drm/i915: Kill intel_flush_primary_plane()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
52 DRM_FORMAT_XRGB1555,
53 DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_ARGB8888,
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
74 DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87 struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_crtc *crtc,
90 struct drm_atomic_state *state);
91 static int intel_framebuffer_init(struct drm_device *dev,
92 struct intel_framebuffer *ifb,
93 struct drm_mode_fb_cmd2 *mode_cmd,
94 struct drm_i915_gem_object *obj);
95 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
97 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n,
99 struct intel_link_m_n *m2_n2);
100 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
101 static void haswell_set_pipeconf(struct drm_crtc *crtc);
102 static void intel_set_pipe_csc(struct drm_crtc *crtc);
103 static void vlv_prepare_pll(struct intel_crtc *crtc,
104 const struct intel_crtc_state *pipe_config);
105 static void chv_prepare_pll(struct intel_crtc *crtc,
106 const struct intel_crtc_state *pipe_config);
107 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
108 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
109 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
110 struct intel_crtc_state *crtc_state);
111 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
112 int num_connectors);
113 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
114 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
115
116 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
117 {
118 if (!connector->mst_port)
119 return connector->encoder;
120 else
121 return &connector->mst_port->mst_encoders[pipe]->base;
122 }
123
124 typedef struct {
125 int min, max;
126 } intel_range_t;
127
128 typedef struct {
129 int dot_limit;
130 int p2_slow, p2_fast;
131 } intel_p2_t;
132
133 typedef struct intel_limit intel_limit_t;
134 struct intel_limit {
135 intel_range_t dot, vco, n, m, m1, m2, p, p1;
136 intel_p2_t p2;
137 };
138
139 int
140 intel_pch_rawclk(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143
144 WARN_ON(!HAS_PCH_SPLIT(dev));
145
146 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
147 }
148
149 static inline u32 /* units of 100MHz */
150 intel_fdi_link_freq(struct drm_device *dev)
151 {
152 if (IS_GEN5(dev)) {
153 struct drm_i915_private *dev_priv = dev->dev_private;
154 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
155 } else
156 return 27;
157 }
158
159 static const intel_limit_t intel_limits_i8xx_dac = {
160 .dot = { .min = 25000, .max = 350000 },
161 .vco = { .min = 908000, .max = 1512000 },
162 .n = { .min = 2, .max = 16 },
163 .m = { .min = 96, .max = 140 },
164 .m1 = { .min = 18, .max = 26 },
165 .m2 = { .min = 6, .max = 16 },
166 .p = { .min = 4, .max = 128 },
167 .p1 = { .min = 2, .max = 33 },
168 .p2 = { .dot_limit = 165000,
169 .p2_slow = 4, .p2_fast = 2 },
170 };
171
172 static const intel_limit_t intel_limits_i8xx_dvo = {
173 .dot = { .min = 25000, .max = 350000 },
174 .vco = { .min = 908000, .max = 1512000 },
175 .n = { .min = 2, .max = 16 },
176 .m = { .min = 96, .max = 140 },
177 .m1 = { .min = 18, .max = 26 },
178 .m2 = { .min = 6, .max = 16 },
179 .p = { .min = 4, .max = 128 },
180 .p1 = { .min = 2, .max = 33 },
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 4, .p2_fast = 4 },
183 };
184
185 static const intel_limit_t intel_limits_i8xx_lvds = {
186 .dot = { .min = 25000, .max = 350000 },
187 .vco = { .min = 908000, .max = 1512000 },
188 .n = { .min = 2, .max = 16 },
189 .m = { .min = 96, .max = 140 },
190 .m1 = { .min = 18, .max = 26 },
191 .m2 = { .min = 6, .max = 16 },
192 .p = { .min = 4, .max = 128 },
193 .p1 = { .min = 1, .max = 6 },
194 .p2 = { .dot_limit = 165000,
195 .p2_slow = 14, .p2_fast = 7 },
196 };
197
198 static const intel_limit_t intel_limits_i9xx_sdvo = {
199 .dot = { .min = 20000, .max = 400000 },
200 .vco = { .min = 1400000, .max = 2800000 },
201 .n = { .min = 1, .max = 6 },
202 .m = { .min = 70, .max = 120 },
203 .m1 = { .min = 8, .max = 18 },
204 .m2 = { .min = 3, .max = 7 },
205 .p = { .min = 5, .max = 80 },
206 .p1 = { .min = 1, .max = 8 },
207 .p2 = { .dot_limit = 200000,
208 .p2_slow = 10, .p2_fast = 5 },
209 };
210
211 static const intel_limit_t intel_limits_i9xx_lvds = {
212 .dot = { .min = 20000, .max = 400000 },
213 .vco = { .min = 1400000, .max = 2800000 },
214 .n = { .min = 1, .max = 6 },
215 .m = { .min = 70, .max = 120 },
216 .m1 = { .min = 8, .max = 18 },
217 .m2 = { .min = 3, .max = 7 },
218 .p = { .min = 7, .max = 98 },
219 .p1 = { .min = 1, .max = 8 },
220 .p2 = { .dot_limit = 112000,
221 .p2_slow = 14, .p2_fast = 7 },
222 };
223
224
225 static const intel_limit_t intel_limits_g4x_sdvo = {
226 .dot = { .min = 25000, .max = 270000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 4 },
229 .m = { .min = 104, .max = 138 },
230 .m1 = { .min = 17, .max = 23 },
231 .m2 = { .min = 5, .max = 11 },
232 .p = { .min = 10, .max = 30 },
233 .p1 = { .min = 1, .max = 3},
234 .p2 = { .dot_limit = 270000,
235 .p2_slow = 10,
236 .p2_fast = 10
237 },
238 };
239
240 static const intel_limit_t intel_limits_g4x_hdmi = {
241 .dot = { .min = 22000, .max = 400000 },
242 .vco = { .min = 1750000, .max = 3500000},
243 .n = { .min = 1, .max = 4 },
244 .m = { .min = 104, .max = 138 },
245 .m1 = { .min = 16, .max = 23 },
246 .m2 = { .min = 5, .max = 11 },
247 .p = { .min = 5, .max = 80 },
248 .p1 = { .min = 1, .max = 8},
249 .p2 = { .dot_limit = 165000,
250 .p2_slow = 10, .p2_fast = 5 },
251 };
252
253 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
254 .dot = { .min = 20000, .max = 115000 },
255 .vco = { .min = 1750000, .max = 3500000 },
256 .n = { .min = 1, .max = 3 },
257 .m = { .min = 104, .max = 138 },
258 .m1 = { .min = 17, .max = 23 },
259 .m2 = { .min = 5, .max = 11 },
260 .p = { .min = 28, .max = 112 },
261 .p1 = { .min = 2, .max = 8 },
262 .p2 = { .dot_limit = 0,
263 .p2_slow = 14, .p2_fast = 14
264 },
265 };
266
267 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
268 .dot = { .min = 80000, .max = 224000 },
269 .vco = { .min = 1750000, .max = 3500000 },
270 .n = { .min = 1, .max = 3 },
271 .m = { .min = 104, .max = 138 },
272 .m1 = { .min = 17, .max = 23 },
273 .m2 = { .min = 5, .max = 11 },
274 .p = { .min = 14, .max = 42 },
275 .p1 = { .min = 2, .max = 6 },
276 .p2 = { .dot_limit = 0,
277 .p2_slow = 7, .p2_fast = 7
278 },
279 };
280
281 static const intel_limit_t intel_limits_pineview_sdvo = {
282 .dot = { .min = 20000, .max = 400000},
283 .vco = { .min = 1700000, .max = 3500000 },
284 /* Pineview's Ncounter is a ring counter */
285 .n = { .min = 3, .max = 6 },
286 .m = { .min = 2, .max = 256 },
287 /* Pineview only has one combined m divider, which we treat as m2. */
288 .m1 = { .min = 0, .max = 0 },
289 .m2 = { .min = 0, .max = 254 },
290 .p = { .min = 5, .max = 80 },
291 .p1 = { .min = 1, .max = 8 },
292 .p2 = { .dot_limit = 200000,
293 .p2_slow = 10, .p2_fast = 5 },
294 };
295
296 static const intel_limit_t intel_limits_pineview_lvds = {
297 .dot = { .min = 20000, .max = 400000 },
298 .vco = { .min = 1700000, .max = 3500000 },
299 .n = { .min = 3, .max = 6 },
300 .m = { .min = 2, .max = 256 },
301 .m1 = { .min = 0, .max = 0 },
302 .m2 = { .min = 0, .max = 254 },
303 .p = { .min = 7, .max = 112 },
304 .p1 = { .min = 1, .max = 8 },
305 .p2 = { .dot_limit = 112000,
306 .p2_slow = 14, .p2_fast = 14 },
307 };
308
309 /* Ironlake / Sandybridge
310 *
311 * We calculate clock using (register_value + 2) for N/M1/M2, so here
312 * the range value for them is (actual_value - 2).
313 */
314 static const intel_limit_t intel_limits_ironlake_dac = {
315 .dot = { .min = 25000, .max = 350000 },
316 .vco = { .min = 1760000, .max = 3510000 },
317 .n = { .min = 1, .max = 5 },
318 .m = { .min = 79, .max = 127 },
319 .m1 = { .min = 12, .max = 22 },
320 .m2 = { .min = 5, .max = 9 },
321 .p = { .min = 5, .max = 80 },
322 .p1 = { .min = 1, .max = 8 },
323 .p2 = { .dot_limit = 225000,
324 .p2_slow = 10, .p2_fast = 5 },
325 };
326
327 static const intel_limit_t intel_limits_ironlake_single_lvds = {
328 .dot = { .min = 25000, .max = 350000 },
329 .vco = { .min = 1760000, .max = 3510000 },
330 .n = { .min = 1, .max = 3 },
331 .m = { .min = 79, .max = 118 },
332 .m1 = { .min = 12, .max = 22 },
333 .m2 = { .min = 5, .max = 9 },
334 .p = { .min = 28, .max = 112 },
335 .p1 = { .min = 2, .max = 8 },
336 .p2 = { .dot_limit = 225000,
337 .p2_slow = 14, .p2_fast = 14 },
338 };
339
340 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
341 .dot = { .min = 25000, .max = 350000 },
342 .vco = { .min = 1760000, .max = 3510000 },
343 .n = { .min = 1, .max = 3 },
344 .m = { .min = 79, .max = 127 },
345 .m1 = { .min = 12, .max = 22 },
346 .m2 = { .min = 5, .max = 9 },
347 .p = { .min = 14, .max = 56 },
348 .p1 = { .min = 2, .max = 8 },
349 .p2 = { .dot_limit = 225000,
350 .p2_slow = 7, .p2_fast = 7 },
351 };
352
353 /* LVDS 100mhz refclk limits. */
354 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
355 .dot = { .min = 25000, .max = 350000 },
356 .vco = { .min = 1760000, .max = 3510000 },
357 .n = { .min = 1, .max = 2 },
358 .m = { .min = 79, .max = 126 },
359 .m1 = { .min = 12, .max = 22 },
360 .m2 = { .min = 5, .max = 9 },
361 .p = { .min = 28, .max = 112 },
362 .p1 = { .min = 2, .max = 8 },
363 .p2 = { .dot_limit = 225000,
364 .p2_slow = 14, .p2_fast = 14 },
365 };
366
367 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
368 .dot = { .min = 25000, .max = 350000 },
369 .vco = { .min = 1760000, .max = 3510000 },
370 .n = { .min = 1, .max = 3 },
371 .m = { .min = 79, .max = 126 },
372 .m1 = { .min = 12, .max = 22 },
373 .m2 = { .min = 5, .max = 9 },
374 .p = { .min = 14, .max = 42 },
375 .p1 = { .min = 2, .max = 6 },
376 .p2 = { .dot_limit = 225000,
377 .p2_slow = 7, .p2_fast = 7 },
378 };
379
380 static const intel_limit_t intel_limits_vlv = {
381 /*
382 * These are the data rate limits (measured in fast clocks)
383 * since those are the strictest limits we have. The fast
384 * clock and actual rate limits are more relaxed, so checking
385 * them would make no difference.
386 */
387 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
388 .vco = { .min = 4000000, .max = 6000000 },
389 .n = { .min = 1, .max = 7 },
390 .m1 = { .min = 2, .max = 3 },
391 .m2 = { .min = 11, .max = 156 },
392 .p1 = { .min = 2, .max = 3 },
393 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
394 };
395
396 static const intel_limit_t intel_limits_chv = {
397 /*
398 * These are the data rate limits (measured in fast clocks)
399 * since those are the strictest limits we have. The fast
400 * clock and actual rate limits are more relaxed, so checking
401 * them would make no difference.
402 */
403 .dot = { .min = 25000 * 5, .max = 540000 * 5},
404 .vco = { .min = 4800000, .max = 6480000 },
405 .n = { .min = 1, .max = 1 },
406 .m1 = { .min = 2, .max = 2 },
407 .m2 = { .min = 24 << 22, .max = 175 << 22 },
408 .p1 = { .min = 2, .max = 4 },
409 .p2 = { .p2_slow = 1, .p2_fast = 14 },
410 };
411
412 static const intel_limit_t intel_limits_bxt = {
413 /* FIXME: find real dot limits */
414 .dot = { .min = 0, .max = INT_MAX },
415 .vco = { .min = 4800000, .max = 6480000 },
416 .n = { .min = 1, .max = 1 },
417 .m1 = { .min = 2, .max = 2 },
418 /* FIXME: find real m2 limits */
419 .m2 = { .min = 2 << 22, .max = 255 << 22 },
420 .p1 = { .min = 2, .max = 4 },
421 .p2 = { .p2_slow = 1, .p2_fast = 20 },
422 };
423
424 static void vlv_clock(int refclk, intel_clock_t *clock)
425 {
426 clock->m = clock->m1 * clock->m2;
427 clock->p = clock->p1 * clock->p2;
428 if (WARN_ON(clock->n == 0 || clock->p == 0))
429 return;
430 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
431 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
432 }
433
434 /**
435 * Returns whether any output on the specified pipe is of the specified type
436 */
437 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
438 {
439 struct drm_device *dev = crtc->base.dev;
440 struct intel_encoder *encoder;
441
442 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
443 if (encoder->type == type)
444 return true;
445
446 return false;
447 }
448
449 /**
450 * Returns whether any output on the specified pipe will have the specified
451 * type after a staged modeset is complete, i.e., the same as
452 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
453 * encoder->crtc.
454 */
455 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
456 int type)
457 {
458 struct drm_atomic_state *state = crtc_state->base.state;
459 struct drm_connector *connector;
460 struct drm_connector_state *connector_state;
461 struct intel_encoder *encoder;
462 int i, num_connectors = 0;
463
464 for_each_connector_in_state(state, connector, connector_state, i) {
465 if (connector_state->crtc != crtc_state->base.crtc)
466 continue;
467
468 num_connectors++;
469
470 encoder = to_intel_encoder(connector_state->best_encoder);
471 if (encoder->type == type)
472 return true;
473 }
474
475 WARN_ON(num_connectors == 0);
476
477 return false;
478 }
479
480 static const intel_limit_t *
481 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
482 {
483 struct drm_device *dev = crtc_state->base.crtc->dev;
484 const intel_limit_t *limit;
485
486 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
487 if (intel_is_dual_link_lvds(dev)) {
488 if (refclk == 100000)
489 limit = &intel_limits_ironlake_dual_lvds_100m;
490 else
491 limit = &intel_limits_ironlake_dual_lvds;
492 } else {
493 if (refclk == 100000)
494 limit = &intel_limits_ironlake_single_lvds_100m;
495 else
496 limit = &intel_limits_ironlake_single_lvds;
497 }
498 } else
499 limit = &intel_limits_ironlake_dac;
500
501 return limit;
502 }
503
504 static const intel_limit_t *
505 intel_g4x_limit(struct intel_crtc_state *crtc_state)
506 {
507 struct drm_device *dev = crtc_state->base.crtc->dev;
508 const intel_limit_t *limit;
509
510 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
511 if (intel_is_dual_link_lvds(dev))
512 limit = &intel_limits_g4x_dual_channel_lvds;
513 else
514 limit = &intel_limits_g4x_single_channel_lvds;
515 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
516 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
517 limit = &intel_limits_g4x_hdmi;
518 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
519 limit = &intel_limits_g4x_sdvo;
520 } else /* The option is for other outputs */
521 limit = &intel_limits_i9xx_sdvo;
522
523 return limit;
524 }
525
526 static const intel_limit_t *
527 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
528 {
529 struct drm_device *dev = crtc_state->base.crtc->dev;
530 const intel_limit_t *limit;
531
532 if (IS_BROXTON(dev))
533 limit = &intel_limits_bxt;
534 else if (HAS_PCH_SPLIT(dev))
535 limit = intel_ironlake_limit(crtc_state, refclk);
536 else if (IS_G4X(dev)) {
537 limit = intel_g4x_limit(crtc_state);
538 } else if (IS_PINEVIEW(dev)) {
539 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
540 limit = &intel_limits_pineview_lvds;
541 else
542 limit = &intel_limits_pineview_sdvo;
543 } else if (IS_CHERRYVIEW(dev)) {
544 limit = &intel_limits_chv;
545 } else if (IS_VALLEYVIEW(dev)) {
546 limit = &intel_limits_vlv;
547 } else if (!IS_GEN2(dev)) {
548 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
549 limit = &intel_limits_i9xx_lvds;
550 else
551 limit = &intel_limits_i9xx_sdvo;
552 } else {
553 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
554 limit = &intel_limits_i8xx_lvds;
555 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
556 limit = &intel_limits_i8xx_dvo;
557 else
558 limit = &intel_limits_i8xx_dac;
559 }
560 return limit;
561 }
562
563 /* m1 is reserved as 0 in Pineview, n is a ring counter */
564 static void pineview_clock(int refclk, intel_clock_t *clock)
565 {
566 clock->m = clock->m2 + 2;
567 clock->p = clock->p1 * clock->p2;
568 if (WARN_ON(clock->n == 0 || clock->p == 0))
569 return;
570 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
571 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
572 }
573
574 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
575 {
576 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
577 }
578
579 static void i9xx_clock(int refclk, intel_clock_t *clock)
580 {
581 clock->m = i9xx_dpll_compute_m(clock);
582 clock->p = clock->p1 * clock->p2;
583 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
584 return;
585 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
586 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
587 }
588
589 static void chv_clock(int refclk, intel_clock_t *clock)
590 {
591 clock->m = clock->m1 * clock->m2;
592 clock->p = clock->p1 * clock->p2;
593 if (WARN_ON(clock->n == 0 || clock->p == 0))
594 return;
595 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
596 clock->n << 22);
597 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
598 }
599
600 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
601 /**
602 * Returns whether the given set of divisors are valid for a given refclk with
603 * the given connectors.
604 */
605
606 static bool intel_PLL_is_valid(struct drm_device *dev,
607 const intel_limit_t *limit,
608 const intel_clock_t *clock)
609 {
610 if (clock->n < limit->n.min || limit->n.max < clock->n)
611 INTELPllInvalid("n out of range\n");
612 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
613 INTELPllInvalid("p1 out of range\n");
614 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
615 INTELPllInvalid("m2 out of range\n");
616 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
617 INTELPllInvalid("m1 out of range\n");
618
619 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
620 if (clock->m1 <= clock->m2)
621 INTELPllInvalid("m1 <= m2\n");
622
623 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
624 if (clock->p < limit->p.min || limit->p.max < clock->p)
625 INTELPllInvalid("p out of range\n");
626 if (clock->m < limit->m.min || limit->m.max < clock->m)
627 INTELPllInvalid("m out of range\n");
628 }
629
630 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
631 INTELPllInvalid("vco out of range\n");
632 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
633 * connector, etc., rather than just a single range.
634 */
635 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
636 INTELPllInvalid("dot out of range\n");
637
638 return true;
639 }
640
641 static bool
642 i9xx_find_best_dpll(const intel_limit_t *limit,
643 struct intel_crtc_state *crtc_state,
644 int target, int refclk, intel_clock_t *match_clock,
645 intel_clock_t *best_clock)
646 {
647 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
648 struct drm_device *dev = crtc->base.dev;
649 intel_clock_t clock;
650 int err = target;
651
652 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
653 /*
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
657 */
658 if (intel_is_dual_link_lvds(dev))
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
669 memset(best_clock, 0, sizeof(*best_clock));
670
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
675 if (clock.m2 >= clock.m1)
676 break;
677 for (clock.n = limit->n.min;
678 clock.n <= limit->n.max; clock.n++) {
679 for (clock.p1 = limit->p1.min;
680 clock.p1 <= limit->p1.max; clock.p1++) {
681 int this_err;
682
683 i9xx_clock(refclk, &clock);
684 if (!intel_PLL_is_valid(dev, limit,
685 &clock))
686 continue;
687 if (match_clock &&
688 clock.p != match_clock->p)
689 continue;
690
691 this_err = abs(clock.dot - target);
692 if (this_err < err) {
693 *best_clock = clock;
694 err = this_err;
695 }
696 }
697 }
698 }
699 }
700
701 return (err != target);
702 }
703
704 static bool
705 pnv_find_best_dpll(const intel_limit_t *limit,
706 struct intel_crtc_state *crtc_state,
707 int target, int refclk, intel_clock_t *match_clock,
708 intel_clock_t *best_clock)
709 {
710 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
711 struct drm_device *dev = crtc->base.dev;
712 intel_clock_t clock;
713 int err = target;
714
715 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
716 /*
717 * For LVDS just rely on its current settings for dual-channel.
718 * We haven't figured out how to reliably set up different
719 * single/dual channel state, if we even can.
720 */
721 if (intel_is_dual_link_lvds(dev))
722 clock.p2 = limit->p2.p2_fast;
723 else
724 clock.p2 = limit->p2.p2_slow;
725 } else {
726 if (target < limit->p2.dot_limit)
727 clock.p2 = limit->p2.p2_slow;
728 else
729 clock.p2 = limit->p2.p2_fast;
730 }
731
732 memset(best_clock, 0, sizeof(*best_clock));
733
734 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
735 clock.m1++) {
736 for (clock.m2 = limit->m2.min;
737 clock.m2 <= limit->m2.max; clock.m2++) {
738 for (clock.n = limit->n.min;
739 clock.n <= limit->n.max; clock.n++) {
740 for (clock.p1 = limit->p1.min;
741 clock.p1 <= limit->p1.max; clock.p1++) {
742 int this_err;
743
744 pineview_clock(refclk, &clock);
745 if (!intel_PLL_is_valid(dev, limit,
746 &clock))
747 continue;
748 if (match_clock &&
749 clock.p != match_clock->p)
750 continue;
751
752 this_err = abs(clock.dot - target);
753 if (this_err < err) {
754 *best_clock = clock;
755 err = this_err;
756 }
757 }
758 }
759 }
760 }
761
762 return (err != target);
763 }
764
765 static bool
766 g4x_find_best_dpll(const intel_limit_t *limit,
767 struct intel_crtc_state *crtc_state,
768 int target, int refclk, intel_clock_t *match_clock,
769 intel_clock_t *best_clock)
770 {
771 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
772 struct drm_device *dev = crtc->base.dev;
773 intel_clock_t clock;
774 int max_n;
775 bool found;
776 /* approximately equals target * 0.00585 */
777 int err_most = (target >> 8) + (target >> 9);
778 found = false;
779
780 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
781 if (intel_is_dual_link_lvds(dev))
782 clock.p2 = limit->p2.p2_fast;
783 else
784 clock.p2 = limit->p2.p2_slow;
785 } else {
786 if (target < limit->p2.dot_limit)
787 clock.p2 = limit->p2.p2_slow;
788 else
789 clock.p2 = limit->p2.p2_fast;
790 }
791
792 memset(best_clock, 0, sizeof(*best_clock));
793 max_n = limit->n.max;
794 /* based on hardware requirement, prefer smaller n to precision */
795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796 /* based on hardware requirement, prefere larger m1,m2 */
797 for (clock.m1 = limit->m1.max;
798 clock.m1 >= limit->m1.min; clock.m1--) {
799 for (clock.m2 = limit->m2.max;
800 clock.m2 >= limit->m2.min; clock.m2--) {
801 for (clock.p1 = limit->p1.max;
802 clock.p1 >= limit->p1.min; clock.p1--) {
803 int this_err;
804
805 i9xx_clock(refclk, &clock);
806 if (!intel_PLL_is_valid(dev, limit,
807 &clock))
808 continue;
809
810 this_err = abs(clock.dot - target);
811 if (this_err < err_most) {
812 *best_clock = clock;
813 err_most = this_err;
814 max_n = clock.n;
815 found = true;
816 }
817 }
818 }
819 }
820 }
821 return found;
822 }
823
824 /*
825 * Check if the calculated PLL configuration is more optimal compared to the
826 * best configuration and error found so far. Return the calculated error.
827 */
828 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
829 const intel_clock_t *calculated_clock,
830 const intel_clock_t *best_clock,
831 unsigned int best_error_ppm,
832 unsigned int *error_ppm)
833 {
834 /*
835 * For CHV ignore the error and consider only the P value.
836 * Prefer a bigger P value based on HW requirements.
837 */
838 if (IS_CHERRYVIEW(dev)) {
839 *error_ppm = 0;
840
841 return calculated_clock->p > best_clock->p;
842 }
843
844 if (WARN_ON_ONCE(!target_freq))
845 return false;
846
847 *error_ppm = div_u64(1000000ULL *
848 abs(target_freq - calculated_clock->dot),
849 target_freq);
850 /*
851 * Prefer a better P value over a better (smaller) error if the error
852 * is small. Ensure this preference for future configurations too by
853 * setting the error to 0.
854 */
855 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
856 *error_ppm = 0;
857
858 return true;
859 }
860
861 return *error_ppm + 10 < best_error_ppm;
862 }
863
864 static bool
865 vlv_find_best_dpll(const intel_limit_t *limit,
866 struct intel_crtc_state *crtc_state,
867 int target, int refclk, intel_clock_t *match_clock,
868 intel_clock_t *best_clock)
869 {
870 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
871 struct drm_device *dev = crtc->base.dev;
872 intel_clock_t clock;
873 unsigned int bestppm = 1000000;
874 /* min update 19.2 MHz */
875 int max_n = min(limit->n.max, refclk / 19200);
876 bool found = false;
877
878 target *= 5; /* fast clock */
879
880 memset(best_clock, 0, sizeof(*best_clock));
881
882 /* based on hardware requirement, prefer smaller n to precision */
883 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
884 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
885 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
886 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
887 clock.p = clock.p1 * clock.p2;
888 /* based on hardware requirement, prefer bigger m1,m2 values */
889 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
890 unsigned int ppm;
891
892 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
893 refclk * clock.m1);
894
895 vlv_clock(refclk, &clock);
896
897 if (!intel_PLL_is_valid(dev, limit,
898 &clock))
899 continue;
900
901 if (!vlv_PLL_is_optimal(dev, target,
902 &clock,
903 best_clock,
904 bestppm, &ppm))
905 continue;
906
907 *best_clock = clock;
908 bestppm = ppm;
909 found = true;
910 }
911 }
912 }
913 }
914
915 return found;
916 }
917
918 static bool
919 chv_find_best_dpll(const intel_limit_t *limit,
920 struct intel_crtc_state *crtc_state,
921 int target, int refclk, intel_clock_t *match_clock,
922 intel_clock_t *best_clock)
923 {
924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
925 struct drm_device *dev = crtc->base.dev;
926 unsigned int best_error_ppm;
927 intel_clock_t clock;
928 uint64_t m2;
929 int found = false;
930
931 memset(best_clock, 0, sizeof(*best_clock));
932 best_error_ppm = 1000000;
933
934 /*
935 * Based on hardware doc, the n always set to 1, and m1 always
936 * set to 2. If requires to support 200Mhz refclk, we need to
937 * revisit this because n may not 1 anymore.
938 */
939 clock.n = 1, clock.m1 = 2;
940 target *= 5; /* fast clock */
941
942 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
943 for (clock.p2 = limit->p2.p2_fast;
944 clock.p2 >= limit->p2.p2_slow;
945 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
946 unsigned int error_ppm;
947
948 clock.p = clock.p1 * clock.p2;
949
950 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
951 clock.n) << 22, refclk * clock.m1);
952
953 if (m2 > INT_MAX/clock.m1)
954 continue;
955
956 clock.m2 = m2;
957
958 chv_clock(refclk, &clock);
959
960 if (!intel_PLL_is_valid(dev, limit, &clock))
961 continue;
962
963 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
964 best_error_ppm, &error_ppm))
965 continue;
966
967 *best_clock = clock;
968 best_error_ppm = error_ppm;
969 found = true;
970 }
971 }
972
973 return found;
974 }
975
976 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
977 intel_clock_t *best_clock)
978 {
979 int refclk = i9xx_get_refclk(crtc_state, 0);
980
981 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
982 target_clock, refclk, NULL, best_clock);
983 }
984
985 bool intel_crtc_active(struct drm_crtc *crtc)
986 {
987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
988
989 /* Be paranoid as we can arrive here with only partial
990 * state retrieved from the hardware during setup.
991 *
992 * We can ditch the adjusted_mode.crtc_clock check as soon
993 * as Haswell has gained clock readout/fastboot support.
994 *
995 * We can ditch the crtc->primary->fb check as soon as we can
996 * properly reconstruct framebuffers.
997 *
998 * FIXME: The intel_crtc->active here should be switched to
999 * crtc->state->active once we have proper CRTC states wired up
1000 * for atomic.
1001 */
1002 return intel_crtc->active && crtc->primary->state->fb &&
1003 intel_crtc->config->base.adjusted_mode.crtc_clock;
1004 }
1005
1006 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1007 enum pipe pipe)
1008 {
1009 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1011
1012 return intel_crtc->config->cpu_transcoder;
1013 }
1014
1015 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1016 {
1017 struct drm_i915_private *dev_priv = dev->dev_private;
1018 u32 reg = PIPEDSL(pipe);
1019 u32 line1, line2;
1020 u32 line_mask;
1021
1022 if (IS_GEN2(dev))
1023 line_mask = DSL_LINEMASK_GEN2;
1024 else
1025 line_mask = DSL_LINEMASK_GEN3;
1026
1027 line1 = I915_READ(reg) & line_mask;
1028 mdelay(5);
1029 line2 = I915_READ(reg) & line_mask;
1030
1031 return line1 == line2;
1032 }
1033
1034 /*
1035 * intel_wait_for_pipe_off - wait for pipe to turn off
1036 * @crtc: crtc whose pipe to wait for
1037 *
1038 * After disabling a pipe, we can't wait for vblank in the usual way,
1039 * spinning on the vblank interrupt status bit, since we won't actually
1040 * see an interrupt when the pipe is disabled.
1041 *
1042 * On Gen4 and above:
1043 * wait for the pipe register state bit to turn off
1044 *
1045 * Otherwise:
1046 * wait for the display line value to settle (it usually
1047 * ends up stopping at the start of the next frame).
1048 *
1049 */
1050 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1051 {
1052 struct drm_device *dev = crtc->base.dev;
1053 struct drm_i915_private *dev_priv = dev->dev_private;
1054 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1055 enum pipe pipe = crtc->pipe;
1056
1057 if (INTEL_INFO(dev)->gen >= 4) {
1058 int reg = PIPECONF(cpu_transcoder);
1059
1060 /* Wait for the Pipe State to go off */
1061 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1062 100))
1063 WARN(1, "pipe_off wait timed out\n");
1064 } else {
1065 /* Wait for the display line to settle */
1066 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1067 WARN(1, "pipe_off wait timed out\n");
1068 }
1069 }
1070
1071 /*
1072 * ibx_digital_port_connected - is the specified port connected?
1073 * @dev_priv: i915 private structure
1074 * @port: the port to test
1075 *
1076 * Returns true if @port is connected, false otherwise.
1077 */
1078 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1079 struct intel_digital_port *port)
1080 {
1081 u32 bit;
1082
1083 if (HAS_PCH_IBX(dev_priv->dev)) {
1084 switch (port->port) {
1085 case PORT_B:
1086 bit = SDE_PORTB_HOTPLUG;
1087 break;
1088 case PORT_C:
1089 bit = SDE_PORTC_HOTPLUG;
1090 break;
1091 case PORT_D:
1092 bit = SDE_PORTD_HOTPLUG;
1093 break;
1094 default:
1095 return true;
1096 }
1097 } else {
1098 switch (port->port) {
1099 case PORT_B:
1100 bit = SDE_PORTB_HOTPLUG_CPT;
1101 break;
1102 case PORT_C:
1103 bit = SDE_PORTC_HOTPLUG_CPT;
1104 break;
1105 case PORT_D:
1106 bit = SDE_PORTD_HOTPLUG_CPT;
1107 break;
1108 default:
1109 return true;
1110 }
1111 }
1112
1113 return I915_READ(SDEISR) & bit;
1114 }
1115
1116 static const char *state_string(bool enabled)
1117 {
1118 return enabled ? "on" : "off";
1119 }
1120
1121 /* Only for pre-ILK configs */
1122 void assert_pll(struct drm_i915_private *dev_priv,
1123 enum pipe pipe, bool state)
1124 {
1125 int reg;
1126 u32 val;
1127 bool cur_state;
1128
1129 reg = DPLL(pipe);
1130 val = I915_READ(reg);
1131 cur_state = !!(val & DPLL_VCO_ENABLE);
1132 I915_STATE_WARN(cur_state != state,
1133 "PLL state assertion failure (expected %s, current %s)\n",
1134 state_string(state), state_string(cur_state));
1135 }
1136
1137 /* XXX: the dsi pll is shared between MIPI DSI ports */
1138 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1139 {
1140 u32 val;
1141 bool cur_state;
1142
1143 mutex_lock(&dev_priv->dpio_lock);
1144 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1145 mutex_unlock(&dev_priv->dpio_lock);
1146
1147 cur_state = val & DSI_PLL_VCO_EN;
1148 I915_STATE_WARN(cur_state != state,
1149 "DSI PLL state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151 }
1152 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1153 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1154
1155 struct intel_shared_dpll *
1156 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1157 {
1158 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1159
1160 if (crtc->config->shared_dpll < 0)
1161 return NULL;
1162
1163 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1164 }
1165
1166 /* For ILK+ */
1167 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1168 struct intel_shared_dpll *pll,
1169 bool state)
1170 {
1171 bool cur_state;
1172 struct intel_dpll_hw_state hw_state;
1173
1174 if (WARN (!pll,
1175 "asserting DPLL %s with no DPLL\n", state_string(state)))
1176 return;
1177
1178 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1179 I915_STATE_WARN(cur_state != state,
1180 "%s assertion failure (expected %s, current %s)\n",
1181 pll->name, state_string(state), state_string(cur_state));
1182 }
1183
1184 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1185 enum pipe pipe, bool state)
1186 {
1187 int reg;
1188 u32 val;
1189 bool cur_state;
1190 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1191 pipe);
1192
1193 if (HAS_DDI(dev_priv->dev)) {
1194 /* DDI does not have a specific FDI_TX register */
1195 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1196 val = I915_READ(reg);
1197 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1198 } else {
1199 reg = FDI_TX_CTL(pipe);
1200 val = I915_READ(reg);
1201 cur_state = !!(val & FDI_TX_ENABLE);
1202 }
1203 I915_STATE_WARN(cur_state != state,
1204 "FDI TX state assertion failure (expected %s, current %s)\n",
1205 state_string(state), state_string(cur_state));
1206 }
1207 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1208 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1209
1210 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1211 enum pipe pipe, bool state)
1212 {
1213 int reg;
1214 u32 val;
1215 bool cur_state;
1216
1217 reg = FDI_RX_CTL(pipe);
1218 val = I915_READ(reg);
1219 cur_state = !!(val & FDI_RX_ENABLE);
1220 I915_STATE_WARN(cur_state != state,
1221 "FDI RX state assertion failure (expected %s, current %s)\n",
1222 state_string(state), state_string(cur_state));
1223 }
1224 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1225 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1226
1227 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1228 enum pipe pipe)
1229 {
1230 int reg;
1231 u32 val;
1232
1233 /* ILK FDI PLL is always enabled */
1234 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1235 return;
1236
1237 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1238 if (HAS_DDI(dev_priv->dev))
1239 return;
1240
1241 reg = FDI_TX_CTL(pipe);
1242 val = I915_READ(reg);
1243 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1244 }
1245
1246 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1247 enum pipe pipe, bool state)
1248 {
1249 int reg;
1250 u32 val;
1251 bool cur_state;
1252
1253 reg = FDI_RX_CTL(pipe);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1256 I915_STATE_WARN(cur_state != state,
1257 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1258 state_string(state), state_string(cur_state));
1259 }
1260
1261 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1262 enum pipe pipe)
1263 {
1264 struct drm_device *dev = dev_priv->dev;
1265 int pp_reg;
1266 u32 val;
1267 enum pipe panel_pipe = PIPE_A;
1268 bool locked = true;
1269
1270 if (WARN_ON(HAS_DDI(dev)))
1271 return;
1272
1273 if (HAS_PCH_SPLIT(dev)) {
1274 u32 port_sel;
1275
1276 pp_reg = PCH_PP_CONTROL;
1277 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1278
1279 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1280 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1281 panel_pipe = PIPE_B;
1282 /* XXX: else fix for eDP */
1283 } else if (IS_VALLEYVIEW(dev)) {
1284 /* presumably write lock depends on pipe, not port select */
1285 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1286 panel_pipe = pipe;
1287 } else {
1288 pp_reg = PP_CONTROL;
1289 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1290 panel_pipe = PIPE_B;
1291 }
1292
1293 val = I915_READ(pp_reg);
1294 if (!(val & PANEL_POWER_ON) ||
1295 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1296 locked = false;
1297
1298 I915_STATE_WARN(panel_pipe == pipe && locked,
1299 "panel assertion failure, pipe %c regs locked\n",
1300 pipe_name(pipe));
1301 }
1302
1303 static void assert_cursor(struct drm_i915_private *dev_priv,
1304 enum pipe pipe, bool state)
1305 {
1306 struct drm_device *dev = dev_priv->dev;
1307 bool cur_state;
1308
1309 if (IS_845G(dev) || IS_I865G(dev))
1310 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1311 else
1312 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1313
1314 I915_STATE_WARN(cur_state != state,
1315 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1316 pipe_name(pipe), state_string(state), state_string(cur_state));
1317 }
1318 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1319 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1320
1321 void assert_pipe(struct drm_i915_private *dev_priv,
1322 enum pipe pipe, bool state)
1323 {
1324 int reg;
1325 u32 val;
1326 bool cur_state;
1327 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1328 pipe);
1329
1330 /* if we need the pipe quirk it must be always on */
1331 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1332 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1333 state = true;
1334
1335 if (!intel_display_power_is_enabled(dev_priv,
1336 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1337 cur_state = false;
1338 } else {
1339 reg = PIPECONF(cpu_transcoder);
1340 val = I915_READ(reg);
1341 cur_state = !!(val & PIPECONF_ENABLE);
1342 }
1343
1344 I915_STATE_WARN(cur_state != state,
1345 "pipe %c assertion failure (expected %s, current %s)\n",
1346 pipe_name(pipe), state_string(state), state_string(cur_state));
1347 }
1348
1349 static void assert_plane(struct drm_i915_private *dev_priv,
1350 enum plane plane, bool state)
1351 {
1352 int reg;
1353 u32 val;
1354 bool cur_state;
1355
1356 reg = DSPCNTR(plane);
1357 val = I915_READ(reg);
1358 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1359 I915_STATE_WARN(cur_state != state,
1360 "plane %c assertion failure (expected %s, current %s)\n",
1361 plane_name(plane), state_string(state), state_string(cur_state));
1362 }
1363
1364 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1365 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1366
1367 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1368 enum pipe pipe)
1369 {
1370 struct drm_device *dev = dev_priv->dev;
1371 int reg, i;
1372 u32 val;
1373 int cur_pipe;
1374
1375 /* Primary planes are fixed to pipes on gen4+ */
1376 if (INTEL_INFO(dev)->gen >= 4) {
1377 reg = DSPCNTR(pipe);
1378 val = I915_READ(reg);
1379 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1380 "plane %c assertion failure, should be disabled but not\n",
1381 plane_name(pipe));
1382 return;
1383 }
1384
1385 /* Need to check both planes against the pipe */
1386 for_each_pipe(dev_priv, i) {
1387 reg = DSPCNTR(i);
1388 val = I915_READ(reg);
1389 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1390 DISPPLANE_SEL_PIPE_SHIFT;
1391 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1392 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1393 plane_name(i), pipe_name(pipe));
1394 }
1395 }
1396
1397 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399 {
1400 struct drm_device *dev = dev_priv->dev;
1401 int reg, sprite;
1402 u32 val;
1403
1404 if (INTEL_INFO(dev)->gen >= 9) {
1405 for_each_sprite(dev_priv, pipe, sprite) {
1406 val = I915_READ(PLANE_CTL(pipe, sprite));
1407 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1408 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1409 sprite, pipe_name(pipe));
1410 }
1411 } else if (IS_VALLEYVIEW(dev)) {
1412 for_each_sprite(dev_priv, pipe, sprite) {
1413 reg = SPCNTR(pipe, sprite);
1414 val = I915_READ(reg);
1415 I915_STATE_WARN(val & SP_ENABLE,
1416 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417 sprite_name(pipe, sprite), pipe_name(pipe));
1418 }
1419 } else if (INTEL_INFO(dev)->gen >= 7) {
1420 reg = SPRCTL(pipe);
1421 val = I915_READ(reg);
1422 I915_STATE_WARN(val & SPRITE_ENABLE,
1423 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1424 plane_name(pipe), pipe_name(pipe));
1425 } else if (INTEL_INFO(dev)->gen >= 5) {
1426 reg = DVSCNTR(pipe);
1427 val = I915_READ(reg);
1428 I915_STATE_WARN(val & DVS_ENABLE,
1429 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1430 plane_name(pipe), pipe_name(pipe));
1431 }
1432 }
1433
1434 static void assert_vblank_disabled(struct drm_crtc *crtc)
1435 {
1436 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1437 drm_crtc_vblank_put(crtc);
1438 }
1439
1440 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1441 {
1442 u32 val;
1443 bool enabled;
1444
1445 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1446
1447 val = I915_READ(PCH_DREF_CONTROL);
1448 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1449 DREF_SUPERSPREAD_SOURCE_MASK));
1450 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1451 }
1452
1453 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe)
1455 {
1456 int reg;
1457 u32 val;
1458 bool enabled;
1459
1460 reg = PCH_TRANSCONF(pipe);
1461 val = I915_READ(reg);
1462 enabled = !!(val & TRANS_ENABLE);
1463 I915_STATE_WARN(enabled,
1464 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1465 pipe_name(pipe));
1466 }
1467
1468 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1469 enum pipe pipe, u32 port_sel, u32 val)
1470 {
1471 if ((val & DP_PORT_EN) == 0)
1472 return false;
1473
1474 if (HAS_PCH_CPT(dev_priv->dev)) {
1475 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1476 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1477 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1478 return false;
1479 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1480 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1481 return false;
1482 } else {
1483 if ((val & DP_PIPE_MASK) != (pipe << 30))
1484 return false;
1485 }
1486 return true;
1487 }
1488
1489 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1490 enum pipe pipe, u32 val)
1491 {
1492 if ((val & SDVO_ENABLE) == 0)
1493 return false;
1494
1495 if (HAS_PCH_CPT(dev_priv->dev)) {
1496 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1497 return false;
1498 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1499 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1500 return false;
1501 } else {
1502 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1503 return false;
1504 }
1505 return true;
1506 }
1507
1508 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1509 enum pipe pipe, u32 val)
1510 {
1511 if ((val & LVDS_PORT_EN) == 0)
1512 return false;
1513
1514 if (HAS_PCH_CPT(dev_priv->dev)) {
1515 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1516 return false;
1517 } else {
1518 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1519 return false;
1520 }
1521 return true;
1522 }
1523
1524 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1525 enum pipe pipe, u32 val)
1526 {
1527 if ((val & ADPA_DAC_ENABLE) == 0)
1528 return false;
1529 if (HAS_PCH_CPT(dev_priv->dev)) {
1530 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1531 return false;
1532 } else {
1533 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1534 return false;
1535 }
1536 return true;
1537 }
1538
1539 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1540 enum pipe pipe, int reg, u32 port_sel)
1541 {
1542 u32 val = I915_READ(reg);
1543 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1544 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1545 reg, pipe_name(pipe));
1546
1547 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1548 && (val & DP_PIPEB_SELECT),
1549 "IBX PCH dp port still using transcoder B\n");
1550 }
1551
1552 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1553 enum pipe pipe, int reg)
1554 {
1555 u32 val = I915_READ(reg);
1556 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1557 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1558 reg, pipe_name(pipe));
1559
1560 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1561 && (val & SDVO_PIPE_B_SELECT),
1562 "IBX PCH hdmi port still using transcoder B\n");
1563 }
1564
1565 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1566 enum pipe pipe)
1567 {
1568 int reg;
1569 u32 val;
1570
1571 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1572 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1573 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1574
1575 reg = PCH_ADPA;
1576 val = I915_READ(reg);
1577 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1578 "PCH VGA enabled on transcoder %c, should be disabled\n",
1579 pipe_name(pipe));
1580
1581 reg = PCH_LVDS;
1582 val = I915_READ(reg);
1583 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1584 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1585 pipe_name(pipe));
1586
1587 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1588 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1589 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1590 }
1591
1592 static void intel_init_dpio(struct drm_device *dev)
1593 {
1594 struct drm_i915_private *dev_priv = dev->dev_private;
1595
1596 if (!IS_VALLEYVIEW(dev))
1597 return;
1598
1599 /*
1600 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1601 * CHV x1 PHY (DP/HDMI D)
1602 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1603 */
1604 if (IS_CHERRYVIEW(dev)) {
1605 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1606 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1607 } else {
1608 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1609 }
1610 }
1611
1612 static void vlv_enable_pll(struct intel_crtc *crtc,
1613 const struct intel_crtc_state *pipe_config)
1614 {
1615 struct drm_device *dev = crtc->base.dev;
1616 struct drm_i915_private *dev_priv = dev->dev_private;
1617 int reg = DPLL(crtc->pipe);
1618 u32 dpll = pipe_config->dpll_hw_state.dpll;
1619
1620 assert_pipe_disabled(dev_priv, crtc->pipe);
1621
1622 /* No really, not for ILK+ */
1623 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1624
1625 /* PLL is protected by panel, make sure we can write it */
1626 if (IS_MOBILE(dev_priv->dev))
1627 assert_panel_unlocked(dev_priv, crtc->pipe);
1628
1629 I915_WRITE(reg, dpll);
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1634 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1635
1636 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1637 POSTING_READ(DPLL_MD(crtc->pipe));
1638
1639 /* We do this three times for luck */
1640 I915_WRITE(reg, dpll);
1641 POSTING_READ(reg);
1642 udelay(150); /* wait for warmup */
1643 I915_WRITE(reg, dpll);
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 }
1650
1651 static void chv_enable_pll(struct intel_crtc *crtc,
1652 const struct intel_crtc_state *pipe_config)
1653 {
1654 struct drm_device *dev = crtc->base.dev;
1655 struct drm_i915_private *dev_priv = dev->dev_private;
1656 int pipe = crtc->pipe;
1657 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1658 u32 tmp;
1659
1660 assert_pipe_disabled(dev_priv, crtc->pipe);
1661
1662 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1663
1664 mutex_lock(&dev_priv->dpio_lock);
1665
1666 /* Enable back the 10bit clock to display controller */
1667 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1668 tmp |= DPIO_DCLKP_EN;
1669 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1670
1671 /*
1672 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1673 */
1674 udelay(1);
1675
1676 /* Enable PLL */
1677 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1678
1679 /* Check PLL is locked */
1680 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1681 DRM_ERROR("PLL %d failed to lock\n", pipe);
1682
1683 /* not sure when this should be written */
1684 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1685 POSTING_READ(DPLL_MD(pipe));
1686
1687 mutex_unlock(&dev_priv->dpio_lock);
1688 }
1689
1690 static int intel_num_dvo_pipes(struct drm_device *dev)
1691 {
1692 struct intel_crtc *crtc;
1693 int count = 0;
1694
1695 for_each_intel_crtc(dev, crtc)
1696 count += crtc->active &&
1697 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1698
1699 return count;
1700 }
1701
1702 static void i9xx_enable_pll(struct intel_crtc *crtc)
1703 {
1704 struct drm_device *dev = crtc->base.dev;
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 int reg = DPLL(crtc->pipe);
1707 u32 dpll = crtc->config->dpll_hw_state.dpll;
1708
1709 assert_pipe_disabled(dev_priv, crtc->pipe);
1710
1711 /* No really, not for ILK+ */
1712 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1713
1714 /* PLL is protected by panel, make sure we can write it */
1715 if (IS_MOBILE(dev) && !IS_I830(dev))
1716 assert_panel_unlocked(dev_priv, crtc->pipe);
1717
1718 /* Enable DVO 2x clock on both PLLs if necessary */
1719 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1720 /*
1721 * It appears to be important that we don't enable this
1722 * for the current pipe before otherwise configuring the
1723 * PLL. No idea how this should be handled if multiple
1724 * DVO outputs are enabled simultaneosly.
1725 */
1726 dpll |= DPLL_DVO_2X_MODE;
1727 I915_WRITE(DPLL(!crtc->pipe),
1728 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1729 }
1730
1731 /* Wait for the clocks to stabilize. */
1732 POSTING_READ(reg);
1733 udelay(150);
1734
1735 if (INTEL_INFO(dev)->gen >= 4) {
1736 I915_WRITE(DPLL_MD(crtc->pipe),
1737 crtc->config->dpll_hw_state.dpll_md);
1738 } else {
1739 /* The pixel multiplier can only be updated once the
1740 * DPLL is enabled and the clocks are stable.
1741 *
1742 * So write it again.
1743 */
1744 I915_WRITE(reg, dpll);
1745 }
1746
1747 /* We do this three times for luck */
1748 I915_WRITE(reg, dpll);
1749 POSTING_READ(reg);
1750 udelay(150); /* wait for warmup */
1751 I915_WRITE(reg, dpll);
1752 POSTING_READ(reg);
1753 udelay(150); /* wait for warmup */
1754 I915_WRITE(reg, dpll);
1755 POSTING_READ(reg);
1756 udelay(150); /* wait for warmup */
1757 }
1758
1759 /**
1760 * i9xx_disable_pll - disable a PLL
1761 * @dev_priv: i915 private structure
1762 * @pipe: pipe PLL to disable
1763 *
1764 * Disable the PLL for @pipe, making sure the pipe is off first.
1765 *
1766 * Note! This is for pre-ILK only.
1767 */
1768 static void i9xx_disable_pll(struct intel_crtc *crtc)
1769 {
1770 struct drm_device *dev = crtc->base.dev;
1771 struct drm_i915_private *dev_priv = dev->dev_private;
1772 enum pipe pipe = crtc->pipe;
1773
1774 /* Disable DVO 2x clock on both PLLs if necessary */
1775 if (IS_I830(dev) &&
1776 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1777 intel_num_dvo_pipes(dev) == 1) {
1778 I915_WRITE(DPLL(PIPE_B),
1779 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1780 I915_WRITE(DPLL(PIPE_A),
1781 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1782 }
1783
1784 /* Don't disable pipe or pipe PLLs if needed */
1785 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1786 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1787 return;
1788
1789 /* Make sure the pipe isn't still relying on us */
1790 assert_pipe_disabled(dev_priv, pipe);
1791
1792 I915_WRITE(DPLL(pipe), 0);
1793 POSTING_READ(DPLL(pipe));
1794 }
1795
1796 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1797 {
1798 u32 val = 0;
1799
1800 /* Make sure the pipe isn't still relying on us */
1801 assert_pipe_disabled(dev_priv, pipe);
1802
1803 /*
1804 * Leave integrated clock source and reference clock enabled for pipe B.
1805 * The latter is needed for VGA hotplug / manual detection.
1806 */
1807 if (pipe == PIPE_B)
1808 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1809 I915_WRITE(DPLL(pipe), val);
1810 POSTING_READ(DPLL(pipe));
1811
1812 }
1813
1814 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1815 {
1816 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1817 u32 val;
1818
1819 /* Make sure the pipe isn't still relying on us */
1820 assert_pipe_disabled(dev_priv, pipe);
1821
1822 /* Set PLL en = 0 */
1823 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1824 if (pipe != PIPE_A)
1825 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1826 I915_WRITE(DPLL(pipe), val);
1827 POSTING_READ(DPLL(pipe));
1828
1829 mutex_lock(&dev_priv->dpio_lock);
1830
1831 /* Disable 10bit clock to display controller */
1832 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1833 val &= ~DPIO_DCLKP_EN;
1834 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1835
1836 /* disable left/right clock distribution */
1837 if (pipe != PIPE_B) {
1838 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1839 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1840 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1841 } else {
1842 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1843 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1844 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1845 }
1846
1847 mutex_unlock(&dev_priv->dpio_lock);
1848 }
1849
1850 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1851 struct intel_digital_port *dport,
1852 unsigned int expected_mask)
1853 {
1854 u32 port_mask;
1855 int dpll_reg;
1856
1857 switch (dport->port) {
1858 case PORT_B:
1859 port_mask = DPLL_PORTB_READY_MASK;
1860 dpll_reg = DPLL(0);
1861 break;
1862 case PORT_C:
1863 port_mask = DPLL_PORTC_READY_MASK;
1864 dpll_reg = DPLL(0);
1865 expected_mask <<= 4;
1866 break;
1867 case PORT_D:
1868 port_mask = DPLL_PORTD_READY_MASK;
1869 dpll_reg = DPIO_PHY_STATUS;
1870 break;
1871 default:
1872 BUG();
1873 }
1874
1875 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1876 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1877 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1878 }
1879
1880 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1881 {
1882 struct drm_device *dev = crtc->base.dev;
1883 struct drm_i915_private *dev_priv = dev->dev_private;
1884 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1885
1886 if (WARN_ON(pll == NULL))
1887 return;
1888
1889 WARN_ON(!pll->config.crtc_mask);
1890 if (pll->active == 0) {
1891 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1892 WARN_ON(pll->on);
1893 assert_shared_dpll_disabled(dev_priv, pll);
1894
1895 pll->mode_set(dev_priv, pll);
1896 }
1897 }
1898
1899 /**
1900 * intel_enable_shared_dpll - enable PCH PLL
1901 * @dev_priv: i915 private structure
1902 * @pipe: pipe PLL to enable
1903 *
1904 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1905 * drives the transcoder clock.
1906 */
1907 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1908 {
1909 struct drm_device *dev = crtc->base.dev;
1910 struct drm_i915_private *dev_priv = dev->dev_private;
1911 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1912
1913 if (WARN_ON(pll == NULL))
1914 return;
1915
1916 if (WARN_ON(pll->config.crtc_mask == 0))
1917 return;
1918
1919 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1920 pll->name, pll->active, pll->on,
1921 crtc->base.base.id);
1922
1923 if (pll->active++) {
1924 WARN_ON(!pll->on);
1925 assert_shared_dpll_enabled(dev_priv, pll);
1926 return;
1927 }
1928 WARN_ON(pll->on);
1929
1930 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1931
1932 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1933 pll->enable(dev_priv, pll);
1934 pll->on = true;
1935 }
1936
1937 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1938 {
1939 struct drm_device *dev = crtc->base.dev;
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1942
1943 /* PCH only available on ILK+ */
1944 BUG_ON(INTEL_INFO(dev)->gen < 5);
1945 if (WARN_ON(pll == NULL))
1946 return;
1947
1948 if (WARN_ON(pll->config.crtc_mask == 0))
1949 return;
1950
1951 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1952 pll->name, pll->active, pll->on,
1953 crtc->base.base.id);
1954
1955 if (WARN_ON(pll->active == 0)) {
1956 assert_shared_dpll_disabled(dev_priv, pll);
1957 return;
1958 }
1959
1960 assert_shared_dpll_enabled(dev_priv, pll);
1961 WARN_ON(!pll->on);
1962 if (--pll->active)
1963 return;
1964
1965 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1966 pll->disable(dev_priv, pll);
1967 pll->on = false;
1968
1969 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1970 }
1971
1972 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1973 enum pipe pipe)
1974 {
1975 struct drm_device *dev = dev_priv->dev;
1976 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1978 uint32_t reg, val, pipeconf_val;
1979
1980 /* PCH only available on ILK+ */
1981 BUG_ON(!HAS_PCH_SPLIT(dev));
1982
1983 /* Make sure PCH DPLL is enabled */
1984 assert_shared_dpll_enabled(dev_priv,
1985 intel_crtc_to_shared_dpll(intel_crtc));
1986
1987 /* FDI must be feeding us bits for PCH ports */
1988 assert_fdi_tx_enabled(dev_priv, pipe);
1989 assert_fdi_rx_enabled(dev_priv, pipe);
1990
1991 if (HAS_PCH_CPT(dev)) {
1992 /* Workaround: Set the timing override bit before enabling the
1993 * pch transcoder. */
1994 reg = TRANS_CHICKEN2(pipe);
1995 val = I915_READ(reg);
1996 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1997 I915_WRITE(reg, val);
1998 }
1999
2000 reg = PCH_TRANSCONF(pipe);
2001 val = I915_READ(reg);
2002 pipeconf_val = I915_READ(PIPECONF(pipe));
2003
2004 if (HAS_PCH_IBX(dev_priv->dev)) {
2005 /*
2006 * make the BPC in transcoder be consistent with
2007 * that in pipeconf reg.
