drm/i915: Don't use crtc->plane in ILK+ get_config()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <drm/drm_plane_helper.h>
43 #include <drm/drm_rect.h>
44 #include <linux/dma_remapping.h>
45
46 /* Primary plane formats supported by all gen */
47 #define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53 /* Primary plane formats for gen <= 3 */
54 static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69 };
70
71 /* Cursor formats */
72 static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74 };
75
76 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
77
78 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
79 struct intel_crtc_state *pipe_config);
80 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82
83 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
84 int x, int y, struct drm_framebuffer *old_fb);
85 static int intel_framebuffer_init(struct drm_device *dev,
86 struct intel_framebuffer *ifb,
87 struct drm_mode_fb_cmd2 *mode_cmd,
88 struct drm_i915_gem_object *obj);
89 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
90 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
91 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
92 struct intel_link_m_n *m_n,
93 struct intel_link_m_n *m2_n2);
94 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
95 static void haswell_set_pipeconf(struct drm_crtc *crtc);
96 static void intel_set_pipe_csc(struct drm_crtc *crtc);
97 static void vlv_prepare_pll(struct intel_crtc *crtc,
98 const struct intel_crtc_state *pipe_config);
99 static void chv_prepare_pll(struct intel_crtc *crtc,
100 const struct intel_crtc_state *pipe_config);
101 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
102 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
103
104 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105 {
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110 }
111
112 typedef struct {
113 int min, max;
114 } intel_range_t;
115
116 typedef struct {
117 int dot_limit;
118 int p2_slow, p2_fast;
119 } intel_p2_t;
120
121 typedef struct intel_limit intel_limit_t;
122 struct intel_limit {
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
125 };
126
127 int
128 intel_pch_rawclk(struct drm_device *dev)
129 {
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135 }
136
137 static inline u32 /* units of 100MHz */
138 intel_fdi_link_freq(struct drm_device *dev)
139 {
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
145 }
146
147 static const intel_limit_t intel_limits_i8xx_dac = {
148 .dot = { .min = 25000, .max = 350000 },
149 .vco = { .min = 908000, .max = 1512000 },
150 .n = { .min = 2, .max = 16 },
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
158 };
159
160 static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
162 .vco = { .min = 908000, .max = 1512000 },
163 .n = { .min = 2, .max = 16 },
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_lvds = {
174 .dot = { .min = 25000, .max = 350000 },
175 .vco = { .min = 908000, .max = 1512000 },
176 .n = { .min = 2, .max = 16 },
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
184 };
185
186 static const intel_limit_t intel_limits_i9xx_sdvo = {
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_lvds = {
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
210 };
211
212
213 static const intel_limit_t intel_limits_g4x_sdvo = {
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
225 },
226 };
227
228 static const intel_limit_t intel_limits_g4x_hdmi = {
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
239 };
240
241 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
252 },
253 };
254
255 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
266 },
267 };
268
269 static const intel_limit_t intel_limits_pineview_sdvo = {
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
272 /* Pineview's Ncounter is a ring counter */
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
275 /* Pineview only has one combined m divider, which we treat as m2. */
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
282 };
283
284 static const intel_limit_t intel_limits_pineview_lvds = {
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
295 };
296
297 /* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
302 static const intel_limit_t intel_limits_ironlake_dac = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const intel_limit_t intel_limits_ironlake_single_lvds = {
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
339 };
340
341 /* LVDS 100mhz refclk limits. */
342 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
350 .p1 = { .min = 2, .max = 8 },
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
353 };
354
355 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
363 .p1 = { .min = 2, .max = 6 },
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
366 };
367
368 static const intel_limit_t intel_limits_vlv = {
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
376 .vco = { .min = 4000000, .max = 6000000 },
377 .n = { .min = 1, .max = 7 },
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
380 .p1 = { .min = 2, .max = 3 },
381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
382 };
383
384 static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398 };
399
400 static void vlv_clock(int refclk, intel_clock_t *clock)
401 {
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
408 }
409
410 /**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
413 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
414 {
415 struct drm_device *dev = crtc->base.dev;
416 struct intel_encoder *encoder;
417
418 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
419 if (encoder->type == type)
420 return true;
421
422 return false;
423 }
424
425 /**
426 * Returns whether any output on the specified pipe will have the specified
427 * type after a staged modeset is complete, i.e., the same as
428 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
429 * encoder->crtc.
430 */
431 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
432 {
433 struct drm_device *dev = crtc->base.dev;
434 struct intel_encoder *encoder;
435
436 for_each_intel_encoder(dev, encoder)
437 if (encoder->new_crtc == crtc && encoder->type == type)
438 return true;
439
440 return false;
441 }
442
443 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
444 int refclk)
445 {
446 struct drm_device *dev = crtc->base.dev;
447 const intel_limit_t *limit;
448
449 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
450 if (intel_is_dual_link_lvds(dev)) {
451 if (refclk == 100000)
452 limit = &intel_limits_ironlake_dual_lvds_100m;
453 else
454 limit = &intel_limits_ironlake_dual_lvds;
455 } else {
456 if (refclk == 100000)
457 limit = &intel_limits_ironlake_single_lvds_100m;
458 else
459 limit = &intel_limits_ironlake_single_lvds;
460 }
461 } else
462 limit = &intel_limits_ironlake_dac;
463
464 return limit;
465 }
466
467 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
468 {
469 struct drm_device *dev = crtc->base.dev;
470 const intel_limit_t *limit;
471
472 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
473 if (intel_is_dual_link_lvds(dev))
474 limit = &intel_limits_g4x_dual_channel_lvds;
475 else
476 limit = &intel_limits_g4x_single_channel_lvds;
477 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
478 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
479 limit = &intel_limits_g4x_hdmi;
480 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
481 limit = &intel_limits_g4x_sdvo;
482 } else /* The option is for other outputs */
483 limit = &intel_limits_i9xx_sdvo;
484
485 return limit;
486 }
487
488 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
489 {
490 struct drm_device *dev = crtc->base.dev;
491 const intel_limit_t *limit;
492
493 if (HAS_PCH_SPLIT(dev))
494 limit = intel_ironlake_limit(crtc, refclk);
495 else if (IS_G4X(dev)) {
496 limit = intel_g4x_limit(crtc);
497 } else if (IS_PINEVIEW(dev)) {
498 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
499 limit = &intel_limits_pineview_lvds;
500 else
501 limit = &intel_limits_pineview_sdvo;
502 } else if (IS_CHERRYVIEW(dev)) {
503 limit = &intel_limits_chv;
504 } else if (IS_VALLEYVIEW(dev)) {
505 limit = &intel_limits_vlv;
506 } else if (!IS_GEN2(dev)) {
507 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
508 limit = &intel_limits_i9xx_lvds;
509 else
510 limit = &intel_limits_i9xx_sdvo;
511 } else {
512 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
513 limit = &intel_limits_i8xx_lvds;
514 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
515 limit = &intel_limits_i8xx_dvo;
516 else
517 limit = &intel_limits_i8xx_dac;
518 }
519 return limit;
520 }
521
522 /* m1 is reserved as 0 in Pineview, n is a ring counter */
523 static void pineview_clock(int refclk, intel_clock_t *clock)
524 {
525 clock->m = clock->m2 + 2;
526 clock->p = clock->p1 * clock->p2;
527 if (WARN_ON(clock->n == 0 || clock->p == 0))
528 return;
529 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531 }
532
533 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
534 {
535 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
536 }
537
538 static void i9xx_clock(int refclk, intel_clock_t *clock)
539 {
540 clock->m = i9xx_dpll_compute_m(clock);
541 clock->p = clock->p1 * clock->p2;
542 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
543 return;
544 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
545 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
546 }
547
548 static void chv_clock(int refclk, intel_clock_t *clock)
549 {
550 clock->m = clock->m1 * clock->m2;
551 clock->p = clock->p1 * clock->p2;
552 if (WARN_ON(clock->n == 0 || clock->p == 0))
553 return;
554 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
555 clock->n << 22);
556 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
557 }
558
559 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
560 /**
561 * Returns whether the given set of divisors are valid for a given refclk with
562 * the given connectors.
563 */
564
565 static bool intel_PLL_is_valid(struct drm_device *dev,
566 const intel_limit_t *limit,
567 const intel_clock_t *clock)
568 {
569 if (clock->n < limit->n.min || limit->n.max < clock->n)
570 INTELPllInvalid("n out of range\n");
571 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
572 INTELPllInvalid("p1 out of range\n");
573 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
574 INTELPllInvalid("m2 out of range\n");
575 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
576 INTELPllInvalid("m1 out of range\n");
577
578 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
579 if (clock->m1 <= clock->m2)
580 INTELPllInvalid("m1 <= m2\n");
581
582 if (!IS_VALLEYVIEW(dev)) {
583 if (clock->p < limit->p.min || limit->p.max < clock->p)
584 INTELPllInvalid("p out of range\n");
585 if (clock->m < limit->m.min || limit->m.max < clock->m)
586 INTELPllInvalid("m out of range\n");
587 }
588
589 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
590 INTELPllInvalid("vco out of range\n");
591 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
592 * connector, etc., rather than just a single range.
593 */
594 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
595 INTELPllInvalid("dot out of range\n");
596
597 return true;
598 }
599
600 static bool
601 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
602 int target, int refclk, intel_clock_t *match_clock,
603 intel_clock_t *best_clock)
604 {
605 struct drm_device *dev = crtc->base.dev;
606 intel_clock_t clock;
607 int err = target;
608
609 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
610 /*
611 * For LVDS just rely on its current settings for dual-channel.
612 * We haven't figured out how to reliably set up different
613 * single/dual channel state, if we even can.
614 */
615 if (intel_is_dual_link_lvds(dev))
616 clock.p2 = limit->p2.p2_fast;
617 else
618 clock.p2 = limit->p2.p2_slow;
619 } else {
620 if (target < limit->p2.dot_limit)
621 clock.p2 = limit->p2.p2_slow;
622 else
623 clock.p2 = limit->p2.p2_fast;
624 }
625
626 memset(best_clock, 0, sizeof(*best_clock));
627
628 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
629 clock.m1++) {
630 for (clock.m2 = limit->m2.min;
631 clock.m2 <= limit->m2.max; clock.m2++) {
632 if (clock.m2 >= clock.m1)
633 break;
634 for (clock.n = limit->n.min;
635 clock.n <= limit->n.max; clock.n++) {
636 for (clock.p1 = limit->p1.min;
637 clock.p1 <= limit->p1.max; clock.p1++) {
638 int this_err;
639
640 i9xx_clock(refclk, &clock);
641 if (!intel_PLL_is_valid(dev, limit,
642 &clock))
643 continue;
644 if (match_clock &&
645 clock.p != match_clock->p)
646 continue;
647
648 this_err = abs(clock.dot - target);
649 if (this_err < err) {
650 *best_clock = clock;
651 err = this_err;
652 }
653 }
654 }
655 }
656 }
657
658 return (err != target);
659 }
660
661 static bool
662 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
663 int target, int refclk, intel_clock_t *match_clock,
664 intel_clock_t *best_clock)
665 {
666 struct drm_device *dev = crtc->base.dev;
667 intel_clock_t clock;
668 int err = target;
669
670 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
671 /*
672 * For LVDS just rely on its current settings for dual-channel.
673 * We haven't figured out how to reliably set up different
674 * single/dual channel state, if we even can.
675 */
676 if (intel_is_dual_link_lvds(dev))
677 clock.p2 = limit->p2.p2_fast;
678 else
679 clock.p2 = limit->p2.p2_slow;
680 } else {
681 if (target < limit->p2.dot_limit)
682 clock.p2 = limit->p2.p2_slow;
683 else
684 clock.p2 = limit->p2.p2_fast;
685 }
686
687 memset(best_clock, 0, sizeof(*best_clock));
688
689 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
690 clock.m1++) {
691 for (clock.m2 = limit->m2.min;
692 clock.m2 <= limit->m2.max; clock.m2++) {
693 for (clock.n = limit->n.min;
694 clock.n <= limit->n.max; clock.n++) {
695 for (clock.p1 = limit->p1.min;
696 clock.p1 <= limit->p1.max; clock.p1++) {
697 int this_err;
698
699 pineview_clock(refclk, &clock);
700 if (!intel_PLL_is_valid(dev, limit,
701 &clock))
702 continue;
703 if (match_clock &&
704 clock.p != match_clock->p)
705 continue;
706
707 this_err = abs(clock.dot - target);
708 if (this_err < err) {
709 *best_clock = clock;
710 err = this_err;
711 }
712 }
713 }
714 }
715 }
716
717 return (err != target);
718 }
719
720 static bool
721 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
722 int target, int refclk, intel_clock_t *match_clock,
723 intel_clock_t *best_clock)
724 {
725 struct drm_device *dev = crtc->base.dev;
726 intel_clock_t clock;
727 int max_n;
728 bool found;
729 /* approximately equals target * 0.00585 */
730 int err_most = (target >> 8) + (target >> 9);
731 found = false;
732
733 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
734 if (intel_is_dual_link_lvds(dev))
735 clock.p2 = limit->p2.p2_fast;
736 else
737 clock.p2 = limit->p2.p2_slow;
738 } else {
739 if (target < limit->p2.dot_limit)
740 clock.p2 = limit->p2.p2_slow;
741 else
742 clock.p2 = limit->p2.p2_fast;
743 }
744
745 memset(best_clock, 0, sizeof(*best_clock));
746 max_n = limit->n.max;
747 /* based on hardware requirement, prefer smaller n to precision */
748 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
749 /* based on hardware requirement, prefere larger m1,m2 */
750 for (clock.m1 = limit->m1.max;
751 clock.m1 >= limit->m1.min; clock.m1--) {
752 for (clock.m2 = limit->m2.max;
753 clock.m2 >= limit->m2.min; clock.m2--) {
754 for (clock.p1 = limit->p1.max;
755 clock.p1 >= limit->p1.min; clock.p1--) {
756 int this_err;
757
758 i9xx_clock(refclk, &clock);
759 if (!intel_PLL_is_valid(dev, limit,
760 &clock))
761 continue;
762
763 this_err = abs(clock.dot - target);
764 if (this_err < err_most) {
765 *best_clock = clock;
766 err_most = this_err;
767 max_n = clock.n;
768 found = true;
769 }
770 }
771 }
772 }
773 }
774 return found;
775 }
776
777 static bool
778 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
779 int target, int refclk, intel_clock_t *match_clock,
780 intel_clock_t *best_clock)
781 {
782 struct drm_device *dev = crtc->base.dev;
783 intel_clock_t clock;
784 unsigned int bestppm = 1000000;
785 /* min update 19.2 MHz */
786 int max_n = min(limit->n.max, refclk / 19200);
787 bool found = false;
788
789 target *= 5; /* fast clock */
790
791 memset(best_clock, 0, sizeof(*best_clock));
792
793 /* based on hardware requirement, prefer smaller n to precision */
794 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
795 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
796 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
797 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
798 clock.p = clock.p1 * clock.p2;
799 /* based on hardware requirement, prefer bigger m1,m2 values */
800 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
801 unsigned int ppm, diff;
802
803 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
804 refclk * clock.m1);
805
806 vlv_clock(refclk, &clock);
807
808 if (!intel_PLL_is_valid(dev, limit,
809 &clock))
810 continue;
811
812 diff = abs(clock.dot - target);
813 ppm = div_u64(1000000ULL * diff, target);
814
815 if (ppm < 100 && clock.p > best_clock->p) {
816 bestppm = 0;
817 *best_clock = clock;
818 found = true;
819 }
820
821 if (bestppm >= 10 && ppm < bestppm - 10) {
822 bestppm = ppm;
823 *best_clock = clock;
824 found = true;
825 }
826 }
827 }
828 }
829 }
830
831 return found;
832 }
833
834 static bool
835 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
836 int target, int refclk, intel_clock_t *match_clock,
837 intel_clock_t *best_clock)
838 {
839 struct drm_device *dev = crtc->base.dev;
840 intel_clock_t clock;
841 uint64_t m2;
842 int found = false;
843
844 memset(best_clock, 0, sizeof(*best_clock));
845
846 /*
847 * Based on hardware doc, the n always set to 1, and m1 always
848 * set to 2. If requires to support 200Mhz refclk, we need to
849 * revisit this because n may not 1 anymore.
850 */
851 clock.n = 1, clock.m1 = 2;
852 target *= 5; /* fast clock */
853
854 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
855 for (clock.p2 = limit->p2.p2_fast;
856 clock.p2 >= limit->p2.p2_slow;
857 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
858
859 clock.p = clock.p1 * clock.p2;
860
861 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
862 clock.n) << 22, refclk * clock.m1);
863
864 if (m2 > INT_MAX/clock.m1)
865 continue;
866
867 clock.m2 = m2;
868
869 chv_clock(refclk, &clock);
870
871 if (!intel_PLL_is_valid(dev, limit, &clock))
872 continue;
873
874 /* based on hardware requirement, prefer bigger p
875 */
876 if (clock.p > best_clock->p) {
877 *best_clock = clock;
878 found = true;
879 }
880 }
881 }
882
883 return found;
884 }
885
886 bool intel_crtc_active(struct drm_crtc *crtc)
887 {
888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
889
890 /* Be paranoid as we can arrive here with only partial
891 * state retrieved from the hardware during setup.
892 *
893 * We can ditch the adjusted_mode.crtc_clock check as soon
894 * as Haswell has gained clock readout/fastboot support.
895 *
896 * We can ditch the crtc->primary->fb check as soon as we can
897 * properly reconstruct framebuffers.
898 */
899 return intel_crtc->active && crtc->primary->fb &&
900 intel_crtc->config->base.adjusted_mode.crtc_clock;
901 }
902
903 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
904 enum pipe pipe)
905 {
906 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
908
909 return intel_crtc->config->cpu_transcoder;
910 }
911
912 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
913 {
914 struct drm_i915_private *dev_priv = dev->dev_private;
915 u32 reg = PIPEDSL(pipe);
916 u32 line1, line2;
917 u32 line_mask;
918
919 if (IS_GEN2(dev))
920 line_mask = DSL_LINEMASK_GEN2;
921 else
922 line_mask = DSL_LINEMASK_GEN3;
923
924 line1 = I915_READ(reg) & line_mask;
925 mdelay(5);
926 line2 = I915_READ(reg) & line_mask;
927
928 return line1 == line2;
929 }
930
931 /*
932 * intel_wait_for_pipe_off - wait for pipe to turn off
933 * @crtc: crtc whose pipe to wait for
934 *
935 * After disabling a pipe, we can't wait for vblank in the usual way,
936 * spinning on the vblank interrupt status bit, since we won't actually
937 * see an interrupt when the pipe is disabled.
938 *
939 * On Gen4 and above:
940 * wait for the pipe register state bit to turn off
941 *
942 * Otherwise:
943 * wait for the display line value to settle (it usually
944 * ends up stopping at the start of the next frame).
945 *
946 */
947 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
948 {
949 struct drm_device *dev = crtc->base.dev;
950 struct drm_i915_private *dev_priv = dev->dev_private;
951 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
952 enum pipe pipe = crtc->pipe;
953
954 if (INTEL_INFO(dev)->gen >= 4) {
955 int reg = PIPECONF(cpu_transcoder);
956
957 /* Wait for the Pipe State to go off */
958 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
959 100))
960 WARN(1, "pipe_off wait timed out\n");
961 } else {
962 /* Wait for the display line to settle */
963 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
964 WARN(1, "pipe_off wait timed out\n");
965 }
966 }
967
968 /*
969 * ibx_digital_port_connected - is the specified port connected?
970 * @dev_priv: i915 private structure
971 * @port: the port to test
972 *
973 * Returns true if @port is connected, false otherwise.
974 */
975 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
976 struct intel_digital_port *port)
977 {
978 u32 bit;
979
980 if (HAS_PCH_IBX(dev_priv->dev)) {
981 switch (port->port) {
982 case PORT_B:
983 bit = SDE_PORTB_HOTPLUG;
984 break;
985 case PORT_C:
986 bit = SDE_PORTC_HOTPLUG;
987 break;
988 case PORT_D:
989 bit = SDE_PORTD_HOTPLUG;
990 break;
991 default:
992 return true;
993 }
994 } else {
995 switch (port->port) {
996 case PORT_B:
997 bit = SDE_PORTB_HOTPLUG_CPT;
998 break;
999 case PORT_C:
1000 bit = SDE_PORTC_HOTPLUG_CPT;
1001 break;
1002 case PORT_D:
1003 bit = SDE_PORTD_HOTPLUG_CPT;
1004 break;
1005 default:
1006 return true;
1007 }
1008 }
1009
1010 return I915_READ(SDEISR) & bit;
1011 }
1012
1013 static const char *state_string(bool enabled)
1014 {
1015 return enabled ? "on" : "off";
1016 }
1017
1018 /* Only for pre-ILK configs */
1019 void assert_pll(struct drm_i915_private *dev_priv,
1020 enum pipe pipe, bool state)
1021 {
1022 int reg;
1023 u32 val;
1024 bool cur_state;
1025
1026 reg = DPLL(pipe);
1027 val = I915_READ(reg);
1028 cur_state = !!(val & DPLL_VCO_ENABLE);
1029 I915_STATE_WARN(cur_state != state,
1030 "PLL state assertion failure (expected %s, current %s)\n",
1031 state_string(state), state_string(cur_state));
1032 }
1033
1034 /* XXX: the dsi pll is shared between MIPI DSI ports */
1035 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1036 {
1037 u32 val;
1038 bool cur_state;
1039
1040 mutex_lock(&dev_priv->dpio_lock);
1041 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1042 mutex_unlock(&dev_priv->dpio_lock);
1043
1044 cur_state = val & DSI_PLL_VCO_EN;
1045 I915_STATE_WARN(cur_state != state,
1046 "DSI PLL state assertion failure (expected %s, current %s)\n",
1047 state_string(state), state_string(cur_state));
1048 }
1049 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1050 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1051
1052 struct intel_shared_dpll *
1053 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1054 {
1055 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1056
1057 if (crtc->config->shared_dpll < 0)
1058 return NULL;
1059
1060 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1061 }
1062
1063 /* For ILK+ */
1064 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1065 struct intel_shared_dpll *pll,
1066 bool state)
1067 {
1068 bool cur_state;
1069 struct intel_dpll_hw_state hw_state;
1070
1071 if (WARN (!pll,
1072 "asserting DPLL %s with no DPLL\n", state_string(state)))
1073 return;
1074
1075 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1076 I915_STATE_WARN(cur_state != state,
1077 "%s assertion failure (expected %s, current %s)\n",
1078 pll->name, state_string(state), state_string(cur_state));
1079 }
1080
1081 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1082 enum pipe pipe, bool state)
1083 {
1084 int reg;
1085 u32 val;
1086 bool cur_state;
1087 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1088 pipe);
1089
1090 if (HAS_DDI(dev_priv->dev)) {
1091 /* DDI does not have a specific FDI_TX register */
1092 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1093 val = I915_READ(reg);
1094 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1095 } else {
1096 reg = FDI_TX_CTL(pipe);
1097 val = I915_READ(reg);
1098 cur_state = !!(val & FDI_TX_ENABLE);
1099 }
1100 I915_STATE_WARN(cur_state != state,
1101 "FDI TX state assertion failure (expected %s, current %s)\n",
1102 state_string(state), state_string(cur_state));
1103 }
1104 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1105 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1106
1107 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109 {
1110 int reg;
1111 u32 val;
1112 bool cur_state;
1113
1114 reg = FDI_RX_CTL(pipe);
1115 val = I915_READ(reg);
1116 cur_state = !!(val & FDI_RX_ENABLE);
1117 I915_STATE_WARN(cur_state != state,
1118 "FDI RX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120 }
1121 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1122 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1123
1124 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1125 enum pipe pipe)
1126 {
1127 int reg;
1128 u32 val;
1129
1130 /* ILK FDI PLL is always enabled */
1131 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1132 return;
1133
1134 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1135 if (HAS_DDI(dev_priv->dev))
1136 return;
1137
1138 reg = FDI_TX_CTL(pipe);
1139 val = I915_READ(reg);
1140 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1141 }
1142
1143 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1144 enum pipe pipe, bool state)
1145 {
1146 int reg;
1147 u32 val;
1148 bool cur_state;
1149
1150 reg = FDI_RX_CTL(pipe);
1151 val = I915_READ(reg);
1152 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1155 state_string(state), state_string(cur_state));
1156 }
1157
1158 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160 {
1161 struct drm_device *dev = dev_priv->dev;
1162 int pp_reg;
1163 u32 val;
1164 enum pipe panel_pipe = PIPE_A;
1165 bool locked = true;
1166
1167 if (WARN_ON(HAS_DDI(dev)))
1168 return;
1169
1170 if (HAS_PCH_SPLIT(dev)) {
1171 u32 port_sel;
1172
1173 pp_reg = PCH_PP_CONTROL;
1174 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1175
1176 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1177 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1178 panel_pipe = PIPE_B;
1179 /* XXX: else fix for eDP */
1180 } else if (IS_VALLEYVIEW(dev)) {
1181 /* presumably write lock depends on pipe, not port select */
1182 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1183 panel_pipe = pipe;
1184 } else {
1185 pp_reg = PP_CONTROL;
1186 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1187 panel_pipe = PIPE_B;
1188 }
1189
1190 val = I915_READ(pp_reg);
1191 if (!(val & PANEL_POWER_ON) ||
1192 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1193 locked = false;
1194
1195 I915_STATE_WARN(panel_pipe == pipe && locked,
1196 "panel assertion failure, pipe %c regs locked\n",
1197 pipe_name(pipe));
1198 }
1199
1200 static void assert_cursor(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, bool state)
1202 {
1203 struct drm_device *dev = dev_priv->dev;
1204 bool cur_state;
1205
1206 if (IS_845G(dev) || IS_I865G(dev))
1207 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1208 else
1209 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1210
1211 I915_STATE_WARN(cur_state != state,
1212 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1213 pipe_name(pipe), state_string(state), state_string(cur_state));
1214 }
1215 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1216 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1217
1218 void assert_pipe(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220 {
1221 int reg;
1222 u32 val;
1223 bool cur_state;
1224 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1225 pipe);
1226
1227 /* if we need the pipe quirk it must be always on */
1228 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1229 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1230 state = true;
1231
1232 if (!intel_display_power_is_enabled(dev_priv,
1233 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1234 cur_state = false;
1235 } else {
1236 reg = PIPECONF(cpu_transcoder);
1237 val = I915_READ(reg);
1238 cur_state = !!(val & PIPECONF_ENABLE);
1239 }
1240
1241 I915_STATE_WARN(cur_state != state,
1242 "pipe %c assertion failure (expected %s, current %s)\n",
1243 pipe_name(pipe), state_string(state), state_string(cur_state));
1244 }
1245
1246 static void assert_plane(struct drm_i915_private *dev_priv,
1247 enum plane plane, bool state)
1248 {
1249 int reg;
1250 u32 val;
1251 bool cur_state;
1252
1253 reg = DSPCNTR(plane);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1256 I915_STATE_WARN(cur_state != state,
1257 "plane %c assertion failure (expected %s, current %s)\n",
1258 plane_name(plane), state_string(state), state_string(cur_state));
1259 }
1260
1261 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1262 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1263
1264 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1265 enum pipe pipe)
1266 {
1267 struct drm_device *dev = dev_priv->dev;
1268 int reg, i;
1269 u32 val;
1270 int cur_pipe;
1271
1272 /* Primary planes are fixed to pipes on gen4+ */
1273 if (INTEL_INFO(dev)->gen >= 4) {
1274 reg = DSPCNTR(pipe);
1275 val = I915_READ(reg);
1276 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1277 "plane %c assertion failure, should be disabled but not\n",
1278 plane_name(pipe));
1279 return;
1280 }
1281
1282 /* Need to check both planes against the pipe */
1283 for_each_pipe(dev_priv, i) {
1284 reg = DSPCNTR(i);
1285 val = I915_READ(reg);
1286 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1287 DISPPLANE_SEL_PIPE_SHIFT;
1288 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1289 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1290 plane_name(i), pipe_name(pipe));
1291 }
1292 }
1293
1294 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 struct drm_device *dev = dev_priv->dev;
1298 int reg, sprite;
1299 u32 val;
1300
1301 if (INTEL_INFO(dev)->gen >= 9) {
1302 for_each_sprite(pipe, sprite) {
1303 val = I915_READ(PLANE_CTL(pipe, sprite));
1304 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1305 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1306 sprite, pipe_name(pipe));
1307 }
1308 } else if (IS_VALLEYVIEW(dev)) {
1309 for_each_sprite(pipe, sprite) {
1310 reg = SPCNTR(pipe, sprite);
1311 val = I915_READ(reg);
1312 I915_STATE_WARN(val & SP_ENABLE,
1313 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1314 sprite_name(pipe, sprite), pipe_name(pipe));
1315 }
1316 } else if (INTEL_INFO(dev)->gen >= 7) {
1317 reg = SPRCTL(pipe);
1318 val = I915_READ(reg);
1319 I915_STATE_WARN(val & SPRITE_ENABLE,
1320 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1321 plane_name(pipe), pipe_name(pipe));
1322 } else if (INTEL_INFO(dev)->gen >= 5) {
1323 reg = DVSCNTR(pipe);
1324 val = I915_READ(reg);
1325 I915_STATE_WARN(val & DVS_ENABLE,
1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1327 plane_name(pipe), pipe_name(pipe));
1328 }
1329 }
1330
1331 static void assert_vblank_disabled(struct drm_crtc *crtc)
1332 {
1333 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1334 drm_crtc_vblank_put(crtc);
1335 }
1336
1337 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1338 {
1339 u32 val;
1340 bool enabled;
1341
1342 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1343
1344 val = I915_READ(PCH_DREF_CONTROL);
1345 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1346 DREF_SUPERSPREAD_SOURCE_MASK));
1347 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1348 }
1349
1350 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1351 enum pipe pipe)
1352 {
1353 int reg;
1354 u32 val;
1355 bool enabled;
1356
1357 reg = PCH_TRANSCONF(pipe);
1358 val = I915_READ(reg);
1359 enabled = !!(val & TRANS_ENABLE);
1360 I915_STATE_WARN(enabled,
1361 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1362 pipe_name(pipe));
1363 }
1364
1365 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 port_sel, u32 val)
1367 {
1368 if ((val & DP_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1373 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1374 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1375 return false;
1376 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1377 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1378 return false;
1379 } else {
1380 if ((val & DP_PIPE_MASK) != (pipe << 30))
1381 return false;
1382 }
1383 return true;
1384 }
1385
1386 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1387 enum pipe pipe, u32 val)
1388 {
1389 if ((val & SDVO_ENABLE) == 0)
1390 return false;
1391
1392 if (HAS_PCH_CPT(dev_priv->dev)) {
1393 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1394 return false;
1395 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1396 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1397 return false;
1398 } else {
1399 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1400 return false;
1401 }
1402 return true;
1403 }
1404
1405 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1406 enum pipe pipe, u32 val)
1407 {
1408 if ((val & LVDS_PORT_EN) == 0)
1409 return false;
1410
1411 if (HAS_PCH_CPT(dev_priv->dev)) {
1412 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1413 return false;
1414 } else {
1415 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1416 return false;
1417 }
1418 return true;
1419 }
1420
1421 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1422 enum pipe pipe, u32 val)
1423 {
1424 if ((val & ADPA_DAC_ENABLE) == 0)
1425 return false;
1426 if (HAS_PCH_CPT(dev_priv->dev)) {
1427 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1428 return false;
1429 } else {
1430 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1431 return false;
1432 }
1433 return true;
1434 }
1435
1436 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1437 enum pipe pipe, int reg, u32 port_sel)
1438 {
1439 u32 val = I915_READ(reg);
1440 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1441 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1442 reg, pipe_name(pipe));
1443
1444 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1445 && (val & DP_PIPEB_SELECT),
1446 "IBX PCH dp port still using transcoder B\n");
1447 }
1448
1449 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe, int reg)
1451 {
1452 u32 val = I915_READ(reg);
1453 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1454 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1455 reg, pipe_name(pipe));
1456
1457 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1458 && (val & SDVO_PIPE_B_SELECT),
1459 "IBX PCH hdmi port still using transcoder B\n");
1460 }
1461
1462 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1463 enum pipe pipe)
1464 {
1465 int reg;
1466 u32 val;
1467
1468 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1471
1472 reg = PCH_ADPA;
1473 val = I915_READ(reg);
1474 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1475 "PCH VGA enabled on transcoder %c, should be disabled\n",
1476 pipe_name(pipe));
1477
1478 reg = PCH_LVDS;
1479 val = I915_READ(reg);
1480 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1481 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1482 pipe_name(pipe));
1483
1484 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1487 }
1488
1489 static void intel_init_dpio(struct drm_device *dev)
1490 {
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492
1493 if (!IS_VALLEYVIEW(dev))
1494 return;
1495
1496 /*
1497 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1498 * CHV x1 PHY (DP/HDMI D)
1499 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1500 */
1501 if (IS_CHERRYVIEW(dev)) {
1502 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1504 } else {
1505 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1506 }
1507 }
1508
1509 static void vlv_enable_pll(struct intel_crtc *crtc,
1510 const struct intel_crtc_state *pipe_config)
1511 {
1512 struct drm_device *dev = crtc->base.dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 int reg = DPLL(crtc->pipe);
1515 u32 dpll = pipe_config->dpll_hw_state.dpll;
1516
1517 assert_pipe_disabled(dev_priv, crtc->pipe);
1518
1519 /* No really, not for ILK+ */
1520 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1521
1522 /* PLL is protected by panel, make sure we can write it */
1523 if (IS_MOBILE(dev_priv->dev))
1524 assert_panel_unlocked(dev_priv, crtc->pipe);
1525
1526 I915_WRITE(reg, dpll);
1527 POSTING_READ(reg);
1528 udelay(150);
1529
1530 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1531 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1532
1533 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1534 POSTING_READ(DPLL_MD(crtc->pipe));
1535
1536 /* We do this three times for luck */
1537 I915_WRITE(reg, dpll);
1538 POSTING_READ(reg);
1539 udelay(150); /* wait for warmup */
1540 I915_WRITE(reg, dpll);
1541 POSTING_READ(reg);
1542 udelay(150); /* wait for warmup */
1543 I915_WRITE(reg, dpll);
1544 POSTING_READ(reg);
1545 udelay(150); /* wait for warmup */
1546 }
1547
1548 static void chv_enable_pll(struct intel_crtc *crtc,
1549 const struct intel_crtc_state *pipe_config)
1550 {
1551 struct drm_device *dev = crtc->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 int pipe = crtc->pipe;
1554 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1555 u32 tmp;
1556
1557 assert_pipe_disabled(dev_priv, crtc->pipe);
1558
1559 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1560
1561 mutex_lock(&dev_priv->dpio_lock);
1562
1563 /* Enable back the 10bit clock to display controller */
1564 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1565 tmp |= DPIO_DCLKP_EN;
1566 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1567
1568 /*
1569 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1570 */
1571 udelay(1);
1572
1573 /* Enable PLL */
1574 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1575
1576 /* Check PLL is locked */
1577 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1578 DRM_ERROR("PLL %d failed to lock\n", pipe);
1579
1580 /* not sure when this should be written */
1581 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1582 POSTING_READ(DPLL_MD(pipe));
1583
1584 mutex_unlock(&dev_priv->dpio_lock);
1585 }
1586
1587 static int intel_num_dvo_pipes(struct drm_device *dev)
1588 {
1589 struct intel_crtc *crtc;
1590 int count = 0;
1591
1592 for_each_intel_crtc(dev, crtc)
1593 count += crtc->active &&
1594 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1595
1596 return count;
1597 }
1598
1599 static void i9xx_enable_pll(struct intel_crtc *crtc)
1600 {
1601 struct drm_device *dev = crtc->base.dev;
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 int reg = DPLL(crtc->pipe);
1604 u32 dpll = crtc->config->dpll_hw_state.dpll;
1605
1606 assert_pipe_disabled(dev_priv, crtc->pipe);
1607
1608 /* No really, not for ILK+ */
1609 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1610
1611 /* PLL is protected by panel, make sure we can write it */
1612 if (IS_MOBILE(dev) && !IS_I830(dev))
1613 assert_panel_unlocked(dev_priv, crtc->pipe);
1614
1615 /* Enable DVO 2x clock on both PLLs if necessary */
1616 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1617 /*
1618 * It appears to be important that we don't enable this
1619 * for the current pipe before otherwise configuring the
1620 * PLL. No idea how this should be handled if multiple
1621 * DVO outputs are enabled simultaneosly.
1622 */
1623 dpll |= DPLL_DVO_2X_MODE;
1624 I915_WRITE(DPLL(!crtc->pipe),
1625 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1626 }
1627
1628 /* Wait for the clocks to stabilize. */
1629 POSTING_READ(reg);
1630 udelay(150);
1631
1632 if (INTEL_INFO(dev)->gen >= 4) {
1633 I915_WRITE(DPLL_MD(crtc->pipe),
1634 crtc->config->dpll_hw_state.dpll_md);
1635 } else {
1636 /* The pixel multiplier can only be updated once the
1637 * DPLL is enabled and the clocks are stable.
1638 *
1639 * So write it again.
1640 */
1641 I915_WRITE(reg, dpll);
1642 }
1643
1644 /* We do this three times for luck */
1645 I915_WRITE(reg, dpll);
1646 POSTING_READ(reg);
1647 udelay(150); /* wait for warmup */
1648 I915_WRITE(reg, dpll);
1649 POSTING_READ(reg);
1650 udelay(150); /* wait for warmup */
1651 I915_WRITE(reg, dpll);
1652 POSTING_READ(reg);
1653 udelay(150); /* wait for warmup */
1654 }
1655
1656 /**
1657 * i9xx_disable_pll - disable a PLL
1658 * @dev_priv: i915 private structure
1659 * @pipe: pipe PLL to disable
1660 *
1661 * Disable the PLL for @pipe, making sure the pipe is off first.
1662 *
1663 * Note! This is for pre-ILK only.
1664 */
1665 static void i9xx_disable_pll(struct intel_crtc *crtc)
1666 {
1667 struct drm_device *dev = crtc->base.dev;
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 enum pipe pipe = crtc->pipe;
1670
1671 /* Disable DVO 2x clock on both PLLs if necessary */
1672 if (IS_I830(dev) &&
1673 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1674 intel_num_dvo_pipes(dev) == 1) {
1675 I915_WRITE(DPLL(PIPE_B),
1676 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1677 I915_WRITE(DPLL(PIPE_A),
1678 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1679 }
1680
1681 /* Don't disable pipe or pipe PLLs if needed */
1682 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1683 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1684 return;
1685
1686 /* Make sure the pipe isn't still relying on us */
1687 assert_pipe_disabled(dev_priv, pipe);
1688
1689 I915_WRITE(DPLL(pipe), 0);
1690 POSTING_READ(DPLL(pipe));
1691 }
1692
1693 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1694 {
1695 u32 val = 0;
1696
1697 /* Make sure the pipe isn't still relying on us */
1698 assert_pipe_disabled(dev_priv, pipe);
1699
1700 /*
1701 * Leave integrated clock source and reference clock enabled for pipe B.
1702 * The latter is needed for VGA hotplug / manual detection.
1703 */
1704 if (pipe == PIPE_B)
1705 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1706 I915_WRITE(DPLL(pipe), val);
1707 POSTING_READ(DPLL(pipe));
1708
1709 }
1710
1711 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1712 {
1713 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1714 u32 val;
1715
1716 /* Make sure the pipe isn't still relying on us */
1717 assert_pipe_disabled(dev_priv, pipe);
1718
1719 /* Set PLL en = 0 */
1720 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1721 if (pipe != PIPE_A)
1722 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723 I915_WRITE(DPLL(pipe), val);
1724 POSTING_READ(DPLL(pipe));
1725
1726 mutex_lock(&dev_priv->dpio_lock);
1727
1728 /* Disable 10bit clock to display controller */
1729 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1730 val &= ~DPIO_DCLKP_EN;
1731 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1732
1733 /* disable left/right clock distribution */
1734 if (pipe != PIPE_B) {
1735 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1736 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1737 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1738 } else {
1739 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1740 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1741 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1742 }
1743
1744 mutex_unlock(&dev_priv->dpio_lock);
1745 }
1746
1747 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1748 struct intel_digital_port *dport)
1749 {
1750 u32 port_mask;
1751 int dpll_reg;
1752
1753 switch (dport->port) {
1754 case PORT_B:
1755 port_mask = DPLL_PORTB_READY_MASK;
1756 dpll_reg = DPLL(0);
1757 break;
1758 case PORT_C:
1759 port_mask = DPLL_PORTC_READY_MASK;
1760 dpll_reg = DPLL(0);
1761 break;
1762 case PORT_D:
1763 port_mask = DPLL_PORTD_READY_MASK;
1764 dpll_reg = DPIO_PHY_STATUS;
1765 break;
1766 default:
1767 BUG();
1768 }
1769
1770 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1771 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1772 port_name(dport->port), I915_READ(dpll_reg));
1773 }
1774
1775 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1776 {
1777 struct drm_device *dev = crtc->base.dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1780
1781 if (WARN_ON(pll == NULL))
1782 return;
1783
1784 WARN_ON(!pll->config.crtc_mask);
1785 if (pll->active == 0) {
1786 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1787 WARN_ON(pll->on);
1788 assert_shared_dpll_disabled(dev_priv, pll);
1789
1790 pll->mode_set(dev_priv, pll);
1791 }
1792 }
1793
1794 /**
1795 * intel_enable_shared_dpll - enable PCH PLL
1796 * @dev_priv: i915 private structure
1797 * @pipe: pipe PLL to enable
1798 *
1799 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1800 * drives the transcoder clock.
1801 */
1802 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1803 {
1804 struct drm_device *dev = crtc->base.dev;
1805 struct drm_i915_private *dev_priv = dev->dev_private;
1806 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1807
1808 if (WARN_ON(pll == NULL))
1809 return;
1810
1811 if (WARN_ON(pll->config.crtc_mask == 0))
1812 return;
1813
1814 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1815 pll->name, pll->active, pll->on,
1816 crtc->base.base.id);
1817
1818 if (pll->active++) {
1819 WARN_ON(!pll->on);
1820 assert_shared_dpll_enabled(dev_priv, pll);
1821 return;
1822 }
1823 WARN_ON(pll->on);
1824
1825 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1826
1827 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1828 pll->enable(dev_priv, pll);
1829 pll->on = true;
1830 }
1831
1832 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1833 {
1834 struct drm_device *dev = crtc->base.dev;
1835 struct drm_i915_private *dev_priv = dev->dev_private;
1836 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1837
1838 /* PCH only available on ILK+ */
1839 BUG_ON(INTEL_INFO(dev)->gen < 5);
1840 if (WARN_ON(pll == NULL))
1841 return;
1842
1843 if (WARN_ON(pll->config.crtc_mask == 0))
1844 return;
1845
1846 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1847 pll->name, pll->active, pll->on,
1848 crtc->base.base.id);
1849
1850 if (WARN_ON(pll->active == 0)) {
1851 assert_shared_dpll_disabled(dev_priv, pll);
1852 return;
1853 }
1854
1855 assert_shared_dpll_enabled(dev_priv, pll);
1856 WARN_ON(!pll->on);
1857 if (--pll->active)
1858 return;
1859
1860 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1861 pll->disable(dev_priv, pll);
1862 pll->on = false;
1863
1864 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1865 }
1866
1867 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1868 enum pipe pipe)
1869 {
1870 struct drm_device *dev = dev_priv->dev;
1871 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1873 uint32_t reg, val, pipeconf_val;
1874
1875 /* PCH only available on ILK+ */
1876 BUG_ON(!HAS_PCH_SPLIT(dev));
1877
1878 /* Make sure PCH DPLL is enabled */
1879 assert_shared_dpll_enabled(dev_priv,
1880 intel_crtc_to_shared_dpll(intel_crtc));
1881
1882 /* FDI must be feeding us bits for PCH ports */
1883 assert_fdi_tx_enabled(dev_priv, pipe);
1884 assert_fdi_rx_enabled(dev_priv, pipe);
1885
1886 if (HAS_PCH_CPT(dev)) {
1887 /* Workaround: Set the timing override bit before enabling the
1888 * pch transcoder. */
1889 reg = TRANS_CHICKEN2(pipe);
1890 val = I915_READ(reg);
1891 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1892 I915_WRITE(reg, val);
1893 }
1894
1895 reg = PCH_TRANSCONF(pipe);
1896 val = I915_READ(reg);
1897 pipeconf_val = I915_READ(PIPECONF(pipe));
1898
1899 if (HAS_PCH_IBX(dev_priv->dev)) {
1900 /*
1901 * make the BPC in transcoder be consistent with
1902 * that in pipeconf reg.
1903 */
1904 val &= ~PIPECONF_BPC_MASK;
1905 val |= pipeconf_val & PIPECONF_BPC_MASK;
1906 }
1907
1908 val &= ~TRANS_INTERLACE_MASK;
1909 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1910 if (HAS_PCH_IBX(dev_priv->dev) &&
1911 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1912 val |= TRANS_LEGACY_INTERLACED_ILK;
1913 else
1914 val |= TRANS_INTERLACED;
1915 else
1916 val |= TRANS_PROGRESSIVE;
1917
1918 I915_WRITE(reg, val | TRANS_ENABLE);
1919 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1920 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1921 }
1922
1923 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1924 enum transcoder cpu_transcoder)
1925 {
1926 u32 val, pipeconf_val;
1927
1928 /* PCH only available on ILK+ */
1929 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1930
1931 /* FDI must be feeding us bits for PCH ports */
1932 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1933 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1934
1935 /* Workaround: set timing override bit. */
1936 val = I915_READ(_TRANSA_CHICKEN2);
1937 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1938 I915_WRITE(_TRANSA_CHICKEN2, val);
1939
1940 val = TRANS_ENABLE;
1941 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1942
1943 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1944 PIPECONF_INTERLACED_ILK)
1945 val |= TRANS_INTERLACED;
1946 else
1947 val |= TRANS_PROGRESSIVE;
1948
1949 I915_WRITE(LPT_TRANSCONF, val);
1950 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1951 DRM_ERROR("Failed to enable PCH transcoder\n");
1952 }
1953
1954 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1955 enum pipe pipe)
1956 {
1957 struct drm_device *dev = dev_priv->dev;
1958 uint32_t reg, val;
1959
1960 /* FDI relies on the transcoder */
1961 assert_fdi_tx_disabled(dev_priv, pipe);
1962 assert_fdi_rx_disabled(dev_priv, pipe);
1963
1964 /* Ports must be off as well */
1965 assert_pch_ports_disabled(dev_priv, pipe);
1966
1967 reg = PCH_TRANSCONF(pipe);
1968 val = I915_READ(reg);
1969 val &= ~TRANS_ENABLE;
1970 I915_WRITE(reg, val);
1971 /* wait for PCH transcoder off, transcoder state */
1972 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1973 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1974
1975 if (!HAS_PCH_IBX(dev)) {
1976 /* Workaround: Clear the timing override chicken bit again. */
1977 reg = TRANS_CHICKEN2(pipe);
1978 val = I915_READ(reg);
1979 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1980 I915_WRITE(reg, val);
1981 }
1982 }
1983
1984 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1985 {
1986 u32 val;
1987
1988 val = I915_READ(LPT_TRANSCONF);
1989 val &= ~TRANS_ENABLE;
1990 I915_WRITE(LPT_TRANSCONF, val);
1991 /* wait for PCH transcoder off, transcoder state */
1992 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1993 DRM_ERROR("Failed to disable PCH transcoder\n");
1994
1995 /* Workaround: clear timing override bit. */
1996 val = I915_READ(_TRANSA_CHICKEN2);
1997 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1998 I915_WRITE(_TRANSA_CHICKEN2, val);
1999 }
2000
2001 /**
2002 * intel_enable_pipe - enable a pipe, asserting requirements
2003 * @crtc: crtc responsible for the pipe
2004 *
2005 * Enable @crtc's pipe, making sure that various hardware specific requirements
2006 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2007 */
2008 static void intel_enable_pipe(struct intel_crtc *crtc)
2009 {
2010 struct drm_device *dev = crtc->base.dev;
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 enum pipe pipe = crtc->pipe;
2013 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2014 pipe);
2015 enum pipe pch_transcoder;
2016 int reg;
2017 u32 val;
2018
2019 assert_planes_disabled(dev_priv, pipe);
2020 assert_cursor_disabled(dev_priv, pipe);
2021 assert_sprites_disabled(dev_priv, pipe);
2022
2023 if (HAS_PCH_LPT(dev_priv->dev))
2024 pch_transcoder = TRANSCODER_A;
2025 else
2026 pch_transcoder = pipe;
2027
2028 /*
2029 * A pipe without a PLL won't actually be able to drive bits from
2030 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2031 * need the check.
2032 */
2033 if (!HAS_PCH_SPLIT(dev_priv->dev))
2034 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2035 assert_dsi_pll_enabled(dev_priv);
2036 else
2037 assert_pll_enabled(dev_priv, pipe);
2038 else {
2039 if (crtc->config->has_pch_encoder) {
2040 /* if driving the PCH, we need FDI enabled */
2041 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2042 assert_fdi_tx_pll_enabled(dev_priv,
2043 (enum pipe) cpu_transcoder);
2044 }
2045 /* FIXME: assert CPU port conditions for SNB+ */
2046 }
2047
2048 reg = PIPECONF(cpu_transcoder);
2049 val = I915_READ(reg);
2050 if (val & PIPECONF_ENABLE) {
2051 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2052 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2053 return;
2054 }
2055
2056 I915_WRITE(reg, val | PIPECONF_ENABLE);
2057 POSTING_READ(reg);
2058 }
2059
2060 /**
2061 * intel_disable_pipe - disable a pipe, asserting requirements
2062 * @crtc: crtc whose pipes is to be disabled
2063 *
2064 * Disable the pipe of @crtc, making sure that various hardware
2065 * specific requirements are met, if applicable, e.g. plane
2066 * disabled, panel fitter off, etc.
2067 *
2068 * Will wait until the pipe has shut down before returning.
2069 */
2070 static void intel_disable_pipe(struct intel_crtc *crtc)
2071 {
2072 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2073 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2074 enum pipe pipe = crtc->pipe;
2075 int reg;
2076 u32 val;
2077
2078 /*
2079 * Make sure planes won't keep trying to pump pixels to us,
2080 * or we might hang the display.
