drm/i915: s/drm_i915_private_t/struct drm_i915_private/
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 typedef struct {
49 int min, max;
50 } intel_range_t;
51
52 typedef struct {
53 int dot_limit;
54 int p2_slow, p2_fast;
55 } intel_p2_t;
56
57 #define INTEL_P2_NUM 2
58 typedef struct intel_limit intel_limit_t;
59 struct intel_limit {
60 intel_range_t dot, vco, n, m, m1, m2, p, p1;
61 intel_p2_t p2;
62 /**
63 * find_pll() - Find the best values for the PLL
64 * @limit: limits for the PLL
65 * @crtc: current CRTC
66 * @target: target frequency in kHz
67 * @refclk: reference clock frequency in kHz
68 * @match_clock: if provided, @best_clock P divider must
69 * match the P divider from @match_clock
70 * used for LVDS downclocking
71 * @best_clock: best PLL values found
72 *
73 * Returns true on success, false on failure.
74 */
75 bool (*find_pll)(const intel_limit_t *limit,
76 struct drm_crtc *crtc,
77 int target, int refclk,
78 intel_clock_t *match_clock,
79 intel_clock_t *best_clock);
80 };
81
82 /* FDI */
83 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
84
85 int
86 intel_pch_rawclk(struct drm_device *dev)
87 {
88 struct drm_i915_private *dev_priv = dev->dev_private;
89
90 WARN_ON(!HAS_PCH_SPLIT(dev));
91
92 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
93 }
94
95 static bool
96 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
99 static bool
100 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
101 int target, int refclk, intel_clock_t *match_clock,
102 intel_clock_t *best_clock);
103
104 static bool
105 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
108
109 static inline u32 /* units of 100MHz */
110 intel_fdi_link_freq(struct drm_device *dev)
111 {
112 if (IS_GEN5(dev)) {
113 struct drm_i915_private *dev_priv = dev->dev_private;
114 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
115 } else
116 return 27;
117 }
118
119 static const intel_limit_t intel_limits_i8xx_dvo = {
120 .dot = { .min = 25000, .max = 350000 },
121 .vco = { .min = 930000, .max = 1400000 },
122 .n = { .min = 3, .max = 16 },
123 .m = { .min = 96, .max = 140 },
124 .m1 = { .min = 18, .max = 26 },
125 .m2 = { .min = 6, .max = 16 },
126 .p = { .min = 4, .max = 128 },
127 .p1 = { .min = 2, .max = 33 },
128 .p2 = { .dot_limit = 165000,
129 .p2_slow = 4, .p2_fast = 2 },
130 .find_pll = intel_find_best_PLL,
131 };
132
133 static const intel_limit_t intel_limits_i8xx_lvds = {
134 .dot = { .min = 25000, .max = 350000 },
135 .vco = { .min = 930000, .max = 1400000 },
136 .n = { .min = 3, .max = 16 },
137 .m = { .min = 96, .max = 140 },
138 .m1 = { .min = 18, .max = 26 },
139 .m2 = { .min = 6, .max = 16 },
140 .p = { .min = 4, .max = 128 },
141 .p1 = { .min = 1, .max = 6 },
142 .p2 = { .dot_limit = 165000,
143 .p2_slow = 14, .p2_fast = 7 },
144 .find_pll = intel_find_best_PLL,
145 };
146
147 static const intel_limit_t intel_limits_i9xx_sdvo = {
148 .dot = { .min = 20000, .max = 400000 },
149 .vco = { .min = 1400000, .max = 2800000 },
150 .n = { .min = 1, .max = 6 },
151 .m = { .min = 70, .max = 120 },
152 .m1 = { .min = 8, .max = 18 },
153 .m2 = { .min = 3, .max = 7 },
154 .p = { .min = 5, .max = 80 },
155 .p1 = { .min = 1, .max = 8 },
156 .p2 = { .dot_limit = 200000,
157 .p2_slow = 10, .p2_fast = 5 },
158 .find_pll = intel_find_best_PLL,
159 };
160
161 static const intel_limit_t intel_limits_i9xx_lvds = {
162 .dot = { .min = 20000, .max = 400000 },
163 .vco = { .min = 1400000, .max = 2800000 },
164 .n = { .min = 1, .max = 6 },
165 .m = { .min = 70, .max = 120 },
166 .m1 = { .min = 8, .max = 18 },
167 .m2 = { .min = 3, .max = 7 },
168 .p = { .min = 7, .max = 98 },
169 .p1 = { .min = 1, .max = 8 },
170 .p2 = { .dot_limit = 112000,
171 .p2_slow = 14, .p2_fast = 7 },
172 .find_pll = intel_find_best_PLL,
173 };
174
175
176 static const intel_limit_t intel_limits_g4x_sdvo = {
177 .dot = { .min = 25000, .max = 270000 },
178 .vco = { .min = 1750000, .max = 3500000},
179 .n = { .min = 1, .max = 4 },
180 .m = { .min = 104, .max = 138 },
181 .m1 = { .min = 17, .max = 23 },
182 .m2 = { .min = 5, .max = 11 },
183 .p = { .min = 10, .max = 30 },
184 .p1 = { .min = 1, .max = 3},
185 .p2 = { .dot_limit = 270000,
186 .p2_slow = 10,
187 .p2_fast = 10
188 },
189 .find_pll = intel_g4x_find_best_PLL,
190 };
191
192 static const intel_limit_t intel_limits_g4x_hdmi = {
193 .dot = { .min = 22000, .max = 400000 },
194 .vco = { .min = 1750000, .max = 3500000},
195 .n = { .min = 1, .max = 4 },
196 .m = { .min = 104, .max = 138 },
197 .m1 = { .min = 16, .max = 23 },
198 .m2 = { .min = 5, .max = 11 },
199 .p = { .min = 5, .max = 80 },
200 .p1 = { .min = 1, .max = 8},
201 .p2 = { .dot_limit = 165000,
202 .p2_slow = 10, .p2_fast = 5 },
203 .find_pll = intel_g4x_find_best_PLL,
204 };
205
206 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
207 .dot = { .min = 20000, .max = 115000 },
208 .vco = { .min = 1750000, .max = 3500000 },
209 .n = { .min = 1, .max = 3 },
210 .m = { .min = 104, .max = 138 },
211 .m1 = { .min = 17, .max = 23 },
212 .m2 = { .min = 5, .max = 11 },
213 .p = { .min = 28, .max = 112 },
214 .p1 = { .min = 2, .max = 8 },
215 .p2 = { .dot_limit = 0,
216 .p2_slow = 14, .p2_fast = 14
217 },
218 .find_pll = intel_g4x_find_best_PLL,
219 };
220
221 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
222 .dot = { .min = 80000, .max = 224000 },
223 .vco = { .min = 1750000, .max = 3500000 },
224 .n = { .min = 1, .max = 3 },
225 .m = { .min = 104, .max = 138 },
226 .m1 = { .min = 17, .max = 23 },
227 .m2 = { .min = 5, .max = 11 },
228 .p = { .min = 14, .max = 42 },
229 .p1 = { .min = 2, .max = 6 },
230 .p2 = { .dot_limit = 0,
231 .p2_slow = 7, .p2_fast = 7
232 },
233 .find_pll = intel_g4x_find_best_PLL,
234 };
235
236 static const intel_limit_t intel_limits_pineview_sdvo = {
237 .dot = { .min = 20000, .max = 400000},
238 .vco = { .min = 1700000, .max = 3500000 },
239 /* Pineview's Ncounter is a ring counter */
240 .n = { .min = 3, .max = 6 },
241 .m = { .min = 2, .max = 256 },
242 /* Pineview only has one combined m divider, which we treat as m2. */
243 .m1 = { .min = 0, .max = 0 },
244 .m2 = { .min = 0, .max = 254 },
245 .p = { .min = 5, .max = 80 },
246 .p1 = { .min = 1, .max = 8 },
247 .p2 = { .dot_limit = 200000,
248 .p2_slow = 10, .p2_fast = 5 },
249 .find_pll = intel_find_best_PLL,
250 };
251
252 static const intel_limit_t intel_limits_pineview_lvds = {
253 .dot = { .min = 20000, .max = 400000 },
254 .vco = { .min = 1700000, .max = 3500000 },
255 .n = { .min = 3, .max = 6 },
256 .m = { .min = 2, .max = 256 },
257 .m1 = { .min = 0, .max = 0 },
258 .m2 = { .min = 0, .max = 254 },
259 .p = { .min = 7, .max = 112 },
260 .p1 = { .min = 1, .max = 8 },
261 .p2 = { .dot_limit = 112000,
262 .p2_slow = 14, .p2_fast = 14 },
263 .find_pll = intel_find_best_PLL,
264 };
265
266 /* Ironlake / Sandybridge
267 *
268 * We calculate clock using (register_value + 2) for N/M1/M2, so here
269 * the range value for them is (actual_value - 2).
270 */
271 static const intel_limit_t intel_limits_ironlake_dac = {
272 .dot = { .min = 25000, .max = 350000 },
273 .vco = { .min = 1760000, .max = 3510000 },
274 .n = { .min = 1, .max = 5 },
275 .m = { .min = 79, .max = 127 },
276 .m1 = { .min = 12, .max = 22 },
277 .m2 = { .min = 5, .max = 9 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 225000,
281 .p2_slow = 10, .p2_fast = 5 },
282 .find_pll = intel_g4x_find_best_PLL,
283 };
284
285 static const intel_limit_t intel_limits_ironlake_single_lvds = {
286 .dot = { .min = 25000, .max = 350000 },
287 .vco = { .min = 1760000, .max = 3510000 },
288 .n = { .min = 1, .max = 3 },
289 .m = { .min = 79, .max = 118 },
290 .m1 = { .min = 12, .max = 22 },
291 .m2 = { .min = 5, .max = 9 },
292 .p = { .min = 28, .max = 112 },
293 .p1 = { .min = 2, .max = 8 },
294 .p2 = { .dot_limit = 225000,
295 .p2_slow = 14, .p2_fast = 14 },
296 .find_pll = intel_g4x_find_best_PLL,
297 };
298
299 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 127 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 56 },
307 .p1 = { .min = 2, .max = 8 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310 .find_pll = intel_g4x_find_best_PLL,
311 };
312
313 /* LVDS 100mhz refclk limits. */
314 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
315 .dot = { .min = 25000, .max = 350000 },
316 .vco = { .min = 1760000, .max = 3510000 },
317 .n = { .min = 1, .max = 2 },
318 .m = { .min = 79, .max = 126 },
319 .m1 = { .min = 12, .max = 22 },
320 .m2 = { .min = 5, .max = 9 },
321 .p = { .min = 28, .max = 112 },
322 .p1 = { .min = 2, .max = 8 },
323 .p2 = { .dot_limit = 225000,
324 .p2_slow = 14, .p2_fast = 14 },
325 .find_pll = intel_g4x_find_best_PLL,
326 };
327
328 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 126 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 42 },
336 .p1 = { .min = 2, .max = 6 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
339 .find_pll = intel_g4x_find_best_PLL,
340 };
341
342 static const intel_limit_t intel_limits_vlv_dac = {
343 .dot = { .min = 25000, .max = 270000 },
344 .vco = { .min = 4000000, .max = 6000000 },
345 .n = { .min = 1, .max = 7 },
346 .m = { .min = 22, .max = 450 }, /* guess */
347 .m1 = { .min = 2, .max = 3 },
348 .m2 = { .min = 11, .max = 156 },
349 .p = { .min = 10, .max = 30 },
350 .p1 = { .min = 1, .max = 3 },
351 .p2 = { .dot_limit = 270000,
352 .p2_slow = 2, .p2_fast = 20 },
353 .find_pll = intel_vlv_find_best_pll,
354 };
355
356 static const intel_limit_t intel_limits_vlv_hdmi = {
357 .dot = { .min = 25000, .max = 270000 },
358 .vco = { .min = 4000000, .max = 6000000 },
359 .n = { .min = 1, .max = 7 },
360 .m = { .min = 60, .max = 300 }, /* guess */
361 .m1 = { .min = 2, .max = 3 },
362 .m2 = { .min = 11, .max = 156 },
363 .p = { .min = 10, .max = 30 },
364 .p1 = { .min = 2, .max = 3 },
365 .p2 = { .dot_limit = 270000,
366 .p2_slow = 2, .p2_fast = 20 },
367 .find_pll = intel_vlv_find_best_pll,
368 };
369
370 static const intel_limit_t intel_limits_vlv_dp = {
371 .dot = { .min = 25000, .max = 270000 },
372 .vco = { .min = 4000000, .max = 6000000 },
373 .n = { .min = 1, .max = 7 },
374 .m = { .min = 22, .max = 450 },
375 .m1 = { .min = 2, .max = 3 },
376 .m2 = { .min = 11, .max = 156 },
377 .p = { .min = 10, .max = 30 },
378 .p1 = { .min = 1, .max = 3 },
379 .p2 = { .dot_limit = 270000,
380 .p2_slow = 2, .p2_fast = 20 },
381 .find_pll = intel_vlv_find_best_pll,
382 };
383
384 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
385 int refclk)
386 {
387 struct drm_device *dev = crtc->dev;
388 const intel_limit_t *limit;
389
390 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
391 if (intel_is_dual_link_lvds(dev)) {
392 if (refclk == 100000)
393 limit = &intel_limits_ironlake_dual_lvds_100m;
394 else
395 limit = &intel_limits_ironlake_dual_lvds;
396 } else {
397 if (refclk == 100000)
398 limit = &intel_limits_ironlake_single_lvds_100m;
399 else
400 limit = &intel_limits_ironlake_single_lvds;
401 }
402 } else
403 limit = &intel_limits_ironlake_dac;
404
405 return limit;
406 }
407
408 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
409 {
410 struct drm_device *dev = crtc->dev;
411 const intel_limit_t *limit;
412
413 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
414 if (intel_is_dual_link_lvds(dev))
415 limit = &intel_limits_g4x_dual_channel_lvds;
416 else
417 limit = &intel_limits_g4x_single_channel_lvds;
418 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
419 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
420 limit = &intel_limits_g4x_hdmi;
421 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
422 limit = &intel_limits_g4x_sdvo;
423 } else /* The option is for other outputs */
424 limit = &intel_limits_i9xx_sdvo;
425
426 return limit;
427 }
428
429 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
430 {
431 struct drm_device *dev = crtc->dev;
432 const intel_limit_t *limit;
433
434 if (HAS_PCH_SPLIT(dev))
435 limit = intel_ironlake_limit(crtc, refclk);
436 else if (IS_G4X(dev)) {
437 limit = intel_g4x_limit(crtc);
438 } else if (IS_PINEVIEW(dev)) {
439 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
440 limit = &intel_limits_pineview_lvds;
441 else
442 limit = &intel_limits_pineview_sdvo;
443 } else if (IS_VALLEYVIEW(dev)) {
444 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
445 limit = &intel_limits_vlv_dac;
446 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
447 limit = &intel_limits_vlv_hdmi;
448 else
449 limit = &intel_limits_vlv_dp;
450 } else if (!IS_GEN2(dev)) {
451 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
452 limit = &intel_limits_i9xx_lvds;
453 else
454 limit = &intel_limits_i9xx_sdvo;
455 } else {
456 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
457 limit = &intel_limits_i8xx_lvds;
458 else
459 limit = &intel_limits_i8xx_dvo;
460 }
461 return limit;
462 }
463
464 /* m1 is reserved as 0 in Pineview, n is a ring counter */
465 static void pineview_clock(int refclk, intel_clock_t *clock)
466 {
467 clock->m = clock->m2 + 2;
468 clock->p = clock->p1 * clock->p2;
469 clock->vco = refclk * clock->m / clock->n;
470 clock->dot = clock->vco / clock->p;
471 }
472
473 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
474 {
475 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
476 }
477
478 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
479 {
480 if (IS_PINEVIEW(dev)) {
481 pineview_clock(refclk, clock);
482 return;
483 }
484 clock->m = i9xx_dpll_compute_m(clock);
485 clock->p = clock->p1 * clock->p2;
486 clock->vco = refclk * clock->m / (clock->n + 2);
487 clock->dot = clock->vco / clock->p;
488 }
489
490 /**
491 * Returns whether any output on the specified pipe is of the specified type
492 */
493 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
494 {
495 struct drm_device *dev = crtc->dev;
496 struct intel_encoder *encoder;
497
498 for_each_encoder_on_crtc(dev, crtc, encoder)
499 if (encoder->type == type)
500 return true;
501
502 return false;
503 }
504
505 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
506 /**
507 * Returns whether the given set of divisors are valid for a given refclk with
508 * the given connectors.
509 */
510
511 static bool intel_PLL_is_valid(struct drm_device *dev,
512 const intel_limit_t *limit,
513 const intel_clock_t *clock)
514 {
515 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
516 INTELPllInvalid("p1 out of range\n");
517 if (clock->p < limit->p.min || limit->p.max < clock->p)
518 INTELPllInvalid("p out of range\n");
519 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
520 INTELPllInvalid("m2 out of range\n");
521 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
522 INTELPllInvalid("m1 out of range\n");
523 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
524 INTELPllInvalid("m1 <= m2\n");
525 if (clock->m < limit->m.min || limit->m.max < clock->m)
526 INTELPllInvalid("m out of range\n");
527 if (clock->n < limit->n.min || limit->n.max < clock->n)
528 INTELPllInvalid("n out of range\n");
529 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
530 INTELPllInvalid("vco out of range\n");
531 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
532 * connector, etc., rather than just a single range.
533 */
534 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
535 INTELPllInvalid("dot out of range\n");
536
537 return true;
538 }
539
540 static bool
541 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
542 int target, int refclk, intel_clock_t *match_clock,
543 intel_clock_t *best_clock)
544
545 {
546 struct drm_device *dev = crtc->dev;
547 intel_clock_t clock;
548 int err = target;
549
550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
551 /*
552 * For LVDS just rely on its current settings for dual-channel.
553 * We haven't figured out how to reliably set up different
554 * single/dual channel state, if we even can.
555 */
556 if (intel_is_dual_link_lvds(dev))
557 clock.p2 = limit->p2.p2_fast;
558 else
559 clock.p2 = limit->p2.p2_slow;
560 } else {
561 if (target < limit->p2.dot_limit)
562 clock.p2 = limit->p2.p2_slow;
563 else
564 clock.p2 = limit->p2.p2_fast;
565 }
566
567 memset(best_clock, 0, sizeof(*best_clock));
568
569 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
570 clock.m1++) {
571 for (clock.m2 = limit->m2.min;
572 clock.m2 <= limit->m2.max; clock.m2++) {
573 /* m1 is always 0 in Pineview */
574 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
575 break;
576 for (clock.n = limit->n.min;
577 clock.n <= limit->n.max; clock.n++) {
578 for (clock.p1 = limit->p1.min;
579 clock.p1 <= limit->p1.max; clock.p1++) {
580 int this_err;
581
582 intel_clock(dev, refclk, &clock);
583 if (!intel_PLL_is_valid(dev, limit,
584 &clock))
585 continue;
586 if (match_clock &&
587 clock.p != match_clock->p)
588 continue;
589
590 this_err = abs(clock.dot - target);
591 if (this_err < err) {
592 *best_clock = clock;
593 err = this_err;
594 }
595 }
596 }
597 }
598 }
599
600 return (err != target);
601 }
602
603 static bool
604 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
605 int target, int refclk, intel_clock_t *match_clock,
606 intel_clock_t *best_clock)
607 {
608 struct drm_device *dev = crtc->dev;
609 intel_clock_t clock;
610 int max_n;
611 bool found;
612 /* approximately equals target * 0.00585 */
613 int err_most = (target >> 8) + (target >> 9);
614 found = false;
615
616 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
617 if (intel_is_dual_link_lvds(dev))
618 clock.p2 = limit->p2.p2_fast;
619 else
620 clock.p2 = limit->p2.p2_slow;
621 } else {
622 if (target < limit->p2.dot_limit)
623 clock.p2 = limit->p2.p2_slow;
624 else
625 clock.p2 = limit->p2.p2_fast;
626 }
627
628 memset(best_clock, 0, sizeof(*best_clock));
629 max_n = limit->n.max;
630 /* based on hardware requirement, prefer smaller n to precision */
631 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
632 /* based on hardware requirement, prefere larger m1,m2 */
633 for (clock.m1 = limit->m1.max;
634 clock.m1 >= limit->m1.min; clock.m1--) {
635 for (clock.m2 = limit->m2.max;
636 clock.m2 >= limit->m2.min; clock.m2--) {
637 for (clock.p1 = limit->p1.max;
638 clock.p1 >= limit->p1.min; clock.p1--) {
639 int this_err;
640
641 intel_clock(dev, refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645
646 this_err = abs(clock.dot - target);
647 if (this_err < err_most) {
648 *best_clock = clock;
649 err_most = this_err;
650 max_n = clock.n;
651 found = true;
652 }
653 }
654 }
655 }
656 }
657 return found;
658 }
659
660 static bool
661 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
662 int target, int refclk, intel_clock_t *match_clock,
663 intel_clock_t *best_clock)
664 {
665 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
666 u32 m, n, fastclk;
667 u32 updrate, minupdate, fracbits, p;
668 unsigned long bestppm, ppm, absppm;
669 int dotclk, flag;
670
671 flag = 0;
672 dotclk = target * 1000;
673 bestppm = 1000000;
674 ppm = absppm = 0;
675 fastclk = dotclk / (2*100);
676 updrate = 0;
677 minupdate = 19200;
678 fracbits = 1;
679 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
680 bestm1 = bestm2 = bestp1 = bestp2 = 0;
681
682 /* based on hardware requirement, prefer smaller n to precision */
683 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
684 updrate = refclk / n;
685 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
686 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
687 if (p2 > 10)
688 p2 = p2 - 1;
689 p = p1 * p2;
690 /* based on hardware requirement, prefer bigger m1,m2 values */
691 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
692 m2 = (((2*(fastclk * p * n / m1 )) +
693 refclk) / (2*refclk));
694 m = m1 * m2;
695 vco = updrate * m;
696 if (vco >= limit->vco.min && vco < limit->vco.max) {
697 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
698 absppm = (ppm > 0) ? ppm : (-ppm);
699 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
700 bestppm = 0;
701 flag = 1;
702 }
703 if (absppm < bestppm - 10) {
704 bestppm = absppm;
705 flag = 1;
706 }
707 if (flag) {
708 bestn = n;
709 bestm1 = m1;
710 bestm2 = m2;
711 bestp1 = p1;
712 bestp2 = p2;
713 flag = 0;
714 }
715 }
716 }
717 }
718 }
719 }
720 best_clock->n = bestn;
721 best_clock->m1 = bestm1;
722 best_clock->m2 = bestm2;
723 best_clock->p1 = bestp1;
724 best_clock->p2 = bestp2;
725
726 return true;
727 }
728
729 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
730 enum pipe pipe)
731 {
732 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
734
735 return intel_crtc->config.cpu_transcoder;
736 }
737
738 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
739 {
740 struct drm_i915_private *dev_priv = dev->dev_private;
741 u32 frame, frame_reg = PIPEFRAME(pipe);
742
743 frame = I915_READ(frame_reg);
744
745 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
746 DRM_DEBUG_KMS("vblank wait timed out\n");
747 }
748
749 /**
750 * intel_wait_for_vblank - wait for vblank on a given pipe
751 * @dev: drm device
752 * @pipe: pipe to wait for
753 *
754 * Wait for vblank to occur on a given pipe. Needed for various bits of
755 * mode setting code.
756 */
757 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
758 {
759 struct drm_i915_private *dev_priv = dev->dev_private;
760 int pipestat_reg = PIPESTAT(pipe);
761
762 if (INTEL_INFO(dev)->gen >= 5) {
763 ironlake_wait_for_vblank(dev, pipe);
764 return;
765 }
766
767 /* Clear existing vblank status. Note this will clear any other
768 * sticky status fields as well.
769 *
770 * This races with i915_driver_irq_handler() with the result
771 * that either function could miss a vblank event. Here it is not
772 * fatal, as we will either wait upon the next vblank interrupt or
773 * timeout. Generally speaking intel_wait_for_vblank() is only
774 * called during modeset at which time the GPU should be idle and
775 * should *not* be performing page flips and thus not waiting on
776 * vblanks...
777 * Currently, the result of us stealing a vblank from the irq
778 * handler is that a single frame will be skipped during swapbuffers.
779 */
780 I915_WRITE(pipestat_reg,
781 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
782
783 /* Wait for vblank interrupt bit to set */
784 if (wait_for(I915_READ(pipestat_reg) &
785 PIPE_VBLANK_INTERRUPT_STATUS,
786 50))
787 DRM_DEBUG_KMS("vblank wait timed out\n");
788 }
789
790 /*
791 * intel_wait_for_pipe_off - wait for pipe to turn off
792 * @dev: drm device
793 * @pipe: pipe to wait for
794 *
795 * After disabling a pipe, we can't wait for vblank in the usual way,
796 * spinning on the vblank interrupt status bit, since we won't actually
797 * see an interrupt when the pipe is disabled.
798 *
799 * On Gen4 and above:
800 * wait for the pipe register state bit to turn off
801 *
802 * Otherwise:
803 * wait for the display line value to settle (it usually
804 * ends up stopping at the start of the next frame).
805 *
806 */
807 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
808 {
809 struct drm_i915_private *dev_priv = dev->dev_private;
810 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
811 pipe);
812
813 if (INTEL_INFO(dev)->gen >= 4) {
814 int reg = PIPECONF(cpu_transcoder);
815
816 /* Wait for the Pipe State to go off */
817 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
818 100))
819 WARN(1, "pipe_off wait timed out\n");
820 } else {
821 u32 last_line, line_mask;
822 int reg = PIPEDSL(pipe);
823 unsigned long timeout = jiffies + msecs_to_jiffies(100);
824
825 if (IS_GEN2(dev))
826 line_mask = DSL_LINEMASK_GEN2;
827 else
828 line_mask = DSL_LINEMASK_GEN3;
829
830 /* Wait for the display line to settle */
831 do {
832 last_line = I915_READ(reg) & line_mask;
833 mdelay(5);
834 } while (((I915_READ(reg) & line_mask) != last_line) &&
835 time_after(timeout, jiffies));
836 if (time_after(jiffies, timeout))
837 WARN(1, "pipe_off wait timed out\n");
838 }
839 }
840
841 /*
842 * ibx_digital_port_connected - is the specified port connected?
843 * @dev_priv: i915 private structure
844 * @port: the port to test
845 *
846 * Returns true if @port is connected, false otherwise.
847 */
848 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
849 struct intel_digital_port *port)
850 {
851 u32 bit;
852
853 if (HAS_PCH_IBX(dev_priv->dev)) {
854 switch(port->port) {
855 case PORT_B:
856 bit = SDE_PORTB_HOTPLUG;
857 break;
858 case PORT_C:
859 bit = SDE_PORTC_HOTPLUG;
860 break;
861 case PORT_D:
862 bit = SDE_PORTD_HOTPLUG;
863 break;
864 default:
865 return true;
866 }
867 } else {
868 switch(port->port) {
869 case PORT_B:
870 bit = SDE_PORTB_HOTPLUG_CPT;
871 break;
872 case PORT_C:
873 bit = SDE_PORTC_HOTPLUG_CPT;
874 break;
875 case PORT_D:
876 bit = SDE_PORTD_HOTPLUG_CPT;
877 break;
878 default:
879 return true;
880 }
881 }
882
883 return I915_READ(SDEISR) & bit;
884 }
885
886 static const char *state_string(bool enabled)
887 {
888 return enabled ? "on" : "off";
889 }
890
891 /* Only for pre-ILK configs */
892 static void assert_pll(struct drm_i915_private *dev_priv,
893 enum pipe pipe, bool state)
894 {
895 int reg;
896 u32 val;
897 bool cur_state;
898
899 reg = DPLL(pipe);
900 val = I915_READ(reg);
901 cur_state = !!(val & DPLL_VCO_ENABLE);
902 WARN(cur_state != state,
903 "PLL state assertion failure (expected %s, current %s)\n",
904 state_string(state), state_string(cur_state));
905 }
906 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
907 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
908
909 /* For ILK+ */
910 static void assert_pch_pll(struct drm_i915_private *dev_priv,
911 struct intel_pch_pll *pll,
912 struct intel_crtc *crtc,
913 bool state)
914 {
915 u32 val;
916 bool cur_state;
917
918 if (HAS_PCH_LPT(dev_priv->dev)) {
919 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
920 return;
921 }
922
923 if (WARN (!pll,
924 "asserting PCH PLL %s with no PLL\n", state_string(state)))
925 return;
926
927 val = I915_READ(pll->pll_reg);
928 cur_state = !!(val & DPLL_VCO_ENABLE);
929 WARN(cur_state != state,
930 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
931 pll->pll_reg, state_string(state), state_string(cur_state), val);
932
933 /* Make sure the selected PLL is correctly attached to the transcoder */
934 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
935 u32 pch_dpll;
936
937 pch_dpll = I915_READ(PCH_DPLL_SEL);
938 cur_state = pll->pll_reg == _PCH_DPLL_B;
939 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
940 "PLL[%d] not attached to this transcoder %c: %08x\n",
941 cur_state, pipe_name(crtc->pipe), pch_dpll)) {
942 cur_state = !!(val >> (4*crtc->pipe + 3));
943 WARN(cur_state != state,
944 "PLL[%d] not %s on this transcoder %c: %08x\n",
945 pll->pll_reg == _PCH_DPLL_B,
946 state_string(state),
947 pipe_name(crtc->pipe),
948 val);
949 }
950 }
951 }
952 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
953 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
954
955 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
956 enum pipe pipe, bool state)
957 {
958 int reg;
959 u32 val;
960 bool cur_state;
961 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
962 pipe);
963
964 if (HAS_DDI(dev_priv->dev)) {
965 /* DDI does not have a specific FDI_TX register */
966 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
967 val = I915_READ(reg);
968 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
969 } else {
970 reg = FDI_TX_CTL(pipe);
971 val = I915_READ(reg);
972 cur_state = !!(val & FDI_TX_ENABLE);
973 }
974 WARN(cur_state != state,
975 "FDI TX state assertion failure (expected %s, current %s)\n",
976 state_string(state), state_string(cur_state));
977 }
978 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
979 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
980
981 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
982 enum pipe pipe, bool state)
983 {
984 int reg;
985 u32 val;
986 bool cur_state;
987
988 reg = FDI_RX_CTL(pipe);
989 val = I915_READ(reg);
990 cur_state = !!(val & FDI_RX_ENABLE);
991 WARN(cur_state != state,
992 "FDI RX state assertion failure (expected %s, current %s)\n",
993 state_string(state), state_string(cur_state));
994 }
995 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
996 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
997
998 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
999 enum pipe pipe)
1000 {
1001 int reg;
1002 u32 val;
1003
1004 /* ILK FDI PLL is always enabled */
1005 if (dev_priv->info->gen == 5)
1006 return;
1007
1008 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1009 if (HAS_DDI(dev_priv->dev))
1010 return;
1011
1012 reg = FDI_TX_CTL(pipe);
1013 val = I915_READ(reg);
1014 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1015 }
1016
1017 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1018 enum pipe pipe)
1019 {
1020 int reg;
1021 u32 val;
1022
1023 reg = FDI_RX_CTL(pipe);
1024 val = I915_READ(reg);
1025 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1029 enum pipe pipe)
1030 {
1031 int pp_reg, lvds_reg;
1032 u32 val;
1033 enum pipe panel_pipe = PIPE_A;
1034 bool locked = true;
1035
1036 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1037 pp_reg = PCH_PP_CONTROL;
1038 lvds_reg = PCH_LVDS;
1039 } else {
1040 pp_reg = PP_CONTROL;
1041 lvds_reg = LVDS;
1042 }
1043
1044 val = I915_READ(pp_reg);
1045 if (!(val & PANEL_POWER_ON) ||
1046 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1047 locked = false;
1048
1049 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1050 panel_pipe = PIPE_B;
1051
1052 WARN(panel_pipe == pipe && locked,
1053 "panel assertion failure, pipe %c regs locked\n",
1054 pipe_name(pipe));
1055 }
1056
1057 void assert_pipe(struct drm_i915_private *dev_priv,
1058 enum pipe pipe, bool state)
1059 {
1060 int reg;
1061 u32 val;
1062 bool cur_state;
1063 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1064 pipe);
1065
1066 /* if we need the pipe A quirk it must be always on */
1067 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1068 state = true;
1069
1070 if (!intel_display_power_enabled(dev_priv->dev,
1071 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1072 cur_state = false;
1073 } else {
1074 reg = PIPECONF(cpu_transcoder);
1075 val = I915_READ(reg);
1076 cur_state = !!(val & PIPECONF_ENABLE);
1077 }
1078
1079 WARN(cur_state != state,
1080 "pipe %c assertion failure (expected %s, current %s)\n",
1081 pipe_name(pipe), state_string(state), state_string(cur_state));
1082 }
1083
1084 static void assert_plane(struct drm_i915_private *dev_priv,
1085 enum plane plane, bool state)
1086 {
1087 int reg;
1088 u32 val;
1089 bool cur_state;
1090
1091 reg = DSPCNTR(plane);
1092 val = I915_READ(reg);
1093 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1094 WARN(cur_state != state,
1095 "plane %c assertion failure (expected %s, current %s)\n",
1096 plane_name(plane), state_string(state), state_string(cur_state));
1097 }
1098
1099 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1100 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1101
1102 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1103 enum pipe pipe)
1104 {
1105 int reg, i;
1106 u32 val;
1107 int cur_pipe;
1108
1109 /* Planes are fixed to pipes on ILK+ */
1110 if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
1111 reg = DSPCNTR(pipe);
1112 val = I915_READ(reg);
1113 WARN((val & DISPLAY_PLANE_ENABLE),
1114 "plane %c assertion failure, should be disabled but not\n",
1115 plane_name(pipe));
1116 return;
1117 }
1118
1119 /* Need to check both planes against the pipe */
1120 for (i = 0; i < 2; i++) {
1121 reg = DSPCNTR(i);
1122 val = I915_READ(reg);
1123 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1124 DISPPLANE_SEL_PIPE_SHIFT;
1125 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1126 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1127 plane_name(i), pipe_name(pipe));
1128 }
1129 }
1130
1131 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1132 enum pipe pipe)
1133 {
1134 int reg, i;
1135 u32 val;
1136
1137 if (!IS_VALLEYVIEW(dev_priv->dev))
1138 return;
1139
1140 /* Need to check both planes against the pipe */
1141 for (i = 0; i < dev_priv->num_plane; i++) {
1142 reg = SPCNTR(pipe, i);
1143 val = I915_READ(reg);
1144 WARN((val & SP_ENABLE),
1145 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1146 sprite_name(pipe, i), pipe_name(pipe));
1147 }
1148 }
1149
1150 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1151 {
1152 u32 val;
1153 bool enabled;
1154
1155 if (HAS_PCH_LPT(dev_priv->dev)) {
1156 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1157 return;
1158 }
1159
1160 val = I915_READ(PCH_DREF_CONTROL);
1161 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1162 DREF_SUPERSPREAD_SOURCE_MASK));
1163 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1164 }
1165
1166 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1167 enum pipe pipe)
1168 {
1169 int reg;
1170 u32 val;
1171 bool enabled;
1172
1173 reg = PCH_TRANSCONF(pipe);
1174 val = I915_READ(reg);
1175 enabled = !!(val & TRANS_ENABLE);
1176 WARN(enabled,
1177 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1178 pipe_name(pipe));
1179 }
1180
1181 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1182 enum pipe pipe, u32 port_sel, u32 val)
1183 {
1184 if ((val & DP_PORT_EN) == 0)
1185 return false;
1186
1187 if (HAS_PCH_CPT(dev_priv->dev)) {
1188 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1189 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1190 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1191 return false;
1192 } else {
1193 if ((val & DP_PIPE_MASK) != (pipe << 30))
1194 return false;
1195 }
1196 return true;
1197 }
1198
1199 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1200 enum pipe pipe, u32 val)
1201 {
1202 if ((val & SDVO_ENABLE) == 0)
1203 return false;
1204
1205 if (HAS_PCH_CPT(dev_priv->dev)) {
1206 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1207 return false;
1208 } else {
1209 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1210 return false;
1211 }
1212 return true;
1213 }
1214
1215 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1216 enum pipe pipe, u32 val)
1217 {
1218 if ((val & LVDS_PORT_EN) == 0)
1219 return false;
1220
1221 if (HAS_PCH_CPT(dev_priv->dev)) {
1222 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1223 return false;
1224 } else {
1225 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1226 return false;
1227 }
1228 return true;
1229 }
1230
1231 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1232 enum pipe pipe, u32 val)
1233 {
1234 if ((val & ADPA_DAC_ENABLE) == 0)
1235 return false;
1236 if (HAS_PCH_CPT(dev_priv->dev)) {
1237 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1238 return false;
1239 } else {
1240 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1241 return false;
1242 }
1243 return true;
1244 }
1245
1246 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe, int reg, u32 port_sel)
1248 {
1249 u32 val = I915_READ(reg);
1250 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1251 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1252 reg, pipe_name(pipe));
1253
1254 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1255 && (val & DP_PIPEB_SELECT),
1256 "IBX PCH dp port still using transcoder B\n");
1257 }
1258
1259 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1260 enum pipe pipe, int reg)
1261 {
1262 u32 val = I915_READ(reg);
1263 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1264 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1265 reg, pipe_name(pipe));
1266
1267 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1268 && (val & SDVO_PIPE_B_SELECT),
1269 "IBX PCH hdmi port still using transcoder B\n");
1270 }
1271
1272 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1273 enum pipe pipe)
1274 {
1275 int reg;
1276 u32 val;
1277
1278 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1279 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1280 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1281
1282 reg = PCH_ADPA;
1283 val = I915_READ(reg);
1284 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1285 "PCH VGA enabled on transcoder %c, should be disabled\n",
1286 pipe_name(pipe));
1287
1288 reg = PCH_LVDS;
1289 val = I915_READ(reg);
1290 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1291 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1292 pipe_name(pipe));
1293
1294 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1295 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1296 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1297 }
1298
1299 /**
1300 * intel_enable_pll - enable a PLL
1301 * @dev_priv: i915 private structure
1302 * @pipe: pipe PLL to enable
1303 *
1304 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1305 * make sure the PLL reg is writable first though, since the panel write
1306 * protect mechanism may be enabled.
