drm/i915: pass adjusted_mode to intel_choose_pipe_bpp_dither(), again
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 int
84 intel_pch_rawclk(struct drm_device *dev)
85 {
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91 }
92
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
101
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
110
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
118 {
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
124 }
125
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
137 .find_pll = intel_find_best_PLL,
138 };
139
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
151 .find_pll = intel_find_best_PLL,
152 };
153
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
165 .find_pll = intel_find_best_PLL,
166 };
167
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
179 .find_pll = intel_find_best_PLL,
180 };
181
182
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
195 },
196 .find_pll = intel_g4x_find_best_PLL,
197 };
198
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
210 .find_pll = intel_g4x_find_best_PLL,
211 };
212
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
224 },
225 .find_pll = intel_g4x_find_best_PLL,
226 };
227
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
239 },
240 .find_pll = intel_g4x_find_best_PLL,
241 };
242
243 static const intel_limit_t intel_limits_g4x_display_port = {
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
253 .p2_slow = 10, .p2_fast = 10 },
254 .find_pll = intel_find_pll_g4x_dp,
255 };
256
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
260 /* Pineview's Ncounter is a ring counter */
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
263 /* Pineview only has one combined m divider, which we treat as m2. */
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
270 .find_pll = intel_find_best_PLL,
271 };
272
273 static const intel_limit_t intel_limits_pineview_lvds = {
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
284 .find_pll = intel_find_best_PLL,
285 };
286
287 /* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
292 static const intel_limit_t intel_limits_ironlake_dac = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
303 .find_pll = intel_g4x_find_best_PLL,
304 };
305
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
317 .find_pll = intel_g4x_find_best_PLL,
318 };
319
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
331 .find_pll = intel_g4x_find_best_PLL,
332 };
333
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
343 .p1 = { .min = 2, .max = 8 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
346 .find_pll = intel_g4x_find_best_PLL,
347 };
348
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
357 .p1 = { .min = 2, .max = 6 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
360 .find_pll = intel_g4x_find_best_PLL,
361 };
362
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
373 .p2_slow = 10, .p2_fast = 10 },
374 .find_pll = intel_find_pll_ironlake_dp,
375 };
376
377 static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389 };
390
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
393 .vco = { .min = 4000000, .max = 5994000},
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403 };
404
405 static const intel_limit_t intel_limits_vlv_dp = {
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 22, .max = 450 },
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417 };
418
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420 {
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439 out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442 }
443
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446 {
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462 out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464 }
465
466 static void vlv_init_dpio(struct drm_device *dev)
467 {
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475 }
476
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478 {
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481 }
482
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493 };
494
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497 {
498 unsigned int val;
499
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521 }
522
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
525 {
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 const intel_limit_t *limit;
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532 /* LVDS dual channel */
533 if (refclk == 100000)
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
538 if (refclk == 100000)
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
546 else
547 limit = &intel_limits_ironlake_dac;
548
549 return limit;
550 }
551
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553 {
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559 if (is_dual_link_lvds(dev_priv, LVDS))
560 /* LVDS with dual channel */
561 limit = &intel_limits_g4x_dual_channel_lvds;
562 else
563 /* LVDS with dual channel */
564 limit = &intel_limits_g4x_single_channel_lvds;
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567 limit = &intel_limits_g4x_hdmi;
568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569 limit = &intel_limits_g4x_sdvo;
570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571 limit = &intel_limits_g4x_display_port;
572 } else /* The option is for other outputs */
573 limit = &intel_limits_i9xx_sdvo;
574
575 return limit;
576 }
577
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
579 {
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
583 if (HAS_PCH_SPLIT(dev))
584 limit = intel_ironlake_limit(crtc, refclk);
585 else if (IS_G4X(dev)) {
586 limit = intel_g4x_limit(crtc);
587 } else if (IS_PINEVIEW(dev)) {
588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589 limit = &intel_limits_pineview_lvds;
590 else
591 limit = &intel_limits_pineview_sdvo;
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606 limit = &intel_limits_i8xx_lvds;
607 else
608 limit = &intel_limits_i8xx_dvo;
609 }
610 return limit;
611 }
612
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
615 {
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620 }
621
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623 {
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
626 return;
627 }
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632 }
633
634 /**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
638 {
639 struct drm_device *dev = crtc->dev;
640 struct intel_encoder *encoder;
641
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
644 return true;
645
646 return false;
647 }
648
649 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
650 /**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
658 {
659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
660 INTELPllInvalid("p1 out of range\n");
661 if (clock->p < limit->p.min || limit->p.max < clock->p)
662 INTELPllInvalid("p out of range\n");
663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
664 INTELPllInvalid("m2 out of range\n");
665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
666 INTELPllInvalid("m1 out of range\n");
667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668 INTELPllInvalid("m1 <= m2\n");
669 if (clock->m < limit->m.min || limit->m.max < clock->m)
670 INTELPllInvalid("m out of range\n");
671 if (clock->n < limit->n.min || limit->n.max < clock->n)
672 INTELPllInvalid("n out of range\n");
673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674 INTELPllInvalid("vco out of range\n");
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679 INTELPllInvalid("dot out of range\n");
680
681 return true;
682 }
683
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
688
689 {
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
693 int err = target;
694
695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696 (I915_READ(LVDS)) != 0) {
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
703 if (is_dual_link_lvds(dev_priv, LVDS))
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
714 memset(best_clock, 0, sizeof(*best_clock));
715
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
727 int this_err;
728
729 intel_clock(dev, refclk, &clock);
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
732 continue;
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748 }
749
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
754 {
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765 int lvds_reg;
766
767 if (HAS_PCH_SPLIT(dev))
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
785 /* based on hardware requirement, prefer smaller n to precision */
786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787 /* based on hardware requirement, prefere larger m1,m2 */
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
796 intel_clock(dev, refclk, &clock);
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
799 continue;
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
803
804 this_err = abs(clock.dot - target);
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
815 return found;
816 }
817
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
822 {
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
825
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842 }
843
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
849 {
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
870 }
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875 {
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
882 flag = 0;
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938 }
939
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942 {
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946 return intel_crtc->cpu_transcoder;
947 }
948
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950 {
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
953
954 frame = I915_READ(frame_reg);
955
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
958 }
959
960 /**
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
964 *
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
967 */
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
969 {
970 struct drm_i915_private *dev_priv = dev->dev_private;
971 int pipestat_reg = PIPESTAT(pipe);
972
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
976 }
977
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
980 *
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
990 */
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
994 /* Wait for vblank interrupt bit to set */
