665 spin_unlock_irqrestore(&dev->event_lock, flags);
9666 kfree(work);
9667 drm_crtc_vblank_put(crtc);
9668
9669 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9670 return -EBUSY;
9671 }
9672 intel_crtc->unpin_work = work;
9673 spin_unlock_irqrestore(&dev->event_lock, flags);
9674
9675 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9676 flush_workqueue(dev_priv->wq);
9677
9678 ret = i915_mutex_lock_interruptible(dev);
9679 if (ret)
9680 goto cleanup;
9681
9682 /* Reference the objects for the scheduled work. */
9683 drm_gem_object_reference(&work->old_fb_obj->base);
9684 drm_gem_object_reference(&obj->base);
9685
9686 crtc->primary->fb = fb;
9687
9688 work->pending_flip_obj = obj;
9689
9690 work->enable_stall_check = true;
9691
9692 atomic_inc(&intel_crtc->unpin_work_count);
9693 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9694
9695 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9696 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9697
9698 if (IS_VALLEYVIEW(dev)) {
9699 ring = &dev_priv->ring[BCS];
9700 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9701 /* vlv: DISPLAY_FLIP fails to change tiling */
9702 ring = NULL;
9703 } else if (IS_IVYBRIDGE(dev)) {
9704 ring = &dev_priv->ring[BCS];
9705 } else if (INTEL_INFO(dev)->gen >= 7) {
9706 ring = obj->ring;
9707 if (ring == NULL || ring->id != RCS)
9708 ring = &dev_priv->ring[BCS];
9709 } else {
9710 ring = &dev_priv->ring[RCS];
9711 }
9712
9713 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
9714 if (ret)
9715 goto cleanup_pending;
9716
9717 work->gtt_offset =
9718 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9719
9720 if (use_mmio_flip(ring, obj))
9721 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9722 page_flip_flags);
9723 else
9724 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9725 page_flip_flags);
9726 if (ret)
9727 goto cleanup_unpin;
9728
9729 i915_gem_track_fb(work->old_fb_obj, obj,
9730 INTEL_FRONTBUFFER_PRIMARY(pipe));
9731
9732 intel_disable_fbc(dev);
9733 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9734 mutex_unlock(&dev->struct_mutex);
9735
9736 trace_i915_flip_request(intel_crtc->plane, obj);
9737
9738 return 0;
9739
9740 cleanup_unpin:
9741 intel_unpin_fb_obj(obj);
9742 cleanup_pending:
9743 atomic_dec(&intel_crtc->unpin_work_count);
9744 crtc->primary->fb = old_fb;
9745 drm_gem_object_unreference(&work->old_fb_obj->base);
9746 drm_gem_object_unreference(&obj->base);
9747 mutex_unlock(&dev->struct_mutex);
9748
9749 cleanup:
9750 spin_lock_irqsave(&dev->event_lock, flags);
9751 intel_crtc->unpin_work = NULL;
9752 spin_unlock_irqrestore(&dev->event_lock, flags);
9753
9754 drm_crtc_vblank_put(crtc);
9755 free_work:
9756 kfree(work);
9757
9758 if (ret == -EIO) {
9759 out_hang:
9760 intel_crtc_wait_for_pending_flips(crtc);
9761 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9762 if (ret == 0 && event)
9763 drm_send_vblank_event(dev, pipe, event);
9764 }
9765 return ret;
9766 }
9767
9768 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9769 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9770 .load_lut = intel_crtc_load_lut,
9771 };
9772
9773 /**
9774 * intel_modeset_update_staged_output_state
9775 *
9776 * Updates the staged output configuration state, e.g. after we've read out the
9777 * current hw state.
9778 */
9779 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9780 {
9781 struct intel_crtc *crtc;
9782 struct intel_encoder *encoder;
9783 struct intel_connector *connector;
9784
9785 list_for_each_entry(connector, &dev->mode_config.connector_list,
9786 base.head) {
9787 connector->new_encoder =
9788 to_intel_encoder(connector->base.encoder);
9789 }
9790
9791 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9792 base.head) {
9793 encoder->new_crtc =
9794 to_intel_crtc(encoder->base.crtc);
9795 }
9796
9797 for_each_intel_crtc(dev, crtc) {
9798 crtc->new_enabled = crtc->base.enabled;
9799
9800 if (crtc->new_enabled)
9801 crtc->new_config = &crtc->config;
9802 else
9803 crtc->new_config = NULL;
9804 }
9805 }
9806
9807 /**
9808 * intel_modeset_commit_output_state
9809 *
9810 * This function copies the stage display pipe configuration to the real one.
9811 */
9812 static void intel_modeset_commit_output_state(struct drm_device *dev)
9813 {
9814 struct intel_crtc *crtc;
9815 struct intel_encoder *encoder;
9816 struct intel_connector *connector;
9817
9818 list_for_each_entry(connector, &dev->mode_config.connector_list,
9819 base.head) {
9820 connector->base.encoder = &connector->new_encoder->base;
9821 }
9822
9823 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9824 base.head) {
9825 encoder->base.crtc = &encoder->new_crtc->base;
9826 }
9827
9828 for_each_intel_crtc(dev, crtc) {
9829 crtc->base.enabled = crtc->new_enabled;
9830 }
9831 }
9832
9833 static void
9834 connected_sink_compute_bpp(struct intel_connector *connector,
9835 struct intel_crtc_config *pipe_config)
9836 {
9837 int bpp = pipe_config->pipe_bpp;
9838
9839 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9840 connector->base.base.id,
9841 connector->base.name);
9842
9843 /* Don't use an invalid EDID bpc value */
9844 if (connector->base.display_info.bpc &&
9845 connector->base.display_info.bpc * 3 < bpp) {
9846 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9847 bpp, connector->base.display_info.bpc*3);
9848 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9849 }
9850
9851 /* Clamp bpp to 8 on screens without EDID 1.4 */
9852 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9853 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9854 bpp);
9855 pipe_config->pipe_bpp = 24;
9856 }
9857 }
9858
9859 static int
9860 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9861 struct drm_framebuffer *fb,
9862 struct intel_crtc_config *pipe_config)
9863 {
9864 struct drm_device *dev = crtc->base.dev;
9865 struct intel_connector *connector;
9866 int bpp;
9867
9868 switch (fb->pixel_format) {
9869 case DRM_FORMAT_C8:
9870 bpp = 8*3; /* since we go through a colormap */
9871 break;
9872 case DRM_FORMAT_XRGB1555:
9873 case DRM_FORMAT_ARGB1555:
9874 /* checked in intel_framebuffer_init already */
9875 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9876 return -EINVAL;
9877 case DRM_FORMAT_RGB565:
9878 bpp = 6*3; /* min is 18bpp */
9879 break;
9880 case DRM_FORMAT_XBGR8888:
9881 case DRM_FORMAT_ABGR8888:
9882 /* checked in intel_framebuffer_init already */
9883 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9884 return -EINVAL;
9885 case DRM_FORMAT_XRGB8888:
9886 case DRM_FORMAT_ARGB8888:
9887 bpp = 8*3;
9888 break;
9889 case DRM_FORMAT_XRGB2101010:
9890 case DRM_FORMAT_ARGB2101010:
9891 case DRM_FORMAT_XBGR2101010:
9892 case DRM_FORMAT_ABGR2101010:
9893 /* checked in intel_framebuffer_init already */
9894 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9895 return -EINVAL;
9896 bpp = 10*3;
9897 break;
9898 /* TODO: gen4+ supports 16 bpc floating point, too. */
9899 default:
9900 DRM_DEBUG_KMS("unsupported depth\n");
9901 return -EINVAL;
9902 }
9903
9904 pipe_config->pipe_bpp = bpp;
9905
9906 /* Clamp display bpp to EDID value */
9907 list_for_each_entry(connector, &dev->mode_config.connector_list,
9908 base.head) {
9909 if (!connector->new_encoder ||
9910 connector->new_encoder->new_crtc != crtc)
9911 continue;
9912
9913 connected_sink_compute_bpp(connector, pipe_config);
9914 }
9915
9916 return bpp;
9917 }
9918
9919 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9920 {
9921 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9922 "type: 0x%x flags: 0x%x\n",
9923 mode->crtc_clock,
9924 mode->crtc_hdisplay, mode->crtc_hsync_start,
9925 mode->crtc_hsync_end, mode->crtc_htotal,
9926 mode->crtc_vdisplay, mode->crtc_vsync_start,
9927 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9928 }
9929
9930 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9931 struct intel_crtc_config *pipe_config,
9932 const char *context)
9933 {
9934 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9935 context, pipe_name(crtc->pipe));
9936
9937 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9938 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9939 pipe_config->pipe_bpp, pipe_config->dither);
9940 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9941 pipe_config->has_pch_encoder,
9942 pipe_config->fdi_lanes,
9943 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9944 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9945 pipe_config->fdi_m_n.tu);
9946 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9947 pipe_config->has_dp_encoder,
9948 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9949 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9950 pipe_config->dp_m_n.tu);
9951 DRM_DEBUG_KMS("requested mode:\n");
9952 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9953 DRM_DEBUG_KMS("adjusted mode:\n");
9954 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
9955 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
9956 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9957 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9958 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9959 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9960 pipe_config->gmch_pfit.control,
9961 pipe_config->gmch_pfit.pgm_ratios,
9962 pipe_config->gmch_pfit.lvds_border_bits);
9963 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9964 pipe_config->pch_pfit.pos,
9965 pipe_config->pch_pfit.size,
9966 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9967 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9968 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9969 }
9970
9971 static bool encoders_cloneable(const struct intel_encoder *a,
9972 const struct intel_encoder *b)
9973 {
9974 /* masks could be asymmetric, so check both ways */
9975 return a == b || (a->cloneable & (1 << b->type) &&
9976 b->cloneable & (1 << a->type));
9977 }
9978
9979 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9980 struct intel_encoder *encoder)
9981 {
9982 struct drm_device *dev = crtc->base.dev;
9983 struct intel_encoder *source_encoder;
9984
9985 list_for_each_entry(source_encoder,
9986 &dev->mode_config.encoder_list, base.head) {
9987 if (source_encoder->new_crtc != crtc)
9988 continue;
9989
9990 if (!encoders_cloneable(encoder, source_encoder))
9991 return false;
9992 }
9993
9994 return true;
9995 }
9996
9997 static bool check_encoder_cloning(struct intel_crtc *crtc)
9998 {
9999 struct drm_device *dev = crtc->base.dev;
10000 struct intel_encoder *encoder;
10001
10002 list_for_each_entry(encoder,
10003 &dev->mode_config.encoder_list, base.head) {
10004 if (encoder->new_crtc != crtc)
10005 continue;
10006
10007 if (!check_single_encoder_cloning(crtc, encoder))
10008 return false;
10009 }
10010
10011 return true;
10012 }
10013
10014 static struct intel_crtc_config *
10015 intel_modeset_pipe_config(struct drm_crtc *crtc,
10016 struct drm_framebuffer *fb,
10017 struct drm_display_mode *mode)
10018 {
10019 struct drm_device *dev = crtc->dev;
10020 struct intel_encoder *encoder;
10021 struct intel_crtc_config *pipe_config;
10022 int plane_bpp, ret = -EINVAL;
10023 bool retry = true;
10024
10025 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10026 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10027 return ERR_PTR(-EINVAL);
10028 }
10029
10030 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10031 if (!pipe_config)
10032 return ERR_PTR(-ENOMEM);
10033
10034 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10035 drm_mode_copy(&pipe_config->requested_mode, mode);
10036
10037 pipe_config->cpu_transcoder =
10038 (enum transcoder) to_intel_crtc(crtc)->pipe;
10039 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10040
10041 /*
10042 * Sanitize sync polarity flags based on requested ones. If neither
10043 * positive or negative polarity is requested, treat this as meaning
10044 * negative polarity.
10045 */
10046 if (!(pipe_config->adjusted_mode.flags &
10047 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10048 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10049
10050 if (!(pipe_config->adjusted_mode.flags &
10051 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10052 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10053
10054 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10055 * plane pixel format and any sink constraints into account. Returns the
10056 * source plane bpp so that dithering can be selected on mismatches
10057 * after encoders and crtc also have had their say. */
10058 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10059 fb, pipe_config);
10060 if (plane_bpp < 0)
10061 goto fail;
10062
10063 /*
10064 * Determine the real pipe dimensions. Note that stereo modes can
10065 * increase the actual pipe size due to the frame doubling and
10066 * insertion of additional space for blanks between the frame. This
10067 * is stored in the crtc timings. We use the requested mode to do this
10068 * computation to clearly distinguish it from the adjusted mode, which
10069 * can be changed by the connectors in the below retry loop.
10070 */
10071 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10072 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10073 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10074
10075 encoder_retry:
10076 /* Ensure the port clock defaults are reset when retrying. */
10077 pipe_config->port_clock = 0;
10078 pipe_config->pixel_multiplier = 1;
10079
10080 /* Fill in default crtc timings, allow encoders to overwrite them. */
10081 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
10082
10083 /* Pass our mode to the connectors and the CRTC to give them a chance to
10084 * adjust it according to limitations or connector properties, and also
10085 * a chance to reject the mode entirely.