2008 */
2009 val &= ~PIPECONF_BPC_MASK;
2010 val |= pipeconf_val & PIPECONF_BPC_MASK;
2011 }
2012
2013 val &= ~TRANS_INTERLACE_MASK;
2014 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2015 if (HAS_PCH_IBX(dev_priv->dev) &&
2016 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2017 val |= TRANS_LEGACY_INTERLACED_ILK;
2018 else
2019 val |= TRANS_INTERLACED;
2020 else
2021 val |= TRANS_PROGRESSIVE;
2022
2023 I915_WRITE(reg, val | TRANS_ENABLE);
2024 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2025 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2026 }
2027
2028 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2029 enum transcoder cpu_transcoder)
2030 {
2031 u32 val, pipeconf_val;
2032
2033 /* PCH only available on ILK+ */
2034 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2035
2036 /* FDI must be feeding us bits for PCH ports */
2037 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2038 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2039
2040 /* Workaround: set timing override bit. */
2041 val = I915_READ(_TRANSA_CHICKEN2);
2042 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2043 I915_WRITE(_TRANSA_CHICKEN2, val);
2044
2045 val = TRANS_ENABLE;
2046 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2047
2048 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2049 PIPECONF_INTERLACED_ILK)
2050 val |= TRANS_INTERLACED;
2051 else
2052 val |= TRANS_PROGRESSIVE;
2053
2054 I915_WRITE(LPT_TRANSCONF, val);
2055 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2056 DRM_ERROR("Failed to enable PCH transcoder\n");
2057 }
2058
2059 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2060 enum pipe pipe)
2061 {
2062 struct drm_device *dev = dev_priv->dev;
2063 uint32_t reg, val;
2064
2065 /* FDI relies on the transcoder */
2066 assert_fdi_tx_disabled(dev_priv, pipe);
2067 assert_fdi_rx_disabled(dev_priv, pipe);
2068
2069 /* Ports must be off as well */
2070 assert_pch_ports_disabled(dev_priv, pipe);
2071
2072 reg = PCH_TRANSCONF(pipe);
2073 val = I915_READ(reg);
2074 val &= ~TRANS_ENABLE;
2075 I915_WRITE(reg, val);
2076 /* wait for PCH transcoder off, transcoder state */
2077 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2078 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2079
2080 if (!HAS_PCH_IBX(dev)) {
2081 /* Workaround: Clear the timing override chicken bit again. */
2082 reg = TRANS_CHICKEN2(pipe);
2083 val = I915_READ(reg);
2084 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2085 I915_WRITE(reg, val);
2086 }
2087 }
2088
2089 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2090 {
2091 u32 val;
2092
2093 val = I915_READ(LPT_TRANSCONF);
2094 val &= ~TRANS_ENABLE;
2095 I915_WRITE(LPT_TRANSCONF, val);
2096 /* wait for PCH transcoder off, transcoder state */
2097 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2098 DRM_ERROR("Failed to disable PCH transcoder\n");
2099
2100 /* Workaround: clear timing override bit. */
2101 val = I915_READ(_TRANSA_CHICKEN2);
2102 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2103 I915_WRITE(_TRANSA_CHICKEN2, val);
2104 }
2105
2106 /**
2107 * intel_enable_pipe - enable a pipe, asserting requirements
2108 * @crtc: crtc responsible for the pipe
2109 *
2110 * Enable @crtc's pipe, making sure that various hardware specific requirements
2111 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2112 */
2113 static void intel_enable_pipe(struct intel_crtc *crtc)
2114 {
2115 struct drm_device *dev = crtc->base.dev;
2116 struct drm_i915_private *dev_priv = dev->dev_private;
2117 enum pipe pipe = crtc->pipe;
2118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2119 pipe);
2120 enum pipe pch_transcoder;
2121 int reg;
2122 u32 val;
2123
2124 assert_planes_disabled(dev_priv, pipe);
2125 assert_cursor_disabled(dev_priv, pipe);
2126 assert_sprites_disabled(dev_priv, pipe);
2127
2128 if (HAS_PCH_LPT(dev_priv->dev))
2129 pch_transcoder = TRANSCODER_A;
2130 else
2131 pch_transcoder = pipe;
2132
2133 /*
2134 * A pipe without a PLL won't actually be able to drive bits from
2135 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2136 * need the check.
2137 */
2138 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2139 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2140 assert_dsi_pll_enabled(dev_priv);
2141 else
2142 assert_pll_enabled(dev_priv, pipe);
2143 else {
2144 if (crtc->config->has_pch_encoder) {
2145 /* if driving the PCH, we need FDI enabled */
2146 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2147 assert_fdi_tx_pll_enabled(dev_priv,
2148 (enum pipe) cpu_transcoder);
2149 }
2150 /* FIXME: assert CPU port conditions for SNB+ */
2151 }
2152
2153 reg = PIPECONF(cpu_transcoder);
2154 val = I915_READ(reg);
2155 if (val & PIPECONF_ENABLE) {
2156 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2157 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2158 return;
2159 }
2160
2161 I915_WRITE(reg, val | PIPECONF_ENABLE);
2162 POSTING_READ(reg);
2163 }
2164
2165 /**
2166 * intel_disable_pipe - disable a pipe, asserting requirements
2167 * @crtc: crtc whose pipes is to be disabled
2168 *
2169 * Disable the pipe of @crtc, making sure that various hardware
2170 * specific requirements are met, if applicable, e.g. plane
2171 * disabled, panel fitter off, etc.
2172 *
2173 * Will wait until the pipe has shut down before returning.
2174 */
2175 static void intel_disable_pipe(struct intel_crtc *crtc)
2176 {
2177 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2178 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2179 enum pipe pipe = crtc->pipe;
2180 int reg;
2181 u32 val;
2182
2183 /*
2184 * Make sure planes won't keep trying to pump pixels to us,
2185 * or we might hang the display.
2186 */
2187 assert_planes_disabled(dev_priv, pipe);
2188 assert_cursor_disabled(dev_priv, pipe);
2189 assert_sprites_disabled(dev_priv, pipe);
2190
2191 reg = PIPECONF(cpu_transcoder);
2192 val = I915_READ(reg);
2193 if ((val & PIPECONF_ENABLE) == 0)
2194 return;
2195
2196 /*
2197 * Double wide has implications for planes
2198 * so best keep it disabled when not needed.
2199 */
2200 if (crtc->config->double_wide)
2201 val &= ~PIPECONF_DOUBLE_WIDE;
2202
2203 /* Don't disable pipe or pipe PLLs if needed */
2204 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2205 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2206 val &= ~PIPECONF_ENABLE;
2207
2208 I915_WRITE(reg, val);
2209 if ((val & PIPECONF_ENABLE) == 0)
2210 intel_wait_for_pipe_off(crtc);
2211 }
2212
2213 /**
2214 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2215 * @plane: plane to be enabled
2216 * @crtc: crtc for the plane
2217 *
2218 * Enable @plane on @crtc, making sure that the pipe is running first.
2219 */
2220 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2221 struct drm_crtc *crtc)
2222 {
2223 struct drm_device *dev = plane->dev;
2224 struct drm_i915_private *dev_priv = dev->dev_private;
2225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226
2227 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2228 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2229 to_intel_plane_state(plane->state)->visible = true;
2230
2231 dev_priv->display.update_primary_plane(crtc, plane->fb,
2232 crtc->x, crtc->y);
2233 }
2234
2235 static bool need_vtd_wa(struct drm_device *dev)
2236 {
2237 #ifdef CONFIG_INTEL_IOMMU
2238 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2239 return true;
2240 #endif
2241 return false;
2242 }
2243
2244 unsigned int
2245 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2246 uint64_t fb_format_modifier)
2247 {
2248 unsigned int tile_height;
2249 uint32_t pixel_bytes;
2250
2251 switch (fb_format_modifier) {
2252 case DRM_FORMAT_MOD_NONE:
2253 tile_height = 1;
2254 break;
2255 case I915_FORMAT_MOD_X_TILED:
2256 tile_height = IS_GEN2(dev) ? 16 : 8;
2257 break;
2258 case I915_FORMAT_MOD_Y_TILED:
2259 tile_height = 32;
2260 break;
2261 case I915_FORMAT_MOD_Yf_TILED:
2262 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2263 switch (pixel_bytes) {
2264 default:
2265 case 1:
2266 tile_height = 64;
2267 break;
2268 case 2:
2269 case 4:
2270 tile_height = 32;
2271 break;
2272 case 8:
2273 tile_height = 16;
2274 break;
2275 case 16:
2276 WARN_ONCE(1,
2277 "128-bit pixels are not supported for display!");
2278 tile_height = 16;
2279 break;
2280 }
2281 break;
2282 default:
2283 MISSING_CASE(fb_format_modifier);
2284 tile_height = 1;
2285 break;
2286 }
2287
2288 return tile_height;
2289 }
2290
2291 unsigned int
2292 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2293 uint32_t pixel_format, uint64_t fb_format_modifier)
2294 {
2295 return ALIGN(height, intel_tile_height(dev, pixel_format,
2296 fb_format_modifier));
2297 }
2298
2299 static int
2300 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2301 const struct drm_plane_state *plane_state)
2302 {
2303 struct intel_rotation_info *info = &view->rotation_info;
2304
2305 *view = i915_ggtt_view_normal;
2306
2307 if (!plane_state)
2308 return 0;
2309
2310 if (!intel_rotation_90_or_270(plane_state->rotation))
2311 return 0;
2312
2313 *view = i915_ggtt_view_rotated;
2314
2315 info->height = fb->height;
2316 info->pixel_format = fb->pixel_format;
2317 info->pitch = fb->pitches[0];
2318 info->fb_modifier = fb->modifier[0];
2319
2320 return 0;
2321 }
2322
2323 int
2324 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2325 struct drm_framebuffer *fb,
2326 const struct drm_plane_state *plane_state,
2327 struct intel_engine_cs *pipelined)
2328 {
2329 struct drm_device *dev = fb->dev;
2330 struct drm_i915_private *dev_priv = dev->dev_private;
2331 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2332 struct i915_ggtt_view view;
2333 u32 alignment;
2334 int ret;
2335
2336 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2337
2338 switch (fb->modifier[0]) {
2339 case DRM_FORMAT_MOD_NONE:
2340 if (INTEL_INFO(dev)->gen >= 9)
2341 alignment = 256 * 1024;
2342 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2343 alignment = 128 * 1024;
2344 else if (INTEL_INFO(dev)->gen >= 4)
2345 alignment = 4 * 1024;
2346 else
2347 alignment = 64 * 1024;
2348 break;
2349 case I915_FORMAT_MOD_X_TILED:
2350 if (INTEL_INFO(dev)->gen >= 9)
2351 alignment = 256 * 1024;
2352 else {
2353 /* pin() will align the object as required by fence */
2354 alignment = 0;
2355 }
2356 break;
2357 case I915_FORMAT_MOD_Y_TILED:
2358 case I915_FORMAT_MOD_Yf_TILED:
2359 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2360 "Y tiling bo slipped through, driver bug!\n"))
2361 return -EINVAL;
2362 alignment = 1 * 1024 * 1024;
2363 break;
2364 default:
2365 MISSING_CASE(fb->modifier[0]);
2366 return -EINVAL;
2367 }
2368
2369 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2370 if (ret)
2371 return ret;
2372
2373 /* Note that the w/a also requires 64 PTE of padding following the
2374 * bo. We currently fill all unused PTE with the shadow page and so
2375 * we should always have valid PTE following the scanout preventing
2376 * the VT-d warning.
2377 */
2378 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2379 alignment = 256 * 1024;
2380
2381 /*
2382 * Global gtt pte registers are special registers which actually forward
2383 * writes to a chunk of system memory. Which means that there is no risk
2384 * that the register values disappear as soon as we call
2385 * intel_runtime_pm_put(), so it is correct to wrap only the
2386 * pin/unpin/fence and not more.
2387 */
2388 intel_runtime_pm_get(dev_priv);
2389
2390 dev_priv->mm.interruptible = false;
2391 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2392 &view);
2393 if (ret)
2394 goto err_interruptible;
2395
2396 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2397 * fence, whereas 965+ only requires a fence if using
2398 * framebuffer compression. For simplicity, we always install
2399 * a fence as the cost is not that onerous.
2400 */
2401 ret = i915_gem_object_get_fence(obj);
2402 if (ret)
2403 goto err_unpin;
2404
2405 i915_gem_object_pin_fence(obj);
2406
2407 dev_priv->mm.interruptible = true;
2408 intel_runtime_pm_put(dev_priv);
2409 return 0;
2410
2411 err_unpin:
2412 i915_gem_object_unpin_from_display_plane(obj, &view);
2413 err_interruptible:
2414 dev_priv->mm.interruptible = true;
2415 intel_runtime_pm_put(dev_priv);
2416 return ret;
2417 }
2418
2419 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2420 const struct drm_plane_state *plane_state)
2421 {
2422 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2423 struct i915_ggtt_view view;
2424 int ret;
2425
2426 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2427
2428 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2429 WARN_ONCE(ret, "Couldn't get view from plane state!");
2430
2431 i915_gem_object_unpin_fence(obj);
2432 i915_gem_object_unpin_from_display_plane(obj, &view);
2433 }
2434
2435 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2436 * is assumed to be a power-of-two. */
2437 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2438 unsigned int tiling_mode,
2439 unsigned int cpp,
2440 unsigned int pitch)
2441 {
2442 if (tiling_mode != I915_TILING_NONE) {
2443 unsigned int tile_rows, tiles;
2444
2445 tile_rows = *y / 8;
2446 *y %= 8;
2447
2448 tiles = *x / (512/cpp);
2449 *x %= 512/cpp;
2450
2451 return tile_rows * pitch * 8 + tiles * 4096;
2452 } else {
2453 unsigned int offset;
2454
2455 offset = *y * pitch + *x * cpp;
2456 *y = 0;
2457 *x = (offset & 4095) / cpp;
2458 return offset & -4096;
2459 }
2460 }
2461
2462 static int i9xx_format_to_fourcc(int format)
2463 {
2464 switch (format) {
2465 case DISPPLANE_8BPP:
2466 return DRM_FORMAT_C8;
2467 case DISPPLANE_BGRX555:
2468 return DRM_FORMAT_XRGB1555;
2469 case DISPPLANE_BGRX565:
2470 return DRM_FORMAT_RGB565;
2471 default:
2472 case DISPPLANE_BGRX888:
2473 return DRM_FORMAT_XRGB8888;
2474 case DISPPLANE_RGBX888:
2475 return DRM_FORMAT_XBGR8888;
2476 case DISPPLANE_BGRX101010:
2477 return DRM_FORMAT_XRGB2101010;
2478 case DISPPLANE_RGBX101010:
2479 return DRM_FORMAT_XBGR2101010;
2480 }
2481 }
2482
2483 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2484 {
2485 switch (format) {
2486 case PLANE_CTL_FORMAT_RGB_565:
2487 return DRM_FORMAT_RGB565;
2488 default:
2489 case PLANE_CTL_FORMAT_XRGB_8888:
2490 if (rgb_order) {
2491 if (alpha)
2492 return DRM_FORMAT_ABGR8888;
2493 else
2494 return DRM_FORMAT_XBGR8888;
2495 } else {
2496 if (alpha)
2497 return DRM_FORMAT_ARGB8888;
2498 else
2499 return DRM_FORMAT_XRGB8888;
2500 }
2501 case PLANE_CTL_FORMAT_XRGB_2101010:
2502 if (rgb_order)
2503 return DRM_FORMAT_XBGR2101010;
2504 else
2505 return DRM_FORMAT_XRGB2101010;
2506 }
2507 }
2508
2509 static bool
2510 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2511 struct intel_initial_plane_config *plane_config)
2512 {
2513 struct drm_device *dev = crtc->base.dev;
2514 struct drm_i915_gem_object *obj = NULL;
2515 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2516 struct drm_framebuffer *fb = &plane_config->fb->base;
2517 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2518 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2519 PAGE_SIZE);
2520
2521 size_aligned -= base_aligned;
2522
2523 if (plane_config->size == 0)
2524 return false;
2525
2526 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2527 base_aligned,
2528 base_aligned,
2529 size_aligned);
2530 if (!obj)
2531 return false;
2532
2533 obj->tiling_mode = plane_config->tiling;
2534 if (obj->tiling_mode == I915_TILING_X)
2535 obj->stride = fb->pitches[0];
2536
2537 mode_cmd.pixel_format = fb->pixel_format;
2538 mode_cmd.width = fb->width;
2539 mode_cmd.height = fb->height;
2540 mode_cmd.pitches[0] = fb->pitches[0];
2541 mode_cmd.modifier[0] = fb->modifier[0];
2542 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2543
2544 mutex_lock(&dev->struct_mutex);
2545 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2546 &mode_cmd, obj)) {
2547 DRM_DEBUG_KMS("intel fb init failed\n");
2548 goto out_unref_obj;
2549 }
2550 mutex_unlock(&dev->struct_mutex);
2551
2552 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2553 return true;
2554
2555 out_unref_obj:
2556 drm_gem_object_unreference(&obj->base);
2557 mutex_unlock(&dev->struct_mutex);
2558 return false;
2559 }
2560
2561 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2562 static void
2563 update_state_fb(struct drm_plane *plane)
2564 {
2565 if (plane->fb == plane->state->fb)
2566 return;
2567
2568 if (plane->state->fb)
2569 drm_framebuffer_unreference(plane->state->fb);
2570 plane->state->fb = plane->fb;
2571 if (plane->state->fb)
2572 drm_framebuffer_reference(plane->state->fb);
2573 }
2574
2575 static void
2576 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2577 struct intel_initial_plane_config *plane_config)
2578 {
2579 struct drm_device *dev = intel_crtc->base.dev;
2580 struct drm_i915_private *dev_priv = dev->dev_private;
2581 struct drm_crtc *c;
2582 struct intel_crtc *i;
2583 struct drm_i915_gem_object *obj;
2584 struct drm_plane *primary = intel_crtc->base.primary;
2585 struct drm_framebuffer *fb;
2586
2587 if (!plane_config->fb)
2588 return;
2589
2590 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2591 fb = &plane_config->fb->base;
2592 goto valid_fb;
2593 }
2594
2595 kfree(plane_config->fb);
2596
2597 /*
2598 * Failed to alloc the obj, check to see if we should share
2599 * an fb with another CRTC instead
2600 */
2601 for_each_crtc(dev, c) {
2602 i = to_intel_crtc(c);
2603
2604 if (c == &intel_crtc->base)
2605 continue;
2606
2607 if (!i->active)
2608 continue;
2609
2610 fb = c->primary->fb;
2611 if (!fb)
2612 continue;
2613
2614 obj = intel_fb_obj(fb);
2615 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2616 drm_framebuffer_reference(fb);
2617 goto valid_fb;
2618 }
2619 }
2620
2621 return;
2622
2623 valid_fb:
2624 obj = intel_fb_obj(fb);
2625 if (obj->tiling_mode != I915_TILING_NONE)
2626 dev_priv->preserve_bios_swizzle = true;
2627
2628 primary->fb = fb;
2629 primary->state->crtc = &intel_crtc->base;
2630 primary->crtc = &intel_crtc->base;
2631 update_state_fb(primary);
2632 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2633 }
2634
2635 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2636 struct drm_framebuffer *fb,
2637 int x, int y)
2638 {
2639 struct drm_device *dev = crtc->dev;
2640 struct drm_i915_private *dev_priv = dev->dev_private;
2641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2642 struct drm_plane *primary = crtc->primary;
2643 bool visible = to_intel_plane_state(primary->state)->visible;
2644 struct drm_i915_gem_object *obj;
2645 int plane = intel_crtc->plane;
2646 unsigned long linear_offset;
2647 u32 dspcntr;
2648 u32 reg = DSPCNTR(plane);
2649 int pixel_size;
2650
2651 if (!visible || !fb) {
2652 I915_WRITE(reg, 0);
2653 if (INTEL_INFO(dev)->gen >= 4)
2654 I915_WRITE(DSPSURF(plane), 0);
2655 else
2656 I915_WRITE(DSPADDR(plane), 0);
2657 POSTING_READ(reg);
2658 return;
2659 }
2660
2661 obj = intel_fb_obj(fb);
2662 if (WARN_ON(obj == NULL))
2663 return;
2664
2665 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2666
2667 dspcntr = DISPPLANE_GAMMA_ENABLE;
2668
2669 dspcntr |= DISPLAY_PLANE_ENABLE;
2670
2671 if (INTEL_INFO(dev)->gen < 4) {
2672 if (intel_crtc->pipe == PIPE_B)
2673 dspcntr |= DISPPLANE_SEL_PIPE_B;
2674
2675 /* pipesrc and dspsize control the size that is scaled from,
2676 * which should always be the user's requested size.
2677 */
2678 I915_WRITE(DSPSIZE(plane),
2679 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2680 (intel_crtc->config->pipe_src_w - 1));
2681 I915_WRITE(DSPPOS(plane), 0);
2682 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2683 I915_WRITE(PRIMSIZE(plane),
2684 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2685 (intel_crtc->config->pipe_src_w - 1));
2686 I915_WRITE(PRIMPOS(plane), 0);
2687 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2688 }
2689
2690 switch (fb->pixel_format) {
2691 case DRM_FORMAT_C8:
2692 dspcntr |= DISPPLANE_8BPP;
2693 break;
2694 case DRM_FORMAT_XRGB1555:
2695 dspcntr |= DISPPLANE_BGRX555;
2696 break;
2697 case DRM_FORMAT_RGB565:
2698 dspcntr |= DISPPLANE_BGRX565;
2699 break;
2700 case DRM_FORMAT_XRGB8888:
2701 dspcntr |= DISPPLANE_BGRX888;
2702 break;
2703 case DRM_FORMAT_XBGR8888:
2704 dspcntr |= DISPPLANE_RGBX888;
2705 break;
2706 case DRM_FORMAT_XRGB2101010:
2707 dspcntr |= DISPPLANE_BGRX101010;
2708 break;
2709 case DRM_FORMAT_XBGR2101010:
2710 dspcntr |= DISPPLANE_RGBX101010;
2711 break;
2712 default:
2713 BUG();
2714 }
2715
2716 if (INTEL_INFO(dev)->gen >= 4 &&
2717 obj->tiling_mode != I915_TILING_NONE)
2718 dspcntr |= DISPPLANE_TILED;
2719
2720 if (IS_G4X(dev))
2721 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2722
2723 linear_offset = y * fb->pitches[0] + x * pixel_size;
2724
2725 if (INTEL_INFO(dev)->gen >= 4) {
2726 intel_crtc->dspaddr_offset =
2727 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2728 pixel_size,
2729 fb->pitches[0]);
2730 linear_offset -= intel_crtc->dspaddr_offset;
2731 } else {
2732 intel_crtc->dspaddr_offset = linear_offset;
2733 }
2734
2735 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2736 dspcntr |= DISPPLANE_ROTATE_180;
2737
2738 x += (intel_crtc->config->pipe_src_w - 1);
2739 y += (intel_crtc->config->pipe_src_h - 1);
2740
2741 /* Finding the last pixel of the last line of the display
2742 data and adding to linear_offset*/
2743 linear_offset +=
2744 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2745 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2746 }
2747
2748 I915_WRITE(reg, dspcntr);
2749
2750 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2751 if (INTEL_INFO(dev)->gen >= 4) {
2752 I915_WRITE(DSPSURF(plane),
2753 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2754 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2755 I915_WRITE(DSPLINOFF(plane), linear_offset);
2756 } else
2757 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2758 POSTING_READ(reg);
2759 }
2760
2761 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2762 struct drm_framebuffer *fb,
2763 int x, int y)
2764 {
2765 struct drm_device *dev = crtc->dev;
2766 struct drm_i915_private *dev_priv = dev->dev_private;
2767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2768 struct drm_plane *primary = crtc->primary;
2769 bool visible = to_intel_plane_state(primary->state)->visible;
2770 struct drm_i915_gem_object *obj;
2771 int plane = intel_crtc->plane;
2772 unsigned long linear_offset;
2773 u32 dspcntr;
2774 u32 reg = DSPCNTR(plane);
2775 int pixel_size;
2776
2777 if (!visible || !fb) {
2778 I915_WRITE(reg, 0);
2779 I915_WRITE(DSPSURF(plane), 0);
2780 POSTING_READ(reg);
2781 return;
2782 }
2783
2784 obj = intel_fb_obj(fb);
2785 if (WARN_ON(obj == NULL))
2786 return;
2787
2788 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2789
2790 dspcntr = DISPPLANE_GAMMA_ENABLE;
2791
2792 dspcntr |= DISPLAY_PLANE_ENABLE;
2793
2794 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2795 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2796
2797 switch (fb->pixel_format) {
2798 case DRM_FORMAT_C8:
2799 dspcntr |= DISPPLANE_8BPP;
2800 break;
2801 case DRM_FORMAT_RGB565:
2802 dspcntr |= DISPPLANE_BGRX565;
2803 break;
2804 case DRM_FORMAT_XRGB8888:
2805 dspcntr |= DISPPLANE_BGRX888;
2806 break;
2807 case DRM_FORMAT_XBGR8888:
2808 dspcntr |= DISPPLANE_RGBX888;
2809 break;
2810 case DRM_FORMAT_XRGB2101010:
2811 dspcntr |= DISPPLANE_BGRX101010;
2812 break;
2813 case DRM_FORMAT_XBGR2101010:
2814 dspcntr |= DISPPLANE_RGBX101010;
2815 break;
2816 default:
2817 BUG();
2818 }
2819
2820 if (obj->tiling_mode != I915_TILING_NONE)
2821 dspcntr |= DISPPLANE_TILED;
2822
2823 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2824 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2825
2826 linear_offset = y * fb->pitches[0] + x * pixel_size;
2827 intel_crtc->dspaddr_offset =
2828 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2829 pixel_size,
2830 fb->pitches[0]);
2831 linear_offset -= intel_crtc->dspaddr_offset;
2832 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2833 dspcntr |= DISPPLANE_ROTATE_180;
2834
2835 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2836 x += (intel_crtc->config->pipe_src_w - 1);
2837 y += (intel_crtc->config->pipe_src_h - 1);
2838
2839 /* Finding the last pixel of the last line of the display
2840 data and adding to linear_offset*/
2841 linear_offset +=
2842 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2843 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2844 }
2845 }
2846
2847 I915_WRITE(reg, dspcntr);
2848
2849 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2850 I915_WRITE(DSPSURF(plane),
2851 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2852 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2853 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2854 } else {
2855 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2856 I915_WRITE(DSPLINOFF(plane), linear_offset);
2857 }
2858 POSTING_READ(reg);
2859 }
2860
2861 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2862 uint32_t pixel_format)
2863 {
2864 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2865
2866 /*
2867 * The stride is either expressed as a multiple of 64 bytes
2868 * chunks for linear buffers or in number of tiles for tiled
2869 * buffers.
2870 */
2871 switch (fb_modifier) {
2872 case DRM_FORMAT_MOD_NONE:
2873 return 64;
2874 case I915_FORMAT_MOD_X_TILED:
2875 if (INTEL_INFO(dev)->gen == 2)
2876 return 128;
2877 return 512;
2878 case I915_FORMAT_MOD_Y_TILED:
2879 /* No need to check for old gens and Y tiling since this is
2880 * about the display engine and those will be blocked before
2881 * we get here.
2882 */
2883 return 128;
2884 case I915_FORMAT_MOD_Yf_TILED:
2885 if (bits_per_pixel == 8)
2886 return 64;
2887 else
2888 return 128;
2889 default:
2890 MISSING_CASE(fb_modifier);
2891 return 64;
2892 }
2893 }
2894
2895 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2896 struct drm_i915_gem_object *obj)
2897 {
2898 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2899
2900 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2901 view = &i915_ggtt_view_rotated;
2902
2903 return i915_gem_obj_ggtt_offset_view(obj, view);
2904 }
2905
2906 /*
2907 * This function detaches (aka. unbinds) unused scalers in hardware
2908 */
2909 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2910 {
2911 struct drm_device *dev;
2912 struct drm_i915_private *dev_priv;
2913 struct intel_crtc_scaler_state *scaler_state;
2914 int i;
2915
2916 if (!intel_crtc || !intel_crtc->config)
2917 return;
2918
2919 dev = intel_crtc->base.dev;
2920 dev_priv = dev->dev_private;
2921 scaler_state = &intel_crtc->config->scaler_state;
2922
2923 /* loop through and disable scalers that aren't in use */
2924 for (i = 0; i < intel_crtc->num_scalers; i++) {
2925 if (!scaler_state->scalers[i].in_use) {
2926 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2927 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2928 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2929 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2930 intel_crtc->base.base.id, intel_crtc->pipe, i);
2931 }
2932 }
2933 }
2934
2935 u32 skl_plane_ctl_format(uint32_t pixel_format)
2936 {
2937 switch (pixel_format) {
2938 case DRM_FORMAT_C8:
2939 return PLANE_CTL_FORMAT_INDEXED;
2940 case DRM_FORMAT_RGB565:
2941 return PLANE_CTL_FORMAT_RGB_565;
2942 case DRM_FORMAT_XBGR8888:
2943 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2944 case DRM_FORMAT_XRGB8888:
2945 return PLANE_CTL_FORMAT_XRGB_8888;
2946 /*
2947 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2948 * to be already pre-multiplied. We need to add a knob (or a different
2949 * DRM_FORMAT) for user-space to configure that.
2950 */
2951 case DRM_FORMAT_ABGR8888:
2952 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2953 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2954 case DRM_FORMAT_ARGB8888:
2955 return PLANE_CTL_FORMAT_XRGB_8888 |
2956 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2957 case DRM_FORMAT_XRGB2101010:
2958 return PLANE_CTL_FORMAT_XRGB_2101010;
2959 case DRM_FORMAT_XBGR2101010:
2960 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2961 case DRM_FORMAT_YUYV:
2962 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2963 case DRM_FORMAT_YVYU:
2964 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2965 case DRM_FORMAT_UYVY:
2966 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2967 case DRM_FORMAT_VYUY:
2968 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2969 default:
2970 MISSING_CASE(pixel_format);
2971 }
2972
2973 return 0;
2974 }
2975
2976 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2977 {
2978 switch (fb_modifier) {
2979 case DRM_FORMAT_MOD_NONE:
2980 break;
2981 case I915_FORMAT_MOD_X_TILED:
2982 return PLANE_CTL_TILED_X;
2983 case I915_FORMAT_MOD_Y_TILED:
2984 return PLANE_CTL_TILED_Y;
2985 case I915_FORMAT_MOD_Yf_TILED:
2986 return PLANE_CTL_TILED_YF;
2987 default:
2988 MISSING_CASE(fb_modifier);
2989 }
2990
2991 return 0;
2992 }
2993
2994 u32 skl_plane_ctl_rotation(unsigned int rotation)
2995 {
2996 switch (rotation) {
2997 case BIT(DRM_ROTATE_0):
2998 break;
2999 /*
3000 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3001 * while i915 HW rotation is clockwise, thats why this swapping.
3002 */
3003 case BIT(DRM_ROTATE_90):
3004 return PLANE_CTL_ROTATE_270;
3005 case BIT(DRM_ROTATE_180):
3006 return PLANE_CTL_ROTATE_180;
3007 case BIT(DRM_ROTATE_270):
3008 return PLANE_CTL_ROTATE_90;
3009 default:
3010 MISSING_CASE(rotation);
3011 }
3012
3013 return 0;
3014 }
3015
3016 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3017 struct drm_framebuffer *fb,
3018 int x, int y)
3019 {
3020 struct drm_device *dev = crtc->dev;
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3023 struct drm_plane *plane = crtc->primary;
3024 bool visible = to_intel_plane_state(plane->state)->visible;
3025 struct drm_i915_gem_object *obj;
3026 int pipe = intel_crtc->pipe;
3027 u32 plane_ctl, stride_div, stride;
3028 u32 tile_height, plane_offset, plane_size;
3029 unsigned int rotation;
3030 int x_offset, y_offset;
3031 unsigned long surf_addr;
3032 struct intel_crtc_state *crtc_state = intel_crtc->config;
3033 struct intel_plane_state *plane_state;
3034 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3035 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3036 int scaler_id = -1;
3037
3038 plane_state = to_intel_plane_state(plane->state);
3039
3040 if (!visible || !fb) {
3041 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3042 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3043 POSTING_READ(PLANE_CTL(pipe, 0));
3044 return;
3045 }
3046
3047 plane_ctl = PLANE_CTL_ENABLE |
3048 PLANE_CTL_PIPE_GAMMA_ENABLE |
3049 PLANE_CTL_PIPE_CSC_ENABLE;
3050
3051 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3052 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3053 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3054
3055 rotation = plane->state->rotation;
3056 plane_ctl |= skl_plane_ctl_rotation(rotation);
3057
3058 obj = intel_fb_obj(fb);
3059 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3060 fb->pixel_format);
3061 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3062
3063 /*
3064 * FIXME: intel_plane_state->src, dst aren't set when transitional
3065 * update_plane helpers are called from legacy paths.
3066 * Once full atomic crtc is available, below check can be avoided.
3067 */
3068 if (drm_rect_width(&plane_state->src)) {
3069 scaler_id = plane_state->scaler_id;
3070 src_x = plane_state->src.x1 >> 16;
3071 src_y = plane_state->src.y1 >> 16;
3072 src_w = drm_rect_width(&plane_state->src) >> 16;
3073 src_h = drm_rect_height(&plane_state->src) >> 16;
3074 dst_x = plane_state->dst.x1;
3075 dst_y = plane_state->dst.y1;
3076 dst_w = drm_rect_width(&plane_state->dst);
3077 dst_h = drm_rect_height(&plane_state->dst);
3078
3079 WARN_ON(x != src_x || y != src_y);
3080 } else {
3081 src_w = intel_crtc->config->pipe_src_w;
3082 src_h = intel_crtc->config->pipe_src_h;
3083 }
3084
3085 if (intel_rotation_90_or_270(rotation)) {
3086 /* stride = Surface height in tiles */
3087 tile_height = intel_tile_height(dev, fb->pixel_format,
3088 fb->modifier[0]);
3089 stride = DIV_ROUND_UP(fb->height, tile_height);
3090 x_offset = stride * tile_height - y - src_h;
3091 y_offset = x;
3092 plane_size = (src_w - 1) << 16 | (src_h - 1);
3093 } else {
3094 stride = fb->pitches[0] / stride_div;
3095 x_offset = x;
3096 y_offset = y;
3097 plane_size = (src_h - 1) << 16 | (src_w - 1);
3098 }
3099 plane_offset = y_offset << 16 | x_offset;
3100
3101 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3102 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3103 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3104 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3105
3106 if (scaler_id >= 0) {
3107 uint32_t ps_ctrl = 0;
3108
3109 WARN_ON(!dst_w || !dst_h);
3110 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3111 crtc_state->scaler_state.scalers[scaler_id].mode;
3112 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3113 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3114 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3115 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3116 I915_WRITE(PLANE_POS(pipe, 0), 0);
3117 } else {
3118 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3119 }
3120
3121 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3122
3123 POSTING_READ(PLANE_SURF(pipe, 0));
3124 }
3125
3126 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3127 static int
3128 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3129 int x, int y, enum mode_set_atomic state)
3130 {
3131 struct drm_device *dev = crtc->dev;
3132 struct drm_i915_private *dev_priv = dev->dev_private;
3133
3134 if (dev_priv->display.disable_fbc)
3135 dev_priv->display.disable_fbc(dev);
3136
3137 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3138
3139 return 0;
3140 }
3141
3142 static void intel_complete_page_flips(struct drm_device *dev)
3143 {
3144 struct drm_crtc *crtc;
3145
3146 for_each_crtc(dev, crtc) {
3147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3148 enum plane plane = intel_crtc->plane;
3149
3150 intel_prepare_page_flip(dev, plane);
3151 intel_finish_page_flip_plane(dev, plane);
3152 }
3153 }
3154
3155 static void intel_update_primary_planes(struct drm_device *dev)
3156 {
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct drm_crtc *crtc;
3159
3160 for_each_crtc(dev, crtc) {
3161 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3162
3163 drm_modeset_lock(&crtc->mutex, NULL);
3164 /*
3165 * FIXME: Once we have proper support for primary planes (and
3166 * disabling them without disabling the entire crtc) allow again
3167 * a NULL crtc->primary->fb.
3168 */
3169 if (intel_crtc->active && crtc->primary->fb)
3170 dev_priv->display.update_primary_plane(crtc,
3171 crtc->primary->fb,
3172 crtc->x,
3173 crtc->y);
3174 drm_modeset_unlock(&crtc->mutex);
3175 }
3176 }
3177
3178 void intel_crtc_reset(struct intel_crtc *crtc)
3179 {
3180 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3181
3182 if (!crtc->active)
3183 return;
3184
3185 intel_crtc_disable_planes(&crtc->base);
3186 dev_priv->display.crtc_disable(&crtc->base);
3187 dev_priv->display.crtc_enable(&crtc->base);
3188 intel_crtc_enable_planes(&crtc->base);
3189 }
3190
3191 void intel_prepare_reset(struct drm_device *dev)
3192 {
3193 struct drm_i915_private *dev_priv = to_i915(dev);
3194 struct intel_crtc *crtc;
3195
3196 /* no reset support for gen2 */
3197 if (IS_GEN2(dev))
3198 return;
3199
3200 /* reset doesn't touch the display */
3201 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3202 return;
3203
3204 drm_modeset_lock_all(dev);
3205
3206 /*
3207 * Disabling the crtcs gracefully seems nicer. Also the
3208 * g33 docs say we should at least disable all the planes.
3209 */
3210 for_each_intel_crtc(dev, crtc) {
3211 if (!crtc->active)
3212 continue;
3213
3214 intel_crtc_disable_planes(&crtc->base);
3215 dev_priv->display.crtc_disable(&crtc->base);
3216 }
3217 }
3218
3219 void intel_finish_reset(struct drm_device *dev)
3220 {
3221 struct drm_i915_private *dev_priv = to_i915(dev);
3222
3223 /*
3224 * Flips in the rings will be nuked by the reset,
3225 * so complete all pending flips so that user space
3226 * will get its events and not get stuck.
3227 */
3228 intel_complete_page_flips(dev);
3229
3230 /* no reset support for gen2 */
3231 if (IS_GEN2(dev))
3232 return;
3233
3234 /* reset doesn't touch the display */
3235 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3236 /*
3237 * Flips in the rings have been nuked by the reset,
3238 * so update the base address of all primary
3239 * planes to the the last fb to make sure we're
3240 * showing the correct fb after a reset.
3241 */
3242 intel_update_primary_planes(dev);
3243 return;
3244 }
3245
3246 /*
3247 * The display has been reset as well,
3248 * so need a full re-initialization.
3249 */
3250 intel_runtime_pm_disable_interrupts(dev_priv);
3251 intel_runtime_pm_enable_interrupts(dev_priv);
3252
3253 intel_modeset_init_hw(dev);
3254
3255 spin_lock_irq(&dev_priv->irq_lock);
3256 if (dev_priv->display.hpd_irq_setup)
3257 dev_priv->display.hpd_irq_setup(dev);
3258 spin_unlock_irq(&dev_priv->irq_lock);
3259
3260 intel_modeset_setup_hw_state(dev, true);
3261
3262 intel_hpd_init(dev_priv);
3263
3264 drm_modeset_unlock_all(dev);
3265 }
3266
3267 static void
3268 intel_finish_fb(struct drm_framebuffer *old_fb)
3269 {
3270 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3271 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3272 bool was_interruptible = dev_priv->mm.interruptible;
3273 int ret;
3274
3275 /* Big Hammer, we also need to ensure that any pending
3276 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3277 * current scanout is retired before unpinning the old
3278 * framebuffer. Note that we rely on userspace rendering
3279 * into the buffer attached to the pipe they are waiting
3280 * on. If not, userspace generates a GPU hang with IPEHR
3281 * point to the MI_WAIT_FOR_EVENT.
3282 *
3283 * This should only fail upon a hung GPU, in which case we
3284 * can safely continue.
3285 */
3286 dev_priv->mm.interruptible = false;
3287 ret = i915_gem_object_wait_rendering(obj, true);
3288 dev_priv->mm.interruptible = was_interruptible;
3289
3290 WARN_ON(ret);
3291 }
3292
3293 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3294 {
3295 struct drm_device *dev = crtc->dev;
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3298 bool pending;
3299
3300 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3301 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3302 return false;
3303
3304 spin_lock_irq(&dev->event_lock);
3305 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3306 spin_unlock_irq(&dev->event_lock);
3307
3308 return pending;
3309 }
3310
3311 static void intel_update_pipe_size(struct intel_crtc *crtc)
3312 {
3313 struct drm_device *dev = crtc->base.dev;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 const struct drm_display_mode *adjusted_mode;
3316
3317 if (!i915.fastboot)
3318 return;
3319
3320 /*
3321 * Update pipe size and adjust fitter if needed: the reason for this is
3322 * that in compute_mode_changes we check the native mode (not the pfit
3323 * mode) to see if we can flip rather than do a full mode set. In the
3324 * fastboot case, we'll flip, but if we don't update the pipesrc and
3325 * pfit state, we'll end up with a big fb scanned out into the wrong
3326 * sized surface.
3327 *
3328 * To fix this properly, we need to hoist the checks up into
3329 * compute_mode_changes (or above), check the actual pfit state and
3330 * whether the platform allows pfit disable with pipe active, and only
3331 * then update the pipesrc and pfit state, even on the flip path.
3332 */
3333
3334 adjusted_mode = &crtc->config->base.adjusted_mode;
3335
3336 I915_WRITE(PIPESRC(crtc->pipe),
3337 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3338 (adjusted_mode->crtc_vdisplay - 1));
3339 if (!crtc->config->pch_pfit.enabled &&
3340 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3341 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3342 I915_WRITE(PF_CTL(crtc->pipe), 0);
3343 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3344 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3345 }
3346 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3347 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3348 }
3349
3350 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3351 {
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355 int pipe = intel_crtc->pipe;
3356 u32 reg, temp;
3357
3358 /* enable normal train */
3359 reg = FDI_TX_CTL(pipe);
3360 temp = I915_READ(reg);
3361 if (IS_IVYBRIDGE(dev)) {
3362 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3363 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3364 } else {
3365 temp &= ~FDI_LINK_TRAIN_NONE;
3366 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3367 }
3368 I915_WRITE(reg, temp);
3369
3370 reg = FDI_RX_CTL(pipe);
3371 temp = I915_READ(reg);
3372 if (HAS_PCH_CPT(dev)) {
3373 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3374 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3375 } else {
3376 temp &= ~FDI_LINK_TRAIN_NONE;
3377 temp |= FDI_LINK_TRAIN_NONE;
3378 }
3379 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3380
3381 /* wait one idle pattern time */
3382 POSTING_READ(reg);
3383 udelay(1000);
3384
3385 /* IVB wants error correction enabled */
3386 if (IS_IVYBRIDGE(dev))
3387 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3388 FDI_FE_ERRC_ENABLE);
3389 }
3390
3391 /* The FDI link training functions for ILK/Ibexpeak. */
3392 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3393 {
3394 struct drm_device *dev = crtc->dev;
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3397 int pipe = intel_crtc->pipe;
3398 u32 reg, temp, tries;
3399
3400 /* FDI needs bits from pipe first */
3401 assert_pipe_enabled(dev_priv, pipe);
3402
3403 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3404 for train result */
3405 reg = FDI_RX_IMR(pipe);
3406 temp = I915_READ(reg);
3407 temp &= ~FDI_RX_SYMBOL_LOCK;
3408 temp &= ~FDI_RX_BIT_LOCK;
3409 I915_WRITE(reg, temp);
3410 I915_READ(reg);
3411 udelay(150);
3412
3413 /* enable CPU FDI TX and PCH FDI RX */
3414 reg = FDI_TX_CTL(pipe);
3415 temp = I915_READ(reg);
3416 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3417 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3418 temp &= ~FDI_LINK_TRAIN_NONE;
3419 temp |= FDI_LINK_TRAIN_PATTERN_1;
3420 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3421
3422 reg = FDI_RX_CTL(pipe);
3423 temp = I915_READ(reg);
3424 temp &= ~FDI_LINK_TRAIN_NONE;
3425 temp |= FDI_LINK_TRAIN_PATTERN_1;
3426 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3427
3428 POSTING_READ(reg);
3429 udelay(150);
3430
3431 /* Ironlake workaround, enable clock pointer after FDI enable*/
3432 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3433 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3434 FDI_RX_PHASE_SYNC_POINTER_EN);
3435
3436 reg = FDI_RX_IIR(pipe);
3437 for (tries = 0; tries < 5; tries++) {
3438 temp = I915_READ(reg);
3439 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3440
3441 if ((temp & FDI_RX_BIT_LOCK)) {
3442 DRM_DEBUG_KMS("FDI train 1 done.\n");
3443 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3444 break;
3445 }
3446 }
3447 if (tries == 5)
3448 DRM_ERROR("FDI train 1 fail!\n");
3449
3450 /* Train 2 */
3451 reg = FDI_TX_CTL(pipe);
3452 temp = I915_READ(reg);
3453 temp &= ~FDI_LINK_TRAIN_NONE;
3454 temp |= FDI_LINK_TRAIN_PATTERN_2;
3455 I915_WRITE(reg, temp);
3456
3457 reg = FDI_RX_CTL(pipe);
3458 temp = I915_READ(reg);
3459 temp &= ~FDI_LINK_TRAIN_NONE;
3460 temp |= FDI_LINK_TRAIN_PATTERN_2;
3461 I915_WRITE(reg, temp);
3462
3463 POSTING_READ(reg);
3464 udelay(150);
3465
3466 reg = FDI_RX_IIR(pipe);
3467 for (tries = 0; tries < 5; tries++) {
3468 temp = I915_READ(reg);
3469 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3470
3471 if (temp & FDI_RX_SYMBOL_LOCK) {
3472 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3473 DRM_DEBUG_KMS("FDI train 2 done.\n");
3474 break;
3475 }
3476 }
3477 if (tries == 5)
3478 DRM_ERROR("FDI train 2 fail!\n");
3479
3480 DRM_DEBUG_KMS("FDI train done\n");
3481
3482 }
3483
3484 static const int snb_b_fdi_train_param[] = {
3485 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3486 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3487 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3488 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3489 };
3490
3491 /* The FDI link training functions for SNB/Cougarpoint. */
3492 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3493 {
3494 struct drm_device *dev = crtc->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 int pipe = intel_crtc->pipe;
3498 u32 reg, temp, i, retry;
3499
3500 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3501 for train result */
3502 reg = FDI_RX_IMR(pipe);
3503 temp = I915_READ(reg);
3504 temp &= ~FDI_RX_SYMBOL_LOCK;
3505 temp &= ~FDI_RX_BIT_LOCK;
3506 I915_WRITE(reg, temp);
3507
3508 POSTING_READ(reg);
3509 udelay(150);
3510
3511 /* enable CPU FDI TX and PCH FDI RX */
3512 reg = FDI_TX_CTL(pipe);
3513 temp = I915_READ(reg);
3514 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3515 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3516 temp &= ~FDI_LINK_TRAIN_NONE;
3517 temp |= FDI_LINK_TRAIN_PATTERN_1;
3518 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3519 /* SNB-B */
3520 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3521 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3522
3523 I915_WRITE(FDI_RX_MISC(pipe),
3524 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 if (HAS_PCH_CPT(dev)) {
3529 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3530 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3531 } else {
3532 temp &= ~FDI_LINK_TRAIN_NONE;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1;
3534 }
3535 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3536
3537 POSTING_READ(reg);
3538 udelay(150);
3539
3540 for (i = 0; i < 4; i++) {
3541 reg = FDI_TX_CTL(pipe);
3542 temp = I915_READ(reg);
3543 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3544 temp |= snb_b_fdi_train_param[i];
3545 I915_WRITE(reg, temp);
3546
3547 POSTING_READ(reg);
3548 udelay(500);
3549
3550 for (retry = 0; retry < 5; retry++) {
3551 reg = FDI_RX_IIR(pipe);
3552 temp = I915_READ(reg);
3553 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3554 if (temp & FDI_RX_BIT_LOCK) {
3555 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3556 DRM_DEBUG_KMS("FDI train 1 done.\n");
3557 break;
3558 }
3559 udelay(50);
3560 }
3561 if (retry < 5)
3562 break;
3563 }
3564 if (i == 4)
3565 DRM_ERROR("FDI train 1 fail!\n");
3566
3567 /* Train 2 */
3568 reg = FDI_TX_CTL(pipe);
3569 temp = I915_READ(reg);
3570 temp &= ~FDI_LINK_TRAIN_NONE;
3571 temp |= FDI_LINK_TRAIN_PATTERN_2;
3572 if (IS_GEN6(dev)) {
3573 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3574 /* SNB-B */
3575 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3576 }
3577 I915_WRITE(reg, temp);
3578
3579 reg = FDI_RX_CTL(pipe);
3580 temp = I915_READ(reg);
3581 if (HAS_PCH_CPT(dev)) {
3582 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3583 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3584 } else {
3585 temp &= ~FDI_LINK_TRAIN_NONE;
3586 temp |= FDI_LINK_TRAIN_PATTERN_2;
3587 }
3588 I915_WRITE(reg, temp);
3589
3590 POSTING_READ(reg);
3591 udelay(150);
3592
3593 for (i = 0; i < 4; i++) {
3594 reg = FDI_TX_CTL(pipe);
3595 temp = I915_READ(reg);
3596 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3597 temp |= snb_b_fdi_train_param[i];
3598 I915_WRITE(reg, temp);
3599
3600 POSTING_READ(reg);
3601 udelay(500);
3602
3603 for (retry = 0; retry < 5; retry++) {
3604 reg = FDI_RX_IIR(pipe);
3605 temp = I915_READ(reg);
3606 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3607 if (temp & FDI_RX_SYMBOL_LOCK) {
3608 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3609 DRM_DEBUG_KMS("FDI train 2 done.\n");
3610 break;
3611 }
3612 udelay(50);
3613 }
3614 if (retry < 5)
3615 break;
3616 }
3617 if (i == 4)
3618 DRM_ERROR("FDI train 2 fail!\n");
3619
3620 DRM_DEBUG_KMS("FDI train done.\n");
3621 }
3622
3623 /* Manual link training for Ivy Bridge A0 parts */
3624 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3625 {
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629 int pipe = intel_crtc->pipe;
3630 u32 reg, temp, i, j;
3631
3632 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3633 for train result */
3634 reg = FDI_RX_IMR(pipe);
3635 temp = I915_READ(reg);
3636 temp &= ~FDI_RX_SYMBOL_LOCK;
3637 temp &= ~FDI_RX_BIT_LOCK;
3638 I915_WRITE(reg, temp);
3639
3640 POSTING_READ(reg);
3641 udelay(150);
3642
3643 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3644 I915_READ(FDI_RX_IIR(pipe)));
3645
3646 /* Try each vswing and preemphasis setting twice before moving on */
3647 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3648 /* disable first in case we need to retry */
3649 reg = FDI_TX_CTL(pipe);
3650 temp = I915_READ(reg);
3651 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3652 temp &= ~FDI_TX_ENABLE;
3653 I915_WRITE(reg, temp);
3654
3655 reg = FDI_RX_CTL(pipe);
3656 temp = I915_READ(reg);
3657 temp &= ~FDI_LINK_TRAIN_AUTO;
3658 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3659 temp &= ~FDI_RX_ENABLE;
3660 I915_WRITE(reg, temp);
3661
3662 /* enable CPU FDI TX and PCH FDI RX */
3663 reg = FDI_TX_CTL(pipe);
3664 temp = I915_READ(reg);
3665 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3666 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3667 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3668 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3669 temp |= snb_b_fdi_train_param[j/2];
3670 temp |= FDI_COMPOSITE_SYNC;
3671 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3672
3673 I915_WRITE(FDI_RX_MISC(pipe),
3674 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3675
3676 reg = FDI_RX_CTL(pipe);
3677 temp = I915_READ(reg);
3678 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3679 temp |= FDI_COMPOSITE_SYNC;
3680 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3681
3682 POSTING_READ(reg);
3683 udelay(1); /* should be 0.5us */
3684
3685 for (i = 0; i < 4; i++) {
3686 reg = FDI_RX_IIR(pipe);
3687 temp = I915_READ(reg);
3688 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3689
3690 if (temp & FDI_RX_BIT_LOCK ||
3691 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3692 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3693 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3694 i);
3695 break;
3696 }
3697 udelay(1); /* should be 0.5us */
3698 }
3699 if (i == 4) {
3700 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3701 continue;
3702 }
3703
3704 /* Train 2 */
3705 reg = FDI_TX_CTL(pipe);
3706 temp = I915_READ(reg);
3707 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3708 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3709 I915_WRITE(reg, temp);
3710
3711 reg = FDI_RX_CTL(pipe);
3712 temp = I915_READ(reg);
3713 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3714 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3715 I915_WRITE(reg, temp);
3716
3717 POSTING_READ(reg);
3718 udelay(2); /* should be 1.5us */
3719
3720 for (i = 0; i < 4; i++) {
3721 reg = FDI_RX_IIR(pipe);
3722 temp = I915_READ(reg);
3723 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3724
3725 if (temp & FDI_RX_SYMBOL_LOCK ||
3726 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3727 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3728 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3729 i);
3730 goto train_done;
3731 }
3732 udelay(2); /* should be 1.5us */
3733 }
3734 if (i == 4)
3735 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3736 }
3737
3738 train_done:
3739 DRM_DEBUG_KMS("FDI train done.\n");
3740 }
3741
3742 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3743 {
3744 struct drm_device *dev = intel_crtc->base.dev;
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746 int pipe = intel_crtc->pipe;
3747 u32 reg, temp;
3748
3749
3750 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3751 reg = FDI_RX_CTL(pipe);
3752 temp = I915_READ(reg);
3753 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3754 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3755 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3756 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3757
3758 POSTING_READ(reg);
3759 udelay(200);
3760
3761 /* Switch from Rawclk to PCDclk */
3762 temp = I915_READ(reg);
3763 I915_WRITE(reg, temp | FDI_PCDCLK);
3764
3765 POSTING_READ(reg);
3766 udelay(200);
3767
3768 /* Enable CPU FDI TX PLL, always on for Ironlake */
3769 reg = FDI_TX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3772 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3773
3774 POSTING_READ(reg);
3775 udelay(100);
3776 }
3777 }
3778
3779 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3780 {
3781 struct drm_device *dev = intel_crtc->base.dev;
3782 struct drm_i915_private *dev_priv = dev->dev_private;
3783 int pipe = intel_crtc->pipe;
3784 u32 reg, temp;
3785
3786 /* Switch from PCDclk to Rawclk */
3787 reg = FDI_RX_CTL(pipe);
3788 temp = I915_READ(reg);
3789 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3790
3791 /* Disable CPU FDI TX PLL */
3792 reg = FDI_TX_CTL(pipe);
3793 temp = I915_READ(reg);
3794 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3795
3796 POSTING_READ(reg);
3797 udelay(100);
3798
3799 reg = FDI_RX_CTL(pipe);
3800 temp = I915_READ(reg);
3801 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3802
3803 /* Wait for the clocks to turn off. */
3804 POSTING_READ(reg);
3805 udelay(100);
3806 }
3807
3808 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3809 {
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3813 int pipe = intel_crtc->pipe;
3814 u32 reg, temp;
3815
3816 /* disable CPU FDI tx and PCH FDI rx */
3817 reg = FDI_TX_CTL(pipe);
3818 temp = I915_READ(reg);
3819 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3820 POSTING_READ(reg);
3821
3822 reg = FDI_RX_CTL(pipe);
3823 temp = I915_READ(reg);
3824 temp &= ~(0x7 << 16);
3825 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3826 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3827
3828 POSTING_READ(reg);
3829 udelay(100);
3830
3831 /* Ironlake workaround, disable clock pointer after downing FDI */
3832 if (HAS_PCH_IBX(dev))
3833 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3834
3835 /* still set train pattern 1 */
3836 reg = FDI_TX_CTL(pipe);
3837 temp = I915_READ(reg);
3838 temp &= ~FDI_LINK_TRAIN_NONE;
3839 temp |= FDI_LINK_TRAIN_PATTERN_1;
3840 I915_WRITE(reg, temp);
3841
3842 reg = FDI_RX_CTL(pipe);
3843 temp = I915_READ(reg);
3844 if (HAS_PCH_CPT(dev)) {
3845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3846 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3847 } else {
3848 temp &= ~FDI_LINK_TRAIN_NONE;
3849 temp |= FDI_LINK_TRAIN_PATTERN_1;
3850 }
3851 /* BPC in FDI rx is consistent with that in PIPECONF */
3852 temp &= ~(0x07 << 16);
3853 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3854 I915_WRITE(reg, temp);
3855
3856 POSTING_READ(reg);
3857 udelay(100);
3858 }
3859
3860 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3861 {
3862 struct intel_crtc *crtc;
3863
3864 /* Note that we don't need to be called with mode_config.lock here
3865 * as our list of CRTC objects is static for the lifetime of the
3866 * device and so cannot disappear as we iterate. Similarly, we can
3867 * happily treat the predicates as racy, atomic checks as userspace
3868 * cannot claim and pin a new fb without at least acquring the
3869 * struct_mutex and so serialising with us.