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
998 DRM_DEBUG_KMS("vblank wait timed out\n");
999 }
1000
1001 /*
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1005 *
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1009 *
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1012 *
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
1016 *
1017 */
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1019 {
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022 pipe);
1023
1024 if (INTEL_INFO(dev)->gen >= 4) {
1025 int reg = PIPECONF(cpu_transcoder);
1026
1027 /* Wait for the Pipe State to go off */
1028 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029 100))
1030 WARN(1, "pipe_off wait timed out\n");
1031 } else {
1032 u32 last_line, line_mask;
1033 int reg = PIPEDSL(pipe);
1034 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
1036 if (IS_GEN2(dev))
1037 line_mask = DSL_LINEMASK_GEN2;
1038 else
1039 line_mask = DSL_LINEMASK_GEN3;
1040
1041 /* Wait for the display line to settle */
1042 do {
1043 last_line = I915_READ(reg) & line_mask;
1044 mdelay(5);
1045 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046 time_after(timeout, jiffies));
1047 if (time_after(jiffies, timeout))
1048 WARN(1, "pipe_off wait timed out\n");
1049 }
1050 }
1051
1052 static const char *state_string(bool enabled)
1053 {
1054 return enabled ? "on" : "off";
1055 }
1056
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, bool state)
1060 {
1061 int reg;
1062 u32 val;
1063 bool cur_state;
1064
1065 reg = DPLL(pipe);
1066 val = I915_READ(reg);
1067 cur_state = !!(val & DPLL_VCO_ENABLE);
1068 WARN(cur_state != state,
1069 "PLL state assertion failure (expected %s, current %s)\n",
1070 state_string(state), state_string(cur_state));
1071 }
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077 struct intel_pch_pll *pll,
1078 struct intel_crtc *crtc,
1079 bool state)
1080 {
1081 u32 val;
1082 bool cur_state;
1083
1084 if (HAS_PCH_LPT(dev_priv->dev)) {
1085 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086 return;
1087 }
1088
1089 if (WARN (!pll,
1090 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091 return;
1092
1093 val = I915_READ(pll->pll_reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097 pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099 /* Make sure the selected PLL is correctly attached to the transcoder */
1100 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101 u32 pch_dpll;
1102
1103 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106 "PLL[%d] not attached to this transcoder %d: %08x\n",
1107 cur_state, crtc->pipe, pch_dpll)) {
1108 cur_state = !!(val >> (4*crtc->pipe + 3));
1109 WARN(cur_state != state,
1110 "PLL[%d] not %s on this transcoder %d: %08x\n",
1111 pll->pll_reg == _PCH_DPLL_B,
1112 state_string(state),
1113 crtc->pipe,
1114 val);
1115 }
1116 }
1117 }
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1120
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
1123 {
1124 int reg;
1125 u32 val;
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (IS_HASWELL(dev_priv->dev)) {
1131 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133 val = I915_READ(reg);
1134 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135 } else {
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 cur_state = !!(val & FDI_TX_ENABLE);
1139 }
1140 WARN(cur_state != state,
1141 "FDI TX state assertion failure (expected %s, current %s)\n",
1142 state_string(state), state_string(cur_state));
1143 }
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148 enum pipe pipe, bool state)
1149 {
1150 int reg;
1151 u32 val;
1152 bool cur_state;
1153
1154 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156 return;
1157 } else {
1158 reg = FDI_RX_CTL(pipe);
1159 val = I915_READ(reg);
1160 cur_state = !!(val & FDI_RX_ENABLE);
1161 }
1162 WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165 }
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171 {
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
1176 if (dev_priv->info->gen == 5)
1177 return;
1178
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (IS_HASWELL(dev_priv->dev))
1181 return;
1182
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186 }
1187
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190 {
1191 int reg;
1192 u32 val;
1193
1194 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196 return;
1197 }
1198 reg = FDI_RX_CTL(pipe);
1199 val = I915_READ(reg);
1200 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201 }
1202
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205 {
1206 int pp_reg, lvds_reg;
1207 u32 val;
1208 enum pipe panel_pipe = PIPE_A;
1209 bool locked = true;
1210
1211 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212 pp_reg = PCH_PP_CONTROL;
1213 lvds_reg = PCH_LVDS;
1214 } else {
1215 pp_reg = PP_CONTROL;
1216 lvds_reg = LVDS;
1217 }
1218
1219 val = I915_READ(pp_reg);
1220 if (!(val & PANEL_POWER_ON) ||
1221 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222 locked = false;
1223
1224 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225 panel_pipe = PIPE_B;
1226
1227 WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
1229 pipe_name(pipe));
1230 }
1231
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1234 {
1235 int reg;
1236 u32 val;
1237 bool cur_state;
1238 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239 pipe);
1240
1241 /* if we need the pipe A quirk it must be always on */
1242 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243 state = true;
1244
1245 reg = PIPECONF(cpu_transcoder);
1246 val = I915_READ(reg);
1247 cur_state = !!(val & PIPECONF_ENABLE);
1248 WARN(cur_state != state,
1249 "pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251 }
1252
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254 enum plane plane, bool state)
1255 {
1256 int reg;
1257 u32 val;
1258 bool cur_state;
1259
1260 reg = DSPCNTR(plane);
1261 val = I915_READ(reg);
1262 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263 WARN(cur_state != state,
1264 "plane %c assertion failure (expected %s, current %s)\n",
1265 plane_name(plane), state_string(state), state_string(cur_state));
1266 }
1267
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe)
1273 {
1274 int reg, i;
1275 u32 val;
1276 int cur_pipe;
1277
1278 /* Planes are fixed to pipes on ILK+ */
1279 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280 reg = DSPCNTR(pipe);
1281 val = I915_READ(reg);
1282 WARN((val & DISPLAY_PLANE_ENABLE),
1283 "plane %c assertion failure, should be disabled but not\n",
1284 plane_name(pipe));
1285 return;
1286 }
1287
1288 /* Need to check both planes against the pipe */
1289 for (i = 0; i < 2; i++) {
1290 reg = DSPCNTR(i);
1291 val = I915_READ(reg);
1292 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293 DISPPLANE_SEL_PIPE_SHIFT;
1294 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296 plane_name(i), pipe_name(pipe));
1297 }
1298 }
1299
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301 {
1302 u32 val;
1303 bool enabled;
1304
1305 if (HAS_PCH_LPT(dev_priv->dev)) {
1306 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307 return;
1308 }
1309
1310 val = I915_READ(PCH_DREF_CONTROL);
1311 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312 DREF_SUPERSPREAD_SOURCE_MASK));
1313 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314 }
1315
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318 {
1319 int reg;
1320 u32 val;
1321 bool enabled;
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 enabled = !!(val & TRANS_ENABLE);
1326 WARN(enabled,
1327 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328 pipe_name(pipe));
1329 }
1330
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, u32 port_sel, u32 val)
1333 {
1334 if ((val & DP_PORT_EN) == 0)
1335 return false;
1336
1337 if (HAS_PCH_CPT(dev_priv->dev)) {
1338 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341 return false;
1342 } else {
1343 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344 return false;
1345 }
1346 return true;
1347 }
1348
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe, u32 val)
1351 {
1352 if ((val & PORT_ENABLE) == 0)
1353 return false;
1354
1355 if (HAS_PCH_CPT(dev_priv->dev)) {
1356 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357 return false;
1358 } else {
1359 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360 return false;
1361 }
1362 return true;
1363 }
1364
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 val)
1367 {
1368 if ((val & LVDS_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376 return false;
1377 }
1378 return true;
1379 }
1380
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382 enum pipe pipe, u32 val)
1383 {
1384 if ((val & ADPA_DAC_ENABLE) == 0)
1385 return false;
1386 if (HAS_PCH_CPT(dev_priv->dev)) {
1387 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388 return false;
1389 } else {
1390 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391 return false;
1392 }
1393 return true;
1394 }
1395
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe, int reg, u32 port_sel)
1398 {
1399 u32 val = I915_READ(reg);
1400 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402 reg, pipe_name(pipe));
1403
1404 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405 && (val & DP_PIPEB_SELECT),
1406 "IBX PCH dp port still using transcoder B\n");
1407 }
1408
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, int reg)
1411 {
1412 u32 val = I915_READ(reg);
1413 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415 reg, pipe_name(pipe));
1416
1417 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418 && (val & SDVO_PIPE_B_SELECT),
1419 "IBX PCH hdmi port still using transcoder B\n");
1420 }
1421
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1424 {
1425 int reg;
1426 u32 val;
1427
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1431
1432 reg = PCH_ADPA;
1433 val = I915_READ(reg);
1434 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435 "PCH VGA enabled on transcoder %c, should be disabled\n",
1436 pipe_name(pipe));
1437
1438 reg = PCH_LVDS;
1439 val = I915_READ(reg);
1440 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442 pipe_name(pipe));
1443
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447 }
1448
1449 /**
1450 * intel_enable_pll - enable a PLL
1451 * @dev_priv: i915 private structure
1452 * @pipe: pipe PLL to enable
1453 *
1454 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1455 * make sure the PLL reg is writable first though, since the panel write
1456 * protect mechanism may be enabled.