1307 *
1308 * Note! This is for pre-ILK only.
1309 *
1310 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1311 */
1312 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1313 {
1314 int reg;
1315 u32 val;
1316
1317 assert_pipe_disabled(dev_priv, pipe);
1318
1319 /* No really, not for ILK+ */
1320 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1321
1322 /* PLL is protected by panel, make sure we can write it */
1323 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1324 assert_panel_unlocked(dev_priv, pipe);
1325
1326 reg = DPLL(pipe);
1327 val = I915_READ(reg);
1328 val |= DPLL_VCO_ENABLE;
1329
1330 /* We do this three times for luck */
1331 I915_WRITE(reg, val);
1332 POSTING_READ(reg);
1333 udelay(150); /* wait for warmup */
1334 I915_WRITE(reg, val);
1335 POSTING_READ(reg);
1336 udelay(150); /* wait for warmup */
1337 I915_WRITE(reg, val);
1338 POSTING_READ(reg);
1339 udelay(150); /* wait for warmup */
1340 }
1341
1342 /**
1343 * intel_disable_pll - disable a PLL
1344 * @dev_priv: i915 private structure
1345 * @pipe: pipe PLL to disable
1346 *
1347 * Disable the PLL for @pipe, making sure the pipe is off first.
1348 *
1349 * Note! This is for pre-ILK only.
1350 */
1351 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1352 {
1353 int reg;
1354 u32 val;
1355
1356 /* Don't disable pipe A or pipe A PLLs if needed */
1357 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1358 return;
1359
1360 /* Make sure the pipe isn't still relying on us */
1361 assert_pipe_disabled(dev_priv, pipe);
1362
1363 reg = DPLL(pipe);
1364 val = I915_READ(reg);
1365 val &= ~DPLL_VCO_ENABLE;
1366 I915_WRITE(reg, val);
1367 POSTING_READ(reg);
1368 }
1369
1370 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1371 {
1372 u32 port_mask;
1373
1374 if (!port)
1375 port_mask = DPLL_PORTB_READY_MASK;
1376 else
1377 port_mask = DPLL_PORTC_READY_MASK;
1378
1379 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1380 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1381 'B' + port, I915_READ(DPLL(0)));
1382 }
1383
1384 /**
1385 * ironlake_enable_pch_pll - enable PCH PLL
1386 * @dev_priv: i915 private structure
1387 * @pipe: pipe PLL to enable
1388 *
1389 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1390 * drives the transcoder clock.
1391 */
1392 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1393 {
1394 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1395 struct intel_pch_pll *pll;
1396 int reg;
1397 u32 val;
1398
1399 /* PCH PLLs only available on ILK, SNB and IVB */
1400 BUG_ON(dev_priv->info->gen < 5);
1401 pll = intel_crtc->pch_pll;
1402 if (pll == NULL)
1403 return;
1404
1405 if (WARN_ON(pll->refcount == 0))
1406 return;
1407
1408 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1409 pll->pll_reg, pll->active, pll->on,
1410 intel_crtc->base.base.id);
1411
1412 /* PCH refclock must be enabled first */
1413 assert_pch_refclk_enabled(dev_priv);
1414
1415 if (pll->active++ && pll->on) {
1416 assert_pch_pll_enabled(dev_priv, pll, NULL);
1417 return;
1418 }
1419
1420 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1421
1422 reg = pll->pll_reg;
1423 val = I915_READ(reg);
1424 val |= DPLL_VCO_ENABLE;
1425 I915_WRITE(reg, val);
1426 POSTING_READ(reg);
1427 udelay(200);
1428
1429 pll->on = true;
1430 }
1431
1432 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1433 {
1434 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1435 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1436 int reg;
1437 u32 val;
1438
1439 /* PCH only available on ILK+ */
1440 BUG_ON(dev_priv->info->gen < 5);
1441 if (pll == NULL)
1442 return;
1443
1444 if (WARN_ON(pll->refcount == 0))
1445 return;
1446
1447 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1448 pll->pll_reg, pll->active, pll->on,
1449 intel_crtc->base.base.id);
1450
1451 if (WARN_ON(pll->active == 0)) {
1452 assert_pch_pll_disabled(dev_priv, pll, NULL);
1453 return;
1454 }
1455
1456 if (--pll->active) {
1457 assert_pch_pll_enabled(dev_priv, pll, NULL);
1458 return;
1459 }
1460
1461 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1462
1463 /* Make sure transcoder isn't still depending on us */
1464 assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
1465
1466 reg = pll->pll_reg;
1467 val = I915_READ(reg);
1468 val &= ~DPLL_VCO_ENABLE;
1469 I915_WRITE(reg, val);
1470 POSTING_READ(reg);
1471 udelay(200);
1472
1473 pll->on = false;
1474 }
1475
1476 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1477 enum pipe pipe)
1478 {
1479 struct drm_device *dev = dev_priv->dev;
1480 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1481 uint32_t reg, val, pipeconf_val;
1482
1483 /* PCH only available on ILK+ */
1484 BUG_ON(dev_priv->info->gen < 5);
1485
1486 /* Make sure PCH DPLL is enabled */
1487 assert_pch_pll_enabled(dev_priv,
1488 to_intel_crtc(crtc)->pch_pll,
1489 to_intel_crtc(crtc));
1490
1491 /* FDI must be feeding us bits for PCH ports */
1492 assert_fdi_tx_enabled(dev_priv, pipe);
1493 assert_fdi_rx_enabled(dev_priv, pipe);
1494
1495 if (HAS_PCH_CPT(dev)) {
1496 /* Workaround: Set the timing override bit before enabling the
1497 * pch transcoder. */
1498 reg = TRANS_CHICKEN2(pipe);
1499 val = I915_READ(reg);
1500 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1501 I915_WRITE(reg, val);
1502 }
1503
1504 reg = PCH_TRANSCONF(pipe);
1505 val = I915_READ(reg);
1506 pipeconf_val = I915_READ(PIPECONF(pipe));
1507
1508 if (HAS_PCH_IBX(dev_priv->dev)) {
1509 /*
1510 * make the BPC in transcoder be consistent with
1511 * that in pipeconf reg.
1512 */
1513 val &= ~PIPECONF_BPC_MASK;
1514 val |= pipeconf_val & PIPECONF_BPC_MASK;
1515 }
1516
1517 val &= ~TRANS_INTERLACE_MASK;
1518 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1519 if (HAS_PCH_IBX(dev_priv->dev) &&
1520 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1521 val |= TRANS_LEGACY_INTERLACED_ILK;
1522 else
1523 val |= TRANS_INTERLACED;
1524 else
1525 val |= TRANS_PROGRESSIVE;
1526
1527 I915_WRITE(reg, val | TRANS_ENABLE);
1528 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1529 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1530 }
1531
1532 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1533 enum transcoder cpu_transcoder)
1534 {
1535 u32 val, pipeconf_val;
1536
1537 /* PCH only available on ILK+ */
1538 BUG_ON(dev_priv->info->gen < 5);
1539
1540 /* FDI must be feeding us bits for PCH ports */
1541 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1542 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1543
1544 /* Workaround: set timing override bit. */
1545 val = I915_READ(_TRANSA_CHICKEN2);
1546 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1547 I915_WRITE(_TRANSA_CHICKEN2, val);
1548
1549 val = TRANS_ENABLE;
1550 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1551
1552 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1553 PIPECONF_INTERLACED_ILK)
1554 val |= TRANS_INTERLACED;
1555 else
1556 val |= TRANS_PROGRESSIVE;
1557
1558 I915_WRITE(LPT_TRANSCONF, val);
1559 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1560 DRM_ERROR("Failed to enable PCH transcoder\n");
1561 }
1562
1563 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1564 enum pipe pipe)
1565 {
1566 struct drm_device *dev = dev_priv->dev;
1567 uint32_t reg, val;
1568
1569 /* FDI relies on the transcoder */
1570 assert_fdi_tx_disabled(dev_priv, pipe);
1571 assert_fdi_rx_disabled(dev_priv, pipe);
1572
1573 /* Ports must be off as well */
1574 assert_pch_ports_disabled(dev_priv, pipe);
1575
1576 reg = PCH_TRANSCONF(pipe);
1577 val = I915_READ(reg);
1578 val &= ~TRANS_ENABLE;
1579 I915_WRITE(reg, val);
1580 /* wait for PCH transcoder off, transcoder state */
1581 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1582 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1583
1584 if (!HAS_PCH_IBX(dev)) {
1585 /* Workaround: Clear the timing override chicken bit again. */
1586 reg = TRANS_CHICKEN2(pipe);
1587 val = I915_READ(reg);
1588 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1589 I915_WRITE(reg, val);
1590 }
1591 }
1592
1593 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1594 {
1595 u32 val;
1596
1597 val = I915_READ(LPT_TRANSCONF);
1598 val &= ~TRANS_ENABLE;
1599 I915_WRITE(LPT_TRANSCONF, val);
1600 /* wait for PCH transcoder off, transcoder state */
1601 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1602 DRM_ERROR("Failed to disable PCH transcoder\n");
1603
1604 /* Workaround: clear timing override bit. */
1605 val = I915_READ(_TRANSA_CHICKEN2);
1606 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1607 I915_WRITE(_TRANSA_CHICKEN2, val);
1608 }
1609
1610 /**
1611 * intel_enable_pipe - enable a pipe, asserting requirements
1612 * @dev_priv: i915 private structure
1613 * @pipe: pipe to enable
1614 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1615 *
1616 * Enable @pipe, making sure that various hardware specific requirements
1617 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1618 *
1619 * @pipe should be %PIPE_A or %PIPE_B.
1620 *
1621 * Will wait until the pipe is actually running (i.e. first vblank) before
1622 * returning.
1623 */
1624 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1625 bool pch_port)
1626 {
1627 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1628 pipe);
1629 enum pipe pch_transcoder;
1630 int reg;
1631 u32 val;
1632
1633 assert_planes_disabled(dev_priv, pipe);
1634 assert_sprites_disabled(dev_priv, pipe);
1635
1636 if (HAS_PCH_LPT(dev_priv->dev))
1637 pch_transcoder = TRANSCODER_A;
1638 else
1639 pch_transcoder = pipe;
1640
1641 /*
1642 * A pipe without a PLL won't actually be able to drive bits from
1643 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1644 * need the check.
1645 */
1646 if (!HAS_PCH_SPLIT(dev_priv->dev))
1647 assert_pll_enabled(dev_priv, pipe);
1648 else {
1649 if (pch_port) {
1650 /* if driving the PCH, we need FDI enabled */
1651 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1652 assert_fdi_tx_pll_enabled(dev_priv,
1653 (enum pipe) cpu_transcoder);
1654 }
1655 /* FIXME: assert CPU port conditions for SNB+ */
1656 }
1657
1658 reg = PIPECONF(cpu_transcoder);
1659 val = I915_READ(reg);
1660 if (val & PIPECONF_ENABLE)
1661 return;
1662
1663 I915_WRITE(reg, val | PIPECONF_ENABLE);
1664 intel_wait_for_vblank(dev_priv->dev, pipe);
1665 }
1666
1667 /**
1668 * intel_disable_pipe - disable a pipe, asserting requirements
1669 * @dev_priv: i915 private structure
1670 * @pipe: pipe to disable
1671 *
1672 * Disable @pipe, making sure that various hardware specific requirements
1673 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1674 *
1675 * @pipe should be %PIPE_A or %PIPE_B.
1676 *
1677 * Will wait until the pipe has shut down before returning.
1678 */
1679 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1680 enum pipe pipe)
1681 {
1682 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1683 pipe);
1684 int reg;
1685 u32 val;
1686
1687 /*
1688 * Make sure planes won't keep trying to pump pixels to us,
1689 * or we might hang the display.
1690 */
1691 assert_planes_disabled(dev_priv, pipe);
1692 assert_sprites_disabled(dev_priv, pipe);
1693
1694 /* Don't disable pipe A or pipe A PLLs if needed */
1695 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1696 return;
1697
1698 reg = PIPECONF(cpu_transcoder);
1699 val = I915_READ(reg);
1700 if ((val & PIPECONF_ENABLE) == 0)
1701 return;
1702
1703 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1704 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1705 }
1706
1707 /*
1708 * Plane regs are double buffered, going from enabled->disabled needs a
1709 * trigger in order to latch. The display address reg provides this.
1710 */
1711 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1712 enum plane plane)
1713 {
1714 if (dev_priv->info->gen >= 4)
1715 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1716 else
1717 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1718 }
1719
1720 /**
1721 * intel_enable_plane - enable a display plane on a given pipe
1722 * @dev_priv: i915 private structure
1723 * @plane: plane to enable
1724 * @pipe: pipe being fed
1725 *
1726 * Enable @plane on @pipe, making sure that @pipe is running first.
1727 */
1728 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1729 enum plane plane, enum pipe pipe)
1730 {
1731 int reg;
1732 u32 val;
1733
1734 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1735 assert_pipe_enabled(dev_priv, pipe);
1736
1737 reg = DSPCNTR(plane);
1738 val = I915_READ(reg);
1739 if (val & DISPLAY_PLANE_ENABLE)
1740 return;
1741
1742 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1743 intel_flush_display_plane(dev_priv, plane);
1744 intel_wait_for_vblank(dev_priv->dev, pipe);
1745 }
1746
1747 /**
1748 * intel_disable_plane - disable a display plane
1749 * @dev_priv: i915 private structure
1750 * @plane: plane to disable
1751 * @pipe: pipe consuming the data
1752 *
1753 * Disable @plane; should be an independent operation.
1754 */
1755 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1756 enum plane plane, enum pipe pipe)
1757 {
1758 int reg;
1759 u32 val;
1760
1761 reg = DSPCNTR(plane);
1762 val = I915_READ(reg);
1763 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1764 return;
1765
1766 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1767 intel_flush_display_plane(dev_priv, plane);
1768 intel_wait_for_vblank(dev_priv->dev, pipe);
1769 }
1770
1771 static bool need_vtd_wa(struct drm_device *dev)
1772 {
1773 #ifdef CONFIG_INTEL_IOMMU
1774 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1775 return true;
1776 #endif
1777 return false;
1778 }
1779
1780 int
1781 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1782 struct drm_i915_gem_object *obj,
1783 struct intel_ring_buffer *pipelined)
1784 {
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786 u32 alignment;
1787 int ret;
1788
1789 switch (obj->tiling_mode) {
1790 case I915_TILING_NONE:
1791 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1792 alignment = 128 * 1024;
1793 else if (INTEL_INFO(dev)->gen >= 4)
1794 alignment = 4 * 1024;
1795 else
1796 alignment = 64 * 1024;
1797 break;
1798 case I915_TILING_X:
1799 /* pin() will align the object as required by fence */
1800 alignment = 0;
1801 break;
1802 case I915_TILING_Y:
1803 /* Despite that we check this in framebuffer_init userspace can
1804 * screw us over and change the tiling after the fact. Only
1805 * pinned buffers can't change their tiling. */
1806 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1807 return -EINVAL;
1808 default:
1809 BUG();
1810 }
1811
1812 /* Note that the w/a also requires 64 PTE of padding following the
1813 * bo. We currently fill all unused PTE with the shadow page and so
1814 * we should always have valid PTE following the scanout preventing
1815 * the VT-d warning.
1816 */
1817 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1818 alignment = 256 * 1024;
1819
1820 dev_priv->mm.interruptible = false;
1821 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1822 if (ret)
1823 goto err_interruptible;
1824
1825 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1826 * fence, whereas 965+ only requires a fence if using
1827 * framebuffer compression. For simplicity, we always install
1828 * a fence as the cost is not that onerous.
1829 */
1830 ret = i915_gem_object_get_fence(obj);
1831 if (ret)
1832 goto err_unpin;
1833
1834 i915_gem_object_pin_fence(obj);
1835
1836 dev_priv->mm.interruptible = true;
1837 return 0;
1838
1839 err_unpin:
1840 i915_gem_object_unpin(obj);
1841 err_interruptible:
1842 dev_priv->mm.interruptible = true;
1843 return ret;
1844 }
1845
1846 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1847 {
1848 i915_gem_object_unpin_fence(obj);
1849 i915_gem_object_unpin(obj);
1850 }
1851
1852 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1853 * is assumed to be a power-of-two. */
1854 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1855 unsigned int tiling_mode,
1856 unsigned int cpp,
1857 unsigned int pitch)
1858 {
1859 if (tiling_mode != I915_TILING_NONE) {
1860 unsigned int tile_rows, tiles;
1861
1862 tile_rows = *y / 8;
1863 *y %= 8;
1864
1865 tiles = *x / (512/cpp);
1866 *x %= 512/cpp;
1867
1868 return tile_rows * pitch * 8 + tiles * 4096;
1869 } else {
1870 unsigned int offset;
1871
1872 offset = *y * pitch + *x * cpp;
1873 *y = 0;
1874 *x = (offset & 4095) / cpp;
1875 return offset & -4096;
1876 }
1877 }
1878
1879 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1880 int x, int y)
1881 {
1882 struct drm_device *dev = crtc->dev;
1883 struct drm_i915_private *dev_priv = dev->dev_private;
1884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1885 struct intel_framebuffer *intel_fb;
1886 struct drm_i915_gem_object *obj;
1887 int plane = intel_crtc->plane;
1888 unsigned long linear_offset;
1889 u32 dspcntr;
1890 u32 reg;
1891
1892 switch (plane) {
1893 case 0:
1894 case 1:
1895 break;
1896 default:
1897 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1898 return -EINVAL;
1899 }
1900
1901 intel_fb = to_intel_framebuffer(fb);
1902 obj = intel_fb->obj;
1903
1904 reg = DSPCNTR(plane);
1905 dspcntr = I915_READ(reg);
1906 /* Mask out pixel format bits in case we change it */
1907 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1908 switch (fb->pixel_format) {
1909 case DRM_FORMAT_C8:
1910 dspcntr |= DISPPLANE_8BPP;
1911 break;
1912 case DRM_FORMAT_XRGB1555:
1913 case DRM_FORMAT_ARGB1555:
1914 dspcntr |= DISPPLANE_BGRX555;
1915 break;
1916 case DRM_FORMAT_RGB565:
1917 dspcntr |= DISPPLANE_BGRX565;
1918 break;
1919 case DRM_FORMAT_XRGB8888:
1920 case DRM_FORMAT_ARGB8888:
1921 dspcntr |= DISPPLANE_BGRX888;
1922 break;
1923 case DRM_FORMAT_XBGR8888:
1924 case DRM_FORMAT_ABGR8888:
1925 dspcntr |= DISPPLANE_RGBX888;
1926 break;
1927 case DRM_FORMAT_XRGB2101010:
1928 case DRM_FORMAT_ARGB2101010:
1929 dspcntr |= DISPPLANE_BGRX101010;
1930 break;
1931 case DRM_FORMAT_XBGR2101010:
1932 case DRM_FORMAT_ABGR2101010:
1933 dspcntr |= DISPPLANE_RGBX101010;
1934 break;
1935 default:
1936 BUG();
1937 }
1938
1939 if (INTEL_INFO(dev)->gen >= 4) {
1940 if (obj->tiling_mode != I915_TILING_NONE)
1941 dspcntr |= DISPPLANE_TILED;
1942 else
1943 dspcntr &= ~DISPPLANE_TILED;
1944 }
1945
1946 I915_WRITE(reg, dspcntr);
1947
1948 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1949
1950 if (INTEL_INFO(dev)->gen >= 4) {
1951 intel_crtc->dspaddr_offset =
1952 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1953 fb->bits_per_pixel / 8,
1954 fb->pitches[0]);
1955 linear_offset -= intel_crtc->dspaddr_offset;
1956 } else {
1957 intel_crtc->dspaddr_offset = linear_offset;
1958 }
1959
1960 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
1961 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
1962 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
1963 if (INTEL_INFO(dev)->gen >= 4) {
1964 I915_MODIFY_DISPBASE(DSPSURF(plane),
1965 obj->gtt_offset + intel_crtc->dspaddr_offset);
1966 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1967 I915_WRITE(DSPLINOFF(plane), linear_offset);
1968 } else
1969 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
1970 POSTING_READ(reg);
1971
1972 return 0;
1973 }
1974
1975 static int ironlake_update_plane(struct drm_crtc *crtc,
1976 struct drm_framebuffer *fb, int x, int y)
1977 {
1978 struct drm_device *dev = crtc->dev;
1979 struct drm_i915_private *dev_priv = dev->dev_private;
1980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1981 struct intel_framebuffer *intel_fb;
1982 struct drm_i915_gem_object *obj;
1983 int plane = intel_crtc->plane;
1984 unsigned long linear_offset;
1985 u32 dspcntr;
1986 u32 reg;
1987
1988 switch (plane) {
1989 case 0:
1990 case 1:
1991 case 2:
1992 break;
1993 default:
1994 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1995 return -EINVAL;
1996 }
1997
1998 intel_fb = to_intel_framebuffer(fb);
1999 obj = intel_fb->obj;
2000
2001 reg = DSPCNTR(plane);
2002 dspcntr = I915_READ(reg);
2003 /* Mask out pixel format bits in case we change it */
2004 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2005 switch (fb->pixel_format) {
2006 case DRM_FORMAT_C8:
2007 dspcntr |= DISPPLANE_8BPP;
2008 break;
2009 case DRM_FORMAT_RGB565:
2010 dspcntr |= DISPPLANE_BGRX565;
2011 break;
2012 case DRM_FORMAT_XRGB8888:
2013 case DRM_FORMAT_ARGB8888:
2014 dspcntr |= DISPPLANE_BGRX888;
2015 break;
2016 case DRM_FORMAT_XBGR8888:
2017 case DRM_FORMAT_ABGR8888:
2018 dspcntr |= DISPPLANE_RGBX888;
2019 break;
2020 case DRM_FORMAT_XRGB2101010:
2021 case DRM_FORMAT_ARGB2101010:
2022 dspcntr |= DISPPLANE_BGRX101010;
2023 break;
2024 case DRM_FORMAT_XBGR2101010:
2025 case DRM_FORMAT_ABGR2101010:
2026 dspcntr |= DISPPLANE_RGBX101010;
2027 break;
2028 default:
2029 BUG();
2030 }
2031
2032 if (obj->tiling_mode != I915_TILING_NONE)
2033 dspcntr |= DISPPLANE_TILED;
2034 else
2035 dspcntr &= ~DISPPLANE_TILED;
2036
2037 /* must disable */
2038 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2039
2040 I915_WRITE(reg, dspcntr);
2041
2042 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2043 intel_crtc->dspaddr_offset =
2044 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2045 fb->bits_per_pixel / 8,
2046 fb->pitches[0]);
2047 linear_offset -= intel_crtc->dspaddr_offset;
2048
2049 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2050 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2051 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2052 I915_MODIFY_DISPBASE(DSPSURF(plane),
2053 obj->gtt_offset + intel_crtc->dspaddr_offset);
2054 if (IS_HASWELL(dev)) {
2055 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2056 } else {
2057 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2058 I915_WRITE(DSPLINOFF(plane), linear_offset);
2059 }
2060 POSTING_READ(reg);
2061
2062 return 0;
2063 }
2064
2065 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2066 static int
2067 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2068 int x, int y, enum mode_set_atomic state)
2069 {
2070 struct drm_device *dev = crtc->dev;
2071 struct drm_i915_private *dev_priv = dev->dev_private;
2072
2073 if (dev_priv->display.disable_fbc)
2074 dev_priv->display.disable_fbc(dev);
2075 intel_increase_pllclock(crtc);
2076
2077 return dev_priv->display.update_plane(crtc, fb, x, y);
2078 }
2079
2080 void intel_display_handle_reset(struct drm_device *dev)
2081 {
2082 struct drm_i915_private *dev_priv = dev->dev_private;
2083 struct drm_crtc *crtc;
2084
2085 /*
2086 * Flips in the rings have been nuked by the reset,
2087 * so complete all pending flips so that user space
2088 * will get its events and not get stuck.
2089 *
2090 * Also update the base address of all primary
2091 * planes to the the last fb to make sure we're
2092 * showing the correct fb after a reset.
2093 *
2094 * Need to make two loops over the crtcs so that we
2095 * don't try to grab a crtc mutex before the
2096 * pending_flip_queue really got woken up.
2097 */
2098
2099 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2101 enum plane plane = intel_crtc->plane;
2102
2103 intel_prepare_page_flip(dev, plane);
2104 intel_finish_page_flip_plane(dev, plane);
2105 }
2106
2107 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2109
2110 mutex_lock(&crtc->mutex);
2111 if (intel_crtc->active)
2112 dev_priv->display.update_plane(crtc, crtc->fb,
2113 crtc->x, crtc->y);
2114 mutex_unlock(&crtc->mutex);
2115 }
2116 }
2117
2118 static int
2119 intel_finish_fb(struct drm_framebuffer *old_fb)
2120 {
2121 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2122 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2123 bool was_interruptible = dev_priv->mm.interruptible;
2124 int ret;
2125
2126 /* Big Hammer, we also need to ensure that any pending
2127 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2128 * current scanout is retired before unpinning the old
2129 * framebuffer.
2130 *
2131 * This should only fail upon a hung GPU, in which case we
2132 * can safely continue.
2133 */
2134 dev_priv->mm.interruptible = false;
2135 ret = i915_gem_object_finish_gpu(obj);
2136 dev_priv->mm.interruptible = was_interruptible;
2137
2138 return ret;
2139 }
2140
2141 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2142 {
2143 struct drm_device *dev = crtc->dev;
2144 struct drm_i915_master_private *master_priv;
2145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2146
2147 if (!dev->primary->master)
2148 return;
2149
2150 master_priv = dev->primary->master->driver_priv;
2151 if (!master_priv->sarea_priv)
2152 return;
2153
2154 switch (intel_crtc->pipe) {
2155 case 0:
2156 master_priv->sarea_priv->pipeA_x = x;
2157 master_priv->sarea_priv->pipeA_y = y;
2158 break;
2159 case 1:
2160 master_priv->sarea_priv->pipeB_x = x;
2161 master_priv->sarea_priv->pipeB_y = y;
2162 break;
2163 default:
2164 break;
2165 }
2166 }
2167
2168 static int
2169 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2170 struct drm_framebuffer *fb)
2171 {
2172 struct drm_device *dev = crtc->dev;
2173 struct drm_i915_private *dev_priv = dev->dev_private;
2174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2175 struct drm_framebuffer *old_fb;
2176 int ret;
2177
2178 /* no fb bound */
2179 if (!fb) {
2180 DRM_ERROR("No FB bound\n");
2181 return 0;
2182 }
2183
2184 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2185 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2186 plane_name(intel_crtc->plane),
2187 INTEL_INFO(dev)->num_pipes);
2188 return -EINVAL;
2189 }
2190
2191 mutex_lock(&dev->struct_mutex);
2192 ret = intel_pin_and_fence_fb_obj(dev,
2193 to_intel_framebuffer(fb)->obj,
2194 NULL);
2195 if (ret != 0) {
2196 mutex_unlock(&dev->struct_mutex);
2197 DRM_ERROR("pin & fence failed\n");
2198 return ret;
2199 }
2200
2201 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2202 if (ret) {
2203 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2204 mutex_unlock(&dev->struct_mutex);
2205 DRM_ERROR("failed to update base address\n");
2206 return ret;
2207 }
2208
2209 old_fb = crtc->fb;
2210 crtc->fb = fb;
2211 crtc->x = x;
2212 crtc->y = y;
2213
2214 if (old_fb) {
2215 intel_wait_for_vblank(dev, intel_crtc->pipe);
2216 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2217 }
2218
2219 intel_update_fbc(dev);
2220 mutex_unlock(&dev->struct_mutex);
2221
2222 intel_crtc_update_sarea_pos(crtc, x, y);
2223
2224 return 0;
2225 }
2226
2227 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2228 {
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2232 int pipe = intel_crtc->pipe;
2233 u32 reg, temp;
2234
2235 /* enable normal train */
2236 reg = FDI_TX_CTL(pipe);
2237 temp = I915_READ(reg);
2238 if (IS_IVYBRIDGE(dev)) {
2239 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2240 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2241 } else {
2242 temp &= ~FDI_LINK_TRAIN_NONE;
2243 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2244 }
2245 I915_WRITE(reg, temp);
2246
2247 reg = FDI_RX_CTL(pipe);
2248 temp = I915_READ(reg);
2249 if (HAS_PCH_CPT(dev)) {
2250 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2251 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2252 } else {
2253 temp &= ~FDI_LINK_TRAIN_NONE;
2254 temp |= FDI_LINK_TRAIN_NONE;
2255 }
2256 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2257
2258 /* wait one idle pattern time */
2259 POSTING_READ(reg);
2260 udelay(1000);
2261
2262 /* IVB wants error correction enabled */
2263 if (IS_IVYBRIDGE(dev))
2264 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2265 FDI_FE_ERRC_ENABLE);
2266 }
2267
2268 static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
2269 {
2270 return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
2271 }
2272
2273 static void ivb_modeset_global_resources(struct drm_device *dev)
2274 {
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276 struct intel_crtc *pipe_B_crtc =
2277 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2278 struct intel_crtc *pipe_C_crtc =
2279 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2280 uint32_t temp;
2281
2282 /*
2283 * When everything is off disable fdi C so that we could enable fdi B
2284 * with all lanes. Note that we don't care about enabled pipes without
2285 * an enabled pch encoder.