10086 */
10087 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10088 base.head) {
10089
10090 if (&encoder->new_crtc->base != crtc)
10091 continue;
10092
10093 if (!(encoder->compute_config(encoder, pipe_config))) {
10094 DRM_DEBUG_KMS("Encoder config failure\n");
10095 goto fail;
10096 }
10097 }
10098
10099 /* Set default port clock if not overwritten by the encoder. Needs to be
10100 * done afterwards in case the encoder adjusts the mode. */
10101 if (!pipe_config->port_clock)
10102 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10103 * pipe_config->pixel_multiplier;
10104
10105 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10106 if (ret < 0) {
10107 DRM_DEBUG_KMS("CRTC fixup failed\n");
10108 goto fail;
10109 }
10110
10111 if (ret == RETRY) {
10112 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10113 ret = -EINVAL;
10114 goto fail;
10115 }
10116
10117 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10118 retry = false;
10119 goto encoder_retry;
10120 }
10121
10122 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10123 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10124 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10125
10126 return pipe_config;
10127 fail:
10128 kfree(pipe_config);
10129 return ERR_PTR(ret);
10130 }
10131
10132 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10133 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10134 static void
10135 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10136 unsigned *prepare_pipes, unsigned *disable_pipes)
10137 {
10138 struct intel_crtc *intel_crtc;
10139 struct drm_device *dev = crtc->dev;
10140 struct intel_encoder *encoder;
10141 struct intel_connector *connector;
10142 struct drm_crtc *tmp_crtc;
10143
10144 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10145
10146 /* Check which crtcs have changed outputs connected to them, these need
10147 * to be part of the prepare_pipes mask. We don't (yet) support global
10148 * modeset across multiple crtcs, so modeset_pipes will only have one
10149 * bit set at most. */
10150 list_for_each_entry(connector, &dev->mode_config.connector_list,
10151 base.head) {
10152 if (connector->base.encoder == &connector->new_encoder->base)
10153 continue;
10154
10155 if (connector->base.encoder) {
10156 tmp_crtc = connector->base.encoder->crtc;
10157
10158 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10159 }
10160
10161 if (connector->new_encoder)
10162 *prepare_pipes |=
10163 1 << connector->new_encoder->new_crtc->pipe;
10164 }
10165
10166 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10167 base.head) {
10168 if (encoder->base.crtc == &encoder->new_crtc->base)
10169 continue;
10170
10171 if (encoder->base.crtc) {
10172 tmp_crtc = encoder->base.crtc;
10173
10174 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10175 }
10176
10177 if (encoder->new_crtc)
10178 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10179 }
10180
10181 /* Check for pipes that will be enabled/disabled ... */
10182 for_each_intel_crtc(dev, intel_crtc) {
10183 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10184 continue;
10185
10186 if (!intel_crtc->new_enabled)
10187 *disable_pipes |= 1 << intel_crtc->pipe;
10188 else
10189 *prepare_pipes |= 1 << intel_crtc->pipe;
10190 }
10191
10192
10193 /* set_mode is also used to update properties on life display pipes. */
10194 intel_crtc = to_intel_crtc(crtc);
10195 if (intel_crtc->new_enabled)
10196 *prepare_pipes |= 1 << intel_crtc->pipe;
10197
10198 /*
10199 * For simplicity do a full modeset on any pipe where the output routing
10200 * changed. We could be more clever, but that would require us to be
10201 * more careful with calling the relevant encoder->mode_set functions.
10202 */
10203 if (*prepare_pipes)
10204 *modeset_pipes = *prepare_pipes;
10205
10206 /* ... and mask these out. */
10207 *modeset_pipes &= ~(*disable_pipes);
10208 *prepare_pipes &= ~(*disable_pipes);
10209
10210 /*
10211 * HACK: We don't (yet) fully support global modesets. intel_set_config
10212 * obies this rule, but the modeset restore mode of
10213 * intel_modeset_setup_hw_state does not.
10214 */
10215 *modeset_pipes &= 1 << intel_crtc->pipe;
10216 *prepare_pipes &= 1 << intel_crtc->pipe;
10217
10218 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10219 *modeset_pipes, *prepare_pipes, *disable_pipes);
10220 }
10221
10222 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10223 {
10224 struct drm_encoder *encoder;
10225 struct drm_device *dev = crtc->dev;
10226
10227 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10228 if (encoder->crtc == crtc)
10229 return true;
10230
10231 return false;
10232 }
10233
10234 static void
10235 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10236 {
10237 struct intel_encoder *intel_encoder;
10238 struct intel_crtc *intel_crtc;
10239 struct drm_connector *connector;
10240
10241 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10242 base.head) {
10243 if (!intel_encoder->base.crtc)
10244 continue;
10245
10246 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10247
10248 if (prepare_pipes & (1 << intel_crtc->pipe))
10249 intel_encoder->connectors_active = false;
10250 }
10251
10252 intel_modeset_commit_output_state(dev);
10253
10254 /* Double check state. */
10255 for_each_intel_crtc(dev, intel_crtc) {
10256 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10257 WARN_ON(intel_crtc->new_config &&
10258 intel_crtc->new_config != &intel_crtc->config);
10259 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10260 }
10261
10262 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10263 if (!connector->encoder || !connector->encoder->crtc)
10264 continue;
10265
10266 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10267
10268 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10269 struct drm_property *dpms_property =
10270 dev->mode_config.dpms_property;
10271
10272 connector->dpms = DRM_MODE_DPMS_ON;
10273 drm_object_property_set_value(&connector->base,
10274 dpms_property,
10275 DRM_MODE_DPMS_ON);
10276
10277 intel_encoder = to_intel_encoder(connector->encoder);
10278 intel_encoder->connectors_active = true;
10279 }
10280 }
10281
10282 }
10283
10284 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10285 {
10286 int diff;
10287
10288 if (clock1 == clock2)
10289 return true;
10290
10291 if (!clock1 || !clock2)
10292 return false;
10293
10294 diff = abs(clock1 - clock2);
10295
10296 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10297 return true;
10298
10299 return false;
10300 }
10301
10302 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10303 list_for_each_entry((intel_crtc), \
10304 &(dev)->mode_config.crtc_list, \
10305 base.head) \
10306 if (mask & (1 <<(intel_crtc)->pipe))
10307
10308 static bool
10309 intel_pipe_config_compare(struct drm_device *dev,
10310 struct intel_crtc_config *current_config,
10311 struct intel_crtc_config *pipe_config)
10312 {
10313 #define PIPE_CONF_CHECK_X(name) \
10314 if (current_config->name != pipe_config->name) { \
10315 DRM_ERROR("mismatch in " #name " " \
10316 "(expected 0x%08x, found 0x%08x)\n", \
10317 current_config->name, \
10318 pipe_config->name); \
10319 return false; \
10320 }
10321
10322 #define PIPE_CONF_CHECK_I(name) \
10323 if (current_config->name != pipe_config->name) { \
10324 DRM_ERROR("mismatch in " #name " " \
10325 "(expected %i, found %i)\n", \
10326 current_config->name, \
10327 pipe_config->name); \
10328 return false; \
10329 }
10330
10331 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10332 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10333 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10334 "(expected %i, found %i)\n", \
10335 current_config->name & (mask), \
10336 pipe_config->name & (mask)); \
10337 return false; \
10338 }
10339
10340 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10341 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10342 DRM_ERROR("mismatch in " #name " " \
10343 "(expected %i, found %i)\n", \
10344 current_config->name, \
10345 pipe_config->name); \
10346 return false; \
10347 }
10348
10349 #define PIPE_CONF_QUIRK(quirk) \
10350 ((current_config->quirks | pipe_config->quirks) & (quirk))
10351
10352 PIPE_CONF_CHECK_I(cpu_transcoder);
10353
10354 PIPE_CONF_CHECK_I(has_pch_encoder);
10355 PIPE_CONF_CHECK_I(fdi_lanes);
10356 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10357 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10358 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10359 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10360 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10361
10362 PIPE_CONF_CHECK_I(has_dp_encoder);
10363 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10364 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10365 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10366 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10367 PIPE_CONF_CHECK_I(dp_m_n.tu);
10368
10369 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10370 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10371 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10372 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10373 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10374 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10375
10376 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10377 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10378 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10379 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10380 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10381 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10382
10383 PIPE_CONF_CHECK_I(pixel_multiplier);
10384 PIPE_CONF_CHECK_I(has_hdmi_sink);
10385 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10386 IS_VALLEYVIEW(dev))
10387 PIPE_CONF_CHECK_I(limited_color_range);
10388
10389 PIPE_CONF_CHECK_I(has_audio);
10390
10391 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10392 DRM_MODE_FLAG_INTERLACE);
10393
10394 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10395 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10396 DRM_MODE_FLAG_PHSYNC);
10397 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10398 DRM_MODE_FLAG_NHSYNC);
10399 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10400 DRM_MODE_FLAG_PVSYNC);
10401 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10402 DRM_MODE_FLAG_NVSYNC);
10403 }
10404
10405 PIPE_CONF_CHECK_I(pipe_src_w);
10406 PIPE_CONF_CHECK_I(pipe_src_h);
10407
10408 /*
10409 * FIXME: BIOS likes to set up a cloned config with lvds+external
10410 * screen. Since we don't yet re-compute the pipe config when moving
10411 * just the lvds port away to another pipe the sw tracking won't match.
10412 *
10413 * Proper atomic modesets with recomputed global state will fix this.
10414 * Until then just don't check gmch state for inherited modes.
10415 */
10416 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10417 PIPE_CONF_CHECK_I(gmch_pfit.control);
10418 /* pfit ratios are autocomputed by the hw on gen4+ */
10419 if (INTEL_INFO(dev)->gen < 4)
10420 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10421 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10422 }
10423
10424 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10425 if (current_config->pch_pfit.enabled) {
10426 PIPE_CONF_CHECK_I(pch_pfit.pos);
10427 PIPE_CONF_CHECK_I(pch_pfit.size);
10428 }
10429
10430 /* BDW+ don't expose a synchronous way to read the state */
10431 if (IS_HASWELL(dev))
10432 PIPE_CONF_CHECK_I(ips_enabled);
10433
10434 PIPE_CONF_CHECK_I(double_wide);
10435
10436 PIPE_CONF_CHECK_X(ddi_pll_sel);
10437
10438 PIPE_CONF_CHECK_I(shared_dpll);
10439 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10440 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10441 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10442 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10443
10444 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10445 PIPE_CONF_CHECK_I(pipe_bpp);
10446
10447 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10448 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10449
10450 #undef PIPE_CONF_CHECK_X
10451 #undef PIPE_CONF_CHECK_I
10452 #undef PIPE_CONF_CHECK_FLAGS
10453 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10454 #undef PIPE_CONF_QUIRK
10455
10456 return true;
10457 }
10458
10459 static void
10460 check_connector_state(struct drm_device *dev)
10461 {
10462 struct intel_connector *connector;
10463
10464 list_for_each_entry(connector, &dev->mode_config.connector_list,
10465 base.head) {
10466 /* This also checks the encoder/connector hw state with the
10467 * ->get_hw_state callbacks. */
10468 intel_connector_check_state(connector);
10469
10470 WARN(&connector->new_encoder->base != connector->base.encoder,
10471 "connector's staged encoder doesn't match current encoder\n");
10472 }
10473 }
10474
10475 static void
10476 check_encoder_state(struct drm_device *dev)
10477 {
10478 struct intel_encoder *encoder;
10479 struct intel_connector *connector;
10480
10481 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10482 base.head) {
10483 bool enabled = false;
10484 bool active = false;
10485 enum pipe pipe, tracked_pipe;
10486
10487 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10488 encoder->base.base.id,
10489 encoder->base.name);
10490
10491 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10492 "encoder's stage crtc doesn't match current crtc\n");
10493 WARN(encoder->connectors_active && !encoder->base.crtc,
10494 "encoder's active_connectors set, but no crtc\n");
10495
10496 list_for_each_entry(connector, &dev->mode_config.connector_list,
10497 base.head) {
10498 if (connector->base.encoder != &encoder->base)
10499 continue;
10500 enabled = true;
10501 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10502 active = true;
10503 }
10504 WARN(!!encoder->base.crtc != enabled,
10505 "encoder's enabled state mismatch "
10506 "(expected %i, found %i)\n",
10507 !!encoder->base.crtc, enabled);
10508 WARN(active && !encoder->base.crtc,
10509 "active encoder with no crtc\n");
10510
10511 WARN(encoder->connectors_active != active,
10512 "encoder's computed active state doesn't match tracked active state "
10513 "(expected %i, found %i)\n", active, encoder->connectors_active);
10514
10515 active = encoder->get_hw_state(encoder, &pipe);
10516 WARN(active != encoder->connectors_active,
10517 "encoder's hw state doesn't match sw tracking "
10518 "(expected %i, found %i)\n",
10519 encoder->connectors_active, active);
10520
10521 if (!encoder->base.crtc)
10522 continue;
10523
10524 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10525 WARN(active && pipe != tracked_pipe,
10526 "active encoder's pipe doesn't match"
10527 "(expected %i, found %i)\n",
10528 tracked_pipe, pipe);
10529
10530 }
10531 }
10532
10533 static void
10534 check_crtc_state(struct drm_device *dev)
10535 {
10536 struct drm_i915_private *dev_priv = dev->dev_private;
10537 struct intel_crtc *crtc;
10538 struct intel_encoder *encoder;
10539 struct intel_crtc_config pipe_config;
10540
10541 for_each_intel_crtc(dev, crtc) {
10542 bool enabled = false;
10543 bool active = false;
10544
10545 memset(&pipe_config, 0, sizeof(pipe_config));
10546
10547 DRM_DEBUG_KMS("[CRTC:%d]\n",
10548 crtc->base.base.id);
10549
10550 WARN(crtc->active && !crtc->base.enabled,
10551 "active crtc, but not enabled in sw tracking\n");
10552
10553 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10554 base.head) {
10555 if (encoder->base.crtc != &crtc->base)
10556 continue;
10557 enabled = true;
10558 if (encoder->connectors_active)
10559 active = true;
10560 }
10561
10562 WARN(active != crtc->active,
10563 "crtc's computed active state doesn't match tracked active state "
10564 "(expected %i, found %i)\n", active, crtc->active);
10565 WARN(enabled != crtc->base.enabled,
10566 "crtc's computed enabled state doesn't match tracked enabled state "
10567 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10568
10569 active = dev_priv->display.get_pipe_config(crtc,
10570 &pipe_config);
10571
10572 /* hw state is inconsistent with the pipe A quirk */
10573 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10574 active = crtc->active;
10575
10576 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10577 base.head) {
10578 enum pipe pipe;
10579 if (encoder->base.crtc != &crtc->base)
10580 continue;
10581 if (encoder->get_hw_state(encoder, &pipe))
10582 encoder->get_config(encoder, &pipe_config);
10583 }
10584
10585 WARN(crtc->active != active,
10586 "crtc active state doesn't match with hw state "
10587 "(expected %i, found %i)\n", crtc->active, active);
10588
10589 if (active &&
10590 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10591 WARN(1, "pipe state doesn't match!\n");
10592 intel_dump_pipe_config(crtc, &pipe_config,
10593 "[hw state]");
10594 intel_dump_pipe_config(crtc, &crtc->config,
10595 "[sw state]");
10596 }
10597 }
10598 }
10599
10600 static void
10601 check_shared_dpll_state(struct drm_device *dev)
10602 {
10603 struct drm_i915_private *dev_priv = dev->dev_private;
10604 struct intel_crtc *crtc;
10605 struct intel_dpll_hw_state dpll_hw_state;
10606 int i;
10607
10608 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10609 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10610 int enabled_crtcs = 0, active_crtcs = 0;
10611 bool active;
10612
10613 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10614
10615 DRM_DEBUG_KMS("%s\n", pll->name);
10616
10617 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10618
10619 WARN(pll->active > pll->refcount,
10620 "more active pll users than references: %i vs %i\n",
10621 pll->active, pll->refcount);
10622 WARN(pll->active && !pll->on,
10623 "pll in active use but not on in sw tracking\n");
10624 WARN(pll->on && !pll->active,
10625 "pll in on but not on in use in sw tracking\n");
10626 WARN(pll->on != active,
10627 "pll on state mismatch (expected %i, found %i)\n",
10628 pll->on, active);
10629
10630 for_each_intel_crtc(dev, crtc) {
10631 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10632 enabled_crtcs++;
10633 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10634 active_crtcs++;
10635 }
10636 WARN(pll->active != active_crtcs,
10637 "pll active crtcs mismatch (expected %i, found %i)\n",
10638 pll->active, active_crtcs);
10639 WARN(pll->refcount != enabled_crtcs,
10640 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10641 pll->refcount, enabled_crtcs);
10642
10643 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10644 sizeof(dpll_hw_state)),
10645 "pll hw state mismatch\n");
10646 }
10647 }
10648
10649 void
10650 intel_modeset_check_state(struct drm_device *dev)
10651 {
10652 check_connector_state(dev);
10653 check_encoder_state(dev);
10654 check_crtc_state(dev);
10655 check_shared_dpll_state(dev);
10656 }
10657
10658 void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10659 int dotclock)
10660 {
10661 /*
10662 * FDI already provided one idea for the dotclock.
