drm/i915: remove IBX code from lpt_enable_pch_transcoder
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
179 .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
195 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
224 },
225 .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
239 },
240 .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
253 .p2_slow = 10, .p2_fast = 10 },
254 .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
260 /* Pineview's Ncounter is a ring counter */
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
263 /* Pineview only has one combined m divider, which we treat as m2. */
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
284 .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
343 .p1 = { .min = 2, .max = 8 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
357 .p1 = { .min = 2, .max = 6 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
360 .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
373 .p2_slow = 10, .p2_fast = 10 },
374 .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
393 .vco = { .min = 4000000, .max = 5994000},
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 22, .max = 450 },
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446 {
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497 {
498 unsigned int val;
499
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
525 {
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 const intel_limit_t *limit;
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532 /* LVDS dual channel */
533 if (refclk == 100000)
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
538 if (refclk == 100000)
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
546 else
547 limit = &intel_limits_ironlake_dac;
548
549 return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559 if (is_dual_link_lvds(dev_priv, LVDS))
560 /* LVDS with dual channel */
561 limit = &intel_limits_g4x_dual_channel_lvds;
562 else
563 /* LVDS with dual channel */
564 limit = &intel_limits_g4x_single_channel_lvds;
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567 limit = &intel_limits_g4x_hdmi;
568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569 limit = &intel_limits_g4x_sdvo;
570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571 limit = &intel_limits_g4x_display_port;
572 } else /* The option is for other outputs */
573 limit = &intel_limits_i9xx_sdvo;
574
575 return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
583 if (HAS_PCH_SPLIT(dev))
584 limit = intel_ironlake_limit(crtc, refclk);
585 else if (IS_G4X(dev)) {
586 limit = intel_g4x_limit(crtc);
587 } else if (IS_PINEVIEW(dev)) {
588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589 limit = &intel_limits_pineview_lvds;
590 else
591 limit = &intel_limits_pineview_sdvo;
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606 limit = &intel_limits_i8xx_lvds;
607 else
608 limit = &intel_limits_i8xx_dvo;
609 }
610 return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
626 return;
627 }
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639 struct drm_device *dev = crtc->dev;
640 struct intel_encoder *encoder;
641
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
644 return true;
645
646 return false;
647 }
648
649 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
658 {
659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
660 INTELPllInvalid("p1 out of range\n");
661 if (clock->p < limit->p.min || limit->p.max < clock->p)
662 INTELPllInvalid("p out of range\n");
663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
664 INTELPllInvalid("m2 out of range\n");
665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
666 INTELPllInvalid("m1 out of range\n");
667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668 INTELPllInvalid("m1 <= m2\n");
669 if (clock->m < limit->m.min || limit->m.max < clock->m)
670 INTELPllInvalid("m out of range\n");
671 if (clock->n < limit->n.min || limit->n.max < clock->n)
672 INTELPllInvalid("n out of range\n");
673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674 INTELPllInvalid("vco out of range\n");
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679 INTELPllInvalid("dot out of range\n");
680
681 return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
688
689 {
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
693 int err = target;
694
695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696 (I915_READ(LVDS)) != 0) {
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
703 if (is_dual_link_lvds(dev_priv, LVDS))
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
714 memset(best_clock, 0, sizeof(*best_clock));
715
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
727 int this_err;
728
729 intel_clock(dev, refclk, &clock);
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
732 continue;
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
754 {
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765 int lvds_reg;
766
767 if (HAS_PCH_SPLIT(dev))
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
785 /* based on hardware requirement, prefer smaller n to precision */
786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787 /* based on hardware requirement, prefere larger m1,m2 */
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
796 intel_clock(dev, refclk, &clock);
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
799 continue;
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
803
804 this_err = abs(clock.dot - target);
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
815 return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
822 {
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
825
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
849 {
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875 {
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
882 flag = 0;
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942 {
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946 return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
953
954 frame = I915_READ(frame_reg);
955
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
964 *
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
967 */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970 struct drm_i915_private *dev_priv = dev->dev_private;
971 int pipestat_reg = PIPESTAT(pipe);
972
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
976 }
977
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
980 *
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
990 */
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994 /* Wait for vblank interrupt bit to set */
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
998 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1005 *
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1009 *
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1012 *
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
1016 *
1017 */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022 pipe);
1023
1024 if (INTEL_INFO(dev)->gen >= 4) {
1025 int reg = PIPECONF(cpu_transcoder);
1026
1027 /* Wait for the Pipe State to go off */
1028 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029 100))
1030 WARN(1, "pipe_off wait timed out\n");
1031 } else {
1032 u32 last_line, line_mask;
1033 int reg = PIPEDSL(pipe);
1034 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036 if (IS_GEN2(dev))
1037 line_mask = DSL_LINEMASK_GEN2;
1038 else
1039 line_mask = DSL_LINEMASK_GEN3;
1040
1041 /* Wait for the display line to settle */
1042 do {
1043 last_line = I915_READ(reg) & line_mask;
1044 mdelay(5);
1045 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046 time_after(timeout, jiffies));
1047 if (time_after(jiffies, timeout))
1048 WARN(1, "pipe_off wait timed out\n");
1049 }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054 return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, bool state)
1060 {
1061 int reg;
1062 u32 val;
1063 bool cur_state;
1064
1065 reg = DPLL(pipe);
1066 val = I915_READ(reg);
1067 cur_state = !!(val & DPLL_VCO_ENABLE);
1068 WARN(cur_state != state,
1069 "PLL state assertion failure (expected %s, current %s)\n",
1070 state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077 struct intel_pch_pll *pll,
1078 struct intel_crtc *crtc,
1079 bool state)
1080 {
1081 u32 val;
1082 bool cur_state;
1083
1084 if (HAS_PCH_LPT(dev_priv->dev)) {
1085 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086 return;
1087 }
1088
1089 if (WARN (!pll,
1090 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091 return;
1092
1093 val = I915_READ(pll->pll_reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097 pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099 /* Make sure the selected PLL is correctly attached to the transcoder */
1100 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101 u32 pch_dpll;
1102
1103 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106 "PLL[%d] not attached to this transcoder %d: %08x\n",
1107 cur_state, crtc->pipe, pch_dpll)) {
1108 cur_state = !!(val >> (4*crtc->pipe + 3));
1109 WARN(cur_state != state,
1110 "PLL[%d] not %s on this transcoder %d: %08x\n",
1111 pll->pll_reg == _PCH_DPLL_B,
1112 state_string(state),
1113 crtc->pipe,
1114 val);
1115 }
1116 }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
1123 {
1124 int reg;
1125 u32 val;
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (IS_HASWELL(dev_priv->dev)) {
1131 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133 val = I915_READ(reg);
1134 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135 } else {
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 cur_state = !!(val & FDI_TX_ENABLE);
1139 }
1140 WARN(cur_state != state,
1141 "FDI TX state assertion failure (expected %s, current %s)\n",
1142 state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148 enum pipe pipe, bool state)
1149 {
1150 int reg;
1151 u32 val;
1152 bool cur_state;
1153
1154 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156 return;
1157 } else {
1158 reg = FDI_RX_CTL(pipe);
1159 val = I915_READ(reg);
1160 cur_state = !!(val & FDI_RX_ENABLE);
1161 }
1162 WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171 {
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
1176 if (dev_priv->info->gen == 5)
1177 return;
1178
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (IS_HASWELL(dev_priv->dev))
1181 return;
1182
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190 {
1191 int reg;
1192 u32 val;
1193
1194 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196 return;
1197 }
1198 reg = FDI_RX_CTL(pipe);
1199 val = I915_READ(reg);
1200 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205 {
1206 int pp_reg, lvds_reg;
1207 u32 val;
1208 enum pipe panel_pipe = PIPE_A;
1209 bool locked = true;
1210
1211 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212 pp_reg = PCH_PP_CONTROL;
1213 lvds_reg = PCH_LVDS;
1214 } else {
1215 pp_reg = PP_CONTROL;
1216 lvds_reg = LVDS;
1217 }
1218
1219 val = I915_READ(pp_reg);
1220 if (!(val & PANEL_POWER_ON) ||
1221 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222 locked = false;
1223
1224 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225 panel_pipe = PIPE_B;
1226
1227 WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
1229 pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1234 {
1235 int reg;
1236 u32 val;
1237 bool cur_state;
1238 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239 pipe);
1240
1241 /* if we need the pipe A quirk it must be always on */
1242 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243 state = true;
1244
1245 reg = PIPECONF(cpu_transcoder);
1246 val = I915_READ(reg);
1247 cur_state = !!(val & PIPECONF_ENABLE);
1248 WARN(cur_state != state,
1249 "pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254 enum plane plane, bool state)
1255 {
1256 int reg;
1257 u32 val;
1258 bool cur_state;
1259
1260 reg = DSPCNTR(plane);
1261 val = I915_READ(reg);
1262 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263 WARN(cur_state != state,
1264 "plane %c assertion failure (expected %s, current %s)\n",
1265 plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe)
1273 {
1274 int reg, i;
1275 u32 val;
1276 int cur_pipe;
1277
1278 /* Planes are fixed to pipes on ILK+ */
1279 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280 reg = DSPCNTR(pipe);
1281 val = I915_READ(reg);
1282 WARN((val & DISPLAY_PLANE_ENABLE),
1283 "plane %c assertion failure, should be disabled but not\n",
1284 plane_name(pipe));
1285 return;
1286 }
1287
1288 /* Need to check both planes against the pipe */
1289 for (i = 0; i < 2; i++) {
1290 reg = DSPCNTR(i);
1291 val = I915_READ(reg);
1292 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293 DISPPLANE_SEL_PIPE_SHIFT;
1294 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296 plane_name(i), pipe_name(pipe));
1297 }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302 u32 val;
1303 bool enabled;
1304
1305 if (HAS_PCH_LPT(dev_priv->dev)) {
1306 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307 return;
1308 }
1309
1310 val = I915_READ(PCH_DREF_CONTROL);
1311 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312 DREF_SUPERSPREAD_SOURCE_MASK));
1313 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318 {
1319 int reg;
1320 u32 val;
1321 bool enabled;
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 enabled = !!(val & TRANS_ENABLE);
1326 WARN(enabled,
1327 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328 pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334 if ((val & DP_PORT_EN) == 0)
1335 return false;
1336
1337 if (HAS_PCH_CPT(dev_priv->dev)) {
1338 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341 return false;
1342 } else {
1343 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344 return false;
1345 }
1346 return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe, u32 val)
1351 {
1352 if ((val & PORT_ENABLE) == 0)
1353 return false;
1354
1355 if (HAS_PCH_CPT(dev_priv->dev)) {
1356 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357 return false;
1358 } else {
1359 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360 return false;
1361 }
1362 return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 val)
1367 {
1368 if ((val & LVDS_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376 return false;
1377 }
1378 return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382 enum pipe pipe, u32 val)
1383 {
1384 if ((val & ADPA_DAC_ENABLE) == 0)
1385 return false;
1386 if (HAS_PCH_CPT(dev_priv->dev)) {
1387 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388 return false;
1389 } else {
1390 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391 return false;
1392 }
1393 return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe, int reg, u32 port_sel)
1398 {
1399 u32 val = I915_READ(reg);
1400 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402 reg, pipe_name(pipe));
1403
1404 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405 && (val & DP_PIPEB_SELECT),
1406 "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, int reg)
1411 {
1412 u32 val = I915_READ(reg);
1413 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415 reg, pipe_name(pipe));
1416
1417 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418 && (val & SDVO_PIPE_B_SELECT),
1419 "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1424 {
1425 int reg;
1426 u32 val;
1427
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432 reg = PCH_ADPA;
1433 val = I915_READ(reg);
1434 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435 "PCH VGA enabled on transcoder %c, should be disabled\n",
1436 pipe_name(pipe));
1437
1438 reg = PCH_LVDS;
1439 val = I915_READ(reg);
1440 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442 pipe_name(pipe));
1443
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450 * intel_enable_pll - enable a PLL
1451 * @dev_priv: i915 private structure
1452 * @pipe: pipe PLL to enable
1453 *
1454 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1455 * make sure the PLL reg is writable first though, since the panel write
1456 * protect mechanism may be enabled.
1457 *
1458 * Note! This is for pre-ILK only.
1459 *
1460 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461 */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464 int reg;
1465 u32 val;
1466
1467 /* No really, not for ILK+ */
1468 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472 assert_panel_unlocked(dev_priv, pipe);
1473
1474 reg = DPLL(pipe);
1475 val = I915_READ(reg);
1476 val |= DPLL_VCO_ENABLE;
1477
1478 /* We do this three times for luck */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 I915_WRITE(reg, val);
1483 POSTING_READ(reg);
1484 udelay(150); /* wait for warmup */
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1487 udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491 * intel_disable_pll - disable a PLL
1492 * @dev_priv: i915 private structure
1493 * @pipe: pipe PLL to disable
1494 *
1495 * Disable the PLL for @pipe, making sure the pipe is off first.
1496 *
1497 * Note! This is for pre-ILK only.
1498 */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501 int reg;
1502 u32 val;
1503
1504 /* Don't disable pipe A or pipe A PLLs if needed */
1505 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506 return;
1507
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1510
1511 reg = DPLL(pipe);
1512 val = I915_READ(reg);
1513 val &= ~DPLL_VCO_ENABLE;
1514 I915_WRITE(reg, val);
1515 POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522 unsigned long flags;
1523
1524 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526 100)) {
1527 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528 goto out_unlock;
1529 }
1530
1531 I915_WRITE(SBI_ADDR,
1532 (reg << 16));
1533 I915_WRITE(SBI_DATA,
1534 value);
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRWR);
1538
1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542 goto out_unlock;
1543 }
1544
1545 out_unlock:
1546 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552 unsigned long flags;
1553 u32 value = 0;
1554
1555 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557 100)) {
1558 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559 goto out_unlock;
1560 }
1561
1562 I915_WRITE(SBI_ADDR,
1563 (reg << 16));
1564 I915_WRITE(SBI_CTL_STAT,
1565 SBI_BUSY |
1566 SBI_CTL_OP_CRRD);
1567
1568 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569 100)) {
1570 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571 goto out_unlock;
1572 }
1573
1574 value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578 return value;
1579 }
1580
1581 /**
1582 * ironlake_enable_pch_pll - enable PCH PLL
1583 * @dev_priv: i915 private structure
1584 * @pipe: pipe PLL to enable
1585 *
1586 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587 * drives the transcoder clock.
1588 */
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592 struct intel_pch_pll *pll;
1593 int reg;
1594 u32 val;
1595
1596 /* PCH PLLs only available on ILK, SNB and IVB */
1597 BUG_ON(dev_priv->info->gen < 5);
1598 pll = intel_crtc->pch_pll;
1599 if (pll == NULL)
1600 return;
1601
1602 if (WARN_ON(pll->refcount == 0))
1603 return;
1604
1605 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606 pll->pll_reg, pll->active, pll->on,
1607 intel_crtc->base.base.id);
1608
1609 /* PCH refclock must be enabled first */
1610 assert_pch_refclk_enabled(dev_priv);
1611
1612 if (pll->active++ && pll->on) {
1613 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614 return;
1615 }
1616
1617 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619 reg = pll->pll_reg;
1620 val = I915_READ(reg);
1621 val |= DPLL_VCO_ENABLE;
1622 I915_WRITE(reg, val);
1623 POSTING_READ(reg);
1624 udelay(200);
1625
1626 pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633 int reg;
1634 u32 val;
1635
1636 /* PCH only available on ILK+ */
1637 BUG_ON(dev_priv->info->gen < 5);
1638 if (pll == NULL)
1639 return;
1640
1641 if (WARN_ON(pll->refcount == 0))
1642 return;
1643
1644 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645 pll->pll_reg, pll->active, pll->on,
1646 intel_crtc->base.base.id);
1647
1648 if (WARN_ON(pll->active == 0)) {
1649 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650 return;
1651 }
1652
1653 if (--pll->active) {
1654 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655 return;
1656 }
1657
1658 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660 /* Make sure transcoder isn't still depending on us */
1661 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663 reg = pll->pll_reg;
1664 val = I915_READ(reg);
1665 val &= ~DPLL_VCO_ENABLE;
1666 I915_WRITE(reg, val);
1667 POSTING_READ(reg);
1668 udelay(200);
1669
1670 pll->on = false;
1671 }
1672
1673 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
1675 {
1676 int reg;
1677 u32 val, pipeconf_val;
1678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680 /* PCH only available on ILK+ */
1681 BUG_ON(dev_priv->info->gen < 5);
1682
1683 /* Make sure PCH DPLL is enabled */
1684 assert_pch_pll_enabled(dev_priv,
1685 to_intel_crtc(crtc)->pch_pll,
1686 to_intel_crtc(crtc));
1687
1688 /* FDI must be feeding us bits for PCH ports */
1689 assert_fdi_tx_enabled(dev_priv, pipe);
1690 assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692 reg = TRANSCONF(pipe);
1693 val = I915_READ(reg);
1694 pipeconf_val = I915_READ(PIPECONF(pipe));
1695
1696 if (HAS_PCH_IBX(dev_priv->dev)) {
1697 /*
1698 * make the BPC in transcoder be consistent with
1699 * that in pipeconf reg.
1700 */
1701 val &= ~PIPE_BPC_MASK;
1702 val |= pipeconf_val & PIPE_BPC_MASK;
1703 }
1704
1705 val &= ~TRANS_INTERLACE_MASK;
1706 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1707 if (HAS_PCH_IBX(dev_priv->dev) &&
1708 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1709 val |= TRANS_LEGACY_INTERLACED_ILK;
1710 else
1711 val |= TRANS_INTERLACED;
1712 else
1713 val |= TRANS_PROGRESSIVE;
1714
1715 I915_WRITE(reg, val | TRANS_ENABLE);
1716 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1717 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1718 }
1719
1720 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1721 enum pipe pipe)
1722 {
1723 int reg;
1724 u32 val, pipeconf_val;
1725 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1726
1727 /* PCH only available on ILK+ */
1728 BUG_ON(dev_priv->info->gen < 5);
1729
1730 /* Make sure PCH DPLL is enabled */
1731 assert_pch_pll_enabled(dev_priv,
1732 to_intel_crtc(crtc)->pch_pll,
1733 to_intel_crtc(crtc));
1734
1735 /* FDI must be feeding us bits for PCH ports */
1736 assert_fdi_tx_enabled(dev_priv, pipe);
1737 assert_fdi_rx_enabled(dev_priv, pipe);
1738
1739 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1740 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1741 return;
1742 }
1743 reg = TRANSCONF(pipe);
1744 val = I915_READ(reg);
1745 pipeconf_val = I915_READ(PIPECONF(pipe));
1746
1747 val &= ~TRANS_INTERLACE_MASK;
1748 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1749 val |= TRANS_INTERLACED;
1750 else
1751 val |= TRANS_PROGRESSIVE;
1752
1753 I915_WRITE(reg, val | TRANS_ENABLE);
1754 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1755 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1756 }
1757
1758 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1759 enum pipe pipe)
1760 {
1761 int reg;
1762 u32 val;
1763
1764 /* FDI relies on the transcoder */
1765 assert_fdi_tx_disabled(dev_priv, pipe);
1766 assert_fdi_rx_disabled(dev_priv, pipe);
1767
1768 /* Ports must be off as well */
1769 assert_pch_ports_disabled(dev_priv, pipe);
1770
1771 reg = TRANSCONF(pipe);
1772 val = I915_READ(reg);
1773 val &= ~TRANS_ENABLE;
1774 I915_WRITE(reg, val);
1775 /* wait for PCH transcoder off, transcoder state */
1776 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1777 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1778 }
1779
1780 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1781 enum pipe pipe)
1782 {
1783 int reg;
1784 u32 val;
1785
1786 /* FDI relies on the transcoder */
1787 assert_fdi_tx_disabled(dev_priv, pipe);
1788 assert_fdi_rx_disabled(dev_priv, pipe);
1789
1790 /* Ports must be off as well */
1791 assert_pch_ports_disabled(dev_priv, pipe);
1792
1793 reg = TRANSCONF(pipe);
1794 val = I915_READ(reg);
1795 val &= ~TRANS_ENABLE;
1796 I915_WRITE(reg, val);
1797 /* wait for PCH transcoder off, transcoder state */
1798 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1799 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1800 }
1801
1802 /**
1803 * intel_enable_pipe - enable a pipe, asserting requirements
1804 * @dev_priv: i915 private structure
1805 * @pipe: pipe to enable
1806 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1807 *
1808 * Enable @pipe, making sure that various hardware specific requirements
1809 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1810 *
1811 * @pipe should be %PIPE_A or %PIPE_B.
1812 *
1813 * Will wait until the pipe is actually running (i.e. first vblank) before
1814 * returning.
1815 */
1816 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1817 bool pch_port)
1818 {
1819 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1820 pipe);
1821 int reg;
1822 u32 val;
1823
1824 /*
1825 * A pipe without a PLL won't actually be able to drive bits from
1826 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1827 * need the check.
1828 */
1829 if (!HAS_PCH_SPLIT(dev_priv->dev))
1830 assert_pll_enabled(dev_priv, pipe);
1831 else {
1832 if (pch_port) {
1833 /* if driving the PCH, we need FDI enabled */
1834 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1835 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1836 }
1837 /* FIXME: assert CPU port conditions for SNB+ */
1838 }
1839
1840 reg = PIPECONF(cpu_transcoder);
1841 val = I915_READ(reg);
1842 if (val & PIPECONF_ENABLE)
1843 return;
1844
1845 I915_WRITE(reg, val | PIPECONF_ENABLE);
1846 intel_wait_for_vblank(dev_priv->dev, pipe);
1847 }
1848
1849 /**
1850 * intel_disable_pipe - disable a pipe, asserting requirements
1851 * @dev_priv: i915 private structure
1852 * @pipe: pipe to disable
1853 *
1854 * Disable @pipe, making sure that various hardware specific requirements
1855 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1856 *
1857 * @pipe should be %PIPE_A or %PIPE_B.
1858 *
1859 * Will wait until the pipe has shut down before returning.
1860 */
1861 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1862 enum pipe pipe)
1863 {
1864 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1865 pipe);
1866 int reg;
1867 u32 val;
1868
1869 /*
1870 * Make sure planes won't keep trying to pump pixels to us,
1871 * or we might hang the display.
1872 */
1873 assert_planes_disabled(dev_priv, pipe);
1874
1875 /* Don't disable pipe A or pipe A PLLs if needed */
1876 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1877 return;
1878
1879 reg = PIPECONF(cpu_transcoder);
1880 val = I915_READ(reg);
1881 if ((val & PIPECONF_ENABLE) == 0)
1882 return;
1883
1884 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1885 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1886 }
1887
1888 /*
1889 * Plane regs are double buffered, going from enabled->disabled needs a
1890 * trigger in order to latch. The display address reg provides this.
1891 */
1892 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1893 enum plane plane)
1894 {
1895 if (dev_priv->info->gen >= 4)
1896 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1897 else
1898 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1899 }
1900
1901 /**
1902 * intel_enable_plane - enable a display plane on a given pipe
1903 * @dev_priv: i915 private structure
1904 * @plane: plane to enable
1905 * @pipe: pipe being fed
1906 *
1907 * Enable @plane on @pipe, making sure that @pipe is running first.
1908 */
1909 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1910 enum plane plane, enum pipe pipe)
1911 {
1912 int reg;
1913 u32 val;
1914
1915 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1916 assert_pipe_enabled(dev_priv, pipe);
1917
1918 reg = DSPCNTR(plane);
1919 val = I915_READ(reg);
1920 if (val & DISPLAY_PLANE_ENABLE)
1921 return;
1922
1923 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1924 intel_flush_display_plane(dev_priv, plane);
1925 intel_wait_for_vblank(dev_priv->dev, pipe);
1926 }
1927
1928 /**
1929 * intel_disable_plane - disable a display plane
1930 * @dev_priv: i915 private structure
1931 * @plane: plane to disable
1932 * @pipe: pipe consuming the data
1933 *
1934 * Disable @plane; should be an independent operation.
1935 */
1936 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1937 enum plane plane, enum pipe pipe)
1938 {
1939 int reg;
1940 u32 val;
1941
1942 reg = DSPCNTR(plane);
1943 val = I915_READ(reg);
1944 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1945 return;
1946
1947 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1948 intel_flush_display_plane(dev_priv, plane);
1949 intel_wait_for_vblank(dev_priv->dev, pipe);
1950 }
1951
1952 int
1953 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1954 struct drm_i915_gem_object *obj,
1955 struct intel_ring_buffer *pipelined)
1956 {
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 u32 alignment;
1959 int ret;
1960
1961 switch (obj->tiling_mode) {
1962 case I915_TILING_NONE:
1963 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1964 alignment = 128 * 1024;
1965 else if (INTEL_INFO(dev)->gen >= 4)
1966 alignment = 4 * 1024;
1967 else
1968 alignment = 64 * 1024;
1969 break;
1970 case I915_TILING_X:
1971 /* pin() will align the object as required by fence */
1972 alignment = 0;
1973 break;
1974 case I915_TILING_Y:
1975 /* FIXME: Is this true? */
1976 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1977 return -EINVAL;
1978 default:
1979 BUG();
1980 }
1981
1982 dev_priv->mm.interruptible = false;
1983 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1984 if (ret)
1985 goto err_interruptible;
1986
1987 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1988 * fence, whereas 965+ only requires a fence if using
1989 * framebuffer compression. For simplicity, we always install
1990 * a fence as the cost is not that onerous.
1991 */
1992 ret = i915_gem_object_get_fence(obj);
1993 if (ret)
1994 goto err_unpin;
1995
1996 i915_gem_object_pin_fence(obj);
1997
1998 dev_priv->mm.interruptible = true;
1999 return 0;
2000
2001 err_unpin:
2002 i915_gem_object_unpin(obj);
2003 err_interruptible:
2004 dev_priv->mm.interruptible = true;
2005 return ret;
2006 }
2007
2008 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2009 {
2010 i915_gem_object_unpin_fence(obj);
2011 i915_gem_object_unpin(obj);
2012 }
2013
2014 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2015 * is assumed to be a power-of-two. */
2016 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2017 unsigned int bpp,
2018 unsigned int pitch)
2019 {
2020 int tile_rows, tiles;
2021
2022 tile_rows = *y / 8;
2023 *y %= 8;
2024 tiles = *x / (512/bpp);
2025 *x %= 512/bpp;
2026
2027 return tile_rows * pitch * 8 + tiles * 4096;
2028 }
2029
2030 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2031 int x, int y)
2032 {
2033 struct drm_device *dev = crtc->dev;
2034 struct drm_i915_private *dev_priv = dev->dev_private;
2035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2036 struct intel_framebuffer *intel_fb;
2037 struct drm_i915_gem_object *obj;
2038 int plane = intel_crtc->plane;
2039 unsigned long linear_offset;
2040 u32 dspcntr;
2041 u32 reg;
2042
2043 switch (plane) {
2044 case 0:
2045 case 1:
2046 break;
2047 default:
2048 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2049 return -EINVAL;
2050 }
2051
2052 intel_fb = to_intel_framebuffer(fb);
2053 obj = intel_fb->obj;
2054
2055 reg = DSPCNTR(plane);
2056 dspcntr = I915_READ(reg);
2057 /* Mask out pixel format bits in case we change it */
2058 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2059 switch (fb->pixel_format) {
2060 case DRM_FORMAT_C8:
2061 dspcntr |= DISPPLANE_8BPP;
2062 break;
2063 case DRM_FORMAT_XRGB1555:
2064 case DRM_FORMAT_ARGB1555:
2065 dspcntr |= DISPPLANE_BGRX555;
2066 break;
2067 case DRM_FORMAT_RGB565:
2068 dspcntr |= DISPPLANE_BGRX565;
2069 break;
2070 case DRM_FORMAT_XRGB8888:
2071 case DRM_FORMAT_ARGB8888:
2072 dspcntr |= DISPPLANE_BGRX888;
2073 break;
2074 case DRM_FORMAT_XBGR8888:
2075 case DRM_FORMAT_ABGR8888:
2076 dspcntr |= DISPPLANE_RGBX888;
2077 break;
2078 case DRM_FORMAT_XRGB2101010:
2079 case DRM_FORMAT_ARGB2101010:
2080 dspcntr |= DISPPLANE_BGRX101010;
2081 break;
2082 case DRM_FORMAT_XBGR2101010:
2083 case DRM_FORMAT_ABGR2101010:
2084 dspcntr |= DISPPLANE_RGBX101010;
2085 break;
2086 default:
2087 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2088 return -EINVAL;
2089 }
2090
2091 if (INTEL_INFO(dev)->gen >= 4) {
2092 if (obj->tiling_mode != I915_TILING_NONE)
2093 dspcntr |= DISPPLANE_TILED;
2094 else
2095 dspcntr &= ~DISPPLANE_TILED;
2096 }
2097
2098 I915_WRITE(reg, dspcntr);
2099
2100 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2101
2102 if (INTEL_INFO(dev)->gen >= 4) {
2103 intel_crtc->dspaddr_offset =
2104 intel_gen4_compute_offset_xtiled(&x, &y,
2105 fb->bits_per_pixel / 8,
2106 fb->pitches[0]);
2107 linear_offset -= intel_crtc->dspaddr_offset;
2108 } else {
2109 intel_crtc->dspaddr_offset = linear_offset;
2110 }
2111
2112 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2113 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2114 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2115 if (INTEL_INFO(dev)->gen >= 4) {
2116 I915_MODIFY_DISPBASE(DSPSURF(plane),
2117 obj->gtt_offset + intel_crtc->dspaddr_offset);
2118 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2119 I915_WRITE(DSPLINOFF(plane), linear_offset);
2120 } else
2121 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2122 POSTING_READ(reg);
2123
2124 return 0;
2125 }
2126
2127 static int ironlake_update_plane(struct drm_crtc *crtc,
2128 struct drm_framebuffer *fb, int x, int y)
2129 {
2130 struct drm_device *dev = crtc->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2133 struct intel_framebuffer *intel_fb;
2134 struct drm_i915_gem_object *obj;
2135 int plane = intel_crtc->plane;
2136 unsigned long linear_offset;
2137 u32 dspcntr;
2138 u32 reg;
2139
2140 switch (plane) {
2141 case 0:
2142 case 1:
2143 case 2:
2144 break;
2145 default:
2146 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2147 return -EINVAL;
2148 }
2149
2150 intel_fb = to_intel_framebuffer(fb);
2151 obj = intel_fb->obj;
2152
2153 reg = DSPCNTR(plane);
2154 dspcntr = I915_READ(reg);
2155 /* Mask out pixel format bits in case we change it */
2156 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2157 switch (fb->pixel_format) {
2158 case DRM_FORMAT_C8:
2159 dspcntr |= DISPPLANE_8BPP;
2160 break;
2161 case DRM_FORMAT_RGB565:
2162 dspcntr |= DISPPLANE_BGRX565;
2163 break;
2164 case DRM_FORMAT_XRGB8888:
2165 case DRM_FORMAT_ARGB8888:
2166 dspcntr |= DISPPLANE_BGRX888;
2167 break;
2168 case DRM_FORMAT_XBGR8888:
2169 case DRM_FORMAT_ABGR8888:
2170 dspcntr |= DISPPLANE_RGBX888;
2171 break;
2172 case DRM_FORMAT_XRGB2101010:
2173 case DRM_FORMAT_ARGB2101010:
2174 dspcntr |= DISPPLANE_BGRX101010;
2175 break;
2176 case DRM_FORMAT_XBGR2101010:
2177 case DRM_FORMAT_ABGR2101010:
2178 dspcntr |= DISPPLANE_RGBX101010;
2179 break;
2180 default:
2181 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2182 return -EINVAL;
2183 }
2184
2185 if (obj->tiling_mode != I915_TILING_NONE)
2186 dspcntr |= DISPPLANE_TILED;
2187 else
2188 dspcntr &= ~DISPPLANE_TILED;
2189
2190 /* must disable */
2191 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2192
2193 I915_WRITE(reg, dspcntr);
2194
2195 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2196 intel_crtc->dspaddr_offset =
2197 intel_gen4_compute_offset_xtiled(&x, &y,
2198 fb->bits_per_pixel / 8,
2199 fb->pitches[0]);
2200 linear_offset -= intel_crtc->dspaddr_offset;
2201
2202 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2203 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2204 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2205 I915_MODIFY_DISPBASE(DSPSURF(plane),
2206 obj->gtt_offset + intel_crtc->dspaddr_offset);
2207 if (IS_HASWELL(dev)) {
2208 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2209 } else {
2210 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2211 I915_WRITE(DSPLINOFF(plane), linear_offset);
2212 }
2213 POSTING_READ(reg);
2214
2215 return 0;
2216 }
2217
2218 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2219 static int
2220 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2221 int x, int y, enum mode_set_atomic state)
2222 {
2223 struct drm_device *dev = crtc->dev;
2224 struct drm_i915_private *dev_priv = dev->dev_private;
2225
2226 if (dev_priv->display.disable_fbc)
2227 dev_priv->display.disable_fbc(dev);
2228 intel_increase_pllclock(crtc);
2229
2230 return dev_priv->display.update_plane(crtc, fb, x, y);
2231 }
2232
2233 static int
2234 intel_finish_fb(struct drm_framebuffer *old_fb)
2235 {
2236 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2237 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2238 bool was_interruptible = dev_priv->mm.interruptible;
2239 int ret;
2240
2241 wait_event(dev_priv->pending_flip_queue,
2242 atomic_read(&dev_priv->mm.wedged) ||
2243 atomic_read(&obj->pending_flip) == 0);
2244
2245 /* Big Hammer, we also need to ensure that any pending
2246 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2247 * current scanout is retired before unpinning the old
2248 * framebuffer.