2286 */
2287 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2288 !pipe_has_enabled_pch(pipe_C_crtc)) {
2289 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2290 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2291
2292 temp = I915_READ(SOUTH_CHICKEN1);
2293 temp &= ~FDI_BC_BIFURCATION_SELECT;
2294 DRM_DEBUG_KMS("disabling fdi C rx\n");
2295 I915_WRITE(SOUTH_CHICKEN1, temp);
2296 }
2297 }
2298
2299 /* The FDI link training functions for ILK/Ibexpeak. */
2300 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2301 {
2302 struct drm_device *dev = crtc->dev;
2303 struct drm_i915_private *dev_priv = dev->dev_private;
2304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2305 int pipe = intel_crtc->pipe;
2306 int plane = intel_crtc->plane;
2307 u32 reg, temp, tries;
2308
2309 /* FDI needs bits from pipe & plane first */
2310 assert_pipe_enabled(dev_priv, pipe);
2311 assert_plane_enabled(dev_priv, plane);
2312
2313 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2314 for train result */
2315 reg = FDI_RX_IMR(pipe);
2316 temp = I915_READ(reg);
2317 temp &= ~FDI_RX_SYMBOL_LOCK;
2318 temp &= ~FDI_RX_BIT_LOCK;
2319 I915_WRITE(reg, temp);
2320 I915_READ(reg);
2321 udelay(150);
2322
2323 /* enable CPU FDI TX and PCH FDI RX */
2324 reg = FDI_TX_CTL(pipe);
2325 temp = I915_READ(reg);
2326 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2327 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2328 temp &= ~FDI_LINK_TRAIN_NONE;
2329 temp |= FDI_LINK_TRAIN_PATTERN_1;
2330 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2331
2332 reg = FDI_RX_CTL(pipe);
2333 temp = I915_READ(reg);
2334 temp &= ~FDI_LINK_TRAIN_NONE;
2335 temp |= FDI_LINK_TRAIN_PATTERN_1;
2336 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2337
2338 POSTING_READ(reg);
2339 udelay(150);
2340
2341 /* Ironlake workaround, enable clock pointer after FDI enable*/
2342 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2343 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2344 FDI_RX_PHASE_SYNC_POINTER_EN);
2345
2346 reg = FDI_RX_IIR(pipe);
2347 for (tries = 0; tries < 5; tries++) {
2348 temp = I915_READ(reg);
2349 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2350
2351 if ((temp & FDI_RX_BIT_LOCK)) {
2352 DRM_DEBUG_KMS("FDI train 1 done.\n");
2353 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2354 break;
2355 }
2356 }
2357 if (tries == 5)
2358 DRM_ERROR("FDI train 1 fail!\n");
2359
2360 /* Train 2 */
2361 reg = FDI_TX_CTL(pipe);
2362 temp = I915_READ(reg);
2363 temp &= ~FDI_LINK_TRAIN_NONE;
2364 temp |= FDI_LINK_TRAIN_PATTERN_2;
2365 I915_WRITE(reg, temp);
2366
2367 reg = FDI_RX_CTL(pipe);
2368 temp = I915_READ(reg);
2369 temp &= ~FDI_LINK_TRAIN_NONE;
2370 temp |= FDI_LINK_TRAIN_PATTERN_2;
2371 I915_WRITE(reg, temp);
2372
2373 POSTING_READ(reg);
2374 udelay(150);
2375
2376 reg = FDI_RX_IIR(pipe);
2377 for (tries = 0; tries < 5; tries++) {
2378 temp = I915_READ(reg);
2379 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2380
2381 if (temp & FDI_RX_SYMBOL_LOCK) {
2382 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2383 DRM_DEBUG_KMS("FDI train 2 done.\n");
2384 break;
2385 }
2386 }
2387 if (tries == 5)
2388 DRM_ERROR("FDI train 2 fail!\n");
2389
2390 DRM_DEBUG_KMS("FDI train done\n");
2391
2392 }
2393
2394 static const int snb_b_fdi_train_param[] = {
2395 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2396 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2397 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2398 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2399 };
2400
2401 /* The FDI link training functions for SNB/Cougarpoint. */
2402 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2403 {
2404 struct drm_device *dev = crtc->dev;
2405 struct drm_i915_private *dev_priv = dev->dev_private;
2406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2407 int pipe = intel_crtc->pipe;
2408 u32 reg, temp, i, retry;
2409
2410 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2411 for train result */
2412 reg = FDI_RX_IMR(pipe);
2413 temp = I915_READ(reg);
2414 temp &= ~FDI_RX_SYMBOL_LOCK;
2415 temp &= ~FDI_RX_BIT_LOCK;
2416 I915_WRITE(reg, temp);
2417
2418 POSTING_READ(reg);
2419 udelay(150);
2420
2421 /* enable CPU FDI TX and PCH FDI RX */
2422 reg = FDI_TX_CTL(pipe);
2423 temp = I915_READ(reg);
2424 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2425 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2426 temp &= ~FDI_LINK_TRAIN_NONE;
2427 temp |= FDI_LINK_TRAIN_PATTERN_1;
2428 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2429 /* SNB-B */
2430 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2431 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2432
2433 I915_WRITE(FDI_RX_MISC(pipe),
2434 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2435
2436 reg = FDI_RX_CTL(pipe);
2437 temp = I915_READ(reg);
2438 if (HAS_PCH_CPT(dev)) {
2439 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2440 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2441 } else {
2442 temp &= ~FDI_LINK_TRAIN_NONE;
2443 temp |= FDI_LINK_TRAIN_PATTERN_1;
2444 }
2445 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2446
2447 POSTING_READ(reg);
2448 udelay(150);
2449
2450 for (i = 0; i < 4; i++) {
2451 reg = FDI_TX_CTL(pipe);
2452 temp = I915_READ(reg);
2453 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2454 temp |= snb_b_fdi_train_param[i];
2455 I915_WRITE(reg, temp);
2456
2457 POSTING_READ(reg);
2458 udelay(500);
2459
2460 for (retry = 0; retry < 5; retry++) {
2461 reg = FDI_RX_IIR(pipe);
2462 temp = I915_READ(reg);
2463 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2464 if (temp & FDI_RX_BIT_LOCK) {
2465 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2466 DRM_DEBUG_KMS("FDI train 1 done.\n");
2467 break;
2468 }
2469 udelay(50);
2470 }
2471 if (retry < 5)
2472 break;
2473 }
2474 if (i == 4)
2475 DRM_ERROR("FDI train 1 fail!\n");
2476
2477 /* Train 2 */
2478 reg = FDI_TX_CTL(pipe);
2479 temp = I915_READ(reg);
2480 temp &= ~FDI_LINK_TRAIN_NONE;
2481 temp |= FDI_LINK_TRAIN_PATTERN_2;
2482 if (IS_GEN6(dev)) {
2483 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2484 /* SNB-B */
2485 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2486 }
2487 I915_WRITE(reg, temp);
2488
2489 reg = FDI_RX_CTL(pipe);
2490 temp = I915_READ(reg);
2491 if (HAS_PCH_CPT(dev)) {
2492 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2493 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2494 } else {
2495 temp &= ~FDI_LINK_TRAIN_NONE;
2496 temp |= FDI_LINK_TRAIN_PATTERN_2;
2497 }
2498 I915_WRITE(reg, temp);
2499
2500 POSTING_READ(reg);
2501 udelay(150);
2502
2503 for (i = 0; i < 4; i++) {
2504 reg = FDI_TX_CTL(pipe);
2505 temp = I915_READ(reg);
2506 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2507 temp |= snb_b_fdi_train_param[i];
2508 I915_WRITE(reg, temp);
2509
2510 POSTING_READ(reg);
2511 udelay(500);
2512
2513 for (retry = 0; retry < 5; retry++) {
2514 reg = FDI_RX_IIR(pipe);
2515 temp = I915_READ(reg);
2516 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2517 if (temp & FDI_RX_SYMBOL_LOCK) {
2518 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2519 DRM_DEBUG_KMS("FDI train 2 done.\n");
2520 break;
2521 }
2522 udelay(50);
2523 }
2524 if (retry < 5)
2525 break;
2526 }
2527 if (i == 4)
2528 DRM_ERROR("FDI train 2 fail!\n");
2529
2530 DRM_DEBUG_KMS("FDI train done.\n");
2531 }
2532
2533 /* Manual link training for Ivy Bridge A0 parts */
2534 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2535 {
2536 struct drm_device *dev = crtc->dev;
2537 struct drm_i915_private *dev_priv = dev->dev_private;
2538 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2539 int pipe = intel_crtc->pipe;
2540 u32 reg, temp, i;
2541
2542 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2543 for train result */
2544 reg = FDI_RX_IMR(pipe);
2545 temp = I915_READ(reg);
2546 temp &= ~FDI_RX_SYMBOL_LOCK;
2547 temp &= ~FDI_RX_BIT_LOCK;
2548 I915_WRITE(reg, temp);
2549
2550 POSTING_READ(reg);
2551 udelay(150);
2552
2553 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2554 I915_READ(FDI_RX_IIR(pipe)));
2555
2556 /* enable CPU FDI TX and PCH FDI RX */
2557 reg = FDI_TX_CTL(pipe);
2558 temp = I915_READ(reg);
2559 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2560 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2561 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2562 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2563 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2564 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2565 temp |= FDI_COMPOSITE_SYNC;
2566 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2567
2568 I915_WRITE(FDI_RX_MISC(pipe),
2569 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2570
2571 reg = FDI_RX_CTL(pipe);
2572 temp = I915_READ(reg);
2573 temp &= ~FDI_LINK_TRAIN_AUTO;
2574 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2575 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2576 temp |= FDI_COMPOSITE_SYNC;
2577 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2578
2579 POSTING_READ(reg);
2580 udelay(150);
2581
2582 for (i = 0; i < 4; i++) {
2583 reg = FDI_TX_CTL(pipe);
2584 temp = I915_READ(reg);
2585 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586 temp |= snb_b_fdi_train_param[i];
2587 I915_WRITE(reg, temp);
2588
2589 POSTING_READ(reg);
2590 udelay(500);
2591
2592 reg = FDI_RX_IIR(pipe);
2593 temp = I915_READ(reg);
2594 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2595
2596 if (temp & FDI_RX_BIT_LOCK ||
2597 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2598 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2599 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2600 break;
2601 }
2602 }
2603 if (i == 4)
2604 DRM_ERROR("FDI train 1 fail!\n");
2605
2606 /* Train 2 */
2607 reg = FDI_TX_CTL(pipe);
2608 temp = I915_READ(reg);
2609 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2610 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2611 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2612 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2613 I915_WRITE(reg, temp);
2614
2615 reg = FDI_RX_CTL(pipe);
2616 temp = I915_READ(reg);
2617 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2618 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2619 I915_WRITE(reg, temp);
2620
2621 POSTING_READ(reg);
2622 udelay(150);
2623
2624 for (i = 0; i < 4; i++) {
2625 reg = FDI_TX_CTL(pipe);
2626 temp = I915_READ(reg);
2627 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2628 temp |= snb_b_fdi_train_param[i];
2629 I915_WRITE(reg, temp);
2630
2631 POSTING_READ(reg);
2632 udelay(500);
2633
2634 reg = FDI_RX_IIR(pipe);
2635 temp = I915_READ(reg);
2636 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2637
2638 if (temp & FDI_RX_SYMBOL_LOCK) {
2639 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2640 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2641 break;
2642 }
2643 }
2644 if (i == 4)
2645 DRM_ERROR("FDI train 2 fail!\n");
2646
2647 DRM_DEBUG_KMS("FDI train done.\n");
2648 }
2649
2650 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2651 {
2652 struct drm_device *dev = intel_crtc->base.dev;
2653 struct drm_i915_private *dev_priv = dev->dev_private;
2654 int pipe = intel_crtc->pipe;
2655 u32 reg, temp;
2656
2657
2658 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2659 reg = FDI_RX_CTL(pipe);
2660 temp = I915_READ(reg);
2661 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2662 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2663 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2664 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2665
2666 POSTING_READ(reg);
2667 udelay(200);
2668
2669 /* Switch from Rawclk to PCDclk */
2670 temp = I915_READ(reg);
2671 I915_WRITE(reg, temp | FDI_PCDCLK);
2672
2673 POSTING_READ(reg);
2674 udelay(200);
2675
2676 /* Enable CPU FDI TX PLL, always on for Ironlake */
2677 reg = FDI_TX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2680 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2681
2682 POSTING_READ(reg);
2683 udelay(100);
2684 }
2685 }
2686
2687 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2688 {
2689 struct drm_device *dev = intel_crtc->base.dev;
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 int pipe = intel_crtc->pipe;
2692 u32 reg, temp;
2693
2694 /* Switch from PCDclk to Rawclk */
2695 reg = FDI_RX_CTL(pipe);
2696 temp = I915_READ(reg);
2697 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2698
2699 /* Disable CPU FDI TX PLL */
2700 reg = FDI_TX_CTL(pipe);
2701 temp = I915_READ(reg);
2702 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2703
2704 POSTING_READ(reg);
2705 udelay(100);
2706
2707 reg = FDI_RX_CTL(pipe);
2708 temp = I915_READ(reg);
2709 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2710
2711 /* Wait for the clocks to turn off. */
2712 POSTING_READ(reg);
2713 udelay(100);
2714 }
2715
2716 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2717 {
2718 struct drm_device *dev = crtc->dev;
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2721 int pipe = intel_crtc->pipe;
2722 u32 reg, temp;
2723
2724 /* disable CPU FDI tx and PCH FDI rx */
2725 reg = FDI_TX_CTL(pipe);
2726 temp = I915_READ(reg);
2727 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2728 POSTING_READ(reg);
2729
2730 reg = FDI_RX_CTL(pipe);
2731 temp = I915_READ(reg);
2732 temp &= ~(0x7 << 16);
2733 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2734 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2735
2736 POSTING_READ(reg);
2737 udelay(100);
2738
2739 /* Ironlake workaround, disable clock pointer after downing FDI */
2740 if (HAS_PCH_IBX(dev)) {
2741 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2742 }
2743
2744 /* still set train pattern 1 */
2745 reg = FDI_TX_CTL(pipe);
2746 temp = I915_READ(reg);
2747 temp &= ~FDI_LINK_TRAIN_NONE;
2748 temp |= FDI_LINK_TRAIN_PATTERN_1;
2749 I915_WRITE(reg, temp);
2750
2751 reg = FDI_RX_CTL(pipe);
2752 temp = I915_READ(reg);
2753 if (HAS_PCH_CPT(dev)) {
2754 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2755 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2756 } else {
2757 temp &= ~FDI_LINK_TRAIN_NONE;
2758 temp |= FDI_LINK_TRAIN_PATTERN_1;
2759 }
2760 /* BPC in FDI rx is consistent with that in PIPECONF */
2761 temp &= ~(0x07 << 16);
2762 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2763 I915_WRITE(reg, temp);
2764
2765 POSTING_READ(reg);
2766 udelay(100);
2767 }
2768
2769 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2770 {
2771 struct drm_device *dev = crtc->dev;
2772 struct drm_i915_private *dev_priv = dev->dev_private;
2773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2774 unsigned long flags;
2775 bool pending;
2776
2777 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2778 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2779 return false;
2780
2781 spin_lock_irqsave(&dev->event_lock, flags);
2782 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2783 spin_unlock_irqrestore(&dev->event_lock, flags);
2784
2785 return pending;
2786 }
2787
2788 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2789 {
2790 struct drm_device *dev = crtc->dev;
2791 struct drm_i915_private *dev_priv = dev->dev_private;
2792
2793 if (crtc->fb == NULL)
2794 return;
2795
2796 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2797
2798 wait_event(dev_priv->pending_flip_queue,
2799 !intel_crtc_has_pending_flip(crtc));
2800
2801 mutex_lock(&dev->struct_mutex);
2802 intel_finish_fb(crtc->fb);
2803 mutex_unlock(&dev->struct_mutex);
2804 }
2805
2806 /* Program iCLKIP clock to the desired frequency */
2807 static void lpt_program_iclkip(struct drm_crtc *crtc)
2808 {
2809 struct drm_device *dev = crtc->dev;
2810 struct drm_i915_private *dev_priv = dev->dev_private;
2811 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2812 u32 temp;
2813
2814 mutex_lock(&dev_priv->dpio_lock);
2815
2816 /* It is necessary to ungate the pixclk gate prior to programming
2817 * the divisors, and gate it back when it is done.
2818 */
2819 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2820
2821 /* Disable SSCCTL */
2822 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2823 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2824 SBI_SSCCTL_DISABLE,
2825 SBI_ICLK);
2826
2827 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2828 if (crtc->mode.clock == 20000) {
2829 auxdiv = 1;
2830 divsel = 0x41;
2831 phaseinc = 0x20;
2832 } else {
2833 /* The iCLK virtual clock root frequency is in MHz,
2834 * but the crtc->mode.clock in in KHz. To get the divisors,
2835 * it is necessary to divide one by another, so we
2836 * convert the virtual clock precision to KHz here for higher
2837 * precision.
2838 */
2839 u32 iclk_virtual_root_freq = 172800 * 1000;
2840 u32 iclk_pi_range = 64;
2841 u32 desired_divisor, msb_divisor_value, pi_value;
2842
2843 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2844 msb_divisor_value = desired_divisor / iclk_pi_range;
2845 pi_value = desired_divisor % iclk_pi_range;
2846
2847 auxdiv = 0;
2848 divsel = msb_divisor_value - 2;
2849 phaseinc = pi_value;
2850 }
2851
2852 /* This should not happen with any sane values */
2853 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2854 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2855 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2856 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2857
2858 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2859 crtc->mode.clock,
2860 auxdiv,
2861 divsel,
2862 phasedir,
2863 phaseinc);
2864
2865 /* Program SSCDIVINTPHASE6 */
2866 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2867 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2868 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2869 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2870 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2871 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2872 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2873 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2874
2875 /* Program SSCAUXDIV */
2876 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2877 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2878 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2879 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2880
2881 /* Enable modulator and associated divider */
2882 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2883 temp &= ~SBI_SSCCTL_DISABLE;
2884 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2885
2886 /* Wait for initialization time */
2887 udelay(24);
2888
2889 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2890
2891 mutex_unlock(&dev_priv->dpio_lock);
2892 }
2893
2894 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2895 enum pipe pch_transcoder)
2896 {
2897 struct drm_device *dev = crtc->base.dev;
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2900
2901 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2902 I915_READ(HTOTAL(cpu_transcoder)));
2903 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2904 I915_READ(HBLANK(cpu_transcoder)));
2905 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2906 I915_READ(HSYNC(cpu_transcoder)));
2907
2908 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2909 I915_READ(VTOTAL(cpu_transcoder)));
2910 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2911 I915_READ(VBLANK(cpu_transcoder)));
2912 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2913 I915_READ(VSYNC(cpu_transcoder)));
2914 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2915 I915_READ(VSYNCSHIFT(cpu_transcoder)));
2916 }
2917
2918 /*
2919 * Enable PCH resources required for PCH ports:
2920 * - PCH PLLs
2921 * - FDI training & RX/TX
2922 * - update transcoder timings
2923 * - DP transcoding bits
2924 * - transcoder
2925 */
2926 static void ironlake_pch_enable(struct drm_crtc *crtc)
2927 {
2928 struct drm_device *dev = crtc->dev;
2929 struct drm_i915_private *dev_priv = dev->dev_private;
2930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2931 int pipe = intel_crtc->pipe;
2932 u32 reg, temp;
2933
2934 assert_pch_transcoder_disabled(dev_priv, pipe);
2935
2936 /* Write the TU size bits before fdi link training, so that error
2937 * detection works. */
2938 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2939 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2940
2941 /* For PCH output, training FDI link */
2942 dev_priv->display.fdi_link_train(crtc);
2943
2944 /* XXX: pch pll's can be enabled any time before we enable the PCH
2945 * transcoder, and we actually should do this to not upset any PCH
2946 * transcoder that already use the clock when we share it.
2947 *
2948 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
2949 * unconditionally resets the pll - we need that to have the right LVDS
2950 * enable sequence. */
2951 ironlake_enable_pch_pll(intel_crtc);
2952
2953 if (HAS_PCH_CPT(dev)) {
2954 u32 sel;
2955
2956 temp = I915_READ(PCH_DPLL_SEL);
2957 switch (pipe) {
2958 default:
2959 case 0:
2960 temp |= TRANSA_DPLL_ENABLE;
2961 sel = TRANSA_DPLLB_SEL;
2962 break;
2963 case 1:
2964 temp |= TRANSB_DPLL_ENABLE;
2965 sel = TRANSB_DPLLB_SEL;
2966 break;
2967 case 2:
2968 temp |= TRANSC_DPLL_ENABLE;
2969 sel = TRANSC_DPLLB_SEL;
2970 break;
2971 }
2972 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2973 temp |= sel;
2974 else
2975 temp &= ~sel;
2976 I915_WRITE(PCH_DPLL_SEL, temp);
2977 }
2978
2979 /* set transcoder timing, panel must allow it */
2980 assert_panel_unlocked(dev_priv, pipe);
2981 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
2982
2983 intel_fdi_normal_train(crtc);
2984
2985 /* For PCH DP, enable TRANS_DP_CTL */
2986 if (HAS_PCH_CPT(dev) &&
2987 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2988 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2989 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
2990 reg = TRANS_DP_CTL(pipe);
2991 temp = I915_READ(reg);
2992 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2993 TRANS_DP_SYNC_MASK |
2994 TRANS_DP_BPC_MASK);
2995 temp |= (TRANS_DP_OUTPUT_ENABLE |
2996 TRANS_DP_ENH_FRAMING);
2997 temp |= bpc << 9; /* same format but at 11:9 */
2998
2999 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3000 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3001 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3002 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3003
3004 switch (intel_trans_dp_port_sel(crtc)) {
3005 case PCH_DP_B:
3006 temp |= TRANS_DP_PORT_SEL_B;
3007 break;
3008 case PCH_DP_C:
3009 temp |= TRANS_DP_PORT_SEL_C;
3010 break;
3011 case PCH_DP_D:
3012 temp |= TRANS_DP_PORT_SEL_D;
3013 break;
3014 default:
3015 BUG();
3016 }
3017
3018 I915_WRITE(reg, temp);
3019 }
3020
3021 ironlake_enable_pch_transcoder(dev_priv, pipe);
3022 }
3023
3024 static void lpt_pch_enable(struct drm_crtc *crtc)
3025 {
3026 struct drm_device *dev = crtc->dev;
3027 struct drm_i915_private *dev_priv = dev->dev_private;
3028 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3029 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3030
3031 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3032
3033 lpt_program_iclkip(crtc);
3034
3035 /* Set transcoder timing. */
3036 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3037
3038 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3039 }
3040
3041 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3042 {
3043 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3044
3045 if (pll == NULL)
3046 return;
3047
3048 if (pll->refcount == 0) {
3049 WARN(1, "bad PCH PLL refcount\n");
3050 return;
3051 }
3052
3053 --pll->refcount;
3054 intel_crtc->pch_pll = NULL;
3055 }
3056
3057 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3058 {
3059 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3060 struct intel_pch_pll *pll;
3061 int i;
3062
3063 pll = intel_crtc->pch_pll;
3064 if (pll) {
3065 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3066 intel_crtc->base.base.id, pll->pll_reg);
3067 goto prepare;
3068 }
3069
3070 if (HAS_PCH_IBX(dev_priv->dev)) {
3071 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3072 i = intel_crtc->pipe;
3073 pll = &dev_priv->pch_plls[i];
3074
3075 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3076 intel_crtc->base.base.id, pll->pll_reg);
3077
3078 goto found;
3079 }
3080
3081 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3082 pll = &dev_priv->pch_plls[i];
3083
3084 /* Only want to check enabled timings first */
3085 if (pll->refcount == 0)
3086 continue;
3087
3088 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3089 fp == I915_READ(pll->fp0_reg)) {
3090 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3091 intel_crtc->base.base.id,
3092 pll->pll_reg, pll->refcount, pll->active);
3093
3094 goto found;
3095 }
3096 }
3097
3098 /* Ok no matching timings, maybe there's a free one? */
3099 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3100 pll = &dev_priv->pch_plls[i];
3101 if (pll->refcount == 0) {
3102 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3103 intel_crtc->base.base.id, pll->pll_reg);
3104 goto found;
3105 }
3106 }
3107
3108 return NULL;
3109
3110 found:
3111 intel_crtc->pch_pll = pll;
3112 pll->refcount++;
3113 DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
3114 prepare: /* separate function? */
3115 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3116
3117 /* Wait for the clocks to stabilize before rewriting the regs */
3118 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3119 POSTING_READ(pll->pll_reg);
3120 udelay(150);
3121
3122 I915_WRITE(pll->fp0_reg, fp);
3123 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3124 pll->on = false;
3125 return pll;
3126 }
3127
3128 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3129 {
3130 struct drm_i915_private *dev_priv = dev->dev_private;
3131 int dslreg = PIPEDSL(pipe);
3132 u32 temp;
3133
3134 temp = I915_READ(dslreg);
3135 udelay(500);
3136 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3137 if (wait_for(I915_READ(dslreg) != temp, 5))
3138 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3139 }
3140 }
3141
3142 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3143 {
3144 struct drm_device *dev = crtc->base.dev;
3145 struct drm_i915_private *dev_priv = dev->dev_private;
3146 int pipe = crtc->pipe;
3147
3148 if (crtc->config.pch_pfit.size) {
3149 /* Force use of hard-coded filter coefficients
3150 * as some pre-programmed values are broken,
3151 * e.g. x201.
3152 */
3153 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3154 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3155 PF_PIPE_SEL_IVB(pipe));
3156 else
3157 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3158 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3159 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3160 }
3161 }
3162
3163 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3164 {
3165 struct drm_device *dev = crtc->dev;
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3168 struct intel_encoder *encoder;
3169 int pipe = intel_crtc->pipe;
3170 int plane = intel_crtc->plane;
3171 u32 temp;
3172
3173 WARN_ON(!crtc->enabled);
3174
3175 if (intel_crtc->active)
3176 return;
3177
3178 intel_crtc->active = true;
3179
3180 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3181 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3182
3183 intel_update_watermarks(dev);
3184
3185 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3186 temp = I915_READ(PCH_LVDS);
3187 if ((temp & LVDS_PORT_EN) == 0)
3188 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3189 }
3190
3191
3192 if (intel_crtc->config.has_pch_encoder) {
3193 /* Note: FDI PLL enabling _must_ be done before we enable the
3194 * cpu pipes, hence this is separate from all the other fdi/pch
3195 * enabling. */
3196 ironlake_fdi_pll_enable(intel_crtc);
3197 } else {
3198 assert_fdi_tx_disabled(dev_priv, pipe);
3199 assert_fdi_rx_disabled(dev_priv, pipe);
3200 }
3201
3202 for_each_encoder_on_crtc(dev, crtc, encoder)
3203 if (encoder->pre_enable)
3204 encoder->pre_enable(encoder);
3205
3206 /* Enable panel fitting for LVDS */
3207 ironlake_pfit_enable(intel_crtc);
3208
3209 /*
3210 * On ILK+ LUT must be loaded before the pipe is running but with
3211 * clocks enabled
3212 */
3213 intel_crtc_load_lut(crtc);
3214
3215 intel_enable_pipe(dev_priv, pipe,
3216 intel_crtc->config.has_pch_encoder);
3217 intel_enable_plane(dev_priv, plane, pipe);
3218
3219 if (intel_crtc->config.has_pch_encoder)
3220 ironlake_pch_enable(crtc);
3221
3222 mutex_lock(&dev->struct_mutex);
3223 intel_update_fbc(dev);
3224 mutex_unlock(&dev->struct_mutex);
3225
3226 intel_crtc_update_cursor(crtc, true);
3227
3228 for_each_encoder_on_crtc(dev, crtc, encoder)
3229 encoder->enable(encoder);
3230
3231 if (HAS_PCH_CPT(dev))
3232 cpt_verify_modeset(dev, intel_crtc->pipe);
3233
3234 /*
3235 * There seems to be a race in PCH platform hw (at least on some
3236 * outputs) where an enabled pipe still completes any pageflip right
3237 * away (as if the pipe is off) instead of waiting for vblank. As soon
3238 * as the first vblank happend, everything works as expected. Hence just
3239 * wait for one vblank before returning to avoid strange things
3240 * happening.
3241 */
3242 intel_wait_for_vblank(dev, intel_crtc->pipe);
3243 }
3244
3245 /* IPS only exists on ULT machines and is tied to pipe A. */
3246 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3247 {
3248 return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
3249 }
3250
3251 static void hsw_enable_ips(struct intel_crtc *crtc)
3252 {
3253 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3254
3255 if (!crtc->config.ips_enabled)
3256 return;
3257
3258 /* We can only enable IPS after we enable a plane and wait for a vblank.
3259 * We guarantee that the plane is enabled by calling intel_enable_ips
3260 * only after intel_enable_plane. And intel_enable_plane already waits
3261 * for a vblank, so all we need to do here is to enable the IPS bit. */
3262 assert_plane_enabled(dev_priv, crtc->plane);
3263 I915_WRITE(IPS_CTL, IPS_ENABLE);
3264 }
3265
3266 static void hsw_disable_ips(struct intel_crtc *crtc)
3267 {
3268 struct drm_device *dev = crtc->base.dev;
3269 struct drm_i915_private *dev_priv = dev->dev_private;
3270
3271 if (!crtc->config.ips_enabled)
3272 return;
3273
3274 assert_plane_enabled(dev_priv, crtc->plane);
3275 I915_WRITE(IPS_CTL, 0);
3276
3277 /* We need to wait for a vblank before we can disable the plane. */
3278 intel_wait_for_vblank(dev, crtc->pipe);
3279 }
3280
3281 static void haswell_crtc_enable(struct drm_crtc *crtc)
3282 {
3283 struct drm_device *dev = crtc->dev;
3284 struct drm_i915_private *dev_priv = dev->dev_private;
3285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3286 struct intel_encoder *encoder;
3287 int pipe = intel_crtc->pipe;
3288 int plane = intel_crtc->plane;
3289
3290 WARN_ON(!crtc->enabled);
3291
3292 if (intel_crtc->active)
3293 return;
3294
3295 intel_crtc->active = true;
3296
3297 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3298 if (intel_crtc->config.has_pch_encoder)
3299 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3300
3301 intel_update_watermarks(dev);
3302
3303 if (intel_crtc->config.has_pch_encoder)
3304 dev_priv->display.fdi_link_train(crtc);
3305
3306 for_each_encoder_on_crtc(dev, crtc, encoder)
3307 if (encoder->pre_enable)
3308 encoder->pre_enable(encoder);
3309
3310 intel_ddi_enable_pipe_clock(intel_crtc);
3311
3312 /* Enable panel fitting for eDP */
3313 ironlake_pfit_enable(intel_crtc);
3314
3315 /*
3316 * On ILK+ LUT must be loaded before the pipe is running but with
3317 * clocks enabled
3318 */
3319 intel_crtc_load_lut(crtc);
3320
3321 intel_ddi_set_pipe_settings(crtc);
3322 intel_ddi_enable_transcoder_func(crtc);
3323
3324 intel_enable_pipe(dev_priv, pipe,
3325 intel_crtc->config.has_pch_encoder);
3326 intel_enable_plane(dev_priv, plane, pipe);
3327
3328 hsw_enable_ips(intel_crtc);
3329
3330 if (intel_crtc->config.has_pch_encoder)
3331 lpt_pch_enable(crtc);
3332
3333 mutex_lock(&dev->struct_mutex);
3334 intel_update_fbc(dev);
3335 mutex_unlock(&dev->struct_mutex);
3336
3337 intel_crtc_update_cursor(crtc, true);
3338
3339 for_each_encoder_on_crtc(dev, crtc, encoder)
3340 encoder->enable(encoder);
3341
3342 /*
3343 * There seems to be a race in PCH platform hw (at least on some
3344 * outputs) where an enabled pipe still completes any pageflip right
3345 * away (as if the pipe is off) instead of waiting for vblank. As soon
3346 * as the first vblank happend, everything works as expected. Hence just
3347 * wait for one vblank before returning to avoid strange things
3348 * happening.
3349 */
3350 intel_wait_for_vblank(dev, intel_crtc->pipe);
3351 }
3352
3353 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3354 {
3355 struct drm_device *dev = crtc->base.dev;
3356 struct drm_i915_private *dev_priv = dev->dev_private;
3357 int pipe = crtc->pipe;
3358
3359 /* To avoid upsetting the power well on haswell only disable the pfit if
3360 * it's in use. The hw state code will make sure we get this right. */
3361 if (crtc->config.pch_pfit.size) {
3362 I915_WRITE(PF_CTL(pipe), 0);
3363 I915_WRITE(PF_WIN_POS(pipe), 0);
3364 I915_WRITE(PF_WIN_SZ(pipe), 0);
3365 }
3366 }
3367
3368 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3369 {
3370 struct drm_device *dev = crtc->dev;
3371 struct drm_i915_private *dev_priv = dev->dev_private;
3372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3373 struct intel_encoder *encoder;
3374 int pipe = intel_crtc->pipe;
3375 int plane = intel_crtc->plane;
3376 u32 reg, temp;
3377
3378
3379 if (!intel_crtc->active)
3380 return;
3381
3382 for_each_encoder_on_crtc(dev, crtc, encoder)
3383 encoder->disable(encoder);
3384
3385 intel_crtc_wait_for_pending_flips(crtc);
3386 drm_vblank_off(dev, pipe);
3387 intel_crtc_update_cursor(crtc, false);
3388
3389 intel_disable_plane(dev_priv, plane, pipe);
3390
3391 if (dev_priv->cfb_plane == plane)
3392 intel_disable_fbc(dev);
3393
3394 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3395 intel_disable_pipe(dev_priv, pipe);
3396
3397 ironlake_pfit_disable(intel_crtc);
3398
3399 for_each_encoder_on_crtc(dev, crtc, encoder)
3400 if (encoder->post_disable)
3401 encoder->post_disable(encoder);
3402
3403 ironlake_fdi_disable(crtc);
3404
3405 ironlake_disable_pch_transcoder(dev_priv, pipe);
3406 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3407
3408 if (HAS_PCH_CPT(dev)) {
3409 /* disable TRANS_DP_CTL */
3410 reg = TRANS_DP_CTL(pipe);
3411 temp = I915_READ(reg);
3412 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3413 temp |= TRANS_DP_PORT_SEL_NONE;
3414 I915_WRITE(reg, temp);
3415
3416 /* disable DPLL_SEL */
3417 temp = I915_READ(PCH_DPLL_SEL);
3418 switch (pipe) {
3419 case 0:
3420 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3421 break;
3422 case 1:
3423 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3424 break;
3425 case 2:
3426 /* C shares PLL A or B */
3427 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3428 break;
3429 default:
3430 BUG(); /* wtf */
3431 }
3432 I915_WRITE(PCH_DPLL_SEL, temp);
3433 }
3434
3435 /* disable PCH DPLL */
3436 intel_disable_pch_pll(intel_crtc);
3437
3438 ironlake_fdi_pll_disable(intel_crtc);
3439
3440 intel_crtc->active = false;
3441 intel_update_watermarks(dev);
3442
3443 mutex_lock(&dev->struct_mutex);
3444 intel_update_fbc(dev);
3445 mutex_unlock(&dev->struct_mutex);
3446 }
3447
3448 static void haswell_crtc_disable(struct drm_crtc *crtc)
3449 {
3450 struct drm_device *dev = crtc->dev;
3451 struct drm_i915_private *dev_priv = dev->dev_private;
3452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3453 struct intel_encoder *encoder;
3454 int pipe = intel_crtc->pipe;
3455 int plane = intel_crtc->plane;
3456 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3457
3458 if (!intel_crtc->active)
3459 return;
3460
3461 for_each_encoder_on_crtc(dev, crtc, encoder)
3462 encoder->disable(encoder);
3463
3464 intel_crtc_wait_for_pending_flips(crtc);
3465 drm_vblank_off(dev, pipe);
3466 intel_crtc_update_cursor(crtc, false);
3467
3468 /* FBC must be disabled before disabling the plane on HSW. */
3469 if (dev_priv->cfb_plane == plane)
3470 intel_disable_fbc(dev);
3471
3472 hsw_disable_ips(intel_crtc);
3473
3474 intel_disable_plane(dev_priv, plane, pipe);
3475
3476 if (intel_crtc->config.has_pch_encoder)
3477 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3478 intel_disable_pipe(dev_priv, pipe);
3479
3480 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3481
3482 ironlake_pfit_disable(intel_crtc);
3483
3484 intel_ddi_disable_pipe_clock(intel_crtc);
3485
3486 for_each_encoder_on_crtc(dev, crtc, encoder)
3487 if (encoder->post_disable)
3488 encoder->post_disable(encoder);
3489
3490 if (intel_crtc->config.has_pch_encoder) {
3491 lpt_disable_pch_transcoder(dev_priv);
3492 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3493 intel_ddi_fdi_disable(crtc);
3494 }
3495
3496 intel_crtc->active = false;
3497 intel_update_watermarks(dev);
3498
3499 mutex_lock(&dev->struct_mutex);
3500 intel_update_fbc(dev);
3501 mutex_unlock(&dev->struct_mutex);
3502 }
3503
3504 static void ironlake_crtc_off(struct drm_crtc *crtc)
3505 {
3506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3507 intel_put_pch_pll(intel_crtc);
3508 }
3509
3510 static void haswell_crtc_off(struct drm_crtc *crtc)
3511 {
3512 intel_ddi_put_crtc_pll(crtc);
3513 }
3514
3515 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3516 {
3517 if (!enable && intel_crtc->overlay) {
3518 struct drm_device *dev = intel_crtc->base.dev;
3519 struct drm_i915_private *dev_priv = dev->dev_private;
3520
3521 mutex_lock(&dev->struct_mutex);
3522 dev_priv->mm.interruptible = false;
3523 (void) intel_overlay_switch_off(intel_crtc->overlay);
3524 dev_priv->mm.interruptible = true;
3525 mutex_unlock(&dev->struct_mutex);
3526 }
3527
3528 /* Let userspace switch the overlay on again. In most cases userspace
3529 * has to recompute where to put it anyway.
3530 */
3531 }
3532
3533 /**
3534 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3535 * cursor plane briefly if not already running after enabling the display
3536 * plane.
3537 * This workaround avoids occasional blank screens when self refresh is
3538 * enabled.
3539 */
3540 static void
3541 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3542 {
3543 u32 cntl = I915_READ(CURCNTR(pipe));
3544
3545 if ((cntl & CURSOR_MODE) == 0) {
3546 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3547
3548 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3549 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3550 intel_wait_for_vblank(dev_priv->dev, pipe);
3551 I915_WRITE(CURCNTR(pipe), cntl);
3552 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3553 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3554 }
3555 }
3556
3557 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3558 {
3559 struct drm_device *dev = crtc->base.dev;
3560 struct drm_i915_private *dev_priv = dev->dev_private;
3561 struct intel_crtc_config *pipe_config = &crtc->config;
3562
3563 if (!crtc->config.gmch_pfit.control)
3564 return;
3565
3566 /*
3567 * The panel fitter should only be adjusted whilst the pipe is disabled,
3568 * according to register description and PRM.