10663 * Yell if the encoder disagrees.
10664 */
10665 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
10666 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10667 pipe_config->adjusted_mode.crtc_clock, dotclock);
10668 }
10669
10670 static void update_scanline_offset(struct intel_crtc *crtc)
10671 {
10672 struct drm_device *dev = crtc->base.dev;
10673
10674 /*
10675 * The scanline counter increments at the leading edge of hsync.
10676 *
10677 * On most platforms it starts counting from vtotal-1 on the
10678 * first active line. That means the scanline counter value is
10679 * always one less than what we would expect. Ie. just after
10680 * start of vblank, which also occurs at start of hsync (on the
10681 * last active line), the scanline counter will read vblank_start-1.
10682 *
10683 * On gen2 the scanline counter starts counting from 1 instead
10684 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10685 * to keep the value positive), instead of adding one.
10686 *
10687 * On HSW+ the behaviour of the scanline counter depends on the output
10688 * type. For DP ports it behaves like most other platforms, but on HDMI
10689 * there's an extra 1 line difference. So we need to add two instead of
10690 * one to the value.
10691 */
10692 if (IS_GEN2(dev)) {
10693 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10694 int vtotal;
10695
10696 vtotal = mode->crtc_vtotal;
10697 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10698 vtotal /= 2;
10699
10700 crtc->scanline_offset = vtotal - 1;
10701 } else if (HAS_DDI(dev) &&
10702 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10703 crtc->scanline_offset = 2;
10704 } else
10705 crtc->scanline_offset = 1;
10706 }
10707
10708 static int __intel_set_mode(struct drm_crtc *crtc,
10709 struct drm_display_mode *mode,
10710 int x, int y, struct drm_framebuffer *fb)
10711 {
10712 struct drm_device *dev = crtc->dev;
10713 struct drm_i915_private *dev_priv = dev->dev_private;
10714 struct drm_display_mode *saved_mode;
10715 struct intel_crtc_config *pipe_config = NULL;
10716 struct intel_crtc *intel_crtc;
10717 unsigned disable_pipes, prepare_pipes, modeset_pipes;
10718 int ret = 0;
10719
10720 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10721 if (!saved_mode)
10722 return -ENOMEM;
10723
10724 intel_modeset_affected_pipes(crtc, &modeset_pipes,
10725 &prepare_pipes, &disable_pipes);
10726
10727 *saved_mode = crtc->mode;
10728
10729 /* Hack: Because we don't (yet) support global modeset on multiple
10730 * crtcs, we don't keep track of the new mode for more than one crtc.
10731 * Hence simply check whether any bit is set in modeset_pipes in all the
10732 * pieces of code that are not yet converted to deal with mutliple crtcs
10733 * changing their mode at the same time. */
10734 if (modeset_pipes) {
10735 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10736 if (IS_ERR(pipe_config)) {
10737 ret = PTR_ERR(pipe_config);
10738 pipe_config = NULL;
10739
10740 goto out;
10741 }
10742 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10743 "[modeset]");
10744 to_intel_crtc(crtc)->new_config = pipe_config;
10745 }
10746
10747 /*
10748 * See if the config requires any additional preparation, e.g.
10749 * to adjust global state with pipes off. We need to do this
10750 * here so we can get the modeset_pipe updated config for the new
10751 * mode set on this crtc. For other crtcs we need to use the
10752 * adjusted_mode bits in the crtc directly.
10753 */
10754 if (IS_VALLEYVIEW(dev)) {
10755 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10756
10757 /* may have added more to prepare_pipes than we should */
10758 prepare_pipes &= ~disable_pipes;
10759 }
10760
10761 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10762 intel_crtc_disable(&intel_crtc->base);
10763
10764 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10765 if (intel_crtc->base.enabled)
10766 dev_priv->display.crtc_disable(&intel_crtc->base);
10767 }
10768
10769 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10770 * to set it here already despite that we pass it down the callchain.
10771 */
10772 if (modeset_pipes) {
10773 crtc->mode = *mode;
10774 /* mode_set/enable/disable functions rely on a correct pipe
10775 * config. */
10776 to_intel_crtc(crtc)->config = *pipe_config;
10777 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
10778
10779 /*
10780 * Calculate and store various constants which
10781 * are later needed by vblank and swap-completion
10782 * timestamping. They are derived from true hwmode.
10783 */
10784 drm_calc_timestamping_constants(crtc,
10785 &pipe_config->adjusted_mode);
10786 }
10787
10788 /* Only after disabling all output pipelines that will be changed can we
10789 * update the the output configuration. */
10790 intel_modeset_update_state(dev, prepare_pipes);
10791
10792 if (dev_priv->display.modeset_global_resources)
10793 dev_priv->display.modeset_global_resources(dev);
10794
10795 /* Set up the DPLL and any encoders state that needs to adjust or depend
10796 * on the DPLL.
10797 */
10798 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10799 struct drm_framebuffer *old_fb = crtc->primary->fb;
10800 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10801 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10802
10803 mutex_lock(&dev->struct_mutex);
10804 ret = intel_pin_and_fence_fb_obj(dev,
10805 obj,
10806 NULL);
10807 if (ret != 0) {
10808 DRM_ERROR("pin & fence failed\n");
10809 mutex_unlock(&dev->struct_mutex);
10810 goto done;
10811 }
10812 if (old_fb)
10813 intel_unpin_fb_obj(old_obj);
10814 i915_gem_track_fb(old_obj, obj,
10815 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
10816 mutex_unlock(&dev->struct_mutex);
10817
10818 crtc->primary->fb = fb;
10819 crtc->x = x;
10820 crtc->y = y;
10821
10822 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10823 x, y, fb);
10824 if (ret)
10825 goto done;
10826 }
10827
10828 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
10829 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10830 update_scanline_offset(intel_crtc);
10831
10832 dev_priv->display.crtc_enable(&intel_crtc->base);
10833 }
10834
10835 /* FIXME: add subpixel order */
10836 done:
10837 if (ret && crtc->enabled)
10838 crtc->mode = *saved_mode;
10839
10840 out:
10841 kfree(pipe_config);
10842 kfree(saved_mode);
10843 return ret;
10844 }
10845
10846 static int intel_set_mode(struct drm_crtc *crtc,
10847 struct drm_display_mode *mode,
10848 int x, int y, struct drm_framebuffer *fb)
10849 {
10850 int ret;
10851
10852 ret = __intel_set_mode(crtc, mode, x, y, fb);
10853
10854 if (ret == 0)
10855 intel_modeset_check_state(crtc->dev);
10856
10857 return ret;
10858 }
10859
10860 void intel_crtc_restore_mode(struct drm_crtc *crtc)
10861 {
10862 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
10863 }
10864
10865 #undef for_each_intel_crtc_masked
10866
10867 static void intel_set_config_free(struct intel_set_config *config)
10868 {
10869 if (!config)
10870 return;
10871
10872 kfree(config->save_connector_encoders);
10873 kfree(config->save_encoder_crtcs);
10874 kfree(config->save_crtc_enabled);
10875 kfree(config);
10876 }
10877
10878 static int intel_set_config_save_state(struct drm_device *dev,
10879 struct intel_set_config *config)
10880 {
10881 struct drm_crtc *crtc;
10882 struct drm_encoder *encoder;
10883 struct drm_connector *connector;
10884 int count;
10885
10886 config->save_crtc_enabled =
10887 kcalloc(dev->mode_config.num_crtc,
10888 sizeof(bool), GFP_KERNEL);
10889 if (!config->save_crtc_enabled)
10890 return -ENOMEM;
10891
10892 config->save_encoder_crtcs =
10893 kcalloc(dev->mode_config.num_encoder,
10894 sizeof(struct drm_crtc *), GFP_KERNEL);
10895 if (!config->save_encoder_crtcs)
10896 return -ENOMEM;
10897
10898 config->save_connector_encoders =
10899 kcalloc(dev->mode_config.num_connector,
10900 sizeof(struct drm_encoder *), GFP_KERNEL);
10901 if (!config->save_connector_encoders)
10902 return -ENOMEM;
10903
10904 /* Copy data. Note that driver private data is not affected.
10905 * Should anything bad happen only the expected state is
10906 * restored, not the drivers personal bookkeeping.
10907 */
10908 count = 0;
10909 for_each_crtc(dev, crtc) {
10910 config->save_crtc_enabled[count++] = crtc->enabled;
10911 }
10912
10913 count = 0;
10914 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
10915 config->save_encoder_crtcs[count++] = encoder->crtc;
10916 }
10917
10918 count = 0;
10919 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10920 config->save_connector_encoders[count++] = connector->encoder;
10921 }
10922
10923 return 0;
10924 }
10925
10926 static void intel_set_config_restore_state(struct drm_device *dev,
10927 struct intel_set_config *config)
10928 {
10929 struct intel_crtc *crtc;
10930 struct intel_encoder *encoder;
10931 struct intel_connector *connector;
10932 int count;
10933
10934 count = 0;
10935 for_each_intel_crtc(dev, crtc) {
10936 crtc->new_enabled = config->save_crtc_enabled[count++];
10937
10938 if (crtc->new_enabled)
10939 crtc->new_config = &crtc->config;
10940 else
10941 crtc->new_config = NULL;
10942 }
10943
10944 count = 0;
10945 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10946 encoder->new_crtc =
10947 to_intel_crtc(config->save_encoder_crtcs[count++]);
10948 }
10949
10950 count = 0;
10951 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10952 connector->new_encoder =
10953 to_intel_encoder(config->save_connector_encoders[count++]);
10954 }
10955 }
10956
10957 static bool
10958 is_crtc_connector_off(struct drm_mode_set *set)
10959 {
10960 int i;
10961
10962 if (set->num_connectors == 0)
10963 return false;
10964
10965 if (WARN_ON(set->connectors == NULL))
10966 return false;
10967
10968 for (i = 0; i < set->num_connectors; i++)
10969 if (set->connectors[i]->encoder &&
10970 set->connectors[i]->encoder->crtc == set->crtc &&
10971 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
10972 return true;
10973
10974 return false;
10975 }
10976
10977 static void
10978 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10979 struct intel_set_config *config)
10980 {
10981
10982 /* We should be able to check here if the fb has the same properties
10983 * and then just flip_or_move it */
10984 if (is_crtc_connector_off(set)) {
10985 config->mode_changed = true;
10986 } else if (set->crtc->primary->fb != set->fb) {
10987 /*
10988 * If we have no fb, we can only flip as long as the crtc is
10989 * active, otherwise we need a full mode set. The crtc may
10990 * be active if we've only disabled the primary plane, or
10991 * in fastboot situations.