2249 *
2250 * This should only fail upon a hung GPU, in which case we
2251 * can safely continue.
2252 */
2253 dev_priv->mm.interruptible = false;
2254 ret = i915_gem_object_finish_gpu(obj);
2255 dev_priv->mm.interruptible = was_interruptible;
2256
2257 return ret;
2258 }
2259
2260 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2261 {
2262 struct drm_device *dev = crtc->dev;
2263 struct drm_i915_master_private *master_priv;
2264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2265
2266 if (!dev->primary->master)
2267 return;
2268
2269 master_priv = dev->primary->master->driver_priv;
2270 if (!master_priv->sarea_priv)
2271 return;
2272
2273 switch (intel_crtc->pipe) {
2274 case 0:
2275 master_priv->sarea_priv->pipeA_x = x;
2276 master_priv->sarea_priv->pipeA_y = y;
2277 break;
2278 case 1:
2279 master_priv->sarea_priv->pipeB_x = x;
2280 master_priv->sarea_priv->pipeB_y = y;
2281 break;
2282 default:
2283 break;
2284 }
2285 }
2286
2287 static int
2288 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2289 struct drm_framebuffer *fb)
2290 {
2291 struct drm_device *dev = crtc->dev;
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294 struct drm_framebuffer *old_fb;
2295 int ret;
2296
2297 /* no fb bound */
2298 if (!fb) {
2299 DRM_ERROR("No FB bound\n");
2300 return 0;
2301 }
2302
2303 if(intel_crtc->plane > dev_priv->num_pipe) {
2304 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2305 intel_crtc->plane,
2306 dev_priv->num_pipe);
2307 return -EINVAL;
2308 }
2309
2310 mutex_lock(&dev->struct_mutex);
2311 ret = intel_pin_and_fence_fb_obj(dev,
2312 to_intel_framebuffer(fb)->obj,
2313 NULL);
2314 if (ret != 0) {
2315 mutex_unlock(&dev->struct_mutex);
2316 DRM_ERROR("pin & fence failed\n");
2317 return ret;
2318 }
2319
2320 if (crtc->fb)
2321 intel_finish_fb(crtc->fb);
2322
2323 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2324 if (ret) {
2325 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2326 mutex_unlock(&dev->struct_mutex);
2327 DRM_ERROR("failed to update base address\n");
2328 return ret;
2329 }
2330
2331 old_fb = crtc->fb;
2332 crtc->fb = fb;
2333 crtc->x = x;
2334 crtc->y = y;
2335
2336 if (old_fb) {
2337 intel_wait_for_vblank(dev, intel_crtc->pipe);
2338 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2339 }
2340
2341 intel_update_fbc(dev);
2342 mutex_unlock(&dev->struct_mutex);
2343
2344 intel_crtc_update_sarea_pos(crtc, x, y);
2345
2346 return 0;
2347 }
2348
2349 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2350 {
2351 struct drm_device *dev = crtc->dev;
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 u32 dpa_ctl;
2354
2355 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2356 dpa_ctl = I915_READ(DP_A);
2357 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2358
2359 if (clock < 200000) {
2360 u32 temp;
2361 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2362 /* workaround for 160Mhz:
2363 1) program 0x4600c bits 15:0 = 0x8124
2364 2) program 0x46010 bit 0 = 1
2365 3) program 0x46034 bit 24 = 1
2366 4) program 0x64000 bit 14 = 1
2367 */
2368 temp = I915_READ(0x4600c);
2369 temp &= 0xffff0000;
2370 I915_WRITE(0x4600c, temp | 0x8124);
2371
2372 temp = I915_READ(0x46010);
2373 I915_WRITE(0x46010, temp | 1);
2374
2375 temp = I915_READ(0x46034);
2376 I915_WRITE(0x46034, temp | (1 << 24));
2377 } else {
2378 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2379 }
2380 I915_WRITE(DP_A, dpa_ctl);
2381
2382 POSTING_READ(DP_A);
2383 udelay(500);
2384 }
2385
2386 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2387 {
2388 struct drm_device *dev = crtc->dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2391 int pipe = intel_crtc->pipe;
2392 u32 reg, temp;
2393
2394 /* enable normal train */
2395 reg = FDI_TX_CTL(pipe);
2396 temp = I915_READ(reg);
2397 if (IS_IVYBRIDGE(dev)) {
2398 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2399 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2400 } else {
2401 temp &= ~FDI_LINK_TRAIN_NONE;
2402 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2403 }
2404 I915_WRITE(reg, temp);
2405
2406 reg = FDI_RX_CTL(pipe);
2407 temp = I915_READ(reg);
2408 if (HAS_PCH_CPT(dev)) {
2409 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2410 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2411 } else {
2412 temp &= ~FDI_LINK_TRAIN_NONE;
2413 temp |= FDI_LINK_TRAIN_NONE;
2414 }
2415 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2416
2417 /* wait one idle pattern time */
2418 POSTING_READ(reg);
2419 udelay(1000);
2420
2421 /* IVB wants error correction enabled */
2422 if (IS_IVYBRIDGE(dev))
2423 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2424 FDI_FE_ERRC_ENABLE);
2425 }
2426
2427 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2428 {
2429 struct drm_i915_private *dev_priv = dev->dev_private;
2430 u32 flags = I915_READ(SOUTH_CHICKEN1);
2431
2432 flags |= FDI_PHASE_SYNC_OVR(pipe);
2433 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2434 flags |= FDI_PHASE_SYNC_EN(pipe);
2435 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2436 POSTING_READ(SOUTH_CHICKEN1);
2437 }
2438
2439 static void ivb_modeset_global_resources(struct drm_device *dev)
2440 {
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 struct intel_crtc *pipe_B_crtc =
2443 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2444 struct intel_crtc *pipe_C_crtc =
2445 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2446 uint32_t temp;
2447
2448 /* When everything is off disable fdi C so that we could enable fdi B
2449 * with all lanes. XXX: This misses the case where a pipe is not using
2450 * any pch resources and so doesn't need any fdi lanes. */
2451 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2453 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2454
2455 temp = I915_READ(SOUTH_CHICKEN1);
2456 temp &= ~FDI_BC_BIFURCATION_SELECT;
2457 DRM_DEBUG_KMS("disabling fdi C rx\n");
2458 I915_WRITE(SOUTH_CHICKEN1, temp);
2459 }
2460 }
2461
2462 /* The FDI link training functions for ILK/Ibexpeak. */
2463 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2464 {
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468 int pipe = intel_crtc->pipe;
2469 int plane = intel_crtc->plane;
2470 u32 reg, temp, tries;
2471
2472 /* FDI needs bits from pipe & plane first */
2473 assert_pipe_enabled(dev_priv, pipe);
2474 assert_plane_enabled(dev_priv, plane);
2475
2476 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2477 for train result */
2478 reg = FDI_RX_IMR(pipe);
2479 temp = I915_READ(reg);
2480 temp &= ~FDI_RX_SYMBOL_LOCK;
2481 temp &= ~FDI_RX_BIT_LOCK;
2482 I915_WRITE(reg, temp);
2483 I915_READ(reg);
2484 udelay(150);
2485
2486 /* enable CPU FDI TX and PCH FDI RX */
2487 reg = FDI_TX_CTL(pipe);
2488 temp = I915_READ(reg);
2489 temp &= ~(7 << 19);
2490 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2494
2495 reg = FDI_RX_CTL(pipe);
2496 temp = I915_READ(reg);
2497 temp &= ~FDI_LINK_TRAIN_NONE;
2498 temp |= FDI_LINK_TRAIN_PATTERN_1;
2499 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2500
2501 POSTING_READ(reg);
2502 udelay(150);
2503
2504 /* Ironlake workaround, enable clock pointer after FDI enable*/
2505 if (HAS_PCH_IBX(dev)) {
2506 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2507 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2508 FDI_RX_PHASE_SYNC_POINTER_EN);
2509 }
2510
2511 reg = FDI_RX_IIR(pipe);
2512 for (tries = 0; tries < 5; tries++) {
2513 temp = I915_READ(reg);
2514 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2515
2516 if ((temp & FDI_RX_BIT_LOCK)) {
2517 DRM_DEBUG_KMS("FDI train 1 done.\n");
2518 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2519 break;
2520 }
2521 }
2522 if (tries == 5)
2523 DRM_ERROR("FDI train 1 fail!\n");
2524
2525 /* Train 2 */
2526 reg = FDI_TX_CTL(pipe);
2527 temp = I915_READ(reg);
2528 temp &= ~FDI_LINK_TRAIN_NONE;
2529 temp |= FDI_LINK_TRAIN_PATTERN_2;
2530 I915_WRITE(reg, temp);
2531
2532 reg = FDI_RX_CTL(pipe);
2533 temp = I915_READ(reg);
2534 temp &= ~FDI_LINK_TRAIN_NONE;
2535 temp |= FDI_LINK_TRAIN_PATTERN_2;
2536 I915_WRITE(reg, temp);
2537
2538 POSTING_READ(reg);
2539 udelay(150);
2540
2541 reg = FDI_RX_IIR(pipe);
2542 for (tries = 0; tries < 5; tries++) {
2543 temp = I915_READ(reg);
2544 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2545
2546 if (temp & FDI_RX_SYMBOL_LOCK) {
2547 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2548 DRM_DEBUG_KMS("FDI train 2 done.\n");
2549 break;
2550 }
2551 }
2552 if (tries == 5)
2553 DRM_ERROR("FDI train 2 fail!\n");
2554
2555 DRM_DEBUG_KMS("FDI train done\n");
2556
2557 }
2558
2559 static const int snb_b_fdi_train_param[] = {
2560 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2561 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2562 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2563 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2564 };
2565
2566 /* The FDI link training functions for SNB/Cougarpoint. */
2567 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2568 {
2569 struct drm_device *dev = crtc->dev;
2570 struct drm_i915_private *dev_priv = dev->dev_private;
2571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2572 int pipe = intel_crtc->pipe;
2573 u32 reg, temp, i, retry;
2574
2575 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2576 for train result */
2577 reg = FDI_RX_IMR(pipe);
2578 temp = I915_READ(reg);
2579 temp &= ~FDI_RX_SYMBOL_LOCK;
2580 temp &= ~FDI_RX_BIT_LOCK;
2581 I915_WRITE(reg, temp);
2582
2583 POSTING_READ(reg);
2584 udelay(150);
2585
2586 /* enable CPU FDI TX and PCH FDI RX */
2587 reg = FDI_TX_CTL(pipe);
2588 temp = I915_READ(reg);
2589 temp &= ~(7 << 19);
2590 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2591 temp &= ~FDI_LINK_TRAIN_NONE;
2592 temp |= FDI_LINK_TRAIN_PATTERN_1;
2593 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2594 /* SNB-B */
2595 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2596 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2597
2598 I915_WRITE(FDI_RX_MISC(pipe),
2599 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2600
2601 reg = FDI_RX_CTL(pipe);
2602 temp = I915_READ(reg);
2603 if (HAS_PCH_CPT(dev)) {
2604 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2606 } else {
2607 temp &= ~FDI_LINK_TRAIN_NONE;
2608 temp |= FDI_LINK_TRAIN_PATTERN_1;
2609 }
2610 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 if (HAS_PCH_CPT(dev))
2616 cpt_phase_pointer_enable(dev, pipe);
2617
2618 for (i = 0; i < 4; i++) {
2619 reg = FDI_TX_CTL(pipe);
2620 temp = I915_READ(reg);
2621 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2622 temp |= snb_b_fdi_train_param[i];
2623 I915_WRITE(reg, temp);
2624
2625 POSTING_READ(reg);
2626 udelay(500);
2627
2628 for (retry = 0; retry < 5; retry++) {
2629 reg = FDI_RX_IIR(pipe);
2630 temp = I915_READ(reg);
2631 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2632 if (temp & FDI_RX_BIT_LOCK) {
2633 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2634 DRM_DEBUG_KMS("FDI train 1 done.\n");
2635 break;
2636 }
2637 udelay(50);
2638 }
2639 if (retry < 5)
2640 break;
2641 }
2642 if (i == 4)
2643 DRM_ERROR("FDI train 1 fail!\n");
2644
2645 /* Train 2 */
2646 reg = FDI_TX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 temp &= ~FDI_LINK_TRAIN_NONE;
2649 temp |= FDI_LINK_TRAIN_PATTERN_2;
2650 if (IS_GEN6(dev)) {
2651 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2652 /* SNB-B */
2653 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2654 }
2655 I915_WRITE(reg, temp);
2656
2657 reg = FDI_RX_CTL(pipe);
2658 temp = I915_READ(reg);
2659 if (HAS_PCH_CPT(dev)) {
2660 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2661 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2662 } else {
2663 temp &= ~FDI_LINK_TRAIN_NONE;
2664 temp |= FDI_LINK_TRAIN_PATTERN_2;
2665 }
2666 I915_WRITE(reg, temp);
2667
2668 POSTING_READ(reg);
2669 udelay(150);
2670
2671 for (i = 0; i < 4; i++) {
2672 reg = FDI_TX_CTL(pipe);
2673 temp = I915_READ(reg);
2674 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675 temp |= snb_b_fdi_train_param[i];
2676 I915_WRITE(reg, temp);
2677
2678 POSTING_READ(reg);
2679 udelay(500);
2680
2681 for (retry = 0; retry < 5; retry++) {
2682 reg = FDI_RX_IIR(pipe);
2683 temp = I915_READ(reg);
2684 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2685 if (temp & FDI_RX_SYMBOL_LOCK) {
2686 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2687 DRM_DEBUG_KMS("FDI train 2 done.\n");
2688 break;
2689 }
2690 udelay(50);
2691 }
2692 if (retry < 5)
2693 break;
2694 }
2695 if (i == 4)
2696 DRM_ERROR("FDI train 2 fail!\n");
2697
2698 DRM_DEBUG_KMS("FDI train done.\n");
2699 }
2700
2701 /* Manual link training for Ivy Bridge A0 parts */
2702 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2703 {
2704 struct drm_device *dev = crtc->dev;
2705 struct drm_i915_private *dev_priv = dev->dev_private;
2706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2707 int pipe = intel_crtc->pipe;
2708 u32 reg, temp, i;
2709
2710 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2711 for train result */
2712 reg = FDI_RX_IMR(pipe);
2713 temp = I915_READ(reg);
2714 temp &= ~FDI_RX_SYMBOL_LOCK;
2715 temp &= ~FDI_RX_BIT_LOCK;
2716 I915_WRITE(reg, temp);
2717
2718 POSTING_READ(reg);
2719 udelay(150);
2720
2721 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2722 I915_READ(FDI_RX_IIR(pipe)));
2723
2724 /* enable CPU FDI TX and PCH FDI RX */
2725 reg = FDI_TX_CTL(pipe);
2726 temp = I915_READ(reg);
2727 temp &= ~(7 << 19);
2728 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2729 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2730 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2731 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2732 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2733 temp |= FDI_COMPOSITE_SYNC;
2734 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2735
2736 I915_WRITE(FDI_RX_MISC(pipe),
2737 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2738
2739 reg = FDI_RX_CTL(pipe);
2740 temp = I915_READ(reg);
2741 temp &= ~FDI_LINK_TRAIN_AUTO;
2742 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2743 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2744 temp |= FDI_COMPOSITE_SYNC;
2745 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2746
2747 POSTING_READ(reg);
2748 udelay(150);
2749
2750 if (HAS_PCH_CPT(dev))
2751 cpt_phase_pointer_enable(dev, pipe);
2752
2753 for (i = 0; i < 4; i++) {
2754 reg = FDI_TX_CTL(pipe);
2755 temp = I915_READ(reg);
2756 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2757 temp |= snb_b_fdi_train_param[i];
2758 I915_WRITE(reg, temp);
2759
2760 POSTING_READ(reg);
2761 udelay(500);
2762
2763 reg = FDI_RX_IIR(pipe);
2764 temp = I915_READ(reg);
2765 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2766
2767 if (temp & FDI_RX_BIT_LOCK ||
2768 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2769 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2770 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2771 break;
2772 }
2773 }
2774 if (i == 4)
2775 DRM_ERROR("FDI train 1 fail!\n");
2776
2777 /* Train 2 */
2778 reg = FDI_TX_CTL(pipe);
2779 temp = I915_READ(reg);
2780 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2781 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2782 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2783 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2784 I915_WRITE(reg, temp);
2785
2786 reg = FDI_RX_CTL(pipe);
2787 temp = I915_READ(reg);
2788 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2789 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2790 I915_WRITE(reg, temp);
2791
2792 POSTING_READ(reg);
2793 udelay(150);
2794
2795 for (i = 0; i < 4; i++) {
2796 reg = FDI_TX_CTL(pipe);
2797 temp = I915_READ(reg);
2798 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2799 temp |= snb_b_fdi_train_param[i];
2800 I915_WRITE(reg, temp);
2801
2802 POSTING_READ(reg);
2803 udelay(500);
2804
2805 reg = FDI_RX_IIR(pipe);
2806 temp = I915_READ(reg);
2807 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2808
2809 if (temp & FDI_RX_SYMBOL_LOCK) {
2810 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2811 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2812 break;
2813 }
2814 }
2815 if (i == 4)
2816 DRM_ERROR("FDI train 2 fail!\n");
2817
2818 DRM_DEBUG_KMS("FDI train done.\n");
2819 }
2820
2821 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2822 {
2823 struct drm_device *dev = intel_crtc->base.dev;
2824 struct drm_i915_private *dev_priv = dev->dev_private;
2825 int pipe = intel_crtc->pipe;
2826 u32 reg, temp;
2827
2828
2829 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2830 reg = FDI_RX_CTL(pipe);
2831 temp = I915_READ(reg);
2832 temp &= ~((0x7 << 19) | (0x7 << 16));
2833 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2834 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2835 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2836
2837 POSTING_READ(reg);
2838 udelay(200);
2839
2840 /* Switch from Rawclk to PCDclk */
2841 temp = I915_READ(reg);
2842 I915_WRITE(reg, temp | FDI_PCDCLK);
2843
2844 POSTING_READ(reg);
2845 udelay(200);
2846
2847 /* On Haswell, the PLL configuration for ports and pipes is handled
2848 * separately, as part of DDI setup */
2849 if (!IS_HASWELL(dev)) {
2850 /* Enable CPU FDI TX PLL, always on for Ironlake */
2851 reg = FDI_TX_CTL(pipe);
2852 temp = I915_READ(reg);
2853 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2854 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2855
2856 POSTING_READ(reg);
2857 udelay(100);
2858 }
2859 }
2860 }
2861
2862 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2863 {
2864 struct drm_device *dev = intel_crtc->base.dev;
2865 struct drm_i915_private *dev_priv = dev->dev_private;
2866 int pipe = intel_crtc->pipe;
2867 u32 reg, temp;
2868
2869 /* Switch from PCDclk to Rawclk */
2870 reg = FDI_RX_CTL(pipe);
2871 temp = I915_READ(reg);
2872 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2873
2874 /* Disable CPU FDI TX PLL */
2875 reg = FDI_TX_CTL(pipe);
2876 temp = I915_READ(reg);
2877 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2878
2879 POSTING_READ(reg);
2880 udelay(100);
2881
2882 reg = FDI_RX_CTL(pipe);
2883 temp = I915_READ(reg);
2884 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2885
2886 /* Wait for the clocks to turn off. */
2887 POSTING_READ(reg);
2888 udelay(100);
2889 }
2890
2891 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2892 {
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 u32 flags = I915_READ(SOUTH_CHICKEN1);
2895
2896 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2897 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2898 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2899 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2900 POSTING_READ(SOUTH_CHICKEN1);
2901 }
2902 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2903 {
2904 struct drm_device *dev = crtc->dev;
2905 struct drm_i915_private *dev_priv = dev->dev_private;
2906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2907 int pipe = intel_crtc->pipe;
2908 u32 reg, temp;
2909
2910 /* disable CPU FDI tx and PCH FDI rx */
2911 reg = FDI_TX_CTL(pipe);
2912 temp = I915_READ(reg);
2913 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2914 POSTING_READ(reg);
2915
2916 reg = FDI_RX_CTL(pipe);
2917 temp = I915_READ(reg);
2918 temp &= ~(0x7 << 16);
2919 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2920 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2921
2922 POSTING_READ(reg);
2923 udelay(100);
2924
2925 /* Ironlake workaround, disable clock pointer after downing FDI */
2926 if (HAS_PCH_IBX(dev)) {
2927 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2928 I915_WRITE(FDI_RX_CHICKEN(pipe),
2929 I915_READ(FDI_RX_CHICKEN(pipe) &
2930 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2931 } else if (HAS_PCH_CPT(dev)) {
2932 cpt_phase_pointer_disable(dev, pipe);
2933 }
2934
2935 /* still set train pattern 1 */
2936 reg = FDI_TX_CTL(pipe);
2937 temp = I915_READ(reg);
2938 temp &= ~FDI_LINK_TRAIN_NONE;
2939 temp |= FDI_LINK_TRAIN_PATTERN_1;
2940 I915_WRITE(reg, temp);
2941
2942 reg = FDI_RX_CTL(pipe);
2943 temp = I915_READ(reg);
2944 if (HAS_PCH_CPT(dev)) {
2945 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2946 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2947 } else {
2948 temp &= ~FDI_LINK_TRAIN_NONE;
2949 temp |= FDI_LINK_TRAIN_PATTERN_1;
2950 }
2951 /* BPC in FDI rx is consistent with that in PIPECONF */
2952 temp &= ~(0x07 << 16);
2953 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2954 I915_WRITE(reg, temp);
2955
2956 POSTING_READ(reg);
2957 udelay(100);
2958 }
2959
2960 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2961 {
2962 struct drm_device *dev = crtc->dev;
2963 struct drm_i915_private *dev_priv = dev->dev_private;
2964 unsigned long flags;
2965 bool pending;
2966
2967 if (atomic_read(&dev_priv->mm.wedged))
2968 return false;
2969
2970 spin_lock_irqsave(&dev->event_lock, flags);
2971 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2972 spin_unlock_irqrestore(&dev->event_lock, flags);
2973
2974 return pending;
2975 }
2976
2977 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2978 {
2979 struct drm_device *dev = crtc->dev;
2980 struct drm_i915_private *dev_priv = dev->dev_private;
2981
2982 if (crtc->fb == NULL)
2983 return;
2984
2985 wait_event(dev_priv->pending_flip_queue,
2986 !intel_crtc_has_pending_flip(crtc));
2987
2988 mutex_lock(&dev->struct_mutex);
2989 intel_finish_fb(crtc->fb);
2990 mutex_unlock(&dev->struct_mutex);
2991 }
2992
2993 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2994 {
2995 struct drm_device *dev = crtc->dev;
2996 struct intel_encoder *intel_encoder;
2997
2998 /*
2999 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
3000 * must be driven by its own crtc; no sharing is possible.
3001 */
3002 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3003 switch (intel_encoder->type) {
3004 case INTEL_OUTPUT_EDP:
3005 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
3006 return false;
3007 continue;
3008 }
3009 }
3010
3011 return true;
3012 }
3013
3014 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3015 {
3016 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3017 }
3018
3019 /* Program iCLKIP clock to the desired frequency */
3020 static void lpt_program_iclkip(struct drm_crtc *crtc)
3021 {
3022 struct drm_device *dev = crtc->dev;
3023 struct drm_i915_private *dev_priv = dev->dev_private;
3024 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3025 u32 temp;
3026
3027 /* It is necessary to ungate the pixclk gate prior to programming
3028 * the divisors, and gate it back when it is done.
3029 */
3030 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3031
3032 /* Disable SSCCTL */
3033 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3034 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3035 SBI_SSCCTL_DISABLE);
3036
3037 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3038 if (crtc->mode.clock == 20000) {
3039 auxdiv = 1;
3040 divsel = 0x41;
3041 phaseinc = 0x20;
3042 } else {
3043 /* The iCLK virtual clock root frequency is in MHz,
3044 * but the crtc->mode.clock in in KHz. To get the divisors,
3045 * it is necessary to divide one by another, so we
3046 * convert the virtual clock precision to KHz here for higher
3047 * precision.
3048 */
3049 u32 iclk_virtual_root_freq = 172800 * 1000;
3050 u32 iclk_pi_range = 64;
3051 u32 desired_divisor, msb_divisor_value, pi_value;
3052
3053 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3054 msb_divisor_value = desired_divisor / iclk_pi_range;
3055 pi_value = desired_divisor % iclk_pi_range;
3056
3057 auxdiv = 0;
3058 divsel = msb_divisor_value - 2;
3059 phaseinc = pi_value;
3060 }
3061
3062 /* This should not happen with any sane values */
3063 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3064 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3065 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3066 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3067
3068 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3069 crtc->mode.clock,
3070 auxdiv,
3071 divsel,
3072 phasedir,
3073 phaseinc);
3074
3075 /* Program SSCDIVINTPHASE6 */
3076 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3077 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3078 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3079 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3080 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3081 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3082 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3083
3084 intel_sbi_write(dev_priv,
3085 SBI_SSCDIVINTPHASE6,
3086 temp);
3087
3088 /* Program SSCAUXDIV */
3089 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3090 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3091 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3092 intel_sbi_write(dev_priv,
3093 SBI_SSCAUXDIV6,
3094 temp);
3095
3096
3097 /* Enable modulator and associated divider */
3098 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3099 temp &= ~SBI_SSCCTL_DISABLE;
3100 intel_sbi_write(dev_priv,
3101 SBI_SSCCTL6,
3102 temp);
3103
3104 /* Wait for initialization time */
3105 udelay(24);
3106
3107 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3108 }
3109
3110 /*
3111 * Enable PCH resources required for PCH ports:
3112 * - PCH PLLs
3113 * - FDI training & RX/TX
3114 * - update transcoder timings
3115 * - DP transcoding bits
3116 * - transcoder
3117 */
3118 static void ironlake_pch_enable(struct drm_crtc *crtc)
3119 {
3120 struct drm_device *dev = crtc->dev;
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3123 int pipe = intel_crtc->pipe;
3124 u32 reg, temp;
3125
3126 assert_transcoder_disabled(dev_priv, pipe);
3127
3128 /* Write the TU size bits before fdi link training, so that error
3129 * detection works. */
3130 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3131 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3132
3133 /* For PCH output, training FDI link */
3134 dev_priv->display.fdi_link_train(crtc);
3135
3136 /* XXX: pch pll's can be enabled any time before we enable the PCH
3137 * transcoder, and we actually should do this to not upset any PCH
3138 * transcoder that already use the clock when we share it.