3569 */
3570 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3571 assert_pipe_disabled(dev_priv, crtc->pipe);
3572
3573 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3574 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3575
3576 /* Border color in case we don't scale up to the full screen. Black by
3577 * default, change to something else for debugging. */
3578 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3579 }
3580
3581 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3582 {
3583 struct drm_device *dev = crtc->dev;
3584 struct drm_i915_private *dev_priv = dev->dev_private;
3585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3586 struct intel_encoder *encoder;
3587 int pipe = intel_crtc->pipe;
3588 int plane = intel_crtc->plane;
3589
3590 WARN_ON(!crtc->enabled);
3591
3592 if (intel_crtc->active)
3593 return;
3594
3595 intel_crtc->active = true;
3596 intel_update_watermarks(dev);
3597
3598 mutex_lock(&dev_priv->dpio_lock);
3599
3600 for_each_encoder_on_crtc(dev, crtc, encoder)
3601 if (encoder->pre_pll_enable)
3602 encoder->pre_pll_enable(encoder);
3603
3604 intel_enable_pll(dev_priv, pipe);
3605
3606 for_each_encoder_on_crtc(dev, crtc, encoder)
3607 if (encoder->pre_enable)
3608 encoder->pre_enable(encoder);
3609
3610 /* VLV wants encoder enabling _before_ the pipe is up. */
3611 for_each_encoder_on_crtc(dev, crtc, encoder)
3612 encoder->enable(encoder);
3613
3614 /* Enable panel fitting for eDP */
3615 i9xx_pfit_enable(intel_crtc);
3616
3617 intel_enable_pipe(dev_priv, pipe, false);
3618 intel_enable_plane(dev_priv, plane, pipe);
3619
3620 intel_crtc_load_lut(crtc);
3621 intel_update_fbc(dev);
3622
3623 /* Give the overlay scaler a chance to enable if it's on this pipe */
3624 intel_crtc_dpms_overlay(intel_crtc, true);
3625 intel_crtc_update_cursor(crtc, true);
3626
3627 mutex_unlock(&dev_priv->dpio_lock);
3628 }
3629
3630 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3631 {
3632 struct drm_device *dev = crtc->dev;
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3635 struct intel_encoder *encoder;
3636 int pipe = intel_crtc->pipe;
3637 int plane = intel_crtc->plane;
3638
3639 WARN_ON(!crtc->enabled);
3640
3641 if (intel_crtc->active)
3642 return;
3643
3644 intel_crtc->active = true;
3645 intel_update_watermarks(dev);
3646
3647 intel_enable_pll(dev_priv, pipe);
3648
3649 for_each_encoder_on_crtc(dev, crtc, encoder)
3650 if (encoder->pre_enable)
3651 encoder->pre_enable(encoder);
3652
3653 /* Enable panel fitting for LVDS */
3654 i9xx_pfit_enable(intel_crtc);
3655
3656 intel_enable_pipe(dev_priv, pipe, false);
3657 intel_enable_plane(dev_priv, plane, pipe);
3658 if (IS_G4X(dev))
3659 g4x_fixup_plane(dev_priv, pipe);
3660
3661 intel_crtc_load_lut(crtc);
3662 intel_update_fbc(dev);
3663
3664 /* Give the overlay scaler a chance to enable if it's on this pipe */
3665 intel_crtc_dpms_overlay(intel_crtc, true);
3666 intel_crtc_update_cursor(crtc, true);
3667
3668 for_each_encoder_on_crtc(dev, crtc, encoder)
3669 encoder->enable(encoder);
3670 }
3671
3672 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3673 {
3674 struct drm_device *dev = crtc->base.dev;
3675 struct drm_i915_private *dev_priv = dev->dev_private;
3676
3677 if (!crtc->config.gmch_pfit.control)
3678 return;
3679
3680 assert_pipe_disabled(dev_priv, crtc->pipe);
3681
3682 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3683 I915_READ(PFIT_CONTROL));
3684 I915_WRITE(PFIT_CONTROL, 0);
3685 }
3686
3687 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3688 {
3689 struct drm_device *dev = crtc->dev;
3690 struct drm_i915_private *dev_priv = dev->dev_private;
3691 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3692 struct intel_encoder *encoder;
3693 int pipe = intel_crtc->pipe;
3694 int plane = intel_crtc->plane;
3695
3696 if (!intel_crtc->active)
3697 return;
3698
3699 for_each_encoder_on_crtc(dev, crtc, encoder)
3700 encoder->disable(encoder);
3701
3702 /* Give the overlay scaler a chance to disable if it's on this pipe */
3703 intel_crtc_wait_for_pending_flips(crtc);
3704 drm_vblank_off(dev, pipe);
3705 intel_crtc_dpms_overlay(intel_crtc, false);
3706 intel_crtc_update_cursor(crtc, false);
3707
3708 if (dev_priv->cfb_plane == plane)
3709 intel_disable_fbc(dev);
3710
3711 intel_disable_plane(dev_priv, plane, pipe);
3712 intel_disable_pipe(dev_priv, pipe);
3713
3714 i9xx_pfit_disable(intel_crtc);
3715
3716 for_each_encoder_on_crtc(dev, crtc, encoder)
3717 if (encoder->post_disable)
3718 encoder->post_disable(encoder);
3719
3720 intel_disable_pll(dev_priv, pipe);
3721
3722 intel_crtc->active = false;
3723 intel_update_fbc(dev);
3724 intel_update_watermarks(dev);
3725 }
3726
3727 static void i9xx_crtc_off(struct drm_crtc *crtc)
3728 {
3729 }
3730
3731 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3732 bool enabled)
3733 {
3734 struct drm_device *dev = crtc->dev;
3735 struct drm_i915_master_private *master_priv;
3736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3737 int pipe = intel_crtc->pipe;
3738
3739 if (!dev->primary->master)
3740 return;
3741
3742 master_priv = dev->primary->master->driver_priv;
3743 if (!master_priv->sarea_priv)
3744 return;
3745
3746 switch (pipe) {
3747 case 0:
3748 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3749 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3750 break;
3751 case 1:
3752 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3753 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3754 break;
3755 default:
3756 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3757 break;
3758 }
3759 }
3760
3761 /**
3762 * Sets the power management mode of the pipe and plane.
3763 */
3764 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3765 {
3766 struct drm_device *dev = crtc->dev;
3767 struct drm_i915_private *dev_priv = dev->dev_private;
3768 struct intel_encoder *intel_encoder;
3769 bool enable = false;
3770
3771 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3772 enable |= intel_encoder->connectors_active;
3773
3774 if (enable)
3775 dev_priv->display.crtc_enable(crtc);
3776 else
3777 dev_priv->display.crtc_disable(crtc);
3778
3779 intel_crtc_update_sarea(crtc, enable);
3780 }
3781
3782 static void intel_crtc_disable(struct drm_crtc *crtc)
3783 {
3784 struct drm_device *dev = crtc->dev;
3785 struct drm_connector *connector;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3788
3789 /* crtc should still be enabled when we disable it. */
3790 WARN_ON(!crtc->enabled);
3791
3792 dev_priv->display.crtc_disable(crtc);
3793 intel_crtc->eld_vld = false;
3794 intel_crtc_update_sarea(crtc, false);
3795 dev_priv->display.off(crtc);
3796
3797 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3798 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3799
3800 if (crtc->fb) {
3801 mutex_lock(&dev->struct_mutex);
3802 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3803 mutex_unlock(&dev->struct_mutex);
3804 crtc->fb = NULL;
3805 }
3806
3807 /* Update computed state. */
3808 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3809 if (!connector->encoder || !connector->encoder->crtc)
3810 continue;
3811
3812 if (connector->encoder->crtc != crtc)
3813 continue;
3814
3815 connector->dpms = DRM_MODE_DPMS_OFF;
3816 to_intel_encoder(connector->encoder)->connectors_active = false;
3817 }
3818 }
3819
3820 void intel_modeset_disable(struct drm_device *dev)
3821 {
3822 struct drm_crtc *crtc;
3823
3824 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3825 if (crtc->enabled)
3826 intel_crtc_disable(crtc);
3827 }
3828 }
3829
3830 void intel_encoder_destroy(struct drm_encoder *encoder)
3831 {
3832 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3833
3834 drm_encoder_cleanup(encoder);
3835 kfree(intel_encoder);
3836 }
3837
3838 /* Simple dpms helper for encodres with just one connector, no cloning and only
3839 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3840 * state of the entire output pipe. */
3841 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3842 {
3843 if (mode == DRM_MODE_DPMS_ON) {
3844 encoder->connectors_active = true;
3845
3846 intel_crtc_update_dpms(encoder->base.crtc);
3847 } else {
3848 encoder->connectors_active = false;
3849
3850 intel_crtc_update_dpms(encoder->base.crtc);
3851 }
3852 }
3853
3854 /* Cross check the actual hw state with our own modeset state tracking (and it's
3855 * internal consistency). */
3856 static void intel_connector_check_state(struct intel_connector *connector)
3857 {
3858 if (connector->get_hw_state(connector)) {
3859 struct intel_encoder *encoder = connector->encoder;
3860 struct drm_crtc *crtc;
3861 bool encoder_enabled;
3862 enum pipe pipe;
3863
3864 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3865 connector->base.base.id,
3866 drm_get_connector_name(&connector->base));
3867
3868 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3869 "wrong connector dpms state\n");
3870 WARN(connector->base.encoder != &encoder->base,
3871 "active connector not linked to encoder\n");
3872 WARN(!encoder->connectors_active,
3873 "encoder->connectors_active not set\n");
3874
3875 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3876 WARN(!encoder_enabled, "encoder not enabled\n");
3877 if (WARN_ON(!encoder->base.crtc))
3878 return;
3879
3880 crtc = encoder->base.crtc;
3881
3882 WARN(!crtc->enabled, "crtc not enabled\n");
3883 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3884 WARN(pipe != to_intel_crtc(crtc)->pipe,
3885 "encoder active on the wrong pipe\n");
3886 }
3887 }
3888
3889 /* Even simpler default implementation, if there's really no special case to
3890 * consider. */
3891 void intel_connector_dpms(struct drm_connector *connector, int mode)
3892 {
3893 struct intel_encoder *encoder = intel_attached_encoder(connector);
3894
3895 /* All the simple cases only support two dpms states. */
3896 if (mode != DRM_MODE_DPMS_ON)
3897 mode = DRM_MODE_DPMS_OFF;
3898
3899 if (mode == connector->dpms)
3900 return;
3901
3902 connector->dpms = mode;
3903
3904 /* Only need to change hw state when actually enabled */
3905 if (encoder->base.crtc)
3906 intel_encoder_dpms(encoder, mode);
3907 else
3908 WARN_ON(encoder->connectors_active != false);
3909
3910 intel_modeset_check_state(connector->dev);
3911 }
3912
3913 /* Simple connector->get_hw_state implementation for encoders that support only
3914 * one connector and no cloning and hence the encoder state determines the state
3915 * of the connector. */
3916 bool intel_connector_get_hw_state(struct intel_connector *connector)
3917 {
3918 enum pipe pipe = 0;
3919 struct intel_encoder *encoder = connector->encoder;
3920
3921 return encoder->get_hw_state(encoder, &pipe);
3922 }
3923
3924 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
3925 struct intel_crtc_config *pipe_config)
3926 {
3927 struct drm_i915_private *dev_priv = dev->dev_private;
3928 struct intel_crtc *pipe_B_crtc =
3929 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3930
3931 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
3932 pipe_name(pipe), pipe_config->fdi_lanes);
3933 if (pipe_config->fdi_lanes > 4) {
3934 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
3935 pipe_name(pipe), pipe_config->fdi_lanes);
3936 return false;
3937 }
3938
3939 if (IS_HASWELL(dev)) {
3940 if (pipe_config->fdi_lanes > 2) {
3941 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
3942 pipe_config->fdi_lanes);
3943 return false;
3944 } else {
3945 return true;
3946 }
3947 }
3948
3949 if (INTEL_INFO(dev)->num_pipes == 2)
3950 return true;
3951
3952 /* Ivybridge 3 pipe is really complicated */
3953 switch (pipe) {
3954 case PIPE_A:
3955 return true;
3956 case PIPE_B:
3957 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
3958 pipe_config->fdi_lanes > 2) {
3959 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3960 pipe_name(pipe), pipe_config->fdi_lanes);
3961 return false;
3962 }
3963 return true;
3964 case PIPE_C:
3965 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
3966 pipe_B_crtc->config.fdi_lanes <= 2) {
3967 if (pipe_config->fdi_lanes > 2) {
3968 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
3969 pipe_name(pipe), pipe_config->fdi_lanes);
3970 return false;
3971 }
3972 } else {
3973 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
3974 return false;
3975 }
3976 return true;
3977 default:
3978 BUG();
3979 }
3980 }
3981
3982 #define RETRY 1
3983 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
3984 struct intel_crtc_config *pipe_config)
3985 {
3986 struct drm_device *dev = intel_crtc->base.dev;
3987 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
3988 int target_clock, lane, link_bw;
3989 bool setup_ok, needs_recompute = false;
3990
3991 retry:
3992 /* FDI is a binary signal running at ~2.7GHz, encoding
3993 * each output octet as 10 bits. The actual frequency
3994 * is stored as a divider into a 100MHz clock, and the
3995 * mode pixel clock is stored in units of 1KHz.
3996 * Hence the bw of each lane in terms of the mode signal
3997 * is:
3998 */
3999 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4000
4001 if (pipe_config->pixel_target_clock)
4002 target_clock = pipe_config->pixel_target_clock;
4003 else
4004 target_clock = adjusted_mode->clock;
4005
4006 lane = ironlake_get_lanes_required(target_clock, link_bw,
4007 pipe_config->pipe_bpp);
4008
4009 pipe_config->fdi_lanes = lane;
4010
4011 if (pipe_config->pixel_multiplier > 1)
4012 link_bw *= pipe_config->pixel_multiplier;
4013 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
4014 link_bw, &pipe_config->fdi_m_n);
4015
4016 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4017 intel_crtc->pipe, pipe_config);
4018 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4019 pipe_config->pipe_bpp -= 2*3;
4020 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4021 pipe_config->pipe_bpp);
4022 needs_recompute = true;
4023 pipe_config->bw_constrained = true;
4024
4025 goto retry;
4026 }
4027
4028 if (needs_recompute)
4029 return RETRY;
4030
4031 return setup_ok ? 0 : -EINVAL;
4032 }
4033
4034 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4035 struct intel_crtc_config *pipe_config)
4036 {
4037 pipe_config->ips_enabled = i915_enable_ips &&
4038 hsw_crtc_supports_ips(crtc) &&
4039 pipe_config->pipe_bpp == 24;
4040 }
4041
4042 static int intel_crtc_compute_config(struct drm_crtc *crtc,
4043 struct intel_crtc_config *pipe_config)
4044 {
4045 struct drm_device *dev = crtc->dev;
4046 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4048
4049 if (HAS_PCH_SPLIT(dev)) {
4050 /* FDI link clock is fixed at 2.7G */
4051 if (pipe_config->requested_mode.clock * 3
4052 > IRONLAKE_FDI_FREQ * 4)
4053 return -EINVAL;
4054 }
4055
4056 /* All interlaced capable intel hw wants timings in frames. Note though
4057 * that intel_lvds_mode_fixup does some funny tricks with the crtc
4058 * timings, so we need to be careful not to clobber these.*/
4059 if (!pipe_config->timings_set)
4060 drm_mode_set_crtcinfo(adjusted_mode, 0);
4061
4062 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4063 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4064 */
4065 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4066 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4067 return -EINVAL;
4068
4069 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4070 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4071 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4072 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4073 * for lvds. */
4074 pipe_config->pipe_bpp = 8*3;
4075 }
4076
4077 if (IS_HASWELL(dev))
4078 hsw_compute_ips_config(intel_crtc, pipe_config);
4079
4080 if (pipe_config->has_pch_encoder)
4081 return ironlake_fdi_compute_config(intel_crtc, pipe_config);
4082
4083 return 0;
4084 }
4085
4086 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4087 {
4088 return 400000; /* FIXME */
4089 }
4090
4091 static int i945_get_display_clock_speed(struct drm_device *dev)
4092 {
4093 return 400000;
4094 }
4095
4096 static int i915_get_display_clock_speed(struct drm_device *dev)
4097 {
4098 return 333000;
4099 }
4100
4101 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4102 {
4103 return 200000;
4104 }
4105
4106 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4107 {
4108 u16 gcfgc = 0;
4109
4110 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4111
4112 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4113 return 133000;
4114 else {
4115 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4116 case GC_DISPLAY_CLOCK_333_MHZ:
4117 return 333000;
4118 default:
4119 case GC_DISPLAY_CLOCK_190_200_MHZ:
4120 return 190000;
4121 }
4122 }
4123 }
4124
4125 static int i865_get_display_clock_speed(struct drm_device *dev)
4126 {
4127 return 266000;
4128 }
4129
4130 static int i855_get_display_clock_speed(struct drm_device *dev)
4131 {
4132 u16 hpllcc = 0;
4133 /* Assume that the hardware is in the high speed state. This
4134 * should be the default.
4135 */
4136 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4137 case GC_CLOCK_133_200:
4138 case GC_CLOCK_100_200:
4139 return 200000;
4140 case GC_CLOCK_166_250:
4141 return 250000;
4142 case GC_CLOCK_100_133:
4143 return 133000;
4144 }
4145
4146 /* Shouldn't happen */
4147 return 0;
4148 }
4149
4150 static int i830_get_display_clock_speed(struct drm_device *dev)
4151 {
4152 return 133000;
4153 }
4154
4155 static void
4156 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4157 {
4158 while (*num > DATA_LINK_M_N_MASK ||
4159 *den > DATA_LINK_M_N_MASK) {
4160 *num >>= 1;
4161 *den >>= 1;
4162 }
4163 }
4164
4165 static void compute_m_n(unsigned int m, unsigned int n,
4166 uint32_t *ret_m, uint32_t *ret_n)
4167 {
4168 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4169 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4170 intel_reduce_m_n_ratio(ret_m, ret_n);
4171 }
4172
4173 void
4174 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4175 int pixel_clock, int link_clock,
4176 struct intel_link_m_n *m_n)
4177 {
4178 m_n->tu = 64;
4179
4180 compute_m_n(bits_per_pixel * pixel_clock,
4181 link_clock * nlanes * 8,
4182 &m_n->gmch_m, &m_n->gmch_n);
4183
4184 compute_m_n(pixel_clock, link_clock,
4185 &m_n->link_m, &m_n->link_n);
4186 }
4187
4188 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4189 {
4190 if (i915_panel_use_ssc >= 0)
4191 return i915_panel_use_ssc != 0;
4192 return dev_priv->vbt.lvds_use_ssc
4193 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4194 }
4195
4196 static int vlv_get_refclk(struct drm_crtc *crtc)
4197 {
4198 struct drm_device *dev = crtc->dev;
4199 struct drm_i915_private *dev_priv = dev->dev_private;
4200 int refclk = 27000; /* for DP & HDMI */
4201
4202 return 100000; /* only one validated so far */
4203
4204 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4205 refclk = 96000;
4206 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4207 if (intel_panel_use_ssc(dev_priv))
4208 refclk = 100000;
4209 else
4210 refclk = 96000;
4211 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4212 refclk = 100000;
4213 }
4214
4215 return refclk;
4216 }
4217
4218 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4219 {
4220 struct drm_device *dev = crtc->dev;
4221 struct drm_i915_private *dev_priv = dev->dev_private;
4222 int refclk;
4223
4224 if (IS_VALLEYVIEW(dev)) {
4225 refclk = vlv_get_refclk(crtc);
4226 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4227 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4228 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4229 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4230 refclk / 1000);
4231 } else if (!IS_GEN2(dev)) {
4232 refclk = 96000;
4233 } else {
4234 refclk = 48000;
4235 }
4236
4237 return refclk;
4238 }
4239
4240 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4241 {
4242 return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
4243 }
4244
4245 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4246 {
4247 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4248 }
4249
4250 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4251 intel_clock_t *reduced_clock)
4252 {
4253 struct drm_device *dev = crtc->base.dev;
4254 struct drm_i915_private *dev_priv = dev->dev_private;
4255 int pipe = crtc->pipe;
4256 u32 fp, fp2 = 0;
4257
4258 if (IS_PINEVIEW(dev)) {
4259 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4260 if (reduced_clock)
4261 fp2 = pnv_dpll_compute_fp(reduced_clock);
4262 } else {
4263 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4264 if (reduced_clock)
4265 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4266 }
4267
4268 I915_WRITE(FP0(pipe), fp);
4269
4270 crtc->lowfreq_avail = false;
4271 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4272 reduced_clock && i915_powersave) {
4273 I915_WRITE(FP1(pipe), fp2);
4274 crtc->lowfreq_avail = true;
4275 } else {
4276 I915_WRITE(FP1(pipe), fp);
4277 }
4278 }
4279
4280 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4281 {
4282 u32 reg_val;
4283
4284 /*
4285 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4286 * and set it to a reasonable value instead.
4287 */
4288 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4289 reg_val &= 0xffffff00;
4290 reg_val |= 0x00000030;
4291 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4292
4293 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4294 reg_val &= 0x8cffffff;
4295 reg_val = 0x8c000000;
4296 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4297
4298 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4299 reg_val &= 0xffffff00;
4300 vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4301
4302 reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4303 reg_val &= 0x00ffffff;
4304 reg_val |= 0xb0000000;
4305 vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4306 }
4307
4308 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4309 struct intel_link_m_n *m_n)
4310 {
4311 struct drm_device *dev = crtc->base.dev;
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 int pipe = crtc->pipe;
4314
4315 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4316 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4317 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4318 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4319 }
4320
4321 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4322 struct intel_link_m_n *m_n)
4323 {
4324 struct drm_device *dev = crtc->base.dev;
4325 struct drm_i915_private *dev_priv = dev->dev_private;
4326 int pipe = crtc->pipe;
4327 enum transcoder transcoder = crtc->config.cpu_transcoder;
4328
4329 if (INTEL_INFO(dev)->gen >= 5) {
4330 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4331 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4332 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4333 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4334 } else {
4335 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4336 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4337 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4338 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4339 }
4340 }
4341
4342 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4343 {
4344 if (crtc->config.has_pch_encoder)
4345 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4346 else
4347 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4348 }
4349
4350 static void vlv_update_pll(struct intel_crtc *crtc)
4351 {
4352 struct drm_device *dev = crtc->base.dev;
4353 struct drm_i915_private *dev_priv = dev->dev_private;
4354 struct drm_display_mode *adjusted_mode =
4355 &crtc->config.adjusted_mode;
4356 struct intel_encoder *encoder;
4357 int pipe = crtc->pipe;
4358 u32 dpll, mdiv;
4359 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4360 bool is_hdmi;
4361 u32 coreclk, reg_val, dpll_md;
4362
4363 mutex_lock(&dev_priv->dpio_lock);
4364
4365 is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4366
4367 bestn = crtc->config.dpll.n;
4368 bestm1 = crtc->config.dpll.m1;
4369 bestm2 = crtc->config.dpll.m2;
4370 bestp1 = crtc->config.dpll.p1;
4371 bestp2 = crtc->config.dpll.p2;
4372
4373 /* See eDP HDMI DPIO driver vbios notes doc */
4374
4375 /* PLL B needs special handling */
4376 if (pipe)
4377 vlv_pllb_recal_opamp(dev_priv);
4378
4379 /* Set up Tx target for periodic Rcomp update */
4380 vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4381
4382 /* Disable target IRef on PLL */
4383 reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4384 reg_val &= 0x00ffffff;
4385 vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4386
4387 /* Disable fast lock */
4388 vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4389
4390 /* Set idtafcrecal before PLL is enabled */
4391 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4392 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4393 mdiv |= ((bestn << DPIO_N_SHIFT));
4394 mdiv |= (1 << DPIO_K_SHIFT);
4395
4396 /*
4397 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4398 * but we don't support that).
4399 * Note: don't use the DAC post divider as it seems unstable.
4400 */
4401 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4402 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4403
4404 mdiv |= DPIO_ENABLE_CALIBRATION;
4405 vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4406
4407 /* Set HBR and RBR LPF coefficients */
4408 if (adjusted_mode->clock == 162000 ||
4409 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4410 vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4411 0x005f0021);
4412 else
4413 vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
4414 0x00d0000f);
4415
4416 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4417 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4418 /* Use SSC source */
4419 if (!pipe)
4420 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4421 0x0df40000);
4422 else
4423 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4424 0x0df70000);
4425 } else { /* HDMI or VGA */
4426 /* Use bend source */
4427 if (!pipe)
4428 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4429 0x0df70000);
4430 else
4431 vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4432 0x0df40000);
4433 }
4434
4435 coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4436 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4437 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4438 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4439 coreclk |= 0x01000000;
4440 vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4441
4442 vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4443
4444 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4445 if (encoder->pre_pll_enable)
4446 encoder->pre_pll_enable(encoder);
4447
4448 /* Enable DPIO clock input */
4449 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4450 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4451 if (pipe)
4452 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4453
4454 dpll |= DPLL_VCO_ENABLE;
4455 I915_WRITE(DPLL(pipe), dpll);
4456 POSTING_READ(DPLL(pipe));
4457 udelay(150);
4458
4459 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4460 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4461
4462 dpll_md = 0;
4463 if (crtc->config.pixel_multiplier > 1) {
4464 dpll_md = (crtc->config.pixel_multiplier - 1)
4465 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4466 }
4467 I915_WRITE(DPLL_MD(pipe), dpll_md);
4468 POSTING_READ(DPLL_MD(pipe));
4469
4470 if (crtc->config.has_dp_encoder)
4471 intel_dp_set_m_n(crtc);
4472
4473 mutex_unlock(&dev_priv->dpio_lock);
4474 }
4475
4476 static void i9xx_update_pll(struct intel_crtc *crtc,
4477 intel_clock_t *reduced_clock,
4478 int num_connectors)
4479 {
4480 struct drm_device *dev = crtc->base.dev;
4481 struct drm_i915_private *dev_priv = dev->dev_private;
4482 struct intel_encoder *encoder;
4483 int pipe = crtc->pipe;
4484 u32 dpll;
4485 bool is_sdvo;
4486 struct dpll *clock = &crtc->config.dpll;
4487
4488 i9xx_update_pll_dividers(crtc, reduced_clock);
4489
4490 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4491 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4492
4493 dpll = DPLL_VGA_MODE_DIS;
4494
4495 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4496 dpll |= DPLLB_MODE_LVDS;
4497 else
4498 dpll |= DPLLB_MODE_DAC_SERIAL;
4499
4500 if ((crtc->config.pixel_multiplier > 1) &&
4501 (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
4502 dpll |= (crtc->config.pixel_multiplier - 1)
4503 << SDVO_MULTIPLIER_SHIFT_HIRES;
4504 }
4505
4506 if (is_sdvo)
4507 dpll |= DPLL_DVO_HIGH_SPEED;
4508
4509 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4510 dpll |= DPLL_DVO_HIGH_SPEED;
4511
4512 /* compute bitmask from p1 value */
4513 if (IS_PINEVIEW(dev))
4514 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4515 else {
4516 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4517 if (IS_G4X(dev) && reduced_clock)
4518 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4519 }
4520 switch (clock->p2) {
4521 case 5:
4522 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4523 break;
4524 case 7:
4525 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4526 break;
4527 case 10:
4528 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4529 break;
4530 case 14:
4531 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4532 break;
4533 }
4534 if (INTEL_INFO(dev)->gen >= 4)
4535 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4536
4537 if (crtc->config.sdvo_tv_clock)
4538 dpll |= PLL_REF_INPUT_TVCLKINBC;
4539 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4540 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4541 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4542 else
4543 dpll |= PLL_REF_INPUT_DREFCLK;
4544
4545 dpll |= DPLL_VCO_ENABLE;
4546 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4547 POSTING_READ(DPLL(pipe));
4548 udelay(150);
4549
4550 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4551 if (encoder->pre_pll_enable)
4552 encoder->pre_pll_enable(encoder);
4553
4554 if (crtc->config.has_dp_encoder)
4555 intel_dp_set_m_n(crtc);
4556
4557 I915_WRITE(DPLL(pipe), dpll);
4558
4559 /* Wait for the clocks to stabilize. */
4560 POSTING_READ(DPLL(pipe));
4561 udelay(150);
4562
4563 if (INTEL_INFO(dev)->gen >= 4) {
4564 u32 dpll_md = 0;
4565 if (crtc->config.pixel_multiplier > 1) {
4566 dpll_md = (crtc->config.pixel_multiplier - 1)
4567 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4568 }
4569 I915_WRITE(DPLL_MD(pipe), dpll_md);
4570 } else {
4571 /* The pixel multiplier can only be updated once the
4572 * DPLL is enabled and the clocks are stable.
4573 *
4574 * So write it again.
4575 */
4576 I915_WRITE(DPLL(pipe), dpll);
4577 }
4578 }
4579
4580 static void i8xx_update_pll(struct intel_crtc *crtc,
4581 struct drm_display_mode *adjusted_mode,
4582 intel_clock_t *reduced_clock,
4583 int num_connectors)
4584 {
4585 struct drm_device *dev = crtc->base.dev;
4586 struct drm_i915_private *dev_priv = dev->dev_private;
4587 struct intel_encoder *encoder;
4588 int pipe = crtc->pipe;
4589 u32 dpll;
4590 struct dpll *clock = &crtc->config.dpll;
4591
4592 i9xx_update_pll_dividers(crtc, reduced_clock);
4593
4594 dpll = DPLL_VGA_MODE_DIS;
4595
4596 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4597 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4598 } else {
4599 if (clock->p1 == 2)
4600 dpll |= PLL_P1_DIVIDE_BY_TWO;
4601 else
4602 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4603 if (clock->p2 == 4)
4604 dpll |= PLL_P2_DIVIDE_BY_4;
4605 }
4606
4607 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4608 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4609 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4610 else
4611 dpll |= PLL_REF_INPUT_DREFCLK;
4612
4613 dpll |= DPLL_VCO_ENABLE;
4614 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4615 POSTING_READ(DPLL(pipe));
4616 udelay(150);
4617
4618 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
4619 if (encoder->pre_pll_enable)
4620 encoder->pre_pll_enable(encoder);
4621
4622 I915_WRITE(DPLL(pipe), dpll);
4623
4624 /* Wait for the clocks to stabilize. */
4625 POSTING_READ(DPLL(pipe));
4626 udelay(150);
4627
4628 /* The pixel multiplier can only be updated once the
4629 * DPLL is enabled and the clocks are stable.
4630 *
4631 * So write it again.
4632 */
4633 I915_WRITE(DPLL(pipe), dpll);
4634 }
4635
4636 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4637 struct drm_display_mode *mode,
4638 struct drm_display_mode *adjusted_mode)
4639 {
4640 struct drm_device *dev = intel_crtc->base.dev;
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642 enum pipe pipe = intel_crtc->pipe;
4643 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4644 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4645
4646 /* We need to be careful not to changed the adjusted mode, for otherwise
4647 * the hw state checker will get angry at the mismatch. */
4648 crtc_vtotal = adjusted_mode->crtc_vtotal;
4649 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4650
4651 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4652 /* the chip adds 2 halflines automatically */
4653 crtc_vtotal -= 1;
4654 crtc_vblank_end -= 1;
4655 vsyncshift = adjusted_mode->crtc_hsync_start
4656 - adjusted_mode->crtc_htotal / 2;
4657 } else {
4658 vsyncshift = 0;
4659 }
4660
4661 if (INTEL_INFO(dev)->gen > 3)
4662 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4663
4664 I915_WRITE(HTOTAL(cpu_transcoder),
4665 (adjusted_mode->crtc_hdisplay - 1) |
4666 ((adjusted_mode->crtc_htotal - 1) << 16));
4667 I915_WRITE(HBLANK(cpu_transcoder),
4668 (adjusted_mode->crtc_hblank_start - 1) |
4669 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4670 I915_WRITE(HSYNC(cpu_transcoder),
4671 (adjusted_mode->crtc_hsync_start - 1) |
4672 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4673
4674 I915_WRITE(VTOTAL(cpu_transcoder),
4675 (adjusted_mode->crtc_vdisplay - 1) |
4676 ((crtc_vtotal - 1) << 16));
4677 I915_WRITE(VBLANK(cpu_transcoder),
4678 (adjusted_mode->crtc_vblank_start - 1) |
4679 ((crtc_vblank_end - 1) << 16));
4680 I915_WRITE(VSYNC(cpu_transcoder),
4681 (adjusted_mode->crtc_vsync_start - 1) |
4682 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4683
4684 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4685 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4686 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4687 * bits. */
4688 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4689 (pipe == PIPE_B || pipe == PIPE_C))
4690 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4691
4692 /* pipesrc controls the size that is scaled from, which should
4693 * always be the user's requested size.
4694 */
4695 I915_WRITE(PIPESRC(pipe),
4696 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4697 }
4698
4699 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4700 struct intel_crtc_config *pipe_config)
4701 {
4702 struct drm_device *dev = crtc->base.dev;
4703 struct drm_i915_private *dev_priv = dev->dev_private;
4704 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4705 uint32_t tmp;
4706
4707 tmp = I915_READ(HTOTAL(cpu_transcoder));
4708 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4709 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4710 tmp = I915_READ(HBLANK(cpu_transcoder));
4711 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4712 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4713 tmp = I915_READ(HSYNC(cpu_transcoder));
4714 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4715 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4716
4717 tmp = I915_READ(VTOTAL(cpu_transcoder));
4718 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4719 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4720 tmp = I915_READ(VBLANK(cpu_transcoder));
4721 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4722 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4723 tmp = I915_READ(VSYNC(cpu_transcoder));
4724 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4725 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4726
4727 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4728 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4729 pipe_config->adjusted_mode.crtc_vtotal += 1;
4730 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4731 }
4732
4733 tmp = I915_READ(PIPESRC(crtc->pipe));
4734 pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4735 pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4736 }
4737
4738 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4739 {
4740 struct drm_device *dev = intel_crtc->base.dev;
4741 struct drm_i915_private *dev_priv = dev->dev_private;
4742 uint32_t pipeconf;
4743
4744 pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
4745
4746 if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4747 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4748 * core speed.
4749 *
4750 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4751 * pipe == 0 check?
4752 */
4753 if (intel_crtc->config.requested_mode.clock >
4754 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4755 pipeconf |= PIPECONF_DOUBLE_WIDE;
4756 else
4757 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4758 }
4759
4760 /* only g4x and later have fancy bpc/dither controls */
4761 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4762 pipeconf &= ~(PIPECONF_BPC_MASK |
4763 PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4764
4765 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4766 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4767 pipeconf |= PIPECONF_DITHER_EN |
4768 PIPECONF_DITHER_TYPE_SP;
4769
4770 switch (intel_crtc->config.pipe_bpp) {
4771 case 18:
4772 pipeconf |= PIPECONF_6BPC;
4773 break;
4774 case 24:
4775 pipeconf |= PIPECONF_8BPC;
4776 break;
4777 case 30:
4778 pipeconf |= PIPECONF_10BPC;
4779 break;
4780 default:
4781 /* Case prevented by intel_choose_pipe_bpp_dither. */
4782 BUG();
4783 }
4784 }
4785
4786 if (HAS_PIPE_CXSR(dev)) {
4787 if (intel_crtc->lowfreq_avail) {
4788 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4789 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4790 } else {
4791 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4792 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4793 }
4794 }
4795
4796 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4797 if (!IS_GEN2(dev) &&
4798 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4799 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4800 else
4801 pipeconf |= PIPECONF_PROGRESSIVE;
4802
4803 if (IS_VALLEYVIEW(dev)) {
4804 if (intel_crtc->config.limited_color_range)
4805 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4806 else
4807 pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
4808 }
4809
4810 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4811 POSTING_READ(PIPECONF(intel_crtc->pipe));
4812 }
4813
4814 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4815 int x, int y,
4816 struct drm_framebuffer *fb)
4817 {
4818 struct drm_device *dev = crtc->dev;
4819 struct drm_i915_private *dev_priv = dev->dev_private;
4820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4821 struct drm_display_mode *adjusted_mode =
4822 &intel_crtc->config.adjusted_mode;
4823 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4824 int pipe = intel_crtc->pipe;
4825 int plane = intel_crtc->plane;
4826 int refclk, num_connectors = 0;
4827 intel_clock_t clock, reduced_clock;
4828 u32 dspcntr;
4829 bool ok, has_reduced_clock = false;
4830 bool is_lvds = false;
4831 struct intel_encoder *encoder;
4832 const intel_limit_t *limit;
4833 int ret;
4834
4835 for_each_encoder_on_crtc(dev, crtc, encoder) {
4836 switch (encoder->type) {
4837 case INTEL_OUTPUT_LVDS:
4838 is_lvds = true;
4839 break;
4840 }
4841
4842 num_connectors++;
4843 }
4844
4845 refclk = i9xx_get_refclk(crtc, num_connectors);
4846
4847 /*
4848 * Returns a set of divisors for the desired target clock with the given
4849 * refclk, or FALSE. The returned values represent the clock equation:
4850 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4851 */
4852 limit = intel_limit(crtc, refclk);
4853 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4854 &clock);
4855 if (!ok) {
4856 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4857 return -EINVAL;
4858 }
4859
4860 /* Ensure that the cursor is valid for the new mode before changing... */
4861 intel_crtc_update_cursor(crtc, true);
4862
4863 if (is_lvds && dev_priv->lvds_downclock_avail) {
4864 /*
4865 * Ensure we match the reduced clock's P to the target clock.
4866 * If the clocks don't match, we can't switch the display clock
4867 * by using the FP0/FP1. In such case we will disable the LVDS
4868 * downclock feature.
4869 */
4870 has_reduced_clock = limit->find_pll(limit, crtc,
4871 dev_priv->lvds_downclock,
4872 refclk,
4873 &clock,
4874 &reduced_clock);
4875 }
4876 /* Compat-code for transition, will disappear. */
4877 if (!intel_crtc->config.clock_set) {
4878 intel_crtc->config.dpll.n = clock.n;
4879 intel_crtc->config.dpll.m1 = clock.m1;
4880 intel_crtc->config.dpll.m2 = clock.m2;
4881 intel_crtc->config.dpll.p1 = clock.p1;
4882 intel_crtc->config.dpll.p2 = clock.p2;
4883 }
4884
4885 if (IS_GEN2(dev))
4886 i8xx_update_pll(intel_crtc, adjusted_mode,
4887 has_reduced_clock ? &reduced_clock : NULL,
4888 num_connectors);
4889 else if (IS_VALLEYVIEW(dev))
4890 vlv_update_pll(intel_crtc);
4891 else
4892 i9xx_update_pll(intel_crtc,
4893 has_reduced_clock ? &reduced_clock : NULL,
4894 num_connectors);
4895
4896 /* Set up the display plane register */
4897 dspcntr = DISPPLANE_GAMMA_ENABLE;
4898
4899 if (!IS_VALLEYVIEW(dev)) {
4900 if (pipe == 0)
4901 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4902 else
4903 dspcntr |= DISPPLANE_SEL_PIPE_B;
4904 }
4905
4906 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4907
4908 /* pipesrc and dspsize control the size that is scaled from,
4909 * which should always be the user's requested size.