10992 */
10993 if (set->crtc->primary->fb == NULL) {
10994 struct intel_crtc *intel_crtc =
10995 to_intel_crtc(set->crtc);
10996
10997 if (intel_crtc->active) {
10998 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10999 config->fb_changed = true;
11000 } else {
11001 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11002 config->mode_changed = true;
11003 }
11004 } else if (set->fb == NULL) {
11005 config->mode_changed = true;
11006 } else if (set->fb->pixel_format !=
11007 set->crtc->primary->fb->pixel_format) {
11008 config->mode_changed = true;
11009 } else {
11010 config->fb_changed = true;
11011 }
11012 }
11013
11014 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11015 config->fb_changed = true;
11016
11017 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11018 DRM_DEBUG_KMS("modes are different, full mode set\n");
11019 drm_mode_debug_printmodeline(&set->crtc->mode);
11020 drm_mode_debug_printmodeline(set->mode);
11021 config->mode_changed = true;
11022 }
11023
11024 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11025 set->crtc->base.id, config->mode_changed, config->fb_changed);
11026 }
11027
11028 static int
11029 intel_modeset_stage_output_state(struct drm_device *dev,
11030 struct drm_mode_set *set,
11031 struct intel_set_config *config)
11032 {
11033 struct intel_connector *connector;
11034 struct intel_encoder *encoder;
11035 struct intel_crtc *crtc;
11036 int ro;
11037
11038 /* The upper layers ensure that we either disable a crtc or have a list
11039 * of connectors. For paranoia, double-check this. */
11040 WARN_ON(!set->fb && (set->num_connectors != 0));
11041 WARN_ON(set->fb && (set->num_connectors == 0));
11042
11043 list_for_each_entry(connector, &dev->mode_config.connector_list,
11044 base.head) {
11045 /* Otherwise traverse passed in connector list and get encoders
11046 * for them. */
11047 for (ro = 0; ro < set->num_connectors; ro++) {
11048 if (set->connectors[ro] == &connector->base) {
11049 connector->new_encoder = connector->encoder;
11050 break;
11051 }
11052 }
11053
11054 /* If we disable the crtc, disable all its connectors. Also, if
11055 * the connector is on the changing crtc but not on the new
11056 * connector list, disable it. */
11057 if ((!set->fb || ro == set->num_connectors) &&
11058 connector->base.encoder &&
11059 connector->base.encoder->crtc == set->crtc) {
11060 connector->new_encoder = NULL;
11061
11062 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11063 connector->base.base.id,
11064 connector->base.name);
11065 }
11066
11067
11068 if (&connector->new_encoder->base != connector->base.encoder) {
11069 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11070 config->mode_changed = true;
11071 }
11072 }
11073 /* connector->new_encoder is now updated for all connectors. */
11074
11075 /* Update crtc of enabled connectors. */
11076 list_for_each_entry(connector, &dev->mode_config.connector_list,
11077 base.head) {
11078 struct drm_crtc *new_crtc;
11079
11080 if (!connector->new_encoder)
11081 continue;
11082
11083 new_crtc = connector->new_encoder->base.crtc;
11084
11085 for (ro = 0; ro < set->num_connectors; ro++) {
11086 if (set->connectors[ro] == &connector->base)
11087 new_crtc = set->crtc;
11088 }
11089
11090 /* Make sure the new CRTC will work with the encoder */
11091 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11092 new_crtc)) {
11093 return -EINVAL;
11094 }
11095 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11096
11097 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11098 connector->base.base.id,
11099 connector->base.name,
11100 new_crtc->base.id);
11101 }
11102
11103 /* Check for any encoders that needs to be disabled. */
11104 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11105 base.head) {
11106 int num_connectors = 0;
11107 list_for_each_entry(connector,
11108 &dev->mode_config.connector_list,
11109 base.head) {
11110 if (connector->new_encoder == encoder) {
11111 WARN_ON(!connector->new_encoder->new_crtc);
11112 num_connectors++;
11113 }
11114 }
11115
11116 if (num_connectors == 0)
11117 encoder->new_crtc = NULL;
11118 else if (num_connectors > 1)
11119 return -EINVAL;
11120
11121 /* Only now check for crtc changes so we don't miss encoders
11122 * that will be disabled. */
11123 if (&encoder->new_crtc->base != encoder->base.crtc) {
11124 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11125 config->mode_changed = true;
11126 }
11127 }
11128 /* Now we've also updated encoder->new_crtc for all encoders. */
11129
11130 for_each_intel_crtc(dev, crtc) {
11131 crtc->new_enabled = false;
11132
11133 list_for_each_entry(encoder,
11134 &dev->mode_config.encoder_list,
11135 base.head) {
11136 if (encoder->new_crtc == crtc) {
11137 crtc->new_enabled = true;
11138 break;
11139 }
11140 }
11141
11142 if (crtc->new_enabled != crtc->base.enabled) {
11143 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11144 crtc->new_enabled ? "en" : "dis");
11145 config->mode_changed = true;
11146 }
11147
11148 if (crtc->new_enabled)
11149 crtc->new_config = &crtc->config;
11150 else
11151 crtc->new_config = NULL;
11152 }
11153
11154 return 0;
11155 }
11156
11157 static void disable_crtc_nofb(struct intel_crtc *crtc)
11158 {
11159 struct drm_device *dev = crtc->base.dev;
11160 struct intel_encoder *encoder;
11161 struct intel_connector *connector;
11162
11163 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11164 pipe_name(crtc->pipe));
11165
11166 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11167 if (connector->new_encoder &&
11168 connector->new_encoder->new_crtc == crtc)
11169 connector->new_encoder = NULL;
11170 }
11171
11172 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11173 if (encoder->new_crtc == crtc)
11174 encoder->new_crtc = NULL;
11175 }
11176
11177 crtc->new_enabled = false;
11178 crtc->new_config = NULL;
11179 }
11180
11181 static int intel_crtc_set_config(struct drm_mode_set *set)
11182 {
11183 struct drm_device *dev;
11184 struct drm_mode_set save_set;
11185 struct intel_set_config *config;
11186 int ret;
11187
11188 BUG_ON(!set);
11189 BUG_ON(!set->crtc);
11190 BUG_ON(!set->crtc->helper_private);
11191
11192 /* Enforce sane interface api - has been abused by the fb helper. */
11193 BUG_ON(!set->mode && set->fb);
11194 BUG_ON(set->fb && set->num_connectors == 0);
11195
11196 if (set->fb) {
11197 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11198 set->crtc->base.id, set->fb->base.id,
11199 (int)set->num_connectors, set->x, set->y);
11200 } else {
11201 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11202 }
11203
11204 dev = set->crtc->dev;
11205
11206 ret = -ENOMEM;
11207 config = kzalloc(sizeof(*config), GFP_KERNEL);
11208 if (!config)
11209 goto out_config;
11210
11211 ret = intel_set_config_save_state(dev, config);
11212 if (ret)
11213 goto out_config;
11214
11215 save_set.crtc = set->crtc;
11216 save_set.mode = &set->crtc->mode;
11217 save_set.x = set->crtc->x;
11218 save_set.y = set->crtc->y;
11219 save_set.fb = set->crtc->primary->fb;
11220
11221 /* Compute whether we need a full modeset, only an fb base update or no
11222 * change at all. In the future we might also check whether only the
11223 * mode changed, e.g. for LVDS where we only change the panel fitter in
11224 * such cases. */
11225 intel_set_config_compute_mode_changes(set, config);
11226
11227 ret = intel_modeset_stage_output_state(dev, set, config);
11228 if (ret)
11229 goto fail;
11230
11231 if (config->mode_changed) {
11232 ret = intel_set_mode(set->crtc, set->mode,
11233 set->x, set->y, set->fb);
11234 } else if (config->fb_changed) {
11235 struct drm_i915_private *dev_priv = dev->dev_private;
11236 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11237
11238 intel_crtc_wait_for_pending_flips(set->crtc);
11239
11240 ret = intel_pipe_set_base(set->crtc,
11241 set->x, set->y, set->fb);
11242
11243 /*
11244 * We need to make sure the primary plane is re-enabled if it
11245 * has previously been turned off.
11246 */
11247 if (!intel_crtc->primary_enabled && ret == 0) {
11248 WARN_ON(!intel_crtc->active);
11249 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11250 intel_crtc->pipe);
11251 }
11252
11253 /*
11254 * In the fastboot case this may be our only check of the
11255 * state after boot. It would be better to only do it on
11256 * the first update, but we don't have a nice way of doing that
11257 * (and really, set_config isn't used much for high freq page
11258 * flipping, so increasing its cost here shouldn't be a big
11259 * deal).
11260 */
11261 if (i915.fastboot && ret == 0)
11262 intel_modeset_check_state(set->crtc->dev);
11263 }
11264
11265 if (ret) {
11266 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11267 set->crtc->base.id, ret);
11268 fail:
11269 intel_set_config_restore_state(dev, config);
11270
11271 /*
11272 * HACK: if the pipe was on, but we didn't have a framebuffer,
11273 * force the pipe off to avoid oopsing in the modeset code
11274 * due to fb==NULL. This should only happen during boot since
11275 * we don't yet reconstruct the FB from the hardware state.
11276 */
11277 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11278 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11279
11280 /* Try to restore the config */
11281 if (config->mode_changed &&
11282 intel_set_mode(save_set.crtc, save_set.mode,
11283 save_set.x, save_set.y, save_set.fb))
11284 DRM_ERROR("failed to restore config after modeset failure\n");
11285 }
11286
11287 out_config:
11288 intel_set_config_free(config);
11289 return ret;
11290 }
11291
11292 static const struct drm_crtc_funcs intel_crtc_funcs = {
11293 .gamma_set = intel_crtc_gamma_set,
11294 .set_config = intel_crtc_set_config,
11295 .destroy = intel_crtc_destroy,
11296 .page_flip = intel_crtc_page_flip,
11297 };
11298
11299 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11300 struct intel_shared_dpll *pll,
11301 struct intel_dpll_hw_state *hw_state)
11302 {
11303 uint32_t val;
11304
11305 val = I915_READ(PCH_DPLL(pll->id));
11306 hw_state->dpll = val;
11307 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11308 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11309
11310 return val & DPLL_VCO_ENABLE;
11311 }
11312
11313 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11314 struct intel_shared_dpll *pll)
11315 {
11316 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11317 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11318 }
11319
11320 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11321 struct intel_shared_dpll *pll)
11322 {
11323 /* PCH refclock must be enabled first */
11324 ibx_assert_pch_refclk_enabled(dev_priv);
11325
11326 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11327
11328 /* Wait for the clocks to stabilize. */
11329 POSTING_READ(PCH_DPLL(pll->id));
11330 udelay(150);
11331
11332 /* The pixel multiplier can only be updated once the
11333 * DPLL is enabled and the clocks are stable.
11334 *
11335 * So write it again.
11336 */
11337 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11338 POSTING_READ(PCH_DPLL(pll->id));
11339 udelay(200);
11340 }
11341
11342 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11343 struct intel_shared_dpll *pll)
11344 {
11345 struct drm_device *dev = dev_priv->dev;
11346 struct intel_crtc *crtc;
11347
11348 /* Make sure no transcoder isn't still depending on us. */
11349 for_each_intel_crtc(dev, crtc) {
11350 if (intel_crtc_to_shared_dpll(crtc) == pll)
11351 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11352 }
11353
11354 I915_WRITE(PCH_DPLL(pll->id), 0);
11355 POSTING_READ(PCH_DPLL(pll->id));
11356 udelay(200);
11357 }
11358
11359 static char *ibx_pch_dpll_names[] = {
11360 "PCH DPLL A",
11361 "PCH DPLL B",
11362 };
11363
11364 static void ibx_pch_dpll_init(struct drm_device *dev)
11365 {
11366 struct drm_i915_private *dev_priv = dev->dev_private;
11367 int i;
11368
11369 dev_priv->num_shared_dpll = 2;
11370
11371 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11372 dev_priv->shared_dplls[i].id = i;
11373 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11374 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11375 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11376 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11377 dev_priv->shared_dplls[i].get_hw_state =
11378 ibx_pch_dpll_get_hw_state;
11379 }
11380 }
11381
11382 static void intel_shared_dpll_init(struct drm_device *dev)
11383 {
11384 struct drm_i915_private *dev_priv = dev->dev_private;
11385
11386 if (HAS_DDI(dev))
11387 intel_ddi_pll_init(dev);
11388 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11389 ibx_pch_dpll_init(dev);
11390 else
11391 dev_priv->num_shared_dpll = 0;
11392
11393 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11394 }
11395
11396 static int
11397 intel_primary_plane_disable(struct drm_plane *plane)
11398 {
11399 struct drm_device *dev = plane->dev;
11400 struct drm_i915_private *dev_priv = dev->dev_private;
11401 struct intel_plane *intel_plane = to_intel_plane(plane);
11402 struct intel_crtc *intel_crtc;
11403
11404 if (!plane->fb)
11405 return 0;
11406
11407 BUG_ON(!plane->crtc);
11408
11409 intel_crtc = to_intel_crtc(plane->crtc);
11410
11411 /*
11412 * Even though we checked plane->fb above, it's still possible that
11413 * the primary plane has been implicitly disabled because the crtc
11414 * coordinates given weren't visible, or because we detected
11415 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11416 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11417 * In either case, we need to unpin the FB and let the fb pointer get
11418 * updated, but otherwise we don't need to touch the hardware.
11419 */
11420 if (!intel_crtc->primary_enabled)
11421 goto disable_unpin;
11422
11423 intel_crtc_wait_for_pending_flips(plane->crtc);
11424 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11425 intel_plane->pipe);
11426 disable_unpin:
11427 mutex_lock(&dev->struct_mutex);
11428 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
11429 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11430 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
11431 mutex_unlock(&dev->struct_mutex);
11432 plane->fb = NULL;
11433
11434 return 0;
11435 }
11436
11437 static int
11438 intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11439 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11440 unsigned int crtc_w, unsigned int crtc_h,
11441 uint32_t src_x, uint32_t src_y,
11442 uint32_t src_w, uint32_t src_h)
11443 {
11444 struct drm_device *dev = crtc->dev;
11445 struct drm_i915_private *dev_priv = dev->dev_private;
11446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11447 struct intel_plane *intel_plane = to_intel_plane(plane);
11448 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11449 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11450 struct drm_rect dest = {
11451 /* integer pixels */
11452 .x1 = crtc_x,
11453 .y1 = crtc_y,
11454 .x2 = crtc_x + crtc_w,
11455 .y2 = crtc_y + crtc_h,
11456 };
11457 struct drm_rect src = {
11458 /* 16.16 fixed point */
11459 .x1 = src_x,
11460 .y1 = src_y,
11461 .x2 = src_x + src_w,
11462 .y2 = src_y + src_h,
11463 };
11464 const struct drm_rect clip = {
11465 /* integer pixels */
11466 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11467 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11468 };
11469 bool visible;
11470 int ret;
11471
11472 ret = drm_plane_helper_check_update(plane, crtc, fb,
11473 &src, &dest, &clip,
11474 DRM_PLANE_HELPER_NO_SCALING,
11475 DRM_PLANE_HELPER_NO_SCALING,
11476 false, true, &visible);
11477
11478 if (ret)
11479 return ret;
11480
11481 /*
11482 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11483 * updating the fb pointer, and returning without touching the
11484 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11485 * turn on the display with all planes setup as desired.