3870 */
3871 for_each_intel_crtc(dev, crtc) {
3872 if (atomic_read(&crtc->unpin_work_count) == 0)
3873 continue;
3874
3875 if (crtc->unpin_work)
3876 intel_wait_for_vblank(dev, crtc->pipe);
3877
3878 return true;
3879 }
3880
3881 return false;
3882 }
3883
3884 static void page_flip_completed(struct intel_crtc *intel_crtc)
3885 {
3886 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3887 struct intel_unpin_work *work = intel_crtc->unpin_work;
3888
3889 /* ensure that the unpin work is consistent wrt ->pending. */
3890 smp_rmb();
3891 intel_crtc->unpin_work = NULL;
3892
3893 if (work->event)
3894 drm_send_vblank_event(intel_crtc->base.dev,
3895 intel_crtc->pipe,
3896 work->event);
3897
3898 drm_crtc_vblank_put(&intel_crtc->base);
3899
3900 wake_up_all(&dev_priv->pending_flip_queue);
3901 queue_work(dev_priv->wq, &work->work);
3902
3903 trace_i915_flip_complete(intel_crtc->plane,
3904 work->pending_flip_obj);
3905 }
3906
3907 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3908 {
3909 struct drm_device *dev = crtc->dev;
3910 struct drm_i915_private *dev_priv = dev->dev_private;
3911
3912 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3913 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3914 !intel_crtc_has_pending_flip(crtc),
3915 60*HZ) == 0)) {
3916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3917
3918 spin_lock_irq(&dev->event_lock);
3919 if (intel_crtc->unpin_work) {
3920 WARN_ONCE(1, "Removing stuck page flip\n");
3921 page_flip_completed(intel_crtc);
3922 }
3923 spin_unlock_irq(&dev->event_lock);
3924 }
3925
3926 if (crtc->primary->fb) {
3927 mutex_lock(&dev->struct_mutex);
3928 intel_finish_fb(crtc->primary->fb);
3929 mutex_unlock(&dev->struct_mutex);
3930 }
3931 }
3932
3933 /* Program iCLKIP clock to the desired frequency */
3934 static void lpt_program_iclkip(struct drm_crtc *crtc)
3935 {
3936 struct drm_device *dev = crtc->dev;
3937 struct drm_i915_private *dev_priv = dev->dev_private;
3938 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3939 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3940 u32 temp;
3941
3942 mutex_lock(&dev_priv->dpio_lock);
3943
3944 /* It is necessary to ungate the pixclk gate prior to programming
3945 * the divisors, and gate it back when it is done.
3946 */
3947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3948
3949 /* Disable SSCCTL */
3950 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3951 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3952 SBI_SSCCTL_DISABLE,
3953 SBI_ICLK);
3954
3955 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3956 if (clock == 20000) {
3957 auxdiv = 1;
3958 divsel = 0x41;
3959 phaseinc = 0x20;
3960 } else {
3961 /* The iCLK virtual clock root frequency is in MHz,
3962 * but the adjusted_mode->crtc_clock in in KHz. To get the
3963 * divisors, it is necessary to divide one by another, so we
3964 * convert the virtual clock precision to KHz here for higher
3965 * precision.
3966 */
3967 u32 iclk_virtual_root_freq = 172800 * 1000;
3968 u32 iclk_pi_range = 64;
3969 u32 desired_divisor, msb_divisor_value, pi_value;
3970
3971 desired_divisor = (iclk_virtual_root_freq / clock);
3972 msb_divisor_value = desired_divisor / iclk_pi_range;
3973 pi_value = desired_divisor % iclk_pi_range;
3974
3975 auxdiv = 0;
3976 divsel = msb_divisor_value - 2;
3977 phaseinc = pi_value;
3978 }
3979
3980 /* This should not happen with any sane values */
3981 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3982 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3983 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3984 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3985
3986 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3987 clock,
3988 auxdiv,
3989 divsel,
3990 phasedir,
3991 phaseinc);
3992
3993 /* Program SSCDIVINTPHASE6 */
3994 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3995 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3996 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3997 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3998 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3999 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4000 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4001 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4002
4003 /* Program SSCAUXDIV */
4004 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4005 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4006 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4007 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4008
4009 /* Enable modulator and associated divider */
4010 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4011 temp &= ~SBI_SSCCTL_DISABLE;
4012 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4013
4014 /* Wait for initialization time */
4015 udelay(24);
4016
4017 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4018
4019 mutex_unlock(&dev_priv->dpio_lock);
4020 }
4021
4022 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4023 enum pipe pch_transcoder)
4024 {
4025 struct drm_device *dev = crtc->base.dev;
4026 struct drm_i915_private *dev_priv = dev->dev_private;
4027 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4028
4029 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4030 I915_READ(HTOTAL(cpu_transcoder)));
4031 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4032 I915_READ(HBLANK(cpu_transcoder)));
4033 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4034 I915_READ(HSYNC(cpu_transcoder)));
4035
4036 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4037 I915_READ(VTOTAL(cpu_transcoder)));
4038 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4039 I915_READ(VBLANK(cpu_transcoder)));
4040 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4041 I915_READ(VSYNC(cpu_transcoder)));
4042 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4043 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4044 }
4045
4046 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4047 {
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 uint32_t temp;
4050
4051 temp = I915_READ(SOUTH_CHICKEN1);
4052 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4053 return;
4054
4055 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4057
4058 temp &= ~FDI_BC_BIFURCATION_SELECT;
4059 if (enable)
4060 temp |= FDI_BC_BIFURCATION_SELECT;
4061
4062 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4063 I915_WRITE(SOUTH_CHICKEN1, temp);
4064 POSTING_READ(SOUTH_CHICKEN1);
4065 }
4066
4067 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4068 {
4069 struct drm_device *dev = intel_crtc->base.dev;
4070
4071 switch (intel_crtc->pipe) {
4072 case PIPE_A:
4073 break;
4074 case PIPE_B:
4075 if (intel_crtc->config->fdi_lanes > 2)
4076 cpt_set_fdi_bc_bifurcation(dev, false);
4077 else
4078 cpt_set_fdi_bc_bifurcation(dev, true);
4079
4080 break;
4081 case PIPE_C:
4082 cpt_set_fdi_bc_bifurcation(dev, true);
4083
4084 break;
4085 default:
4086 BUG();
4087 }
4088 }
4089
4090 /*
4091 * Enable PCH resources required for PCH ports:
4092 * - PCH PLLs
4093 * - FDI training & RX/TX
4094 * - update transcoder timings
4095 * - DP transcoding bits
4096 * - transcoder
4097 */
4098 static void ironlake_pch_enable(struct drm_crtc *crtc)
4099 {
4100 struct drm_device *dev = crtc->dev;
4101 struct drm_i915_private *dev_priv = dev->dev_private;
4102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4103 int pipe = intel_crtc->pipe;
4104 u32 reg, temp;
4105
4106 assert_pch_transcoder_disabled(dev_priv, pipe);
4107
4108 if (IS_IVYBRIDGE(dev))
4109 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4110
4111 /* Write the TU size bits before fdi link training, so that error
4112 * detection works. */
4113 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4114 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4115
4116 /* For PCH output, training FDI link */
4117 dev_priv->display.fdi_link_train(crtc);
4118
4119 /* We need to program the right clock selection before writing the pixel
4120 * mutliplier into the DPLL. */
4121 if (HAS_PCH_CPT(dev)) {
4122 u32 sel;
4123
4124 temp = I915_READ(PCH_DPLL_SEL);
4125 temp |= TRANS_DPLL_ENABLE(pipe);
4126 sel = TRANS_DPLLB_SEL(pipe);
4127 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4128 temp |= sel;
4129 else
4130 temp &= ~sel;
4131 I915_WRITE(PCH_DPLL_SEL, temp);
4132 }
4133
4134 /* XXX: pch pll's can be enabled any time before we enable the PCH
4135 * transcoder, and we actually should do this to not upset any PCH
4136 * transcoder that already use the clock when we share it.
4137 *
4138 * Note that enable_shared_dpll tries to do the right thing, but
4139 * get_shared_dpll unconditionally resets the pll - we need that to have
4140 * the right LVDS enable sequence. */
4141 intel_enable_shared_dpll(intel_crtc);
4142
4143 /* set transcoder timing, panel must allow it */
4144 assert_panel_unlocked(dev_priv, pipe);
4145 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4146
4147 intel_fdi_normal_train(crtc);
4148
4149 /* For PCH DP, enable TRANS_DP_CTL */
4150 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4151 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4152 reg = TRANS_DP_CTL(pipe);
4153 temp = I915_READ(reg);
4154 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4155 TRANS_DP_SYNC_MASK |
4156 TRANS_DP_BPC_MASK);
4157 temp |= TRANS_DP_OUTPUT_ENABLE;
4158 temp |= bpc << 9; /* same format but at 11:9 */
4159
4160 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4161 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4162 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4163 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4164
4165 switch (intel_trans_dp_port_sel(crtc)) {
4166 case PCH_DP_B:
4167 temp |= TRANS_DP_PORT_SEL_B;
4168 break;
4169 case PCH_DP_C:
4170 temp |= TRANS_DP_PORT_SEL_C;
4171 break;
4172 case PCH_DP_D:
4173 temp |= TRANS_DP_PORT_SEL_D;
4174 break;
4175 default:
4176 BUG();
4177 }
4178
4179 I915_WRITE(reg, temp);
4180 }
4181
4182 ironlake_enable_pch_transcoder(dev_priv, pipe);
4183 }
4184
4185 static void lpt_pch_enable(struct drm_crtc *crtc)
4186 {
4187 struct drm_device *dev = crtc->dev;
4188 struct drm_i915_private *dev_priv = dev->dev_private;
4189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4190 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4191
4192 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4193
4194 lpt_program_iclkip(crtc);
4195
4196 /* Set transcoder timing. */
4197 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4198
4199 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4200 }
4201
4202 void intel_put_shared_dpll(struct intel_crtc *crtc)
4203 {
4204 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4205
4206 if (pll == NULL)
4207 return;
4208
4209 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4210 WARN(1, "bad %s crtc mask\n", pll->name);
4211 return;
4212 }
4213
4214 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4215 if (pll->config.crtc_mask == 0) {
4216 WARN_ON(pll->on);
4217 WARN_ON(pll->active);
4218 }
4219
4220 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4221 }
4222
4223 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4224 struct intel_crtc_state *crtc_state)
4225 {
4226 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4227 struct intel_shared_dpll *pll;
4228 enum intel_dpll_id i;
4229
4230 if (HAS_PCH_IBX(dev_priv->dev)) {
4231 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4232 i = (enum intel_dpll_id) crtc->pipe;
4233 pll = &dev_priv->shared_dplls[i];
4234
4235 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4236 crtc->base.base.id, pll->name);
4237
4238 WARN_ON(pll->new_config->crtc_mask);
4239
4240 goto found;
4241 }
4242
4243 if (IS_BROXTON(dev_priv->dev)) {
4244 /* PLL is attached to port in bxt */
4245 struct intel_encoder *encoder;
4246 struct intel_digital_port *intel_dig_port;
4247
4248 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4249 if (WARN_ON(!encoder))
4250 return NULL;
4251
4252 intel_dig_port = enc_to_dig_port(&encoder->base);
4253 /* 1:1 mapping between ports and PLLs */
4254 i = (enum intel_dpll_id)intel_dig_port->port;
4255 pll = &dev_priv->shared_dplls[i];
4256 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4257 crtc->base.base.id, pll->name);
4258 WARN_ON(pll->new_config->crtc_mask);
4259
4260 goto found;
4261 }
4262
4263 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4264 pll = &dev_priv->shared_dplls[i];
4265
4266 /* Only want to check enabled timings first */
4267 if (pll->new_config->crtc_mask == 0)
4268 continue;
4269
4270 if (memcmp(&crtc_state->dpll_hw_state,
4271 &pll->new_config->hw_state,
4272 sizeof(pll->new_config->hw_state)) == 0) {
4273 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4274 crtc->base.base.id, pll->name,
4275 pll->new_config->crtc_mask,
4276 pll->active);
4277 goto found;
4278 }
4279 }
4280
4281 /* Ok no matching timings, maybe there's a free one? */
4282 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4283 pll = &dev_priv->shared_dplls[i];
4284 if (pll->new_config->crtc_mask == 0) {
4285 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4286 crtc->base.base.id, pll->name);
4287 goto found;
4288 }
4289 }
4290
4291 return NULL;
4292
4293 found:
4294 if (pll->new_config->crtc_mask == 0)
4295 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4296
4297 crtc_state->shared_dpll = i;
4298 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4299 pipe_name(crtc->pipe));
4300
4301 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4302
4303 return pll;
4304 }
4305
4306 /**
4307 * intel_shared_dpll_start_config - start a new PLL staged config
4308 * @dev_priv: DRM device
4309 * @clear_pipes: mask of pipes that will have their PLLs freed
4310 *
4311 * Starts a new PLL staged config, copying the current config but
4312 * releasing the references of pipes specified in clear_pipes.
4313 */
4314 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4315 unsigned clear_pipes)
4316 {
4317 struct intel_shared_dpll *pll;
4318 enum intel_dpll_id i;
4319
4320 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4321 pll = &dev_priv->shared_dplls[i];
4322
4323 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4324 GFP_KERNEL);
4325 if (!pll->new_config)
4326 goto cleanup;
4327
4328 pll->new_config->crtc_mask &= ~clear_pipes;
4329 }
4330
4331 return 0;
4332
4333 cleanup:
4334 while (--i >= 0) {
4335 pll = &dev_priv->shared_dplls[i];
4336 kfree(pll->new_config);
4337 pll->new_config = NULL;
4338 }
4339
4340 return -ENOMEM;
4341 }
4342
4343 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4344 {
4345 struct intel_shared_dpll *pll;
4346 enum intel_dpll_id i;
4347
4348 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4349 pll = &dev_priv->shared_dplls[i];
4350
4351 WARN_ON(pll->new_config == &pll->config);
4352
4353 pll->config = *pll->new_config;
4354 kfree(pll->new_config);
4355 pll->new_config = NULL;
4356 }
4357 }
4358
4359 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4360 {
4361 struct intel_shared_dpll *pll;
4362 enum intel_dpll_id i;
4363
4364 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4365 pll = &dev_priv->shared_dplls[i];
4366
4367 WARN_ON(pll->new_config == &pll->config);
4368
4369 kfree(pll->new_config);
4370 pll->new_config = NULL;
4371 }
4372 }
4373
4374 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4375 {
4376 struct drm_i915_private *dev_priv = dev->dev_private;
4377 int dslreg = PIPEDSL(pipe);
4378 u32 temp;
4379
4380 temp = I915_READ(dslreg);
4381 udelay(500);
4382 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4383 if (wait_for(I915_READ(dslreg) != temp, 5))
4384 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4385 }
4386 }
4387
4388 /**
4389 * skl_update_scaler_users - Stages update to crtc's scaler state
4390 * @intel_crtc: crtc
4391 * @crtc_state: crtc_state
4392 * @plane: plane (NULL indicates crtc is requesting update)
4393 * @plane_state: plane's state
4394 * @force_detach: request unconditional detachment of scaler
4395 *
4396 * This function updates scaler state for requested plane or crtc.
4397 * To request scaler usage update for a plane, caller shall pass plane pointer.
4398 * To request scaler usage update for crtc, caller shall pass plane pointer
4399 * as NULL.
4400 *
4401 * Return
4402 * 0 - scaler_usage updated successfully
4403 * error - requested scaling cannot be supported or other error condition
4404 */
4405 int
4406 skl_update_scaler_users(
4407 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4408 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4409 int force_detach)
4410 {
4411 int need_scaling;
4412 int idx;
4413 int src_w, src_h, dst_w, dst_h;
4414 int *scaler_id;
4415 struct drm_framebuffer *fb;
4416 struct intel_crtc_scaler_state *scaler_state;
4417 unsigned int rotation;
4418
4419 if (!intel_crtc || !crtc_state)
4420 return 0;
4421
4422 scaler_state = &crtc_state->scaler_state;
4423
4424 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4425 fb = intel_plane ? plane_state->base.fb : NULL;
4426
4427 if (intel_plane) {
4428 src_w = drm_rect_width(&plane_state->src) >> 16;
4429 src_h = drm_rect_height(&plane_state->src) >> 16;
4430 dst_w = drm_rect_width(&plane_state->dst);
4431 dst_h = drm_rect_height(&plane_state->dst);
4432 scaler_id = &plane_state->scaler_id;
4433 rotation = plane_state->base.rotation;
4434 } else {
4435 struct drm_display_mode *adjusted_mode =
4436 &crtc_state->base.adjusted_mode;
4437 src_w = crtc_state->pipe_src_w;
4438 src_h = crtc_state->pipe_src_h;
4439 dst_w = adjusted_mode->hdisplay;
4440 dst_h = adjusted_mode->vdisplay;
4441 scaler_id = &scaler_state->scaler_id;
4442 rotation = DRM_ROTATE_0;
4443 }
4444
4445 need_scaling = intel_rotation_90_or_270(rotation) ?
4446 (src_h != dst_w || src_w != dst_h):
4447 (src_w != dst_w || src_h != dst_h);
4448
4449 /*
4450 * if plane is being disabled or scaler is no more required or force detach
4451 * - free scaler binded to this plane/crtc
4452 * - in order to do this, update crtc->scaler_usage
4453 *
4454 * Here scaler state in crtc_state is set free so that
4455 * scaler can be assigned to other user. Actual register
4456 * update to free the scaler is done in plane/panel-fit programming.
4457 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4458 */
4459 if (force_detach || !need_scaling || (intel_plane &&
4460 (!fb || !plane_state->visible))) {
4461 if (*scaler_id >= 0) {
4462 scaler_state->scaler_users &= ~(1 << idx);
4463 scaler_state->scalers[*scaler_id].in_use = 0;
4464
4465 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4466 "crtc_state = %p scaler_users = 0x%x\n",
4467 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4468 intel_plane ? intel_plane->base.base.id :
4469 intel_crtc->base.base.id, crtc_state,
4470 scaler_state->scaler_users);
4471 *scaler_id = -1;
4472 }
4473 return 0;
4474 }
4475
4476 /* range checks */
4477 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4478 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4479
4480 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4481 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4482 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4483 "size is out of scaler range\n",
4484 intel_plane ? "PLANE" : "CRTC",
4485 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4486 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4487 return -EINVAL;
4488 }
4489
4490 /* check colorkey */
4491 if (WARN_ON(intel_plane &&
4492 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4493 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4494 intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
4495 return -EINVAL;
4496 }
4497
4498 /* Check src format */
4499 if (intel_plane) {
4500 switch (fb->pixel_format) {
4501 case DRM_FORMAT_RGB565:
4502 case DRM_FORMAT_XBGR8888:
4503 case DRM_FORMAT_XRGB8888:
4504 case DRM_FORMAT_ABGR8888:
4505 case DRM_FORMAT_ARGB8888:
4506 case DRM_FORMAT_XRGB2101010:
4507 case DRM_FORMAT_XBGR2101010:
4508 case DRM_FORMAT_YUYV:
4509 case DRM_FORMAT_YVYU:
4510 case DRM_FORMAT_UYVY:
4511 case DRM_FORMAT_VYUY:
4512 break;
4513 default:
4514 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4515 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4516 return -EINVAL;
4517 }
4518 }
4519
4520 /* mark this plane as a scaler user in crtc_state */
4521 scaler_state->scaler_users |= (1 << idx);
4522 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4523 "crtc_state = %p scaler_users = 0x%x\n",
4524 intel_plane ? "PLANE" : "CRTC",
4525 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4526 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4527 return 0;
4528 }
4529
4530 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4531 {
4532 struct drm_device *dev = crtc->base.dev;
4533 struct drm_i915_private *dev_priv = dev->dev_private;
4534 int pipe = crtc->pipe;
4535 struct intel_crtc_scaler_state *scaler_state =
4536 &crtc->config->scaler_state;
4537
4538 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4539
4540 /* To update pfit, first update scaler state */
4541 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4542 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4543 skl_detach_scalers(crtc);
4544 if (!enable)
4545 return;
4546
4547 if (crtc->config->pch_pfit.enabled) {
4548 int id;
4549
4550 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4551 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4552 return;
4553 }
4554
4555 id = scaler_state->scaler_id;
4556 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4557 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4558 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4559 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4560
4561 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4562 }
4563 }
4564
4565 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4566 {
4567 struct drm_device *dev = crtc->base.dev;
4568 struct drm_i915_private *dev_priv = dev->dev_private;
4569 int pipe = crtc->pipe;
4570
4571 if (crtc->config->pch_pfit.enabled) {
4572 /* Force use of hard-coded filter coefficients
4573 * as some pre-programmed values are broken,
4574 * e.g. x201.
4575 */
4576 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4577 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4578 PF_PIPE_SEL_IVB(pipe));
4579 else
4580 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4581 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4582 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4583 }
4584 }
4585
4586 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4587 {
4588 struct drm_device *dev = crtc->dev;
4589 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4590 struct drm_plane *plane;
4591 struct intel_plane *intel_plane;
4592
4593 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4594 intel_plane = to_intel_plane(plane);
4595 if (intel_plane->pipe == pipe)
4596 intel_plane_restore(&intel_plane->base);
4597 }
4598 }
4599
4600 void hsw_enable_ips(struct intel_crtc *crtc)
4601 {
4602 struct drm_device *dev = crtc->base.dev;
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604
4605 if (!crtc->config->ips_enabled)
4606 return;
4607
4608 /* We can only enable IPS after we enable a plane and wait for a vblank */
4609 intel_wait_for_vblank(dev, crtc->pipe);
4610
4611 assert_plane_enabled(dev_priv, crtc->plane);
4612 if (IS_BROADWELL(dev)) {
4613 mutex_lock(&dev_priv->rps.hw_lock);
4614 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4615 mutex_unlock(&dev_priv->rps.hw_lock);
4616 /* Quoting Art Runyan: "its not safe to expect any particular
4617 * value in IPS_CTL bit 31 after enabling IPS through the
4618 * mailbox." Moreover, the mailbox may return a bogus state,
4619 * so we need to just enable it and continue on.
4620 */
4621 } else {
4622 I915_WRITE(IPS_CTL, IPS_ENABLE);
4623 /* The bit only becomes 1 in the next vblank, so this wait here
4624 * is essentially intel_wait_for_vblank. If we don't have this
4625 * and don't wait for vblanks until the end of crtc_enable, then
4626 * the HW state readout code will complain that the expected
4627 * IPS_CTL value is not the one we read. */
4628 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4629 DRM_ERROR("Timed out waiting for IPS enable\n");
4630 }
4631 }
4632
4633 void hsw_disable_ips(struct intel_crtc *crtc)
4634 {
4635 struct drm_device *dev = crtc->base.dev;
4636 struct drm_i915_private *dev_priv = dev->dev_private;
4637
4638 if (!crtc->config->ips_enabled)
4639 return;
4640
4641 assert_plane_enabled(dev_priv, crtc->plane);
4642 if (IS_BROADWELL(dev)) {
4643 mutex_lock(&dev_priv->rps.hw_lock);
4644 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4645 mutex_unlock(&dev_priv->rps.hw_lock);
4646 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4647 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4648 DRM_ERROR("Timed out waiting for IPS disable\n");
4649 } else {
4650 I915_WRITE(IPS_CTL, 0);
4651 POSTING_READ(IPS_CTL);
4652 }
4653
4654 /* We need to wait for a vblank before we can disable the plane. */
4655 intel_wait_for_vblank(dev, crtc->pipe);
4656 }
4657
4658 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4659 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4660 {
4661 struct drm_device *dev = crtc->dev;
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4664 enum pipe pipe = intel_crtc->pipe;
4665 int palreg = PALETTE(pipe);
4666 int i;
4667 bool reenable_ips = false;
4668
4669 /* The clocks have to be on to load the palette. */
4670 if (!crtc->state->enable || !intel_crtc->active)
4671 return;
4672
4673 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4674 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4675 assert_dsi_pll_enabled(dev_priv);
4676 else
4677 assert_pll_enabled(dev_priv, pipe);
4678 }
4679
4680 /* use legacy palette for Ironlake */
4681 if (!HAS_GMCH_DISPLAY(dev))
4682 palreg = LGC_PALETTE(pipe);
4683
4684 /* Workaround : Do not read or write the pipe palette/gamma data while
4685 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4686 */
4687 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4688 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4689 GAMMA_MODE_MODE_SPLIT)) {
4690 hsw_disable_ips(intel_crtc);
4691 reenable_ips = true;
4692 }
4693
4694 for (i = 0; i < 256; i++) {
4695 I915_WRITE(palreg + 4 * i,
4696 (intel_crtc->lut_r[i] << 16) |
4697 (intel_crtc->lut_g[i] << 8) |
4698 intel_crtc->lut_b[i]);
4699 }
4700
4701 if (reenable_ips)
4702 hsw_enable_ips(intel_crtc);
4703 }
4704
4705 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4706 {
4707 if (intel_crtc->overlay) {
4708 struct drm_device *dev = intel_crtc->base.dev;
4709 struct drm_i915_private *dev_priv = dev->dev_private;
4710
4711 mutex_lock(&dev->struct_mutex);
4712 dev_priv->mm.interruptible = false;
4713 (void) intel_overlay_switch_off(intel_crtc->overlay);
4714 dev_priv->mm.interruptible = true;
4715 mutex_unlock(&dev->struct_mutex);
4716 }
4717
4718 /* Let userspace switch the overlay on again. In most cases userspace
4719 * has to recompute where to put it anyway.
4720 */
4721 }
4722
4723 /**
4724 * intel_post_enable_primary - Perform operations after enabling primary plane
4725 * @crtc: the CRTC whose primary plane was just enabled
4726 *
4727 * Performs potentially sleeping operations that must be done after the primary
4728 * plane is enabled, such as updating FBC and IPS. Note that this may be
4729 * called due to an explicit primary plane update, or due to an implicit
4730 * re-enable that is caused when a sprite plane is updated to no longer
4731 * completely hide the primary plane.
4732 */
4733 static void
4734 intel_post_enable_primary(struct drm_crtc *crtc)
4735 {
4736 struct drm_device *dev = crtc->dev;
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4739 int pipe = intel_crtc->pipe;
4740
4741 /*
4742 * BDW signals flip done immediately if the plane
4743 * is disabled, even if the plane enable is already
4744 * armed to occur at the next vblank :(
4745 */
4746 if (IS_BROADWELL(dev))
4747 intel_wait_for_vblank(dev, pipe);
4748
4749 /*
4750 * FIXME IPS should be fine as long as one plane is
4751 * enabled, but in practice it seems to have problems
4752 * when going from primary only to sprite only and vice
4753 * versa.
4754 */
4755 hsw_enable_ips(intel_crtc);
4756
4757 mutex_lock(&dev->struct_mutex);
4758 intel_fbc_update(dev);
4759 mutex_unlock(&dev->struct_mutex);
4760
4761 /*
4762 * Gen2 reports pipe underruns whenever all planes are disabled.
4763 * So don't enable underrun reporting before at least some planes
4764 * are enabled.
4765 * FIXME: Need to fix the logic to work when we turn off all planes
4766 * but leave the pipe running.
4767 */
4768 if (IS_GEN2(dev))
4769 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4770
4771 /* Underruns don't raise interrupts, so check manually. */
4772 if (HAS_GMCH_DISPLAY(dev))
4773 i9xx_check_fifo_underruns(dev_priv);
4774 }
4775
4776 /**
4777 * intel_pre_disable_primary - Perform operations before disabling primary plane
4778 * @crtc: the CRTC whose primary plane is to be disabled
4779 *
4780 * Performs potentially sleeping operations that must be done before the
4781 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4782 * be called due to an explicit primary plane update, or due to an implicit
4783 * disable that is caused when a sprite plane completely hides the primary
4784 * plane.
4785 */
4786 static void
4787 intel_pre_disable_primary(struct drm_crtc *crtc)
4788 {
4789 struct drm_device *dev = crtc->dev;
4790 struct drm_i915_private *dev_priv = dev->dev_private;
4791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4792 int pipe = intel_crtc->pipe;
4793
4794 /*
4795 * Gen2 reports pipe underruns whenever all planes are disabled.
4796 * So diasble underrun reporting before all the planes get disabled.
4797 * FIXME: Need to fix the logic to work when we turn off all planes
4798 * but leave the pipe running.
4799 */
4800 if (IS_GEN2(dev))
4801 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4802
4803 /*
4804 * Vblank time updates from the shadow to live plane control register
4805 * are blocked if the memory self-refresh mode is active at that
4806 * moment. So to make sure the plane gets truly disabled, disable
4807 * first the self-refresh mode. The self-refresh enable bit in turn
4808 * will be checked/applied by the HW only at the next frame start
4809 * event which is after the vblank start event, so we need to have a
4810 * wait-for-vblank between disabling the plane and the pipe.
4811 */
4812 if (HAS_GMCH_DISPLAY(dev))
4813 intel_set_memory_cxsr(dev_priv, false);
4814
4815 mutex_lock(&dev->struct_mutex);
4816 if (dev_priv->fbc.crtc == intel_crtc)
4817 intel_fbc_disable(dev);
4818 mutex_unlock(&dev->struct_mutex);
4819
4820 /*
4821 * FIXME IPS should be fine as long as one plane is
4822 * enabled, but in practice it seems to have problems
4823 * when going from primary only to sprite only and vice
4824 * versa.
4825 */
4826 hsw_disable_ips(intel_crtc);
4827 }
4828
4829 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4830 {
4831 intel_enable_primary_hw_plane(crtc->primary, crtc);
4832 intel_enable_sprite_planes(crtc);
4833 intel_crtc_update_cursor(crtc, true);
4834
4835 intel_post_enable_primary(crtc);
4836 }
4837
4838 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4839 {
4840 struct drm_device *dev = crtc->dev;
4841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842 struct intel_plane *intel_plane;
4843 int pipe = intel_crtc->pipe;
4844
4845 intel_crtc_wait_for_pending_flips(crtc);
4846
4847 intel_pre_disable_primary(crtc);
4848
4849 intel_crtc_dpms_overlay_disable(intel_crtc);
4850 for_each_intel_plane(dev, intel_plane) {
4851 if (intel_plane->pipe == pipe) {
4852 struct drm_crtc *from = intel_plane->base.crtc;
4853
4854 intel_plane->disable_plane(&intel_plane->base,
4855 from ?: crtc, true);
4856 }
4857 }
4858
4859 /*
4860 * FIXME: Once we grow proper nuclear flip support out of this we need
4861 * to compute the mask of flip planes precisely. For the time being
4862 * consider this a flip to a NULL plane.
4863 */
4864 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4865 }
4866
4867 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4868 {
4869 struct drm_device *dev = crtc->dev;
4870 struct drm_i915_private *dev_priv = dev->dev_private;
4871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4872 struct intel_encoder *encoder;
4873 int pipe = intel_crtc->pipe;
4874
4875 WARN_ON(!crtc->state->enable);
4876
4877 if (intel_crtc->active)
4878 return;
4879
4880 if (intel_crtc->config->has_pch_encoder)
4881 intel_prepare_shared_dpll(intel_crtc);
4882
4883 if (intel_crtc->config->has_dp_encoder)
4884 intel_dp_set_m_n(intel_crtc, M1_N1);
4885
4886 intel_set_pipe_timings(intel_crtc);
4887
4888 if (intel_crtc->config->has_pch_encoder) {
4889 intel_cpu_transcoder_set_m_n(intel_crtc,
4890 &intel_crtc->config->fdi_m_n, NULL);
4891 }
4892
4893 ironlake_set_pipeconf(crtc);
4894
4895 intel_crtc->active = true;
4896
4897 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4898 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4899
4900 for_each_encoder_on_crtc(dev, crtc, encoder)
4901 if (encoder->pre_enable)
4902 encoder->pre_enable(encoder);
4903
4904 if (intel_crtc->config->has_pch_encoder) {
4905 /* Note: FDI PLL enabling _must_ be done before we enable the
4906 * cpu pipes, hence this is separate from all the other fdi/pch
4907 * enabling. */
4908 ironlake_fdi_pll_enable(intel_crtc);
4909 } else {
4910 assert_fdi_tx_disabled(dev_priv, pipe);
4911 assert_fdi_rx_disabled(dev_priv, pipe);
4912 }
4913
4914 ironlake_pfit_enable(intel_crtc);
4915
4916 /*
4917 * On ILK+ LUT must be loaded before the pipe is running but with
4918 * clocks enabled
4919 */
4920 intel_crtc_load_lut(crtc);
4921
4922 intel_update_watermarks(crtc);
4923 intel_enable_pipe(intel_crtc);
4924
4925 if (intel_crtc->config->has_pch_encoder)
4926 ironlake_pch_enable(crtc);
4927
4928 assert_vblank_disabled(crtc);
4929 drm_crtc_vblank_on(crtc);
4930
4931 for_each_encoder_on_crtc(dev, crtc, encoder)
4932 encoder->enable(encoder);
4933
4934 if (HAS_PCH_CPT(dev))
4935 cpt_verify_modeset(dev, intel_crtc->pipe);
4936 }
4937
4938 /* IPS only exists on ULT machines and is tied to pipe A. */
4939 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4940 {
4941 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4942 }
4943
4944 /*
4945 * This implements the workaround described in the "notes" section of the mode
4946 * set sequence documentation. When going from no pipes or single pipe to
4947 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4948 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4949 */
4950 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4951 {
4952 struct drm_device *dev = crtc->base.dev;
4953 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4954
4955 /* We want to get the other_active_crtc only if there's only 1 other
4956 * active crtc. */
4957 for_each_intel_crtc(dev, crtc_it) {
4958 if (!crtc_it->active || crtc_it == crtc)
4959 continue;
4960
4961 if (other_active_crtc)
4962 return;
4963
4964 other_active_crtc = crtc_it;
4965 }
4966 if (!other_active_crtc)
4967 return;
4968
4969 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4970 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4971 }
4972
4973 static void haswell_crtc_enable(struct drm_crtc *crtc)
4974 {
4975 struct drm_device *dev = crtc->dev;
4976 struct drm_i915_private *dev_priv = dev->dev_private;
4977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4978 struct intel_encoder *encoder;
4979 int pipe = intel_crtc->pipe;
4980
4981 WARN_ON(!crtc->state->enable);
4982
4983 if (intel_crtc->active)
4984 return;
4985
4986 if (intel_crtc_to_shared_dpll(intel_crtc))
4987 intel_enable_shared_dpll(intel_crtc);
4988
4989 if (intel_crtc->config->has_dp_encoder)
4990 intel_dp_set_m_n(intel_crtc, M1_N1);
4991
4992 intel_set_pipe_timings(intel_crtc);
4993
4994 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4995 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4996 intel_crtc->config->pixel_multiplier - 1);
4997 }
4998
4999 if (intel_crtc->config->has_pch_encoder) {
5000 intel_cpu_transcoder_set_m_n(intel_crtc,
5001 &intel_crtc->config->fdi_m_n, NULL);
5002 }
5003
5004 haswell_set_pipeconf(crtc);
5005
5006 intel_set_pipe_csc(crtc);
5007
5008 intel_crtc->active = true;
5009
5010 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5011 for_each_encoder_on_crtc(dev, crtc, encoder)
5012 if (encoder->pre_enable)
5013 encoder->pre_enable(encoder);
5014
5015 if (intel_crtc->config->has_pch_encoder) {
5016 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5017 true);
5018 dev_priv->display.fdi_link_train(crtc);
5019 }
5020
5021 intel_ddi_enable_pipe_clock(intel_crtc);
5022
5023 if (INTEL_INFO(dev)->gen == 9)
5024 skylake_pfit_update(intel_crtc, 1);
5025 else if (INTEL_INFO(dev)->gen < 9)
5026 ironlake_pfit_enable(intel_crtc);
5027 else
5028 MISSING_CASE(INTEL_INFO(dev)->gen);
5029
5030 /*
5031 * On ILK+ LUT must be loaded before the pipe is running but with
5032 * clocks enabled
5033 */
5034 intel_crtc_load_lut(crtc);
5035
5036 intel_ddi_set_pipe_settings(crtc);
5037 intel_ddi_enable_transcoder_func(crtc);
5038
5039 intel_update_watermarks(crtc);
5040 intel_enable_pipe(intel_crtc);
5041
5042 if (intel_crtc->config->has_pch_encoder)
5043 lpt_pch_enable(crtc);
5044
5045 if (intel_crtc->config->dp_encoder_is_mst)
5046 intel_ddi_set_vc_payload_alloc(crtc, true);
5047
5048 assert_vblank_disabled(crtc);
5049 drm_crtc_vblank_on(crtc);
5050
5051 for_each_encoder_on_crtc(dev, crtc, encoder) {
5052 encoder->enable(encoder);
5053 intel_opregion_notify_encoder(encoder, true);
5054 }
5055
5056 /* If we change the relative order between pipe/planes enabling, we need
5057 * to change the workaround. */
5058 haswell_mode_set_planes_workaround(intel_crtc);
5059 }
5060
5061 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5062 {
5063 struct drm_device *dev = crtc->base.dev;
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065 int pipe = crtc->pipe;
5066
5067 /* To avoid upsetting the power well on haswell only disable the pfit if
5068 * it's in use. The hw state code will make sure we get this right. */
5069 if (crtc->config->pch_pfit.enabled) {
5070 I915_WRITE(PF_CTL(pipe), 0);
5071 I915_WRITE(PF_WIN_POS(pipe), 0);
5072 I915_WRITE(PF_WIN_SZ(pipe), 0);
5073 }
5074 }
5075
5076 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5077 {
5078 struct drm_device *dev = crtc->dev;
5079 struct drm_i915_private *dev_priv = dev->dev_private;
5080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5081 struct intel_encoder *encoder;
5082 int pipe = intel_crtc->pipe;
5083 u32 reg, temp;
5084
5085 if (!intel_crtc->active)
5086 return;
5087
5088 for_each_encoder_on_crtc(dev, crtc, encoder)
5089 encoder->disable(encoder);
5090
5091 drm_crtc_vblank_off(crtc);
5092 assert_vblank_disabled(crtc);
5093
5094 if (intel_crtc->config->has_pch_encoder)
5095 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5096
5097 intel_disable_pipe(intel_crtc);
5098
5099 ironlake_pfit_disable(intel_crtc);
5100
5101 if (intel_crtc->config->has_pch_encoder)
5102 ironlake_fdi_disable(crtc);
5103
5104 for_each_encoder_on_crtc(dev, crtc, encoder)
5105 if (encoder->post_disable)
5106 encoder->post_disable(encoder);
5107
5108 if (intel_crtc->config->has_pch_encoder) {
5109 ironlake_disable_pch_transcoder(dev_priv, pipe);
5110
5111 if (HAS_PCH_CPT(dev)) {
5112 /* disable TRANS_DP_CTL */
5113 reg = TRANS_DP_CTL(pipe);
5114 temp = I915_READ(reg);
5115 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5116 TRANS_DP_PORT_SEL_MASK);
5117 temp |= TRANS_DP_PORT_SEL_NONE;
5118 I915_WRITE(reg, temp);
5119
5120 /* disable DPLL_SEL */
5121 temp = I915_READ(PCH_DPLL_SEL);
5122 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5123 I915_WRITE(PCH_DPLL_SEL, temp);
5124 }
5125
5126 /* disable PCH DPLL */
5127 intel_disable_shared_dpll(intel_crtc);
5128
5129 ironlake_fdi_pll_disable(intel_crtc);
5130 }
5131
5132 intel_crtc->active = false;
5133 intel_update_watermarks(crtc);
5134
5135 mutex_lock(&dev->struct_mutex);
5136 intel_fbc_update(dev);
5137 mutex_unlock(&dev->struct_mutex);
5138 }
5139
5140 static void haswell_crtc_disable(struct drm_crtc *crtc)
5141 {
5142 struct drm_device *dev = crtc->dev;
5143 struct drm_i915_private *dev_priv = dev->dev_private;
5144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5145 struct intel_encoder *encoder;
5146 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5147
5148 if (!intel_crtc->active)
5149 return;
5150
5151 for_each_encoder_on_crtc(dev, crtc, encoder) {
5152 intel_opregion_notify_encoder(encoder, false);
5153 encoder->disable(encoder);
5154 }
5155
5156 drm_crtc_vblank_off(crtc);
5157 assert_vblank_disabled(crtc);
5158
5159 if (intel_crtc->config->has_pch_encoder)
5160 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5161 false);
5162 intel_disable_pipe(intel_crtc);
5163
5164 if (intel_crtc->config->dp_encoder_is_mst)
5165 intel_ddi_set_vc_payload_alloc(crtc, false);
5166
5167 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5168
5169 if (INTEL_INFO(dev)->gen == 9)
5170 skylake_pfit_update(intel_crtc, 0);
5171 else if (INTEL_INFO(dev)->gen < 9)
5172 ironlake_pfit_disable(intel_crtc);
5173 else
5174 MISSING_CASE(INTEL_INFO(dev)->gen);
5175
5176 intel_ddi_disable_pipe_clock(intel_crtc);
5177
5178 if (intel_crtc->config->has_pch_encoder) {
5179 lpt_disable_pch_transcoder(dev_priv);
5180 intel_ddi_fdi_disable(crtc);
5181 }
5182
5183 for_each_encoder_on_crtc(dev, crtc, encoder)
5184 if (encoder->post_disable)
5185 encoder->post_disable(encoder);
5186
5187 intel_crtc->active = false;
5188 intel_update_watermarks(crtc);
5189
5190 mutex_lock(&dev->struct_mutex);
5191 intel_fbc_update(dev);
5192 mutex_unlock(&dev->struct_mutex);
5193
5194 if (intel_crtc_to_shared_dpll(intel_crtc))
5195 intel_disable_shared_dpll(intel_crtc);
5196 }
5197
5198 static void ironlake_crtc_off(struct drm_crtc *crtc)
5199 {
5200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201 intel_put_shared_dpll(intel_crtc);
5202 }
5203
5204
5205 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5206 {
5207 struct drm_device *dev = crtc->base.dev;
5208 struct drm_i915_private *dev_priv = dev->dev_private;
5209 struct intel_crtc_state *pipe_config = crtc->config;
5210
5211 if (!pipe_config->gmch_pfit.control)
5212 return;
5213
5214 /*
5215 * The panel fitter should only be adjusted whilst the pipe is disabled,
5216 * according to register description and PRM.
5217 */
5218 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5219 assert_pipe_disabled(dev_priv, crtc->pipe);
5220
5221 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5222 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5223
5224 /* Border color in case we don't scale up to the full screen. Black by
5225 * default, change to something else for debugging. */
5226 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5227 }
5228
5229 static enum intel_display_power_domain port_to_power_domain(enum port port)
5230 {
5231 switch (port) {
5232 case PORT_A:
5233 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5234 case PORT_B:
5235 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5236 case PORT_C:
5237 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5238 case PORT_D:
5239 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5240 default:
5241 WARN_ON_ONCE(1);
5242 return POWER_DOMAIN_PORT_OTHER;
5243 }
5244 }
5245
5246 #define for_each_power_domain(domain, mask) \
5247 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5248 if ((1 << (domain)) & (mask))
5249
5250 enum intel_display_power_domain
5251 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5252 {
5253 struct drm_device *dev = intel_encoder->base.dev;
5254 struct intel_digital_port *intel_dig_port;
5255
5256 switch (intel_encoder->type) {
5257 case INTEL_OUTPUT_UNKNOWN:
5258 /* Only DDI platforms should ever use this output type */
5259 WARN_ON_ONCE(!HAS_DDI(dev));
5260 case INTEL_OUTPUT_DISPLAYPORT:
5261 case INTEL_OUTPUT_HDMI:
5262 case INTEL_OUTPUT_EDP:
5263 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5264 return port_to_power_domain(intel_dig_port->port);
5265 case INTEL_OUTPUT_DP_MST:
5266 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5267 return port_to_power_domain(intel_dig_port->port);
5268 case INTEL_OUTPUT_ANALOG:
5269 return POWER_DOMAIN_PORT_CRT;
5270 case INTEL_OUTPUT_DSI:
5271 return POWER_DOMAIN_PORT_DSI;
5272 default:
5273 return POWER_DOMAIN_PORT_OTHER;
5274 }
5275 }
5276
5277 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5278 {
5279 struct drm_device *dev = crtc->dev;
5280 struct intel_encoder *intel_encoder;
5281 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5282 enum pipe pipe = intel_crtc->pipe;
5283 unsigned long mask;
5284 enum transcoder transcoder;
5285
5286 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5287
5288 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5289 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5290 if (intel_crtc->config->pch_pfit.enabled ||
5291 intel_crtc->config->pch_pfit.force_thru)
5292 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5293
5294 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5295 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5296
5297 return mask;
5298 }
5299
5300 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5301 {
5302 struct drm_device *dev = state->dev;
5303 struct drm_i915_private *dev_priv = dev->dev_private;
5304 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5305 struct intel_crtc *crtc;
5306
5307 /*
5308 * First get all needed power domains, then put all unneeded, to avoid
5309 * any unnecessary toggling of the power wells.
5310 */
5311 for_each_intel_crtc(dev, crtc) {
5312 enum intel_display_power_domain domain;
5313
5314 if (!crtc->base.state->enable)
5315 continue;
5316
5317 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5318
5319 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5320 intel_display_power_get(dev_priv, domain);
5321 }
5322
5323 if (dev_priv->display.modeset_global_resources)
5324 dev_priv->display.modeset_global_resources(state);
5325
5326 for_each_intel_crtc(dev, crtc) {
5327 enum intel_display_power_domain domain;
5328
5329 for_each_power_domain(domain, crtc->enabled_power_domains)
5330 intel_display_power_put(dev_priv, domain);
5331
5332 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5333 }
5334
5335 intel_display_set_init_power(dev_priv, false);
5336 }
5337
5338 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5339 {
5340 struct drm_i915_private *dev_priv = dev->dev_private;
5341 uint32_t divider;
5342 uint32_t ratio;
5343 uint32_t current_freq;
5344 int ret;
5345
5346 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5347 switch (frequency) {
5348 case 144000:
5349 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5350 ratio = BXT_DE_PLL_RATIO(60);
5351 break;
5352 case 288000:
5353 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5354 ratio = BXT_DE_PLL_RATIO(60);
5355 break;
5356 case 384000:
5357 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5358 ratio = BXT_DE_PLL_RATIO(60);
5359 break;
5360 case 576000:
5361 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5362 ratio = BXT_DE_PLL_RATIO(60);
5363 break;
5364 case 624000:
5365 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5366 ratio = BXT_DE_PLL_RATIO(65);
5367 break;
5368 case 19200:
5369 /*
5370 * Bypass frequency with DE PLL disabled. Init ratio, divider
5371 * to suppress GCC warning.
5372 */
5373 ratio = 0;
5374 divider = 0;
5375 break;
5376 default:
5377 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5378
5379 return;
5380 }
5381
5382 mutex_lock(&dev_priv->rps.hw_lock);
5383 /* Inform power controller of upcoming frequency change */
5384 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5385 0x80000000);
5386 mutex_unlock(&dev_priv->rps.hw_lock);
5387
5388 if (ret) {
5389 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5390 ret, frequency);
5391 return;
5392 }
5393
5394 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5395 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5396 current_freq = current_freq * 500 + 1000;
5397
5398 /*
5399 * DE PLL has to be disabled when
5400 * - setting to 19.2MHz (bypass, PLL isn't used)
5401 * - before setting to 624MHz (PLL needs toggling)
5402 * - before setting to any frequency from 624MHz (PLL needs toggling)
5403 */
5404 if (frequency == 19200 || frequency == 624000 ||
5405 current_freq == 624000) {
5406 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5407 /* Timeout 200us */
5408 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5409 1))
5410 DRM_ERROR("timout waiting for DE PLL unlock\n");
5411 }
5412
5413 if (frequency != 19200) {
5414 uint32_t val;
5415
5416 val = I915_READ(BXT_DE_PLL_CTL);
5417 val &= ~BXT_DE_PLL_RATIO_MASK;
5418 val |= ratio;
5419 I915_WRITE(BXT_DE_PLL_CTL, val);
5420
5421 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5422 /* Timeout 200us */
5423 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5424 DRM_ERROR("timeout waiting for DE PLL lock\n");
5425
5426 val = I915_READ(CDCLK_CTL);
5427 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5428 val |= divider;
5429 /*
5430 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5431 * enable otherwise.
5432 */
5433 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5434 if (frequency >= 500000)
5435 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5436
5437 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5438 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5439 val |= (frequency - 1000) / 500;
5440 I915_WRITE(CDCLK_CTL, val);
5441 }
5442
5443 mutex_lock(&dev_priv->rps.hw_lock);
5444 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5445 DIV_ROUND_UP(frequency, 25000));
5446 mutex_unlock(&dev_priv->rps.hw_lock);
5447
5448 if (ret) {
5449 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5450 ret, frequency);
5451 return;
5452 }
5453
5454 dev_priv->cdclk_freq = frequency;
5455 }
5456
5457 void broxton_init_cdclk(struct drm_device *dev)
5458 {
5459 struct drm_i915_private *dev_priv = dev->dev_private;
5460 uint32_t val;
5461
5462 /*
5463 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5464 * or else the reset will hang because there is no PCH to respond.
5465 * Move the handshake programming to initialization sequence.
5466 * Previously was left up to BIOS.
5467 */
5468 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5469 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5470 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5471
5472 /* Enable PG1 for cdclk */
5473 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5474
5475 /* check if cd clock is enabled */
5476 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5477 DRM_DEBUG_KMS("Display already initialized\n");
5478 return;
5479 }
5480
5481 /*
5482 * FIXME:
5483 * - The initial CDCLK needs to be read from VBT.
5484 * Need to make this change after VBT has changes for BXT.
5485 * - check if setting the max (or any) cdclk freq is really necessary
5486 * here, it belongs to modeset time
5487 */
5488 broxton_set_cdclk(dev, 624000);
5489
5490 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5491 POSTING_READ(DBUF_CTL);
5492
5493 udelay(10);
5494
5495 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5496 DRM_ERROR("DBuf power enable timeout!\n");
5497 }
5498
5499 void broxton_uninit_cdclk(struct drm_device *dev)
5500 {
5501 struct drm_i915_private *dev_priv = dev->dev_private;
5502
5503 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5504 POSTING_READ(DBUF_CTL);
5505
5506 udelay(10);
5507
5508 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5509 DRM_ERROR("DBuf power disable timeout!\n");
5510
5511 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5512 broxton_set_cdclk(dev, 19200);
5513
5514 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5515 }
5516
5517 static const struct skl_cdclk_entry {
5518 unsigned int freq;
5519 unsigned int vco;
5520 } skl_cdclk_frequencies[] = {
5521 { .freq = 308570, .vco = 8640 },
5522 { .freq = 337500, .vco = 8100 },
5523 { .freq = 432000, .vco = 8640 },
5524 { .freq = 450000, .vco = 8100 },
5525 { .freq = 540000, .vco = 8100 },
5526 { .freq = 617140, .vco = 8640 },
5527 { .freq = 675000, .vco = 8100 },
5528 };
5529
5530 static unsigned int skl_cdclk_decimal(unsigned int freq)
5531 {
5532 return (freq - 1000) / 500;
5533 }
5534
5535 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5536 {
5537 unsigned int i;
5538
5539 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5540 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5541
5542 if (e->freq == freq)
5543 return e->vco;
5544 }
5545
5546 return 8100;
5547 }
5548
5549 static void
5550 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5551 {
5552 unsigned int min_freq;
5553 u32 val;
5554
5555 /* select the minimum CDCLK before enabling DPLL 0 */
5556 val = I915_READ(CDCLK_CTL);
5557 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5558 val |= CDCLK_FREQ_337_308;
5559
5560 if (required_vco == 8640)
5561 min_freq = 308570;
5562 else
5563 min_freq = 337500;
5564
5565 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5566
5567 I915_WRITE(CDCLK_CTL, val);
5568 POSTING_READ(CDCLK_CTL);
5569
5570 /*
5571 * We always enable DPLL0 with the lowest link rate possible, but still
5572 * taking into account the VCO required to operate the eDP panel at the
5573 * desired frequency. The usual DP link rates operate with a VCO of
5574 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5575 * The modeset code is responsible for the selection of the exact link
5576 * rate later on, with the constraint of choosing a frequency that
5577 * works with required_vco.
5578 */
5579 val = I915_READ(DPLL_CTRL1);
5580
5581 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5582 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5583 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5584 if (required_vco == 8640)
5585 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5586 SKL_DPLL0);
5587 else
5588 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5589 SKL_DPLL0);
5590
5591 I915_WRITE(DPLL_CTRL1, val);
5592 POSTING_READ(DPLL_CTRL1);
5593
5594 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5595
5596 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5597 DRM_ERROR("DPLL0 not locked\n");
5598 }
5599
5600 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5601 {
5602 int ret;
5603 u32 val;
5604
5605 /* inform PCU we want to change CDCLK */
5606 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5607 mutex_lock(&dev_priv->rps.hw_lock);
5608 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5609 mutex_unlock(&dev_priv->rps.hw_lock);
5610
5611 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5612 }
5613
5614 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5615 {
5616 unsigned int i;
5617
5618 for (i = 0; i < 15; i++) {
5619 if (skl_cdclk_pcu_ready(dev_priv))
5620 return true;
5621 udelay(10);
5622 }
5623
5624 return false;
5625 }
5626
5627 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5628 {
5629 u32 freq_select, pcu_ack;
5630
5631 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5632
5633 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5634 DRM_ERROR("failed to inform PCU about cdclk change\n");
5635 return;
5636 }
5637
5638 /* set CDCLK_CTL */
5639 switch(freq) {
5640 case 450000:
5641 case 432000:
5642 freq_select = CDCLK_FREQ_450_432;
5643 pcu_ack = 1;
5644 break;
5645 case 540000:
5646 freq_select = CDCLK_FREQ_540;
5647 pcu_ack = 2;
5648 break;
5649 case 308570:
5650 case 337500:
5651 default:
5652 freq_select = CDCLK_FREQ_337_308;
5653 pcu_ack = 0;
5654 break;
5655 case 617140:
5656 case 675000:
5657 freq_select = CDCLK_FREQ_675_617;
5658 pcu_ack = 3;
5659 break;
5660 }
5661
5662 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5663 POSTING_READ(CDCLK_CTL);
5664
5665 /* inform PCU of the change */
5666 mutex_lock(&dev_priv->rps.hw_lock);
5667 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5668 mutex_unlock(&dev_priv->rps.hw_lock);
5669 }
5670
5671 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5672 {
5673 /* disable DBUF power */
5674 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5675 POSTING_READ(DBUF_CTL);
5676
5677 udelay(10);
5678
5679 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5680 DRM_ERROR("DBuf power disable timeout\n");
5681
5682 /* disable DPLL0 */
5683 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5684 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5685 DRM_ERROR("Couldn't disable DPLL0\n");
5686
5687 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5688 }
5689
5690 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5691 {
5692 u32 val;
5693 unsigned int required_vco;
5694
5695 /* enable PCH reset handshake */
5696 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5697 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5698
5699 /* enable PG1 and Misc I/O */
5700 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5701
5702 /* DPLL0 already enabed !? */
5703 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5704 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5705 return;
5706 }
5707
5708 /* enable DPLL0 */
5709 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5710 skl_dpll0_enable(dev_priv, required_vco);
5711
5712 /* set CDCLK to the frequency the BIOS chose */
5713 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5714
5715 /* enable DBUF power */
5716 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5717 POSTING_READ(DBUF_CTL);
5718
5719 udelay(10);
5720
5721 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5722 DRM_ERROR("DBuf power enable timeout\n");
5723 }
5724
5725 /* returns HPLL frequency in kHz */
5726 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5727 {
5728 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5729
5730 /* Obtain SKU information */
5731 mutex_lock(&dev_priv->dpio_lock);
5732 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5733 CCK_FUSE_HPLL_FREQ_MASK;
5734 mutex_unlock(&dev_priv->dpio_lock);
5735
5736 return vco_freq[hpll_freq] * 1000;
5737 }
5738
5739 static void vlv_update_cdclk(struct drm_device *dev)
5740 {
5741 struct drm_i915_private *dev_priv = dev->dev_private;
5742
5743 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5744 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5745 dev_priv->cdclk_freq);
5746
5747 /*
5748 * Program the gmbus_freq based on the cdclk frequency.
5749 * BSpec erroneously claims we should aim for 4MHz, but
5750 * in fact 1MHz is the correct frequency.
5751 */
5752 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5753 }
5754
5755 /* Adjust CDclk dividers to allow high res or save power if possible */
5756 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5757 {
5758 struct drm_i915_private *dev_priv = dev->dev_private;
5759 u32 val, cmd;
5760
5761 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5762 != dev_priv->cdclk_freq);
5763
5764 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5765 cmd = 2;
5766 else if (cdclk == 266667)
5767 cmd = 1;
5768 else
5769 cmd = 0;
5770
5771 mutex_lock(&dev_priv->rps.hw_lock);
5772 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5773 val &= ~DSPFREQGUAR_MASK;
5774 val |= (cmd << DSPFREQGUAR_SHIFT);
5775 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5776 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5777 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5778 50)) {
5779 DRM_ERROR("timed out waiting for CDclk change\n");
5780 }
5781 mutex_unlock(&dev_priv->rps.hw_lock);
5782
5783 if (cdclk == 400000) {
5784 u32 divider;
5785
5786 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5787
5788 mutex_lock(&dev_priv->dpio_lock);
5789 /* adjust cdclk divider */
5790 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5791 val &= ~DISPLAY_FREQUENCY_VALUES;
5792 val |= divider;
5793 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5794
5795 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5796 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5797 50))
5798 DRM_ERROR("timed out waiting for CDclk change\n");
5799 mutex_unlock(&dev_priv->dpio_lock);
5800 }
5801
5802 mutex_lock(&dev_priv->dpio_lock);
5803 /* adjust self-refresh exit latency value */
5804 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5805 val &= ~0x7f;
5806
5807 /*
5808 * For high bandwidth configs, we set a higher latency in the bunit
5809 * so that the core display fetch happens in time to avoid underruns.