3139 *
3140 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3141 * unconditionally resets the pll - we need that to have the right LVDS
3142 * enable sequence. */
3143 ironlake_enable_pch_pll(intel_crtc);
3144
3145 if (HAS_PCH_CPT(dev)) {
3146 u32 sel;
3147
3148 temp = I915_READ(PCH_DPLL_SEL);
3149 switch (pipe) {
3150 default:
3151 case 0:
3152 temp |= TRANSA_DPLL_ENABLE;
3153 sel = TRANSA_DPLLB_SEL;
3154 break;
3155 case 1:
3156 temp |= TRANSB_DPLL_ENABLE;
3157 sel = TRANSB_DPLLB_SEL;
3158 break;
3159 case 2:
3160 temp |= TRANSC_DPLL_ENABLE;
3161 sel = TRANSC_DPLLB_SEL;
3162 break;
3163 }
3164 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3165 temp |= sel;
3166 else
3167 temp &= ~sel;
3168 I915_WRITE(PCH_DPLL_SEL, temp);
3169 }
3170
3171 /* set transcoder timing, panel must allow it */
3172 assert_panel_unlocked(dev_priv, pipe);
3173 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3174 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3175 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3176
3177 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3178 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3179 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3180 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3181
3182 intel_fdi_normal_train(crtc);
3183
3184 /* For PCH DP, enable TRANS_DP_CTL */
3185 if (HAS_PCH_CPT(dev) &&
3186 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3187 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3188 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3189 reg = TRANS_DP_CTL(pipe);
3190 temp = I915_READ(reg);
3191 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3192 TRANS_DP_SYNC_MASK |
3193 TRANS_DP_BPC_MASK);
3194 temp |= (TRANS_DP_OUTPUT_ENABLE |
3195 TRANS_DP_ENH_FRAMING);
3196 temp |= bpc << 9; /* same format but at 11:9 */
3197
3198 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3199 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3200 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3201 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3202
3203 switch (intel_trans_dp_port_sel(crtc)) {
3204 case PCH_DP_B:
3205 temp |= TRANS_DP_PORT_SEL_B;
3206 break;
3207 case PCH_DP_C:
3208 temp |= TRANS_DP_PORT_SEL_C;
3209 break;
3210 case PCH_DP_D:
3211 temp |= TRANS_DP_PORT_SEL_D;
3212 break;
3213 default:
3214 BUG();
3215 }
3216
3217 I915_WRITE(reg, temp);
3218 }
3219
3220 ironlake_enable_pch_transcoder(dev_priv, pipe);
3221 }
3222
3223 static void lpt_pch_enable(struct drm_crtc *crtc)
3224 {
3225 struct drm_device *dev = crtc->dev;
3226 struct drm_i915_private *dev_priv = dev->dev_private;
3227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3228 int pipe = intel_crtc->pipe;
3229 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3230
3231 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3232
3233 /* Write the TU size bits before fdi link training, so that error
3234 * detection works. */
3235 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3236 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3237
3238 /* For PCH output, training FDI link */
3239 dev_priv->display.fdi_link_train(crtc);
3240
3241 lpt_program_iclkip(crtc);
3242
3243 /* Set transcoder timing. */
3244 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3245 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3246 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3247
3248 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3249 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3250 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3251 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3252
3253 lpt_enable_pch_transcoder(dev_priv, intel_crtc->pipe);
3254 }
3255
3256 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3257 {
3258 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3259
3260 if (pll == NULL)
3261 return;
3262
3263 if (pll->refcount == 0) {
3264 WARN(1, "bad PCH PLL refcount\n");
3265 return;
3266 }
3267
3268 --pll->refcount;
3269 intel_crtc->pch_pll = NULL;
3270 }
3271
3272 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3273 {
3274 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3275 struct intel_pch_pll *pll;
3276 int i;
3277
3278 pll = intel_crtc->pch_pll;
3279 if (pll) {
3280 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3281 intel_crtc->base.base.id, pll->pll_reg);
3282 goto prepare;
3283 }
3284
3285 if (HAS_PCH_IBX(dev_priv->dev)) {
3286 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3287 i = intel_crtc->pipe;
3288 pll = &dev_priv->pch_plls[i];
3289
3290 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3291 intel_crtc->base.base.id, pll->pll_reg);
3292
3293 goto found;
3294 }
3295
3296 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3297 pll = &dev_priv->pch_plls[i];
3298
3299 /* Only want to check enabled timings first */
3300 if (pll->refcount == 0)
3301 continue;
3302
3303 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3304 fp == I915_READ(pll->fp0_reg)) {
3305 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3306 intel_crtc->base.base.id,
3307 pll->pll_reg, pll->refcount, pll->active);
3308
3309 goto found;
3310 }
3311 }
3312
3313 /* Ok no matching timings, maybe there's a free one? */
3314 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3315 pll = &dev_priv->pch_plls[i];
3316 if (pll->refcount == 0) {
3317 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3318 intel_crtc->base.base.id, pll->pll_reg);
3319 goto found;
3320 }
3321 }
3322
3323 return NULL;
3324
3325 found:
3326 intel_crtc->pch_pll = pll;
3327 pll->refcount++;
3328 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3329 prepare: /* separate function? */
3330 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3331
3332 /* Wait for the clocks to stabilize before rewriting the regs */
3333 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3334 POSTING_READ(pll->pll_reg);
3335 udelay(150);
3336
3337 I915_WRITE(pll->fp0_reg, fp);
3338 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3339 pll->on = false;
3340 return pll;
3341 }
3342
3343 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3344 {
3345 struct drm_i915_private *dev_priv = dev->dev_private;
3346 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3347 u32 temp;
3348
3349 temp = I915_READ(dslreg);
3350 udelay(500);
3351 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3352 /* Without this, mode sets may fail silently on FDI */
3353 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3354 udelay(250);
3355 I915_WRITE(tc2reg, 0);
3356 if (wait_for(I915_READ(dslreg) != temp, 5))
3357 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3358 }
3359 }
3360
3361 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3362 {
3363 struct drm_device *dev = crtc->dev;
3364 struct drm_i915_private *dev_priv = dev->dev_private;
3365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3366 struct intel_encoder *encoder;
3367 int pipe = intel_crtc->pipe;
3368 int plane = intel_crtc->plane;
3369 u32 temp;
3370 bool is_pch_port;
3371
3372 WARN_ON(!crtc->enabled);
3373
3374 if (intel_crtc->active)
3375 return;
3376
3377 intel_crtc->active = true;
3378 intel_update_watermarks(dev);
3379
3380 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3381 temp = I915_READ(PCH_LVDS);
3382 if ((temp & LVDS_PORT_EN) == 0)
3383 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3384 }
3385
3386 is_pch_port = ironlake_crtc_driving_pch(crtc);
3387
3388 if (is_pch_port) {
3389 /* Note: FDI PLL enabling _must_ be done before we enable the
3390 * cpu pipes, hence this is separate from all the other fdi/pch
3391 * enabling. */
3392 ironlake_fdi_pll_enable(intel_crtc);
3393 } else {
3394 assert_fdi_tx_disabled(dev_priv, pipe);
3395 assert_fdi_rx_disabled(dev_priv, pipe);
3396 }
3397
3398 for_each_encoder_on_crtc(dev, crtc, encoder)
3399 if (encoder->pre_enable)
3400 encoder->pre_enable(encoder);
3401
3402 /* Enable panel fitting for LVDS */
3403 if (dev_priv->pch_pf_size &&
3404 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3405 /* Force use of hard-coded filter coefficients
3406 * as some pre-programmed values are broken,
3407 * e.g. x201.
3408 */
3409 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3410 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3411 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3412 }
3413
3414 /*
3415 * On ILK+ LUT must be loaded before the pipe is running but with
3416 * clocks enabled
3417 */
3418 intel_crtc_load_lut(crtc);
3419
3420 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3421 intel_enable_plane(dev_priv, plane, pipe);
3422
3423 if (is_pch_port)
3424 ironlake_pch_enable(crtc);
3425
3426 mutex_lock(&dev->struct_mutex);
3427 intel_update_fbc(dev);
3428 mutex_unlock(&dev->struct_mutex);
3429
3430 intel_crtc_update_cursor(crtc, true);
3431
3432 for_each_encoder_on_crtc(dev, crtc, encoder)
3433 encoder->enable(encoder);
3434
3435 if (HAS_PCH_CPT(dev))
3436 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3437
3438 /*
3439 * There seems to be a race in PCH platform hw (at least on some
3440 * outputs) where an enabled pipe still completes any pageflip right
3441 * away (as if the pipe is off) instead of waiting for vblank. As soon
3442 * as the first vblank happend, everything works as expected. Hence just
3443 * wait for one vblank before returning to avoid strange things
3444 * happening.
3445 */
3446 intel_wait_for_vblank(dev, intel_crtc->pipe);
3447 }
3448
3449 static void haswell_crtc_enable(struct drm_crtc *crtc)
3450 {
3451 struct drm_device *dev = crtc->dev;
3452 struct drm_i915_private *dev_priv = dev->dev_private;
3453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3454 struct intel_encoder *encoder;
3455 int pipe = intel_crtc->pipe;
3456 int plane = intel_crtc->plane;
3457 bool is_pch_port;
3458
3459 WARN_ON(!crtc->enabled);
3460
3461 if (intel_crtc->active)
3462 return;
3463
3464 intel_crtc->active = true;
3465 intel_update_watermarks(dev);
3466
3467 is_pch_port = haswell_crtc_driving_pch(crtc);
3468
3469 if (is_pch_port)
3470 ironlake_fdi_pll_enable(intel_crtc);
3471
3472 for_each_encoder_on_crtc(dev, crtc, encoder)
3473 if (encoder->pre_enable)
3474 encoder->pre_enable(encoder);
3475
3476 intel_ddi_enable_pipe_clock(intel_crtc);
3477
3478 /* Enable panel fitting for eDP */
3479 if (dev_priv->pch_pf_size && HAS_eDP) {
3480 /* Force use of hard-coded filter coefficients
3481 * as some pre-programmed values are broken,
3482 * e.g. x201.
3483 */
3484 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3485 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3486 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3487 }
3488
3489 /*
3490 * On ILK+ LUT must be loaded before the pipe is running but with
3491 * clocks enabled
3492 */
3493 intel_crtc_load_lut(crtc);
3494
3495 intel_ddi_set_pipe_settings(crtc);
3496 intel_ddi_enable_pipe_func(crtc);
3497
3498 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3499 intel_enable_plane(dev_priv, plane, pipe);
3500
3501 if (is_pch_port)
3502 lpt_pch_enable(crtc);
3503
3504 mutex_lock(&dev->struct_mutex);
3505 intel_update_fbc(dev);
3506 mutex_unlock(&dev->struct_mutex);
3507
3508 intel_crtc_update_cursor(crtc, true);
3509
3510 for_each_encoder_on_crtc(dev, crtc, encoder)
3511 encoder->enable(encoder);
3512
3513 /*
3514 * There seems to be a race in PCH platform hw (at least on some
3515 * outputs) where an enabled pipe still completes any pageflip right
3516 * away (as if the pipe is off) instead of waiting for vblank. As soon
3517 * as the first vblank happend, everything works as expected. Hence just
3518 * wait for one vblank before returning to avoid strange things
3519 * happening.
3520 */
3521 intel_wait_for_vblank(dev, intel_crtc->pipe);
3522 }
3523
3524 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3525 {
3526 struct drm_device *dev = crtc->dev;
3527 struct drm_i915_private *dev_priv = dev->dev_private;
3528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3529 struct intel_encoder *encoder;
3530 int pipe = intel_crtc->pipe;
3531 int plane = intel_crtc->plane;
3532 u32 reg, temp;
3533
3534
3535 if (!intel_crtc->active)
3536 return;
3537
3538 for_each_encoder_on_crtc(dev, crtc, encoder)
3539 encoder->disable(encoder);
3540
3541 intel_crtc_wait_for_pending_flips(crtc);
3542 drm_vblank_off(dev, pipe);
3543 intel_crtc_update_cursor(crtc, false);
3544
3545 intel_disable_plane(dev_priv, plane, pipe);
3546
3547 if (dev_priv->cfb_plane == plane)
3548 intel_disable_fbc(dev);
3549
3550 intel_disable_pipe(dev_priv, pipe);
3551
3552 /* Disable PF */
3553 I915_WRITE(PF_CTL(pipe), 0);
3554 I915_WRITE(PF_WIN_SZ(pipe), 0);
3555
3556 for_each_encoder_on_crtc(dev, crtc, encoder)
3557 if (encoder->post_disable)
3558 encoder->post_disable(encoder);
3559
3560 ironlake_fdi_disable(crtc);
3561
3562 ironlake_disable_pch_transcoder(dev_priv, pipe);
3563
3564 if (HAS_PCH_CPT(dev)) {
3565 /* disable TRANS_DP_CTL */
3566 reg = TRANS_DP_CTL(pipe);
3567 temp = I915_READ(reg);
3568 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3569 temp |= TRANS_DP_PORT_SEL_NONE;
3570 I915_WRITE(reg, temp);
3571
3572 /* disable DPLL_SEL */
3573 temp = I915_READ(PCH_DPLL_SEL);
3574 switch (pipe) {
3575 case 0:
3576 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3577 break;
3578 case 1:
3579 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3580 break;
3581 case 2:
3582 /* C shares PLL A or B */
3583 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3584 break;
3585 default:
3586 BUG(); /* wtf */
3587 }
3588 I915_WRITE(PCH_DPLL_SEL, temp);
3589 }
3590
3591 /* disable PCH DPLL */
3592 intel_disable_pch_pll(intel_crtc);
3593
3594 ironlake_fdi_pll_disable(intel_crtc);
3595
3596 intel_crtc->active = false;
3597 intel_update_watermarks(dev);
3598
3599 mutex_lock(&dev->struct_mutex);
3600 intel_update_fbc(dev);
3601 mutex_unlock(&dev->struct_mutex);
3602 }
3603
3604 static void haswell_crtc_disable(struct drm_crtc *crtc)
3605 {
3606 struct drm_device *dev = crtc->dev;
3607 struct drm_i915_private *dev_priv = dev->dev_private;
3608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3609 struct intel_encoder *encoder;
3610 int pipe = intel_crtc->pipe;
3611 int plane = intel_crtc->plane;
3612 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3613 bool is_pch_port;
3614
3615 if (!intel_crtc->active)
3616 return;
3617
3618 is_pch_port = haswell_crtc_driving_pch(crtc);
3619
3620 for_each_encoder_on_crtc(dev, crtc, encoder)
3621 encoder->disable(encoder);
3622
3623 intel_crtc_wait_for_pending_flips(crtc);
3624 drm_vblank_off(dev, pipe);
3625 intel_crtc_update_cursor(crtc, false);
3626
3627 intel_disable_plane(dev_priv, plane, pipe);
3628
3629 if (dev_priv->cfb_plane == plane)
3630 intel_disable_fbc(dev);
3631
3632 intel_disable_pipe(dev_priv, pipe);
3633
3634 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3635
3636 /* Disable PF */
3637 I915_WRITE(PF_CTL(pipe), 0);
3638 I915_WRITE(PF_WIN_SZ(pipe), 0);
3639
3640 intel_ddi_disable_pipe_clock(intel_crtc);
3641
3642 for_each_encoder_on_crtc(dev, crtc, encoder)
3643 if (encoder->post_disable)
3644 encoder->post_disable(encoder);
3645
3646 if (is_pch_port) {
3647 ironlake_fdi_disable(crtc);
3648 lpt_disable_pch_transcoder(dev_priv, pipe);
3649 intel_disable_pch_pll(intel_crtc);
3650 ironlake_fdi_pll_disable(intel_crtc);
3651 }
3652
3653 intel_crtc->active = false;
3654 intel_update_watermarks(dev);
3655
3656 mutex_lock(&dev->struct_mutex);
3657 intel_update_fbc(dev);
3658 mutex_unlock(&dev->struct_mutex);
3659 }
3660
3661 static void ironlake_crtc_off(struct drm_crtc *crtc)
3662 {
3663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3664 intel_put_pch_pll(intel_crtc);
3665 }
3666
3667 static void haswell_crtc_off(struct drm_crtc *crtc)
3668 {
3669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3670
3671 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3672 * start using it. */
3673 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3674
3675 intel_ddi_put_crtc_pll(crtc);
3676 }
3677
3678 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3679 {
3680 if (!enable && intel_crtc->overlay) {
3681 struct drm_device *dev = intel_crtc->base.dev;
3682 struct drm_i915_private *dev_priv = dev->dev_private;
3683
3684 mutex_lock(&dev->struct_mutex);
3685 dev_priv->mm.interruptible = false;
3686 (void) intel_overlay_switch_off(intel_crtc->overlay);
3687 dev_priv->mm.interruptible = true;
3688 mutex_unlock(&dev->struct_mutex);
3689 }
3690
3691 /* Let userspace switch the overlay on again. In most cases userspace
3692 * has to recompute where to put it anyway.
3693 */
3694 }
3695
3696 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3697 {
3698 struct drm_device *dev = crtc->dev;
3699 struct drm_i915_private *dev_priv = dev->dev_private;
3700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3701 struct intel_encoder *encoder;
3702 int pipe = intel_crtc->pipe;
3703 int plane = intel_crtc->plane;
3704
3705 WARN_ON(!crtc->enabled);
3706
3707 if (intel_crtc->active)
3708 return;
3709
3710 intel_crtc->active = true;
3711 intel_update_watermarks(dev);
3712
3713 intel_enable_pll(dev_priv, pipe);
3714 intel_enable_pipe(dev_priv, pipe, false);
3715 intel_enable_plane(dev_priv, plane, pipe);
3716
3717 intel_crtc_load_lut(crtc);
3718 intel_update_fbc(dev);
3719
3720 /* Give the overlay scaler a chance to enable if it's on this pipe */
3721 intel_crtc_dpms_overlay(intel_crtc, true);
3722 intel_crtc_update_cursor(crtc, true);
3723
3724 for_each_encoder_on_crtc(dev, crtc, encoder)
3725 encoder->enable(encoder);
3726 }
3727
3728 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3729 {
3730 struct drm_device *dev = crtc->dev;
3731 struct drm_i915_private *dev_priv = dev->dev_private;
3732 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3733 struct intel_encoder *encoder;
3734 int pipe = intel_crtc->pipe;
3735 int plane = intel_crtc->plane;
3736
3737
3738 if (!intel_crtc->active)
3739 return;
3740
3741 for_each_encoder_on_crtc(dev, crtc, encoder)
3742 encoder->disable(encoder);
3743
3744 /* Give the overlay scaler a chance to disable if it's on this pipe */
3745 intel_crtc_wait_for_pending_flips(crtc);
3746 drm_vblank_off(dev, pipe);
3747 intel_crtc_dpms_overlay(intel_crtc, false);
3748 intel_crtc_update_cursor(crtc, false);
3749
3750 if (dev_priv->cfb_plane == plane)
3751 intel_disable_fbc(dev);
3752
3753 intel_disable_plane(dev_priv, plane, pipe);
3754 intel_disable_pipe(dev_priv, pipe);
3755 intel_disable_pll(dev_priv, pipe);
3756
3757 intel_crtc->active = false;
3758 intel_update_fbc(dev);
3759 intel_update_watermarks(dev);
3760 }
3761
3762 static void i9xx_crtc_off(struct drm_crtc *crtc)
3763 {
3764 }
3765
3766 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3767 bool enabled)
3768 {
3769 struct drm_device *dev = crtc->dev;
3770 struct drm_i915_master_private *master_priv;
3771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3772 int pipe = intel_crtc->pipe;
3773
3774 if (!dev->primary->master)
3775 return;
3776
3777 master_priv = dev->primary->master->driver_priv;
3778 if (!master_priv->sarea_priv)
3779 return;
3780
3781 switch (pipe) {
3782 case 0:
3783 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3784 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3785 break;
3786 case 1:
3787 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3788 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3789 break;
3790 default:
3791 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3792 break;
3793 }
3794 }
3795
3796 /**
3797 * Sets the power management mode of the pipe and plane.
3798 */
3799 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3800 {
3801 struct drm_device *dev = crtc->dev;
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803 struct intel_encoder *intel_encoder;
3804 bool enable = false;
3805
3806 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3807 enable |= intel_encoder->connectors_active;
3808
3809 if (enable)
3810 dev_priv->display.crtc_enable(crtc);
3811 else
3812 dev_priv->display.crtc_disable(crtc);
3813
3814 intel_crtc_update_sarea(crtc, enable);
3815 }
3816
3817 static void intel_crtc_noop(struct drm_crtc *crtc)
3818 {
3819 }
3820
3821 static void intel_crtc_disable(struct drm_crtc *crtc)
3822 {
3823 struct drm_device *dev = crtc->dev;
3824 struct drm_connector *connector;
3825 struct drm_i915_private *dev_priv = dev->dev_private;
3826
3827 /* crtc should still be enabled when we disable it. */
3828 WARN_ON(!crtc->enabled);
3829
3830 dev_priv->display.crtc_disable(crtc);
3831 intel_crtc_update_sarea(crtc, false);
3832 dev_priv->display.off(crtc);
3833
3834 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3835 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3836
3837 if (crtc->fb) {
3838 mutex_lock(&dev->struct_mutex);
3839 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3840 mutex_unlock(&dev->struct_mutex);
3841 crtc->fb = NULL;
3842 }
3843
3844 /* Update computed state. */
3845 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3846 if (!connector->encoder || !connector->encoder->crtc)
3847 continue;
3848
3849 if (connector->encoder->crtc != crtc)
3850 continue;
3851
3852 connector->dpms = DRM_MODE_DPMS_OFF;
3853 to_intel_encoder(connector->encoder)->connectors_active = false;
3854 }
3855 }
3856
3857 void intel_modeset_disable(struct drm_device *dev)
3858 {
3859 struct drm_crtc *crtc;
3860
3861 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3862 if (crtc->enabled)
3863 intel_crtc_disable(crtc);
3864 }
3865 }
3866
3867 void intel_encoder_noop(struct drm_encoder *encoder)
3868 {
3869 }
3870
3871 void intel_encoder_destroy(struct drm_encoder *encoder)
3872 {
3873 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3874
3875 drm_encoder_cleanup(encoder);
3876 kfree(intel_encoder);
3877 }
3878
3879 /* Simple dpms helper for encodres with just one connector, no cloning and only
3880 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3881 * state of the entire output pipe. */
3882 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3883 {
3884 if (mode == DRM_MODE_DPMS_ON) {
3885 encoder->connectors_active = true;
3886
3887 intel_crtc_update_dpms(encoder->base.crtc);
3888 } else {
3889 encoder->connectors_active = false;
3890
3891 intel_crtc_update_dpms(encoder->base.crtc);
3892 }
3893 }
3894
3895 /* Cross check the actual hw state with our own modeset state tracking (and it's
3896 * internal consistency). */
3897 static void intel_connector_check_state(struct intel_connector *connector)
3898 {
3899 if (connector->get_hw_state(connector)) {
3900 struct intel_encoder *encoder = connector->encoder;
3901 struct drm_crtc *crtc;
3902 bool encoder_enabled;
3903 enum pipe pipe;
3904
3905 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3906 connector->base.base.id,
3907 drm_get_connector_name(&connector->base));
3908
3909 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3910 "wrong connector dpms state\n");
3911 WARN(connector->base.encoder != &encoder->base,
3912 "active connector not linked to encoder\n");
3913 WARN(!encoder->connectors_active,
3914 "encoder->connectors_active not set\n");
3915
3916 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3917 WARN(!encoder_enabled, "encoder not enabled\n");
3918 if (WARN_ON(!encoder->base.crtc))
3919 return;
3920
3921 crtc = encoder->base.crtc;
3922
3923 WARN(!crtc->enabled, "crtc not enabled\n");
3924 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3925 WARN(pipe != to_intel_crtc(crtc)->pipe,
3926 "encoder active on the wrong pipe\n");
3927 }
3928 }
3929
3930 /* Even simpler default implementation, if there's really no special case to
3931 * consider. */
3932 void intel_connector_dpms(struct drm_connector *connector, int mode)
3933 {
3934 struct intel_encoder *encoder = intel_attached_encoder(connector);
3935
3936 /* All the simple cases only support two dpms states. */
3937 if (mode != DRM_MODE_DPMS_ON)
3938 mode = DRM_MODE_DPMS_OFF;
3939
3940 if (mode == connector->dpms)
3941 return;
3942
3943 connector->dpms = mode;
3944
3945 /* Only need to change hw state when actually enabled */
3946 if (encoder->base.crtc)
3947 intel_encoder_dpms(encoder, mode);
3948 else
3949 WARN_ON(encoder->connectors_active != false);
3950
3951 intel_modeset_check_state(connector->dev);
3952 }
3953
3954 /* Simple connector->get_hw_state implementation for encoders that support only
3955 * one connector and no cloning and hence the encoder state determines the state
3956 * of the connector. */
3957 bool intel_connector_get_hw_state(struct intel_connector *connector)
3958 {
3959 enum pipe pipe = 0;
3960 struct intel_encoder *encoder = connector->encoder;
3961
3962 return encoder->get_hw_state(encoder, &pipe);
3963 }
3964
3965 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3966 const struct drm_display_mode *mode,
3967 struct drm_display_mode *adjusted_mode)
3968 {
3969 struct drm_device *dev = crtc->dev;
3970
3971 if (HAS_PCH_SPLIT(dev)) {
3972 /* FDI link clock is fixed at 2.7G */
3973 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3974 return false;
3975 }
3976
3977 /* All interlaced capable intel hw wants timings in frames. Note though
3978 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3979 * timings, so we need to be careful not to clobber these.*/
3980 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3981 drm_mode_set_crtcinfo(adjusted_mode, 0);
3982
3983 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3984 * with a hsync front porch of 0.
3985 */
3986 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3987 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3988 return false;
3989
3990 return true;
3991 }
3992
3993 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3994 {
3995 return 400000; /* FIXME */
3996 }
3997
3998 static int i945_get_display_clock_speed(struct drm_device *dev)
3999 {
4000 return 400000;
4001 }
4002
4003 static int i915_get_display_clock_speed(struct drm_device *dev)
4004 {
4005 return 333000;
4006 }
4007
4008 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4009 {
4010 return 200000;
4011 }
4012
4013 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4014 {
4015 u16 gcfgc = 0;
4016
4017 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4018
4019 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4020 return 133000;
4021 else {
4022 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4023 case GC_DISPLAY_CLOCK_333_MHZ:
4024 return 333000;
4025 default:
4026 case GC_DISPLAY_CLOCK_190_200_MHZ:
4027 return 190000;
4028 }
4029 }
4030 }
4031
4032 static int i865_get_display_clock_speed(struct drm_device *dev)
4033 {
4034 return 266000;
4035 }
4036
4037 static int i855_get_display_clock_speed(struct drm_device *dev)
4038 {
4039 u16 hpllcc = 0;
4040 /* Assume that the hardware is in the high speed state. This
4041 * should be the default.
4042 */
4043 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4044 case GC_CLOCK_133_200:
4045 case GC_CLOCK_100_200:
4046 return 200000;
4047 case GC_CLOCK_166_250:
4048 return 250000;
4049 case GC_CLOCK_100_133:
4050 return 133000;
4051 }
4052
4053 /* Shouldn't happen */
4054 return 0;
4055 }
4056
4057 static int i830_get_display_clock_speed(struct drm_device *dev)
4058 {
4059 return 133000;
4060 }
4061
4062 struct fdi_m_n {
4063 u32 tu;
4064 u32 gmch_m;
4065 u32 gmch_n;
4066 u32 link_m;
4067 u32 link_n;
4068 };
4069
4070 static void
4071 fdi_reduce_ratio(u32 *num, u32 *den)
4072 {
4073 while (*num > 0xffffff || *den > 0xffffff) {
4074 *num >>= 1;
4075 *den >>= 1;
4076 }
4077 }
4078
4079 static void
4080 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4081 int link_clock, struct fdi_m_n *m_n)
4082 {
4083 m_n->tu = 64; /* default size */
4084
4085 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4086 m_n->gmch_m = bits_per_pixel * pixel_clock;
4087 m_n->gmch_n = link_clock * nlanes * 8;
4088 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4089
4090 m_n->link_m = pixel_clock;
4091 m_n->link_n = link_clock;
4092 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4093 }
4094
4095 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4096 {
4097 if (i915_panel_use_ssc >= 0)
4098 return i915_panel_use_ssc != 0;
4099 return dev_priv->lvds_use_ssc
4100 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4101 }
4102
4103 /**
4104 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4105 * @crtc: CRTC structure
4106 * @mode: requested mode
4107 *
4108 * A pipe may be connected to one or more outputs. Based on the depth of the
4109 * attached framebuffer, choose a good color depth to use on the pipe.
4110 *
4111 * If possible, match the pipe depth to the fb depth. In some cases, this
4112 * isn't ideal, because the connected output supports a lesser or restricted
4113 * set of depths. Resolve that here:
4114 * LVDS typically supports only 6bpc, so clamp down in that case
4115 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4116 * Displays may support a restricted set as well, check EDID and clamp as
4117 * appropriate.
4118 * DP may want to dither down to 6bpc to fit larger modes
4119 *
4120 * RETURNS:
4121 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4122 * true if they don't match).
4123 */
4124 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4125 struct drm_framebuffer *fb,
4126 unsigned int *pipe_bpp,
4127 struct drm_display_mode *mode)
4128 {
4129 struct drm_device *dev = crtc->dev;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 struct drm_connector *connector;
4132 struct intel_encoder *intel_encoder;
4133 unsigned int display_bpc = UINT_MAX, bpc;
4134
4135 /* Walk the encoders & connectors on this crtc, get min bpc */
4136 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4137
4138 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4139 unsigned int lvds_bpc;
4140
4141 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4142 LVDS_A3_POWER_UP)
4143 lvds_bpc = 8;
4144 else
4145 lvds_bpc = 6;
4146
4147 if (lvds_bpc < display_bpc) {
4148 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4149 display_bpc = lvds_bpc;
4150 }
4151 continue;
4152 }
4153
4154 /* Not one of the known troublemakers, check the EDID */
4155 list_for_each_entry(connector, &dev->mode_config.connector_list,
4156 head) {
4157 if (connector->encoder != &intel_encoder->base)
4158 continue;
4159
4160 /* Don't use an invalid EDID bpc value */
4161 if (connector->display_info.bpc &&
4162 connector->display_info.bpc < display_bpc) {
4163 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4164 display_bpc = connector->display_info.bpc;
4165 }
4166 }
4167
4168 /*
4169 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4170 * through, clamp it down. (Note: >12bpc will be caught below.)
4171 */
4172 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4173 if (display_bpc > 8 && display_bpc < 12) {
4174 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4175 display_bpc = 12;
4176 } else {
4177 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4178 display_bpc = 8;
4179 }
4180 }
4181 }
4182
4183 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4184 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4185 display_bpc = 6;
4186 }
4187
4188 /*
4189 * We could just drive the pipe at the highest bpc all the time and
4190 * enable dithering as needed, but that costs bandwidth. So choose
4191 * the minimum value that expresses the full color range of the fb but
4192 * also stays within the max display bpc discovered above.