11486 */
11487 if (!crtc->enabled) {
11488 mutex_lock(&dev->struct_mutex);
11489
11490 /*
11491 * If we already called setplane while the crtc was disabled,
11492 * we may have an fb pinned; unpin it.
11493 */
11494 if (plane->fb)
11495 intel_unpin_fb_obj(old_obj);
11496
11497 i915_gem_track_fb(old_obj, obj,
11498 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11499
11500 /* Pin and return without programming hardware */
11501 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11502 mutex_unlock(&dev->struct_mutex);
11503
11504 return ret;
11505 }
11506
11507 intel_crtc_wait_for_pending_flips(crtc);
11508
11509 /*
11510 * If clipping results in a non-visible primary plane, we'll disable
11511 * the primary plane. Note that this is a bit different than what
11512 * happens if userspace explicitly disables the plane by passing fb=0
11513 * because plane->fb still gets set and pinned.
11514 */
11515 if (!visible) {
11516 mutex_lock(&dev->struct_mutex);
11517
11518 /*
11519 * Try to pin the new fb first so that we can bail out if we
11520 * fail.
11521 */
11522 if (plane->fb != fb) {
11523 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11524 if (ret) {
11525 mutex_unlock(&dev->struct_mutex);
11526 return ret;
11527 }
11528 }
11529
11530 i915_gem_track_fb(old_obj, obj,
11531 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11532
11533 if (intel_crtc->primary_enabled)
11534 intel_disable_primary_hw_plane(dev_priv,
11535 intel_plane->plane,
11536 intel_plane->pipe);
11537
11538
11539 if (plane->fb != fb)
11540 if (plane->fb)
11541 intel_unpin_fb_obj(old_obj);
11542
11543 mutex_unlock(&dev->struct_mutex);
11544
11545 return 0;
11546 }
11547
11548 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11549 if (ret)
11550 return ret;
11551
11552 if (!intel_crtc->primary_enabled)
11553 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11554 intel_crtc->pipe);
11555
11556 return 0;
11557 }
11558
11559 /* Common destruction function for both primary and cursor planes */
11560 static void intel_plane_destroy(struct drm_plane *plane)
11561 {
11562 struct intel_plane *intel_plane = to_intel_plane(plane);
11563 drm_plane_cleanup(plane);
11564 kfree(intel_plane);
11565 }
11566
11567 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11568 .update_plane = intel_primary_plane_setplane,
11569 .disable_plane = intel_primary_plane_disable,
11570 .destroy = intel_plane_destroy,
11571 };
11572
11573 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11574 int pipe)
11575 {
11576 struct intel_plane *primary;
11577 const uint32_t *intel_primary_formats;
11578 int num_formats;
11579
11580 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11581 if (primary == NULL)
11582 return NULL;
11583
11584 primary->can_scale = false;
11585 primary->max_downscale = 1;
11586 primary->pipe = pipe;
11587 primary->plane = pipe;
11588 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11589 primary->plane = !pipe;
11590
11591 if (INTEL_INFO(dev)->gen <= 3) {
11592 intel_primary_formats = intel_primary_formats_gen2;
11593 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11594 } else {
11595 intel_primary_formats = intel_primary_formats_gen4;
11596 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11597 }
11598
11599 drm_universal_plane_init(dev, &primary->base, 0,
11600 &intel_primary_plane_funcs,
11601 intel_primary_formats, num_formats,
11602 DRM_PLANE_TYPE_PRIMARY);
11603 return &primary->base;
11604 }
11605
11606 static int
11607 intel_cursor_plane_disable(struct drm_plane *plane)
11608 {
11609 if (!plane->fb)
11610 return 0;
11611
11612 BUG_ON(!plane->crtc);
11613
11614 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11615 }
11616
11617 static int
11618 intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11619 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11620 unsigned int crtc_w, unsigned int crtc_h,
11621 uint32_t src_x, uint32_t src_y,
11622 uint32_t src_w, uint32_t src_h)
11623 {
11624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11625 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11626 struct drm_i915_gem_object *obj = intel_fb->obj;
11627 struct drm_rect dest = {
11628 /* integer pixels */
11629 .x1 = crtc_x,
11630 .y1 = crtc_y,
11631 .x2 = crtc_x + crtc_w,
11632 .y2 = crtc_y + crtc_h,
11633 };
11634 struct drm_rect src = {
11635 /* 16.16 fixed point */
11636 .x1 = src_x,
11637 .y1 = src_y,
11638 .x2 = src_x + src_w,
11639 .y2 = src_y + src_h,
11640 };
11641 const struct drm_rect clip = {
11642 /* integer pixels */
11643 .x2 = intel_crtc->config.pipe_src_w,
11644 .y2 = intel_crtc->config.pipe_src_h,
11645 };
11646 bool visible;
11647 int ret;
11648
11649 ret = drm_plane_helper_check_update(plane, crtc, fb,
11650 &src, &dest, &clip,
11651 DRM_PLANE_HELPER_NO_SCALING,
11652 DRM_PLANE_HELPER_NO_SCALING,
11653 true, true, &visible);
11654 if (ret)
11655 return ret;
11656
11657 crtc->cursor_x = crtc_x;
11658 crtc->cursor_y = crtc_y;
11659 if (fb != crtc->cursor->fb) {
11660 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11661 } else {
11662 intel_crtc_update_cursor(crtc, visible);
11663 return 0;
11664 }
11665 }
11666 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11667 .update_plane = intel_cursor_plane_update,
11668 .disable_plane = intel_cursor_plane_disable,
11669 .destroy = intel_plane_destroy,
11670 };
11671
11672 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11673 int pipe)
11674 {
11675 struct intel_plane *cursor;
11676
11677 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11678 if (cursor == NULL)
11679 return NULL;
11680
11681 cursor->can_scale = false;
11682 cursor->max_downscale = 1;
11683 cursor->pipe = pipe;
11684 cursor->plane = pipe;
11685
11686 drm_universal_plane_init(dev, &cursor->base, 0,
11687 &intel_cursor_plane_funcs,
11688 intel_cursor_formats,
11689 ARRAY_SIZE(intel_cursor_formats),
11690 DRM_PLANE_TYPE_CURSOR);
11691 return &cursor->base;
11692 }
11693
11694 static void intel_crtc_init(struct drm_device *dev, int pipe)
11695 {
11696 struct drm_i915_private *dev_priv = dev->dev_private;
11697 struct intel_crtc *intel_crtc;
11698 struct drm_plane *primary = NULL;
11699 struct drm_plane *cursor = NULL;
11700 int i, ret;
11701
11702 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
11703 if (intel_crtc == NULL)
11704 return;
11705
11706 primary = intel_primary_plane_create(dev, pipe);
11707 if (!primary)
11708 goto fail;
11709
11710 cursor = intel_cursor_plane_create(dev, pipe);
11711 if (!cursor)
11712 goto fail;
11713
11714 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
11715 cursor, &intel_crtc_funcs);
11716 if (ret)
11717 goto fail;
11718
11719 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
11720 for (i = 0; i < 256; i++) {
11721 intel_crtc->lut_r[i] = i;
11722 intel_crtc->lut_g[i] = i;
11723 intel_crtc->lut_b[i] = i;
11724 }
11725
11726 /*
11727 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
11728 * is hooked to pipe B. Hence we want plane A feeding pipe B.
11729 */
11730 intel_crtc->pipe = pipe;
11731 intel_crtc->plane = pipe;
11732 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
11733 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
11734 intel_crtc->plane = !pipe;
11735 }
11736
11737 intel_crtc->cursor_base = ~0;
11738 intel_crtc->cursor_cntl = ~0;
11739
11740 init_waitqueue_head(&intel_crtc->vbl_wait);
11741
11742 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11743 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11744 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11745 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11746
11747 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
11748
11749 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
11750 return;
11751
11752 fail:
11753 if (primary)
11754 drm_plane_cleanup(primary);
11755 if (cursor)
11756 drm_plane_cleanup(cursor);
11757 kfree(intel_crtc);
11758 }
11759
11760 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11761 {
11762 struct drm_encoder *encoder = connector->base.encoder;
11763 struct drm_device *dev = connector->base.dev;
11764
11765 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
11766
11767 if (!encoder)
11768 return INVALID_PIPE;
11769
11770 return to_intel_crtc(encoder->crtc)->pipe;
11771 }
11772
11773 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
11774 struct drm_file *file)
11775 {
11776 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
11777 struct drm_mode_object *drmmode_obj;
11778 struct intel_crtc *crtc;
11779
11780 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11781 return -ENODEV;
11782
11783 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11784 DRM_MODE_OBJECT_CRTC);
11785
11786 if (!drmmode_obj) {
11787 DRM_ERROR("no such CRTC id\n");
11788 return -ENOENT;
11789 }
11790
11791 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11792 pipe_from_crtc_id->pipe = crtc->pipe;
11793
11794 return 0;
11795 }
11796
11797 static int intel_encoder_clones(struct intel_encoder *encoder)
11798 {
11799 struct drm_device *dev = encoder->base.dev;
11800 struct intel_encoder *source_encoder;
11801 int index_mask = 0;
11802 int entry = 0;
11803
11804 list_for_each_entry(source_encoder,
11805 &dev->mode_config.encoder_list, base.head) {
11806 if (encoders_cloneable(encoder, source_encoder))
11807 index_mask |= (1 << entry);
11808
11809 entry++;
11810 }
11811
11812 return index_mask;
11813 }
11814
11815 static bool has_edp_a(struct drm_device *dev)
11816 {
11817 struct drm_i915_private *dev_priv = dev->dev_private;
11818
11819 if (!IS_MOBILE(dev))
11820 return false;
11821
11822 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11823 return false;
11824
11825 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
11826 return false;
11827
11828 return true;
11829 }
11830
11831 const char *intel_output_name(int output)
11832 {
11833 static const char *names[] = {
11834 [INTEL_OUTPUT_UNUSED] = "Unused",
11835 [INTEL_OUTPUT_ANALOG] = "Analog",
11836 [INTEL_OUTPUT_DVO] = "DVO",
11837 [INTEL_OUTPUT_SDVO] = "SDVO",
11838 [INTEL_OUTPUT_LVDS] = "LVDS",
11839 [INTEL_OUTPUT_TVOUT] = "TV",
11840 [INTEL_OUTPUT_HDMI] = "HDMI",
11841 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11842 [INTEL_OUTPUT_EDP] = "eDP",
11843 [INTEL_OUTPUT_DSI] = "DSI",
11844 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11845 };
11846
11847 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11848 return "Invalid";
11849
11850 return names[output];
11851 }
11852
11853 static bool intel_crt_present(struct drm_device *dev)
11854 {
11855 struct drm_i915_private *dev_priv = dev->dev_private;
11856
11857 if (IS_ULT(dev))
11858 return false;
11859
11860 if (IS_CHERRYVIEW(dev))
11861 return false;
11862
11863 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11864 return false;
11865
11866 return true;
11867 }
11868
11869 static void intel_setup_outputs(struct drm_device *dev)
11870 {
11871 struct drm_i915_private *dev_priv = dev->dev_private;
11872 struct intel_encoder *encoder;
11873 bool dpd_is_edp = false;
11874
11875 intel_lvds_init(dev);
11876
11877 if (intel_crt_present(dev))
11878 intel_crt_init(dev);
11879
11880 if (HAS_DDI(dev)) {
11881 int found;
11882
11883 /* Haswell uses DDI functions to detect digital outputs */
11884 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11885 /* DDI A only supports eDP */
11886 if (found)
11887 intel_ddi_init(dev, PORT_A);
11888
11889 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11890 * register */
11891 found = I915_READ(SFUSE_STRAP);
11892
11893 if (found & SFUSE_STRAP_DDIB_DETECTED)
11894 intel_ddi_init(dev, PORT_B);
11895 if (found & SFUSE_STRAP_DDIC_DETECTED)
11896 intel_ddi_init(dev, PORT_C);
11897 if (found & SFUSE_STRAP_DDID_DETECTED)
11898 intel_ddi_init(dev, PORT_D);
11899 } else if (HAS_PCH_SPLIT(dev)) {
11900 int found;
11901 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
11902
11903 if (has_edp_a(dev))
11904 intel_dp_init(dev, DP_A, PORT_A);
11905
11906 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
11907 /* PCH SDVOB multiplex with HDMIB */
11908 found = intel_sdvo_init(dev, PCH_SDVOB, true);
11909 if (!found)
11910 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
11911 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
11912 intel_dp_init(dev, PCH_DP_B, PORT_B);
11913 }
11914
11915 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
11916 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
11917
11918 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
11919 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
11920
11921 if (I915_READ(PCH_DP_C) & DP_DETECTED)
11922 intel_dp_init(dev, PCH_DP_C, PORT_C);
11923
11924 if (I915_READ(PCH_DP_D) & DP_DETECTED)
11925 intel_dp_init(dev, PCH_DP_D, PORT_D);
11926 } else if (IS_VALLEYVIEW(dev)) {
11927 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11928 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11929 PORT_B);
11930 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11931 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11932 }
11933
11934 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11935 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11936 PORT_C);
11937 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