5810 */
5811 if (cdclk == 400000)
5812 val |= 4500 / 250; /* 4.5 usec */
5813 else
5814 val |= 3000 / 250; /* 3.0 usec */
5815 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5816 mutex_unlock(&dev_priv->dpio_lock);
5817
5818 vlv_update_cdclk(dev);
5819 }
5820
5821 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5822 {
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824 u32 val, cmd;
5825
5826 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5827 != dev_priv->cdclk_freq);
5828
5829 switch (cdclk) {
5830 case 333333:
5831 case 320000:
5832 case 266667:
5833 case 200000:
5834 break;
5835 default:
5836 MISSING_CASE(cdclk);
5837 return;
5838 }
5839
5840 /*
5841 * Specs are full of misinformation, but testing on actual
5842 * hardware has shown that we just need to write the desired
5843 * CCK divider into the Punit register.
5844 */
5845 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5846
5847 mutex_lock(&dev_priv->rps.hw_lock);
5848 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5849 val &= ~DSPFREQGUAR_MASK_CHV;
5850 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5851 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5852 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5853 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5854 50)) {
5855 DRM_ERROR("timed out waiting for CDclk change\n");
5856 }
5857 mutex_unlock(&dev_priv->rps.hw_lock);
5858
5859 vlv_update_cdclk(dev);
5860 }
5861
5862 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5863 int max_pixclk)
5864 {
5865 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5866 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5867
5868 /*
5869 * Really only a few cases to deal with, as only 4 CDclks are supported:
5870 * 200MHz
5871 * 267MHz
5872 * 320/333MHz (depends on HPLL freq)
5873 * 400MHz (VLV only)
5874 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5875 * of the lower bin and adjust if needed.
5876 *
5877 * We seem to get an unstable or solid color picture at 200MHz.
5878 * Not sure what's wrong. For now use 200MHz only when all pipes
5879 * are off.
5880 */
5881 if (!IS_CHERRYVIEW(dev_priv) &&
5882 max_pixclk > freq_320*limit/100)
5883 return 400000;
5884 else if (max_pixclk > 266667*limit/100)
5885 return freq_320;
5886 else if (max_pixclk > 0)
5887 return 266667;
5888 else
5889 return 200000;
5890 }
5891
5892 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5893 int max_pixclk)
5894 {
5895 /*
5896 * FIXME:
5897 * - remove the guardband, it's not needed on BXT
5898 * - set 19.2MHz bypass frequency if there are no active pipes
5899 */
5900 if (max_pixclk > 576000*9/10)
5901 return 624000;
5902 else if (max_pixclk > 384000*9/10)
5903 return 576000;
5904 else if (max_pixclk > 288000*9/10)
5905 return 384000;
5906 else if (max_pixclk > 144000*9/10)
5907 return 288000;
5908 else
5909 return 144000;
5910 }
5911
5912 /* Compute the max pixel clock for new configuration. Uses atomic state if
5913 * that's non-NULL, look at current state otherwise. */
5914 static int intel_mode_max_pixclk(struct drm_device *dev,
5915 struct drm_atomic_state *state)
5916 {
5917 struct intel_crtc *intel_crtc;
5918 struct intel_crtc_state *crtc_state;
5919 int max_pixclk = 0;
5920
5921 for_each_intel_crtc(dev, intel_crtc) {
5922 if (state)
5923 crtc_state =
5924 intel_atomic_get_crtc_state(state, intel_crtc);
5925 else
5926 crtc_state = intel_crtc->config;
5927 if (IS_ERR(crtc_state))
5928 return PTR_ERR(crtc_state);
5929
5930 if (!crtc_state->base.enable)
5931 continue;
5932
5933 max_pixclk = max(max_pixclk,
5934 crtc_state->base.adjusted_mode.crtc_clock);
5935 }
5936
5937 return max_pixclk;
5938 }
5939
5940 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5941 {
5942 struct drm_i915_private *dev_priv = to_i915(state->dev);
5943 struct drm_crtc *crtc;
5944 struct drm_crtc_state *crtc_state;
5945 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5946 int cdclk, i;
5947
5948 if (max_pixclk < 0)
5949 return max_pixclk;
5950
5951 if (IS_VALLEYVIEW(dev_priv))
5952 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5953 else
5954 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5955
5956 if (cdclk == dev_priv->cdclk_freq)
5957 return 0;
5958
5959 /* add all active pipes to the state */
5960 for_each_crtc(state->dev, crtc) {
5961 if (!crtc->state->enable)
5962 continue;
5963
5964 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5965 if (IS_ERR(crtc_state))
5966 return PTR_ERR(crtc_state);
5967 }
5968
5969 /* disable/enable all currently active pipes while we change cdclk */
5970 for_each_crtc_in_state(state, crtc, crtc_state, i)
5971 if (crtc_state->enable)
5972 crtc_state->mode_changed = true;
5973
5974 return 0;
5975 }
5976
5977 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5978 {
5979 unsigned int credits, default_credits;
5980
5981 if (IS_CHERRYVIEW(dev_priv))
5982 default_credits = PFI_CREDIT(12);
5983 else
5984 default_credits = PFI_CREDIT(8);
5985
5986 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5987 /* CHV suggested value is 31 or 63 */
5988 if (IS_CHERRYVIEW(dev_priv))
5989 credits = PFI_CREDIT_31;
5990 else
5991 credits = PFI_CREDIT(15);
5992 } else {
5993 credits = default_credits;
5994 }
5995
5996 /*
5997 * WA - write default credits before re-programming
5998 * FIXME: should we also set the resend bit here?
5999 */
6000 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6001 default_credits);
6002
6003 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6004 credits | PFI_CREDIT_RESEND);
6005
6006 /*
6007 * FIXME is this guaranteed to clear
6008 * immediately or should we poll for it?
6009 */
6010 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6011 }
6012
6013 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
6014 {
6015 struct drm_device *dev = old_state->dev;
6016 struct drm_i915_private *dev_priv = dev->dev_private;
6017 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
6018 int req_cdclk;
6019
6020 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6021 * never fail. */
6022 if (WARN_ON(max_pixclk < 0))
6023 return;
6024
6025 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
6026
6027 if (req_cdclk != dev_priv->cdclk_freq) {
6028 /*
6029 * FIXME: We can end up here with all power domains off, yet
6030 * with a CDCLK frequency other than the minimum. To account
6031 * for this take the PIPE-A power domain, which covers the HW
6032 * blocks needed for the following programming. This can be
6033 * removed once it's guaranteed that we get here either with
6034 * the minimum CDCLK set, or the required power domains
6035 * enabled.
6036 */
6037 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6038
6039 if (IS_CHERRYVIEW(dev))
6040 cherryview_set_cdclk(dev, req_cdclk);
6041 else
6042 valleyview_set_cdclk(dev, req_cdclk);
6043
6044 vlv_program_pfi_credits(dev_priv);
6045
6046 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6047 }
6048 }
6049
6050 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6051 {
6052 struct drm_device *dev = crtc->dev;
6053 struct drm_i915_private *dev_priv = to_i915(dev);
6054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6055 struct intel_encoder *encoder;
6056 int pipe = intel_crtc->pipe;
6057 bool is_dsi;
6058
6059 WARN_ON(!crtc->state->enable);
6060
6061 if (intel_crtc->active)
6062 return;
6063
6064 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6065
6066 if (!is_dsi) {
6067 if (IS_CHERRYVIEW(dev))
6068 chv_prepare_pll(intel_crtc, intel_crtc->config);
6069 else
6070 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6071 }
6072
6073 if (intel_crtc->config->has_dp_encoder)
6074 intel_dp_set_m_n(intel_crtc, M1_N1);
6075
6076 intel_set_pipe_timings(intel_crtc);
6077
6078 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6079 struct drm_i915_private *dev_priv = dev->dev_private;
6080
6081 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6082 I915_WRITE(CHV_CANVAS(pipe), 0);
6083 }
6084
6085 i9xx_set_pipeconf(intel_crtc);
6086
6087 intel_crtc->active = true;
6088
6089 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6090
6091 for_each_encoder_on_crtc(dev, crtc, encoder)
6092 if (encoder->pre_pll_enable)
6093 encoder->pre_pll_enable(encoder);
6094
6095 if (!is_dsi) {
6096 if (IS_CHERRYVIEW(dev))
6097 chv_enable_pll(intel_crtc, intel_crtc->config);
6098 else
6099 vlv_enable_pll(intel_crtc, intel_crtc->config);
6100 }
6101
6102 for_each_encoder_on_crtc(dev, crtc, encoder)
6103 if (encoder->pre_enable)
6104 encoder->pre_enable(encoder);
6105
6106 i9xx_pfit_enable(intel_crtc);
6107
6108 intel_crtc_load_lut(crtc);
6109
6110 intel_update_watermarks(crtc);
6111 intel_enable_pipe(intel_crtc);
6112
6113 assert_vblank_disabled(crtc);
6114 drm_crtc_vblank_on(crtc);
6115
6116 for_each_encoder_on_crtc(dev, crtc, encoder)
6117 encoder->enable(encoder);
6118 }
6119
6120 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6121 {
6122 struct drm_device *dev = crtc->base.dev;
6123 struct drm_i915_private *dev_priv = dev->dev_private;
6124
6125 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6126 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6127 }
6128
6129 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6130 {
6131 struct drm_device *dev = crtc->dev;
6132 struct drm_i915_private *dev_priv = to_i915(dev);
6133 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6134 struct intel_encoder *encoder;
6135 int pipe = intel_crtc->pipe;
6136
6137 WARN_ON(!crtc->state->enable);
6138
6139 if (intel_crtc->active)
6140 return;
6141
6142 i9xx_set_pll_dividers(intel_crtc);
6143
6144 if (intel_crtc->config->has_dp_encoder)
6145 intel_dp_set_m_n(intel_crtc, M1_N1);
6146
6147 intel_set_pipe_timings(intel_crtc);
6148
6149 i9xx_set_pipeconf(intel_crtc);
6150
6151 intel_crtc->active = true;
6152
6153 if (!IS_GEN2(dev))
6154 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6155
6156 for_each_encoder_on_crtc(dev, crtc, encoder)
6157 if (encoder->pre_enable)
6158 encoder->pre_enable(encoder);
6159
6160 i9xx_enable_pll(intel_crtc);
6161
6162 i9xx_pfit_enable(intel_crtc);
6163
6164 intel_crtc_load_lut(crtc);
6165
6166 intel_update_watermarks(crtc);
6167 intel_enable_pipe(intel_crtc);
6168
6169 assert_vblank_disabled(crtc);
6170 drm_crtc_vblank_on(crtc);
6171
6172 for_each_encoder_on_crtc(dev, crtc, encoder)
6173 encoder->enable(encoder);
6174 }
6175
6176 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6177 {
6178 struct drm_device *dev = crtc->base.dev;
6179 struct drm_i915_private *dev_priv = dev->dev_private;
6180
6181 if (!crtc->config->gmch_pfit.control)
6182 return;
6183
6184 assert_pipe_disabled(dev_priv, crtc->pipe);
6185
6186 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6187 I915_READ(PFIT_CONTROL));
6188 I915_WRITE(PFIT_CONTROL, 0);
6189 }
6190
6191 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6192 {
6193 struct drm_device *dev = crtc->dev;
6194 struct drm_i915_private *dev_priv = dev->dev_private;
6195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196 struct intel_encoder *encoder;
6197 int pipe = intel_crtc->pipe;
6198
6199 if (!intel_crtc->active)
6200 return;
6201
6202 /*
6203 * On gen2 planes are double buffered but the pipe isn't, so we must
6204 * wait for planes to fully turn off before disabling the pipe.
6205 * We also need to wait on all gmch platforms because of the
6206 * self-refresh mode constraint explained above.
6207 */
6208 intel_wait_for_vblank(dev, pipe);
6209
6210 for_each_encoder_on_crtc(dev, crtc, encoder)
6211 encoder->disable(encoder);
6212
6213 drm_crtc_vblank_off(crtc);
6214 assert_vblank_disabled(crtc);
6215
6216 intel_disable_pipe(intel_crtc);
6217
6218 i9xx_pfit_disable(intel_crtc);
6219
6220 for_each_encoder_on_crtc(dev, crtc, encoder)
6221 if (encoder->post_disable)
6222 encoder->post_disable(encoder);
6223
6224 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6225 if (IS_CHERRYVIEW(dev))
6226 chv_disable_pll(dev_priv, pipe);
6227 else if (IS_VALLEYVIEW(dev))
6228 vlv_disable_pll(dev_priv, pipe);
6229 else
6230 i9xx_disable_pll(intel_crtc);
6231 }
6232
6233 if (!IS_GEN2(dev))
6234 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6235
6236 intel_crtc->active = false;
6237 intel_update_watermarks(crtc);
6238
6239 mutex_lock(&dev->struct_mutex);
6240 intel_fbc_update(dev);
6241 mutex_unlock(&dev->struct_mutex);
6242 }
6243
6244 static void i9xx_crtc_off(struct drm_crtc *crtc)
6245 {
6246 }
6247
6248 /* Master function to enable/disable CRTC and corresponding power wells */
6249 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6250 {
6251 struct drm_device *dev = crtc->dev;
6252 struct drm_i915_private *dev_priv = dev->dev_private;
6253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6254 enum intel_display_power_domain domain;
6255 unsigned long domains;
6256
6257 if (enable) {
6258 if (!intel_crtc->active) {
6259 domains = get_crtc_power_domains(crtc);
6260 for_each_power_domain(domain, domains)
6261 intel_display_power_get(dev_priv, domain);
6262 intel_crtc->enabled_power_domains = domains;
6263
6264 dev_priv->display.crtc_enable(crtc);
6265 intel_crtc_enable_planes(crtc);
6266 }
6267 } else {
6268 if (intel_crtc->active) {
6269 intel_crtc_disable_planes(crtc);
6270 dev_priv->display.crtc_disable(crtc);
6271
6272 domains = intel_crtc->enabled_power_domains;
6273 for_each_power_domain(domain, domains)
6274 intel_display_power_put(dev_priv, domain);
6275 intel_crtc->enabled_power_domains = 0;
6276 }
6277 }
6278 }
6279
6280 /**
6281 * Sets the power management mode of the pipe and plane.
6282 */
6283 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6284 {
6285 struct drm_device *dev = crtc->dev;
6286 struct intel_encoder *intel_encoder;
6287 bool enable = false;
6288
6289 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6290 enable |= intel_encoder->connectors_active;
6291
6292 intel_crtc_control(crtc, enable);
6293
6294 crtc->state->active = enable;
6295 }
6296
6297 static void intel_crtc_disable(struct drm_crtc *crtc)
6298 {
6299 struct drm_device *dev = crtc->dev;
6300 struct drm_connector *connector;
6301 struct drm_i915_private *dev_priv = dev->dev_private;
6302
6303 /* crtc should still be enabled when we disable it. */
6304 WARN_ON(!crtc->state->enable);
6305
6306 intel_crtc_disable_planes(crtc);
6307 dev_priv->display.crtc_disable(crtc);
6308 dev_priv->display.off(crtc);
6309
6310 drm_plane_helper_disable(crtc->primary);
6311
6312 /* Update computed state. */
6313 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6314 if (!connector->encoder || !connector->encoder->crtc)
6315 continue;
6316
6317 if (connector->encoder->crtc != crtc)
6318 continue;
6319
6320 connector->dpms = DRM_MODE_DPMS_OFF;
6321 to_intel_encoder(connector->encoder)->connectors_active = false;
6322 }
6323 }
6324
6325 void intel_encoder_destroy(struct drm_encoder *encoder)
6326 {
6327 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6328
6329 drm_encoder_cleanup(encoder);
6330 kfree(intel_encoder);
6331 }
6332
6333 /* Simple dpms helper for encoders with just one connector, no cloning and only
6334 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6335 * state of the entire output pipe. */
6336 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6337 {
6338 if (mode == DRM_MODE_DPMS_ON) {
6339 encoder->connectors_active = true;
6340
6341 intel_crtc_update_dpms(encoder->base.crtc);
6342 } else {
6343 encoder->connectors_active = false;
6344
6345 intel_crtc_update_dpms(encoder->base.crtc);
6346 }
6347 }
6348
6349 /* Cross check the actual hw state with our own modeset state tracking (and it's
6350 * internal consistency). */
6351 static void intel_connector_check_state(struct intel_connector *connector)
6352 {
6353 if (connector->get_hw_state(connector)) {
6354 struct intel_encoder *encoder = connector->encoder;
6355 struct drm_crtc *crtc;
6356 bool encoder_enabled;
6357 enum pipe pipe;
6358
6359 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6360 connector->base.base.id,
6361 connector->base.name);
6362
6363 /* there is no real hw state for MST connectors */
6364 if (connector->mst_port)
6365 return;
6366
6367 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6368 "wrong connector dpms state\n");
6369 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6370 "active connector not linked to encoder\n");
6371
6372 if (encoder) {
6373 I915_STATE_WARN(!encoder->connectors_active,
6374 "encoder->connectors_active not set\n");
6375
6376 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6377 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6378 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6379 return;
6380
6381 crtc = encoder->base.crtc;
6382
6383 I915_STATE_WARN(!crtc->state->enable,
6384 "crtc not enabled\n");
6385 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6386 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6387 "encoder active on the wrong pipe\n");
6388 }
6389 }
6390 }
6391
6392 int intel_connector_init(struct intel_connector *connector)
6393 {
6394 struct drm_connector_state *connector_state;
6395
6396 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6397 if (!connector_state)
6398 return -ENOMEM;
6399
6400 connector->base.state = connector_state;
6401 return 0;
6402 }
6403
6404 struct intel_connector *intel_connector_alloc(void)
6405 {
6406 struct intel_connector *connector;
6407
6408 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6409 if (!connector)
6410 return NULL;
6411
6412 if (intel_connector_init(connector) < 0) {
6413 kfree(connector);
6414 return NULL;
6415 }
6416
6417 return connector;
6418 }
6419
6420 /* Even simpler default implementation, if there's really no special case to
6421 * consider. */
6422 void intel_connector_dpms(struct drm_connector *connector, int mode)
6423 {
6424 /* All the simple cases only support two dpms states. */
6425 if (mode != DRM_MODE_DPMS_ON)
6426 mode = DRM_MODE_DPMS_OFF;
6427
6428 if (mode == connector->dpms)
6429 return;
6430
6431 connector->dpms = mode;
6432
6433 /* Only need to change hw state when actually enabled */
6434 if (connector->encoder)
6435 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6436
6437 intel_modeset_check_state(connector->dev);
6438 }
6439
6440 /* Simple connector->get_hw_state implementation for encoders that support only
6441 * one connector and no cloning and hence the encoder state determines the state
6442 * of the connector. */
6443 bool intel_connector_get_hw_state(struct intel_connector *connector)
6444 {
6445 enum pipe pipe = 0;
6446 struct intel_encoder *encoder = connector->encoder;
6447
6448 return encoder->get_hw_state(encoder, &pipe);
6449 }
6450
6451 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6452 {
6453 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6454 return crtc_state->fdi_lanes;
6455
6456 return 0;
6457 }
6458
6459 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6460 struct intel_crtc_state *pipe_config)
6461 {
6462 struct drm_atomic_state *state = pipe_config->base.state;
6463 struct intel_crtc *other_crtc;
6464 struct intel_crtc_state *other_crtc_state;
6465
6466 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6467 pipe_name(pipe), pipe_config->fdi_lanes);
6468 if (pipe_config->fdi_lanes > 4) {
6469 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6470 pipe_name(pipe), pipe_config->fdi_lanes);
6471 return -EINVAL;
6472 }
6473
6474 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6475 if (pipe_config->fdi_lanes > 2) {
6476 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6477 pipe_config->fdi_lanes);
6478 return -EINVAL;
6479 } else {
6480 return 0;
6481 }
6482 }
6483
6484 if (INTEL_INFO(dev)->num_pipes == 2)
6485 return 0;
6486
6487 /* Ivybridge 3 pipe is really complicated */
6488 switch (pipe) {
6489 case PIPE_A:
6490 return 0;
6491 case PIPE_B:
6492 if (pipe_config->fdi_lanes <= 2)
6493 return 0;
6494
6495 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6496 other_crtc_state =
6497 intel_atomic_get_crtc_state(state, other_crtc);
6498 if (IS_ERR(other_crtc_state))
6499 return PTR_ERR(other_crtc_state);
6500
6501 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6502 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6503 pipe_name(pipe), pipe_config->fdi_lanes);
6504 return -EINVAL;
6505 }
6506 return 0;
6507 case PIPE_C:
6508 if (pipe_config->fdi_lanes > 2) {
6509 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6510 pipe_name(pipe), pipe_config->fdi_lanes);
6511 return -EINVAL;
6512 }
6513
6514 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6515 other_crtc_state =
6516 intel_atomic_get_crtc_state(state, other_crtc);
6517 if (IS_ERR(other_crtc_state))
6518 return PTR_ERR(other_crtc_state);
6519
6520 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6521 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6522 return -EINVAL;
6523 }
6524 return 0;
6525 default:
6526 BUG();
6527 }
6528 }
6529
6530 #define RETRY 1
6531 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6532 struct intel_crtc_state *pipe_config)
6533 {
6534 struct drm_device *dev = intel_crtc->base.dev;
6535 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6536 int lane, link_bw, fdi_dotclock, ret;
6537 bool needs_recompute = false;
6538
6539 retry:
6540 /* FDI is a binary signal running at ~2.7GHz, encoding
6541 * each output octet as 10 bits. The actual frequency
6542 * is stored as a divider into a 100MHz clock, and the
6543 * mode pixel clock is stored in units of 1KHz.
6544 * Hence the bw of each lane in terms of the mode signal
6545 * is:
6546 */
6547 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6548
6549 fdi_dotclock = adjusted_mode->crtc_clock;
6550
6551 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6552 pipe_config->pipe_bpp);
6553
6554 pipe_config->fdi_lanes = lane;
6555
6556 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6557 link_bw, &pipe_config->fdi_m_n);
6558
6559 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6560 intel_crtc->pipe, pipe_config);
6561 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6562 pipe_config->pipe_bpp -= 2*3;
6563 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6564 pipe_config->pipe_bpp);
6565 needs_recompute = true;
6566 pipe_config->bw_constrained = true;
6567
6568 goto retry;
6569 }
6570
6571 if (needs_recompute)
6572 return RETRY;
6573
6574 return ret;
6575 }
6576
6577 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6578 struct intel_crtc_state *pipe_config)
6579 {
6580 pipe_config->ips_enabled = i915.enable_ips &&
6581 hsw_crtc_supports_ips(crtc) &&
6582 pipe_config->pipe_bpp <= 24;
6583 }
6584
6585 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6586 struct intel_crtc_state *pipe_config)
6587 {
6588 struct drm_device *dev = crtc->base.dev;
6589 struct drm_i915_private *dev_priv = dev->dev_private;
6590 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6591 int ret;
6592
6593 /* FIXME should check pixel clock limits on all platforms */
6594 if (INTEL_INFO(dev)->gen < 4) {
6595 int clock_limit =
6596 dev_priv->display.get_display_clock_speed(dev);
6597
6598 /*
6599 * Enable pixel doubling when the dot clock
6600 * is > 90% of the (display) core speed.
6601 *
6602 * GDG double wide on either pipe,
6603 * otherwise pipe A only.
6604 */
6605 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6606 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6607 clock_limit *= 2;
6608 pipe_config->double_wide = true;
6609 }
6610
6611 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6612 return -EINVAL;
6613 }
6614
6615 /*
6616 * Pipe horizontal size must be even in:
6617 * - DVO ganged mode
6618 * - LVDS dual channel mode
6619 * - Double wide pipe
6620 */
6621 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6622 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6623 pipe_config->pipe_src_w &= ~1;
6624
6625 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6626 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6627 */
6628 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6629 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6630 return -EINVAL;
6631
6632 if (HAS_IPS(dev))
6633 hsw_compute_ips_config(crtc, pipe_config);
6634
6635 if (pipe_config->has_pch_encoder)
6636 return ironlake_fdi_compute_config(crtc, pipe_config);
6637
6638 /* FIXME: remove below call once atomic mode set is place and all crtc
6639 * related checks called from atomic_crtc_check function */
6640 ret = 0;
6641 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6642 crtc, pipe_config->base.state);
6643 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6644
6645 return ret;
6646 }
6647
6648 static int skylake_get_display_clock_speed(struct drm_device *dev)
6649 {
6650 struct drm_i915_private *dev_priv = to_i915(dev);
6651 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6652 uint32_t cdctl = I915_READ(CDCLK_CTL);
6653 uint32_t linkrate;
6654
6655 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6656 WARN(1, "LCPLL1 not enabled\n");
6657 return 24000; /* 24MHz is the cd freq with NSSC ref */
6658 }
6659
6660 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6661 return 540000;
6662
6663 linkrate = (I915_READ(DPLL_CTRL1) &
6664 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6665
6666 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6667 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6668 /* vco 8640 */
6669 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6670 case CDCLK_FREQ_450_432:
6671 return 432000;
6672 case CDCLK_FREQ_337_308:
6673 return 308570;
6674 case CDCLK_FREQ_675_617:
6675 return 617140;
6676 default:
6677 WARN(1, "Unknown cd freq selection\n");
6678 }
6679 } else {
6680 /* vco 8100 */
6681 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6682 case CDCLK_FREQ_450_432:
6683 return 450000;
6684 case CDCLK_FREQ_337_308:
6685 return 337500;
6686 case CDCLK_FREQ_675_617:
6687 return 675000;
6688 default:
6689 WARN(1, "Unknown cd freq selection\n");
6690 }
6691 }
6692
6693 /* error case, do as if DPLL0 isn't enabled */
6694 return 24000;
6695 }
6696
6697 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6698 {
6699 struct drm_i915_private *dev_priv = dev->dev_private;
6700 uint32_t lcpll = I915_READ(LCPLL_CTL);
6701 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6702
6703 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6704 return 800000;
6705 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6706 return 450000;
6707 else if (freq == LCPLL_CLK_FREQ_450)
6708 return 450000;
6709 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6710 return 540000;
6711 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6712 return 337500;
6713 else
6714 return 675000;
6715 }
6716
6717 static int haswell_get_display_clock_speed(struct drm_device *dev)
6718 {
6719 struct drm_i915_private *dev_priv = dev->dev_private;
6720 uint32_t lcpll = I915_READ(LCPLL_CTL);
6721 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6722
6723 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6724 return 800000;
6725 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6726 return 450000;
6727 else if (freq == LCPLL_CLK_FREQ_450)
6728 return 450000;
6729 else if (IS_HSW_ULT(dev))
6730 return 337500;
6731 else
6732 return 540000;
6733 }
6734
6735 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6736 {
6737 struct drm_i915_private *dev_priv = dev->dev_private;
6738 u32 val;
6739 int divider;
6740
6741 if (dev_priv->hpll_freq == 0)
6742 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6743
6744 mutex_lock(&dev_priv->dpio_lock);
6745 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6746 mutex_unlock(&dev_priv->dpio_lock);
6747
6748 divider = val & DISPLAY_FREQUENCY_VALUES;
6749
6750 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6751 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6752 "cdclk change in progress\n");
6753
6754 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6755 }
6756
6757 static int ilk_get_display_clock_speed(struct drm_device *dev)
6758 {
6759 return 450000;
6760 }
6761
6762 static int i945_get_display_clock_speed(struct drm_device *dev)
6763 {
6764 return 400000;
6765 }
6766
6767 static int i915_get_display_clock_speed(struct drm_device *dev)
6768 {
6769 return 333333;
6770 }
6771
6772 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6773 {
6774 return 200000;
6775 }
6776
6777 static int pnv_get_display_clock_speed(struct drm_device *dev)
6778 {
6779 u16 gcfgc = 0;
6780
6781 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6782
6783 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6784 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6785 return 266667;
6786 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6787 return 333333;
6788 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6789 return 444444;
6790 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6791 return 200000;
6792 default:
6793 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6794 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6795 return 133333;
6796 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6797 return 166667;
6798 }
6799 }
6800
6801 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6802 {
6803 u16 gcfgc = 0;
6804
6805 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6806
6807 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6808 return 133333;
6809 else {
6810 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6811 case GC_DISPLAY_CLOCK_333_MHZ:
6812 return 333333;
6813 default:
6814 case GC_DISPLAY_CLOCK_190_200_MHZ:
6815 return 190000;
6816 }
6817 }
6818 }
6819
6820 static int i865_get_display_clock_speed(struct drm_device *dev)
6821 {
6822 return 266667;
6823 }
6824
6825 static int i855_get_display_clock_speed(struct drm_device *dev)
6826 {
6827 u16 hpllcc = 0;
6828 /* Assume that the hardware is in the high speed state. This
6829 * should be the default.
6830 */
6831 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6832 case GC_CLOCK_133_200:
6833 case GC_CLOCK_100_200:
6834 return 200000;
6835 case GC_CLOCK_166_250:
6836 return 250000;
6837 case GC_CLOCK_100_133:
6838 return 133333;
6839 }
6840
6841 /* Shouldn't happen */
6842 return 0;
6843 }
6844
6845 static int i830_get_display_clock_speed(struct drm_device *dev)
6846 {
6847 return 133333;
6848 }
6849
6850 static void
6851 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6852 {
6853 while (*num > DATA_LINK_M_N_MASK ||
6854 *den > DATA_LINK_M_N_MASK) {
6855 *num >>= 1;
6856 *den >>= 1;
6857 }
6858 }
6859
6860 static void compute_m_n(unsigned int m, unsigned int n,
6861 uint32_t *ret_m, uint32_t *ret_n)
6862 {
6863 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6864 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6865 intel_reduce_m_n_ratio(ret_m, ret_n);
6866 }
6867
6868 void
6869 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6870 int pixel_clock, int link_clock,
6871 struct intel_link_m_n *m_n)
6872 {
6873 m_n->tu = 64;
6874
6875 compute_m_n(bits_per_pixel * pixel_clock,
6876 link_clock * nlanes * 8,
6877 &m_n->gmch_m, &m_n->gmch_n);
6878
6879 compute_m_n(pixel_clock, link_clock,
6880 &m_n->link_m, &m_n->link_n);
6881 }
6882
6883 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6884 {
6885 if (i915.panel_use_ssc >= 0)
6886 return i915.panel_use_ssc != 0;
6887 return dev_priv->vbt.lvds_use_ssc
6888 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6889 }
6890
6891 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6892 int num_connectors)
6893 {
6894 struct drm_device *dev = crtc_state->base.crtc->dev;
6895 struct drm_i915_private *dev_priv = dev->dev_private;
6896 int refclk;
6897
6898 WARN_ON(!crtc_state->base.state);
6899
6900 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6901 refclk = 100000;
6902 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6903 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6904 refclk = dev_priv->vbt.lvds_ssc_freq;
6905 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6906 } else if (!IS_GEN2(dev)) {
6907 refclk = 96000;
6908 } else {
6909 refclk = 48000;
6910 }
6911
6912 return refclk;
6913 }
6914
6915 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6916 {
6917 return (1 << dpll->n) << 16 | dpll->m2;
6918 }
6919
6920 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6921 {
6922 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6923 }
6924
6925 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6926 struct intel_crtc_state *crtc_state,
6927 intel_clock_t *reduced_clock)
6928 {
6929 struct drm_device *dev = crtc->base.dev;
6930 u32 fp, fp2 = 0;
6931
6932 if (IS_PINEVIEW(dev)) {
6933 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6934 if (reduced_clock)
6935 fp2 = pnv_dpll_compute_fp(reduced_clock);
6936 } else {
6937 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6938 if (reduced_clock)
6939 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6940 }
6941
6942 crtc_state->dpll_hw_state.fp0 = fp;
6943
6944 crtc->lowfreq_avail = false;
6945 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6946 reduced_clock) {
6947 crtc_state->dpll_hw_state.fp1 = fp2;
6948 crtc->lowfreq_avail = true;
6949 } else {
6950 crtc_state->dpll_hw_state.fp1 = fp;
6951 }
6952 }
6953
6954 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6955 pipe)
6956 {
6957 u32 reg_val;
6958
6959 /*
6960 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6961 * and set it to a reasonable value instead.
6962 */
6963 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6964 reg_val &= 0xffffff00;
6965 reg_val |= 0x00000030;
6966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6967
6968 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6969 reg_val &= 0x8cffffff;
6970 reg_val = 0x8c000000;
6971 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6972
6973 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6974 reg_val &= 0xffffff00;
6975 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6976
6977 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6978 reg_val &= 0x00ffffff;
6979 reg_val |= 0xb0000000;
6980 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6981 }
6982
6983 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6984 struct intel_link_m_n *m_n)
6985 {
6986 struct drm_device *dev = crtc->base.dev;
6987 struct drm_i915_private *dev_priv = dev->dev_private;
6988 int pipe = crtc->pipe;
6989
6990 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6991 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6992 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6993 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6994 }
6995
6996 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6997 struct intel_link_m_n *m_n,
6998 struct intel_link_m_n *m2_n2)
6999 {
7000 struct drm_device *dev = crtc->base.dev;
7001 struct drm_i915_private *dev_priv = dev->dev_private;
7002 int pipe = crtc->pipe;
7003 enum transcoder transcoder = crtc->config->cpu_transcoder;
7004
7005 if (INTEL_INFO(dev)->gen >= 5) {
7006 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7007 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7008 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7009 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7010 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7011 * for gen < 8) and if DRRS is supported (to make sure the
7012 * registers are not unnecessarily accessed).
7013 */
7014 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7015 crtc->config->has_drrs) {
7016 I915_WRITE(PIPE_DATA_M2(transcoder),
7017 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7018 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7019 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7020 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7021 }
7022 } else {
7023 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7024 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7025 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7026 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7027 }
7028 }
7029
7030 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7031 {
7032 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7033
7034 if (m_n == M1_N1) {
7035 dp_m_n = &crtc->config->dp_m_n;
7036 dp_m2_n2 = &crtc->config->dp_m2_n2;
7037 } else if (m_n == M2_N2) {
7038
7039 /*
7040 * M2_N2 registers are not supported. Hence m2_n2 divider value
7041 * needs to be programmed into M1_N1.
7042 */
7043 dp_m_n = &crtc->config->dp_m2_n2;
7044 } else {
7045 DRM_ERROR("Unsupported divider value\n");
7046 return;
7047 }
7048
7049 if (crtc->config->has_pch_encoder)
7050 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7051 else
7052 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7053 }
7054
7055 static void vlv_update_pll(struct intel_crtc *crtc,
7056 struct intel_crtc_state *pipe_config)
7057 {
7058 u32 dpll, dpll_md;
7059
7060 /*
7061 * Enable DPIO clock input. We should never disable the reference
7062 * clock for pipe B, since VGA hotplug / manual detection depends
7063 * on it.
7064 */
7065 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7066 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7067 /* We should never disable this, set it here for state tracking */
7068 if (crtc->pipe == PIPE_B)
7069 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7070 dpll |= DPLL_VCO_ENABLE;
7071 pipe_config->dpll_hw_state.dpll = dpll;
7072
7073 dpll_md = (pipe_config->pixel_multiplier - 1)
7074 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7075 pipe_config->dpll_hw_state.dpll_md = dpll_md;
7076 }
7077
7078 static void vlv_prepare_pll(struct intel_crtc *crtc,
7079 const struct intel_crtc_state *pipe_config)
7080 {
7081 struct drm_device *dev = crtc->base.dev;
7082 struct drm_i915_private *dev_priv = dev->dev_private;
7083 int pipe = crtc->pipe;
7084 u32 mdiv;
7085 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7086 u32 coreclk, reg_val;
7087
7088 mutex_lock(&dev_priv->dpio_lock);
7089
7090 bestn = pipe_config->dpll.n;
7091 bestm1 = pipe_config->dpll.m1;
7092 bestm2 = pipe_config->dpll.m2;
7093 bestp1 = pipe_config->dpll.p1;
7094 bestp2 = pipe_config->dpll.p2;
7095
7096 /* See eDP HDMI DPIO driver vbios notes doc */
7097
7098 /* PLL B needs special handling */
7099 if (pipe == PIPE_B)
7100 vlv_pllb_recal_opamp(dev_priv, pipe);
7101
7102 /* Set up Tx target for periodic Rcomp update */
7103 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7104
7105 /* Disable target IRef on PLL */
7106 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7107 reg_val &= 0x00ffffff;
7108 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7109
7110 /* Disable fast lock */
7111 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7112
7113 /* Set idtafcrecal before PLL is enabled */
7114 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7115 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7116 mdiv |= ((bestn << DPIO_N_SHIFT));
7117 mdiv |= (1 << DPIO_K_SHIFT);
7118
7119 /*
7120 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7121 * but we don't support that).
7122 * Note: don't use the DAC post divider as it seems unstable.
7123 */
7124 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7125 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7126
7127 mdiv |= DPIO_ENABLE_CALIBRATION;
7128 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7129
7130 /* Set HBR and RBR LPF coefficients */
7131 if (pipe_config->port_clock == 162000 ||
7132 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7133 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7134 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7135 0x009f0003);
7136 else
7137 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7138 0x00d0000f);
7139
7140 if (pipe_config->has_dp_encoder) {
7141 /* Use SSC source */
7142 if (pipe == PIPE_A)
7143 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7144 0x0df40000);
7145 else
7146 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7147 0x0df70000);
7148 } else { /* HDMI or VGA */
7149 /* Use bend source */
7150 if (pipe == PIPE_A)
7151 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7152 0x0df70000);
7153 else
7154 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7155 0x0df40000);
7156 }
7157
7158 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7159 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7160 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7161 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7162 coreclk |= 0x01000000;
7163 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7164
7165 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7166 mutex_unlock(&dev_priv->dpio_lock);
7167 }
7168
7169 static void chv_update_pll(struct intel_crtc *crtc,
7170 struct intel_crtc_state *pipe_config)
7171 {
7172 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7173 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7174 DPLL_VCO_ENABLE;
7175 if (crtc->pipe != PIPE_A)
7176 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7177
7178 pipe_config->dpll_hw_state.dpll_md =
7179 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7180 }
7181
7182 static void chv_prepare_pll(struct intel_crtc *crtc,
7183 const struct intel_crtc_state *pipe_config)
7184 {
7185 struct drm_device *dev = crtc->base.dev;
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 int pipe = crtc->pipe;
7188 int dpll_reg = DPLL(crtc->pipe);
7189 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7190 u32 loopfilter, tribuf_calcntr;
7191 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7192 u32 dpio_val;
7193 int vco;
7194
7195 bestn = pipe_config->dpll.n;
7196 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7197 bestm1 = pipe_config->dpll.m1;
7198 bestm2 = pipe_config->dpll.m2 >> 22;
7199 bestp1 = pipe_config->dpll.p1;
7200 bestp2 = pipe_config->dpll.p2;
7201 vco = pipe_config->dpll.vco;
7202 dpio_val = 0;
7203 loopfilter = 0;
7204
7205 /*
7206 * Enable Refclk and SSC
7207 */
7208 I915_WRITE(dpll_reg,
7209 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7210
7211 mutex_lock(&dev_priv->dpio_lock);
7212
7213 /* p1 and p2 divider */
7214 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7215 5 << DPIO_CHV_S1_DIV_SHIFT |
7216 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7217 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7218 1 << DPIO_CHV_K_DIV_SHIFT);
7219
7220 /* Feedback post-divider - m2 */
7221 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7222
7223 /* Feedback refclk divider - n and m1 */
7224 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7225 DPIO_CHV_M1_DIV_BY_2 |
7226 1 << DPIO_CHV_N_DIV_SHIFT);
7227
7228 /* M2 fraction division */
7229 if (bestm2_frac)
7230 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7231
7232 /* M2 fraction division enable */
7233 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7234 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7235 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7236 if (bestm2_frac)
7237 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7238 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7239
7240 /* Program digital lock detect threshold */
7241 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7242 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7243 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7244 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7245 if (!bestm2_frac)
7246 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7247 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7248
7249 /* Loop filter */
7250 if (vco == 5400000) {
7251 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7252 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7253 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7254 tribuf_calcntr = 0x9;
7255 } else if (vco <= 6200000) {
7256 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7257 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7258 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7259 tribuf_calcntr = 0x9;
7260 } else if (vco <= 6480000) {
7261 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7262 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7263 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7264 tribuf_calcntr = 0x8;
7265 } else {
7266 /* Not supported. Apply the same limits as in the max case */
7267 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7268 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7269 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7270 tribuf_calcntr = 0;
7271 }
7272 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7273
7274 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7275 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7276 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7277 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7278
7279 /* AFC Recal */
7280 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7281 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7282 DPIO_AFC_RECAL);
7283
7284 mutex_unlock(&dev_priv->dpio_lock);
7285 }
7286
7287 /**
7288 * vlv_force_pll_on - forcibly enable just the PLL
7289 * @dev_priv: i915 private structure
7290 * @pipe: pipe PLL to enable
7291 * @dpll: PLL configuration
7292 *
7293 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7294 * in cases where we need the PLL enabled even when @pipe is not going to
7295 * be enabled.
7296 */
7297 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7298 const struct dpll *dpll)
7299 {
7300 struct intel_crtc *crtc =
7301 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7302 struct intel_crtc_state pipe_config = {
7303 .base.crtc = &crtc->base,
7304 .pixel_multiplier = 1,
7305 .dpll = *dpll,
7306 };
7307
7308 if (IS_CHERRYVIEW(dev)) {
7309 chv_update_pll(crtc, &pipe_config);
7310 chv_prepare_pll(crtc, &pipe_config);
7311 chv_enable_pll(crtc, &pipe_config);
7312 } else {
7313 vlv_update_pll(crtc, &pipe_config);
7314 vlv_prepare_pll(crtc, &pipe_config);
7315 vlv_enable_pll(crtc, &pipe_config);
7316 }
7317 }
7318
7319 /**
7320 * vlv_force_pll_off - forcibly disable just the PLL
7321 * @dev_priv: i915 private structure
7322 * @pipe: pipe PLL to disable
7323 *
7324 * Disable the PLL for @pipe. To be used in cases where we need
7325 * the PLL enabled even when @pipe is not going to be enabled.
7326 */
7327 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7328 {
7329 if (IS_CHERRYVIEW(dev))
7330 chv_disable_pll(to_i915(dev), pipe);
7331 else
7332 vlv_disable_pll(to_i915(dev), pipe);
7333 }
7334
7335 static void i9xx_update_pll(struct intel_crtc *crtc,
7336 struct intel_crtc_state *crtc_state,
7337 intel_clock_t *reduced_clock,
7338 int num_connectors)
7339 {
7340 struct drm_device *dev = crtc->base.dev;
7341 struct drm_i915_private *dev_priv = dev->dev_private;
7342 u32 dpll;
7343 bool is_sdvo;
7344 struct dpll *clock = &crtc_state->dpll;
7345
7346 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7347
7348 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7349 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7350
7351 dpll = DPLL_VGA_MODE_DIS;
7352
7353 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7354 dpll |= DPLLB_MODE_LVDS;
7355 else
7356 dpll |= DPLLB_MODE_DAC_SERIAL;
7357
7358 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7359 dpll |= (crtc_state->pixel_multiplier - 1)
7360 << SDVO_MULTIPLIER_SHIFT_HIRES;
7361 }
7362
7363 if (is_sdvo)
7364 dpll |= DPLL_SDVO_HIGH_SPEED;
7365
7366 if (crtc_state->has_dp_encoder)
7367 dpll |= DPLL_SDVO_HIGH_SPEED;
7368
7369 /* compute bitmask from p1 value */
7370 if (IS_PINEVIEW(dev))
7371 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7372 else {
7373 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7374 if (IS_G4X(dev) && reduced_clock)
7375 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7376 }
7377 switch (clock->p2) {
7378 case 5:
7379 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7380 break;
7381 case 7:
7382 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7383 break;
7384 case 10:
7385 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7386 break;
7387 case 14:
7388 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7389 break;
7390 }
7391 if (INTEL_INFO(dev)->gen >= 4)
7392 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7393
7394 if (crtc_state->sdvo_tv_clock)
7395 dpll |= PLL_REF_INPUT_TVCLKINBC;
7396 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7397 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7398 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7399 else
7400 dpll |= PLL_REF_INPUT_DREFCLK;
7401
7402 dpll |= DPLL_VCO_ENABLE;
7403 crtc_state->dpll_hw_state.dpll = dpll;
7404
7405 if (INTEL_INFO(dev)->gen >= 4) {
7406 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7407 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7408 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7409 }
7410 }
7411
7412 static void i8xx_update_pll(struct intel_crtc *crtc,
7413 struct intel_crtc_state *crtc_state,
7414 intel_clock_t *reduced_clock,
7415 int num_connectors)
7416 {
7417 struct drm_device *dev = crtc->base.dev;
7418 struct drm_i915_private *dev_priv = dev->dev_private;
7419 u32 dpll;
7420 struct dpll *clock = &crtc_state->dpll;
7421
7422 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7423
7424 dpll = DPLL_VGA_MODE_DIS;
7425
7426 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7427 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7428 } else {
7429 if (clock->p1 == 2)
7430 dpll |= PLL_P1_DIVIDE_BY_TWO;
7431 else
7432 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7433 if (clock->p2 == 4)
7434 dpll |= PLL_P2_DIVIDE_BY_4;
7435 }
7436
7437 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7438 dpll |= DPLL_DVO_2X_MODE;
7439
7440 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7441 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7442 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7443 else
7444 dpll |= PLL_REF_INPUT_DREFCLK;
7445
7446 dpll |= DPLL_VCO_ENABLE;
7447 crtc_state->dpll_hw_state.dpll = dpll;
7448 }
7449
7450 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7451 {
7452 struct drm_device *dev = intel_crtc->base.dev;
7453 struct drm_i915_private *dev_priv = dev->dev_private;
7454 enum pipe pipe = intel_crtc->pipe;
7455 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7456 struct drm_display_mode *adjusted_mode =
7457 &intel_crtc->config->base.adjusted_mode;
7458 uint32_t crtc_vtotal, crtc_vblank_end;
7459 int vsyncshift = 0;
7460
7461 /* We need to be careful not to changed the adjusted mode, for otherwise
7462 * the hw state checker will get angry at the mismatch. */
7463 crtc_vtotal = adjusted_mode->crtc_vtotal;
7464 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7465
7466 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7467 /* the chip adds 2 halflines automatically */
7468 crtc_vtotal -= 1;
7469 crtc_vblank_end -= 1;
7470
7471 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7472 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7473 else
7474 vsyncshift = adjusted_mode->crtc_hsync_start -
7475 adjusted_mode->crtc_htotal / 2;
7476 if (vsyncshift < 0)
7477 vsyncshift += adjusted_mode->crtc_htotal;
7478 }
7479
7480 if (INTEL_INFO(dev)->gen > 3)
7481 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7482
7483 I915_WRITE(HTOTAL(cpu_transcoder),
7484 (adjusted_mode->crtc_hdisplay - 1) |
7485 ((adjusted_mode->crtc_htotal - 1) << 16));
7486 I915_WRITE(HBLANK(cpu_transcoder),
7487 (adjusted_mode->crtc_hblank_start - 1) |
7488 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7489 I915_WRITE(HSYNC(cpu_transcoder),
7490 (adjusted_mode->crtc_hsync_start - 1) |
7491 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7492
7493 I915_WRITE(VTOTAL(cpu_transcoder),
7494 (adjusted_mode->crtc_vdisplay - 1) |
7495 ((crtc_vtotal - 1) << 16));
7496 I915_WRITE(VBLANK(cpu_transcoder),
7497 (adjusted_mode->crtc_vblank_start - 1) |
7498 ((crtc_vblank_end - 1) << 16));
7499 I915_WRITE(VSYNC(cpu_transcoder),
7500 (adjusted_mode->crtc_vsync_start - 1) |
7501 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7502
7503 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7504 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7505 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7506 * bits. */
7507 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7508 (pipe == PIPE_B || pipe == PIPE_C))
7509 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7510
7511 /* pipesrc controls the size that is scaled from, which should
7512 * always be the user's requested size.
7513 */
7514 I915_WRITE(PIPESRC(pipe),
7515 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7516 (intel_crtc->config->pipe_src_h - 1));
7517 }
7518
7519 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7520 struct intel_crtc_state *pipe_config)
7521 {
7522 struct drm_device *dev = crtc->base.dev;
7523 struct drm_i915_private *dev_priv = dev->dev_private;
7524 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7525 uint32_t tmp;
7526
7527 tmp = I915_READ(HTOTAL(cpu_transcoder));
7528 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7529 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7530 tmp = I915_READ(HBLANK(cpu_transcoder));
7531 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7532 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7533 tmp = I915_READ(HSYNC(cpu_transcoder));
7534 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7535 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7536
7537 tmp = I915_READ(VTOTAL(cpu_transcoder));
7538 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7539 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7540 tmp = I915_READ(VBLANK(cpu_transcoder));
7541 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7542 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7543 tmp = I915_READ(VSYNC(cpu_transcoder));
7544 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7545 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7546
7547 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7548 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7549 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7550 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7551 }
7552
7553 tmp = I915_READ(PIPESRC(crtc->pipe));
7554 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7555 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7556
7557 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7558 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7559 }
7560
7561 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7562 struct intel_crtc_state *pipe_config)
7563 {
7564 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7565 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7566 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7567 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7568
7569 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7570 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7571 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7572 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7573
7574 mode->flags = pipe_config->base.adjusted_mode.flags;
7575
7576 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7577 mode->flags |= pipe_config->base.adjusted_mode.flags;
7578 }
7579
7580 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7581 {
7582 struct drm_device *dev = intel_crtc->base.dev;
7583 struct drm_i915_private *dev_priv = dev->dev_private;
7584 uint32_t pipeconf;
7585
7586 pipeconf = 0;
7587
7588 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7589 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7590 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7591
7592 if (intel_crtc->config->double_wide)
7593 pipeconf |= PIPECONF_DOUBLE_WIDE;
7594
7595 /* only g4x and later have fancy bpc/dither controls */
7596 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7597 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7598 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7599 pipeconf |= PIPECONF_DITHER_EN |
7600 PIPECONF_DITHER_TYPE_SP;
7601
7602 switch (intel_crtc->config->pipe_bpp) {
7603 case 18:
7604 pipeconf |= PIPECONF_6BPC;
7605 break;
7606 case 24:
7607 pipeconf |= PIPECONF_8BPC;
7608 break;
7609 case 30:
7610 pipeconf |= PIPECONF_10BPC;
7611 break;
7612 default:
7613 /* Case prevented by intel_choose_pipe_bpp_dither. */
7614 BUG();
7615 }
7616 }
7617
7618 if (HAS_PIPE_CXSR(dev)) {
7619 if (intel_crtc->lowfreq_avail) {
7620 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7621 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7622 } else {
7623 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7624 }
7625 }
7626
7627 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7628 if (INTEL_INFO(dev)->gen < 4 ||
7629 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7630 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7631 else
7632 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7633 } else
7634 pipeconf |= PIPECONF_PROGRESSIVE;
7635
7636 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7637 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7638
7639 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7640 POSTING_READ(PIPECONF(intel_crtc->pipe));
7641 }
7642
7643 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7644 struct intel_crtc_state *crtc_state)
7645 {
7646 struct drm_device *dev = crtc->base.dev;
7647 struct drm_i915_private *dev_priv = dev->dev_private;
7648 int refclk, num_connectors = 0;
7649 intel_clock_t clock, reduced_clock;
7650 bool ok, has_reduced_clock = false;
7651 bool is_lvds = false, is_dsi = false;
7652 struct intel_encoder *encoder;
7653 const intel_limit_t *limit;
7654 struct drm_atomic_state *state = crtc_state->base.state;
7655 struct drm_connector *connector;
7656 struct drm_connector_state *connector_state;
7657 int i;
7658
7659 memset(&crtc_state->dpll_hw_state, 0,
7660 sizeof(crtc_state->dpll_hw_state));
7661
7662 for_each_connector_in_state(state, connector, connector_state, i) {
7663 if (connector_state->crtc != &crtc->base)
7664 continue;
7665
7666 encoder = to_intel_encoder(connector_state->best_encoder);
7667
7668 switch (encoder->type) {
7669 case INTEL_OUTPUT_LVDS:
7670 is_lvds = true;
7671 break;
7672 case INTEL_OUTPUT_DSI:
7673 is_dsi = true;
7674 break;
7675 default:
7676 break;
7677 }
7678
7679 num_connectors++;
7680 }
7681
7682 if (is_dsi)
7683 return 0;
7684
7685 if (!crtc_state->clock_set) {
7686 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7687
7688 /*
7689 * Returns a set of divisors for the desired target clock with
7690 * the given refclk, or FALSE. The returned values represent
7691 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7692 * 2) / p1 / p2.
7693 */
7694 limit = intel_limit(crtc_state, refclk);
7695 ok = dev_priv->display.find_dpll(limit, crtc_state,
7696 crtc_state->port_clock,
7697 refclk, NULL, &clock);
7698 if (!ok) {
7699 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7700 return -EINVAL;
7701 }
7702
7703 if (is_lvds && dev_priv->lvds_downclock_avail) {
7704 /*
7705 * Ensure we match the reduced clock's P to the target
7706 * clock. If the clocks don't match, we can't switch
7707 * the display clock by using the FP0/FP1. In such case
7708 * we will disable the LVDS downclock feature.
7709 */
7710 has_reduced_clock =
7711 dev_priv->display.find_dpll(limit, crtc_state,
7712 dev_priv->lvds_downclock,
7713 refclk, &clock,
7714 &reduced_clock);
7715 }
7716 /* Compat-code for transition, will disappear. */
7717 crtc_state->dpll.n = clock.n;
7718 crtc_state->dpll.m1 = clock.m1;
7719 crtc_state->dpll.m2 = clock.m2;
7720 crtc_state->dpll.p1 = clock.p1;
7721 crtc_state->dpll.p2 = clock.p2;
7722 }
7723
7724 if (IS_GEN2(dev)) {
7725 i8xx_update_pll(crtc, crtc_state,
7726 has_reduced_clock ? &reduced_clock : NULL,
7727 num_connectors);
7728 } else if (IS_CHERRYVIEW(dev)) {
7729 chv_update_pll(crtc, crtc_state);
7730 } else if (IS_VALLEYVIEW(dev)) {
7731 vlv_update_pll(crtc, crtc_state);
7732 } else {
7733 i9xx_update_pll(crtc, crtc_state,
7734 has_reduced_clock ? &reduced_clock : NULL,
7735 num_connectors);
7736 }
7737
7738 return 0;
7739 }
7740
7741 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7742 struct intel_crtc_state *pipe_config)
7743 {
7744 struct drm_device *dev = crtc->base.dev;
7745 struct drm_i915_private *dev_priv = dev->dev_private;
7746 uint32_t tmp;
7747
7748 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7749 return;
7750
7751 tmp = I915_READ(PFIT_CONTROL);
7752 if (!(tmp & PFIT_ENABLE))
7753 return;
7754
7755 /* Check whether the pfit is attached to our pipe. */
7756 if (INTEL_INFO(dev)->gen < 4) {
7757 if (crtc->pipe != PIPE_B)
7758 return;
7759 } else {
7760 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7761 return;
7762 }
7763
7764 pipe_config->gmch_pfit.control = tmp;
7765 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7766 if (INTEL_INFO(dev)->gen < 5)
7767 pipe_config->gmch_pfit.lvds_border_bits =
7768 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7769 }
7770
7771 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7772 struct intel_crtc_state *pipe_config)
7773 {
7774 struct drm_device *dev = crtc->base.dev;
7775 struct drm_i915_private *dev_priv = dev->dev_private;
7776 int pipe = pipe_config->cpu_transcoder;
7777 intel_clock_t clock;
7778 u32 mdiv;
7779 int refclk = 100000;
7780
7781 /* In case of MIPI DPLL will not even be used */
7782 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7783 return;
7784
7785 mutex_lock(&dev_priv->dpio_lock);
7786 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7787 mutex_unlock(&dev_priv->dpio_lock);
7788
7789 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7790 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7791 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7792 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7793 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7794
7795 vlv_clock(refclk, &clock);
7796
7797 /* clock.dot is the fast clock */
7798 pipe_config->port_clock = clock.dot / 5;
7799 }
7800
7801 static void
7802 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7803 struct intel_initial_plane_config *plane_config)
7804 {
7805 struct drm_device *dev = crtc->base.dev;
7806 struct drm_i915_private *dev_priv = dev->dev_private;
7807 u32 val, base, offset;
7808 int pipe = crtc->pipe, plane = crtc->plane;
7809 int fourcc, pixel_format;
7810 unsigned int aligned_height;
7811 struct drm_framebuffer *fb;
7812 struct intel_framebuffer *intel_fb;
7813
7814 val = I915_READ(DSPCNTR(plane));
7815 if (!(val & DISPLAY_PLANE_ENABLE))
7816 return;
7817
7818 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7819 if (!intel_fb) {
7820 DRM_DEBUG_KMS("failed to alloc fb\n");
7821 return;
7822 }
7823
7824 fb = &intel_fb->base;
7825
7826 if (INTEL_INFO(dev)->gen >= 4) {
7827 if (val & DISPPLANE_TILED) {
7828 plane_config->tiling = I915_TILING_X;
7829 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7830 }
7831 }
7832
7833 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7834 fourcc = i9xx_format_to_fourcc(pixel_format);
7835 fb->pixel_format = fourcc;
7836 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7837
7838 if (INTEL_INFO(dev)->gen >= 4) {
7839 if (plane_config->tiling)
7840 offset = I915_READ(DSPTILEOFF(plane));
7841 else
7842 offset = I915_READ(DSPLINOFF(plane));
7843 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7844 } else {
7845 base = I915_READ(DSPADDR(plane));
7846 }
7847 plane_config->base = base;
7848
7849 val = I915_READ(PIPESRC(pipe));
7850 fb->width = ((val >> 16) & 0xfff) + 1;
7851 fb->height = ((val >> 0) & 0xfff) + 1;
7852
7853 val = I915_READ(DSPSTRIDE(pipe));
7854 fb->pitches[0] = val & 0xffffffc0;
7855
7856 aligned_height = intel_fb_align_height(dev, fb->height,
7857 fb->pixel_format,
7858 fb->modifier[0]);
7859
7860 plane_config->size = fb->pitches[0] * aligned_height;
7861
7862 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7863 pipe_name(pipe), plane, fb->width, fb->height,
7864 fb->bits_per_pixel, base, fb->pitches[0],
7865 plane_config->size);
7866
7867 plane_config->fb = intel_fb;
7868 }
7869
7870 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7871 struct intel_crtc_state *pipe_config)
7872 {
7873 struct drm_device *dev = crtc->base.dev;
7874 struct drm_i915_private *dev_priv = dev->dev_private;
7875 int pipe = pipe_config->cpu_transcoder;
7876 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7877 intel_clock_t clock;
7878 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7879 int refclk = 100000;
7880
7881 mutex_lock(&dev_priv->dpio_lock);
7882 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7883 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7884 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7885 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7886 mutex_unlock(&dev_priv->dpio_lock);
7887
7888 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7889 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7890 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7891 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7892 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7893
7894 chv_clock(refclk, &clock);
7895
7896 /* clock.dot is the fast clock */
7897 pipe_config->port_clock = clock.dot / 5;
7898 }
7899
7900 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7901 struct intel_crtc_state *pipe_config)
7902 {
7903 struct drm_device *dev = crtc->base.dev;
7904 struct drm_i915_private *dev_priv = dev->dev_private;
7905 uint32_t tmp;
7906
7907 if (!intel_display_power_is_enabled(dev_priv,
7908 POWER_DOMAIN_PIPE(crtc->pipe)))
7909 return false;
7910
7911 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7912 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7913
7914 tmp = I915_READ(PIPECONF(crtc->pipe));
7915 if (!(tmp & PIPECONF_ENABLE))
7916 return false;
7917
7918 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7919 switch (tmp & PIPECONF_BPC_MASK) {
7920 case PIPECONF_6BPC:
7921 pipe_config->pipe_bpp = 18;
7922 break;
7923 case PIPECONF_8BPC:
7924 pipe_config->pipe_bpp = 24;
7925 break;
7926 case PIPECONF_10BPC:
7927 pipe_config->pipe_bpp = 30;
7928 break;
7929 default:
7930 break;
7931 }
7932 }
7933
7934 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7935 pipe_config->limited_color_range = true;
7936
7937 if (INTEL_INFO(dev)->gen < 4)
7938 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7939
7940 intel_get_pipe_timings(crtc, pipe_config);
7941
7942 i9xx_get_pfit_config(crtc, pipe_config);
7943
7944 if (INTEL_INFO(dev)->gen >= 4) {
7945 tmp = I915_READ(DPLL_MD(crtc->pipe));
7946 pipe_config->pixel_multiplier =
7947 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7948 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7949 pipe_config->dpll_hw_state.dpll_md = tmp;
7950 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7951 tmp = I915_READ(DPLL(crtc->pipe));
7952 pipe_config->pixel_multiplier =
7953 ((tmp & SDVO_MULTIPLIER_MASK)
7954 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7955 } else {
7956 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7957 * port and will be fixed up in the encoder->get_config
7958 * function. */
7959 pipe_config->pixel_multiplier = 1;
7960 }
7961 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7962 if (!IS_VALLEYVIEW(dev)) {
7963 /*
7964 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7965 * on 830. Filter it out here so that we don't
7966 * report errors due to that.