4193 */
4194
4195 switch (fb->depth) {
4196 case 8:
4197 bpc = 8; /* since we go through a colormap */
4198 break;
4199 case 15:
4200 case 16:
4201 bpc = 6; /* min is 18bpp */
4202 break;
4203 case 24:
4204 bpc = 8;
4205 break;
4206 case 30:
4207 bpc = 10;
4208 break;
4209 case 48:
4210 bpc = 12;
4211 break;
4212 default:
4213 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4214 bpc = min((unsigned int)8, display_bpc);
4215 break;
4216 }
4217
4218 display_bpc = min(display_bpc, bpc);
4219
4220 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4221 bpc, display_bpc);
4222
4223 *pipe_bpp = display_bpc * 3;
4224
4225 return display_bpc != bpc;
4226 }
4227
4228 static int vlv_get_refclk(struct drm_crtc *crtc)
4229 {
4230 struct drm_device *dev = crtc->dev;
4231 struct drm_i915_private *dev_priv = dev->dev_private;
4232 int refclk = 27000; /* for DP & HDMI */
4233
4234 return 100000; /* only one validated so far */
4235
4236 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4237 refclk = 96000;
4238 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4239 if (intel_panel_use_ssc(dev_priv))
4240 refclk = 100000;
4241 else
4242 refclk = 96000;
4243 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4244 refclk = 100000;
4245 }
4246
4247 return refclk;
4248 }
4249
4250 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4251 {
4252 struct drm_device *dev = crtc->dev;
4253 struct drm_i915_private *dev_priv = dev->dev_private;
4254 int refclk;
4255
4256 if (IS_VALLEYVIEW(dev)) {
4257 refclk = vlv_get_refclk(crtc);
4258 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4259 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4260 refclk = dev_priv->lvds_ssc_freq * 1000;
4261 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4262 refclk / 1000);
4263 } else if (!IS_GEN2(dev)) {
4264 refclk = 96000;
4265 } else {
4266 refclk = 48000;
4267 }
4268
4269 return refclk;
4270 }
4271
4272 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4273 intel_clock_t *clock)
4274 {
4275 /* SDVO TV has fixed PLL values depend on its clock range,
4276 this mirrors vbios setting. */
4277 if (adjusted_mode->clock >= 100000
4278 && adjusted_mode->clock < 140500) {
4279 clock->p1 = 2;
4280 clock->p2 = 10;
4281 clock->n = 3;
4282 clock->m1 = 16;
4283 clock->m2 = 8;
4284 } else if (adjusted_mode->clock >= 140500
4285 && adjusted_mode->clock <= 200000) {
4286 clock->p1 = 1;
4287 clock->p2 = 10;
4288 clock->n = 6;
4289 clock->m1 = 12;
4290 clock->m2 = 8;
4291 }
4292 }
4293
4294 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4295 intel_clock_t *clock,
4296 intel_clock_t *reduced_clock)
4297 {
4298 struct drm_device *dev = crtc->dev;
4299 struct drm_i915_private *dev_priv = dev->dev_private;
4300 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4301 int pipe = intel_crtc->pipe;
4302 u32 fp, fp2 = 0;
4303
4304 if (IS_PINEVIEW(dev)) {
4305 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4306 if (reduced_clock)
4307 fp2 = (1 << reduced_clock->n) << 16 |
4308 reduced_clock->m1 << 8 | reduced_clock->m2;
4309 } else {
4310 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4311 if (reduced_clock)
4312 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4313 reduced_clock->m2;
4314 }
4315
4316 I915_WRITE(FP0(pipe), fp);
4317
4318 intel_crtc->lowfreq_avail = false;
4319 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4320 reduced_clock && i915_powersave) {
4321 I915_WRITE(FP1(pipe), fp2);
4322 intel_crtc->lowfreq_avail = true;
4323 } else {
4324 I915_WRITE(FP1(pipe), fp);
4325 }
4326 }
4327
4328 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4329 struct drm_display_mode *adjusted_mode)
4330 {
4331 struct drm_device *dev = crtc->dev;
4332 struct drm_i915_private *dev_priv = dev->dev_private;
4333 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4334 int pipe = intel_crtc->pipe;
4335 u32 temp;
4336
4337 temp = I915_READ(LVDS);
4338 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4339 if (pipe == 1) {
4340 temp |= LVDS_PIPEB_SELECT;
4341 } else {
4342 temp &= ~LVDS_PIPEB_SELECT;
4343 }
4344 /* set the corresponsding LVDS_BORDER bit */
4345 temp |= dev_priv->lvds_border_bits;
4346 /* Set the B0-B3 data pairs corresponding to whether we're going to
4347 * set the DPLLs for dual-channel mode or not.
4348 */
4349 if (clock->p2 == 7)
4350 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4351 else
4352 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4353
4354 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4355 * appropriately here, but we need to look more thoroughly into how
4356 * panels behave in the two modes.
4357 */
4358 /* set the dithering flag on LVDS as needed */
4359 if (INTEL_INFO(dev)->gen >= 4) {
4360 if (dev_priv->lvds_dither)
4361 temp |= LVDS_ENABLE_DITHER;
4362 else
4363 temp &= ~LVDS_ENABLE_DITHER;
4364 }
4365 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4366 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4367 temp |= LVDS_HSYNC_POLARITY;
4368 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4369 temp |= LVDS_VSYNC_POLARITY;
4370 I915_WRITE(LVDS, temp);
4371 }
4372
4373 static void vlv_update_pll(struct drm_crtc *crtc,
4374 struct drm_display_mode *mode,
4375 struct drm_display_mode *adjusted_mode,
4376 intel_clock_t *clock, intel_clock_t *reduced_clock,
4377 int num_connectors)
4378 {
4379 struct drm_device *dev = crtc->dev;
4380 struct drm_i915_private *dev_priv = dev->dev_private;
4381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4382 int pipe = intel_crtc->pipe;
4383 u32 dpll, mdiv, pdiv;
4384 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4385 bool is_sdvo;
4386 u32 temp;
4387
4388 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4389 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4390
4391 dpll = DPLL_VGA_MODE_DIS;
4392 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4393 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4394 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4395
4396 I915_WRITE(DPLL(pipe), dpll);
4397 POSTING_READ(DPLL(pipe));
4398
4399 bestn = clock->n;
4400 bestm1 = clock->m1;
4401 bestm2 = clock->m2;
4402 bestp1 = clock->p1;
4403 bestp2 = clock->p2;
4404
4405 /*
4406 * In Valleyview PLL and program lane counter registers are exposed
4407 * through DPIO interface
4408 */
4409 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4410 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4411 mdiv |= ((bestn << DPIO_N_SHIFT));
4412 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4413 mdiv |= (1 << DPIO_K_SHIFT);
4414 mdiv |= DPIO_ENABLE_CALIBRATION;
4415 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4416
4417 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4418
4419 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4420 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4421 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4422 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4423 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4424
4425 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4426
4427 dpll |= DPLL_VCO_ENABLE;
4428 I915_WRITE(DPLL(pipe), dpll);
4429 POSTING_READ(DPLL(pipe));
4430 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4431 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4432
4433 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4434
4435 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4436 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4437
4438 I915_WRITE(DPLL(pipe), dpll);
4439
4440 /* Wait for the clocks to stabilize. */
4441 POSTING_READ(DPLL(pipe));
4442 udelay(150);
4443
4444 temp = 0;
4445 if (is_sdvo) {
4446 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4447 if (temp > 1)
4448 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4449 else
4450 temp = 0;
4451 }
4452 I915_WRITE(DPLL_MD(pipe), temp);
4453 POSTING_READ(DPLL_MD(pipe));
4454
4455 /* Now program lane control registers */
4456 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4457 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4458 {
4459 temp = 0x1000C4;
4460 if(pipe == 1)
4461 temp |= (1 << 21);
4462 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4463 }
4464 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4465 {
4466 temp = 0x1000C4;
4467 if(pipe == 1)
4468 temp |= (1 << 21);
4469 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4470 }
4471 }
4472
4473 static void i9xx_update_pll(struct drm_crtc *crtc,
4474 struct drm_display_mode *mode,
4475 struct drm_display_mode *adjusted_mode,
4476 intel_clock_t *clock, intel_clock_t *reduced_clock,
4477 int num_connectors)
4478 {
4479 struct drm_device *dev = crtc->dev;
4480 struct drm_i915_private *dev_priv = dev->dev_private;
4481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4482 int pipe = intel_crtc->pipe;
4483 u32 dpll;
4484 bool is_sdvo;
4485
4486 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4487
4488 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4489 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4490
4491 dpll = DPLL_VGA_MODE_DIS;
4492
4493 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4494 dpll |= DPLLB_MODE_LVDS;
4495 else
4496 dpll |= DPLLB_MODE_DAC_SERIAL;
4497 if (is_sdvo) {
4498 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4499 if (pixel_multiplier > 1) {
4500 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4501 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4502 }
4503 dpll |= DPLL_DVO_HIGH_SPEED;
4504 }
4505 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4506 dpll |= DPLL_DVO_HIGH_SPEED;
4507
4508 /* compute bitmask from p1 value */
4509 if (IS_PINEVIEW(dev))
4510 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4511 else {
4512 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4513 if (IS_G4X(dev) && reduced_clock)
4514 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4515 }
4516 switch (clock->p2) {
4517 case 5:
4518 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4519 break;
4520 case 7:
4521 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4522 break;
4523 case 10:
4524 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4525 break;
4526 case 14:
4527 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4528 break;
4529 }
4530 if (INTEL_INFO(dev)->gen >= 4)
4531 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4532
4533 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4534 dpll |= PLL_REF_INPUT_TVCLKINBC;
4535 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4536 /* XXX: just matching BIOS for now */
4537 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4538 dpll |= 3;
4539 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4540 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4541 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4542 else
4543 dpll |= PLL_REF_INPUT_DREFCLK;
4544
4545 dpll |= DPLL_VCO_ENABLE;
4546 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4547 POSTING_READ(DPLL(pipe));
4548 udelay(150);
4549
4550 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4551 * This is an exception to the general rule that mode_set doesn't turn
4552 * things on.
4553 */
4554 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4555 intel_update_lvds(crtc, clock, adjusted_mode);
4556
4557 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4558 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4559
4560 I915_WRITE(DPLL(pipe), dpll);
4561
4562 /* Wait for the clocks to stabilize. */
4563 POSTING_READ(DPLL(pipe));
4564 udelay(150);
4565
4566 if (INTEL_INFO(dev)->gen >= 4) {
4567 u32 temp = 0;
4568 if (is_sdvo) {
4569 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4570 if (temp > 1)
4571 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4572 else
4573 temp = 0;
4574 }
4575 I915_WRITE(DPLL_MD(pipe), temp);
4576 } else {
4577 /* The pixel multiplier can only be updated once the
4578 * DPLL is enabled and the clocks are stable.
4579 *
4580 * So write it again.
4581 */
4582 I915_WRITE(DPLL(pipe), dpll);
4583 }
4584 }
4585
4586 static void i8xx_update_pll(struct drm_crtc *crtc,
4587 struct drm_display_mode *adjusted_mode,
4588 intel_clock_t *clock, intel_clock_t *reduced_clock,
4589 int num_connectors)
4590 {
4591 struct drm_device *dev = crtc->dev;
4592 struct drm_i915_private *dev_priv = dev->dev_private;
4593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4594 int pipe = intel_crtc->pipe;
4595 u32 dpll;
4596
4597 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4598
4599 dpll = DPLL_VGA_MODE_DIS;
4600
4601 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4602 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4603 } else {
4604 if (clock->p1 == 2)
4605 dpll |= PLL_P1_DIVIDE_BY_TWO;
4606 else
4607 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4608 if (clock->p2 == 4)
4609 dpll |= PLL_P2_DIVIDE_BY_4;
4610 }
4611
4612 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4613 /* XXX: just matching BIOS for now */
4614 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4615 dpll |= 3;
4616 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4617 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4618 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4619 else
4620 dpll |= PLL_REF_INPUT_DREFCLK;
4621
4622 dpll |= DPLL_VCO_ENABLE;
4623 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4624 POSTING_READ(DPLL(pipe));
4625 udelay(150);
4626
4627 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4628 * This is an exception to the general rule that mode_set doesn't turn
4629 * things on.
4630 */
4631 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4632 intel_update_lvds(crtc, clock, adjusted_mode);
4633
4634 I915_WRITE(DPLL(pipe), dpll);
4635
4636 /* Wait for the clocks to stabilize. */
4637 POSTING_READ(DPLL(pipe));
4638 udelay(150);
4639
4640 /* The pixel multiplier can only be updated once the
4641 * DPLL is enabled and the clocks are stable.
4642 *
4643 * So write it again.
4644 */
4645 I915_WRITE(DPLL(pipe), dpll);
4646 }
4647
4648 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4649 struct drm_display_mode *mode,
4650 struct drm_display_mode *adjusted_mode)
4651 {
4652 struct drm_device *dev = intel_crtc->base.dev;
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654 enum pipe pipe = intel_crtc->pipe;
4655 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4656 uint32_t vsyncshift;
4657
4658 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4659 /* the chip adds 2 halflines automatically */
4660 adjusted_mode->crtc_vtotal -= 1;
4661 adjusted_mode->crtc_vblank_end -= 1;
4662 vsyncshift = adjusted_mode->crtc_hsync_start
4663 - adjusted_mode->crtc_htotal / 2;
4664 } else {
4665 vsyncshift = 0;
4666 }
4667
4668 if (INTEL_INFO(dev)->gen > 3)
4669 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4670
4671 I915_WRITE(HTOTAL(cpu_transcoder),
4672 (adjusted_mode->crtc_hdisplay - 1) |
4673 ((adjusted_mode->crtc_htotal - 1) << 16));
4674 I915_WRITE(HBLANK(cpu_transcoder),
4675 (adjusted_mode->crtc_hblank_start - 1) |
4676 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4677 I915_WRITE(HSYNC(cpu_transcoder),
4678 (adjusted_mode->crtc_hsync_start - 1) |
4679 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4680
4681 I915_WRITE(VTOTAL(cpu_transcoder),
4682 (adjusted_mode->crtc_vdisplay - 1) |
4683 ((adjusted_mode->crtc_vtotal - 1) << 16));
4684 I915_WRITE(VBLANK(cpu_transcoder),
4685 (adjusted_mode->crtc_vblank_start - 1) |
4686 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4687 I915_WRITE(VSYNC(cpu_transcoder),
4688 (adjusted_mode->crtc_vsync_start - 1) |
4689 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4690
4691 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4692 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4693 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4694 * bits. */
4695 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4696 (pipe == PIPE_B || pipe == PIPE_C))
4697 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4698
4699 /* pipesrc controls the size that is scaled from, which should
4700 * always be the user's requested size.
4701 */
4702 I915_WRITE(PIPESRC(pipe),
4703 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4704 }
4705
4706 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4707 struct drm_display_mode *mode,
4708 struct drm_display_mode *adjusted_mode,
4709 int x, int y,
4710 struct drm_framebuffer *fb)
4711 {
4712 struct drm_device *dev = crtc->dev;
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4715 int pipe = intel_crtc->pipe;
4716 int plane = intel_crtc->plane;
4717 int refclk, num_connectors = 0;
4718 intel_clock_t clock, reduced_clock;
4719 u32 dspcntr, pipeconf;
4720 bool ok, has_reduced_clock = false, is_sdvo = false;
4721 bool is_lvds = false, is_tv = false, is_dp = false;
4722 struct intel_encoder *encoder;
4723 const intel_limit_t *limit;
4724 int ret;
4725
4726 for_each_encoder_on_crtc(dev, crtc, encoder) {
4727 switch (encoder->type) {
4728 case INTEL_OUTPUT_LVDS:
4729 is_lvds = true;
4730 break;
4731 case INTEL_OUTPUT_SDVO:
4732 case INTEL_OUTPUT_HDMI:
4733 is_sdvo = true;
4734 if (encoder->needs_tv_clock)
4735 is_tv = true;
4736 break;
4737 case INTEL_OUTPUT_TVOUT:
4738 is_tv = true;
4739 break;
4740 case INTEL_OUTPUT_DISPLAYPORT:
4741 is_dp = true;
4742 break;
4743 }
4744
4745 num_connectors++;
4746 }
4747
4748 refclk = i9xx_get_refclk(crtc, num_connectors);
4749
4750 /*
4751 * Returns a set of divisors for the desired target clock with the given
4752 * refclk, or FALSE. The returned values represent the clock equation:
4753 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4754 */
4755 limit = intel_limit(crtc, refclk);
4756 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4757 &clock);
4758 if (!ok) {
4759 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4760 return -EINVAL;
4761 }
4762
4763 /* Ensure that the cursor is valid for the new mode before changing... */
4764 intel_crtc_update_cursor(crtc, true);
4765
4766 if (is_lvds && dev_priv->lvds_downclock_avail) {
4767 /*
4768 * Ensure we match the reduced clock's P to the target clock.
4769 * If the clocks don't match, we can't switch the display clock
4770 * by using the FP0/FP1. In such case we will disable the LVDS
4771 * downclock feature.
4772 */
4773 has_reduced_clock = limit->find_pll(limit, crtc,
4774 dev_priv->lvds_downclock,
4775 refclk,
4776 &clock,
4777 &reduced_clock);
4778 }
4779
4780 if (is_sdvo && is_tv)
4781 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4782
4783 if (IS_GEN2(dev))
4784 i8xx_update_pll(crtc, adjusted_mode, &clock,
4785 has_reduced_clock ? &reduced_clock : NULL,
4786 num_connectors);
4787 else if (IS_VALLEYVIEW(dev))
4788 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4789 has_reduced_clock ? &reduced_clock : NULL,
4790 num_connectors);
4791 else
4792 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4793 has_reduced_clock ? &reduced_clock : NULL,
4794 num_connectors);
4795
4796 /* setup pipeconf */
4797 pipeconf = I915_READ(PIPECONF(pipe));
4798
4799 /* Set up the display plane register */
4800 dspcntr = DISPPLANE_GAMMA_ENABLE;
4801
4802 if (pipe == 0)
4803 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4804 else
4805 dspcntr |= DISPPLANE_SEL_PIPE_B;
4806
4807 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4808 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4809 * core speed.
4810 *
4811 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4812 * pipe == 0 check?
4813 */
4814 if (mode->clock >
4815 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4816 pipeconf |= PIPECONF_DOUBLE_WIDE;
4817 else
4818 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4819 }
4820
4821 /* default to 8bpc */
4822 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4823 if (is_dp) {
4824 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4825 pipeconf |= PIPECONF_BPP_6 |
4826 PIPECONF_DITHER_EN |
4827 PIPECONF_DITHER_TYPE_SP;
4828 }
4829 }
4830
4831 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4832 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4833 pipeconf |= PIPECONF_BPP_6 |
4834 PIPECONF_ENABLE |
4835 I965_PIPECONF_ACTIVE;
4836 }
4837 }
4838
4839 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4840 drm_mode_debug_printmodeline(mode);
4841
4842 if (HAS_PIPE_CXSR(dev)) {
4843 if (intel_crtc->lowfreq_avail) {
4844 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4845 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4846 } else {
4847 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4848 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4849 }
4850 }
4851
4852 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4853 if (!IS_GEN2(dev) &&
4854 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4855 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4856 else
4857 pipeconf |= PIPECONF_PROGRESSIVE;
4858
4859 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4860
4861 /* pipesrc and dspsize control the size that is scaled from,
4862 * which should always be the user's requested size.
4863 */
4864 I915_WRITE(DSPSIZE(plane),
4865 ((mode->vdisplay - 1) << 16) |
4866 (mode->hdisplay - 1));
4867 I915_WRITE(DSPPOS(plane), 0);
4868
4869 I915_WRITE(PIPECONF(pipe), pipeconf);
4870 POSTING_READ(PIPECONF(pipe));
4871 intel_enable_pipe(dev_priv, pipe, false);
4872
4873 intel_wait_for_vblank(dev, pipe);
4874
4875 I915_WRITE(DSPCNTR(plane), dspcntr);
4876 POSTING_READ(DSPCNTR(plane));
4877
4878 ret = intel_pipe_set_base(crtc, x, y, fb);
4879
4880 intel_update_watermarks(dev);
4881
4882 return ret;
4883 }
4884
4885 /*
4886 * Initialize reference clocks when the driver loads
4887 */
4888 void ironlake_init_pch_refclk(struct drm_device *dev)
4889 {
4890 struct drm_i915_private *dev_priv = dev->dev_private;
4891 struct drm_mode_config *mode_config = &dev->mode_config;
4892 struct intel_encoder *encoder;
4893 u32 temp;
4894 bool has_lvds = false;
4895 bool has_cpu_edp = false;
4896 bool has_pch_edp = false;
4897 bool has_panel = false;
4898 bool has_ck505 = false;
4899 bool can_ssc = false;
4900
4901 /* We need to take the global config into account */
4902 list_for_each_entry(encoder, &mode_config->encoder_list,
4903 base.head) {
4904 switch (encoder->type) {
4905 case INTEL_OUTPUT_LVDS:
4906 has_panel = true;
4907 has_lvds = true;
4908 break;
4909 case INTEL_OUTPUT_EDP:
4910 has_panel = true;
4911 if (intel_encoder_is_pch_edp(&encoder->base))
4912 has_pch_edp = true;
4913 else
4914 has_cpu_edp = true;
4915 break;
4916 }
4917 }
4918
4919 if (HAS_PCH_IBX(dev)) {
4920 has_ck505 = dev_priv->display_clock_mode;
4921 can_ssc = has_ck505;
4922 } else {
4923 has_ck505 = false;
4924 can_ssc = true;
4925 }
4926
4927 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4928 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4929 has_ck505);
4930
4931 /* Ironlake: try to setup display ref clock before DPLL
4932 * enabling. This is only under driver's control after
4933 * PCH B stepping, previous chipset stepping should be
4934 * ignoring this setting.
4935 */
4936 temp = I915_READ(PCH_DREF_CONTROL);
4937 /* Always enable nonspread source */
4938 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4939
4940 if (has_ck505)
4941 temp |= DREF_NONSPREAD_CK505_ENABLE;
4942 else
4943 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4944
4945 if (has_panel) {
4946 temp &= ~DREF_SSC_SOURCE_MASK;
4947 temp |= DREF_SSC_SOURCE_ENABLE;
4948
4949 /* SSC must be turned on before enabling the CPU output */
4950 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4951 DRM_DEBUG_KMS("Using SSC on panel\n");
4952 temp |= DREF_SSC1_ENABLE;
4953 } else
4954 temp &= ~DREF_SSC1_ENABLE;
4955
4956 /* Get SSC going before enabling the outputs */
4957 I915_WRITE(PCH_DREF_CONTROL, temp);
4958 POSTING_READ(PCH_DREF_CONTROL);
4959 udelay(200);
4960
4961 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4962
4963 /* Enable CPU source on CPU attached eDP */
4964 if (has_cpu_edp) {
4965 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4966 DRM_DEBUG_KMS("Using SSC on eDP\n");
4967 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4968 }
4969 else
4970 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4971 } else
4972 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4973
4974 I915_WRITE(PCH_DREF_CONTROL, temp);
4975 POSTING_READ(PCH_DREF_CONTROL);
4976 udelay(200);
4977 } else {
4978 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4979
4980 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4981
4982 /* Turn off CPU output */
4983 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4984
4985 I915_WRITE(PCH_DREF_CONTROL, temp);
4986 POSTING_READ(PCH_DREF_CONTROL);
4987 udelay(200);
4988
4989 /* Turn off the SSC source */
4990 temp &= ~DREF_SSC_SOURCE_MASK;
4991 temp |= DREF_SSC_SOURCE_DISABLE;
4992
4993 /* Turn off SSC1 */
4994 temp &= ~ DREF_SSC1_ENABLE;
4995
4996 I915_WRITE(PCH_DREF_CONTROL, temp);
4997 POSTING_READ(PCH_DREF_CONTROL);
4998 udelay(200);
4999 }
5000 }
5001
5002 static int ironlake_get_refclk(struct drm_crtc *crtc)
5003 {
5004 struct drm_device *dev = crtc->dev;
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006 struct intel_encoder *encoder;
5007 struct intel_encoder *edp_encoder = NULL;
5008 int num_connectors = 0;
5009 bool is_lvds = false;
5010
5011 for_each_encoder_on_crtc(dev, crtc, encoder) {
5012 switch (encoder->type) {
5013 case INTEL_OUTPUT_LVDS:
5014 is_lvds = true;
5015 break;
5016 case INTEL_OUTPUT_EDP:
5017 edp_encoder = encoder;
5018 break;
5019 }
5020 num_connectors++;
5021 }
5022
5023 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5024 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5025 dev_priv->lvds_ssc_freq);
5026 return dev_priv->lvds_ssc_freq * 1000;
5027 }
5028
5029 return 120000;
5030 }
5031
5032 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5033 struct drm_display_mode *adjusted_mode,
5034 bool dither)
5035 {
5036 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5038 int pipe = intel_crtc->pipe;
5039 uint32_t val;
5040
5041 val = I915_READ(PIPECONF(pipe));
5042
5043 val &= ~PIPE_BPC_MASK;
5044 switch (intel_crtc->bpp) {
5045 case 18:
5046 val |= PIPE_6BPC;
5047 break;
5048 case 24:
5049 val |= PIPE_8BPC;
5050 break;
5051 case 30:
5052 val |= PIPE_10BPC;
5053 break;
5054 case 36:
5055 val |= PIPE_12BPC;
5056 break;
5057 default:
5058 /* Case prevented by intel_choose_pipe_bpp_dither. */
5059 BUG();
5060 }
5061
5062 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5063 if (dither)
5064 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5065
5066 val &= ~PIPECONF_INTERLACE_MASK;
5067 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5068 val |= PIPECONF_INTERLACED_ILK;
5069 else
5070 val |= PIPECONF_PROGRESSIVE;
5071
5072 I915_WRITE(PIPECONF(pipe), val);
5073 POSTING_READ(PIPECONF(pipe));
5074 }
5075
5076 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5077 struct drm_display_mode *adjusted_mode,
5078 bool dither)
5079 {
5080 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5082 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5083 uint32_t val;
5084
5085 val = I915_READ(PIPECONF(cpu_transcoder));
5086
5087 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5088 if (dither)
5089 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5090
5091 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5092 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5093 val |= PIPECONF_INTERLACED_ILK;
5094 else
5095 val |= PIPECONF_PROGRESSIVE;
5096
5097 I915_WRITE(PIPECONF(cpu_transcoder), val);
5098 POSTING_READ(PIPECONF(cpu_transcoder));
5099 }
5100
5101 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5102 struct drm_display_mode *adjusted_mode,
5103 intel_clock_t *clock,
5104 bool *has_reduced_clock,
5105 intel_clock_t *reduced_clock)
5106 {
5107 struct drm_device *dev = crtc->dev;
5108 struct drm_i915_private *dev_priv = dev->dev_private;
5109 struct intel_encoder *intel_encoder;
5110 int refclk;
5111 const intel_limit_t *limit;
5112 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5113
5114 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5115 switch (intel_encoder->type) {
5116 case INTEL_OUTPUT_LVDS:
5117 is_lvds = true;
5118 break;
5119 case INTEL_OUTPUT_SDVO:
5120 case INTEL_OUTPUT_HDMI:
5121 is_sdvo = true;
5122 if (intel_encoder->needs_tv_clock)
5123 is_tv = true;
5124 break;
5125 case INTEL_OUTPUT_TVOUT:
5126 is_tv = true;
5127 break;
5128 }
5129 }
5130
5131 refclk = ironlake_get_refclk(crtc);
5132
5133 /*
5134 * Returns a set of divisors for the desired target clock with the given
5135 * refclk, or FALSE. The returned values represent the clock equation:
5136 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5137 */
5138 limit = intel_limit(crtc, refclk);
5139 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5140 clock);
5141 if (!ret)
5142 return false;
5143
5144 if (is_lvds && dev_priv->lvds_downclock_avail) {
5145 /*
5146 * Ensure we match the reduced clock's P to the target clock.
5147 * If the clocks don't match, we can't switch the display clock
5148 * by using the FP0/FP1. In such case we will disable the LVDS
5149 * downclock feature.