1457 *
1458 * Note! This is for pre-ILK only.
1459 *
1460 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1461 */
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1463 {
1464 int reg;
1465 u32 val;
1466
1467 /* No really, not for ILK+ */
1468 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472 assert_panel_unlocked(dev_priv, pipe);
1473
1474 reg = DPLL(pipe);
1475 val = I915_READ(reg);
1476 val |= DPLL_VCO_ENABLE;
1477
1478 /* We do this three times for luck */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 I915_WRITE(reg, val);
1483 POSTING_READ(reg);
1484 udelay(150); /* wait for warmup */
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1487 udelay(150); /* wait for warmup */
1488 }
1489
1490 /**
1491 * intel_disable_pll - disable a PLL
1492 * @dev_priv: i915 private structure
1493 * @pipe: pipe PLL to disable
1494 *
1495 * Disable the PLL for @pipe, making sure the pipe is off first.
1496 *
1497 * Note! This is for pre-ILK only.
1498 */
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500 {
1501 int reg;
1502 u32 val;
1503
1504 /* Don't disable pipe A or pipe A PLLs if needed */
1505 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506 return;
1507
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1510
1511 reg = DPLL(pipe);
1512 val = I915_READ(reg);
1513 val &= ~DPLL_VCO_ENABLE;
1514 I915_WRITE(reg, val);
1515 POSTING_READ(reg);
1516 }
1517
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521 {
1522 unsigned long flags;
1523
1524 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526 100)) {
1527 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528 goto out_unlock;
1529 }
1530
1531 I915_WRITE(SBI_ADDR,
1532 (reg << 16));
1533 I915_WRITE(SBI_DATA,
1534 value);
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRWR);
1538
1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542 goto out_unlock;
1543 }
1544
1545 out_unlock:
1546 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547 }
1548
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551 {
1552 unsigned long flags;
1553 u32 value = 0;
1554
1555 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557 100)) {
1558 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559 goto out_unlock;
1560 }
1561
1562 I915_WRITE(SBI_ADDR,
1563 (reg << 16));
1564 I915_WRITE(SBI_CTL_STAT,
1565 SBI_BUSY |
1566 SBI_CTL_OP_CRRD);
1567
1568 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569 100)) {
1570 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571 goto out_unlock;
1572 }
1573
1574 value = I915_READ(SBI_DATA);
1575
1576 out_unlock:
1577 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578 return value;
1579 }
1580
1581 /**
1582 * intel_enable_pch_pll - enable PCH PLL
1583 * @dev_priv: i915 private structure
1584 * @pipe: pipe PLL to enable
1585 *
1586 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587 * drives the transcoder clock.
1588 */
1589 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1590 {
1591 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592 struct intel_pch_pll *pll;
1593 int reg;
1594 u32 val;
1595
1596 /* PCH PLLs only available on ILK, SNB and IVB */
1597 BUG_ON(dev_priv->info->gen < 5);
1598 pll = intel_crtc->pch_pll;
1599 if (pll == NULL)
1600 return;
1601
1602 if (WARN_ON(pll->refcount == 0))
1603 return;
1604
1605 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606 pll->pll_reg, pll->active, pll->on,
1607 intel_crtc->base.base.id);
1608
1609 /* PCH refclock must be enabled first */
1610 assert_pch_refclk_enabled(dev_priv);
1611
1612 if (pll->active++ && pll->on) {
1613 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614 return;
1615 }
1616
1617 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619 reg = pll->pll_reg;
1620 val = I915_READ(reg);
1621 val |= DPLL_VCO_ENABLE;
1622 I915_WRITE(reg, val);
1623 POSTING_READ(reg);
1624 udelay(200);
1625
1626 pll->on = true;
1627 }
1628
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1630 {
1631 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633 int reg;
1634 u32 val;
1635
1636 /* PCH only available on ILK+ */
1637 BUG_ON(dev_priv->info->gen < 5);
1638 if (pll == NULL)
1639 return;
1640
1641 if (WARN_ON(pll->refcount == 0))
1642 return;
1643
1644 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645 pll->pll_reg, pll->active, pll->on,
1646 intel_crtc->base.base.id);
1647
1648 if (WARN_ON(pll->active == 0)) {
1649 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650 return;
1651 }
1652
1653 if (--pll->active) {
1654 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655 return;
1656 }
1657
1658 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660 /* Make sure transcoder isn't still depending on us */
1661 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1662
1663 reg = pll->pll_reg;
1664 val = I915_READ(reg);
1665 val &= ~DPLL_VCO_ENABLE;
1666 I915_WRITE(reg, val);
1667 POSTING_READ(reg);
1668 udelay(200);
1669
1670 pll->on = false;
1671 }
1672
1673 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
1675 {
1676 int reg;
1677 u32 val, pipeconf_val;
1678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1679
1680 /* PCH only available on ILK+ */
1681 BUG_ON(dev_priv->info->gen < 5);
1682
1683 /* Make sure PCH DPLL is enabled */
1684 assert_pch_pll_enabled(dev_priv,
1685 to_intel_crtc(crtc)->pch_pll,
1686 to_intel_crtc(crtc));
1687
1688 /* FDI must be feeding us bits for PCH ports */
1689 assert_fdi_tx_enabled(dev_priv, pipe);
1690 assert_fdi_rx_enabled(dev_priv, pipe);
1691
1692 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694 return;
1695 }
1696 reg = TRANSCONF(pipe);
1697 val = I915_READ(reg);
1698 pipeconf_val = I915_READ(PIPECONF(pipe));
1699
1700 if (HAS_PCH_IBX(dev_priv->dev)) {
1701 /*
1702 * make the BPC in transcoder be consistent with
1703 * that in pipeconf reg.
1704 */
1705 val &= ~PIPE_BPC_MASK;
1706 val |= pipeconf_val & PIPE_BPC_MASK;
1707 }
1708
1709 val &= ~TRANS_INTERLACE_MASK;
1710 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1711 if (HAS_PCH_IBX(dev_priv->dev) &&
1712 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713 val |= TRANS_LEGACY_INTERLACED_ILK;
1714 else
1715 val |= TRANS_INTERLACED;
1716 else
1717 val |= TRANS_PROGRESSIVE;
1718
1719 I915_WRITE(reg, val | TRANS_ENABLE);
1720 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722 }
1723
1724 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725 enum pipe pipe)
1726 {
1727 int reg;
1728 u32 val;
1729
1730 /* FDI relies on the transcoder */
1731 assert_fdi_tx_disabled(dev_priv, pipe);
1732 assert_fdi_rx_disabled(dev_priv, pipe);
1733
1734 /* Ports must be off as well */
1735 assert_pch_ports_disabled(dev_priv, pipe);
1736
1737 reg = TRANSCONF(pipe);
1738 val = I915_READ(reg);
1739 val &= ~TRANS_ENABLE;
1740 I915_WRITE(reg, val);
1741 /* wait for PCH transcoder off, transcoder state */
1742 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1743 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1744 }
1745
1746 /**
1747 * intel_enable_pipe - enable a pipe, asserting requirements
1748 * @dev_priv: i915 private structure
1749 * @pipe: pipe to enable
1750 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1751 *
1752 * Enable @pipe, making sure that various hardware specific requirements
1753 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754 *
1755 * @pipe should be %PIPE_A or %PIPE_B.