7967 */
7968 if (IS_I830(dev))
7969 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7970
7971 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7972 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7973 } else {
7974 /* Mask out read-only status bits. */
7975 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7976 DPLL_PORTC_READY_MASK |
7977 DPLL_PORTB_READY_MASK);
7978 }
7979
7980 if (IS_CHERRYVIEW(dev))
7981 chv_crtc_clock_get(crtc, pipe_config);
7982 else if (IS_VALLEYVIEW(dev))
7983 vlv_crtc_clock_get(crtc, pipe_config);
7984 else
7985 i9xx_crtc_clock_get(crtc, pipe_config);
7986
7987 return true;
7988 }
7989
7990 static void ironlake_init_pch_refclk(struct drm_device *dev)
7991 {
7992 struct drm_i915_private *dev_priv = dev->dev_private;
7993 struct intel_encoder *encoder;
7994 u32 val, final;
7995 bool has_lvds = false;
7996 bool has_cpu_edp = false;
7997 bool has_panel = false;
7998 bool has_ck505 = false;
7999 bool can_ssc = false;
8000
8001 /* We need to take the global config into account */
8002 for_each_intel_encoder(dev, encoder) {
8003 switch (encoder->type) {
8004 case INTEL_OUTPUT_LVDS:
8005 has_panel = true;
8006 has_lvds = true;
8007 break;
8008 case INTEL_OUTPUT_EDP:
8009 has_panel = true;
8010 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8011 has_cpu_edp = true;
8012 break;
8013 default:
8014 break;
8015 }
8016 }
8017
8018 if (HAS_PCH_IBX(dev)) {
8019 has_ck505 = dev_priv->vbt.display_clock_mode;
8020 can_ssc = has_ck505;
8021 } else {
8022 has_ck505 = false;
8023 can_ssc = true;
8024 }
8025
8026 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8027 has_panel, has_lvds, has_ck505);
8028
8029 /* Ironlake: try to setup display ref clock before DPLL
8030 * enabling. This is only under driver's control after
8031 * PCH B stepping, previous chipset stepping should be
8032 * ignoring this setting.
8033 */
8034 val = I915_READ(PCH_DREF_CONTROL);
8035
8036 /* As we must carefully and slowly disable/enable each source in turn,
8037 * compute the final state we want first and check if we need to
8038 * make any changes at all.
8039 */
8040 final = val;
8041 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8042 if (has_ck505)
8043 final |= DREF_NONSPREAD_CK505_ENABLE;
8044 else
8045 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8046
8047 final &= ~DREF_SSC_SOURCE_MASK;
8048 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8049 final &= ~DREF_SSC1_ENABLE;
8050
8051 if (has_panel) {
8052 final |= DREF_SSC_SOURCE_ENABLE;
8053
8054 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8055 final |= DREF_SSC1_ENABLE;
8056
8057 if (has_cpu_edp) {
8058 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8059 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8060 else
8061 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8062 } else
8063 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8064 } else {
8065 final |= DREF_SSC_SOURCE_DISABLE;
8066 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8067 }
8068
8069 if (final == val)
8070 return;
8071
8072 /* Always enable nonspread source */
8073 val &= ~DREF_NONSPREAD_SOURCE_MASK;
8074
8075 if (has_ck505)
8076 val |= DREF_NONSPREAD_CK505_ENABLE;
8077 else
8078 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8079
8080 if (has_panel) {
8081 val &= ~DREF_SSC_SOURCE_MASK;
8082 val |= DREF_SSC_SOURCE_ENABLE;
8083
8084 /* SSC must be turned on before enabling the CPU output */
8085 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8086 DRM_DEBUG_KMS("Using SSC on panel\n");
8087 val |= DREF_SSC1_ENABLE;
8088 } else
8089 val &= ~DREF_SSC1_ENABLE;
8090
8091 /* Get SSC going before enabling the outputs */
8092 I915_WRITE(PCH_DREF_CONTROL, val);
8093 POSTING_READ(PCH_DREF_CONTROL);
8094 udelay(200);
8095
8096 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8097
8098 /* Enable CPU source on CPU attached eDP */
8099 if (has_cpu_edp) {
8100 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8101 DRM_DEBUG_KMS("Using SSC on eDP\n");
8102 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8103 } else
8104 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8105 } else
8106 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8107
8108 I915_WRITE(PCH_DREF_CONTROL, val);
8109 POSTING_READ(PCH_DREF_CONTROL);
8110 udelay(200);
8111 } else {
8112 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8113
8114 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8115
8116 /* Turn off CPU output */
8117 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8118
8119 I915_WRITE(PCH_DREF_CONTROL, val);
8120 POSTING_READ(PCH_DREF_CONTROL);
8121 udelay(200);
8122
8123 /* Turn off the SSC source */
8124 val &= ~DREF_SSC_SOURCE_MASK;
8125 val |= DREF_SSC_SOURCE_DISABLE;
8126
8127 /* Turn off SSC1 */
8128 val &= ~DREF_SSC1_ENABLE;
8129
8130 I915_WRITE(PCH_DREF_CONTROL, val);
8131 POSTING_READ(PCH_DREF_CONTROL);
8132 udelay(200);
8133 }
8134
8135 BUG_ON(val != final);
8136 }
8137
8138 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8139 {
8140 uint32_t tmp;
8141
8142 tmp = I915_READ(SOUTH_CHICKEN2);
8143 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8144 I915_WRITE(SOUTH_CHICKEN2, tmp);
8145
8146 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8147 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8148 DRM_ERROR("FDI mPHY reset assert timeout\n");
8149
8150 tmp = I915_READ(SOUTH_CHICKEN2);
8151 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8152 I915_WRITE(SOUTH_CHICKEN2, tmp);
8153
8154 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8155 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8156 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8157 }
8158
8159 /* WaMPhyProgramming:hsw */
8160 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8161 {
8162 uint32_t tmp;
8163
8164 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8165 tmp &= ~(0xFF << 24);
8166 tmp |= (0x12 << 24);
8167 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8168
8169 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8170 tmp |= (1 << 11);
8171 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8172
8173 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8174 tmp |= (1 << 11);
8175 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8176
8177 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8178 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8179 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8180
8181 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8182 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8183 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8184
8185 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8186 tmp &= ~(7 << 13);
8187 tmp |= (5 << 13);
8188 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8189
8190 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8191 tmp &= ~(7 << 13);
8192 tmp |= (5 << 13);
8193 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8194
8195 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8196 tmp &= ~0xFF;
8197 tmp |= 0x1C;
8198 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8199
8200 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8201 tmp &= ~0xFF;
8202 tmp |= 0x1C;
8203 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8204
8205 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8206 tmp &= ~(0xFF << 16);
8207 tmp |= (0x1C << 16);
8208 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8209
8210 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8211 tmp &= ~(0xFF << 16);
8212 tmp |= (0x1C << 16);
8213 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8214
8215 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8216 tmp |= (1 << 27);
8217 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8218
8219 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8220 tmp |= (1 << 27);
8221 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8222
8223 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8224 tmp &= ~(0xF << 28);
8225 tmp |= (4 << 28);
8226 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8227
8228 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8229 tmp &= ~(0xF << 28);
8230 tmp |= (4 << 28);
8231 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8232 }
8233
8234 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8235 * Programming" based on the parameters passed:
8236 * - Sequence to enable CLKOUT_DP
8237 * - Sequence to enable CLKOUT_DP without spread
8238 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8239 */
8240 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8241 bool with_fdi)
8242 {
8243 struct drm_i915_private *dev_priv = dev->dev_private;
8244 uint32_t reg, tmp;
8245
8246 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8247 with_spread = true;
8248 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8249 with_fdi, "LP PCH doesn't have FDI\n"))
8250 with_fdi = false;
8251
8252 mutex_lock(&dev_priv->dpio_lock);
8253
8254 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8255 tmp &= ~SBI_SSCCTL_DISABLE;
8256 tmp |= SBI_SSCCTL_PATHALT;
8257 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8258
8259 udelay(24);
8260
8261 if (with_spread) {
8262 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8263 tmp &= ~SBI_SSCCTL_PATHALT;
8264 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8265
8266 if (with_fdi) {
8267 lpt_reset_fdi_mphy(dev_priv);
8268 lpt_program_fdi_mphy(dev_priv);
8269 }
8270 }
8271
8272 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8273 SBI_GEN0 : SBI_DBUFF0;
8274 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8275 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8276 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8277
8278 mutex_unlock(&dev_priv->dpio_lock);
8279 }
8280
8281 /* Sequence to disable CLKOUT_DP */
8282 static void lpt_disable_clkout_dp(struct drm_device *dev)
8283 {
8284 struct drm_i915_private *dev_priv = dev->dev_private;
8285 uint32_t reg, tmp;
8286
8287 mutex_lock(&dev_priv->dpio_lock);
8288
8289 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8290 SBI_GEN0 : SBI_DBUFF0;
8291 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8292 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8293 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8294
8295 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8296 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8297 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8298 tmp |= SBI_SSCCTL_PATHALT;
8299 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8300 udelay(32);
8301 }
8302 tmp |= SBI_SSCCTL_DISABLE;
8303 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8304 }
8305
8306 mutex_unlock(&dev_priv->dpio_lock);
8307 }
8308
8309 static void lpt_init_pch_refclk(struct drm_device *dev)
8310 {
8311 struct intel_encoder *encoder;
8312 bool has_vga = false;
8313
8314 for_each_intel_encoder(dev, encoder) {
8315 switch (encoder->type) {
8316 case INTEL_OUTPUT_ANALOG:
8317 has_vga = true;
8318 break;
8319 default:
8320 break;
8321 }
8322 }
8323
8324 if (has_vga)
8325 lpt_enable_clkout_dp(dev, true, true);
8326 else
8327 lpt_disable_clkout_dp(dev);
8328 }
8329
8330 /*
8331 * Initialize reference clocks when the driver loads
8332 */
8333 void intel_init_pch_refclk(struct drm_device *dev)
8334 {
8335 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8336 ironlake_init_pch_refclk(dev);
8337 else if (HAS_PCH_LPT(dev))
8338 lpt_init_pch_refclk(dev);
8339 }
8340
8341 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8342 {
8343 struct drm_device *dev = crtc_state->base.crtc->dev;
8344 struct drm_i915_private *dev_priv = dev->dev_private;
8345 struct drm_atomic_state *state = crtc_state->base.state;
8346 struct drm_connector *connector;
8347 struct drm_connector_state *connector_state;
8348 struct intel_encoder *encoder;
8349 int num_connectors = 0, i;
8350 bool is_lvds = false;
8351
8352 for_each_connector_in_state(state, connector, connector_state, i) {
8353 if (connector_state->crtc != crtc_state->base.crtc)
8354 continue;
8355
8356 encoder = to_intel_encoder(connector_state->best_encoder);
8357
8358 switch (encoder->type) {
8359 case INTEL_OUTPUT_LVDS:
8360 is_lvds = true;
8361 break;
8362 default:
8363 break;
8364 }
8365 num_connectors++;
8366 }
8367
8368 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8369 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8370 dev_priv->vbt.lvds_ssc_freq);
8371 return dev_priv->vbt.lvds_ssc_freq;
8372 }
8373
8374 return 120000;
8375 }
8376
8377 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8378 {
8379 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8380 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8381 int pipe = intel_crtc->pipe;
8382 uint32_t val;
8383
8384 val = 0;
8385
8386 switch (intel_crtc->config->pipe_bpp) {
8387 case 18:
8388 val |= PIPECONF_6BPC;
8389 break;
8390 case 24:
8391 val |= PIPECONF_8BPC;
8392 break;
8393 case 30:
8394 val |= PIPECONF_10BPC;
8395 break;
8396 case 36:
8397 val |= PIPECONF_12BPC;
8398 break;
8399 default:
8400 /* Case prevented by intel_choose_pipe_bpp_dither. */
8401 BUG();
8402 }
8403
8404 if (intel_crtc->config->dither)
8405 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8406
8407 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8408 val |= PIPECONF_INTERLACED_ILK;
8409 else
8410 val |= PIPECONF_PROGRESSIVE;
8411
8412 if (intel_crtc->config->limited_color_range)
8413 val |= PIPECONF_COLOR_RANGE_SELECT;
8414
8415 I915_WRITE(PIPECONF(pipe), val);
8416 POSTING_READ(PIPECONF(pipe));
8417 }
8418
8419 /*
8420 * Set up the pipe CSC unit.
8421 *
8422 * Currently only full range RGB to limited range RGB conversion
8423 * is supported, but eventually this should handle various
8424 * RGB<->YCbCr scenarios as well.
8425 */
8426 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8427 {
8428 struct drm_device *dev = crtc->dev;
8429 struct drm_i915_private *dev_priv = dev->dev_private;
8430 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8431 int pipe = intel_crtc->pipe;
8432 uint16_t coeff = 0x7800; /* 1.0 */
8433
8434 /*
8435 * TODO: Check what kind of values actually come out of the pipe
8436 * with these coeff/postoff values and adjust to get the best
8437 * accuracy. Perhaps we even need to take the bpc value into
8438 * consideration.
8439 */
8440
8441 if (intel_crtc->config->limited_color_range)
8442 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8443
8444 /*
8445 * GY/GU and RY/RU should be the other way around according
8446 * to BSpec, but reality doesn't agree. Just set them up in
8447 * a way that results in the correct picture.
8448 */
8449 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8450 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8451
8452 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8453 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8454
8455 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8456 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8457
8458 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8459 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8460 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8461
8462 if (INTEL_INFO(dev)->gen > 6) {
8463 uint16_t postoff = 0;
8464
8465 if (intel_crtc->config->limited_color_range)
8466 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8467
8468 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8469 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8470 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8471
8472 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8473 } else {
8474 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8475
8476 if (intel_crtc->config->limited_color_range)
8477 mode |= CSC_BLACK_SCREEN_OFFSET;
8478
8479 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8480 }
8481 }
8482
8483 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8484 {
8485 struct drm_device *dev = crtc->dev;
8486 struct drm_i915_private *dev_priv = dev->dev_private;
8487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8488 enum pipe pipe = intel_crtc->pipe;
8489 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8490 uint32_t val;
8491
8492 val = 0;
8493
8494 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8495 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8496
8497 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8498 val |= PIPECONF_INTERLACED_ILK;
8499 else
8500 val |= PIPECONF_PROGRESSIVE;
8501
8502 I915_WRITE(PIPECONF(cpu_transcoder), val);
8503 POSTING_READ(PIPECONF(cpu_transcoder));
8504
8505 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8506 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8507
8508 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8509 val = 0;
8510
8511 switch (intel_crtc->config->pipe_bpp) {
8512 case 18:
8513 val |= PIPEMISC_DITHER_6_BPC;
8514 break;
8515 case 24:
8516 val |= PIPEMISC_DITHER_8_BPC;
8517 break;
8518 case 30:
8519 val |= PIPEMISC_DITHER_10_BPC;
8520 break;
8521 case 36:
8522 val |= PIPEMISC_DITHER_12_BPC;
8523 break;
8524 default:
8525 /* Case prevented by pipe_config_set_bpp. */
8526 BUG();
8527 }
8528
8529 if (intel_crtc->config->dither)
8530 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8531
8532 I915_WRITE(PIPEMISC(pipe), val);
8533 }
8534 }
8535
8536 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8537 struct intel_crtc_state *crtc_state,
8538 intel_clock_t *clock,
8539 bool *has_reduced_clock,
8540 intel_clock_t *reduced_clock)
8541 {
8542 struct drm_device *dev = crtc->dev;
8543 struct drm_i915_private *dev_priv = dev->dev_private;
8544 int refclk;
8545 const intel_limit_t *limit;
8546 bool ret, is_lvds = false;
8547
8548 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8549
8550 refclk = ironlake_get_refclk(crtc_state);
8551
8552 /*
8553 * Returns a set of divisors for the desired target clock with the given
8554 * refclk, or FALSE. The returned values represent the clock equation:
8555 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8556 */
8557 limit = intel_limit(crtc_state, refclk);
8558 ret = dev_priv->display.find_dpll(limit, crtc_state,
8559 crtc_state->port_clock,
8560 refclk, NULL, clock);
8561 if (!ret)
8562 return false;
8563
8564 if (is_lvds && dev_priv->lvds_downclock_avail) {
8565 /*
8566 * Ensure we match the reduced clock's P to the target clock.
8567 * If the clocks don't match, we can't switch the display clock
8568 * by using the FP0/FP1. In such case we will disable the LVDS
8569 * downclock feature.
8570 */
8571 *has_reduced_clock =
8572 dev_priv->display.find_dpll(limit, crtc_state,
8573 dev_priv->lvds_downclock,
8574 refclk, clock,
8575 reduced_clock);
8576 }
8577
8578 return true;
8579 }
8580
8581 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8582 {
8583 /*
8584 * Account for spread spectrum to avoid
8585 * oversubscribing the link. Max center spread
8586 * is 2.5%; use 5% for safety's sake.
8587 */
8588 u32 bps = target_clock * bpp * 21 / 20;
8589 return DIV_ROUND_UP(bps, link_bw * 8);
8590 }
8591
8592 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8593 {
8594 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8595 }
8596
8597 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8598 struct intel_crtc_state *crtc_state,
8599 u32 *fp,
8600 intel_clock_t *reduced_clock, u32 *fp2)
8601 {
8602 struct drm_crtc *crtc = &intel_crtc->base;
8603 struct drm_device *dev = crtc->dev;
8604 struct drm_i915_private *dev_priv = dev->dev_private;
8605 struct drm_atomic_state *state = crtc_state->base.state;
8606 struct drm_connector *connector;
8607 struct drm_connector_state *connector_state;
8608 struct intel_encoder *encoder;
8609 uint32_t dpll;
8610 int factor, num_connectors = 0, i;
8611 bool is_lvds = false, is_sdvo = false;
8612
8613 for_each_connector_in_state(state, connector, connector_state, i) {
8614 if (connector_state->crtc != crtc_state->base.crtc)
8615 continue;
8616
8617 encoder = to_intel_encoder(connector_state->best_encoder);
8618
8619 switch (encoder->type) {
8620 case INTEL_OUTPUT_LVDS:
8621 is_lvds = true;
8622 break;
8623 case INTEL_OUTPUT_SDVO:
8624 case INTEL_OUTPUT_HDMI:
8625 is_sdvo = true;
8626 break;
8627 default:
8628 break;
8629 }
8630
8631 num_connectors++;
8632 }
8633
8634 /* Enable autotuning of the PLL clock (if permissible) */
8635 factor = 21;
8636 if (is_lvds) {
8637 if ((intel_panel_use_ssc(dev_priv) &&
8638 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8639 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8640 factor = 25;
8641 } else if (crtc_state->sdvo_tv_clock)
8642 factor = 20;
8643
8644 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8645 *fp |= FP_CB_TUNE;
8646
8647 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8648 *fp2 |= FP_CB_TUNE;
8649
8650 dpll = 0;
8651
8652 if (is_lvds)
8653 dpll |= DPLLB_MODE_LVDS;
8654 else
8655 dpll |= DPLLB_MODE_DAC_SERIAL;
8656
8657 dpll |= (crtc_state->pixel_multiplier - 1)
8658 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8659
8660 if (is_sdvo)
8661 dpll |= DPLL_SDVO_HIGH_SPEED;
8662 if (crtc_state->has_dp_encoder)
8663 dpll |= DPLL_SDVO_HIGH_SPEED;
8664
8665 /* compute bitmask from p1 value */
8666 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8667 /* also FPA1 */
8668 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8669
8670 switch (crtc_state->dpll.p2) {
8671 case 5:
8672 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8673 break;
8674 case 7:
8675 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8676 break;
8677 case 10:
8678 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8679 break;
8680 case 14:
8681 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8682 break;
8683 }
8684
8685 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8686 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8687 else
8688 dpll |= PLL_REF_INPUT_DREFCLK;
8689
8690 return dpll | DPLL_VCO_ENABLE;
8691 }
8692
8693 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8694 struct intel_crtc_state *crtc_state)
8695 {
8696 struct drm_device *dev = crtc->base.dev;
8697 intel_clock_t clock, reduced_clock;
8698 u32 dpll = 0, fp = 0, fp2 = 0;
8699 bool ok, has_reduced_clock = false;
8700 bool is_lvds = false;
8701 struct intel_shared_dpll *pll;
8702
8703 memset(&crtc_state->dpll_hw_state, 0,
8704 sizeof(crtc_state->dpll_hw_state));
8705
8706 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8707
8708 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8709 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8710
8711 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8712 &has_reduced_clock, &reduced_clock);
8713 if (!ok && !crtc_state->clock_set) {
8714 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8715 return -EINVAL;
8716 }
8717 /* Compat-code for transition, will disappear. */
8718 if (!crtc_state->clock_set) {
8719 crtc_state->dpll.n = clock.n;
8720 crtc_state->dpll.m1 = clock.m1;
8721 crtc_state->dpll.m2 = clock.m2;
8722 crtc_state->dpll.p1 = clock.p1;
8723 crtc_state->dpll.p2 = clock.p2;
8724 }
8725
8726 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8727 if (crtc_state->has_pch_encoder) {
8728 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8729 if (has_reduced_clock)
8730 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8731
8732 dpll = ironlake_compute_dpll(crtc, crtc_state,
8733 &fp, &reduced_clock,
8734 has_reduced_clock ? &fp2 : NULL);
8735
8736 crtc_state->dpll_hw_state.dpll = dpll;
8737 crtc_state->dpll_hw_state.fp0 = fp;
8738 if (has_reduced_clock)
8739 crtc_state->dpll_hw_state.fp1 = fp2;
8740 else
8741 crtc_state->dpll_hw_state.fp1 = fp;
8742
8743 pll = intel_get_shared_dpll(crtc, crtc_state);
8744 if (pll == NULL) {
8745 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8746 pipe_name(crtc->pipe));
8747 return -EINVAL;
8748 }
8749 }
8750
8751 if (is_lvds && has_reduced_clock)
8752 crtc->lowfreq_avail = true;
8753 else
8754 crtc->lowfreq_avail = false;
8755
8756 return 0;
8757 }
8758
8759 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8760 struct intel_link_m_n *m_n)
8761 {
8762 struct drm_device *dev = crtc->base.dev;
8763 struct drm_i915_private *dev_priv = dev->dev_private;
8764 enum pipe pipe = crtc->pipe;
8765
8766 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8767 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8768 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8769 & ~TU_SIZE_MASK;
8770 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8771 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8772 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8773 }
8774
8775 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8776 enum transcoder transcoder,
8777 struct intel_link_m_n *m_n,
8778 struct intel_link_m_n *m2_n2)
8779 {
8780 struct drm_device *dev = crtc->base.dev;
8781 struct drm_i915_private *dev_priv = dev->dev_private;
8782 enum pipe pipe = crtc->pipe;
8783
8784 if (INTEL_INFO(dev)->gen >= 5) {
8785 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8786 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8787 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8788 & ~TU_SIZE_MASK;
8789 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8790 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8791 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8792 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8793 * gen < 8) and if DRRS is supported (to make sure the
8794 * registers are not unnecessarily read).
8795 */
8796 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8797 crtc->config->has_drrs) {
8798 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8799 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8800 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8801 & ~TU_SIZE_MASK;
8802 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8803 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8804 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8805 }
8806 } else {
8807 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8808 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8809 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8810 & ~TU_SIZE_MASK;
8811 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8812 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8813 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8814 }
8815 }
8816
8817 void intel_dp_get_m_n(struct intel_crtc *crtc,
8818 struct intel_crtc_state *pipe_config)
8819 {
8820 if (pipe_config->has_pch_encoder)
8821 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8822 else
8823 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8824 &pipe_config->dp_m_n,
8825 &pipe_config->dp_m2_n2);
8826 }
8827
8828 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8829 struct intel_crtc_state *pipe_config)
8830 {
8831 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8832 &pipe_config->fdi_m_n, NULL);
8833 }
8834
8835 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8836 struct intel_crtc_state *pipe_config)
8837 {
8838 struct drm_device *dev = crtc->base.dev;
8839 struct drm_i915_private *dev_priv = dev->dev_private;
8840 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8841 uint32_t ps_ctrl = 0;
8842 int id = -1;
8843 int i;
8844
8845 /* find scaler attached to this pipe */
8846 for (i = 0; i < crtc->num_scalers; i++) {
8847 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8848 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8849 id = i;
8850 pipe_config->pch_pfit.enabled = true;
8851 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8852 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8853 break;
8854 }
8855 }
8856
8857 scaler_state->scaler_id = id;
8858 if (id >= 0) {
8859 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8860 } else {
8861 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8862 }
8863 }
8864
8865 static void
8866 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8867 struct intel_initial_plane_config *plane_config)
8868 {
8869 struct drm_device *dev = crtc->base.dev;
8870 struct drm_i915_private *dev_priv = dev->dev_private;
8871 u32 val, base, offset, stride_mult, tiling;
8872 int pipe = crtc->pipe;
8873 int fourcc, pixel_format;
8874 unsigned int aligned_height;
8875 struct drm_framebuffer *fb;
8876 struct intel_framebuffer *intel_fb;
8877
8878 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8879 if (!intel_fb) {
8880 DRM_DEBUG_KMS("failed to alloc fb\n");
8881 return;
8882 }
8883
8884 fb = &intel_fb->base;
8885
8886 val = I915_READ(PLANE_CTL(pipe, 0));
8887 if (!(val & PLANE_CTL_ENABLE))
8888 goto error;
8889
8890 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8891 fourcc = skl_format_to_fourcc(pixel_format,
8892 val & PLANE_CTL_ORDER_RGBX,
8893 val & PLANE_CTL_ALPHA_MASK);
8894 fb->pixel_format = fourcc;
8895 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8896
8897 tiling = val & PLANE_CTL_TILED_MASK;
8898 switch (tiling) {
8899 case PLANE_CTL_TILED_LINEAR:
8900 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8901 break;
8902 case PLANE_CTL_TILED_X:
8903 plane_config->tiling = I915_TILING_X;
8904 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8905 break;
8906 case PLANE_CTL_TILED_Y:
8907 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8908 break;
8909 case PLANE_CTL_TILED_YF:
8910 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8911 break;
8912 default:
8913 MISSING_CASE(tiling);
8914 goto error;
8915 }
8916
8917 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8918 plane_config->base = base;
8919
8920 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8921
8922 val = I915_READ(PLANE_SIZE(pipe, 0));
8923 fb->height = ((val >> 16) & 0xfff) + 1;
8924 fb->width = ((val >> 0) & 0x1fff) + 1;
8925
8926 val = I915_READ(PLANE_STRIDE(pipe, 0));
8927 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8928 fb->pixel_format);
8929 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8930
8931 aligned_height = intel_fb_align_height(dev, fb->height,
8932 fb->pixel_format,
8933 fb->modifier[0]);
8934
8935 plane_config->size = fb->pitches[0] * aligned_height;
8936
8937 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8938 pipe_name(pipe), fb->width, fb->height,
8939 fb->bits_per_pixel, base, fb->pitches[0],
8940 plane_config->size);
8941
8942 plane_config->fb = intel_fb;
8943 return;
8944
8945 error:
8946 kfree(fb);
8947 }
8948
8949 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8950 struct intel_crtc_state *pipe_config)
8951 {
8952 struct drm_device *dev = crtc->base.dev;
8953 struct drm_i915_private *dev_priv = dev->dev_private;
8954 uint32_t tmp;
8955
8956 tmp = I915_READ(PF_CTL(crtc->pipe));
8957
8958 if (tmp & PF_ENABLE) {
8959 pipe_config->pch_pfit.enabled = true;
8960 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8961 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8962
8963 /* We currently do not free assignements of panel fitters on
8964 * ivb/hsw (since we don't use the higher upscaling modes which
8965 * differentiates them) so just WARN about this case for now. */
8966 if (IS_GEN7(dev)) {
8967 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8968 PF_PIPE_SEL_IVB(crtc->pipe));
8969 }
8970 }
8971 }
8972
8973 static void
8974 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8975 struct intel_initial_plane_config *plane_config)
8976 {
8977 struct drm_device *dev = crtc->base.dev;
8978 struct drm_i915_private *dev_priv = dev->dev_private;
8979 u32 val, base, offset;
8980 int pipe = crtc->pipe;
8981 int fourcc, pixel_format;
8982 unsigned int aligned_height;
8983 struct drm_framebuffer *fb;
8984 struct intel_framebuffer *intel_fb;
8985
8986 val = I915_READ(DSPCNTR(pipe));
8987 if (!(val & DISPLAY_PLANE_ENABLE))
8988 return;
8989
8990 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8991 if (!intel_fb) {
8992 DRM_DEBUG_KMS("failed to alloc fb\n");
8993 return;
8994 }
8995
8996 fb = &intel_fb->base;
8997
8998 if (INTEL_INFO(dev)->gen >= 4) {
8999 if (val & DISPPLANE_TILED) {
9000 plane_config->tiling = I915_TILING_X;
9001 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9002 }
9003 }
9004
9005 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9006 fourcc = i9xx_format_to_fourcc(pixel_format);
9007 fb->pixel_format = fourcc;
9008 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9009
9010 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9011 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9012 offset = I915_READ(DSPOFFSET(pipe));
9013 } else {
9014 if (plane_config->tiling)
9015 offset = I915_READ(DSPTILEOFF(pipe));
9016 else
9017 offset = I915_READ(DSPLINOFF(pipe));
9018 }
9019 plane_config->base = base;
9020
9021 val = I915_READ(PIPESRC(pipe));
9022 fb->width = ((val >> 16) & 0xfff) + 1;
9023 fb->height = ((val >> 0) & 0xfff) + 1;
9024
9025 val = I915_READ(DSPSTRIDE(pipe));
9026 fb->pitches[0] = val & 0xffffffc0;
9027
9028 aligned_height = intel_fb_align_height(dev, fb->height,
9029 fb->pixel_format,
9030 fb->modifier[0]);
9031
9032 plane_config->size = fb->pitches[0] * aligned_height;
9033
9034 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9035 pipe_name(pipe), fb->width, fb->height,
9036 fb->bits_per_pixel, base, fb->pitches[0],
9037 plane_config->size);
9038
9039 plane_config->fb = intel_fb;
9040 }
9041
9042 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9043 struct intel_crtc_state *pipe_config)
9044 {
9045 struct drm_device *dev = crtc->base.dev;
9046 struct drm_i915_private *dev_priv = dev->dev_private;
9047 uint32_t tmp;
9048
9049 if (!intel_display_power_is_enabled(dev_priv,
9050 POWER_DOMAIN_PIPE(crtc->pipe)))
9051 return false;
9052
9053 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9054 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9055
9056 tmp = I915_READ(PIPECONF(crtc->pipe));
9057 if (!(tmp & PIPECONF_ENABLE))
9058 return false;
9059
9060 switch (tmp & PIPECONF_BPC_MASK) {
9061 case PIPECONF_6BPC:
9062 pipe_config->pipe_bpp = 18;
9063 break;
9064 case PIPECONF_8BPC:
9065 pipe_config->pipe_bpp = 24;
9066 break;
9067 case PIPECONF_10BPC:
9068 pipe_config->pipe_bpp = 30;
9069 break;
9070 case PIPECONF_12BPC:
9071 pipe_config->pipe_bpp = 36;
9072 break;
9073 default:
9074 break;
9075 }
9076
9077 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9078 pipe_config->limited_color_range = true;
9079
9080 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9081 struct intel_shared_dpll *pll;
9082
9083 pipe_config->has_pch_encoder = true;
9084
9085 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9086 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9087 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9088
9089 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9090
9091 if (HAS_PCH_IBX(dev_priv->dev)) {
9092 pipe_config->shared_dpll =
9093 (enum intel_dpll_id) crtc->pipe;
9094 } else {
9095 tmp = I915_READ(PCH_DPLL_SEL);
9096 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9097 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9098 else
9099 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9100 }
9101
9102 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9103
9104 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9105 &pipe_config->dpll_hw_state));
9106
9107 tmp = pipe_config->dpll_hw_state.dpll;
9108 pipe_config->pixel_multiplier =
9109 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9110 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9111
9112 ironlake_pch_clock_get(crtc, pipe_config);
9113 } else {
9114 pipe_config->pixel_multiplier = 1;
9115 }
9116
9117 intel_get_pipe_timings(crtc, pipe_config);
9118
9119 ironlake_get_pfit_config(crtc, pipe_config);
9120
9121 return true;
9122 }
9123
9124 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9125 {
9126 struct drm_device *dev = dev_priv->dev;
9127 struct intel_crtc *crtc;
9128
9129 for_each_intel_crtc(dev, crtc)
9130 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9131 pipe_name(crtc->pipe));
9132
9133 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9134 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9135 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9136 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9137 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9138 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9139 "CPU PWM1 enabled\n");
9140 if (IS_HASWELL(dev))
9141 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9142 "CPU PWM2 enabled\n");
9143 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9144 "PCH PWM1 enabled\n");
9145 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9146 "Utility pin enabled\n");
9147 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9148
9149 /*
9150 * In theory we can still leave IRQs enabled, as long as only the HPD
9151 * interrupts remain enabled. We used to check for that, but since it's
9152 * gen-specific and since we only disable LCPLL after we fully disable
9153 * the interrupts, the check below should be enough.
9154 */
9155 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9156 }
9157
9158 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9159 {
9160 struct drm_device *dev = dev_priv->dev;
9161
9162 if (IS_HASWELL(dev))
9163 return I915_READ(D_COMP_HSW);
9164 else
9165 return I915_READ(D_COMP_BDW);
9166 }
9167
9168 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9169 {
9170 struct drm_device *dev = dev_priv->dev;
9171
9172 if (IS_HASWELL(dev)) {
9173 mutex_lock(&dev_priv->rps.hw_lock);
9174 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9175 val))
9176 DRM_ERROR("Failed to write to D_COMP\n");
9177 mutex_unlock(&dev_priv->rps.hw_lock);
9178 } else {
9179 I915_WRITE(D_COMP_BDW, val);
9180 POSTING_READ(D_COMP_BDW);
9181 }
9182 }
9183
9184 /*
9185 * This function implements pieces of two sequences from BSpec:
9186 * - Sequence for display software to disable LCPLL
9187 * - Sequence for display software to allow package C8+
9188 * The steps implemented here are just the steps that actually touch the LCPLL
9189 * register. Callers should take care of disabling all the display engine
9190 * functions, doing the mode unset, fixing interrupts, etc.
9191 */
9192 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9193 bool switch_to_fclk, bool allow_power_down)
9194 {
9195 uint32_t val;
9196
9197 assert_can_disable_lcpll(dev_priv);
9198
9199 val = I915_READ(LCPLL_CTL);
9200
9201 if (switch_to_fclk) {
9202 val |= LCPLL_CD_SOURCE_FCLK;
9203 I915_WRITE(LCPLL_CTL, val);
9204
9205 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9206 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9207 DRM_ERROR("Switching to FCLK failed\n");
9208
9209 val = I915_READ(LCPLL_CTL);
9210 }
9211
9212 val |= LCPLL_PLL_DISABLE;
9213 I915_WRITE(LCPLL_CTL, val);
9214 POSTING_READ(LCPLL_CTL);
9215
9216 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9217 DRM_ERROR("LCPLL still locked\n");
9218
9219 val = hsw_read_dcomp(dev_priv);
9220 val |= D_COMP_COMP_DISABLE;
9221 hsw_write_dcomp(dev_priv, val);
9222 ndelay(100);
9223
9224 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9225 1))
9226 DRM_ERROR("D_COMP RCOMP still in progress\n");
9227
9228 if (allow_power_down) {
9229 val = I915_READ(LCPLL_CTL);
9230 val |= LCPLL_POWER_DOWN_ALLOW;
9231 I915_WRITE(LCPLL_CTL, val);
9232 POSTING_READ(LCPLL_CTL);
9233 }
9234 }
9235
9236 /*
9237 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9238 * source.
9239 */
9240 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9241 {
9242 uint32_t val;
9243
9244 val = I915_READ(LCPLL_CTL);
9245
9246 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9247 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9248 return;
9249
9250 /*
9251 * Make sure we're not on PC8 state before disabling PC8, otherwise
9252 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9253 */
9254 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9255
9256 if (val & LCPLL_POWER_DOWN_ALLOW) {
9257 val &= ~LCPLL_POWER_DOWN_ALLOW;
9258 I915_WRITE(LCPLL_CTL, val);
9259 POSTING_READ(LCPLL_CTL);
9260 }
9261
9262 val = hsw_read_dcomp(dev_priv);
9263 val |= D_COMP_COMP_FORCE;
9264 val &= ~D_COMP_COMP_DISABLE;
9265 hsw_write_dcomp(dev_priv, val);
9266
9267 val = I915_READ(LCPLL_CTL);
9268 val &= ~LCPLL_PLL_DISABLE;
9269 I915_WRITE(LCPLL_CTL, val);
9270
9271 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9272 DRM_ERROR("LCPLL not locked yet\n");
9273
9274 if (val & LCPLL_CD_SOURCE_FCLK) {
9275 val = I915_READ(LCPLL_CTL);
9276 val &= ~LCPLL_CD_SOURCE_FCLK;
9277 I915_WRITE(LCPLL_CTL, val);
9278
9279 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9280 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9281 DRM_ERROR("Switching back to LCPLL failed\n");
9282 }
9283
9284 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9285 }
9286
9287 /*
9288 * Package states C8 and deeper are really deep PC states that can only be
9289 * reached when all the devices on the system allow it, so even if the graphics
9290 * device allows PC8+, it doesn't mean the system will actually get to these
9291 * states. Our driver only allows PC8+ when going into runtime PM.
9292 *
9293 * The requirements for PC8+ are that all the outputs are disabled, the power
9294 * well is disabled and most interrupts are disabled, and these are also
9295 * requirements for runtime PM. When these conditions are met, we manually do
9296 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9297 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9298 * hang the machine.
9299 *
9300 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9301 * the state of some registers, so when we come back from PC8+ we need to
9302 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9303 * need to take care of the registers kept by RC6. Notice that this happens even
9304 * if we don't put the device in PCI D3 state (which is what currently happens
9305 * because of the runtime PM support).
9306 *
9307 * For more, read "Display Sequences for Package C8" on the hardware
9308 * documentation.
9309 */
9310 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9311 {
9312 struct drm_device *dev = dev_priv->dev;
9313 uint32_t val;
9314
9315 DRM_DEBUG_KMS("Enabling package C8+\n");
9316
9317 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9318 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9319 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9320 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9321 }
9322
9323 lpt_disable_clkout_dp(dev);
9324 hsw_disable_lcpll(dev_priv, true, true);
9325 }
9326
9327 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9328 {
9329 struct drm_device *dev = dev_priv->dev;
9330 uint32_t val;
9331
9332 DRM_DEBUG_KMS("Disabling package C8+\n");
9333
9334 hsw_restore_lcpll(dev_priv);
9335 lpt_init_pch_refclk(dev);
9336
9337 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9338 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9339 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9340 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9341 }
9342
9343 intel_prepare_ddi(dev);
9344 }
9345
9346 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9347 {
9348 struct drm_device *dev = old_state->dev;
9349 struct drm_i915_private *dev_priv = dev->dev_private;
9350 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9351 int req_cdclk;
9352
9353 /* see the comment in valleyview_modeset_global_resources */
9354 if (WARN_ON(max_pixclk < 0))
9355 return;
9356
9357 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9358
9359 if (req_cdclk != dev_priv->cdclk_freq)
9360 broxton_set_cdclk(dev, req_cdclk);
9361 }
9362
9363 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9364 struct intel_crtc_state *crtc_state)
9365 {
9366 if (!intel_ddi_pll_select(crtc, crtc_state))
9367 return -EINVAL;
9368
9369 crtc->lowfreq_avail = false;
9370
9371 return 0;
9372 }
9373
9374 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9375 enum port port,
9376 struct intel_crtc_state *pipe_config)
9377 {
9378 switch (port) {
9379 case PORT_A:
9380 pipe_config->ddi_pll_sel = SKL_DPLL0;
9381 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9382 break;
9383 case PORT_B:
9384 pipe_config->ddi_pll_sel = SKL_DPLL1;
9385 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9386 break;
9387 case PORT_C:
9388 pipe_config->ddi_pll_sel = SKL_DPLL2;
9389 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9390 break;
9391 default:
9392 DRM_ERROR("Incorrect port type\n");
9393 }
9394 }
9395
9396 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9397 enum port port,
9398 struct intel_crtc_state *pipe_config)
9399 {
9400 u32 temp, dpll_ctl1;
9401
9402 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9403 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9404
9405 switch (pipe_config->ddi_pll_sel) {
9406 case SKL_DPLL0:
9407 /*
9408 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9409 * of the shared DPLL framework and thus needs to be read out
9410 * separately
9411 */
9412 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9413 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9414 break;
9415 case SKL_DPLL1:
9416 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9417 break;
9418 case SKL_DPLL2:
9419 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9420 break;
9421 case SKL_DPLL3:
9422 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9423 break;
9424 }
9425 }
9426
9427 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9428 enum port port,
9429 struct intel_crtc_state *pipe_config)
9430 {
9431 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9432
9433 switch (pipe_config->ddi_pll_sel) {
9434 case PORT_CLK_SEL_WRPLL1:
9435 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9436 break;
9437 case PORT_CLK_SEL_WRPLL2:
9438 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9439 break;
9440 }
9441 }
9442
9443 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9444 struct intel_crtc_state *pipe_config)
9445 {
9446 struct drm_device *dev = crtc->base.dev;
9447 struct drm_i915_private *dev_priv = dev->dev_private;
9448 struct intel_shared_dpll *pll;
9449 enum port port;
9450 uint32_t tmp;
9451
9452 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9453
9454 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9455
9456 if (IS_SKYLAKE(dev))
9457 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9458 else if (IS_BROXTON(dev))
9459 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9460 else
9461 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9462
9463 if (pipe_config->shared_dpll >= 0) {
9464 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9465
9466 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9467 &pipe_config->dpll_hw_state));
9468 }
9469
9470 /*
9471 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9472 * DDI E. So just check whether this pipe is wired to DDI E and whether
9473 * the PCH transcoder is on.
9474 */
9475 if (INTEL_INFO(dev)->gen < 9 &&
9476 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9477 pipe_config->has_pch_encoder = true;
9478
9479 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9480 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9481 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9482
9483 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9484 }
9485 }
9486
9487 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9488 struct intel_crtc_state *pipe_config)
9489 {
9490 struct drm_device *dev = crtc->base.dev;
9491 struct drm_i915_private *dev_priv = dev->dev_private;
9492 enum intel_display_power_domain pfit_domain;
9493 uint32_t tmp;
9494
9495 if (!intel_display_power_is_enabled(dev_priv,
9496 POWER_DOMAIN_PIPE(crtc->pipe)))
9497 return false;
9498
9499 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9500 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9501
9502 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9503 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9504 enum pipe trans_edp_pipe;
9505 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9506 default:
9507 WARN(1, "unknown pipe linked to edp transcoder\n");
9508 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9509 case TRANS_DDI_EDP_INPUT_A_ON:
9510 trans_edp_pipe = PIPE_A;
9511 break;
9512 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9513 trans_edp_pipe = PIPE_B;
9514 break;
9515 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9516 trans_edp_pipe = PIPE_C;
9517 break;
9518 }
9519
9520 if (trans_edp_pipe == crtc->pipe)
9521 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9522 }
9523
9524 if (!intel_display_power_is_enabled(dev_priv,
9525 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9526 return false;
9527
9528 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9529 if (!(tmp & PIPECONF_ENABLE))
9530 return false;
9531
9532 haswell_get_ddi_port_state(crtc, pipe_config);
9533
9534 intel_get_pipe_timings(crtc, pipe_config);
9535
9536 if (INTEL_INFO(dev)->gen >= 9) {
9537 skl_init_scalers(dev, crtc, pipe_config);
9538 }
9539
9540 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9541
9542 if (INTEL_INFO(dev)->gen >= 9) {
9543 pipe_config->scaler_state.scaler_id = -1;
9544 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9545 }
9546
9547 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9548 if (INTEL_INFO(dev)->gen == 9)
9549 skylake_get_pfit_config(crtc, pipe_config);
9550 else if (INTEL_INFO(dev)->gen < 9)
9551 ironlake_get_pfit_config(crtc, pipe_config);
9552 else
9553 MISSING_CASE(INTEL_INFO(dev)->gen);
9554 }
9555
9556 if (IS_HASWELL(dev))
9557 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9558 (I915_READ(IPS_CTL) & IPS_ENABLE);
9559
9560 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9561 pipe_config->pixel_multiplier =
9562 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9563 } else {
9564 pipe_config->pixel_multiplier = 1;
9565 }
9566
9567 return true;
9568 }
9569
9570 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9571 {
9572 struct drm_device *dev = crtc->dev;
9573 struct drm_i915_private *dev_priv = dev->dev_private;
9574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9575 uint32_t cntl = 0, size = 0;
9576
9577 if (base) {
9578 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9579 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9580 unsigned int stride = roundup_pow_of_two(width) * 4;
9581
9582 switch (stride) {
9583 default:
9584 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9585 width, stride);
9586 stride = 256;
9587 /* fallthrough */
9588 case 256:
9589 case 512:
9590 case 1024:
9591 case 2048:
9592 break;
9593 }
9594
9595 cntl |= CURSOR_ENABLE |
9596 CURSOR_GAMMA_ENABLE |
9597 CURSOR_FORMAT_ARGB |
9598 CURSOR_STRIDE(stride);
9599
9600 size = (height << 12) | width;
9601 }
9602
9603 if (intel_crtc->cursor_cntl != 0 &&
9604 (intel_crtc->cursor_base != base ||
9605 intel_crtc->cursor_size != size ||
9606 intel_crtc->cursor_cntl != cntl)) {
9607 /* On these chipsets we can only modify the base/size/stride
9608 * whilst the cursor is disabled.
9609 */
9610 I915_WRITE(_CURACNTR, 0);
9611 POSTING_READ(_CURACNTR);
9612 intel_crtc->cursor_cntl = 0;
9613 }
9614
9615 if (intel_crtc->cursor_base != base) {
9616 I915_WRITE(_CURABASE, base);
9617 intel_crtc->cursor_base = base;
9618 }
9619
9620 if (intel_crtc->cursor_size != size) {
9621 I915_WRITE(CURSIZE, size);
9622 intel_crtc->cursor_size = size;
9623 }
9624
9625 if (intel_crtc->cursor_cntl != cntl) {
9626 I915_WRITE(_CURACNTR, cntl);
9627 POSTING_READ(_CURACNTR);
9628 intel_crtc->cursor_cntl = cntl;
9629 }
9630 }
9631
9632 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9633 {
9634 struct drm_device *dev = crtc->dev;
9635 struct drm_i915_private *dev_priv = dev->dev_private;
9636 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9637 int pipe = intel_crtc->pipe;
9638 uint32_t cntl;
9639
9640 cntl = 0;
9641 if (base) {
9642 cntl = MCURSOR_GAMMA_ENABLE;
9643 switch (intel_crtc->base.cursor->state->crtc_w) {
9644 case 64:
9645 cntl |= CURSOR_MODE_64_ARGB_AX;
9646 break;
9647 case 128:
9648 cntl |= CURSOR_MODE_128_ARGB_AX;
9649 break;
9650 case 256:
9651 cntl |= CURSOR_MODE_256_ARGB_AX;
9652 break;
9653 default:
9654 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9655 return;
9656 }
9657 cntl |= pipe << 28; /* Connect to correct pipe */
9658
9659 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9660 cntl |= CURSOR_PIPE_CSC_ENABLE;
9661 }
9662
9663 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9664 cntl |= CURSOR_ROTATE_180;
9665
9666 if (intel_crtc->cursor_cntl != cntl) {
9667 I915_WRITE(CURCNTR(pipe), cntl);
9668 POSTING_READ(CURCNTR(pipe));
9669 intel_crtc->cursor_cntl = cntl;
9670 }
9671
9672 /* and commit changes on next vblank */
9673 I915_WRITE(CURBASE(pipe), base);
9674 POSTING_READ(CURBASE(pipe));
9675
9676 intel_crtc->cursor_base = base;
9677 }
9678
9679 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9680 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9681 bool on)
9682 {
9683 struct drm_device *dev = crtc->dev;
9684 struct drm_i915_private *dev_priv = dev->dev_private;
9685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9686 int pipe = intel_crtc->pipe;
9687 int x = crtc->cursor_x;
9688 int y = crtc->cursor_y;
9689 u32 base = 0, pos = 0;
9690
9691 if (on)
9692 base = intel_crtc->cursor_addr;
9693
9694 if (x >= intel_crtc->config->pipe_src_w)
9695 base = 0;
9696
9697 if (y >= intel_crtc->config->pipe_src_h)
9698 base = 0;
9699
9700 if (x < 0) {
9701 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9702 base = 0;
9703
9704 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9705 x = -x;
9706 }
9707 pos |= x << CURSOR_X_SHIFT;
9708
9709 if (y < 0) {
9710 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9711 base = 0;
9712
9713 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9714 y = -y;
9715 }
9716 pos |= y << CURSOR_Y_SHIFT;
9717
9718 if (base == 0 && intel_crtc->cursor_base == 0)
9719 return;
9720
9721 I915_WRITE(CURPOS(pipe), pos);
9722
9723 /* ILK+ do this automagically */
9724 if (HAS_GMCH_DISPLAY(dev) &&
9725 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9726 base += (intel_crtc->base.cursor->state->crtc_h *
9727 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9728 }
9729
9730 if (IS_845G(dev) || IS_I865G(dev))
9731 i845_update_cursor(crtc, base);
9732 else
9733 i9xx_update_cursor(crtc, base);
9734 }
9735
9736 static bool cursor_size_ok(struct drm_device *dev,
9737 uint32_t width, uint32_t height)
9738 {
9739 if (width == 0 || height == 0)
9740 return false;
9741
9742 /*
9743 * 845g/865g are special in that they are only limited by
9744 * the width of their cursors, the height is arbitrary up to
9745 * the precision of the register. Everything else requires
9746 * square cursors, limited to a few power-of-two sizes.
9747 */
9748 if (IS_845G(dev) || IS_I865G(dev)) {
9749 if ((width & 63) != 0)
9750 return false;
9751
9752 if (width > (IS_845G(dev) ? 64 : 512))
9753 return false;
9754
9755 if (height > 1023)
9756 return false;
9757 } else {
9758 switch (width | height) {
9759 case 256:
9760 case 128:
9761 if (IS_GEN2(dev))
9762 return false;
9763 case 64:
9764 break;
9765 default:
9766 return false;
9767 }
9768 }
9769
9770 return true;
9771 }
9772
9773 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9774 u16 *blue, uint32_t start, uint32_t size)
9775 {
9776 int end = (start + size > 256) ? 256 : start + size, i;
9777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9778
9779 for (i = start; i < end; i++) {
9780 intel_crtc->lut_r[i] = red[i] >> 8;
9781 intel_crtc->lut_g[i] = green[i] >> 8;
9782 intel_crtc->lut_b[i] = blue[i] >> 8;
9783 }
9784
9785 intel_crtc_load_lut(crtc);
9786 }
9787
9788 /* VESA 640x480x72Hz mode to set on the pipe */
9789 static struct drm_display_mode load_detect_mode = {
9790 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9791 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9792 };
9793
9794 struct drm_framebuffer *
9795 __intel_framebuffer_create(struct drm_device *dev,
9796 struct drm_mode_fb_cmd2 *mode_cmd,
9797 struct drm_i915_gem_object *obj)
9798 {
9799 struct intel_framebuffer *intel_fb;
9800 int ret;
9801
9802 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9803 if (!intel_fb) {
9804 drm_gem_object_unreference(&obj->base);
9805 return ERR_PTR(-ENOMEM);
9806 }
9807
9808 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9809 if (ret)
9810 goto err;
9811
9812 return &intel_fb->base;
9813 err:
9814 drm_gem_object_unreference(&obj->base);
9815 kfree(intel_fb);
9816
9817 return ERR_PTR(ret);
9818 }
9819
9820 static struct drm_framebuffer *
9821 intel_framebuffer_create(struct drm_device *dev,
9822 struct drm_mode_fb_cmd2 *mode_cmd,
9823 struct drm_i915_gem_object *obj)
9824 {
9825 struct drm_framebuffer *fb;
9826 int ret;
9827
9828 ret = i915_mutex_lock_interruptible(dev);
9829 if (ret)
9830 return ERR_PTR(ret);
9831 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9832 mutex_unlock(&dev->struct_mutex);
9833
9834 return fb;
9835 }
9836
9837 static u32
9838 intel_framebuffer_pitch_for_width(int width, int bpp)
9839 {
9840 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9841 return ALIGN(pitch, 64);
9842 }
9843
9844 static u32
9845 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9846 {
9847 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9848 return PAGE_ALIGN(pitch * mode->vdisplay);
9849 }
9850
9851 static struct drm_framebuffer *
9852 intel_framebuffer_create_for_mode(struct drm_device *dev,
9853 struct drm_display_mode *mode,
9854 int depth, int bpp)
9855 {
9856 struct drm_i915_gem_object *obj;
9857 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9858
9859 obj = i915_gem_alloc_object(dev,
9860 intel_framebuffer_size_for_mode(mode, bpp));
9861 if (obj == NULL)
9862 return ERR_PTR(-ENOMEM);
9863
9864 mode_cmd.width = mode->hdisplay;
9865 mode_cmd.height = mode->vdisplay;
9866 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9867 bpp);
9868 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9869
9870 return intel_framebuffer_create(dev, &mode_cmd, obj);
9871 }
9872
9873 static struct drm_framebuffer *
9874 mode_fits_in_fbdev(struct drm_device *dev,
9875 struct drm_display_mode *mode)
9876 {
9877 #ifdef CONFIG_DRM_I915_FBDEV
9878 struct drm_i915_private *dev_priv = dev->dev_private;
9879 struct drm_i915_gem_object *obj;
9880 struct drm_framebuffer *fb;
9881
9882 if (!dev_priv->fbdev)
9883 return NULL;
9884
9885 if (!dev_priv->fbdev->fb)
9886 return NULL;
9887
9888 obj = dev_priv->fbdev->fb->obj;
9889 BUG_ON(!obj);
9890
9891 fb = &dev_priv->fbdev->fb->base;
9892 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9893 fb->bits_per_pixel))
9894 return NULL;
9895
9896 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9897 return NULL;
9898
9899 return fb;
9900 #else
9901 return NULL;
9902 #endif
9903 }
9904
9905 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9906 struct drm_crtc *crtc,
9907 struct drm_display_mode *mode,
9908 struct drm_framebuffer *fb,
9909 int x, int y)
9910 {
9911 struct drm_plane_state *plane_state;
9912 int hdisplay, vdisplay;
9913 int ret;
9914
9915 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9916 if (IS_ERR(plane_state))
9917 return PTR_ERR(plane_state);
9918
9919 if (mode)
9920 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9921 else
9922 hdisplay = vdisplay = 0;
9923
9924 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9925 if (ret)
9926 return ret;
9927 drm_atomic_set_fb_for_plane(plane_state, fb);
9928 plane_state->crtc_x = 0;
9929 plane_state->crtc_y = 0;
9930 plane_state->crtc_w = hdisplay;
9931 plane_state->crtc_h = vdisplay;
9932 plane_state->src_x = x << 16;
9933 plane_state->src_y = y << 16;
9934 plane_state->src_w = hdisplay << 16;
9935 plane_state->src_h = vdisplay << 16;
9936
9937 return 0;
9938 }
9939
9940 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9941 struct drm_display_mode *mode,
9942 struct intel_load_detect_pipe *old,
9943 struct drm_modeset_acquire_ctx *ctx)
9944 {
9945 struct intel_crtc *intel_crtc;
9946 struct intel_encoder *intel_encoder =
9947 intel_attached_encoder(connector);
9948 struct drm_crtc *possible_crtc;
9949 struct drm_encoder *encoder = &intel_encoder->base;
9950 struct drm_crtc *crtc = NULL;
9951 struct drm_device *dev = encoder->dev;
9952 struct drm_framebuffer *fb;
9953 struct drm_mode_config *config = &dev->mode_config;
9954 struct drm_atomic_state *state = NULL;
9955 struct drm_connector_state *connector_state;
9956 struct intel_crtc_state *crtc_state;
9957 int ret, i = -1;
9958
9959 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9960 connector->base.id, connector->name,
9961 encoder->base.id, encoder->name);
9962
9963 retry:
9964 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9965 if (ret)
9966 goto fail_unlock;
9967
9968 /*
9969 * Algorithm gets a little messy:
9970 *
9971 * - if the connector already has an assigned crtc, use it (but make
9972 * sure it's on first)
9973 *
9974 * - try to find the first unused crtc that can drive this connector,
9975 * and use that if we find one
9976 */
9977
9978 /* See if we already have a CRTC for this connector */
9979 if (encoder->crtc) {
9980 crtc = encoder->crtc;
9981
9982 ret = drm_modeset_lock(&crtc->mutex, ctx);
9983 if (ret)
9984 goto fail_unlock;
9985 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9986 if (ret)
9987 goto fail_unlock;
9988
9989 old->dpms_mode = connector->dpms;
9990 old->load_detect_temp = false;
9991
9992 /* Make sure the crtc and connector are running */
9993 if (connector->dpms != DRM_MODE_DPMS_ON)
9994 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9995
9996 return true;
9997 }
9998
9999 /* Find an unused one (if possible) */
10000 for_each_crtc(dev, possible_crtc) {
10001 i++;
10002 if (!(encoder->possible_crtcs & (1 << i)))
10003 continue;
10004 if (possible_crtc->state->enable)
10005 continue;
10006 /* This can occur when applying the pipe A quirk on resume. */
10007 if (to_intel_crtc(possible_crtc)->new_enabled)
10008 continue;
10009
10010 crtc = possible_crtc;
10011 break;
10012 }
10013
10014 /*
10015 * If we didn't find an unused CRTC, don't use any.