5150 */
5151 *has_reduced_clock = limit->find_pll(limit, crtc,
5152 dev_priv->lvds_downclock,
5153 refclk,
5154 clock,
5155 reduced_clock);
5156 }
5157
5158 if (is_sdvo && is_tv)
5159 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5160
5161 return true;
5162 }
5163
5164 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5165 {
5166 struct drm_i915_private *dev_priv = dev->dev_private;
5167 uint32_t temp;
5168
5169 temp = I915_READ(SOUTH_CHICKEN1);
5170 if (temp & FDI_BC_BIFURCATION_SELECT)
5171 return;
5172
5173 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5174 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5175
5176 temp |= FDI_BC_BIFURCATION_SELECT;
5177 DRM_DEBUG_KMS("enabling fdi C rx\n");
5178 I915_WRITE(SOUTH_CHICKEN1, temp);
5179 POSTING_READ(SOUTH_CHICKEN1);
5180 }
5181
5182 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5183 {
5184 struct drm_device *dev = intel_crtc->base.dev;
5185 struct drm_i915_private *dev_priv = dev->dev_private;
5186 struct intel_crtc *pipe_B_crtc =
5187 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5188
5189 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5190 intel_crtc->pipe, intel_crtc->fdi_lanes);
5191 if (intel_crtc->fdi_lanes > 4) {
5192 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5193 intel_crtc->pipe, intel_crtc->fdi_lanes);
5194 /* Clamp lanes to avoid programming the hw with bogus values. */
5195 intel_crtc->fdi_lanes = 4;
5196
5197 return false;
5198 }
5199
5200 if (dev_priv->num_pipe == 2)
5201 return true;
5202
5203 switch (intel_crtc->pipe) {
5204 case PIPE_A:
5205 return true;
5206 case PIPE_B:
5207 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5208 intel_crtc->fdi_lanes > 2) {
5209 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5210 intel_crtc->pipe, intel_crtc->fdi_lanes);
5211 /* Clamp lanes to avoid programming the hw with bogus values. */
5212 intel_crtc->fdi_lanes = 2;
5213
5214 return false;
5215 }
5216
5217 if (intel_crtc->fdi_lanes > 2)
5218 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5219 else
5220 cpt_enable_fdi_bc_bifurcation(dev);
5221
5222 return true;
5223 case PIPE_C:
5224 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5225 if (intel_crtc->fdi_lanes > 2) {
5226 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5227 intel_crtc->pipe, intel_crtc->fdi_lanes);
5228 /* Clamp lanes to avoid programming the hw with bogus values. */
5229 intel_crtc->fdi_lanes = 2;
5230
5231 return false;
5232 }
5233 } else {
5234 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5235 return false;
5236 }
5237
5238 cpt_enable_fdi_bc_bifurcation(dev);
5239
5240 return true;
5241 default:
5242 BUG();
5243 }
5244 }
5245
5246 static void ironlake_set_m_n(struct drm_crtc *crtc,
5247 struct drm_display_mode *mode,
5248 struct drm_display_mode *adjusted_mode)
5249 {
5250 struct drm_device *dev = crtc->dev;
5251 struct drm_i915_private *dev_priv = dev->dev_private;
5252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5253 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5254 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5255 struct fdi_m_n m_n = {0};
5256 int target_clock, pixel_multiplier, lane, link_bw;
5257 bool is_dp = false, is_cpu_edp = false;
5258
5259 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5260 switch (intel_encoder->type) {
5261 case INTEL_OUTPUT_DISPLAYPORT:
5262 is_dp = true;
5263 break;
5264 case INTEL_OUTPUT_EDP:
5265 is_dp = true;
5266 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5267 is_cpu_edp = true;
5268 edp_encoder = intel_encoder;
5269 break;
5270 }
5271 }
5272
5273 /* FDI link */
5274 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5275 lane = 0;
5276 /* CPU eDP doesn't require FDI link, so just set DP M/N
5277 according to current link config */
5278 if (is_cpu_edp) {
5279 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5280 } else {
5281 /* FDI is a binary signal running at ~2.7GHz, encoding
5282 * each output octet as 10 bits. The actual frequency
5283 * is stored as a divider into a 100MHz clock, and the
5284 * mode pixel clock is stored in units of 1KHz.
5285 * Hence the bw of each lane in terms of the mode signal
5286 * is:
5287 */
5288 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5289 }
5290
5291 /* [e]DP over FDI requires target mode clock instead of link clock. */
5292 if (edp_encoder)
5293 target_clock = intel_edp_target_clock(edp_encoder, mode);
5294 else if (is_dp)
5295 target_clock = mode->clock;
5296 else
5297 target_clock = adjusted_mode->clock;
5298
5299 if (!lane) {
5300 /*
5301 * Account for spread spectrum to avoid
5302 * oversubscribing the link. Max center spread
5303 * is 2.5%; use 5% for safety's sake.
5304 */
5305 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5306 lane = bps / (link_bw * 8) + 1;
5307 }
5308
5309 intel_crtc->fdi_lanes = lane;
5310
5311 if (pixel_multiplier > 1)
5312 link_bw *= pixel_multiplier;
5313 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5314 &m_n);
5315
5316 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5317 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5318 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5319 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5320 }
5321
5322 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5323 struct drm_display_mode *adjusted_mode,
5324 intel_clock_t *clock, u32 fp)
5325 {
5326 struct drm_crtc *crtc = &intel_crtc->base;
5327 struct drm_device *dev = crtc->dev;
5328 struct drm_i915_private *dev_priv = dev->dev_private;
5329 struct intel_encoder *intel_encoder;
5330 uint32_t dpll;
5331 int factor, pixel_multiplier, num_connectors = 0;
5332 bool is_lvds = false, is_sdvo = false, is_tv = false;
5333 bool is_dp = false, is_cpu_edp = false;
5334
5335 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5336 switch (intel_encoder->type) {
5337 case INTEL_OUTPUT_LVDS:
5338 is_lvds = true;
5339 break;
5340 case INTEL_OUTPUT_SDVO:
5341 case INTEL_OUTPUT_HDMI:
5342 is_sdvo = true;
5343 if (intel_encoder->needs_tv_clock)
5344 is_tv = true;
5345 break;
5346 case INTEL_OUTPUT_TVOUT:
5347 is_tv = true;
5348 break;
5349 case INTEL_OUTPUT_DISPLAYPORT:
5350 is_dp = true;
5351 break;
5352 case INTEL_OUTPUT_EDP:
5353 is_dp = true;
5354 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5355 is_cpu_edp = true;
5356 break;
5357 }
5358
5359 num_connectors++;
5360 }
5361
5362 /* Enable autotuning of the PLL clock (if permissible) */
5363 factor = 21;
5364 if (is_lvds) {
5365 if ((intel_panel_use_ssc(dev_priv) &&
5366 dev_priv->lvds_ssc_freq == 100) ||
5367 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5368 factor = 25;
5369 } else if (is_sdvo && is_tv)
5370 factor = 20;
5371
5372 if (clock->m < factor * clock->n)
5373 fp |= FP_CB_TUNE;
5374
5375 dpll = 0;
5376
5377 if (is_lvds)
5378 dpll |= DPLLB_MODE_LVDS;
5379 else
5380 dpll |= DPLLB_MODE_DAC_SERIAL;
5381 if (is_sdvo) {
5382 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5383 if (pixel_multiplier > 1) {
5384 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5385 }
5386 dpll |= DPLL_DVO_HIGH_SPEED;
5387 }
5388 if (is_dp && !is_cpu_edp)
5389 dpll |= DPLL_DVO_HIGH_SPEED;
5390
5391 /* compute bitmask from p1 value */
5392 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5393 /* also FPA1 */
5394 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5395
5396 switch (clock->p2) {
5397 case 5:
5398 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5399 break;
5400 case 7:
5401 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5402 break;
5403 case 10:
5404 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5405 break;
5406 case 14:
5407 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5408 break;
5409 }
5410
5411 if (is_sdvo && is_tv)
5412 dpll |= PLL_REF_INPUT_TVCLKINBC;
5413 else if (is_tv)
5414 /* XXX: just matching BIOS for now */
5415 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5416 dpll |= 3;
5417 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5418 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5419 else
5420 dpll |= PLL_REF_INPUT_DREFCLK;
5421
5422 return dpll;
5423 }
5424
5425 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5426 struct drm_display_mode *mode,
5427 struct drm_display_mode *adjusted_mode,
5428 int x, int y,
5429 struct drm_framebuffer *fb)
5430 {
5431 struct drm_device *dev = crtc->dev;
5432 struct drm_i915_private *dev_priv = dev->dev_private;
5433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5434 int pipe = intel_crtc->pipe;
5435 int plane = intel_crtc->plane;
5436 int num_connectors = 0;
5437 intel_clock_t clock, reduced_clock;
5438 u32 dpll, fp = 0, fp2 = 0;
5439 bool ok, has_reduced_clock = false;
5440 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5441 struct intel_encoder *encoder;
5442 u32 temp;
5443 int ret;
5444 bool dither, fdi_config_ok;
5445
5446 for_each_encoder_on_crtc(dev, crtc, encoder) {
5447 switch (encoder->type) {
5448 case INTEL_OUTPUT_LVDS:
5449 is_lvds = true;
5450 break;
5451 case INTEL_OUTPUT_DISPLAYPORT:
5452 is_dp = true;
5453 break;
5454 case INTEL_OUTPUT_EDP:
5455 is_dp = true;
5456 if (!intel_encoder_is_pch_edp(&encoder->base))
5457 is_cpu_edp = true;
5458 break;
5459 }
5460
5461 num_connectors++;
5462 }
5463
5464 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5465 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5466
5467 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5468 &has_reduced_clock, &reduced_clock);
5469 if (!ok) {
5470 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5471 return -EINVAL;
5472 }
5473
5474 /* Ensure that the cursor is valid for the new mode before changing... */
5475 intel_crtc_update_cursor(crtc, true);
5476
5477 /* determine panel color depth */
5478 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5479 adjusted_mode);
5480 if (is_lvds && dev_priv->lvds_dither)
5481 dither = true;
5482
5483 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5484 if (has_reduced_clock)
5485 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5486 reduced_clock.m2;
5487
5488 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5489
5490 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5491 drm_mode_debug_printmodeline(mode);
5492
5493 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5494 if (!is_cpu_edp) {
5495 struct intel_pch_pll *pll;
5496
5497 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5498 if (pll == NULL) {
5499 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5500 pipe);
5501 return -EINVAL;
5502 }
5503 } else
5504 intel_put_pch_pll(intel_crtc);
5505
5506 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5507 * This is an exception to the general rule that mode_set doesn't turn
5508 * things on.
5509 */
5510 if (is_lvds) {
5511 temp = I915_READ(PCH_LVDS);
5512 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5513 if (HAS_PCH_CPT(dev)) {
5514 temp &= ~PORT_TRANS_SEL_MASK;
5515 temp |= PORT_TRANS_SEL_CPT(pipe);
5516 } else {
5517 if (pipe == 1)
5518 temp |= LVDS_PIPEB_SELECT;
5519 else
5520 temp &= ~LVDS_PIPEB_SELECT;
5521 }
5522
5523 /* set the corresponsding LVDS_BORDER bit */
5524 temp |= dev_priv->lvds_border_bits;
5525 /* Set the B0-B3 data pairs corresponding to whether we're going to
5526 * set the DPLLs for dual-channel mode or not.
5527 */
5528 if (clock.p2 == 7)
5529 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5530 else
5531 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5532
5533 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5534 * appropriately here, but we need to look more thoroughly into how
5535 * panels behave in the two modes.
5536 */
5537 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5538 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5539 temp |= LVDS_HSYNC_POLARITY;
5540 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5541 temp |= LVDS_VSYNC_POLARITY;
5542 I915_WRITE(PCH_LVDS, temp);
5543 }
5544
5545 if (is_dp && !is_cpu_edp) {
5546 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5547 } else {
5548 /* For non-DP output, clear any trans DP clock recovery setting.*/
5549 I915_WRITE(TRANSDATA_M1(pipe), 0);
5550 I915_WRITE(TRANSDATA_N1(pipe), 0);
5551 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5552 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5553 }
5554
5555 if (intel_crtc->pch_pll) {
5556 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5557
5558 /* Wait for the clocks to stabilize. */
5559 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5560 udelay(150);
5561
5562 /* The pixel multiplier can only be updated once the
5563 * DPLL is enabled and the clocks are stable.
5564 *
5565 * So write it again.
5566 */
5567 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5568 }
5569
5570 intel_crtc->lowfreq_avail = false;
5571 if (intel_crtc->pch_pll) {
5572 if (is_lvds && has_reduced_clock && i915_powersave) {
5573 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5574 intel_crtc->lowfreq_avail = true;
5575 } else {
5576 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5577 }
5578 }
5579
5580 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5581
5582 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5583 * ironlake_check_fdi_lanes. */
5584 ironlake_set_m_n(crtc, mode, adjusted_mode);
5585
5586 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5587
5588 if (is_cpu_edp)
5589 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5590
5591 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5592
5593 intel_wait_for_vblank(dev, pipe);
5594
5595 /* Set up the display plane register */
5596 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5597 POSTING_READ(DSPCNTR(plane));
5598
5599 ret = intel_pipe_set_base(crtc, x, y, fb);
5600
5601 intel_update_watermarks(dev);
5602
5603 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5604
5605 return fdi_config_ok ? ret : -EINVAL;
5606 }
5607
5608 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5609 struct drm_display_mode *mode,
5610 struct drm_display_mode *adjusted_mode,
5611 int x, int y,
5612 struct drm_framebuffer *fb)
5613 {
5614 struct drm_device *dev = crtc->dev;
5615 struct drm_i915_private *dev_priv = dev->dev_private;
5616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5617 int pipe = intel_crtc->pipe;
5618 int plane = intel_crtc->plane;
5619 int num_connectors = 0;
5620 intel_clock_t clock, reduced_clock;
5621 u32 dpll = 0, fp = 0, fp2 = 0;
5622 bool ok, has_reduced_clock = false;
5623 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5624 struct intel_encoder *encoder;
5625 u32 temp;
5626 int ret;
5627 bool dither;
5628
5629 for_each_encoder_on_crtc(dev, crtc, encoder) {
5630 switch (encoder->type) {
5631 case INTEL_OUTPUT_LVDS:
5632 is_lvds = true;
5633 break;
5634 case INTEL_OUTPUT_DISPLAYPORT:
5635 is_dp = true;
5636 break;
5637 case INTEL_OUTPUT_EDP:
5638 is_dp = true;
5639 if (!intel_encoder_is_pch_edp(&encoder->base))
5640 is_cpu_edp = true;
5641 break;
5642 }
5643
5644 num_connectors++;
5645 }
5646
5647 if (is_cpu_edp)
5648 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5649 else
5650 intel_crtc->cpu_transcoder = pipe;
5651
5652 /* We are not sure yet this won't happen. */
5653 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5654 INTEL_PCH_TYPE(dev));
5655
5656 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5657 num_connectors, pipe_name(pipe));
5658
5659 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5660 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5661
5662 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5663
5664 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5665 return -EINVAL;
5666
5667 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5668 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5669 &has_reduced_clock,
5670 &reduced_clock);
5671 if (!ok) {
5672 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5673 return -EINVAL;
5674 }
5675 }
5676
5677 /* Ensure that the cursor is valid for the new mode before changing... */
5678 intel_crtc_update_cursor(crtc, true);
5679
5680 /* determine panel color depth */
5681 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5682 adjusted_mode);
5683 if (is_lvds && dev_priv->lvds_dither)
5684 dither = true;
5685
5686 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5687 drm_mode_debug_printmodeline(mode);
5688
5689 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5690 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5691 if (has_reduced_clock)
5692 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5693 reduced_clock.m2;
5694
5695 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5696 fp);
5697
5698 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5699 * own on pre-Haswell/LPT generation */
5700 if (!is_cpu_edp) {
5701 struct intel_pch_pll *pll;
5702
5703 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5704 if (pll == NULL) {
5705 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5706 pipe);
5707 return -EINVAL;
5708 }
5709 } else
5710 intel_put_pch_pll(intel_crtc);
5711
5712 /* The LVDS pin pair needs to be on before the DPLLs are
5713 * enabled. This is an exception to the general rule that
5714 * mode_set doesn't turn things on.
5715 */
5716 if (is_lvds) {
5717 temp = I915_READ(PCH_LVDS);
5718 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5719 if (HAS_PCH_CPT(dev)) {
5720 temp &= ~PORT_TRANS_SEL_MASK;
5721 temp |= PORT_TRANS_SEL_CPT(pipe);
5722 } else {
5723 if (pipe == 1)
5724 temp |= LVDS_PIPEB_SELECT;
5725 else
5726 temp &= ~LVDS_PIPEB_SELECT;
5727 }
5728
5729 /* set the corresponsding LVDS_BORDER bit */
5730 temp |= dev_priv->lvds_border_bits;
5731 /* Set the B0-B3 data pairs corresponding to whether
5732 * we're going to set the DPLLs for dual-channel mode or
5733 * not.
5734 */
5735 if (clock.p2 == 7)
5736 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5737 else
5738 temp &= ~(LVDS_B0B3_POWER_UP |
5739 LVDS_CLKB_POWER_UP);
5740
5741 /* It would be nice to set 24 vs 18-bit mode
5742 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5743 * look more thoroughly into how panels behave in the
5744 * two modes.
5745 */
5746 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5747 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5748 temp |= LVDS_HSYNC_POLARITY;
5749 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5750 temp |= LVDS_VSYNC_POLARITY;
5751 I915_WRITE(PCH_LVDS, temp);
5752 }
5753 }
5754
5755 if (is_dp && !is_cpu_edp) {
5756 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5757 } else {
5758 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5759 /* For non-DP output, clear any trans DP clock recovery
5760 * setting.*/
5761 I915_WRITE(TRANSDATA_M1(pipe), 0);
5762 I915_WRITE(TRANSDATA_N1(pipe), 0);
5763 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5764 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5765 }
5766 }
5767
5768 intel_crtc->lowfreq_avail = false;
5769 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5770 if (intel_crtc->pch_pll) {
5771 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5772
5773 /* Wait for the clocks to stabilize. */
5774 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5775 udelay(150);
5776
5777 /* The pixel multiplier can only be updated once the
5778 * DPLL is enabled and the clocks are stable.
5779 *
5780 * So write it again.
5781 */
5782 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5783 }
5784
5785 if (intel_crtc->pch_pll) {
5786 if (is_lvds && has_reduced_clock && i915_powersave) {
5787 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5788 intel_crtc->lowfreq_avail = true;
5789 } else {
5790 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5791 }
5792 }
5793 }
5794
5795 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5796
5797 if (!is_dp || is_cpu_edp)
5798 ironlake_set_m_n(crtc, mode, adjusted_mode);
5799
5800 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5801 if (is_cpu_edp)
5802 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5803
5804 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5805
5806 /* Set up the display plane register */
5807 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5808 POSTING_READ(DSPCNTR(plane));
5809
5810 ret = intel_pipe_set_base(crtc, x, y, fb);
5811
5812 intel_update_watermarks(dev);
5813
5814 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5815
5816 return ret;
5817 }
5818
5819 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5820 struct drm_display_mode *mode,
5821 struct drm_display_mode *adjusted_mode,
5822 int x, int y,
5823 struct drm_framebuffer *fb)
5824 {
5825 struct drm_device *dev = crtc->dev;
5826 struct drm_i915_private *dev_priv = dev->dev_private;
5827 struct drm_encoder_helper_funcs *encoder_funcs;
5828 struct intel_encoder *encoder;
5829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5830 int pipe = intel_crtc->pipe;
5831 int ret;
5832
5833 drm_vblank_pre_modeset(dev, pipe);
5834
5835 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5836 x, y, fb);
5837 drm_vblank_post_modeset(dev, pipe);
5838
5839 if (ret != 0)
5840 return ret;
5841
5842 for_each_encoder_on_crtc(dev, crtc, encoder) {
5843 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5844 encoder->base.base.id,
5845 drm_get_encoder_name(&encoder->base),
5846 mode->base.id, mode->name);
5847 encoder_funcs = encoder->base.helper_private;
5848 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5849 }
5850
5851 return 0;
5852 }
5853
5854 static bool intel_eld_uptodate(struct drm_connector *connector,
5855 int reg_eldv, uint32_t bits_eldv,
5856 int reg_elda, uint32_t bits_elda,
5857 int reg_edid)
5858 {
5859 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5860 uint8_t *eld = connector->eld;
5861 uint32_t i;
5862
5863 i = I915_READ(reg_eldv);
5864 i &= bits_eldv;
5865
5866 if (!eld[0])
5867 return !i;
5868
5869 if (!i)
5870 return false;
5871
5872 i = I915_READ(reg_elda);
5873 i &= ~bits_elda;
5874 I915_WRITE(reg_elda, i);
5875
5876 for (i = 0; i < eld[2]; i++)
5877 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5878 return false;
5879
5880 return true;
5881 }
5882
5883 static void g4x_write_eld(struct drm_connector *connector,
5884 struct drm_crtc *crtc)
5885 {
5886 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5887 uint8_t *eld = connector->eld;
5888 uint32_t eldv;
5889 uint32_t len;
5890 uint32_t i;
5891
5892 i = I915_READ(G4X_AUD_VID_DID);
5893
5894 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5895 eldv = G4X_ELDV_DEVCL_DEVBLC;
5896 else
5897 eldv = G4X_ELDV_DEVCTG;
5898
5899 if (intel_eld_uptodate(connector,
5900 G4X_AUD_CNTL_ST, eldv,
5901 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5902 G4X_HDMIW_HDMIEDID))
5903 return;
5904
5905 i = I915_READ(G4X_AUD_CNTL_ST);
5906 i &= ~(eldv | G4X_ELD_ADDR);
5907 len = (i >> 9) & 0x1f; /* ELD buffer size */
5908 I915_WRITE(G4X_AUD_CNTL_ST, i);
5909
5910 if (!eld[0])
5911 return;
5912
5913 len = min_t(uint8_t, eld[2], len);
5914 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5915 for (i = 0; i < len; i++)
5916 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5917
5918 i = I915_READ(G4X_AUD_CNTL_ST);
5919 i |= eldv;
5920 I915_WRITE(G4X_AUD_CNTL_ST, i);
5921 }
5922
5923 static void haswell_write_eld(struct drm_connector *connector,
5924 struct drm_crtc *crtc)
5925 {
5926 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5927 uint8_t *eld = connector->eld;
5928 struct drm_device *dev = crtc->dev;
5929 uint32_t eldv;
5930 uint32_t i;
5931 int len;
5932 int pipe = to_intel_crtc(crtc)->pipe;
5933 int tmp;
5934
5935 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5936 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5937 int aud_config = HSW_AUD_CFG(pipe);
5938 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5939
5940
5941 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5942
5943 /* Audio output enable */
5944 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5945 tmp = I915_READ(aud_cntrl_st2);
5946 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5947 I915_WRITE(aud_cntrl_st2, tmp);
5948
5949 /* Wait for 1 vertical blank */
5950 intel_wait_for_vblank(dev, pipe);
5951
5952 /* Set ELD valid state */
5953 tmp = I915_READ(aud_cntrl_st2);
5954 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5955 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5956 I915_WRITE(aud_cntrl_st2, tmp);
5957 tmp = I915_READ(aud_cntrl_st2);
5958 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5959
5960 /* Enable HDMI mode */
5961 tmp = I915_READ(aud_config);
5962 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5963 /* clear N_programing_enable and N_value_index */
5964 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5965 I915_WRITE(aud_config, tmp);
5966
5967 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5968
5969 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5970
5971 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5972 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5973 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5974 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5975 } else
5976 I915_WRITE(aud_config, 0);
5977
5978 if (intel_eld_uptodate(connector,
5979 aud_cntrl_st2, eldv,
5980 aud_cntl_st, IBX_ELD_ADDRESS,
5981 hdmiw_hdmiedid))
5982 return;
5983
5984 i = I915_READ(aud_cntrl_st2);
5985 i &= ~eldv;
5986 I915_WRITE(aud_cntrl_st2, i);
5987
5988 if (!eld[0])
5989 return;
5990
5991 i = I915_READ(aud_cntl_st);
5992 i &= ~IBX_ELD_ADDRESS;
5993 I915_WRITE(aud_cntl_st, i);
5994 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5995 DRM_DEBUG_DRIVER("port num:%d\n", i);
5996
5997 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5998 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5999 for (i = 0; i < len; i++)
6000 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6001
6002 i = I915_READ(aud_cntrl_st2);
6003 i |= eldv;
6004 I915_WRITE(aud_cntrl_st2, i);
6005
6006 }
6007
6008 static void ironlake_write_eld(struct drm_connector *connector,
6009 struct drm_crtc *crtc)
6010 {
6011 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6012 uint8_t *eld = connector->eld;
6013 uint32_t eldv;
6014 uint32_t i;
6015 int len;
6016 int hdmiw_hdmiedid;
6017 int aud_config;
6018 int aud_cntl_st;
6019 int aud_cntrl_st2;
6020 int pipe = to_intel_crtc(crtc)->pipe;
6021
6022 if (HAS_PCH_IBX(connector->dev)) {
6023 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6024 aud_config = IBX_AUD_CFG(pipe);
6025 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6026 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6027 } else {
6028 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6029 aud_config = CPT_AUD_CFG(pipe);
6030 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6031 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6032 }
6033
6034 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6035
6036 i = I915_READ(aud_cntl_st);
6037 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6038 if (!i) {
6039 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6040 /* operate blindly on all ports */
6041 eldv = IBX_ELD_VALIDB;
6042 eldv |= IBX_ELD_VALIDB << 4;
6043 eldv |= IBX_ELD_VALIDB << 8;
6044 } else {
6045 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6046 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6047 }
6048
6049 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6050 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6051 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6052 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6053 } else
6054 I915_WRITE(aud_config, 0);
6055
6056 if (intel_eld_uptodate(connector,
6057 aud_cntrl_st2, eldv,
6058 aud_cntl_st, IBX_ELD_ADDRESS,
6059 hdmiw_hdmiedid))
6060 return;
6061
6062 i = I915_READ(aud_cntrl_st2);
6063 i &= ~eldv;
6064 I915_WRITE(aud_cntrl_st2, i);
6065
6066 if (!eld[0])
6067 return;
6068
6069 i = I915_READ(aud_cntl_st);
6070 i &= ~IBX_ELD_ADDRESS;
6071 I915_WRITE(aud_cntl_st, i);
6072
6073 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6074 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6075 for (i = 0; i < len; i++)
6076 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6077
6078 i = I915_READ(aud_cntrl_st2);
6079 i |= eldv;
6080 I915_WRITE(aud_cntrl_st2, i);
6081 }
6082
6083 void intel_write_eld(struct drm_encoder *encoder,
6084 struct drm_display_mode *mode)
6085 {
6086 struct drm_crtc *crtc = encoder->crtc;
6087 struct drm_connector *connector;
6088 struct drm_device *dev = encoder->dev;
6089 struct drm_i915_private *dev_priv = dev->dev_private;
6090
6091 connector = drm_select_eld(encoder, mode);
6092 if (!connector)
6093 return;
6094
6095 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6096 connector->base.id,
6097 drm_get_connector_name(connector),
6098 connector->encoder->base.id,
6099 drm_get_encoder_name(connector->encoder));
6100
6101 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6102
6103 if (dev_priv->display.write_eld)
6104 dev_priv->display.write_eld(connector, crtc);
6105 }
6106
6107 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6108 void intel_crtc_load_lut(struct drm_crtc *crtc)
6109 {
6110 struct drm_device *dev = crtc->dev;
6111 struct drm_i915_private *dev_priv = dev->dev_private;
6112 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6113 int palreg = PALETTE(intel_crtc->pipe);
6114 int i;
6115
6116 /* The clocks have to be on to load the palette. */
6117 if (!crtc->enabled || !intel_crtc->active)
6118 return;
6119
6120 /* use legacy palette for Ironlake */
6121 if (HAS_PCH_SPLIT(dev))
6122 palreg = LGC_PALETTE(intel_crtc->pipe);
6123
6124 for (i = 0; i < 256; i++) {
6125 I915_WRITE(palreg + 4 * i,
6126 (intel_crtc->lut_r[i] << 16) |
6127 (intel_crtc->lut_g[i] << 8) |
6128 intel_crtc->lut_b[i]);
6129 }
6130 }
6131
6132 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6133 {
6134 struct drm_device *dev = crtc->dev;
6135 struct drm_i915_private *dev_priv = dev->dev_private;
6136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6137 bool visible = base != 0;
6138 u32 cntl;
6139
6140 if (intel_crtc->cursor_visible == visible)
6141 return;
6142
6143 cntl = I915_READ(_CURACNTR);
6144 if (visible) {
6145 /* On these chipsets we can only modify the base whilst
6146 * the cursor is disabled.