2081 */
2082 assert_planes_disabled(dev_priv, pipe);
2083 assert_cursor_disabled(dev_priv, pipe);
2084 assert_sprites_disabled(dev_priv, pipe);
2085
2086 reg = PIPECONF(cpu_transcoder);
2087 val = I915_READ(reg);
2088 if ((val & PIPECONF_ENABLE) == 0)
2089 return;
2090
2091 /*
2092 * Double wide has implications for planes
2093 * so best keep it disabled when not needed.
2094 */
2095 if (crtc->config->double_wide)
2096 val &= ~PIPECONF_DOUBLE_WIDE;
2097
2098 /* Don't disable pipe or pipe PLLs if needed */
2099 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2100 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2101 val &= ~PIPECONF_ENABLE;
2102
2103 I915_WRITE(reg, val);
2104 if ((val & PIPECONF_ENABLE) == 0)
2105 intel_wait_for_pipe_off(crtc);
2106 }
2107
2108 /*
2109 * Plane regs are double buffered, going from enabled->disabled needs a
2110 * trigger in order to latch. The display address reg provides this.
2111 */
2112 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2113 enum plane plane)
2114 {
2115 struct drm_device *dev = dev_priv->dev;
2116 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2117
2118 I915_WRITE(reg, I915_READ(reg));
2119 POSTING_READ(reg);
2120 }
2121
2122 /**
2123 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2124 * @plane: plane to be enabled
2125 * @crtc: crtc for the plane
2126 *
2127 * Enable @plane on @crtc, making sure that the pipe is running first.
2128 */
2129 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2130 struct drm_crtc *crtc)
2131 {
2132 struct drm_device *dev = plane->dev;
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2135
2136 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2137 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2138
2139 if (intel_crtc->primary_enabled)
2140 return;
2141
2142 intel_crtc->primary_enabled = true;
2143
2144 dev_priv->display.update_primary_plane(crtc, plane->fb,
2145 crtc->x, crtc->y);
2146
2147 /*
2148 * BDW signals flip done immediately if the plane
2149 * is disabled, even if the plane enable is already
2150 * armed to occur at the next vblank :(
2151 */
2152 if (IS_BROADWELL(dev))
2153 intel_wait_for_vblank(dev, intel_crtc->pipe);
2154 }
2155
2156 /**
2157 * intel_disable_primary_hw_plane - disable the primary hardware plane
2158 * @plane: plane to be disabled
2159 * @crtc: crtc for the plane
2160 *
2161 * Disable @plane on @crtc, making sure that the pipe is running first.
2162 */
2163 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2164 struct drm_crtc *crtc)
2165 {
2166 struct drm_device *dev = plane->dev;
2167 struct drm_i915_private *dev_priv = dev->dev_private;
2168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2169
2170 if (WARN_ON(!intel_crtc->active))
2171 return;
2172
2173 if (!intel_crtc->primary_enabled)
2174 return;
2175
2176 intel_crtc->primary_enabled = false;
2177
2178 dev_priv->display.update_primary_plane(crtc, plane->fb,
2179 crtc->x, crtc->y);
2180 }
2181
2182 static bool need_vtd_wa(struct drm_device *dev)
2183 {
2184 #ifdef CONFIG_INTEL_IOMMU
2185 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2186 return true;
2187 #endif
2188 return false;
2189 }
2190
2191 int
2192 intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
2193 {
2194 int tile_height;
2195
2196 tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
2197 return ALIGN(height, tile_height);
2198 }
2199
2200 int
2201 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2202 struct drm_framebuffer *fb,
2203 struct intel_engine_cs *pipelined)
2204 {
2205 struct drm_device *dev = fb->dev;
2206 struct drm_i915_private *dev_priv = dev->dev_private;
2207 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2208 u32 alignment;
2209 int ret;
2210
2211 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2212
2213 switch (obj->tiling_mode) {
2214 case I915_TILING_NONE:
2215 if (INTEL_INFO(dev)->gen >= 9)
2216 alignment = 256 * 1024;
2217 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2218 alignment = 128 * 1024;
2219 else if (INTEL_INFO(dev)->gen >= 4)
2220 alignment = 4 * 1024;
2221 else
2222 alignment = 64 * 1024;
2223 break;
2224 case I915_TILING_X:
2225 if (INTEL_INFO(dev)->gen >= 9)
2226 alignment = 256 * 1024;
2227 else {
2228 /* pin() will align the object as required by fence */
2229 alignment = 0;
2230 }
2231 break;
2232 case I915_TILING_Y:
2233 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2234 return -EINVAL;
2235 default:
2236 BUG();
2237 }
2238
2239 /* Note that the w/a also requires 64 PTE of padding following the
2240 * bo. We currently fill all unused PTE with the shadow page and so
2241 * we should always have valid PTE following the scanout preventing
2242 * the VT-d warning.
2243 */
2244 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2245 alignment = 256 * 1024;
2246
2247 /*
2248 * Global gtt pte registers are special registers which actually forward
2249 * writes to a chunk of system memory. Which means that there is no risk
2250 * that the register values disappear as soon as we call
2251 * intel_runtime_pm_put(), so it is correct to wrap only the
2252 * pin/unpin/fence and not more.
2253 */
2254 intel_runtime_pm_get(dev_priv);
2255
2256 dev_priv->mm.interruptible = false;
2257 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2258 if (ret)
2259 goto err_interruptible;
2260
2261 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2262 * fence, whereas 965+ only requires a fence if using
2263 * framebuffer compression. For simplicity, we always install
2264 * a fence as the cost is not that onerous.
2265 */
2266 ret = i915_gem_object_get_fence(obj);
2267 if (ret)
2268 goto err_unpin;
2269
2270 i915_gem_object_pin_fence(obj);
2271
2272 dev_priv->mm.interruptible = true;
2273 intel_runtime_pm_put(dev_priv);
2274 return 0;
2275
2276 err_unpin:
2277 i915_gem_object_unpin_from_display_plane(obj);
2278 err_interruptible:
2279 dev_priv->mm.interruptible = true;
2280 intel_runtime_pm_put(dev_priv);
2281 return ret;
2282 }
2283
2284 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2285 {
2286 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2287
2288 i915_gem_object_unpin_fence(obj);
2289 i915_gem_object_unpin_from_display_plane(obj);
2290 }
2291
2292 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2293 * is assumed to be a power-of-two. */
2294 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2295 unsigned int tiling_mode,
2296 unsigned int cpp,
2297 unsigned int pitch)
2298 {
2299 if (tiling_mode != I915_TILING_NONE) {
2300 unsigned int tile_rows, tiles;
2301
2302 tile_rows = *y / 8;
2303 *y %= 8;
2304
2305 tiles = *x / (512/cpp);
2306 *x %= 512/cpp;
2307
2308 return tile_rows * pitch * 8 + tiles * 4096;
2309 } else {
2310 unsigned int offset;
2311
2312 offset = *y * pitch + *x * cpp;
2313 *y = 0;
2314 *x = (offset & 4095) / cpp;
2315 return offset & -4096;
2316 }
2317 }
2318
2319 int intel_format_to_fourcc(int format)
2320 {
2321 switch (format) {
2322 case DISPPLANE_8BPP:
2323 return DRM_FORMAT_C8;
2324 case DISPPLANE_BGRX555:
2325 return DRM_FORMAT_XRGB1555;
2326 case DISPPLANE_BGRX565:
2327 return DRM_FORMAT_RGB565;
2328 default:
2329 case DISPPLANE_BGRX888:
2330 return DRM_FORMAT_XRGB8888;
2331 case DISPPLANE_RGBX888:
2332 return DRM_FORMAT_XBGR8888;
2333 case DISPPLANE_BGRX101010:
2334 return DRM_FORMAT_XRGB2101010;
2335 case DISPPLANE_RGBX101010:
2336 return DRM_FORMAT_XBGR2101010;
2337 }
2338 }
2339
2340 static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
2341 struct intel_plane_config *plane_config)
2342 {
2343 struct drm_device *dev = crtc->base.dev;
2344 struct drm_i915_gem_object *obj = NULL;
2345 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2346 u32 base = plane_config->base;
2347
2348 if (plane_config->size == 0)
2349 return false;
2350
2351 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2352 plane_config->size);
2353 if (!obj)
2354 return false;
2355
2356 obj->tiling_mode = plane_config->tiling;
2357 if (obj->tiling_mode == I915_TILING_X)
2358 obj->stride = crtc->base.primary->fb->pitches[0];
2359
2360 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2361 mode_cmd.width = crtc->base.primary->fb->width;
2362 mode_cmd.height = crtc->base.primary->fb->height;
2363 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
2364
2365 mutex_lock(&dev->struct_mutex);
2366
2367 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
2368 &mode_cmd, obj)) {
2369 DRM_DEBUG_KMS("intel fb init failed\n");
2370 goto out_unref_obj;
2371 }
2372
2373 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2374 mutex_unlock(&dev->struct_mutex);
2375
2376 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2377 return true;
2378
2379 out_unref_obj:
2380 drm_gem_object_unreference(&obj->base);
2381 mutex_unlock(&dev->struct_mutex);
2382 return false;
2383 }
2384
2385 static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2386 struct intel_plane_config *plane_config)
2387 {
2388 struct drm_device *dev = intel_crtc->base.dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct drm_crtc *c;
2391 struct intel_crtc *i;
2392 struct drm_i915_gem_object *obj;
2393
2394 if (!intel_crtc->base.primary->fb)
2395 return;
2396
2397 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2398 return;
2399
2400 kfree(intel_crtc->base.primary->fb);
2401 intel_crtc->base.primary->fb = NULL;
2402
2403 /*
2404 * Failed to alloc the obj, check to see if we should share
2405 * an fb with another CRTC instead
2406 */
2407 for_each_crtc(dev, c) {
2408 i = to_intel_crtc(c);
2409
2410 if (c == &intel_crtc->base)
2411 continue;
2412
2413 if (!i->active)
2414 continue;
2415
2416 obj = intel_fb_obj(c->primary->fb);
2417 if (obj == NULL)
2418 continue;
2419
2420 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2421 if (obj->tiling_mode != I915_TILING_NONE)
2422 dev_priv->preserve_bios_swizzle = true;
2423
2424 drm_framebuffer_reference(c->primary->fb);
2425 intel_crtc->base.primary->fb = c->primary->fb;
2426 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2427 break;
2428 }
2429 }
2430 }
2431
2432 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2433 struct drm_framebuffer *fb,
2434 int x, int y)
2435 {
2436 struct drm_device *dev = crtc->dev;
2437 struct drm_i915_private *dev_priv = dev->dev_private;
2438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2439 struct drm_i915_gem_object *obj;
2440 int plane = intel_crtc->plane;
2441 unsigned long linear_offset;
2442 u32 dspcntr;
2443 u32 reg = DSPCNTR(plane);
2444 int pixel_size;
2445
2446 if (!intel_crtc->primary_enabled) {
2447 I915_WRITE(reg, 0);
2448 if (INTEL_INFO(dev)->gen >= 4)
2449 I915_WRITE(DSPSURF(plane), 0);
2450 else
2451 I915_WRITE(DSPADDR(plane), 0);
2452 POSTING_READ(reg);
2453 return;
2454 }
2455
2456 obj = intel_fb_obj(fb);
2457 if (WARN_ON(obj == NULL))
2458 return;
2459
2460 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2461
2462 dspcntr = DISPPLANE_GAMMA_ENABLE;
2463
2464 dspcntr |= DISPLAY_PLANE_ENABLE;
2465
2466 if (INTEL_INFO(dev)->gen < 4) {
2467 if (intel_crtc->pipe == PIPE_B)
2468 dspcntr |= DISPPLANE_SEL_PIPE_B;
2469
2470 /* pipesrc and dspsize control the size that is scaled from,
2471 * which should always be the user's requested size.
2472 */
2473 I915_WRITE(DSPSIZE(plane),
2474 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2475 (intel_crtc->config->pipe_src_w - 1));
2476 I915_WRITE(DSPPOS(plane), 0);
2477 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2478 I915_WRITE(PRIMSIZE(plane),
2479 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2480 (intel_crtc->config->pipe_src_w - 1));
2481 I915_WRITE(PRIMPOS(plane), 0);
2482 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2483 }
2484
2485 switch (fb->pixel_format) {
2486 case DRM_FORMAT_C8:
2487 dspcntr |= DISPPLANE_8BPP;
2488 break;
2489 case DRM_FORMAT_XRGB1555:
2490 case DRM_FORMAT_ARGB1555:
2491 dspcntr |= DISPPLANE_BGRX555;
2492 break;
2493 case DRM_FORMAT_RGB565:
2494 dspcntr |= DISPPLANE_BGRX565;
2495 break;
2496 case DRM_FORMAT_XRGB8888:
2497 case DRM_FORMAT_ARGB8888:
2498 dspcntr |= DISPPLANE_BGRX888;
2499 break;
2500 case DRM_FORMAT_XBGR8888:
2501 case DRM_FORMAT_ABGR8888:
2502 dspcntr |= DISPPLANE_RGBX888;
2503 break;
2504 case DRM_FORMAT_XRGB2101010:
2505 case DRM_FORMAT_ARGB2101010:
2506 dspcntr |= DISPPLANE_BGRX101010;
2507 break;
2508 case DRM_FORMAT_XBGR2101010:
2509 case DRM_FORMAT_ABGR2101010:
2510 dspcntr |= DISPPLANE_RGBX101010;
2511 break;
2512 default:
2513 BUG();
2514 }
2515
2516 if (INTEL_INFO(dev)->gen >= 4 &&
2517 obj->tiling_mode != I915_TILING_NONE)
2518 dspcntr |= DISPPLANE_TILED;
2519
2520 if (IS_G4X(dev))
2521 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2522
2523 linear_offset = y * fb->pitches[0] + x * pixel_size;
2524
2525 if (INTEL_INFO(dev)->gen >= 4) {
2526 intel_crtc->dspaddr_offset =
2527 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2528 pixel_size,
2529 fb->pitches[0]);
2530 linear_offset -= intel_crtc->dspaddr_offset;
2531 } else {
2532 intel_crtc->dspaddr_offset = linear_offset;
2533 }
2534
2535 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2536 dspcntr |= DISPPLANE_ROTATE_180;
2537
2538 x += (intel_crtc->config->pipe_src_w - 1);
2539 y += (intel_crtc->config->pipe_src_h - 1);
2540
2541 /* Finding the last pixel of the last line of the display
2542 data and adding to linear_offset*/
2543 linear_offset +=
2544 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2545 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2546 }
2547
2548 I915_WRITE(reg, dspcntr);
2549
2550 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2551 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2552 fb->pitches[0]);
2553 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2554 if (INTEL_INFO(dev)->gen >= 4) {
2555 I915_WRITE(DSPSURF(plane),
2556 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2557 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2558 I915_WRITE(DSPLINOFF(plane), linear_offset);
2559 } else
2560 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2561 POSTING_READ(reg);
2562 }
2563
2564 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2565 struct drm_framebuffer *fb,
2566 int x, int y)
2567 {
2568 struct drm_device *dev = crtc->dev;
2569 struct drm_i915_private *dev_priv = dev->dev_private;
2570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2571 struct drm_i915_gem_object *obj;
2572 int plane = intel_crtc->plane;
2573 unsigned long linear_offset;
2574 u32 dspcntr;
2575 u32 reg = DSPCNTR(plane);
2576 int pixel_size;
2577
2578 if (!intel_crtc->primary_enabled) {
2579 I915_WRITE(reg, 0);
2580 I915_WRITE(DSPSURF(plane), 0);
2581 POSTING_READ(reg);
2582 return;
2583 }
2584
2585 obj = intel_fb_obj(fb);
2586 if (WARN_ON(obj == NULL))
2587 return;
2588
2589 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2590
2591 dspcntr = DISPPLANE_GAMMA_ENABLE;
2592
2593 dspcntr |= DISPLAY_PLANE_ENABLE;
2594
2595 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2596 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2597
2598 switch (fb->pixel_format) {
2599 case DRM_FORMAT_C8:
2600 dspcntr |= DISPPLANE_8BPP;
2601 break;
2602 case DRM_FORMAT_RGB565:
2603 dspcntr |= DISPPLANE_BGRX565;
2604 break;
2605 case DRM_FORMAT_XRGB8888:
2606 case DRM_FORMAT_ARGB8888:
2607 dspcntr |= DISPPLANE_BGRX888;
2608 break;
2609 case DRM_FORMAT_XBGR8888:
2610 case DRM_FORMAT_ABGR8888:
2611 dspcntr |= DISPPLANE_RGBX888;
2612 break;
2613 case DRM_FORMAT_XRGB2101010:
2614 case DRM_FORMAT_ARGB2101010:
2615 dspcntr |= DISPPLANE_BGRX101010;
2616 break;
2617 case DRM_FORMAT_XBGR2101010:
2618 case DRM_FORMAT_ABGR2101010:
2619 dspcntr |= DISPPLANE_RGBX101010;
2620 break;
2621 default:
2622 BUG();
2623 }
2624
2625 if (obj->tiling_mode != I915_TILING_NONE)
2626 dspcntr |= DISPPLANE_TILED;
2627
2628 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2629 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2630
2631 linear_offset = y * fb->pitches[0] + x * pixel_size;
2632 intel_crtc->dspaddr_offset =
2633 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2634 pixel_size,
2635 fb->pitches[0]);
2636 linear_offset -= intel_crtc->dspaddr_offset;
2637 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2638 dspcntr |= DISPPLANE_ROTATE_180;
2639
2640 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2641 x += (intel_crtc->config->pipe_src_w - 1);
2642 y += (intel_crtc->config->pipe_src_h - 1);
2643
2644 /* Finding the last pixel of the last line of the display
2645 data and adding to linear_offset*/
2646 linear_offset +=
2647 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2648 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2649 }
2650 }
2651
2652 I915_WRITE(reg, dspcntr);
2653
2654 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2655 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2656 fb->pitches[0]);
2657 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2658 I915_WRITE(DSPSURF(plane),
2659 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2660 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2661 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2662 } else {
2663 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2664 I915_WRITE(DSPLINOFF(plane), linear_offset);
2665 }
2666 POSTING_READ(reg);
2667 }
2668
2669 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2670 struct drm_framebuffer *fb,
2671 int x, int y)
2672 {
2673 struct drm_device *dev = crtc->dev;
2674 struct drm_i915_private *dev_priv = dev->dev_private;
2675 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2676 struct intel_framebuffer *intel_fb;
2677 struct drm_i915_gem_object *obj;
2678 int pipe = intel_crtc->pipe;
2679 u32 plane_ctl, stride;
2680
2681 if (!intel_crtc->primary_enabled) {
2682 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2683 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2684 POSTING_READ(PLANE_CTL(pipe, 0));
2685 return;
2686 }
2687
2688 plane_ctl = PLANE_CTL_ENABLE |
2689 PLANE_CTL_PIPE_GAMMA_ENABLE |
2690 PLANE_CTL_PIPE_CSC_ENABLE;
2691
2692 switch (fb->pixel_format) {
2693 case DRM_FORMAT_RGB565:
2694 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2695 break;
2696 case DRM_FORMAT_XRGB8888:
2697 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2698 break;
2699 case DRM_FORMAT_XBGR8888:
2700 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2701 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2702 break;
2703 case DRM_FORMAT_XRGB2101010:
2704 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2705 break;
2706 case DRM_FORMAT_XBGR2101010:
2707 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2708 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2709 break;
2710 default:
2711 BUG();
2712 }
2713
2714 intel_fb = to_intel_framebuffer(fb);
2715 obj = intel_fb->obj;
2716
2717 /*
2718 * The stride is either expressed as a multiple of 64 bytes chunks for
2719 * linear buffers or in number of tiles for tiled buffers.
2720 */
2721 switch (obj->tiling_mode) {
2722 case I915_TILING_NONE:
2723 stride = fb->pitches[0] >> 6;
2724 break;
2725 case I915_TILING_X:
2726 plane_ctl |= PLANE_CTL_TILED_X;
2727 stride = fb->pitches[0] >> 9;
2728 break;
2729 default:
2730 BUG();
2731 }
2732
2733 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2734 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180))
2735 plane_ctl |= PLANE_CTL_ROTATE_180;
2736
2737 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2738
2739 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2740 i915_gem_obj_ggtt_offset(obj),
2741 x, y, fb->width, fb->height,
2742 fb->pitches[0]);
2743
2744 I915_WRITE(PLANE_POS(pipe, 0), 0);
2745 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2746 I915_WRITE(PLANE_SIZE(pipe, 0),
2747 (intel_crtc->config->pipe_src_h - 1) << 16 |
2748 (intel_crtc->config->pipe_src_w - 1));
2749 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2750 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2751
2752 POSTING_READ(PLANE_SURF(pipe, 0));
2753 }
2754
2755 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2756 static int
2757 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2758 int x, int y, enum mode_set_atomic state)
2759 {
2760 struct drm_device *dev = crtc->dev;
2761 struct drm_i915_private *dev_priv = dev->dev_private;
2762
2763 if (dev_priv->display.disable_fbc)
2764 dev_priv->display.disable_fbc(dev);
2765
2766 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2767
2768 return 0;
2769 }
2770
2771 static void intel_complete_page_flips(struct drm_device *dev)
2772 {
2773 struct drm_crtc *crtc;
2774
2775 for_each_crtc(dev, crtc) {
2776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2777 enum plane plane = intel_crtc->plane;
2778
2779 intel_prepare_page_flip(dev, plane);
2780 intel_finish_page_flip_plane(dev, plane);
2781 }
2782 }
2783
2784 static void intel_update_primary_planes(struct drm_device *dev)
2785 {
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 struct drm_crtc *crtc;
2788
2789 for_each_crtc(dev, crtc) {
2790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2791
2792 drm_modeset_lock(&crtc->mutex, NULL);
2793 /*
2794 * FIXME: Once we have proper support for primary planes (and
2795 * disabling them without disabling the entire crtc) allow again
2796 * a NULL crtc->primary->fb.
2797 */
2798 if (intel_crtc->active && crtc->primary->fb)
2799 dev_priv->display.update_primary_plane(crtc,
2800 crtc->primary->fb,
2801 crtc->x,
2802 crtc->y);
2803 drm_modeset_unlock(&crtc->mutex);
2804 }
2805 }
2806
2807 void intel_prepare_reset(struct drm_device *dev)
2808 {
2809 struct drm_i915_private *dev_priv = to_i915(dev);
2810 struct intel_crtc *crtc;
2811
2812 /* no reset support for gen2 */
2813 if (IS_GEN2(dev))
2814 return;
2815
2816 /* reset doesn't touch the display */
2817 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2818 return;
2819
2820 drm_modeset_lock_all(dev);
2821
2822 /*
2823 * Disabling the crtcs gracefully seems nicer. Also the
2824 * g33 docs say we should at least disable all the planes.
2825 */
2826 for_each_intel_crtc(dev, crtc) {
2827 if (crtc->active)
2828 dev_priv->display.crtc_disable(&crtc->base);
2829 }
2830 }
2831
2832 void intel_finish_reset(struct drm_device *dev)
2833 {
2834 struct drm_i915_private *dev_priv = to_i915(dev);
2835
2836 /*
2837 * Flips in the rings will be nuked by the reset,
2838 * so complete all pending flips so that user space
2839 * will get its events and not get stuck.
2840 */
2841 intel_complete_page_flips(dev);
2842
2843 /* no reset support for gen2 */
2844 if (IS_GEN2(dev))
2845 return;
2846
2847 /* reset doesn't touch the display */
2848 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2849 /*
2850 * Flips in the rings have been nuked by the reset,
2851 * so update the base address of all primary
2852 * planes to the the last fb to make sure we're
2853 * showing the correct fb after a reset.
2854 */
2855 intel_update_primary_planes(dev);
2856 return;
2857 }
2858
2859 /*
2860 * The display has been reset as well,
2861 * so need a full re-initialization.
2862 */
2863 intel_runtime_pm_disable_interrupts(dev_priv);
2864 intel_runtime_pm_enable_interrupts(dev_priv);
2865
2866 intel_modeset_init_hw(dev);
2867
2868 spin_lock_irq(&dev_priv->irq_lock);
2869 if (dev_priv->display.hpd_irq_setup)
2870 dev_priv->display.hpd_irq_setup(dev);
2871 spin_unlock_irq(&dev_priv->irq_lock);
2872
2873 intel_modeset_setup_hw_state(dev, true);
2874
2875 intel_hpd_init(dev_priv);
2876
2877 drm_modeset_unlock_all(dev);
2878 }
2879
2880 static int
2881 intel_finish_fb(struct drm_framebuffer *old_fb)
2882 {
2883 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2884 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2885 bool was_interruptible = dev_priv->mm.interruptible;
2886 int ret;
2887
2888 /* Big Hammer, we also need to ensure that any pending
2889 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2890 * current scanout is retired before unpinning the old
2891 * framebuffer.
2892 *
2893 * This should only fail upon a hung GPU, in which case we
2894 * can safely continue.
2895 */
2896 dev_priv->mm.interruptible = false;
2897 ret = i915_gem_object_finish_gpu(obj);
2898 dev_priv->mm.interruptible = was_interruptible;
2899
2900 return ret;
2901 }
2902
2903 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2904 {
2905 struct drm_device *dev = crtc->dev;
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2908 bool pending;
2909
2910 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2911 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2912 return false;
2913
2914 spin_lock_irq(&dev->event_lock);
2915 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916 spin_unlock_irq(&dev->event_lock);
2917
2918 return pending;
2919 }
2920
2921 static void intel_update_pipe_size(struct intel_crtc *crtc)
2922 {
2923 struct drm_device *dev = crtc->base.dev;
2924 struct drm_i915_private *dev_priv = dev->dev_private;
2925 const struct drm_display_mode *adjusted_mode;
2926
2927 if (!i915.fastboot)
2928 return;
2929
2930 /*
2931 * Update pipe size and adjust fitter if needed: the reason for this is
2932 * that in compute_mode_changes we check the native mode (not the pfit
2933 * mode) to see if we can flip rather than do a full mode set. In the
2934 * fastboot case, we'll flip, but if we don't update the pipesrc and
2935 * pfit state, we'll end up with a big fb scanned out into the wrong
2936 * sized surface.
2937 *
2938 * To fix this properly, we need to hoist the checks up into
2939 * compute_mode_changes (or above), check the actual pfit state and
2940 * whether the platform allows pfit disable with pipe active, and only
2941 * then update the pipesrc and pfit state, even on the flip path.
2942 */
2943
2944 adjusted_mode = &crtc->config->base.adjusted_mode;
2945
2946 I915_WRITE(PIPESRC(crtc->pipe),
2947 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2948 (adjusted_mode->crtc_vdisplay - 1));
2949 if (!crtc->config->pch_pfit.enabled &&
2950 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2951 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2952 I915_WRITE(PF_CTL(crtc->pipe), 0);
2953 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2954 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2955 }
2956 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
2957 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
2958 }
2959
2960 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2961 {
2962 struct drm_device *dev = crtc->dev;
2963 struct drm_i915_private *dev_priv = dev->dev_private;
2964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2965 int pipe = intel_crtc->pipe;
2966 u32 reg, temp;
2967
2968 /* enable normal train */
2969 reg = FDI_TX_CTL(pipe);
2970 temp = I915_READ(reg);
2971 if (IS_IVYBRIDGE(dev)) {
2972 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2973 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2974 } else {
2975 temp &= ~FDI_LINK_TRAIN_NONE;
2976 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2977 }
2978 I915_WRITE(reg, temp);
2979
2980 reg = FDI_RX_CTL(pipe);
2981 temp = I915_READ(reg);
2982 if (HAS_PCH_CPT(dev)) {
2983 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2984 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2985 } else {
2986 temp &= ~FDI_LINK_TRAIN_NONE;
2987 temp |= FDI_LINK_TRAIN_NONE;
2988 }
2989 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2990
2991 /* wait one idle pattern time */
2992 POSTING_READ(reg);
2993 udelay(1000);
2994
2995 /* IVB wants error correction enabled */
2996 if (IS_IVYBRIDGE(dev))
2997 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2998 FDI_FE_ERRC_ENABLE);
2999 }
3000
3001 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3002 {
3003 return crtc->base.enabled && crtc->active &&
3004 crtc->config->has_pch_encoder;
3005 }
3006
3007 static void ivb_modeset_global_resources(struct drm_device *dev)
3008 {
3009 struct drm_i915_private *dev_priv = dev->dev_private;
3010 struct intel_crtc *pipe_B_crtc =
3011 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3012 struct intel_crtc *pipe_C_crtc =
3013 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3014 uint32_t temp;
3015
3016 /*
3017 * When everything is off disable fdi C so that we could enable fdi B
3018 * with all lanes. Note that we don't care about enabled pipes without
3019 * an enabled pch encoder.
3020 */
3021 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3022 !pipe_has_enabled_pch(pipe_C_crtc)) {
3023 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3024 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3025
3026 temp = I915_READ(SOUTH_CHICKEN1);
3027 temp &= ~FDI_BC_BIFURCATION_SELECT;
3028 DRM_DEBUG_KMS("disabling fdi C rx\n");
3029 I915_WRITE(SOUTH_CHICKEN1, temp);
3030 }
3031 }
3032
3033 /* The FDI link training functions for ILK/Ibexpeak. */
3034 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3035 {
3036 struct drm_device *dev = crtc->dev;
3037 struct drm_i915_private *dev_priv = dev->dev_private;
3038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3039 int pipe = intel_crtc->pipe;
3040 u32 reg, temp, tries;
3041
3042 /* FDI needs bits from pipe first */
3043 assert_pipe_enabled(dev_priv, pipe);
3044
3045 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3046 for train result */
3047 reg = FDI_RX_IMR(pipe);
3048 temp = I915_READ(reg);
3049 temp &= ~FDI_RX_SYMBOL_LOCK;
3050 temp &= ~FDI_RX_BIT_LOCK;
3051 I915_WRITE(reg, temp);
3052 I915_READ(reg);
3053 udelay(150);
3054
3055 /* enable CPU FDI TX and PCH FDI RX */
3056 reg = FDI_TX_CTL(pipe);
3057 temp = I915_READ(reg);
3058 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3059 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3060 temp &= ~FDI_LINK_TRAIN_NONE;
3061 temp |= FDI_LINK_TRAIN_PATTERN_1;
3062 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3063
3064 reg = FDI_RX_CTL(pipe);
3065 temp = I915_READ(reg);
3066 temp &= ~FDI_LINK_TRAIN_NONE;
3067 temp |= FDI_LINK_TRAIN_PATTERN_1;
3068 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3069
3070 POSTING_READ(reg);
3071 udelay(150);
3072
3073 /* Ironlake workaround, enable clock pointer after FDI enable*/
3074 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3075 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3076 FDI_RX_PHASE_SYNC_POINTER_EN);
3077
3078 reg = FDI_RX_IIR(pipe);
3079 for (tries = 0; tries < 5; tries++) {
3080 temp = I915_READ(reg);
3081 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3082
3083 if ((temp & FDI_RX_BIT_LOCK)) {
3084 DRM_DEBUG_KMS("FDI train 1 done.\n");
3085 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3086 break;
3087 }
3088 }
3089 if (tries == 5)
3090 DRM_ERROR("FDI train 1 fail!\n");
3091
3092 /* Train 2 */
3093 reg = FDI_TX_CTL(pipe);
3094 temp = I915_READ(reg);
3095 temp &= ~FDI_LINK_TRAIN_NONE;
3096 temp |= FDI_LINK_TRAIN_PATTERN_2;
3097 I915_WRITE(reg, temp);
3098
3099 reg = FDI_RX_CTL(pipe);
3100 temp = I915_READ(reg);
3101 temp &= ~FDI_LINK_TRAIN_NONE;
3102 temp |= FDI_LINK_TRAIN_PATTERN_2;
3103 I915_WRITE(reg, temp);
3104
3105 POSTING_READ(reg);
3106 udelay(150);
3107
3108 reg = FDI_RX_IIR(pipe);
3109 for (tries = 0; tries < 5; tries++) {
3110 temp = I915_READ(reg);
3111 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3112
3113 if (temp & FDI_RX_SYMBOL_LOCK) {
3114 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3115 DRM_DEBUG_KMS("FDI train 2 done.\n");
3116 break;
3117 }
3118 }
3119 if (tries == 5)
3120 DRM_ERROR("FDI train 2 fail!\n");
3121
3122 DRM_DEBUG_KMS("FDI train done\n");
3123
3124 }
3125
3126 static const int snb_b_fdi_train_param[] = {
3127 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3128 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3129 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3130 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3131 };
3132
3133 /* The FDI link training functions for SNB/Cougarpoint. */
3134 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3135 {
3136 struct drm_device *dev = crtc->dev;
3137 struct drm_i915_private *dev_priv = dev->dev_private;
3138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3139 int pipe = intel_crtc->pipe;
3140 u32 reg, temp, i, retry;
3141
3142 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3143 for train result */
3144 reg = FDI_RX_IMR(pipe);
3145 temp = I915_READ(reg);
3146 temp &= ~FDI_RX_SYMBOL_LOCK;
3147 temp &= ~FDI_RX_BIT_LOCK;
3148 I915_WRITE(reg, temp);
3149
3150 POSTING_READ(reg);
3151 udelay(150);
3152
3153 /* enable CPU FDI TX and PCH FDI RX */
3154 reg = FDI_TX_CTL(pipe);
3155 temp = I915_READ(reg);
3156 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3157 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3158 temp &= ~FDI_LINK_TRAIN_NONE;
3159 temp |= FDI_LINK_TRAIN_PATTERN_1;
3160 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3161 /* SNB-B */
3162 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3163 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3164
3165 I915_WRITE(FDI_RX_MISC(pipe),
3166 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3167
3168 reg = FDI_RX_CTL(pipe);
3169 temp = I915_READ(reg);
3170 if (HAS_PCH_CPT(dev)) {
3171 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3172 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3173 } else {
3174 temp &= ~FDI_LINK_TRAIN_NONE;
3175 temp |= FDI_LINK_TRAIN_PATTERN_1;
3176 }
3177 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3178
3179 POSTING_READ(reg);
3180 udelay(150);
3181
3182 for (i = 0; i < 4; i++) {
3183 reg = FDI_TX_CTL(pipe);
3184 temp = I915_READ(reg);
3185 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3186 temp |= snb_b_fdi_train_param[i];
3187 I915_WRITE(reg, temp);
3188
3189 POSTING_READ(reg);
3190 udelay(500);
3191
3192 for (retry = 0; retry < 5; retry++) {
3193 reg = FDI_RX_IIR(pipe);
3194 temp = I915_READ(reg);
3195 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3196 if (temp & FDI_RX_BIT_LOCK) {
3197 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3198 DRM_DEBUG_KMS("FDI train 1 done.\n");
3199 break;
3200 }
3201 udelay(50);
3202 }
3203 if (retry < 5)
3204 break;
3205 }
3206 if (i == 4)
3207 DRM_ERROR("FDI train 1 fail!\n");
3208
3209 /* Train 2 */
3210 reg = FDI_TX_CTL(pipe);
3211 temp = I915_READ(reg);
3212 temp &= ~FDI_LINK_TRAIN_NONE;
3213 temp |= FDI_LINK_TRAIN_PATTERN_2;
3214 if (IS_GEN6(dev)) {
3215 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3216 /* SNB-B */
3217 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3218 }
3219 I915_WRITE(reg, temp);
3220
3221 reg = FDI_RX_CTL(pipe);
3222 temp = I915_READ(reg);
3223 if (HAS_PCH_CPT(dev)) {
3224 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3225 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3226 } else {
3227 temp &= ~FDI_LINK_TRAIN_NONE;
3228 temp |= FDI_LINK_TRAIN_PATTERN_2;
3229 }
3230 I915_WRITE(reg, temp);
3231
3232 POSTING_READ(reg);
3233 udelay(150);
3234
3235 for (i = 0; i < 4; i++) {
3236 reg = FDI_TX_CTL(pipe);
3237 temp = I915_READ(reg);
3238 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3239 temp |= snb_b_fdi_train_param[i];
3240 I915_WRITE(reg, temp);
3241
3242 POSTING_READ(reg);
3243 udelay(500);
3244
3245 for (retry = 0; retry < 5; retry++) {
3246 reg = FDI_RX_IIR(pipe);
3247 temp = I915_READ(reg);
3248 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3249 if (temp & FDI_RX_SYMBOL_LOCK) {
3250 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3251 DRM_DEBUG_KMS("FDI train 2 done.\n");
3252 break;
3253 }
3254 udelay(50);
3255 }
3256 if (retry < 5)
3257 break;
3258 }
3259 if (i == 4)
3260 DRM_ERROR("FDI train 2 fail!\n");
3261
3262 DRM_DEBUG_KMS("FDI train done.\n");
3263 }
3264
3265 /* Manual link training for Ivy Bridge A0 parts */
3266 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3267 {
3268 struct drm_device *dev = crtc->dev;
3269 struct drm_i915_private *dev_priv = dev->dev_private;
3270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3271 int pipe = intel_crtc->pipe;
3272 u32 reg, temp, i, j;
3273
3274 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3275 for train result */
3276 reg = FDI_RX_IMR(pipe);
3277 temp = I915_READ(reg);
3278 temp &= ~FDI_RX_SYMBOL_LOCK;
3279 temp &= ~FDI_RX_BIT_LOCK;
3280 I915_WRITE(reg, temp);
3281
3282 POSTING_READ(reg);
3283 udelay(150);
3284
3285 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3286 I915_READ(FDI_RX_IIR(pipe)));
3287
3288 /* Try each vswing and preemphasis setting twice before moving on */
3289 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3290 /* disable first in case we need to retry */
3291 reg = FDI_TX_CTL(pipe);
3292 temp = I915_READ(reg);
3293 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3294 temp &= ~FDI_TX_ENABLE;
3295 I915_WRITE(reg, temp);
3296
3297 reg = FDI_RX_CTL(pipe);
3298 temp = I915_READ(reg);
3299 temp &= ~FDI_LINK_TRAIN_AUTO;
3300 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3301 temp &= ~FDI_RX_ENABLE;
3302 I915_WRITE(reg, temp);
3303
3304 /* enable CPU FDI TX and PCH FDI RX */
3305 reg = FDI_TX_CTL(pipe);
3306 temp = I915_READ(reg);
3307 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3308 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3309 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3310 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3311 temp |= snb_b_fdi_train_param[j/2];
3312 temp |= FDI_COMPOSITE_SYNC;
3313 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3314
3315 I915_WRITE(FDI_RX_MISC(pipe),
3316 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3317
3318 reg = FDI_RX_CTL(pipe);
3319 temp = I915_READ(reg);
3320 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3321 temp |= FDI_COMPOSITE_SYNC;
3322 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3323
3324 POSTING_READ(reg);
3325 udelay(1); /* should be 0.5us */
3326
3327 for (i = 0; i < 4; i++) {
3328 reg = FDI_RX_IIR(pipe);
3329 temp = I915_READ(reg);
3330 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3331
3332 if (temp & FDI_RX_BIT_LOCK ||
3333 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3334 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3335 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3336 i);
3337 break;
3338 }
3339 udelay(1); /* should be 0.5us */
3340 }
3341 if (i == 4) {
3342 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3343 continue;
3344 }
3345
3346 /* Train 2 */
3347 reg = FDI_TX_CTL(pipe);
3348 temp = I915_READ(reg);
3349 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3350 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3351 I915_WRITE(reg, temp);
3352
3353 reg = FDI_RX_CTL(pipe);
3354 temp = I915_READ(reg);
3355 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3356 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3357 I915_WRITE(reg, temp);
3358
3359 POSTING_READ(reg);
3360 udelay(2); /* should be 1.5us */
3361
3362 for (i = 0; i < 4; i++) {
3363 reg = FDI_RX_IIR(pipe);
3364 temp = I915_READ(reg);
3365 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3366
3367 if (temp & FDI_RX_SYMBOL_LOCK ||
3368 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3369 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3370 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3371 i);
3372 goto train_done;
3373 }
3374 udelay(2); /* should be 1.5us */
3375 }
3376 if (i == 4)
3377 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3378 }
3379
3380 train_done:
3381 DRM_DEBUG_KMS("FDI train done.\n");
3382 }
3383
3384 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3385 {
3386 struct drm_device *dev = intel_crtc->base.dev;
3387 struct drm_i915_private *dev_priv = dev->dev_private;
3388 int pipe = intel_crtc->pipe;
3389 u32 reg, temp;
3390
3391
3392 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3393 reg = FDI_RX_CTL(pipe);
3394 temp = I915_READ(reg);
3395 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3396 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3397 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3398 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3399
3400 POSTING_READ(reg);
3401 udelay(200);
3402
3403 /* Switch from Rawclk to PCDclk */
3404 temp = I915_READ(reg);
3405 I915_WRITE(reg, temp | FDI_PCDCLK);
3406
3407 POSTING_READ(reg);
3408 udelay(200);
3409
3410 /* Enable CPU FDI TX PLL, always on for Ironlake */
3411 reg = FDI_TX_CTL(pipe);
3412 temp = I915_READ(reg);
3413 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3414 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3415
3416 POSTING_READ(reg);
3417 udelay(100);
3418 }
3419 }
3420
3421 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3422 {
3423 struct drm_device *dev = intel_crtc->base.dev;
3424 struct drm_i915_private *dev_priv = dev->dev_private;
3425 int pipe = intel_crtc->pipe;
3426 u32 reg, temp;
3427
3428 /* Switch from PCDclk to Rawclk */
3429 reg = FDI_RX_CTL(pipe);
3430 temp = I915_READ(reg);
3431 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3432
3433 /* Disable CPU FDI TX PLL */
3434 reg = FDI_TX_CTL(pipe);
3435 temp = I915_READ(reg);
3436 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3437
3438 POSTING_READ(reg);
3439 udelay(100);
3440
3441 reg = FDI_RX_CTL(pipe);
3442 temp = I915_READ(reg);
3443 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3444
3445 /* Wait for the clocks to turn off. */
3446 POSTING_READ(reg);
3447 udelay(100);
3448 }
3449
3450 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3451 {
3452 struct drm_device *dev = crtc->dev;
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3455 int pipe = intel_crtc->pipe;
3456 u32 reg, temp;
3457
3458 /* disable CPU FDI tx and PCH FDI rx */
3459 reg = FDI_TX_CTL(pipe);
3460 temp = I915_READ(reg);
3461 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3462 POSTING_READ(reg);
3463
3464 reg = FDI_RX_CTL(pipe);
3465 temp = I915_READ(reg);
3466 temp &= ~(0x7 << 16);
3467 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3468 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3469
3470 POSTING_READ(reg);
3471 udelay(100);
3472
3473 /* Ironlake workaround, disable clock pointer after downing FDI */
3474 if (HAS_PCH_IBX(dev))
3475 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3476
3477 /* still set train pattern 1 */
3478 reg = FDI_TX_CTL(pipe);
3479 temp = I915_READ(reg);
3480 temp &= ~FDI_LINK_TRAIN_NONE;
3481 temp |= FDI_LINK_TRAIN_PATTERN_1;
3482 I915_WRITE(reg, temp);
3483
3484 reg = FDI_RX_CTL(pipe);
3485 temp = I915_READ(reg);
3486 if (HAS_PCH_CPT(dev)) {
3487 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3488 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3489 } else {
3490 temp &= ~FDI_LINK_TRAIN_NONE;
3491 temp |= FDI_LINK_TRAIN_PATTERN_1;
3492 }
3493 /* BPC in FDI rx is consistent with that in PIPECONF */
3494 temp &= ~(0x07 << 16);
3495 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3496 I915_WRITE(reg, temp);
3497
3498 POSTING_READ(reg);
3499 udelay(100);
3500 }
3501
3502 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3503 {
3504 struct intel_crtc *crtc;
3505
3506 /* Note that we don't need to be called with mode_config.lock here
3507 * as our list of CRTC objects is static for the lifetime of the
3508 * device and so cannot disappear as we iterate. Similarly, we can
3509 * happily treat the predicates as racy, atomic checks as userspace
3510 * cannot claim and pin a new fb without at least acquring the
3511 * struct_mutex and so serialising with us.
3512 */
3513 for_each_intel_crtc(dev, crtc) {
3514 if (atomic_read(&crtc->unpin_work_count) == 0)
3515 continue;
3516
3517 if (crtc->unpin_work)
3518 intel_wait_for_vblank(dev, crtc->pipe);
3519
3520 return true;
3521 }
3522
3523 return false;
3524 }
3525
3526 static void page_flip_completed(struct intel_crtc *intel_crtc)
3527 {
3528 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3529 struct intel_unpin_work *work = intel_crtc->unpin_work;
3530
3531 /* ensure that the unpin work is consistent wrt ->pending. */
3532 smp_rmb();
3533 intel_crtc->unpin_work = NULL;
3534
3535 if (work->event)
3536 drm_send_vblank_event(intel_crtc->base.dev,
3537 intel_crtc->pipe,
3538 work->event);
3539
3540 drm_crtc_vblank_put(&intel_crtc->base);
3541
3542 wake_up_all(&dev_priv->pending_flip_queue);
3543 queue_work(dev_priv->wq, &work->work);
3544
3545 trace_i915_flip_complete(intel_crtc->plane,
3546 work->pending_flip_obj);
3547 }
3548
3549 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3550 {
3551 struct drm_device *dev = crtc->dev;
3552 struct drm_i915_private *dev_priv = dev->dev_private;
3553
3554 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3555 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3556 !intel_crtc_has_pending_flip(crtc),
3557 60*HZ) == 0)) {
3558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559
3560 spin_lock_irq(&dev->event_lock);
3561 if (intel_crtc->unpin_work) {
3562 WARN_ONCE(1, "Removing stuck page flip\n");
3563 page_flip_completed(intel_crtc);
3564 }
3565 spin_unlock_irq(&dev->event_lock);
3566 }
3567
3568 if (crtc->primary->fb) {
3569 mutex_lock(&dev->struct_mutex);
3570 intel_finish_fb(crtc->primary->fb);
3571 mutex_unlock(&dev->struct_mutex);
3572 }
3573 }
3574
3575 /* Program iCLKIP clock to the desired frequency */
3576 static void lpt_program_iclkip(struct drm_crtc *crtc)
3577 {
3578 struct drm_device *dev = crtc->dev;
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3581 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3582 u32 temp;
3583
3584 mutex_lock(&dev_priv->dpio_lock);
3585
3586 /* It is necessary to ungate the pixclk gate prior to programming
3587 * the divisors, and gate it back when it is done.
3588 */
3589 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3590
3591 /* Disable SSCCTL */
3592 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3593 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3594 SBI_SSCCTL_DISABLE,
3595 SBI_ICLK);
3596
3597 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3598 if (clock == 20000) {
3599 auxdiv = 1;
3600 divsel = 0x41;
3601 phaseinc = 0x20;
3602 } else {
3603 /* The iCLK virtual clock root frequency is in MHz,
3604 * but the adjusted_mode->crtc_clock in in KHz. To get the
3605 * divisors, it is necessary to divide one by another, so we
3606 * convert the virtual clock precision to KHz here for higher
3607 * precision.
3608 */
3609 u32 iclk_virtual_root_freq = 172800 * 1000;
3610 u32 iclk_pi_range = 64;
3611 u32 desired_divisor, msb_divisor_value, pi_value;
3612
3613 desired_divisor = (iclk_virtual_root_freq / clock);
3614 msb_divisor_value = desired_divisor / iclk_pi_range;
3615 pi_value = desired_divisor % iclk_pi_range;
3616
3617 auxdiv = 0;
3618 divsel = msb_divisor_value - 2;
3619 phaseinc = pi_value;
3620 }
3621
3622 /* This should not happen with any sane values */
3623 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3624 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3625 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3626 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3627
3628 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3629 clock,
3630 auxdiv,
3631 divsel,
3632 phasedir,
3633 phaseinc);
3634
3635 /* Program SSCDIVINTPHASE6 */
3636 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3637 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3638 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3639 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3640 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3641 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3642 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3643 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3644
3645 /* Program SSCAUXDIV */
3646 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3647 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3648 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3649 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3650
3651 /* Enable modulator and associated divider */
3652 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3653 temp &= ~SBI_SSCCTL_DISABLE;
3654 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3655
3656 /* Wait for initialization time */
3657 udelay(24);
3658
3659 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3660
3661 mutex_unlock(&dev_priv->dpio_lock);
3662 }
3663
3664 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3665 enum pipe pch_transcoder)
3666 {
3667 struct drm_device *dev = crtc->base.dev;
3668 struct drm_i915_private *dev_priv = dev->dev_private;
3669 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3670
3671 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3672 I915_READ(HTOTAL(cpu_transcoder)));
3673 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3674 I915_READ(HBLANK(cpu_transcoder)));
3675 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3676 I915_READ(HSYNC(cpu_transcoder)));
3677
3678 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3679 I915_READ(VTOTAL(cpu_transcoder)));
3680 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3681 I915_READ(VBLANK(cpu_transcoder)));
3682 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3683 I915_READ(VSYNC(cpu_transcoder)));
3684 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3685 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3686 }
3687
3688 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3689 {
3690 struct drm_i915_private *dev_priv = dev->dev_private;
3691 uint32_t temp;
3692
3693 temp = I915_READ(SOUTH_CHICKEN1);
3694 if (temp & FDI_BC_BIFURCATION_SELECT)
3695 return;
3696
3697 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3698 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3699
3700 temp |= FDI_BC_BIFURCATION_SELECT;
3701 DRM_DEBUG_KMS("enabling fdi C rx\n");
3702 I915_WRITE(SOUTH_CHICKEN1, temp);
3703 POSTING_READ(SOUTH_CHICKEN1);
3704 }
3705
3706 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3707 {
3708 struct drm_device *dev = intel_crtc->base.dev;
3709 struct drm_i915_private *dev_priv = dev->dev_private;
3710
3711 switch (intel_crtc->pipe) {
3712 case PIPE_A:
3713 break;
3714 case PIPE_B:
3715 if (intel_crtc->config->fdi_lanes > 2)
3716 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3717 else
3718 cpt_enable_fdi_bc_bifurcation(dev);
3719
3720 break;
3721 case PIPE_C:
3722 cpt_enable_fdi_bc_bifurcation(dev);
3723
3724 break;
3725 default:
3726 BUG();
3727 }
3728 }
3729
3730 /*
3731 * Enable PCH resources required for PCH ports:
3732 * - PCH PLLs
3733 * - FDI training & RX/TX
3734 * - update transcoder timings
3735 * - DP transcoding bits
3736 * - transcoder
3737 */
3738 static void ironlake_pch_enable(struct drm_crtc *crtc)
3739 {
3740 struct drm_device *dev = crtc->dev;
3741 struct drm_i915_private *dev_priv = dev->dev_private;
3742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3743 int pipe = intel_crtc->pipe;
3744 u32 reg, temp;
3745
3746 assert_pch_transcoder_disabled(dev_priv, pipe);
3747
3748 if (IS_IVYBRIDGE(dev))
3749 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3750
3751 /* Write the TU size bits before fdi link training, so that error
3752 * detection works. */
3753 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3754 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3755
3756 /* For PCH output, training FDI link */
3757 dev_priv->display.fdi_link_train(crtc);
3758
3759 /* We need to program the right clock selection before writing the pixel
3760 * mutliplier into the DPLL. */
3761 if (HAS_PCH_CPT(dev)) {
3762 u32 sel;
3763
3764 temp = I915_READ(PCH_DPLL_SEL);
3765 temp |= TRANS_DPLL_ENABLE(pipe);
3766 sel = TRANS_DPLLB_SEL(pipe);
3767 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3768 temp |= sel;
3769 else
3770 temp &= ~sel;
3771 I915_WRITE(PCH_DPLL_SEL, temp);
3772 }
3773
3774 /* XXX: pch pll's can be enabled any time before we enable the PCH
3775 * transcoder, and we actually should do this to not upset any PCH
3776 * transcoder that already use the clock when we share it.