1756 *
1757 * Will wait until the pipe is actually running (i.e. first vblank) before
1758 * returning.
1759 */
1760 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761 bool pch_port)
1762 {
1763 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764 pipe);
1765 int reg;
1766 u32 val;
1767
1768 /*
1769 * A pipe without a PLL won't actually be able to drive bits from
1770 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1771 * need the check.
1772 */
1773 if (!HAS_PCH_SPLIT(dev_priv->dev))
1774 assert_pll_enabled(dev_priv, pipe);
1775 else {
1776 if (pch_port) {
1777 /* if driving the PCH, we need FDI enabled */
1778 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780 }
1781 /* FIXME: assert CPU port conditions for SNB+ */
1782 }
1783
1784 reg = PIPECONF(cpu_transcoder);
1785 val = I915_READ(reg);
1786 if (val & PIPECONF_ENABLE)
1787 return;
1788
1789 I915_WRITE(reg, val | PIPECONF_ENABLE);
1790 intel_wait_for_vblank(dev_priv->dev, pipe);
1791 }
1792
1793 /**
1794 * intel_disable_pipe - disable a pipe, asserting requirements
1795 * @dev_priv: i915 private structure
1796 * @pipe: pipe to disable
1797 *
1798 * Disable @pipe, making sure that various hardware specific requirements
1799 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800 *
1801 * @pipe should be %PIPE_A or %PIPE_B.
1802 *
1803 * Will wait until the pipe has shut down before returning.
1804 */
1805 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806 enum pipe pipe)
1807 {
1808 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809 pipe);
1810 int reg;
1811 u32 val;
1812
1813 /*
1814 * Make sure planes won't keep trying to pump pixels to us,
1815 * or we might hang the display.
1816 */
1817 assert_planes_disabled(dev_priv, pipe);
1818
1819 /* Don't disable pipe A or pipe A PLLs if needed */
1820 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821 return;
1822
1823 reg = PIPECONF(cpu_transcoder);
1824 val = I915_READ(reg);
1825 if ((val & PIPECONF_ENABLE) == 0)
1826 return;
1827
1828 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1829 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830 }
1831
1832 /*
1833 * Plane regs are double buffered, going from enabled->disabled needs a
1834 * trigger in order to latch. The display address reg provides this.
1835 */
1836 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1837 enum plane plane)
1838 {
1839 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1840 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841 }
1842
1843 /**
1844 * intel_enable_plane - enable a display plane on a given pipe
1845 * @dev_priv: i915 private structure
1846 * @plane: plane to enable
1847 * @pipe: pipe being fed
1848 *
1849 * Enable @plane on @pipe, making sure that @pipe is running first.
1850 */
1851 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1852 enum plane plane, enum pipe pipe)
1853 {
1854 int reg;
1855 u32 val;
1856
1857 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1858 assert_pipe_enabled(dev_priv, pipe);
1859
1860 reg = DSPCNTR(plane);
1861 val = I915_READ(reg);
1862 if (val & DISPLAY_PLANE_ENABLE)
1863 return;
1864
1865 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1866 intel_flush_display_plane(dev_priv, plane);
1867 intel_wait_for_vblank(dev_priv->dev, pipe);
1868 }
1869
1870 /**
1871 * intel_disable_plane - disable a display plane
1872 * @dev_priv: i915 private structure
1873 * @plane: plane to disable
1874 * @pipe: pipe consuming the data
1875 *
1876 * Disable @plane; should be an independent operation.
1877 */
1878 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1879 enum plane plane, enum pipe pipe)
1880 {
1881 int reg;
1882 u32 val;
1883
1884 reg = DSPCNTR(plane);
1885 val = I915_READ(reg);
1886 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1887 return;
1888
1889 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1890 intel_flush_display_plane(dev_priv, plane);
1891 intel_wait_for_vblank(dev_priv->dev, pipe);
1892 }
1893
1894 int
1895 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1896 struct drm_i915_gem_object *obj,
1897 struct intel_ring_buffer *pipelined)
1898 {
1899 struct drm_i915_private *dev_priv = dev->dev_private;
1900 u32 alignment;
1901 int ret;
1902
1903 switch (obj->tiling_mode) {
1904 case I915_TILING_NONE:
1905 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1906 alignment = 128 * 1024;
1907 else if (INTEL_INFO(dev)->gen >= 4)
1908 alignment = 4 * 1024;
1909 else
1910 alignment = 64 * 1024;
1911 break;
1912 case I915_TILING_X:
1913 /* pin() will align the object as required by fence */
1914 alignment = 0;
1915 break;
1916 case I915_TILING_Y:
1917 /* FIXME: Is this true? */
1918 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1919 return -EINVAL;
1920 default:
1921 BUG();
1922 }
1923
1924 dev_priv->mm.interruptible = false;
1925 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1926 if (ret)
1927 goto err_interruptible;
1928
1929 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1930 * fence, whereas 965+ only requires a fence if using
1931 * framebuffer compression. For simplicity, we always install
1932 * a fence as the cost is not that onerous.