4910 */
4911 I915_WRITE(DSPSIZE(plane),
4912 ((mode->vdisplay - 1) << 16) |
4913 (mode->hdisplay - 1));
4914 I915_WRITE(DSPPOS(plane), 0);
4915
4916 i9xx_set_pipeconf(intel_crtc);
4917
4918 I915_WRITE(DSPCNTR(plane), dspcntr);
4919 POSTING_READ(DSPCNTR(plane));
4920
4921 ret = intel_pipe_set_base(crtc, x, y, fb);
4922
4923 intel_update_watermarks(dev);
4924
4925 return ret;
4926 }
4927
4928 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4929 struct intel_crtc_config *pipe_config)
4930 {
4931 struct drm_device *dev = crtc->base.dev;
4932 struct drm_i915_private *dev_priv = dev->dev_private;
4933 uint32_t tmp;
4934
4935 tmp = I915_READ(PFIT_CONTROL);
4936
4937 if (INTEL_INFO(dev)->gen < 4) {
4938 if (crtc->pipe != PIPE_B)
4939 return;
4940
4941 /* gen2/3 store dither state in pfit control, needs to match */
4942 pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
4943 } else {
4944 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
4945 return;
4946 }
4947
4948 if (!(tmp & PFIT_ENABLE))
4949 return;
4950
4951 pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
4952 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
4953 if (INTEL_INFO(dev)->gen < 5)
4954 pipe_config->gmch_pfit.lvds_border_bits =
4955 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
4956 }
4957
4958 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
4959 struct intel_crtc_config *pipe_config)
4960 {
4961 struct drm_device *dev = crtc->base.dev;
4962 struct drm_i915_private *dev_priv = dev->dev_private;
4963 uint32_t tmp;
4964
4965 pipe_config->cpu_transcoder = crtc->pipe;
4966
4967 tmp = I915_READ(PIPECONF(crtc->pipe));
4968 if (!(tmp & PIPECONF_ENABLE))
4969 return false;
4970
4971 intel_get_pipe_timings(crtc, pipe_config);
4972
4973 i9xx_get_pfit_config(crtc, pipe_config);
4974
4975 return true;
4976 }
4977
4978 static void ironlake_init_pch_refclk(struct drm_device *dev)
4979 {
4980 struct drm_i915_private *dev_priv = dev->dev_private;
4981 struct drm_mode_config *mode_config = &dev->mode_config;
4982 struct intel_encoder *encoder;
4983 u32 val, final;
4984 bool has_lvds = false;
4985 bool has_cpu_edp = false;
4986 bool has_panel = false;
4987 bool has_ck505 = false;
4988 bool can_ssc = false;
4989
4990 /* We need to take the global config into account */
4991 list_for_each_entry(encoder, &mode_config->encoder_list,
4992 base.head) {
4993 switch (encoder->type) {
4994 case INTEL_OUTPUT_LVDS:
4995 has_panel = true;
4996 has_lvds = true;
4997 break;
4998 case INTEL_OUTPUT_EDP:
4999 has_panel = true;
5000 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5001 has_cpu_edp = true;
5002 break;
5003 }
5004 }
5005
5006 if (HAS_PCH_IBX(dev)) {
5007 has_ck505 = dev_priv->vbt.display_clock_mode;
5008 can_ssc = has_ck505;
5009 } else {
5010 has_ck505 = false;
5011 can_ssc = true;
5012 }
5013
5014 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5015 has_panel, has_lvds, has_ck505);
5016
5017 /* Ironlake: try to setup display ref clock before DPLL
5018 * enabling. This is only under driver's control after
5019 * PCH B stepping, previous chipset stepping should be
5020 * ignoring this setting.
5021 */
5022 val = I915_READ(PCH_DREF_CONTROL);
5023
5024 /* As we must carefully and slowly disable/enable each source in turn,
5025 * compute the final state we want first and check if we need to
5026 * make any changes at all.
5027 */
5028 final = val;
5029 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5030 if (has_ck505)
5031 final |= DREF_NONSPREAD_CK505_ENABLE;
5032 else
5033 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5034
5035 final &= ~DREF_SSC_SOURCE_MASK;
5036 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5037 final &= ~DREF_SSC1_ENABLE;
5038
5039 if (has_panel) {
5040 final |= DREF_SSC_SOURCE_ENABLE;
5041
5042 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5043 final |= DREF_SSC1_ENABLE;
5044
5045 if (has_cpu_edp) {
5046 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5047 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5048 else
5049 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5050 } else
5051 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5052 } else {
5053 final |= DREF_SSC_SOURCE_DISABLE;
5054 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5055 }
5056
5057 if (final == val)
5058 return;
5059
5060 /* Always enable nonspread source */
5061 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5062
5063 if (has_ck505)
5064 val |= DREF_NONSPREAD_CK505_ENABLE;
5065 else
5066 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5067
5068 if (has_panel) {
5069 val &= ~DREF_SSC_SOURCE_MASK;
5070 val |= DREF_SSC_SOURCE_ENABLE;
5071
5072 /* SSC must be turned on before enabling the CPU output */
5073 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5074 DRM_DEBUG_KMS("Using SSC on panel\n");
5075 val |= DREF_SSC1_ENABLE;
5076 } else
5077 val &= ~DREF_SSC1_ENABLE;
5078
5079 /* Get SSC going before enabling the outputs */
5080 I915_WRITE(PCH_DREF_CONTROL, val);
5081 POSTING_READ(PCH_DREF_CONTROL);
5082 udelay(200);
5083
5084 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5085
5086 /* Enable CPU source on CPU attached eDP */
5087 if (has_cpu_edp) {
5088 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5089 DRM_DEBUG_KMS("Using SSC on eDP\n");
5090 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5091 }
5092 else
5093 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5094 } else
5095 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5096
5097 I915_WRITE(PCH_DREF_CONTROL, val);
5098 POSTING_READ(PCH_DREF_CONTROL);
5099 udelay(200);
5100 } else {
5101 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5102
5103 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5104
5105 /* Turn off CPU output */
5106 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5107
5108 I915_WRITE(PCH_DREF_CONTROL, val);
5109 POSTING_READ(PCH_DREF_CONTROL);
5110 udelay(200);
5111
5112 /* Turn off the SSC source */
5113 val &= ~DREF_SSC_SOURCE_MASK;
5114 val |= DREF_SSC_SOURCE_DISABLE;
5115
5116 /* Turn off SSC1 */
5117 val &= ~DREF_SSC1_ENABLE;
5118
5119 I915_WRITE(PCH_DREF_CONTROL, val);
5120 POSTING_READ(PCH_DREF_CONTROL);
5121 udelay(200);
5122 }
5123
5124 BUG_ON(val != final);
5125 }
5126
5127 /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
5128 static void lpt_init_pch_refclk(struct drm_device *dev)
5129 {
5130 struct drm_i915_private *dev_priv = dev->dev_private;
5131 struct drm_mode_config *mode_config = &dev->mode_config;
5132 struct intel_encoder *encoder;
5133 bool has_vga = false;
5134 bool is_sdv = false;
5135 u32 tmp;
5136
5137 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5138 switch (encoder->type) {
5139 case INTEL_OUTPUT_ANALOG:
5140 has_vga = true;
5141 break;
5142 }
5143 }
5144
5145 if (!has_vga)
5146 return;
5147
5148 mutex_lock(&dev_priv->dpio_lock);
5149
5150 /* XXX: Rip out SDV support once Haswell ships for real. */
5151 if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
5152 is_sdv = true;
5153
5154 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5155 tmp &= ~SBI_SSCCTL_DISABLE;
5156 tmp |= SBI_SSCCTL_PATHALT;
5157 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5158
5159 udelay(24);
5160
5161 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5162 tmp &= ~SBI_SSCCTL_PATHALT;
5163 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5164
5165 if (!is_sdv) {
5166 tmp = I915_READ(SOUTH_CHICKEN2);
5167 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5168 I915_WRITE(SOUTH_CHICKEN2, tmp);
5169
5170 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5171 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5172 DRM_ERROR("FDI mPHY reset assert timeout\n");
5173
5174 tmp = I915_READ(SOUTH_CHICKEN2);
5175 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5176 I915_WRITE(SOUTH_CHICKEN2, tmp);
5177
5178 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5179 FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
5180 100))
5181 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5182 }
5183
5184 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5185 tmp &= ~(0xFF << 24);
5186 tmp |= (0x12 << 24);
5187 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5188
5189 if (is_sdv) {
5190 tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
5191 tmp |= 0x7FFF;
5192 intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
5193 }
5194
5195 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5196 tmp |= (1 << 11);
5197 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5198
5199 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5200 tmp |= (1 << 11);
5201 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5202
5203 if (is_sdv) {
5204 tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
5205 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5206 intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
5207
5208 tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
5209 tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
5210 intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
5211
5212 tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
5213 tmp |= (0x3F << 8);
5214 intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
5215
5216 tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
5217 tmp |= (0x3F << 8);
5218 intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
5219 }
5220
5221 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5222 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5223 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5224
5225 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5226 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5227 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5228
5229 if (!is_sdv) {
5230 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5231 tmp &= ~(7 << 13);
5232 tmp |= (5 << 13);
5233 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5234
5235 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5236 tmp &= ~(7 << 13);
5237 tmp |= (5 << 13);
5238 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5239 }
5240
5241 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5242 tmp &= ~0xFF;
5243 tmp |= 0x1C;
5244 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5245
5246 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5247 tmp &= ~0xFF;
5248 tmp |= 0x1C;
5249 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5250
5251 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5252 tmp &= ~(0xFF << 16);
5253 tmp |= (0x1C << 16);
5254 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5255
5256 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5257 tmp &= ~(0xFF << 16);
5258 tmp |= (0x1C << 16);
5259 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5260
5261 if (!is_sdv) {
5262 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5263 tmp |= (1 << 27);
5264 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5265
5266 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5267 tmp |= (1 << 27);
5268 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5269
5270 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5271 tmp &= ~(0xF << 28);
5272 tmp |= (4 << 28);
5273 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5274
5275 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5276 tmp &= ~(0xF << 28);
5277 tmp |= (4 << 28);
5278 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5279 }
5280
5281 /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
5282 tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
5283 tmp |= SBI_DBUFF0_ENABLE;
5284 intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
5285
5286 mutex_unlock(&dev_priv->dpio_lock);
5287 }
5288
5289 /*
5290 * Initialize reference clocks when the driver loads
5291 */
5292 void intel_init_pch_refclk(struct drm_device *dev)
5293 {
5294 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5295 ironlake_init_pch_refclk(dev);
5296 else if (HAS_PCH_LPT(dev))
5297 lpt_init_pch_refclk(dev);
5298 }
5299
5300 static int ironlake_get_refclk(struct drm_crtc *crtc)
5301 {
5302 struct drm_device *dev = crtc->dev;
5303 struct drm_i915_private *dev_priv = dev->dev_private;
5304 struct intel_encoder *encoder;
5305 int num_connectors = 0;
5306 bool is_lvds = false;
5307
5308 for_each_encoder_on_crtc(dev, crtc, encoder) {
5309 switch (encoder->type) {
5310 case INTEL_OUTPUT_LVDS:
5311 is_lvds = true;
5312 break;
5313 }
5314 num_connectors++;
5315 }
5316
5317 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5318 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5319 dev_priv->vbt.lvds_ssc_freq);
5320 return dev_priv->vbt.lvds_ssc_freq * 1000;
5321 }
5322
5323 return 120000;
5324 }
5325
5326 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5327 {
5328 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5329 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5330 int pipe = intel_crtc->pipe;
5331 uint32_t val;
5332
5333 val = I915_READ(PIPECONF(pipe));
5334
5335 val &= ~PIPECONF_BPC_MASK;
5336 switch (intel_crtc->config.pipe_bpp) {
5337 case 18:
5338 val |= PIPECONF_6BPC;
5339 break;
5340 case 24:
5341 val |= PIPECONF_8BPC;
5342 break;
5343 case 30:
5344 val |= PIPECONF_10BPC;
5345 break;
5346 case 36:
5347 val |= PIPECONF_12BPC;
5348 break;
5349 default:
5350 /* Case prevented by intel_choose_pipe_bpp_dither. */
5351 BUG();
5352 }
5353
5354 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5355 if (intel_crtc->config.dither)
5356 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5357
5358 val &= ~PIPECONF_INTERLACE_MASK;
5359 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5360 val |= PIPECONF_INTERLACED_ILK;
5361 else
5362 val |= PIPECONF_PROGRESSIVE;
5363
5364 if (intel_crtc->config.limited_color_range)
5365 val |= PIPECONF_COLOR_RANGE_SELECT;
5366 else
5367 val &= ~PIPECONF_COLOR_RANGE_SELECT;
5368
5369 I915_WRITE(PIPECONF(pipe), val);
5370 POSTING_READ(PIPECONF(pipe));
5371 }
5372
5373 /*
5374 * Set up the pipe CSC unit.
5375 *
5376 * Currently only full range RGB to limited range RGB conversion
5377 * is supported, but eventually this should handle various
5378 * RGB<->YCbCr scenarios as well.
5379 */
5380 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5381 {
5382 struct drm_device *dev = crtc->dev;
5383 struct drm_i915_private *dev_priv = dev->dev_private;
5384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5385 int pipe = intel_crtc->pipe;
5386 uint16_t coeff = 0x7800; /* 1.0 */
5387
5388 /*
5389 * TODO: Check what kind of values actually come out of the pipe
5390 * with these coeff/postoff values and adjust to get the best
5391 * accuracy. Perhaps we even need to take the bpc value into
5392 * consideration.
5393 */
5394
5395 if (intel_crtc->config.limited_color_range)
5396 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5397
5398 /*
5399 * GY/GU and RY/RU should be the other way around according
5400 * to BSpec, but reality doesn't agree. Just set them up in
5401 * a way that results in the correct picture.
5402 */
5403 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5404 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5405
5406 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5407 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5408
5409 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5410 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5411
5412 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5413 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5414 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5415
5416 if (INTEL_INFO(dev)->gen > 6) {
5417 uint16_t postoff = 0;
5418
5419 if (intel_crtc->config.limited_color_range)
5420 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5421
5422 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5423 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5424 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5425
5426 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5427 } else {
5428 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5429
5430 if (intel_crtc->config.limited_color_range)
5431 mode |= CSC_BLACK_SCREEN_OFFSET;
5432
5433 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5434 }
5435 }
5436
5437 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5438 {
5439 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5441 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5442 uint32_t val;
5443
5444 val = I915_READ(PIPECONF(cpu_transcoder));
5445
5446 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5447 if (intel_crtc->config.dither)
5448 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5449
5450 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5451 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5452 val |= PIPECONF_INTERLACED_ILK;
5453 else
5454 val |= PIPECONF_PROGRESSIVE;
5455
5456 I915_WRITE(PIPECONF(cpu_transcoder), val);
5457 POSTING_READ(PIPECONF(cpu_transcoder));
5458 }
5459
5460 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5461 struct drm_display_mode *adjusted_mode,
5462 intel_clock_t *clock,
5463 bool *has_reduced_clock,
5464 intel_clock_t *reduced_clock)
5465 {
5466 struct drm_device *dev = crtc->dev;
5467 struct drm_i915_private *dev_priv = dev->dev_private;
5468 struct intel_encoder *intel_encoder;
5469 int refclk;
5470 const intel_limit_t *limit;
5471 bool ret, is_lvds = false;
5472
5473 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5474 switch (intel_encoder->type) {
5475 case INTEL_OUTPUT_LVDS:
5476 is_lvds = true;
5477 break;
5478 }
5479 }
5480
5481 refclk = ironlake_get_refclk(crtc);
5482
5483 /*
5484 * Returns a set of divisors for the desired target clock with the given
5485 * refclk, or FALSE. The returned values represent the clock equation:
5486 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5487 */
5488 limit = intel_limit(crtc, refclk);
5489 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5490 clock);
5491 if (!ret)
5492 return false;
5493
5494 if (is_lvds && dev_priv->lvds_downclock_avail) {
5495 /*
5496 * Ensure we match the reduced clock's P to the target clock.
5497 * If the clocks don't match, we can't switch the display clock
5498 * by using the FP0/FP1. In such case we will disable the LVDS
5499 * downclock feature.
5500 */
5501 *has_reduced_clock = limit->find_pll(limit, crtc,
5502 dev_priv->lvds_downclock,
5503 refclk,
5504 clock,
5505 reduced_clock);
5506 }
5507
5508 return true;
5509 }
5510
5511 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5512 {
5513 struct drm_i915_private *dev_priv = dev->dev_private;
5514 uint32_t temp;
5515
5516 temp = I915_READ(SOUTH_CHICKEN1);
5517 if (temp & FDI_BC_BIFURCATION_SELECT)
5518 return;
5519
5520 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5521 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5522
5523 temp |= FDI_BC_BIFURCATION_SELECT;
5524 DRM_DEBUG_KMS("enabling fdi C rx\n");
5525 I915_WRITE(SOUTH_CHICKEN1, temp);
5526 POSTING_READ(SOUTH_CHICKEN1);
5527 }
5528
5529 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
5530 {
5531 struct drm_device *dev = intel_crtc->base.dev;
5532 struct drm_i915_private *dev_priv = dev->dev_private;
5533
5534 switch (intel_crtc->pipe) {
5535 case PIPE_A:
5536 break;
5537 case PIPE_B:
5538 if (intel_crtc->config.fdi_lanes > 2)
5539 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5540 else
5541 cpt_enable_fdi_bc_bifurcation(dev);
5542
5543 break;
5544 case PIPE_C:
5545 cpt_enable_fdi_bc_bifurcation(dev);
5546
5547 break;
5548 default:
5549 BUG();
5550 }
5551 }
5552
5553 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5554 {
5555 /*
5556 * Account for spread spectrum to avoid
5557 * oversubscribing the link. Max center spread
5558 * is 2.5%; use 5% for safety's sake.
5559 */
5560 u32 bps = target_clock * bpp * 21 / 20;
5561 return bps / (link_bw * 8) + 1;
5562 }
5563
5564 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5565 {
5566 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5567 }
5568
5569 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5570 u32 *fp,
5571 intel_clock_t *reduced_clock, u32 *fp2)
5572 {
5573 struct drm_crtc *crtc = &intel_crtc->base;
5574 struct drm_device *dev = crtc->dev;
5575 struct drm_i915_private *dev_priv = dev->dev_private;
5576 struct intel_encoder *intel_encoder;
5577 uint32_t dpll;
5578 int factor, num_connectors = 0;
5579 bool is_lvds = false, is_sdvo = false;
5580
5581 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5582 switch (intel_encoder->type) {
5583 case INTEL_OUTPUT_LVDS:
5584 is_lvds = true;
5585 break;
5586 case INTEL_OUTPUT_SDVO:
5587 case INTEL_OUTPUT_HDMI:
5588 is_sdvo = true;
5589 break;
5590 }
5591
5592 num_connectors++;
5593 }
5594
5595 /* Enable autotuning of the PLL clock (if permissible) */
5596 factor = 21;
5597 if (is_lvds) {
5598 if ((intel_panel_use_ssc(dev_priv) &&
5599 dev_priv->vbt.lvds_ssc_freq == 100) ||
5600 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5601 factor = 25;
5602 } else if (intel_crtc->config.sdvo_tv_clock)
5603 factor = 20;
5604
5605 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5606 *fp |= FP_CB_TUNE;
5607
5608 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5609 *fp2 |= FP_CB_TUNE;
5610
5611 dpll = 0;
5612
5613 if (is_lvds)
5614 dpll |= DPLLB_MODE_LVDS;
5615 else
5616 dpll |= DPLLB_MODE_DAC_SERIAL;
5617
5618 if (intel_crtc->config.pixel_multiplier > 1) {
5619 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5620 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5621 }
5622
5623 if (is_sdvo)
5624 dpll |= DPLL_DVO_HIGH_SPEED;
5625 if (intel_crtc->config.has_dp_encoder)
5626 dpll |= DPLL_DVO_HIGH_SPEED;
5627
5628 /* compute bitmask from p1 value */
5629 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5630 /* also FPA1 */
5631 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5632
5633 switch (intel_crtc->config.dpll.p2) {
5634 case 5:
5635 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5636 break;
5637 case 7:
5638 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5639 break;
5640 case 10:
5641 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5642 break;
5643 case 14:
5644 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5645 break;
5646 }
5647
5648 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5649 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5650 else
5651 dpll |= PLL_REF_INPUT_DREFCLK;
5652
5653 return dpll;
5654 }
5655
5656 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5657 int x, int y,
5658 struct drm_framebuffer *fb)
5659 {
5660 struct drm_device *dev = crtc->dev;
5661 struct drm_i915_private *dev_priv = dev->dev_private;
5662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5663 struct drm_display_mode *adjusted_mode =
5664 &intel_crtc->config.adjusted_mode;
5665 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5666 int pipe = intel_crtc->pipe;
5667 int plane = intel_crtc->plane;
5668 int num_connectors = 0;
5669 intel_clock_t clock, reduced_clock;
5670 u32 dpll = 0, fp = 0, fp2 = 0;
5671 bool ok, has_reduced_clock = false;
5672 bool is_lvds = false;
5673 struct intel_encoder *encoder;
5674 int ret;
5675
5676 for_each_encoder_on_crtc(dev, crtc, encoder) {
5677 switch (encoder->type) {
5678 case INTEL_OUTPUT_LVDS:
5679 is_lvds = true;
5680 break;
5681 }
5682
5683 num_connectors++;
5684 }
5685
5686 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5687 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5688
5689 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5690 &has_reduced_clock, &reduced_clock);
5691 if (!ok) {
5692 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5693 return -EINVAL;
5694 }
5695 /* Compat-code for transition, will disappear. */
5696 if (!intel_crtc->config.clock_set) {
5697 intel_crtc->config.dpll.n = clock.n;
5698 intel_crtc->config.dpll.m1 = clock.m1;
5699 intel_crtc->config.dpll.m2 = clock.m2;
5700 intel_crtc->config.dpll.p1 = clock.p1;
5701 intel_crtc->config.dpll.p2 = clock.p2;
5702 }
5703
5704 /* Ensure that the cursor is valid for the new mode before changing... */
5705 intel_crtc_update_cursor(crtc, true);
5706
5707 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5708 if (intel_crtc->config.has_pch_encoder) {
5709 struct intel_pch_pll *pll;
5710
5711 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5712 if (has_reduced_clock)
5713 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5714
5715 dpll = ironlake_compute_dpll(intel_crtc,
5716 &fp, &reduced_clock,
5717 has_reduced_clock ? &fp2 : NULL);
5718
5719 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5720 if (pll == NULL) {
5721 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5722 pipe_name(pipe));
5723 return -EINVAL;
5724 }
5725 } else
5726 intel_put_pch_pll(intel_crtc);
5727
5728 if (intel_crtc->config.has_dp_encoder)
5729 intel_dp_set_m_n(intel_crtc);
5730
5731 for_each_encoder_on_crtc(dev, crtc, encoder)
5732 if (encoder->pre_pll_enable)
5733 encoder->pre_pll_enable(encoder);
5734
5735 if (intel_crtc->pch_pll) {
5736 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5737
5738 /* Wait for the clocks to stabilize. */
5739 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5740 udelay(150);
5741
5742 /* The pixel multiplier can only be updated once the
5743 * DPLL is enabled and the clocks are stable.
5744 *
5745 * So write it again.
5746 */
5747 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5748 }
5749
5750 intel_crtc->lowfreq_avail = false;
5751 if (intel_crtc->pch_pll) {
5752 if (is_lvds && has_reduced_clock && i915_powersave) {
5753 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5754 intel_crtc->lowfreq_avail = true;
5755 } else {
5756 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5757 }
5758 }
5759
5760 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5761
5762 if (intel_crtc->config.has_pch_encoder) {
5763 intel_cpu_transcoder_set_m_n(intel_crtc,
5764 &intel_crtc->config.fdi_m_n);
5765 }
5766
5767 if (IS_IVYBRIDGE(dev))
5768 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
5769
5770 ironlake_set_pipeconf(crtc);
5771
5772 /* Set up the display plane register */
5773 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5774 POSTING_READ(DSPCNTR(plane));
5775
5776 ret = intel_pipe_set_base(crtc, x, y, fb);
5777
5778 intel_update_watermarks(dev);
5779
5780 return ret;
5781 }
5782
5783 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5784 struct intel_crtc_config *pipe_config)
5785 {
5786 struct drm_device *dev = crtc->base.dev;
5787 struct drm_i915_private *dev_priv = dev->dev_private;
5788 enum transcoder transcoder = pipe_config->cpu_transcoder;
5789
5790 pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5791 pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5792 pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5793 & ~TU_SIZE_MASK;
5794 pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5795 pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5796 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5797 }
5798
5799 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5800 struct intel_crtc_config *pipe_config)
5801 {
5802 struct drm_device *dev = crtc->base.dev;
5803 struct drm_i915_private *dev_priv = dev->dev_private;
5804 uint32_t tmp;
5805
5806 tmp = I915_READ(PF_CTL(crtc->pipe));
5807
5808 if (tmp & PF_ENABLE) {
5809 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5810 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5811 }
5812 }
5813
5814 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5815 struct intel_crtc_config *pipe_config)
5816 {
5817 struct drm_device *dev = crtc->base.dev;
5818 struct drm_i915_private *dev_priv = dev->dev_private;
5819 uint32_t tmp;
5820
5821 pipe_config->cpu_transcoder = crtc->pipe;
5822
5823 tmp = I915_READ(PIPECONF(crtc->pipe));
5824 if (!(tmp & PIPECONF_ENABLE))
5825 return false;
5826
5827 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5828 pipe_config->has_pch_encoder = true;
5829
5830 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5831 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5832 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5833
5834 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5835 }
5836
5837 intel_get_pipe_timings(crtc, pipe_config);
5838
5839 ironlake_get_pfit_config(crtc, pipe_config);
5840
5841 return true;
5842 }
5843
5844 static void haswell_modeset_global_resources(struct drm_device *dev)
5845 {
5846 bool enable = false;
5847 struct intel_crtc *crtc;
5848
5849 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
5850 if (!crtc->base.enabled)
5851 continue;
5852
5853 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
5854 crtc->config.cpu_transcoder != TRANSCODER_EDP)
5855 enable = true;
5856 }
5857
5858 intel_set_power_well(dev, enable);
5859 }
5860
5861 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5862 int x, int y,
5863 struct drm_framebuffer *fb)
5864 {
5865 struct drm_device *dev = crtc->dev;
5866 struct drm_i915_private *dev_priv = dev->dev_private;
5867 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5868 struct drm_display_mode *adjusted_mode =
5869 &intel_crtc->config.adjusted_mode;
5870 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
5871 int pipe = intel_crtc->pipe;
5872 int plane = intel_crtc->plane;
5873 int num_connectors = 0;
5874 bool is_cpu_edp = false;
5875 struct intel_encoder *encoder;
5876 int ret;
5877
5878 for_each_encoder_on_crtc(dev, crtc, encoder) {
5879 switch (encoder->type) {
5880 case INTEL_OUTPUT_EDP:
5881 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5882 is_cpu_edp = true;
5883 break;
5884 }
5885
5886 num_connectors++;
5887 }
5888
5889 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5890 num_connectors, pipe_name(pipe));
5891
5892 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5893 return -EINVAL;
5894
5895 /* Ensure that the cursor is valid for the new mode before changing... */
5896 intel_crtc_update_cursor(crtc, true);
5897
5898 if (intel_crtc->config.has_dp_encoder)
5899 intel_dp_set_m_n(intel_crtc);
5900
5901 intel_crtc->lowfreq_avail = false;
5902
5903 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5904
5905 if (intel_crtc->config.has_pch_encoder) {
5906 intel_cpu_transcoder_set_m_n(intel_crtc,
5907 &intel_crtc->config.fdi_m_n);
5908 }
5909
5910 haswell_set_pipeconf(crtc);
5911
5912 intel_set_pipe_csc(crtc);
5913
5914 /* Set up the display plane register */
5915 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
5916 POSTING_READ(DSPCNTR(plane));
5917
5918 ret = intel_pipe_set_base(crtc, x, y, fb);
5919
5920 intel_update_watermarks(dev);
5921
5922 return ret;
5923 }
5924
5925 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5926 struct intel_crtc_config *pipe_config)
5927 {
5928 struct drm_device *dev = crtc->base.dev;
5929 struct drm_i915_private *dev_priv = dev->dev_private;
5930 enum intel_display_power_domain pfit_domain;
5931 uint32_t tmp;
5932
5933 pipe_config->cpu_transcoder = crtc->pipe;
5934 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
5935 if (tmp & TRANS_DDI_FUNC_ENABLE) {
5936 enum pipe trans_edp_pipe;
5937 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
5938 default:
5939 WARN(1, "unknown pipe linked to edp transcoder\n");
5940 case TRANS_DDI_EDP_INPUT_A_ONOFF:
5941 case TRANS_DDI_EDP_INPUT_A_ON:
5942 trans_edp_pipe = PIPE_A;
5943 break;
5944 case TRANS_DDI_EDP_INPUT_B_ONOFF:
5945 trans_edp_pipe = PIPE_B;
5946 break;
5947 case TRANS_DDI_EDP_INPUT_C_ONOFF:
5948 trans_edp_pipe = PIPE_C;
5949 break;
5950 }
5951
5952 if (trans_edp_pipe == crtc->pipe)
5953 pipe_config->cpu_transcoder = TRANSCODER_EDP;
5954 }
5955
5956 if (!intel_display_power_enabled(dev,
5957 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
5958 return false;
5959
5960 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
5961 if (!(tmp & PIPECONF_ENABLE))
5962 return false;
5963
5964 /*
5965 * Haswell has only FDI/PCH transcoder A. It is which is connected to
5966 * DDI E. So just check whether this pipe is wired to DDI E and whether
5967 * the PCH transcoder is on.
5968 */
5969 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
5970 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
5971 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
5972 pipe_config->has_pch_encoder = true;
5973
5974 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
5975 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5976 FDI_DP_PORT_WIDTH_SHIFT) + 1;
5977
5978 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5979 }
5980
5981 intel_get_pipe_timings(crtc, pipe_config);
5982
5983 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
5984 if (intel_display_power_enabled(dev, pfit_domain))
5985 ironlake_get_pfit_config(crtc, pipe_config);
5986
5987 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
5988 (I915_READ(IPS_CTL) & IPS_ENABLE);
5989
5990 return true;
5991 }
5992
5993 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5994 int x, int y,
5995 struct drm_framebuffer *fb)
5996 {
5997 struct drm_device *dev = crtc->dev;
5998 struct drm_i915_private *dev_priv = dev->dev_private;
5999 struct drm_encoder_helper_funcs *encoder_funcs;
6000 struct intel_encoder *encoder;
6001 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6002 struct drm_display_mode *adjusted_mode =
6003 &intel_crtc->config.adjusted_mode;
6004 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6005 int pipe = intel_crtc->pipe;
6006 int ret;
6007
6008 drm_vblank_pre_modeset(dev, pipe);
6009
6010 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6011
6012 drm_vblank_post_modeset(dev, pipe);
6013
6014 if (ret != 0)
6015 return ret;
6016
6017 for_each_encoder_on_crtc(dev, crtc, encoder) {
6018 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6019 encoder->base.base.id,
6020 drm_get_encoder_name(&encoder->base),
6021 mode->base.id, mode->name);
6022 if (encoder->mode_set) {
6023 encoder->mode_set(encoder);
6024 } else {
6025 encoder_funcs = encoder->base.helper_private;
6026 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
6027 }
6028 }
6029
6030 return 0;
6031 }
6032
6033 static bool intel_eld_uptodate(struct drm_connector *connector,
6034 int reg_eldv, uint32_t bits_eldv,
6035 int reg_elda, uint32_t bits_elda,
6036 int reg_edid)
6037 {
6038 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6039 uint8_t *eld = connector->eld;
6040 uint32_t i;
6041
6042 i = I915_READ(reg_eldv);
6043 i &= bits_eldv;
6044
6045 if (!eld[0])
6046 return !i;
6047
6048 if (!i)
6049 return false;
6050
6051 i = I915_READ(reg_elda);
6052 i &= ~bits_elda;
6053 I915_WRITE(reg_elda, i);
6054
6055 for (i = 0; i < eld[2]; i++)
6056 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6057 return false;
6058
6059 return true;
6060 }
6061
6062 static void g4x_write_eld(struct drm_connector *connector,
6063 struct drm_crtc *crtc)
6064 {
6065 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6066 uint8_t *eld = connector->eld;
6067 uint32_t eldv;
6068 uint32_t len;
6069 uint32_t i;
6070
6071 i = I915_READ(G4X_AUD_VID_DID);
6072
6073 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6074 eldv = G4X_ELDV_DEVCL_DEVBLC;
6075 else
6076 eldv = G4X_ELDV_DEVCTG;
6077
6078 if (intel_eld_uptodate(connector,
6079 G4X_AUD_CNTL_ST, eldv,
6080 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6081 G4X_HDMIW_HDMIEDID))
6082 return;
6083
6084 i = I915_READ(G4X_AUD_CNTL_ST);
6085 i &= ~(eldv | G4X_ELD_ADDR);
6086 len = (i >> 9) & 0x1f; /* ELD buffer size */
6087 I915_WRITE(G4X_AUD_CNTL_ST, i);
6088
6089 if (!eld[0])
6090 return;
6091
6092 len = min_t(uint8_t, eld[2], len);
6093 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6094 for (i = 0; i < len; i++)
6095 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6096
6097 i = I915_READ(G4X_AUD_CNTL_ST);
6098 i |= eldv;
6099 I915_WRITE(G4X_AUD_CNTL_ST, i);
6100 }
6101
6102 static void haswell_write_eld(struct drm_connector *connector,
6103 struct drm_crtc *crtc)
6104 {
6105 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6106 uint8_t *eld = connector->eld;
6107 struct drm_device *dev = crtc->dev;
6108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6109 uint32_t eldv;
6110 uint32_t i;
6111 int len;
6112 int pipe = to_intel_crtc(crtc)->pipe;
6113 int tmp;
6114
6115 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6116 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6117 int aud_config = HSW_AUD_CFG(pipe);
6118 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6119
6120
6121 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6122
6123 /* Audio output enable */
6124 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6125 tmp = I915_READ(aud_cntrl_st2);
6126 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6127 I915_WRITE(aud_cntrl_st2, tmp);
6128
6129 /* Wait for 1 vertical blank */
6130 intel_wait_for_vblank(dev, pipe);
6131
6132 /* Set ELD valid state */
6133 tmp = I915_READ(aud_cntrl_st2);
6134 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
6135 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6136 I915_WRITE(aud_cntrl_st2, tmp);
6137 tmp = I915_READ(aud_cntrl_st2);
6138 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
6139
6140 /* Enable HDMI mode */
6141 tmp = I915_READ(aud_config);
6142 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
6143 /* clear N_programing_enable and N_value_index */
6144 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6145 I915_WRITE(aud_config, tmp);
6146
6147 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6148
6149 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6150 intel_crtc->eld_vld = true;
6151
6152 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6153 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6154 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6155 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6156 } else
6157 I915_WRITE(aud_config, 0);
6158
6159 if (intel_eld_uptodate(connector,
6160 aud_cntrl_st2, eldv,
6161 aud_cntl_st, IBX_ELD_ADDRESS,
6162 hdmiw_hdmiedid))
6163 return;
6164
6165 i = I915_READ(aud_cntrl_st2);
6166 i &= ~eldv;
6167 I915_WRITE(aud_cntrl_st2, i);
6168
6169 if (!eld[0])
6170 return;
6171
6172 i = I915_READ(aud_cntl_st);
6173 i &= ~IBX_ELD_ADDRESS;
6174 I915_WRITE(aud_cntl_st, i);
6175 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6176 DRM_DEBUG_DRIVER("port num:%d\n", i);
6177
6178 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6179 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6180 for (i = 0; i < len; i++)
6181 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6182
6183 i = I915_READ(aud_cntrl_st2);
6184 i |= eldv;
6185 I915_WRITE(aud_cntrl_st2, i);
6186
6187 }
6188
6189 static void ironlake_write_eld(struct drm_connector *connector,
6190 struct drm_crtc *crtc)
6191 {
6192 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6193 uint8_t *eld = connector->eld;
6194 uint32_t eldv;
6195 uint32_t i;
6196 int len;
6197 int hdmiw_hdmiedid;
6198 int aud_config;
6199 int aud_cntl_st;
6200 int aud_cntrl_st2;
6201 int pipe = to_intel_crtc(crtc)->pipe;
6202
6203 if (HAS_PCH_IBX(connector->dev)) {
6204 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6205 aud_config = IBX_AUD_CFG(pipe);
6206 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6207 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6208 } else {
6209 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6210 aud_config = CPT_AUD_CFG(pipe);
6211 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6212 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6213 }
6214
6215 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6216
6217 i = I915_READ(aud_cntl_st);
6218 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6219 if (!i) {
6220 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6221 /* operate blindly on all ports */
6222 eldv = IBX_ELD_VALIDB;
6223 eldv |= IBX_ELD_VALIDB << 4;
6224 eldv |= IBX_ELD_VALIDB << 8;
6225 } else {
6226 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6227 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6228 }
6229
6230 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6231 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6232 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6233 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6234 } else
6235 I915_WRITE(aud_config, 0);
6236
6237 if (intel_eld_uptodate(connector,
6238 aud_cntrl_st2, eldv,
6239 aud_cntl_st, IBX_ELD_ADDRESS,
6240 hdmiw_hdmiedid))
6241 return;
6242
6243 i = I915_READ(aud_cntrl_st2);
6244 i &= ~eldv;
6245 I915_WRITE(aud_cntrl_st2, i);
6246
6247 if (!eld[0])
6248 return;
6249
6250 i = I915_READ(aud_cntl_st);
6251 i &= ~IBX_ELD_ADDRESS;
6252 I915_WRITE(aud_cntl_st, i);
6253
6254 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6255 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6256 for (i = 0; i < len; i++)
6257 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6258
6259 i = I915_READ(aud_cntrl_st2);
6260 i |= eldv;
6261 I915_WRITE(aud_cntrl_st2, i);
6262 }
6263
6264 void intel_write_eld(struct drm_encoder *encoder,
6265 struct drm_display_mode *mode)
6266 {
6267 struct drm_crtc *crtc = encoder->crtc;
6268 struct drm_connector *connector;
6269 struct drm_device *dev = encoder->dev;
6270 struct drm_i915_private *dev_priv = dev->dev_private;
6271
6272 connector = drm_select_eld(encoder, mode);
6273 if (!connector)
6274 return;
6275
6276 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6277 connector->base.id,
6278 drm_get_connector_name(connector),
6279 connector->encoder->base.id,
6280 drm_get_encoder_name(connector->encoder));
6281
6282 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6283
6284 if (dev_priv->display.write_eld)
6285 dev_priv->display.write_eld(connector, crtc);
6286 }
6287
6288 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6289 void intel_crtc_load_lut(struct drm_crtc *crtc)
6290 {
6291 struct drm_device *dev = crtc->dev;
6292 struct drm_i915_private *dev_priv = dev->dev_private;
6293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6294 enum pipe pipe = intel_crtc->pipe;
6295 int palreg = PALETTE(pipe);
6296 int i;
6297 bool reenable_ips = false;
6298
6299 /* The clocks have to be on to load the palette. */
6300 if (!crtc->enabled || !intel_crtc->active)
6301 return;
6302
6303 /* use legacy palette for Ironlake */
6304 if (HAS_PCH_SPLIT(dev))
6305 palreg = LGC_PALETTE(pipe);
6306
6307 /* Workaround : Do not read or write the pipe palette/gamma data while
6308 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6309 */
6310 if (intel_crtc->config.ips_enabled &&
6311 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6312 GAMMA_MODE_MODE_SPLIT)) {
6313 hsw_disable_ips(intel_crtc);
6314 reenable_ips = true;
6315 }
6316
6317 for (i = 0; i < 256; i++) {
6318 I915_WRITE(palreg + 4 * i,
6319 (intel_crtc->lut_r[i] << 16) |
6320 (intel_crtc->lut_g[i] << 8) |
6321 intel_crtc->lut_b[i]);
6322 }
6323
6324 if (reenable_ips)
6325 hsw_enable_ips(intel_crtc);
6326 }
6327
6328 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6329 {
6330 struct drm_device *dev = crtc->dev;
6331 struct drm_i915_private *dev_priv = dev->dev_private;
6332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6333 bool visible = base != 0;
6334 u32 cntl;
6335
6336 if (intel_crtc->cursor_visible == visible)
6337 return;
6338
6339 cntl = I915_READ(_CURACNTR);
6340 if (visible) {
6341 /* On these chipsets we can only modify the base whilst
6342 * the cursor is disabled.