3777 *
3778 * Note that enable_shared_dpll tries to do the right thing, but
3779 * get_shared_dpll unconditionally resets the pll - we need that to have
3780 * the right LVDS enable sequence. */
3781 intel_enable_shared_dpll(intel_crtc);
3782
3783 /* set transcoder timing, panel must allow it */
3784 assert_panel_unlocked(dev_priv, pipe);
3785 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3786
3787 intel_fdi_normal_train(crtc);
3788
3789 /* For PCH DP, enable TRANS_DP_CTL */
3790 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3791 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3792 reg = TRANS_DP_CTL(pipe);
3793 temp = I915_READ(reg);
3794 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3795 TRANS_DP_SYNC_MASK |
3796 TRANS_DP_BPC_MASK);
3797 temp |= (TRANS_DP_OUTPUT_ENABLE |
3798 TRANS_DP_ENH_FRAMING);
3799 temp |= bpc << 9; /* same format but at 11:9 */
3800
3801 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3802 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3803 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3804 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3805
3806 switch (intel_trans_dp_port_sel(crtc)) {
3807 case PCH_DP_B:
3808 temp |= TRANS_DP_PORT_SEL_B;
3809 break;
3810 case PCH_DP_C:
3811 temp |= TRANS_DP_PORT_SEL_C;
3812 break;
3813 case PCH_DP_D:
3814 temp |= TRANS_DP_PORT_SEL_D;
3815 break;
3816 default:
3817 BUG();
3818 }
3819
3820 I915_WRITE(reg, temp);
3821 }
3822
3823 ironlake_enable_pch_transcoder(dev_priv, pipe);
3824 }
3825
3826 static void lpt_pch_enable(struct drm_crtc *crtc)
3827 {
3828 struct drm_device *dev = crtc->dev;
3829 struct drm_i915_private *dev_priv = dev->dev_private;
3830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3831 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3832
3833 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3834
3835 lpt_program_iclkip(crtc);
3836
3837 /* Set transcoder timing. */
3838 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3839
3840 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3841 }
3842
3843 void intel_put_shared_dpll(struct intel_crtc *crtc)
3844 {
3845 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3846
3847 if (pll == NULL)
3848 return;
3849
3850 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3851 WARN(1, "bad %s crtc mask\n", pll->name);
3852 return;
3853 }
3854
3855 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3856 if (pll->config.crtc_mask == 0) {
3857 WARN_ON(pll->on);
3858 WARN_ON(pll->active);
3859 }
3860
3861 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
3862 }
3863
3864 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3865 struct intel_crtc_state *crtc_state)
3866 {
3867 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3868 struct intel_shared_dpll *pll;
3869 enum intel_dpll_id i;
3870
3871 if (HAS_PCH_IBX(dev_priv->dev)) {
3872 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3873 i = (enum intel_dpll_id) crtc->pipe;
3874 pll = &dev_priv->shared_dplls[i];
3875
3876 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3877 crtc->base.base.id, pll->name);
3878
3879 WARN_ON(pll->new_config->crtc_mask);
3880
3881 goto found;
3882 }
3883
3884 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3885 pll = &dev_priv->shared_dplls[i];
3886
3887 /* Only want to check enabled timings first */
3888 if (pll->new_config->crtc_mask == 0)
3889 continue;
3890
3891 if (memcmp(&crtc_state->dpll_hw_state,
3892 &pll->new_config->hw_state,
3893 sizeof(pll->new_config->hw_state)) == 0) {
3894 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3895 crtc->base.base.id, pll->name,
3896 pll->new_config->crtc_mask,
3897 pll->active);
3898 goto found;
3899 }
3900 }
3901
3902 /* Ok no matching timings, maybe there's a free one? */
3903 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3904 pll = &dev_priv->shared_dplls[i];
3905 if (pll->new_config->crtc_mask == 0) {
3906 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3907 crtc->base.base.id, pll->name);
3908 goto found;
3909 }
3910 }
3911
3912 return NULL;
3913
3914 found:
3915 if (pll->new_config->crtc_mask == 0)
3916 pll->new_config->hw_state = crtc_state->dpll_hw_state;
3917
3918 crtc_state->shared_dpll = i;
3919 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3920 pipe_name(crtc->pipe));
3921
3922 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3923
3924 return pll;
3925 }
3926
3927 /**
3928 * intel_shared_dpll_start_config - start a new PLL staged config
3929 * @dev_priv: DRM device
3930 * @clear_pipes: mask of pipes that will have their PLLs freed
3931 *
3932 * Starts a new PLL staged config, copying the current config but
3933 * releasing the references of pipes specified in clear_pipes.
3934 */
3935 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3936 unsigned clear_pipes)
3937 {
3938 struct intel_shared_dpll *pll;
3939 enum intel_dpll_id i;
3940
3941 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3942 pll = &dev_priv->shared_dplls[i];
3943
3944 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3945 GFP_KERNEL);
3946 if (!pll->new_config)
3947 goto cleanup;
3948
3949 pll->new_config->crtc_mask &= ~clear_pipes;
3950 }
3951
3952 return 0;
3953
3954 cleanup:
3955 while (--i >= 0) {
3956 pll = &dev_priv->shared_dplls[i];
3957 kfree(pll->new_config);
3958 pll->new_config = NULL;
3959 }
3960
3961 return -ENOMEM;
3962 }
3963
3964 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3965 {
3966 struct intel_shared_dpll *pll;
3967 enum intel_dpll_id i;
3968
3969 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3970 pll = &dev_priv->shared_dplls[i];
3971
3972 WARN_ON(pll->new_config == &pll->config);
3973
3974 pll->config = *pll->new_config;
3975 kfree(pll->new_config);
3976 pll->new_config = NULL;
3977 }
3978 }
3979
3980 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
3981 {
3982 struct intel_shared_dpll *pll;
3983 enum intel_dpll_id i;
3984
3985 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3986 pll = &dev_priv->shared_dplls[i];
3987
3988 WARN_ON(pll->new_config == &pll->config);
3989
3990 kfree(pll->new_config);
3991 pll->new_config = NULL;
3992 }
3993 }
3994
3995 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3996 {
3997 struct drm_i915_private *dev_priv = dev->dev_private;
3998 int dslreg = PIPEDSL(pipe);
3999 u32 temp;
4000
4001 temp = I915_READ(dslreg);
4002 udelay(500);
4003 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4004 if (wait_for(I915_READ(dslreg) != temp, 5))
4005 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4006 }
4007 }
4008
4009 static void skylake_pfit_enable(struct intel_crtc *crtc)
4010 {
4011 struct drm_device *dev = crtc->base.dev;
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 int pipe = crtc->pipe;
4014
4015 if (crtc->config->pch_pfit.enabled) {
4016 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4017 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4018 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4019 }
4020 }
4021
4022 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4023 {
4024 struct drm_device *dev = crtc->base.dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 int pipe = crtc->pipe;
4027
4028 if (crtc->config->pch_pfit.enabled) {
4029 /* Force use of hard-coded filter coefficients
4030 * as some pre-programmed values are broken,
4031 * e.g. x201.
4032 */
4033 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4034 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4035 PF_PIPE_SEL_IVB(pipe));
4036 else
4037 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4038 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4039 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4040 }
4041 }
4042
4043 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4044 {
4045 struct drm_device *dev = crtc->dev;
4046 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4047 struct drm_plane *plane;
4048 struct intel_plane *intel_plane;
4049
4050 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4051 intel_plane = to_intel_plane(plane);
4052 if (intel_plane->pipe == pipe)
4053 intel_plane_restore(&intel_plane->base);
4054 }
4055 }
4056
4057 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4058 {
4059 struct drm_device *dev = crtc->dev;
4060 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4061 struct drm_plane *plane;
4062 struct intel_plane *intel_plane;
4063
4064 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4065 intel_plane = to_intel_plane(plane);
4066 if (intel_plane->pipe == pipe)
4067 plane->funcs->disable_plane(plane);
4068 }
4069 }
4070
4071 void hsw_enable_ips(struct intel_crtc *crtc)
4072 {
4073 struct drm_device *dev = crtc->base.dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075
4076 if (!crtc->config->ips_enabled)
4077 return;
4078
4079 /* We can only enable IPS after we enable a plane and wait for a vblank */
4080 intel_wait_for_vblank(dev, crtc->pipe);
4081
4082 assert_plane_enabled(dev_priv, crtc->plane);
4083 if (IS_BROADWELL(dev)) {
4084 mutex_lock(&dev_priv->rps.hw_lock);
4085 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4086 mutex_unlock(&dev_priv->rps.hw_lock);
4087 /* Quoting Art Runyan: "its not safe to expect any particular
4088 * value in IPS_CTL bit 31 after enabling IPS through the
4089 * mailbox." Moreover, the mailbox may return a bogus state,
4090 * so we need to just enable it and continue on.
4091 */
4092 } else {
4093 I915_WRITE(IPS_CTL, IPS_ENABLE);
4094 /* The bit only becomes 1 in the next vblank, so this wait here
4095 * is essentially intel_wait_for_vblank. If we don't have this
4096 * and don't wait for vblanks until the end of crtc_enable, then
4097 * the HW state readout code will complain that the expected
4098 * IPS_CTL value is not the one we read. */
4099 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4100 DRM_ERROR("Timed out waiting for IPS enable\n");
4101 }
4102 }
4103
4104 void hsw_disable_ips(struct intel_crtc *crtc)
4105 {
4106 struct drm_device *dev = crtc->base.dev;
4107 struct drm_i915_private *dev_priv = dev->dev_private;
4108
4109 if (!crtc->config->ips_enabled)
4110 return;
4111
4112 assert_plane_enabled(dev_priv, crtc->plane);
4113 if (IS_BROADWELL(dev)) {
4114 mutex_lock(&dev_priv->rps.hw_lock);
4115 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4116 mutex_unlock(&dev_priv->rps.hw_lock);
4117 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4118 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4119 DRM_ERROR("Timed out waiting for IPS disable\n");
4120 } else {
4121 I915_WRITE(IPS_CTL, 0);
4122 POSTING_READ(IPS_CTL);
4123 }
4124
4125 /* We need to wait for a vblank before we can disable the plane. */
4126 intel_wait_for_vblank(dev, crtc->pipe);
4127 }
4128
4129 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4130 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4131 {
4132 struct drm_device *dev = crtc->dev;
4133 struct drm_i915_private *dev_priv = dev->dev_private;
4134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4135 enum pipe pipe = intel_crtc->pipe;
4136 int palreg = PALETTE(pipe);
4137 int i;
4138 bool reenable_ips = false;
4139
4140 /* The clocks have to be on to load the palette. */
4141 if (!crtc->enabled || !intel_crtc->active)
4142 return;
4143
4144 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4145 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4146 assert_dsi_pll_enabled(dev_priv);
4147 else
4148 assert_pll_enabled(dev_priv, pipe);
4149 }
4150
4151 /* use legacy palette for Ironlake */
4152 if (!HAS_GMCH_DISPLAY(dev))
4153 palreg = LGC_PALETTE(pipe);
4154
4155 /* Workaround : Do not read or write the pipe palette/gamma data while
4156 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4157 */
4158 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4159 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4160 GAMMA_MODE_MODE_SPLIT)) {
4161 hsw_disable_ips(intel_crtc);
4162 reenable_ips = true;
4163 }
4164
4165 for (i = 0; i < 256; i++) {
4166 I915_WRITE(palreg + 4 * i,
4167 (intel_crtc->lut_r[i] << 16) |
4168 (intel_crtc->lut_g[i] << 8) |
4169 intel_crtc->lut_b[i]);
4170 }
4171
4172 if (reenable_ips)
4173 hsw_enable_ips(intel_crtc);
4174 }
4175
4176 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4177 {
4178 if (!enable && intel_crtc->overlay) {
4179 struct drm_device *dev = intel_crtc->base.dev;
4180 struct drm_i915_private *dev_priv = dev->dev_private;
4181
4182 mutex_lock(&dev->struct_mutex);
4183 dev_priv->mm.interruptible = false;
4184 (void) intel_overlay_switch_off(intel_crtc->overlay);
4185 dev_priv->mm.interruptible = true;
4186 mutex_unlock(&dev->struct_mutex);
4187 }
4188
4189 /* Let userspace switch the overlay on again. In most cases userspace
4190 * has to recompute where to put it anyway.
4191 */
4192 }
4193
4194 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4195 {
4196 struct drm_device *dev = crtc->dev;
4197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4198 int pipe = intel_crtc->pipe;
4199
4200 intel_enable_primary_hw_plane(crtc->primary, crtc);
4201 intel_enable_sprite_planes(crtc);
4202 intel_crtc_update_cursor(crtc, true);
4203 intel_crtc_dpms_overlay(intel_crtc, true);
4204
4205 hsw_enable_ips(intel_crtc);
4206
4207 mutex_lock(&dev->struct_mutex);
4208 intel_fbc_update(dev);
4209 mutex_unlock(&dev->struct_mutex);
4210
4211 /*
4212 * FIXME: Once we grow proper nuclear flip support out of this we need
4213 * to compute the mask of flip planes precisely. For the time being
4214 * consider this a flip from a NULL plane.
4215 */
4216 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4217 }
4218
4219 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4220 {
4221 struct drm_device *dev = crtc->dev;
4222 struct drm_i915_private *dev_priv = dev->dev_private;
4223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4224 int pipe = intel_crtc->pipe;
4225 int plane = intel_crtc->plane;
4226
4227 intel_crtc_wait_for_pending_flips(crtc);
4228
4229 if (dev_priv->fbc.plane == plane)
4230 intel_fbc_disable(dev);
4231
4232 hsw_disable_ips(intel_crtc);
4233
4234 intel_crtc_dpms_overlay(intel_crtc, false);
4235 intel_crtc_update_cursor(crtc, false);
4236 intel_disable_sprite_planes(crtc);
4237 intel_disable_primary_hw_plane(crtc->primary, crtc);
4238
4239 /*
4240 * FIXME: Once we grow proper nuclear flip support out of this we need
4241 * to compute the mask of flip planes precisely. For the time being
4242 * consider this a flip to a NULL plane.
4243 */
4244 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4245 }
4246
4247 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4248 {
4249 struct drm_device *dev = crtc->dev;
4250 struct drm_i915_private *dev_priv = dev->dev_private;
4251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4252 struct intel_encoder *encoder;
4253 int pipe = intel_crtc->pipe;
4254
4255 WARN_ON(!crtc->enabled);
4256
4257 if (intel_crtc->active)
4258 return;
4259
4260 if (intel_crtc->config->has_pch_encoder)
4261 intel_prepare_shared_dpll(intel_crtc);
4262
4263 if (intel_crtc->config->has_dp_encoder)
4264 intel_dp_set_m_n(intel_crtc);
4265
4266 intel_set_pipe_timings(intel_crtc);
4267
4268 if (intel_crtc->config->has_pch_encoder) {
4269 intel_cpu_transcoder_set_m_n(intel_crtc,
4270 &intel_crtc->config->fdi_m_n, NULL);
4271 }
4272
4273 ironlake_set_pipeconf(crtc);
4274
4275 intel_crtc->active = true;
4276
4277 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4278 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4279
4280 for_each_encoder_on_crtc(dev, crtc, encoder)
4281 if (encoder->pre_enable)
4282 encoder->pre_enable(encoder);
4283
4284 if (intel_crtc->config->has_pch_encoder) {
4285 /* Note: FDI PLL enabling _must_ be done before we enable the
4286 * cpu pipes, hence this is separate from all the other fdi/pch
4287 * enabling. */
4288 ironlake_fdi_pll_enable(intel_crtc);
4289 } else {
4290 assert_fdi_tx_disabled(dev_priv, pipe);
4291 assert_fdi_rx_disabled(dev_priv, pipe);
4292 }
4293
4294 ironlake_pfit_enable(intel_crtc);
4295
4296 /*
4297 * On ILK+ LUT must be loaded before the pipe is running but with
4298 * clocks enabled
4299 */
4300 intel_crtc_load_lut(crtc);
4301
4302 intel_update_watermarks(crtc);
4303 intel_enable_pipe(intel_crtc);
4304
4305 if (intel_crtc->config->has_pch_encoder)
4306 ironlake_pch_enable(crtc);
4307
4308 assert_vblank_disabled(crtc);
4309 drm_crtc_vblank_on(crtc);
4310
4311 for_each_encoder_on_crtc(dev, crtc, encoder)
4312 encoder->enable(encoder);
4313
4314 if (HAS_PCH_CPT(dev))
4315 cpt_verify_modeset(dev, intel_crtc->pipe);
4316
4317 intel_crtc_enable_planes(crtc);
4318 }
4319
4320 /* IPS only exists on ULT machines and is tied to pipe A. */
4321 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4322 {
4323 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4324 }
4325
4326 /*
4327 * This implements the workaround described in the "notes" section of the mode
4328 * set sequence documentation. When going from no pipes or single pipe to
4329 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4330 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4331 */
4332 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4333 {
4334 struct drm_device *dev = crtc->base.dev;
4335 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4336
4337 /* We want to get the other_active_crtc only if there's only 1 other
4338 * active crtc. */
4339 for_each_intel_crtc(dev, crtc_it) {
4340 if (!crtc_it->active || crtc_it == crtc)
4341 continue;
4342
4343 if (other_active_crtc)
4344 return;
4345
4346 other_active_crtc = crtc_it;
4347 }
4348 if (!other_active_crtc)
4349 return;
4350
4351 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4352 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4353 }
4354
4355 static void haswell_crtc_enable(struct drm_crtc *crtc)
4356 {
4357 struct drm_device *dev = crtc->dev;
4358 struct drm_i915_private *dev_priv = dev->dev_private;
4359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4360 struct intel_encoder *encoder;
4361 int pipe = intel_crtc->pipe;
4362
4363 WARN_ON(!crtc->enabled);
4364
4365 if (intel_crtc->active)
4366 return;
4367
4368 if (intel_crtc_to_shared_dpll(intel_crtc))
4369 intel_enable_shared_dpll(intel_crtc);
4370
4371 if (intel_crtc->config->has_dp_encoder)
4372 intel_dp_set_m_n(intel_crtc);
4373
4374 intel_set_pipe_timings(intel_crtc);
4375
4376 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4377 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4378 intel_crtc->config->pixel_multiplier - 1);
4379 }
4380
4381 if (intel_crtc->config->has_pch_encoder) {
4382 intel_cpu_transcoder_set_m_n(intel_crtc,
4383 &intel_crtc->config->fdi_m_n, NULL);
4384 }
4385
4386 haswell_set_pipeconf(crtc);
4387
4388 intel_set_pipe_csc(crtc);
4389
4390 intel_crtc->active = true;
4391
4392 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4393 for_each_encoder_on_crtc(dev, crtc, encoder)
4394 if (encoder->pre_enable)
4395 encoder->pre_enable(encoder);
4396
4397 if (intel_crtc->config->has_pch_encoder) {
4398 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4399 true);
4400 dev_priv->display.fdi_link_train(crtc);
4401 }
4402
4403 intel_ddi_enable_pipe_clock(intel_crtc);
4404
4405 if (IS_SKYLAKE(dev))
4406 skylake_pfit_enable(intel_crtc);
4407 else
4408 ironlake_pfit_enable(intel_crtc);
4409
4410 /*
4411 * On ILK+ LUT must be loaded before the pipe is running but with
4412 * clocks enabled
4413 */
4414 intel_crtc_load_lut(crtc);
4415
4416 intel_ddi_set_pipe_settings(crtc);
4417 intel_ddi_enable_transcoder_func(crtc);
4418
4419 intel_update_watermarks(crtc);
4420 intel_enable_pipe(intel_crtc);
4421
4422 if (intel_crtc->config->has_pch_encoder)
4423 lpt_pch_enable(crtc);
4424
4425 if (intel_crtc->config->dp_encoder_is_mst)
4426 intel_ddi_set_vc_payload_alloc(crtc, true);
4427
4428 assert_vblank_disabled(crtc);
4429 drm_crtc_vblank_on(crtc);
4430
4431 for_each_encoder_on_crtc(dev, crtc, encoder) {
4432 encoder->enable(encoder);
4433 intel_opregion_notify_encoder(encoder, true);
4434 }
4435
4436 /* If we change the relative order between pipe/planes enabling, we need
4437 * to change the workaround. */
4438 haswell_mode_set_planes_workaround(intel_crtc);
4439 intel_crtc_enable_planes(crtc);
4440 }
4441
4442 static void skylake_pfit_disable(struct intel_crtc *crtc)
4443 {
4444 struct drm_device *dev = crtc->base.dev;
4445 struct drm_i915_private *dev_priv = dev->dev_private;
4446 int pipe = crtc->pipe;
4447
4448 /* To avoid upsetting the power well on haswell only disable the pfit if
4449 * it's in use. The hw state code will make sure we get this right. */
4450 if (crtc->config->pch_pfit.enabled) {
4451 I915_WRITE(PS_CTL(pipe), 0);
4452 I915_WRITE(PS_WIN_POS(pipe), 0);
4453 I915_WRITE(PS_WIN_SZ(pipe), 0);
4454 }
4455 }
4456
4457 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4458 {
4459 struct drm_device *dev = crtc->base.dev;
4460 struct drm_i915_private *dev_priv = dev->dev_private;
4461 int pipe = crtc->pipe;
4462
4463 /* To avoid upsetting the power well on haswell only disable the pfit if
4464 * it's in use. The hw state code will make sure we get this right. */
4465 if (crtc->config->pch_pfit.enabled) {
4466 I915_WRITE(PF_CTL(pipe), 0);
4467 I915_WRITE(PF_WIN_POS(pipe), 0);
4468 I915_WRITE(PF_WIN_SZ(pipe), 0);
4469 }
4470 }
4471
4472 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4473 {
4474 struct drm_device *dev = crtc->dev;
4475 struct drm_i915_private *dev_priv = dev->dev_private;
4476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4477 struct intel_encoder *encoder;
4478 int pipe = intel_crtc->pipe;
4479 u32 reg, temp;
4480
4481 if (!intel_crtc->active)
4482 return;
4483
4484 intel_crtc_disable_planes(crtc);
4485
4486 for_each_encoder_on_crtc(dev, crtc, encoder)
4487 encoder->disable(encoder);
4488
4489 drm_crtc_vblank_off(crtc);
4490 assert_vblank_disabled(crtc);
4491
4492 if (intel_crtc->config->has_pch_encoder)
4493 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4494
4495 intel_disable_pipe(intel_crtc);
4496
4497 ironlake_pfit_disable(intel_crtc);
4498
4499 for_each_encoder_on_crtc(dev, crtc, encoder)
4500 if (encoder->post_disable)
4501 encoder->post_disable(encoder);
4502
4503 if (intel_crtc->config->has_pch_encoder) {
4504 ironlake_fdi_disable(crtc);
4505
4506 ironlake_disable_pch_transcoder(dev_priv, pipe);
4507
4508 if (HAS_PCH_CPT(dev)) {
4509 /* disable TRANS_DP_CTL */
4510 reg = TRANS_DP_CTL(pipe);
4511 temp = I915_READ(reg);
4512 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4513 TRANS_DP_PORT_SEL_MASK);
4514 temp |= TRANS_DP_PORT_SEL_NONE;
4515 I915_WRITE(reg, temp);
4516
4517 /* disable DPLL_SEL */
4518 temp = I915_READ(PCH_DPLL_SEL);
4519 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4520 I915_WRITE(PCH_DPLL_SEL, temp);
4521 }
4522
4523 /* disable PCH DPLL */
4524 intel_disable_shared_dpll(intel_crtc);
4525
4526 ironlake_fdi_pll_disable(intel_crtc);
4527 }
4528
4529 intel_crtc->active = false;
4530 intel_update_watermarks(crtc);
4531
4532 mutex_lock(&dev->struct_mutex);
4533 intel_fbc_update(dev);
4534 mutex_unlock(&dev->struct_mutex);
4535 }
4536
4537 static void haswell_crtc_disable(struct drm_crtc *crtc)
4538 {
4539 struct drm_device *dev = crtc->dev;
4540 struct drm_i915_private *dev_priv = dev->dev_private;
4541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4542 struct intel_encoder *encoder;
4543 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4544
4545 if (!intel_crtc->active)
4546 return;
4547
4548 intel_crtc_disable_planes(crtc);
4549
4550 for_each_encoder_on_crtc(dev, crtc, encoder) {
4551 intel_opregion_notify_encoder(encoder, false);
4552 encoder->disable(encoder);
4553 }
4554
4555 drm_crtc_vblank_off(crtc);
4556 assert_vblank_disabled(crtc);
4557
4558 if (intel_crtc->config->has_pch_encoder)
4559 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4560 false);
4561 intel_disable_pipe(intel_crtc);
4562
4563 if (intel_crtc->config->dp_encoder_is_mst)
4564 intel_ddi_set_vc_payload_alloc(crtc, false);
4565
4566 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4567
4568 if (IS_SKYLAKE(dev))
4569 skylake_pfit_disable(intel_crtc);
4570 else
4571 ironlake_pfit_disable(intel_crtc);
4572
4573 intel_ddi_disable_pipe_clock(intel_crtc);
4574
4575 if (intel_crtc->config->has_pch_encoder) {
4576 lpt_disable_pch_transcoder(dev_priv);
4577 intel_ddi_fdi_disable(crtc);
4578 }
4579
4580 for_each_encoder_on_crtc(dev, crtc, encoder)
4581 if (encoder->post_disable)
4582 encoder->post_disable(encoder);
4583
4584 intel_crtc->active = false;
4585 intel_update_watermarks(crtc);
4586
4587 mutex_lock(&dev->struct_mutex);
4588 intel_fbc_update(dev);
4589 mutex_unlock(&dev->struct_mutex);
4590
4591 if (intel_crtc_to_shared_dpll(intel_crtc))
4592 intel_disable_shared_dpll(intel_crtc);
4593 }
4594
4595 static void ironlake_crtc_off(struct drm_crtc *crtc)
4596 {
4597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4598 intel_put_shared_dpll(intel_crtc);
4599 }
4600
4601
4602 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4603 {
4604 struct drm_device *dev = crtc->base.dev;
4605 struct drm_i915_private *dev_priv = dev->dev_private;
4606 struct intel_crtc_state *pipe_config = crtc->config;
4607
4608 if (!pipe_config->gmch_pfit.control)
4609 return;
4610
4611 /*
4612 * The panel fitter should only be adjusted whilst the pipe is disabled,
4613 * according to register description and PRM.
4614 */
4615 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4616 assert_pipe_disabled(dev_priv, crtc->pipe);
4617
4618 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4619 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4620
4621 /* Border color in case we don't scale up to the full screen. Black by
4622 * default, change to something else for debugging. */
4623 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4624 }
4625
4626 static enum intel_display_power_domain port_to_power_domain(enum port port)
4627 {
4628 switch (port) {
4629 case PORT_A:
4630 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4631 case PORT_B:
4632 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4633 case PORT_C:
4634 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4635 case PORT_D:
4636 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4637 default:
4638 WARN_ON_ONCE(1);
4639 return POWER_DOMAIN_PORT_OTHER;
4640 }
4641 }
4642
4643 #define for_each_power_domain(domain, mask) \
4644 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4645 if ((1 << (domain)) & (mask))
4646
4647 enum intel_display_power_domain
4648 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4649 {
4650 struct drm_device *dev = intel_encoder->base.dev;
4651 struct intel_digital_port *intel_dig_port;
4652
4653 switch (intel_encoder->type) {
4654 case INTEL_OUTPUT_UNKNOWN:
4655 /* Only DDI platforms should ever use this output type */
4656 WARN_ON_ONCE(!HAS_DDI(dev));
4657 case INTEL_OUTPUT_DISPLAYPORT:
4658 case INTEL_OUTPUT_HDMI:
4659 case INTEL_OUTPUT_EDP:
4660 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4661 return port_to_power_domain(intel_dig_port->port);
4662 case INTEL_OUTPUT_DP_MST:
4663 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4664 return port_to_power_domain(intel_dig_port->port);
4665 case INTEL_OUTPUT_ANALOG:
4666 return POWER_DOMAIN_PORT_CRT;
4667 case INTEL_OUTPUT_DSI:
4668 return POWER_DOMAIN_PORT_DSI;
4669 default:
4670 return POWER_DOMAIN_PORT_OTHER;
4671 }
4672 }
4673
4674 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4675 {
4676 struct drm_device *dev = crtc->dev;
4677 struct intel_encoder *intel_encoder;
4678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4679 enum pipe pipe = intel_crtc->pipe;
4680 unsigned long mask;
4681 enum transcoder transcoder;
4682
4683 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4684
4685 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4686 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4687 if (intel_crtc->config->pch_pfit.enabled ||
4688 intel_crtc->config->pch_pfit.force_thru)
4689 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4690
4691 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4692 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4693
4694 return mask;
4695 }
4696
4697 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4698 {
4699 struct drm_i915_private *dev_priv = dev->dev_private;
4700 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4701 struct intel_crtc *crtc;
4702
4703 /*
4704 * First get all needed power domains, then put all unneeded, to avoid
4705 * any unnecessary toggling of the power wells.
4706 */
4707 for_each_intel_crtc(dev, crtc) {
4708 enum intel_display_power_domain domain;
4709
4710 if (!crtc->base.enabled)
4711 continue;
4712
4713 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4714
4715 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4716 intel_display_power_get(dev_priv, domain);
4717 }
4718
4719 if (dev_priv->display.modeset_global_resources)
4720 dev_priv->display.modeset_global_resources(dev);
4721
4722 for_each_intel_crtc(dev, crtc) {
4723 enum intel_display_power_domain domain;
4724
4725 for_each_power_domain(domain, crtc->enabled_power_domains)
4726 intel_display_power_put(dev_priv, domain);
4727
4728 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4729 }
4730
4731 intel_display_set_init_power(dev_priv, false);
4732 }
4733
4734 /* returns HPLL frequency in kHz */
4735 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4736 {
4737 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4738
4739 /* Obtain SKU information */
4740 mutex_lock(&dev_priv->dpio_lock);
4741 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4742 CCK_FUSE_HPLL_FREQ_MASK;
4743 mutex_unlock(&dev_priv->dpio_lock);
4744
4745 return vco_freq[hpll_freq] * 1000;
4746 }
4747
4748 static void vlv_update_cdclk(struct drm_device *dev)
4749 {
4750 struct drm_i915_private *dev_priv = dev->dev_private;
4751
4752 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4753 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4754 dev_priv->vlv_cdclk_freq);
4755
4756 /*
4757 * Program the gmbus_freq based on the cdclk frequency.
4758 * BSpec erroneously claims we should aim for 4MHz, but
4759 * in fact 1MHz is the correct frequency.
4760 */
4761 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4762 }
4763
4764 /* Adjust CDclk dividers to allow high res or save power if possible */
4765 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4766 {
4767 struct drm_i915_private *dev_priv = dev->dev_private;
4768 u32 val, cmd;
4769
4770 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4771
4772 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4773 cmd = 2;
4774 else if (cdclk == 266667)
4775 cmd = 1;
4776 else
4777 cmd = 0;
4778
4779 mutex_lock(&dev_priv->rps.hw_lock);
4780 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4781 val &= ~DSPFREQGUAR_MASK;
4782 val |= (cmd << DSPFREQGUAR_SHIFT);
4783 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4784 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4785 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4786 50)) {
4787 DRM_ERROR("timed out waiting for CDclk change\n");
4788 }
4789 mutex_unlock(&dev_priv->rps.hw_lock);
4790
4791 if (cdclk == 400000) {
4792 u32 divider;
4793
4794 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4795
4796 mutex_lock(&dev_priv->dpio_lock);
4797 /* adjust cdclk divider */
4798 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4799 val &= ~DISPLAY_FREQUENCY_VALUES;
4800 val |= divider;
4801 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4802
4803 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4804 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4805 50))
4806 DRM_ERROR("timed out waiting for CDclk change\n");
4807 mutex_unlock(&dev_priv->dpio_lock);
4808 }
4809
4810 mutex_lock(&dev_priv->dpio_lock);
4811 /* adjust self-refresh exit latency value */
4812 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4813 val &= ~0x7f;
4814
4815 /*
4816 * For high bandwidth configs, we set a higher latency in the bunit
4817 * so that the core display fetch happens in time to avoid underruns.
4818 */
4819 if (cdclk == 400000)
4820 val |= 4500 / 250; /* 4.5 usec */
4821 else
4822 val |= 3000 / 250; /* 3.0 usec */
4823 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4824 mutex_unlock(&dev_priv->dpio_lock);
4825
4826 vlv_update_cdclk(dev);
4827 }
4828
4829 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4830 {
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 u32 val, cmd;
4833
4834 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4835
4836 switch (cdclk) {
4837 case 400000:
4838 cmd = 3;
4839 break;
4840 case 333333:
4841 case 320000:
4842 cmd = 2;
4843 break;
4844 case 266667:
4845 cmd = 1;
4846 break;
4847 case 200000:
4848 cmd = 0;
4849 break;
4850 default:
4851 MISSING_CASE(cdclk);
4852 return;
4853 }
4854
4855 mutex_lock(&dev_priv->rps.hw_lock);
4856 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4857 val &= ~DSPFREQGUAR_MASK_CHV;
4858 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4859 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4860 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4861 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4862 50)) {
4863 DRM_ERROR("timed out waiting for CDclk change\n");
4864 }
4865 mutex_unlock(&dev_priv->rps.hw_lock);
4866
4867 vlv_update_cdclk(dev);
4868 }
4869
4870 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4871 int max_pixclk)
4872 {
4873 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4874
4875 /* FIXME: Punit isn't quite ready yet */
4876 if (IS_CHERRYVIEW(dev_priv->dev))
4877 return 400000;
4878
4879 /*
4880 * Really only a few cases to deal with, as only 4 CDclks are supported:
4881 * 200MHz
4882 * 267MHz
4883 * 320/333MHz (depends on HPLL freq)
4884 * 400MHz
4885 * So we check to see whether we're above 90% of the lower bin and
4886 * adjust if needed.
4887 *
4888 * We seem to get an unstable or solid color picture at 200MHz.
4889 * Not sure what's wrong. For now use 200MHz only when all pipes
4890 * are off.
4891 */
4892 if (max_pixclk > freq_320*9/10)
4893 return 400000;
4894 else if (max_pixclk > 266667*9/10)
4895 return freq_320;
4896 else if (max_pixclk > 0)
4897 return 266667;
4898 else
4899 return 200000;
4900 }
4901
4902 /* compute the max pixel clock for new configuration */
4903 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4904 {
4905 struct drm_device *dev = dev_priv->dev;
4906 struct intel_crtc *intel_crtc;
4907 int max_pixclk = 0;
4908
4909 for_each_intel_crtc(dev, intel_crtc) {
4910 if (intel_crtc->new_enabled)
4911 max_pixclk = max(max_pixclk,
4912 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
4913 }
4914
4915 return max_pixclk;
4916 }
4917
4918 static void valleyview_modeset_global_pipes(struct drm_device *dev,
4919 unsigned *prepare_pipes)
4920 {
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 struct intel_crtc *intel_crtc;
4923 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4924
4925 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4926 dev_priv->vlv_cdclk_freq)
4927 return;
4928
4929 /* disable/enable all currently active pipes while we change cdclk */
4930 for_each_intel_crtc(dev, intel_crtc)
4931 if (intel_crtc->base.enabled)
4932 *prepare_pipes |= (1 << intel_crtc->pipe);
4933 }
4934
4935 static void valleyview_modeset_global_resources(struct drm_device *dev)
4936 {
4937 struct drm_i915_private *dev_priv = dev->dev_private;
4938 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4939 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4940
4941 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4942 /*
4943 * FIXME: We can end up here with all power domains off, yet
4944 * with a CDCLK frequency other than the minimum. To account
4945 * for this take the PIPE-A power domain, which covers the HW
4946 * blocks needed for the following programming. This can be
4947 * removed once it's guaranteed that we get here either with
4948 * the minimum CDCLK set, or the required power domains
4949 * enabled.
4950 */
4951 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4952
4953 if (IS_CHERRYVIEW(dev))
4954 cherryview_set_cdclk(dev, req_cdclk);
4955 else
4956 valleyview_set_cdclk(dev, req_cdclk);
4957
4958 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
4959 }
4960 }
4961
4962 static void valleyview_crtc_enable(struct drm_crtc *crtc)
4963 {
4964 struct drm_device *dev = crtc->dev;
4965 struct drm_i915_private *dev_priv = to_i915(dev);
4966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4967 struct intel_encoder *encoder;
4968 int pipe = intel_crtc->pipe;
4969 bool is_dsi;
4970
4971 WARN_ON(!crtc->enabled);
4972
4973 if (intel_crtc->active)
4974 return;
4975
4976 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4977
4978 if (!is_dsi) {
4979 if (IS_CHERRYVIEW(dev))
4980 chv_prepare_pll(intel_crtc, intel_crtc->config);
4981 else
4982 vlv_prepare_pll(intel_crtc, intel_crtc->config);
4983 }
4984
4985 if (intel_crtc->config->has_dp_encoder)
4986 intel_dp_set_m_n(intel_crtc);
4987
4988 intel_set_pipe_timings(intel_crtc);
4989
4990 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992
4993 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
4994 I915_WRITE(CHV_CANVAS(pipe), 0);
4995 }
4996
4997 i9xx_set_pipeconf(intel_crtc);
4998
4999 intel_crtc->active = true;
5000
5001 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5002
5003 for_each_encoder_on_crtc(dev, crtc, encoder)
5004 if (encoder->pre_pll_enable)
5005 encoder->pre_pll_enable(encoder);
5006
5007 if (!is_dsi) {
5008 if (IS_CHERRYVIEW(dev))
5009 chv_enable_pll(intel_crtc, intel_crtc->config);
5010 else
5011 vlv_enable_pll(intel_crtc, intel_crtc->config);
5012 }
5013
5014 for_each_encoder_on_crtc(dev, crtc, encoder)
5015 if (encoder->pre_enable)
5016 encoder->pre_enable(encoder);
5017
5018 i9xx_pfit_enable(intel_crtc);
5019
5020 intel_crtc_load_lut(crtc);
5021
5022 intel_update_watermarks(crtc);
5023 intel_enable_pipe(intel_crtc);
5024
5025 assert_vblank_disabled(crtc);
5026 drm_crtc_vblank_on(crtc);
5027
5028 for_each_encoder_on_crtc(dev, crtc, encoder)
5029 encoder->enable(encoder);
5030
5031 intel_crtc_enable_planes(crtc);
5032
5033 /* Underruns don't raise interrupts, so check manually. */
5034 i9xx_check_fifo_underruns(dev_priv);
5035 }
5036
5037 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5038 {
5039 struct drm_device *dev = crtc->base.dev;
5040 struct drm_i915_private *dev_priv = dev->dev_private;
5041
5042 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5043 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5044 }
5045
5046 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5047 {
5048 struct drm_device *dev = crtc->dev;
5049 struct drm_i915_private *dev_priv = to_i915(dev);
5050 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5051 struct intel_encoder *encoder;
5052 int pipe = intel_crtc->pipe;
5053
5054 WARN_ON(!crtc->enabled);
5055
5056 if (intel_crtc->active)
5057 return;
5058
5059 i9xx_set_pll_dividers(intel_crtc);
5060
5061 if (intel_crtc->config->has_dp_encoder)
5062 intel_dp_set_m_n(intel_crtc);
5063
5064 intel_set_pipe_timings(intel_crtc);
5065
5066 i9xx_set_pipeconf(intel_crtc);
5067
5068 intel_crtc->active = true;
5069
5070 if (!IS_GEN2(dev))
5071 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5072
5073 for_each_encoder_on_crtc(dev, crtc, encoder)
5074 if (encoder->pre_enable)
5075 encoder->pre_enable(encoder);
5076
5077 i9xx_enable_pll(intel_crtc);
5078
5079 i9xx_pfit_enable(intel_crtc);
5080
5081 intel_crtc_load_lut(crtc);
5082
5083 intel_update_watermarks(crtc);
5084 intel_enable_pipe(intel_crtc);
5085
5086 assert_vblank_disabled(crtc);
5087 drm_crtc_vblank_on(crtc);
5088
5089 for_each_encoder_on_crtc(dev, crtc, encoder)
5090 encoder->enable(encoder);
5091
5092 intel_crtc_enable_planes(crtc);
5093
5094 /*
5095 * Gen2 reports pipe underruns whenever all planes are disabled.
5096 * So don't enable underrun reporting before at least some planes
5097 * are enabled.
5098 * FIXME: Need to fix the logic to work when we turn off all planes
5099 * but leave the pipe running.
5100 */
5101 if (IS_GEN2(dev))
5102 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5103
5104 /* Underruns don't raise interrupts, so check manually. */
5105 i9xx_check_fifo_underruns(dev_priv);
5106 }
5107
5108 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5109 {
5110 struct drm_device *dev = crtc->base.dev;
5111 struct drm_i915_private *dev_priv = dev->dev_private;
5112
5113 if (!crtc->config->gmch_pfit.control)
5114 return;
5115
5116 assert_pipe_disabled(dev_priv, crtc->pipe);
5117
5118 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5119 I915_READ(PFIT_CONTROL));
5120 I915_WRITE(PFIT_CONTROL, 0);
5121 }
5122
5123 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5124 {
5125 struct drm_device *dev = crtc->dev;
5126 struct drm_i915_private *dev_priv = dev->dev_private;
5127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5128 struct intel_encoder *encoder;
5129 int pipe = intel_crtc->pipe;
5130
5131 if (!intel_crtc->active)
5132 return;
5133
5134 /*
5135 * Gen2 reports pipe underruns whenever all planes are disabled.
5136 * So diasble underrun reporting before all the planes get disabled.
5137 * FIXME: Need to fix the logic to work when we turn off all planes
5138 * but leave the pipe running.
5139 */
5140 if (IS_GEN2(dev))
5141 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5142
5143 /*
5144 * Vblank time updates from the shadow to live plane control register
5145 * are blocked if the memory self-refresh mode is active at that
5146 * moment. So to make sure the plane gets truly disabled, disable
5147 * first the self-refresh mode. The self-refresh enable bit in turn
5148 * will be checked/applied by the HW only at the next frame start
5149 * event which is after the vblank start event, so we need to have a
5150 * wait-for-vblank between disabling the plane and the pipe.
5151 */
5152 intel_set_memory_cxsr(dev_priv, false);
5153 intel_crtc_disable_planes(crtc);
5154
5155 /*
5156 * On gen2 planes are double buffered but the pipe isn't, so we must
5157 * wait for planes to fully turn off before disabling the pipe.
5158 * We also need to wait on all gmch platforms because of the
5159 * self-refresh mode constraint explained above.
5160 */
5161 intel_wait_for_vblank(dev, pipe);
5162
5163 for_each_encoder_on_crtc(dev, crtc, encoder)
5164 encoder->disable(encoder);
5165
5166 drm_crtc_vblank_off(crtc);
5167 assert_vblank_disabled(crtc);
5168
5169 intel_disable_pipe(intel_crtc);
5170
5171 i9xx_pfit_disable(intel_crtc);
5172
5173 for_each_encoder_on_crtc(dev, crtc, encoder)
5174 if (encoder->post_disable)
5175 encoder->post_disable(encoder);
5176
5177 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5178 if (IS_CHERRYVIEW(dev))
5179 chv_disable_pll(dev_priv, pipe);
5180 else if (IS_VALLEYVIEW(dev))
5181 vlv_disable_pll(dev_priv, pipe);
5182 else
5183 i9xx_disable_pll(intel_crtc);
5184 }
5185
5186 if (!IS_GEN2(dev))
5187 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5188
5189 intel_crtc->active = false;
5190 intel_update_watermarks(crtc);
5191
5192 mutex_lock(&dev->struct_mutex);
5193 intel_fbc_update(dev);
5194 mutex_unlock(&dev->struct_mutex);
5195 }
5196
5197 static void i9xx_crtc_off(struct drm_crtc *crtc)
5198 {
5199 }
5200
5201 /* Master function to enable/disable CRTC and corresponding power wells */
5202 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5203 {
5204 struct drm_device *dev = crtc->dev;
5205 struct drm_i915_private *dev_priv = dev->dev_private;
5206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5207 enum intel_display_power_domain domain;
5208 unsigned long domains;
5209
5210 if (enable) {
5211 if (!intel_crtc->active) {
5212 domains = get_crtc_power_domains(crtc);
5213 for_each_power_domain(domain, domains)
5214 intel_display_power_get(dev_priv, domain);
5215 intel_crtc->enabled_power_domains = domains;
5216
5217 dev_priv->display.crtc_enable(crtc);
5218 }
5219 } else {
5220 if (intel_crtc->active) {
5221 dev_priv->display.crtc_disable(crtc);
5222
5223 domains = intel_crtc->enabled_power_domains;
5224 for_each_power_domain(domain, domains)
5225 intel_display_power_put(dev_priv, domain);
5226 intel_crtc->enabled_power_domains = 0;
5227 }
5228 }
5229 }
5230
5231 /**
5232 * Sets the power management mode of the pipe and plane.
5233 */
5234 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5235 {
5236 struct drm_device *dev = crtc->dev;
5237 struct intel_encoder *intel_encoder;
5238 bool enable = false;
5239
5240 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5241 enable |= intel_encoder->connectors_active;
5242
5243 intel_crtc_control(crtc, enable);
5244 }
5245
5246 static void intel_crtc_disable(struct drm_crtc *crtc)
5247 {
5248 struct drm_device *dev = crtc->dev;
5249 struct drm_connector *connector;
5250 struct drm_i915_private *dev_priv = dev->dev_private;
5251
5252 /* crtc should still be enabled when we disable it. */
5253 WARN_ON(!crtc->enabled);
5254
5255 dev_priv->display.crtc_disable(crtc);
5256 dev_priv->display.off(crtc);
5257
5258 crtc->primary->funcs->disable_plane(crtc->primary);
5259
5260 /* Update computed state. */
5261 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5262 if (!connector->encoder || !connector->encoder->crtc)
5263 continue;
5264
5265 if (connector->encoder->crtc != crtc)
5266 continue;
5267
5268 connector->dpms = DRM_MODE_DPMS_OFF;
5269 to_intel_encoder(connector->encoder)->connectors_active = false;
5270 }
5271 }
5272
5273 void intel_encoder_destroy(struct drm_encoder *encoder)
5274 {
5275 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5276
5277 drm_encoder_cleanup(encoder);
5278 kfree(intel_encoder);
5279 }
5280
5281 /* Simple dpms helper for encoders with just one connector, no cloning and only
5282 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5283 * state of the entire output pipe. */
5284 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5285 {
5286 if (mode == DRM_MODE_DPMS_ON) {
5287 encoder->connectors_active = true;
5288
5289 intel_crtc_update_dpms(encoder->base.crtc);
5290 } else {
5291 encoder->connectors_active = false;
5292
5293 intel_crtc_update_dpms(encoder->base.crtc);
5294 }
5295 }
5296
5297 /* Cross check the actual hw state with our own modeset state tracking (and it's
5298 * internal consistency). */
5299 static void intel_connector_check_state(struct intel_connector *connector)
5300 {
5301 if (connector->get_hw_state(connector)) {
5302 struct intel_encoder *encoder = connector->encoder;
5303 struct drm_crtc *crtc;
5304 bool encoder_enabled;
5305 enum pipe pipe;
5306
5307 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5308 connector->base.base.id,
5309 connector->base.name);
5310
5311 /* there is no real hw state for MST connectors */
5312 if (connector->mst_port)
5313 return;
5314
5315 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5316 "wrong connector dpms state\n");
5317 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5318 "active connector not linked to encoder\n");
5319
5320 if (encoder) {
5321 I915_STATE_WARN(!encoder->connectors_active,
5322 "encoder->connectors_active not set\n");
5323
5324 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5325 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5326 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5327 return;
5328
5329 crtc = encoder->base.crtc;
5330
5331 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5332 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5333 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5334 "encoder active on the wrong pipe\n");
5335 }
5336 }
5337 }
5338
5339 /* Even simpler default implementation, if there's really no special case to
5340 * consider. */
5341 void intel_connector_dpms(struct drm_connector *connector, int mode)
5342 {
5343 /* All the simple cases only support two dpms states. */
5344 if (mode != DRM_MODE_DPMS_ON)
5345 mode = DRM_MODE_DPMS_OFF;
5346
5347 if (mode == connector->dpms)
5348 return;
5349
5350 connector->dpms = mode;
5351
5352 /* Only need to change hw state when actually enabled */
5353 if (connector->encoder)
5354 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5355
5356 intel_modeset_check_state(connector->dev);
5357 }
5358
5359 /* Simple connector->get_hw_state implementation for encoders that support only
5360 * one connector and no cloning and hence the encoder state determines the state
5361 * of the connector. */
5362 bool intel_connector_get_hw_state(struct intel_connector *connector)
5363 {
5364 enum pipe pipe = 0;
5365 struct intel_encoder *encoder = connector->encoder;
5366
5367 return encoder->get_hw_state(encoder, &pipe);
5368 }
5369
5370 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5371 struct intel_crtc_state *pipe_config)
5372 {
5373 struct drm_i915_private *dev_priv = dev->dev_private;
5374 struct intel_crtc *pipe_B_crtc =
5375 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5376
5377 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5378 pipe_name(pipe), pipe_config->fdi_lanes);
5379 if (pipe_config->fdi_lanes > 4) {
5380 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5381 pipe_name(pipe), pipe_config->fdi_lanes);
5382 return false;
5383 }
5384
5385 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5386 if (pipe_config->fdi_lanes > 2) {
5387 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5388 pipe_config->fdi_lanes);
5389 return false;
5390 } else {
5391 return true;
5392 }
5393 }
5394
5395 if (INTEL_INFO(dev)->num_pipes == 2)
5396 return true;
5397
5398 /* Ivybridge 3 pipe is really complicated */
5399 switch (pipe) {
5400 case PIPE_A:
5401 return true;
5402 case PIPE_B:
5403 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5404 pipe_config->fdi_lanes > 2) {
5405 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5406 pipe_name(pipe), pipe_config->fdi_lanes);
5407 return false;
5408 }
5409 return true;
5410 case PIPE_C:
5411 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5412 pipe_B_crtc->config->fdi_lanes <= 2) {
5413 if (pipe_config->fdi_lanes > 2) {
5414 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5415 pipe_name(pipe), pipe_config->fdi_lanes);
5416 return false;
5417 }
5418 } else {
5419 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5420 return false;
5421 }
5422 return true;
5423 default:
5424 BUG();
5425 }
5426 }
5427
5428 #define RETRY 1
5429 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5430 struct intel_crtc_state *pipe_config)
5431 {
5432 struct drm_device *dev = intel_crtc->base.dev;
5433 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5434 int lane, link_bw, fdi_dotclock;
5435 bool setup_ok, needs_recompute = false;
5436
5437 retry:
5438 /* FDI is a binary signal running at ~2.7GHz, encoding
5439 * each output octet as 10 bits. The actual frequency
5440 * is stored as a divider into a 100MHz clock, and the
5441 * mode pixel clock is stored in units of 1KHz.