1933 */
1934 ret = i915_gem_object_get_fence(obj);
1935 if (ret)
1936 goto err_unpin;
1937
1938 i915_gem_object_pin_fence(obj);
1939
1940 dev_priv->mm.interruptible = true;
1941 return 0;
1942
1943 err_unpin:
1944 i915_gem_object_unpin(obj);
1945 err_interruptible:
1946 dev_priv->mm.interruptible = true;
1947 return ret;
1948 }
1949
1950 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1951 {
1952 i915_gem_object_unpin_fence(obj);
1953 i915_gem_object_unpin(obj);
1954 }
1955
1956 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1957 * is assumed to be a power-of-two. */
1958 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1959 unsigned int bpp,
1960 unsigned int pitch)
1961 {
1962 int tile_rows, tiles;
1963
1964 tile_rows = *y / 8;
1965 *y %= 8;
1966 tiles = *x / (512/bpp);
1967 *x %= 512/bpp;
1968
1969 return tile_rows * pitch * 8 + tiles * 4096;
1970 }
1971
1972 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1973 int x, int y)
1974 {
1975 struct drm_device *dev = crtc->dev;
1976 struct drm_i915_private *dev_priv = dev->dev_private;
1977 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1978 struct intel_framebuffer *intel_fb;
1979 struct drm_i915_gem_object *obj;
1980 int plane = intel_crtc->plane;
1981 unsigned long linear_offset;
1982 u32 dspcntr;
1983 u32 reg;
1984
1985 switch (plane) {
1986 case 0:
1987 case 1:
1988 break;
1989 default:
1990 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1991 return -EINVAL;
1992 }
1993
1994 intel_fb = to_intel_framebuffer(fb);
1995 obj = intel_fb->obj;
1996
1997 reg = DSPCNTR(plane);
1998 dspcntr = I915_READ(reg);
1999 /* Mask out pixel format bits in case we change it */
2000 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2001 switch (fb->bits_per_pixel) {
2002 case 8:
2003 dspcntr |= DISPPLANE_8BPP;
2004 break;
2005 case 16:
2006 if (fb->depth == 15)
2007 dspcntr |= DISPPLANE_15_16BPP;
2008 else
2009 dspcntr |= DISPPLANE_16BPP;
2010 break;
2011 case 24:
2012 case 32:
2013 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2014 break;
2015 default:
2016 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2017 return -EINVAL;
2018 }
2019 if (INTEL_INFO(dev)->gen >= 4) {
2020 if (obj->tiling_mode != I915_TILING_NONE)
2021 dspcntr |= DISPPLANE_TILED;
2022 else
2023 dspcntr &= ~DISPPLANE_TILED;
2024 }
2025
2026 I915_WRITE(reg, dspcntr);
2027
2028 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2029
2030 if (INTEL_INFO(dev)->gen >= 4) {
2031 intel_crtc->dspaddr_offset =
2032 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2033 fb->bits_per_pixel / 8,
2034 fb->pitches[0]);
2035 linear_offset -= intel_crtc->dspaddr_offset;
2036 } else {
2037 intel_crtc->dspaddr_offset = linear_offset;
2038 }
2039
2040 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2041 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2042 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2043 if (INTEL_INFO(dev)->gen >= 4) {
2044 I915_MODIFY_DISPBASE(DSPSURF(plane),
2045 obj->gtt_offset + intel_crtc->dspaddr_offset);
2046 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2047 I915_WRITE(DSPLINOFF(plane), linear_offset);
2048 } else
2049 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2050 POSTING_READ(reg);
2051
2052 return 0;
2053 }
2054
2055 static int ironlake_update_plane(struct drm_crtc *crtc,
2056 struct drm_framebuffer *fb, int x, int y)
2057 {
2058 struct drm_device *dev = crtc->dev;
2059 struct drm_i915_private *dev_priv = dev->dev_private;
2060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2061 struct intel_framebuffer *intel_fb;
2062 struct drm_i915_gem_object *obj;
2063 int plane = intel_crtc->plane;
2064 unsigned long linear_offset;
2065 u32 dspcntr;
2066 u32 reg;
2067
2068 switch (plane) {
2069 case 0:
2070 case 1:
2071 case 2:
2072 break;
2073 default:
2074 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2075 return -EINVAL;
2076 }
2077
2078 intel_fb = to_intel_framebuffer(fb);
2079 obj = intel_fb->obj;
2080
2081 reg = DSPCNTR(plane);
2082 dspcntr = I915_READ(reg);
2083 /* Mask out pixel format bits in case we change it */
2084 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2085 switch (fb->bits_per_pixel) {
2086 case 8:
2087 dspcntr |= DISPPLANE_8BPP;
2088 break;
2089 case 16:
2090 if (fb->depth != 16)
2091 return -EINVAL;
2092
2093 dspcntr |= DISPPLANE_16BPP;
2094 break;
2095 case 24:
2096 case 32:
2097 if (fb->depth == 24)
2098 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2099 else if (fb->depth == 30)
2100 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2101 else
2102 return -EINVAL;
2103 break;
2104 default:
2105 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2106 return -EINVAL;
2107 }
2108
2109 if (obj->tiling_mode != I915_TILING_NONE)
2110 dspcntr |= DISPPLANE_TILED;
2111 else
2112 dspcntr &= ~DISPPLANE_TILED;
2113
2114 /* must disable */
2115 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2116
2117 I915_WRITE(reg, dspcntr);
2118
2119 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2120 intel_crtc->dspaddr_offset =
2121 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2122 fb->bits_per_pixel / 8,
2123 fb->pitches[0]);
2124 linear_offset -= intel_crtc->dspaddr_offset;
2125
2126 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2127 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2128 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2129 I915_MODIFY_DISPBASE(DSPSURF(plane),
2130 obj->gtt_offset + intel_crtc->dspaddr_offset);
2131 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2132 I915_WRITE(DSPLINOFF(plane), linear_offset);
2133 POSTING_READ(reg);
2134
2135 return 0;
2136 }
2137
2138 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2139 static int
2140 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2141 int x, int y, enum mode_set_atomic state)
2142 {
2143 struct drm_device *dev = crtc->dev;
2144 struct drm_i915_private *dev_priv = dev->dev_private;
2145
2146 if (dev_priv->display.disable_fbc)
2147 dev_priv->display.disable_fbc(dev);
2148 intel_increase_pllclock(crtc);
2149
2150 return dev_priv->display.update_plane(crtc, fb, x, y);
2151 }
2152
2153 static int
2154 intel_finish_fb(struct drm_framebuffer *old_fb)
2155 {
2156 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2157 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2158 bool was_interruptible = dev_priv->mm.interruptible;
2159 int ret;
2160
2161 wait_event(dev_priv->pending_flip_queue,
2162 atomic_read(&dev_priv->mm.wedged) ||
2163 atomic_read(&obj->pending_flip) == 0);
2164
2165 /* Big Hammer, we also need to ensure that any pending
2166 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2167 * current scanout is retired before unpinning the old
2168 * framebuffer.
2169 *
2170 * This should only fail upon a hung GPU, in which case we
2171 * can safely continue.