6343 */
6344 I915_WRITE(_CURABASE, base);
6345
6346 cntl &= ~(CURSOR_FORMAT_MASK);
6347 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6348 cntl |= CURSOR_ENABLE |
6349 CURSOR_GAMMA_ENABLE |
6350 CURSOR_FORMAT_ARGB;
6351 } else
6352 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6353 I915_WRITE(_CURACNTR, cntl);
6354
6355 intel_crtc->cursor_visible = visible;
6356 }
6357
6358 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6359 {
6360 struct drm_device *dev = crtc->dev;
6361 struct drm_i915_private *dev_priv = dev->dev_private;
6362 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6363 int pipe = intel_crtc->pipe;
6364 bool visible = base != 0;
6365
6366 if (intel_crtc->cursor_visible != visible) {
6367 uint32_t cntl = I915_READ(CURCNTR(pipe));
6368 if (base) {
6369 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6370 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6371 cntl |= pipe << 28; /* Connect to correct pipe */
6372 } else {
6373 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6374 cntl |= CURSOR_MODE_DISABLE;
6375 }
6376 I915_WRITE(CURCNTR(pipe), cntl);
6377
6378 intel_crtc->cursor_visible = visible;
6379 }
6380 /* and commit changes on next vblank */
6381 I915_WRITE(CURBASE(pipe), base);
6382 }
6383
6384 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6385 {
6386 struct drm_device *dev = crtc->dev;
6387 struct drm_i915_private *dev_priv = dev->dev_private;
6388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6389 int pipe = intel_crtc->pipe;
6390 bool visible = base != 0;
6391
6392 if (intel_crtc->cursor_visible != visible) {
6393 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6394 if (base) {
6395 cntl &= ~CURSOR_MODE;
6396 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6397 } else {
6398 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6399 cntl |= CURSOR_MODE_DISABLE;
6400 }
6401 if (IS_HASWELL(dev))
6402 cntl |= CURSOR_PIPE_CSC_ENABLE;
6403 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6404
6405 intel_crtc->cursor_visible = visible;
6406 }
6407 /* and commit changes on next vblank */
6408 I915_WRITE(CURBASE_IVB(pipe), base);
6409 }
6410
6411 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6412 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6413 bool on)
6414 {
6415 struct drm_device *dev = crtc->dev;
6416 struct drm_i915_private *dev_priv = dev->dev_private;
6417 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6418 int pipe = intel_crtc->pipe;
6419 int x = intel_crtc->cursor_x;
6420 int y = intel_crtc->cursor_y;
6421 u32 base, pos;
6422 bool visible;
6423
6424 pos = 0;
6425
6426 if (on && crtc->enabled && crtc->fb) {
6427 base = intel_crtc->cursor_addr;
6428 if (x > (int) crtc->fb->width)
6429 base = 0;
6430
6431 if (y > (int) crtc->fb->height)
6432 base = 0;
6433 } else
6434 base = 0;
6435
6436 if (x < 0) {
6437 if (x + intel_crtc->cursor_width < 0)
6438 base = 0;
6439
6440 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6441 x = -x;
6442 }
6443 pos |= x << CURSOR_X_SHIFT;
6444
6445 if (y < 0) {
6446 if (y + intel_crtc->cursor_height < 0)
6447 base = 0;
6448
6449 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6450 y = -y;
6451 }
6452 pos |= y << CURSOR_Y_SHIFT;
6453
6454 visible = base != 0;
6455 if (!visible && !intel_crtc->cursor_visible)
6456 return;
6457
6458 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6459 I915_WRITE(CURPOS_IVB(pipe), pos);
6460 ivb_update_cursor(crtc, base);
6461 } else {
6462 I915_WRITE(CURPOS(pipe), pos);
6463 if (IS_845G(dev) || IS_I865G(dev))
6464 i845_update_cursor(crtc, base);
6465 else
6466 i9xx_update_cursor(crtc, base);
6467 }
6468 }
6469
6470 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6471 struct drm_file *file,
6472 uint32_t handle,
6473 uint32_t width, uint32_t height)
6474 {
6475 struct drm_device *dev = crtc->dev;
6476 struct drm_i915_private *dev_priv = dev->dev_private;
6477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6478 struct drm_i915_gem_object *obj;
6479 uint32_t addr;
6480 int ret;
6481
6482 /* if we want to turn off the cursor ignore width and height */
6483 if (!handle) {
6484 DRM_DEBUG_KMS("cursor off\n");
6485 addr = 0;
6486 obj = NULL;
6487 mutex_lock(&dev->struct_mutex);
6488 goto finish;
6489 }
6490
6491 /* Currently we only support 64x64 cursors */
6492 if (width != 64 || height != 64) {
6493 DRM_ERROR("we currently only support 64x64 cursors\n");
6494 return -EINVAL;
6495 }
6496
6497 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6498 if (&obj->base == NULL)
6499 return -ENOENT;
6500
6501 if (obj->base.size < width * height * 4) {
6502 DRM_ERROR("buffer is to small\n");
6503 ret = -ENOMEM;
6504 goto fail;
6505 }
6506
6507 /* we only need to pin inside GTT if cursor is non-phy */
6508 mutex_lock(&dev->struct_mutex);
6509 if (!dev_priv->info->cursor_needs_physical) {
6510 unsigned alignment;
6511
6512 if (obj->tiling_mode) {
6513 DRM_ERROR("cursor cannot be tiled\n");
6514 ret = -EINVAL;
6515 goto fail_locked;
6516 }
6517
6518 /* Note that the w/a also requires 2 PTE of padding following
6519 * the bo. We currently fill all unused PTE with the shadow
6520 * page and so we should always have valid PTE following the
6521 * cursor preventing the VT-d warning.
6522 */
6523 alignment = 0;
6524 if (need_vtd_wa(dev))
6525 alignment = 64*1024;
6526
6527 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6528 if (ret) {
6529 DRM_ERROR("failed to move cursor bo into the GTT\n");
6530 goto fail_locked;
6531 }
6532
6533 ret = i915_gem_object_put_fence(obj);
6534 if (ret) {
6535 DRM_ERROR("failed to release fence for cursor");
6536 goto fail_unpin;
6537 }
6538
6539 addr = obj->gtt_offset;
6540 } else {
6541 int align = IS_I830(dev) ? 16 * 1024 : 256;
6542 ret = i915_gem_attach_phys_object(dev, obj,
6543 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6544 align);
6545 if (ret) {
6546 DRM_ERROR("failed to attach phys object\n");
6547 goto fail_locked;
6548 }
6549 addr = obj->phys_obj->handle->busaddr;
6550 }
6551
6552 if (IS_GEN2(dev))
6553 I915_WRITE(CURSIZE, (height << 12) | width);
6554
6555 finish:
6556 if (intel_crtc->cursor_bo) {
6557 if (dev_priv->info->cursor_needs_physical) {
6558 if (intel_crtc->cursor_bo != obj)
6559 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6560 } else
6561 i915_gem_object_unpin(intel_crtc->cursor_bo);
6562 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6563 }
6564
6565 mutex_unlock(&dev->struct_mutex);
6566
6567 intel_crtc->cursor_addr = addr;
6568 intel_crtc->cursor_bo = obj;
6569 intel_crtc->cursor_width = width;
6570 intel_crtc->cursor_height = height;
6571
6572 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6573
6574 return 0;
6575 fail_unpin:
6576 i915_gem_object_unpin(obj);
6577 fail_locked:
6578 mutex_unlock(&dev->struct_mutex);
6579 fail:
6580 drm_gem_object_unreference_unlocked(&obj->base);
6581 return ret;
6582 }
6583
6584 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6585 {
6586 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6587
6588 intel_crtc->cursor_x = x;
6589 intel_crtc->cursor_y = y;
6590
6591 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6592
6593 return 0;
6594 }
6595
6596 /** Sets the color ramps on behalf of RandR */
6597 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6598 u16 blue, int regno)
6599 {
6600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6601
6602 intel_crtc->lut_r[regno] = red >> 8;
6603 intel_crtc->lut_g[regno] = green >> 8;
6604 intel_crtc->lut_b[regno] = blue >> 8;
6605 }
6606
6607 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6608 u16 *blue, int regno)
6609 {
6610 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6611
6612 *red = intel_crtc->lut_r[regno] << 8;
6613 *green = intel_crtc->lut_g[regno] << 8;
6614 *blue = intel_crtc->lut_b[regno] << 8;
6615 }
6616
6617 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6618 u16 *blue, uint32_t start, uint32_t size)
6619 {
6620 int end = (start + size > 256) ? 256 : start + size, i;
6621 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6622
6623 for (i = start; i < end; i++) {
6624 intel_crtc->lut_r[i] = red[i] >> 8;
6625 intel_crtc->lut_g[i] = green[i] >> 8;
6626 intel_crtc->lut_b[i] = blue[i] >> 8;
6627 }
6628
6629 intel_crtc_load_lut(crtc);
6630 }
6631
6632 /* VESA 640x480x72Hz mode to set on the pipe */
6633 static struct drm_display_mode load_detect_mode = {
6634 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6635 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6636 };
6637
6638 static struct drm_framebuffer *
6639 intel_framebuffer_create(struct drm_device *dev,
6640 struct drm_mode_fb_cmd2 *mode_cmd,
6641 struct drm_i915_gem_object *obj)
6642 {
6643 struct intel_framebuffer *intel_fb;
6644 int ret;
6645
6646 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6647 if (!intel_fb) {
6648 drm_gem_object_unreference_unlocked(&obj->base);
6649 return ERR_PTR(-ENOMEM);
6650 }
6651
6652 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6653 if (ret) {
6654 drm_gem_object_unreference_unlocked(&obj->base);
6655 kfree(intel_fb);
6656 return ERR_PTR(ret);
6657 }
6658
6659 return &intel_fb->base;
6660 }
6661
6662 static u32
6663 intel_framebuffer_pitch_for_width(int width, int bpp)
6664 {
6665 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6666 return ALIGN(pitch, 64);
6667 }
6668
6669 static u32
6670 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6671 {
6672 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6673 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6674 }
6675
6676 static struct drm_framebuffer *
6677 intel_framebuffer_create_for_mode(struct drm_device *dev,
6678 struct drm_display_mode *mode,
6679 int depth, int bpp)
6680 {
6681 struct drm_i915_gem_object *obj;
6682 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6683
6684 obj = i915_gem_alloc_object(dev,
6685 intel_framebuffer_size_for_mode(mode, bpp));
6686 if (obj == NULL)
6687 return ERR_PTR(-ENOMEM);
6688
6689 mode_cmd.width = mode->hdisplay;
6690 mode_cmd.height = mode->vdisplay;
6691 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6692 bpp);
6693 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6694
6695 return intel_framebuffer_create(dev, &mode_cmd, obj);
6696 }
6697
6698 static struct drm_framebuffer *
6699 mode_fits_in_fbdev(struct drm_device *dev,
6700 struct drm_display_mode *mode)
6701 {
6702 struct drm_i915_private *dev_priv = dev->dev_private;
6703 struct drm_i915_gem_object *obj;
6704 struct drm_framebuffer *fb;
6705
6706 if (dev_priv->fbdev == NULL)
6707 return NULL;
6708
6709 obj = dev_priv->fbdev->ifb.obj;
6710 if (obj == NULL)
6711 return NULL;
6712
6713 fb = &dev_priv->fbdev->ifb.base;
6714 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6715 fb->bits_per_pixel))
6716 return NULL;
6717
6718 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6719 return NULL;
6720
6721 return fb;
6722 }
6723
6724 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6725 struct drm_display_mode *mode,
6726 struct intel_load_detect_pipe *old)
6727 {
6728 struct intel_crtc *intel_crtc;
6729 struct intel_encoder *intel_encoder =
6730 intel_attached_encoder(connector);
6731 struct drm_crtc *possible_crtc;
6732 struct drm_encoder *encoder = &intel_encoder->base;
6733 struct drm_crtc *crtc = NULL;
6734 struct drm_device *dev = encoder->dev;
6735 struct drm_framebuffer *fb;
6736 int i = -1;
6737
6738 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6739 connector->base.id, drm_get_connector_name(connector),
6740 encoder->base.id, drm_get_encoder_name(encoder));
6741
6742 /*
6743 * Algorithm gets a little messy:
6744 *
6745 * - if the connector already has an assigned crtc, use it (but make
6746 * sure it's on first)
6747 *
6748 * - try to find the first unused crtc that can drive this connector,
6749 * and use that if we find one
6750 */
6751
6752 /* See if we already have a CRTC for this connector */
6753 if (encoder->crtc) {
6754 crtc = encoder->crtc;
6755
6756 mutex_lock(&crtc->mutex);
6757
6758 old->dpms_mode = connector->dpms;
6759 old->load_detect_temp = false;
6760
6761 /* Make sure the crtc and connector are running */
6762 if (connector->dpms != DRM_MODE_DPMS_ON)
6763 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6764
6765 return true;
6766 }
6767
6768 /* Find an unused one (if possible) */
6769 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6770 i++;
6771 if (!(encoder->possible_crtcs & (1 << i)))
6772 continue;
6773 if (!possible_crtc->enabled) {
6774 crtc = possible_crtc;
6775 break;
6776 }
6777 }
6778
6779 /*
6780 * If we didn't find an unused CRTC, don't use any.
6781 */
6782 if (!crtc) {
6783 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6784 return false;
6785 }
6786
6787 mutex_lock(&crtc->mutex);
6788 intel_encoder->new_crtc = to_intel_crtc(crtc);
6789 to_intel_connector(connector)->new_encoder = intel_encoder;
6790
6791 intel_crtc = to_intel_crtc(crtc);
6792 old->dpms_mode = connector->dpms;
6793 old->load_detect_temp = true;
6794 old->release_fb = NULL;
6795
6796 if (!mode)
6797 mode = &load_detect_mode;
6798
6799 /* We need a framebuffer large enough to accommodate all accesses
6800 * that the plane may generate whilst we perform load detection.
6801 * We can not rely on the fbcon either being present (we get called
6802 * during its initialisation to detect all boot displays, or it may
6803 * not even exist) or that it is large enough to satisfy the
6804 * requested mode.
6805 */
6806 fb = mode_fits_in_fbdev(dev, mode);
6807 if (fb == NULL) {
6808 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6809 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6810 old->release_fb = fb;
6811 } else
6812 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6813 if (IS_ERR(fb)) {
6814 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6815 mutex_unlock(&crtc->mutex);
6816 return false;
6817 }
6818
6819 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6820 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6821 if (old->release_fb)
6822 old->release_fb->funcs->destroy(old->release_fb);
6823 mutex_unlock(&crtc->mutex);
6824 return false;
6825 }
6826
6827 /* let the connector get through one full cycle before testing */
6828 intel_wait_for_vblank(dev, intel_crtc->pipe);
6829 return true;
6830 }
6831
6832 void intel_release_load_detect_pipe(struct drm_connector *connector,
6833 struct intel_load_detect_pipe *old)
6834 {
6835 struct intel_encoder *intel_encoder =
6836 intel_attached_encoder(connector);
6837 struct drm_encoder *encoder = &intel_encoder->base;
6838 struct drm_crtc *crtc = encoder->crtc;
6839
6840 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6841 connector->base.id, drm_get_connector_name(connector),
6842 encoder->base.id, drm_get_encoder_name(encoder));
6843
6844 if (old->load_detect_temp) {
6845 to_intel_connector(connector)->new_encoder = NULL;
6846 intel_encoder->new_crtc = NULL;
6847 intel_set_mode(crtc, NULL, 0, 0, NULL);
6848
6849 if (old->release_fb) {
6850 drm_framebuffer_unregister_private(old->release_fb);
6851 drm_framebuffer_unreference(old->release_fb);
6852 }
6853
6854 mutex_unlock(&crtc->mutex);
6855 return;
6856 }
6857
6858 /* Switch crtc and encoder back off if necessary */
6859 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6860 connector->funcs->dpms(connector, old->dpms_mode);
6861
6862 mutex_unlock(&crtc->mutex);
6863 }
6864
6865 /* Returns the clock of the currently programmed mode of the given pipe. */
6866 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6867 {
6868 struct drm_i915_private *dev_priv = dev->dev_private;
6869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6870 int pipe = intel_crtc->pipe;
6871 u32 dpll = I915_READ(DPLL(pipe));
6872 u32 fp;
6873 intel_clock_t clock;
6874
6875 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6876 fp = I915_READ(FP0(pipe));
6877 else
6878 fp = I915_READ(FP1(pipe));
6879
6880 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6881 if (IS_PINEVIEW(dev)) {
6882 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6883 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6884 } else {
6885 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6886 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6887 }
6888
6889 if (!IS_GEN2(dev)) {
6890 if (IS_PINEVIEW(dev))
6891 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6892 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6893 else
6894 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6895 DPLL_FPA01_P1_POST_DIV_SHIFT);
6896
6897 switch (dpll & DPLL_MODE_MASK) {
6898 case DPLLB_MODE_DAC_SERIAL:
6899 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6900 5 : 10;
6901 break;
6902 case DPLLB_MODE_LVDS:
6903 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6904 7 : 14;
6905 break;
6906 default:
6907 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6908 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6909 return 0;
6910 }
6911
6912 /* XXX: Handle the 100Mhz refclk */
6913 intel_clock(dev, 96000, &clock);
6914 } else {
6915 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6916
6917 if (is_lvds) {
6918 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6919 DPLL_FPA01_P1_POST_DIV_SHIFT);
6920 clock.p2 = 14;
6921
6922 if ((dpll & PLL_REF_INPUT_MASK) ==
6923 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6924 /* XXX: might not be 66MHz */
6925 intel_clock(dev, 66000, &clock);
6926 } else
6927 intel_clock(dev, 48000, &clock);
6928 } else {
6929 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6930 clock.p1 = 2;
6931 else {
6932 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6933 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6934 }
6935 if (dpll & PLL_P2_DIVIDE_BY_4)
6936 clock.p2 = 4;
6937 else
6938 clock.p2 = 2;
6939
6940 intel_clock(dev, 48000, &clock);
6941 }
6942 }
6943
6944 /* XXX: It would be nice to validate the clocks, but we can't reuse
6945 * i830PllIsValid() because it relies on the xf86_config connector
6946 * configuration being accurate, which it isn't necessarily.
6947 */
6948
6949 return clock.dot;
6950 }
6951
6952 /** Returns the currently programmed mode of the given pipe. */
6953 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6954 struct drm_crtc *crtc)
6955 {
6956 struct drm_i915_private *dev_priv = dev->dev_private;
6957 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6958 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6959 struct drm_display_mode *mode;
6960 int htot = I915_READ(HTOTAL(cpu_transcoder));
6961 int hsync = I915_READ(HSYNC(cpu_transcoder));
6962 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6963 int vsync = I915_READ(VSYNC(cpu_transcoder));
6964
6965 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6966 if (!mode)
6967 return NULL;
6968
6969 mode->clock = intel_crtc_clock_get(dev, crtc);
6970 mode->hdisplay = (htot & 0xffff) + 1;
6971 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6972 mode->hsync_start = (hsync & 0xffff) + 1;
6973 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6974 mode->vdisplay = (vtot & 0xffff) + 1;
6975 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6976 mode->vsync_start = (vsync & 0xffff) + 1;
6977 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6978
6979 drm_mode_set_name(mode);
6980
6981 return mode;
6982 }
6983
6984 static void intel_increase_pllclock(struct drm_crtc *crtc)
6985 {
6986 struct drm_device *dev = crtc->dev;
6987 drm_i915_private_t *dev_priv = dev->dev_private;
6988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6989 int pipe = intel_crtc->pipe;
6990 int dpll_reg = DPLL(pipe);
6991 int dpll;
6992
6993 if (HAS_PCH_SPLIT(dev))
6994 return;
6995
6996 if (!dev_priv->lvds_downclock_avail)
6997 return;
6998
6999 dpll = I915_READ(dpll_reg);
7000 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7001 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7002
7003 assert_panel_unlocked(dev_priv, pipe);
7004
7005 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7006 I915_WRITE(dpll_reg, dpll);
7007 intel_wait_for_vblank(dev, pipe);
7008
7009 dpll = I915_READ(dpll_reg);
7010 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7011 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7012 }
7013 }
7014
7015 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7016 {
7017 struct drm_device *dev = crtc->dev;
7018 drm_i915_private_t *dev_priv = dev->dev_private;
7019 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7020
7021 if (HAS_PCH_SPLIT(dev))
7022 return;
7023
7024 if (!dev_priv->lvds_downclock_avail)
7025 return;
7026
7027 /*
7028 * Since this is called by a timer, we should never get here in
7029 * the manual case.
7030 */
7031 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7032 int pipe = intel_crtc->pipe;
7033 int dpll_reg = DPLL(pipe);
7034 int dpll;
7035
7036 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7037
7038 assert_panel_unlocked(dev_priv, pipe);
7039
7040 dpll = I915_READ(dpll_reg);
7041 dpll |= DISPLAY_RATE_SELECT_FPA1;
7042 I915_WRITE(dpll_reg, dpll);
7043 intel_wait_for_vblank(dev, pipe);
7044 dpll = I915_READ(dpll_reg);
7045 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7046 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7047 }
7048
7049 }
7050
7051 void intel_mark_busy(struct drm_device *dev)
7052 {
7053 i915_update_gfx_val(dev->dev_private);
7054 }
7055
7056 void intel_mark_idle(struct drm_device *dev)
7057 {
7058 struct drm_crtc *crtc;
7059
7060 if (!i915_powersave)
7061 return;
7062
7063 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7064 if (!crtc->fb)
7065 continue;
7066
7067 intel_decrease_pllclock(crtc);
7068 }
7069 }
7070
7071 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
7072 {
7073 struct drm_device *dev = obj->base.dev;
7074 struct drm_crtc *crtc;
7075
7076 if (!i915_powersave)
7077 return;
7078
7079 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7080 if (!crtc->fb)
7081 continue;
7082
7083 if (to_intel_framebuffer(crtc->fb)->obj == obj)
7084 intel_increase_pllclock(crtc);
7085 }
7086 }
7087
7088 static void intel_crtc_destroy(struct drm_crtc *crtc)
7089 {
7090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7091 struct drm_device *dev = crtc->dev;
7092 struct intel_unpin_work *work;
7093 unsigned long flags;
7094
7095 spin_lock_irqsave(&dev->event_lock, flags);
7096 work = intel_crtc->unpin_work;
7097 intel_crtc->unpin_work = NULL;
7098 spin_unlock_irqrestore(&dev->event_lock, flags);
7099
7100 if (work) {
7101 cancel_work_sync(&work->work);
7102 kfree(work);
7103 }
7104
7105 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7106
7107 drm_crtc_cleanup(crtc);
7108
7109 kfree(intel_crtc);
7110 }
7111
7112 static void intel_unpin_work_fn(struct work_struct *__work)
7113 {
7114 struct intel_unpin_work *work =
7115 container_of(__work, struct intel_unpin_work, work);
7116 struct drm_device *dev = work->crtc->dev;
7117
7118 mutex_lock(&dev->struct_mutex);
7119 intel_unpin_fb_obj(work->old_fb_obj);
7120 drm_gem_object_unreference(&work->pending_flip_obj->base);
7121 drm_gem_object_unreference(&work->old_fb_obj->base);
7122
7123 intel_update_fbc(dev);
7124 mutex_unlock(&dev->struct_mutex);
7125
7126 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7127 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7128
7129 kfree(work);
7130 }
7131
7132 static void do_intel_finish_page_flip(struct drm_device *dev,
7133 struct drm_crtc *crtc)
7134 {
7135 drm_i915_private_t *dev_priv = dev->dev_private;
7136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7137 struct intel_unpin_work *work;
7138 unsigned long flags;
7139
7140 /* Ignore early vblank irqs */
7141 if (intel_crtc == NULL)
7142 return;
7143
7144 spin_lock_irqsave(&dev->event_lock, flags);
7145 work = intel_crtc->unpin_work;
7146
7147 /* Ensure we don't miss a work->pending update ... */
7148 smp_rmb();
7149
7150 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7151 spin_unlock_irqrestore(&dev->event_lock, flags);
7152 return;
7153 }
7154
7155 /* and that the unpin work is consistent wrt ->pending. */
7156 smp_rmb();
7157
7158 intel_crtc->unpin_work = NULL;
7159
7160 if (work->event)
7161 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7162
7163 drm_vblank_put(dev, intel_crtc->pipe);
7164
7165 spin_unlock_irqrestore(&dev->event_lock, flags);
7166
7167 wake_up_all(&dev_priv->pending_flip_queue);
7168
7169 queue_work(dev_priv->wq, &work->work);
7170
7171 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7172 }
7173
7174 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7175 {
7176 drm_i915_private_t *dev_priv = dev->dev_private;
7177 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7178
7179 do_intel_finish_page_flip(dev, crtc);
7180 }
7181
7182 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7183 {
7184 drm_i915_private_t *dev_priv = dev->dev_private;
7185 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7186
7187 do_intel_finish_page_flip(dev, crtc);
7188 }
7189
7190 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7191 {
7192 drm_i915_private_t *dev_priv = dev->dev_private;
7193 struct intel_crtc *intel_crtc =
7194 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7195 unsigned long flags;
7196
7197 /* NB: An MMIO update of the plane base pointer will also
7198 * generate a page-flip completion irq, i.e. every modeset
7199 * is also accompanied by a spurious intel_prepare_page_flip().
7200 */
7201 spin_lock_irqsave(&dev->event_lock, flags);
7202 if (intel_crtc->unpin_work)
7203 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7204 spin_unlock_irqrestore(&dev->event_lock, flags);
7205 }
7206
7207 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7208 {
7209 /* Ensure that the work item is consistent when activating it ... */
7210 smp_wmb();
7211 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7212 /* and that it is marked active as soon as the irq could fire. */
7213 smp_wmb();
7214 }
7215
7216 static int intel_gen2_queue_flip(struct drm_device *dev,
7217 struct drm_crtc *crtc,
7218 struct drm_framebuffer *fb,
7219 struct drm_i915_gem_object *obj)
7220 {
7221 struct drm_i915_private *dev_priv = dev->dev_private;
7222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7223 u32 flip_mask;
7224 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7225 int ret;
7226
7227 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7228 if (ret)
7229 goto err;
7230
7231 ret = intel_ring_begin(ring, 6);
7232 if (ret)
7233 goto err_unpin;
7234
7235 /* Can't queue multiple flips, so wait for the previous
7236 * one to finish before executing the next.
7237 */
7238 if (intel_crtc->plane)
7239 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7240 else
7241 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7242 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7243 intel_ring_emit(ring, MI_NOOP);
7244 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7245 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7246 intel_ring_emit(ring, fb->pitches[0]);
7247 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7248 intel_ring_emit(ring, 0); /* aux display base address, unused */
7249
7250 intel_mark_page_flip_active(intel_crtc);
7251 intel_ring_advance(ring);
7252 return 0;
7253
7254 err_unpin:
7255 intel_unpin_fb_obj(obj);
7256 err:
7257 return ret;
7258 }
7259
7260 static int intel_gen3_queue_flip(struct drm_device *dev,
7261 struct drm_crtc *crtc,
7262 struct drm_framebuffer *fb,
7263 struct drm_i915_gem_object *obj)
7264 {
7265 struct drm_i915_private *dev_priv = dev->dev_private;
7266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7267 u32 flip_mask;
7268 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7269 int ret;
7270
7271 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7272 if (ret)
7273 goto err;
7274
7275 ret = intel_ring_begin(ring, 6);
7276 if (ret)
7277 goto err_unpin;
7278
7279 if (intel_crtc->plane)
7280 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7281 else
7282 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7283 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7284 intel_ring_emit(ring, MI_NOOP);
7285 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7286 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7287 intel_ring_emit(ring, fb->pitches[0]);
7288 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7289 intel_ring_emit(ring, MI_NOOP);
7290
7291 intel_mark_page_flip_active(intel_crtc);
7292 intel_ring_advance(ring);
7293 return 0;
7294
7295 err_unpin:
7296 intel_unpin_fb_obj(obj);
7297 err:
7298 return ret;
7299 }
7300
7301 static int intel_gen4_queue_flip(struct drm_device *dev,
7302 struct drm_crtc *crtc,
7303 struct drm_framebuffer *fb,
7304 struct drm_i915_gem_object *obj)
7305 {
7306 struct drm_i915_private *dev_priv = dev->dev_private;
7307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7308 uint32_t pf, pipesrc;
7309 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7310 int ret;
7311
7312 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7313 if (ret)
7314 goto err;
7315
7316 ret = intel_ring_begin(ring, 4);
7317 if (ret)
7318 goto err_unpin;
7319
7320 /* i965+ uses the linear or tiled offsets from the
7321 * Display Registers (which do not change across a page-flip)
7322 * so we need only reprogram the base address.
7323 */
7324 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7325 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7326 intel_ring_emit(ring, fb->pitches[0]);
7327 intel_ring_emit(ring,
7328 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7329 obj->tiling_mode);
7330
7331 /* XXX Enabling the panel-fitter across page-flip is so far
7332 * untested on non-native modes, so ignore it for now.
7333 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7334 */
7335 pf = 0;
7336 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7337 intel_ring_emit(ring, pf | pipesrc);
7338
7339 intel_mark_page_flip_active(intel_crtc);
7340 intel_ring_advance(ring);
7341 return 0;
7342
7343 err_unpin:
7344 intel_unpin_fb_obj(obj);
7345 err:
7346 return ret;
7347 }
7348
7349 static int intel_gen6_queue_flip(struct drm_device *dev,
7350 struct drm_crtc *crtc,
7351 struct drm_framebuffer *fb,
7352 struct drm_i915_gem_object *obj)
7353 {
7354 struct drm_i915_private *dev_priv = dev->dev_private;
7355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7356 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7357 uint32_t pf, pipesrc;
7358 int ret;
7359
7360 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7361 if (ret)
7362 goto err;
7363
7364 ret = intel_ring_begin(ring, 4);
7365 if (ret)
7366 goto err_unpin;
7367
7368 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7369 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7370 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7371 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7372
7373 /* Contrary to the suggestions in the documentation,
7374 * "Enable Panel Fitter" does not seem to be required when page
7375 * flipping with a non-native mode, and worse causes a normal
7376 * modeset to fail.
7377 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7378 */
7379 pf = 0;
7380 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7381 intel_ring_emit(ring, pf | pipesrc);
7382
7383 intel_mark_page_flip_active(intel_crtc);
7384 intel_ring_advance(ring);
7385 return 0;
7386
7387 err_unpin:
7388 intel_unpin_fb_obj(obj);
7389 err:
7390 return ret;
7391 }
7392
7393 /*
7394 * On gen7 we currently use the blit ring because (in early silicon at least)
7395 * the render ring doesn't give us interrpts for page flip completion, which
7396 * means clients will hang after the first flip is queued. Fortunately the
7397 * blit ring generates interrupts properly, so use it instead.
7398 */
7399 static int intel_gen7_queue_flip(struct drm_device *dev,
7400 struct drm_crtc *crtc,
7401 struct drm_framebuffer *fb,
7402 struct drm_i915_gem_object *obj)
7403 {
7404 struct drm_i915_private *dev_priv = dev->dev_private;
7405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7406 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7407 uint32_t plane_bit = 0;
7408 int ret;
7409
7410 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7411 if (ret)
7412 goto err;
7413
7414 switch(intel_crtc->plane) {
7415 case PLANE_A:
7416 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7417 break;
7418 case PLANE_B:
7419 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7420 break;
7421 case PLANE_C:
7422 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7423 break;
7424 default:
7425 WARN_ONCE(1, "unknown plane in flip command\n");
7426 ret = -ENODEV;
7427 goto err_unpin;
7428 }
7429
7430 ret = intel_ring_begin(ring, 4);
7431 if (ret)
7432 goto err_unpin;
7433
7434 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7435 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7436 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7437 intel_ring_emit(ring, (MI_NOOP));
7438
7439 intel_mark_page_flip_active(intel_crtc);
7440 intel_ring_advance(ring);
7441 return 0;
7442
7443 err_unpin:
7444 intel_unpin_fb_obj(obj);
7445 err:
7446 return ret;
7447 }
7448
7449 static int intel_default_queue_flip(struct drm_device *dev,
7450 struct drm_crtc *crtc,
7451 struct drm_framebuffer *fb,
7452 struct drm_i915_gem_object *obj)
7453 {
7454 return -ENODEV;
7455 }
7456
7457 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7458 struct drm_framebuffer *fb,
7459 struct drm_pending_vblank_event *event)
7460 {
7461 struct drm_device *dev = crtc->dev;
7462 struct drm_i915_private *dev_priv = dev->dev_private;
7463 struct drm_framebuffer *old_fb = crtc->fb;
7464 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7466 struct intel_unpin_work *work;
7467 unsigned long flags;
7468 int ret;
7469
7470 /* Can't change pixel format via MI display flips. */
7471 if (fb->pixel_format != crtc->fb->pixel_format)
7472 return -EINVAL;
7473
7474 /*
7475 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7476 * Note that pitch changes could also affect these register.