10016 */
10017 if (!crtc) {
10018 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10019 goto fail_unlock;
10020 }
10021
10022 ret = drm_modeset_lock(&crtc->mutex, ctx);
10023 if (ret)
10024 goto fail_unlock;
10025 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10026 if (ret)
10027 goto fail_unlock;
10028 intel_encoder->new_crtc = to_intel_crtc(crtc);
10029 to_intel_connector(connector)->new_encoder = intel_encoder;
10030
10031 intel_crtc = to_intel_crtc(crtc);
10032 intel_crtc->new_enabled = true;
10033 old->dpms_mode = connector->dpms;
10034 old->load_detect_temp = true;
10035 old->release_fb = NULL;
10036
10037 state = drm_atomic_state_alloc(dev);
10038 if (!state)
10039 return false;
10040
10041 state->acquire_ctx = ctx;
10042
10043 connector_state = drm_atomic_get_connector_state(state, connector);
10044 if (IS_ERR(connector_state)) {
10045 ret = PTR_ERR(connector_state);
10046 goto fail;
10047 }
10048
10049 connector_state->crtc = crtc;
10050 connector_state->best_encoder = &intel_encoder->base;
10051
10052 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10053 if (IS_ERR(crtc_state)) {
10054 ret = PTR_ERR(crtc_state);
10055 goto fail;
10056 }
10057
10058 crtc_state->base.active = crtc_state->base.enable = true;
10059
10060 if (!mode)
10061 mode = &load_detect_mode;
10062
10063 /* We need a framebuffer large enough to accommodate all accesses
10064 * that the plane may generate whilst we perform load detection.
10065 * We can not rely on the fbcon either being present (we get called
10066 * during its initialisation to detect all boot displays, or it may
10067 * not even exist) or that it is large enough to satisfy the
10068 * requested mode.
10069 */
10070 fb = mode_fits_in_fbdev(dev, mode);
10071 if (fb == NULL) {
10072 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10073 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10074 old->release_fb = fb;
10075 } else
10076 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10077 if (IS_ERR(fb)) {
10078 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10079 goto fail;
10080 }
10081
10082 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10083 if (ret)
10084 goto fail;
10085
10086 drm_mode_copy(&crtc_state->base.mode, mode);
10087
10088 if (intel_set_mode(crtc, state)) {
10089 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10090 if (old->release_fb)
10091 old->release_fb->funcs->destroy(old->release_fb);
10092 goto fail;
10093 }
10094 crtc->primary->crtc = crtc;
10095
10096 /* let the connector get through one full cycle before testing */
10097 intel_wait_for_vblank(dev, intel_crtc->pipe);
10098 return true;
10099
10100 fail:
10101 intel_crtc->new_enabled = crtc->state->enable;
10102 fail_unlock:
10103 drm_atomic_state_free(state);
10104 state = NULL;
10105
10106 if (ret == -EDEADLK) {
10107 drm_modeset_backoff(ctx);
10108 goto retry;
10109 }
10110
10111 return false;
10112 }
10113
10114 void intel_release_load_detect_pipe(struct drm_connector *connector,
10115 struct intel_load_detect_pipe *old,
10116 struct drm_modeset_acquire_ctx *ctx)
10117 {
10118 struct drm_device *dev = connector->dev;
10119 struct intel_encoder *intel_encoder =
10120 intel_attached_encoder(connector);
10121 struct drm_encoder *encoder = &intel_encoder->base;
10122 struct drm_crtc *crtc = encoder->crtc;
10123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10124 struct drm_atomic_state *state;
10125 struct drm_connector_state *connector_state;
10126 struct intel_crtc_state *crtc_state;
10127 int ret;
10128
10129 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10130 connector->base.id, connector->name,
10131 encoder->base.id, encoder->name);
10132
10133 if (old->load_detect_temp) {
10134 state = drm_atomic_state_alloc(dev);
10135 if (!state)
10136 goto fail;
10137
10138 state->acquire_ctx = ctx;
10139
10140 connector_state = drm_atomic_get_connector_state(state, connector);
10141 if (IS_ERR(connector_state))
10142 goto fail;
10143
10144 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10145 if (IS_ERR(crtc_state))
10146 goto fail;
10147
10148 to_intel_connector(connector)->new_encoder = NULL;
10149 intel_encoder->new_crtc = NULL;
10150 intel_crtc->new_enabled = false;
10151
10152 connector_state->best_encoder = NULL;
10153 connector_state->crtc = NULL;
10154
10155 crtc_state->base.enable = crtc_state->base.active = false;
10156
10157 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10158 0, 0);
10159 if (ret)
10160 goto fail;
10161
10162 ret = intel_set_mode(crtc, state);
10163 if (ret)
10164 goto fail;
10165
10166 if (old->release_fb) {
10167 drm_framebuffer_unregister_private(old->release_fb);
10168 drm_framebuffer_unreference(old->release_fb);
10169 }
10170
10171 return;
10172 }
10173
10174 /* Switch crtc and encoder back off if necessary */
10175 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10176 connector->funcs->dpms(connector, old->dpms_mode);
10177
10178 return;
10179 fail:
10180 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10181 drm_atomic_state_free(state);
10182 }
10183
10184 static int i9xx_pll_refclk(struct drm_device *dev,
10185 const struct intel_crtc_state *pipe_config)
10186 {
10187 struct drm_i915_private *dev_priv = dev->dev_private;
10188 u32 dpll = pipe_config->dpll_hw_state.dpll;
10189
10190 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10191 return dev_priv->vbt.lvds_ssc_freq;
10192 else if (HAS_PCH_SPLIT(dev))
10193 return 120000;
10194 else if (!IS_GEN2(dev))
10195 return 96000;
10196 else
10197 return 48000;
10198 }
10199
10200 /* Returns the clock of the currently programmed mode of the given pipe. */
10201 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10202 struct intel_crtc_state *pipe_config)
10203 {
10204 struct drm_device *dev = crtc->base.dev;
10205 struct drm_i915_private *dev_priv = dev->dev_private;
10206 int pipe = pipe_config->cpu_transcoder;
10207 u32 dpll = pipe_config->dpll_hw_state.dpll;
10208 u32 fp;
10209 intel_clock_t clock;
10210 int refclk = i9xx_pll_refclk(dev, pipe_config);
10211
10212 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10213 fp = pipe_config->dpll_hw_state.fp0;
10214 else
10215 fp = pipe_config->dpll_hw_state.fp1;
10216
10217 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10218 if (IS_PINEVIEW(dev)) {
10219 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10220 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10221 } else {
10222 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10223 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10224 }
10225
10226 if (!IS_GEN2(dev)) {
10227 if (IS_PINEVIEW(dev))
10228 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10229 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10230 else
10231 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10232 DPLL_FPA01_P1_POST_DIV_SHIFT);
10233
10234 switch (dpll & DPLL_MODE_MASK) {
10235 case DPLLB_MODE_DAC_SERIAL:
10236 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10237 5 : 10;
10238 break;
10239 case DPLLB_MODE_LVDS:
10240 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10241 7 : 14;
10242 break;
10243 default:
10244 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10245 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10246 return;
10247 }
10248
10249 if (IS_PINEVIEW(dev))
10250 pineview_clock(refclk, &clock);
10251 else
10252 i9xx_clock(refclk, &clock);
10253 } else {
10254 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10255 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10256
10257 if (is_lvds) {
10258 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10259 DPLL_FPA01_P1_POST_DIV_SHIFT);
10260
10261 if (lvds & LVDS_CLKB_POWER_UP)
10262 clock.p2 = 7;
10263 else
10264 clock.p2 = 14;
10265 } else {
10266 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10267 clock.p1 = 2;
10268 else {
10269 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10270 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10271 }
10272 if (dpll & PLL_P2_DIVIDE_BY_4)
10273 clock.p2 = 4;
10274 else
10275 clock.p2 = 2;
10276 }
10277
10278 i9xx_clock(refclk, &clock);
10279 }
10280
10281 /*
10282 * This value includes pixel_multiplier. We will use
10283 * port_clock to compute adjusted_mode.crtc_clock in the
10284 * encoder's get_config() function.
10285 */
10286 pipe_config->port_clock = clock.dot;
10287 }
10288
10289 int intel_dotclock_calculate(int link_freq,
10290 const struct intel_link_m_n *m_n)
10291 {
10292 /*
10293 * The calculation for the data clock is:
10294 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10295 * But we want to avoid losing precison if possible, so:
10296 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10297 *
10298 * and the link clock is simpler:
10299 * link_clock = (m * link_clock) / n
10300 */
10301
10302 if (!m_n->link_n)
10303 return 0;
10304
10305 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10306 }
10307
10308 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10309 struct intel_crtc_state *pipe_config)
10310 {
10311 struct drm_device *dev = crtc->base.dev;
10312
10313 /* read out port_clock from the DPLL */
10314 i9xx_crtc_clock_get(crtc, pipe_config);
10315
10316 /*
10317 * This value does not include pixel_multiplier.
10318 * We will check that port_clock and adjusted_mode.crtc_clock
10319 * agree once we know their relationship in the encoder's
10320 * get_config() function.
10321 */
10322 pipe_config->base.adjusted_mode.crtc_clock =
10323 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10324 &pipe_config->fdi_m_n);
10325 }
10326
10327 /** Returns the currently programmed mode of the given pipe. */
10328 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10329 struct drm_crtc *crtc)
10330 {
10331 struct drm_i915_private *dev_priv = dev->dev_private;
10332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10333 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10334 struct drm_display_mode *mode;
10335 struct intel_crtc_state pipe_config;
10336 int htot = I915_READ(HTOTAL(cpu_transcoder));
10337 int hsync = I915_READ(HSYNC(cpu_transcoder));
10338 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10339 int vsync = I915_READ(VSYNC(cpu_transcoder));
10340 enum pipe pipe = intel_crtc->pipe;
10341
10342 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10343 if (!mode)
10344 return NULL;
10345
10346 /*
10347 * Construct a pipe_config sufficient for getting the clock info
10348 * back out of crtc_clock_get.
10349 *
10350 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10351 * to use a real value here instead.
10352 */
10353 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10354 pipe_config.pixel_multiplier = 1;
10355 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10356 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10357 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10358 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10359
10360 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10361 mode->hdisplay = (htot & 0xffff) + 1;
10362 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10363 mode->hsync_start = (hsync & 0xffff) + 1;
10364 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10365 mode->vdisplay = (vtot & 0xffff) + 1;
10366 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10367 mode->vsync_start = (vsync & 0xffff) + 1;
10368 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10369
10370 drm_mode_set_name(mode);
10371
10372 return mode;
10373 }
10374
10375 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10376 {
10377 struct drm_device *dev = crtc->dev;
10378 struct drm_i915_private *dev_priv = dev->dev_private;
10379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10380
10381 if (!HAS_GMCH_DISPLAY(dev))
10382 return;
10383
10384 if (!dev_priv->lvds_downclock_avail)
10385 return;
10386
10387 /*
10388 * Since this is called by a timer, we should never get here in
10389 * the manual case.
10390 */
10391 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10392 int pipe = intel_crtc->pipe;
10393 int dpll_reg = DPLL(pipe);
10394 int dpll;
10395
10396 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10397
10398 assert_panel_unlocked(dev_priv, pipe);
10399
10400 dpll = I915_READ(dpll_reg);
10401 dpll |= DISPLAY_RATE_SELECT_FPA1;
10402 I915_WRITE(dpll_reg, dpll);
10403 intel_wait_for_vblank(dev, pipe);
10404 dpll = I915_READ(dpll_reg);
10405 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10406 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10407 }
10408
10409 }
10410
10411 void intel_mark_busy(struct drm_device *dev)
10412 {
10413 struct drm_i915_private *dev_priv = dev->dev_private;
10414
10415 if (dev_priv->mm.busy)
10416 return;
10417
10418 intel_runtime_pm_get(dev_priv);
10419 i915_update_gfx_val(dev_priv);
10420 if (INTEL_INFO(dev)->gen >= 6)
10421 gen6_rps_busy(dev_priv);
10422 dev_priv->mm.busy = true;
10423 }
10424
10425 void intel_mark_idle(struct drm_device *dev)
10426 {
10427 struct drm_i915_private *dev_priv = dev->dev_private;
10428 struct drm_crtc *crtc;
10429
10430 if (!dev_priv->mm.busy)
10431 return;
10432
10433 dev_priv->mm.busy = false;
10434
10435 for_each_crtc(dev, crtc) {
10436 if (!crtc->primary->fb)
10437 continue;
10438
10439 intel_decrease_pllclock(crtc);
10440 }
10441
10442 if (INTEL_INFO(dev)->gen >= 6)
10443 gen6_rps_idle(dev->dev_private);
10444
10445 intel_runtime_pm_put(dev_priv);
10446 }
10447
10448 static void intel_crtc_destroy(struct drm_crtc *crtc)
10449 {
10450 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10451 struct drm_device *dev = crtc->dev;
10452 struct intel_unpin_work *work;
10453
10454 spin_lock_irq(&dev->event_lock);
10455 work = intel_crtc->unpin_work;
10456 intel_crtc->unpin_work = NULL;
10457 spin_unlock_irq(&dev->event_lock);
10458
10459 if (work) {
10460 cancel_work_sync(&work->work);
10461 kfree(work);
10462 }
10463
10464 drm_crtc_cleanup(crtc);
10465
10466 kfree(intel_crtc);
10467 }
10468
10469 static void intel_unpin_work_fn(struct work_struct *__work)
10470 {
10471 struct intel_unpin_work *work =
10472 container_of(__work, struct intel_unpin_work, work);
10473 struct drm_device *dev = work->crtc->dev;
10474 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10475
10476 mutex_lock(&dev->struct_mutex);
10477 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10478 drm_gem_object_unreference(&work->pending_flip_obj->base);
10479
10480 intel_fbc_update(dev);
10481
10482 if (work->flip_queued_req)
10483 i915_gem_request_assign(&work->flip_queued_req, NULL);
10484 mutex_unlock(&dev->struct_mutex);
10485
10486 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10487 drm_framebuffer_unreference(work->old_fb);
10488
10489 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10490 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10491
10492 kfree(work);
10493 }
10494
10495 static void do_intel_finish_page_flip(struct drm_device *dev,
10496 struct drm_crtc *crtc)
10497 {
10498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10499 struct intel_unpin_work *work;
10500 unsigned long flags;
10501
10502 /* Ignore early vblank irqs */
10503 if (intel_crtc == NULL)
10504 return;
10505
10506 /*
10507 * This is called both by irq handlers and the reset code (to complete
10508 * lost pageflips) so needs the full irqsave spinlocks.
10509 */
10510 spin_lock_irqsave(&dev->event_lock, flags);
10511 work = intel_crtc->unpin_work;
10512
10513 /* Ensure we don't miss a work->pending update ... */
10514 smp_rmb();
10515
10516 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10517 spin_unlock_irqrestore(&dev->event_lock, flags);
10518 return;
10519 }
10520
10521 page_flip_completed(intel_crtc);
10522
10523 spin_unlock_irqrestore(&dev->event_lock, flags);
10524 }
10525
10526 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10527 {
10528 struct drm_i915_private *dev_priv = dev->dev_private;
10529 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10530
10531 do_intel_finish_page_flip(dev, crtc);
10532 }
10533
10534 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10535 {
10536 struct drm_i915_private *dev_priv = dev->dev_private;
10537 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10538
10539 do_intel_finish_page_flip(dev, crtc);
10540 }
10541
10542 /* Is 'a' after or equal to 'b'? */
10543 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10544 {
10545 return !((a - b) & 0x80000000);
10546 }
10547
10548 static bool page_flip_finished(struct intel_crtc *crtc)
10549 {
10550 struct drm_device *dev = crtc->base.dev;
10551 struct drm_i915_private *dev_priv = dev->dev_private;
10552
10553 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10554 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10555 return true;
10556
10557 /*
10558 * The relevant registers doen't exist on pre-ctg.
10559 * As the flip done interrupt doesn't trigger for mmio
10560 * flips on gmch platforms, a flip count check isn't
10561 * really needed there. But since ctg has the registers,
10562 * include it in the check anyway.
10563 */
10564 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10565 return true;
10566
10567 /*
10568 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10569 * used the same base address. In that case the mmio flip might
10570 * have completed, but the CS hasn't even executed the flip yet.
10571 *
10572 * A flip count check isn't enough as the CS might have updated
10573 * the base address just after start of vblank, but before we
10574 * managed to process the interrupt. This means we'd complete the
10575 * CS flip too soon.
10576 *
10577 * Combining both checks should get us a good enough result. It may
10578 * still happen that the CS flip has been executed, but has not
10579 * yet actually completed. But in case the base address is the same
10580 * anyway, we don't really care.
10581 */
10582 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10583 crtc->unpin_work->gtt_offset &&
10584 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10585 crtc->unpin_work->flip_count);
10586 }
10587
10588 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10589 {
10590 struct drm_i915_private *dev_priv = dev->dev_private;
10591 struct intel_crtc *intel_crtc =
10592 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10593 unsigned long flags;
10594
10595
10596 /*
10597 * This is called both by irq handlers and the reset code (to complete
10598 * lost pageflips) so needs the full irqsave spinlocks.
10599 *
10600 * NB: An MMIO update of the plane base pointer will also
10601 * generate a page-flip completion irq, i.e. every modeset
10602 * is also accompanied by a spurious intel_prepare_page_flip().
10603 */
10604 spin_lock_irqsave(&dev->event_lock, flags);
10605 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10606 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10607 spin_unlock_irqrestore(&dev->event_lock, flags);
10608 }
10609
10610 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10611 {
10612 /* Ensure that the work item is consistent when activating it ... */
10613 smp_wmb();
10614 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10615 /* and that it is marked active as soon as the irq could fire. */
10616 smp_wmb();
10617 }
10618
10619 static int intel_gen2_queue_flip(struct drm_device *dev,
10620 struct drm_crtc *crtc,
10621 struct drm_framebuffer *fb,
10622 struct drm_i915_gem_object *obj,
10623 struct intel_engine_cs *ring,
10624 uint32_t flags)
10625 {
10626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10627 u32 flip_mask;
10628 int ret;
10629
10630 ret = intel_ring_begin(ring, 6);
10631 if (ret)
10632 return ret;
10633
10634 /* Can't queue multiple flips, so wait for the previous
10635 * one to finish before executing the next.
10636 */
10637 if (intel_crtc->plane)
10638 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10639 else
10640 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10641 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10642 intel_ring_emit(ring, MI_NOOP);
10643 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10644 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10645 intel_ring_emit(ring, fb->pitches[0]);
10646 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10647 intel_ring_emit(ring, 0); /* aux display base address, unused */
10648
10649 intel_mark_page_flip_active(intel_crtc);
10650 __intel_ring_advance(ring);
10651 return 0;
10652 }
10653
10654 static int intel_gen3_queue_flip(struct drm_device *dev,
10655 struct drm_crtc *crtc,
10656 struct drm_framebuffer *fb,
10657 struct drm_i915_gem_object *obj,
10658 struct intel_engine_cs *ring,
10659 uint32_t flags)
10660 {
10661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10662 u32 flip_mask;
10663 int ret;
10664
10665 ret = intel_ring_begin(ring, 6);
10666 if (ret)
10667 return ret;
10668
10669 if (intel_crtc->plane)
10670 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10671 else
10672 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10673 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10674 intel_ring_emit(ring, MI_NOOP);
10675 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10676 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10677 intel_ring_emit(ring, fb->pitches[0]);
10678 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10679 intel_ring_emit(ring, MI_NOOP);
10680
10681 intel_mark_page_flip_active(intel_crtc);
10682 __intel_ring_advance(ring);
10683 return 0;
10684 }
10685
10686 static int intel_gen4_queue_flip(struct drm_device *dev,
10687 struct drm_crtc *crtc,
10688 struct drm_framebuffer *fb,
10689 struct drm_i915_gem_object *obj,
10690 struct intel_engine_cs *ring,
10691 uint32_t flags)
10692 {
10693 struct drm_i915_private *dev_priv = dev->dev_private;
10694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10695 uint32_t pf, pipesrc;
10696 int ret;
10697
10698 ret = intel_ring_begin(ring, 4);
10699 if (ret)
10700 return ret;
10701
10702 /* i965+ uses the linear or tiled offsets from the
10703 * Display Registers (which do not change across a page-flip)
10704 * so we need only reprogram the base address.
10705 */
10706 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10707 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10708 intel_ring_emit(ring, fb->pitches[0]);
10709 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10710 obj->tiling_mode);
10711
10712 /* XXX Enabling the panel-fitter across page-flip is so far
10713 * untested on non-native modes, so ignore it for now.
10714 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10715 */
10716 pf = 0;
10717 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10718 intel_ring_emit(ring, pf | pipesrc);
10719
10720 intel_mark_page_flip_active(intel_crtc);
10721 __intel_ring_advance(ring);
10722 return 0;
10723 }
10724
10725 static int intel_gen6_queue_flip(struct drm_device *dev,
10726 struct drm_crtc *crtc,
10727 struct drm_framebuffer *fb,
10728 struct drm_i915_gem_object *obj,
10729 struct intel_engine_cs *ring,
10730 uint32_t flags)
10731 {
10732 struct drm_i915_private *dev_priv = dev->dev_private;
10733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10734 uint32_t pf, pipesrc;
10735 int ret;
10736
10737 ret = intel_ring_begin(ring, 4);
10738 if (ret)
10739 return ret;
10740
10741 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10742 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10743 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10744 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10745
10746 /* Contrary to the suggestions in the documentation,
10747 * "Enable Panel Fitter" does not seem to be required when page
10748 * flipping with a non-native mode, and worse causes a normal
10749 * modeset to fail.
10750 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10751 */
10752 pf = 0;
10753 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10754 intel_ring_emit(ring, pf | pipesrc);
10755
10756 intel_mark_page_flip_active(intel_crtc);
10757 __intel_ring_advance(ring);
10758 return 0;
10759 }
10760
10761 static int intel_gen7_queue_flip(struct drm_device *dev,
10762 struct drm_crtc *crtc,
10763 struct drm_framebuffer *fb,
10764 struct drm_i915_gem_object *obj,
10765 struct intel_engine_cs *ring,
10766 uint32_t flags)
10767 {
10768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10769 uint32_t plane_bit = 0;
10770 int len, ret;
10771
10772 switch (intel_crtc->plane) {
10773 case PLANE_A:
10774 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10775 break;
10776 case PLANE_B:
10777 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10778 break;
10779 case PLANE_C:
10780 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10781 break;
10782 default:
10783 WARN_ONCE(1, "unknown plane in flip command\n");
10784 return -ENODEV;
10785 }
10786
10787 len = 4;
10788 if (ring->id == RCS) {
10789 len += 6;
10790 /*
10791 * On Gen 8, SRM is now taking an extra dword to accommodate
10792 * 48bits addresses, and we need a NOOP for the batch size to
10793 * stay even.
10794 */
10795 if (IS_GEN8(dev))
10796 len += 2;
10797 }
10798
10799 /*
10800 * BSpec MI_DISPLAY_FLIP for IVB:
10801 * "The full packet must be contained within the same cache line."
10802 *
10803 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10804 * cacheline, if we ever start emitting more commands before
10805 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10806 * then do the cacheline alignment, and finally emit the
10807 * MI_DISPLAY_FLIP.
10808 */
10809 ret = intel_ring_cacheline_align(ring);
10810 if (ret)
10811 return ret;
10812
10813 ret = intel_ring_begin(ring, len);
10814 if (ret)
10815 return ret;
10816
10817 /* Unmask the flip-done completion message. Note that the bspec says that
10818 * we should do this for both the BCS and RCS, and that we must not unmask
10819 * more than one flip event at any time (or ensure that one flip message
10820 * can be sent by waiting for flip-done prior to queueing new flips).
10821 * Experimentation says that BCS works despite DERRMR masking all
10822 * flip-done completion events and that unmasking all planes at once
10823 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10824 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10825 */
10826 if (ring->id == RCS) {
10827 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10828 intel_ring_emit(ring, DERRMR);
10829 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10830 DERRMR_PIPEB_PRI_FLIP_DONE |
10831 DERRMR_PIPEC_PRI_FLIP_DONE));
10832 if (IS_GEN8(dev))
10833 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10834 MI_SRM_LRM_GLOBAL_GTT);
10835 else
10836 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10837 MI_SRM_LRM_GLOBAL_GTT);
10838 intel_ring_emit(ring, DERRMR);
10839 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10840 if (IS_GEN8(dev)) {
10841 intel_ring_emit(ring, 0);
10842 intel_ring_emit(ring, MI_NOOP);
10843 }
10844 }
10845
10846 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10847 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10848 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10849 intel_ring_emit(ring, (MI_NOOP));
10850
10851 intel_mark_page_flip_active(intel_crtc);
10852 __intel_ring_advance(ring);
10853 return 0;
10854 }
10855
10856 static bool use_mmio_flip(struct intel_engine_cs *ring,
10857 struct drm_i915_gem_object *obj)
10858 {
10859 /*
10860 * This is not being used for older platforms, because
10861 * non-availability of flip done interrupt forces us to use
10862 * CS flips. Older platforms derive flip done using some clever
10863 * tricks involving the flip_pending status bits and vblank irqs.
10864 * So using MMIO flips there would disrupt this mechanism.
10865 */
10866
10867 if (ring == NULL)
10868 return true;
10869
10870 if (INTEL_INFO(ring->dev)->gen < 5)
10871 return false;
10872
10873 if (i915.use_mmio_flip < 0)
10874 return false;
10875 else if (i915.use_mmio_flip > 0)
10876 return true;
10877 else if (i915.enable_execlists)
10878 return true;
10879 else
10880 return ring != i915_gem_request_get_ring(obj->last_write_req);
10881 }
10882
10883 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10884 {
10885 struct drm_device *dev = intel_crtc->base.dev;
10886 struct drm_i915_private *dev_priv = dev->dev_private;
10887 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10888 const enum pipe pipe = intel_crtc->pipe;
10889 u32 ctl, stride;
10890
10891 ctl = I915_READ(PLANE_CTL(pipe, 0));
10892 ctl &= ~PLANE_CTL_TILED_MASK;
10893 switch (fb->modifier[0]) {
10894 case DRM_FORMAT_MOD_NONE:
10895 break;
10896 case I915_FORMAT_MOD_X_TILED:
10897 ctl |= PLANE_CTL_TILED_X;
10898 break;
10899 case I915_FORMAT_MOD_Y_TILED:
10900 ctl |= PLANE_CTL_TILED_Y;
10901 break;
10902 case I915_FORMAT_MOD_Yf_TILED:
10903 ctl |= PLANE_CTL_TILED_YF;
10904 break;
10905 default:
10906 MISSING_CASE(fb->modifier[0]);
10907 }
10908
10909 /*
10910 * The stride is either expressed as a multiple of 64 bytes chunks for
10911 * linear buffers or in number of tiles for tiled buffers.
10912 */
10913 stride = fb->pitches[0] /
10914 intel_fb_stride_alignment(dev, fb->modifier[0],
10915 fb->pixel_format);
10916
10917 /*
10918 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10919 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10920 */
10921 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10922 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10923
10924 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10925 POSTING_READ(PLANE_SURF(pipe, 0));
10926 }
10927
10928 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10929 {
10930 struct drm_device *dev = intel_crtc->base.dev;
10931 struct drm_i915_private *dev_priv = dev->dev_private;
10932 struct intel_framebuffer *intel_fb =
10933 to_intel_framebuffer(intel_crtc->base.primary->fb);
10934 struct drm_i915_gem_object *obj = intel_fb->obj;
10935 u32 dspcntr;
10936 u32 reg;
10937
10938 reg = DSPCNTR(intel_crtc->plane);
10939 dspcntr = I915_READ(reg);
10940
10941 if (obj->tiling_mode != I915_TILING_NONE)
10942 dspcntr |= DISPPLANE_TILED;
10943 else
10944 dspcntr &= ~DISPPLANE_TILED;
10945
10946 I915_WRITE(reg, dspcntr);
10947
10948 I915_WRITE(DSPSURF(intel_crtc->plane),
10949 intel_crtc->unpin_work->gtt_offset);
10950 POSTING_READ(DSPSURF(intel_crtc->plane));
10951
10952 }
10953
10954 /*
10955 * XXX: This is the temporary way to update the plane registers until we get
10956 * around to using the usual plane update functions for MMIO flips
10957 */
10958 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10959 {
10960 struct drm_device *dev = intel_crtc->base.dev;
10961 bool atomic_update;
10962 u32 start_vbl_count;
10963
10964 intel_mark_page_flip_active(intel_crtc);
10965
10966 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10967
10968 if (INTEL_INFO(dev)->gen >= 9)
10969 skl_do_mmio_flip(intel_crtc);
10970 else
10971 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10972 ilk_do_mmio_flip(intel_crtc);
10973
10974 if (atomic_update)
10975 intel_pipe_update_end(intel_crtc, start_vbl_count);
10976 }
10977
10978 static void intel_mmio_flip_work_func(struct work_struct *work)
10979 {
10980 struct intel_mmio_flip *mmio_flip =
10981 container_of(work, struct intel_mmio_flip, work);
10982
10983 if (mmio_flip->req)
10984 WARN_ON(__i915_wait_request(mmio_flip->req,
10985 mmio_flip->crtc->reset_counter,
10986 false, NULL,
10987 &mmio_flip->i915->rps.mmioflips));
10988
10989 intel_do_mmio_flip(mmio_flip->crtc);
10990
10991 i915_gem_request_unreference__unlocked(mmio_flip->req);
10992 kfree(mmio_flip);
10993 }
10994
10995 static int intel_queue_mmio_flip(struct drm_device *dev,
10996 struct drm_crtc *crtc,
10997 struct drm_framebuffer *fb,
10998 struct drm_i915_gem_object *obj,
10999 struct intel_engine_cs *ring,
11000 uint32_t flags)
11001 {
11002 struct intel_mmio_flip *mmio_flip;
11003
11004 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11005 if (mmio_flip == NULL)
11006 return -ENOMEM;
11007
11008 mmio_flip->i915 = to_i915(dev);
11009 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11010 mmio_flip->crtc = to_intel_crtc(crtc);
11011
11012 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11013 schedule_work(&mmio_flip->work);
11014
11015 return 0;
11016 }
11017
11018 static int intel_default_queue_flip(struct drm_device *dev,
11019 struct drm_crtc *crtc,
11020 struct drm_framebuffer *fb,
11021 struct drm_i915_gem_object *obj,
11022 struct intel_engine_cs *ring,
11023 uint32_t flags)
11024 {
11025 return -ENODEV;
11026 }
11027
11028 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11029 struct drm_crtc *crtc)
11030 {
11031 struct drm_i915_private *dev_priv = dev->dev_private;
11032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11033 struct intel_unpin_work *work = intel_crtc->unpin_work;
11034 u32 addr;
11035
11036 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11037 return true;
11038
11039 if (!work->enable_stall_check)
11040 return false;
11041
11042 if (work->flip_ready_vblank == 0) {
11043 if (work->flip_queued_req &&
11044 !i915_gem_request_completed(work->flip_queued_req, true))
11045 return false;
11046
11047 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11048 }
11049
11050 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11051 return false;
11052
11053 /* Potential stall - if we see that the flip has happened,
11054 * assume a missed interrupt. */
11055 if (INTEL_INFO(dev)->gen >= 4)
11056 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11057 else
11058 addr = I915_READ(DSPADDR(intel_crtc->plane));
11059
11060 /* There is a potential issue here with a false positive after a flip
11061 * to the same address. We could address this by checking for a
11062 * non-incrementing frame counter.
11063 */
11064 return addr == work->gtt_offset;
11065 }
11066
11067 void intel_check_page_flip(struct drm_device *dev, int pipe)
11068 {
11069 struct drm_i915_private *dev_priv = dev->dev_private;
11070 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11071 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11072 struct intel_unpin_work *work;
11073
11074 WARN_ON(!in_interrupt());
11075
11076 if (crtc == NULL)
11077 return;
11078
11079 spin_lock(&dev->event_lock);
11080 work = intel_crtc->unpin_work;
11081 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11082 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11083 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11084 page_flip_completed(intel_crtc);
11085 work = NULL;
11086 }
11087 if (work != NULL &&
11088 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11089 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11090 spin_unlock(&dev->event_lock);
11091 }
11092
11093 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11094 struct drm_framebuffer *fb,
11095 struct drm_pending_vblank_event *event,
11096 uint32_t page_flip_flags)
11097 {
11098 struct drm_device *dev = crtc->dev;
11099 struct drm_i915_private *dev_priv = dev->dev_private;
11100 struct drm_framebuffer *old_fb = crtc->primary->fb;
11101 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11103 struct drm_plane *primary = crtc->primary;
11104 enum pipe pipe = intel_crtc->pipe;
11105 struct intel_unpin_work *work;
11106 struct intel_engine_cs *ring;
11107 bool mmio_flip;
11108 int ret;
11109
11110 /*
11111 * drm_mode_page_flip_ioctl() should already catch this, but double
11112 * check to be safe. In the future we may enable pageflipping from
11113 * a disabled primary plane.
11114 */
11115 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11116 return -EBUSY;
11117
11118 /* Can't change pixel format via MI display flips. */
11119 if (fb->pixel_format != crtc->primary->fb->pixel_format)
11120 return -EINVAL;
11121
11122 /*
11123 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11124 * Note that pitch changes could also affect these register.
11125 */
11126 if (INTEL_INFO(dev)->gen > 3 &&
11127 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11128 fb->pitches[0] != crtc->primary->fb->pitches[0]))
11129 return -EINVAL;
11130
11131 if (i915_terminally_wedged(&dev_priv->gpu_error))
11132 goto out_hang;
11133
11134 work = kzalloc(sizeof(*work), GFP_KERNEL);
11135 if (work == NULL)
11136 return -ENOMEM;
11137
11138 work->event = event;
11139 work->crtc = crtc;
11140 work->old_fb = old_fb;
11141 INIT_WORK(&work->work, intel_unpin_work_fn);
11142
11143 ret = drm_crtc_vblank_get(crtc);
11144 if (ret)
11145 goto free_work;
11146
11147 /* We borrow the event spin lock for protecting unpin_work */
11148 spin_lock_irq(&dev->event_lock);
11149 if (intel_crtc->unpin_work) {
11150 /* Before declaring the flip queue wedged, check if
11151 * the hardware completed the operation behind our backs.
11152 */
11153 if (__intel_pageflip_stall_check(dev, crtc)) {
11154 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11155 page_flip_completed(intel_crtc);
11156 } else {
11157 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11158 spin_unlock_irq(&dev->event_lock);
11159
11160 drm_crtc_vblank_put(crtc);
11161 kfree(work);
11162 return -EBUSY;
11163 }
11164 }
11165 intel_crtc->unpin_work = work;
11166 spin_unlock_irq(&dev->event_lock);
11167
11168 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11169 flush_workqueue(dev_priv->wq);
11170
11171 /* Reference the objects for the scheduled work. */
11172 drm_framebuffer_reference(work->old_fb);
11173 drm_gem_object_reference(&obj->base);
11174
11175 crtc->primary->fb = fb;
11176 update_state_fb(crtc->primary);
11177
11178 work->pending_flip_obj = obj;
11179
11180 ret = i915_mutex_lock_interruptible(dev);
11181 if (ret)
11182 goto cleanup;
11183
11184 atomic_inc(&intel_crtc->unpin_work_count);
11185 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11186
11187 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11188 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11189
11190 if (IS_VALLEYVIEW(dev)) {
11191 ring = &dev_priv->ring[BCS];
11192 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11193 /* vlv: DISPLAY_FLIP fails to change tiling */
11194 ring = NULL;
11195 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11196 ring = &dev_priv->ring[BCS];
11197 } else if (INTEL_INFO(dev)->gen >= 7) {
11198 ring = i915_gem_request_get_ring(obj->last_write_req);
11199 if (ring == NULL || ring->id != RCS)
11200 ring = &dev_priv->ring[BCS];
11201 } else {
11202 ring = &dev_priv->ring[RCS];
11203 }
11204
11205 mmio_flip = use_mmio_flip(ring, obj);
11206
11207 /* When using CS flips, we want to emit semaphores between rings.
11208 * However, when using mmio flips we will create a task to do the
11209 * synchronisation, so all we want here is to pin the framebuffer
11210 * into the display plane and skip any waits.
11211 */
11212 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11213 crtc->primary->state,
11214 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11215 if (ret)
11216 goto cleanup_pending;
11217
11218 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11219 + intel_crtc->dspaddr_offset;
11220
11221 if (mmio_flip) {
11222 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11223 page_flip_flags);
11224 if (ret)
11225 goto cleanup_unpin;
11226
11227 i915_gem_request_assign(&work->flip_queued_req,
11228 obj->last_write_req);
11229 } else {
11230 if (obj->last_write_req) {
11231 ret = i915_gem_check_olr(obj->last_write_req);
11232 if (ret)
11233 goto cleanup_unpin;
11234 }
11235
11236 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11237 page_flip_flags);
11238 if (ret)
11239 goto cleanup_unpin;
11240
11241 i915_gem_request_assign(&work->flip_queued_req,
11242 intel_ring_get_request(ring));
11243 }
11244
11245 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11246 work->enable_stall_check = true;
11247
11248 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11249 INTEL_FRONTBUFFER_PRIMARY(pipe));
11250
11251 intel_fbc_disable(dev);
11252 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11253 mutex_unlock(&dev->struct_mutex);
11254
11255 trace_i915_flip_request(intel_crtc->plane, obj);
11256
11257 return 0;
11258
11259 cleanup_unpin:
11260 intel_unpin_fb_obj(fb, crtc->primary->state);
11261 cleanup_pending:
11262 atomic_dec(&intel_crtc->unpin_work_count);
11263 mutex_unlock(&dev->struct_mutex);
11264 cleanup:
11265 crtc->primary->fb = old_fb;
11266 update_state_fb(crtc->primary);
11267
11268 drm_gem_object_unreference_unlocked(&obj->base);
11269 drm_framebuffer_unreference(work->old_fb);
11270
11271 spin_lock_irq(&dev->event_lock);
11272 intel_crtc->unpin_work = NULL;
11273 spin_unlock_irq(&dev->event_lock);
11274
11275 drm_crtc_vblank_put(crtc);
11276 free_work:
11277 kfree(work);
11278
11279 if (ret == -EIO) {
11280 out_hang:
11281 ret = intel_plane_restore(primary);
11282 if (ret == 0 && event) {
11283 spin_lock_irq(&dev->event_lock);
11284 drm_send_vblank_event(dev, pipe, event);
11285 spin_unlock_irq(&dev->event_lock);
11286 }
11287 }
11288 return ret;
11289 }
11290
11291 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11292 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11293 .load_lut = intel_crtc_load_lut,
11294 .atomic_begin = intel_begin_crtc_commit,
11295 .atomic_flush = intel_finish_crtc_commit,
11296 };
11297
11298 /**
11299 * intel_modeset_update_staged_output_state
11300 *
11301 * Updates the staged output configuration state, e.g. after we've read out the
11302 * current hw state.
11303 */
11304 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11305 {
11306 struct intel_crtc *crtc;
11307 struct intel_encoder *encoder;
11308 struct intel_connector *connector;
11309
11310 for_each_intel_connector(dev, connector) {
11311 connector->new_encoder =
11312 to_intel_encoder(connector->base.encoder);
11313 }
11314
11315 for_each_intel_encoder(dev, encoder) {
11316 encoder->new_crtc =
11317 to_intel_crtc(encoder->base.crtc);
11318 }
11319
11320 for_each_intel_crtc(dev, crtc) {
11321 crtc->new_enabled = crtc->base.state->enable;
11322 }
11323 }
11324
11325 /* Transitional helper to copy current connector/encoder state to
11326 * connector->state. This is needed so that code that is partially
11327 * converted to atomic does the right thing.
11328 */
11329 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11330 {
11331 struct intel_connector *connector;
11332
11333 for_each_intel_connector(dev, connector) {
11334 if (connector->base.encoder) {
11335 connector->base.state->best_encoder =
11336 connector->base.encoder;
11337 connector->base.state->crtc =
11338 connector->base.encoder->crtc;
11339 } else {
11340 connector->base.state->best_encoder = NULL;
11341 connector->base.state->crtc = NULL;
11342 }
11343 }
11344 }
11345
11346 /* Fixup legacy state after an atomic state swap.
11347 */
11348 static void intel_modeset_fixup_state(struct drm_atomic_state *state)
11349 {
11350 struct intel_crtc *crtc;
11351 struct intel_encoder *encoder;
11352 struct intel_connector *connector;
11353
11354 for_each_intel_connector(state->dev, connector) {
11355 connector->base.encoder = connector->base.state->best_encoder;
11356 if (connector->base.encoder)
11357 connector->base.encoder->crtc =
11358 connector->base.state->crtc;
11359 }
11360
11361 /* Update crtc of disabled encoders */
11362 for_each_intel_encoder(state->dev, encoder) {
11363 int num_connectors = 0;
11364
11365 for_each_intel_connector(state->dev, connector)
11366 if (connector->base.encoder == &encoder->base)
11367 num_connectors++;
11368
11369 if (num_connectors == 0)
11370 encoder->base.crtc = NULL;
11371 }
11372
11373 for_each_intel_crtc(state->dev, crtc) {
11374 crtc->base.enabled = crtc->base.state->enable;
11375 crtc->config = to_intel_crtc_state(crtc->base.state);
11376 }
11377
11378 /* Copy the new configuration to the staged state, to keep the few
11379 * pieces of code that haven't been converted yet happy */
11380 intel_modeset_update_staged_output_state(state->dev);
11381 }
11382
11383 static void
11384 connected_sink_compute_bpp(struct intel_connector *connector,
11385 struct intel_crtc_state *pipe_config)
11386 {
11387 int bpp = pipe_config->pipe_bpp;
11388
11389 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11390 connector->base.base.id,
11391 connector->base.name);
11392
11393 /* Don't use an invalid EDID bpc value */
11394 if (connector->base.display_info.bpc &&
11395 connector->base.display_info.bpc * 3 < bpp) {
11396 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11397 bpp, connector->base.display_info.bpc*3);
11398 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11399 }
11400
11401 /* Clamp bpp to 8 on screens without EDID 1.4 */
11402 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11403 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11404 bpp);
11405 pipe_config->pipe_bpp = 24;
11406 }
11407 }
11408
11409 static int
11410 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11411 struct intel_crtc_state *pipe_config)
11412 {
11413 struct drm_device *dev = crtc->base.dev;
11414 struct drm_atomic_state *state;
11415 struct drm_connector *connector;
11416 struct drm_connector_state *connector_state;
11417 int bpp, i;
11418
11419 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11420 bpp = 10*3;
11421 else if (INTEL_INFO(dev)->gen >= 5)
11422 bpp = 12*3;
11423 else
11424 bpp = 8*3;
11425
11426
11427 pipe_config->pipe_bpp = bpp;
11428
11429 state = pipe_config->base.state;
11430
11431 /* Clamp display bpp to EDID value */
11432 for_each_connector_in_state(state, connector, connector_state, i) {
11433 if (connector_state->crtc != &crtc->base)
11434 continue;
11435
11436 connected_sink_compute_bpp(to_intel_connector(connector),
11437 pipe_config);
11438 }
11439
11440 return bpp;
11441 }
11442
11443 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11444 {
11445 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11446 "type: 0x%x flags: 0x%x\n",
11447 mode->crtc_clock,
11448 mode->crtc_hdisplay, mode->crtc_hsync_start,
11449 mode->crtc_hsync_end, mode->crtc_htotal,
11450 mode->crtc_vdisplay, mode->crtc_vsync_start,
11451 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11452 }
11453
11454 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11455 struct intel_crtc_state *pipe_config,
11456 const char *context)
11457 {
11458 struct drm_device *dev = crtc->base.dev;
11459 struct drm_plane *plane;
11460 struct intel_plane *intel_plane;
11461 struct intel_plane_state *state;
11462 struct drm_framebuffer *fb;
11463
11464 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11465 context, pipe_config, pipe_name(crtc->pipe));
11466
11467 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11468 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11469 pipe_config->pipe_bpp, pipe_config->dither);
11470 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11471 pipe_config->has_pch_encoder,
11472 pipe_config->fdi_lanes,
11473 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11474 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11475 pipe_config->fdi_m_n.tu);
11476 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11477 pipe_config->has_dp_encoder,
11478 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11479 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11480 pipe_config->dp_m_n.tu);
11481
11482 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11483 pipe_config->has_dp_encoder,
11484 pipe_config->dp_m2_n2.gmch_m,
11485 pipe_config->dp_m2_n2.gmch_n,
11486 pipe_config->dp_m2_n2.link_m,
11487 pipe_config->dp_m2_n2.link_n,
11488 pipe_config->dp_m2_n2.tu);
11489
11490 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11491 pipe_config->has_audio,
11492 pipe_config->has_infoframe);
11493
11494 DRM_DEBUG_KMS("requested mode:\n");
11495 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11496 DRM_DEBUG_KMS("adjusted mode:\n");
11497 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11498 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11499 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11500 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11501 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11502 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11503 crtc->num_scalers,
11504 pipe_config->scaler_state.scaler_users,
11505 pipe_config->scaler_state.scaler_id);
11506 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11507 pipe_config->gmch_pfit.control,
11508 pipe_config->gmch_pfit.pgm_ratios,
11509 pipe_config->gmch_pfit.lvds_border_bits);
11510 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11511 pipe_config->pch_pfit.pos,
11512 pipe_config->pch_pfit.size,
11513 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11514 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11515 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11516
11517 if (IS_BROXTON(dev)) {
11518 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11519 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11520 "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11521 pipe_config->ddi_pll_sel,
11522 pipe_config->dpll_hw_state.ebb0,
11523 pipe_config->dpll_hw_state.pll0,
11524 pipe_config->dpll_hw_state.pll1,
11525 pipe_config->dpll_hw_state.pll2,
11526 pipe_config->dpll_hw_state.pll3,
11527 pipe_config->dpll_hw_state.pll6,
11528 pipe_config->dpll_hw_state.pll8,
11529 pipe_config->dpll_hw_state.pcsdw12);
11530 } else if (IS_SKYLAKE(dev)) {
11531 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11532 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11533 pipe_config->ddi_pll_sel,
11534 pipe_config->dpll_hw_state.ctrl1,
11535 pipe_config->dpll_hw_state.cfgcr1,
11536 pipe_config->dpll_hw_state.cfgcr2);
11537 } else if (HAS_DDI(dev)) {
11538 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11539 pipe_config->ddi_pll_sel,
11540 pipe_config->dpll_hw_state.wrpll);
11541 } else {
11542 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11543 "fp0: 0x%x, fp1: 0x%x\n",
11544 pipe_config->dpll_hw_state.dpll,
11545 pipe_config->dpll_hw_state.dpll_md,
11546 pipe_config->dpll_hw_state.fp0,
11547 pipe_config->dpll_hw_state.fp1);
11548 }
11549
11550 DRM_DEBUG_KMS("planes on this crtc\n");
11551 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11552 intel_plane = to_intel_plane(plane);
11553 if (intel_plane->pipe != crtc->pipe)
11554 continue;
11555
11556 state = to_intel_plane_state(plane->state);
11557 fb = state->base.fb;
11558 if (!fb) {
11559 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11560 "disabled, scaler_id = %d\n",
11561 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11562 plane->base.id, intel_plane->pipe,
11563 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11564 drm_plane_index(plane), state->scaler_id);
11565 continue;
11566 }
11567
11568 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11569 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11570 plane->base.id, intel_plane->pipe,
11571 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11572 drm_plane_index(plane));
11573 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11574 fb->base.id, fb->width, fb->height, fb->pixel_format);
11575 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11576 state->scaler_id,
11577 state->src.x1 >> 16, state->src.y1 >> 16,
11578 drm_rect_width(&state->src) >> 16,
11579 drm_rect_height(&state->src) >> 16,
11580 state->dst.x1, state->dst.y1,
11581 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11582 }
11583 }
11584
11585 static bool encoders_cloneable(const struct intel_encoder *a,
11586 const struct intel_encoder *b)
11587 {
11588 /* masks could be asymmetric, so check both ways */
11589 return a == b || (a->cloneable & (1 << b->type) &&
11590 b->cloneable & (1 << a->type));
11591 }
11592
11593 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11594 struct intel_crtc *crtc,
11595 struct intel_encoder *encoder)
11596 {
11597 struct intel_encoder *source_encoder;
11598 struct drm_connector *connector;
11599 struct drm_connector_state *connector_state;
11600 int i;
11601
11602 for_each_connector_in_state(state, connector, connector_state, i) {
11603 if (connector_state->crtc != &crtc->base)
11604 continue;
11605
11606 source_encoder =
11607 to_intel_encoder(connector_state->best_encoder);
11608 if (!encoders_cloneable(encoder, source_encoder))
11609 return false;
11610 }
11611
11612 return true;
11613 }
11614
11615 static bool check_encoder_cloning(struct drm_atomic_state *state,
11616 struct intel_crtc *crtc)
11617 {
11618 struct intel_encoder *encoder;
11619 struct drm_connector *connector;
11620 struct drm_connector_state *connector_state;
11621 int i;
11622
11623 for_each_connector_in_state(state, connector, connector_state, i) {
11624 if (connector_state->crtc != &crtc->base)
11625 continue;
11626
11627 encoder = to_intel_encoder(connector_state->best_encoder);
11628 if (!check_single_encoder_cloning(state, crtc, encoder))
11629 return false;
11630 }
11631
11632 return true;
11633 }
11634
11635 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11636 {
11637 struct drm_device *dev = state->dev;
11638 struct intel_encoder *encoder;
11639 struct drm_connector *connector;
11640 struct drm_connector_state *connector_state;
11641 unsigned int used_ports = 0;
11642 int i;
11643
11644 /*
11645 * Walk the connector list instead of the encoder
11646 * list to detect the problem on ddi platforms
11647 * where there's just one encoder per digital port.
11648 */
11649 for_each_connector_in_state(state, connector, connector_state, i) {
11650 if (!connector_state->best_encoder)
11651 continue;
11652
11653 encoder = to_intel_encoder(connector_state->best_encoder);
11654
11655 WARN_ON(!connector_state->crtc);
11656
11657 switch (encoder->type) {
11658 unsigned int port_mask;
11659 case INTEL_OUTPUT_UNKNOWN:
11660 if (WARN_ON(!HAS_DDI(dev)))
11661 break;
11662 case INTEL_OUTPUT_DISPLAYPORT:
11663 case INTEL_OUTPUT_HDMI:
11664 case INTEL_OUTPUT_EDP:
11665 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11666
11667 /* the same port mustn't appear more than once */
11668 if (used_ports & port_mask)
11669 return false;
11670
11671 used_ports |= port_mask;
11672 default:
11673 break;
11674 }
11675 }
11676
11677 return true;
11678 }
11679
11680 static void
11681 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11682 {
11683 struct drm_crtc_state tmp_state;
11684 struct intel_crtc_scaler_state scaler_state;
11685 struct intel_dpll_hw_state dpll_hw_state;
11686 enum intel_dpll_id shared_dpll;
11687 uint32_t ddi_pll_sel;
11688
11689 /* FIXME: before the switch to atomic started, a new pipe_config was
11690 * kzalloc'd. Code that depends on any field being zero should be
11691 * fixed, so that the crtc_state can be safely duplicated. For now,
11692 * only fields that are know to not cause problems are preserved. */
11693
11694 tmp_state = crtc_state->base;
11695 scaler_state = crtc_state->scaler_state;
11696 shared_dpll = crtc_state->shared_dpll;
11697 dpll_hw_state = crtc_state->dpll_hw_state;
11698 ddi_pll_sel = crtc_state->ddi_pll_sel;
11699
11700 memset(crtc_state, 0, sizeof *crtc_state);
11701
11702 crtc_state->base = tmp_state;
11703 crtc_state->scaler_state = scaler_state;
11704 crtc_state->shared_dpll = shared_dpll;
11705 crtc_state->dpll_hw_state = dpll_hw_state;
11706 crtc_state->ddi_pll_sel = ddi_pll_sel;
11707 }
11708
11709 static int
11710 intel_modeset_pipe_config(struct drm_crtc *crtc,
11711 struct drm_atomic_state *state,
11712 struct intel_crtc_state *pipe_config)
11713 {
11714 struct intel_encoder *encoder;
11715 struct drm_connector *connector;
11716 struct drm_connector_state *connector_state;
11717 int base_bpp, ret = -EINVAL;
11718 int i;
11719 bool retry = true;
11720
11721 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11722 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11723 return -EINVAL;
11724 }
11725
11726 if (!check_digital_port_conflicts(state)) {
11727 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11728 return -EINVAL;
11729 }
11730
11731 clear_intel_crtc_state(pipe_config);
11732
11733 pipe_config->cpu_transcoder =
11734 (enum transcoder) to_intel_crtc(crtc)->pipe;
11735
11736 /*
11737 * Sanitize sync polarity flags based on requested ones. If neither
11738 * positive or negative polarity is requested, treat this as meaning
11739 * negative polarity.
11740 */
11741 if (!(pipe_config->base.adjusted_mode.flags &
11742 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11743 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11744
11745 if (!(pipe_config->base.adjusted_mode.flags &
11746 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11747 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11748
11749 /* Compute a starting value for pipe_config->pipe_bpp taking the source
11750 * plane pixel format and any sink constraints into account. Returns the
11751 * source plane bpp so that dithering can be selected on mismatches
11752 * after encoders and crtc also have had their say. */
11753 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11754 pipe_config);
11755 if (base_bpp < 0)
11756 goto fail;
11757
11758 /*
11759 * Determine the real pipe dimensions. Note that stereo modes can
11760 * increase the actual pipe size due to the frame doubling and
11761 * insertion of additional space for blanks between the frame. This
11762 * is stored in the crtc timings. We use the requested mode to do this
11763 * computation to clearly distinguish it from the adjusted mode, which
11764 * can be changed by the connectors in the below retry loop.