2172 */
2173 dev_priv->mm.interruptible = false;
2174 ret = i915_gem_object_finish_gpu(obj);
2175 dev_priv->mm.interruptible = was_interruptible;
2176
2177 return ret;
2178 }
2179
2180 static int
2181 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2182 struct drm_framebuffer *fb)
2183 {
2184 struct drm_device *dev = crtc->dev;
2185 struct drm_i915_private *dev_priv = dev->dev_private;
2186 struct drm_i915_master_private *master_priv;
2187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2188 struct drm_framebuffer *old_fb;
2189 int ret;
2190
2191 /* no fb bound */
2192 if (!fb) {
2193 DRM_ERROR("No FB bound\n");
2194 return 0;
2195 }
2196
2197 if(intel_crtc->plane > dev_priv->num_pipe) {
2198 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2199 intel_crtc->plane,
2200 dev_priv->num_pipe);
2201 return -EINVAL;
2202 }
2203
2204 mutex_lock(&dev->struct_mutex);
2205 ret = intel_pin_and_fence_fb_obj(dev,
2206 to_intel_framebuffer(fb)->obj,
2207 NULL);
2208 if (ret != 0) {
2209 mutex_unlock(&dev->struct_mutex);
2210 DRM_ERROR("pin & fence failed\n");
2211 return ret;
2212 }
2213
2214 if (crtc->fb)
2215 intel_finish_fb(crtc->fb);
2216
2217 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2218 if (ret) {
2219 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2220 mutex_unlock(&dev->struct_mutex);
2221 DRM_ERROR("failed to update base address\n");
2222 return ret;
2223 }
2224
2225 old_fb = crtc->fb;
2226 crtc->fb = fb;
2227 crtc->x = x;
2228 crtc->y = y;
2229
2230 if (old_fb) {
2231 intel_wait_for_vblank(dev, intel_crtc->pipe);
2232 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2233 }
2234
2235 intel_update_fbc(dev);
2236 mutex_unlock(&dev->struct_mutex);
2237
2238 if (!dev->primary->master)
2239 return 0;
2240
2241 master_priv = dev->primary->master->driver_priv;
2242 if (!master_priv->sarea_priv)
2243 return 0;
2244
2245 if (intel_crtc->pipe) {
2246 master_priv->sarea_priv->pipeB_x = x;
2247 master_priv->sarea_priv->pipeB_y = y;
2248 } else {
2249 master_priv->sarea_priv->pipeA_x = x;
2250 master_priv->sarea_priv->pipeA_y = y;
2251 }
2252
2253 return 0;
2254 }
2255
2256 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2257 {
2258 struct drm_device *dev = crtc->dev;
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 u32 dpa_ctl;
2261
2262 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2263 dpa_ctl = I915_READ(DP_A);
2264 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2265
2266 if (clock < 200000) {
2267 u32 temp;
2268 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2269 /* workaround for 160Mhz:
2270 1) program 0x4600c bits 15:0 = 0x8124
2271 2) program 0x46010 bit 0 = 1
2272 3) program 0x46034 bit 24 = 1
2273 4) program 0x64000 bit 14 = 1
2274 */
2275 temp = I915_READ(0x4600c);
2276 temp &= 0xffff0000;
2277 I915_WRITE(0x4600c, temp | 0x8124);
2278
2279 temp = I915_READ(0x46010);
2280 I915_WRITE(0x46010, temp | 1);
2281
2282 temp = I915_READ(0x46034);
2283 I915_WRITE(0x46034, temp | (1 << 24));
2284 } else {
2285 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2286 }
2287 I915_WRITE(DP_A, dpa_ctl);
2288
2289 POSTING_READ(DP_A);
2290 udelay(500);
2291 }
2292
2293 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2294 {
2295 struct drm_device *dev = crtc->dev;
2296 struct drm_i915_private *dev_priv = dev->dev_private;
2297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2298 int pipe = intel_crtc->pipe;
2299 u32 reg, temp;
2300
2301 /* enable normal train */
2302 reg = FDI_TX_CTL(pipe);
2303 temp = I915_READ(reg);
2304 if (IS_IVYBRIDGE(dev)) {
2305 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2306 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2307 } else {
2308 temp &= ~FDI_LINK_TRAIN_NONE;
2309 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2310 }
2311 I915_WRITE(reg, temp);
2312
2313 reg = FDI_RX_CTL(pipe);
2314 temp = I915_READ(reg);
2315 if (HAS_PCH_CPT(dev)) {
2316 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2317 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2318 } else {
2319 temp &= ~FDI_LINK_TRAIN_NONE;
2320 temp |= FDI_LINK_TRAIN_NONE;
2321 }
2322 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2323
2324 /* wait one idle pattern time */
2325 POSTING_READ(reg);
2326 udelay(1000);
2327
2328 /* IVB wants error correction enabled */
2329 if (IS_IVYBRIDGE(dev))
2330 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2331 FDI_FE_ERRC_ENABLE);
2332 }
2333
2334 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2335 {
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 u32 flags = I915_READ(SOUTH_CHICKEN1);
2338
2339 flags |= FDI_PHASE_SYNC_OVR(pipe);
2340 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2341 flags |= FDI_PHASE_SYNC_EN(pipe);
2342 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2343 POSTING_READ(SOUTH_CHICKEN1);
2344 }
2345
2346 /* The FDI link training functions for ILK/Ibexpeak. */
2347 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2348 {
2349 struct drm_device *dev = crtc->dev;
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2352 int pipe = intel_crtc->pipe;
2353 int plane = intel_crtc->plane;
2354 u32 reg, temp, tries;
2355
2356 /* FDI needs bits from pipe & plane first */
2357 assert_pipe_enabled(dev_priv, pipe);
2358 assert_plane_enabled(dev_priv, plane);
2359
2360 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2361 for train result */
2362 reg = FDI_RX_IMR(pipe);
2363 temp = I915_READ(reg);
2364 temp &= ~FDI_RX_SYMBOL_LOCK;
2365 temp &= ~FDI_RX_BIT_LOCK;
2366 I915_WRITE(reg, temp);
2367 I915_READ(reg);
2368 udelay(150);
2369
2370 /* enable CPU FDI TX and PCH FDI RX */
2371 reg = FDI_TX_CTL(pipe);
2372 temp = I915_READ(reg);
2373 temp &= ~(7 << 19);
2374 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2375 temp &= ~FDI_LINK_TRAIN_NONE;
2376 temp |= FDI_LINK_TRAIN_PATTERN_1;
2377 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2378
2379 reg = FDI_RX_CTL(pipe);
2380 temp = I915_READ(reg);
2381 temp &= ~FDI_LINK_TRAIN_NONE;
2382 temp |= FDI_LINK_TRAIN_PATTERN_1;
2383 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2384
2385 POSTING_READ(reg);
2386 udelay(150);
2387
2388 /* Ironlake workaround, enable clock pointer after FDI enable*/
2389 if (HAS_PCH_IBX(dev)) {
2390 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2391 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2392 FDI_RX_PHASE_SYNC_POINTER_EN);
2393 }
2394
2395 reg = FDI_RX_IIR(pipe);
2396 for (tries = 0; tries < 5; tries++) {
2397 temp = I915_READ(reg);
2398 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2399
2400 if ((temp & FDI_RX_BIT_LOCK)) {
2401 DRM_DEBUG_KMS("FDI train 1 done.\n");
2402 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2403 break;
2404 }
2405 }
2406 if (tries == 5)
2407 DRM_ERROR("FDI train 1 fail!\n");
2408
2409 /* Train 2 */
2410 reg = FDI_TX_CTL(pipe);
2411 temp = I915_READ(reg);
2412 temp &= ~FDI_LINK_TRAIN_NONE;
2413 temp |= FDI_LINK_TRAIN_PATTERN_2;
2414 I915_WRITE(reg, temp);
2415
2416 reg = FDI_RX_CTL(pipe);
2417 temp = I915_READ(reg);
2418 temp &= ~FDI_LINK_TRAIN_NONE;
2419 temp |= FDI_LINK_TRAIN_PATTERN_2;
2420 I915_WRITE(reg, temp);
2421
2422 POSTING_READ(reg);
2423 udelay(150);
2424
2425 reg = FDI_RX_IIR(pipe);
2426 for (tries = 0; tries < 5; tries++) {
2427 temp = I915_READ(reg);
2428 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2429
2430 if (temp & FDI_RX_SYMBOL_LOCK) {
2431 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2432 DRM_DEBUG_KMS("FDI train 2 done.\n");
2433 break;
2434 }
2435 }
2436 if (tries == 5)
2437 DRM_ERROR("FDI train 2 fail!\n");
2438
2439 DRM_DEBUG_KMS("FDI train done\n");
2440
2441 }
2442
2443 static const int snb_b_fdi_train_param[] = {
2444 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2445 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2446 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2447 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2448 };
2449