5442 * Hence the bw of each lane in terms of the mode signal
5443 * is:
5444 */
5445 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5446
5447 fdi_dotclock = adjusted_mode->crtc_clock;
5448
5449 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5450 pipe_config->pipe_bpp);
5451
5452 pipe_config->fdi_lanes = lane;
5453
5454 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5455 link_bw, &pipe_config->fdi_m_n);
5456
5457 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5458 intel_crtc->pipe, pipe_config);
5459 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5460 pipe_config->pipe_bpp -= 2*3;
5461 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5462 pipe_config->pipe_bpp);
5463 needs_recompute = true;
5464 pipe_config->bw_constrained = true;
5465
5466 goto retry;
5467 }
5468
5469 if (needs_recompute)
5470 return RETRY;
5471
5472 return setup_ok ? 0 : -EINVAL;
5473 }
5474
5475 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5476 struct intel_crtc_state *pipe_config)
5477 {
5478 pipe_config->ips_enabled = i915.enable_ips &&
5479 hsw_crtc_supports_ips(crtc) &&
5480 pipe_config->pipe_bpp <= 24;
5481 }
5482
5483 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5484 struct intel_crtc_state *pipe_config)
5485 {
5486 struct drm_device *dev = crtc->base.dev;
5487 struct drm_i915_private *dev_priv = dev->dev_private;
5488 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5489
5490 /* FIXME should check pixel clock limits on all platforms */
5491 if (INTEL_INFO(dev)->gen < 4) {
5492 int clock_limit =
5493 dev_priv->display.get_display_clock_speed(dev);
5494
5495 /*
5496 * Enable pixel doubling when the dot clock
5497 * is > 90% of the (display) core speed.
5498 *
5499 * GDG double wide on either pipe,
5500 * otherwise pipe A only.
5501 */
5502 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5503 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5504 clock_limit *= 2;
5505 pipe_config->double_wide = true;
5506 }
5507
5508 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5509 return -EINVAL;
5510 }
5511
5512 /*
5513 * Pipe horizontal size must be even in:
5514 * - DVO ganged mode
5515 * - LVDS dual channel mode
5516 * - Double wide pipe
5517 */
5518 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5519 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5520 pipe_config->pipe_src_w &= ~1;
5521
5522 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5523 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5524 */
5525 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5526 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5527 return -EINVAL;
5528
5529 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5530 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5531 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5532 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5533 * for lvds. */
5534 pipe_config->pipe_bpp = 8*3;
5535 }
5536
5537 if (HAS_IPS(dev))
5538 hsw_compute_ips_config(crtc, pipe_config);
5539
5540 if (pipe_config->has_pch_encoder)
5541 return ironlake_fdi_compute_config(crtc, pipe_config);
5542
5543 return 0;
5544 }
5545
5546 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5547 {
5548 struct drm_i915_private *dev_priv = dev->dev_private;
5549 u32 val;
5550 int divider;
5551
5552 /* FIXME: Punit isn't quite ready yet */
5553 if (IS_CHERRYVIEW(dev))
5554 return 400000;
5555
5556 if (dev_priv->hpll_freq == 0)
5557 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5558
5559 mutex_lock(&dev_priv->dpio_lock);
5560 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5561 mutex_unlock(&dev_priv->dpio_lock);
5562
5563 divider = val & DISPLAY_FREQUENCY_VALUES;
5564
5565 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5566 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5567 "cdclk change in progress\n");
5568
5569 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5570 }
5571
5572 static int i945_get_display_clock_speed(struct drm_device *dev)
5573 {
5574 return 400000;
5575 }
5576
5577 static int i915_get_display_clock_speed(struct drm_device *dev)
5578 {
5579 return 333000;
5580 }
5581
5582 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5583 {
5584 return 200000;
5585 }
5586
5587 static int pnv_get_display_clock_speed(struct drm_device *dev)
5588 {
5589 u16 gcfgc = 0;
5590
5591 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5592
5593 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5594 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5595 return 267000;
5596 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5597 return 333000;
5598 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5599 return 444000;
5600 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5601 return 200000;
5602 default:
5603 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5604 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5605 return 133000;
5606 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5607 return 167000;
5608 }
5609 }
5610
5611 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5612 {
5613 u16 gcfgc = 0;
5614
5615 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5616
5617 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5618 return 133000;
5619 else {
5620 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5621 case GC_DISPLAY_CLOCK_333_MHZ:
5622 return 333000;
5623 default:
5624 case GC_DISPLAY_CLOCK_190_200_MHZ:
5625 return 190000;
5626 }
5627 }
5628 }
5629
5630 static int i865_get_display_clock_speed(struct drm_device *dev)
5631 {
5632 return 266000;
5633 }
5634
5635 static int i855_get_display_clock_speed(struct drm_device *dev)
5636 {
5637 u16 hpllcc = 0;
5638 /* Assume that the hardware is in the high speed state. This
5639 * should be the default.
5640 */
5641 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5642 case GC_CLOCK_133_200:
5643 case GC_CLOCK_100_200:
5644 return 200000;
5645 case GC_CLOCK_166_250:
5646 return 250000;
5647 case GC_CLOCK_100_133:
5648 return 133000;
5649 }
5650
5651 /* Shouldn't happen */
5652 return 0;
5653 }
5654
5655 static int i830_get_display_clock_speed(struct drm_device *dev)
5656 {
5657 return 133000;
5658 }
5659
5660 static void
5661 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5662 {
5663 while (*num > DATA_LINK_M_N_MASK ||
5664 *den > DATA_LINK_M_N_MASK) {
5665 *num >>= 1;
5666 *den >>= 1;
5667 }
5668 }
5669
5670 static void compute_m_n(unsigned int m, unsigned int n,
5671 uint32_t *ret_m, uint32_t *ret_n)
5672 {
5673 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5674 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5675 intel_reduce_m_n_ratio(ret_m, ret_n);
5676 }
5677
5678 void
5679 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5680 int pixel_clock, int link_clock,
5681 struct intel_link_m_n *m_n)
5682 {
5683 m_n->tu = 64;
5684
5685 compute_m_n(bits_per_pixel * pixel_clock,
5686 link_clock * nlanes * 8,
5687 &m_n->gmch_m, &m_n->gmch_n);
5688
5689 compute_m_n(pixel_clock, link_clock,
5690 &m_n->link_m, &m_n->link_n);
5691 }
5692
5693 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5694 {
5695 if (i915.panel_use_ssc >= 0)
5696 return i915.panel_use_ssc != 0;
5697 return dev_priv->vbt.lvds_use_ssc
5698 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5699 }
5700
5701 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5702 {
5703 struct drm_device *dev = crtc->base.dev;
5704 struct drm_i915_private *dev_priv = dev->dev_private;
5705 int refclk;
5706
5707 if (IS_VALLEYVIEW(dev)) {
5708 refclk = 100000;
5709 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5710 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5711 refclk = dev_priv->vbt.lvds_ssc_freq;
5712 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5713 } else if (!IS_GEN2(dev)) {
5714 refclk = 96000;
5715 } else {
5716 refclk = 48000;
5717 }
5718
5719 return refclk;
5720 }
5721
5722 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5723 {
5724 return (1 << dpll->n) << 16 | dpll->m2;
5725 }
5726
5727 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5728 {
5729 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5730 }
5731
5732 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5733 struct intel_crtc_state *crtc_state,
5734 intel_clock_t *reduced_clock)
5735 {
5736 struct drm_device *dev = crtc->base.dev;
5737 u32 fp, fp2 = 0;
5738
5739 if (IS_PINEVIEW(dev)) {
5740 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5741 if (reduced_clock)
5742 fp2 = pnv_dpll_compute_fp(reduced_clock);
5743 } else {
5744 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5745 if (reduced_clock)
5746 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5747 }
5748
5749 crtc_state->dpll_hw_state.fp0 = fp;
5750
5751 crtc->lowfreq_avail = false;
5752 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5753 reduced_clock && i915.powersave) {
5754 crtc_state->dpll_hw_state.fp1 = fp2;
5755 crtc->lowfreq_avail = true;
5756 } else {
5757 crtc_state->dpll_hw_state.fp1 = fp;
5758 }
5759 }
5760
5761 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5762 pipe)
5763 {
5764 u32 reg_val;
5765
5766 /*
5767 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5768 * and set it to a reasonable value instead.
5769 */
5770 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5771 reg_val &= 0xffffff00;
5772 reg_val |= 0x00000030;
5773 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5774
5775 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5776 reg_val &= 0x8cffffff;
5777 reg_val = 0x8c000000;
5778 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5779
5780 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5781 reg_val &= 0xffffff00;
5782 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5783
5784 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5785 reg_val &= 0x00ffffff;
5786 reg_val |= 0xb0000000;
5787 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5788 }
5789
5790 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5791 struct intel_link_m_n *m_n)
5792 {
5793 struct drm_device *dev = crtc->base.dev;
5794 struct drm_i915_private *dev_priv = dev->dev_private;
5795 int pipe = crtc->pipe;
5796
5797 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5798 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5799 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5800 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5801 }
5802
5803 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5804 struct intel_link_m_n *m_n,
5805 struct intel_link_m_n *m2_n2)
5806 {
5807 struct drm_device *dev = crtc->base.dev;
5808 struct drm_i915_private *dev_priv = dev->dev_private;
5809 int pipe = crtc->pipe;
5810 enum transcoder transcoder = crtc->config->cpu_transcoder;
5811
5812 if (INTEL_INFO(dev)->gen >= 5) {
5813 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5814 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5815 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5816 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5817 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5818 * for gen < 8) and if DRRS is supported (to make sure the
5819 * registers are not unnecessarily accessed).
5820 */
5821 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5822 crtc->config->has_drrs) {
5823 I915_WRITE(PIPE_DATA_M2(transcoder),
5824 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5825 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5826 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5827 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5828 }
5829 } else {
5830 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5831 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5832 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5833 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5834 }
5835 }
5836
5837 void intel_dp_set_m_n(struct intel_crtc *crtc)
5838 {
5839 if (crtc->config->has_pch_encoder)
5840 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
5841 else
5842 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5843 &crtc->config->dp_m2_n2);
5844 }
5845
5846 static void vlv_update_pll(struct intel_crtc *crtc,
5847 struct intel_crtc_state *pipe_config)
5848 {
5849 u32 dpll, dpll_md;
5850
5851 /*
5852 * Enable DPIO clock input. We should never disable the reference
5853 * clock for pipe B, since VGA hotplug / manual detection depends
5854 * on it.
5855 */
5856 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5857 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5858 /* We should never disable this, set it here for state tracking */
5859 if (crtc->pipe == PIPE_B)
5860 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5861 dpll |= DPLL_VCO_ENABLE;
5862 pipe_config->dpll_hw_state.dpll = dpll;
5863
5864 dpll_md = (pipe_config->pixel_multiplier - 1)
5865 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5866 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5867 }
5868
5869 static void vlv_prepare_pll(struct intel_crtc *crtc,
5870 const struct intel_crtc_state *pipe_config)
5871 {
5872 struct drm_device *dev = crtc->base.dev;
5873 struct drm_i915_private *dev_priv = dev->dev_private;
5874 int pipe = crtc->pipe;
5875 u32 mdiv;
5876 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5877 u32 coreclk, reg_val;
5878
5879 mutex_lock(&dev_priv->dpio_lock);
5880
5881 bestn = pipe_config->dpll.n;
5882 bestm1 = pipe_config->dpll.m1;
5883 bestm2 = pipe_config->dpll.m2;
5884 bestp1 = pipe_config->dpll.p1;
5885 bestp2 = pipe_config->dpll.p2;
5886
5887 /* See eDP HDMI DPIO driver vbios notes doc */
5888
5889 /* PLL B needs special handling */
5890 if (pipe == PIPE_B)
5891 vlv_pllb_recal_opamp(dev_priv, pipe);
5892
5893 /* Set up Tx target for periodic Rcomp update */
5894 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5895
5896 /* Disable target IRef on PLL */
5897 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5898 reg_val &= 0x00ffffff;
5899 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5900
5901 /* Disable fast lock */
5902 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5903
5904 /* Set idtafcrecal before PLL is enabled */
5905 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5906 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5907 mdiv |= ((bestn << DPIO_N_SHIFT));
5908 mdiv |= (1 << DPIO_K_SHIFT);
5909
5910 /*
5911 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5912 * but we don't support that).
5913 * Note: don't use the DAC post divider as it seems unstable.
5914 */
5915 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5916 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5917
5918 mdiv |= DPIO_ENABLE_CALIBRATION;
5919 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5920
5921 /* Set HBR and RBR LPF coefficients */
5922 if (pipe_config->port_clock == 162000 ||
5923 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5924 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
5925 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5926 0x009f0003);
5927 else
5928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
5929 0x00d0000f);
5930
5931 if (pipe_config->has_dp_encoder) {
5932 /* Use SSC source */
5933 if (pipe == PIPE_A)
5934 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5935 0x0df40000);
5936 else
5937 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5938 0x0df70000);
5939 } else { /* HDMI or VGA */
5940 /* Use bend source */
5941 if (pipe == PIPE_A)
5942 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5943 0x0df70000);
5944 else
5945 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
5946 0x0df40000);
5947 }
5948
5949 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
5950 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5951 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5952 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
5953 coreclk |= 0x01000000;
5954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
5955
5956 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
5957 mutex_unlock(&dev_priv->dpio_lock);
5958 }
5959
5960 static void chv_update_pll(struct intel_crtc *crtc,
5961 struct intel_crtc_state *pipe_config)
5962 {
5963 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5964 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5965 DPLL_VCO_ENABLE;
5966 if (crtc->pipe != PIPE_A)
5967 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5968
5969 pipe_config->dpll_hw_state.dpll_md =
5970 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5971 }
5972
5973 static void chv_prepare_pll(struct intel_crtc *crtc,
5974 const struct intel_crtc_state *pipe_config)
5975 {
5976 struct drm_device *dev = crtc->base.dev;
5977 struct drm_i915_private *dev_priv = dev->dev_private;
5978 int pipe = crtc->pipe;
5979 int dpll_reg = DPLL(crtc->pipe);
5980 enum dpio_channel port = vlv_pipe_to_channel(pipe);
5981 u32 loopfilter, intcoeff;
5982 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5983 int refclk;
5984
5985 bestn = pipe_config->dpll.n;
5986 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
5987 bestm1 = pipe_config->dpll.m1;
5988 bestm2 = pipe_config->dpll.m2 >> 22;
5989 bestp1 = pipe_config->dpll.p1;
5990 bestp2 = pipe_config->dpll.p2;
5991
5992 /*
5993 * Enable Refclk and SSC
5994 */
5995 I915_WRITE(dpll_reg,
5996 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5997
5998 mutex_lock(&dev_priv->dpio_lock);
5999
6000 /* p1 and p2 divider */
6001 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6002 5 << DPIO_CHV_S1_DIV_SHIFT |
6003 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6004 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6005 1 << DPIO_CHV_K_DIV_SHIFT);
6006
6007 /* Feedback post-divider - m2 */
6008 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6009
6010 /* Feedback refclk divider - n and m1 */
6011 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6012 DPIO_CHV_M1_DIV_BY_2 |
6013 1 << DPIO_CHV_N_DIV_SHIFT);
6014
6015 /* M2 fraction division */
6016 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6017
6018 /* M2 fraction division enable */
6019 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6020 DPIO_CHV_FRAC_DIV_EN |
6021 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6022
6023 /* Loop filter */
6024 refclk = i9xx_get_refclk(crtc, 0);
6025 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6026 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6027 if (refclk == 100000)
6028 intcoeff = 11;
6029 else if (refclk == 38400)
6030 intcoeff = 10;
6031 else
6032 intcoeff = 9;
6033 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6034 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6035
6036 /* AFC Recal */
6037 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6038 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6039 DPIO_AFC_RECAL);
6040
6041 mutex_unlock(&dev_priv->dpio_lock);
6042 }
6043
6044 /**
6045 * vlv_force_pll_on - forcibly enable just the PLL
6046 * @dev_priv: i915 private structure
6047 * @pipe: pipe PLL to enable
6048 * @dpll: PLL configuration
6049 *
6050 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6051 * in cases where we need the PLL enabled even when @pipe is not going to
6052 * be enabled.
6053 */
6054 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6055 const struct dpll *dpll)
6056 {
6057 struct intel_crtc *crtc =
6058 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6059 struct intel_crtc_state pipe_config = {
6060 .pixel_multiplier = 1,
6061 .dpll = *dpll,
6062 };
6063
6064 if (IS_CHERRYVIEW(dev)) {
6065 chv_update_pll(crtc, &pipe_config);
6066 chv_prepare_pll(crtc, &pipe_config);
6067 chv_enable_pll(crtc, &pipe_config);
6068 } else {
6069 vlv_update_pll(crtc, &pipe_config);
6070 vlv_prepare_pll(crtc, &pipe_config);
6071 vlv_enable_pll(crtc, &pipe_config);
6072 }
6073 }
6074
6075 /**
6076 * vlv_force_pll_off - forcibly disable just the PLL
6077 * @dev_priv: i915 private structure
6078 * @pipe: pipe PLL to disable
6079 *
6080 * Disable the PLL for @pipe. To be used in cases where we need
6081 * the PLL enabled even when @pipe is not going to be enabled.
6082 */
6083 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6084 {
6085 if (IS_CHERRYVIEW(dev))
6086 chv_disable_pll(to_i915(dev), pipe);
6087 else
6088 vlv_disable_pll(to_i915(dev), pipe);
6089 }
6090
6091 static void i9xx_update_pll(struct intel_crtc *crtc,
6092 struct intel_crtc_state *crtc_state,
6093 intel_clock_t *reduced_clock,
6094 int num_connectors)
6095 {
6096 struct drm_device *dev = crtc->base.dev;
6097 struct drm_i915_private *dev_priv = dev->dev_private;
6098 u32 dpll;
6099 bool is_sdvo;
6100 struct dpll *clock = &crtc_state->dpll;
6101
6102 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6103
6104 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6105 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6106
6107 dpll = DPLL_VGA_MODE_DIS;
6108
6109 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6110 dpll |= DPLLB_MODE_LVDS;
6111 else
6112 dpll |= DPLLB_MODE_DAC_SERIAL;
6113
6114 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6115 dpll |= (crtc_state->pixel_multiplier - 1)
6116 << SDVO_MULTIPLIER_SHIFT_HIRES;
6117 }
6118
6119 if (is_sdvo)
6120 dpll |= DPLL_SDVO_HIGH_SPEED;
6121
6122 if (crtc_state->has_dp_encoder)
6123 dpll |= DPLL_SDVO_HIGH_SPEED;
6124
6125 /* compute bitmask from p1 value */
6126 if (IS_PINEVIEW(dev))
6127 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6128 else {
6129 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6130 if (IS_G4X(dev) && reduced_clock)
6131 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6132 }
6133 switch (clock->p2) {
6134 case 5:
6135 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6136 break;
6137 case 7:
6138 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6139 break;
6140 case 10:
6141 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6142 break;
6143 case 14:
6144 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6145 break;
6146 }
6147 if (INTEL_INFO(dev)->gen >= 4)
6148 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6149
6150 if (crtc_state->sdvo_tv_clock)
6151 dpll |= PLL_REF_INPUT_TVCLKINBC;
6152 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6153 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6154 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6155 else
6156 dpll |= PLL_REF_INPUT_DREFCLK;
6157
6158 dpll |= DPLL_VCO_ENABLE;
6159 crtc_state->dpll_hw_state.dpll = dpll;
6160
6161 if (INTEL_INFO(dev)->gen >= 4) {
6162 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6163 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6164 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6165 }
6166 }
6167
6168 static void i8xx_update_pll(struct intel_crtc *crtc,
6169 struct intel_crtc_state *crtc_state,
6170 intel_clock_t *reduced_clock,
6171 int num_connectors)
6172 {
6173 struct drm_device *dev = crtc->base.dev;
6174 struct drm_i915_private *dev_priv = dev->dev_private;
6175 u32 dpll;
6176 struct dpll *clock = &crtc_state->dpll;
6177
6178 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6179
6180 dpll = DPLL_VGA_MODE_DIS;
6181
6182 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6183 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6184 } else {
6185 if (clock->p1 == 2)
6186 dpll |= PLL_P1_DIVIDE_BY_TWO;
6187 else
6188 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6189 if (clock->p2 == 4)
6190 dpll |= PLL_P2_DIVIDE_BY_4;
6191 }
6192
6193 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6194 dpll |= DPLL_DVO_2X_MODE;
6195
6196 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6197 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6198 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6199 else
6200 dpll |= PLL_REF_INPUT_DREFCLK;
6201
6202 dpll |= DPLL_VCO_ENABLE;
6203 crtc_state->dpll_hw_state.dpll = dpll;
6204 }
6205
6206 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6207 {
6208 struct drm_device *dev = intel_crtc->base.dev;
6209 struct drm_i915_private *dev_priv = dev->dev_private;
6210 enum pipe pipe = intel_crtc->pipe;
6211 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6212 struct drm_display_mode *adjusted_mode =
6213 &intel_crtc->config->base.adjusted_mode;
6214 uint32_t crtc_vtotal, crtc_vblank_end;
6215 int vsyncshift = 0;
6216
6217 /* We need to be careful not to changed the adjusted mode, for otherwise
6218 * the hw state checker will get angry at the mismatch. */
6219 crtc_vtotal = adjusted_mode->crtc_vtotal;
6220 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6221
6222 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6223 /* the chip adds 2 halflines automatically */
6224 crtc_vtotal -= 1;
6225 crtc_vblank_end -= 1;
6226
6227 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6228 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6229 else
6230 vsyncshift = adjusted_mode->crtc_hsync_start -
6231 adjusted_mode->crtc_htotal / 2;
6232 if (vsyncshift < 0)
6233 vsyncshift += adjusted_mode->crtc_htotal;
6234 }
6235
6236 if (INTEL_INFO(dev)->gen > 3)
6237 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6238
6239 I915_WRITE(HTOTAL(cpu_transcoder),
6240 (adjusted_mode->crtc_hdisplay - 1) |
6241 ((adjusted_mode->crtc_htotal - 1) << 16));
6242 I915_WRITE(HBLANK(cpu_transcoder),
6243 (adjusted_mode->crtc_hblank_start - 1) |
6244 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6245 I915_WRITE(HSYNC(cpu_transcoder),
6246 (adjusted_mode->crtc_hsync_start - 1) |
6247 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6248
6249 I915_WRITE(VTOTAL(cpu_transcoder),
6250 (adjusted_mode->crtc_vdisplay - 1) |
6251 ((crtc_vtotal - 1) << 16));
6252 I915_WRITE(VBLANK(cpu_transcoder),
6253 (adjusted_mode->crtc_vblank_start - 1) |
6254 ((crtc_vblank_end - 1) << 16));
6255 I915_WRITE(VSYNC(cpu_transcoder),
6256 (adjusted_mode->crtc_vsync_start - 1) |
6257 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6258
6259 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6260 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6261 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6262 * bits. */
6263 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6264 (pipe == PIPE_B || pipe == PIPE_C))
6265 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6266
6267 /* pipesrc controls the size that is scaled from, which should
6268 * always be the user's requested size.
6269 */
6270 I915_WRITE(PIPESRC(pipe),
6271 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6272 (intel_crtc->config->pipe_src_h - 1));
6273 }
6274
6275 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6276 struct intel_crtc_state *pipe_config)
6277 {
6278 struct drm_device *dev = crtc->base.dev;
6279 struct drm_i915_private *dev_priv = dev->dev_private;
6280 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6281 uint32_t tmp;
6282
6283 tmp = I915_READ(HTOTAL(cpu_transcoder));
6284 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6285 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6286 tmp = I915_READ(HBLANK(cpu_transcoder));
6287 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6288 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6289 tmp = I915_READ(HSYNC(cpu_transcoder));
6290 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6291 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6292
6293 tmp = I915_READ(VTOTAL(cpu_transcoder));
6294 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6295 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6296 tmp = I915_READ(VBLANK(cpu_transcoder));
6297 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6298 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6299 tmp = I915_READ(VSYNC(cpu_transcoder));
6300 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6301 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6302
6303 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6304 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6305 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6306 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6307 }
6308
6309 tmp = I915_READ(PIPESRC(crtc->pipe));
6310 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6311 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6312
6313 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6314 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6315 }
6316
6317 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6318 struct intel_crtc_state *pipe_config)
6319 {
6320 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6321 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6322 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6323 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6324
6325 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6326 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6327 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6328 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6329
6330 mode->flags = pipe_config->base.adjusted_mode.flags;
6331
6332 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6333 mode->flags |= pipe_config->base.adjusted_mode.flags;
6334 }
6335
6336 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6337 {
6338 struct drm_device *dev = intel_crtc->base.dev;
6339 struct drm_i915_private *dev_priv = dev->dev_private;
6340 uint32_t pipeconf;
6341
6342 pipeconf = 0;
6343
6344 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6345 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6346 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6347
6348 if (intel_crtc->config->double_wide)
6349 pipeconf |= PIPECONF_DOUBLE_WIDE;
6350
6351 /* only g4x and later have fancy bpc/dither controls */
6352 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6353 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6354 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6355 pipeconf |= PIPECONF_DITHER_EN |
6356 PIPECONF_DITHER_TYPE_SP;
6357
6358 switch (intel_crtc->config->pipe_bpp) {
6359 case 18:
6360 pipeconf |= PIPECONF_6BPC;
6361 break;
6362 case 24:
6363 pipeconf |= PIPECONF_8BPC;
6364 break;
6365 case 30:
6366 pipeconf |= PIPECONF_10BPC;
6367 break;
6368 default:
6369 /* Case prevented by intel_choose_pipe_bpp_dither. */
6370 BUG();
6371 }
6372 }
6373
6374 if (HAS_PIPE_CXSR(dev)) {
6375 if (intel_crtc->lowfreq_avail) {
6376 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6377 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6378 } else {
6379 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6380 }
6381 }
6382
6383 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6384 if (INTEL_INFO(dev)->gen < 4 ||
6385 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6386 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6387 else
6388 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6389 } else
6390 pipeconf |= PIPECONF_PROGRESSIVE;
6391
6392 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6393 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6394
6395 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6396 POSTING_READ(PIPECONF(intel_crtc->pipe));
6397 }
6398
6399 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6400 struct intel_crtc_state *crtc_state)
6401 {
6402 struct drm_device *dev = crtc->base.dev;
6403 struct drm_i915_private *dev_priv = dev->dev_private;
6404 int refclk, num_connectors = 0;
6405 intel_clock_t clock, reduced_clock;
6406 bool ok, has_reduced_clock = false;
6407 bool is_lvds = false, is_dsi = false;
6408 struct intel_encoder *encoder;
6409 const intel_limit_t *limit;
6410
6411 for_each_intel_encoder(dev, encoder) {
6412 if (encoder->new_crtc != crtc)
6413 continue;
6414
6415 switch (encoder->type) {
6416 case INTEL_OUTPUT_LVDS:
6417 is_lvds = true;
6418 break;
6419 case INTEL_OUTPUT_DSI:
6420 is_dsi = true;
6421 break;
6422 default:
6423 break;
6424 }
6425
6426 num_connectors++;
6427 }
6428
6429 if (is_dsi)
6430 return 0;
6431
6432 if (!crtc_state->clock_set) {
6433 refclk = i9xx_get_refclk(crtc, num_connectors);
6434
6435 /*
6436 * Returns a set of divisors for the desired target clock with
6437 * the given refclk, or FALSE. The returned values represent
6438 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6439 * 2) / p1 / p2.
6440 */
6441 limit = intel_limit(crtc, refclk);
6442 ok = dev_priv->display.find_dpll(limit, crtc,
6443 crtc_state->port_clock,
6444 refclk, NULL, &clock);
6445 if (!ok) {
6446 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6447 return -EINVAL;
6448 }
6449
6450 if (is_lvds && dev_priv->lvds_downclock_avail) {
6451 /*
6452 * Ensure we match the reduced clock's P to the target
6453 * clock. If the clocks don't match, we can't switch
6454 * the display clock by using the FP0/FP1. In such case
6455 * we will disable the LVDS downclock feature.
6456 */
6457 has_reduced_clock =
6458 dev_priv->display.find_dpll(limit, crtc,
6459 dev_priv->lvds_downclock,
6460 refclk, &clock,
6461 &reduced_clock);
6462 }
6463 /* Compat-code for transition, will disappear. */
6464 crtc_state->dpll.n = clock.n;
6465 crtc_state->dpll.m1 = clock.m1;
6466 crtc_state->dpll.m2 = clock.m2;
6467 crtc_state->dpll.p1 = clock.p1;
6468 crtc_state->dpll.p2 = clock.p2;
6469 }
6470
6471 if (IS_GEN2(dev)) {
6472 i8xx_update_pll(crtc, crtc_state,
6473 has_reduced_clock ? &reduced_clock : NULL,
6474 num_connectors);
6475 } else if (IS_CHERRYVIEW(dev)) {
6476 chv_update_pll(crtc, crtc_state);
6477 } else if (IS_VALLEYVIEW(dev)) {
6478 vlv_update_pll(crtc, crtc_state);
6479 } else {
6480 i9xx_update_pll(crtc, crtc_state,
6481 has_reduced_clock ? &reduced_clock : NULL,
6482 num_connectors);
6483 }
6484
6485 return 0;
6486 }
6487
6488 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6489 struct intel_crtc_state *pipe_config)
6490 {
6491 struct drm_device *dev = crtc->base.dev;
6492 struct drm_i915_private *dev_priv = dev->dev_private;
6493 uint32_t tmp;
6494
6495 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6496 return;
6497
6498 tmp = I915_READ(PFIT_CONTROL);
6499 if (!(tmp & PFIT_ENABLE))
6500 return;
6501
6502 /* Check whether the pfit is attached to our pipe. */
6503 if (INTEL_INFO(dev)->gen < 4) {
6504 if (crtc->pipe != PIPE_B)
6505 return;
6506 } else {
6507 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6508 return;
6509 }
6510
6511 pipe_config->gmch_pfit.control = tmp;
6512 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6513 if (INTEL_INFO(dev)->gen < 5)
6514 pipe_config->gmch_pfit.lvds_border_bits =
6515 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6516 }
6517
6518 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6519 struct intel_crtc_state *pipe_config)
6520 {
6521 struct drm_device *dev = crtc->base.dev;
6522 struct drm_i915_private *dev_priv = dev->dev_private;
6523 int pipe = pipe_config->cpu_transcoder;
6524 intel_clock_t clock;
6525 u32 mdiv;
6526 int refclk = 100000;
6527
6528 /* In case of MIPI DPLL will not even be used */
6529 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6530 return;
6531
6532 mutex_lock(&dev_priv->dpio_lock);
6533 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6534 mutex_unlock(&dev_priv->dpio_lock);
6535
6536 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6537 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6538 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6539 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6540 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6541
6542 vlv_clock(refclk, &clock);
6543
6544 /* clock.dot is the fast clock */
6545 pipe_config->port_clock = clock.dot / 5;
6546 }
6547
6548 static void i9xx_get_plane_config(struct intel_crtc *crtc,
6549 struct intel_plane_config *plane_config)
6550 {
6551 struct drm_device *dev = crtc->base.dev;
6552 struct drm_i915_private *dev_priv = dev->dev_private;
6553 u32 val, base, offset;
6554 int pipe = crtc->pipe, plane = crtc->plane;
6555 int fourcc, pixel_format;
6556 int aligned_height;
6557 struct drm_framebuffer *fb;
6558
6559 fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6560 if (!fb) {
6561 DRM_DEBUG_KMS("failed to alloc fb\n");
6562 return;
6563 }
6564
6565 val = I915_READ(DSPCNTR(plane));
6566
6567 if (INTEL_INFO(dev)->gen >= 4)
6568 if (val & DISPPLANE_TILED)
6569 plane_config->tiling = I915_TILING_X;
6570
6571 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6572 fourcc = intel_format_to_fourcc(pixel_format);
6573 fb->pixel_format = fourcc;
6574 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6575
6576 if (INTEL_INFO(dev)->gen >= 4) {
6577 if (plane_config->tiling)
6578 offset = I915_READ(DSPTILEOFF(plane));
6579 else
6580 offset = I915_READ(DSPLINOFF(plane));
6581 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6582 } else {
6583 base = I915_READ(DSPADDR(plane));
6584 }
6585 plane_config->base = base;
6586
6587 val = I915_READ(PIPESRC(pipe));
6588 fb->width = ((val >> 16) & 0xfff) + 1;
6589 fb->height = ((val >> 0) & 0xfff) + 1;
6590
6591 val = I915_READ(DSPSTRIDE(pipe));
6592 fb->pitches[0] = val & 0xffffffc0;
6593
6594 aligned_height = intel_fb_align_height(dev, fb->height,
6595 plane_config->tiling);
6596
6597 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
6598
6599 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6600 pipe, plane, fb->width, fb->height, fb->bits_per_pixel,
6601 base, fb->pitches[0], plane_config->size);
6602
6603 crtc->base.primary->fb = fb;
6604 }
6605
6606 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6607 struct intel_crtc_state *pipe_config)
6608 {
6609 struct drm_device *dev = crtc->base.dev;
6610 struct drm_i915_private *dev_priv = dev->dev_private;
6611 int pipe = pipe_config->cpu_transcoder;
6612 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6613 intel_clock_t clock;
6614 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6615 int refclk = 100000;
6616
6617 mutex_lock(&dev_priv->dpio_lock);
6618 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6619 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6620 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6621 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6622 mutex_unlock(&dev_priv->dpio_lock);
6623
6624 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6625 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6626 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6627 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6628 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6629
6630 chv_clock(refclk, &clock);
6631
6632 /* clock.dot is the fast clock */
6633 pipe_config->port_clock = clock.dot / 5;
6634 }
6635
6636 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6637 struct intel_crtc_state *pipe_config)
6638 {
6639 struct drm_device *dev = crtc->base.dev;
6640 struct drm_i915_private *dev_priv = dev->dev_private;
6641 uint32_t tmp;
6642
6643 if (!intel_display_power_is_enabled(dev_priv,
6644 POWER_DOMAIN_PIPE(crtc->pipe)))
6645 return false;
6646
6647 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6648 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6649
6650 tmp = I915_READ(PIPECONF(crtc->pipe));
6651 if (!(tmp & PIPECONF_ENABLE))
6652 return false;
6653
6654 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6655 switch (tmp & PIPECONF_BPC_MASK) {
6656 case PIPECONF_6BPC:
6657 pipe_config->pipe_bpp = 18;
6658 break;
6659 case PIPECONF_8BPC:
6660 pipe_config->pipe_bpp = 24;
6661 break;
6662 case PIPECONF_10BPC:
6663 pipe_config->pipe_bpp = 30;
6664 break;
6665 default:
6666 break;
6667 }
6668 }
6669
6670 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6671 pipe_config->limited_color_range = true;
6672
6673 if (INTEL_INFO(dev)->gen < 4)
6674 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6675
6676 intel_get_pipe_timings(crtc, pipe_config);
6677
6678 i9xx_get_pfit_config(crtc, pipe_config);
6679
6680 if (INTEL_INFO(dev)->gen >= 4) {
6681 tmp = I915_READ(DPLL_MD(crtc->pipe));
6682 pipe_config->pixel_multiplier =
6683 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6684 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6685 pipe_config->dpll_hw_state.dpll_md = tmp;
6686 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6687 tmp = I915_READ(DPLL(crtc->pipe));
6688 pipe_config->pixel_multiplier =
6689 ((tmp & SDVO_MULTIPLIER_MASK)
6690 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6691 } else {
6692 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6693 * port and will be fixed up in the encoder->get_config
6694 * function. */
6695 pipe_config->pixel_multiplier = 1;
6696 }
6697 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6698 if (!IS_VALLEYVIEW(dev)) {
6699 /*
6700 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6701 * on 830. Filter it out here so that we don't
6702 * report errors due to that.
6703 */
6704 if (IS_I830(dev))
6705 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6706
6707 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6708 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6709 } else {
6710 /* Mask out read-only status bits. */
6711 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6712 DPLL_PORTC_READY_MASK |
6713 DPLL_PORTB_READY_MASK);
6714 }
6715
6716 if (IS_CHERRYVIEW(dev))
6717 chv_crtc_clock_get(crtc, pipe_config);
6718 else if (IS_VALLEYVIEW(dev))
6719 vlv_crtc_clock_get(crtc, pipe_config);
6720 else
6721 i9xx_crtc_clock_get(crtc, pipe_config);
6722
6723 return true;
6724 }
6725
6726 static void ironlake_init_pch_refclk(struct drm_device *dev)
6727 {
6728 struct drm_i915_private *dev_priv = dev->dev_private;
6729 struct intel_encoder *encoder;
6730 u32 val, final;
6731 bool has_lvds = false;
6732 bool has_cpu_edp = false;
6733 bool has_panel = false;
6734 bool has_ck505 = false;
6735 bool can_ssc = false;
6736
6737 /* We need to take the global config into account */
6738 for_each_intel_encoder(dev, encoder) {
6739 switch (encoder->type) {
6740 case INTEL_OUTPUT_LVDS:
6741 has_panel = true;
6742 has_lvds = true;
6743 break;
6744 case INTEL_OUTPUT_EDP:
6745 has_panel = true;
6746 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6747 has_cpu_edp = true;
6748 break;
6749 default:
6750 break;
6751 }
6752 }
6753
6754 if (HAS_PCH_IBX(dev)) {
6755 has_ck505 = dev_priv->vbt.display_clock_mode;
6756 can_ssc = has_ck505;
6757 } else {
6758 has_ck505 = false;
6759 can_ssc = true;
6760 }
6761
6762 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6763 has_panel, has_lvds, has_ck505);
6764
6765 /* Ironlake: try to setup display ref clock before DPLL
6766 * enabling. This is only under driver's control after
6767 * PCH B stepping, previous chipset stepping should be
6768 * ignoring this setting.
6769 */
6770 val = I915_READ(PCH_DREF_CONTROL);
6771
6772 /* As we must carefully and slowly disable/enable each source in turn,
6773 * compute the final state we want first and check if we need to
6774 * make any changes at all.
6775 */
6776 final = val;
6777 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6778 if (has_ck505)
6779 final |= DREF_NONSPREAD_CK505_ENABLE;
6780 else
6781 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6782
6783 final &= ~DREF_SSC_SOURCE_MASK;
6784 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6785 final &= ~DREF_SSC1_ENABLE;
6786
6787 if (has_panel) {
6788 final |= DREF_SSC_SOURCE_ENABLE;
6789
6790 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6791 final |= DREF_SSC1_ENABLE;
6792
6793 if (has_cpu_edp) {
6794 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6795 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6796 else
6797 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6798 } else
6799 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6800 } else {
6801 final |= DREF_SSC_SOURCE_DISABLE;
6802 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6803 }
6804
6805 if (final == val)
6806 return;
6807
6808 /* Always enable nonspread source */
6809 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6810
6811 if (has_ck505)
6812 val |= DREF_NONSPREAD_CK505_ENABLE;
6813 else
6814 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6815
6816 if (has_panel) {
6817 val &= ~DREF_SSC_SOURCE_MASK;
6818 val |= DREF_SSC_SOURCE_ENABLE;
6819
6820 /* SSC must be turned on before enabling the CPU output */
6821 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6822 DRM_DEBUG_KMS("Using SSC on panel\n");
6823 val |= DREF_SSC1_ENABLE;
6824 } else
6825 val &= ~DREF_SSC1_ENABLE;
6826
6827 /* Get SSC going before enabling the outputs */
6828 I915_WRITE(PCH_DREF_CONTROL, val);
6829 POSTING_READ(PCH_DREF_CONTROL);
6830 udelay(200);
6831
6832 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6833
6834 /* Enable CPU source on CPU attached eDP */
6835 if (has_cpu_edp) {
6836 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6837 DRM_DEBUG_KMS("Using SSC on eDP\n");
6838 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6839 } else
6840 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6841 } else
6842 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6843
6844 I915_WRITE(PCH_DREF_CONTROL, val);
6845 POSTING_READ(PCH_DREF_CONTROL);
6846 udelay(200);
6847 } else {
6848 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6849
6850 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6851
6852 /* Turn off CPU output */
6853 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6854
6855 I915_WRITE(PCH_DREF_CONTROL, val);
6856 POSTING_READ(PCH_DREF_CONTROL);
6857 udelay(200);
6858
6859 /* Turn off the SSC source */
6860 val &= ~DREF_SSC_SOURCE_MASK;
6861 val |= DREF_SSC_SOURCE_DISABLE;
6862
6863 /* Turn off SSC1 */
6864 val &= ~DREF_SSC1_ENABLE;
6865
6866 I915_WRITE(PCH_DREF_CONTROL, val);
6867 POSTING_READ(PCH_DREF_CONTROL);
6868 udelay(200);
6869 }
6870
6871 BUG_ON(val != final);
6872 }
6873
6874 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6875 {
6876 uint32_t tmp;
6877
6878 tmp = I915_READ(SOUTH_CHICKEN2);
6879 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6880 I915_WRITE(SOUTH_CHICKEN2, tmp);
6881
6882 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6883 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6884 DRM_ERROR("FDI mPHY reset assert timeout\n");
6885
6886 tmp = I915_READ(SOUTH_CHICKEN2);
6887 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6888 I915_WRITE(SOUTH_CHICKEN2, tmp);
6889
6890 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6891 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6892 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6893 }
6894
6895 /* WaMPhyProgramming:hsw */
6896 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6897 {
6898 uint32_t tmp;
6899
6900 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6901 tmp &= ~(0xFF << 24);
6902 tmp |= (0x12 << 24);
6903 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6904
6905 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6906 tmp |= (1 << 11);
6907 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6908
6909 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6910 tmp |= (1 << 11);
6911 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6912
6913 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6914 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6915 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6916
6917 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6918 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6919 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6920
6921 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6922 tmp &= ~(7 << 13);
6923 tmp |= (5 << 13);
6924 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
6925
6926 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6927 tmp &= ~(7 << 13);
6928 tmp |= (5 << 13);
6929 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
6930
6931 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6932 tmp &= ~0xFF;
6933 tmp |= 0x1C;
6934 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6935
6936 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6937 tmp &= ~0xFF;
6938 tmp |= 0x1C;
6939 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6940
6941 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6942 tmp &= ~(0xFF << 16);
6943 tmp |= (0x1C << 16);
6944 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6945
6946 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6947 tmp &= ~(0xFF << 16);
6948 tmp |= (0x1C << 16);
6949 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6950
6951 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6952 tmp |= (1 << 27);
6953 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
6954
6955 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6956 tmp |= (1 << 27);
6957 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
6958
6959 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6960 tmp &= ~(0xF << 28);
6961 tmp |= (4 << 28);
6962 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
6963
6964 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6965 tmp &= ~(0xF << 28);
6966 tmp |= (4 << 28);
6967 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
6968 }
6969
6970 /* Implements 3 different sequences from BSpec chapter "Display iCLK
6971 * Programming" based on the parameters passed:
6972 * - Sequence to enable CLKOUT_DP
6973 * - Sequence to enable CLKOUT_DP without spread
6974 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6975 */
6976 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6977 bool with_fdi)
6978 {
6979 struct drm_i915_private *dev_priv = dev->dev_private;
6980 uint32_t reg, tmp;
6981
6982 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6983 with_spread = true;
6984 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6985 with_fdi, "LP PCH doesn't have FDI\n"))
6986 with_fdi = false;
6987
6988 mutex_lock(&dev_priv->dpio_lock);
6989
6990 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6991 tmp &= ~SBI_SSCCTL_DISABLE;
6992 tmp |= SBI_SSCCTL_PATHALT;
6993 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6994
6995 udelay(24);
6996
6997 if (with_spread) {
6998 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6999 tmp &= ~SBI_SSCCTL_PATHALT;
7000 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7001
7002 if (with_fdi) {
7003 lpt_reset_fdi_mphy(dev_priv);
7004 lpt_program_fdi_mphy(dev_priv);
7005 }
7006 }
7007
7008 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7009 SBI_GEN0 : SBI_DBUFF0;
7010 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7011 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7012 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7013
7014 mutex_unlock(&dev_priv->dpio_lock);
7015 }
7016
7017 /* Sequence to disable CLKOUT_DP */
7018 static void lpt_disable_clkout_dp(struct drm_device *dev)
7019 {
7020 struct drm_i915_private *dev_priv = dev->dev_private;
7021 uint32_t reg, tmp;
7022
7023 mutex_lock(&dev_priv->dpio_lock);
7024
7025 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7026 SBI_GEN0 : SBI_DBUFF0;
7027 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7028 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7029 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7030
7031 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7032 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7033 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7034 tmp |= SBI_SSCCTL_PATHALT;
7035 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7036 udelay(32);
7037 }
7038 tmp |= SBI_SSCCTL_DISABLE;
7039 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7040 }
7041
7042 mutex_unlock(&dev_priv->dpio_lock);
7043 }
7044
7045 static void lpt_init_pch_refclk(struct drm_device *dev)
7046 {
7047 struct intel_encoder *encoder;
7048 bool has_vga = false;
7049
7050 for_each_intel_encoder(dev, encoder) {
7051 switch (encoder->type) {
7052 case INTEL_OUTPUT_ANALOG:
7053 has_vga = true;
7054 break;
7055 default:
7056 break;
7057 }
7058 }
7059
7060 if (has_vga)
7061 lpt_enable_clkout_dp(dev, true, true);
7062 else
7063 lpt_disable_clkout_dp(dev);
7064 }
7065
7066 /*
7067 * Initialize reference clocks when the driver loads
7068 */
7069 void intel_init_pch_refclk(struct drm_device *dev)
7070 {
7071 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7072 ironlake_init_pch_refclk(dev);
7073 else if (HAS_PCH_LPT(dev))
7074 lpt_init_pch_refclk(dev);
7075 }
7076
7077 static int ironlake_get_refclk(struct drm_crtc *crtc)
7078 {
7079 struct drm_device *dev = crtc->dev;
7080 struct drm_i915_private *dev_priv = dev->dev_private;
7081 struct intel_encoder *encoder;
7082 int num_connectors = 0;
7083 bool is_lvds = false;
7084
7085 for_each_intel_encoder(dev, encoder) {
7086 if (encoder->new_crtc != to_intel_crtc(crtc))
7087 continue;
7088
7089 switch (encoder->type) {
7090 case INTEL_OUTPUT_LVDS:
7091 is_lvds = true;
7092 break;
7093 default:
7094 break;
7095 }
7096 num_connectors++;
7097 }
7098
7099 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7100 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7101 dev_priv->vbt.lvds_ssc_freq);
7102 return dev_priv->vbt.lvds_ssc_freq;
7103 }
7104
7105 return 120000;
7106 }
7107
7108 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7109 {
7110 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7112 int pipe = intel_crtc->pipe;
7113 uint32_t val;
7114
7115 val = 0;
7116
7117 switch (intel_crtc->config->pipe_bpp) {
7118 case 18:
7119 val |= PIPECONF_6BPC;
7120 break;
7121 case 24:
7122 val |= PIPECONF_8BPC;
7123 break;
7124 case 30:
7125 val |= PIPECONF_10BPC;
7126 break;
7127 case 36:
7128 val |= PIPECONF_12BPC;
7129 break;
7130 default:
7131 /* Case prevented by intel_choose_pipe_bpp_dither. */
7132 BUG();
7133 }
7134
7135 if (intel_crtc->config->dither)
7136 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7137
7138 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7139 val |= PIPECONF_INTERLACED_ILK;
7140 else
7141 val |= PIPECONF_PROGRESSIVE;
7142
7143 if (intel_crtc->config->limited_color_range)
7144 val |= PIPECONF_COLOR_RANGE_SELECT;
7145
7146 I915_WRITE(PIPECONF(pipe), val);
7147 POSTING_READ(PIPECONF(pipe));
7148 }
7149
7150 /*
7151 * Set up the pipe CSC unit.
7152 *
7153 * Currently only full range RGB to limited range RGB conversion
7154 * is supported, but eventually this should handle various
7155 * RGB<->YCbCr scenarios as well.
7156 */
7157 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7158 {
7159 struct drm_device *dev = crtc->dev;
7160 struct drm_i915_private *dev_priv = dev->dev_private;
7161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7162 int pipe = intel_crtc->pipe;
7163 uint16_t coeff = 0x7800; /* 1.0 */
7164
7165 /*
7166 * TODO: Check what kind of values actually come out of the pipe
7167 * with these coeff/postoff values and adjust to get the best
7168 * accuracy. Perhaps we even need to take the bpc value into
7169 * consideration.