6147 */
6148 I915_WRITE(_CURABASE, base);
6149
6150 cntl &= ~(CURSOR_FORMAT_MASK);
6151 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6152 cntl |= CURSOR_ENABLE |
6153 CURSOR_GAMMA_ENABLE |
6154 CURSOR_FORMAT_ARGB;
6155 } else
6156 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6157 I915_WRITE(_CURACNTR, cntl);
6158
6159 intel_crtc->cursor_visible = visible;
6160 }
6161
6162 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6163 {
6164 struct drm_device *dev = crtc->dev;
6165 struct drm_i915_private *dev_priv = dev->dev_private;
6166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6167 int pipe = intel_crtc->pipe;
6168 bool visible = base != 0;
6169
6170 if (intel_crtc->cursor_visible != visible) {
6171 uint32_t cntl = I915_READ(CURCNTR(pipe));
6172 if (base) {
6173 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6174 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6175 cntl |= pipe << 28; /* Connect to correct pipe */
6176 } else {
6177 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6178 cntl |= CURSOR_MODE_DISABLE;
6179 }
6180 I915_WRITE(CURCNTR(pipe), cntl);
6181
6182 intel_crtc->cursor_visible = visible;
6183 }
6184 /* and commit changes on next vblank */
6185 I915_WRITE(CURBASE(pipe), base);
6186 }
6187
6188 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6189 {
6190 struct drm_device *dev = crtc->dev;
6191 struct drm_i915_private *dev_priv = dev->dev_private;
6192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6193 int pipe = intel_crtc->pipe;
6194 bool visible = base != 0;
6195
6196 if (intel_crtc->cursor_visible != visible) {
6197 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6198 if (base) {
6199 cntl &= ~CURSOR_MODE;
6200 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6201 } else {
6202 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6203 cntl |= CURSOR_MODE_DISABLE;
6204 }
6205 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6206
6207 intel_crtc->cursor_visible = visible;
6208 }
6209 /* and commit changes on next vblank */
6210 I915_WRITE(CURBASE_IVB(pipe), base);
6211 }
6212
6213 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6214 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6215 bool on)
6216 {
6217 struct drm_device *dev = crtc->dev;
6218 struct drm_i915_private *dev_priv = dev->dev_private;
6219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6220 int pipe = intel_crtc->pipe;
6221 int x = intel_crtc->cursor_x;
6222 int y = intel_crtc->cursor_y;
6223 u32 base, pos;
6224 bool visible;
6225
6226 pos = 0;
6227
6228 if (on && crtc->enabled && crtc->fb) {
6229 base = intel_crtc->cursor_addr;
6230 if (x > (int) crtc->fb->width)
6231 base = 0;
6232
6233 if (y > (int) crtc->fb->height)
6234 base = 0;
6235 } else
6236 base = 0;
6237
6238 if (x < 0) {
6239 if (x + intel_crtc->cursor_width < 0)
6240 base = 0;
6241
6242 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6243 x = -x;
6244 }
6245 pos |= x << CURSOR_X_SHIFT;
6246
6247 if (y < 0) {
6248 if (y + intel_crtc->cursor_height < 0)
6249 base = 0;
6250
6251 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6252 y = -y;
6253 }
6254 pos |= y << CURSOR_Y_SHIFT;
6255
6256 visible = base != 0;
6257 if (!visible && !intel_crtc->cursor_visible)
6258 return;
6259
6260 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6261 I915_WRITE(CURPOS_IVB(pipe), pos);
6262 ivb_update_cursor(crtc, base);
6263 } else {
6264 I915_WRITE(CURPOS(pipe), pos);
6265 if (IS_845G(dev) || IS_I865G(dev))
6266 i845_update_cursor(crtc, base);
6267 else
6268 i9xx_update_cursor(crtc, base);
6269 }
6270 }
6271
6272 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6273 struct drm_file *file,
6274 uint32_t handle,
6275 uint32_t width, uint32_t height)
6276 {
6277 struct drm_device *dev = crtc->dev;
6278 struct drm_i915_private *dev_priv = dev->dev_private;
6279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6280 struct drm_i915_gem_object *obj;
6281 uint32_t addr;
6282 int ret;
6283
6284 /* if we want to turn off the cursor ignore width and height */
6285 if (!handle) {
6286 DRM_DEBUG_KMS("cursor off\n");
6287 addr = 0;
6288 obj = NULL;
6289 mutex_lock(&dev->struct_mutex);
6290 goto finish;
6291 }
6292
6293 /* Currently we only support 64x64 cursors */
6294 if (width != 64 || height != 64) {
6295 DRM_ERROR("we currently only support 64x64 cursors\n");
6296 return -EINVAL;
6297 }
6298
6299 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6300 if (&obj->base == NULL)
6301 return -ENOENT;
6302
6303 if (obj->base.size < width * height * 4) {
6304 DRM_ERROR("buffer is to small\n");
6305 ret = -ENOMEM;
6306 goto fail;
6307 }
6308
6309 /* we only need to pin inside GTT if cursor is non-phy */
6310 mutex_lock(&dev->struct_mutex);
6311 if (!dev_priv->info->cursor_needs_physical) {
6312 if (obj->tiling_mode) {
6313 DRM_ERROR("cursor cannot be tiled\n");
6314 ret = -EINVAL;
6315 goto fail_locked;
6316 }
6317
6318 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6319 if (ret) {
6320 DRM_ERROR("failed to move cursor bo into the GTT\n");
6321 goto fail_locked;
6322 }
6323
6324 ret = i915_gem_object_put_fence(obj);
6325 if (ret) {
6326 DRM_ERROR("failed to release fence for cursor");
6327 goto fail_unpin;
6328 }
6329
6330 addr = obj->gtt_offset;
6331 } else {
6332 int align = IS_I830(dev) ? 16 * 1024 : 256;
6333 ret = i915_gem_attach_phys_object(dev, obj,
6334 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6335 align);
6336 if (ret) {
6337 DRM_ERROR("failed to attach phys object\n");
6338 goto fail_locked;
6339 }
6340 addr = obj->phys_obj->handle->busaddr;
6341 }
6342
6343 if (IS_GEN2(dev))
6344 I915_WRITE(CURSIZE, (height << 12) | width);
6345
6346 finish:
6347 if (intel_crtc->cursor_bo) {
6348 if (dev_priv->info->cursor_needs_physical) {
6349 if (intel_crtc->cursor_bo != obj)
6350 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6351 } else
6352 i915_gem_object_unpin(intel_crtc->cursor_bo);
6353 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6354 }
6355
6356 mutex_unlock(&dev->struct_mutex);
6357
6358 intel_crtc->cursor_addr = addr;
6359 intel_crtc->cursor_bo = obj;
6360 intel_crtc->cursor_width = width;
6361 intel_crtc->cursor_height = height;
6362
6363 intel_crtc_update_cursor(crtc, true);
6364
6365 return 0;
6366 fail_unpin:
6367 i915_gem_object_unpin(obj);
6368 fail_locked:
6369 mutex_unlock(&dev->struct_mutex);
6370 fail:
6371 drm_gem_object_unreference_unlocked(&obj->base);
6372 return ret;
6373 }
6374
6375 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6376 {
6377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6378
6379 intel_crtc->cursor_x = x;
6380 intel_crtc->cursor_y = y;
6381
6382 intel_crtc_update_cursor(crtc, true);
6383
6384 return 0;
6385 }
6386
6387 /** Sets the color ramps on behalf of RandR */
6388 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6389 u16 blue, int regno)
6390 {
6391 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6392
6393 intel_crtc->lut_r[regno] = red >> 8;
6394 intel_crtc->lut_g[regno] = green >> 8;
6395 intel_crtc->lut_b[regno] = blue >> 8;
6396 }
6397
6398 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6399 u16 *blue, int regno)
6400 {
6401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6402
6403 *red = intel_crtc->lut_r[regno] << 8;
6404 *green = intel_crtc->lut_g[regno] << 8;
6405 *blue = intel_crtc->lut_b[regno] << 8;
6406 }
6407
6408 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6409 u16 *blue, uint32_t start, uint32_t size)
6410 {
6411 int end = (start + size > 256) ? 256 : start + size, i;
6412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6413
6414 for (i = start; i < end; i++) {
6415 intel_crtc->lut_r[i] = red[i] >> 8;
6416 intel_crtc->lut_g[i] = green[i] >> 8;
6417 intel_crtc->lut_b[i] = blue[i] >> 8;
6418 }
6419
6420 intel_crtc_load_lut(crtc);
6421 }
6422
6423 /**
6424 * Get a pipe with a simple mode set on it for doing load-based monitor
6425 * detection.
6426 *
6427 * It will be up to the load-detect code to adjust the pipe as appropriate for
6428 * its requirements. The pipe will be connected to no other encoders.
6429 *
6430 * Currently this code will only succeed if there is a pipe with no encoders
6431 * configured for it. In the future, it could choose to temporarily disable
6432 * some outputs to free up a pipe for its use.
6433 *
6434 * \return crtc, or NULL if no pipes are available.
6435 */
6436
6437 /* VESA 640x480x72Hz mode to set on the pipe */
6438 static struct drm_display_mode load_detect_mode = {
6439 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6440 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6441 };
6442
6443 static struct drm_framebuffer *
6444 intel_framebuffer_create(struct drm_device *dev,
6445 struct drm_mode_fb_cmd2 *mode_cmd,
6446 struct drm_i915_gem_object *obj)
6447 {
6448 struct intel_framebuffer *intel_fb;
6449 int ret;
6450
6451 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6452 if (!intel_fb) {
6453 drm_gem_object_unreference_unlocked(&obj->base);
6454 return ERR_PTR(-ENOMEM);
6455 }
6456
6457 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6458 if (ret) {
6459 drm_gem_object_unreference_unlocked(&obj->base);
6460 kfree(intel_fb);
6461 return ERR_PTR(ret);
6462 }
6463
6464 return &intel_fb->base;
6465 }
6466
6467 static u32
6468 intel_framebuffer_pitch_for_width(int width, int bpp)
6469 {
6470 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6471 return ALIGN(pitch, 64);
6472 }
6473
6474 static u32
6475 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6476 {
6477 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6478 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6479 }
6480
6481 static struct drm_framebuffer *
6482 intel_framebuffer_create_for_mode(struct drm_device *dev,
6483 struct drm_display_mode *mode,
6484 int depth, int bpp)
6485 {
6486 struct drm_i915_gem_object *obj;
6487 struct drm_mode_fb_cmd2 mode_cmd;
6488
6489 obj = i915_gem_alloc_object(dev,
6490 intel_framebuffer_size_for_mode(mode, bpp));
6491 if (obj == NULL)
6492 return ERR_PTR(-ENOMEM);
6493
6494 mode_cmd.width = mode->hdisplay;
6495 mode_cmd.height = mode->vdisplay;
6496 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6497 bpp);
6498 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6499
6500 return intel_framebuffer_create(dev, &mode_cmd, obj);
6501 }
6502
6503 static struct drm_framebuffer *
6504 mode_fits_in_fbdev(struct drm_device *dev,
6505 struct drm_display_mode *mode)
6506 {
6507 struct drm_i915_private *dev_priv = dev->dev_private;
6508 struct drm_i915_gem_object *obj;
6509 struct drm_framebuffer *fb;
6510
6511 if (dev_priv->fbdev == NULL)
6512 return NULL;
6513
6514 obj = dev_priv->fbdev->ifb.obj;
6515 if (obj == NULL)
6516 return NULL;
6517
6518 fb = &dev_priv->fbdev->ifb.base;
6519 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6520 fb->bits_per_pixel))
6521 return NULL;
6522
6523 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6524 return NULL;
6525
6526 return fb;
6527 }
6528
6529 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6530 struct drm_display_mode *mode,
6531 struct intel_load_detect_pipe *old)
6532 {
6533 struct intel_crtc *intel_crtc;
6534 struct intel_encoder *intel_encoder =
6535 intel_attached_encoder(connector);
6536 struct drm_crtc *possible_crtc;
6537 struct drm_encoder *encoder = &intel_encoder->base;
6538 struct drm_crtc *crtc = NULL;
6539 struct drm_device *dev = encoder->dev;
6540 struct drm_framebuffer *fb;
6541 int i = -1;
6542
6543 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6544 connector->base.id, drm_get_connector_name(connector),
6545 encoder->base.id, drm_get_encoder_name(encoder));
6546
6547 /*
6548 * Algorithm gets a little messy:
6549 *
6550 * - if the connector already has an assigned crtc, use it (but make
6551 * sure it's on first)
6552 *
6553 * - try to find the first unused crtc that can drive this connector,
6554 * and use that if we find one
6555 */
6556
6557 /* See if we already have a CRTC for this connector */
6558 if (encoder->crtc) {
6559 crtc = encoder->crtc;
6560
6561 old->dpms_mode = connector->dpms;
6562 old->load_detect_temp = false;
6563
6564 /* Make sure the crtc and connector are running */
6565 if (connector->dpms != DRM_MODE_DPMS_ON)
6566 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6567
6568 return true;
6569 }
6570
6571 /* Find an unused one (if possible) */
6572 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6573 i++;
6574 if (!(encoder->possible_crtcs & (1 << i)))
6575 continue;
6576 if (!possible_crtc->enabled) {
6577 crtc = possible_crtc;
6578 break;
6579 }
6580 }
6581
6582 /*
6583 * If we didn't find an unused CRTC, don't use any.
6584 */
6585 if (!crtc) {
6586 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6587 return false;
6588 }
6589
6590 intel_encoder->new_crtc = to_intel_crtc(crtc);
6591 to_intel_connector(connector)->new_encoder = intel_encoder;
6592
6593 intel_crtc = to_intel_crtc(crtc);
6594 old->dpms_mode = connector->dpms;
6595 old->load_detect_temp = true;
6596 old->release_fb = NULL;
6597
6598 if (!mode)
6599 mode = &load_detect_mode;
6600
6601 /* We need a framebuffer large enough to accommodate all accesses
6602 * that the plane may generate whilst we perform load detection.
6603 * We can not rely on the fbcon either being present (we get called
6604 * during its initialisation to detect all boot displays, or it may
6605 * not even exist) or that it is large enough to satisfy the
6606 * requested mode.
6607 */
6608 fb = mode_fits_in_fbdev(dev, mode);
6609 if (fb == NULL) {
6610 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6611 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6612 old->release_fb = fb;
6613 } else
6614 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6615 if (IS_ERR(fb)) {
6616 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6617 goto fail;
6618 }
6619
6620 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6621 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6622 if (old->release_fb)
6623 old->release_fb->funcs->destroy(old->release_fb);
6624 goto fail;
6625 }
6626
6627 /* let the connector get through one full cycle before testing */
6628 intel_wait_for_vblank(dev, intel_crtc->pipe);
6629
6630 return true;
6631 fail:
6632 connector->encoder = NULL;
6633 encoder->crtc = NULL;
6634 return false;
6635 }
6636
6637 void intel_release_load_detect_pipe(struct drm_connector *connector,
6638 struct intel_load_detect_pipe *old)
6639 {
6640 struct intel_encoder *intel_encoder =
6641 intel_attached_encoder(connector);
6642 struct drm_encoder *encoder = &intel_encoder->base;
6643
6644 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6645 connector->base.id, drm_get_connector_name(connector),
6646 encoder->base.id, drm_get_encoder_name(encoder));
6647
6648 if (old->load_detect_temp) {
6649 struct drm_crtc *crtc = encoder->crtc;
6650
6651 to_intel_connector(connector)->new_encoder = NULL;
6652 intel_encoder->new_crtc = NULL;
6653 intel_set_mode(crtc, NULL, 0, 0, NULL);
6654
6655 if (old->release_fb)
6656 old->release_fb->funcs->destroy(old->release_fb);
6657
6658 return;
6659 }
6660
6661 /* Switch crtc and encoder back off if necessary */
6662 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6663 connector->funcs->dpms(connector, old->dpms_mode);
6664 }
6665
6666 /* Returns the clock of the currently programmed mode of the given pipe. */
6667 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6668 {
6669 struct drm_i915_private *dev_priv = dev->dev_private;
6670 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6671 int pipe = intel_crtc->pipe;
6672 u32 dpll = I915_READ(DPLL(pipe));
6673 u32 fp;
6674 intel_clock_t clock;
6675
6676 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6677 fp = I915_READ(FP0(pipe));
6678 else
6679 fp = I915_READ(FP1(pipe));
6680
6681 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6682 if (IS_PINEVIEW(dev)) {
6683 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6684 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6685 } else {
6686 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6687 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6688 }
6689
6690 if (!IS_GEN2(dev)) {
6691 if (IS_PINEVIEW(dev))
6692 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6693 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6694 else
6695 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6696 DPLL_FPA01_P1_POST_DIV_SHIFT);
6697
6698 switch (dpll & DPLL_MODE_MASK) {
6699 case DPLLB_MODE_DAC_SERIAL:
6700 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6701 5 : 10;
6702 break;
6703 case DPLLB_MODE_LVDS:
6704 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6705 7 : 14;
6706 break;
6707 default:
6708 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6709 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6710 return 0;
6711 }
6712
6713 /* XXX: Handle the 100Mhz refclk */
6714 intel_clock(dev, 96000, &clock);
6715 } else {
6716 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6717
6718 if (is_lvds) {
6719 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6720 DPLL_FPA01_P1_POST_DIV_SHIFT);
6721 clock.p2 = 14;
6722
6723 if ((dpll & PLL_REF_INPUT_MASK) ==
6724 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6725 /* XXX: might not be 66MHz */
6726 intel_clock(dev, 66000, &clock);
6727 } else
6728 intel_clock(dev, 48000, &clock);
6729 } else {
6730 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6731 clock.p1 = 2;
6732 else {
6733 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6734 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6735 }
6736 if (dpll & PLL_P2_DIVIDE_BY_4)
6737 clock.p2 = 4;
6738 else
6739 clock.p2 = 2;
6740
6741 intel_clock(dev, 48000, &clock);
6742 }
6743 }
6744
6745 /* XXX: It would be nice to validate the clocks, but we can't reuse
6746 * i830PllIsValid() because it relies on the xf86_config connector
6747 * configuration being accurate, which it isn't necessarily.
6748 */
6749
6750 return clock.dot;
6751 }
6752
6753 /** Returns the currently programmed mode of the given pipe. */
6754 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6755 struct drm_crtc *crtc)
6756 {
6757 struct drm_i915_private *dev_priv = dev->dev_private;
6758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6759 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6760 struct drm_display_mode *mode;
6761 int htot = I915_READ(HTOTAL(cpu_transcoder));
6762 int hsync = I915_READ(HSYNC(cpu_transcoder));
6763 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6764 int vsync = I915_READ(VSYNC(cpu_transcoder));
6765
6766 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6767 if (!mode)
6768 return NULL;
6769
6770 mode->clock = intel_crtc_clock_get(dev, crtc);
6771 mode->hdisplay = (htot & 0xffff) + 1;
6772 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6773 mode->hsync_start = (hsync & 0xffff) + 1;
6774 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6775 mode->vdisplay = (vtot & 0xffff) + 1;
6776 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6777 mode->vsync_start = (vsync & 0xffff) + 1;
6778 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6779
6780 drm_mode_set_name(mode);
6781
6782 return mode;
6783 }
6784
6785 static void intel_increase_pllclock(struct drm_crtc *crtc)
6786 {
6787 struct drm_device *dev = crtc->dev;
6788 drm_i915_private_t *dev_priv = dev->dev_private;
6789 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6790 int pipe = intel_crtc->pipe;
6791 int dpll_reg = DPLL(pipe);
6792 int dpll;
6793
6794 if (HAS_PCH_SPLIT(dev))
6795 return;
6796
6797 if (!dev_priv->lvds_downclock_avail)
6798 return;
6799
6800 dpll = I915_READ(dpll_reg);
6801 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6802 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6803
6804 assert_panel_unlocked(dev_priv, pipe);
6805
6806 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6807 I915_WRITE(dpll_reg, dpll);
6808 intel_wait_for_vblank(dev, pipe);
6809
6810 dpll = I915_READ(dpll_reg);
6811 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6812 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6813 }
6814 }
6815
6816 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6817 {
6818 struct drm_device *dev = crtc->dev;
6819 drm_i915_private_t *dev_priv = dev->dev_private;
6820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6821
6822 if (HAS_PCH_SPLIT(dev))
6823 return;
6824
6825 if (!dev_priv->lvds_downclock_avail)
6826 return;
6827
6828 /*
6829 * Since this is called by a timer, we should never get here in
6830 * the manual case.
6831 */
6832 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6833 int pipe = intel_crtc->pipe;
6834 int dpll_reg = DPLL(pipe);
6835 int dpll;
6836
6837 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6838
6839 assert_panel_unlocked(dev_priv, pipe);
6840
6841 dpll = I915_READ(dpll_reg);
6842 dpll |= DISPLAY_RATE_SELECT_FPA1;
6843 I915_WRITE(dpll_reg, dpll);
6844 intel_wait_for_vblank(dev, pipe);
6845 dpll = I915_READ(dpll_reg);
6846 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6847 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6848 }
6849
6850 }
6851
6852 void intel_mark_busy(struct drm_device *dev)
6853 {
6854 i915_update_gfx_val(dev->dev_private);
6855 }
6856
6857 void intel_mark_idle(struct drm_device *dev)
6858 {
6859 }
6860
6861 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6862 {
6863 struct drm_device *dev = obj->base.dev;
6864 struct drm_crtc *crtc;
6865
6866 if (!i915_powersave)
6867 return;
6868
6869 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6870 if (!crtc->fb)
6871 continue;
6872
6873 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6874 intel_increase_pllclock(crtc);
6875 }
6876 }
6877
6878 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6879 {
6880 struct drm_device *dev = obj->base.dev;
6881 struct drm_crtc *crtc;
6882
6883 if (!i915_powersave)
6884 return;
6885
6886 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6887 if (!crtc->fb)
6888 continue;
6889
6890 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6891 intel_decrease_pllclock(crtc);
6892 }
6893 }
6894
6895 static void intel_crtc_destroy(struct drm_crtc *crtc)
6896 {
6897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6898 struct drm_device *dev = crtc->dev;
6899 struct intel_unpin_work *work;
6900 unsigned long flags;
6901
6902 spin_lock_irqsave(&dev->event_lock, flags);
6903 work = intel_crtc->unpin_work;
6904 intel_crtc->unpin_work = NULL;
6905 spin_unlock_irqrestore(&dev->event_lock, flags);
6906
6907 if (work) {
6908 cancel_work_sync(&work->work);
6909 kfree(work);
6910 }
6911
6912 drm_crtc_cleanup(crtc);
6913
6914 kfree(intel_crtc);
6915 }
6916
6917 static void intel_unpin_work_fn(struct work_struct *__work)
6918 {
6919 struct intel_unpin_work *work =
6920 container_of(__work, struct intel_unpin_work, work);
6921
6922 mutex_lock(&work->dev->struct_mutex);
6923 intel_unpin_fb_obj(work->old_fb_obj);
6924 drm_gem_object_unreference(&work->pending_flip_obj->base);
6925 drm_gem_object_unreference(&work->old_fb_obj->base);
6926
6927 intel_update_fbc(work->dev);
6928 mutex_unlock(&work->dev->struct_mutex);
6929 kfree(work);
6930 }
6931
6932 static void do_intel_finish_page_flip(struct drm_device *dev,
6933 struct drm_crtc *crtc)
6934 {
6935 drm_i915_private_t *dev_priv = dev->dev_private;
6936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6937 struct intel_unpin_work *work;
6938 struct drm_i915_gem_object *obj;
6939 struct drm_pending_vblank_event *e;
6940 struct timeval tvbl;
6941 unsigned long flags;
6942
6943 /* Ignore early vblank irqs */
6944 if (intel_crtc == NULL)
6945 return;
6946
6947 spin_lock_irqsave(&dev->event_lock, flags);
6948 work = intel_crtc->unpin_work;
6949 if (work == NULL || !work->pending) {
6950 spin_unlock_irqrestore(&dev->event_lock, flags);
6951 return;
6952 }
6953
6954 intel_crtc->unpin_work = NULL;
6955
6956 if (work->event) {
6957 e = work->event;
6958 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6959
6960 e->event.tv_sec = tvbl.tv_sec;
6961 e->event.tv_usec = tvbl.tv_usec;
6962
6963 list_add_tail(&e->base.link,
6964 &e->base.file_priv->event_list);
6965 wake_up_interruptible(&e->base.file_priv->event_wait);
6966 }
6967
6968 drm_vblank_put(dev, intel_crtc->pipe);
6969
6970 spin_unlock_irqrestore(&dev->event_lock, flags);
6971
6972 obj = work->old_fb_obj;
6973
6974 atomic_clear_mask(1 << intel_crtc->plane,
6975 &obj->pending_flip.counter);
6976
6977 wake_up(&dev_priv->pending_flip_queue);
6978 schedule_work(&work->work);
6979
6980 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6981 }
6982
6983 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6984 {
6985 drm_i915_private_t *dev_priv = dev->dev_private;
6986 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6987
6988 do_intel_finish_page_flip(dev, crtc);
6989 }
6990
6991 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6992 {
6993 drm_i915_private_t *dev_priv = dev->dev_private;
6994 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6995
6996 do_intel_finish_page_flip(dev, crtc);
6997 }
6998
6999 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7000 {
7001 drm_i915_private_t *dev_priv = dev->dev_private;
7002 struct intel_crtc *intel_crtc =
7003 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7004 unsigned long flags;
7005
7006 spin_lock_irqsave(&dev->event_lock, flags);
7007 if (intel_crtc->unpin_work) {
7008 if ((++intel_crtc->unpin_work->pending) > 1)
7009 DRM_ERROR("Prepared flip multiple times\n");
7010 } else {
7011 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7012 }
7013 spin_unlock_irqrestore(&dev->event_lock, flags);
7014 }
7015
7016 static int intel_gen2_queue_flip(struct drm_device *dev,
7017 struct drm_crtc *crtc,
7018 struct drm_framebuffer *fb,
7019 struct drm_i915_gem_object *obj)
7020 {
7021 struct drm_i915_private *dev_priv = dev->dev_private;
7022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7023 u32 flip_mask;
7024 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7025 int ret;
7026
7027 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7028 if (ret)
7029 goto err;
7030
7031 ret = intel_ring_begin(ring, 6);
7032 if (ret)
7033 goto err_unpin;
7034
7035 /* Can't queue multiple flips, so wait for the previous
7036 * one to finish before executing the next.
7037 */
7038 if (intel_crtc->plane)
7039 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7040 else
7041 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7042 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7043 intel_ring_emit(ring, MI_NOOP);
7044 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7045 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7046 intel_ring_emit(ring, fb->pitches[0]);
7047 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7048 intel_ring_emit(ring, 0); /* aux display base address, unused */
7049 intel_ring_advance(ring);
7050 return 0;
7051
7052 err_unpin:
7053 intel_unpin_fb_obj(obj);
7054 err:
7055 return ret;
7056 }
7057
7058 static int intel_gen3_queue_flip(struct drm_device *dev,
7059 struct drm_crtc *crtc,
7060 struct drm_framebuffer *fb,
7061 struct drm_i915_gem_object *obj)
7062 {
7063 struct drm_i915_private *dev_priv = dev->dev_private;
7064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7065 u32 flip_mask;
7066 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7067 int ret;
7068
7069 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7070 if (ret)
7071 goto err;
7072
7073 ret = intel_ring_begin(ring, 6);
7074 if (ret)
7075 goto err_unpin;
7076
7077 if (intel_crtc->plane)
7078 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7079 else
7080 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7081 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7082 intel_ring_emit(ring, MI_NOOP);
7083 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7084 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7085 intel_ring_emit(ring, fb->pitches[0]);
7086 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7087 intel_ring_emit(ring, MI_NOOP);
7088
7089 intel_ring_advance(ring);
7090 return 0;
7091
7092 err_unpin:
7093 intel_unpin_fb_obj(obj);
7094 err:
7095 return ret;
7096 }
7097
7098 static int intel_gen4_queue_flip(struct drm_device *dev,
7099 struct drm_crtc *crtc,
7100 struct drm_framebuffer *fb,
7101 struct drm_i915_gem_object *obj)
7102 {
7103 struct drm_i915_private *dev_priv = dev->dev_private;
7104 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7105 uint32_t pf, pipesrc;
7106 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7107 int ret;
7108
7109 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7110 if (ret)
7111 goto err;
7112
7113 ret = intel_ring_begin(ring, 4);
7114 if (ret)
7115 goto err_unpin;
7116
7117 /* i965+ uses the linear or tiled offsets from the
7118 * Display Registers (which do not change across a page-flip)
7119 * so we need only reprogram the base address.
7120 */
7121 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7122 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7123 intel_ring_emit(ring, fb->pitches[0]);
7124 intel_ring_emit(ring,
7125 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7126 obj->tiling_mode);
7127
7128 /* XXX Enabling the panel-fitter across page-flip is so far
7129 * untested on non-native modes, so ignore it for now.
7130 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7131 */
7132 pf = 0;
7133 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7134 intel_ring_emit(ring, pf | pipesrc);
7135 intel_ring_advance(ring);
7136 return 0;
7137
7138 err_unpin:
7139 intel_unpin_fb_obj(obj);
7140 err:
7141 return ret;
7142 }
7143
7144 static int intel_gen6_queue_flip(struct drm_device *dev,
7145 struct drm_crtc *crtc,
7146 struct drm_framebuffer *fb,
7147 struct drm_i915_gem_object *obj)
7148 {
7149 struct drm_i915_private *dev_priv = dev->dev_private;
7150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7151 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7152 uint32_t pf, pipesrc;
7153 int ret;
7154
7155 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7156 if (ret)
7157 goto err;
7158
7159 ret = intel_ring_begin(ring, 4);
7160 if (ret)
7161 goto err_unpin;
7162
7163 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7164 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7165 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7166 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7167
7168 /* Contrary to the suggestions in the documentation,
7169 * "Enable Panel Fitter" does not seem to be required when page
7170 * flipping with a non-native mode, and worse causes a normal
7171 * modeset to fail.
7172 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7173 */
7174 pf = 0;
7175 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7176 intel_ring_emit(ring, pf | pipesrc);
7177 intel_ring_advance(ring);
7178 return 0;
7179
7180 err_unpin:
7181 intel_unpin_fb_obj(obj);
7182 err:
7183 return ret;
7184 }
7185
7186 /*
7187 * On gen7 we currently use the blit ring because (in early silicon at least)
7188 * the render ring doesn't give us interrpts for page flip completion, which
7189 * means clients will hang after the first flip is queued. Fortunately the
7190 * blit ring generates interrupts properly, so use it instead.
7191 */
7192 static int intel_gen7_queue_flip(struct drm_device *dev,
7193 struct drm_crtc *crtc,
7194 struct drm_framebuffer *fb,
7195 struct drm_i915_gem_object *obj)
7196 {
7197 struct drm_i915_private *dev_priv = dev->dev_private;
7198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7199 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7200 uint32_t plane_bit = 0;
7201 int ret;
7202
7203 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7204 if (ret)
7205 goto err;
7206
7207 switch(intel_crtc->plane) {
7208 case PLANE_A:
7209 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7210 break;
7211 case PLANE_B:
7212 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7213 break;
7214 case PLANE_C:
7215 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7216 break;
7217 default:
7218 WARN_ONCE(1, "unknown plane in flip command\n");
7219 ret = -ENODEV;
7220 goto err_unpin;
7221 }
7222
7223 ret = intel_ring_begin(ring, 4);
7224 if (ret)
7225 goto err_unpin;
7226
7227 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7228 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7229 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7230 intel_ring_emit(ring, (MI_NOOP));
7231 intel_ring_advance(ring);
7232 return 0;
7233
7234 err_unpin:
7235 intel_unpin_fb_obj(obj);
7236 err:
7237 return ret;
7238 }
7239
7240 static int intel_default_queue_flip(struct drm_device *dev,
7241 struct drm_crtc *crtc,
7242 struct drm_framebuffer *fb,
7243 struct drm_i915_gem_object *obj)
7244 {
7245 return -ENODEV;
7246 }
7247
7248 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7249 struct drm_framebuffer *fb,
7250 struct drm_pending_vblank_event *event)
7251 {
7252 struct drm_device *dev = crtc->dev;
7253 struct drm_i915_private *dev_priv = dev->dev_private;
7254 struct intel_framebuffer *intel_fb;
7255 struct drm_i915_gem_object *obj;
7256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7257 struct intel_unpin_work *work;
7258 unsigned long flags;
7259 int ret;
7260
7261 /* Can't change pixel format via MI display flips. */
7262 if (fb->pixel_format != crtc->fb->pixel_format)
7263 return -EINVAL;
7264
7265 /*
7266 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7267 * Note that pitch changes could also affect these register.
7268 */
7269 if (INTEL_INFO(dev)->gen > 3 &&
7270 (fb->offsets[0] != crtc->fb->offsets[0] ||
7271 fb->pitches[0] != crtc->fb->pitches[0]))
7272 return -EINVAL;
7273
7274 work = kzalloc(sizeof *work, GFP_KERNEL);
7275 if (work == NULL)
7276 return -ENOMEM;
7277
7278 work->event = event;
7279 work->dev = crtc->dev;
7280 intel_fb = to_intel_framebuffer(crtc->fb);
7281 work->old_fb_obj = intel_fb->obj;
7282 INIT_WORK(&work->work, intel_unpin_work_fn);
7283
7284 ret = drm_vblank_get(dev, intel_crtc->pipe);
7285 if (ret)
7286 goto free_work;
7287
7288 /* We borrow the event spin lock for protecting unpin_work */
7289 spin_lock_irqsave(&dev->event_lock, flags);
7290 if (intel_crtc->unpin_work) {
7291 spin_unlock_irqrestore(&dev->event_lock, flags);
7292 kfree(work);
7293 drm_vblank_put(dev, intel_crtc->pipe);
7294
7295 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7296 return -EBUSY;
7297 }
7298 intel_crtc->unpin_work = work;
7299 spin_unlock_irqrestore(&dev->event_lock, flags);
7300
7301 intel_fb = to_intel_framebuffer(fb);
7302 obj = intel_fb->obj;
7303
7304 ret = i915_mutex_lock_interruptible(dev);
7305 if (ret)
7306 goto cleanup;
7307
7308 /* Reference the objects for the scheduled work. */
7309 drm_gem_object_reference(&work->old_fb_obj->base);
7310 drm_gem_object_reference(&obj->base);
7311
7312 crtc->fb = fb;
7313
7314 work->pending_flip_obj = obj;
7315
7316 work->enable_stall_check = true;
7317
7318 /* Block clients from rendering to the new back buffer until
7319 * the flip occurs and the object is no longer visible.