11938 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
11939 }
11940
11941 if (IS_CHERRYVIEW(dev)) {
11942 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11943 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11944 PORT_D);
11945 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11946 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11947 }
11948 }
11949
11950 intel_dsi_init(dev);
11951 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
11952 bool found = false;
11953
11954 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11955 DRM_DEBUG_KMS("probing SDVOB\n");
11956 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
11957 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11958 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
11959 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
11960 }
11961
11962 if (!found && SUPPORTS_INTEGRATED_DP(dev))
11963 intel_dp_init(dev, DP_B, PORT_B);
11964 }
11965
11966 /* Before G4X SDVOC doesn't have its own detect register */
11967
11968 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
11969 DRM_DEBUG_KMS("probing SDVOC\n");
11970 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
11971 }
11972
11973 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
11974
11975 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11976 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
11977 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
11978 }
11979 if (SUPPORTS_INTEGRATED_DP(dev))
11980 intel_dp_init(dev, DP_C, PORT_C);
11981 }
11982
11983 if (SUPPORTS_INTEGRATED_DP(dev) &&
11984 (I915_READ(DP_D) & DP_DETECTED))
11985 intel_dp_init(dev, DP_D, PORT_D);
11986 } else if (IS_GEN2(dev))
11987 intel_dvo_init(dev);
11988
11989 if (SUPPORTS_TV(dev))
11990 intel_tv_init(dev);
11991
11992 intel_edp_psr_init(dev);
11993
11994 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11995 encoder->base.possible_crtcs = encoder->crtc_mask;
11996 encoder->base.possible_clones =
11997 intel_encoder_clones(encoder);
11998 }
11999
12000 intel_init_pch_refclk(dev);
12001
12002 drm_helper_move_panel_connectors_to_head(dev);
12003 }
12004
12005 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12006 {
12007 struct drm_device *dev = fb->dev;
12008 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12009
12010 drm_framebuffer_cleanup(fb);
12011 mutex_lock(&dev->struct_mutex);
12012 WARN_ON(!intel_fb->obj->framebuffer_references--);
12013 drm_gem_object_unreference(&intel_fb->obj->base);
12014 mutex_unlock(&dev->struct_mutex);
12015 kfree(intel_fb);
12016 }
12017
12018 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12019 struct drm_file *file,
12020 unsigned int *handle)
12021 {
12022 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12023 struct drm_i915_gem_object *obj = intel_fb->obj;
12024
12025 return drm_gem_handle_create(file, &obj->base, handle);
12026 }
12027
12028 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12029 .destroy = intel_user_framebuffer_destroy,
12030 .create_handle = intel_user_framebuffer_create_handle,
12031 };
12032
12033 static int intel_framebuffer_init(struct drm_device *dev,
12034 struct intel_framebuffer *intel_fb,
12035 struct drm_mode_fb_cmd2 *mode_cmd,
12036 struct drm_i915_gem_object *obj)
12037 {
12038 int aligned_height;
12039 int pitch_limit;
12040 int ret;
12041
12042 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12043
12044 if (obj->tiling_mode == I915_TILING_Y) {
12045 DRM_DEBUG("hardware does not support tiling Y\n");
12046 return -EINVAL;
12047 }
12048
12049 if (mode_cmd->pitches[0] & 63) {
12050 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12051 mode_cmd->pitches[0]);
12052 return -EINVAL;
12053 }
12054
12055 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12056 pitch_limit = 32*1024;
12057 } else if (INTEL_INFO(dev)->gen >= 4) {
12058 if (obj->tiling_mode)
12059 pitch_limit = 16*1024;
12060 else
12061 pitch_limit = 32*1024;
12062 } else if (INTEL_INFO(dev)->gen >= 3) {
12063 if (obj->tiling_mode)
12064 pitch_limit = 8*1024;
12065 else
12066 pitch_limit = 16*1024;
12067 } else
12068 /* XXX DSPC is limited to 4k tiled */
12069 pitch_limit = 8*1024;
12070
12071 if (mode_cmd->pitches[0] > pitch_limit) {
12072 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12073 obj->tiling_mode ? "tiled" : "linear",
12074 mode_cmd->pitches[0], pitch_limit);
12075 return -EINVAL;
12076 }
12077
12078 if (obj->tiling_mode != I915_TILING_NONE &&
12079 mode_cmd->pitches[0] != obj->stride) {
12080 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12081 mode_cmd->pitches[0], obj->stride);
12082 return -EINVAL;
12083 }
12084
12085 /* Reject formats not supported by any plane early. */
12086 switch (mode_cmd->pixel_format) {
12087 case DRM_FORMAT_C8:
12088 case DRM_FORMAT_RGB565:
12089 case DRM_FORMAT_XRGB8888:
12090 case DRM_FORMAT_ARGB8888:
12091 break;
12092 case DRM_FORMAT_XRGB1555:
12093 case DRM_FORMAT_ARGB1555:
12094 if (INTEL_INFO(dev)->gen > 3) {
12095 DRM_DEBUG("unsupported pixel format: %s\n",
12096 drm_get_format_name(mode_cmd->pixel_format));
12097 return -EINVAL;
12098 }
12099 break;
12100 case DRM_FORMAT_XBGR8888:
12101 case DRM_FORMAT_ABGR8888:
12102 case DRM_FORMAT_XRGB2101010:
12103 case DRM_FORMAT_ARGB2101010:
12104 case DRM_FORMAT_XBGR2101010:
12105 case DRM_FORMAT_ABGR2101010:
12106 if (INTEL_INFO(dev)->gen < 4) {
12107 DRM_DEBUG("unsupported pixel format: %s\n",
12108 drm_get_format_name(mode_cmd->pixel_format));
12109 return -EINVAL;
12110 }
12111 break;
12112 case DRM_FORMAT_YUYV:
12113 case DRM_FORMAT_UYVY:
12114 case DRM_FORMAT_YVYU:
12115 case DRM_FORMAT_VYUY:
12116 if (INTEL_INFO(dev)->gen < 5) {
12117 DRM_DEBUG("unsupported pixel format: %s\n",
12118 drm_get_format_name(mode_cmd->pixel_format));
12119 return -EINVAL;
12120 }
12121 break;
12122 default:
12123 DRM_DEBUG("unsupported pixel format: %s\n",
12124 drm_get_format_name(mode_cmd->pixel_format));
12125 return -EINVAL;
12126 }
12127
12128 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12129 if (mode_cmd->offsets[0] != 0)
12130 return -EINVAL;
12131
12132 aligned_height = intel_align_height(dev, mode_cmd->height,
12133 obj->tiling_mode);
12134 /* FIXME drm helper for size checks (especially planar formats)? */
12135 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12136 return -EINVAL;
12137
12138 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12139 intel_fb->obj = obj;
12140 intel_fb->obj->framebuffer_references++;
12141
12142 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12143 if (ret) {
12144 DRM_ERROR("framebuffer init failed %d\n", ret);
12145 return ret;
12146 }
12147
12148 return 0;
12149 }
12150
12151 static struct drm_framebuffer *
12152 intel_user_framebuffer_create(struct drm_device *dev,
12153 struct drm_file *filp,
12154 struct drm_mode_fb_cmd2 *mode_cmd)
12155 {
12156 struct drm_i915_gem_object *obj;
12157
12158 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12159 mode_cmd->handles[0]));
12160 if (&obj->base == NULL)
12161 return ERR_PTR(-ENOENT);
12162
12163 return intel_framebuffer_create(dev, mode_cmd, obj);
12164 }
12165
12166 #ifndef CONFIG_DRM_I915_FBDEV
12167 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12168 {
12169 }
12170 #endif
12171
12172 static const struct drm_mode_config_funcs intel_mode_funcs = {
12173 .fb_create = intel_user_framebuffer_create,
12174 .output_poll_changed = intel_fbdev_output_poll_changed,
12175 };
12176
12177 /* Set up chip specific display functions */
12178 static void intel_init_display(struct drm_device *dev)
12179 {
12180 struct drm_i915_private *dev_priv = dev->dev_private;
12181
12182 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12183 dev_priv->display.find_dpll = g4x_find_best_dpll;
12184 else if (IS_CHERRYVIEW(dev))
12185 dev_priv->display.find_dpll = chv_find_best_dpll;
12186 else if (IS_VALLEYVIEW(dev))
12187 dev_priv->display.find_dpll = vlv_find_best_dpll;
12188 else if (IS_PINEVIEW(dev))
12189 dev_priv->display.find_dpll = pnv_find_best_dpll;
12190 else
12191 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12192
12193 if (HAS_DDI(dev)) {
12194 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12195 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12196 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
12197 dev_priv->display.crtc_enable = haswell_crtc_enable;
12198 dev_priv->display.crtc_disable = haswell_crtc_disable;
12199 dev_priv->display.off = haswell_crtc_off;
12200 dev_priv->display.update_primary_plane =
12201 ironlake_update_primary_plane;
12202 } else if (HAS_PCH_SPLIT(dev)) {
12203 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12204 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12205 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
12206 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12207 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12208 dev_priv->display.off = ironlake_crtc_off;
12209 dev_priv->display.update_primary_plane =
12210 ironlake_update_primary_plane;
12211 } else if (IS_VALLEYVIEW(dev)) {
12212 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12213 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12214 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12215 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12216 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12217 dev_priv->display.off = i9xx_crtc_off;
12218 dev_priv->display.update_primary_plane =
12219 i9xx_update_primary_plane;
12220 } else {
12221 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12222 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12223 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12224 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12225 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12226 dev_priv->display.off = i9xx_crtc_off;
12227 dev_priv->display.update_primary_plane =
12228 i9xx_update_primary_plane;
12229 }
12230
12231 /* Returns the core display clock speed */
12232 if (IS_VALLEYVIEW(dev))
12233 dev_priv->display.get_display_clock_speed =
12234 valleyview_get_display_clock_speed;
12235 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12236 dev_priv->display.get_display_clock_speed =
12237 i945_get_display_clock_speed;
12238 else if (IS_I915G(dev))
12239 dev_priv->display.get_display_clock_speed =
12240 i915_get_display_clock_speed;
12241 else if (IS_I945GM(dev) || IS_845G(dev))
12242 dev_priv->display.get_display_clock_speed =
12243 i9xx_misc_get_display_clock_speed;
12244 else if (IS_PINEVIEW(dev))
12245 dev_priv->display.get_display_clock_speed =
12246 pnv_get_display_clock_speed;
12247 else if (IS_I915GM(dev))
12248 dev_priv->display.get_display_clock_speed =
12249 i915gm_get_display_clock_speed;
12250 else if (IS_I865G(dev))
12251 dev_priv->display.get_display_clock_speed =
12252 i865_get_display_clock_speed;
12253 else if (IS_I85X(dev))
12254 dev_priv->display.get_display_clock_speed =
12255 i855_get_display_clock_speed;
12256 else /* 852, 830 */
12257 dev_priv->display.get_display_clock_speed =
12258 i830_get_display_clock_speed;
12259
12260 if (HAS_PCH_SPLIT(dev)) {
12261 if (IS_GEN5(dev)) {
12262 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12263 dev_priv->display.write_eld = ironlake_write_eld;
12264 } else if (IS_GEN6(dev)) {
12265 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12266 dev_priv->display.write_eld = ironlake_write_eld;
12267 dev_priv->display.modeset_global_resources =
12268 snb_modeset_global_resources;
12269 } else if (IS_IVYBRIDGE(dev)) {
12270 /* FIXME: detect B0+ stepping and use auto training */
12271 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12272 dev_priv->display.write_eld = ironlake_write_eld;
12273 dev_priv->display.modeset_global_resources =
12274 ivb_modeset_global_resources;
12275 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12276 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12277 dev_priv->display.write_eld = haswell_write_eld;
12278 dev_priv->display.modeset_global_resources =
12279 haswell_modeset_global_resources;
12280 }
12281 } else if (IS_G4X(dev)) {
12282 dev_priv->display.write_eld = g4x_write_eld;
12283 } else if (IS_VALLEYVIEW(dev)) {
12284 dev_priv->display.modeset_global_resources =
12285 valleyview_modeset_global_resources;
12286 dev_priv->display.write_eld = ironlake_write_eld;
12287 }
12288
12289 /* Default just returns -ENODEV to indicate unsupported */
12290 dev_priv->display.queue_flip = intel_default_queue_flip;
12291
12292 switch (INTEL_INFO(dev)->gen) {
12293 case 2:
12294 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12295 break;
12296
12297 case 3:
12298 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12299 break;
12300
12301 case 4:
12302 case 5:
12303 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12304 break;
12305
12306 case 6:
12307 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12308 break;
12309 case 7:
12310 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12311 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12312 break;
12313 }
12314
12315 intel_panel_init_backlight_funcs(dev);
12316 }
12317
12318 /*
12319 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12320 * resume, or other times. This quirk makes sure that's the case for
12321 * affected systems.