7170 */
7171
7172 if (intel_crtc->config->limited_color_range)
7173 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7174
7175 /*
7176 * GY/GU and RY/RU should be the other way around according
7177 * to BSpec, but reality doesn't agree. Just set them up in
7178 * a way that results in the correct picture.
7179 */
7180 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7181 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7182
7183 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7184 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7185
7186 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7187 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7188
7189 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7190 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7191 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7192
7193 if (INTEL_INFO(dev)->gen > 6) {
7194 uint16_t postoff = 0;
7195
7196 if (intel_crtc->config->limited_color_range)
7197 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7198
7199 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7200 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7201 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7202
7203 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7204 } else {
7205 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7206
7207 if (intel_crtc->config->limited_color_range)
7208 mode |= CSC_BLACK_SCREEN_OFFSET;
7209
7210 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7211 }
7212 }
7213
7214 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7215 {
7216 struct drm_device *dev = crtc->dev;
7217 struct drm_i915_private *dev_priv = dev->dev_private;
7218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7219 enum pipe pipe = intel_crtc->pipe;
7220 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7221 uint32_t val;
7222
7223 val = 0;
7224
7225 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7226 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7227
7228 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7229 val |= PIPECONF_INTERLACED_ILK;
7230 else
7231 val |= PIPECONF_PROGRESSIVE;
7232
7233 I915_WRITE(PIPECONF(cpu_transcoder), val);
7234 POSTING_READ(PIPECONF(cpu_transcoder));
7235
7236 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7237 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7238
7239 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7240 val = 0;
7241
7242 switch (intel_crtc->config->pipe_bpp) {
7243 case 18:
7244 val |= PIPEMISC_DITHER_6_BPC;
7245 break;
7246 case 24:
7247 val |= PIPEMISC_DITHER_8_BPC;
7248 break;
7249 case 30:
7250 val |= PIPEMISC_DITHER_10_BPC;
7251 break;
7252 case 36:
7253 val |= PIPEMISC_DITHER_12_BPC;
7254 break;
7255 default:
7256 /* Case prevented by pipe_config_set_bpp. */
7257 BUG();
7258 }
7259
7260 if (intel_crtc->config->dither)
7261 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7262
7263 I915_WRITE(PIPEMISC(pipe), val);
7264 }
7265 }
7266
7267 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7268 struct intel_crtc_state *crtc_state,
7269 intel_clock_t *clock,
7270 bool *has_reduced_clock,
7271 intel_clock_t *reduced_clock)
7272 {
7273 struct drm_device *dev = crtc->dev;
7274 struct drm_i915_private *dev_priv = dev->dev_private;
7275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7276 int refclk;
7277 const intel_limit_t *limit;
7278 bool ret, is_lvds = false;
7279
7280 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7281
7282 refclk = ironlake_get_refclk(crtc);
7283
7284 /*
7285 * Returns a set of divisors for the desired target clock with the given
7286 * refclk, or FALSE. The returned values represent the clock equation:
7287 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7288 */
7289 limit = intel_limit(intel_crtc, refclk);
7290 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7291 crtc_state->port_clock,
7292 refclk, NULL, clock);
7293 if (!ret)
7294 return false;
7295
7296 if (is_lvds && dev_priv->lvds_downclock_avail) {
7297 /*
7298 * Ensure we match the reduced clock's P to the target clock.
7299 * If the clocks don't match, we can't switch the display clock
7300 * by using the FP0/FP1. In such case we will disable the LVDS
7301 * downclock feature.
7302 */
7303 *has_reduced_clock =
7304 dev_priv->display.find_dpll(limit, intel_crtc,
7305 dev_priv->lvds_downclock,
7306 refclk, clock,
7307 reduced_clock);
7308 }
7309
7310 return true;
7311 }
7312
7313 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7314 {
7315 /*
7316 * Account for spread spectrum to avoid
7317 * oversubscribing the link. Max center spread
7318 * is 2.5%; use 5% for safety's sake.
7319 */
7320 u32 bps = target_clock * bpp * 21 / 20;
7321 return DIV_ROUND_UP(bps, link_bw * 8);
7322 }
7323
7324 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7325 {
7326 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7327 }
7328
7329 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7330 struct intel_crtc_state *crtc_state,
7331 u32 *fp,
7332 intel_clock_t *reduced_clock, u32 *fp2)
7333 {
7334 struct drm_crtc *crtc = &intel_crtc->base;
7335 struct drm_device *dev = crtc->dev;
7336 struct drm_i915_private *dev_priv = dev->dev_private;
7337 struct intel_encoder *intel_encoder;
7338 uint32_t dpll;
7339 int factor, num_connectors = 0;
7340 bool is_lvds = false, is_sdvo = false;
7341
7342 for_each_intel_encoder(dev, intel_encoder) {
7343 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7344 continue;
7345
7346 switch (intel_encoder->type) {
7347 case INTEL_OUTPUT_LVDS:
7348 is_lvds = true;
7349 break;
7350 case INTEL_OUTPUT_SDVO:
7351 case INTEL_OUTPUT_HDMI:
7352 is_sdvo = true;
7353 break;
7354 default:
7355 break;
7356 }
7357
7358 num_connectors++;
7359 }
7360
7361 /* Enable autotuning of the PLL clock (if permissible) */
7362 factor = 21;
7363 if (is_lvds) {
7364 if ((intel_panel_use_ssc(dev_priv) &&
7365 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7366 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7367 factor = 25;
7368 } else if (crtc_state->sdvo_tv_clock)
7369 factor = 20;
7370
7371 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7372 *fp |= FP_CB_TUNE;
7373
7374 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7375 *fp2 |= FP_CB_TUNE;
7376
7377 dpll = 0;
7378
7379 if (is_lvds)
7380 dpll |= DPLLB_MODE_LVDS;
7381 else
7382 dpll |= DPLLB_MODE_DAC_SERIAL;
7383
7384 dpll |= (crtc_state->pixel_multiplier - 1)
7385 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7386
7387 if (is_sdvo)
7388 dpll |= DPLL_SDVO_HIGH_SPEED;
7389 if (crtc_state->has_dp_encoder)
7390 dpll |= DPLL_SDVO_HIGH_SPEED;
7391
7392 /* compute bitmask from p1 value */
7393 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7394 /* also FPA1 */
7395 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7396
7397 switch (crtc_state->dpll.p2) {
7398 case 5:
7399 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7400 break;
7401 case 7:
7402 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7403 break;
7404 case 10:
7405 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7406 break;
7407 case 14:
7408 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7409 break;
7410 }
7411
7412 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7413 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7414 else
7415 dpll |= PLL_REF_INPUT_DREFCLK;
7416
7417 return dpll | DPLL_VCO_ENABLE;
7418 }
7419
7420 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7421 struct intel_crtc_state *crtc_state)
7422 {
7423 struct drm_device *dev = crtc->base.dev;
7424 intel_clock_t clock, reduced_clock;
7425 u32 dpll = 0, fp = 0, fp2 = 0;
7426 bool ok, has_reduced_clock = false;
7427 bool is_lvds = false;
7428 struct intel_shared_dpll *pll;
7429
7430 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7431
7432 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7433 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7434
7435 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7436 &has_reduced_clock, &reduced_clock);
7437 if (!ok && !crtc_state->clock_set) {
7438 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7439 return -EINVAL;
7440 }
7441 /* Compat-code for transition, will disappear. */
7442 if (!crtc_state->clock_set) {
7443 crtc_state->dpll.n = clock.n;
7444 crtc_state->dpll.m1 = clock.m1;
7445 crtc_state->dpll.m2 = clock.m2;
7446 crtc_state->dpll.p1 = clock.p1;
7447 crtc_state->dpll.p2 = clock.p2;
7448 }
7449
7450 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7451 if (crtc_state->has_pch_encoder) {
7452 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7453 if (has_reduced_clock)
7454 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7455
7456 dpll = ironlake_compute_dpll(crtc, crtc_state,
7457 &fp, &reduced_clock,
7458 has_reduced_clock ? &fp2 : NULL);
7459
7460 crtc_state->dpll_hw_state.dpll = dpll;
7461 crtc_state->dpll_hw_state.fp0 = fp;
7462 if (has_reduced_clock)
7463 crtc_state->dpll_hw_state.fp1 = fp2;
7464 else
7465 crtc_state->dpll_hw_state.fp1 = fp;
7466
7467 pll = intel_get_shared_dpll(crtc, crtc_state);
7468 if (pll == NULL) {
7469 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7470 pipe_name(crtc->pipe));
7471 return -EINVAL;
7472 }
7473 }
7474
7475 if (is_lvds && has_reduced_clock && i915.powersave)
7476 crtc->lowfreq_avail = true;
7477 else
7478 crtc->lowfreq_avail = false;
7479
7480 return 0;
7481 }
7482
7483 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7484 struct intel_link_m_n *m_n)
7485 {
7486 struct drm_device *dev = crtc->base.dev;
7487 struct drm_i915_private *dev_priv = dev->dev_private;
7488 enum pipe pipe = crtc->pipe;
7489
7490 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7491 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7492 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7493 & ~TU_SIZE_MASK;
7494 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7495 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7496 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7497 }
7498
7499 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7500 enum transcoder transcoder,
7501 struct intel_link_m_n *m_n,
7502 struct intel_link_m_n *m2_n2)
7503 {
7504 struct drm_device *dev = crtc->base.dev;
7505 struct drm_i915_private *dev_priv = dev->dev_private;
7506 enum pipe pipe = crtc->pipe;
7507
7508 if (INTEL_INFO(dev)->gen >= 5) {
7509 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7510 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7511 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7512 & ~TU_SIZE_MASK;
7513 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7514 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7515 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7516 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7517 * gen < 8) and if DRRS is supported (to make sure the
7518 * registers are not unnecessarily read).
7519 */
7520 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7521 crtc->config->has_drrs) {
7522 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7523 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7524 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7525 & ~TU_SIZE_MASK;
7526 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7527 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7528 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7529 }
7530 } else {
7531 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7532 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7533 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7534 & ~TU_SIZE_MASK;
7535 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7536 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7537 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7538 }
7539 }
7540
7541 void intel_dp_get_m_n(struct intel_crtc *crtc,
7542 struct intel_crtc_state *pipe_config)
7543 {
7544 if (pipe_config->has_pch_encoder)
7545 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7546 else
7547 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7548 &pipe_config->dp_m_n,
7549 &pipe_config->dp_m2_n2);
7550 }
7551
7552 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7553 struct intel_crtc_state *pipe_config)
7554 {
7555 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7556 &pipe_config->fdi_m_n, NULL);
7557 }
7558
7559 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7560 struct intel_crtc_state *pipe_config)
7561 {
7562 struct drm_device *dev = crtc->base.dev;
7563 struct drm_i915_private *dev_priv = dev->dev_private;
7564 uint32_t tmp;
7565
7566 tmp = I915_READ(PS_CTL(crtc->pipe));
7567
7568 if (tmp & PS_ENABLE) {
7569 pipe_config->pch_pfit.enabled = true;
7570 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7571 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7572 }
7573 }
7574
7575 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7576 struct intel_crtc_state *pipe_config)
7577 {
7578 struct drm_device *dev = crtc->base.dev;
7579 struct drm_i915_private *dev_priv = dev->dev_private;
7580 uint32_t tmp;
7581
7582 tmp = I915_READ(PF_CTL(crtc->pipe));
7583
7584 if (tmp & PF_ENABLE) {
7585 pipe_config->pch_pfit.enabled = true;
7586 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7587 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7588
7589 /* We currently do not free assignements of panel fitters on
7590 * ivb/hsw (since we don't use the higher upscaling modes which
7591 * differentiates them) so just WARN about this case for now. */
7592 if (IS_GEN7(dev)) {
7593 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7594 PF_PIPE_SEL_IVB(crtc->pipe));
7595 }
7596 }
7597 }
7598
7599 static void ironlake_get_plane_config(struct intel_crtc *crtc,
7600 struct intel_plane_config *plane_config)
7601 {
7602 struct drm_device *dev = crtc->base.dev;
7603 struct drm_i915_private *dev_priv = dev->dev_private;
7604 u32 val, base, offset;
7605 int pipe = crtc->pipe;
7606 int fourcc, pixel_format;
7607 int aligned_height;
7608 struct drm_framebuffer *fb;
7609
7610 fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7611 if (!fb) {
7612 DRM_DEBUG_KMS("failed to alloc fb\n");
7613 return;
7614 }
7615
7616 val = I915_READ(DSPCNTR(pipe));
7617
7618 if (INTEL_INFO(dev)->gen >= 4)
7619 if (val & DISPPLANE_TILED)
7620 plane_config->tiling = I915_TILING_X;
7621
7622 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7623 fourcc = intel_format_to_fourcc(pixel_format);
7624 fb->pixel_format = fourcc;
7625 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7626
7627 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7628 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7629 offset = I915_READ(DSPOFFSET(pipe));
7630 } else {
7631 if (plane_config->tiling)
7632 offset = I915_READ(DSPTILEOFF(pipe));
7633 else
7634 offset = I915_READ(DSPLINOFF(pipe));
7635 }
7636 plane_config->base = base;
7637
7638 val = I915_READ(PIPESRC(pipe));
7639 fb->width = ((val >> 16) & 0xfff) + 1;
7640 fb->height = ((val >> 0) & 0xfff) + 1;
7641
7642 val = I915_READ(DSPSTRIDE(pipe));
7643 fb->pitches[0] = val & 0xffffffc0;
7644
7645 aligned_height = intel_fb_align_height(dev, fb->height,
7646 plane_config->tiling);
7647
7648 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
7649
7650 DRM_DEBUG_KMS("pipe %d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7651 pipe, fb->width, fb->height, fb->bits_per_pixel,
7652 base, fb->pitches[0], plane_config->size);
7653
7654 crtc->base.primary->fb = fb;
7655 }
7656
7657 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7658 struct intel_crtc_state *pipe_config)
7659 {
7660 struct drm_device *dev = crtc->base.dev;
7661 struct drm_i915_private *dev_priv = dev->dev_private;
7662 uint32_t tmp;
7663
7664 if (!intel_display_power_is_enabled(dev_priv,
7665 POWER_DOMAIN_PIPE(crtc->pipe)))
7666 return false;
7667
7668 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7669 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7670
7671 tmp = I915_READ(PIPECONF(crtc->pipe));
7672 if (!(tmp & PIPECONF_ENABLE))
7673 return false;
7674
7675 switch (tmp & PIPECONF_BPC_MASK) {
7676 case PIPECONF_6BPC:
7677 pipe_config->pipe_bpp = 18;
7678 break;
7679 case PIPECONF_8BPC:
7680 pipe_config->pipe_bpp = 24;
7681 break;
7682 case PIPECONF_10BPC:
7683 pipe_config->pipe_bpp = 30;
7684 break;
7685 case PIPECONF_12BPC:
7686 pipe_config->pipe_bpp = 36;
7687 break;
7688 default:
7689 break;
7690 }
7691
7692 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7693 pipe_config->limited_color_range = true;
7694
7695 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7696 struct intel_shared_dpll *pll;
7697
7698 pipe_config->has_pch_encoder = true;
7699
7700 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7701 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7702 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7703
7704 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7705
7706 if (HAS_PCH_IBX(dev_priv->dev)) {
7707 pipe_config->shared_dpll =
7708 (enum intel_dpll_id) crtc->pipe;
7709 } else {
7710 tmp = I915_READ(PCH_DPLL_SEL);
7711 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7712 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7713 else
7714 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7715 }
7716
7717 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7718
7719 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7720 &pipe_config->dpll_hw_state));
7721
7722 tmp = pipe_config->dpll_hw_state.dpll;
7723 pipe_config->pixel_multiplier =
7724 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7725 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7726
7727 ironlake_pch_clock_get(crtc, pipe_config);
7728 } else {
7729 pipe_config->pixel_multiplier = 1;
7730 }
7731
7732 intel_get_pipe_timings(crtc, pipe_config);
7733
7734 ironlake_get_pfit_config(crtc, pipe_config);
7735
7736 return true;
7737 }
7738
7739 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7740 {
7741 struct drm_device *dev = dev_priv->dev;
7742 struct intel_crtc *crtc;
7743
7744 for_each_intel_crtc(dev, crtc)
7745 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7746 pipe_name(crtc->pipe));
7747
7748 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7749 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7750 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7751 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7752 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7753 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7754 "CPU PWM1 enabled\n");
7755 if (IS_HASWELL(dev))
7756 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7757 "CPU PWM2 enabled\n");
7758 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7759 "PCH PWM1 enabled\n");
7760 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7761 "Utility pin enabled\n");
7762 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7763
7764 /*
7765 * In theory we can still leave IRQs enabled, as long as only the HPD
7766 * interrupts remain enabled. We used to check for that, but since it's
7767 * gen-specific and since we only disable LCPLL after we fully disable
7768 * the interrupts, the check below should be enough.
7769 */
7770 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7771 }
7772
7773 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7774 {
7775 struct drm_device *dev = dev_priv->dev;
7776
7777 if (IS_HASWELL(dev))
7778 return I915_READ(D_COMP_HSW);
7779 else
7780 return I915_READ(D_COMP_BDW);
7781 }
7782
7783 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7784 {
7785 struct drm_device *dev = dev_priv->dev;
7786
7787 if (IS_HASWELL(dev)) {
7788 mutex_lock(&dev_priv->rps.hw_lock);
7789 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7790 val))
7791 DRM_ERROR("Failed to write to D_COMP\n");
7792 mutex_unlock(&dev_priv->rps.hw_lock);
7793 } else {
7794 I915_WRITE(D_COMP_BDW, val);
7795 POSTING_READ(D_COMP_BDW);
7796 }
7797 }
7798
7799 /*
7800 * This function implements pieces of two sequences from BSpec:
7801 * - Sequence for display software to disable LCPLL
7802 * - Sequence for display software to allow package C8+
7803 * The steps implemented here are just the steps that actually touch the LCPLL
7804 * register. Callers should take care of disabling all the display engine
7805 * functions, doing the mode unset, fixing interrupts, etc.
7806 */
7807 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7808 bool switch_to_fclk, bool allow_power_down)
7809 {
7810 uint32_t val;
7811
7812 assert_can_disable_lcpll(dev_priv);
7813
7814 val = I915_READ(LCPLL_CTL);
7815
7816 if (switch_to_fclk) {
7817 val |= LCPLL_CD_SOURCE_FCLK;
7818 I915_WRITE(LCPLL_CTL, val);
7819
7820 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7821 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7822 DRM_ERROR("Switching to FCLK failed\n");
7823
7824 val = I915_READ(LCPLL_CTL);
7825 }
7826
7827 val |= LCPLL_PLL_DISABLE;
7828 I915_WRITE(LCPLL_CTL, val);
7829 POSTING_READ(LCPLL_CTL);
7830
7831 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7832 DRM_ERROR("LCPLL still locked\n");
7833
7834 val = hsw_read_dcomp(dev_priv);
7835 val |= D_COMP_COMP_DISABLE;
7836 hsw_write_dcomp(dev_priv, val);
7837 ndelay(100);
7838
7839 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7840 1))
7841 DRM_ERROR("D_COMP RCOMP still in progress\n");
7842
7843 if (allow_power_down) {
7844 val = I915_READ(LCPLL_CTL);
7845 val |= LCPLL_POWER_DOWN_ALLOW;
7846 I915_WRITE(LCPLL_CTL, val);
7847 POSTING_READ(LCPLL_CTL);
7848 }
7849 }
7850
7851 /*
7852 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7853 * source.
7854 */
7855 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
7856 {
7857 uint32_t val;
7858
7859 val = I915_READ(LCPLL_CTL);
7860
7861 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7862 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7863 return;
7864
7865 /*
7866 * Make sure we're not on PC8 state before disabling PC8, otherwise
7867 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7868 */
7869 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
7870
7871 if (val & LCPLL_POWER_DOWN_ALLOW) {
7872 val &= ~LCPLL_POWER_DOWN_ALLOW;
7873 I915_WRITE(LCPLL_CTL, val);
7874 POSTING_READ(LCPLL_CTL);
7875 }
7876
7877 val = hsw_read_dcomp(dev_priv);
7878 val |= D_COMP_COMP_FORCE;
7879 val &= ~D_COMP_COMP_DISABLE;
7880 hsw_write_dcomp(dev_priv, val);
7881
7882 val = I915_READ(LCPLL_CTL);
7883 val &= ~LCPLL_PLL_DISABLE;
7884 I915_WRITE(LCPLL_CTL, val);
7885
7886 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7887 DRM_ERROR("LCPLL not locked yet\n");
7888
7889 if (val & LCPLL_CD_SOURCE_FCLK) {
7890 val = I915_READ(LCPLL_CTL);
7891 val &= ~LCPLL_CD_SOURCE_FCLK;
7892 I915_WRITE(LCPLL_CTL, val);
7893
7894 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7895 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7896 DRM_ERROR("Switching back to LCPLL failed\n");
7897 }
7898
7899 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
7900 }
7901
7902 /*
7903 * Package states C8 and deeper are really deep PC states that can only be
7904 * reached when all the devices on the system allow it, so even if the graphics
7905 * device allows PC8+, it doesn't mean the system will actually get to these
7906 * states. Our driver only allows PC8+ when going into runtime PM.
7907 *
7908 * The requirements for PC8+ are that all the outputs are disabled, the power
7909 * well is disabled and most interrupts are disabled, and these are also
7910 * requirements for runtime PM. When these conditions are met, we manually do
7911 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7912 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7913 * hang the machine.
7914 *
7915 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7916 * the state of some registers, so when we come back from PC8+ we need to
7917 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7918 * need to take care of the registers kept by RC6. Notice that this happens even
7919 * if we don't put the device in PCI D3 state (which is what currently happens
7920 * because of the runtime PM support).
7921 *
7922 * For more, read "Display Sequences for Package C8" on the hardware
7923 * documentation.
7924 */
7925 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
7926 {
7927 struct drm_device *dev = dev_priv->dev;
7928 uint32_t val;
7929
7930 DRM_DEBUG_KMS("Enabling package C8+\n");
7931
7932 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7933 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7934 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7935 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7936 }
7937
7938 lpt_disable_clkout_dp(dev);
7939 hsw_disable_lcpll(dev_priv, true, true);
7940 }
7941
7942 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
7943 {
7944 struct drm_device *dev = dev_priv->dev;
7945 uint32_t val;
7946
7947 DRM_DEBUG_KMS("Disabling package C8+\n");
7948
7949 hsw_restore_lcpll(dev_priv);
7950 lpt_init_pch_refclk(dev);
7951
7952 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7953 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7954 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7955 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7956 }
7957
7958 intel_prepare_ddi(dev);
7959 }
7960
7961 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
7962 struct intel_crtc_state *crtc_state)
7963 {
7964 if (!intel_ddi_pll_select(crtc, crtc_state))
7965 return -EINVAL;
7966
7967 crtc->lowfreq_avail = false;
7968
7969 return 0;
7970 }
7971
7972 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
7973 enum port port,
7974 struct intel_crtc_state *pipe_config)
7975 {
7976 u32 temp, dpll_ctl1;
7977
7978 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
7979 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
7980
7981 switch (pipe_config->ddi_pll_sel) {
7982 case SKL_DPLL0:
7983 /*
7984 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
7985 * of the shared DPLL framework and thus needs to be read out
7986 * separately
7987 */
7988 dpll_ctl1 = I915_READ(DPLL_CTRL1);
7989 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
7990 break;
7991 case SKL_DPLL1:
7992 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
7993 break;
7994 case SKL_DPLL2:
7995 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
7996 break;
7997 case SKL_DPLL3:
7998 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
7999 break;
8000 }
8001 }
8002
8003 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8004 enum port port,
8005 struct intel_crtc_state *pipe_config)
8006 {
8007 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8008
8009 switch (pipe_config->ddi_pll_sel) {
8010 case PORT_CLK_SEL_WRPLL1:
8011 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8012 break;
8013 case PORT_CLK_SEL_WRPLL2:
8014 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8015 break;
8016 }
8017 }
8018
8019 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8020 struct intel_crtc_state *pipe_config)
8021 {
8022 struct drm_device *dev = crtc->base.dev;
8023 struct drm_i915_private *dev_priv = dev->dev_private;
8024 struct intel_shared_dpll *pll;
8025 enum port port;
8026 uint32_t tmp;
8027
8028 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8029
8030 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8031
8032 if (IS_SKYLAKE(dev))
8033 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8034 else
8035 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8036
8037 if (pipe_config->shared_dpll >= 0) {
8038 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8039
8040 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8041 &pipe_config->dpll_hw_state));
8042 }
8043
8044 /*
8045 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8046 * DDI E. So just check whether this pipe is wired to DDI E and whether
8047 * the PCH transcoder is on.
8048 */
8049 if (INTEL_INFO(dev)->gen < 9 &&
8050 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8051 pipe_config->has_pch_encoder = true;
8052
8053 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8054 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8055 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8056
8057 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8058 }
8059 }
8060
8061 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8062 struct intel_crtc_state *pipe_config)
8063 {
8064 struct drm_device *dev = crtc->base.dev;
8065 struct drm_i915_private *dev_priv = dev->dev_private;
8066 enum intel_display_power_domain pfit_domain;
8067 uint32_t tmp;
8068
8069 if (!intel_display_power_is_enabled(dev_priv,
8070 POWER_DOMAIN_PIPE(crtc->pipe)))
8071 return false;
8072
8073 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8074 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8075
8076 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8077 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8078 enum pipe trans_edp_pipe;
8079 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8080 default:
8081 WARN(1, "unknown pipe linked to edp transcoder\n");
8082 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8083 case TRANS_DDI_EDP_INPUT_A_ON:
8084 trans_edp_pipe = PIPE_A;
8085 break;
8086 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8087 trans_edp_pipe = PIPE_B;
8088 break;
8089 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8090 trans_edp_pipe = PIPE_C;
8091 break;
8092 }
8093
8094 if (trans_edp_pipe == crtc->pipe)
8095 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8096 }
8097
8098 if (!intel_display_power_is_enabled(dev_priv,
8099 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8100 return false;
8101
8102 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8103 if (!(tmp & PIPECONF_ENABLE))
8104 return false;
8105
8106 haswell_get_ddi_port_state(crtc, pipe_config);
8107
8108 intel_get_pipe_timings(crtc, pipe_config);
8109
8110 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8111 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8112 if (IS_SKYLAKE(dev))
8113 skylake_get_pfit_config(crtc, pipe_config);
8114 else
8115 ironlake_get_pfit_config(crtc, pipe_config);
8116 }
8117
8118 if (IS_HASWELL(dev))
8119 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8120 (I915_READ(IPS_CTL) & IPS_ENABLE);
8121
8122 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8123 pipe_config->pixel_multiplier =
8124 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8125 } else {
8126 pipe_config->pixel_multiplier = 1;
8127 }
8128
8129 return true;
8130 }
8131
8132 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8133 {
8134 struct drm_device *dev = crtc->dev;
8135 struct drm_i915_private *dev_priv = dev->dev_private;
8136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8137 uint32_t cntl = 0, size = 0;
8138
8139 if (base) {
8140 unsigned int width = intel_crtc->cursor_width;
8141 unsigned int height = intel_crtc->cursor_height;
8142 unsigned int stride = roundup_pow_of_two(width) * 4;
8143
8144 switch (stride) {
8145 default:
8146 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8147 width, stride);
8148 stride = 256;
8149 /* fallthrough */
8150 case 256:
8151 case 512:
8152 case 1024:
8153 case 2048:
8154 break;
8155 }
8156
8157 cntl |= CURSOR_ENABLE |
8158 CURSOR_GAMMA_ENABLE |
8159 CURSOR_FORMAT_ARGB |
8160 CURSOR_STRIDE(stride);
8161
8162 size = (height << 12) | width;
8163 }
8164
8165 if (intel_crtc->cursor_cntl != 0 &&
8166 (intel_crtc->cursor_base != base ||
8167 intel_crtc->cursor_size != size ||
8168 intel_crtc->cursor_cntl != cntl)) {
8169 /* On these chipsets we can only modify the base/size/stride
8170 * whilst the cursor is disabled.
8171 */
8172 I915_WRITE(_CURACNTR, 0);
8173 POSTING_READ(_CURACNTR);
8174 intel_crtc->cursor_cntl = 0;
8175 }
8176
8177 if (intel_crtc->cursor_base != base) {
8178 I915_WRITE(_CURABASE, base);
8179 intel_crtc->cursor_base = base;
8180 }
8181
8182 if (intel_crtc->cursor_size != size) {
8183 I915_WRITE(CURSIZE, size);
8184 intel_crtc->cursor_size = size;
8185 }
8186
8187 if (intel_crtc->cursor_cntl != cntl) {
8188 I915_WRITE(_CURACNTR, cntl);
8189 POSTING_READ(_CURACNTR);
8190 intel_crtc->cursor_cntl = cntl;
8191 }
8192 }
8193
8194 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8195 {
8196 struct drm_device *dev = crtc->dev;
8197 struct drm_i915_private *dev_priv = dev->dev_private;
8198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8199 int pipe = intel_crtc->pipe;
8200 uint32_t cntl;
8201
8202 cntl = 0;
8203 if (base) {
8204 cntl = MCURSOR_GAMMA_ENABLE;
8205 switch (intel_crtc->cursor_width) {
8206 case 64:
8207 cntl |= CURSOR_MODE_64_ARGB_AX;
8208 break;
8209 case 128:
8210 cntl |= CURSOR_MODE_128_ARGB_AX;
8211 break;
8212 case 256:
8213 cntl |= CURSOR_MODE_256_ARGB_AX;
8214 break;
8215 default:
8216 MISSING_CASE(intel_crtc->cursor_width);
8217 return;
8218 }
8219 cntl |= pipe << 28; /* Connect to correct pipe */
8220
8221 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8222 cntl |= CURSOR_PIPE_CSC_ENABLE;
8223 }
8224
8225 if (to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180))
8226 cntl |= CURSOR_ROTATE_180;
8227
8228 if (intel_crtc->cursor_cntl != cntl) {
8229 I915_WRITE(CURCNTR(pipe), cntl);
8230 POSTING_READ(CURCNTR(pipe));
8231 intel_crtc->cursor_cntl = cntl;
8232 }
8233
8234 /* and commit changes on next vblank */
8235 I915_WRITE(CURBASE(pipe), base);
8236 POSTING_READ(CURBASE(pipe));
8237
8238 intel_crtc->cursor_base = base;
8239 }
8240
8241 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8242 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8243 bool on)
8244 {
8245 struct drm_device *dev = crtc->dev;
8246 struct drm_i915_private *dev_priv = dev->dev_private;
8247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8248 int pipe = intel_crtc->pipe;
8249 int x = crtc->cursor_x;
8250 int y = crtc->cursor_y;
8251 u32 base = 0, pos = 0;
8252
8253 if (on)
8254 base = intel_crtc->cursor_addr;
8255
8256 if (x >= intel_crtc->config->pipe_src_w)
8257 base = 0;
8258
8259 if (y >= intel_crtc->config->pipe_src_h)
8260 base = 0;
8261
8262 if (x < 0) {
8263 if (x + intel_crtc->cursor_width <= 0)
8264 base = 0;
8265
8266 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8267 x = -x;
8268 }
8269 pos |= x << CURSOR_X_SHIFT;
8270
8271 if (y < 0) {
8272 if (y + intel_crtc->cursor_height <= 0)
8273 base = 0;
8274
8275 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8276 y = -y;
8277 }
8278 pos |= y << CURSOR_Y_SHIFT;
8279
8280 if (base == 0 && intel_crtc->cursor_base == 0)
8281 return;
8282
8283 I915_WRITE(CURPOS(pipe), pos);
8284
8285 /* ILK+ do this automagically */
8286 if (HAS_GMCH_DISPLAY(dev) &&
8287 to_intel_plane(crtc->cursor)->rotation == BIT(DRM_ROTATE_180)) {
8288 base += (intel_crtc->cursor_height *
8289 intel_crtc->cursor_width - 1) * 4;
8290 }
8291
8292 if (IS_845G(dev) || IS_I865G(dev))
8293 i845_update_cursor(crtc, base);
8294 else
8295 i9xx_update_cursor(crtc, base);
8296 }
8297
8298 static bool cursor_size_ok(struct drm_device *dev,
8299 uint32_t width, uint32_t height)
8300 {
8301 if (width == 0 || height == 0)
8302 return false;
8303
8304 /*
8305 * 845g/865g are special in that they are only limited by
8306 * the width of their cursors, the height is arbitrary up to
8307 * the precision of the register. Everything else requires
8308 * square cursors, limited to a few power-of-two sizes.
8309 */
8310 if (IS_845G(dev) || IS_I865G(dev)) {
8311 if ((width & 63) != 0)
8312 return false;
8313
8314 if (width > (IS_845G(dev) ? 64 : 512))
8315 return false;
8316
8317 if (height > 1023)
8318 return false;
8319 } else {
8320 switch (width | height) {
8321 case 256:
8322 case 128:
8323 if (IS_GEN2(dev))
8324 return false;
8325 case 64:
8326 break;
8327 default:
8328 return false;
8329 }
8330 }
8331
8332 return true;
8333 }
8334
8335 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8336 u16 *blue, uint32_t start, uint32_t size)
8337 {
8338 int end = (start + size > 256) ? 256 : start + size, i;
8339 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8340
8341 for (i = start; i < end; i++) {
8342 intel_crtc->lut_r[i] = red[i] >> 8;
8343 intel_crtc->lut_g[i] = green[i] >> 8;
8344 intel_crtc->lut_b[i] = blue[i] >> 8;
8345 }
8346
8347 intel_crtc_load_lut(crtc);
8348 }
8349
8350 /* VESA 640x480x72Hz mode to set on the pipe */
8351 static struct drm_display_mode load_detect_mode = {
8352 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8353 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8354 };
8355
8356 struct drm_framebuffer *
8357 __intel_framebuffer_create(struct drm_device *dev,
8358 struct drm_mode_fb_cmd2 *mode_cmd,
8359 struct drm_i915_gem_object *obj)
8360 {
8361 struct intel_framebuffer *intel_fb;
8362 int ret;
8363
8364 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8365 if (!intel_fb) {
8366 drm_gem_object_unreference(&obj->base);
8367 return ERR_PTR(-ENOMEM);
8368 }
8369
8370 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8371 if (ret)
8372 goto err;
8373
8374 return &intel_fb->base;
8375 err:
8376 drm_gem_object_unreference(&obj->base);
8377 kfree(intel_fb);
8378
8379 return ERR_PTR(ret);
8380 }
8381
8382 static struct drm_framebuffer *
8383 intel_framebuffer_create(struct drm_device *dev,
8384 struct drm_mode_fb_cmd2 *mode_cmd,
8385 struct drm_i915_gem_object *obj)
8386 {
8387 struct drm_framebuffer *fb;
8388 int ret;
8389
8390 ret = i915_mutex_lock_interruptible(dev);
8391 if (ret)
8392 return ERR_PTR(ret);
8393 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8394 mutex_unlock(&dev->struct_mutex);
8395
8396 return fb;
8397 }
8398
8399 static u32
8400 intel_framebuffer_pitch_for_width(int width, int bpp)
8401 {
8402 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8403 return ALIGN(pitch, 64);
8404 }
8405
8406 static u32
8407 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8408 {
8409 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8410 return PAGE_ALIGN(pitch * mode->vdisplay);
8411 }
8412
8413 static struct drm_framebuffer *
8414 intel_framebuffer_create_for_mode(struct drm_device *dev,
8415 struct drm_display_mode *mode,
8416 int depth, int bpp)
8417 {
8418 struct drm_i915_gem_object *obj;
8419 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8420
8421 obj = i915_gem_alloc_object(dev,
8422 intel_framebuffer_size_for_mode(mode, bpp));
8423 if (obj == NULL)
8424 return ERR_PTR(-ENOMEM);
8425
8426 mode_cmd.width = mode->hdisplay;
8427 mode_cmd.height = mode->vdisplay;
8428 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8429 bpp);
8430 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8431
8432 return intel_framebuffer_create(dev, &mode_cmd, obj);
8433 }
8434
8435 static struct drm_framebuffer *
8436 mode_fits_in_fbdev(struct drm_device *dev,
8437 struct drm_display_mode *mode)
8438 {
8439 #ifdef CONFIG_DRM_I915_FBDEV
8440 struct drm_i915_private *dev_priv = dev->dev_private;
8441 struct drm_i915_gem_object *obj;
8442 struct drm_framebuffer *fb;
8443
8444 if (!dev_priv->fbdev)
8445 return NULL;
8446
8447 if (!dev_priv->fbdev->fb)
8448 return NULL;
8449
8450 obj = dev_priv->fbdev->fb->obj;
8451 BUG_ON(!obj);
8452
8453 fb = &dev_priv->fbdev->fb->base;
8454 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8455 fb->bits_per_pixel))
8456 return NULL;
8457
8458 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8459 return NULL;
8460
8461 return fb;
8462 #else
8463 return NULL;
8464 #endif
8465 }
8466
8467 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8468 struct drm_display_mode *mode,
8469 struct intel_load_detect_pipe *old,
8470 struct drm_modeset_acquire_ctx *ctx)
8471 {
8472 struct intel_crtc *intel_crtc;
8473 struct intel_encoder *intel_encoder =
8474 intel_attached_encoder(connector);
8475 struct drm_crtc *possible_crtc;
8476 struct drm_encoder *encoder = &intel_encoder->base;
8477 struct drm_crtc *crtc = NULL;
8478 struct drm_device *dev = encoder->dev;
8479 struct drm_framebuffer *fb;
8480 struct drm_mode_config *config = &dev->mode_config;
8481 int ret, i = -1;
8482
8483 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8484 connector->base.id, connector->name,
8485 encoder->base.id, encoder->name);
8486
8487 retry:
8488 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8489 if (ret)
8490 goto fail_unlock;
8491
8492 /*
8493 * Algorithm gets a little messy:
8494 *
8495 * - if the connector already has an assigned crtc, use it (but make
8496 * sure it's on first)
8497 *
8498 * - try to find the first unused crtc that can drive this connector,
8499 * and use that if we find one
8500 */
8501
8502 /* See if we already have a CRTC for this connector */
8503 if (encoder->crtc) {
8504 crtc = encoder->crtc;
8505
8506 ret = drm_modeset_lock(&crtc->mutex, ctx);
8507 if (ret)
8508 goto fail_unlock;
8509 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8510 if (ret)
8511 goto fail_unlock;
8512
8513 old->dpms_mode = connector->dpms;
8514 old->load_detect_temp = false;
8515
8516 /* Make sure the crtc and connector are running */
8517 if (connector->dpms != DRM_MODE_DPMS_ON)
8518 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8519
8520 return true;
8521 }
8522
8523 /* Find an unused one (if possible) */
8524 for_each_crtc(dev, possible_crtc) {
8525 i++;
8526 if (!(encoder->possible_crtcs & (1 << i)))
8527 continue;
8528 if (possible_crtc->enabled)
8529 continue;
8530 /* This can occur when applying the pipe A quirk on resume. */
8531 if (to_intel_crtc(possible_crtc)->new_enabled)
8532 continue;
8533
8534 crtc = possible_crtc;
8535 break;
8536 }
8537
8538 /*
8539 * If we didn't find an unused CRTC, don't use any.
8540 */
8541 if (!crtc) {
8542 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8543 goto fail_unlock;
8544 }
8545
8546 ret = drm_modeset_lock(&crtc->mutex, ctx);
8547 if (ret)
8548 goto fail_unlock;
8549 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8550 if (ret)
8551 goto fail_unlock;
8552 intel_encoder->new_crtc = to_intel_crtc(crtc);
8553 to_intel_connector(connector)->new_encoder = intel_encoder;
8554
8555 intel_crtc = to_intel_crtc(crtc);
8556 intel_crtc->new_enabled = true;
8557 intel_crtc->new_config = intel_crtc->config;
8558 old->dpms_mode = connector->dpms;
8559 old->load_detect_temp = true;
8560 old->release_fb = NULL;
8561
8562 if (!mode)
8563 mode = &load_detect_mode;
8564
8565 /* We need a framebuffer large enough to accommodate all accesses
8566 * that the plane may generate whilst we perform load detection.
8567 * We can not rely on the fbcon either being present (we get called
8568 * during its initialisation to detect all boot displays, or it may
8569 * not even exist) or that it is large enough to satisfy the
8570 * requested mode.
8571 */
8572 fb = mode_fits_in_fbdev(dev, mode);
8573 if (fb == NULL) {
8574 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8575 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8576 old->release_fb = fb;
8577 } else
8578 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8579 if (IS_ERR(fb)) {
8580 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8581 goto fail;
8582 }
8583
8584 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8585 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8586 if (old->release_fb)
8587 old->release_fb->funcs->destroy(old->release_fb);
8588 goto fail;
8589 }
8590
8591 /* let the connector get through one full cycle before testing */
8592 intel_wait_for_vblank(dev, intel_crtc->pipe);
8593 return true;
8594
8595 fail:
8596 intel_crtc->new_enabled = crtc->enabled;
8597 if (intel_crtc->new_enabled)
8598 intel_crtc->new_config = intel_crtc->config;
8599 else
8600 intel_crtc->new_config = NULL;
8601 fail_unlock:
8602 if (ret == -EDEADLK) {
8603 drm_modeset_backoff(ctx);
8604 goto retry;
8605 }
8606
8607 return false;
8608 }
8609
8610 void intel_release_load_detect_pipe(struct drm_connector *connector,
8611 struct intel_load_detect_pipe *old)
8612 {
8613 struct intel_encoder *intel_encoder =
8614 intel_attached_encoder(connector);
8615 struct drm_encoder *encoder = &intel_encoder->base;
8616 struct drm_crtc *crtc = encoder->crtc;
8617 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8618
8619 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8620 connector->base.id, connector->name,
8621 encoder->base.id, encoder->name);
8622
8623 if (old->load_detect_temp) {
8624 to_intel_connector(connector)->new_encoder = NULL;
8625 intel_encoder->new_crtc = NULL;
8626 intel_crtc->new_enabled = false;
8627 intel_crtc->new_config = NULL;
8628 intel_set_mode(crtc, NULL, 0, 0, NULL);
8629
8630 if (old->release_fb) {
8631 drm_framebuffer_unregister_private(old->release_fb);
8632 drm_framebuffer_unreference(old->release_fb);
8633 }
8634
8635 return;
8636 }
8637
8638 /* Switch crtc and encoder back off if necessary */
8639 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8640 connector->funcs->dpms(connector, old->dpms_mode);
8641 }
8642
8643 static int i9xx_pll_refclk(struct drm_device *dev,
8644 const struct intel_crtc_state *pipe_config)
8645 {
8646 struct drm_i915_private *dev_priv = dev->dev_private;
8647 u32 dpll = pipe_config->dpll_hw_state.dpll;
8648
8649 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8650 return dev_priv->vbt.lvds_ssc_freq;
8651 else if (HAS_PCH_SPLIT(dev))
8652 return 120000;
8653 else if (!IS_GEN2(dev))
8654 return 96000;
8655 else
8656 return 48000;
8657 }
8658
8659 /* Returns the clock of the currently programmed mode of the given pipe. */
8660 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8661 struct intel_crtc_state *pipe_config)
8662 {
8663 struct drm_device *dev = crtc->base.dev;
8664 struct drm_i915_private *dev_priv = dev->dev_private;
8665 int pipe = pipe_config->cpu_transcoder;
8666 u32 dpll = pipe_config->dpll_hw_state.dpll;
8667 u32 fp;
8668 intel_clock_t clock;
8669 int refclk = i9xx_pll_refclk(dev, pipe_config);
8670
8671 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8672 fp = pipe_config->dpll_hw_state.fp0;
8673 else
8674 fp = pipe_config->dpll_hw_state.fp1;
8675
8676 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8677 if (IS_PINEVIEW(dev)) {
8678 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8679 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8680 } else {
8681 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8682 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8683 }
8684
8685 if (!IS_GEN2(dev)) {
8686 if (IS_PINEVIEW(dev))
8687 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8688 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8689 else
8690 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8691 DPLL_FPA01_P1_POST_DIV_SHIFT);
8692
8693 switch (dpll & DPLL_MODE_MASK) {
8694 case DPLLB_MODE_DAC_SERIAL:
8695 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8696 5 : 10;
8697 break;
8698 case DPLLB_MODE_LVDS:
8699 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8700 7 : 14;
8701 break;
8702 default:
8703 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8704 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8705 return;
8706 }
8707
8708 if (IS_PINEVIEW(dev))
8709 pineview_clock(refclk, &clock);
8710 else
8711 i9xx_clock(refclk, &clock);
8712 } else {
8713 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8714 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8715
8716 if (is_lvds) {
8717 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8718 DPLL_FPA01_P1_POST_DIV_SHIFT);
8719
8720 if (lvds & LVDS_CLKB_POWER_UP)
8721 clock.p2 = 7;
8722 else
8723 clock.p2 = 14;
8724 } else {
8725 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8726 clock.p1 = 2;
8727 else {
8728 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8729 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8730 }
8731 if (dpll & PLL_P2_DIVIDE_BY_4)
8732 clock.p2 = 4;
8733 else
8734 clock.p2 = 2;
8735 }
8736
8737 i9xx_clock(refclk, &clock);
8738 }
8739
8740 /*
8741 * This value includes pixel_multiplier. We will use
8742 * port_clock to compute adjusted_mode.crtc_clock in the
8743 * encoder's get_config() function.
8744 */
8745 pipe_config->port_clock = clock.dot;
8746 }
8747
8748 int intel_dotclock_calculate(int link_freq,
8749 const struct intel_link_m_n *m_n)
8750 {
8751 /*
8752 * The calculation for the data clock is:
8753 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8754 * But we want to avoid losing precison if possible, so:
8755 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8756 *
8757 * and the link clock is simpler:
8758 * link_clock = (m * link_clock) / n
8759 */
8760
8761 if (!m_n->link_n)
8762 return 0;
8763
8764 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8765 }
8766
8767 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8768 struct intel_crtc_state *pipe_config)
8769 {
8770 struct drm_device *dev = crtc->base.dev;
8771
8772 /* read out port_clock from the DPLL */
8773 i9xx_crtc_clock_get(crtc, pipe_config);
8774
8775 /*
8776 * This value does not include pixel_multiplier.
8777 * We will check that port_clock and adjusted_mode.crtc_clock
8778 * agree once we know their relationship in the encoder's
8779 * get_config() function.
8780 */
8781 pipe_config->base.adjusted_mode.crtc_clock =
8782 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8783 &pipe_config->fdi_m_n);
8784 }
8785
8786 /** Returns the currently programmed mode of the given pipe. */
8787 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8788 struct drm_crtc *crtc)
8789 {
8790 struct drm_i915_private *dev_priv = dev->dev_private;
8791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8792 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8793 struct drm_display_mode *mode;
8794 struct intel_crtc_state pipe_config;
8795 int htot = I915_READ(HTOTAL(cpu_transcoder));
8796 int hsync = I915_READ(HSYNC(cpu_transcoder));
8797 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8798 int vsync = I915_READ(VSYNC(cpu_transcoder));
8799 enum pipe pipe = intel_crtc->pipe;
8800
8801 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8802 if (!mode)
8803 return NULL;
8804
8805 /*
8806 * Construct a pipe_config sufficient for getting the clock info
8807 * back out of crtc_clock_get.
8808 *
8809 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8810 * to use a real value here instead.
8811 */
8812 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8813 pipe_config.pixel_multiplier = 1;
8814 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8815 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8816 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8817 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8818
8819 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8820 mode->hdisplay = (htot & 0xffff) + 1;
8821 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8822 mode->hsync_start = (hsync & 0xffff) + 1;
8823 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8824 mode->vdisplay = (vtot & 0xffff) + 1;
8825 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8826 mode->vsync_start = (vsync & 0xffff) + 1;
8827 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8828
8829 drm_mode_set_name(mode);
8830
8831 return mode;
8832 }
8833
8834 static void intel_decrease_pllclock(struct drm_crtc *crtc)
8835 {
8836 struct drm_device *dev = crtc->dev;
8837 struct drm_i915_private *dev_priv = dev->dev_private;
8838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8839
8840 if (!HAS_GMCH_DISPLAY(dev))
8841 return;
8842
8843 if (!dev_priv->lvds_downclock_avail)
8844 return;
8845
8846 /*
8847 * Since this is called by a timer, we should never get here in
8848 * the manual case.
8849 */
8850 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8851 int pipe = intel_crtc->pipe;
8852 int dpll_reg = DPLL(pipe);
8853 int dpll;
8854
8855 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8856
8857 assert_panel_unlocked(dev_priv, pipe);
8858
8859 dpll = I915_READ(dpll_reg);
8860 dpll |= DISPLAY_RATE_SELECT_FPA1;
8861 I915_WRITE(dpll_reg, dpll);
8862 intel_wait_for_vblank(dev, pipe);
8863 dpll = I915_READ(dpll_reg);
8864 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8865 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8866 }
8867
8868 }
8869
8870 void intel_mark_busy(struct drm_device *dev)
8871 {
8872 struct drm_i915_private *dev_priv = dev->dev_private;
8873
8874 if (dev_priv->mm.busy)
8875 return;
8876
8877 intel_runtime_pm_get(dev_priv);
8878 i915_update_gfx_val(dev_priv);
8879 dev_priv->mm.busy = true;
8880 }
8881
8882 void intel_mark_idle(struct drm_device *dev)
8883 {
8884 struct drm_i915_private *dev_priv = dev->dev_private;
8885 struct drm_crtc *crtc;
8886
8887 if (!dev_priv->mm.busy)
8888 return;
8889
8890 dev_priv->mm.busy = false;
8891
8892 if (!i915.powersave)
8893 goto out;
8894
8895 for_each_crtc(dev, crtc) {
8896 if (!crtc->primary->fb)
8897 continue;
8898
8899 intel_decrease_pllclock(crtc);
8900 }
8901
8902 if (INTEL_INFO(dev)->gen >= 6)
8903 gen6_rps_idle(dev->dev_private);
8904
8905 out:
8906 intel_runtime_pm_put(dev_priv);
8907 }
8908
8909 static void intel_crtc_set_state(struct intel_crtc *crtc,
8910 struct intel_crtc_state *crtc_state)
8911 {
8912 kfree(crtc->config);
8913 crtc->config = crtc_state;
8914 crtc->base.state = &crtc_state->base;
8915 }
8916
8917 static void intel_crtc_destroy(struct drm_crtc *crtc)
8918 {
8919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8920 struct drm_device *dev = crtc->dev;
8921 struct intel_unpin_work *work;
8922
8923 spin_lock_irq(&dev->event_lock);
8924 work = intel_crtc->unpin_work;
8925 intel_crtc->unpin_work = NULL;
8926 spin_unlock_irq(&dev->event_lock);
8927
8928 if (work) {
8929 cancel_work_sync(&work->work);
8930 kfree(work);
8931 }
8932
8933 intel_crtc_set_state(intel_crtc, NULL);
8934 drm_crtc_cleanup(crtc);
8935
8936 kfree(intel_crtc);
8937 }
8938
8939 static void intel_unpin_work_fn(struct work_struct *__work)
8940 {
8941 struct intel_unpin_work *work =
8942 container_of(__work, struct intel_unpin_work, work);
8943 struct drm_device *dev = work->crtc->dev;
8944 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
8945
8946 mutex_lock(&dev->struct_mutex);
8947 intel_unpin_fb_obj(work->old_fb_obj);
8948 drm_gem_object_unreference(&work->pending_flip_obj->base);
8949 drm_gem_object_unreference(&work->old_fb_obj->base);
8950
8951 intel_fbc_update(dev);
8952
8953 if (work->flip_queued_req)
8954 i915_gem_request_assign(&work->flip_queued_req, NULL);
8955 mutex_unlock(&dev->struct_mutex);
8956
8957 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
8958
8959 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8960 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8961
8962 kfree(work);
8963 }
8964
8965 static void do_intel_finish_page_flip(struct drm_device *dev,
8966 struct drm_crtc *crtc)
8967 {
8968 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8969 struct intel_unpin_work *work;
8970 unsigned long flags;
8971
8972 /* Ignore early vblank irqs */
8973 if (intel_crtc == NULL)
8974 return;
8975
8976 /*
8977 * This is called both by irq handlers and the reset code (to complete
8978 * lost pageflips) so needs the full irqsave spinlocks.