7320 */
7321 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7322
7323 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7324 if (ret)
7325 goto cleanup_pending;
7326
7327 intel_disable_fbc(dev);
7328 intel_mark_fb_busy(obj);
7329 mutex_unlock(&dev->struct_mutex);
7330
7331 trace_i915_flip_request(intel_crtc->plane, obj);
7332
7333 return 0;
7334
7335 cleanup_pending:
7336 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7337 drm_gem_object_unreference(&work->old_fb_obj->base);
7338 drm_gem_object_unreference(&obj->base);
7339 mutex_unlock(&dev->struct_mutex);
7340
7341 cleanup:
7342 spin_lock_irqsave(&dev->event_lock, flags);
7343 intel_crtc->unpin_work = NULL;
7344 spin_unlock_irqrestore(&dev->event_lock, flags);
7345
7346 drm_vblank_put(dev, intel_crtc->pipe);
7347 free_work:
7348 kfree(work);
7349
7350 return ret;
7351 }
7352
7353 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7354 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7355 .load_lut = intel_crtc_load_lut,
7356 .disable = intel_crtc_noop,
7357 };
7358
7359 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7360 {
7361 struct intel_encoder *other_encoder;
7362 struct drm_crtc *crtc = &encoder->new_crtc->base;
7363
7364 if (WARN_ON(!crtc))
7365 return false;
7366
7367 list_for_each_entry(other_encoder,
7368 &crtc->dev->mode_config.encoder_list,
7369 base.head) {
7370
7371 if (&other_encoder->new_crtc->base != crtc ||
7372 encoder == other_encoder)
7373 continue;
7374 else
7375 return true;
7376 }
7377
7378 return false;
7379 }
7380
7381 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7382 struct drm_crtc *crtc)
7383 {
7384 struct drm_device *dev;
7385 struct drm_crtc *tmp;
7386 int crtc_mask = 1;
7387
7388 WARN(!crtc, "checking null crtc?\n");
7389
7390 dev = crtc->dev;
7391
7392 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7393 if (tmp == crtc)
7394 break;
7395 crtc_mask <<= 1;
7396 }
7397
7398 if (encoder->possible_crtcs & crtc_mask)
7399 return true;
7400 return false;
7401 }
7402
7403 /**
7404 * intel_modeset_update_staged_output_state
7405 *
7406 * Updates the staged output configuration state, e.g. after we've read out the
7407 * current hw state.
7408 */
7409 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7410 {
7411 struct intel_encoder *encoder;
7412 struct intel_connector *connector;
7413
7414 list_for_each_entry(connector, &dev->mode_config.connector_list,
7415 base.head) {
7416 connector->new_encoder =
7417 to_intel_encoder(connector->base.encoder);
7418 }
7419
7420 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7421 base.head) {
7422 encoder->new_crtc =
7423 to_intel_crtc(encoder->base.crtc);
7424 }
7425 }
7426
7427 /**
7428 * intel_modeset_commit_output_state
7429 *
7430 * This function copies the stage display pipe configuration to the real one.
7431 */
7432 static void intel_modeset_commit_output_state(struct drm_device *dev)
7433 {
7434 struct intel_encoder *encoder;
7435 struct intel_connector *connector;
7436
7437 list_for_each_entry(connector, &dev->mode_config.connector_list,
7438 base.head) {
7439 connector->base.encoder = &connector->new_encoder->base;
7440 }
7441
7442 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7443 base.head) {
7444 encoder->base.crtc = &encoder->new_crtc->base;
7445 }
7446 }
7447
7448 static struct drm_display_mode *
7449 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7450 struct drm_display_mode *mode)
7451 {
7452 struct drm_device *dev = crtc->dev;
7453 struct drm_display_mode *adjusted_mode;
7454 struct drm_encoder_helper_funcs *encoder_funcs;
7455 struct intel_encoder *encoder;
7456
7457 adjusted_mode = drm_mode_duplicate(dev, mode);
7458 if (!adjusted_mode)
7459 return ERR_PTR(-ENOMEM);
7460
7461 /* Pass our mode to the connectors and the CRTC to give them a chance to
7462 * adjust it according to limitations or connector properties, and also
7463 * a chance to reject the mode entirely.
7464 */
7465 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7466 base.head) {
7467
7468 if (&encoder->new_crtc->base != crtc)
7469 continue;
7470 encoder_funcs = encoder->base.helper_private;
7471 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7472 adjusted_mode))) {
7473 DRM_DEBUG_KMS("Encoder fixup failed\n");
7474 goto fail;
7475 }
7476 }
7477
7478 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7479 DRM_DEBUG_KMS("CRTC fixup failed\n");
7480 goto fail;
7481 }
7482 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7483
7484 return adjusted_mode;
7485 fail:
7486 drm_mode_destroy(dev, adjusted_mode);
7487 return ERR_PTR(-EINVAL);
7488 }
7489
7490 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7491 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7492 static void
7493 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7494 unsigned *prepare_pipes, unsigned *disable_pipes)
7495 {
7496 struct intel_crtc *intel_crtc;
7497 struct drm_device *dev = crtc->dev;
7498 struct intel_encoder *encoder;
7499 struct intel_connector *connector;
7500 struct drm_crtc *tmp_crtc;
7501
7502 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7503
7504 /* Check which crtcs have changed outputs connected to them, these need
7505 * to be part of the prepare_pipes mask. We don't (yet) support global
7506 * modeset across multiple crtcs, so modeset_pipes will only have one
7507 * bit set at most. */
7508 list_for_each_entry(connector, &dev->mode_config.connector_list,
7509 base.head) {
7510 if (connector->base.encoder == &connector->new_encoder->base)
7511 continue;
7512
7513 if (connector->base.encoder) {
7514 tmp_crtc = connector->base.encoder->crtc;
7515
7516 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7517 }
7518
7519 if (connector->new_encoder)
7520 *prepare_pipes |=
7521 1 << connector->new_encoder->new_crtc->pipe;
7522 }
7523
7524 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7525 base.head) {
7526 if (encoder->base.crtc == &encoder->new_crtc->base)
7527 continue;
7528
7529 if (encoder->base.crtc) {
7530 tmp_crtc = encoder->base.crtc;
7531
7532 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7533 }
7534
7535 if (encoder->new_crtc)
7536 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7537 }
7538
7539 /* Check for any pipes that will be fully disabled ... */
7540 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7541 base.head) {
7542 bool used = false;
7543
7544 /* Don't try to disable disabled crtcs. */
7545 if (!intel_crtc->base.enabled)
7546 continue;
7547
7548 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7549 base.head) {
7550 if (encoder->new_crtc == intel_crtc)
7551 used = true;
7552 }
7553
7554 if (!used)
7555 *disable_pipes |= 1 << intel_crtc->pipe;
7556 }
7557
7558
7559 /* set_mode is also used to update properties on life display pipes. */
7560 intel_crtc = to_intel_crtc(crtc);
7561 if (crtc->enabled)
7562 *prepare_pipes |= 1 << intel_crtc->pipe;
7563
7564 /* We only support modeset on one single crtc, hence we need to do that
7565 * only for the passed in crtc iff we change anything else than just
7566 * disable crtcs.
7567 *
7568 * This is actually not true, to be fully compatible with the old crtc
7569 * helper we automatically disable _any_ output (i.e. doesn't need to be
7570 * connected to the crtc we're modesetting on) if it's disconnected.
7571 * Which is a rather nutty api (since changed the output configuration
7572 * without userspace's explicit request can lead to confusion), but
7573 * alas. Hence we currently need to modeset on all pipes we prepare. */
7574 if (*prepare_pipes)
7575 *modeset_pipes = *prepare_pipes;
7576
7577 /* ... and mask these out. */
7578 *modeset_pipes &= ~(*disable_pipes);
7579 *prepare_pipes &= ~(*disable_pipes);
7580 }
7581
7582 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7583 {
7584 struct drm_encoder *encoder;
7585 struct drm_device *dev = crtc->dev;
7586
7587 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7588 if (encoder->crtc == crtc)
7589 return true;
7590
7591 return false;
7592 }
7593
7594 static void
7595 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7596 {
7597 struct intel_encoder *intel_encoder;
7598 struct intel_crtc *intel_crtc;
7599 struct drm_connector *connector;
7600
7601 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7602 base.head) {
7603 if (!intel_encoder->base.crtc)
7604 continue;
7605
7606 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7607
7608 if (prepare_pipes & (1 << intel_crtc->pipe))
7609 intel_encoder->connectors_active = false;
7610 }
7611
7612 intel_modeset_commit_output_state(dev);
7613
7614 /* Update computed state. */
7615 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7616 base.head) {
7617 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7618 }
7619
7620 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7621 if (!connector->encoder || !connector->encoder->crtc)
7622 continue;
7623
7624 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7625
7626 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7627 struct drm_property *dpms_property =
7628 dev->mode_config.dpms_property;
7629
7630 connector->dpms = DRM_MODE_DPMS_ON;
7631 drm_connector_property_set_value(connector,
7632 dpms_property,
7633 DRM_MODE_DPMS_ON);
7634
7635 intel_encoder = to_intel_encoder(connector->encoder);
7636 intel_encoder->connectors_active = true;
7637 }
7638 }
7639
7640 }
7641
7642 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7643 list_for_each_entry((intel_crtc), \
7644 &(dev)->mode_config.crtc_list, \
7645 base.head) \
7646 if (mask & (1 <<(intel_crtc)->pipe)) \
7647
7648 void
7649 intel_modeset_check_state(struct drm_device *dev)
7650 {
7651 struct intel_crtc *crtc;
7652 struct intel_encoder *encoder;
7653 struct intel_connector *connector;
7654
7655 list_for_each_entry(connector, &dev->mode_config.connector_list,
7656 base.head) {
7657 /* This also checks the encoder/connector hw state with the
7658 * ->get_hw_state callbacks. */
7659 intel_connector_check_state(connector);
7660
7661 WARN(&connector->new_encoder->base != connector->base.encoder,
7662 "connector's staged encoder doesn't match current encoder\n");
7663 }
7664
7665 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7666 base.head) {
7667 bool enabled = false;
7668 bool active = false;
7669 enum pipe pipe, tracked_pipe;
7670
7671 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7672 encoder->base.base.id,
7673 drm_get_encoder_name(&encoder->base));
7674
7675 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7676 "encoder's stage crtc doesn't match current crtc\n");
7677 WARN(encoder->connectors_active && !encoder->base.crtc,
7678 "encoder's active_connectors set, but no crtc\n");
7679
7680 list_for_each_entry(connector, &dev->mode_config.connector_list,
7681 base.head) {
7682 if (connector->base.encoder != &encoder->base)
7683 continue;
7684 enabled = true;
7685 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7686 active = true;
7687 }
7688 WARN(!!encoder->base.crtc != enabled,
7689 "encoder's enabled state mismatch "
7690 "(expected %i, found %i)\n",
7691 !!encoder->base.crtc, enabled);
7692 WARN(active && !encoder->base.crtc,
7693 "active encoder with no crtc\n");
7694
7695 WARN(encoder->connectors_active != active,
7696 "encoder's computed active state doesn't match tracked active state "
7697 "(expected %i, found %i)\n", active, encoder->connectors_active);
7698
7699 active = encoder->get_hw_state(encoder, &pipe);
7700 WARN(active != encoder->connectors_active,
7701 "encoder's hw state doesn't match sw tracking "
7702 "(expected %i, found %i)\n",
7703 encoder->connectors_active, active);
7704
7705 if (!encoder->base.crtc)
7706 continue;
7707
7708 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7709 WARN(active && pipe != tracked_pipe,
7710 "active encoder's pipe doesn't match"
7711 "(expected %i, found %i)\n",
7712 tracked_pipe, pipe);
7713
7714 }
7715
7716 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7717 base.head) {
7718 bool enabled = false;
7719 bool active = false;
7720
7721 DRM_DEBUG_KMS("[CRTC:%d]\n",
7722 crtc->base.base.id);
7723
7724 WARN(crtc->active && !crtc->base.enabled,
7725 "active crtc, but not enabled in sw tracking\n");
7726
7727 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7728 base.head) {
7729 if (encoder->base.crtc != &crtc->base)
7730 continue;
7731 enabled = true;
7732 if (encoder->connectors_active)
7733 active = true;
7734 }
7735 WARN(active != crtc->active,
7736 "crtc's computed active state doesn't match tracked active state "
7737 "(expected %i, found %i)\n", active, crtc->active);
7738 WARN(enabled != crtc->base.enabled,
7739 "crtc's computed enabled state doesn't match tracked enabled state "
7740 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7741
7742 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7743 }
7744 }
7745
7746 bool intel_set_mode(struct drm_crtc *crtc,
7747 struct drm_display_mode *mode,
7748 int x, int y, struct drm_framebuffer *fb)
7749 {
7750 struct drm_device *dev = crtc->dev;
7751 drm_i915_private_t *dev_priv = dev->dev_private;
7752 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7753 struct intel_crtc *intel_crtc;
7754 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7755 bool ret = true;
7756
7757 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7758 &prepare_pipes, &disable_pipes);
7759
7760 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7761 modeset_pipes, prepare_pipes, disable_pipes);
7762
7763 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7764 intel_crtc_disable(&intel_crtc->base);
7765
7766 saved_hwmode = crtc->hwmode;
7767 saved_mode = crtc->mode;
7768
7769 /* Hack: Because we don't (yet) support global modeset on multiple
7770 * crtcs, we don't keep track of the new mode for more than one crtc.
7771 * Hence simply check whether any bit is set in modeset_pipes in all the
7772 * pieces of code that are not yet converted to deal with mutliple crtcs
7773 * changing their mode at the same time. */
7774 adjusted_mode = NULL;
7775 if (modeset_pipes) {
7776 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7777 if (IS_ERR(adjusted_mode)) {
7778 return false;
7779 }
7780 }
7781
7782 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7783 if (intel_crtc->base.enabled)
7784 dev_priv->display.crtc_disable(&intel_crtc->base);
7785 }
7786
7787 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7788 * to set it here already despite that we pass it down the callchain.
7789 */
7790 if (modeset_pipes)
7791 crtc->mode = *mode;
7792
7793 /* Only after disabling all output pipelines that will be changed can we
7794 * update the the output configuration. */
7795 intel_modeset_update_state(dev, prepare_pipes);
7796
7797 if (dev_priv->display.modeset_global_resources)
7798 dev_priv->display.modeset_global_resources(dev);
7799
7800 /* Set up the DPLL and any encoders state that needs to adjust or depend
7801 * on the DPLL.
7802 */
7803 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7804 ret = !intel_crtc_mode_set(&intel_crtc->base,
7805 mode, adjusted_mode,
7806 x, y, fb);
7807 if (!ret)
7808 goto done;
7809 }
7810
7811 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7812 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7813 dev_priv->display.crtc_enable(&intel_crtc->base);
7814
7815 if (modeset_pipes) {
7816 /* Store real post-adjustment hardware mode. */
7817 crtc->hwmode = *adjusted_mode;
7818
7819 /* Calculate and store various constants which
7820 * are later needed by vblank and swap-completion
7821 * timestamping. They are derived from true hwmode.
7822 */
7823 drm_calc_timestamping_constants(crtc);
7824 }
7825
7826 /* FIXME: add subpixel order */
7827 done:
7828 drm_mode_destroy(dev, adjusted_mode);
7829 if (!ret && crtc->enabled) {
7830 crtc->hwmode = saved_hwmode;
7831 crtc->mode = saved_mode;
7832 } else {
7833 intel_modeset_check_state(dev);
7834 }
7835
7836 return ret;
7837 }
7838
7839 #undef for_each_intel_crtc_masked
7840
7841 static void intel_set_config_free(struct intel_set_config *config)
7842 {
7843 if (!config)
7844 return;
7845
7846 kfree(config->save_connector_encoders);
7847 kfree(config->save_encoder_crtcs);
7848 kfree(config);
7849 }
7850
7851 static int intel_set_config_save_state(struct drm_device *dev,
7852 struct intel_set_config *config)
7853 {
7854 struct drm_encoder *encoder;
7855 struct drm_connector *connector;
7856 int count;
7857
7858 config->save_encoder_crtcs =
7859 kcalloc(dev->mode_config.num_encoder,
7860 sizeof(struct drm_crtc *), GFP_KERNEL);
7861 if (!config->save_encoder_crtcs)
7862 return -ENOMEM;
7863
7864 config->save_connector_encoders =
7865 kcalloc(dev->mode_config.num_connector,
7866 sizeof(struct drm_encoder *), GFP_KERNEL);
7867 if (!config->save_connector_encoders)
7868 return -ENOMEM;
7869
7870 /* Copy data. Note that driver private data is not affected.
7871 * Should anything bad happen only the expected state is
7872 * restored, not the drivers personal bookkeeping.
7873 */
7874 count = 0;
7875 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7876 config->save_encoder_crtcs[count++] = encoder->crtc;
7877 }
7878
7879 count = 0;
7880 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7881 config->save_connector_encoders[count++] = connector->encoder;
7882 }
7883
7884 return 0;
7885 }
7886
7887 static void intel_set_config_restore_state(struct drm_device *dev,
7888 struct intel_set_config *config)
7889 {
7890 struct intel_encoder *encoder;
7891 struct intel_connector *connector;
7892 int count;
7893
7894 count = 0;
7895 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7896 encoder->new_crtc =
7897 to_intel_crtc(config->save_encoder_crtcs[count++]);
7898 }
7899
7900 count = 0;
7901 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7902 connector->new_encoder =
7903 to_intel_encoder(config->save_connector_encoders[count++]);
7904 }
7905 }
7906
7907 static void
7908 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7909 struct intel_set_config *config)
7910 {
7911
7912 /* We should be able to check here if the fb has the same properties
7913 * and then just flip_or_move it */
7914 if (set->crtc->fb != set->fb) {
7915 /* If we have no fb then treat it as a full mode set */
7916 if (set->crtc->fb == NULL) {
7917 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7918 config->mode_changed = true;
7919 } else if (set->fb == NULL) {
7920 config->mode_changed = true;
7921 } else if (set->fb->depth != set->crtc->fb->depth) {
7922 config->mode_changed = true;
7923 } else if (set->fb->bits_per_pixel !=
7924 set->crtc->fb->bits_per_pixel) {
7925 config->mode_changed = true;
7926 } else
7927 config->fb_changed = true;
7928 }
7929
7930 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7931 config->fb_changed = true;
7932
7933 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7934 DRM_DEBUG_KMS("modes are different, full mode set\n");
7935 drm_mode_debug_printmodeline(&set->crtc->mode);
7936 drm_mode_debug_printmodeline(set->mode);
7937 config->mode_changed = true;
7938 }
7939 }
7940
7941 static int
7942 intel_modeset_stage_output_state(struct drm_device *dev,
7943 struct drm_mode_set *set,
7944 struct intel_set_config *config)
7945 {
7946 struct drm_crtc *new_crtc;
7947 struct intel_connector *connector;
7948 struct intel_encoder *encoder;
7949 int count, ro;
7950
7951 /* The upper layers ensure that we either disabl a crtc or have a list
7952 * of connectors. For paranoia, double-check this. */
7953 WARN_ON(!set->fb && (set->num_connectors != 0));
7954 WARN_ON(set->fb && (set->num_connectors == 0));
7955
7956 count = 0;
7957 list_for_each_entry(connector, &dev->mode_config.connector_list,
7958 base.head) {
7959 /* Otherwise traverse passed in connector list and get encoders
7960 * for them. */
7961 for (ro = 0; ro < set->num_connectors; ro++) {
7962 if (set->connectors[ro] == &connector->base) {
7963 connector->new_encoder = connector->encoder;
7964 break;
7965 }
7966 }
7967
7968 /* If we disable the crtc, disable all its connectors. Also, if
7969 * the connector is on the changing crtc but not on the new
7970 * connector list, disable it. */
7971 if ((!set->fb || ro == set->num_connectors) &&
7972 connector->base.encoder &&
7973 connector->base.encoder->crtc == set->crtc) {
7974 connector->new_encoder = NULL;
7975
7976 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7977 connector->base.base.id,
7978 drm_get_connector_name(&connector->base));
7979 }
7980
7981
7982 if (&connector->new_encoder->base != connector->base.encoder) {
7983 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7984 config->mode_changed = true;
7985 }
7986
7987 /* Disable all disconnected encoders. */
7988 if (connector->base.status == connector_status_disconnected)
7989 connector->new_encoder = NULL;
7990 }
7991 /* connector->new_encoder is now updated for all connectors. */
7992
7993 /* Update crtc of enabled connectors. */
7994 count = 0;
7995 list_for_each_entry(connector, &dev->mode_config.connector_list,
7996 base.head) {
7997 if (!connector->new_encoder)
7998 continue;
7999
8000 new_crtc = connector->new_encoder->base.crtc;
8001
8002 for (ro = 0; ro < set->num_connectors; ro++) {
8003 if (set->connectors[ro] == &connector->base)
8004 new_crtc = set->crtc;
8005 }
8006
8007 /* Make sure the new CRTC will work with the encoder */
8008 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8009 new_crtc)) {
8010 return -EINVAL;
8011 }
8012 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8013
8014 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8015 connector->base.base.id,
8016 drm_get_connector_name(&connector->base),
8017 new_crtc->base.id);
8018 }
8019
8020 /* Check for any encoders that needs to be disabled. */
8021 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8022 base.head) {
8023 list_for_each_entry(connector,
8024 &dev->mode_config.connector_list,
8025 base.head) {
8026 if (connector->new_encoder == encoder) {
8027 WARN_ON(!connector->new_encoder->new_crtc);
8028
8029 goto next_encoder;
8030 }
8031 }
8032 encoder->new_crtc = NULL;
8033 next_encoder:
8034 /* Only now check for crtc changes so we don't miss encoders
8035 * that will be disabled. */
8036 if (&encoder->new_crtc->base != encoder->base.crtc) {
8037 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8038 config->mode_changed = true;
8039 }
8040 }
8041 /* Now we've also updated encoder->new_crtc for all encoders. */
8042
8043 return 0;
8044 }
8045
8046 static int intel_crtc_set_config(struct drm_mode_set *set)
8047 {
8048 struct drm_device *dev;
8049 struct drm_mode_set save_set;
8050 struct intel_set_config *config;
8051 int ret;
8052
8053 BUG_ON(!set);
8054 BUG_ON(!set->crtc);
8055 BUG_ON(!set->crtc->helper_private);
8056
8057 if (!set->mode)
8058 set->fb = NULL;
8059
8060 /* The fb helper likes to play gross jokes with ->mode_set_config.