2450 /* The FDI link training functions for SNB/Cougarpoint. */
2451 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2452 {
2453 struct drm_device *dev = crtc->dev;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2456 int pipe = intel_crtc->pipe;
2457 u32 reg, temp, i, retry;
2458
2459 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2460 for train result */
2461 reg = FDI_RX_IMR(pipe);
2462 temp = I915_READ(reg);
2463 temp &= ~FDI_RX_SYMBOL_LOCK;
2464 temp &= ~FDI_RX_BIT_LOCK;
2465 I915_WRITE(reg, temp);
2466
2467 POSTING_READ(reg);
2468 udelay(150);
2469
2470 /* enable CPU FDI TX and PCH FDI RX */
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
2473 temp &= ~(7 << 19);
2474 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2475 temp &= ~FDI_LINK_TRAIN_NONE;
2476 temp |= FDI_LINK_TRAIN_PATTERN_1;
2477 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2478 /* SNB-B */
2479 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2480 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2481
2482 reg = FDI_RX_CTL(pipe);
2483 temp = I915_READ(reg);
2484 if (HAS_PCH_CPT(dev)) {
2485 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2486 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2487 } else {
2488 temp &= ~FDI_LINK_TRAIN_NONE;
2489 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490 }
2491 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2492
2493 POSTING_READ(reg);
2494 udelay(150);
2495
2496 if (HAS_PCH_CPT(dev))
2497 cpt_phase_pointer_enable(dev, pipe);
2498
2499 for (i = 0; i < 4; i++) {
2500 reg = FDI_TX_CTL(pipe);
2501 temp = I915_READ(reg);
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 temp |= snb_b_fdi_train_param[i];
2504 I915_WRITE(reg, temp);
2505
2506 POSTING_READ(reg);
2507 udelay(500);
2508
2509 for (retry = 0; retry < 5; retry++) {
2510 reg = FDI_RX_IIR(pipe);
2511 temp = I915_READ(reg);
2512 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2513 if (temp & FDI_RX_BIT_LOCK) {
2514 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2515 DRM_DEBUG_KMS("FDI train 1 done.\n");
2516 break;
2517 }
2518 udelay(50);
2519 }
2520 if (retry < 5)
2521 break;
2522 }
2523 if (i == 4)
2524 DRM_ERROR("FDI train 1 fail!\n");
2525
2526 /* Train 2 */
2527 reg = FDI_TX_CTL(pipe);
2528 temp = I915_READ(reg);
2529 temp &= ~FDI_LINK_TRAIN_NONE;
2530 temp |= FDI_LINK_TRAIN_PATTERN_2;
2531 if (IS_GEN6(dev)) {
2532 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2533 /* SNB-B */
2534 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2535 }
2536 I915_WRITE(reg, temp);
2537
2538 reg = FDI_RX_CTL(pipe);
2539 temp = I915_READ(reg);
2540 if (HAS_PCH_CPT(dev)) {
2541 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2542 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2543 } else {
2544 temp &= ~FDI_LINK_TRAIN_NONE;
2545 temp |= FDI_LINK_TRAIN_PATTERN_2;
2546 }
2547 I915_WRITE(reg, temp);
2548
2549 POSTING_READ(reg);
2550 udelay(150);
2551
2552 for (i = 0; i < 4; i++) {
2553 reg = FDI_TX_CTL(pipe);
2554 temp = I915_READ(reg);
2555 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2556 temp |= snb_b_fdi_train_param[i];
2557 I915_WRITE(reg, temp);
2558
2559 POSTING_READ(reg);
2560 udelay(500);
2561
2562 for (retry = 0; retry < 5; retry++) {
2563 reg = FDI_RX_IIR(pipe);
2564 temp = I915_READ(reg);
2565 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2566 if (temp & FDI_RX_SYMBOL_LOCK) {
2567 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2568 DRM_DEBUG_KMS("FDI train 2 done.\n");
2569 break;
2570 }
2571 udelay(50);
2572 }
2573 if (retry < 5)
2574 break;
2575 }
2576 if (i == 4)
2577 DRM_ERROR("FDI train 2 fail!\n");
2578
2579 DRM_DEBUG_KMS("FDI train done.\n");
2580 }
2581
2582 /* Manual link training for Ivy Bridge A0 parts */
2583 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2584 {
2585 struct drm_device *dev = crtc->dev;
2586 struct drm_i915_private *dev_priv = dev->dev_private;
2587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2588 int pipe = intel_crtc->pipe;
2589 u32 reg, temp, i;
2590
2591 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2592 for train result */
2593 reg = FDI_RX_IMR(pipe);
2594 temp = I915_READ(reg);
2595 temp &= ~FDI_RX_SYMBOL_LOCK;
2596 temp &= ~FDI_RX_BIT_LOCK;
2597 I915_WRITE(reg, temp);
2598
2599 POSTING_READ(reg);
2600 udelay(150);
2601
2602 /* enable CPU FDI TX and PCH FDI RX */
2603 reg = FDI_TX_CTL(pipe);
2604 temp = I915_READ(reg);
2605 temp &= ~(7 << 19);
2606 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2607 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2608 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2609 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2610 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2611 temp |= FDI_COMPOSITE_SYNC;
2612 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2613
2614 reg = FDI_RX_CTL(pipe);
2615 temp = I915_READ(reg);
2616 temp &= ~FDI_LINK_TRAIN_AUTO;
2617 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2618 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2619 temp |= FDI_COMPOSITE_SYNC;
2620 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2621
2622 POSTING_READ(reg);
2623 udelay(150);
2624
2625 if (HAS_PCH_CPT(dev))
2626 cpt_phase_pointer_enable(dev, pipe);
2627
2628 for (i = 0; i < 4; i++) {
2629 reg = FDI_TX_CTL(pipe);
2630 temp = I915_READ(reg);
2631 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2632 temp |= snb_b_fdi_train_param[i];
2633 I915_WRITE(reg, temp);
2634
2635 POSTING_READ(reg);
2636 udelay(500);
2637
2638 reg = FDI_RX_IIR(pipe);
2639 temp = I915_READ(reg);
2640 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2641
2642 if (temp & FDI_RX_BIT_LOCK ||
2643 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2644 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2645 DRM_DEBUG_KMS("FDI train 1 done.\n");
2646 break;
2647 }
2648 }
2649 if (i == 4)
2650 DRM_ERROR("FDI train 1 fail!\n");
2651
2652 /* Train 2 */
2653 reg = FDI_TX_CTL(pipe);
2654 temp = I915_READ(reg);
2655 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2656 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2657 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2658 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2659 I915_WRITE(reg, temp);
2660
2661 reg = FDI_RX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2664 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2665 I915_WRITE(reg, temp);
2666
2667 POSTING_READ(reg);
2668 udelay(150);
2669
2670 for (i = 0; i < 4; i++) {
2671 reg = FDI_TX_CTL(pipe);
2672 temp = I915_READ(reg);
2673 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674 temp |= snb_b_fdi_train_param[i];
2675 I915_WRITE(reg, temp);
2676
2677 POSTING_READ(reg);
2678 udelay(500);
2679
2680 reg = FDI_RX_IIR(pipe);
2681 temp = I915_READ(reg);
2682 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2683
2684 if (temp & FDI_RX_SYMBOL_LOCK) {
2685 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2686 DRM_DEBUG_KMS("FDI train 2 done.\n");
2687 break;
2688 }
2689 }
2690 if (i == 4)
2691 DRM_ERROR("FDI train 2 fail!\n");
2692
2693 DRM_DEBUG_KMS("FDI train done.\n");
2694 }
2695
2696 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2697 {
2698 struct drm_device *dev = intel_crtc->base.dev;
2699 struct drm_i915_private *dev_priv = dev->dev_private;
2700 int pipe = intel_crtc->pipe;
2701 u32 reg, temp;
2702
2703 /* Write the TU size bits so error detection works */
2704 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2705 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2706
2707 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2708 reg = FDI_RX_CTL(pipe);
2709 temp = I915_READ(reg);
2710 temp &= ~((0x7 << 19) | (0x7 << 16));
2711 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2712 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2713 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2714
2715 POSTING_READ(reg);
2716 udelay(200);
2717