8979 */
8980 spin_lock_irqsave(&dev->event_lock, flags);
8981 work = intel_crtc->unpin_work;
8982
8983 /* Ensure we don't miss a work->pending update ... */
8984 smp_rmb();
8985
8986 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8987 spin_unlock_irqrestore(&dev->event_lock, flags);
8988 return;
8989 }
8990
8991 page_flip_completed(intel_crtc);
8992
8993 spin_unlock_irqrestore(&dev->event_lock, flags);
8994 }
8995
8996 void intel_finish_page_flip(struct drm_device *dev, int pipe)
8997 {
8998 struct drm_i915_private *dev_priv = dev->dev_private;
8999 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9000
9001 do_intel_finish_page_flip(dev, crtc);
9002 }
9003
9004 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9005 {
9006 struct drm_i915_private *dev_priv = dev->dev_private;
9007 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9008
9009 do_intel_finish_page_flip(dev, crtc);
9010 }
9011
9012 /* Is 'a' after or equal to 'b'? */
9013 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9014 {
9015 return !((a - b) & 0x80000000);
9016 }
9017
9018 static bool page_flip_finished(struct intel_crtc *crtc)
9019 {
9020 struct drm_device *dev = crtc->base.dev;
9021 struct drm_i915_private *dev_priv = dev->dev_private;
9022
9023 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9024 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9025 return true;
9026
9027 /*
9028 * The relevant registers doen't exist on pre-ctg.
9029 * As the flip done interrupt doesn't trigger for mmio
9030 * flips on gmch platforms, a flip count check isn't
9031 * really needed there. But since ctg has the registers,
9032 * include it in the check anyway.
9033 */
9034 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9035 return true;
9036
9037 /*
9038 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9039 * used the same base address. In that case the mmio flip might
9040 * have completed, but the CS hasn't even executed the flip yet.
9041 *
9042 * A flip count check isn't enough as the CS might have updated
9043 * the base address just after start of vblank, but before we
9044 * managed to process the interrupt. This means we'd complete the
9045 * CS flip too soon.
9046 *
9047 * Combining both checks should get us a good enough result. It may
9048 * still happen that the CS flip has been executed, but has not
9049 * yet actually completed. But in case the base address is the same
9050 * anyway, we don't really care.
9051 */
9052 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9053 crtc->unpin_work->gtt_offset &&
9054 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9055 crtc->unpin_work->flip_count);
9056 }
9057
9058 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9059 {
9060 struct drm_i915_private *dev_priv = dev->dev_private;
9061 struct intel_crtc *intel_crtc =
9062 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9063 unsigned long flags;
9064
9065
9066 /*
9067 * This is called both by irq handlers and the reset code (to complete
9068 * lost pageflips) so needs the full irqsave spinlocks.
9069 *
9070 * NB: An MMIO update of the plane base pointer will also
9071 * generate a page-flip completion irq, i.e. every modeset
9072 * is also accompanied by a spurious intel_prepare_page_flip().
9073 */
9074 spin_lock_irqsave(&dev->event_lock, flags);
9075 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9076 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9077 spin_unlock_irqrestore(&dev->event_lock, flags);
9078 }
9079
9080 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9081 {
9082 /* Ensure that the work item is consistent when activating it ... */
9083 smp_wmb();
9084 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9085 /* and that it is marked active as soon as the irq could fire. */
9086 smp_wmb();
9087 }
9088
9089 static int intel_gen2_queue_flip(struct drm_device *dev,
9090 struct drm_crtc *crtc,
9091 struct drm_framebuffer *fb,
9092 struct drm_i915_gem_object *obj,
9093 struct intel_engine_cs *ring,
9094 uint32_t flags)
9095 {
9096 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9097 u32 flip_mask;
9098 int ret;
9099
9100 ret = intel_ring_begin(ring, 6);
9101 if (ret)
9102 return ret;
9103
9104 /* Can't queue multiple flips, so wait for the previous
9105 * one to finish before executing the next.
9106 */
9107 if (intel_crtc->plane)
9108 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9109 else
9110 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9111 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9112 intel_ring_emit(ring, MI_NOOP);
9113 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9114 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9115 intel_ring_emit(ring, fb->pitches[0]);
9116 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9117 intel_ring_emit(ring, 0); /* aux display base address, unused */
9118
9119 intel_mark_page_flip_active(intel_crtc);
9120 __intel_ring_advance(ring);
9121 return 0;
9122 }
9123
9124 static int intel_gen3_queue_flip(struct drm_device *dev,
9125 struct drm_crtc *crtc,
9126 struct drm_framebuffer *fb,
9127 struct drm_i915_gem_object *obj,
9128 struct intel_engine_cs *ring,
9129 uint32_t flags)
9130 {
9131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9132 u32 flip_mask;
9133 int ret;
9134
9135 ret = intel_ring_begin(ring, 6);
9136 if (ret)
9137 return ret;
9138
9139 if (intel_crtc->plane)
9140 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9141 else
9142 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9143 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9144 intel_ring_emit(ring, MI_NOOP);
9145 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9146 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9147 intel_ring_emit(ring, fb->pitches[0]);
9148 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9149 intel_ring_emit(ring, MI_NOOP);
9150
9151 intel_mark_page_flip_active(intel_crtc);
9152 __intel_ring_advance(ring);
9153 return 0;
9154 }
9155
9156 static int intel_gen4_queue_flip(struct drm_device *dev,
9157 struct drm_crtc *crtc,
9158 struct drm_framebuffer *fb,
9159 struct drm_i915_gem_object *obj,
9160 struct intel_engine_cs *ring,
9161 uint32_t flags)
9162 {
9163 struct drm_i915_private *dev_priv = dev->dev_private;
9164 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9165 uint32_t pf, pipesrc;
9166 int ret;
9167
9168 ret = intel_ring_begin(ring, 4);
9169 if (ret)
9170 return ret;
9171
9172 /* i965+ uses the linear or tiled offsets from the
9173 * Display Registers (which do not change across a page-flip)
9174 * so we need only reprogram the base address.
9175 */
9176 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9177 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9178 intel_ring_emit(ring, fb->pitches[0]);
9179 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9180 obj->tiling_mode);
9181
9182 /* XXX Enabling the panel-fitter across page-flip is so far
9183 * untested on non-native modes, so ignore it for now.
9184 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9185 */
9186 pf = 0;
9187 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9188 intel_ring_emit(ring, pf | pipesrc);
9189
9190 intel_mark_page_flip_active(intel_crtc);
9191 __intel_ring_advance(ring);
9192 return 0;
9193 }
9194
9195 static int intel_gen6_queue_flip(struct drm_device *dev,
9196 struct drm_crtc *crtc,
9197 struct drm_framebuffer *fb,
9198 struct drm_i915_gem_object *obj,
9199 struct intel_engine_cs *ring,
9200 uint32_t flags)
9201 {
9202 struct drm_i915_private *dev_priv = dev->dev_private;
9203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9204 uint32_t pf, pipesrc;
9205 int ret;
9206
9207 ret = intel_ring_begin(ring, 4);
9208 if (ret)
9209 return ret;
9210
9211 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9212 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9213 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9214 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9215
9216 /* Contrary to the suggestions in the documentation,
9217 * "Enable Panel Fitter" does not seem to be required when page
9218 * flipping with a non-native mode, and worse causes a normal
9219 * modeset to fail.
9220 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9221 */
9222 pf = 0;
9223 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9224 intel_ring_emit(ring, pf | pipesrc);
9225
9226 intel_mark_page_flip_active(intel_crtc);
9227 __intel_ring_advance(ring);
9228 return 0;
9229 }
9230
9231 static int intel_gen7_queue_flip(struct drm_device *dev,
9232 struct drm_crtc *crtc,
9233 struct drm_framebuffer *fb,
9234 struct drm_i915_gem_object *obj,
9235 struct intel_engine_cs *ring,
9236 uint32_t flags)
9237 {
9238 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9239 uint32_t plane_bit = 0;
9240 int len, ret;
9241
9242 switch (intel_crtc->plane) {
9243 case PLANE_A:
9244 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9245 break;
9246 case PLANE_B:
9247 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9248 break;
9249 case PLANE_C:
9250 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9251 break;
9252 default:
9253 WARN_ONCE(1, "unknown plane in flip command\n");
9254 return -ENODEV;
9255 }
9256
9257 len = 4;
9258 if (ring->id == RCS) {
9259 len += 6;
9260 /*
9261 * On Gen 8, SRM is now taking an extra dword to accommodate
9262 * 48bits addresses, and we need a NOOP for the batch size to
9263 * stay even.
9264 */
9265 if (IS_GEN8(dev))
9266 len += 2;
9267 }
9268
9269 /*
9270 * BSpec MI_DISPLAY_FLIP for IVB:
9271 * "The full packet must be contained within the same cache line."
9272 *
9273 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9274 * cacheline, if we ever start emitting more commands before
9275 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9276 * then do the cacheline alignment, and finally emit the
9277 * MI_DISPLAY_FLIP.
9278 */
9279 ret = intel_ring_cacheline_align(ring);
9280 if (ret)
9281 return ret;
9282
9283 ret = intel_ring_begin(ring, len);
9284 if (ret)
9285 return ret;
9286
9287 /* Unmask the flip-done completion message. Note that the bspec says that
9288 * we should do this for both the BCS and RCS, and that we must not unmask
9289 * more than one flip event at any time (or ensure that one flip message
9290 * can be sent by waiting for flip-done prior to queueing new flips).
9291 * Experimentation says that BCS works despite DERRMR masking all
9292 * flip-done completion events and that unmasking all planes at once
9293 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9294 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9295 */
9296 if (ring->id == RCS) {
9297 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9298 intel_ring_emit(ring, DERRMR);
9299 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9300 DERRMR_PIPEB_PRI_FLIP_DONE |
9301 DERRMR_PIPEC_PRI_FLIP_DONE));
9302 if (IS_GEN8(dev))
9303 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9304 MI_SRM_LRM_GLOBAL_GTT);
9305 else
9306 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9307 MI_SRM_LRM_GLOBAL_GTT);
9308 intel_ring_emit(ring, DERRMR);
9309 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9310 if (IS_GEN8(dev)) {
9311 intel_ring_emit(ring, 0);
9312 intel_ring_emit(ring, MI_NOOP);
9313 }
9314 }
9315
9316 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9317 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9318 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9319 intel_ring_emit(ring, (MI_NOOP));
9320
9321 intel_mark_page_flip_active(intel_crtc);
9322 __intel_ring_advance(ring);
9323 return 0;
9324 }
9325
9326 static bool use_mmio_flip(struct intel_engine_cs *ring,
9327 struct drm_i915_gem_object *obj)
9328 {
9329 /*
9330 * This is not being used for older platforms, because
9331 * non-availability of flip done interrupt forces us to use
9332 * CS flips. Older platforms derive flip done using some clever
9333 * tricks involving the flip_pending status bits and vblank irqs.
9334 * So using MMIO flips there would disrupt this mechanism.
9335 */
9336
9337 if (ring == NULL)
9338 return true;
9339
9340 if (INTEL_INFO(ring->dev)->gen < 5)
9341 return false;
9342
9343 if (i915.use_mmio_flip < 0)
9344 return false;
9345 else if (i915.use_mmio_flip > 0)
9346 return true;
9347 else if (i915.enable_execlists)
9348 return true;
9349 else
9350 return ring != i915_gem_request_get_ring(obj->last_read_req);
9351 }
9352
9353 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9354 {
9355 struct drm_device *dev = intel_crtc->base.dev;
9356 struct drm_i915_private *dev_priv = dev->dev_private;
9357 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9358 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9359 struct drm_i915_gem_object *obj = intel_fb->obj;
9360 const enum pipe pipe = intel_crtc->pipe;
9361 u32 ctl, stride;
9362
9363 ctl = I915_READ(PLANE_CTL(pipe, 0));
9364 ctl &= ~PLANE_CTL_TILED_MASK;
9365 if (obj->tiling_mode == I915_TILING_X)
9366 ctl |= PLANE_CTL_TILED_X;
9367
9368 /*
9369 * The stride is either expressed as a multiple of 64 bytes chunks for
9370 * linear buffers or in number of tiles for tiled buffers.
9371 */
9372 stride = fb->pitches[0] >> 6;
9373 if (obj->tiling_mode == I915_TILING_X)
9374 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9375
9376 /*
9377 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9378 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9379 */
9380 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9381 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9382
9383 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9384 POSTING_READ(PLANE_SURF(pipe, 0));
9385 }
9386
9387 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9388 {
9389 struct drm_device *dev = intel_crtc->base.dev;
9390 struct drm_i915_private *dev_priv = dev->dev_private;
9391 struct intel_framebuffer *intel_fb =
9392 to_intel_framebuffer(intel_crtc->base.primary->fb);
9393 struct drm_i915_gem_object *obj = intel_fb->obj;
9394 u32 dspcntr;
9395 u32 reg;
9396
9397 reg = DSPCNTR(intel_crtc->plane);
9398 dspcntr = I915_READ(reg);
9399
9400 if (obj->tiling_mode != I915_TILING_NONE)
9401 dspcntr |= DISPPLANE_TILED;
9402 else
9403 dspcntr &= ~DISPPLANE_TILED;
9404
9405 I915_WRITE(reg, dspcntr);
9406
9407 I915_WRITE(DSPSURF(intel_crtc->plane),
9408 intel_crtc->unpin_work->gtt_offset);
9409 POSTING_READ(DSPSURF(intel_crtc->plane));
9410
9411 }
9412
9413 /*
9414 * XXX: This is the temporary way to update the plane registers until we get
9415 * around to using the usual plane update functions for MMIO flips
9416 */
9417 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9418 {
9419 struct drm_device *dev = intel_crtc->base.dev;
9420 bool atomic_update;
9421 u32 start_vbl_count;
9422
9423 intel_mark_page_flip_active(intel_crtc);
9424
9425 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9426
9427 if (INTEL_INFO(dev)->gen >= 9)
9428 skl_do_mmio_flip(intel_crtc);
9429 else
9430 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9431 ilk_do_mmio_flip(intel_crtc);
9432
9433 if (atomic_update)
9434 intel_pipe_update_end(intel_crtc, start_vbl_count);
9435 }
9436
9437 static void intel_mmio_flip_work_func(struct work_struct *work)
9438 {
9439 struct intel_crtc *crtc =
9440 container_of(work, struct intel_crtc, mmio_flip.work);
9441 struct intel_mmio_flip *mmio_flip;
9442
9443 mmio_flip = &crtc->mmio_flip;
9444 if (mmio_flip->req)
9445 WARN_ON(__i915_wait_request(mmio_flip->req,
9446 crtc->reset_counter,
9447 false, NULL, NULL) != 0);
9448
9449 intel_do_mmio_flip(crtc);
9450 if (mmio_flip->req) {
9451 mutex_lock(&crtc->base.dev->struct_mutex);
9452 i915_gem_request_assign(&mmio_flip->req, NULL);
9453 mutex_unlock(&crtc->base.dev->struct_mutex);
9454 }
9455 }
9456
9457 static int intel_queue_mmio_flip(struct drm_device *dev,
9458 struct drm_crtc *crtc,
9459 struct drm_framebuffer *fb,
9460 struct drm_i915_gem_object *obj,
9461 struct intel_engine_cs *ring,
9462 uint32_t flags)
9463 {
9464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9465
9466 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9467 obj->last_write_req);
9468
9469 schedule_work(&intel_crtc->mmio_flip.work);
9470
9471 return 0;
9472 }
9473
9474 static int intel_gen9_queue_flip(struct drm_device *dev,
9475 struct drm_crtc *crtc,
9476 struct drm_framebuffer *fb,
9477 struct drm_i915_gem_object *obj,
9478 struct intel_engine_cs *ring,
9479 uint32_t flags)
9480 {
9481 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9482 uint32_t plane = 0, stride;
9483 int ret;
9484
9485 switch(intel_crtc->pipe) {
9486 case PIPE_A:
9487 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9488 break;
9489 case PIPE_B:
9490 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9491 break;
9492 case PIPE_C:
9493 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9494 break;
9495 default:
9496 WARN_ONCE(1, "unknown plane in flip command\n");
9497 return -ENODEV;
9498 }
9499
9500 switch (obj->tiling_mode) {
9501 case I915_TILING_NONE:
9502 stride = fb->pitches[0] >> 6;
9503 break;
9504 case I915_TILING_X:
9505 stride = fb->pitches[0] >> 9;
9506 break;
9507 default:
9508 WARN_ONCE(1, "unknown tiling in flip command\n");
9509 return -ENODEV;
9510 }
9511
9512 ret = intel_ring_begin(ring, 10);
9513 if (ret)
9514 return ret;
9515
9516 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9517 intel_ring_emit(ring, DERRMR);
9518 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9519 DERRMR_PIPEB_PRI_FLIP_DONE |
9520 DERRMR_PIPEC_PRI_FLIP_DONE));
9521 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9522 MI_SRM_LRM_GLOBAL_GTT);
9523 intel_ring_emit(ring, DERRMR);
9524 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9525 intel_ring_emit(ring, 0);
9526
9527 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9528 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9529 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9530
9531 intel_mark_page_flip_active(intel_crtc);
9532 __intel_ring_advance(ring);
9533
9534 return 0;
9535 }
9536
9537 static int intel_default_queue_flip(struct drm_device *dev,
9538 struct drm_crtc *crtc,
9539 struct drm_framebuffer *fb,
9540 struct drm_i915_gem_object *obj,
9541 struct intel_engine_cs *ring,
9542 uint32_t flags)
9543 {
9544 return -ENODEV;
9545 }
9546
9547 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9548 struct drm_crtc *crtc)
9549 {
9550 struct drm_i915_private *dev_priv = dev->dev_private;
9551 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9552 struct intel_unpin_work *work = intel_crtc->unpin_work;
9553 u32 addr;
9554
9555 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9556 return true;
9557
9558 if (!work->enable_stall_check)
9559 return false;
9560
9561 if (work->flip_ready_vblank == 0) {
9562 if (work->flip_queued_req &&
9563 !i915_gem_request_completed(work->flip_queued_req, true))
9564 return false;
9565
9566 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9567 }
9568
9569 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9570 return false;
9571
9572 /* Potential stall - if we see that the flip has happened,
9573 * assume a missed interrupt. */
9574 if (INTEL_INFO(dev)->gen >= 4)
9575 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9576 else
9577 addr = I915_READ(DSPADDR(intel_crtc->plane));
9578
9579 /* There is a potential issue here with a false positive after a flip
9580 * to the same address. We could address this by checking for a
9581 * non-incrementing frame counter.
9582 */
9583 return addr == work->gtt_offset;
9584 }
9585
9586 void intel_check_page_flip(struct drm_device *dev, int pipe)
9587 {
9588 struct drm_i915_private *dev_priv = dev->dev_private;
9589 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9590 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9591
9592 WARN_ON(!in_irq());
9593
9594 if (crtc == NULL)
9595 return;
9596
9597 spin_lock(&dev->event_lock);
9598 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9599 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9600 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9601 page_flip_completed(intel_crtc);
9602 }
9603 spin_unlock(&dev->event_lock);
9604 }
9605
9606 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9607 struct drm_framebuffer *fb,
9608 struct drm_pending_vblank_event *event,
9609 uint32_t page_flip_flags)
9610 {
9611 struct drm_device *dev = crtc->dev;
9612 struct drm_i915_private *dev_priv = dev->dev_private;
9613 struct drm_framebuffer *old_fb = crtc->primary->fb;
9614 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9615 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9616 struct drm_plane *primary = crtc->primary;
9617 enum pipe pipe = intel_crtc->pipe;
9618 struct intel_unpin_work *work;
9619 struct intel_engine_cs *ring;
9620 int ret;
9621
9622 /*
9623 * drm_mode_page_flip_ioctl() should already catch this, but double
9624 * check to be safe. In the future we may enable pageflipping from
9625 * a disabled primary plane.
9626 */
9627 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9628 return -EBUSY;
9629
9630 /* Can't change pixel format via MI display flips. */
9631 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9632 return -EINVAL;
9633
9634 /*
9635 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9636 * Note that pitch changes could also affect these register.
9637 */
9638 if (INTEL_INFO(dev)->gen > 3 &&
9639 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9640 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9641 return -EINVAL;
9642
9643 if (i915_terminally_wedged(&dev_priv->gpu_error))
9644 goto out_hang;
9645
9646 work = kzalloc(sizeof(*work), GFP_KERNEL);
9647 if (work == NULL)
9648 return -ENOMEM;
9649
9650 work->event = event;
9651 work->crtc = crtc;
9652 work->old_fb_obj = intel_fb_obj(old_fb);
9653 INIT_WORK(&work->work, intel_unpin_work_fn);
9654
9655 ret = drm_crtc_vblank_get(crtc);
9656 if (ret)
9657 goto free_work;
9658
9659 /* We borrow the event spin lock for protecting unpin_work */
9660 spin_lock_irq(&dev->event_lock);
9661 if (intel_crtc->unpin_work) {
9662 /* Before declaring the flip queue wedged, check if
9663 * the hardware completed the operation behind our backs.
9664 */
9665 if (__intel_pageflip_stall_check(dev, crtc)) {
9666 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9667 page_flip_completed(intel_crtc);
9668 } else {
9669 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9670 spin_unlock_irq(&dev->event_lock);
9671
9672 drm_crtc_vblank_put(crtc);
9673 kfree(work);
9674 return -EBUSY;
9675 }
9676 }
9677 intel_crtc->unpin_work = work;
9678 spin_unlock_irq(&dev->event_lock);
9679
9680 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9681 flush_workqueue(dev_priv->wq);
9682
9683 ret = i915_mutex_lock_interruptible(dev);
9684 if (ret)
9685 goto cleanup;
9686
9687 /* Reference the objects for the scheduled work. */
9688 drm_gem_object_reference(&work->old_fb_obj->base);
9689 drm_gem_object_reference(&obj->base);
9690
9691 crtc->primary->fb = fb;
9692
9693 work->pending_flip_obj = obj;
9694
9695 atomic_inc(&intel_crtc->unpin_work_count);
9696 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9697
9698 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9699 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9700
9701 if (IS_VALLEYVIEW(dev)) {
9702 ring = &dev_priv->ring[BCS];
9703 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9704 /* vlv: DISPLAY_FLIP fails to change tiling */
9705 ring = NULL;
9706 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9707 ring = &dev_priv->ring[BCS];
9708 } else if (INTEL_INFO(dev)->gen >= 7) {
9709 ring = i915_gem_request_get_ring(obj->last_read_req);
9710 if (ring == NULL || ring->id != RCS)
9711 ring = &dev_priv->ring[BCS];
9712 } else {
9713 ring = &dev_priv->ring[RCS];
9714 }
9715
9716 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9717 if (ret)
9718 goto cleanup_pending;
9719
9720 work->gtt_offset =
9721 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9722
9723 if (use_mmio_flip(ring, obj)) {
9724 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9725 page_flip_flags);
9726 if (ret)
9727 goto cleanup_unpin;
9728
9729 i915_gem_request_assign(&work->flip_queued_req,
9730 obj->last_write_req);
9731 } else {
9732 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9733 page_flip_flags);
9734 if (ret)
9735 goto cleanup_unpin;
9736
9737 i915_gem_request_assign(&work->flip_queued_req,
9738 intel_ring_get_request(ring));
9739 }
9740
9741 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9742 work->enable_stall_check = true;
9743
9744 i915_gem_track_fb(work->old_fb_obj, obj,
9745 INTEL_FRONTBUFFER_PRIMARY(pipe));
9746
9747 intel_fbc_disable(dev);
9748 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9749 mutex_unlock(&dev->struct_mutex);
9750
9751 trace_i915_flip_request(intel_crtc->plane, obj);
9752
9753 return 0;
9754
9755 cleanup_unpin:
9756 intel_unpin_fb_obj(obj);
9757 cleanup_pending:
9758 atomic_dec(&intel_crtc->unpin_work_count);
9759 crtc->primary->fb = old_fb;
9760 drm_gem_object_unreference(&work->old_fb_obj->base);
9761 drm_gem_object_unreference(&obj->base);
9762 mutex_unlock(&dev->struct_mutex);
9763
9764 cleanup:
9765 spin_lock_irq(&dev->event_lock);
9766 intel_crtc->unpin_work = NULL;
9767 spin_unlock_irq(&dev->event_lock);
9768
9769 drm_crtc_vblank_put(crtc);
9770 free_work:
9771 kfree(work);
9772
9773 if (ret == -EIO) {
9774 out_hang:
9775 ret = intel_plane_restore(primary);
9776 if (ret == 0 && event) {
9777 spin_lock_irq(&dev->event_lock);
9778 drm_send_vblank_event(dev, pipe, event);
9779 spin_unlock_irq(&dev->event_lock);
9780 }
9781 }
9782 return ret;
9783 }
9784
9785 static struct drm_crtc_helper_funcs intel_helper_funcs = {
9786 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9787 .load_lut = intel_crtc_load_lut,
9788 .atomic_begin = intel_begin_crtc_commit,
9789 .atomic_flush = intel_finish_crtc_commit,
9790 };
9791
9792 /**
9793 * intel_modeset_update_staged_output_state
9794 *
9795 * Updates the staged output configuration state, e.g. after we've read out the
9796 * current hw state.
9797 */
9798 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9799 {
9800 struct intel_crtc *crtc;
9801 struct intel_encoder *encoder;
9802 struct intel_connector *connector;
9803
9804 list_for_each_entry(connector, &dev->mode_config.connector_list,
9805 base.head) {
9806 connector->new_encoder =
9807 to_intel_encoder(connector->base.encoder);
9808 }
9809
9810 for_each_intel_encoder(dev, encoder) {
9811 encoder->new_crtc =
9812 to_intel_crtc(encoder->base.crtc);
9813 }
9814
9815 for_each_intel_crtc(dev, crtc) {
9816 crtc->new_enabled = crtc->base.enabled;
9817
9818 if (crtc->new_enabled)
9819 crtc->new_config = crtc->config;
9820 else
9821 crtc->new_config = NULL;
9822 }
9823 }
9824
9825 /**
9826 * intel_modeset_commit_output_state
9827 *
9828 * This function copies the stage display pipe configuration to the real one.
9829 */
9830 static void intel_modeset_commit_output_state(struct drm_device *dev)
9831 {
9832 struct intel_crtc *crtc;
9833 struct intel_encoder *encoder;
9834 struct intel_connector *connector;
9835
9836 list_for_each_entry(connector, &dev->mode_config.connector_list,
9837 base.head) {
9838 connector->base.encoder = &connector->new_encoder->base;
9839 }
9840
9841 for_each_intel_encoder(dev, encoder) {
9842 encoder->base.crtc = &encoder->new_crtc->base;
9843 }
9844
9845 for_each_intel_crtc(dev, crtc) {
9846 crtc->base.enabled = crtc->new_enabled;
9847 }
9848 }
9849
9850 static void
9851 connected_sink_compute_bpp(struct intel_connector *connector,
9852 struct intel_crtc_state *pipe_config)
9853 {
9854 int bpp = pipe_config->pipe_bpp;
9855
9856 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9857 connector->base.base.id,
9858 connector->base.name);
9859
9860 /* Don't use an invalid EDID bpc value */
9861 if (connector->base.display_info.bpc &&
9862 connector->base.display_info.bpc * 3 < bpp) {
9863 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9864 bpp, connector->base.display_info.bpc*3);
9865 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9866 }
9867
9868 /* Clamp bpp to 8 on screens without EDID 1.4 */
9869 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9870 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9871 bpp);
9872 pipe_config->pipe_bpp = 24;
9873 }
9874 }
9875
9876 static int
9877 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9878 struct drm_framebuffer *fb,
9879 struct intel_crtc_state *pipe_config)
9880 {
9881 struct drm_device *dev = crtc->base.dev;
9882 struct intel_connector *connector;
9883 int bpp;
9884
9885 switch (fb->pixel_format) {
9886 case DRM_FORMAT_C8:
9887 bpp = 8*3; /* since we go through a colormap */
9888 break;
9889 case DRM_FORMAT_XRGB1555:
9890 case DRM_FORMAT_ARGB1555:
9891 /* checked in intel_framebuffer_init already */
9892 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9893 return -EINVAL;
9894 case DRM_FORMAT_RGB565:
9895 bpp = 6*3; /* min is 18bpp */
9896 break;
9897 case DRM_FORMAT_XBGR8888:
9898 case DRM_FORMAT_ABGR8888:
9899 /* checked in intel_framebuffer_init already */
9900 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9901 return -EINVAL;
9902 case DRM_FORMAT_XRGB8888:
9903 case DRM_FORMAT_ARGB8888:
9904 bpp = 8*3;
9905 break;
9906 case DRM_FORMAT_XRGB2101010:
9907 case DRM_FORMAT_ARGB2101010:
9908 case DRM_FORMAT_XBGR2101010:
9909 case DRM_FORMAT_ABGR2101010:
9910 /* checked in intel_framebuffer_init already */
9911 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9912 return -EINVAL;
9913 bpp = 10*3;
9914 break;
9915 /* TODO: gen4+ supports 16 bpc floating point, too. */
9916 default:
9917 DRM_DEBUG_KMS("unsupported depth\n");
9918 return -EINVAL;
9919 }
9920
9921 pipe_config->pipe_bpp = bpp;
9922
9923 /* Clamp display bpp to EDID value */
9924 list_for_each_entry(connector, &dev->mode_config.connector_list,
9925 base.head) {
9926 if (!connector->new_encoder ||
9927 connector->new_encoder->new_crtc != crtc)
9928 continue;
9929
9930 connected_sink_compute_bpp(connector, pipe_config);
9931 }
9932
9933 return bpp;
9934 }
9935
9936 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9937 {
9938 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9939 "type: 0x%x flags: 0x%x\n",
9940 mode->crtc_clock,
9941 mode->crtc_hdisplay, mode->crtc_hsync_start,
9942 mode->crtc_hsync_end, mode->crtc_htotal,
9943 mode->crtc_vdisplay, mode->crtc_vsync_start,
9944 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9945 }
9946
9947 static void intel_dump_pipe_config(struct intel_crtc *crtc,
9948 struct intel_crtc_state *pipe_config,
9949 const char *context)
9950 {
9951 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9952 context, pipe_name(crtc->pipe));
9953
9954 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9955 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9956 pipe_config->pipe_bpp, pipe_config->dither);
9957 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9958 pipe_config->has_pch_encoder,
9959 pipe_config->fdi_lanes,
9960 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9961 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9962 pipe_config->fdi_m_n.tu);
9963 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9964 pipe_config->has_dp_encoder,
9965 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9966 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9967 pipe_config->dp_m_n.tu);
9968
9969 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
9970 pipe_config->has_dp_encoder,
9971 pipe_config->dp_m2_n2.gmch_m,
9972 pipe_config->dp_m2_n2.gmch_n,
9973 pipe_config->dp_m2_n2.link_m,
9974 pipe_config->dp_m2_n2.link_n,
9975 pipe_config->dp_m2_n2.tu);
9976
9977 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
9978 pipe_config->has_audio,
9979 pipe_config->has_infoframe);
9980
9981 DRM_DEBUG_KMS("requested mode:\n");
9982 drm_mode_debug_printmodeline(&pipe_config->base.mode);
9983 DRM_DEBUG_KMS("adjusted mode:\n");
9984 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
9985 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
9986 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
9987 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9988 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
9989 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9990 pipe_config->gmch_pfit.control,
9991 pipe_config->gmch_pfit.pgm_ratios,
9992 pipe_config->gmch_pfit.lvds_border_bits);
9993 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
9994 pipe_config->pch_pfit.pos,
9995 pipe_config->pch_pfit.size,
9996 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
9997 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
9998 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
9999 }
10000
10001 static bool encoders_cloneable(const struct intel_encoder *a,
10002 const struct intel_encoder *b)
10003 {
10004 /* masks could be asymmetric, so check both ways */
10005 return a == b || (a->cloneable & (1 << b->type) &&
10006 b->cloneable & (1 << a->type));
10007 }
10008
10009 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10010 struct intel_encoder *encoder)
10011 {
10012 struct drm_device *dev = crtc->base.dev;
10013 struct intel_encoder *source_encoder;
10014
10015 for_each_intel_encoder(dev, source_encoder) {
10016 if (source_encoder->new_crtc != crtc)
10017 continue;
10018
10019 if (!encoders_cloneable(encoder, source_encoder))
10020 return false;
10021 }
10022
10023 return true;
10024 }
10025
10026 static bool check_encoder_cloning(struct intel_crtc *crtc)
10027 {
10028 struct drm_device *dev = crtc->base.dev;
10029 struct intel_encoder *encoder;
10030
10031 for_each_intel_encoder(dev, encoder) {
10032 if (encoder->new_crtc != crtc)
10033 continue;
10034
10035 if (!check_single_encoder_cloning(crtc, encoder))
10036 return false;
10037 }
10038
10039 return true;
10040 }
10041
10042 static bool check_digital_port_conflicts(struct drm_device *dev)
10043 {
10044 struct intel_connector *connector;
10045 unsigned int used_ports = 0;
10046
10047 /*
10048 * Walk the connector list instead of the encoder
10049 * list to detect the problem on ddi platforms
10050 * where there's just one encoder per digital port.
10051 */
10052 list_for_each_entry(connector,
10053 &dev->mode_config.connector_list, base.head) {
10054 struct intel_encoder *encoder = connector->new_encoder;
10055
10056 if (!encoder)
10057 continue;
10058
10059 WARN_ON(!encoder->new_crtc);
10060
10061 switch (encoder->type) {
10062 unsigned int port_mask;
10063 case INTEL_OUTPUT_UNKNOWN:
10064 if (WARN_ON(!HAS_DDI(dev)))
10065 break;
10066 case INTEL_OUTPUT_DISPLAYPORT:
10067 case INTEL_OUTPUT_HDMI:
10068 case INTEL_OUTPUT_EDP:
10069 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10070
10071 /* the same port mustn't appear more than once */
10072 if (used_ports & port_mask)
10073 return false;
10074
10075 used_ports |= port_mask;
10076 default:
10077 break;
10078 }
10079 }
10080
10081 return true;
10082 }
10083
10084 static struct intel_crtc_state *
10085 intel_modeset_pipe_config(struct drm_crtc *crtc,
10086 struct drm_framebuffer *fb,
10087 struct drm_display_mode *mode)
10088 {
10089 struct drm_device *dev = crtc->dev;
10090 struct intel_encoder *encoder;
10091 struct intel_crtc_state *pipe_config;
10092 int plane_bpp, ret = -EINVAL;
10093 bool retry = true;
10094
10095 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10096 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10097 return ERR_PTR(-EINVAL);
10098 }
10099
10100 if (!check_digital_port_conflicts(dev)) {
10101 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10102 return ERR_PTR(-EINVAL);
10103 }
10104
10105 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10106 if (!pipe_config)
10107 return ERR_PTR(-ENOMEM);
10108
10109 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10110 drm_mode_copy(&pipe_config->base.mode, mode);
10111
10112 pipe_config->cpu_transcoder =
10113 (enum transcoder) to_intel_crtc(crtc)->pipe;
10114 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10115
10116 /*
10117 * Sanitize sync polarity flags based on requested ones. If neither
10118 * positive or negative polarity is requested, treat this as meaning
10119 * negative polarity.
10120 */
10121 if (!(pipe_config->base.adjusted_mode.flags &
10122 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10123 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10124
10125 if (!(pipe_config->base.adjusted_mode.flags &
10126 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10127 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10128
10129 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10130 * plane pixel format and any sink constraints into account. Returns the
10131 * source plane bpp so that dithering can be selected on mismatches
10132 * after encoders and crtc also have had their say. */
10133 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10134 fb, pipe_config);
10135 if (plane_bpp < 0)
10136 goto fail;
10137
10138 /*
10139 * Determine the real pipe dimensions. Note that stereo modes can
10140 * increase the actual pipe size due to the frame doubling and
10141 * insertion of additional space for blanks between the frame. This
10142 * is stored in the crtc timings. We use the requested mode to do this
10143 * computation to clearly distinguish it from the adjusted mode, which
10144 * can be changed by the connectors in the below retry loop.
10145 */
10146 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10147 &pipe_config->pipe_src_w,
10148 &pipe_config->pipe_src_h);
10149
10150 encoder_retry:
10151 /* Ensure the port clock defaults are reset when retrying. */
10152 pipe_config->port_clock = 0;
10153 pipe_config->pixel_multiplier = 1;
10154
10155 /* Fill in default crtc timings, allow encoders to overwrite them. */
10156 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10157 CRTC_STEREO_DOUBLE);
10158
10159 /* Pass our mode to the connectors and the CRTC to give them a chance to
10160 * adjust it according to limitations or connector properties, and also
10161 * a chance to reject the mode entirely.
10162 */
10163 for_each_intel_encoder(dev, encoder) {
10164
10165 if (&encoder->new_crtc->base != crtc)
10166 continue;
10167
10168 if (!(encoder->compute_config(encoder, pipe_config))) {
10169 DRM_DEBUG_KMS("Encoder config failure\n");
10170 goto fail;
10171 }
10172 }
10173
10174 /* Set default port clock if not overwritten by the encoder. Needs to be
10175 * done afterwards in case the encoder adjusts the mode. */
10176 if (!pipe_config->port_clock)
10177 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10178 * pipe_config->pixel_multiplier;
10179
10180 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10181 if (ret < 0) {
10182 DRM_DEBUG_KMS("CRTC fixup failed\n");
10183 goto fail;
10184 }
10185
10186 if (ret == RETRY) {
10187 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10188 ret = -EINVAL;
10189 goto fail;
10190 }
10191
10192 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10193 retry = false;
10194 goto encoder_retry;
10195 }
10196
10197 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10198 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10199 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10200
10201 return pipe_config;
10202 fail:
10203 kfree(pipe_config);
10204 return ERR_PTR(ret);
10205 }
10206
10207 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10208 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10209 static void
10210 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10211 unsigned *prepare_pipes, unsigned *disable_pipes)
10212 {
10213 struct intel_crtc *intel_crtc;
10214 struct drm_device *dev = crtc->dev;
10215 struct intel_encoder *encoder;
10216 struct intel_connector *connector;
10217 struct drm_crtc *tmp_crtc;
10218
10219 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10220
10221 /* Check which crtcs have changed outputs connected to them, these need
10222 * to be part of the prepare_pipes mask. We don't (yet) support global
10223 * modeset across multiple crtcs, so modeset_pipes will only have one
10224 * bit set at most. */
10225 list_for_each_entry(connector, &dev->mode_config.connector_list,
10226 base.head) {
10227 if (connector->base.encoder == &connector->new_encoder->base)
10228 continue;
10229
10230 if (connector->base.encoder) {
10231 tmp_crtc = connector->base.encoder->crtc;
10232
10233 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10234 }
10235
10236 if (connector->new_encoder)
10237 *prepare_pipes |=
10238 1 << connector->new_encoder->new_crtc->pipe;
10239 }
10240
10241 for_each_intel_encoder(dev, encoder) {
10242 if (encoder->base.crtc == &encoder->new_crtc->base)
10243 continue;
10244
10245 if (encoder->base.crtc) {
10246 tmp_crtc = encoder->base.crtc;
10247
10248 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10249 }
10250
10251 if (encoder->new_crtc)
10252 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10253 }
10254
10255 /* Check for pipes that will be enabled/disabled ... */
10256 for_each_intel_crtc(dev, intel_crtc) {
10257 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
10258 continue;
10259
10260 if (!intel_crtc->new_enabled)
10261 *disable_pipes |= 1 << intel_crtc->pipe;
10262 else
10263 *prepare_pipes |= 1 << intel_crtc->pipe;
10264 }
10265
10266
10267 /* set_mode is also used to update properties on life display pipes. */
10268 intel_crtc = to_intel_crtc(crtc);
10269 if (intel_crtc->new_enabled)
10270 *prepare_pipes |= 1 << intel_crtc->pipe;
10271
10272 /*
10273 * For simplicity do a full modeset on any pipe where the output routing
10274 * changed. We could be more clever, but that would require us to be
10275 * more careful with calling the relevant encoder->mode_set functions.
10276 */
10277 if (*prepare_pipes)
10278 *modeset_pipes = *prepare_pipes;
10279
10280 /* ... and mask these out. */
10281 *modeset_pipes &= ~(*disable_pipes);
10282 *prepare_pipes &= ~(*disable_pipes);
10283
10284 /*
10285 * HACK: We don't (yet) fully support global modesets. intel_set_config
10286 * obies this rule, but the modeset restore mode of
10287 * intel_modeset_setup_hw_state does not.
10288 */
10289 *modeset_pipes &= 1 << intel_crtc->pipe;
10290 *prepare_pipes &= 1 << intel_crtc->pipe;
10291
10292 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10293 *modeset_pipes, *prepare_pipes, *disable_pipes);
10294 }
10295
10296 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10297 {
10298 struct drm_encoder *encoder;
10299 struct drm_device *dev = crtc->dev;
10300
10301 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10302 if (encoder->crtc == crtc)
10303 return true;
10304
10305 return false;
10306 }
10307
10308 static void
10309 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10310 {
10311 struct drm_i915_private *dev_priv = dev->dev_private;
10312 struct intel_encoder *intel_encoder;
10313 struct intel_crtc *intel_crtc;
10314 struct drm_connector *connector;
10315
10316 intel_shared_dpll_commit(dev_priv);
10317
10318 for_each_intel_encoder(dev, intel_encoder) {
10319 if (!intel_encoder->base.crtc)
10320 continue;
10321
10322 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10323
10324 if (prepare_pipes & (1 << intel_crtc->pipe))
10325 intel_encoder->connectors_active = false;
10326 }
10327
10328 intel_modeset_commit_output_state(dev);
10329
10330 /* Double check state. */
10331 for_each_intel_crtc(dev, intel_crtc) {
10332 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
10333 WARN_ON(intel_crtc->new_config &&
10334 intel_crtc->new_config != intel_crtc->config);
10335 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
10336 }
10337
10338 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10339 if (!connector->encoder || !connector->encoder->crtc)
10340 continue;
10341
10342 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10343
10344 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10345 struct drm_property *dpms_property =
10346 dev->mode_config.dpms_property;
10347
10348 connector->dpms = DRM_MODE_DPMS_ON;
10349 drm_object_property_set_value(&connector->base,
10350 dpms_property,
10351 DRM_MODE_DPMS_ON);
10352
10353 intel_encoder = to_intel_encoder(connector->encoder);
10354 intel_encoder->connectors_active = true;
10355 }
10356 }
10357
10358 }
10359
10360 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10361 {
10362 int diff;
10363
10364 if (clock1 == clock2)
10365 return true;
10366
10367 if (!clock1 || !clock2)
10368 return false;
10369
10370 diff = abs(clock1 - clock2);
10371
10372 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10373 return true;
10374
10375 return false;
10376 }
10377
10378 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10379 list_for_each_entry((intel_crtc), \
10380 &(dev)->mode_config.crtc_list, \
10381 base.head) \
10382 if (mask & (1 <<(intel_crtc)->pipe))
10383
10384 static bool
10385 intel_pipe_config_compare(struct drm_device *dev,
10386 struct intel_crtc_state *current_config,
10387 struct intel_crtc_state *pipe_config)
10388 {
10389 #define PIPE_CONF_CHECK_X(name) \
10390 if (current_config->name != pipe_config->name) { \
10391 DRM_ERROR("mismatch in " #name " " \
10392 "(expected 0x%08x, found 0x%08x)\n", \
10393 current_config->name, \
10394 pipe_config->name); \
10395 return false; \
10396 }
10397
10398 #define PIPE_CONF_CHECK_I(name) \
10399 if (current_config->name != pipe_config->name) { \
10400 DRM_ERROR("mismatch in " #name " " \
10401 "(expected %i, found %i)\n", \
10402 current_config->name, \
10403 pipe_config->name); \
10404 return false; \
10405 }
10406
10407 /* This is required for BDW+ where there is only one set of registers for
10408 * switching between high and low RR.
10409 * This macro can be used whenever a comparison has to be made between one
10410 * hw state and multiple sw state variables.
10411 */
10412 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10413 if ((current_config->name != pipe_config->name) && \
10414 (current_config->alt_name != pipe_config->name)) { \
10415 DRM_ERROR("mismatch in " #name " " \
10416 "(expected %i or %i, found %i)\n", \
10417 current_config->name, \
10418 current_config->alt_name, \
10419 pipe_config->name); \
10420 return false; \
10421 }
10422
10423 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10424 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10425 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10426 "(expected %i, found %i)\n", \
10427 current_config->name & (mask), \
10428 pipe_config->name & (mask)); \
10429 return false; \
10430 }
10431
10432 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10433 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10434 DRM_ERROR("mismatch in " #name " " \
10435 "(expected %i, found %i)\n", \
10436 current_config->name, \
10437 pipe_config->name); \
10438 return false; \
10439 }
10440
10441 #define PIPE_CONF_QUIRK(quirk) \
10442 ((current_config->quirks | pipe_config->quirks) & (quirk))
10443
10444 PIPE_CONF_CHECK_I(cpu_transcoder);
10445
10446 PIPE_CONF_CHECK_I(has_pch_encoder);
10447 PIPE_CONF_CHECK_I(fdi_lanes);
10448 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10449 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10450 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10451 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10452 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10453
10454 PIPE_CONF_CHECK_I(has_dp_encoder);
10455
10456 if (INTEL_INFO(dev)->gen < 8) {
10457 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10458 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10459 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10460 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10461 PIPE_CONF_CHECK_I(dp_m_n.tu);
10462
10463 if (current_config->has_drrs) {
10464 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10465 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10466 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10467 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10468 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10469 }
10470 } else {
10471 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10472 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10473 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10474 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10475 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10476 }
10477
10478 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10479 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10480 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10481 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10482 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10483 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10484
10485 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10486 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10487 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10488 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10489 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10490 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10491
10492 PIPE_CONF_CHECK_I(pixel_multiplier);
10493 PIPE_CONF_CHECK_I(has_hdmi_sink);
10494 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10495 IS_VALLEYVIEW(dev))
10496 PIPE_CONF_CHECK_I(limited_color_range);
10497 PIPE_CONF_CHECK_I(has_infoframe);
10498
10499 PIPE_CONF_CHECK_I(has_audio);
10500
10501 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10502 DRM_MODE_FLAG_INTERLACE);
10503
10504 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10505 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10506 DRM_MODE_FLAG_PHSYNC);
10507 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10508 DRM_MODE_FLAG_NHSYNC);
10509 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10510 DRM_MODE_FLAG_PVSYNC);
10511 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10512 DRM_MODE_FLAG_NVSYNC);
10513 }
10514
10515 PIPE_CONF_CHECK_I(pipe_src_w);
10516 PIPE_CONF_CHECK_I(pipe_src_h);
10517
10518 /*
10519 * FIXME: BIOS likes to set up a cloned config with lvds+external
10520 * screen. Since we don't yet re-compute the pipe config when moving
10521 * just the lvds port away to another pipe the sw tracking won't match.
10522 *
10523 * Proper atomic modesets with recomputed global state will fix this.
10524 * Until then just don't check gmch state for inherited modes.