12322 */
12323 static void quirk_pipea_force(struct drm_device *dev)
12324 {
12325 struct drm_i915_private *dev_priv = dev->dev_private;
12326
12327 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12328 DRM_INFO("applying pipe a force quirk\n");
12329 }
12330
12331 /*
12332 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12333 */
12334 static void quirk_ssc_force_disable(struct drm_device *dev)
12335 {
12336 struct drm_i915_private *dev_priv = dev->dev_private;
12337 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12338 DRM_INFO("applying lvds SSC disable quirk\n");
12339 }
12340
12341 /*
12342 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12343 * brightness value
12344 */
12345 static void quirk_invert_brightness(struct drm_device *dev)
12346 {
12347 struct drm_i915_private *dev_priv = dev->dev_private;
12348 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12349 DRM_INFO("applying inverted panel brightness quirk\n");
12350 }
12351
12352 struct intel_quirk {
12353 int device;
12354 int subsystem_vendor;
12355 int subsystem_device;
12356 void (*hook)(struct drm_device *dev);
12357 };
12358
12359 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12360 struct intel_dmi_quirk {
12361 void (*hook)(struct drm_device *dev);
12362 const struct dmi_system_id (*dmi_id_list)[];
12363 };
12364
12365 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12366 {
12367 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12368 return 1;
12369 }
12370
12371 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12372 {
12373 .dmi_id_list = &(const struct dmi_system_id[]) {
12374 {
12375 .callback = intel_dmi_reverse_brightness,
12376 .ident = "NCR Corporation",
12377 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12378 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12379 },
12380 },
12381 { } /* terminating entry */
12382 },
12383 .hook = quirk_invert_brightness,
12384 },
12385 };
12386
12387 static struct intel_quirk intel_quirks[] = {
12388 /* HP Mini needs pipe A force quirk (LP: #322104) */
12389 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12390
12391 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12392 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12393
12394 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12395 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12396
12397 /* Lenovo U160 cannot use SSC on LVDS */
12398 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12399
12400 /* Sony Vaio Y cannot use SSC on LVDS */
12401 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12402
12403 /* Acer Aspire 5734Z must invert backlight brightness */
12404 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12405
12406 /* Acer/eMachines G725 */
12407 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12408
12409 /* Acer/eMachines e725 */
12410 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12411
12412 /* Acer/Packard Bell NCL20 */
12413 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12414
12415 /* Acer Aspire 4736Z */
12416 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12417
12418 /* Acer Aspire 5336 */
12419 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12420 };
12421
12422 static void intel_init_quirks(struct drm_device *dev)
12423 {
12424 struct pci_dev *d = dev->pdev;
12425 int i;
12426
12427 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12428 struct intel_quirk *q = &intel_quirks[i];
12429
12430 if (d->device == q->device &&
12431 (d->subsystem_vendor == q->subsystem_vendor ||
12432 q->subsystem_vendor == PCI_ANY_ID) &&
12433 (d->subsystem_device == q->subsystem_device ||
12434 q->subsystem_device == PCI_ANY_ID))
12435 q->hook(dev);
12436 }
12437 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12438 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12439 intel_dmi_quirks[i].hook(dev);
12440 }
12441 }
12442
12443 /* Disable the VGA plane that we never use */
12444 static void i915_disable_vga(struct drm_device *dev)
12445 {
12446 struct drm_i915_private *dev_priv = dev->dev_private;
12447 u8 sr1;
12448 u32 vga_reg = i915_vgacntrl_reg(dev);
12449
12450 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12451 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12452 outb(SR01, VGA_SR_INDEX);
12453 sr1 = inb(VGA_SR_DATA);
12454 outb(sr1 | 1<<5, VGA_SR_DATA);
12455 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12456 udelay(300);
12457
12458 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12459 POSTING_READ(vga_reg);
12460 }
12461
12462 void intel_modeset_init_hw(struct drm_device *dev)
12463 {
12464 intel_prepare_ddi(dev);
12465
12466 if (IS_VALLEYVIEW(dev))
12467 vlv_update_cdclk(dev);
12468
12469 intel_init_clock_gating(dev);
12470
12471 intel_reset_dpio(dev);
12472
12473 intel_enable_gt_powersave(dev);
12474 }
12475
12476 void intel_modeset_suspend_hw(struct drm_device *dev)
12477 {
12478 intel_suspend_hw(dev);
12479 }
12480
12481 void intel_modeset_init(struct drm_device *dev)
12482 {
12483 struct drm_i915_private *dev_priv = dev->dev_private;
12484 int sprite, ret;
12485 enum pipe pipe;
12486 struct intel_crtc *crtc;
12487
12488 drm_mode_config_init(dev);
12489
12490 dev->mode_config.min_width = 0;
12491 dev->mode_config.min_height = 0;
12492
12493 dev->mode_config.preferred_depth = 24;
12494 dev->mode_config.prefer_shadow = 1;
12495
12496 dev->mode_config.funcs = &intel_mode_funcs;
12497
12498 intel_init_quirks(dev);
12499
12500 intel_init_pm(dev);
12501
12502 if (INTEL_INFO(dev)->num_pipes == 0)
12503 return;
12504
12505 intel_init_display(dev);
12506
12507 if (IS_GEN2(dev)) {
12508 dev->mode_config.max_width = 2048;
12509 dev->mode_config.max_height = 2048;
12510 } else if (IS_GEN3(dev)) {
12511 dev->mode_config.max_width = 4096;
12512 dev->mode_config.max_height = 4096;
12513 } else {
12514 dev->mode_config.max_width = 8192;
12515 dev->mode_config.max_height = 8192;
12516 }
12517
12518 if (IS_GEN2(dev)) {
12519 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12520 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12521 } else {
12522 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12523 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12524 }
12525
12526 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
12527
12528 DRM_DEBUG_KMS("%d display pipe%s available.\n",
12529 INTEL_INFO(dev)->num_pipes,
12530 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
12531
12532 for_each_pipe(pipe) {
12533 intel_crtc_init(dev, pipe);
12534 for_each_sprite(pipe, sprite) {
12535 ret = intel_plane_init(dev, pipe, sprite);
12536 if (ret)
12537 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
12538 pipe_name(pipe), sprite_name(pipe, sprite), ret);
12539 }
12540 }
12541
12542 intel_init_dpio(dev);
12543 intel_reset_dpio(dev);
12544
12545 intel_shared_dpll_init(dev);
12546
12547 /* Just disable it once at startup */
12548 i915_disable_vga(dev);
12549 intel_setup_outputs(dev);
12550
12551 /* Just in case the BIOS is doing something questionable. */
12552 intel_disable_fbc(dev);
12553
12554 drm_modeset_lock_all(dev);
12555 intel_modeset_setup_hw_state(dev, false);
12556 drm_modeset_unlock_all(dev);
12557
12558 for_each_intel_crtc(dev, crtc) {
12559 if (!crtc->active)
12560 continue;
12561
12562 /*
12563 * Note that reserving the BIOS fb up front prevents us
12564 * from stuffing other stolen allocations like the ring
12565 * on top. This prevents some ugliness at boot time, and
12566 * can even allow for smooth boot transitions if the BIOS
12567 * fb is large enough for the active pipe configuration.
12568 */
12569 if (dev_priv->display.get_plane_config) {
12570 dev_priv->display.get_plane_config(crtc,
12571 &crtc->plane_config);
12572 /*
12573 * If the fb is shared between multiple heads, we'll
12574 * just get the first one.
12575 */
12576 intel_find_plane_obj(crtc, &crtc->plane_config);
12577 }
12578 }
12579 }
12580
12581 static void intel_enable_pipe_a(struct drm_device *dev)
12582 {
12583 struct intel_connector *connector;
12584 struct drm_connector *crt = NULL;
12585 struct intel_load_detect_pipe load_detect_temp;
12586 struct drm_modeset_acquire_ctx ctx;
12587
12588 /* We can't just switch on the pipe A, we need to set things up with a
12589 * proper mode and output configuration. As a gross hack, enable pipe A
12590 * by enabling the load detect pipe once. */
12591 list_for_each_entry(connector,
12592 &dev->mode_config.connector_list,
12593 base.head) {
12594 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12595 crt = &connector->base;
12596 break;
12597 }
12598 }
12599
12600 if (!crt)
12601 return;
12602
12603 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12604 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
12605
12606
12607 }
12608
12609 static bool
12610 intel_check_plane_mapping(struct intel_crtc *crtc)
12611 {
12612 struct drm_device *dev = crtc->base.dev;
12613 struct drm_i915_private *dev_priv = dev->dev_private;
12614 u32 reg, val;
12615
12616 if (INTEL_INFO(dev)->num_pipes == 1)
12617 return true;
12618
12619 reg = DSPCNTR(!crtc->plane);
12620 val = I915_READ(reg);
12621
12622 if ((val & DISPLAY_PLANE_ENABLE) &&
12623 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12624 return false;
12625
12626 return true;
12627 }
12628
12629 static void intel_sanitize_crtc(struct intel_crtc *crtc)
12630 {
12631 struct drm_device *dev = crtc->base.dev;
12632 struct drm_i915_private *dev_priv = dev->dev_private;
12633 u32 reg;
12634
12635 /* Clear any frame start delays used for debugging left by the BIOS */
12636 reg = PIPECONF(crtc->config.cpu_transcoder);
12637 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12638
12639 /* restore vblank interrupts to correct state */
12640 if (crtc->active)
12641 drm_vblank_on(dev, crtc->pipe);
12642 else
12643 drm_vblank_off(dev, crtc->pipe);
12644
12645 /* We need to sanitize the plane -> pipe mapping first because this will
12646 * disable the crtc (and hence change the state) if it is wrong. Note
12647 * that gen4+ has a fixed plane -> pipe mapping. */
12648 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
12649 struct intel_connector *connector;
12650 bool plane;
12651
12652 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12653 crtc->base.base.id);
12654
12655 /* Pipe has the wrong plane attached and the plane is active.
12656 * Temporarily change the plane mapping and disable everything
12657 * ... */
12658 plane = crtc->plane;
12659 crtc->plane = !plane;
12660 dev_priv->display.crtc_disable(&crtc->base);
12661 crtc->plane = plane;
12662
12663 /* ... and break all links. */
12664 list_for_each_entry(connector, &dev->mode_config.connector_list,
12665 base.head) {
12666 if (connector->encoder->base.crtc != &crtc->base)
12667 continue;
12668
12669 connector->base.dpms = DRM_MODE_DPMS_OFF;
12670 connector->base.encoder = NULL;
12671 }
12672 /* multiple connectors may have the same encoder:
12673 * handle them and break crtc link separately */
12674 list_for_each_entry(connector, &dev->mode_config.connector_list,
12675 base.head)
12676 if (connector->encoder->base.crtc == &crtc->base) {
12677 connector->encoder->base.crtc = NULL;
12678 connector->encoder->connectors_active = false;
12679 }
12680
12681 WARN_ON(crtc->active);
12682 crtc->base.enabled = false;
12683 }
12684
12685 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12686 crtc->pipe == PIPE_A && !crtc->active) {
12687 /* BIOS forgot to enable pipe A, this mostly happens after
12688 * resume. Force-enable the pipe to fix this, the update_dpms
12689 * call below we restore the pipe to the right state, but leave
12690 * the required bits on. */
12691 intel_enable_pipe_a(dev);
12692 }
12693
12694 /* Adjust the state of the output pipe according to whether we
12695 * have active connectors/encoders. */
12696 intel_crtc_update_dpms(&crtc->base);
12697
12698 if (crtc->active != crtc->base.enabled) {
12699 struct intel_encoder *encoder;
12700
12701 /* This can happen either due to bugs in the get_hw_state
12702 * functions or because the pipe is force-enabled due to the
12703 * pipe A quirk. */
12704 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12705 crtc->base.base.id,
12706 crtc->base.enabled ? "enabled" : "disabled",
12707 crtc->active ? "enabled" : "disabled");
12708
12709 crtc->base.enabled = crtc->active;
12710
12711 /* Because we only establish the connector -> encoder ->
12712 * crtc links if something is active, this means the
12713 * crtc is now deactivated. Break the links. connector
12714 * -> encoder links are only establish when things are
12715 * actually up, hence no need to break them. */
12716 WARN_ON(crtc->active);
12717
12718 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12719 WARN_ON(encoder->connectors_active);
12720 encoder->base.crtc = NULL;
12721 }
12722 }
12723
12724 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
12725 /*
12726 * We start out with underrun reporting disabled to avoid races.
12727 * For correct bookkeeping mark this on active crtcs.
12728 *
12729 * Also on gmch platforms we dont have any hardware bits to
12730 * disable the underrun reporting. Which means we need to start
12731 * out with underrun reporting disabled also on inactive pipes,
12732 * since otherwise we'll complain about the garbage we read when
12733 * e.g. coming up after runtime pm.
12734 *
12735 * No protection against concurrent access is required - at
12736 * worst a fifo underrun happens which also sets this to false.