11765 */
11766 drm_crtc_get_hv_timing(&pipe_config->base.mode,
11767 &pipe_config->pipe_src_w,
11768 &pipe_config->pipe_src_h);
11769
11770 encoder_retry:
11771 /* Ensure the port clock defaults are reset when retrying. */
11772 pipe_config->port_clock = 0;
11773 pipe_config->pixel_multiplier = 1;
11774
11775 /* Fill in default crtc timings, allow encoders to overwrite them. */
11776 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11777 CRTC_STEREO_DOUBLE);
11778
11779 /* Pass our mode to the connectors and the CRTC to give them a chance to
11780 * adjust it according to limitations or connector properties, and also
11781 * a chance to reject the mode entirely.
11782 */
11783 for_each_connector_in_state(state, connector, connector_state, i) {
11784 if (connector_state->crtc != crtc)
11785 continue;
11786
11787 encoder = to_intel_encoder(connector_state->best_encoder);
11788
11789 if (!(encoder->compute_config(encoder, pipe_config))) {
11790 DRM_DEBUG_KMS("Encoder config failure\n");
11791 goto fail;
11792 }
11793 }
11794
11795 /* Set default port clock if not overwritten by the encoder. Needs to be
11796 * done afterwards in case the encoder adjusts the mode. */
11797 if (!pipe_config->port_clock)
11798 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11799 * pipe_config->pixel_multiplier;
11800
11801 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11802 if (ret < 0) {
11803 DRM_DEBUG_KMS("CRTC fixup failed\n");
11804 goto fail;
11805 }
11806
11807 if (ret == RETRY) {
11808 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11809 ret = -EINVAL;
11810 goto fail;
11811 }
11812
11813 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11814 retry = false;
11815 goto encoder_retry;
11816 }
11817
11818 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11819 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11820 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11821
11822 return 0;
11823 fail:
11824 return ret;
11825 }
11826
11827 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11828 {
11829 struct drm_encoder *encoder;
11830 struct drm_device *dev = crtc->dev;
11831
11832 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11833 if (encoder->crtc == crtc)
11834 return true;
11835
11836 return false;
11837 }
11838
11839 static bool
11840 needs_modeset(struct drm_crtc_state *state)
11841 {
11842 return state->mode_changed || state->active_changed;
11843 }
11844
11845 static void
11846 intel_modeset_update_state(struct drm_atomic_state *state)
11847 {
11848 struct drm_device *dev = state->dev;
11849 struct drm_i915_private *dev_priv = dev->dev_private;
11850 struct intel_encoder *intel_encoder;
11851 struct drm_crtc *crtc;
11852 struct drm_crtc_state *crtc_state;
11853 struct drm_connector *connector;
11854 int i;
11855
11856 intel_shared_dpll_commit(dev_priv);
11857
11858 for_each_intel_encoder(dev, intel_encoder) {
11859 if (!intel_encoder->base.crtc)
11860 continue;
11861
11862 for_each_crtc_in_state(state, crtc, crtc_state, i)
11863 if (crtc == intel_encoder->base.crtc)
11864 break;
11865
11866 if (crtc != intel_encoder->base.crtc)
11867 continue;
11868
11869 if (crtc_state->enable && needs_modeset(crtc_state))
11870 intel_encoder->connectors_active = false;
11871 }
11872
11873 drm_atomic_helper_swap_state(state->dev, state);
11874 intel_modeset_fixup_state(state);
11875
11876 /* Double check state. */
11877 for_each_crtc(dev, crtc) {
11878 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
11879 }
11880
11881 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11882 if (!connector->encoder || !connector->encoder->crtc)
11883 continue;
11884
11885 for_each_crtc_in_state(state, crtc, crtc_state, i)
11886 if (crtc == connector->encoder->crtc)
11887 break;
11888
11889 if (crtc != connector->encoder->crtc)
11890 continue;
11891
11892 if (crtc->state->enable && needs_modeset(crtc->state)) {
11893 struct drm_property *dpms_property =
11894 dev->mode_config.dpms_property;
11895
11896 connector->dpms = DRM_MODE_DPMS_ON;
11897 drm_object_property_set_value(&connector->base,
11898 dpms_property,
11899 DRM_MODE_DPMS_ON);
11900
11901 intel_encoder = to_intel_encoder(connector->encoder);
11902 intel_encoder->connectors_active = true;
11903 }
11904 }
11905
11906 }
11907
11908 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11909 {
11910 int diff;
11911
11912 if (clock1 == clock2)
11913 return true;
11914
11915 if (!clock1 || !clock2)
11916 return false;
11917
11918 diff = abs(clock1 - clock2);
11919
11920 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11921 return true;
11922
11923 return false;
11924 }
11925
11926 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11927 list_for_each_entry((intel_crtc), \
11928 &(dev)->mode_config.crtc_list, \
11929 base.head) \
11930 if (mask & (1 <<(intel_crtc)->pipe))
11931
11932 static bool
11933 intel_pipe_config_compare(struct drm_device *dev,
11934 struct intel_crtc_state *current_config,
11935 struct intel_crtc_state *pipe_config)
11936 {
11937 #define PIPE_CONF_CHECK_X(name) \
11938 if (current_config->name != pipe_config->name) { \
11939 DRM_ERROR("mismatch in " #name " " \
11940 "(expected 0x%08x, found 0x%08x)\n", \
11941 current_config->name, \
11942 pipe_config->name); \
11943 return false; \
11944 }
11945
11946 #define PIPE_CONF_CHECK_I(name) \
11947 if (current_config->name != pipe_config->name) { \
11948 DRM_ERROR("mismatch in " #name " " \
11949 "(expected %i, found %i)\n", \
11950 current_config->name, \
11951 pipe_config->name); \
11952 return false; \
11953 }
11954
11955 /* This is required for BDW+ where there is only one set of registers for
11956 * switching between high and low RR.
11957 * This macro can be used whenever a comparison has to be made between one
11958 * hw state and multiple sw state variables.
11959 */
11960 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11961 if ((current_config->name != pipe_config->name) && \
11962 (current_config->alt_name != pipe_config->name)) { \
11963 DRM_ERROR("mismatch in " #name " " \
11964 "(expected %i or %i, found %i)\n", \
11965 current_config->name, \
11966 current_config->alt_name, \
11967 pipe_config->name); \
11968 return false; \
11969 }
11970
11971 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11972 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11973 DRM_ERROR("mismatch in " #name "(" #mask ") " \
11974 "(expected %i, found %i)\n", \
11975 current_config->name & (mask), \
11976 pipe_config->name & (mask)); \
11977 return false; \
11978 }
11979
11980 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11981 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11982 DRM_ERROR("mismatch in " #name " " \
11983 "(expected %i, found %i)\n", \
11984 current_config->name, \
11985 pipe_config->name); \
11986 return false; \
11987 }
11988
11989 #define PIPE_CONF_QUIRK(quirk) \
11990 ((current_config->quirks | pipe_config->quirks) & (quirk))
11991
11992 PIPE_CONF_CHECK_I(cpu_transcoder);
11993
11994 PIPE_CONF_CHECK_I(has_pch_encoder);
11995 PIPE_CONF_CHECK_I(fdi_lanes);
11996 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11997 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11998 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11999 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12000 PIPE_CONF_CHECK_I(fdi_m_n.tu);
12001
12002 PIPE_CONF_CHECK_I(has_dp_encoder);
12003
12004 if (INTEL_INFO(dev)->gen < 8) {
12005 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12006 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12007 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12008 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12009 PIPE_CONF_CHECK_I(dp_m_n.tu);
12010
12011 if (current_config->has_drrs) {
12012 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12013 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12014 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12015 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12016 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12017 }
12018 } else {
12019 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12020 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12021 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12022 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12023 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12024 }
12025
12026 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12027 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12028 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12029 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12030 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12031 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12032
12033 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12034 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12035 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12036 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12037 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12038 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12039
12040 PIPE_CONF_CHECK_I(pixel_multiplier);
12041 PIPE_CONF_CHECK_I(has_hdmi_sink);
12042 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12043 IS_VALLEYVIEW(dev))
12044 PIPE_CONF_CHECK_I(limited_color_range);
12045 PIPE_CONF_CHECK_I(has_infoframe);
12046
12047 PIPE_CONF_CHECK_I(has_audio);
12048
12049 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12050 DRM_MODE_FLAG_INTERLACE);
12051
12052 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12053 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12054 DRM_MODE_FLAG_PHSYNC);
12055 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12056 DRM_MODE_FLAG_NHSYNC);
12057 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12058 DRM_MODE_FLAG_PVSYNC);
12059 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12060 DRM_MODE_FLAG_NVSYNC);
12061 }
12062
12063 PIPE_CONF_CHECK_I(pipe_src_w);
12064 PIPE_CONF_CHECK_I(pipe_src_h);
12065
12066 /*
12067 * FIXME: BIOS likes to set up a cloned config with lvds+external
12068 * screen. Since we don't yet re-compute the pipe config when moving
12069 * just the lvds port away to another pipe the sw tracking won't match.
12070 *
12071 * Proper atomic modesets with recomputed global state will fix this.
12072 * Until then just don't check gmch state for inherited modes.
12073 */
12074 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12075 PIPE_CONF_CHECK_I(gmch_pfit.control);
12076 /* pfit ratios are autocomputed by the hw on gen4+ */
12077 if (INTEL_INFO(dev)->gen < 4)
12078 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12079 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12080 }
12081
12082 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12083 if (current_config->pch_pfit.enabled) {
12084 PIPE_CONF_CHECK_I(pch_pfit.pos);
12085 PIPE_CONF_CHECK_I(pch_pfit.size);
12086 }
12087
12088 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12089
12090 /* BDW+ don't expose a synchronous way to read the state */
12091 if (IS_HASWELL(dev))
12092 PIPE_CONF_CHECK_I(ips_enabled);
12093
12094 PIPE_CONF_CHECK_I(double_wide);
12095
12096 PIPE_CONF_CHECK_X(ddi_pll_sel);
12097
12098 PIPE_CONF_CHECK_I(shared_dpll);
12099 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12100 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12101 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12102 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12103 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12104 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12105 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12106 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12107
12108 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12109 PIPE_CONF_CHECK_I(pipe_bpp);
12110
12111 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12112 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12113
12114 #undef PIPE_CONF_CHECK_X
12115 #undef PIPE_CONF_CHECK_I
12116 #undef PIPE_CONF_CHECK_I_ALT
12117 #undef PIPE_CONF_CHECK_FLAGS
12118 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12119 #undef PIPE_CONF_QUIRK
12120
12121 return true;
12122 }
12123
12124 static void check_wm_state(struct drm_device *dev)
12125 {
12126 struct drm_i915_private *dev_priv = dev->dev_private;
12127 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12128 struct intel_crtc *intel_crtc;
12129 int plane;
12130
12131 if (INTEL_INFO(dev)->gen < 9)
12132 return;
12133
12134 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12135 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12136
12137 for_each_intel_crtc(dev, intel_crtc) {
12138 struct skl_ddb_entry *hw_entry, *sw_entry;
12139 const enum pipe pipe = intel_crtc->pipe;
12140
12141 if (!intel_crtc->active)
12142 continue;
12143
12144 /* planes */
12145 for_each_plane(dev_priv, pipe, plane) {
12146 hw_entry = &hw_ddb.plane[pipe][plane];
12147 sw_entry = &sw_ddb->plane[pipe][plane];
12148
12149 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12150 continue;
12151
12152 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12153 "(expected (%u,%u), found (%u,%u))\n",
12154 pipe_name(pipe), plane + 1,
12155 sw_entry->start, sw_entry->end,
12156 hw_entry->start, hw_entry->end);
12157 }
12158
12159 /* cursor */
12160 hw_entry = &hw_ddb.cursor[pipe];
12161 sw_entry = &sw_ddb->cursor[pipe];
12162
12163 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12164 continue;
12165
12166 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12167 "(expected (%u,%u), found (%u,%u))\n",
12168 pipe_name(pipe),
12169 sw_entry->start, sw_entry->end,
12170 hw_entry->start, hw_entry->end);
12171 }
12172 }
12173
12174 static void
12175 check_connector_state(struct drm_device *dev)
12176 {
12177 struct intel_connector *connector;
12178
12179 for_each_intel_connector(dev, connector) {
12180 /* This also checks the encoder/connector hw state with the
12181 * ->get_hw_state callbacks. */
12182 intel_connector_check_state(connector);
12183
12184 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12185 "connector's staged encoder doesn't match current encoder\n");
12186 }
12187 }
12188
12189 static void
12190 check_encoder_state(struct drm_device *dev)
12191 {
12192 struct intel_encoder *encoder;
12193 struct intel_connector *connector;
12194
12195 for_each_intel_encoder(dev, encoder) {
12196 bool enabled = false;
12197 bool active = false;
12198 enum pipe pipe, tracked_pipe;
12199
12200 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12201 encoder->base.base.id,
12202 encoder->base.name);
12203
12204 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12205 "encoder's stage crtc doesn't match current crtc\n");
12206 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12207 "encoder's active_connectors set, but no crtc\n");
12208
12209 for_each_intel_connector(dev, connector) {
12210 if (connector->base.encoder != &encoder->base)
12211 continue;
12212 enabled = true;
12213 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12214 active = true;
12215 }
12216 /*
12217 * for MST connectors if we unplug the connector is gone
12218 * away but the encoder is still connected to a crtc
12219 * until a modeset happens in response to the hotplug.
12220 */
12221 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12222 continue;
12223
12224 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12225 "encoder's enabled state mismatch "
12226 "(expected %i, found %i)\n",
12227 !!encoder->base.crtc, enabled);
12228 I915_STATE_WARN(active && !encoder->base.crtc,
12229 "active encoder with no crtc\n");
12230
12231 I915_STATE_WARN(encoder->connectors_active != active,
12232 "encoder's computed active state doesn't match tracked active state "
12233 "(expected %i, found %i)\n", active, encoder->connectors_active);
12234
12235 active = encoder->get_hw_state(encoder, &pipe);
12236 I915_STATE_WARN(active != encoder->connectors_active,
12237 "encoder's hw state doesn't match sw tracking "
12238 "(expected %i, found %i)\n",
12239 encoder->connectors_active, active);
12240
12241 if (!encoder->base.crtc)
12242 continue;
12243
12244 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12245 I915_STATE_WARN(active && pipe != tracked_pipe,
12246 "active encoder's pipe doesn't match"
12247 "(expected %i, found %i)\n",
12248 tracked_pipe, pipe);
12249
12250 }
12251 }
12252
12253 static void
12254 check_crtc_state(struct drm_device *dev)
12255 {
12256 struct drm_i915_private *dev_priv = dev->dev_private;
12257 struct intel_crtc *crtc;
12258 struct intel_encoder *encoder;
12259 struct intel_crtc_state pipe_config;
12260
12261 for_each_intel_crtc(dev, crtc) {
12262 bool enabled = false;
12263 bool active = false;
12264
12265 memset(&pipe_config, 0, sizeof(pipe_config));
12266
12267 DRM_DEBUG_KMS("[CRTC:%d]\n",
12268 crtc->base.base.id);
12269
12270 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12271 "active crtc, but not enabled in sw tracking\n");
12272
12273 for_each_intel_encoder(dev, encoder) {
12274 if (encoder->base.crtc != &crtc->base)
12275 continue;
12276 enabled = true;
12277 if (encoder->connectors_active)
12278 active = true;
12279 }
12280
12281 I915_STATE_WARN(active != crtc->active,
12282 "crtc's computed active state doesn't match tracked active state "
12283 "(expected %i, found %i)\n", active, crtc->active);
12284 I915_STATE_WARN(enabled != crtc->base.state->enable,
12285 "crtc's computed enabled state doesn't match tracked enabled state "
12286 "(expected %i, found %i)\n", enabled,
12287 crtc->base.state->enable);
12288
12289 active = dev_priv->display.get_pipe_config(crtc,
12290 &pipe_config);
12291
12292 /* hw state is inconsistent with the pipe quirk */
12293 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12294 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12295 active = crtc->active;
12296
12297 for_each_intel_encoder(dev, encoder) {
12298 enum pipe pipe;
12299 if (encoder->base.crtc != &crtc->base)
12300 continue;
12301 if (encoder->get_hw_state(encoder, &pipe))
12302 encoder->get_config(encoder, &pipe_config);
12303 }
12304
12305 I915_STATE_WARN(crtc->active != active,
12306 "crtc active state doesn't match with hw state "
12307 "(expected %i, found %i)\n", crtc->active, active);
12308
12309 if (active &&
12310 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12311 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12312 intel_dump_pipe_config(crtc, &pipe_config,
12313 "[hw state]");
12314 intel_dump_pipe_config(crtc, crtc->config,
12315 "[sw state]");
12316 }
12317 }
12318 }
12319
12320 static void
12321 check_shared_dpll_state(struct drm_device *dev)
12322 {
12323 struct drm_i915_private *dev_priv = dev->dev_private;
12324 struct intel_crtc *crtc;
12325 struct intel_dpll_hw_state dpll_hw_state;
12326 int i;
12327
12328 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12329 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12330 int enabled_crtcs = 0, active_crtcs = 0;
12331 bool active;
12332
12333 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12334
12335 DRM_DEBUG_KMS("%s\n", pll->name);
12336
12337 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12338
12339 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12340 "more active pll users than references: %i vs %i\n",
12341 pll->active, hweight32(pll->config.crtc_mask));
12342 I915_STATE_WARN(pll->active && !pll->on,
12343 "pll in active use but not on in sw tracking\n");
12344 I915_STATE_WARN(pll->on && !pll->active,
12345 "pll in on but not on in use in sw tracking\n");
12346 I915_STATE_WARN(pll->on != active,
12347 "pll on state mismatch (expected %i, found %i)\n",
12348 pll->on, active);
12349
12350 for_each_intel_crtc(dev, crtc) {
12351 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12352 enabled_crtcs++;
12353 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12354 active_crtcs++;
12355 }
12356 I915_STATE_WARN(pll->active != active_crtcs,
12357 "pll active crtcs mismatch (expected %i, found %i)\n",
12358 pll->active, active_crtcs);
12359 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12360 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12361 hweight32(pll->config.crtc_mask), enabled_crtcs);
12362
12363 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12364 sizeof(dpll_hw_state)),
12365 "pll hw state mismatch\n");
12366 }
12367 }
12368
12369 void
12370 intel_modeset_check_state(struct drm_device *dev)
12371 {
12372 check_wm_state(dev);
12373 check_connector_state(dev);
12374 check_encoder_state(dev);
12375 check_crtc_state(dev);
12376 check_shared_dpll_state(dev);
12377 }
12378
12379 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12380 int dotclock)
12381 {
12382 /*
12383 * FDI already provided one idea for the dotclock.
12384 * Yell if the encoder disagrees.
12385 */
12386 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12387 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12388 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12389 }
12390
12391 static void update_scanline_offset(struct intel_crtc *crtc)
12392 {
12393 struct drm_device *dev = crtc->base.dev;
12394
12395 /*
12396 * The scanline counter increments at the leading edge of hsync.
12397 *
12398 * On most platforms it starts counting from vtotal-1 on the
12399 * first active line. That means the scanline counter value is
12400 * always one less than what we would expect. Ie. just after
12401 * start of vblank, which also occurs at start of hsync (on the
12402 * last active line), the scanline counter will read vblank_start-1.
12403 *
12404 * On gen2 the scanline counter starts counting from 1 instead
12405 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12406 * to keep the value positive), instead of adding one.
12407 *
12408 * On HSW+ the behaviour of the scanline counter depends on the output
12409 * type. For DP ports it behaves like most other platforms, but on HDMI
12410 * there's an extra 1 line difference. So we need to add two instead of
12411 * one to the value.
12412 */
12413 if (IS_GEN2(dev)) {
12414 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12415 int vtotal;
12416
12417 vtotal = mode->crtc_vtotal;
12418 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12419 vtotal /= 2;
12420
12421 crtc->scanline_offset = vtotal - 1;
12422 } else if (HAS_DDI(dev) &&
12423 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12424 crtc->scanline_offset = 2;
12425 } else
12426 crtc->scanline_offset = 1;
12427 }
12428
12429 static struct intel_crtc_state *
12430 intel_modeset_compute_config(struct drm_crtc *crtc,
12431 struct drm_atomic_state *state)
12432 {
12433 struct intel_crtc_state *pipe_config;
12434 int ret = 0;
12435
12436 ret = drm_atomic_add_affected_connectors(state, crtc);
12437 if (ret)
12438 return ERR_PTR(ret);
12439
12440 ret = drm_atomic_helper_check_modeset(state->dev, state);
12441 if (ret)
12442 return ERR_PTR(ret);
12443
12444 /*
12445 * Note this needs changes when we start tracking multiple modes
12446 * and crtcs. At that point we'll need to compute the whole config
12447 * (i.e. one pipe_config for each crtc) rather than just the one
12448 * for this crtc.
12449 */
12450 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12451 if (IS_ERR(pipe_config))
12452 return pipe_config;
12453
12454 if (!pipe_config->base.enable)
12455 return pipe_config;
12456
12457 ret = intel_modeset_pipe_config(crtc, state, pipe_config);
12458 if (ret)
12459 return ERR_PTR(ret);
12460
12461 /* Check things that can only be changed through modeset */
12462 if (pipe_config->has_audio !=
12463 to_intel_crtc(crtc)->config->has_audio)
12464 pipe_config->base.mode_changed = true;
12465
12466 /*
12467 * Note we have an issue here with infoframes: current code
12468 * only updates them on the full mode set path per hw
12469 * requirements. So here we should be checking for any
12470 * required changes and forcing a mode set.
12471 */
12472
12473 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
12474
12475 ret = drm_atomic_helper_check_planes(state->dev, state);
12476 if (ret)
12477 return ERR_PTR(ret);
12478
12479 return pipe_config;
12480 }
12481
12482 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
12483 {
12484 struct drm_device *dev = state->dev;
12485 struct drm_i915_private *dev_priv = to_i915(dev);
12486 unsigned clear_pipes = 0;
12487 struct intel_crtc *intel_crtc;
12488 struct intel_crtc_state *intel_crtc_state;
12489 struct drm_crtc *crtc;
12490 struct drm_crtc_state *crtc_state;
12491 int ret = 0;
12492 int i;
12493
12494 if (!dev_priv->display.crtc_compute_clock)
12495 return 0;
12496
12497 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12498 intel_crtc = to_intel_crtc(crtc);
12499 intel_crtc_state = to_intel_crtc_state(crtc_state);
12500
12501 if (needs_modeset(crtc_state)) {
12502 clear_pipes |= 1 << intel_crtc->pipe;
12503 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12504 }
12505 }
12506
12507 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12508 if (ret)
12509 goto done;
12510
12511 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12512 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12513 continue;
12514
12515 intel_crtc = to_intel_crtc(crtc);
12516 intel_crtc_state = to_intel_crtc_state(crtc_state);
12517
12518 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12519 intel_crtc_state);
12520 if (ret) {
12521 intel_shared_dpll_abort_config(dev_priv);
12522 goto done;
12523 }
12524 }
12525
12526 done:
12527 return ret;
12528 }
12529
12530 /* Code that should eventually be part of atomic_check() */
12531 static int __intel_set_mode_checks(struct drm_atomic_state *state)
12532 {
12533 struct drm_device *dev = state->dev;
12534 int ret;
12535
12536 /*
12537 * See if the config requires any additional preparation, e.g.
12538 * to adjust global state with pipes off. We need to do this
12539 * here so we can get the modeset_pipe updated config for the new
12540 * mode set on this crtc. For other crtcs we need to use the
12541 * adjusted_mode bits in the crtc directly.
12542 */
12543 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12544 ret = valleyview_modeset_global_pipes(state);
12545 if (ret)
12546 return ret;
12547 }
12548
12549 ret = __intel_set_mode_setup_plls(state);
12550 if (ret)
12551 return ret;
12552
12553 return 0;
12554 }
12555
12556 static int __intel_set_mode(struct drm_crtc *modeset_crtc,
12557 struct intel_crtc_state *pipe_config)
12558 {
12559 struct drm_device *dev = modeset_crtc->dev;
12560 struct drm_i915_private *dev_priv = dev->dev_private;
12561 struct drm_atomic_state *state = pipe_config->base.state;
12562 struct drm_crtc *crtc;
12563 struct drm_crtc_state *crtc_state;
12564 int ret = 0;
12565 int i;
12566
12567 ret = __intel_set_mode_checks(state);
12568 if (ret < 0)
12569 return ret;
12570
12571 ret = drm_atomic_helper_prepare_planes(dev, state);
12572 if (ret)
12573 return ret;
12574
12575 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12576 if (!needs_modeset(crtc_state))
12577 continue;
12578
12579 if (!crtc_state->enable) {
12580 intel_crtc_disable(crtc);
12581 } else if (crtc->state->enable) {
12582 intel_crtc_disable_planes(crtc);
12583 dev_priv->display.crtc_disable(crtc);
12584 }
12585 }
12586
12587 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12588 * to set it here already despite that we pass it down the callchain.
12589 *
12590 * Note we'll need to fix this up when we start tracking multiple
12591 * pipes; here we assume a single modeset_pipe and only track the
12592 * single crtc and mode.
12593 */
12594 if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
12595 modeset_crtc->mode = pipe_config->base.mode;
12596
12597 /*
12598 * Calculate and store various constants which
12599 * are later needed by vblank and swap-completion
12600 * timestamping. They are derived from true hwmode.
12601 */
12602 drm_calc_timestamping_constants(modeset_crtc,
12603 &pipe_config->base.adjusted_mode);
12604 }
12605
12606 /* Only after disabling all output pipelines that will be changed can we
12607 * update the the output configuration. */
12608 intel_modeset_update_state(state);
12609
12610 /* The state has been swaped above, so state actually contains the
12611 * old state now. */
12612
12613 modeset_update_crtc_power_domains(state);
12614
12615 drm_atomic_helper_commit_planes(dev, state);
12616
12617 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12618 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12619 if (!needs_modeset(crtc->state) || !crtc->state->enable)
12620 continue;
12621
12622 update_scanline_offset(to_intel_crtc(crtc));
12623
12624 dev_priv->display.crtc_enable(crtc);
12625 intel_crtc_enable_planes(crtc);
12626 }
12627
12628 /* FIXME: add subpixel order */
12629
12630 drm_atomic_helper_cleanup_planes(dev, state);
12631
12632 drm_atomic_state_free(state);
12633
12634 return 0;
12635 }
12636
12637 static int intel_set_mode_with_config(struct drm_crtc *crtc,
12638 struct intel_crtc_state *pipe_config)
12639 {
12640 int ret;
12641
12642 ret = __intel_set_mode(crtc, pipe_config);
12643
12644 if (ret == 0)
12645 intel_modeset_check_state(crtc->dev);
12646
12647 return ret;
12648 }
12649
12650 static int intel_set_mode(struct drm_crtc *crtc,
12651 struct drm_atomic_state *state)
12652 {
12653 struct intel_crtc_state *pipe_config;
12654 int ret = 0;
12655
12656 pipe_config = intel_modeset_compute_config(crtc, state);
12657 if (IS_ERR(pipe_config)) {
12658 ret = PTR_ERR(pipe_config);
12659 goto out;
12660 }
12661
12662 ret = intel_set_mode_with_config(crtc, pipe_config);
12663 if (ret)
12664 goto out;
12665
12666 out:
12667 return ret;
12668 }
12669
12670 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12671 {
12672 struct drm_device *dev = crtc->dev;
12673 struct drm_atomic_state *state;
12674 struct intel_crtc *intel_crtc;
12675 struct intel_encoder *encoder;
12676 struct intel_connector *connector;
12677 struct drm_connector_state *connector_state;
12678 struct intel_crtc_state *crtc_state;
12679 int ret;
12680
12681 state = drm_atomic_state_alloc(dev);
12682 if (!state) {
12683 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12684 crtc->base.id);
12685 return;
12686 }
12687
12688 state->acquire_ctx = dev->mode_config.acquire_ctx;
12689
12690 /* The force restore path in the HW readout code relies on the staged
12691 * config still keeping the user requested config while the actual
12692 * state has been overwritten by the configuration read from HW. We
12693 * need to copy the staged config to the atomic state, otherwise the
12694 * mode set will just reapply the state the HW is already in. */
12695 for_each_intel_encoder(dev, encoder) {
12696 if (&encoder->new_crtc->base != crtc)
12697 continue;
12698
12699 for_each_intel_connector(dev, connector) {
12700 if (connector->new_encoder != encoder)
12701 continue;
12702
12703 connector_state = drm_atomic_get_connector_state(state, &connector->base);
12704 if (IS_ERR(connector_state)) {
12705 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12706 connector->base.base.id,
12707 connector->base.name,
12708 PTR_ERR(connector_state));
12709 continue;
12710 }
12711
12712 connector_state->crtc = crtc;
12713 connector_state->best_encoder = &encoder->base;
12714 }
12715 }
12716
12717 for_each_intel_crtc(dev, intel_crtc) {
12718 if (intel_crtc->new_enabled == intel_crtc->base.enabled)
12719 continue;
12720
12721 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
12722 if (IS_ERR(crtc_state)) {
12723 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12724 intel_crtc->base.base.id,
12725 PTR_ERR(crtc_state));
12726 continue;
12727 }
12728
12729 crtc_state->base.active = crtc_state->base.enable =
12730 intel_crtc->new_enabled;
12731
12732 if (&intel_crtc->base == crtc)
12733 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
12734 }
12735
12736 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12737 crtc->primary->fb, crtc->x, crtc->y);
12738
12739 ret = intel_set_mode(crtc, state);
12740 if (ret)
12741 drm_atomic_state_free(state);
12742 }
12743
12744 #undef for_each_intel_crtc_masked
12745
12746 static bool intel_connector_in_mode_set(struct intel_connector *connector,
12747 struct drm_mode_set *set)
12748 {
12749 int ro;
12750
12751 for (ro = 0; ro < set->num_connectors; ro++)
12752 if (set->connectors[ro] == &connector->base)
12753 return true;
12754
12755 return false;
12756 }
12757
12758 static int
12759 intel_modeset_stage_output_state(struct drm_device *dev,
12760 struct drm_mode_set *set,
12761 struct drm_atomic_state *state)
12762 {
12763 struct intel_connector *connector;
12764 struct drm_connector *drm_connector;
12765 struct drm_connector_state *connector_state;
12766 struct drm_crtc *crtc;
12767 struct drm_crtc_state *crtc_state;
12768 int i, ret;
12769
12770 /* The upper layers ensure that we either disable a crtc or have a list
12771 * of connectors. For paranoia, double-check this. */
12772 WARN_ON(!set->fb && (set->num_connectors != 0));
12773 WARN_ON(set->fb && (set->num_connectors == 0));
12774
12775 for_each_intel_connector(dev, connector) {
12776 bool in_mode_set = intel_connector_in_mode_set(connector, set);
12777
12778 if (!in_mode_set && connector->base.state->crtc != set->crtc)
12779 continue;
12780
12781 connector_state =
12782 drm_atomic_get_connector_state(state, &connector->base);
12783 if (IS_ERR(connector_state))
12784 return PTR_ERR(connector_state);
12785
12786 if (in_mode_set) {
12787 int pipe = to_intel_crtc(set->crtc)->pipe;
12788 connector_state->best_encoder =
12789 &intel_find_encoder(connector, pipe)->base;
12790 }
12791
12792 if (connector->base.state->crtc != set->crtc)
12793 continue;
12794
12795 /* If we disable the crtc, disable all its connectors. Also, if
12796 * the connector is on the changing crtc but not on the new
12797 * connector list, disable it. */
12798 if (!set->fb || !in_mode_set) {
12799 connector_state->best_encoder = NULL;
12800
12801 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12802 connector->base.base.id,
12803 connector->base.name);
12804 }
12805 }
12806 /* connector->new_encoder is now updated for all connectors. */
12807
12808 for_each_connector_in_state(state, drm_connector, connector_state, i) {
12809 connector = to_intel_connector(drm_connector);
12810
12811 if (!connector_state->best_encoder) {
12812 ret = drm_atomic_set_crtc_for_connector(connector_state,
12813 NULL);
12814 if (ret)
12815 return ret;
12816
12817 continue;
12818 }
12819
12820 if (intel_connector_in_mode_set(connector, set)) {
12821 struct drm_crtc *crtc = connector->base.state->crtc;
12822
12823 /* If this connector was in a previous crtc, add it
12824 * to the state. We might need to disable it. */
12825 if (crtc) {
12826 crtc_state =
12827 drm_atomic_get_crtc_state(state, crtc);
12828 if (IS_ERR(crtc_state))
12829 return PTR_ERR(crtc_state);
12830 }
12831
12832 ret = drm_atomic_set_crtc_for_connector(connector_state,
12833 set->crtc);
12834 if (ret)
12835 return ret;
12836 }
12837
12838 /* Make sure the new CRTC will work with the encoder */
12839 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12840 connector_state->crtc)) {
12841 return -EINVAL;
12842 }
12843
12844 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12845 connector->base.base.id,
12846 connector->base.name,
12847 connector_state->crtc->base.id);
12848
12849 if (connector_state->best_encoder != &connector->encoder->base)
12850 connector->encoder =
12851 to_intel_encoder(connector_state->best_encoder);
12852 }
12853
12854 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12855 bool has_connectors;
12856
12857 ret = drm_atomic_add_affected_connectors(state, crtc);
12858 if (ret)
12859 return ret;
12860
12861 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12862 if (has_connectors != crtc_state->enable)
12863 crtc_state->enable =
12864 crtc_state->active = has_connectors;
12865 }
12866
12867 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12868 set->fb, set->x, set->y);
12869 if (ret)
12870 return ret;
12871
12872 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12873 if (IS_ERR(crtc_state))
12874 return PTR_ERR(crtc_state);
12875
12876 if (set->mode)
12877 drm_mode_copy(&crtc_state->mode, set->mode);
12878
12879 if (set->num_connectors)
12880 crtc_state->active = true;
12881
12882 return 0;
12883 }
12884
12885 static bool primary_plane_visible(struct drm_crtc *crtc)
12886 {
12887 struct intel_plane_state *plane_state =
12888 to_intel_plane_state(crtc->primary->state);
12889
12890 return plane_state->visible;
12891 }
12892
12893 static int intel_crtc_set_config(struct drm_mode_set *set)
12894 {
12895 struct drm_device *dev;
12896 struct drm_atomic_state *state = NULL;
12897 struct intel_crtc_state *pipe_config;
12898 bool primary_plane_was_visible;
12899 int ret;
12900
12901 BUG_ON(!set);
12902 BUG_ON(!set->crtc);
12903 BUG_ON(!set->crtc->helper_private);
12904
12905 /* Enforce sane interface api - has been abused by the fb helper. */
12906 BUG_ON(!set->mode && set->fb);
12907 BUG_ON(set->fb && set->num_connectors == 0);
12908
12909 if (set->fb) {
12910 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12911 set->crtc->base.id, set->fb->base.id,
12912 (int)set->num_connectors, set->x, set->y);
12913 } else {
12914 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12915 }
12916
12917 dev = set->crtc->dev;
12918
12919 state = drm_atomic_state_alloc(dev);
12920 if (!state)
12921 return -ENOMEM;
12922
12923 state->acquire_ctx = dev->mode_config.acquire_ctx;
12924
12925 ret = intel_modeset_stage_output_state(dev, set, state);
12926 if (ret)
12927 goto out;
12928
12929 pipe_config = intel_modeset_compute_config(set->crtc, state);
12930 if (IS_ERR(pipe_config)) {
12931 ret = PTR_ERR(pipe_config);
12932 goto out;
12933 }
12934
12935 intel_update_pipe_size(to_intel_crtc(set->crtc));
12936
12937 primary_plane_was_visible = primary_plane_visible(set->crtc);
12938
12939 ret = intel_set_mode_with_config(set->crtc, pipe_config);
12940
12941 if (ret == 0 &&
12942 pipe_config->base.enable &&
12943 pipe_config->base.planes_changed &&
12944 !needs_modeset(&pipe_config->base)) {
12945 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12946
12947 /*
12948 * We need to make sure the primary plane is re-enabled if it
12949 * has previously been turned off.
12950 */
12951 if (ret == 0 && !primary_plane_was_visible &&
12952 primary_plane_visible(set->crtc)) {
12953 WARN_ON(!intel_crtc->active);
12954 intel_post_enable_primary(set->crtc);
12955 }
12956
12957 /*
12958 * In the fastboot case this may be our only check of the
12959 * state after boot. It would be better to only do it on
12960 * the first update, but we don't have a nice way of doing that
12961 * (and really, set_config isn't used much for high freq page
12962 * flipping, so increasing its cost here shouldn't be a big
12963 * deal).
12964 */
12965 if (i915.fastboot && ret == 0)
12966 intel_modeset_check_state(set->crtc->dev);
12967 }
12968
12969 if (ret) {
12970 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12971 set->crtc->base.id, ret);
12972 }
12973
12974 out:
12975 if (ret)
12976 drm_atomic_state_free(state);
12977 return ret;
12978 }
12979
12980 static const struct drm_crtc_funcs intel_crtc_funcs = {
12981 .gamma_set = intel_crtc_gamma_set,
12982 .set_config = intel_crtc_set_config,
12983 .destroy = intel_crtc_destroy,
12984 .page_flip = intel_crtc_page_flip,
12985 .atomic_duplicate_state = intel_crtc_duplicate_state,
12986 .atomic_destroy_state = intel_crtc_destroy_state,
12987 };
12988
12989 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12990 struct intel_shared_dpll *pll,
12991 struct intel_dpll_hw_state *hw_state)
12992 {
12993 uint32_t val;
12994
12995 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12996 return false;
12997
12998 val = I915_READ(PCH_DPLL(pll->id));
12999 hw_state->dpll = val;
13000 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13001 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13002
13003 return val & DPLL_VCO_ENABLE;
13004 }
13005
13006 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13007 struct intel_shared_dpll *pll)
13008 {
13009 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13010 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13011 }
13012
13013 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13014 struct intel_shared_dpll *pll)
13015 {
13016 /* PCH refclock must be enabled first */
13017 ibx_assert_pch_refclk_enabled(dev_priv);
13018
13019 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13020
13021 /* Wait for the clocks to stabilize. */
13022 POSTING_READ(PCH_DPLL(pll->id));
13023 udelay(150);
13024
13025 /* The pixel multiplier can only be updated once the
13026 * DPLL is enabled and the clocks are stable.
13027 *
13028 * So write it again.
13029 */
13030 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13031 POSTING_READ(PCH_DPLL(pll->id));
13032 udelay(200);
13033 }
13034
13035 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13036 struct intel_shared_dpll *pll)
13037 {
13038 struct drm_device *dev = dev_priv->dev;
13039 struct intel_crtc *crtc;
13040
13041 /* Make sure no transcoder isn't still depending on us. */
13042 for_each_intel_crtc(dev, crtc) {
13043 if (intel_crtc_to_shared_dpll(crtc) == pll)
13044 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13045 }
13046
13047 I915_WRITE(PCH_DPLL(pll->id), 0);
13048 POSTING_READ(PCH_DPLL(pll->id));
13049 udelay(200);
13050 }
13051
13052 static char *ibx_pch_dpll_names[] = {
13053 "PCH DPLL A",
13054 "PCH DPLL B",
13055 };
13056
13057 static void ibx_pch_dpll_init(struct drm_device *dev)
13058 {
13059 struct drm_i915_private *dev_priv = dev->dev_private;
13060 int i;
13061
13062 dev_priv->num_shared_dpll = 2;
13063
13064 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13065 dev_priv->shared_dplls[i].id = i;
13066 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13067 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13068 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13069 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13070 dev_priv->shared_dplls[i].get_hw_state =
13071 ibx_pch_dpll_get_hw_state;
13072 }
13073 }
13074
13075 static void intel_shared_dpll_init(struct drm_device *dev)
13076 {
13077 struct drm_i915_private *dev_priv = dev->dev_private;
13078
13079 if (HAS_DDI(dev))
13080 intel_ddi_pll_init(dev);
13081 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13082 ibx_pch_dpll_init(dev);
13083 else
13084 dev_priv->num_shared_dpll = 0;
13085
13086 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13087 }
13088
13089 /**
13090 * intel_wm_need_update - Check whether watermarks need updating
13091 * @plane: drm plane
13092 * @state: new plane state
13093 *
13094 * Check current plane state versus the new one to determine whether
13095 * watermarks need to be recalculated.
13096 *
13097 * Returns true or false.
13098 */
13099 bool intel_wm_need_update(struct drm_plane *plane,
13100 struct drm_plane_state *state)
13101 {
13102 /* Update watermarks on tiling changes. */
13103 if (!plane->state->fb || !state->fb ||
13104 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13105 plane->state->rotation != state->rotation)
13106 return true;
13107
13108 return false;
13109 }
13110
13111 /**
13112 * intel_prepare_plane_fb - Prepare fb for usage on plane
13113 * @plane: drm plane to prepare for
13114 * @fb: framebuffer to prepare for presentation
13115 *
13116 * Prepares a framebuffer for usage on a display plane. Generally this
13117 * involves pinning the underlying object and updating the frontbuffer tracking
13118 * bits. Some older platforms need special physical address handling for
13119 * cursor planes.
13120 *
13121 * Returns 0 on success, negative error code on failure.
13122 */
13123 int
13124 intel_prepare_plane_fb(struct drm_plane *plane,
13125 struct drm_framebuffer *fb,
13126 const struct drm_plane_state *new_state)
13127 {
13128 struct drm_device *dev = plane->dev;
13129 struct intel_plane *intel_plane = to_intel_plane(plane);
13130 enum pipe pipe = intel_plane->pipe;
13131 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13132 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13133 unsigned frontbuffer_bits = 0;
13134 int ret = 0;
13135
13136 if (!obj)
13137 return 0;
13138
13139 switch (plane->type) {
13140 case DRM_PLANE_TYPE_PRIMARY:
13141 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13142 break;
13143 case DRM_PLANE_TYPE_CURSOR:
13144 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13145 break;
13146 case DRM_PLANE_TYPE_OVERLAY:
13147 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13148 break;
13149 }
13150
13151 mutex_lock(&dev->struct_mutex);
13152
13153 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13154 INTEL_INFO(dev)->cursor_needs_physical) {
13155 int align = IS_I830(dev) ? 16 * 1024 : 256;
13156 ret = i915_gem_object_attach_phys(obj, align);
13157 if (ret)
13158 DRM_DEBUG_KMS("failed to attach phys object\n");
13159 } else {
13160 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13161 }
13162
13163 if (ret == 0)
13164 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13165
13166 mutex_unlock(&dev->struct_mutex);
13167
13168 return ret;
13169 }
13170
13171 /**
13172 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13173 * @plane: drm plane to clean up for
13174 * @fb: old framebuffer that was on plane
13175 *
13176 * Cleans up a framebuffer that has just been removed from a plane.
13177 */
13178 void
13179 intel_cleanup_plane_fb(struct drm_plane *plane,
13180 struct drm_framebuffer *fb,
13181 const struct drm_plane_state *old_state)
13182 {
13183 struct drm_device *dev = plane->dev;
13184 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13185
13186 if (WARN_ON(!obj))
13187 return;
13188
13189 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13190 !INTEL_INFO(dev)->cursor_needs_physical) {
13191 mutex_lock(&dev->struct_mutex);
13192 intel_unpin_fb_obj(fb, old_state);
13193 mutex_unlock(&dev->struct_mutex);
13194 }
13195 }
13196
13197 int
13198 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13199 {
13200 int max_scale;
13201 struct drm_device *dev;
13202 struct drm_i915_private *dev_priv;
13203 int crtc_clock, cdclk;
13204
13205 if (!intel_crtc || !crtc_state)
13206 return DRM_PLANE_HELPER_NO_SCALING;
13207
13208 dev = intel_crtc->base.dev;
13209 dev_priv = dev->dev_private;
13210 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13211 cdclk = dev_priv->display.get_display_clock_speed(dev);
13212
13213 if (!crtc_clock || !cdclk)
13214 return DRM_PLANE_HELPER_NO_SCALING;
13215
13216 /*
13217 * skl max scale is lower of:
13218 * close to 3 but not 3, -1 is for that purpose
13219 * or
13220 * cdclk/crtc_clock
13221 */
13222 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13223
13224 return max_scale;
13225 }
13226
13227 static int
13228 intel_check_primary_plane(struct drm_plane *plane,
13229 struct intel_plane_state *state)
13230 {
13231 struct drm_device *dev = plane->dev;
13232 struct drm_i915_private *dev_priv = dev->dev_private;
13233 struct drm_crtc *crtc = state->base.crtc;
13234 struct intel_crtc *intel_crtc;
13235 struct intel_crtc_state *crtc_state;
13236 struct drm_framebuffer *fb = state->base.fb;
13237 struct drm_rect *dest = &state->dst;
13238 struct drm_rect *src = &state->src;
13239 const struct drm_rect *clip = &state->clip;
13240 bool can_position = false;
13241 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13242 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13243 int ret;
13244
13245 crtc = crtc ? crtc : plane->crtc;
13246 intel_crtc = to_intel_crtc(crtc);
13247 crtc_state = state->base.state ?
13248 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13249
13250 if (INTEL_INFO(dev)->gen >= 9) {
13251 /* use scaler when colorkey is not required */
13252 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13253 min_scale = 1;
13254 max_scale = skl_max_scale(intel_crtc, crtc_state);
13255 }
13256 can_position = true;
13257 }
13258
13259 ret = drm_plane_helper_check_update(plane, crtc, fb,
13260 src, dest, clip,
13261 min_scale,
13262 max_scale,
13263 can_position, true,
13264 &state->visible);
13265 if (ret)
13266 return ret;
13267
13268 if (intel_crtc->active) {
13269 struct intel_plane_state *old_state =
13270 to_intel_plane_state(plane->state);
13271
13272 intel_crtc->atomic.wait_for_flips = true;
13273
13274 /*
13275 * FBC does not work on some platforms for rotated
13276 * planes, so disable it when rotation is not 0 and
13277 * update it when rotation is set back to 0.
13278 *
13279 * FIXME: This is redundant with the fbc update done in
13280 * the primary plane enable function except that that
13281 * one is done too late. We eventually need to unify
13282 * this.
13283 */
13284 if (state->visible &&
13285 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13286 dev_priv->fbc.crtc == intel_crtc &&
13287 state->base.rotation != BIT(DRM_ROTATE_0)) {
13288 intel_crtc->atomic.disable_fbc = true;
13289 }
13290
13291 if (state->visible && !old_state->visible) {
13292 /*
13293 * BDW signals flip done immediately if the plane
13294 * is disabled, even if the plane enable is already
13295 * armed to occur at the next vblank :(
13296 */
13297 if (IS_BROADWELL(dev))
13298 intel_crtc->atomic.wait_vblank = true;
13299 }
13300
13301 intel_crtc->atomic.fb_bits |=
13302 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13303
13304 intel_crtc->atomic.update_fbc = true;
13305
13306 if (intel_wm_need_update(plane, &state->base))
13307 intel_crtc->atomic.update_wm = true;
13308 }
13309
13310 if (INTEL_INFO(dev)->gen >= 9) {
13311 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13312 to_intel_plane(plane), state, 0);
13313 if (ret)
13314 return ret;
13315 }
13316
13317 return 0;
13318 }
13319
13320 static void
13321 intel_commit_primary_plane(struct drm_plane *plane,
13322 struct intel_plane_state *state)
13323 {
13324 struct drm_crtc *crtc = state->base.crtc;
13325 struct drm_framebuffer *fb = state->base.fb;
13326 struct drm_device *dev = plane->dev;
13327 struct drm_i915_private *dev_priv = dev->dev_private;
13328 struct intel_crtc *intel_crtc;
13329 struct drm_rect *src = &state->src;
13330
13331 crtc = crtc ? crtc : plane->crtc;
13332 intel_crtc = to_intel_crtc(crtc);
13333
13334 plane->fb = fb;
13335 crtc->x = src->x1 >> 16;
13336 crtc->y = src->y1 >> 16;
13337
13338 if (intel_crtc->active) {
13339 if (state->visible)
13340 /* FIXME: kill this fastboot hack */
13341 intel_update_pipe_size(intel_crtc);
13342
13343 dev_priv->display.update_primary_plane(crtc, plane->fb,
13344 crtc->x, crtc->y);
13345 }
13346 }
13347
13348 static void
13349 intel_disable_primary_plane(struct drm_plane *plane,
13350 struct drm_crtc *crtc,
13351 bool force)
13352 {
13353 struct drm_device *dev = plane->dev;
13354 struct drm_i915_private *dev_priv = dev->dev_private;
13355
13356 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13357 }
13358
13359 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13360 {
13361 struct drm_device *dev = crtc->dev;
13362 struct drm_i915_private *dev_priv = dev->dev_private;
13363 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13364 struct intel_plane *intel_plane;
13365 struct drm_plane *p;
13366 unsigned fb_bits = 0;
13367
13368 /* Track fb's for any planes being disabled */
13369 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13370 intel_plane = to_intel_plane(p);
13371
13372 if (intel_crtc->atomic.disabled_planes &
13373 (1 << drm_plane_index(p))) {
13374 switch (p->type) {
13375 case DRM_PLANE_TYPE_PRIMARY:
13376 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13377 break;
13378 case DRM_PLANE_TYPE_CURSOR:
13379 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13380 break;
13381 case DRM_PLANE_TYPE_OVERLAY:
13382 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13383 break;
13384 }
13385
13386 mutex_lock(&dev->struct_mutex);
13387 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13388 mutex_unlock(&dev->struct_mutex);
13389 }
13390 }
13391
13392 if (intel_crtc->atomic.wait_for_flips)
13393 intel_crtc_wait_for_pending_flips(crtc);
13394
13395 if (intel_crtc->atomic.disable_fbc)
13396 intel_fbc_disable(dev);
13397
13398 if (intel_crtc->atomic.pre_disable_primary)
13399 intel_pre_disable_primary(crtc);
13400
13401 if (intel_crtc->atomic.update_wm)
13402 intel_update_watermarks(crtc);
13403
13404 intel_runtime_pm_get(dev_priv);
13405
13406 /* Perform vblank evasion around commit operation */
13407 if (intel_crtc->active)
13408 intel_crtc->atomic.evade =
13409 intel_pipe_update_start(intel_crtc,
13410 &intel_crtc->atomic.start_vbl_count);
13411 }
13412
13413 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13414 {
13415 struct drm_device *dev = crtc->dev;
13416 struct drm_i915_private *dev_priv = dev->dev_private;
13417 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13418 struct drm_plane *p;
13419
13420 if (intel_crtc->atomic.evade)
13421 intel_pipe_update_end(intel_crtc,
13422 intel_crtc->atomic.start_vbl_count);
13423
13424 intel_runtime_pm_put(dev_priv);
13425
13426 if (intel_crtc->atomic.wait_vblank)
13427 intel_wait_for_vblank(dev, intel_crtc->pipe);
13428
13429 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13430
13431 if (intel_crtc->atomic.update_fbc) {
13432 mutex_lock(&dev->struct_mutex);
13433 intel_fbc_update(dev);
13434 mutex_unlock(&dev->struct_mutex);
13435 }
13436
13437 if (intel_crtc->atomic.post_enable_primary)
13438 intel_post_enable_primary(crtc);
13439
13440 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13441 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13442 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13443 false, false);
13444
13445 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13446 }
13447
13448 /**
13449 * intel_plane_destroy - destroy a plane
13450 * @plane: plane to destroy
13451 *
13452 * Common destruction function for all types of planes (primary, cursor,
13453 * sprite).