10525 */
10526 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10527 PIPE_CONF_CHECK_I(gmch_pfit.control);
10528 /* pfit ratios are autocomputed by the hw on gen4+ */
10529 if (INTEL_INFO(dev)->gen < 4)
10530 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10531 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10532 }
10533
10534 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10535 if (current_config->pch_pfit.enabled) {
10536 PIPE_CONF_CHECK_I(pch_pfit.pos);
10537 PIPE_CONF_CHECK_I(pch_pfit.size);
10538 }
10539
10540 /* BDW+ don't expose a synchronous way to read the state */
10541 if (IS_HASWELL(dev))
10542 PIPE_CONF_CHECK_I(ips_enabled);
10543
10544 PIPE_CONF_CHECK_I(double_wide);
10545
10546 PIPE_CONF_CHECK_X(ddi_pll_sel);
10547
10548 PIPE_CONF_CHECK_I(shared_dpll);
10549 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10550 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10551 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10552 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10553 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10554 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10555 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10556 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10557
10558 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10559 PIPE_CONF_CHECK_I(pipe_bpp);
10560
10561 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10562 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10563
10564 #undef PIPE_CONF_CHECK_X
10565 #undef PIPE_CONF_CHECK_I
10566 #undef PIPE_CONF_CHECK_I_ALT
10567 #undef PIPE_CONF_CHECK_FLAGS
10568 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10569 #undef PIPE_CONF_QUIRK
10570
10571 return true;
10572 }
10573
10574 static void check_wm_state(struct drm_device *dev)
10575 {
10576 struct drm_i915_private *dev_priv = dev->dev_private;
10577 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10578 struct intel_crtc *intel_crtc;
10579 int plane;
10580
10581 if (INTEL_INFO(dev)->gen < 9)
10582 return;
10583
10584 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10585 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10586
10587 for_each_intel_crtc(dev, intel_crtc) {
10588 struct skl_ddb_entry *hw_entry, *sw_entry;
10589 const enum pipe pipe = intel_crtc->pipe;
10590
10591 if (!intel_crtc->active)
10592 continue;
10593
10594 /* planes */
10595 for_each_plane(pipe, plane) {
10596 hw_entry = &hw_ddb.plane[pipe][plane];
10597 sw_entry = &sw_ddb->plane[pipe][plane];
10598
10599 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10600 continue;
10601
10602 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10603 "(expected (%u,%u), found (%u,%u))\n",
10604 pipe_name(pipe), plane + 1,
10605 sw_entry->start, sw_entry->end,
10606 hw_entry->start, hw_entry->end);
10607 }
10608
10609 /* cursor */
10610 hw_entry = &hw_ddb.cursor[pipe];
10611 sw_entry = &sw_ddb->cursor[pipe];
10612
10613 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10614 continue;
10615
10616 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10617 "(expected (%u,%u), found (%u,%u))\n",
10618 pipe_name(pipe),
10619 sw_entry->start, sw_entry->end,
10620 hw_entry->start, hw_entry->end);
10621 }
10622 }
10623
10624 static void
10625 check_connector_state(struct drm_device *dev)
10626 {
10627 struct intel_connector *connector;
10628
10629 list_for_each_entry(connector, &dev->mode_config.connector_list,
10630 base.head) {
10631 /* This also checks the encoder/connector hw state with the
10632 * ->get_hw_state callbacks. */
10633 intel_connector_check_state(connector);
10634
10635 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10636 "connector's staged encoder doesn't match current encoder\n");
10637 }
10638 }
10639
10640 static void
10641 check_encoder_state(struct drm_device *dev)
10642 {
10643 struct intel_encoder *encoder;
10644 struct intel_connector *connector;
10645
10646 for_each_intel_encoder(dev, encoder) {
10647 bool enabled = false;
10648 bool active = false;
10649 enum pipe pipe, tracked_pipe;
10650
10651 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10652 encoder->base.base.id,
10653 encoder->base.name);
10654
10655 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10656 "encoder's stage crtc doesn't match current crtc\n");
10657 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10658 "encoder's active_connectors set, but no crtc\n");
10659
10660 list_for_each_entry(connector, &dev->mode_config.connector_list,
10661 base.head) {
10662 if (connector->base.encoder != &encoder->base)
10663 continue;
10664 enabled = true;
10665 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10666 active = true;
10667 }
10668 /*
10669 * for MST connectors if we unplug the connector is gone
10670 * away but the encoder is still connected to a crtc
10671 * until a modeset happens in response to the hotplug.
10672 */
10673 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10674 continue;
10675
10676 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10677 "encoder's enabled state mismatch "
10678 "(expected %i, found %i)\n",
10679 !!encoder->base.crtc, enabled);
10680 I915_STATE_WARN(active && !encoder->base.crtc,
10681 "active encoder with no crtc\n");
10682
10683 I915_STATE_WARN(encoder->connectors_active != active,
10684 "encoder's computed active state doesn't match tracked active state "
10685 "(expected %i, found %i)\n", active, encoder->connectors_active);
10686
10687 active = encoder->get_hw_state(encoder, &pipe);
10688 I915_STATE_WARN(active != encoder->connectors_active,
10689 "encoder's hw state doesn't match sw tracking "
10690 "(expected %i, found %i)\n",
10691 encoder->connectors_active, active);
10692
10693 if (!encoder->base.crtc)
10694 continue;
10695
10696 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10697 I915_STATE_WARN(active && pipe != tracked_pipe,
10698 "active encoder's pipe doesn't match"
10699 "(expected %i, found %i)\n",
10700 tracked_pipe, pipe);
10701
10702 }
10703 }
10704
10705 static void
10706 check_crtc_state(struct drm_device *dev)
10707 {
10708 struct drm_i915_private *dev_priv = dev->dev_private;
10709 struct intel_crtc *crtc;
10710 struct intel_encoder *encoder;
10711 struct intel_crtc_state pipe_config;
10712
10713 for_each_intel_crtc(dev, crtc) {
10714 bool enabled = false;
10715 bool active = false;
10716
10717 memset(&pipe_config, 0, sizeof(pipe_config));
10718
10719 DRM_DEBUG_KMS("[CRTC:%d]\n",
10720 crtc->base.base.id);
10721
10722 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
10723 "active crtc, but not enabled in sw tracking\n");
10724
10725 for_each_intel_encoder(dev, encoder) {
10726 if (encoder->base.crtc != &crtc->base)
10727 continue;
10728 enabled = true;
10729 if (encoder->connectors_active)
10730 active = true;
10731 }
10732
10733 I915_STATE_WARN(active != crtc->active,
10734 "crtc's computed active state doesn't match tracked active state "
10735 "(expected %i, found %i)\n", active, crtc->active);
10736 I915_STATE_WARN(enabled != crtc->base.enabled,
10737 "crtc's computed enabled state doesn't match tracked enabled state "
10738 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10739
10740 active = dev_priv->display.get_pipe_config(crtc,
10741 &pipe_config);
10742
10743 /* hw state is inconsistent with the pipe quirk */
10744 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10745 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10746 active = crtc->active;
10747
10748 for_each_intel_encoder(dev, encoder) {
10749 enum pipe pipe;
10750 if (encoder->base.crtc != &crtc->base)
10751 continue;
10752 if (encoder->get_hw_state(encoder, &pipe))
10753 encoder->get_config(encoder, &pipe_config);
10754 }
10755
10756 I915_STATE_WARN(crtc->active != active,
10757 "crtc active state doesn't match with hw state "
10758 "(expected %i, found %i)\n", crtc->active, active);
10759
10760 if (active &&
10761 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
10762 I915_STATE_WARN(1, "pipe state doesn't match!\n");
10763 intel_dump_pipe_config(crtc, &pipe_config,
10764 "[hw state]");
10765 intel_dump_pipe_config(crtc, crtc->config,
10766 "[sw state]");
10767 }
10768 }
10769 }
10770
10771 static void
10772 check_shared_dpll_state(struct drm_device *dev)
10773 {
10774 struct drm_i915_private *dev_priv = dev->dev_private;
10775 struct intel_crtc *crtc;
10776 struct intel_dpll_hw_state dpll_hw_state;
10777 int i;
10778
10779 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10780 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10781 int enabled_crtcs = 0, active_crtcs = 0;
10782 bool active;
10783
10784 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10785
10786 DRM_DEBUG_KMS("%s\n", pll->name);
10787
10788 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10789
10790 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10791 "more active pll users than references: %i vs %i\n",
10792 pll->active, hweight32(pll->config.crtc_mask));
10793 I915_STATE_WARN(pll->active && !pll->on,
10794 "pll in active use but not on in sw tracking\n");
10795 I915_STATE_WARN(pll->on && !pll->active,
10796 "pll in on but not on in use in sw tracking\n");
10797 I915_STATE_WARN(pll->on != active,
10798 "pll on state mismatch (expected %i, found %i)\n",
10799 pll->on, active);
10800
10801 for_each_intel_crtc(dev, crtc) {
10802 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10803 enabled_crtcs++;
10804 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10805 active_crtcs++;
10806 }
10807 I915_STATE_WARN(pll->active != active_crtcs,
10808 "pll active crtcs mismatch (expected %i, found %i)\n",
10809 pll->active, active_crtcs);
10810 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10811 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10812 hweight32(pll->config.crtc_mask), enabled_crtcs);
10813
10814 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10815 sizeof(dpll_hw_state)),
10816 "pll hw state mismatch\n");
10817 }
10818 }
10819
10820 void
10821 intel_modeset_check_state(struct drm_device *dev)
10822 {
10823 check_wm_state(dev);
10824 check_connector_state(dev);
10825 check_encoder_state(dev);
10826 check_crtc_state(dev);
10827 check_shared_dpll_state(dev);
10828 }
10829
10830 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
10831 int dotclock)
10832 {
10833 /*
10834 * FDI already provided one idea for the dotclock.
10835 * Yell if the encoder disagrees.
10836 */
10837 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
10838 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10839 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
10840 }
10841
10842 static void update_scanline_offset(struct intel_crtc *crtc)
10843 {
10844 struct drm_device *dev = crtc->base.dev;
10845
10846 /*
10847 * The scanline counter increments at the leading edge of hsync.
10848 *
10849 * On most platforms it starts counting from vtotal-1 on the
10850 * first active line. That means the scanline counter value is
10851 * always one less than what we would expect. Ie. just after
10852 * start of vblank, which also occurs at start of hsync (on the
10853 * last active line), the scanline counter will read vblank_start-1.
10854 *
10855 * On gen2 the scanline counter starts counting from 1 instead
10856 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10857 * to keep the value positive), instead of adding one.
10858 *
10859 * On HSW+ the behaviour of the scanline counter depends on the output
10860 * type. For DP ports it behaves like most other platforms, but on HDMI
10861 * there's an extra 1 line difference. So we need to add two instead of
10862 * one to the value.
10863 */
10864 if (IS_GEN2(dev)) {
10865 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
10866 int vtotal;
10867
10868 vtotal = mode->crtc_vtotal;
10869 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10870 vtotal /= 2;
10871
10872 crtc->scanline_offset = vtotal - 1;
10873 } else if (HAS_DDI(dev) &&
10874 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10875 crtc->scanline_offset = 2;
10876 } else
10877 crtc->scanline_offset = 1;
10878 }
10879
10880 static struct intel_crtc_state *
10881 intel_modeset_compute_config(struct drm_crtc *crtc,
10882 struct drm_display_mode *mode,
10883 struct drm_framebuffer *fb,
10884 unsigned *modeset_pipes,
10885 unsigned *prepare_pipes,
10886 unsigned *disable_pipes)
10887 {
10888 struct intel_crtc_state *pipe_config = NULL;
10889
10890 intel_modeset_affected_pipes(crtc, modeset_pipes,
10891 prepare_pipes, disable_pipes);
10892
10893 if ((*modeset_pipes) == 0)
10894 goto out;
10895
10896 /*
10897 * Note this needs changes when we start tracking multiple modes
10898 * and crtcs. At that point we'll need to compute the whole config
10899 * (i.e. one pipe_config for each crtc) rather than just the one
10900 * for this crtc.
10901 */
10902 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
10903 if (IS_ERR(pipe_config)) {
10904 goto out;
10905 }
10906 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10907 "[modeset]");
10908
10909 out:
10910 return pipe_config;
10911 }
10912
10913 static int __intel_set_mode(struct drm_crtc *crtc,
10914 struct drm_display_mode *mode,
10915 int x, int y, struct drm_framebuffer *fb,
10916 struct intel_crtc_state *pipe_config,
10917 unsigned modeset_pipes,
10918 unsigned prepare_pipes,
10919 unsigned disable_pipes)
10920 {
10921 struct drm_device *dev = crtc->dev;
10922 struct drm_i915_private *dev_priv = dev->dev_private;
10923 struct drm_display_mode *saved_mode;
10924 struct intel_crtc *intel_crtc;
10925 int ret = 0;
10926
10927 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
10928 if (!saved_mode)
10929 return -ENOMEM;
10930
10931 *saved_mode = crtc->mode;
10932
10933 if (modeset_pipes)
10934 to_intel_crtc(crtc)->new_config = pipe_config;
10935
10936 /*
10937 * See if the config requires any additional preparation, e.g.
10938 * to adjust global state with pipes off. We need to do this
10939 * here so we can get the modeset_pipe updated config for the new
10940 * mode set on this crtc. For other crtcs we need to use the
10941 * adjusted_mode bits in the crtc directly.
10942 */
10943 if (IS_VALLEYVIEW(dev)) {
10944 valleyview_modeset_global_pipes(dev, &prepare_pipes);
10945
10946 /* may have added more to prepare_pipes than we should */
10947 prepare_pipes &= ~disable_pipes;
10948 }
10949
10950 if (dev_priv->display.crtc_compute_clock) {
10951 unsigned clear_pipes = modeset_pipes | disable_pipes;
10952
10953 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
10954 if (ret)
10955 goto done;
10956
10957 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
10958 struct intel_crtc_state *state = intel_crtc->new_config;
10959 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10960 state);
10961 if (ret) {
10962 intel_shared_dpll_abort_config(dev_priv);
10963 goto done;
10964 }
10965 }
10966 }
10967
10968 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10969 intel_crtc_disable(&intel_crtc->base);
10970
10971 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10972 if (intel_crtc->base.enabled)
10973 dev_priv->display.crtc_disable(&intel_crtc->base);
10974 }
10975
10976 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10977 * to set it here already despite that we pass it down the callchain.
10978 *
10979 * Note we'll need to fix this up when we start tracking multiple
10980 * pipes; here we assume a single modeset_pipe and only track the
10981 * single crtc and mode.
10982 */
10983 if (modeset_pipes) {
10984 crtc->mode = *mode;
10985 /* mode_set/enable/disable functions rely on a correct pipe
10986 * config. */
10987 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
10988
10989 /*
10990 * Calculate and store various constants which
10991 * are later needed by vblank and swap-completion
10992 * timestamping. They are derived from true hwmode.
10993 */
10994 drm_calc_timestamping_constants(crtc,
10995 &pipe_config->base.adjusted_mode);
10996 }
10997
10998 /* Only after disabling all output pipelines that will be changed can we
10999 * update the the output configuration. */
11000 intel_modeset_update_state(dev, prepare_pipes);
11001
11002 modeset_update_crtc_power_domains(dev);
11003
11004 /* Set up the DPLL and any encoders state that needs to adjust or depend
11005 * on the DPLL.
11006 */
11007 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11008 struct drm_plane *primary = intel_crtc->base.primary;
11009 int vdisplay, hdisplay;
11010
11011 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11012 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11013 fb, 0, 0,
11014 hdisplay, vdisplay,
11015 x << 16, y << 16,
11016 hdisplay << 16, vdisplay << 16);
11017 }
11018
11019 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11020 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11021 update_scanline_offset(intel_crtc);
11022
11023 dev_priv->display.crtc_enable(&intel_crtc->base);
11024 }
11025
11026 /* FIXME: add subpixel order */
11027 done:
11028 if (ret && crtc->enabled)
11029 crtc->mode = *saved_mode;
11030
11031 kfree(saved_mode);
11032 return ret;
11033 }
11034
11035 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11036 struct drm_display_mode *mode,
11037 int x, int y, struct drm_framebuffer *fb,
11038 struct intel_crtc_state *pipe_config,
11039 unsigned modeset_pipes,
11040 unsigned prepare_pipes,
11041 unsigned disable_pipes)
11042 {
11043 int ret;
11044
11045 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11046 prepare_pipes, disable_pipes);
11047
11048 if (ret == 0)
11049 intel_modeset_check_state(crtc->dev);
11050
11051 return ret;
11052 }
11053
11054 static int intel_set_mode(struct drm_crtc *crtc,
11055 struct drm_display_mode *mode,
11056 int x, int y, struct drm_framebuffer *fb)
11057 {
11058 struct intel_crtc_state *pipe_config;
11059 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11060
11061 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11062 &modeset_pipes,
11063 &prepare_pipes,
11064 &disable_pipes);
11065
11066 if (IS_ERR(pipe_config))
11067 return PTR_ERR(pipe_config);
11068
11069 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11070 modeset_pipes, prepare_pipes,
11071 disable_pipes);
11072 }
11073
11074 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11075 {
11076 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11077 }
11078
11079 #undef for_each_intel_crtc_masked
11080
11081 static void intel_set_config_free(struct intel_set_config *config)
11082 {
11083 if (!config)
11084 return;
11085
11086 kfree(config->save_connector_encoders);
11087 kfree(config->save_encoder_crtcs);
11088 kfree(config->save_crtc_enabled);
11089 kfree(config);
11090 }
11091
11092 static int intel_set_config_save_state(struct drm_device *dev,
11093 struct intel_set_config *config)
11094 {
11095 struct drm_crtc *crtc;
11096 struct drm_encoder *encoder;
11097 struct drm_connector *connector;
11098 int count;
11099
11100 config->save_crtc_enabled =
11101 kcalloc(dev->mode_config.num_crtc,
11102 sizeof(bool), GFP_KERNEL);
11103 if (!config->save_crtc_enabled)
11104 return -ENOMEM;
11105
11106 config->save_encoder_crtcs =
11107 kcalloc(dev->mode_config.num_encoder,
11108 sizeof(struct drm_crtc *), GFP_KERNEL);
11109 if (!config->save_encoder_crtcs)
11110 return -ENOMEM;
11111
11112 config->save_connector_encoders =
11113 kcalloc(dev->mode_config.num_connector,
11114 sizeof(struct drm_encoder *), GFP_KERNEL);
11115 if (!config->save_connector_encoders)
11116 return -ENOMEM;
11117
11118 /* Copy data. Note that driver private data is not affected.
11119 * Should anything bad happen only the expected state is
11120 * restored, not the drivers personal bookkeeping.
11121 */
11122 count = 0;
11123 for_each_crtc(dev, crtc) {
11124 config->save_crtc_enabled[count++] = crtc->enabled;
11125 }
11126
11127 count = 0;
11128 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11129 config->save_encoder_crtcs[count++] = encoder->crtc;
11130 }
11131
11132 count = 0;
11133 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11134 config->save_connector_encoders[count++] = connector->encoder;
11135 }
11136
11137 return 0;
11138 }
11139
11140 static void intel_set_config_restore_state(struct drm_device *dev,
11141 struct intel_set_config *config)
11142 {
11143 struct intel_crtc *crtc;
11144 struct intel_encoder *encoder;
11145 struct intel_connector *connector;
11146 int count;
11147
11148 count = 0;
11149 for_each_intel_crtc(dev, crtc) {
11150 crtc->new_enabled = config->save_crtc_enabled[count++];
11151
11152 if (crtc->new_enabled)
11153 crtc->new_config = crtc->config;
11154 else
11155 crtc->new_config = NULL;
11156 }
11157
11158 count = 0;
11159 for_each_intel_encoder(dev, encoder) {
11160 encoder->new_crtc =
11161 to_intel_crtc(config->save_encoder_crtcs[count++]);
11162 }
11163
11164 count = 0;
11165 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11166 connector->new_encoder =
11167 to_intel_encoder(config->save_connector_encoders[count++]);
11168 }
11169 }
11170
11171 static bool
11172 is_crtc_connector_off(struct drm_mode_set *set)
11173 {
11174 int i;
11175
11176 if (set->num_connectors == 0)
11177 return false;
11178
11179 if (WARN_ON(set->connectors == NULL))
11180 return false;
11181
11182 for (i = 0; i < set->num_connectors; i++)
11183 if (set->connectors[i]->encoder &&
11184 set->connectors[i]->encoder->crtc == set->crtc &&
11185 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11186 return true;
11187
11188 return false;
11189 }
11190
11191 static void
11192 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11193 struct intel_set_config *config)
11194 {
11195
11196 /* We should be able to check here if the fb has the same properties
11197 * and then just flip_or_move it */
11198 if (is_crtc_connector_off(set)) {
11199 config->mode_changed = true;
11200 } else if (set->crtc->primary->fb != set->fb) {
11201 /*
11202 * If we have no fb, we can only flip as long as the crtc is
11203 * active, otherwise we need a full mode set. The crtc may
11204 * be active if we've only disabled the primary plane, or
11205 * in fastboot situations.
11206 */
11207 if (set->crtc->primary->fb == NULL) {
11208 struct intel_crtc *intel_crtc =
11209 to_intel_crtc(set->crtc);
11210
11211 if (intel_crtc->active) {
11212 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11213 config->fb_changed = true;
11214 } else {
11215 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11216 config->mode_changed = true;
11217 }
11218 } else if (set->fb == NULL) {
11219 config->mode_changed = true;
11220 } else if (set->fb->pixel_format !=
11221 set->crtc->primary->fb->pixel_format) {
11222 config->mode_changed = true;
11223 } else {
11224 config->fb_changed = true;
11225 }
11226 }
11227
11228 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11229 config->fb_changed = true;
11230
11231 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11232 DRM_DEBUG_KMS("modes are different, full mode set\n");
11233 drm_mode_debug_printmodeline(&set->crtc->mode);
11234 drm_mode_debug_printmodeline(set->mode);
11235 config->mode_changed = true;
11236 }
11237
11238 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11239 set->crtc->base.id, config->mode_changed, config->fb_changed);
11240 }
11241
11242 static int
11243 intel_modeset_stage_output_state(struct drm_device *dev,
11244 struct drm_mode_set *set,
11245 struct intel_set_config *config)
11246 {
11247 struct intel_connector *connector;
11248 struct intel_encoder *encoder;
11249 struct intel_crtc *crtc;
11250 int ro;
11251
11252 /* The upper layers ensure that we either disable a crtc or have a list
11253 * of connectors. For paranoia, double-check this. */
11254 WARN_ON(!set->fb && (set->num_connectors != 0));
11255 WARN_ON(set->fb && (set->num_connectors == 0));
11256
11257 list_for_each_entry(connector, &dev->mode_config.connector_list,
11258 base.head) {
11259 /* Otherwise traverse passed in connector list and get encoders
11260 * for them. */
11261 for (ro = 0; ro < set->num_connectors; ro++) {
11262 if (set->connectors[ro] == &connector->base) {
11263 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11264 break;
11265 }
11266 }
11267
11268 /* If we disable the crtc, disable all its connectors. Also, if
11269 * the connector is on the changing crtc but not on the new
11270 * connector list, disable it. */
11271 if ((!set->fb || ro == set->num_connectors) &&
11272 connector->base.encoder &&
11273 connector->base.encoder->crtc == set->crtc) {
11274 connector->new_encoder = NULL;
11275
11276 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11277 connector->base.base.id,
11278 connector->base.name);
11279 }
11280
11281
11282 if (&connector->new_encoder->base != connector->base.encoder) {
11283 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11284 config->mode_changed = true;
11285 }
11286 }
11287 /* connector->new_encoder is now updated for all connectors. */
11288
11289 /* Update crtc of enabled connectors. */
11290 list_for_each_entry(connector, &dev->mode_config.connector_list,
11291 base.head) {
11292 struct drm_crtc *new_crtc;
11293
11294 if (!connector->new_encoder)
11295 continue;
11296
11297 new_crtc = connector->new_encoder->base.crtc;
11298
11299 for (ro = 0; ro < set->num_connectors; ro++) {
11300 if (set->connectors[ro] == &connector->base)
11301 new_crtc = set->crtc;
11302 }
11303
11304 /* Make sure the new CRTC will work with the encoder */
11305 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11306 new_crtc)) {
11307 return -EINVAL;
11308 }
11309 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11310
11311 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11312 connector->base.base.id,
11313 connector->base.name,
11314 new_crtc->base.id);
11315 }
11316
11317 /* Check for any encoders that needs to be disabled. */
11318 for_each_intel_encoder(dev, encoder) {
11319 int num_connectors = 0;
11320 list_for_each_entry(connector,
11321 &dev->mode_config.connector_list,
11322 base.head) {
11323 if (connector->new_encoder == encoder) {
11324 WARN_ON(!connector->new_encoder->new_crtc);
11325 num_connectors++;
11326 }
11327 }
11328
11329 if (num_connectors == 0)
11330 encoder->new_crtc = NULL;
11331 else if (num_connectors > 1)
11332 return -EINVAL;
11333
11334 /* Only now check for crtc changes so we don't miss encoders
11335 * that will be disabled. */
11336 if (&encoder->new_crtc->base != encoder->base.crtc) {
11337 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11338 config->mode_changed = true;
11339 }
11340 }
11341 /* Now we've also updated encoder->new_crtc for all encoders. */
11342 list_for_each_entry(connector, &dev->mode_config.connector_list,
11343 base.head) {
11344 if (connector->new_encoder)
11345 if (connector->new_encoder != connector->encoder)
11346 connector->encoder = connector->new_encoder;
11347 }
11348 for_each_intel_crtc(dev, crtc) {
11349 crtc->new_enabled = false;
11350
11351 for_each_intel_encoder(dev, encoder) {
11352 if (encoder->new_crtc == crtc) {
11353 crtc->new_enabled = true;
11354 break;
11355 }
11356 }
11357
11358 if (crtc->new_enabled != crtc->base.enabled) {
11359 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11360 crtc->new_enabled ? "en" : "dis");
11361 config->mode_changed = true;
11362 }
11363
11364 if (crtc->new_enabled)
11365 crtc->new_config = crtc->config;
11366 else
11367 crtc->new_config = NULL;
11368 }
11369
11370 return 0;
11371 }
11372
11373 static void disable_crtc_nofb(struct intel_crtc *crtc)
11374 {
11375 struct drm_device *dev = crtc->base.dev;
11376 struct intel_encoder *encoder;
11377 struct intel_connector *connector;
11378
11379 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11380 pipe_name(crtc->pipe));
11381
11382 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11383 if (connector->new_encoder &&
11384 connector->new_encoder->new_crtc == crtc)
11385 connector->new_encoder = NULL;
11386 }
11387
11388 for_each_intel_encoder(dev, encoder) {
11389 if (encoder->new_crtc == crtc)
11390 encoder->new_crtc = NULL;
11391 }
11392
11393 crtc->new_enabled = false;
11394 crtc->new_config = NULL;
11395 }
11396
11397 static int intel_crtc_set_config(struct drm_mode_set *set)
11398 {
11399 struct drm_device *dev;
11400 struct drm_mode_set save_set;
11401 struct intel_set_config *config;
11402 struct intel_crtc_state *pipe_config;
11403 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11404 int ret;
11405
11406 BUG_ON(!set);
11407 BUG_ON(!set->crtc);
11408 BUG_ON(!set->crtc->helper_private);
11409
11410 /* Enforce sane interface api - has been abused by the fb helper. */
11411 BUG_ON(!set->mode && set->fb);
11412 BUG_ON(set->fb && set->num_connectors == 0);
11413
11414 if (set->fb) {
11415 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11416 set->crtc->base.id, set->fb->base.id,
11417 (int)set->num_connectors, set->x, set->y);
11418 } else {
11419 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11420 }
11421
11422 dev = set->crtc->dev;
11423
11424 ret = -ENOMEM;
11425 config = kzalloc(sizeof(*config), GFP_KERNEL);
11426 if (!config)
11427 goto out_config;
11428
11429 ret = intel_set_config_save_state(dev, config);
11430 if (ret)
11431 goto out_config;
11432
11433 save_set.crtc = set->crtc;
11434 save_set.mode = &set->crtc->mode;
11435 save_set.x = set->crtc->x;
11436 save_set.y = set->crtc->y;
11437 save_set.fb = set->crtc->primary->fb;
11438
11439 /* Compute whether we need a full modeset, only an fb base update or no
11440 * change at all. In the future we might also check whether only the
11441 * mode changed, e.g. for LVDS where we only change the panel fitter in
11442 * such cases. */
11443 intel_set_config_compute_mode_changes(set, config);
11444
11445 ret = intel_modeset_stage_output_state(dev, set, config);
11446 if (ret)
11447 goto fail;
11448
11449 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11450 set->fb,
11451 &modeset_pipes,
11452 &prepare_pipes,
11453 &disable_pipes);
11454 if (IS_ERR(pipe_config)) {
11455 ret = PTR_ERR(pipe_config);
11456 goto fail;
11457 } else if (pipe_config) {
11458 if (pipe_config->has_audio !=
11459 to_intel_crtc(set->crtc)->config->has_audio)
11460 config->mode_changed = true;
11461
11462 /*
11463 * Note we have an issue here with infoframes: current code
11464 * only updates them on the full mode set path per hw
11465 * requirements. So here we should be checking for any
11466 * required changes and forcing a mode set.
11467 */
11468 }
11469
11470 /* set_mode will free it in the mode_changed case */
11471 if (!config->mode_changed)
11472 kfree(pipe_config);
11473
11474 intel_update_pipe_size(to_intel_crtc(set->crtc));
11475
11476 if (config->mode_changed) {
11477 ret = intel_set_mode_pipes(set->crtc, set->mode,
11478 set->x, set->y, set->fb, pipe_config,
11479 modeset_pipes, prepare_pipes,
11480 disable_pipes);
11481 } else if (config->fb_changed) {
11482 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11483 struct drm_plane *primary = set->crtc->primary;
11484 int vdisplay, hdisplay;
11485
11486 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11487 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11488 0, 0, hdisplay, vdisplay,
11489 set->x << 16, set->y << 16,
11490 hdisplay << 16, vdisplay << 16);
11491
11492 /*
11493 * We need to make sure the primary plane is re-enabled if it
11494 * has previously been turned off.
11495 */
11496 if (!intel_crtc->primary_enabled && ret == 0) {
11497 WARN_ON(!intel_crtc->active);
11498 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11499 }
11500
11501 /*
11502 * In the fastboot case this may be our only check of the
11503 * state after boot. It would be better to only do it on
11504 * the first update, but we don't have a nice way of doing that
11505 * (and really, set_config isn't used much for high freq page
11506 * flipping, so increasing its cost here shouldn't be a big
11507 * deal).
11508 */
11509 if (i915.fastboot && ret == 0)
11510 intel_modeset_check_state(set->crtc->dev);
11511 }
11512
11513 if (ret) {
11514 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11515 set->crtc->base.id, ret);
11516 fail:
11517 intel_set_config_restore_state(dev, config);
11518
11519 /*
11520 * HACK: if the pipe was on, but we didn't have a framebuffer,
11521 * force the pipe off to avoid oopsing in the modeset code
11522 * due to fb==NULL. This should only happen during boot since
11523 * we don't yet reconstruct the FB from the hardware state.
11524 */
11525 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11526 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11527
11528 /* Try to restore the config */
11529 if (config->mode_changed &&
11530 intel_set_mode(save_set.crtc, save_set.mode,
11531 save_set.x, save_set.y, save_set.fb))
11532 DRM_ERROR("failed to restore config after modeset failure\n");
11533 }
11534
11535 out_config:
11536 intel_set_config_free(config);
11537 return ret;
11538 }
11539
11540 static const struct drm_crtc_funcs intel_crtc_funcs = {
11541 .gamma_set = intel_crtc_gamma_set,
11542 .set_config = intel_crtc_set_config,
11543 .destroy = intel_crtc_destroy,
11544 .page_flip = intel_crtc_page_flip,
11545 };
11546
11547 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11548 struct intel_shared_dpll *pll,
11549 struct intel_dpll_hw_state *hw_state)
11550 {
11551 uint32_t val;
11552
11553 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11554 return false;
11555
11556 val = I915_READ(PCH_DPLL(pll->id));
11557 hw_state->dpll = val;
11558 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11559 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11560
11561 return val & DPLL_VCO_ENABLE;
11562 }
11563
11564 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11565 struct intel_shared_dpll *pll)
11566 {
11567 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11568 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11569 }
11570
11571 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11572 struct intel_shared_dpll *pll)
11573 {
11574 /* PCH refclock must be enabled first */
11575 ibx_assert_pch_refclk_enabled(dev_priv);
11576
11577 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11578
11579 /* Wait for the clocks to stabilize. */
11580 POSTING_READ(PCH_DPLL(pll->id));
11581 udelay(150);
11582
11583 /* The pixel multiplier can only be updated once the
11584 * DPLL is enabled and the clocks are stable.
11585 *
11586 * So write it again.
11587 */
11588 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11589 POSTING_READ(PCH_DPLL(pll->id));
11590 udelay(200);
11591 }
11592
11593 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11594 struct intel_shared_dpll *pll)
11595 {
11596 struct drm_device *dev = dev_priv->dev;
11597 struct intel_crtc *crtc;
11598
11599 /* Make sure no transcoder isn't still depending on us. */
11600 for_each_intel_crtc(dev, crtc) {
11601 if (intel_crtc_to_shared_dpll(crtc) == pll)
11602 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11603 }
11604
11605 I915_WRITE(PCH_DPLL(pll->id), 0);
11606 POSTING_READ(PCH_DPLL(pll->id));
11607 udelay(200);
11608 }
11609
11610 static char *ibx_pch_dpll_names[] = {
11611 "PCH DPLL A",
11612 "PCH DPLL B",
11613 };
11614
11615 static void ibx_pch_dpll_init(struct drm_device *dev)
11616 {
11617 struct drm_i915_private *dev_priv = dev->dev_private;
11618 int i;
11619
11620 dev_priv->num_shared_dpll = 2;
11621
11622 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11623 dev_priv->shared_dplls[i].id = i;
11624 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11625 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11626 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11627 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11628 dev_priv->shared_dplls[i].get_hw_state =
11629 ibx_pch_dpll_get_hw_state;
11630 }
11631 }
11632
11633 static void intel_shared_dpll_init(struct drm_device *dev)
11634 {
11635 struct drm_i915_private *dev_priv = dev->dev_private;
11636
11637 if (HAS_DDI(dev))
11638 intel_ddi_pll_init(dev);
11639 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11640 ibx_pch_dpll_init(dev);
11641 else
11642 dev_priv->num_shared_dpll = 0;
11643
11644 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11645 }
11646
11647 /**
11648 * intel_prepare_plane_fb - Prepare fb for usage on plane
11649 * @plane: drm plane to prepare for
11650 * @fb: framebuffer to prepare for presentation
11651 *
11652 * Prepares a framebuffer for usage on a display plane. Generally this
11653 * involves pinning the underlying object and updating the frontbuffer tracking
11654 * bits. Some older platforms need special physical address handling for
11655 * cursor planes.
11656 *
11657 * Returns 0 on success, negative error code on failure.
11658 */
11659 int
11660 intel_prepare_plane_fb(struct drm_plane *plane,
11661 struct drm_framebuffer *fb)
11662 {
11663 struct drm_device *dev = plane->dev;
11664 struct intel_plane *intel_plane = to_intel_plane(plane);
11665 enum pipe pipe = intel_plane->pipe;
11666 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11667 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11668 unsigned frontbuffer_bits = 0;
11669 int ret = 0;
11670
11671 if (!obj)
11672 return 0;
11673
11674 switch (plane->type) {
11675 case DRM_PLANE_TYPE_PRIMARY:
11676 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11677 break;
11678 case DRM_PLANE_TYPE_CURSOR:
11679 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11680 break;
11681 case DRM_PLANE_TYPE_OVERLAY:
11682 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11683 break;
11684 }
11685
11686 mutex_lock(&dev->struct_mutex);
11687
11688 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11689 INTEL_INFO(dev)->cursor_needs_physical) {
11690 int align = IS_I830(dev) ? 16 * 1024 : 256;
11691 ret = i915_gem_object_attach_phys(obj, align);
11692 if (ret)
11693 DRM_DEBUG_KMS("failed to attach phys object\n");
11694 } else {
11695 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11696 }
11697
11698 if (ret == 0)
11699 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11700
11701 mutex_unlock(&dev->struct_mutex);
11702
11703 return ret;
11704 }
11705
11706 /**
11707 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11708 * @plane: drm plane to clean up for
11709 * @fb: old framebuffer that was on plane
11710 *
11711 * Cleans up a framebuffer that has just been removed from a plane.
11712 */
11713 void
11714 intel_cleanup_plane_fb(struct drm_plane *plane,
11715 struct drm_framebuffer *fb)
11716 {
11717 struct drm_device *dev = plane->dev;
11718 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11719
11720 if (WARN_ON(!obj))
11721 return;
11722
11723 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11724 !INTEL_INFO(dev)->cursor_needs_physical) {
11725 mutex_lock(&dev->struct_mutex);
11726 intel_unpin_fb_obj(obj);
11727 mutex_unlock(&dev->struct_mutex);
11728 }
11729 }
11730
11731 static int
11732 intel_check_primary_plane(struct drm_plane *plane,
11733 struct intel_plane_state *state)
11734 {
11735 struct drm_device *dev = plane->dev;
11736 struct drm_i915_private *dev_priv = dev->dev_private;
11737 struct drm_crtc *crtc = state->base.crtc;
11738 struct intel_crtc *intel_crtc;
11739 struct intel_plane *intel_plane = to_intel_plane(plane);
11740 struct drm_framebuffer *fb = state->base.fb;
11741 struct drm_rect *dest = &state->dst;
11742 struct drm_rect *src = &state->src;
11743 const struct drm_rect *clip = &state->clip;
11744 int ret;
11745
11746 crtc = crtc ? crtc : plane->crtc;
11747 intel_crtc = to_intel_crtc(crtc);
11748
11749 ret = drm_plane_helper_check_update(plane, crtc, fb,
11750 src, dest, clip,
11751 DRM_PLANE_HELPER_NO_SCALING,
11752 DRM_PLANE_HELPER_NO_SCALING,
11753 false, true, &state->visible);
11754 if (ret)
11755 return ret;
11756
11757 if (intel_crtc->active) {
11758 intel_crtc->atomic.wait_for_flips = true;
11759
11760 /*
11761 * FBC does not work on some platforms for rotated
11762 * planes, so disable it when rotation is not 0 and
11763 * update it when rotation is set back to 0.
11764 *
11765 * FIXME: This is redundant with the fbc update done in
11766 * the primary plane enable function except that that
11767 * one is done too late. We eventually need to unify
11768 * this.
11769 */
11770 if (intel_crtc->primary_enabled &&
11771 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11772 dev_priv->fbc.plane == intel_crtc->plane &&
11773 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11774 intel_crtc->atomic.disable_fbc = true;
11775 }
11776
11777 if (state->visible) {
11778 /*
11779 * BDW signals flip done immediately if the plane
11780 * is disabled, even if the plane enable is already
11781 * armed to occur at the next vblank :(
11782 */
11783 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11784 intel_crtc->atomic.wait_vblank = true;
11785 }
11786
11787 intel_crtc->atomic.fb_bits |=
11788 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11789
11790 intel_crtc->atomic.update_fbc = true;
11791 }
11792
11793 return 0;
11794 }
11795
11796 static void
11797 intel_commit_primary_plane(struct drm_plane *plane,
11798 struct intel_plane_state *state)
11799 {
11800 struct drm_crtc *crtc = state->base.crtc;
11801 struct drm_framebuffer *fb = state->base.fb;
11802 struct drm_device *dev = plane->dev;
11803 struct drm_i915_private *dev_priv = dev->dev_private;
11804 struct intel_crtc *intel_crtc;
11805 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11806 struct intel_plane *intel_plane = to_intel_plane(plane);
11807 struct drm_rect *src = &state->src;
11808
11809 crtc = crtc ? crtc : plane->crtc;
11810 intel_crtc = to_intel_crtc(crtc);
11811
11812 plane->fb = fb;
11813 crtc->x = src->x1 >> 16;
11814 crtc->y = src->y1 >> 16;
11815
11816 intel_plane->obj = obj;
11817
11818 if (intel_crtc->active) {
11819 if (state->visible) {
11820 /* FIXME: kill this fastboot hack */
11821 intel_update_pipe_size(intel_crtc);
11822
11823 intel_crtc->primary_enabled = true;
11824
11825 dev_priv->display.update_primary_plane(crtc, plane->fb,
11826 crtc->x, crtc->y);
11827 } else {
11828 /*
11829 * If clipping results in a non-visible primary plane,
11830 * we'll disable the primary plane. Note that this is
11831 * a bit different than what happens if userspace
11832 * explicitly disables the plane by passing fb=0
11833 * because plane->fb still gets set and pinned.
11834 */
11835 intel_disable_primary_hw_plane(plane, crtc);
11836 }
11837 }
11838 }
11839
11840 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
11841 {
11842 struct drm_device *dev = crtc->dev;
11843 struct drm_i915_private *dev_priv = dev->dev_private;
11844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11845 struct intel_plane *intel_plane;
11846 struct drm_plane *p;
11847 unsigned fb_bits = 0;
11848
11849 /* Track fb's for any planes being disabled */
11850 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11851 intel_plane = to_intel_plane(p);
11852
11853 if (intel_crtc->atomic.disabled_planes &
11854 (1 << drm_plane_index(p))) {
11855 switch (p->type) {
11856 case DRM_PLANE_TYPE_PRIMARY:
11857 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11858 break;
11859 case DRM_PLANE_TYPE_CURSOR:
11860 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11861 break;
11862 case DRM_PLANE_TYPE_OVERLAY:
11863 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11864 break;
11865 }
11866
11867 mutex_lock(&dev->struct_mutex);
11868 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
11869 mutex_unlock(&dev->struct_mutex);
11870 }
11871 }
11872
11873 if (intel_crtc->atomic.wait_for_flips)
11874 intel_crtc_wait_for_pending_flips(crtc);
11875
11876 if (intel_crtc->atomic.disable_fbc)
11877 intel_fbc_disable(dev);
11878
11879 if (intel_crtc->atomic.pre_disable_primary)
11880 intel_pre_disable_primary(crtc);
11881
11882 if (intel_crtc->atomic.update_wm)
11883 intel_update_watermarks(crtc);
11884
11885 intel_runtime_pm_get(dev_priv);
11886
11887 /* Perform vblank evasion around commit operation */
11888 if (intel_crtc->active)
11889 intel_crtc->atomic.evade =
11890 intel_pipe_update_start(intel_crtc,
11891 &intel_crtc->atomic.start_vbl_count);
11892 }
11893
11894 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
11895 {
11896 struct drm_device *dev = crtc->dev;
11897 struct drm_i915_private *dev_priv = dev->dev_private;
11898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11899 struct drm_plane *p;
11900
11901 if (intel_crtc->atomic.evade)
11902 intel_pipe_update_end(intel_crtc,
11903 intel_crtc->atomic.start_vbl_count);
11904
11905 intel_runtime_pm_put(dev_priv);
11906
11907 if (intel_crtc->atomic.wait_vblank)
11908 intel_wait_for_vblank(dev, intel_crtc->pipe);
11909
11910 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
11911
11912 if (intel_crtc->atomic.update_fbc) {
11913 mutex_lock(&dev->struct_mutex);
11914 intel_fbc_update(dev);
11915 mutex_unlock(&dev->struct_mutex);
11916 }
11917
11918 if (intel_crtc->atomic.post_enable_primary)
11919 intel_post_enable_primary(crtc);
11920
11921 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
11922 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
11923 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
11924 false, false);
11925
11926 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
11927 }
11928
11929 /**
11930 * intel_plane_destroy - destroy a plane
11931 * @plane: plane to destroy
11932 *
11933 * Common destruction function for all types of planes (primary, cursor,
11934 * sprite).
11935 */
11936 void intel_plane_destroy(struct drm_plane *plane)
11937 {
11938 struct intel_plane *intel_plane = to_intel_plane(plane);
11939 drm_plane_cleanup(plane);
11940 kfree(intel_plane);
11941 }
11942
11943 static const struct drm_plane_funcs intel_primary_plane_funcs = {
11944 .update_plane = drm_plane_helper_update,
11945 .disable_plane = drm_plane_helper_disable,
11946 .destroy = intel_plane_destroy,
11947 .set_property = intel_plane_set_property,
11948 .atomic_duplicate_state = intel_plane_duplicate_state,
11949 .atomic_destroy_state = intel_plane_destroy_state,
11950
11951 };
11952
11953 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11954 int pipe)
11955 {
11956 struct intel_plane *primary;
11957 const uint32_t *intel_primary_formats;
11958 int num_formats;
11959
11960 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11961 if (primary == NULL)
11962 return NULL;
11963
11964 primary->base.state = intel_plane_duplicate_state(&primary->base);
11965 if (primary->base.state == NULL) {
11966 kfree(primary);
11967 return NULL;
11968 }
11969
11970 primary->can_scale = false;
11971 primary->max_downscale = 1;
11972 primary->pipe = pipe;
11973 primary->plane = pipe;
11974 primary->rotation = BIT(DRM_ROTATE_0);
11975 primary->check_plane = intel_check_primary_plane;
11976 primary->commit_plane = intel_commit_primary_plane;
11977 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11978 primary->plane = !pipe;
11979
11980 if (INTEL_INFO(dev)->gen <= 3) {
11981 intel_primary_formats = intel_primary_formats_gen2;
11982 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11983 } else {
11984 intel_primary_formats = intel_primary_formats_gen4;
11985 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11986 }
11987
11988 drm_universal_plane_init(dev, &primary->base, 0,
11989 &intel_primary_plane_funcs,
11990 intel_primary_formats, num_formats,
11991 DRM_PLANE_TYPE_PRIMARY);
11992
11993 if (INTEL_INFO(dev)->gen >= 4) {
11994 if (!dev->mode_config.rotation_property)
11995 dev->mode_config.rotation_property =
11996 drm_mode_create_rotation_property(dev,
11997 BIT(DRM_ROTATE_0) |
11998 BIT(DRM_ROTATE_180));
11999 if (dev->mode_config.rotation_property)
12000 drm_object_attach_property(&primary->base.base,
12001 dev->mode_config.rotation_property,
12002 primary->rotation);
12003 }
12004
12005 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12006
12007 return &primary->base;
12008 }
12009
12010 static int
12011 intel_check_cursor_plane(struct drm_plane *plane,
12012 struct intel_plane_state *state)
12013 {
12014 struct drm_crtc *crtc = state->base.crtc;
12015 struct drm_device *dev = plane->dev;
12016 struct drm_framebuffer *fb = state->base.fb;
12017 struct drm_rect *dest = &state->dst;
12018 struct drm_rect *src = &state->src;
12019 const struct drm_rect *clip = &state->clip;
12020 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12021 struct intel_crtc *intel_crtc;
12022 unsigned stride;
12023 int ret;
12024
12025 crtc = crtc ? crtc : plane->crtc;
12026 intel_crtc = to_intel_crtc(crtc);
12027
12028 ret = drm_plane_helper_check_update(plane, crtc, fb,
12029 src, dest, clip,
12030 DRM_PLANE_HELPER_NO_SCALING,
12031 DRM_PLANE_HELPER_NO_SCALING,
12032 true, true, &state->visible);
12033 if (ret)
12034 return ret;
12035
12036
12037 /* if we want to turn off the cursor ignore width and height */
12038 if (!obj)
12039 goto finish;
12040
12041 /* Check for which cursor types we support */
12042 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12043 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12044 state->base.crtc_w, state->base.crtc_h);
12045 return -EINVAL;
12046 }
12047
12048 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12049 if (obj->base.size < stride * state->base.crtc_h) {
12050 DRM_DEBUG_KMS("buffer is too small\n");
12051 return -ENOMEM;
12052 }
12053
12054 if (fb == crtc->cursor->fb)
12055 return 0;
12056
12057 /* we only need to pin inside GTT if cursor is non-phy */
12058 mutex_lock(&dev->struct_mutex);
12059 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12060 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12061 ret = -EINVAL;
12062 }
12063 mutex_unlock(&dev->struct_mutex);
12064
12065 finish:
12066 if (intel_crtc->active) {
12067 if (intel_crtc->cursor_width != state->base.crtc_w)
12068 intel_crtc->atomic.update_wm = true;
12069
12070 intel_crtc->atomic.fb_bits |=
12071 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12072 }
12073
12074 return ret;
12075 }
12076
12077 static void
12078 intel_commit_cursor_plane(struct drm_plane *plane,
12079 struct intel_plane_state *state)
12080 {
12081 struct drm_crtc *crtc = state->base.crtc;
12082 struct drm_device *dev = plane->dev;
12083 struct intel_crtc *intel_crtc;
12084 struct intel_plane *intel_plane = to_intel_plane(plane);
12085 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12086 uint32_t addr;
12087
12088 crtc = crtc ? crtc : plane->crtc;
12089 intel_crtc = to_intel_crtc(crtc);
12090
12091 plane->fb = state->base.fb;
12092 crtc->cursor_x = state->base.crtc_x;
12093 crtc->cursor_y = state->base.crtc_y;
12094
12095 intel_plane->obj = obj;
12096
12097 if (intel_crtc->cursor_bo == obj)
12098 goto update;
12099
12100 if (!obj)
12101 addr = 0;
12102 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12103 addr = i915_gem_obj_ggtt_offset(obj);
12104 else
12105 addr = obj->phys_handle->busaddr;
12106
12107 intel_crtc->cursor_addr = addr;
12108 intel_crtc->cursor_bo = obj;
12109 update:
12110 intel_crtc->cursor_width = state->base.crtc_w;
12111 intel_crtc->cursor_height = state->base.crtc_h;
12112
12113 if (intel_crtc->active)
12114 intel_crtc_update_cursor(crtc, state->visible);
12115 }
12116
12117 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12118 .update_plane = drm_plane_helper_update,
12119 .disable_plane = drm_plane_helper_disable,
12120 .destroy = intel_plane_destroy,
12121 .set_property = intel_plane_set_property,
12122 .atomic_duplicate_state = intel_plane_duplicate_state,
12123 .atomic_destroy_state = intel_plane_destroy_state,
12124 };
12125
12126 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12127 int pipe)
12128 {
12129 struct intel_plane *cursor;
12130
12131 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12132 if (cursor == NULL)
12133 return NULL;
12134
12135 cursor->base.state = intel_plane_duplicate_state(&cursor->base);
12136 if (cursor->base.state == NULL) {
12137 kfree(cursor);
12138 return NULL;
12139 }
12140
12141 cursor->can_scale = false;
12142 cursor->max_downscale = 1;
12143 cursor->pipe = pipe;
12144 cursor->plane = pipe;
12145 cursor->rotation = BIT(DRM_ROTATE_0);
12146 cursor->check_plane = intel_check_cursor_plane;
12147 cursor->commit_plane = intel_commit_cursor_plane;
12148
12149 drm_universal_plane_init(dev, &cursor->base, 0,
12150 &intel_cursor_plane_funcs,
12151 intel_cursor_formats,
12152 ARRAY_SIZE(intel_cursor_formats),
12153 DRM_PLANE_TYPE_CURSOR);
12154
12155 if (INTEL_INFO(dev)->gen >= 4) {
12156 if (!dev->mode_config.rotation_property)
12157 dev->mode_config.rotation_property =
12158 drm_mode_create_rotation_property(dev,
12159 BIT(DRM_ROTATE_0) |
12160 BIT(DRM_ROTATE_180));
12161 if (dev->mode_config.rotation_property)
12162 drm_object_attach_property(&cursor->base.base,
12163 dev->mode_config.rotation_property,
12164 cursor->rotation);
12165 }
12166
12167 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12168
12169 return &cursor->base;
12170 }
12171
12172 static void intel_crtc_init(struct drm_device *dev, int pipe)
12173 {
12174 struct drm_i915_private *dev_priv = dev->dev_private;
12175 struct intel_crtc *intel_crtc;
12176 struct intel_crtc_state *crtc_state = NULL;
12177 struct drm_plane *primary = NULL;
12178 struct drm_plane *cursor = NULL;
12179 int i, ret;
12180
12181 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12182 if (intel_crtc == NULL)
12183 return;
12184
12185 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12186 if (!crtc_state)
12187 goto fail;
12188 intel_crtc_set_state(intel_crtc, crtc_state);
12189
12190 primary = intel_primary_plane_create(dev, pipe);
12191 if (!primary)
12192 goto fail;
12193
12194 cursor = intel_cursor_plane_create(dev, pipe);
12195 if (!cursor)
12196 goto fail;
12197
12198 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12199 cursor, &intel_crtc_funcs);
12200 if (ret)
12201 goto fail;
12202
12203 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12204 for (i = 0; i < 256; i++) {
12205 intel_crtc->lut_r[i] = i;
12206 intel_crtc->lut_g[i] = i;
12207 intel_crtc->lut_b[i] = i;
12208 }
12209
12210 /*
12211 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12212 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12213 */
12214 intel_crtc->pipe = pipe;
12215 intel_crtc->plane = pipe;
12216 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12217 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12218 intel_crtc->plane = !pipe;
12219 }
12220
12221 intel_crtc->cursor_base = ~0;
12222 intel_crtc->cursor_cntl = ~0;
12223 intel_crtc->cursor_size = ~0;
12224
12225 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12226 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12227 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12228 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12229
12230 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12231
12232 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12233
12234 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12235 return;
12236
12237 fail:
12238 if (primary)
12239 drm_plane_cleanup(primary);
12240 if (cursor)
12241 drm_plane_cleanup(cursor);
12242 kfree(crtc_state);
12243 kfree(intel_crtc);
12244 }
12245
12246 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12247 {
12248 struct drm_encoder *encoder = connector->base.encoder;
12249 struct drm_device *dev = connector->base.dev;
12250
12251 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12252
12253 if (!encoder || WARN_ON(!encoder->crtc))
12254 return INVALID_PIPE;
12255
12256 return to_intel_crtc(encoder->crtc)->pipe;
12257 }
12258
12259 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12260 struct drm_file *file)
12261 {
12262 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12263 struct drm_crtc *drmmode_crtc;
12264 struct intel_crtc *crtc;
12265
12266 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12267 return -ENODEV;
12268
12269 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12270
12271 if (!drmmode_crtc) {
12272 DRM_ERROR("no such CRTC id\n");
12273 return -ENOENT;
12274 }
12275
12276 crtc = to_intel_crtc(drmmode_crtc);
12277 pipe_from_crtc_id->pipe = crtc->pipe;
12278
12279 return 0;
12280 }
12281
12282 static int intel_encoder_clones(struct intel_encoder *encoder)
12283 {
12284 struct drm_device *dev = encoder->base.dev;
12285 struct intel_encoder *source_encoder;
12286 int index_mask = 0;
12287 int entry = 0;
12288
12289 for_each_intel_encoder(dev, source_encoder) {
12290 if (encoders_cloneable(encoder, source_encoder))
12291 index_mask |= (1 << entry);
12292
12293 entry++;
12294 }
12295
12296 return index_mask;
12297 }
12298
12299 static bool has_edp_a(struct drm_device *dev)
12300 {
12301 struct drm_i915_private *dev_priv = dev->dev_private;
12302
12303 if (!IS_MOBILE(dev))
12304 return false;
12305
12306 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12307 return false;
12308
12309 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12310 return false;
12311
12312 return true;
12313 }
12314
12315 static bool intel_crt_present(struct drm_device *dev)
12316 {
12317 struct drm_i915_private *dev_priv = dev->dev_private;
12318
12319 if (INTEL_INFO(dev)->gen >= 9)
12320 return false;
12321
12322 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12323 return false;
12324
12325 if (IS_CHERRYVIEW(dev))
12326 return false;
12327
12328 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12329 return false;
12330
12331 return true;
12332 }
12333
12334 static void intel_setup_outputs(struct drm_device *dev)
12335 {
12336 struct drm_i915_private *dev_priv = dev->dev_private;
12337 struct intel_encoder *encoder;
12338 bool dpd_is_edp = false;
12339
12340 intel_lvds_init(dev);
12341
12342 if (intel_crt_present(dev))
12343 intel_crt_init(dev);
12344
12345 if (HAS_DDI(dev)) {
12346 int found;
12347
12348 /* Haswell uses DDI functions to detect digital outputs */
12349 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12350 /* DDI A only supports eDP */
12351 if (found)
12352 intel_ddi_init(dev, PORT_A);
12353
12354 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12355 * register */
12356 found = I915_READ(SFUSE_STRAP);
12357
12358 if (found & SFUSE_STRAP_DDIB_DETECTED)
12359 intel_ddi_init(dev, PORT_B);
12360 if (found & SFUSE_STRAP_DDIC_DETECTED)
12361 intel_ddi_init(dev, PORT_C);
12362 if (found & SFUSE_STRAP_DDID_DETECTED)
12363 intel_ddi_init(dev, PORT_D);
12364 } else if (HAS_PCH_SPLIT(dev)) {
12365 int found;
12366 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12367
12368 if (has_edp_a(dev))
12369 intel_dp_init(dev, DP_A, PORT_A);
12370
12371 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12372 /* PCH SDVOB multiplex with HDMIB */
12373 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12374 if (!found)
12375 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12376 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12377 intel_dp_init(dev, PCH_DP_B, PORT_B);
12378 }
12379
12380 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12381 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12382
12383 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12384 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12385
12386 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12387 intel_dp_init(dev, PCH_DP_C, PORT_C);
12388
12389 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12390 intel_dp_init(dev, PCH_DP_D, PORT_D);
12391 } else if (IS_VALLEYVIEW(dev)) {
12392 /*
12393 * The DP_DETECTED bit is the latched state of the DDC
12394 * SDA pin at boot. However since eDP doesn't require DDC
12395 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12396 * eDP ports may have been muxed to an alternate function.