7477 */
7478 if (INTEL_INFO(dev)->gen > 3 &&
7479 (fb->offsets[0] != crtc->fb->offsets[0] ||
7480 fb->pitches[0] != crtc->fb->pitches[0]))
7481 return -EINVAL;
7482
7483 work = kzalloc(sizeof *work, GFP_KERNEL);
7484 if (work == NULL)
7485 return -ENOMEM;
7486
7487 work->event = event;
7488 work->crtc = crtc;
7489 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7490 INIT_WORK(&work->work, intel_unpin_work_fn);
7491
7492 ret = drm_vblank_get(dev, intel_crtc->pipe);
7493 if (ret)
7494 goto free_work;
7495
7496 /* We borrow the event spin lock for protecting unpin_work */
7497 spin_lock_irqsave(&dev->event_lock, flags);
7498 if (intel_crtc->unpin_work) {
7499 spin_unlock_irqrestore(&dev->event_lock, flags);
7500 kfree(work);
7501 drm_vblank_put(dev, intel_crtc->pipe);
7502
7503 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7504 return -EBUSY;
7505 }
7506 intel_crtc->unpin_work = work;
7507 spin_unlock_irqrestore(&dev->event_lock, flags);
7508
7509 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
7510 flush_workqueue(dev_priv->wq);
7511
7512 ret = i915_mutex_lock_interruptible(dev);
7513 if (ret)
7514 goto cleanup;
7515
7516 /* Reference the objects for the scheduled work. */
7517 drm_gem_object_reference(&work->old_fb_obj->base);
7518 drm_gem_object_reference(&obj->base);
7519
7520 crtc->fb = fb;
7521
7522 work->pending_flip_obj = obj;
7523
7524 work->enable_stall_check = true;
7525
7526 atomic_inc(&intel_crtc->unpin_work_count);
7527 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
7528
7529 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7530 if (ret)
7531 goto cleanup_pending;
7532
7533 intel_disable_fbc(dev);
7534 intel_mark_fb_busy(obj);
7535 mutex_unlock(&dev->struct_mutex);
7536
7537 trace_i915_flip_request(intel_crtc->plane, obj);
7538
7539 return 0;
7540
7541 cleanup_pending:
7542 atomic_dec(&intel_crtc->unpin_work_count);
7543 crtc->fb = old_fb;
7544 drm_gem_object_unreference(&work->old_fb_obj->base);
7545 drm_gem_object_unreference(&obj->base);
7546 mutex_unlock(&dev->struct_mutex);
7547
7548 cleanup:
7549 spin_lock_irqsave(&dev->event_lock, flags);
7550 intel_crtc->unpin_work = NULL;
7551 spin_unlock_irqrestore(&dev->event_lock, flags);
7552
7553 drm_vblank_put(dev, intel_crtc->pipe);
7554 free_work:
7555 kfree(work);
7556
7557 return ret;
7558 }
7559
7560 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7561 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7562 .load_lut = intel_crtc_load_lut,
7563 };
7564
7565 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7566 {
7567 struct intel_encoder *other_encoder;
7568 struct drm_crtc *crtc = &encoder->new_crtc->base;
7569
7570 if (WARN_ON(!crtc))
7571 return false;
7572
7573 list_for_each_entry(other_encoder,
7574 &crtc->dev->mode_config.encoder_list,
7575 base.head) {
7576
7577 if (&other_encoder->new_crtc->base != crtc ||
7578 encoder == other_encoder)
7579 continue;
7580 else
7581 return true;
7582 }
7583
7584 return false;
7585 }
7586
7587 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7588 struct drm_crtc *crtc)
7589 {
7590 struct drm_device *dev;
7591 struct drm_crtc *tmp;
7592 int crtc_mask = 1;
7593
7594 WARN(!crtc, "checking null crtc?\n");
7595
7596 dev = crtc->dev;
7597
7598 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7599 if (tmp == crtc)
7600 break;
7601 crtc_mask <<= 1;
7602 }
7603
7604 if (encoder->possible_crtcs & crtc_mask)
7605 return true;
7606 return false;
7607 }
7608
7609 /**
7610 * intel_modeset_update_staged_output_state
7611 *
7612 * Updates the staged output configuration state, e.g. after we've read out the
7613 * current hw state.
7614 */
7615 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7616 {
7617 struct intel_encoder *encoder;
7618 struct intel_connector *connector;
7619
7620 list_for_each_entry(connector, &dev->mode_config.connector_list,
7621 base.head) {
7622 connector->new_encoder =
7623 to_intel_encoder(connector->base.encoder);
7624 }
7625
7626 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7627 base.head) {
7628 encoder->new_crtc =
7629 to_intel_crtc(encoder->base.crtc);
7630 }
7631 }
7632
7633 /**
7634 * intel_modeset_commit_output_state
7635 *
7636 * This function copies the stage display pipe configuration to the real one.
7637 */
7638 static void intel_modeset_commit_output_state(struct drm_device *dev)
7639 {
7640 struct intel_encoder *encoder;
7641 struct intel_connector *connector;
7642
7643 list_for_each_entry(connector, &dev->mode_config.connector_list,
7644 base.head) {
7645 connector->base.encoder = &connector->new_encoder->base;
7646 }
7647
7648 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7649 base.head) {
7650 encoder->base.crtc = &encoder->new_crtc->base;
7651 }
7652 }
7653
7654 static int
7655 pipe_config_set_bpp(struct drm_crtc *crtc,
7656 struct drm_framebuffer *fb,
7657 struct intel_crtc_config *pipe_config)
7658 {
7659 struct drm_device *dev = crtc->dev;
7660 struct drm_connector *connector;
7661 int bpp;
7662
7663 switch (fb->pixel_format) {
7664 case DRM_FORMAT_C8:
7665 bpp = 8*3; /* since we go through a colormap */
7666 break;
7667 case DRM_FORMAT_XRGB1555:
7668 case DRM_FORMAT_ARGB1555:
7669 /* checked in intel_framebuffer_init already */
7670 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
7671 return -EINVAL;
7672 case DRM_FORMAT_RGB565:
7673 bpp = 6*3; /* min is 18bpp */
7674 break;
7675 case DRM_FORMAT_XBGR8888:
7676 case DRM_FORMAT_ABGR8888:
7677 /* checked in intel_framebuffer_init already */
7678 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7679 return -EINVAL;
7680 case DRM_FORMAT_XRGB8888:
7681 case DRM_FORMAT_ARGB8888:
7682 bpp = 8*3;
7683 break;
7684 case DRM_FORMAT_XRGB2101010:
7685 case DRM_FORMAT_ARGB2101010:
7686 case DRM_FORMAT_XBGR2101010:
7687 case DRM_FORMAT_ABGR2101010:
7688 /* checked in intel_framebuffer_init already */
7689 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
7690 return -EINVAL;
7691 bpp = 10*3;
7692 break;
7693 /* TODO: gen4+ supports 16 bpc floating point, too. */
7694 default:
7695 DRM_DEBUG_KMS("unsupported depth\n");
7696 return -EINVAL;
7697 }
7698
7699 pipe_config->pipe_bpp = bpp;
7700
7701 /* Clamp display bpp to EDID value */
7702 list_for_each_entry(connector, &dev->mode_config.connector_list,
7703 head) {
7704 if (connector->encoder && connector->encoder->crtc != crtc)
7705 continue;
7706
7707 /* Don't use an invalid EDID bpc value */
7708 if (connector->display_info.bpc &&
7709 connector->display_info.bpc * 3 < bpp) {
7710 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
7711 bpp, connector->display_info.bpc*3);
7712 pipe_config->pipe_bpp = connector->display_info.bpc*3;
7713 }
7714
7715 /* Clamp bpp to 8 on screens without EDID 1.4 */
7716 if (connector->display_info.bpc == 0 && bpp > 24) {
7717 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
7718 bpp);
7719 pipe_config->pipe_bpp = 24;
7720 }
7721 }
7722
7723 return bpp;
7724 }
7725
7726 static void intel_dump_pipe_config(struct intel_crtc *crtc,
7727 struct intel_crtc_config *pipe_config,
7728 const char *context)
7729 {
7730 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
7731 context, pipe_name(crtc->pipe));
7732
7733 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
7734 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
7735 pipe_config->pipe_bpp, pipe_config->dither);
7736 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
7737 pipe_config->has_pch_encoder,
7738 pipe_config->fdi_lanes,
7739 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
7740 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
7741 pipe_config->fdi_m_n.tu);
7742 DRM_DEBUG_KMS("requested mode:\n");
7743 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
7744 DRM_DEBUG_KMS("adjusted mode:\n");
7745 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
7746 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
7747 pipe_config->gmch_pfit.control,
7748 pipe_config->gmch_pfit.pgm_ratios,
7749 pipe_config->gmch_pfit.lvds_border_bits);
7750 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
7751 pipe_config->pch_pfit.pos,
7752 pipe_config->pch_pfit.size);
7753 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
7754 }
7755
7756 static struct intel_crtc_config *
7757 intel_modeset_pipe_config(struct drm_crtc *crtc,
7758 struct drm_framebuffer *fb,
7759 struct drm_display_mode *mode)
7760 {
7761 struct drm_device *dev = crtc->dev;
7762 struct drm_encoder_helper_funcs *encoder_funcs;
7763 struct intel_encoder *encoder;
7764 struct intel_crtc_config *pipe_config;
7765 int plane_bpp, ret = -EINVAL;
7766 bool retry = true;
7767
7768 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7769 if (!pipe_config)
7770 return ERR_PTR(-ENOMEM);
7771
7772 drm_mode_copy(&pipe_config->adjusted_mode, mode);
7773 drm_mode_copy(&pipe_config->requested_mode, mode);
7774 pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
7775
7776 plane_bpp = pipe_config_set_bpp(crtc, fb, pipe_config);
7777 if (plane_bpp < 0)
7778 goto fail;
7779
7780 encoder_retry:
7781 /* Pass our mode to the connectors and the CRTC to give them a chance to
7782 * adjust it according to limitations or connector properties, and also
7783 * a chance to reject the mode entirely.
7784 */
7785 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7786 base.head) {
7787
7788 if (&encoder->new_crtc->base != crtc)
7789 continue;
7790
7791 if (encoder->compute_config) {
7792 if (!(encoder->compute_config(encoder, pipe_config))) {
7793 DRM_DEBUG_KMS("Encoder config failure\n");
7794 goto fail;
7795 }
7796
7797 continue;
7798 }
7799
7800 encoder_funcs = encoder->base.helper_private;
7801 if (!(encoder_funcs->mode_fixup(&encoder->base,
7802 &pipe_config->requested_mode,
7803 &pipe_config->adjusted_mode))) {
7804 DRM_DEBUG_KMS("Encoder fixup failed\n");
7805 goto fail;
7806 }
7807 }
7808
7809 ret = intel_crtc_compute_config(crtc, pipe_config);
7810 if (ret < 0) {
7811 DRM_DEBUG_KMS("CRTC fixup failed\n");
7812 goto fail;
7813 }
7814
7815 if (ret == RETRY) {
7816 if (WARN(!retry, "loop in pipe configuration computation\n")) {
7817 ret = -EINVAL;
7818 goto fail;
7819 }
7820
7821 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
7822 retry = false;
7823 goto encoder_retry;
7824 }
7825
7826 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
7827 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
7828 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
7829
7830 return pipe_config;
7831 fail:
7832 kfree(pipe_config);
7833 return ERR_PTR(ret);
7834 }
7835
7836 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7837 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7838 static void
7839 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7840 unsigned *prepare_pipes, unsigned *disable_pipes)
7841 {
7842 struct intel_crtc *intel_crtc;
7843 struct drm_device *dev = crtc->dev;
7844 struct intel_encoder *encoder;
7845 struct intel_connector *connector;
7846 struct drm_crtc *tmp_crtc;
7847
7848 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7849
7850 /* Check which crtcs have changed outputs connected to them, these need
7851 * to be part of the prepare_pipes mask. We don't (yet) support global
7852 * modeset across multiple crtcs, so modeset_pipes will only have one
7853 * bit set at most. */
7854 list_for_each_entry(connector, &dev->mode_config.connector_list,
7855 base.head) {
7856 if (connector->base.encoder == &connector->new_encoder->base)
7857 continue;
7858
7859 if (connector->base.encoder) {
7860 tmp_crtc = connector->base.encoder->crtc;
7861
7862 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7863 }
7864
7865 if (connector->new_encoder)
7866 *prepare_pipes |=
7867 1 << connector->new_encoder->new_crtc->pipe;
7868 }
7869
7870 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7871 base.head) {
7872 if (encoder->base.crtc == &encoder->new_crtc->base)
7873 continue;
7874
7875 if (encoder->base.crtc) {
7876 tmp_crtc = encoder->base.crtc;
7877
7878 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7879 }
7880
7881 if (encoder->new_crtc)
7882 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7883 }
7884
7885 /* Check for any pipes that will be fully disabled ... */
7886 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7887 base.head) {
7888 bool used = false;
7889
7890 /* Don't try to disable disabled crtcs. */
7891 if (!intel_crtc->base.enabled)
7892 continue;
7893
7894 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7895 base.head) {
7896 if (encoder->new_crtc == intel_crtc)
7897 used = true;
7898 }
7899
7900 if (!used)
7901 *disable_pipes |= 1 << intel_crtc->pipe;
7902 }
7903
7904
7905 /* set_mode is also used to update properties on life display pipes. */
7906 intel_crtc = to_intel_crtc(crtc);
7907 if (crtc->enabled)
7908 *prepare_pipes |= 1 << intel_crtc->pipe;
7909
7910 /*
7911 * For simplicity do a full modeset on any pipe where the output routing
7912 * changed. We could be more clever, but that would require us to be
7913 * more careful with calling the relevant encoder->mode_set functions.
7914 */
7915 if (*prepare_pipes)
7916 *modeset_pipes = *prepare_pipes;
7917
7918 /* ... and mask these out. */
7919 *modeset_pipes &= ~(*disable_pipes);
7920 *prepare_pipes &= ~(*disable_pipes);
7921
7922 /*
7923 * HACK: We don't (yet) fully support global modesets. intel_set_config
7924 * obies this rule, but the modeset restore mode of
7925 * intel_modeset_setup_hw_state does not.
7926 */
7927 *modeset_pipes &= 1 << intel_crtc->pipe;
7928 *prepare_pipes &= 1 << intel_crtc->pipe;
7929
7930 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7931 *modeset_pipes, *prepare_pipes, *disable_pipes);
7932 }
7933
7934 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7935 {
7936 struct drm_encoder *encoder;
7937 struct drm_device *dev = crtc->dev;
7938
7939 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7940 if (encoder->crtc == crtc)
7941 return true;
7942
7943 return false;
7944 }
7945
7946 static void
7947 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7948 {
7949 struct intel_encoder *intel_encoder;
7950 struct intel_crtc *intel_crtc;
7951 struct drm_connector *connector;
7952
7953 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7954 base.head) {
7955 if (!intel_encoder->base.crtc)
7956 continue;
7957
7958 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7959
7960 if (prepare_pipes & (1 << intel_crtc->pipe))
7961 intel_encoder->connectors_active = false;
7962 }
7963
7964 intel_modeset_commit_output_state(dev);
7965
7966 /* Update computed state. */
7967 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7968 base.head) {
7969 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7970 }
7971
7972 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7973 if (!connector->encoder || !connector->encoder->crtc)
7974 continue;
7975
7976 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7977
7978 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7979 struct drm_property *dpms_property =
7980 dev->mode_config.dpms_property;
7981
7982 connector->dpms = DRM_MODE_DPMS_ON;
7983 drm_object_property_set_value(&connector->base,
7984 dpms_property,
7985 DRM_MODE_DPMS_ON);
7986
7987 intel_encoder = to_intel_encoder(connector->encoder);
7988 intel_encoder->connectors_active = true;
7989 }
7990 }
7991
7992 }
7993
7994 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7995 list_for_each_entry((intel_crtc), \
7996 &(dev)->mode_config.crtc_list, \
7997 base.head) \
7998 if (mask & (1 <<(intel_crtc)->pipe))
7999
8000 static bool
8001 intel_pipe_config_compare(struct drm_device *dev,
8002 struct intel_crtc_config *current_config,
8003 struct intel_crtc_config *pipe_config)
8004 {
8005 #define PIPE_CONF_CHECK_I(name) \
8006 if (current_config->name != pipe_config->name) { \
8007 DRM_ERROR("mismatch in " #name " " \
8008 "(expected %i, found %i)\n", \
8009 current_config->name, \
8010 pipe_config->name); \
8011 return false; \
8012 }
8013
8014 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
8015 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8016 DRM_ERROR("mismatch in " #name " " \
8017 "(expected %i, found %i)\n", \
8018 current_config->name & (mask), \
8019 pipe_config->name & (mask)); \
8020 return false; \
8021 }
8022
8023 PIPE_CONF_CHECK_I(cpu_transcoder);
8024
8025 PIPE_CONF_CHECK_I(has_pch_encoder);
8026 PIPE_CONF_CHECK_I(fdi_lanes);
8027 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8028 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8029 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8030 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8031 PIPE_CONF_CHECK_I(fdi_m_n.tu);
8032
8033 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8034 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8035 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8036 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8037 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8038 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8039
8040 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8041 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8042 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8043 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8044 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8045 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8046
8047 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8048 DRM_MODE_FLAG_INTERLACE);
8049
8050 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8051 DRM_MODE_FLAG_PHSYNC);
8052 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8053 DRM_MODE_FLAG_NHSYNC);
8054 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8055 DRM_MODE_FLAG_PVSYNC);
8056 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8057 DRM_MODE_FLAG_NVSYNC);
8058
8059 PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8060 PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8061
8062 PIPE_CONF_CHECK_I(gmch_pfit.control);
8063 /* pfit ratios are autocomputed by the hw on gen4+ */
8064 if (INTEL_INFO(dev)->gen < 4)
8065 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8066 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8067 PIPE_CONF_CHECK_I(pch_pfit.pos);
8068 PIPE_CONF_CHECK_I(pch_pfit.size);
8069
8070 PIPE_CONF_CHECK_I(ips_enabled);
8071
8072 #undef PIPE_CONF_CHECK_I
8073 #undef PIPE_CONF_CHECK_FLAGS
8074
8075 return true;
8076 }
8077
8078 void
8079 intel_modeset_check_state(struct drm_device *dev)
8080 {
8081 drm_i915_private_t *dev_priv = dev->dev_private;
8082 struct intel_crtc *crtc;
8083 struct intel_encoder *encoder;
8084 struct intel_connector *connector;
8085 struct intel_crtc_config pipe_config;
8086
8087 list_for_each_entry(connector, &dev->mode_config.connector_list,
8088 base.head) {
8089 /* This also checks the encoder/connector hw state with the
8090 * ->get_hw_state callbacks. */
8091 intel_connector_check_state(connector);
8092
8093 WARN(&connector->new_encoder->base != connector->base.encoder,
8094 "connector's staged encoder doesn't match current encoder\n");
8095 }
8096
8097 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8098 base.head) {
8099 bool enabled = false;
8100 bool active = false;
8101 enum pipe pipe, tracked_pipe;
8102
8103 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8104 encoder->base.base.id,
8105 drm_get_encoder_name(&encoder->base));
8106
8107 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8108 "encoder's stage crtc doesn't match current crtc\n");
8109 WARN(encoder->connectors_active && !encoder->base.crtc,
8110 "encoder's active_connectors set, but no crtc\n");
8111
8112 list_for_each_entry(connector, &dev->mode_config.connector_list,
8113 base.head) {
8114 if (connector->base.encoder != &encoder->base)
8115 continue;
8116 enabled = true;
8117 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8118 active = true;
8119 }
8120 WARN(!!encoder->base.crtc != enabled,
8121 "encoder's enabled state mismatch "
8122 "(expected %i, found %i)\n",
8123 !!encoder->base.crtc, enabled);
8124 WARN(active && !encoder->base.crtc,
8125 "active encoder with no crtc\n");
8126
8127 WARN(encoder->connectors_active != active,
8128 "encoder's computed active state doesn't match tracked active state "
8129 "(expected %i, found %i)\n", active, encoder->connectors_active);
8130
8131 active = encoder->get_hw_state(encoder, &pipe);
8132 WARN(active != encoder->connectors_active,
8133 "encoder's hw state doesn't match sw tracking "
8134 "(expected %i, found %i)\n",
8135 encoder->connectors_active, active);
8136
8137 if (!encoder->base.crtc)
8138 continue;
8139
8140 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8141 WARN(active && pipe != tracked_pipe,
8142 "active encoder's pipe doesn't match"
8143 "(expected %i, found %i)\n",
8144 tracked_pipe, pipe);
8145
8146 }
8147
8148 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8149 base.head) {
8150 bool enabled = false;
8151 bool active = false;
8152
8153 memset(&pipe_config, 0, sizeof(pipe_config));
8154
8155 DRM_DEBUG_KMS("[CRTC:%d]\n",
8156 crtc->base.base.id);
8157
8158 WARN(crtc->active && !crtc->base.enabled,
8159 "active crtc, but not enabled in sw tracking\n");
8160
8161 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8162 base.head) {
8163 if (encoder->base.crtc != &crtc->base)
8164 continue;
8165 enabled = true;
8166 if (encoder->connectors_active)
8167 active = true;
8168 if (encoder->get_config)
8169 encoder->get_config(encoder, &pipe_config);
8170 }
8171 WARN(active != crtc->active,
8172 "crtc's computed active state doesn't match tracked active state "
8173 "(expected %i, found %i)\n", active, crtc->active);
8174 WARN(enabled != crtc->base.enabled,
8175 "crtc's computed enabled state doesn't match tracked enabled state "
8176 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8177
8178 active = dev_priv->display.get_pipe_config(crtc,
8179 &pipe_config);
8180 WARN(crtc->active != active,
8181 "crtc active state doesn't match with hw state "
8182 "(expected %i, found %i)\n", crtc->active, active);
8183
8184 if (active &&
8185 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8186 WARN(1, "pipe state doesn't match!\n");
8187 intel_dump_pipe_config(crtc, &pipe_config,
8188 "[hw state]");
8189 intel_dump_pipe_config(crtc, &crtc->config,
8190 "[sw state]");
8191 }
8192 }
8193 }
8194
8195 static int __intel_set_mode(struct drm_crtc *crtc,
8196 struct drm_display_mode *mode,
8197 int x, int y, struct drm_framebuffer *fb)
8198 {
8199 struct drm_device *dev = crtc->dev;
8200 drm_i915_private_t *dev_priv = dev->dev_private;
8201 struct drm_display_mode *saved_mode, *saved_hwmode;
8202 struct intel_crtc_config *pipe_config = NULL;
8203 struct intel_crtc *intel_crtc;
8204 unsigned disable_pipes, prepare_pipes, modeset_pipes;
8205 int ret = 0;
8206
8207 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8208 if (!saved_mode)
8209 return -ENOMEM;
8210 saved_hwmode = saved_mode + 1;
8211
8212 intel_modeset_affected_pipes(crtc, &modeset_pipes,
8213 &prepare_pipes, &disable_pipes);
8214
8215 *saved_hwmode = crtc->hwmode;
8216 *saved_mode = crtc->mode;
8217
8218 /* Hack: Because we don't (yet) support global modeset on multiple
8219 * crtcs, we don't keep track of the new mode for more than one crtc.
8220 * Hence simply check whether any bit is set in modeset_pipes in all the
8221 * pieces of code that are not yet converted to deal with mutliple crtcs
8222 * changing their mode at the same time. */
8223 if (modeset_pipes) {
8224 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8225 if (IS_ERR(pipe_config)) {
8226 ret = PTR_ERR(pipe_config);
8227 pipe_config = NULL;
8228
8229 goto out;
8230 }
8231 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8232 "[modeset]");
8233 }
8234
8235 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8236 intel_crtc_disable(&intel_crtc->base);
8237
8238 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8239 if (intel_crtc->base.enabled)
8240 dev_priv->display.crtc_disable(&intel_crtc->base);
8241 }
8242
8243 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8244 * to set it here already despite that we pass it down the callchain.
8245 */
8246 if (modeset_pipes) {
8247 crtc->mode = *mode;
8248 /* mode_set/enable/disable functions rely on a correct pipe
8249 * config. */
8250 to_intel_crtc(crtc)->config = *pipe_config;
8251 }
8252
8253 /* Only after disabling all output pipelines that will be changed can we
8254 * update the the output configuration. */
8255 intel_modeset_update_state(dev, prepare_pipes);
8256
8257 if (dev_priv->display.modeset_global_resources)
8258 dev_priv->display.modeset_global_resources(dev);
8259
8260 /* Set up the DPLL and any encoders state that needs to adjust or depend
8261 * on the DPLL.
8262 */
8263 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8264 ret = intel_crtc_mode_set(&intel_crtc->base,
8265 x, y, fb);
8266 if (ret)
8267 goto done;
8268 }
8269
8270 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8271 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8272 dev_priv->display.crtc_enable(&intel_crtc->base);
8273
8274 if (modeset_pipes) {
8275 /* Store real post-adjustment hardware mode. */
8276 crtc->hwmode = pipe_config->adjusted_mode;
8277
8278 /* Calculate and store various constants which
8279 * are later needed by vblank and swap-completion
8280 * timestamping. They are derived from true hwmode.
8281 */
8282 drm_calc_timestamping_constants(crtc);
8283 }
8284
8285 /* FIXME: add subpixel order */
8286 done:
8287 if (ret && crtc->enabled) {
8288 crtc->hwmode = *saved_hwmode;
8289 crtc->mode = *saved_mode;
8290 }
8291
8292 out:
8293 kfree(pipe_config);
8294 kfree(saved_mode);
8295 return ret;
8296 }
8297
8298 int intel_set_mode(struct drm_crtc *crtc,
8299 struct drm_display_mode *mode,
8300 int x, int y, struct drm_framebuffer *fb)
8301 {
8302 int ret;
8303
8304 ret = __intel_set_mode(crtc, mode, x, y, fb);
8305
8306 if (ret == 0)
8307 intel_modeset_check_state(crtc->dev);
8308
8309 return ret;
8310 }
8311
8312 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8313 {
8314 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8315 }
8316
8317 #undef for_each_intel_crtc_masked
8318
8319 static void intel_set_config_free(struct intel_set_config *config)
8320 {
8321 if (!config)
8322 return;
8323
8324 kfree(config->save_connector_encoders);
8325 kfree(config->save_encoder_crtcs);
8326 kfree(config);
8327 }
8328
8329 static int intel_set_config_save_state(struct drm_device *dev,
8330 struct intel_set_config *config)
8331 {
8332 struct drm_encoder *encoder;
8333 struct drm_connector *connector;
8334 int count;
8335
8336 config->save_encoder_crtcs =
8337 kcalloc(dev->mode_config.num_encoder,
8338 sizeof(struct drm_crtc *), GFP_KERNEL);
8339 if (!config->save_encoder_crtcs)
8340 return -ENOMEM;
8341
8342 config->save_connector_encoders =
8343 kcalloc(dev->mode_config.num_connector,
8344 sizeof(struct drm_encoder *), GFP_KERNEL);
8345 if (!config->save_connector_encoders)
8346 return -ENOMEM;
8347
8348 /* Copy data. Note that driver private data is not affected.
8349 * Should anything bad happen only the expected state is
8350 * restored, not the drivers personal bookkeeping.