13454 */
13455 void intel_plane_destroy(struct drm_plane *plane)
13456 {
13457 struct intel_plane *intel_plane = to_intel_plane(plane);
13458 drm_plane_cleanup(plane);
13459 kfree(intel_plane);
13460 }
13461
13462 const struct drm_plane_funcs intel_plane_funcs = {
13463 .update_plane = drm_atomic_helper_update_plane,
13464 .disable_plane = drm_atomic_helper_disable_plane,
13465 .destroy = intel_plane_destroy,
13466 .set_property = drm_atomic_helper_plane_set_property,
13467 .atomic_get_property = intel_plane_atomic_get_property,
13468 .atomic_set_property = intel_plane_atomic_set_property,
13469 .atomic_duplicate_state = intel_plane_duplicate_state,
13470 .atomic_destroy_state = intel_plane_destroy_state,
13471
13472 };
13473
13474 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13475 int pipe)
13476 {
13477 struct intel_plane *primary;
13478 struct intel_plane_state *state;
13479 const uint32_t *intel_primary_formats;
13480 int num_formats;
13481
13482 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13483 if (primary == NULL)
13484 return NULL;
13485
13486 state = intel_create_plane_state(&primary->base);
13487 if (!state) {
13488 kfree(primary);
13489 return NULL;
13490 }
13491 primary->base.state = &state->base;
13492
13493 primary->can_scale = false;
13494 primary->max_downscale = 1;
13495 if (INTEL_INFO(dev)->gen >= 9) {
13496 primary->can_scale = true;
13497 state->scaler_id = -1;
13498 }
13499 primary->pipe = pipe;
13500 primary->plane = pipe;
13501 primary->check_plane = intel_check_primary_plane;
13502 primary->commit_plane = intel_commit_primary_plane;
13503 primary->disable_plane = intel_disable_primary_plane;
13504 primary->ckey.flags = I915_SET_COLORKEY_NONE;
13505 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13506 primary->plane = !pipe;
13507
13508 if (INTEL_INFO(dev)->gen >= 9) {
13509 intel_primary_formats = skl_primary_formats;
13510 num_formats = ARRAY_SIZE(skl_primary_formats);
13511 } else if (INTEL_INFO(dev)->gen >= 4) {
13512 intel_primary_formats = i965_primary_formats;
13513 num_formats = ARRAY_SIZE(i965_primary_formats);
13514 } else {
13515 intel_primary_formats = i8xx_primary_formats;
13516 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13517 }
13518
13519 drm_universal_plane_init(dev, &primary->base, 0,
13520 &intel_plane_funcs,
13521 intel_primary_formats, num_formats,
13522 DRM_PLANE_TYPE_PRIMARY);
13523
13524 if (INTEL_INFO(dev)->gen >= 4)
13525 intel_create_rotation_property(dev, primary);
13526
13527 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13528
13529 return &primary->base;
13530 }
13531
13532 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13533 {
13534 if (!dev->mode_config.rotation_property) {
13535 unsigned long flags = BIT(DRM_ROTATE_0) |
13536 BIT(DRM_ROTATE_180);
13537
13538 if (INTEL_INFO(dev)->gen >= 9)
13539 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13540
13541 dev->mode_config.rotation_property =
13542 drm_mode_create_rotation_property(dev, flags);
13543 }
13544 if (dev->mode_config.rotation_property)
13545 drm_object_attach_property(&plane->base.base,
13546 dev->mode_config.rotation_property,
13547 plane->base.state->rotation);
13548 }
13549
13550 static int
13551 intel_check_cursor_plane(struct drm_plane *plane,
13552 struct intel_plane_state *state)
13553 {
13554 struct drm_crtc *crtc = state->base.crtc;
13555 struct drm_device *dev = plane->dev;
13556 struct drm_framebuffer *fb = state->base.fb;
13557 struct drm_rect *dest = &state->dst;
13558 struct drm_rect *src = &state->src;
13559 const struct drm_rect *clip = &state->clip;
13560 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13561 struct intel_crtc *intel_crtc;
13562 unsigned stride;
13563 int ret;
13564
13565 crtc = crtc ? crtc : plane->crtc;
13566 intel_crtc = to_intel_crtc(crtc);
13567
13568 ret = drm_plane_helper_check_update(plane, crtc, fb,
13569 src, dest, clip,
13570 DRM_PLANE_HELPER_NO_SCALING,
13571 DRM_PLANE_HELPER_NO_SCALING,
13572 true, true, &state->visible);
13573 if (ret)
13574 return ret;
13575
13576
13577 /* if we want to turn off the cursor ignore width and height */
13578 if (!obj)
13579 goto finish;
13580
13581 /* Check for which cursor types we support */
13582 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13583 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13584 state->base.crtc_w, state->base.crtc_h);
13585 return -EINVAL;
13586 }
13587
13588 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13589 if (obj->base.size < stride * state->base.crtc_h) {
13590 DRM_DEBUG_KMS("buffer is too small\n");
13591 return -ENOMEM;
13592 }
13593
13594 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13595 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13596 ret = -EINVAL;
13597 }
13598
13599 finish:
13600 if (intel_crtc->active) {
13601 if (plane->state->crtc_w != state->base.crtc_w)
13602 intel_crtc->atomic.update_wm = true;
13603
13604 intel_crtc->atomic.fb_bits |=
13605 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13606 }
13607
13608 return ret;
13609 }
13610
13611 static void
13612 intel_disable_cursor_plane(struct drm_plane *plane,
13613 struct drm_crtc *crtc,
13614 bool force)
13615 {
13616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13617
13618 if (!force) {
13619 plane->fb = NULL;
13620 intel_crtc->cursor_bo = NULL;
13621 intel_crtc->cursor_addr = 0;
13622 }
13623
13624 intel_crtc_update_cursor(crtc, false);
13625 }
13626
13627 static void
13628 intel_commit_cursor_plane(struct drm_plane *plane,
13629 struct intel_plane_state *state)
13630 {
13631 struct drm_crtc *crtc = state->base.crtc;
13632 struct drm_device *dev = plane->dev;
13633 struct intel_crtc *intel_crtc;
13634 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13635 uint32_t addr;
13636
13637 crtc = crtc ? crtc : plane->crtc;
13638 intel_crtc = to_intel_crtc(crtc);
13639
13640 plane->fb = state->base.fb;
13641 crtc->cursor_x = state->base.crtc_x;
13642 crtc->cursor_y = state->base.crtc_y;
13643
13644 if (intel_crtc->cursor_bo == obj)
13645 goto update;
13646
13647 if (!obj)
13648 addr = 0;
13649 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13650 addr = i915_gem_obj_ggtt_offset(obj);
13651 else
13652 addr = obj->phys_handle->busaddr;
13653
13654 intel_crtc->cursor_addr = addr;
13655 intel_crtc->cursor_bo = obj;
13656 update:
13657
13658 if (intel_crtc->active)
13659 intel_crtc_update_cursor(crtc, state->visible);
13660 }
13661
13662 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13663 int pipe)
13664 {
13665 struct intel_plane *cursor;
13666 struct intel_plane_state *state;
13667
13668 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13669 if (cursor == NULL)
13670 return NULL;
13671
13672 state = intel_create_plane_state(&cursor->base);
13673 if (!state) {
13674 kfree(cursor);
13675 return NULL;
13676 }
13677 cursor->base.state = &state->base;
13678
13679 cursor->can_scale = false;
13680 cursor->max_downscale = 1;
13681 cursor->pipe = pipe;
13682 cursor->plane = pipe;
13683 cursor->check_plane = intel_check_cursor_plane;
13684 cursor->commit_plane = intel_commit_cursor_plane;
13685 cursor->disable_plane = intel_disable_cursor_plane;
13686
13687 drm_universal_plane_init(dev, &cursor->base, 0,
13688 &intel_plane_funcs,
13689 intel_cursor_formats,
13690 ARRAY_SIZE(intel_cursor_formats),
13691 DRM_PLANE_TYPE_CURSOR);
13692
13693 if (INTEL_INFO(dev)->gen >= 4) {
13694 if (!dev->mode_config.rotation_property)
13695 dev->mode_config.rotation_property =
13696 drm_mode_create_rotation_property(dev,
13697 BIT(DRM_ROTATE_0) |
13698 BIT(DRM_ROTATE_180));
13699 if (dev->mode_config.rotation_property)
13700 drm_object_attach_property(&cursor->base.base,
13701 dev->mode_config.rotation_property,
13702 state->base.rotation);
13703 }
13704
13705 if (INTEL_INFO(dev)->gen >=9)
13706 state->scaler_id = -1;
13707
13708 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13709
13710 return &cursor->base;
13711 }
13712
13713 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13714 struct intel_crtc_state *crtc_state)
13715 {
13716 int i;
13717 struct intel_scaler *intel_scaler;
13718 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13719
13720 for (i = 0; i < intel_crtc->num_scalers; i++) {
13721 intel_scaler = &scaler_state->scalers[i];
13722 intel_scaler->in_use = 0;
13723 intel_scaler->id = i;
13724
13725 intel_scaler->mode = PS_SCALER_MODE_DYN;
13726 }
13727
13728 scaler_state->scaler_id = -1;
13729 }
13730
13731 static void intel_crtc_init(struct drm_device *dev, int pipe)
13732 {
13733 struct drm_i915_private *dev_priv = dev->dev_private;
13734 struct intel_crtc *intel_crtc;
13735 struct intel_crtc_state *crtc_state = NULL;
13736 struct drm_plane *primary = NULL;
13737 struct drm_plane *cursor = NULL;
13738 int i, ret;
13739
13740 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13741 if (intel_crtc == NULL)
13742 return;
13743
13744 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13745 if (!crtc_state)
13746 goto fail;
13747 intel_crtc->config = crtc_state;
13748 intel_crtc->base.state = &crtc_state->base;
13749 crtc_state->base.crtc = &intel_crtc->base;
13750
13751 /* initialize shared scalers */
13752 if (INTEL_INFO(dev)->gen >= 9) {
13753 if (pipe == PIPE_C)
13754 intel_crtc->num_scalers = 1;
13755 else
13756 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13757
13758 skl_init_scalers(dev, intel_crtc, crtc_state);
13759 }
13760
13761 primary = intel_primary_plane_create(dev, pipe);
13762 if (!primary)
13763 goto fail;
13764
13765 cursor = intel_cursor_plane_create(dev, pipe);
13766 if (!cursor)
13767 goto fail;
13768
13769 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13770 cursor, &intel_crtc_funcs);
13771 if (ret)
13772 goto fail;
13773
13774 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13775 for (i = 0; i < 256; i++) {
13776 intel_crtc->lut_r[i] = i;
13777 intel_crtc->lut_g[i] = i;
13778 intel_crtc->lut_b[i] = i;
13779 }
13780
13781 /*
13782 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13783 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13784 */
13785 intel_crtc->pipe = pipe;
13786 intel_crtc->plane = pipe;
13787 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13788 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13789 intel_crtc->plane = !pipe;
13790 }
13791
13792 intel_crtc->cursor_base = ~0;
13793 intel_crtc->cursor_cntl = ~0;
13794 intel_crtc->cursor_size = ~0;
13795
13796 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13797 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13798 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13799 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13800
13801 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13802
13803 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13804 return;
13805
13806 fail:
13807 if (primary)
13808 drm_plane_cleanup(primary);
13809 if (cursor)
13810 drm_plane_cleanup(cursor);
13811 kfree(crtc_state);
13812 kfree(intel_crtc);
13813 }
13814
13815 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13816 {
13817 struct drm_encoder *encoder = connector->base.encoder;
13818 struct drm_device *dev = connector->base.dev;
13819
13820 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13821
13822 if (!encoder || WARN_ON(!encoder->crtc))
13823 return INVALID_PIPE;
13824
13825 return to_intel_crtc(encoder->crtc)->pipe;
13826 }
13827
13828 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13829 struct drm_file *file)
13830 {
13831 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13832 struct drm_crtc *drmmode_crtc;
13833 struct intel_crtc *crtc;
13834
13835 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13836
13837 if (!drmmode_crtc) {
13838 DRM_ERROR("no such CRTC id\n");
13839 return -ENOENT;
13840 }
13841
13842 crtc = to_intel_crtc(drmmode_crtc);
13843 pipe_from_crtc_id->pipe = crtc->pipe;
13844
13845 return 0;
13846 }
13847
13848 static int intel_encoder_clones(struct intel_encoder *encoder)
13849 {
13850 struct drm_device *dev = encoder->base.dev;
13851 struct intel_encoder *source_encoder;
13852 int index_mask = 0;
13853 int entry = 0;
13854
13855 for_each_intel_encoder(dev, source_encoder) {
13856 if (encoders_cloneable(encoder, source_encoder))
13857 index_mask |= (1 << entry);
13858
13859 entry++;
13860 }
13861
13862 return index_mask;
13863 }
13864
13865 static bool has_edp_a(struct drm_device *dev)
13866 {
13867 struct drm_i915_private *dev_priv = dev->dev_private;
13868
13869 if (!IS_MOBILE(dev))
13870 return false;
13871
13872 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13873 return false;
13874
13875 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13876 return false;
13877
13878 return true;
13879 }
13880
13881 static bool intel_crt_present(struct drm_device *dev)
13882 {
13883 struct drm_i915_private *dev_priv = dev->dev_private;
13884
13885 if (INTEL_INFO(dev)->gen >= 9)
13886 return false;
13887
13888 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13889 return false;
13890
13891 if (IS_CHERRYVIEW(dev))
13892 return false;
13893
13894 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13895 return false;
13896
13897 return true;
13898 }
13899
13900 static void intel_setup_outputs(struct drm_device *dev)
13901 {
13902 struct drm_i915_private *dev_priv = dev->dev_private;
13903 struct intel_encoder *encoder;
13904 bool dpd_is_edp = false;
13905
13906 intel_lvds_init(dev);
13907
13908 if (intel_crt_present(dev))
13909 intel_crt_init(dev);
13910
13911 if (IS_BROXTON(dev)) {
13912 /*
13913 * FIXME: Broxton doesn't support port detection via the
13914 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13915 * detect the ports.
13916 */
13917 intel_ddi_init(dev, PORT_A);
13918 intel_ddi_init(dev, PORT_B);
13919 intel_ddi_init(dev, PORT_C);
13920 } else if (HAS_DDI(dev)) {
13921 int found;
13922
13923 /*
13924 * Haswell uses DDI functions to detect digital outputs.
13925 * On SKL pre-D0 the strap isn't connected, so we assume
13926 * it's there.
13927 */
13928 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13929 /* WaIgnoreDDIAStrap: skl */
13930 if (found ||
13931 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13932 intel_ddi_init(dev, PORT_A);
13933
13934 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13935 * register */
13936 found = I915_READ(SFUSE_STRAP);
13937
13938 if (found & SFUSE_STRAP_DDIB_DETECTED)
13939 intel_ddi_init(dev, PORT_B);
13940 if (found & SFUSE_STRAP_DDIC_DETECTED)
13941 intel_ddi_init(dev, PORT_C);
13942 if (found & SFUSE_STRAP_DDID_DETECTED)
13943 intel_ddi_init(dev, PORT_D);
13944 } else if (HAS_PCH_SPLIT(dev)) {
13945 int found;
13946 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13947
13948 if (has_edp_a(dev))
13949 intel_dp_init(dev, DP_A, PORT_A);
13950
13951 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13952 /* PCH SDVOB multiplex with HDMIB */
13953 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13954 if (!found)
13955 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13956 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13957 intel_dp_init(dev, PCH_DP_B, PORT_B);
13958 }
13959
13960 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13961 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13962
13963 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13964 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13965
13966 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13967 intel_dp_init(dev, PCH_DP_C, PORT_C);
13968
13969 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13970 intel_dp_init(dev, PCH_DP_D, PORT_D);
13971 } else if (IS_VALLEYVIEW(dev)) {
13972 /*
13973 * The DP_DETECTED bit is the latched state of the DDC
13974 * SDA pin at boot. However since eDP doesn't require DDC
13975 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13976 * eDP ports may have been muxed to an alternate function.
13977 * Thus we can't rely on the DP_DETECTED bit alone to detect
13978 * eDP ports. Consult the VBT as well as DP_DETECTED to
13979 * detect eDP ports.
13980 */
13981 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13982 !intel_dp_is_edp(dev, PORT_B))
13983 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13984 PORT_B);
13985 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13986 intel_dp_is_edp(dev, PORT_B))
13987 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13988
13989 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13990 !intel_dp_is_edp(dev, PORT_C))
13991 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13992 PORT_C);
13993 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13994 intel_dp_is_edp(dev, PORT_C))
13995 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13996
13997 if (IS_CHERRYVIEW(dev)) {
13998 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13999 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14000 PORT_D);
14001 /* eDP not supported on port D, so don't check VBT */
14002 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14003 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14004 }
14005
14006 intel_dsi_init(dev);
14007 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14008 bool found = false;
14009
14010 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14011 DRM_DEBUG_KMS("probing SDVOB\n");
14012 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14013 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14014 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14015 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14016 }
14017
14018 if (!found && SUPPORTS_INTEGRATED_DP(dev))
14019 intel_dp_init(dev, DP_B, PORT_B);
14020 }
14021
14022 /* Before G4X SDVOC doesn't have its own detect register */
14023
14024 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14025 DRM_DEBUG_KMS("probing SDVOC\n");
14026 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14027 }
14028
14029 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14030
14031 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14032 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14033 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14034 }
14035 if (SUPPORTS_INTEGRATED_DP(dev))
14036 intel_dp_init(dev, DP_C, PORT_C);
14037 }
14038
14039 if (SUPPORTS_INTEGRATED_DP(dev) &&
14040 (I915_READ(DP_D) & DP_DETECTED))
14041 intel_dp_init(dev, DP_D, PORT_D);
14042 } else if (IS_GEN2(dev))
14043 intel_dvo_init(dev);
14044
14045 if (SUPPORTS_TV(dev))
14046 intel_tv_init(dev);
14047
14048 intel_psr_init(dev);
14049
14050 for_each_intel_encoder(dev, encoder) {
14051 encoder->base.possible_crtcs = encoder->crtc_mask;
14052 encoder->base.possible_clones =
14053 intel_encoder_clones(encoder);
14054 }
14055
14056 intel_init_pch_refclk(dev);
14057
14058 drm_helper_move_panel_connectors_to_head(dev);
14059 }
14060
14061 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14062 {
14063 struct drm_device *dev = fb->dev;
14064 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14065
14066 drm_framebuffer_cleanup(fb);
14067 mutex_lock(&dev->struct_mutex);
14068 WARN_ON(!intel_fb->obj->framebuffer_references--);
14069 drm_gem_object_unreference(&intel_fb->obj->base);
14070 mutex_unlock(&dev->struct_mutex);
14071 kfree(intel_fb);
14072 }
14073
14074 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14075 struct drm_file *file,
14076 unsigned int *handle)
14077 {
14078 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14079 struct drm_i915_gem_object *obj = intel_fb->obj;
14080
14081 return drm_gem_handle_create(file, &obj->base, handle);
14082 }
14083
14084 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14085 .destroy = intel_user_framebuffer_destroy,
14086 .create_handle = intel_user_framebuffer_create_handle,
14087 };
14088
14089 static
14090 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14091 uint32_t pixel_format)
14092 {
14093 u32 gen = INTEL_INFO(dev)->gen;
14094
14095 if (gen >= 9) {
14096 /* "The stride in bytes must not exceed the of the size of 8K
14097 * pixels and 32K bytes."
14098 */
14099 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14100 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14101 return 32*1024;
14102 } else if (gen >= 4) {
14103 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14104 return 16*1024;
14105 else
14106 return 32*1024;
14107 } else if (gen >= 3) {
14108 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14109 return 8*1024;
14110 else
14111 return 16*1024;
14112 } else {
14113 /* XXX DSPC is limited to 4k tiled */
14114 return 8*1024;
14115 }
14116 }
14117
14118 static int intel_framebuffer_init(struct drm_device *dev,
14119 struct intel_framebuffer *intel_fb,
14120 struct drm_mode_fb_cmd2 *mode_cmd,
14121 struct drm_i915_gem_object *obj)
14122 {
14123 unsigned int aligned_height;
14124 int ret;
14125 u32 pitch_limit, stride_alignment;
14126
14127 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14128
14129 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14130 /* Enforce that fb modifier and tiling mode match, but only for
14131 * X-tiled. This is needed for FBC. */
14132 if (!!(obj->tiling_mode == I915_TILING_X) !=
14133 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14134 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14135 return -EINVAL;
14136 }
14137 } else {
14138 if (obj->tiling_mode == I915_TILING_X)
14139 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14140 else if (obj->tiling_mode == I915_TILING_Y) {
14141 DRM_DEBUG("No Y tiling for legacy addfb\n");
14142 return -EINVAL;
14143 }
14144 }
14145
14146 /* Passed in modifier sanity checking. */
14147 switch (mode_cmd->modifier[0]) {
14148 case I915_FORMAT_MOD_Y_TILED:
14149 case I915_FORMAT_MOD_Yf_TILED:
14150 if (INTEL_INFO(dev)->gen < 9) {
14151 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14152 mode_cmd->modifier[0]);
14153 return -EINVAL;
14154 }
14155 case DRM_FORMAT_MOD_NONE:
14156 case I915_FORMAT_MOD_X_TILED:
14157 break;
14158 default:
14159 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14160 mode_cmd->modifier[0]);
14161 return -EINVAL;
14162 }
14163
14164 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14165 mode_cmd->pixel_format);
14166 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14167 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14168 mode_cmd->pitches[0], stride_alignment);
14169 return -EINVAL;
14170 }
14171
14172 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14173 mode_cmd->pixel_format);
14174 if (mode_cmd->pitches[0] > pitch_limit) {
14175 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14176 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14177 "tiled" : "linear",
14178 mode_cmd->pitches[0], pitch_limit);
14179 return -EINVAL;
14180 }
14181
14182 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14183 mode_cmd->pitches[0] != obj->stride) {
14184 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14185 mode_cmd->pitches[0], obj->stride);
14186 return -EINVAL;
14187 }
14188
14189 /* Reject formats not supported by any plane early. */
14190 switch (mode_cmd->pixel_format) {
14191 case DRM_FORMAT_C8:
14192 case DRM_FORMAT_RGB565:
14193 case DRM_FORMAT_XRGB8888:
14194 case DRM_FORMAT_ARGB8888:
14195 break;
14196 case DRM_FORMAT_XRGB1555:
14197 if (INTEL_INFO(dev)->gen > 3) {
14198 DRM_DEBUG("unsupported pixel format: %s\n",
14199 drm_get_format_name(mode_cmd->pixel_format));
14200 return -EINVAL;
14201 }
14202 break;
14203 case DRM_FORMAT_ABGR8888:
14204 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14205 DRM_DEBUG("unsupported pixel format: %s\n",
14206 drm_get_format_name(mode_cmd->pixel_format));
14207 return -EINVAL;
14208 }
14209 break;
14210 case DRM_FORMAT_XBGR8888:
14211 case DRM_FORMAT_XRGB2101010:
14212 case DRM_FORMAT_XBGR2101010:
14213 if (INTEL_INFO(dev)->gen < 4) {
14214 DRM_DEBUG("unsupported pixel format: %s\n",
14215 drm_get_format_name(mode_cmd->pixel_format));
14216 return -EINVAL;
14217 }
14218 break;
14219 case DRM_FORMAT_ABGR2101010:
14220 if (!IS_VALLEYVIEW(dev)) {
14221 DRM_DEBUG("unsupported pixel format: %s\n",
14222 drm_get_format_name(mode_cmd->pixel_format));
14223 return -EINVAL;
14224 }
14225 break;
14226 case DRM_FORMAT_YUYV:
14227 case DRM_FORMAT_UYVY:
14228 case DRM_FORMAT_YVYU:
14229 case DRM_FORMAT_VYUY:
14230 if (INTEL_INFO(dev)->gen < 5) {
14231 DRM_DEBUG("unsupported pixel format: %s\n",
14232 drm_get_format_name(mode_cmd->pixel_format));
14233 return -EINVAL;
14234 }
14235 break;
14236 default:
14237 DRM_DEBUG("unsupported pixel format: %s\n",
14238 drm_get_format_name(mode_cmd->pixel_format));
14239 return -EINVAL;
14240 }
14241
14242 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14243 if (mode_cmd->offsets[0] != 0)
14244 return -EINVAL;
14245
14246 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14247 mode_cmd->pixel_format,
14248 mode_cmd->modifier[0]);
14249 /* FIXME drm helper for size checks (especially planar formats)? */
14250 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14251 return -EINVAL;
14252
14253 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14254 intel_fb->obj = obj;
14255 intel_fb->obj->framebuffer_references++;
14256
14257 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14258 if (ret) {
14259 DRM_ERROR("framebuffer init failed %d\n", ret);
14260 return ret;
14261 }
14262
14263 return 0;
14264 }
14265
14266 static struct drm_framebuffer *
14267 intel_user_framebuffer_create(struct drm_device *dev,
14268 struct drm_file *filp,
14269 struct drm_mode_fb_cmd2 *mode_cmd)
14270 {
14271 struct drm_i915_gem_object *obj;
14272
14273 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14274 mode_cmd->handles[0]));
14275 if (&obj->base == NULL)
14276 return ERR_PTR(-ENOENT);
14277
14278 return intel_framebuffer_create(dev, mode_cmd, obj);
14279 }
14280
14281 #ifndef CONFIG_DRM_I915_FBDEV
14282 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14283 {
14284 }
14285 #endif
14286
14287 static const struct drm_mode_config_funcs intel_mode_funcs = {
14288 .fb_create = intel_user_framebuffer_create,
14289 .output_poll_changed = intel_fbdev_output_poll_changed,
14290 .atomic_check = intel_atomic_check,
14291 .atomic_commit = intel_atomic_commit,
14292 };
14293
14294 /* Set up chip specific display functions */
14295 static void intel_init_display(struct drm_device *dev)
14296 {
14297 struct drm_i915_private *dev_priv = dev->dev_private;
14298
14299 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14300 dev_priv->display.find_dpll = g4x_find_best_dpll;
14301 else if (IS_CHERRYVIEW(dev))
14302 dev_priv->display.find_dpll = chv_find_best_dpll;
14303 else if (IS_VALLEYVIEW(dev))
14304 dev_priv->display.find_dpll = vlv_find_best_dpll;
14305 else if (IS_PINEVIEW(dev))
14306 dev_priv->display.find_dpll = pnv_find_best_dpll;
14307 else
14308 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14309
14310 if (INTEL_INFO(dev)->gen >= 9) {
14311 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14312 dev_priv->display.get_initial_plane_config =
14313 skylake_get_initial_plane_config;
14314 dev_priv->display.crtc_compute_clock =
14315 haswell_crtc_compute_clock;
14316 dev_priv->display.crtc_enable = haswell_crtc_enable;
14317 dev_priv->display.crtc_disable = haswell_crtc_disable;
14318 dev_priv->display.off = ironlake_crtc_off;
14319 dev_priv->display.update_primary_plane =
14320 skylake_update_primary_plane;
14321 } else if (HAS_DDI(dev)) {
14322 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14323 dev_priv->display.get_initial_plane_config =
14324 ironlake_get_initial_plane_config;
14325 dev_priv->display.crtc_compute_clock =
14326 haswell_crtc_compute_clock;
14327 dev_priv->display.crtc_enable = haswell_crtc_enable;
14328 dev_priv->display.crtc_disable = haswell_crtc_disable;
14329 dev_priv->display.off = ironlake_crtc_off;
14330 dev_priv->display.update_primary_plane =
14331 ironlake_update_primary_plane;
14332 } else if (HAS_PCH_SPLIT(dev)) {
14333 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14334 dev_priv->display.get_initial_plane_config =
14335 ironlake_get_initial_plane_config;
14336 dev_priv->display.crtc_compute_clock =
14337 ironlake_crtc_compute_clock;
14338 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14339 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14340 dev_priv->display.off = ironlake_crtc_off;
14341 dev_priv->display.update_primary_plane =
14342 ironlake_update_primary_plane;
14343 } else if (IS_VALLEYVIEW(dev)) {
14344 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14345 dev_priv->display.get_initial_plane_config =
14346 i9xx_get_initial_plane_config;
14347 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14348 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14349 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14350 dev_priv->display.off = i9xx_crtc_off;
14351 dev_priv->display.update_primary_plane =
14352 i9xx_update_primary_plane;
14353 } else {
14354 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14355 dev_priv->display.get_initial_plane_config =
14356 i9xx_get_initial_plane_config;
14357 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14358 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14359 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14360 dev_priv->display.off = i9xx_crtc_off;
14361 dev_priv->display.update_primary_plane =
14362 i9xx_update_primary_plane;
14363 }
14364
14365 /* Returns the core display clock speed */
14366 if (IS_SKYLAKE(dev))
14367 dev_priv->display.get_display_clock_speed =
14368 skylake_get_display_clock_speed;
14369 else if (IS_BROADWELL(dev))
14370 dev_priv->display.get_display_clock_speed =
14371 broadwell_get_display_clock_speed;
14372 else if (IS_HASWELL(dev))
14373 dev_priv->display.get_display_clock_speed =
14374 haswell_get_display_clock_speed;
14375 else if (IS_VALLEYVIEW(dev))
14376 dev_priv->display.get_display_clock_speed =
14377 valleyview_get_display_clock_speed;
14378 else if (IS_GEN5(dev))
14379 dev_priv->display.get_display_clock_speed =
14380 ilk_get_display_clock_speed;
14381 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14382 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14383 dev_priv->display.get_display_clock_speed =
14384 i945_get_display_clock_speed;
14385 else if (IS_I915G(dev))
14386 dev_priv->display.get_display_clock_speed =
14387 i915_get_display_clock_speed;
14388 else if (IS_I945GM(dev) || IS_845G(dev))
14389 dev_priv->display.get_display_clock_speed =
14390 i9xx_misc_get_display_clock_speed;
14391 else if (IS_PINEVIEW(dev))
14392 dev_priv->display.get_display_clock_speed =
14393 pnv_get_display_clock_speed;
14394 else if (IS_I915GM(dev))
14395 dev_priv->display.get_display_clock_speed =
14396 i915gm_get_display_clock_speed;
14397 else if (IS_I865G(dev))
14398 dev_priv->display.get_display_clock_speed =
14399 i865_get_display_clock_speed;
14400 else if (IS_I85X(dev))
14401 dev_priv->display.get_display_clock_speed =
14402 i855_get_display_clock_speed;
14403 else /* 852, 830 */
14404 dev_priv->display.get_display_clock_speed =
14405 i830_get_display_clock_speed;
14406
14407 if (IS_GEN5(dev)) {
14408 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14409 } else if (IS_GEN6(dev)) {
14410 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14411 } else if (IS_IVYBRIDGE(dev)) {
14412 /* FIXME: detect B0+ stepping and use auto training */
14413 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14414 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14415 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14416 } else if (IS_VALLEYVIEW(dev)) {
14417 dev_priv->display.modeset_global_resources =
14418 valleyview_modeset_global_resources;
14419 } else if (IS_BROXTON(dev)) {
14420 dev_priv->display.modeset_global_resources =
14421 broxton_modeset_global_resources;
14422 }
14423
14424 switch (INTEL_INFO(dev)->gen) {
14425 case 2:
14426 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14427 break;
14428
14429 case 3:
14430 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14431 break;
14432
14433 case 4:
14434 case 5:
14435 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14436 break;
14437
14438 case 6:
14439 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14440 break;
14441 case 7:
14442 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14443 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14444 break;
14445 case 9:
14446 /* Drop through - unsupported since execlist only. */
14447 default:
14448 /* Default just returns -ENODEV to indicate unsupported */
14449 dev_priv->display.queue_flip = intel_default_queue_flip;
14450 }
14451
14452 intel_panel_init_backlight_funcs(dev);
14453
14454 mutex_init(&dev_priv->pps_mutex);
14455 }
14456
14457 /*
14458 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14459 * resume, or other times. This quirk makes sure that's the case for
14460 * affected systems.
14461 */
14462 static void quirk_pipea_force(struct drm_device *dev)
14463 {
14464 struct drm_i915_private *dev_priv = dev->dev_private;
14465
14466 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14467 DRM_INFO("applying pipe a force quirk\n");
14468 }
14469
14470 static void quirk_pipeb_force(struct drm_device *dev)
14471 {
14472 struct drm_i915_private *dev_priv = dev->dev_private;
14473
14474 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14475 DRM_INFO("applying pipe b force quirk\n");
14476 }
14477
14478 /*
14479 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14480 */
14481 static void quirk_ssc_force_disable(struct drm_device *dev)
14482 {
14483 struct drm_i915_private *dev_priv = dev->dev_private;
14484 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14485 DRM_INFO("applying lvds SSC disable quirk\n");
14486 }
14487
14488 /*
14489 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14490 * brightness value
14491 */
14492 static void quirk_invert_brightness(struct drm_device *dev)
14493 {
14494 struct drm_i915_private *dev_priv = dev->dev_private;
14495 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14496 DRM_INFO("applying inverted panel brightness quirk\n");
14497 }
14498
14499 /* Some VBT's incorrectly indicate no backlight is present */
14500 static void quirk_backlight_present(struct drm_device *dev)
14501 {
14502 struct drm_i915_private *dev_priv = dev->dev_private;
14503 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14504 DRM_INFO("applying backlight present quirk\n");
14505 }
14506
14507 struct intel_quirk {
14508 int device;
14509 int subsystem_vendor;
14510 int subsystem_device;
14511 void (*hook)(struct drm_device *dev);
14512 };
14513
14514 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14515 struct intel_dmi_quirk {
14516 void (*hook)(struct drm_device *dev);
14517 const struct dmi_system_id (*dmi_id_list)[];
14518 };
14519
14520 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14521 {
14522 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14523 return 1;
14524 }
14525
14526 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14527 {
14528 .dmi_id_list = &(const struct dmi_system_id[]) {
14529 {
14530 .callback = intel_dmi_reverse_brightness,
14531 .ident = "NCR Corporation",
14532 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14533 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14534 },
14535 },
14536 { } /* terminating entry */
14537 },
14538 .hook = quirk_invert_brightness,
14539 },
14540 };
14541
14542 static struct intel_quirk intel_quirks[] = {
14543 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14544 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14545
14546 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14547 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14548
14549 /* 830 needs to leave pipe A & dpll A up */
14550 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14551
14552 /* 830 needs to leave pipe B & dpll B up */
14553 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14554
14555 /* Lenovo U160 cannot use SSC on LVDS */
14556 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14557
14558 /* Sony Vaio Y cannot use SSC on LVDS */
14559 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14560
14561 /* Acer Aspire 5734Z must invert backlight brightness */
14562 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14563
14564 /* Acer/eMachines G725 */
14565 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14566
14567 /* Acer/eMachines e725 */
14568 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14569
14570 /* Acer/Packard Bell NCL20 */
14571 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14572
14573 /* Acer Aspire 4736Z */
14574 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14575
14576 /* Acer Aspire 5336 */
14577 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14578
14579 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14580 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14581
14582 /* Acer C720 Chromebook (Core i3 4005U) */
14583 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14584
14585 /* Apple Macbook 2,1 (Core 2 T7400) */
14586 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14587
14588 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14589 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14590
14591 /* HP Chromebook 14 (Celeron 2955U) */
14592 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14593
14594 /* Dell Chromebook 11 */
14595 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14596 };
14597
14598 static void intel_init_quirks(struct drm_device *dev)
14599 {
14600 struct pci_dev *d = dev->pdev;
14601 int i;
14602
14603 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14604 struct intel_quirk *q = &intel_quirks[i];
14605
14606 if (d->device == q->device &&
14607 (d->subsystem_vendor == q->subsystem_vendor ||
14608 q->subsystem_vendor == PCI_ANY_ID) &&
14609 (d->subsystem_device == q->subsystem_device ||
14610 q->subsystem_device == PCI_ANY_ID))
14611 q->hook(dev);
14612 }
14613 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14614 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14615 intel_dmi_quirks[i].hook(dev);
14616 }
14617 }
14618
14619 /* Disable the VGA plane that we never use */
14620 static void i915_disable_vga(struct drm_device *dev)
14621 {
14622 struct drm_i915_private *dev_priv = dev->dev_private;
14623 u8 sr1;
14624 u32 vga_reg = i915_vgacntrl_reg(dev);
14625
14626 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14627 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14628 outb(SR01, VGA_SR_INDEX);
14629 sr1 = inb(VGA_SR_DATA);
14630 outb(sr1 | 1<<5, VGA_SR_DATA);
14631 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14632 udelay(300);
14633
14634 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14635 POSTING_READ(vga_reg);
14636 }
14637
14638 void intel_modeset_init_hw(struct drm_device *dev)
14639 {
14640 intel_prepare_ddi(dev);
14641
14642 if (IS_VALLEYVIEW(dev))
14643 vlv_update_cdclk(dev);
14644
14645 intel_init_clock_gating(dev);
14646
14647 intel_enable_gt_powersave(dev);
14648 }
14649
14650 void intel_modeset_init(struct drm_device *dev)
14651 {
14652 struct drm_i915_private *dev_priv = dev->dev_private;
14653 int sprite, ret;
14654 enum pipe pipe;
14655 struct intel_crtc *crtc;
14656
14657 drm_mode_config_init(dev);
14658
14659 dev->mode_config.min_width = 0;
14660 dev->mode_config.min_height = 0;
14661
14662 dev->mode_config.preferred_depth = 24;
14663 dev->mode_config.prefer_shadow = 1;
14664
14665 dev->mode_config.allow_fb_modifiers = true;
14666
14667 dev->mode_config.funcs = &intel_mode_funcs;
14668
14669 intel_init_quirks(dev);
14670
14671 intel_init_pm(dev);
14672
14673 if (INTEL_INFO(dev)->num_pipes == 0)
14674 return;
14675
14676 intel_init_display(dev);
14677 intel_init_audio(dev);
14678
14679 if (IS_GEN2(dev)) {
14680 dev->mode_config.max_width = 2048;
14681 dev->mode_config.max_height = 2048;
14682 } else if (IS_GEN3(dev)) {
14683 dev->mode_config.max_width = 4096;
14684 dev->mode_config.max_height = 4096;
14685 } else {
14686 dev->mode_config.max_width = 8192;
14687 dev->mode_config.max_height = 8192;
14688 }
14689
14690 if (IS_845G(dev) || IS_I865G(dev)) {
14691 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14692 dev->mode_config.cursor_height = 1023;
14693 } else if (IS_GEN2(dev)) {
14694 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14695 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14696 } else {
14697 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14698 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14699 }
14700
14701 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14702
14703 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14704 INTEL_INFO(dev)->num_pipes,
14705 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14706
14707 for_each_pipe(dev_priv, pipe) {
14708 intel_crtc_init(dev, pipe);
14709 for_each_sprite(dev_priv, pipe, sprite) {
14710 ret = intel_plane_init(dev, pipe, sprite);
14711 if (ret)
14712 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14713 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14714 }
14715 }
14716
14717 intel_init_dpio(dev);
14718
14719 intel_shared_dpll_init(dev);
14720
14721 /* Just disable it once at startup */
14722 i915_disable_vga(dev);
14723 intel_setup_outputs(dev);
14724
14725 /* Just in case the BIOS is doing something questionable. */
14726 intel_fbc_disable(dev);
14727
14728 drm_modeset_lock_all(dev);
14729 intel_modeset_setup_hw_state(dev, false);
14730 drm_modeset_unlock_all(dev);
14731
14732 for_each_intel_crtc(dev, crtc) {
14733 if (!crtc->active)
14734 continue;
14735
14736 /*
14737 * Note that reserving the BIOS fb up front prevents us
14738 * from stuffing other stolen allocations like the ring
14739 * on top. This prevents some ugliness at boot time, and
14740 * can even allow for smooth boot transitions if the BIOS
14741 * fb is large enough for the active pipe configuration.
14742 */
14743 if (dev_priv->display.get_initial_plane_config) {
14744 dev_priv->display.get_initial_plane_config(crtc,
14745 &crtc->plane_config);
14746 /*
14747 * If the fb is shared between multiple heads, we'll
14748 * just get the first one.
14749 */
14750 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14751 }
14752 }
14753 }
14754
14755 static void intel_enable_pipe_a(struct drm_device *dev)
14756 {
14757 struct intel_connector *connector;
14758 struct drm_connector *crt = NULL;
14759 struct intel_load_detect_pipe load_detect_temp;
14760 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14761
14762 /* We can't just switch on the pipe A, we need to set things up with a
14763 * proper mode and output configuration. As a gross hack, enable pipe A
14764 * by enabling the load detect pipe once. */
14765 for_each_intel_connector(dev, connector) {
14766 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14767 crt = &connector->base;
14768 break;
14769 }
14770 }
14771
14772 if (!crt)
14773 return;
14774
14775 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14776 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14777 }
14778
14779 static bool
14780 intel_check_plane_mapping(struct intel_crtc *crtc)
14781 {
14782 struct drm_device *dev = crtc->base.dev;
14783 struct drm_i915_private *dev_priv = dev->dev_private;
14784 u32 reg, val;
14785
14786 if (INTEL_INFO(dev)->num_pipes == 1)
14787 return true;
14788
14789 reg = DSPCNTR(!crtc->plane);
14790 val = I915_READ(reg);
14791
14792 if ((val & DISPLAY_PLANE_ENABLE) &&
14793 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14794 return false;
14795
14796 return true;
14797 }
14798
14799 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14800 {
14801 struct drm_device *dev = crtc->base.dev;
14802 struct drm_i915_private *dev_priv = dev->dev_private;
14803 u32 reg;
14804
14805 /* Clear any frame start delays used for debugging left by the BIOS */
14806 reg = PIPECONF(crtc->config->cpu_transcoder);
14807 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14808
14809 /* restore vblank interrupts to correct state */
14810 drm_crtc_vblank_reset(&crtc->base);
14811 if (crtc->active) {
14812 update_scanline_offset(crtc);
14813 drm_crtc_vblank_on(&crtc->base);
14814 }
14815
14816 /* We need to sanitize the plane -> pipe mapping first because this will
14817 * disable the crtc (and hence change the state) if it is wrong. Note
14818 * that gen4+ has a fixed plane -> pipe mapping. */
14819 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14820 struct intel_connector *connector;
14821 bool plane;
14822
14823 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14824 crtc->base.base.id);
14825
14826 /* Pipe has the wrong plane attached and the plane is active.
14827 * Temporarily change the plane mapping and disable everything
14828 * ... */
14829 plane = crtc->plane;
14830 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14831 crtc->plane = !plane;
14832 intel_crtc_disable_planes(&crtc->base);
14833 dev_priv->display.crtc_disable(&crtc->base);
14834 crtc->plane = plane;
14835
14836 /* ... and break all links. */
14837 for_each_intel_connector(dev, connector) {
14838 if (connector->encoder->base.crtc != &crtc->base)
14839 continue;
14840
14841 connector->base.dpms = DRM_MODE_DPMS_OFF;
14842 connector->base.encoder = NULL;
14843 }
14844 /* multiple connectors may have the same encoder:
14845 * handle them and break crtc link separately */
14846 for_each_intel_connector(dev, connector)
14847 if (connector->encoder->base.crtc == &crtc->base) {
14848 connector->encoder->base.crtc = NULL;
14849 connector->encoder->connectors_active = false;
14850 }
14851
14852 WARN_ON(crtc->active);
14853 crtc->base.state->enable = false;
14854 crtc->base.state->active = false;
14855 crtc->base.enabled = false;
14856 }
14857
14858 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14859 crtc->pipe == PIPE_A && !crtc->active) {
14860 /* BIOS forgot to enable pipe A, this mostly happens after
14861 * resume. Force-enable the pipe to fix this, the update_dpms
14862 * call below we restore the pipe to the right state, but leave
14863 * the required bits on. */
14864 intel_enable_pipe_a(dev);
14865 }
14866
14867 /* Adjust the state of the output pipe according to whether we
14868 * have active connectors/encoders. */
14869 intel_crtc_update_dpms(&crtc->base);
14870
14871 if (crtc->active != crtc->base.state->enable) {
14872 struct intel_encoder *encoder;
14873
14874 /* This can happen either due to bugs in the get_hw_state
14875 * functions or because the pipe is force-enabled due to the
14876 * pipe A quirk. */
14877 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14878 crtc->base.base.id,
14879 crtc->base.state->enable ? "enabled" : "disabled",
14880 crtc->active ? "enabled" : "disabled");
14881
14882 crtc->base.state->enable = crtc->active;
14883 crtc->base.state->active = crtc->active;
14884 crtc->base.enabled = crtc->active;
14885
14886 /* Because we only establish the connector -> encoder ->
14887 * crtc links if something is active, this means the
14888 * crtc is now deactivated. Break the links. connector
14889 * -> encoder links are only establish when things are
14890 * actually up, hence no need to break them. */
14891 WARN_ON(crtc->active);
14892
14893 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14894 WARN_ON(encoder->connectors_active);
14895 encoder->base.crtc = NULL;
14896 }
14897 }
14898
14899 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14900 /*
14901 * We start out with underrun reporting disabled to avoid races.
14902 * For correct bookkeeping mark this on active crtcs.
14903 *
14904 * Also on gmch platforms we dont have any hardware bits to
14905 * disable the underrun reporting. Which means we need to start
14906 * out with underrun reporting disabled also on inactive pipes,
14907 * since otherwise we'll complain about the garbage we read when
14908 * e.g. coming up after runtime pm.
14909 *
14910 * No protection against concurrent access is required - at
14911 * worst a fifo underrun happens which also sets this to false.
14912 */
14913 crtc->cpu_fifo_underrun_disabled = true;
14914 crtc->pch_fifo_underrun_disabled = true;
14915 }
14916 }
14917
14918 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14919 {
14920 struct intel_connector *connector;
14921 struct drm_device *dev = encoder->base.dev;
14922
14923 /* We need to check both for a crtc link (meaning that the
14924 * encoder is active and trying to read from a pipe) and the
14925 * pipe itself being active. */
14926 bool has_active_crtc = encoder->base.crtc &&
14927 to_intel_crtc(encoder->base.crtc)->active;
14928
14929 if (encoder->connectors_active && !has_active_crtc) {
14930 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14931 encoder->base.base.id,
14932 encoder->base.name);
14933
14934 /* Connector is active, but has no active pipe. This is
14935 * fallout from our resume register restoring. Disable
14936 * the encoder manually again. */
14937 if (encoder->base.crtc) {
14938 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14939 encoder->base.base.id,
14940 encoder->base.name);
14941 encoder->disable(encoder);
14942 if (encoder->post_disable)
14943 encoder->post_disable(encoder);
14944 }
14945 encoder->base.crtc = NULL;
14946 encoder->connectors_active = false;
14947
14948 /* Inconsistent output/port/pipe state happens presumably due to
14949 * a bug in one of the get_hw_state functions. Or someplace else
14950 * in our code, like the register restore mess on resume. Clamp
14951 * things to off as a safer default. */
14952 for_each_intel_connector(dev, connector) {
14953 if (connector->encoder != encoder)
14954 continue;
14955 connector->base.dpms = DRM_MODE_DPMS_OFF;
14956 connector->base.encoder = NULL;
14957 }
14958 }
14959 /* Enabled encoders without active connectors will be fixed in
14960 * the crtc fixup. */
14961 }
14962
14963 void i915_redisable_vga_power_on(struct drm_device *dev)
14964 {
14965 struct drm_i915_private *dev_priv = dev->dev_private;
14966 u32 vga_reg = i915_vgacntrl_reg(dev);
14967
14968 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14969 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14970 i915_disable_vga(dev);
14971 }
14972 }
14973
14974 void i915_redisable_vga(struct drm_device *dev)
14975 {
14976 struct drm_i915_private *dev_priv = dev->dev_private;
14977
14978 /* This function can be called both from intel_modeset_setup_hw_state or
14979 * at a very early point in our resume sequence, where the power well
14980 * structures are not yet restored. Since this function is at a very
14981 * paranoid "someone might have enabled VGA while we were not looking"
14982 * level, just check if the power well is enabled instead of trying to
14983 * follow the "don't touch the power well if we don't need it" policy
14984 * the rest of the driver uses. */
14985 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14986 return;
14987
14988 i915_redisable_vga_power_on(dev);
14989 }
14990
14991 static bool primary_get_hw_state(struct intel_crtc *crtc)
14992 {
14993 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14994
14995 if (!crtc->active)
14996 return false;
14997
14998 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14999 }
15000
15001 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15002 {
15003 struct drm_i915_private *dev_priv = dev->dev_private;
15004 enum pipe pipe;
15005 struct intel_crtc *crtc;
15006 struct intel_encoder *encoder;
15007 struct intel_connector *connector;
15008 int i;
15009
15010 for_each_intel_crtc(dev, crtc) {
15011 struct drm_plane *primary = crtc->base.primary;
15012 struct intel_plane_state *plane_state;
15013
15014 memset(crtc->config, 0, sizeof(*crtc->config));
15015
15016 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15017
15018 crtc->active = dev_priv->display.get_pipe_config(crtc,
15019 crtc->config);
15020
15021 crtc->base.state->enable = crtc->active;
15022 crtc->base.state->active = crtc->active;
15023 crtc->base.enabled = crtc->active;
15024
15025 plane_state = to_intel_plane_state(primary->state);
15026 plane_state->visible = primary_get_hw_state(crtc);
15027
15028 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15029 crtc->base.base.id,
15030 crtc->active ? "enabled" : "disabled");
15031 }
15032
15033 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15034 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15035
15036 pll->on = pll->get_hw_state(dev_priv, pll,
15037 &pll->config.hw_state);
15038 pll->active = 0;
15039 pll->config.crtc_mask = 0;
15040 for_each_intel_crtc(dev, crtc) {
15041 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15042 pll->active++;
15043 pll->config.crtc_mask |= 1 << crtc->pipe;
15044 }
15045 }
15046
15047 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15048 pll->name, pll->config.crtc_mask, pll->on);
15049
15050 if (pll->config.crtc_mask)
15051 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15052 }
15053
15054 for_each_intel_encoder(dev, encoder) {
15055 pipe = 0;
15056
15057 if (encoder->get_hw_state(encoder, &pipe)) {
15058 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15059 encoder->base.crtc = &crtc->base;
15060 encoder->get_config(encoder, crtc->config);
15061 } else {
15062 encoder->base.crtc = NULL;
15063 }
15064
15065 encoder->connectors_active = false;
15066 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15067 encoder->base.base.id,
15068 encoder->base.name,
15069 encoder->base.crtc ? "enabled" : "disabled",
15070 pipe_name(pipe));
15071 }
15072
15073 for_each_intel_connector(dev, connector) {
15074 if (connector->get_hw_state(connector)) {
15075 connector->base.dpms = DRM_MODE_DPMS_ON;
15076 connector->encoder->connectors_active = true;
15077 connector->base.encoder = &connector->encoder->base;
15078 } else {
15079 connector->base.dpms = DRM_MODE_DPMS_OFF;
15080 connector->base.encoder = NULL;
15081 }
15082 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15083 connector->base.base.id,
15084 connector->base.name,
15085 connector->base.encoder ? "enabled" : "disabled");
15086 }
15087 }
15088
15089 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15090 * and i915 state tracking structures. */
15091 void intel_modeset_setup_hw_state(struct drm_device *dev,
15092 bool force_restore)
15093 {
15094 struct drm_i915_private *dev_priv = dev->dev_private;
15095 enum pipe pipe;
15096 struct intel_crtc *crtc;
15097 struct intel_encoder *encoder;
15098 int i;
15099
15100 intel_modeset_readout_hw_state(dev);
15101
15102 /*
15103 * Now that we have the config, copy it to each CRTC struct
15104 * Note that this could go away if we move to using crtc_config
15105 * checking everywhere.
15106 */
15107 for_each_intel_crtc(dev, crtc) {
15108 if (crtc->active && i915.fastboot) {
15109 intel_mode_from_pipe_config(&crtc->base.mode,
15110 crtc->config);
15111 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15112 crtc->base.base.id);
15113 drm_mode_debug_printmodeline(&crtc->base.mode);
15114 }
15115 }
15116
15117 /* HW state is read out, now we need to sanitize this mess. */
15118 for_each_intel_encoder(dev, encoder) {
15119 intel_sanitize_encoder(encoder);
15120 }
15121
15122 for_each_pipe(dev_priv, pipe) {
15123 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15124 intel_sanitize_crtc(crtc);
15125 intel_dump_pipe_config(crtc, crtc->config,
15126 "[setup_hw_state]");
15127 }
15128
15129 intel_modeset_update_connector_atomic_state(dev);
15130
15131 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15132 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15133
15134 if (!pll->on || pll->active)
15135 continue;
15136
15137 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15138
15139 pll->disable(dev_priv, pll);
15140 pll->on = false;
15141 }
15142
15143 if (IS_GEN9(dev))
15144 skl_wm_get_hw_state(dev);
15145 else if (HAS_PCH_SPLIT(dev))
15146 ilk_wm_get_hw_state(dev);
15147
15148 if (force_restore) {
15149 i915_redisable_vga(dev);
15150
15151 /*
15152 * We need to use raw interfaces for restoring state to avoid
15153 * checking (bogus) intermediate states.
15154 */
15155 for_each_pipe(dev_priv, pipe) {
15156 struct drm_crtc *crtc =
15157 dev_priv->pipe_to_crtc_mapping[pipe];
15158
15159 intel_crtc_restore_mode(crtc);
15160 }
15161 } else {
15162 intel_modeset_update_staged_output_state(dev);
15163 }
15164
15165 intel_modeset_check_state(dev);
15166 }
15167
15168 void intel_modeset_gem_init(struct drm_device *dev)
15169 {
15170 struct drm_i915_private *dev_priv = dev->dev_private;
15171 struct drm_crtc *c;
15172 struct drm_i915_gem_object *obj;
15173 int ret;
15174
15175 mutex_lock(&dev->struct_mutex);
15176 intel_init_gt_powersave(dev);
15177 mutex_unlock(&dev->struct_mutex);
15178
15179 /*
15180 * There may be no VBT; and if the BIOS enabled SSC we can
15181 * just keep using it to avoid unnecessary flicker. Whereas if the
15182 * BIOS isn't using it, don't assume it will work even if the VBT
15183 * indicates as much.
15184 */
15185 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15186 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15187 DREF_SSC1_ENABLE);
15188
15189 intel_modeset_init_hw(dev);
15190
15191 intel_setup_overlay(dev);
15192
15193 /*
15194 * Make sure any fbs we allocated at startup are properly
15195 * pinned & fenced. When we do the allocation it's too early
15196 * for this.
15197 */
15198 for_each_crtc(dev, c) {
15199 obj = intel_fb_obj(c->primary->fb);
15200 if (obj == NULL)
15201 continue;
15202
15203 mutex_lock(&dev->struct_mutex);
15204 ret = intel_pin_and_fence_fb_obj(c->primary,
15205 c->primary->fb,
15206 c->primary->state,
15207 NULL);
15208 mutex_unlock(&dev->struct_mutex);
15209 if (ret) {
15210 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15211 to_intel_crtc(c)->pipe);
15212 drm_framebuffer_unreference(c->primary->fb);
15213 c->primary->fb = NULL;
15214 update_state_fb(c->primary);
15215 }
15216 }
15217
15218 intel_backlight_register(dev);
15219 }
15220
15221 void intel_connector_unregister(struct intel_connector *intel_connector)
15222 {
15223 struct drm_connector *connector = &intel_connector->base;
15224
15225 intel_panel_destroy_backlight(connector);
15226 drm_connector_unregister(connector);
15227 }
15228
15229 void intel_modeset_cleanup(struct drm_device *dev)
15230 {
15231 struct drm_i915_private *dev_priv = dev->dev_private;
15232 struct drm_connector *connector;
15233
15234 intel_disable_gt_powersave(dev);
15235
15236 intel_backlight_unregister(dev);
15237
15238 /*
15239 * Interrupts and polling as the first thing to avoid creating havoc.
15240 * Too much stuff here (turning of connectors, ...) would
15241 * experience fancy races otherwise.
15242 */
15243 intel_irq_uninstall(dev_priv);
15244
15245 /*
15246 * Due to the hpd irq storm handling the hotplug work can re-arm the
15247 * poll handlers. Hence disable polling after hpd handling is shut down.
15248 */
15249 drm_kms_helper_poll_fini(dev);
15250
15251 mutex_lock(&dev->struct_mutex);
15252
15253 intel_unregister_dsm_handler();
15254
15255 intel_fbc_disable(dev);
15256
15257 mutex_unlock(&dev->struct_mutex);
15258
15259 /* flush any delayed tasks or pending work */
15260 flush_scheduled_work();
15261
15262 /* destroy the backlight and sysfs files before encoders/connectors */
15263 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15264 struct intel_connector *intel_connector;
15265
15266 intel_connector = to_intel_connector(connector);
15267 intel_connector->unregister(intel_connector);
15268 }
15269
15270 drm_mode_config_cleanup(dev);
15271
15272 intel_cleanup_overlay(dev);
15273
15274 mutex_lock(&dev->struct_mutex);
15275 intel_cleanup_gt_powersave(dev);
15276 mutex_unlock(&dev->struct_mutex);
15277 }
15278
15279 /*
15280 * Return which encoder is currently attached for connector.
15281 */
15282 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15283 {
15284 return &intel_attached_encoder(connector)->base;
15285 }
15286
15287 void intel_connector_attach_encoder(struct intel_connector *connector,
15288 struct intel_encoder *encoder)
15289 {
15290 connector->encoder = encoder;
15291 drm_mode_connector_attach_encoder(&connector->base,
15292 &encoder->base);
15293 }
15294
15295 /*
15296 * set vga decode state - true == enable VGA decode
15297 */
15298 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15299 {
15300 struct drm_i915_private *dev_priv = dev->dev_private;
15301 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15302 u16 gmch_ctrl;
15303
15304 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15305 DRM_ERROR("failed to read control word\n");
15306 return -EIO;
15307 }
15308
15309 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15310 return 0;
15311
15312 if (state)
15313 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15314 else
15315 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15316
15317 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15318 DRM_ERROR("failed to write control word\n");
15319 return -EIO;
15320 }
15321
15322 return 0;
15323 }
15324
15325 struct intel_display_error_state {
15326
15327 u32 power_well_driver;
15328
15329 int num_transcoders;
15330
15331 struct intel_cursor_error_state {
15332 u32 control;
15333 u32 position;
15334 u32 base;
15335 u32 size;
15336 } cursor[I915_MAX_PIPES];
15337
15338 struct intel_pipe_error_state {
15339 bool power_domain_on;
15340 u32 source;
15341 u32 stat;
15342 } pipe[I915_MAX_PIPES];
15343
15344 struct intel_plane_error_state {
15345 u32 control;
15346 u32 stride;
15347 u32 size;
15348 u32 pos;
15349 u32 addr;
15350 u32 surface;
15351 u32 tile_offset;
15352 } plane[I915_MAX_PIPES];
15353
15354 struct intel_transcoder_error_state {
15355 bool power_domain_on;
15356 enum transcoder cpu_transcoder;
15357
15358 u32 conf;
15359
15360 u32 htotal;
15361 u32 hblank;
15362 u32 hsync;
15363 u32 vtotal;
15364 u32 vblank;
15365 u32 vsync;
15366 } transcoder[4];
15367 };
15368
15369 struct intel_display_error_state *
15370 intel_display_capture_error_state(struct drm_device *dev)
15371 {
15372 struct drm_i915_private *dev_priv = dev->dev_private;
15373 struct intel_display_error_state *error;
15374 int transcoders[] = {
15375 TRANSCODER_A,
15376 TRANSCODER_B,
15377 TRANSCODER_C,
15378 TRANSCODER_EDP,
15379 };
15380 int i;
15381
15382 if (INTEL_INFO(dev)->num_pipes == 0)
15383 return NULL;
15384
15385 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15386 if (error == NULL)
15387 return NULL;
15388
15389 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15390 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15391
15392 for_each_pipe(dev_priv, i) {
15393 error->pipe[i].power_domain_on =
15394 __intel_display_power_is_enabled(dev_priv,
15395 POWER_DOMAIN_PIPE(i));
15396 if (!error->pipe[i].power_domain_on)
15397 continue;
15398
15399 error->cursor[i].control = I915_READ(CURCNTR(i));
15400 error->cursor[i].position = I915_READ(CURPOS(i));
15401 error->cursor[i].base = I915_READ(CURBASE(i));
15402
15403 error->plane[i].control = I915_READ(DSPCNTR(i));
15404 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15405 if (INTEL_INFO(dev)->gen <= 3) {
15406 error->plane[i].size = I915_READ(DSPSIZE(i));
15407 error->plane[i].pos = I915_READ(DSPPOS(i));
15408 }
15409 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15410 error->plane[i].addr = I915_READ(DSPADDR(i));
15411 if (INTEL_INFO(dev)->gen >= 4) {
15412 error->plane[i].surface = I915_READ(DSPSURF(i));
15413 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15414 }
15415
15416 error->pipe[i].source = I915_READ(PIPESRC(i));
15417
15418 if (HAS_GMCH_DISPLAY(dev))
15419 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15420 }
15421
15422 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15423 if (HAS_DDI(dev_priv->dev))
15424 error->num_transcoders++; /* Account for eDP. */
15425
15426 for (i = 0; i < error->num_transcoders; i++) {
15427 enum transcoder cpu_transcoder = transcoders[i];
15428
15429 error->transcoder[i].power_domain_on =
15430 __intel_display_power_is_enabled(dev_priv,
15431 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15432 if (!error->transcoder[i].power_domain_on)
15433 continue;
15434
15435 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15436
15437 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15438 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15439 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15440 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15441 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15442 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15443 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15444 }
15445
15446 return error;
15447 }
15448
15449 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15450
15451 void
15452 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15453 struct drm_device *dev,
15454 struct intel_display_error_state *error)
15455 {
15456 struct drm_i915_private *dev_priv = dev->dev_private;
15457 int i;
15458
15459 if (!error)
15460 return;
15461
15462 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15463 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15464 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15465 error->power_well_driver);
15466 for_each_pipe(dev_priv, i) {
15467 err_printf(m, "Pipe [%d]:\n", i);
15468 err_printf(m, " Power: %s\n",
15469 error->pipe[i].power_domain_on ? "on" : "off");
15470 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15471 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15472
15473 err_printf(m, "Plane [%d]:\n", i);
15474 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15475 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15476 if (INTEL_INFO(dev)->gen <= 3) {
15477 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15478 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15479 }
15480 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15481 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15482 if (INTEL_INFO(dev)->gen >= 4) {
15483 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15484 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15485 }
15486
15487 err_printf(m, "Cursor [%d]:\n", i);
15488 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15489 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15490 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15491 }
15492
15493 for (i = 0; i < error->num_transcoders; i++) {
15494 err_printf(m, "CPU transcoder: %c\n",
15495 transcoder_name(error->transcoder[i].cpu_transcoder));
15496 err_printf(m, " Power: %s\n",
15497 error->transcoder[i].power_domain_on ? "on" : "off");
15498 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15499 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15500 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15501 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15502 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15503 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15504 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15505 }
15506 }
15507
15508 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15509 {
15510 struct intel_crtc *crtc;
15511
15512 for_each_intel_crtc(dev, crtc) {
15513 struct intel_unpin_work *work;
15514
15515 spin_lock_irq(&dev->event_lock);
15516
15517 work = crtc->unpin_work;
15518
15519 if (work && work->event &&
15520 work->event->base.file_priv == file) {
15521 kfree(work->event);
15522 work->event = NULL;
15523 }
15524
15525 spin_unlock_irq(&dev->event_lock);
15526 }
15527 }
This page took 0.514365 seconds and 6 git commands to generate.