12397 * Thus we can't rely on the DP_DETECTED bit alone to detect
12398 * eDP ports. Consult the VBT as well as DP_DETECTED to
12399 * detect eDP ports.
12400 */
12401 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12402 !intel_dp_is_edp(dev, PORT_B))
12403 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12404 PORT_B);
12405 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12406 intel_dp_is_edp(dev, PORT_B))
12407 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12408
12409 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12410 !intel_dp_is_edp(dev, PORT_C))
12411 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12412 PORT_C);
12413 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12414 intel_dp_is_edp(dev, PORT_C))
12415 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12416
12417 if (IS_CHERRYVIEW(dev)) {
12418 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12419 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12420 PORT_D);
12421 /* eDP not supported on port D, so don't check VBT */
12422 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12423 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12424 }
12425
12426 intel_dsi_init(dev);
12427 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12428 bool found = false;
12429
12430 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12431 DRM_DEBUG_KMS("probing SDVOB\n");
12432 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12433 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12434 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12435 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12436 }
12437
12438 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12439 intel_dp_init(dev, DP_B, PORT_B);
12440 }
12441
12442 /* Before G4X SDVOC doesn't have its own detect register */
12443
12444 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12445 DRM_DEBUG_KMS("probing SDVOC\n");
12446 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12447 }
12448
12449 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12450
12451 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12452 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12453 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12454 }
12455 if (SUPPORTS_INTEGRATED_DP(dev))
12456 intel_dp_init(dev, DP_C, PORT_C);
12457 }
12458
12459 if (SUPPORTS_INTEGRATED_DP(dev) &&
12460 (I915_READ(DP_D) & DP_DETECTED))
12461 intel_dp_init(dev, DP_D, PORT_D);
12462 } else if (IS_GEN2(dev))
12463 intel_dvo_init(dev);
12464
12465 if (SUPPORTS_TV(dev))
12466 intel_tv_init(dev);
12467
12468 intel_psr_init(dev);
12469
12470 for_each_intel_encoder(dev, encoder) {
12471 encoder->base.possible_crtcs = encoder->crtc_mask;
12472 encoder->base.possible_clones =
12473 intel_encoder_clones(encoder);
12474 }
12475
12476 intel_init_pch_refclk(dev);
12477
12478 drm_helper_move_panel_connectors_to_head(dev);
12479 }
12480
12481 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12482 {
12483 struct drm_device *dev = fb->dev;
12484 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12485
12486 drm_framebuffer_cleanup(fb);
12487 mutex_lock(&dev->struct_mutex);
12488 WARN_ON(!intel_fb->obj->framebuffer_references--);
12489 drm_gem_object_unreference(&intel_fb->obj->base);
12490 mutex_unlock(&dev->struct_mutex);
12491 kfree(intel_fb);
12492 }
12493
12494 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12495 struct drm_file *file,
12496 unsigned int *handle)
12497 {
12498 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12499 struct drm_i915_gem_object *obj = intel_fb->obj;
12500
12501 return drm_gem_handle_create(file, &obj->base, handle);
12502 }
12503
12504 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12505 .destroy = intel_user_framebuffer_destroy,
12506 .create_handle = intel_user_framebuffer_create_handle,
12507 };
12508
12509 static int intel_framebuffer_init(struct drm_device *dev,
12510 struct intel_framebuffer *intel_fb,
12511 struct drm_mode_fb_cmd2 *mode_cmd,
12512 struct drm_i915_gem_object *obj)
12513 {
12514 int aligned_height;
12515 int pitch_limit;
12516 int ret;
12517
12518 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12519
12520 if (obj->tiling_mode == I915_TILING_Y) {
12521 DRM_DEBUG("hardware does not support tiling Y\n");
12522 return -EINVAL;
12523 }
12524
12525 if (mode_cmd->pitches[0] & 63) {
12526 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12527 mode_cmd->pitches[0]);
12528 return -EINVAL;
12529 }
12530
12531 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12532 pitch_limit = 32*1024;
12533 } else if (INTEL_INFO(dev)->gen >= 4) {
12534 if (obj->tiling_mode)
12535 pitch_limit = 16*1024;
12536 else
12537 pitch_limit = 32*1024;
12538 } else if (INTEL_INFO(dev)->gen >= 3) {
12539 if (obj->tiling_mode)
12540 pitch_limit = 8*1024;
12541 else
12542 pitch_limit = 16*1024;
12543 } else
12544 /* XXX DSPC is limited to 4k tiled */
12545 pitch_limit = 8*1024;
12546
12547 if (mode_cmd->pitches[0] > pitch_limit) {
12548 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12549 obj->tiling_mode ? "tiled" : "linear",
12550 mode_cmd->pitches[0], pitch_limit);
12551 return -EINVAL;
12552 }
12553
12554 if (obj->tiling_mode != I915_TILING_NONE &&
12555 mode_cmd->pitches[0] != obj->stride) {
12556 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12557 mode_cmd->pitches[0], obj->stride);
12558 return -EINVAL;
12559 }
12560
12561 /* Reject formats not supported by any plane early. */
12562 switch (mode_cmd->pixel_format) {
12563 case DRM_FORMAT_C8:
12564 case DRM_FORMAT_RGB565:
12565 case DRM_FORMAT_XRGB8888:
12566 case DRM_FORMAT_ARGB8888:
12567 break;
12568 case DRM_FORMAT_XRGB1555:
12569 case DRM_FORMAT_ARGB1555:
12570 if (INTEL_INFO(dev)->gen > 3) {
12571 DRM_DEBUG("unsupported pixel format: %s\n",
12572 drm_get_format_name(mode_cmd->pixel_format));
12573 return -EINVAL;
12574 }
12575 break;
12576 case DRM_FORMAT_XBGR8888:
12577 case DRM_FORMAT_ABGR8888:
12578 case DRM_FORMAT_XRGB2101010:
12579 case DRM_FORMAT_ARGB2101010:
12580 case DRM_FORMAT_XBGR2101010:
12581 case DRM_FORMAT_ABGR2101010:
12582 if (INTEL_INFO(dev)->gen < 4) {
12583 DRM_DEBUG("unsupported pixel format: %s\n",
12584 drm_get_format_name(mode_cmd->pixel_format));
12585 return -EINVAL;
12586 }
12587 break;
12588 case DRM_FORMAT_YUYV:
12589 case DRM_FORMAT_UYVY:
12590 case DRM_FORMAT_YVYU:
12591 case DRM_FORMAT_VYUY:
12592 if (INTEL_INFO(dev)->gen < 5) {
12593 DRM_DEBUG("unsupported pixel format: %s\n",
12594 drm_get_format_name(mode_cmd->pixel_format));
12595 return -EINVAL;
12596 }
12597 break;
12598 default:
12599 DRM_DEBUG("unsupported pixel format: %s\n",
12600 drm_get_format_name(mode_cmd->pixel_format));
12601 return -EINVAL;
12602 }
12603
12604 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12605 if (mode_cmd->offsets[0] != 0)
12606 return -EINVAL;
12607
12608 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12609 obj->tiling_mode);
12610 /* FIXME drm helper for size checks (especially planar formats)? */
12611 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12612 return -EINVAL;
12613
12614 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12615 intel_fb->obj = obj;
12616 intel_fb->obj->framebuffer_references++;
12617
12618 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12619 if (ret) {
12620 DRM_ERROR("framebuffer init failed %d\n", ret);
12621 return ret;
12622 }
12623
12624 return 0;
12625 }
12626
12627 static struct drm_framebuffer *
12628 intel_user_framebuffer_create(struct drm_device *dev,
12629 struct drm_file *filp,
12630 struct drm_mode_fb_cmd2 *mode_cmd)
12631 {
12632 struct drm_i915_gem_object *obj;
12633
12634 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12635 mode_cmd->handles[0]));
12636 if (&obj->base == NULL)
12637 return ERR_PTR(-ENOENT);
12638
12639 return intel_framebuffer_create(dev, mode_cmd, obj);
12640 }
12641
12642 #ifndef CONFIG_DRM_I915_FBDEV
12643 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12644 {
12645 }
12646 #endif
12647
12648 static const struct drm_mode_config_funcs intel_mode_funcs = {
12649 .fb_create = intel_user_framebuffer_create,
12650 .output_poll_changed = intel_fbdev_output_poll_changed,
12651 };
12652
12653 /* Set up chip specific display functions */
12654 static void intel_init_display(struct drm_device *dev)
12655 {
12656 struct drm_i915_private *dev_priv = dev->dev_private;
12657
12658 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12659 dev_priv->display.find_dpll = g4x_find_best_dpll;
12660 else if (IS_CHERRYVIEW(dev))
12661 dev_priv->display.find_dpll = chv_find_best_dpll;
12662 else if (IS_VALLEYVIEW(dev))
12663 dev_priv->display.find_dpll = vlv_find_best_dpll;
12664 else if (IS_PINEVIEW(dev))
12665 dev_priv->display.find_dpll = pnv_find_best_dpll;
12666 else
12667 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12668
12669 if (HAS_DDI(dev)) {
12670 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12671 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12672 dev_priv->display.crtc_compute_clock =
12673 haswell_crtc_compute_clock;
12674 dev_priv->display.crtc_enable = haswell_crtc_enable;
12675 dev_priv->display.crtc_disable = haswell_crtc_disable;
12676 dev_priv->display.off = ironlake_crtc_off;
12677 if (INTEL_INFO(dev)->gen >= 9)
12678 dev_priv->display.update_primary_plane =
12679 skylake_update_primary_plane;
12680 else
12681 dev_priv->display.update_primary_plane =
12682 ironlake_update_primary_plane;
12683 } else if (HAS_PCH_SPLIT(dev)) {
12684 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12685 dev_priv->display.get_plane_config = ironlake_get_plane_config;
12686 dev_priv->display.crtc_compute_clock =
12687 ironlake_crtc_compute_clock;
12688 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12689 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12690 dev_priv->display.off = ironlake_crtc_off;
12691 dev_priv->display.update_primary_plane =
12692 ironlake_update_primary_plane;
12693 } else if (IS_VALLEYVIEW(dev)) {
12694 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12695 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12696 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12697 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12698 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12699 dev_priv->display.off = i9xx_crtc_off;
12700 dev_priv->display.update_primary_plane =
12701 i9xx_update_primary_plane;
12702 } else {
12703 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12704 dev_priv->display.get_plane_config = i9xx_get_plane_config;
12705 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12706 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12707 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12708 dev_priv->display.off = i9xx_crtc_off;
12709 dev_priv->display.update_primary_plane =
12710 i9xx_update_primary_plane;
12711 }
12712
12713 /* Returns the core display clock speed */
12714 if (IS_VALLEYVIEW(dev))
12715 dev_priv->display.get_display_clock_speed =
12716 valleyview_get_display_clock_speed;
12717 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12718 dev_priv->display.get_display_clock_speed =
12719 i945_get_display_clock_speed;
12720 else if (IS_I915G(dev))
12721 dev_priv->display.get_display_clock_speed =
12722 i915_get_display_clock_speed;
12723 else if (IS_I945GM(dev) || IS_845G(dev))
12724 dev_priv->display.get_display_clock_speed =
12725 i9xx_misc_get_display_clock_speed;
12726 else if (IS_PINEVIEW(dev))
12727 dev_priv->display.get_display_clock_speed =
12728 pnv_get_display_clock_speed;
12729 else if (IS_I915GM(dev))
12730 dev_priv->display.get_display_clock_speed =
12731 i915gm_get_display_clock_speed;
12732 else if (IS_I865G(dev))
12733 dev_priv->display.get_display_clock_speed =
12734 i865_get_display_clock_speed;
12735 else if (IS_I85X(dev))
12736 dev_priv->display.get_display_clock_speed =
12737 i855_get_display_clock_speed;
12738 else /* 852, 830 */
12739 dev_priv->display.get_display_clock_speed =
12740 i830_get_display_clock_speed;
12741
12742 if (IS_GEN5(dev)) {
12743 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12744 } else if (IS_GEN6(dev)) {
12745 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12746 } else if (IS_IVYBRIDGE(dev)) {
12747 /* FIXME: detect B0+ stepping and use auto training */
12748 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12749 dev_priv->display.modeset_global_resources =
12750 ivb_modeset_global_resources;
12751 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12752 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12753 } else if (IS_VALLEYVIEW(dev)) {
12754 dev_priv->display.modeset_global_resources =
12755 valleyview_modeset_global_resources;
12756 }
12757
12758 /* Default just returns -ENODEV to indicate unsupported */
12759 dev_priv->display.queue_flip = intel_default_queue_flip;
12760
12761 switch (INTEL_INFO(dev)->gen) {
12762 case 2:
12763 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12764 break;
12765
12766 case 3:
12767 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12768 break;
12769
12770 case 4:
12771 case 5:
12772 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12773 break;
12774
12775 case 6:
12776 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12777 break;
12778 case 7:
12779 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12780 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12781 break;
12782 case 9:
12783 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12784 break;
12785 }
12786
12787 intel_panel_init_backlight_funcs(dev);
12788
12789 mutex_init(&dev_priv->pps_mutex);
12790 }
12791
12792 /*
12793 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12794 * resume, or other times. This quirk makes sure that's the case for
12795 * affected systems.
12796 */
12797 static void quirk_pipea_force(struct drm_device *dev)
12798 {
12799 struct drm_i915_private *dev_priv = dev->dev_private;
12800
12801 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12802 DRM_INFO("applying pipe a force quirk\n");
12803 }
12804
12805 static void quirk_pipeb_force(struct drm_device *dev)
12806 {
12807 struct drm_i915_private *dev_priv = dev->dev_private;
12808
12809 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12810 DRM_INFO("applying pipe b force quirk\n");
12811 }
12812
12813 /*
12814 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12815 */
12816 static void quirk_ssc_force_disable(struct drm_device *dev)
12817 {
12818 struct drm_i915_private *dev_priv = dev->dev_private;
12819 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
12820 DRM_INFO("applying lvds SSC disable quirk\n");
12821 }
12822
12823 /*
12824 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12825 * brightness value
12826 */
12827 static void quirk_invert_brightness(struct drm_device *dev)
12828 {
12829 struct drm_i915_private *dev_priv = dev->dev_private;
12830 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
12831 DRM_INFO("applying inverted panel brightness quirk\n");
12832 }
12833
12834 /* Some VBT's incorrectly indicate no backlight is present */
12835 static void quirk_backlight_present(struct drm_device *dev)
12836 {
12837 struct drm_i915_private *dev_priv = dev->dev_private;
12838 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12839 DRM_INFO("applying backlight present quirk\n");
12840 }
12841
12842 struct intel_quirk {
12843 int device;
12844 int subsystem_vendor;
12845 int subsystem_device;
12846 void (*hook)(struct drm_device *dev);
12847 };
12848
12849 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12850 struct intel_dmi_quirk {
12851 void (*hook)(struct drm_device *dev);
12852 const struct dmi_system_id (*dmi_id_list)[];
12853 };
12854
12855 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12856 {
12857 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12858 return 1;
12859 }
12860
12861 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12862 {
12863 .dmi_id_list = &(const struct dmi_system_id[]) {
12864 {
12865 .callback = intel_dmi_reverse_brightness,
12866 .ident = "NCR Corporation",
12867 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12868 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12869 },
12870 },
12871 { } /* terminating entry */
12872 },
12873 .hook = quirk_invert_brightness,
12874 },
12875 };
12876
12877 static struct intel_quirk intel_quirks[] = {
12878 /* HP Mini needs pipe A force quirk (LP: #322104) */
12879 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
12880
12881 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12882 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12883
12884 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12885 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12886
12887 /* 830 needs to leave pipe A & dpll A up */
12888 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12889
12890 /* 830 needs to leave pipe B & dpll B up */
12891 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12892
12893 /* Lenovo U160 cannot use SSC on LVDS */
12894 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
12895
12896 /* Sony Vaio Y cannot use SSC on LVDS */
12897 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
12898
12899 /* Acer Aspire 5734Z must invert backlight brightness */
12900 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12901
12902 /* Acer/eMachines G725 */
12903 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12904
12905 /* Acer/eMachines e725 */
12906 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12907
12908 /* Acer/Packard Bell NCL20 */
12909 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12910
12911 /* Acer Aspire 4736Z */
12912 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
12913
12914 /* Acer Aspire 5336 */
12915 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
12916
12917 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12918 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
12919
12920 /* Acer C720 Chromebook (Core i3 4005U) */
12921 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12922
12923 /* Apple Macbook 2,1 (Core 2 T7400) */
12924 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
12925
12926 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12927 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
12928
12929 /* HP Chromebook 14 (Celeron 2955U) */
12930 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
12931 };
12932
12933 static void intel_init_quirks(struct drm_device *dev)
12934 {
12935 struct pci_dev *d = dev->pdev;
12936 int i;
12937
12938 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12939 struct intel_quirk *q = &intel_quirks[i];
12940
12941 if (d->device == q->device &&
12942 (d->subsystem_vendor == q->subsystem_vendor ||
12943 q->subsystem_vendor == PCI_ANY_ID) &&
12944 (d->subsystem_device == q->subsystem_device ||
12945 q->subsystem_device == PCI_ANY_ID))
12946 q->hook(dev);
12947 }
12948 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12949 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12950 intel_dmi_quirks[i].hook(dev);
12951 }
12952 }
12953
12954 /* Disable the VGA plane that we never use */
12955 static void i915_disable_vga(struct drm_device *dev)
12956 {
12957 struct drm_i915_private *dev_priv = dev->dev_private;
12958 u8 sr1;
12959 u32 vga_reg = i915_vgacntrl_reg(dev);
12960
12961 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
12962 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
12963 outb(SR01, VGA_SR_INDEX);
12964 sr1 = inb(VGA_SR_DATA);
12965 outb(sr1 | 1<<5, VGA_SR_DATA);
12966 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12967 udelay(300);
12968
12969 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12970 POSTING_READ(vga_reg);
12971 }
12972
12973 void intel_modeset_init_hw(struct drm_device *dev)
12974 {
12975 intel_prepare_ddi(dev);
12976
12977 if (IS_VALLEYVIEW(dev))
12978 vlv_update_cdclk(dev);
12979
12980 intel_init_clock_gating(dev);
12981
12982 intel_enable_gt_powersave(dev);
12983 }
12984
12985 void intel_modeset_init(struct drm_device *dev)
12986 {
12987 struct drm_i915_private *dev_priv = dev->dev_private;
12988 int sprite, ret;
12989 enum pipe pipe;
12990 struct intel_crtc *crtc;
12991
12992 drm_mode_config_init(dev);
12993
12994 dev->mode_config.min_width = 0;
12995 dev->mode_config.min_height = 0;
12996
12997 dev->mode_config.preferred_depth = 24;
12998 dev->mode_config.prefer_shadow = 1;
12999
13000 dev->mode_config.funcs = &intel_mode_funcs;
13001
13002 intel_init_quirks(dev);
13003
13004 intel_init_pm(dev);
13005
13006 if (INTEL_INFO(dev)->num_pipes == 0)
13007 return;
13008
13009 intel_init_display(dev);
13010 intel_init_audio(dev);
13011
13012 if (IS_GEN2(dev)) {
13013 dev->mode_config.max_width = 2048;
13014 dev->mode_config.max_height = 2048;
13015 } else if (IS_GEN3(dev)) {
13016 dev->mode_config.max_width = 4096;
13017 dev->mode_config.max_height = 4096;
13018 } else {
13019 dev->mode_config.max_width = 8192;
13020 dev->mode_config.max_height = 8192;
13021 }
13022
13023 if (IS_845G(dev) || IS_I865G(dev)) {
13024 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13025 dev->mode_config.cursor_height = 1023;
13026 } else if (IS_GEN2(dev)) {
13027 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13028 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13029 } else {
13030 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13031 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13032 }
13033
13034 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13035
13036 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13037 INTEL_INFO(dev)->num_pipes,
13038 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13039
13040 for_each_pipe(dev_priv, pipe) {
13041 intel_crtc_init(dev, pipe);
13042 for_each_sprite(pipe, sprite) {
13043 ret = intel_plane_init(dev, pipe, sprite);
13044 if (ret)
13045 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13046 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13047 }
13048 }
13049
13050 intel_init_dpio(dev);
13051
13052 intel_shared_dpll_init(dev);
13053
13054 /* Just disable it once at startup */
13055 i915_disable_vga(dev);
13056 intel_setup_outputs(dev);
13057
13058 /* Just in case the BIOS is doing something questionable. */
13059 intel_fbc_disable(dev);
13060
13061 drm_modeset_lock_all(dev);
13062 intel_modeset_setup_hw_state(dev, false);
13063 drm_modeset_unlock_all(dev);
13064
13065 for_each_intel_crtc(dev, crtc) {
13066 if (!crtc->active)
13067 continue;
13068
13069 /*
13070 * Note that reserving the BIOS fb up front prevents us
13071 * from stuffing other stolen allocations like the ring
13072 * on top. This prevents some ugliness at boot time, and
13073 * can even allow for smooth boot transitions if the BIOS
13074 * fb is large enough for the active pipe configuration.
13075 */
13076 if (dev_priv->display.get_plane_config) {
13077 dev_priv->display.get_plane_config(crtc,
13078 &crtc->plane_config);
13079 /*
13080 * If the fb is shared between multiple heads, we'll
13081 * just get the first one.
13082 */
13083 intel_find_plane_obj(crtc, &crtc->plane_config);
13084 }
13085 }
13086 }
13087
13088 static void intel_enable_pipe_a(struct drm_device *dev)
13089 {
13090 struct intel_connector *connector;
13091 struct drm_connector *crt = NULL;
13092 struct intel_load_detect_pipe load_detect_temp;
13093 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13094
13095 /* We can't just switch on the pipe A, we need to set things up with a
13096 * proper mode and output configuration. As a gross hack, enable pipe A
13097 * by enabling the load detect pipe once. */
13098 list_for_each_entry(connector,
13099 &dev->mode_config.connector_list,
13100 base.head) {
13101 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13102 crt = &connector->base;
13103 break;
13104 }
13105 }
13106
13107 if (!crt)
13108 return;
13109
13110 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13111 intel_release_load_detect_pipe(crt, &load_detect_temp);
13112 }
13113
13114 static bool
13115 intel_check_plane_mapping(struct intel_crtc *crtc)
13116 {
13117 struct drm_device *dev = crtc->base.dev;
13118 struct drm_i915_private *dev_priv = dev->dev_private;
13119 u32 reg, val;
13120
13121 if (INTEL_INFO(dev)->num_pipes == 1)
13122 return true;
13123
13124 reg = DSPCNTR(!crtc->plane);
13125 val = I915_READ(reg);
13126
13127 if ((val & DISPLAY_PLANE_ENABLE) &&
13128 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13129 return false;
13130
13131 return true;
13132 }
13133
13134 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13135 {
13136 struct drm_device *dev = crtc->base.dev;
13137 struct drm_i915_private *dev_priv = dev->dev_private;
13138 u32 reg;
13139
13140 /* Clear any frame start delays used for debugging left by the BIOS */
13141 reg = PIPECONF(crtc->config->cpu_transcoder);
13142 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13143
13144 /* restore vblank interrupts to correct state */
13145 if (crtc->active) {
13146 update_scanline_offset(crtc);
13147 drm_vblank_on(dev, crtc->pipe);
13148 } else
13149 drm_vblank_off(dev, crtc->pipe);
13150
13151 /* We need to sanitize the plane -> pipe mapping first because this will
13152 * disable the crtc (and hence change the state) if it is wrong. Note
13153 * that gen4+ has a fixed plane -> pipe mapping. */
13154 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13155 struct intel_connector *connector;
13156 bool plane;
13157
13158 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13159 crtc->base.base.id);
13160
13161 /* Pipe has the wrong plane attached and the plane is active.
13162 * Temporarily change the plane mapping and disable everything
13163 * ... */
13164 plane = crtc->plane;
13165 crtc->plane = !plane;
13166 crtc->primary_enabled = true;
13167 dev_priv->display.crtc_disable(&crtc->base);
13168 crtc->plane = plane;
13169
13170 /* ... and break all links. */
13171 list_for_each_entry(connector, &dev->mode_config.connector_list,
13172 base.head) {
13173 if (connector->encoder->base.crtc != &crtc->base)
13174 continue;
13175
13176 connector->base.dpms = DRM_MODE_DPMS_OFF;
13177 connector->base.encoder = NULL;
13178 }
13179 /* multiple connectors may have the same encoder:
13180 * handle them and break crtc link separately */
13181 list_for_each_entry(connector, &dev->mode_config.connector_list,
13182 base.head)
13183 if (connector->encoder->base.crtc == &crtc->base) {
13184 connector->encoder->base.crtc = NULL;
13185 connector->encoder->connectors_active = false;
13186 }
13187
13188 WARN_ON(crtc->active);
13189 crtc->base.enabled = false;
13190 }
13191
13192 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13193 crtc->pipe == PIPE_A && !crtc->active) {
13194 /* BIOS forgot to enable pipe A, this mostly happens after
13195 * resume. Force-enable the pipe to fix this, the update_dpms
13196 * call below we restore the pipe to the right state, but leave
13197 * the required bits on. */
13198 intel_enable_pipe_a(dev);
13199 }
13200
13201 /* Adjust the state of the output pipe according to whether we
13202 * have active connectors/encoders. */
13203 intel_crtc_update_dpms(&crtc->base);
13204
13205 if (crtc->active != crtc->base.enabled) {
13206 struct intel_encoder *encoder;
13207
13208 /* This can happen either due to bugs in the get_hw_state
13209 * functions or because the pipe is force-enabled due to the
13210 * pipe A quirk. */
13211 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13212 crtc->base.base.id,
13213 crtc->base.enabled ? "enabled" : "disabled",
13214 crtc->active ? "enabled" : "disabled");
13215
13216 crtc->base.enabled = crtc->active;
13217
13218 /* Because we only establish the connector -> encoder ->
13219 * crtc links if something is active, this means the
13220 * crtc is now deactivated. Break the links. connector
13221 * -> encoder links are only establish when things are
13222 * actually up, hence no need to break them. */
13223 WARN_ON(crtc->active);
13224
13225 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13226 WARN_ON(encoder->connectors_active);
13227 encoder->base.crtc = NULL;
13228 }
13229 }
13230
13231 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13232 /*
13233 * We start out with underrun reporting disabled to avoid races.
13234 * For correct bookkeeping mark this on active crtcs.
13235 *
13236 * Also on gmch platforms we dont have any hardware bits to
13237 * disable the underrun reporting. Which means we need to start
13238 * out with underrun reporting disabled also on inactive pipes,
13239 * since otherwise we'll complain about the garbage we read when
13240 * e.g. coming up after runtime pm.
13241 *
13242 * No protection against concurrent access is required - at
13243 * worst a fifo underrun happens which also sets this to false.
13244 */
13245 crtc->cpu_fifo_underrun_disabled = true;
13246 crtc->pch_fifo_underrun_disabled = true;
13247 }
13248 }
13249
13250 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13251 {
13252 struct intel_connector *connector;
13253 struct drm_device *dev = encoder->base.dev;
13254
13255 /* We need to check both for a crtc link (meaning that the
13256 * encoder is active and trying to read from a pipe) and the
13257 * pipe itself being active. */
13258 bool has_active_crtc = encoder->base.crtc &&
13259 to_intel_crtc(encoder->base.crtc)->active;
13260
13261 if (encoder->connectors_active && !has_active_crtc) {
13262 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13263 encoder->base.base.id,
13264 encoder->base.name);
13265
13266 /* Connector is active, but has no active pipe. This is
13267 * fallout from our resume register restoring. Disable
13268 * the encoder manually again. */
13269 if (encoder->base.crtc) {
13270 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13271 encoder->base.base.id,
13272 encoder->base.name);
13273 encoder->disable(encoder);
13274 if (encoder->post_disable)
13275 encoder->post_disable(encoder);
13276 }
13277 encoder->base.crtc = NULL;
13278 encoder->connectors_active = false;
13279
13280 /* Inconsistent output/port/pipe state happens presumably due to
13281 * a bug in one of the get_hw_state functions. Or someplace else
13282 * in our code, like the register restore mess on resume. Clamp
13283 * things to off as a safer default. */
13284 list_for_each_entry(connector,
13285 &dev->mode_config.connector_list,
13286 base.head) {
13287 if (connector->encoder != encoder)
13288 continue;
13289 connector->base.dpms = DRM_MODE_DPMS_OFF;
13290 connector->base.encoder = NULL;
13291 }
13292 }
13293 /* Enabled encoders without active connectors will be fixed in
13294 * the crtc fixup. */
13295 }
13296
13297 void i915_redisable_vga_power_on(struct drm_device *dev)
13298 {
13299 struct drm_i915_private *dev_priv = dev->dev_private;
13300 u32 vga_reg = i915_vgacntrl_reg(dev);
13301
13302 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13303 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13304 i915_disable_vga(dev);
13305 }
13306 }
13307
13308 void i915_redisable_vga(struct drm_device *dev)
13309 {
13310 struct drm_i915_private *dev_priv = dev->dev_private;
13311
13312 /* This function can be called both from intel_modeset_setup_hw_state or
13313 * at a very early point in our resume sequence, where the power well
13314 * structures are not yet restored. Since this function is at a very
13315 * paranoid "someone might have enabled VGA while we were not looking"
13316 * level, just check if the power well is enabled instead of trying to
13317 * follow the "don't touch the power well if we don't need it" policy
13318 * the rest of the driver uses. */
13319 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13320 return;
13321
13322 i915_redisable_vga_power_on(dev);
13323 }
13324
13325 static bool primary_get_hw_state(struct intel_crtc *crtc)
13326 {
13327 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13328
13329 if (!crtc->active)
13330 return false;
13331
13332 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13333 }
13334
13335 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13336 {
13337 struct drm_i915_private *dev_priv = dev->dev_private;
13338 enum pipe pipe;
13339 struct intel_crtc *crtc;
13340 struct intel_encoder *encoder;
13341 struct intel_connector *connector;
13342 int i;
13343
13344 for_each_intel_crtc(dev, crtc) {
13345 memset(crtc->config, 0, sizeof(*crtc->config));
13346
13347 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13348
13349 crtc->active = dev_priv->display.get_pipe_config(crtc,
13350 crtc->config);
13351
13352 crtc->base.enabled = crtc->active;
13353 crtc->primary_enabled = primary_get_hw_state(crtc);
13354
13355 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13356 crtc->base.base.id,
13357 crtc->active ? "enabled" : "disabled");
13358 }
13359
13360 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13361 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13362
13363 pll->on = pll->get_hw_state(dev_priv, pll,
13364 &pll->config.hw_state);
13365 pll->active = 0;
13366 pll->config.crtc_mask = 0;
13367 for_each_intel_crtc(dev, crtc) {
13368 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13369 pll->active++;
13370 pll->config.crtc_mask |= 1 << crtc->pipe;
13371 }
13372 }
13373
13374 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13375 pll->name, pll->config.crtc_mask, pll->on);
13376
13377 if (pll->config.crtc_mask)
13378 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13379 }
13380
13381 for_each_intel_encoder(dev, encoder) {
13382 pipe = 0;
13383
13384 if (encoder->get_hw_state(encoder, &pipe)) {
13385 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13386 encoder->base.crtc = &crtc->base;
13387 encoder->get_config(encoder, crtc->config);
13388 } else {
13389 encoder->base.crtc = NULL;
13390 }
13391
13392 encoder->connectors_active = false;
13393 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13394 encoder->base.base.id,
13395 encoder->base.name,
13396 encoder->base.crtc ? "enabled" : "disabled",
13397 pipe_name(pipe));
13398 }
13399
13400 list_for_each_entry(connector, &dev->mode_config.connector_list,
13401 base.head) {
13402 if (connector->get_hw_state(connector)) {
13403 connector->base.dpms = DRM_MODE_DPMS_ON;
13404 connector->encoder->connectors_active = true;
13405 connector->base.encoder = &connector->encoder->base;
13406 } else {
13407 connector->base.dpms = DRM_MODE_DPMS_OFF;
13408 connector->base.encoder = NULL;
13409 }
13410 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13411 connector->base.base.id,
13412 connector->base.name,
13413 connector->base.encoder ? "enabled" : "disabled");
13414 }
13415 }
13416
13417 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13418 * and i915 state tracking structures. */
13419 void intel_modeset_setup_hw_state(struct drm_device *dev,
13420 bool force_restore)
13421 {
13422 struct drm_i915_private *dev_priv = dev->dev_private;
13423 enum pipe pipe;
13424 struct intel_crtc *crtc;
13425 struct intel_encoder *encoder;
13426 int i;
13427
13428 intel_modeset_readout_hw_state(dev);
13429
13430 /*
13431 * Now that we have the config, copy it to each CRTC struct
13432 * Note that this could go away if we move to using crtc_config
13433 * checking everywhere.
13434 */
13435 for_each_intel_crtc(dev, crtc) {
13436 if (crtc->active && i915.fastboot) {
13437 intel_mode_from_pipe_config(&crtc->base.mode,
13438 crtc->config);
13439 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13440 crtc->base.base.id);
13441 drm_mode_debug_printmodeline(&crtc->base.mode);
13442 }
13443 }
13444
13445 /* HW state is read out, now we need to sanitize this mess. */
13446 for_each_intel_encoder(dev, encoder) {
13447 intel_sanitize_encoder(encoder);
13448 }
13449
13450 for_each_pipe(dev_priv, pipe) {
13451 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13452 intel_sanitize_crtc(crtc);
13453 intel_dump_pipe_config(crtc, crtc->config,
13454 "[setup_hw_state]");
13455 }
13456
13457 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13458 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13459
13460 if (!pll->on || pll->active)
13461 continue;
13462
13463 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13464
13465 pll->disable(dev_priv, pll);
13466 pll->on = false;
13467 }
13468
13469 if (IS_GEN9(dev))
13470 skl_wm_get_hw_state(dev);
13471 else if (HAS_PCH_SPLIT(dev))
13472 ilk_wm_get_hw_state(dev);
13473
13474 if (force_restore) {
13475 i915_redisable_vga(dev);
13476
13477 /*
13478 * We need to use raw interfaces for restoring state to avoid
13479 * checking (bogus) intermediate states.
13480 */
13481 for_each_pipe(dev_priv, pipe) {
13482 struct drm_crtc *crtc =
13483 dev_priv->pipe_to_crtc_mapping[pipe];
13484
13485 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13486 crtc->primary->fb);
13487 }
13488 } else {
13489 intel_modeset_update_staged_output_state(dev);
13490 }
13491
13492 intel_modeset_check_state(dev);
13493 }
13494
13495 void intel_modeset_gem_init(struct drm_device *dev)
13496 {
13497 struct drm_i915_private *dev_priv = dev->dev_private;
13498 struct drm_crtc *c;
13499 struct drm_i915_gem_object *obj;
13500
13501 mutex_lock(&dev->struct_mutex);
13502 intel_init_gt_powersave(dev);
13503 mutex_unlock(&dev->struct_mutex);
13504
13505 /*
13506 * There may be no VBT; and if the BIOS enabled SSC we can
13507 * just keep using it to avoid unnecessary flicker. Whereas if the
13508 * BIOS isn't using it, don't assume it will work even if the VBT
13509 * indicates as much.
13510 */
13511 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13512 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13513 DREF_SSC1_ENABLE);
13514
13515 intel_modeset_init_hw(dev);
13516
13517 intel_setup_overlay(dev);
13518
13519 /*
13520 * Make sure any fbs we allocated at startup are properly
13521 * pinned & fenced. When we do the allocation it's too early
13522 * for this.
13523 */
13524 mutex_lock(&dev->struct_mutex);
13525 for_each_crtc(dev, c) {
13526 obj = intel_fb_obj(c->primary->fb);
13527 if (obj == NULL)
13528 continue;
13529
13530 if (intel_pin_and_fence_fb_obj(c->primary,
13531 c->primary->fb,
13532 NULL)) {
13533 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13534 to_intel_crtc(c)->pipe);
13535 drm_framebuffer_unreference(c->primary->fb);
13536 c->primary->fb = NULL;
13537 }
13538 }
13539 mutex_unlock(&dev->struct_mutex);
13540
13541 intel_backlight_register(dev);
13542 }
13543
13544 void intel_connector_unregister(struct intel_connector *intel_connector)
13545 {
13546 struct drm_connector *connector = &intel_connector->base;
13547
13548 intel_panel_destroy_backlight(connector);
13549 drm_connector_unregister(connector);
13550 }
13551
13552 void intel_modeset_cleanup(struct drm_device *dev)
13553 {
13554 struct drm_i915_private *dev_priv = dev->dev_private;
13555 struct drm_connector *connector;
13556
13557 intel_disable_gt_powersave(dev);
13558
13559 intel_backlight_unregister(dev);
13560
13561 /*
13562 * Interrupts and polling as the first thing to avoid creating havoc.
13563 * Too much stuff here (turning of connectors, ...) would
13564 * experience fancy races otherwise.
13565 */
13566 intel_irq_uninstall(dev_priv);
13567
13568 /*
13569 * Due to the hpd irq storm handling the hotplug work can re-arm the
13570 * poll handlers. Hence disable polling after hpd handling is shut down.
13571 */
13572 drm_kms_helper_poll_fini(dev);
13573
13574 mutex_lock(&dev->struct_mutex);
13575
13576 intel_unregister_dsm_handler();
13577
13578 intel_fbc_disable(dev);
13579
13580 ironlake_teardown_rc6(dev);
13581
13582 mutex_unlock(&dev->struct_mutex);
13583
13584 /* flush any delayed tasks or pending work */
13585 flush_scheduled_work();
13586
13587 /* destroy the backlight and sysfs files before encoders/connectors */
13588 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13589 struct intel_connector *intel_connector;
13590
13591 intel_connector = to_intel_connector(connector);
13592 intel_connector->unregister(intel_connector);
13593 }
13594
13595 drm_mode_config_cleanup(dev);
13596
13597 intel_cleanup_overlay(dev);
13598
13599 mutex_lock(&dev->struct_mutex);
13600 intel_cleanup_gt_powersave(dev);
13601 mutex_unlock(&dev->struct_mutex);
13602 }
13603
13604 /*
13605 * Return which encoder is currently attached for connector.
13606 */
13607 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13608 {
13609 return &intel_attached_encoder(connector)->base;
13610 }
13611
13612 void intel_connector_attach_encoder(struct intel_connector *connector,
13613 struct intel_encoder *encoder)
13614 {
13615 connector->encoder = encoder;
13616 drm_mode_connector_attach_encoder(&connector->base,
13617 &encoder->base);
13618 }
13619
13620 /*
13621 * set vga decode state - true == enable VGA decode
13622 */
13623 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13624 {
13625 struct drm_i915_private *dev_priv = dev->dev_private;
13626 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13627 u16 gmch_ctrl;
13628
13629 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13630 DRM_ERROR("failed to read control word\n");
13631 return -EIO;
13632 }
13633
13634 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13635 return 0;
13636
13637 if (state)
13638 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13639 else
13640 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13641
13642 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13643 DRM_ERROR("failed to write control word\n");
13644 return -EIO;
13645 }
13646
13647 return 0;
13648 }
13649
13650 struct intel_display_error_state {
13651
13652 u32 power_well_driver;
13653
13654 int num_transcoders;
13655
13656 struct intel_cursor_error_state {
13657 u32 control;
13658 u32 position;
13659 u32 base;
13660 u32 size;
13661 } cursor[I915_MAX_PIPES];
13662
13663 struct intel_pipe_error_state {
13664 bool power_domain_on;
13665 u32 source;
13666 u32 stat;
13667 } pipe[I915_MAX_PIPES];
13668
13669 struct intel_plane_error_state {
13670 u32 control;
13671 u32 stride;
13672 u32 size;
13673 u32 pos;
13674 u32 addr;
13675 u32 surface;
13676 u32 tile_offset;
13677 } plane[I915_MAX_PIPES];
13678
13679 struct intel_transcoder_error_state {
13680 bool power_domain_on;
13681 enum transcoder cpu_transcoder;
13682
13683 u32 conf;
13684
13685 u32 htotal;
13686 u32 hblank;
13687 u32 hsync;
13688 u32 vtotal;
13689 u32 vblank;
13690 u32 vsync;
13691 } transcoder[4];
13692 };
13693
13694 struct intel_display_error_state *
13695 intel_display_capture_error_state(struct drm_device *dev)
13696 {
13697 struct drm_i915_private *dev_priv = dev->dev_private;
13698 struct intel_display_error_state *error;
13699 int transcoders[] = {
13700 TRANSCODER_A,
13701 TRANSCODER_B,
13702 TRANSCODER_C,
13703 TRANSCODER_EDP,
13704 };
13705 int i;
13706
13707 if (INTEL_INFO(dev)->num_pipes == 0)
13708 return NULL;
13709
13710 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13711 if (error == NULL)
13712 return NULL;
13713
13714 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13715 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13716
13717 for_each_pipe(dev_priv, i) {
13718 error->pipe[i].power_domain_on =
13719 __intel_display_power_is_enabled(dev_priv,
13720 POWER_DOMAIN_PIPE(i));
13721 if (!error->pipe[i].power_domain_on)
13722 continue;
13723
13724 error->cursor[i].control = I915_READ(CURCNTR(i));
13725 error->cursor[i].position = I915_READ(CURPOS(i));
13726 error->cursor[i].base = I915_READ(CURBASE(i));
13727
13728 error->plane[i].control = I915_READ(DSPCNTR(i));
13729 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13730 if (INTEL_INFO(dev)->gen <= 3) {
13731 error->plane[i].size = I915_READ(DSPSIZE(i));
13732 error->plane[i].pos = I915_READ(DSPPOS(i));
13733 }
13734 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13735 error->plane[i].addr = I915_READ(DSPADDR(i));
13736 if (INTEL_INFO(dev)->gen >= 4) {
13737 error->plane[i].surface = I915_READ(DSPSURF(i));
13738 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13739 }
13740
13741 error->pipe[i].source = I915_READ(PIPESRC(i));
13742
13743 if (HAS_GMCH_DISPLAY(dev))
13744 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13745 }
13746
13747 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13748 if (HAS_DDI(dev_priv->dev))
13749 error->num_transcoders++; /* Account for eDP. */
13750
13751 for (i = 0; i < error->num_transcoders; i++) {
13752 enum transcoder cpu_transcoder = transcoders[i];
13753
13754 error->transcoder[i].power_domain_on =
13755 __intel_display_power_is_enabled(dev_priv,
13756 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13757 if (!error->transcoder[i].power_domain_on)
13758 continue;
13759
13760 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13761
13762 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13763 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13764 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13765 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13766 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13767 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13768 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13769 }
13770
13771 return error;
13772 }
13773
13774 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13775
13776 void
13777 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13778 struct drm_device *dev,
13779 struct intel_display_error_state *error)
13780 {
13781 struct drm_i915_private *dev_priv = dev->dev_private;
13782 int i;
13783
13784 if (!error)
13785 return;
13786
13787 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13788 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13789 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13790 error->power_well_driver);
13791 for_each_pipe(dev_priv, i) {
13792 err_printf(m, "Pipe [%d]:\n", i);
13793 err_printf(m, " Power: %s\n",
13794 error->pipe[i].power_domain_on ? "on" : "off");
13795 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13796 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13797
13798 err_printf(m, "Plane [%d]:\n", i);
13799 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13800 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
13801 if (INTEL_INFO(dev)->gen <= 3) {
13802 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13803 err_printf(m, " POS: %08x\n", error->plane[i].pos);
13804 }
13805 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13806 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
13807 if (INTEL_INFO(dev)->gen >= 4) {
13808 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13809 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
13810 }
13811
13812 err_printf(m, "Cursor [%d]:\n", i);
13813 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13814 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13815 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
13816 }
13817
13818 for (i = 0; i < error->num_transcoders; i++) {
13819 err_printf(m, "CPU transcoder: %c\n",
13820 transcoder_name(error->transcoder[i].cpu_transcoder));
13821 err_printf(m, " Power: %s\n",
13822 error->transcoder[i].power_domain_on ? "on" : "off");
13823 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13824 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13825 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13826 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13827 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13828 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13829 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13830 }
13831 }
13832
13833 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13834 {
13835 struct intel_crtc *crtc;
13836
13837 for_each_intel_crtc(dev, crtc) {
13838 struct intel_unpin_work *work;
13839
13840 spin_lock_irq(&dev->event_lock);
13841
13842 work = crtc->unpin_work;
13843
13844 if (work && work->event &&
13845 work->event->base.file_priv == file) {
13846 kfree(work->event);
13847 work->event = NULL;
13848 }
13849
13850 spin_unlock_irq(&dev->event_lock);
13851 }
13852 }
This page took 0.385377 seconds and 6 git commands to generate.