12737 */
12738 crtc->cpu_fifo_underrun_disabled = true;
12739 crtc->pch_fifo_underrun_disabled = true;
12740
12741 update_scanline_offset(crtc);
12742 }
12743 }
12744
12745 static void intel_sanitize_encoder(struct intel_encoder *encoder)
12746 {
12747 struct intel_connector *connector;
12748 struct drm_device *dev = encoder->base.dev;
12749
12750 /* We need to check both for a crtc link (meaning that the
12751 * encoder is active and trying to read from a pipe) and the
12752 * pipe itself being active. */
12753 bool has_active_crtc = encoder->base.crtc &&
12754 to_intel_crtc(encoder->base.crtc)->active;
12755
12756 if (encoder->connectors_active && !has_active_crtc) {
12757 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12758 encoder->base.base.id,
12759 encoder->base.name);
12760
12761 /* Connector is active, but has no active pipe. This is
12762 * fallout from our resume register restoring. Disable
12763 * the encoder manually again. */
12764 if (encoder->base.crtc) {
12765 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12766 encoder->base.base.id,
12767 encoder->base.name);
12768 encoder->disable(encoder);
12769 }
12770 encoder->base.crtc = NULL;
12771 encoder->connectors_active = false;
12772
12773 /* Inconsistent output/port/pipe state happens presumably due to
12774 * a bug in one of the get_hw_state functions. Or someplace else
12775 * in our code, like the register restore mess on resume. Clamp
12776 * things to off as a safer default. */
12777 list_for_each_entry(connector,
12778 &dev->mode_config.connector_list,
12779 base.head) {
12780 if (connector->encoder != encoder)
12781 continue;
12782 connector->base.dpms = DRM_MODE_DPMS_OFF;
12783 connector->base.encoder = NULL;
12784 }
12785 }
12786 /* Enabled encoders without active connectors will be fixed in
12787 * the crtc fixup. */
12788 }
12789
12790 void i915_redisable_vga_power_on(struct drm_device *dev)
12791 {
12792 struct drm_i915_private *dev_priv = dev->dev_private;
12793 u32 vga_reg = i915_vgacntrl_reg(dev);
12794
12795 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12796 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12797 i915_disable_vga(dev);
12798 }
12799 }
12800
12801 void i915_redisable_vga(struct drm_device *dev)
12802 {
12803 struct drm_i915_private *dev_priv = dev->dev_private;
12804
12805 /* This function can be called both from intel_modeset_setup_hw_state or
12806 * at a very early point in our resume sequence, where the power well
12807 * structures are not yet restored. Since this function is at a very
12808 * paranoid "someone might have enabled VGA while we were not looking"
12809 * level, just check if the power well is enabled instead of trying to
12810 * follow the "don't touch the power well if we don't need it" policy
12811 * the rest of the driver uses. */
12812 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
12813 return;
12814
12815 i915_redisable_vga_power_on(dev);
12816 }
12817
12818 static bool primary_get_hw_state(struct intel_crtc *crtc)
12819 {
12820 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12821
12822 if (!crtc->active)
12823 return false;
12824
12825 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12826 }
12827
12828 static void intel_modeset_readout_hw_state(struct drm_device *dev)
12829 {
12830 struct drm_i915_private *dev_priv = dev->dev_private;
12831 enum pipe pipe;
12832 struct intel_crtc *crtc;
12833 struct intel_encoder *encoder;
12834 struct intel_connector *connector;
12835 int i;
12836
12837 for_each_intel_crtc(dev, crtc) {
12838 memset(&crtc->config, 0, sizeof(crtc->config));
12839
12840 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12841
12842 crtc->active = dev_priv->display.get_pipe_config(crtc,
12843 &crtc->config);
12844
12845 crtc->base.enabled = crtc->active;
12846 crtc->primary_enabled = primary_get_hw_state(crtc);
12847
12848 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12849 crtc->base.base.id,
12850 crtc->active ? "enabled" : "disabled");
12851 }
12852
12853 /* FIXME: Smash this into the new shared dpll infrastructure. */
12854 if (HAS_DDI(dev))
12855 intel_ddi_setup_hw_pll_state(dev);
12856
12857 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12858 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12859
12860 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12861 pll->active = 0;
12862 for_each_intel_crtc(dev, crtc) {
12863 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12864 pll->active++;
12865 }
12866 pll->refcount = pll->active;
12867
12868 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12869 pll->name, pll->refcount, pll->on);
12870 }
12871
12872 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12873 base.head) {
12874 pipe = 0;
12875
12876 if (encoder->get_hw_state(encoder, &pipe)) {
12877 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12878 encoder->base.crtc = &crtc->base;
12879 encoder->get_config(encoder, &crtc->config);
12880 } else {
12881 encoder->base.crtc = NULL;
12882 }
12883
12884 encoder->connectors_active = false;
12885 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
12886 encoder->base.base.id,
12887 encoder->base.name,
12888 encoder->base.crtc ? "enabled" : "disabled",
12889 pipe_name(pipe));
12890 }
12891
12892 list_for_each_entry(connector, &dev->mode_config.connector_list,
12893 base.head) {
12894 if (connector->get_hw_state(connector)) {
12895 connector->base.dpms = DRM_MODE_DPMS_ON;
12896 connector->encoder->connectors_active = true;
12897 connector->base.encoder = &connector->encoder->base;
12898 } else {
12899 connector->base.dpms = DRM_MODE_DPMS_OFF;
12900 connector->base.encoder = NULL;
12901 }
12902 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12903 connector->base.base.id,
12904 connector->base.name,
12905 connector->base.encoder ? "enabled" : "disabled");
12906 }
12907 }
12908
12909 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12910 * and i915 state tracking structures. */
12911 void intel_modeset_setup_hw_state(struct drm_device *dev,
12912 bool force_restore)
12913 {
12914 struct drm_i915_private *dev_priv = dev->dev_private;
12915 enum pipe pipe;
12916 struct intel_crtc *crtc;
12917 struct intel_encoder *encoder;
12918 int i;
12919
12920 intel_modeset_readout_hw_state(dev);
12921
12922 /*
12923 * Now that we have the config, copy it to each CRTC struct
12924 * Note that this could go away if we move to using crtc_config
12925 * checking everywhere.
12926 */
12927 for_each_intel_crtc(dev, crtc) {
12928 if (crtc->active && i915.fastboot) {
12929 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
12930 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12931 crtc->base.base.id);
12932 drm_mode_debug_printmodeline(&crtc->base.mode);
12933 }
12934 }
12935
12936 /* HW state is read out, now we need to sanitize this mess. */
12937 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12938 base.head) {
12939 intel_sanitize_encoder(encoder);
12940 }
12941
12942 for_each_pipe(pipe) {
12943 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12944 intel_sanitize_crtc(crtc);
12945 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
12946 }
12947
12948 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12949 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12950
12951 if (!pll->on || pll->active)
12952 continue;
12953
12954 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12955
12956 pll->disable(dev_priv, pll);
12957 pll->on = false;
12958 }
12959
12960 if (HAS_PCH_SPLIT(dev))
12961 ilk_wm_get_hw_state(dev);
12962
12963 if (force_restore) {
12964 i915_redisable_vga(dev);
12965
12966 /*
12967 * We need to use raw interfaces for restoring state to avoid
12968 * checking (bogus) intermediate states.
12969 */
12970 for_each_pipe(pipe) {
12971 struct drm_crtc *crtc =
12972 dev_priv->pipe_to_crtc_mapping[pipe];
12973
12974 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
12975 crtc->primary->fb);
12976 }
12977 } else {
12978 intel_modeset_update_staged_output_state(dev);
12979 }
12980
12981 intel_modeset_check_state(dev);
12982 }
12983
12984 void intel_modeset_gem_init(struct drm_device *dev)
12985 {
12986 struct drm_crtc *c;
12987 struct drm_i915_gem_object *obj;
12988
12989 mutex_lock(&dev->struct_mutex);
12990 intel_init_gt_powersave(dev);
12991 mutex_unlock(&dev->struct_mutex);
12992
12993 intel_modeset_init_hw(dev);
12994
12995 intel_setup_overlay(dev);
12996
12997 /*
12998 * Make sure any fbs we allocated at startup are properly
12999 * pinned & fenced. When we do the allocation it's too early
13000 * for this.
13001 */
13002 mutex_lock(&dev->struct_mutex);
13003 for_each_crtc(dev, c) {
13004 obj = intel_fb_obj(c->primary->fb);
13005 if (obj == NULL)
13006 continue;
13007
13008 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
13009 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13010 to_intel_crtc(c)->pipe);
13011 drm_framebuffer_unreference(c->primary->fb);
13012 c->primary->fb = NULL;
13013 }
13014 }
13015 mutex_unlock(&dev->struct_mutex);
13016 }
13017
13018 void intel_connector_unregister(struct intel_connector *intel_connector)
13019 {
13020 struct drm_connector *connector = &intel_connector->base;
13021
13022 intel_panel_destroy_backlight(connector);
13023 drm_sysfs_connector_remove(connector);
13024 }
13025
13026 void intel_modeset_cleanup(struct drm_device *dev)
13027 {
13028 struct drm_i915_private *dev_priv = dev->dev_private;
13029 struct drm_connector *connector;
13030
13031 /*
13032 * Interrupts and polling as the first thing to avoid creating havoc.
13033 * Too much stuff here (turning of rps, connectors, ...) would
13034 * experience fancy races otherwise.
13035 */
13036 drm_irq_uninstall(dev);
13037 cancel_work_sync(&dev_priv->hotplug_work);
13038 /*
13039 * Due to the hpd irq storm handling the hotplug work can re-arm the
13040 * poll handlers. Hence disable polling after hpd handling is shut down.
13041 */
13042 drm_kms_helper_poll_fini(dev);
13043
13044 mutex_lock(&dev->struct_mutex);
13045
13046 intel_unregister_dsm_handler();
13047
13048 intel_disable_fbc(dev);
13049
13050 intel_disable_gt_powersave(dev);
13051
13052 ironlake_teardown_rc6(dev);
13053
13054 mutex_unlock(&dev->struct_mutex);
13055
13056 /* flush any delayed tasks or pending work */
13057 flush_scheduled_work();
13058
13059 /* destroy the backlight and sysfs files before encoders/connectors */
13060 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13061 struct intel_connector *intel_connector;
13062
13063 intel_connector = to_intel_connector(connector);
13064 intel_connector->unregister(intel_connector);
13065 }
13066
13067 drm_mode_config_cleanup(dev);
13068
13069 intel_cleanup_overlay(dev);
13070
13071 mutex_lock(&dev->struct_mutex);
13072 intel_cleanup_gt_powersave(dev);
13073 mutex_unlock(&dev->struct_mutex);
13074 }
13075
13076 /*
13077 * Return which encoder is currently attached for connector.
13078 */
13079 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13080 {
13081 return &intel_attached_encoder(connector)->base;
13082 }
13083
13084 void intel_connector_attach_encoder(struct intel_connector *connector,
13085 struct intel_encoder *encoder)
13086 {
13087 connector->encoder = encoder;
13088 drm_mode_connector_attach_encoder(&connector->base,
13089 &encoder->base);
13090 }
13091
13092 /*
13093 * set vga decode state - true == enable VGA decode
13094 */
13095 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13096 {
13097 struct drm_i915_private *dev_priv = dev->dev_private;
13098 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13099 u16 gmch_ctrl;
13100
13101 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13102 DRM_ERROR("failed to read control word\n");
13103 return -EIO;
13104 }
13105
13106 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13107 return 0;
13108
13109 if (state)
13110 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13111 else
13112 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13113
13114 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13115 DRM_ERROR("failed to write control word\n");
13116 return -EIO;
13117 }
13118
13119 return 0;
13120 }
13121
13122 struct intel_display_error_state {
13123
13124 u32 power_well_driver;
13125
13126 int num_transcoders;
13127
13128 struct intel_cursor_error_state {
13129 u32 control;
13130 u32 position;
13131 u32 base;
13132 u32 size;
13133 } cursor[I915_MAX_PIPES];
13134
13135 struct intel_pipe_error_state {
13136 bool power_domain_on;
13137 u32 source;
13138 u32 stat;
13139 } pipe[I915_MAX_PIPES];
13140
13141 struct intel_plane_error_state {
13142 u32 control;
13143 u32 stride;
13144 u32 size;
13145 u32 pos;
13146 u32 addr;
13147 u32 surface;
13148 u32 tile_offset;
13149 } plane[I915_MAX_PIPES];
13150
13151 struct intel_transcoder_error_state {
13152 bool power_domain_on;
13153 enum transcoder cpu_transcoder;
13154
13155 u32 conf;
13156
13157 u32 htotal;
13158 u32 hblank;
13159 u32 hsync;
13160 u32 vtotal;
13161 u32 vblank;
13162 u32 vsync;
13163 } transcoder[4];
13164 };
13165
13166 struct intel_display_error_state *
13167 intel_display_capture_error_state(struct drm_device *dev)
13168 {
13169 struct drm_i915_private *dev_priv = dev->dev_private;
13170 struct intel_display_error_state *error;
13171 int transcoders[] = {
13172 TRANSCODER_A,
13173 TRANSCODER_B,
13174 TRANSCODER_C,
13175 TRANSCODER_EDP,
13176 };
13177 int i;
13178
13179 if (INTEL_INFO(dev)->num_pipes == 0)
13180 return NULL;
13181
13182 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13183 if (error == NULL)
13184 return NULL;
13185
13186 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13187 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13188
13189 for_each_pipe(i) {
13190 error->pipe[i].power_domain_on =
13191 intel_display_power_enabled_unlocked(dev_priv,
13192 POWER_DOMAIN_PIPE(i));
13193 if (!error->pipe[i].power_domain_on)
13194 continue;
13195
13196 error->cursor[i].control = I915_READ(CURCNTR(i));
13197 error->cursor[i].position = I915_READ(CURPOS(i));
13198 error->cursor[i].base = I915_READ(CURBASE(i));
13199
13200 error->plane[i].control = I915_READ(DSPCNTR(i));
13201 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13202 if (INTEL_INFO(dev)->gen <= 3) {
13203 error->plane[i].size = I915_READ(DSPSIZE(i));
13204 error->plane[i].pos = I915_READ(DSPPOS(i));
13205 }
13206 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13207 error->plane[i].addr = I915_READ(DSPADDR(i));
13208 if (INTEL_INFO(dev)->gen >= 4) {
13209 error->plane[i].surface = I915_READ(DSPSURF(i));
13210 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13211 }
13212
13213 error->pipe[i].source = I915_READ(PIPESRC(i));
13214
13215 if (!HAS_PCH_SPLIT(dev))
13216 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13217 }
13218
13219 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13220 if (HAS_DDI(dev_priv->dev))
13221 error->num_transcoders++; /* Account for eDP. */
13222
13223 for (i = 0; i < error->num_transcoders; i++) {
13224 enum transcoder cpu_transcoder = transcoders[i];
13225
13226 error->transcoder[i].power_domain_on =
13227 intel_display_power_enabled_unlocked(dev_priv,
13228 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13229 if (!error->transcoder[i].power_domain_on)
13230 continue;
13231
13232 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13233
13234 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13235 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13236 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13237 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13238 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13239 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13240 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13241 }
13242
13243 return error;
13244 }
13245
13246 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13247
13248 void
13249 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13250 struct drm_device *dev,
13251 struct intel_display_error_state *error)
13252 {
13253 int i;
13254
13255 if (!error)
13256 return;
13257
13258 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13259 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13260 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13261 error->power_well_driver);
13262 for_each_pipe(i) {
13263 err_printf(m, "Pipe [%d]:\n", i);
13264 err_printf(m, " Power: %s\n",
13265 error->pipe[i].power_domain_on ? "on" : "off");
13266 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13267 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13268
13269 err_printf(m, "Plane [%d]:\n", i);
13270 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13271 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13272 if (INTEL_INFO(dev)->gen <= 3) {
13273 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13274 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13275 }
13276 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13277 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13278 if (INTEL_INFO(dev)->gen >= 4) {
13279 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13280 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13281 }
13282
13283 err_printf(m, "Cursor [%d]:\n", i);
13284 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13285 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13286 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13287 }
13288
13289 for (i = 0; i < error->num_transcoders; i++) {
13290 err_printf(m, "CPU transcoder: %c\n",
13291 transcoder_name(error->transcoder[i].cpu_transcoder));
13292 err_printf(m, " Power: %s\n",
13293 error->transcoder[i].power_domain_on ? "on" : "off");
13294 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13295 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13296 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13297 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13298 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13299 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13300 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13301 }
13302 }
This page took 0.331702 seconds and 6 git commands to generate.