8061 * Unfortunately the crtc helper doesn't do much at all for this case,
8062 * so we have to cope with this madness until the fb helper is fixed up. */
8063 if (set->fb && set->num_connectors == 0)
8064 return 0;
8065
8066 if (set->fb) {
8067 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8068 set->crtc->base.id, set->fb->base.id,
8069 (int)set->num_connectors, set->x, set->y);
8070 } else {
8071 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8072 }
8073
8074 dev = set->crtc->dev;
8075
8076 ret = -ENOMEM;
8077 config = kzalloc(sizeof(*config), GFP_KERNEL);
8078 if (!config)
8079 goto out_config;
8080
8081 ret = intel_set_config_save_state(dev, config);
8082 if (ret)
8083 goto out_config;
8084
8085 save_set.crtc = set->crtc;
8086 save_set.mode = &set->crtc->mode;
8087 save_set.x = set->crtc->x;
8088 save_set.y = set->crtc->y;
8089 save_set.fb = set->crtc->fb;
8090
8091 /* Compute whether we need a full modeset, only an fb base update or no
8092 * change at all. In the future we might also check whether only the
8093 * mode changed, e.g. for LVDS where we only change the panel fitter in
8094 * such cases. */
8095 intel_set_config_compute_mode_changes(set, config);
8096
8097 ret = intel_modeset_stage_output_state(dev, set, config);
8098 if (ret)
8099 goto fail;
8100
8101 if (config->mode_changed) {
8102 if (set->mode) {
8103 DRM_DEBUG_KMS("attempting to set mode from"
8104 " userspace\n");
8105 drm_mode_debug_printmodeline(set->mode);
8106 }
8107
8108 if (!intel_set_mode(set->crtc, set->mode,
8109 set->x, set->y, set->fb)) {
8110 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8111 set->crtc->base.id);
8112 ret = -EINVAL;
8113 goto fail;
8114 }
8115 } else if (config->fb_changed) {
8116 ret = intel_pipe_set_base(set->crtc,
8117 set->x, set->y, set->fb);
8118 }
8119
8120 intel_set_config_free(config);
8121
8122 return 0;
8123
8124 fail:
8125 intel_set_config_restore_state(dev, config);
8126
8127 /* Try to restore the config */
8128 if (config->mode_changed &&
8129 !intel_set_mode(save_set.crtc, save_set.mode,
8130 save_set.x, save_set.y, save_set.fb))
8131 DRM_ERROR("failed to restore config after modeset failure\n");
8132
8133 out_config:
8134 intel_set_config_free(config);
8135 return ret;
8136 }
8137
8138 static const struct drm_crtc_funcs intel_crtc_funcs = {
8139 .cursor_set = intel_crtc_cursor_set,
8140 .cursor_move = intel_crtc_cursor_move,
8141 .gamma_set = intel_crtc_gamma_set,
8142 .set_config = intel_crtc_set_config,
8143 .destroy = intel_crtc_destroy,
8144 .page_flip = intel_crtc_page_flip,
8145 };
8146
8147 static void intel_cpu_pll_init(struct drm_device *dev)
8148 {
8149 if (IS_HASWELL(dev))
8150 intel_ddi_pll_init(dev);
8151 }
8152
8153 static void intel_pch_pll_init(struct drm_device *dev)
8154 {
8155 drm_i915_private_t *dev_priv = dev->dev_private;
8156 int i;
8157
8158 if (dev_priv->num_pch_pll == 0) {
8159 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8160 return;
8161 }
8162
8163 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8164 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8165 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8166 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8167 }
8168 }
8169
8170 static void intel_crtc_init(struct drm_device *dev, int pipe)
8171 {
8172 drm_i915_private_t *dev_priv = dev->dev_private;
8173 struct intel_crtc *intel_crtc;
8174 int i;
8175
8176 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8177 if (intel_crtc == NULL)
8178 return;
8179
8180 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8181
8182 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8183 for (i = 0; i < 256; i++) {
8184 intel_crtc->lut_r[i] = i;
8185 intel_crtc->lut_g[i] = i;
8186 intel_crtc->lut_b[i] = i;
8187 }
8188
8189 /* Swap pipes & planes for FBC on pre-965 */
8190 intel_crtc->pipe = pipe;
8191 intel_crtc->plane = pipe;
8192 intel_crtc->cpu_transcoder = pipe;
8193 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8194 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8195 intel_crtc->plane = !pipe;
8196 }
8197
8198 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8199 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8200 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8201 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8202
8203 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8204
8205 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8206 }
8207
8208 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8209 struct drm_file *file)
8210 {
8211 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8212 struct drm_mode_object *drmmode_obj;
8213 struct intel_crtc *crtc;
8214
8215 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8216 return -ENODEV;
8217
8218 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8219 DRM_MODE_OBJECT_CRTC);
8220
8221 if (!drmmode_obj) {
8222 DRM_ERROR("no such CRTC id\n");
8223 return -EINVAL;
8224 }
8225
8226 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8227 pipe_from_crtc_id->pipe = crtc->pipe;
8228
8229 return 0;
8230 }
8231
8232 static int intel_encoder_clones(struct intel_encoder *encoder)
8233 {
8234 struct drm_device *dev = encoder->base.dev;
8235 struct intel_encoder *source_encoder;
8236 int index_mask = 0;
8237 int entry = 0;
8238
8239 list_for_each_entry(source_encoder,
8240 &dev->mode_config.encoder_list, base.head) {
8241
8242 if (encoder == source_encoder)
8243 index_mask |= (1 << entry);
8244
8245 /* Intel hw has only one MUX where enocoders could be cloned. */
8246 if (encoder->cloneable && source_encoder->cloneable)
8247 index_mask |= (1 << entry);
8248
8249 entry++;
8250 }
8251
8252 return index_mask;
8253 }
8254
8255 static bool has_edp_a(struct drm_device *dev)
8256 {
8257 struct drm_i915_private *dev_priv = dev->dev_private;
8258
8259 if (!IS_MOBILE(dev))
8260 return false;
8261
8262 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8263 return false;
8264
8265 if (IS_GEN5(dev) &&
8266 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8267 return false;
8268
8269 return true;
8270 }
8271
8272 static void intel_setup_outputs(struct drm_device *dev)
8273 {
8274 struct drm_i915_private *dev_priv = dev->dev_private;
8275 struct intel_encoder *encoder;
8276 bool dpd_is_edp = false;
8277 bool has_lvds;
8278
8279 has_lvds = intel_lvds_init(dev);
8280 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8281 /* disable the panel fitter on everything but LVDS */
8282 I915_WRITE(PFIT_CONTROL, 0);
8283 }
8284
8285 if (HAS_PCH_SPLIT(dev)) {
8286 dpd_is_edp = intel_dpd_is_edp(dev);
8287
8288 if (has_edp_a(dev))
8289 intel_dp_init(dev, DP_A, PORT_A);
8290
8291 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8292 intel_dp_init(dev, PCH_DP_D, PORT_D);
8293 }
8294
8295 intel_crt_init(dev);
8296
8297 if (IS_HASWELL(dev)) {
8298 int found;
8299
8300 /* Haswell uses DDI functions to detect digital outputs */
8301 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8302 /* DDI A only supports eDP */
8303 if (found)
8304 intel_ddi_init(dev, PORT_A);
8305
8306 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8307 * register */
8308 found = I915_READ(SFUSE_STRAP);
8309
8310 if (found & SFUSE_STRAP_DDIB_DETECTED)
8311 intel_ddi_init(dev, PORT_B);
8312 if (found & SFUSE_STRAP_DDIC_DETECTED)
8313 intel_ddi_init(dev, PORT_C);
8314 if (found & SFUSE_STRAP_DDID_DETECTED)
8315 intel_ddi_init(dev, PORT_D);
8316 } else if (HAS_PCH_SPLIT(dev)) {
8317 int found;
8318
8319 if (I915_READ(HDMIB) & PORT_DETECTED) {
8320 /* PCH SDVOB multiplex with HDMIB */
8321 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8322 if (!found)
8323 intel_hdmi_init(dev, HDMIB, PORT_B);
8324 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8325 intel_dp_init(dev, PCH_DP_B, PORT_B);
8326 }
8327
8328 if (I915_READ(HDMIC) & PORT_DETECTED)
8329 intel_hdmi_init(dev, HDMIC, PORT_C);
8330
8331 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8332 intel_hdmi_init(dev, HDMID, PORT_D);
8333
8334 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8335 intel_dp_init(dev, PCH_DP_C, PORT_C);
8336
8337 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8338 intel_dp_init(dev, PCH_DP_D, PORT_D);
8339 } else if (IS_VALLEYVIEW(dev)) {
8340 int found;
8341
8342 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8343 if (I915_READ(DP_C) & DP_DETECTED)
8344 intel_dp_init(dev, DP_C, PORT_C);
8345
8346 if (I915_READ(SDVOB) & PORT_DETECTED) {
8347 /* SDVOB multiplex with HDMIB */
8348 found = intel_sdvo_init(dev, SDVOB, true);
8349 if (!found)
8350 intel_hdmi_init(dev, SDVOB, PORT_B);
8351 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8352 intel_dp_init(dev, DP_B, PORT_B);
8353 }
8354
8355 if (I915_READ(SDVOC) & PORT_DETECTED)
8356 intel_hdmi_init(dev, SDVOC, PORT_C);
8357
8358 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8359 bool found = false;
8360
8361 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8362 DRM_DEBUG_KMS("probing SDVOB\n");
8363 found = intel_sdvo_init(dev, SDVOB, true);
8364 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8365 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8366 intel_hdmi_init(dev, SDVOB, PORT_B);
8367 }
8368
8369 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8370 DRM_DEBUG_KMS("probing DP_B\n");
8371 intel_dp_init(dev, DP_B, PORT_B);
8372 }
8373 }
8374
8375 /* Before G4X SDVOC doesn't have its own detect register */
8376
8377 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8378 DRM_DEBUG_KMS("probing SDVOC\n");
8379 found = intel_sdvo_init(dev, SDVOC, false);
8380 }
8381
8382 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8383
8384 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8385 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8386 intel_hdmi_init(dev, SDVOC, PORT_C);
8387 }
8388 if (SUPPORTS_INTEGRATED_DP(dev)) {
8389 DRM_DEBUG_KMS("probing DP_C\n");
8390 intel_dp_init(dev, DP_C, PORT_C);
8391 }
8392 }
8393
8394 if (SUPPORTS_INTEGRATED_DP(dev) &&
8395 (I915_READ(DP_D) & DP_DETECTED)) {
8396 DRM_DEBUG_KMS("probing DP_D\n");
8397 intel_dp_init(dev, DP_D, PORT_D);
8398 }
8399 } else if (IS_GEN2(dev))
8400 intel_dvo_init(dev);
8401
8402 if (SUPPORTS_TV(dev))
8403 intel_tv_init(dev);
8404
8405 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8406 encoder->base.possible_crtcs = encoder->crtc_mask;
8407 encoder->base.possible_clones =
8408 intel_encoder_clones(encoder);
8409 }
8410
8411 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8412 ironlake_init_pch_refclk(dev);
8413 }
8414
8415 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8416 {
8417 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8418
8419 drm_framebuffer_cleanup(fb);
8420 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8421
8422 kfree(intel_fb);
8423 }
8424
8425 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8426 struct drm_file *file,
8427 unsigned int *handle)
8428 {
8429 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8430 struct drm_i915_gem_object *obj = intel_fb->obj;
8431
8432 return drm_gem_handle_create(file, &obj->base, handle);
8433 }
8434
8435 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8436 .destroy = intel_user_framebuffer_destroy,
8437 .create_handle = intel_user_framebuffer_create_handle,
8438 };
8439
8440 int intel_framebuffer_init(struct drm_device *dev,
8441 struct intel_framebuffer *intel_fb,
8442 struct drm_mode_fb_cmd2 *mode_cmd,
8443 struct drm_i915_gem_object *obj)
8444 {
8445 int ret;
8446
8447 if (obj->tiling_mode == I915_TILING_Y)
8448 return -EINVAL;
8449
8450 if (mode_cmd->pitches[0] & 63)
8451 return -EINVAL;
8452
8453 /* FIXME <= Gen4 stride limits are bit unclear */
8454 if (mode_cmd->pitches[0] > 32768)
8455 return -EINVAL;
8456
8457 if (obj->tiling_mode != I915_TILING_NONE &&
8458 mode_cmd->pitches[0] != obj->stride)
8459 return -EINVAL;
8460
8461 /* Reject formats not supported by any plane early. */
8462 switch (mode_cmd->pixel_format) {
8463 case DRM_FORMAT_C8:
8464 case DRM_FORMAT_RGB565:
8465 case DRM_FORMAT_XRGB8888:
8466 case DRM_FORMAT_ARGB8888:
8467 break;
8468 case DRM_FORMAT_XRGB1555:
8469 case DRM_FORMAT_ARGB1555:
8470 if (INTEL_INFO(dev)->gen > 3)
8471 return -EINVAL;
8472 break;
8473 case DRM_FORMAT_XBGR8888:
8474 case DRM_FORMAT_ABGR8888:
8475 case DRM_FORMAT_XRGB2101010:
8476 case DRM_FORMAT_ARGB2101010:
8477 case DRM_FORMAT_XBGR2101010:
8478 case DRM_FORMAT_ABGR2101010:
8479 if (INTEL_INFO(dev)->gen < 4)
8480 return -EINVAL;
8481 break;
8482 case DRM_FORMAT_YUYV:
8483 case DRM_FORMAT_UYVY:
8484 case DRM_FORMAT_YVYU:
8485 case DRM_FORMAT_VYUY:
8486 if (INTEL_INFO(dev)->gen < 6)
8487 return -EINVAL;
8488 break;
8489 default:
8490 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8491 return -EINVAL;
8492 }
8493
8494 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8495 if (mode_cmd->offsets[0] != 0)
8496 return -EINVAL;
8497
8498 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8499 if (ret) {
8500 DRM_ERROR("framebuffer init failed %d\n", ret);
8501 return ret;
8502 }
8503
8504 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8505 intel_fb->obj = obj;
8506 return 0;
8507 }
8508
8509 static struct drm_framebuffer *
8510 intel_user_framebuffer_create(struct drm_device *dev,
8511 struct drm_file *filp,
8512 struct drm_mode_fb_cmd2 *mode_cmd)
8513 {
8514 struct drm_i915_gem_object *obj;
8515
8516 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8517 mode_cmd->handles[0]));
8518 if (&obj->base == NULL)
8519 return ERR_PTR(-ENOENT);
8520
8521 return intel_framebuffer_create(dev, mode_cmd, obj);
8522 }
8523
8524 static const struct drm_mode_config_funcs intel_mode_funcs = {
8525 .fb_create = intel_user_framebuffer_create,
8526 .output_poll_changed = intel_fb_output_poll_changed,
8527 };
8528
8529 /* Set up chip specific display functions */
8530 static void intel_init_display(struct drm_device *dev)
8531 {
8532 struct drm_i915_private *dev_priv = dev->dev_private;
8533
8534 /* We always want a DPMS function */
8535 if (IS_HASWELL(dev)) {
8536 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8537 dev_priv->display.crtc_enable = haswell_crtc_enable;
8538 dev_priv->display.crtc_disable = haswell_crtc_disable;
8539 dev_priv->display.off = haswell_crtc_off;
8540 dev_priv->display.update_plane = ironlake_update_plane;
8541 } else if (HAS_PCH_SPLIT(dev)) {
8542 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8543 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8544 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8545 dev_priv->display.off = ironlake_crtc_off;
8546 dev_priv->display.update_plane = ironlake_update_plane;
8547 } else {
8548 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8549 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8550 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8551 dev_priv->display.off = i9xx_crtc_off;
8552 dev_priv->display.update_plane = i9xx_update_plane;
8553 }
8554
8555 /* Returns the core display clock speed */
8556 if (IS_VALLEYVIEW(dev))
8557 dev_priv->display.get_display_clock_speed =
8558 valleyview_get_display_clock_speed;
8559 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8560 dev_priv->display.get_display_clock_speed =
8561 i945_get_display_clock_speed;
8562 else if (IS_I915G(dev))
8563 dev_priv->display.get_display_clock_speed =
8564 i915_get_display_clock_speed;
8565 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8566 dev_priv->display.get_display_clock_speed =
8567 i9xx_misc_get_display_clock_speed;
8568 else if (IS_I915GM(dev))
8569 dev_priv->display.get_display_clock_speed =
8570 i915gm_get_display_clock_speed;
8571 else if (IS_I865G(dev))
8572 dev_priv->display.get_display_clock_speed =
8573 i865_get_display_clock_speed;
8574 else if (IS_I85X(dev))
8575 dev_priv->display.get_display_clock_speed =
8576 i855_get_display_clock_speed;
8577 else /* 852, 830 */
8578 dev_priv->display.get_display_clock_speed =
8579 i830_get_display_clock_speed;
8580
8581 if (HAS_PCH_SPLIT(dev)) {
8582 if (IS_GEN5(dev)) {
8583 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8584 dev_priv->display.write_eld = ironlake_write_eld;
8585 } else if (IS_GEN6(dev)) {
8586 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8587 dev_priv->display.write_eld = ironlake_write_eld;
8588 } else if (IS_IVYBRIDGE(dev)) {
8589 /* FIXME: detect B0+ stepping and use auto training */
8590 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8591 dev_priv->display.write_eld = ironlake_write_eld;
8592 dev_priv->display.modeset_global_resources =
8593 ivb_modeset_global_resources;
8594 } else if (IS_HASWELL(dev)) {
8595 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8596 dev_priv->display.write_eld = haswell_write_eld;
8597 } else
8598 dev_priv->display.update_wm = NULL;
8599 } else if (IS_G4X(dev)) {
8600 dev_priv->display.write_eld = g4x_write_eld;
8601 }
8602
8603 /* Default just returns -ENODEV to indicate unsupported */
8604 dev_priv->display.queue_flip = intel_default_queue_flip;
8605
8606 switch (INTEL_INFO(dev)->gen) {
8607 case 2:
8608 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8609 break;
8610
8611 case 3:
8612 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8613 break;
8614
8615 case 4:
8616 case 5:
8617 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8618 break;
8619
8620 case 6:
8621 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8622 break;
8623 case 7:
8624 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8625 break;
8626 }
8627 }
8628
8629 /*
8630 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8631 * resume, or other times. This quirk makes sure that's the case for
8632 * affected systems.
8633 */
8634 static void quirk_pipea_force(struct drm_device *dev)
8635 {
8636 struct drm_i915_private *dev_priv = dev->dev_private;
8637
8638 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8639 DRM_INFO("applying pipe a force quirk\n");
8640 }
8641
8642 /*
8643 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8644 */
8645 static void quirk_ssc_force_disable(struct drm_device *dev)
8646 {
8647 struct drm_i915_private *dev_priv = dev->dev_private;
8648 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8649 DRM_INFO("applying lvds SSC disable quirk\n");
8650 }
8651
8652 /*
8653 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8654 * brightness value
8655 */
8656 static void quirk_invert_brightness(struct drm_device *dev)
8657 {
8658 struct drm_i915_private *dev_priv = dev->dev_private;
8659 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8660 DRM_INFO("applying inverted panel brightness quirk\n");
8661 }
8662
8663 struct intel_quirk {
8664 int device;
8665 int subsystem_vendor;
8666 int subsystem_device;
8667 void (*hook)(struct drm_device *dev);
8668 };
8669
8670 static struct intel_quirk intel_quirks[] = {
8671 /* HP Mini needs pipe A force quirk (LP: #322104) */
8672 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8673
8674 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8675 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8676
8677 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8678 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8679
8680 /* 830/845 need to leave pipe A & dpll A up */
8681 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8682 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8683
8684 /* Lenovo U160 cannot use SSC on LVDS */
8685 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8686
8687 /* Sony Vaio Y cannot use SSC on LVDS */
8688 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8689
8690 /* Acer Aspire 5734Z must invert backlight brightness */
8691 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8692 };
8693
8694 static void intel_init_quirks(struct drm_device *dev)
8695 {
8696 struct pci_dev *d = dev->pdev;
8697 int i;
8698
8699 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8700 struct intel_quirk *q = &intel_quirks[i];
8701
8702 if (d->device == q->device &&
8703 (d->subsystem_vendor == q->subsystem_vendor ||
8704 q->subsystem_vendor == PCI_ANY_ID) &&
8705 (d->subsystem_device == q->subsystem_device ||
8706 q->subsystem_device == PCI_ANY_ID))
8707 q->hook(dev);
8708 }
8709 }
8710
8711 /* Disable the VGA plane that we never use */
8712 static void i915_disable_vga(struct drm_device *dev)
8713 {
8714 struct drm_i915_private *dev_priv = dev->dev_private;
8715 u8 sr1;
8716 u32 vga_reg;
8717
8718 if (HAS_PCH_SPLIT(dev))
8719 vga_reg = CPU_VGACNTRL;
8720 else
8721 vga_reg = VGACNTRL;
8722
8723 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8724 outb(SR01, VGA_SR_INDEX);
8725 sr1 = inb(VGA_SR_DATA);
8726 outb(sr1 | 1<<5, VGA_SR_DATA);
8727 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8728 udelay(300);
8729
8730 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8731 POSTING_READ(vga_reg);
8732 }
8733
8734 void intel_modeset_init_hw(struct drm_device *dev)
8735 {
8736 /* We attempt to init the necessary power wells early in the initialization
8737 * time, so the subsystems that expect power to be enabled can work.
8738 */
8739 intel_init_power_wells(dev);
8740
8741 intel_prepare_ddi(dev);
8742
8743 intel_init_clock_gating(dev);
8744
8745 mutex_lock(&dev->struct_mutex);
8746 intel_enable_gt_powersave(dev);
8747 mutex_unlock(&dev->struct_mutex);
8748 }
8749
8750 void intel_modeset_init(struct drm_device *dev)
8751 {
8752 struct drm_i915_private *dev_priv = dev->dev_private;
8753 int i, ret;
8754
8755 drm_mode_config_init(dev);
8756
8757 dev->mode_config.min_width = 0;
8758 dev->mode_config.min_height = 0;
8759
8760 dev->mode_config.preferred_depth = 24;
8761 dev->mode_config.prefer_shadow = 1;
8762
8763 dev->mode_config.funcs = &intel_mode_funcs;
8764
8765 intel_init_quirks(dev);
8766
8767 intel_init_pm(dev);
8768
8769 intel_init_display(dev);
8770
8771 if (IS_GEN2(dev)) {
8772 dev->mode_config.max_width = 2048;
8773 dev->mode_config.max_height = 2048;
8774 } else if (IS_GEN3(dev)) {
8775 dev->mode_config.max_width = 4096;
8776 dev->mode_config.max_height = 4096;
8777 } else {
8778 dev->mode_config.max_width = 8192;
8779 dev->mode_config.max_height = 8192;
8780 }
8781 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8782
8783 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8784 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8785
8786 for (i = 0; i < dev_priv->num_pipe; i++) {
8787 intel_crtc_init(dev, i);
8788 ret = intel_plane_init(dev, i);
8789 if (ret)
8790 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8791 }
8792
8793 intel_cpu_pll_init(dev);
8794 intel_pch_pll_init(dev);
8795
8796 /* Just disable it once at startup */
8797 i915_disable_vga(dev);
8798 intel_setup_outputs(dev);
8799 }
8800
8801 static void
8802 intel_connector_break_all_links(struct intel_connector *connector)
8803 {
8804 connector->base.dpms = DRM_MODE_DPMS_OFF;
8805 connector->base.encoder = NULL;
8806 connector->encoder->connectors_active = false;
8807 connector->encoder->base.crtc = NULL;
8808 }
8809
8810 static void intel_enable_pipe_a(struct drm_device *dev)
8811 {
8812 struct intel_connector *connector;
8813 struct drm_connector *crt = NULL;
8814 struct intel_load_detect_pipe load_detect_temp;
8815
8816 /* We can't just switch on the pipe A, we need to set things up with a
8817 * proper mode and output configuration. As a gross hack, enable pipe A
8818 * by enabling the load detect pipe once. */
8819 list_for_each_entry(connector,
8820 &dev->mode_config.connector_list,
8821 base.head) {
8822 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8823 crt = &connector->base;
8824 break;
8825 }
8826 }
8827
8828 if (!crt)
8829 return;
8830
8831 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8832 intel_release_load_detect_pipe(crt, &load_detect_temp);
8833
8834
8835 }
8836
8837 static bool
8838 intel_check_plane_mapping(struct intel_crtc *crtc)
8839 {
8840 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8841 u32 reg, val;
8842
8843 if (dev_priv->num_pipe == 1)
8844 return true;
8845
8846 reg = DSPCNTR(!crtc->plane);
8847 val = I915_READ(reg);
8848
8849 if ((val & DISPLAY_PLANE_ENABLE) &&
8850 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8851 return false;
8852
8853 return true;
8854 }
8855
8856 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8857 {
8858 struct drm_device *dev = crtc->base.dev;
8859 struct drm_i915_private *dev_priv = dev->dev_private;
8860 u32 reg;
8861
8862 /* Clear any frame start delays used for debugging left by the BIOS */
8863 reg = PIPECONF(crtc->cpu_transcoder);
8864 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8865
8866 /* We need to sanitize the plane -> pipe mapping first because this will
8867 * disable the crtc (and hence change the state) if it is wrong. Note
8868 * that gen4+ has a fixed plane -> pipe mapping. */
8869 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8870 struct intel_connector *connector;
8871 bool plane;
8872
8873 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8874 crtc->base.base.id);
8875
8876 /* Pipe has the wrong plane attached and the plane is active.
8877 * Temporarily change the plane mapping and disable everything
8878 * ... */
8879 plane = crtc->plane;
8880 crtc->plane = !plane;
8881 dev_priv->display.crtc_disable(&crtc->base);
8882 crtc->plane = plane;
8883
8884 /* ... and break all links. */
8885 list_for_each_entry(connector, &dev->mode_config.connector_list,
8886 base.head) {
8887 if (connector->encoder->base.crtc != &crtc->base)
8888 continue;
8889
8890 intel_connector_break_all_links(connector);
8891 }
8892
8893 WARN_ON(crtc->active);
8894 crtc->base.enabled = false;
8895 }
8896
8897 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8898 crtc->pipe == PIPE_A && !crtc->active) {
8899 /* BIOS forgot to enable pipe A, this mostly happens after
8900 * resume. Force-enable the pipe to fix this, the update_dpms
8901 * call below we restore the pipe to the right state, but leave
8902 * the required bits on. */
8903 intel_enable_pipe_a(dev);
8904 }
8905
8906 /* Adjust the state of the output pipe according to whether we
8907 * have active connectors/encoders. */
8908 intel_crtc_update_dpms(&crtc->base);
8909
8910 if (crtc->active != crtc->base.enabled) {
8911 struct intel_encoder *encoder;
8912
8913 /* This can happen either due to bugs in the get_hw_state
8914 * functions or because the pipe is force-enabled due to the
8915 * pipe A quirk. */
8916 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8917 crtc->base.base.id,
8918 crtc->base.enabled ? "enabled" : "disabled",
8919 crtc->active ? "enabled" : "disabled");
8920
8921 crtc->base.enabled = crtc->active;
8922
8923 /* Because we only establish the connector -> encoder ->
8924 * crtc links if something is active, this means the
8925 * crtc is now deactivated. Break the links. connector
8926 * -> encoder links are only establish when things are
8927 * actually up, hence no need to break them. */
8928 WARN_ON(crtc->active);
8929
8930 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8931 WARN_ON(encoder->connectors_active);
8932 encoder->base.crtc = NULL;
8933 }
8934 }
8935 }
8936
8937 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8938 {
8939 struct intel_connector *connector;
8940 struct drm_device *dev = encoder->base.dev;
8941
8942 /* We need to check both for a crtc link (meaning that the
8943 * encoder is active and trying to read from a pipe) and the
8944 * pipe itself being active. */
8945 bool has_active_crtc = encoder->base.crtc &&
8946 to_intel_crtc(encoder->base.crtc)->active;
8947
8948 if (encoder->connectors_active && !has_active_crtc) {
8949 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8950 encoder->base.base.id,
8951 drm_get_encoder_name(&encoder->base));
8952
8953 /* Connector is active, but has no active pipe. This is
8954 * fallout from our resume register restoring. Disable
8955 * the encoder manually again. */
8956 if (encoder->base.crtc) {
8957 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8958 encoder->base.base.id,
8959 drm_get_encoder_name(&encoder->base));
8960 encoder->disable(encoder);
8961 }
8962
8963 /* Inconsistent output/port/pipe state happens presumably due to
8964 * a bug in one of the get_hw_state functions. Or someplace else
8965 * in our code, like the register restore mess on resume. Clamp
8966 * things to off as a safer default. */
8967 list_for_each_entry(connector,
8968 &dev->mode_config.connector_list,
8969 base.head) {
8970 if (connector->encoder != encoder)
8971 continue;
8972
8973 intel_connector_break_all_links(connector);
8974 }
8975 }
8976 /* Enabled encoders without active connectors will be fixed in
8977 * the crtc fixup. */
8978 }
8979
8980 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8981 * and i915 state tracking structures. */
8982 void intel_modeset_setup_hw_state(struct drm_device *dev)
8983 {
8984 struct drm_i915_private *dev_priv = dev->dev_private;
8985 enum pipe pipe;
8986 u32 tmp;
8987 struct intel_crtc *crtc;
8988 struct intel_encoder *encoder;
8989 struct intel_connector *connector;
8990
8991 if (IS_HASWELL(dev)) {
8992 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8993
8994 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8995 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8996 case TRANS_DDI_EDP_INPUT_A_ON:
8997 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8998 pipe = PIPE_A;
8999 break;
9000 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9001 pipe = PIPE_B;
9002 break;
9003 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9004 pipe = PIPE_C;
9005 break;
9006 }
9007
9008 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9009 crtc->cpu_transcoder = TRANSCODER_EDP;
9010
9011 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9012 pipe_name(pipe));
9013 }
9014 }
9015
9016 for_each_pipe(pipe) {
9017 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9018
9019 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9020 if (tmp & PIPECONF_ENABLE)
9021 crtc->active = true;
9022 else
9023 crtc->active = false;
9024
9025 crtc->base.enabled = crtc->active;
9026
9027 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9028 crtc->base.base.id,
9029 crtc->active ? "enabled" : "disabled");
9030 }
9031
9032 if (IS_HASWELL(dev))
9033 intel_ddi_setup_hw_pll_state(dev);
9034
9035 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9036 base.head) {
9037 pipe = 0;
9038
9039 if (encoder->get_hw_state(encoder, &pipe)) {
9040 encoder->base.crtc =
9041 dev_priv->pipe_to_crtc_mapping[pipe];
9042 } else {
9043 encoder->base.crtc = NULL;
9044 }
9045
9046 encoder->connectors_active = false;
9047 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9048 encoder->base.base.id,
9049 drm_get_encoder_name(&encoder->base),
9050 encoder->base.crtc ? "enabled" : "disabled",
9051 pipe);
9052 }
9053
9054 list_for_each_entry(connector, &dev->mode_config.connector_list,
9055 base.head) {
9056 if (connector->get_hw_state(connector)) {
9057 connector->base.dpms = DRM_MODE_DPMS_ON;
9058 connector->encoder->connectors_active = true;
9059 connector->base.encoder = &connector->encoder->base;
9060 } else {
9061 connector->base.dpms = DRM_MODE_DPMS_OFF;
9062 connector->base.encoder = NULL;
9063 }
9064 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9065 connector->base.base.id,
9066 drm_get_connector_name(&connector->base),
9067 connector->base.encoder ? "enabled" : "disabled");
9068 }
9069
9070 /* HW state is read out, now we need to sanitize this mess. */
9071 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9072 base.head) {
9073 intel_sanitize_encoder(encoder);
9074 }
9075
9076 for_each_pipe(pipe) {
9077 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9078 intel_sanitize_crtc(crtc);
9079 }
9080
9081 intel_modeset_update_staged_output_state(dev);
9082
9083 intel_modeset_check_state(dev);
9084
9085 drm_mode_config_reset(dev);
9086 }
9087
9088 void intel_modeset_gem_init(struct drm_device *dev)
9089 {
9090 intel_modeset_init_hw(dev);
9091
9092 intel_setup_overlay(dev);
9093
9094 intel_modeset_setup_hw_state(dev);
9095 }
9096
9097 void intel_modeset_cleanup(struct drm_device *dev)
9098 {
9099 struct drm_i915_private *dev_priv = dev->dev_private;
9100 struct drm_crtc *crtc;
9101 struct intel_crtc *intel_crtc;
9102
9103 drm_kms_helper_poll_fini(dev);
9104 mutex_lock(&dev->struct_mutex);
9105
9106 intel_unregister_dsm_handler();
9107
9108
9109 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9110 /* Skip inactive CRTCs */
9111 if (!crtc->fb)
9112 continue;
9113
9114 intel_crtc = to_intel_crtc(crtc);
9115 intel_increase_pllclock(crtc);
9116 }
9117
9118 intel_disable_fbc(dev);
9119
9120 intel_disable_gt_powersave(dev);
9121
9122 ironlake_teardown_rc6(dev);
9123
9124 if (IS_VALLEYVIEW(dev))
9125 vlv_init_dpio(dev);
9126
9127 mutex_unlock(&dev->struct_mutex);
9128
9129 /* Disable the irq before mode object teardown, for the irq might
9130 * enqueue unpin/hotplug work. */
9131 drm_irq_uninstall(dev);
9132 cancel_work_sync(&dev_priv->hotplug_work);
9133 cancel_work_sync(&dev_priv->rps.work);
9134
9135 /* flush any delayed tasks or pending work */
9136 flush_scheduled_work();
9137
9138 drm_mode_config_cleanup(dev);
9139 }
9140
9141 /*
9142 * Return which encoder is currently attached for connector.
9143 */
9144 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9145 {
9146 return &intel_attached_encoder(connector)->base;
9147 }
9148
9149 void intel_connector_attach_encoder(struct intel_connector *connector,
9150 struct intel_encoder *encoder)
9151 {
9152 connector->encoder = encoder;
9153 drm_mode_connector_attach_encoder(&connector->base,
9154 &encoder->base);
9155 }
9156
9157 /*
9158 * set vga decode state - true == enable VGA decode
9159 */
9160 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9161 {
9162 struct drm_i915_private *dev_priv = dev->dev_private;
9163 u16 gmch_ctrl;
9164
9165 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9166 if (state)
9167 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9168 else
9169 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9170 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9171 return 0;
9172 }
9173
9174 #ifdef CONFIG_DEBUG_FS
9175 #include <linux/seq_file.h>
9176
9177 struct intel_display_error_state {
9178 struct intel_cursor_error_state {
9179 u32 control;
9180 u32 position;
9181 u32 base;
9182 u32 size;
9183 } cursor[I915_MAX_PIPES];
9184
9185 struct intel_pipe_error_state {
9186 u32 conf;
9187 u32 source;
9188
9189 u32 htotal;
9190 u32 hblank;
9191 u32 hsync;
9192 u32 vtotal;
9193 u32 vblank;
9194 u32 vsync;
9195 } pipe[I915_MAX_PIPES];
9196
9197 struct intel_plane_error_state {
9198 u32 control;
9199 u32 stride;
9200 u32 size;
9201 u32 pos;
9202 u32 addr;
9203 u32 surface;
9204 u32 tile_offset;
9205 } plane[I915_MAX_PIPES];
9206 };
9207
9208 struct intel_display_error_state *
9209 intel_display_capture_error_state(struct drm_device *dev)
9210 {
9211 drm_i915_private_t *dev_priv = dev->dev_private;
9212 struct intel_display_error_state *error;
9213 enum transcoder cpu_transcoder;
9214 int i;
9215
9216 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9217 if (error == NULL)
9218 return NULL;
9219
9220 for_each_pipe(i) {
9221 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9222
9223 error->cursor[i].control = I915_READ(CURCNTR(i));
9224 error->cursor[i].position = I915_READ(CURPOS(i));
9225 error->cursor[i].base = I915_READ(CURBASE(i));
9226
9227 error->plane[i].control = I915_READ(DSPCNTR(i));
9228 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9229 error->plane[i].size = I915_READ(DSPSIZE(i));
9230 error->plane[i].pos = I915_READ(DSPPOS(i));
9231 error->plane[i].addr = I915_READ(DSPADDR(i));
9232 if (INTEL_INFO(dev)->gen >= 4) {
9233 error->plane[i].surface = I915_READ(DSPSURF(i));
9234 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9235 }
9236
9237 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9238 error->pipe[i].source = I915_READ(PIPESRC(i));
9239 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9240 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9241 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9242 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9243 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9244 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9245 }
9246
9247 return error;
9248 }
9249
9250 void
9251 intel_display_print_error_state(struct seq_file *m,
9252 struct drm_device *dev,
9253 struct intel_display_error_state *error)
9254 {
9255 drm_i915_private_t *dev_priv = dev->dev_private;
9256 int i;
9257
9258 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9259 for_each_pipe(i) {
9260 seq_printf(m, "Pipe [%d]:\n", i);
9261 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9262 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9263 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9264 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9265 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9266 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9267 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9268 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9269
9270 seq_printf(m, "Plane [%d]:\n", i);
9271 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9272 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9273 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9274 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9275 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9276 if (INTEL_INFO(dev)->gen >= 4) {
9277 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9278 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9279 }
9280
9281 seq_printf(m, "Cursor [%d]:\n", i);
9282 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9283 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9284 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9285 }
9286 }
9287 #endif
This page took 0.230831 seconds and 6 git commands to generate.