8351 */
8352 count = 0;
8353 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
8354 config->save_encoder_crtcs[count++] = encoder->crtc;
8355 }
8356
8357 count = 0;
8358 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8359 config->save_connector_encoders[count++] = connector->encoder;
8360 }
8361
8362 return 0;
8363 }
8364
8365 static void intel_set_config_restore_state(struct drm_device *dev,
8366 struct intel_set_config *config)
8367 {
8368 struct intel_encoder *encoder;
8369 struct intel_connector *connector;
8370 int count;
8371
8372 count = 0;
8373 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8374 encoder->new_crtc =
8375 to_intel_crtc(config->save_encoder_crtcs[count++]);
8376 }
8377
8378 count = 0;
8379 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
8380 connector->new_encoder =
8381 to_intel_encoder(config->save_connector_encoders[count++]);
8382 }
8383 }
8384
8385 static void
8386 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
8387 struct intel_set_config *config)
8388 {
8389
8390 /* We should be able to check here if the fb has the same properties
8391 * and then just flip_or_move it */
8392 if (set->crtc->fb != set->fb) {
8393 /* If we have no fb then treat it as a full mode set */
8394 if (set->crtc->fb == NULL) {
8395 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
8396 config->mode_changed = true;
8397 } else if (set->fb == NULL) {
8398 config->mode_changed = true;
8399 } else if (set->fb->pixel_format !=
8400 set->crtc->fb->pixel_format) {
8401 config->mode_changed = true;
8402 } else
8403 config->fb_changed = true;
8404 }
8405
8406 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
8407 config->fb_changed = true;
8408
8409 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
8410 DRM_DEBUG_KMS("modes are different, full mode set\n");
8411 drm_mode_debug_printmodeline(&set->crtc->mode);
8412 drm_mode_debug_printmodeline(set->mode);
8413 config->mode_changed = true;
8414 }
8415 }
8416
8417 static int
8418 intel_modeset_stage_output_state(struct drm_device *dev,
8419 struct drm_mode_set *set,
8420 struct intel_set_config *config)
8421 {
8422 struct drm_crtc *new_crtc;
8423 struct intel_connector *connector;
8424 struct intel_encoder *encoder;
8425 int count, ro;
8426
8427 /* The upper layers ensure that we either disable a crtc or have a list
8428 * of connectors. For paranoia, double-check this. */
8429 WARN_ON(!set->fb && (set->num_connectors != 0));
8430 WARN_ON(set->fb && (set->num_connectors == 0));
8431
8432 count = 0;
8433 list_for_each_entry(connector, &dev->mode_config.connector_list,
8434 base.head) {
8435 /* Otherwise traverse passed in connector list and get encoders
8436 * for them. */
8437 for (ro = 0; ro < set->num_connectors; ro++) {
8438 if (set->connectors[ro] == &connector->base) {
8439 connector->new_encoder = connector->encoder;
8440 break;
8441 }
8442 }
8443
8444 /* If we disable the crtc, disable all its connectors. Also, if
8445 * the connector is on the changing crtc but not on the new
8446 * connector list, disable it. */
8447 if ((!set->fb || ro == set->num_connectors) &&
8448 connector->base.encoder &&
8449 connector->base.encoder->crtc == set->crtc) {
8450 connector->new_encoder = NULL;
8451
8452 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
8453 connector->base.base.id,
8454 drm_get_connector_name(&connector->base));
8455 }
8456
8457
8458 if (&connector->new_encoder->base != connector->base.encoder) {
8459 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
8460 config->mode_changed = true;
8461 }
8462 }
8463 /* connector->new_encoder is now updated for all connectors. */
8464
8465 /* Update crtc of enabled connectors. */
8466 count = 0;
8467 list_for_each_entry(connector, &dev->mode_config.connector_list,
8468 base.head) {
8469 if (!connector->new_encoder)
8470 continue;
8471
8472 new_crtc = connector->new_encoder->base.crtc;
8473
8474 for (ro = 0; ro < set->num_connectors; ro++) {
8475 if (set->connectors[ro] == &connector->base)
8476 new_crtc = set->crtc;
8477 }
8478
8479 /* Make sure the new CRTC will work with the encoder */
8480 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8481 new_crtc)) {
8482 return -EINVAL;
8483 }
8484 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8485
8486 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8487 connector->base.base.id,
8488 drm_get_connector_name(&connector->base),
8489 new_crtc->base.id);
8490 }
8491
8492 /* Check for any encoders that needs to be disabled. */
8493 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8494 base.head) {
8495 list_for_each_entry(connector,
8496 &dev->mode_config.connector_list,
8497 base.head) {
8498 if (connector->new_encoder == encoder) {
8499 WARN_ON(!connector->new_encoder->new_crtc);
8500
8501 goto next_encoder;
8502 }
8503 }
8504 encoder->new_crtc = NULL;
8505 next_encoder:
8506 /* Only now check for crtc changes so we don't miss encoders
8507 * that will be disabled. */
8508 if (&encoder->new_crtc->base != encoder->base.crtc) {
8509 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8510 config->mode_changed = true;
8511 }
8512 }
8513 /* Now we've also updated encoder->new_crtc for all encoders. */
8514
8515 return 0;
8516 }
8517
8518 static int intel_crtc_set_config(struct drm_mode_set *set)
8519 {
8520 struct drm_device *dev;
8521 struct drm_mode_set save_set;
8522 struct intel_set_config *config;
8523 int ret;
8524
8525 BUG_ON(!set);
8526 BUG_ON(!set->crtc);
8527 BUG_ON(!set->crtc->helper_private);
8528
8529 /* Enforce sane interface api - has been abused by the fb helper. */
8530 BUG_ON(!set->mode && set->fb);
8531 BUG_ON(set->fb && set->num_connectors == 0);
8532
8533 if (set->fb) {
8534 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8535 set->crtc->base.id, set->fb->base.id,
8536 (int)set->num_connectors, set->x, set->y);
8537 } else {
8538 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8539 }
8540
8541 dev = set->crtc->dev;
8542
8543 ret = -ENOMEM;
8544 config = kzalloc(sizeof(*config), GFP_KERNEL);
8545 if (!config)
8546 goto out_config;
8547
8548 ret = intel_set_config_save_state(dev, config);
8549 if (ret)
8550 goto out_config;
8551
8552 save_set.crtc = set->crtc;
8553 save_set.mode = &set->crtc->mode;
8554 save_set.x = set->crtc->x;
8555 save_set.y = set->crtc->y;
8556 save_set.fb = set->crtc->fb;
8557
8558 /* Compute whether we need a full modeset, only an fb base update or no
8559 * change at all. In the future we might also check whether only the
8560 * mode changed, e.g. for LVDS where we only change the panel fitter in
8561 * such cases. */
8562 intel_set_config_compute_mode_changes(set, config);
8563
8564 ret = intel_modeset_stage_output_state(dev, set, config);
8565 if (ret)
8566 goto fail;
8567
8568 if (config->mode_changed) {
8569 ret = intel_set_mode(set->crtc, set->mode,
8570 set->x, set->y, set->fb);
8571 if (ret) {
8572 DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
8573 set->crtc->base.id, ret);
8574 goto fail;
8575 }
8576 } else if (config->fb_changed) {
8577 intel_crtc_wait_for_pending_flips(set->crtc);
8578
8579 ret = intel_pipe_set_base(set->crtc,
8580 set->x, set->y, set->fb);
8581 }
8582
8583 intel_set_config_free(config);
8584
8585 return 0;
8586
8587 fail:
8588 intel_set_config_restore_state(dev, config);
8589
8590 /* Try to restore the config */
8591 if (config->mode_changed &&
8592 intel_set_mode(save_set.crtc, save_set.mode,
8593 save_set.x, save_set.y, save_set.fb))
8594 DRM_ERROR("failed to restore config after modeset failure\n");
8595
8596 out_config:
8597 intel_set_config_free(config);
8598 return ret;
8599 }
8600
8601 static const struct drm_crtc_funcs intel_crtc_funcs = {
8602 .cursor_set = intel_crtc_cursor_set,
8603 .cursor_move = intel_crtc_cursor_move,
8604 .gamma_set = intel_crtc_gamma_set,
8605 .set_config = intel_crtc_set_config,
8606 .destroy = intel_crtc_destroy,
8607 .page_flip = intel_crtc_page_flip,
8608 };
8609
8610 static void intel_cpu_pll_init(struct drm_device *dev)
8611 {
8612 if (HAS_DDI(dev))
8613 intel_ddi_pll_init(dev);
8614 }
8615
8616 static void intel_pch_pll_init(struct drm_device *dev)
8617 {
8618 drm_i915_private_t *dev_priv = dev->dev_private;
8619 int i;
8620
8621 if (dev_priv->num_pch_pll == 0) {
8622 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8623 return;
8624 }
8625
8626 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8627 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8628 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8629 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8630 }
8631 }
8632
8633 static void intel_crtc_init(struct drm_device *dev, int pipe)
8634 {
8635 drm_i915_private_t *dev_priv = dev->dev_private;
8636 struct intel_crtc *intel_crtc;
8637 int i;
8638
8639 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8640 if (intel_crtc == NULL)
8641 return;
8642
8643 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8644
8645 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8646 for (i = 0; i < 256; i++) {
8647 intel_crtc->lut_r[i] = i;
8648 intel_crtc->lut_g[i] = i;
8649 intel_crtc->lut_b[i] = i;
8650 }
8651
8652 /* Swap pipes & planes for FBC on pre-965 */
8653 intel_crtc->pipe = pipe;
8654 intel_crtc->plane = pipe;
8655 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8656 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8657 intel_crtc->plane = !pipe;
8658 }
8659
8660 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8661 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8662 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8663 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8664
8665 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8666 }
8667
8668 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8669 struct drm_file *file)
8670 {
8671 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8672 struct drm_mode_object *drmmode_obj;
8673 struct intel_crtc *crtc;
8674
8675 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8676 return -ENODEV;
8677
8678 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8679 DRM_MODE_OBJECT_CRTC);
8680
8681 if (!drmmode_obj) {
8682 DRM_ERROR("no such CRTC id\n");
8683 return -EINVAL;
8684 }
8685
8686 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8687 pipe_from_crtc_id->pipe = crtc->pipe;
8688
8689 return 0;
8690 }
8691
8692 static int intel_encoder_clones(struct intel_encoder *encoder)
8693 {
8694 struct drm_device *dev = encoder->base.dev;
8695 struct intel_encoder *source_encoder;
8696 int index_mask = 0;
8697 int entry = 0;
8698
8699 list_for_each_entry(source_encoder,
8700 &dev->mode_config.encoder_list, base.head) {
8701
8702 if (encoder == source_encoder)
8703 index_mask |= (1 << entry);
8704
8705 /* Intel hw has only one MUX where enocoders could be cloned. */
8706 if (encoder->cloneable && source_encoder->cloneable)
8707 index_mask |= (1 << entry);
8708
8709 entry++;
8710 }
8711
8712 return index_mask;
8713 }
8714
8715 static bool has_edp_a(struct drm_device *dev)
8716 {
8717 struct drm_i915_private *dev_priv = dev->dev_private;
8718
8719 if (!IS_MOBILE(dev))
8720 return false;
8721
8722 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8723 return false;
8724
8725 if (IS_GEN5(dev) &&
8726 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8727 return false;
8728
8729 return true;
8730 }
8731
8732 static void intel_setup_outputs(struct drm_device *dev)
8733 {
8734 struct drm_i915_private *dev_priv = dev->dev_private;
8735 struct intel_encoder *encoder;
8736 bool dpd_is_edp = false;
8737 bool has_lvds;
8738
8739 has_lvds = intel_lvds_init(dev);
8740 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8741 /* disable the panel fitter on everything but LVDS */
8742 I915_WRITE(PFIT_CONTROL, 0);
8743 }
8744
8745 if (!IS_ULT(dev))
8746 intel_crt_init(dev);
8747
8748 if (HAS_DDI(dev)) {
8749 int found;
8750
8751 /* Haswell uses DDI functions to detect digital outputs */
8752 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8753 /* DDI A only supports eDP */
8754 if (found)
8755 intel_ddi_init(dev, PORT_A);
8756
8757 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8758 * register */
8759 found = I915_READ(SFUSE_STRAP);
8760
8761 if (found & SFUSE_STRAP_DDIB_DETECTED)
8762 intel_ddi_init(dev, PORT_B);
8763 if (found & SFUSE_STRAP_DDIC_DETECTED)
8764 intel_ddi_init(dev, PORT_C);
8765 if (found & SFUSE_STRAP_DDID_DETECTED)
8766 intel_ddi_init(dev, PORT_D);
8767 } else if (HAS_PCH_SPLIT(dev)) {
8768 int found;
8769 dpd_is_edp = intel_dpd_is_edp(dev);
8770
8771 if (has_edp_a(dev))
8772 intel_dp_init(dev, DP_A, PORT_A);
8773
8774 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
8775 /* PCH SDVOB multiplex with HDMIB */
8776 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8777 if (!found)
8778 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
8779 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8780 intel_dp_init(dev, PCH_DP_B, PORT_B);
8781 }
8782
8783 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
8784 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
8785
8786 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
8787 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
8788
8789 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8790 intel_dp_init(dev, PCH_DP_C, PORT_C);
8791
8792 if (I915_READ(PCH_DP_D) & DP_DETECTED)
8793 intel_dp_init(dev, PCH_DP_D, PORT_D);
8794 } else if (IS_VALLEYVIEW(dev)) {
8795 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8796 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
8797 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
8798
8799 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
8800 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
8801 PORT_B);
8802 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
8803 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
8804 }
8805 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8806 bool found = false;
8807
8808 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8809 DRM_DEBUG_KMS("probing SDVOB\n");
8810 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
8811 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8812 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8813 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
8814 }
8815
8816 if (!found && SUPPORTS_INTEGRATED_DP(dev))
8817 intel_dp_init(dev, DP_B, PORT_B);
8818 }
8819
8820 /* Before G4X SDVOC doesn't have its own detect register */
8821
8822 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
8823 DRM_DEBUG_KMS("probing SDVOC\n");
8824 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
8825 }
8826
8827 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
8828
8829 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8830 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8831 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
8832 }
8833 if (SUPPORTS_INTEGRATED_DP(dev))
8834 intel_dp_init(dev, DP_C, PORT_C);
8835 }
8836
8837 if (SUPPORTS_INTEGRATED_DP(dev) &&
8838 (I915_READ(DP_D) & DP_DETECTED))
8839 intel_dp_init(dev, DP_D, PORT_D);
8840 } else if (IS_GEN2(dev))
8841 intel_dvo_init(dev);
8842
8843 if (SUPPORTS_TV(dev))
8844 intel_tv_init(dev);
8845
8846 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8847 encoder->base.possible_crtcs = encoder->crtc_mask;
8848 encoder->base.possible_clones =
8849 intel_encoder_clones(encoder);
8850 }
8851
8852 intel_init_pch_refclk(dev);
8853
8854 drm_helper_move_panel_connectors_to_head(dev);
8855 }
8856
8857 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8858 {
8859 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8860
8861 drm_framebuffer_cleanup(fb);
8862 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8863
8864 kfree(intel_fb);
8865 }
8866
8867 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8868 struct drm_file *file,
8869 unsigned int *handle)
8870 {
8871 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8872 struct drm_i915_gem_object *obj = intel_fb->obj;
8873
8874 return drm_gem_handle_create(file, &obj->base, handle);
8875 }
8876
8877 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8878 .destroy = intel_user_framebuffer_destroy,
8879 .create_handle = intel_user_framebuffer_create_handle,
8880 };
8881
8882 int intel_framebuffer_init(struct drm_device *dev,
8883 struct intel_framebuffer *intel_fb,
8884 struct drm_mode_fb_cmd2 *mode_cmd,
8885 struct drm_i915_gem_object *obj)
8886 {
8887 int ret;
8888
8889 if (obj->tiling_mode == I915_TILING_Y) {
8890 DRM_DEBUG("hardware does not support tiling Y\n");
8891 return -EINVAL;
8892 }
8893
8894 if (mode_cmd->pitches[0] & 63) {
8895 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
8896 mode_cmd->pitches[0]);
8897 return -EINVAL;
8898 }
8899
8900 /* FIXME <= Gen4 stride limits are bit unclear */
8901 if (mode_cmd->pitches[0] > 32768) {
8902 DRM_DEBUG("pitch (%d) must be at less than 32768\n",
8903 mode_cmd->pitches[0]);
8904 return -EINVAL;
8905 }
8906
8907 if (obj->tiling_mode != I915_TILING_NONE &&
8908 mode_cmd->pitches[0] != obj->stride) {
8909 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
8910 mode_cmd->pitches[0], obj->stride);
8911 return -EINVAL;
8912 }
8913
8914 /* Reject formats not supported by any plane early. */
8915 switch (mode_cmd->pixel_format) {
8916 case DRM_FORMAT_C8:
8917 case DRM_FORMAT_RGB565:
8918 case DRM_FORMAT_XRGB8888:
8919 case DRM_FORMAT_ARGB8888:
8920 break;
8921 case DRM_FORMAT_XRGB1555:
8922 case DRM_FORMAT_ARGB1555:
8923 if (INTEL_INFO(dev)->gen > 3) {
8924 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8925 return -EINVAL;
8926 }
8927 break;
8928 case DRM_FORMAT_XBGR8888:
8929 case DRM_FORMAT_ABGR8888:
8930 case DRM_FORMAT_XRGB2101010:
8931 case DRM_FORMAT_ARGB2101010:
8932 case DRM_FORMAT_XBGR2101010:
8933 case DRM_FORMAT_ABGR2101010:
8934 if (INTEL_INFO(dev)->gen < 4) {
8935 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8936 return -EINVAL;
8937 }
8938 break;
8939 case DRM_FORMAT_YUYV:
8940 case DRM_FORMAT_UYVY:
8941 case DRM_FORMAT_YVYU:
8942 case DRM_FORMAT_VYUY:
8943 if (INTEL_INFO(dev)->gen < 5) {
8944 DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
8945 return -EINVAL;
8946 }
8947 break;
8948 default:
8949 DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8950 return -EINVAL;
8951 }
8952
8953 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8954 if (mode_cmd->offsets[0] != 0)
8955 return -EINVAL;
8956
8957 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8958 intel_fb->obj = obj;
8959
8960 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8961 if (ret) {
8962 DRM_ERROR("framebuffer init failed %d\n", ret);
8963 return ret;
8964 }
8965
8966 return 0;
8967 }
8968
8969 static struct drm_framebuffer *
8970 intel_user_framebuffer_create(struct drm_device *dev,
8971 struct drm_file *filp,
8972 struct drm_mode_fb_cmd2 *mode_cmd)
8973 {
8974 struct drm_i915_gem_object *obj;
8975
8976 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8977 mode_cmd->handles[0]));
8978 if (&obj->base == NULL)
8979 return ERR_PTR(-ENOENT);
8980
8981 return intel_framebuffer_create(dev, mode_cmd, obj);
8982 }
8983
8984 static const struct drm_mode_config_funcs intel_mode_funcs = {
8985 .fb_create = intel_user_framebuffer_create,
8986 .output_poll_changed = intel_fb_output_poll_changed,
8987 };
8988
8989 /* Set up chip specific display functions */
8990 static void intel_init_display(struct drm_device *dev)
8991 {
8992 struct drm_i915_private *dev_priv = dev->dev_private;
8993
8994 if (HAS_DDI(dev)) {
8995 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
8996 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8997 dev_priv->display.crtc_enable = haswell_crtc_enable;
8998 dev_priv->display.crtc_disable = haswell_crtc_disable;
8999 dev_priv->display.off = haswell_crtc_off;
9000 dev_priv->display.update_plane = ironlake_update_plane;
9001 } else if (HAS_PCH_SPLIT(dev)) {
9002 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9003 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9004 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9005 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9006 dev_priv->display.off = ironlake_crtc_off;
9007 dev_priv->display.update_plane = ironlake_update_plane;
9008 } else if (IS_VALLEYVIEW(dev)) {
9009 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9010 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9011 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9012 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9013 dev_priv->display.off = i9xx_crtc_off;
9014 dev_priv->display.update_plane = i9xx_update_plane;
9015 } else {
9016 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9017 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9018 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9019 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9020 dev_priv->display.off = i9xx_crtc_off;
9021 dev_priv->display.update_plane = i9xx_update_plane;
9022 }
9023
9024 /* Returns the core display clock speed */
9025 if (IS_VALLEYVIEW(dev))
9026 dev_priv->display.get_display_clock_speed =
9027 valleyview_get_display_clock_speed;
9028 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9029 dev_priv->display.get_display_clock_speed =
9030 i945_get_display_clock_speed;
9031 else if (IS_I915G(dev))
9032 dev_priv->display.get_display_clock_speed =
9033 i915_get_display_clock_speed;
9034 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9035 dev_priv->display.get_display_clock_speed =
9036 i9xx_misc_get_display_clock_speed;
9037 else if (IS_I915GM(dev))
9038 dev_priv->display.get_display_clock_speed =
9039 i915gm_get_display_clock_speed;
9040 else if (IS_I865G(dev))
9041 dev_priv->display.get_display_clock_speed =
9042 i865_get_display_clock_speed;
9043 else if (IS_I85X(dev))
9044 dev_priv->display.get_display_clock_speed =
9045 i855_get_display_clock_speed;
9046 else /* 852, 830 */
9047 dev_priv->display.get_display_clock_speed =
9048 i830_get_display_clock_speed;
9049
9050 if (HAS_PCH_SPLIT(dev)) {
9051 if (IS_GEN5(dev)) {
9052 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9053 dev_priv->display.write_eld = ironlake_write_eld;
9054 } else if (IS_GEN6(dev)) {
9055 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9056 dev_priv->display.write_eld = ironlake_write_eld;
9057 } else if (IS_IVYBRIDGE(dev)) {
9058 /* FIXME: detect B0+ stepping and use auto training */
9059 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9060 dev_priv->display.write_eld = ironlake_write_eld;
9061 dev_priv->display.modeset_global_resources =
9062 ivb_modeset_global_resources;
9063 } else if (IS_HASWELL(dev)) {
9064 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9065 dev_priv->display.write_eld = haswell_write_eld;
9066 dev_priv->display.modeset_global_resources =
9067 haswell_modeset_global_resources;
9068 }
9069 } else if (IS_G4X(dev)) {
9070 dev_priv->display.write_eld = g4x_write_eld;
9071 }
9072
9073 /* Default just returns -ENODEV to indicate unsupported */
9074 dev_priv->display.queue_flip = intel_default_queue_flip;
9075
9076 switch (INTEL_INFO(dev)->gen) {
9077 case 2:
9078 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9079 break;
9080
9081 case 3:
9082 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9083 break;
9084
9085 case 4:
9086 case 5:
9087 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9088 break;
9089
9090 case 6:
9091 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9092 break;
9093 case 7:
9094 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9095 break;
9096 }
9097 }
9098
9099 /*
9100 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9101 * resume, or other times. This quirk makes sure that's the case for
9102 * affected systems.
9103 */
9104 static void quirk_pipea_force(struct drm_device *dev)
9105 {
9106 struct drm_i915_private *dev_priv = dev->dev_private;
9107
9108 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9109 DRM_INFO("applying pipe a force quirk\n");
9110 }
9111
9112 /*
9113 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9114 */
9115 static void quirk_ssc_force_disable(struct drm_device *dev)
9116 {
9117 struct drm_i915_private *dev_priv = dev->dev_private;
9118 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9119 DRM_INFO("applying lvds SSC disable quirk\n");
9120 }
9121
9122 /*
9123 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9124 * brightness value
9125 */
9126 static void quirk_invert_brightness(struct drm_device *dev)
9127 {
9128 struct drm_i915_private *dev_priv = dev->dev_private;
9129 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9130 DRM_INFO("applying inverted panel brightness quirk\n");
9131 }
9132
9133 struct intel_quirk {
9134 int device;
9135 int subsystem_vendor;
9136 int subsystem_device;
9137 void (*hook)(struct drm_device *dev);
9138 };
9139
9140 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9141 struct intel_dmi_quirk {
9142 void (*hook)(struct drm_device *dev);
9143 const struct dmi_system_id (*dmi_id_list)[];
9144 };
9145
9146 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9147 {
9148 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9149 return 1;
9150 }
9151
9152 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9153 {
9154 .dmi_id_list = &(const struct dmi_system_id[]) {
9155 {
9156 .callback = intel_dmi_reverse_brightness,
9157 .ident = "NCR Corporation",
9158 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9159 DMI_MATCH(DMI_PRODUCT_NAME, ""),
9160 },
9161 },
9162 { } /* terminating entry */
9163 },
9164 .hook = quirk_invert_brightness,
9165 },
9166 };
9167
9168 static struct intel_quirk intel_quirks[] = {
9169 /* HP Mini needs pipe A force quirk (LP: #322104) */
9170 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9171
9172 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9173 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9174
9175 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9176 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9177
9178 /* 830/845 need to leave pipe A & dpll A up */
9179 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9180 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9181
9182 /* Lenovo U160 cannot use SSC on LVDS */
9183 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9184
9185 /* Sony Vaio Y cannot use SSC on LVDS */
9186 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9187
9188 /* Acer Aspire 5734Z must invert backlight brightness */
9189 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
9190
9191 /* Acer/eMachines G725 */
9192 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
9193
9194 /* Acer/eMachines e725 */
9195 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
9196
9197 /* Acer/Packard Bell NCL20 */
9198 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
9199
9200 /* Acer Aspire 4736Z */
9201 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
9202 };
9203
9204 static void intel_init_quirks(struct drm_device *dev)
9205 {
9206 struct pci_dev *d = dev->pdev;
9207 int i;
9208
9209 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9210 struct intel_quirk *q = &intel_quirks[i];
9211
9212 if (d->device == q->device &&
9213 (d->subsystem_vendor == q->subsystem_vendor ||
9214 q->subsystem_vendor == PCI_ANY_ID) &&
9215 (d->subsystem_device == q->subsystem_device ||
9216 q->subsystem_device == PCI_ANY_ID))
9217 q->hook(dev);
9218 }
9219 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
9220 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
9221 intel_dmi_quirks[i].hook(dev);
9222 }
9223 }
9224
9225 /* Disable the VGA plane that we never use */
9226 static void i915_disable_vga(struct drm_device *dev)
9227 {
9228 struct drm_i915_private *dev_priv = dev->dev_private;
9229 u8 sr1;
9230 u32 vga_reg = i915_vgacntrl_reg(dev);
9231
9232 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9233 outb(SR01, VGA_SR_INDEX);
9234 sr1 = inb(VGA_SR_DATA);
9235 outb(sr1 | 1<<5, VGA_SR_DATA);
9236 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9237 udelay(300);
9238
9239 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9240 POSTING_READ(vga_reg);
9241 }
9242
9243 void intel_modeset_init_hw(struct drm_device *dev)
9244 {
9245 intel_init_power_well(dev);
9246
9247 intel_prepare_ddi(dev);
9248
9249 intel_init_clock_gating(dev);
9250
9251 mutex_lock(&dev->struct_mutex);
9252 intel_enable_gt_powersave(dev);
9253 mutex_unlock(&dev->struct_mutex);
9254 }
9255
9256 void intel_modeset_suspend_hw(struct drm_device *dev)
9257 {
9258 intel_suspend_hw(dev);
9259 }
9260
9261 void intel_modeset_init(struct drm_device *dev)
9262 {
9263 struct drm_i915_private *dev_priv = dev->dev_private;
9264 int i, j, ret;
9265
9266 drm_mode_config_init(dev);
9267
9268 dev->mode_config.min_width = 0;
9269 dev->mode_config.min_height = 0;
9270
9271 dev->mode_config.preferred_depth = 24;
9272 dev->mode_config.prefer_shadow = 1;
9273
9274 dev->mode_config.funcs = &intel_mode_funcs;
9275
9276 intel_init_quirks(dev);
9277
9278 intel_init_pm(dev);
9279
9280 if (INTEL_INFO(dev)->num_pipes == 0)
9281 return;
9282
9283 intel_init_display(dev);
9284
9285 if (IS_GEN2(dev)) {
9286 dev->mode_config.max_width = 2048;
9287 dev->mode_config.max_height = 2048;
9288 } else if (IS_GEN3(dev)) {
9289 dev->mode_config.max_width = 4096;
9290 dev->mode_config.max_height = 4096;
9291 } else {
9292 dev->mode_config.max_width = 8192;
9293 dev->mode_config.max_height = 8192;
9294 }
9295 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
9296
9297 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9298 INTEL_INFO(dev)->num_pipes,
9299 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
9300
9301 for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
9302 intel_crtc_init(dev, i);
9303 for (j = 0; j < dev_priv->num_plane; j++) {
9304 ret = intel_plane_init(dev, i, j);
9305 if (ret)
9306 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
9307 pipe_name(i), sprite_name(i, j), ret);
9308 }
9309 }
9310
9311 intel_cpu_pll_init(dev);
9312 intel_pch_pll_init(dev);
9313
9314 /* Just disable it once at startup */
9315 i915_disable_vga(dev);
9316 intel_setup_outputs(dev);
9317
9318 /* Just in case the BIOS is doing something questionable. */
9319 intel_disable_fbc(dev);
9320 }
9321
9322 static void
9323 intel_connector_break_all_links(struct intel_connector *connector)
9324 {
9325 connector->base.dpms = DRM_MODE_DPMS_OFF;
9326 connector->base.encoder = NULL;
9327 connector->encoder->connectors_active = false;
9328 connector->encoder->base.crtc = NULL;
9329 }
9330
9331 static void intel_enable_pipe_a(struct drm_device *dev)
9332 {
9333 struct intel_connector *connector;
9334 struct drm_connector *crt = NULL;
9335 struct intel_load_detect_pipe load_detect_temp;
9336
9337 /* We can't just switch on the pipe A, we need to set things up with a
9338 * proper mode and output configuration. As a gross hack, enable pipe A
9339 * by enabling the load detect pipe once. */
9340 list_for_each_entry(connector,
9341 &dev->mode_config.connector_list,
9342 base.head) {
9343 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
9344 crt = &connector->base;
9345 break;
9346 }
9347 }
9348
9349 if (!crt)
9350 return;
9351
9352 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
9353 intel_release_load_detect_pipe(crt, &load_detect_temp);
9354
9355
9356 }
9357
9358 static bool
9359 intel_check_plane_mapping(struct intel_crtc *crtc)
9360 {
9361 struct drm_device *dev = crtc->base.dev;
9362 struct drm_i915_private *dev_priv = dev->dev_private;
9363 u32 reg, val;
9364
9365 if (INTEL_INFO(dev)->num_pipes == 1)
9366 return true;
9367
9368 reg = DSPCNTR(!crtc->plane);
9369 val = I915_READ(reg);
9370
9371 if ((val & DISPLAY_PLANE_ENABLE) &&
9372 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
9373 return false;
9374
9375 return true;
9376 }
9377
9378 static void intel_sanitize_crtc(struct intel_crtc *crtc)
9379 {
9380 struct drm_device *dev = crtc->base.dev;
9381 struct drm_i915_private *dev_priv = dev->dev_private;
9382 u32 reg;
9383
9384 /* Clear any frame start delays used for debugging left by the BIOS */
9385 reg = PIPECONF(crtc->config.cpu_transcoder);
9386 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
9387
9388 /* We need to sanitize the plane -> pipe mapping first because this will
9389 * disable the crtc (and hence change the state) if it is wrong. Note
9390 * that gen4+ has a fixed plane -> pipe mapping. */
9391 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
9392 struct intel_connector *connector;
9393 bool plane;
9394
9395 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
9396 crtc->base.base.id);
9397
9398 /* Pipe has the wrong plane attached and the plane is active.
9399 * Temporarily change the plane mapping and disable everything
9400 * ... */
9401 plane = crtc->plane;
9402 crtc->plane = !plane;
9403 dev_priv->display.crtc_disable(&crtc->base);
9404 crtc->plane = plane;
9405
9406 /* ... and break all links. */
9407 list_for_each_entry(connector, &dev->mode_config.connector_list,
9408 base.head) {
9409 if (connector->encoder->base.crtc != &crtc->base)
9410 continue;
9411
9412 intel_connector_break_all_links(connector);
9413 }
9414
9415 WARN_ON(crtc->active);
9416 crtc->base.enabled = false;
9417 }
9418
9419 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
9420 crtc->pipe == PIPE_A && !crtc->active) {
9421 /* BIOS forgot to enable pipe A, this mostly happens after
9422 * resume. Force-enable the pipe to fix this, the update_dpms
9423 * call below we restore the pipe to the right state, but leave
9424 * the required bits on. */
9425 intel_enable_pipe_a(dev);
9426 }
9427
9428 /* Adjust the state of the output pipe according to whether we
9429 * have active connectors/encoders. */
9430 intel_crtc_update_dpms(&crtc->base);
9431
9432 if (crtc->active != crtc->base.enabled) {
9433 struct intel_encoder *encoder;
9434
9435 /* This can happen either due to bugs in the get_hw_state
9436 * functions or because the pipe is force-enabled due to the
9437 * pipe A quirk. */
9438 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
9439 crtc->base.base.id,
9440 crtc->base.enabled ? "enabled" : "disabled",
9441 crtc->active ? "enabled" : "disabled");
9442
9443 crtc->base.enabled = crtc->active;
9444
9445 /* Because we only establish the connector -> encoder ->
9446 * crtc links if something is active, this means the
9447 * crtc is now deactivated. Break the links. connector
9448 * -> encoder links are only establish when things are
9449 * actually up, hence no need to break them. */
9450 WARN_ON(crtc->active);
9451
9452 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
9453 WARN_ON(encoder->connectors_active);
9454 encoder->base.crtc = NULL;
9455 }
9456 }
9457 }
9458
9459 static void intel_sanitize_encoder(struct intel_encoder *encoder)
9460 {
9461 struct intel_connector *connector;
9462 struct drm_device *dev = encoder->base.dev;
9463
9464 /* We need to check both for a crtc link (meaning that the
9465 * encoder is active and trying to read from a pipe) and the
9466 * pipe itself being active. */
9467 bool has_active_crtc = encoder->base.crtc &&
9468 to_intel_crtc(encoder->base.crtc)->active;
9469
9470 if (encoder->connectors_active && !has_active_crtc) {
9471 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
9472 encoder->base.base.id,
9473 drm_get_encoder_name(&encoder->base));
9474
9475 /* Connector is active, but has no active pipe. This is
9476 * fallout from our resume register restoring. Disable
9477 * the encoder manually again. */
9478 if (encoder->base.crtc) {
9479 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
9480 encoder->base.base.id,
9481 drm_get_encoder_name(&encoder->base));
9482 encoder->disable(encoder);
9483 }
9484
9485 /* Inconsistent output/port/pipe state happens presumably due to
9486 * a bug in one of the get_hw_state functions. Or someplace else
9487 * in our code, like the register restore mess on resume. Clamp
9488 * things to off as a safer default. */
9489 list_for_each_entry(connector,
9490 &dev->mode_config.connector_list,
9491 base.head) {
9492 if (connector->encoder != encoder)
9493 continue;
9494
9495 intel_connector_break_all_links(connector);
9496 }
9497 }
9498 /* Enabled encoders without active connectors will be fixed in
9499 * the crtc fixup. */
9500 }
9501
9502 void i915_redisable_vga(struct drm_device *dev)
9503 {
9504 struct drm_i915_private *dev_priv = dev->dev_private;
9505 u32 vga_reg = i915_vgacntrl_reg(dev);
9506
9507 if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
9508 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
9509 i915_disable_vga(dev);
9510 }
9511 }
9512
9513 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9514 * and i915 state tracking structures. */
9515 void intel_modeset_setup_hw_state(struct drm_device *dev,
9516 bool force_restore)
9517 {
9518 struct drm_i915_private *dev_priv = dev->dev_private;
9519 enum pipe pipe;
9520 struct drm_plane *plane;
9521 struct intel_crtc *crtc;
9522 struct intel_encoder *encoder;
9523 struct intel_connector *connector;
9524
9525 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9526 base.head) {
9527 memset(&crtc->config, 0, sizeof(crtc->config));
9528
9529 crtc->active = dev_priv->display.get_pipe_config(crtc,
9530 &crtc->config);
9531
9532 crtc->base.enabled = crtc->active;
9533
9534 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9535 crtc->base.base.id,
9536 crtc->active ? "enabled" : "disabled");
9537 }
9538
9539 if (HAS_DDI(dev))
9540 intel_ddi_setup_hw_pll_state(dev);
9541
9542 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9543 base.head) {
9544 pipe = 0;
9545
9546 if (encoder->get_hw_state(encoder, &pipe)) {
9547 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9548 encoder->base.crtc = &crtc->base;
9549 if (encoder->get_config)
9550 encoder->get_config(encoder, &crtc->config);
9551 } else {
9552 encoder->base.crtc = NULL;
9553 }
9554
9555 encoder->connectors_active = false;
9556 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9557 encoder->base.base.id,
9558 drm_get_encoder_name(&encoder->base),
9559 encoder->base.crtc ? "enabled" : "disabled",
9560 pipe);
9561 }
9562
9563 list_for_each_entry(connector, &dev->mode_config.connector_list,
9564 base.head) {
9565 if (connector->get_hw_state(connector)) {
9566 connector->base.dpms = DRM_MODE_DPMS_ON;
9567 connector->encoder->connectors_active = true;
9568 connector->base.encoder = &connector->encoder->base;
9569 } else {
9570 connector->base.dpms = DRM_MODE_DPMS_OFF;
9571 connector->base.encoder = NULL;
9572 }
9573 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9574 connector->base.base.id,
9575 drm_get_connector_name(&connector->base),
9576 connector->base.encoder ? "enabled" : "disabled");
9577 }
9578
9579 /* HW state is read out, now we need to sanitize this mess. */
9580 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9581 base.head) {
9582 intel_sanitize_encoder(encoder);
9583 }
9584
9585 for_each_pipe(pipe) {
9586 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9587 intel_sanitize_crtc(crtc);
9588 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
9589 }
9590
9591 if (force_restore) {
9592 /*
9593 * We need to use raw interfaces for restoring state to avoid
9594 * checking (bogus) intermediate states.
9595 */
9596 for_each_pipe(pipe) {
9597 struct drm_crtc *crtc =
9598 dev_priv->pipe_to_crtc_mapping[pipe];
9599
9600 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
9601 crtc->fb);
9602 }
9603 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
9604 intel_plane_restore(plane);
9605
9606 i915_redisable_vga(dev);
9607 } else {
9608 intel_modeset_update_staged_output_state(dev);
9609 }
9610
9611 intel_modeset_check_state(dev);
9612
9613 drm_mode_config_reset(dev);
9614 }
9615
9616 void intel_modeset_gem_init(struct drm_device *dev)
9617 {
9618 intel_modeset_init_hw(dev);
9619
9620 intel_setup_overlay(dev);
9621
9622 intel_modeset_setup_hw_state(dev, false);
9623 }
9624
9625 void intel_modeset_cleanup(struct drm_device *dev)
9626 {
9627 struct drm_i915_private *dev_priv = dev->dev_private;
9628 struct drm_crtc *crtc;
9629 struct intel_crtc *intel_crtc;
9630
9631 /*
9632 * Interrupts and polling as the first thing to avoid creating havoc.
9633 * Too much stuff here (turning of rps, connectors, ...) would
9634 * experience fancy races otherwise.
9635 */
9636 drm_irq_uninstall(dev);
9637 cancel_work_sync(&dev_priv->hotplug_work);
9638 /*
9639 * Due to the hpd irq storm handling the hotplug work can re-arm the
9640 * poll handlers. Hence disable polling after hpd handling is shut down.
9641 */
9642 drm_kms_helper_poll_fini(dev);
9643
9644 mutex_lock(&dev->struct_mutex);
9645
9646 intel_unregister_dsm_handler();
9647
9648 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9649 /* Skip inactive CRTCs */
9650 if (!crtc->fb)
9651 continue;
9652
9653 intel_crtc = to_intel_crtc(crtc);
9654 intel_increase_pllclock(crtc);
9655 }
9656
9657 intel_disable_fbc(dev);
9658
9659 intel_disable_gt_powersave(dev);
9660
9661 ironlake_teardown_rc6(dev);
9662
9663 mutex_unlock(&dev->struct_mutex);
9664
9665 /* flush any delayed tasks or pending work */
9666 flush_scheduled_work();
9667
9668 /* destroy backlight, if any, before the connectors */
9669 intel_panel_destroy_backlight(dev);
9670
9671 drm_mode_config_cleanup(dev);
9672
9673 intel_cleanup_overlay(dev);
9674 }
9675
9676 /*
9677 * Return which encoder is currently attached for connector.
9678 */
9679 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9680 {
9681 return &intel_attached_encoder(connector)->base;
9682 }
9683
9684 void intel_connector_attach_encoder(struct intel_connector *connector,
9685 struct intel_encoder *encoder)
9686 {
9687 connector->encoder = encoder;
9688 drm_mode_connector_attach_encoder(&connector->base,
9689 &encoder->base);
9690 }
9691
9692 /*
9693 * set vga decode state - true == enable VGA decode
9694 */
9695 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9696 {
9697 struct drm_i915_private *dev_priv = dev->dev_private;
9698 u16 gmch_ctrl;
9699
9700 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9701 if (state)
9702 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9703 else
9704 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9705 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9706 return 0;
9707 }
9708
9709 #ifdef CONFIG_DEBUG_FS
9710 #include <linux/seq_file.h>
9711
9712 struct intel_display_error_state {
9713
9714 u32 power_well_driver;
9715
9716 struct intel_cursor_error_state {
9717 u32 control;
9718 u32 position;
9719 u32 base;
9720 u32 size;
9721 } cursor[I915_MAX_PIPES];
9722
9723 struct intel_pipe_error_state {
9724 enum transcoder cpu_transcoder;
9725 u32 conf;
9726 u32 source;
9727
9728 u32 htotal;
9729 u32 hblank;
9730 u32 hsync;
9731 u32 vtotal;
9732 u32 vblank;
9733 u32 vsync;
9734 } pipe[I915_MAX_PIPES];
9735
9736 struct intel_plane_error_state {
9737 u32 control;
9738 u32 stride;
9739 u32 size;
9740 u32 pos;
9741 u32 addr;
9742 u32 surface;
9743 u32 tile_offset;
9744 } plane[I915_MAX_PIPES];
9745 };
9746
9747 struct intel_display_error_state *
9748 intel_display_capture_error_state(struct drm_device *dev)
9749 {
9750 drm_i915_private_t *dev_priv = dev->dev_private;
9751 struct intel_display_error_state *error;
9752 enum transcoder cpu_transcoder;
9753 int i;
9754
9755 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9756 if (error == NULL)
9757 return NULL;
9758
9759 if (HAS_POWER_WELL(dev))
9760 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
9761
9762 for_each_pipe(i) {
9763 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9764 error->pipe[i].cpu_transcoder = cpu_transcoder;
9765
9766 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
9767 error->cursor[i].control = I915_READ(CURCNTR(i));
9768 error->cursor[i].position = I915_READ(CURPOS(i));
9769 error->cursor[i].base = I915_READ(CURBASE(i));
9770 } else {
9771 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
9772 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
9773 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
9774 }
9775
9776 error->plane[i].control = I915_READ(DSPCNTR(i));
9777 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9778 if (INTEL_INFO(dev)->gen <= 3) {
9779 error->plane[i].size = I915_READ(DSPSIZE(i));
9780 error->plane[i].pos = I915_READ(DSPPOS(i));
9781 }
9782 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9783 error->plane[i].addr = I915_READ(DSPADDR(i));
9784 if (INTEL_INFO(dev)->gen >= 4) {
9785 error->plane[i].surface = I915_READ(DSPSURF(i));
9786 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9787 }
9788
9789 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9790 error->pipe[i].source = I915_READ(PIPESRC(i));
9791 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9792 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9793 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9794 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9795 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9796 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9797 }
9798
9799 /* In the code above we read the registers without checking if the power
9800 * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
9801 * prevent the next I915_WRITE from detecting it and printing an error
9802 * message. */
9803 if (HAS_POWER_WELL(dev))
9804 I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
9805
9806 return error;
9807 }
9808
9809 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
9810
9811 void
9812 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
9813 struct drm_device *dev,
9814 struct intel_display_error_state *error)
9815 {
9816 int i;
9817
9818 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
9819 if (HAS_POWER_WELL(dev))
9820 err_printf(m, "PWR_WELL_CTL2: %08x\n",
9821 error->power_well_driver);
9822 for_each_pipe(i) {
9823 err_printf(m, "Pipe [%d]:\n", i);
9824 err_printf(m, " CPU transcoder: %c\n",
9825 transcoder_name(error->pipe[i].cpu_transcoder));
9826 err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9827 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
9828 err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9829 err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9830 err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9831 err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9832 err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9833 err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9834
9835 err_printf(m, "Plane [%d]:\n", i);
9836 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
9837 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9838 if (INTEL_INFO(dev)->gen <= 3) {
9839 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
9840 err_printf(m, " POS: %08x\n", error->plane[i].pos);
9841 }
9842 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
9843 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9844 if (INTEL_INFO(dev)->gen >= 4) {
9845 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
9846 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9847 }
9848
9849 err_printf(m, "Cursor [%d]:\n", i);
9850 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9851 err_printf(m, " POS: %08x\n", error->cursor[i].position);
9852 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
9853 }
9854 }
9855 #endif
This page took 0.265065 seconds and 6 git commands to generate.