2718 /* Switch from Rawclk to PCDclk */
2719 temp = I915_READ(reg);
2720 I915_WRITE(reg, temp | FDI_PCDCLK);
2721
2722 POSTING_READ(reg);
2723 udelay(200);
2724
2725 /* On Haswell, the PLL configuration for ports and pipes is handled
2726 * separately, as part of DDI setup */
2727 if (!IS_HASWELL(dev)) {
2728 /* Enable CPU FDI TX PLL, always on for Ironlake */
2729 reg = FDI_TX_CTL(pipe);
2730 temp = I915_READ(reg);
2731 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2732 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2733
2734 POSTING_READ(reg);
2735 udelay(100);
2736 }
2737 }
2738 }
2739
2740 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2741 {
2742 struct drm_device *dev = intel_crtc->base.dev;
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 int pipe = intel_crtc->pipe;
2745 u32 reg, temp;
2746
2747 /* Switch from PCDclk to Rawclk */
2748 reg = FDI_RX_CTL(pipe);
2749 temp = I915_READ(reg);
2750 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2751
2752 /* Disable CPU FDI TX PLL */
2753 reg = FDI_TX_CTL(pipe);
2754 temp = I915_READ(reg);
2755 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2756
2757 POSTING_READ(reg);
2758 udelay(100);
2759
2760 reg = FDI_RX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2763
2764 /* Wait for the clocks to turn off. */
2765 POSTING_READ(reg);
2766 udelay(100);
2767 }
2768
2769 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2770 {
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 u32 flags = I915_READ(SOUTH_CHICKEN1);
2773
2774 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2775 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2776 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2777 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2778 POSTING_READ(SOUTH_CHICKEN1);
2779 }
2780 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2781 {
2782 struct drm_device *dev = crtc->dev;
2783 struct drm_i915_private *dev_priv = dev->dev_private;
2784 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2785 int pipe = intel_crtc->pipe;
2786 u32 reg, temp;
2787
2788 /* disable CPU FDI tx and PCH FDI rx */
2789 reg = FDI_TX_CTL(pipe);
2790 temp = I915_READ(reg);
2791 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2792 POSTING_READ(reg);
2793
2794 reg = FDI_RX_CTL(pipe);
2795 temp = I915_READ(reg);
2796 temp &= ~(0x7 << 16);
2797 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2798 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2799
2800 POSTING_READ(reg);
2801 udelay(100);
2802
2803 /* Ironlake workaround, disable clock pointer after downing FDI */
2804 if (HAS_PCH_IBX(dev)) {
2805 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2806 I915_WRITE(FDI_RX_CHICKEN(pipe),
2807 I915_READ(FDI_RX_CHICKEN(pipe) &
2808 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2809 } else if (HAS_PCH_CPT(dev)) {
2810 cpt_phase_pointer_disable(dev, pipe);
2811 }
2812
2813 /* still set train pattern 1 */
2814 reg = FDI_TX_CTL(pipe);
2815 temp = I915_READ(reg);
2816 temp &= ~FDI_LINK_TRAIN_NONE;
2817 temp |= FDI_LINK_TRAIN_PATTERN_1;
2818 I915_WRITE(reg, temp);
2819
2820 reg = FDI_RX_CTL(pipe);
2821 temp = I915_READ(reg);
2822 if (HAS_PCH_CPT(dev)) {
2823 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2824 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2825 } else {
2826 temp &= ~FDI_LINK_TRAIN_NONE;
2827 temp |= FDI_LINK_TRAIN_PATTERN_1;
2828 }
2829 /* BPC in FDI rx is consistent with that in PIPECONF */
2830 temp &= ~(0x07 << 16);
2831 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2832 I915_WRITE(reg, temp);
2833
2834 POSTING_READ(reg);
2835 udelay(100);
2836 }
2837
2838 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2839 {
2840 struct drm_device *dev = crtc->dev;
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 unsigned long flags;
2843 bool pending;
2844
2845 if (atomic_read(&dev_priv->mm.wedged))
2846 return false;
2847
2848 spin_lock_irqsave(&dev->event_lock, flags);
2849 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2850 spin_unlock_irqrestore(&dev->event_lock, flags);
2851
2852 return pending;
2853 }
2854
2855 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2856 {
2857 struct drm_device *dev = crtc->dev;
2858 struct drm_i915_private *dev_priv = dev->dev_private;
2859
2860 if (crtc->fb == NULL)
2861 return;
2862
2863 wait_event(dev_priv->pending_flip_queue,
2864 !intel_crtc_has_pending_flip(crtc));
2865
2866 mutex_lock(&dev->struct_mutex);
2867 intel_finish_fb(crtc->fb);
2868 mutex_unlock(&dev->struct_mutex);
2869 }
2870
2871 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2872 {
2873 struct drm_device *dev = crtc->dev;
2874 struct intel_encoder *intel_encoder;
2875
2876 /*
2877 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2878 * must be driven by its own crtc; no sharing is possible.
2879 */
2880 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2881 switch (intel_encoder->type) {
2882 case INTEL_OUTPUT_EDP:
2883 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2884 return false;
2885 continue;
2886 }
2887 }
2888
2889 return true;
2890 }
2891
2892 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2893 {
2894 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2895 }
2896
2897 /* Program iCLKIP clock to the desired frequency */
2898 static void lpt_program_iclkip(struct drm_crtc *crtc)
2899 {
2900 struct drm_device *dev = crtc->dev;
2901 struct drm_i915_private *dev_priv = dev->dev_private;
2902 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2903 u32 temp;
2904
2905 /* It is necessary to ungate the pixclk gate prior to programming
2906 * the divisors, and gate it back when it is done.
2907 */
2908 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2909
2910 /* Disable SSCCTL */
2911 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2912 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2913 SBI_SSCCTL_DISABLE);
2914
2915 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2916 if (crtc->mode.clock == 20000) {
2917 auxdiv = 1;
2918 divsel = 0x41;
2919 phaseinc = 0x20;
2920 } else {
2921 /* The iCLK virtual clock root frequency is in MHz,
2922 * but the crtc->mode.clock in in KHz. To get the divisors,
2923 * it is necessary to divide one by another, so we
2924 * convert the virtual clock precision to KHz here for higher
2925 * precision.
2926 */
2927 u32 iclk_virtual_root_freq = 172800 * 1000;
2928 u32 iclk_pi_range = 64;
2929 u32 desired_divisor, msb_divisor_value, pi_value;
2930
2931 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2932 msb_divisor_value = desired_divisor / iclk_pi_range;
2933 pi_value = desired_divisor % iclk_pi_range;
2934
2935 auxdiv = 0;
2936 divsel = msb_divisor_value - 2;
2937 phaseinc = pi_value;
2938 }
2939
2940 /* This should not happen with any sane values */
2941 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2942 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2943 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2944 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2945
2946 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2947 crtc->mode.clock,
2948 auxdiv,
2949 divsel,
2950 phasedir,
2951 phaseinc);
2952
2953 /* Program SSCDIVINTPHASE6 */
2954 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2955 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2956 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2957 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2958 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2959 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2960 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2961
2962 intel_sbi_write(dev_priv,
2963 SBI_SSCDIVINTPHASE6,
2964 temp);
2965
2966 /* Program SSCAUXDIV */
2967 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2968 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2969 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2970 intel_sbi_write(dev_priv,
2971 SBI_SSCAUXDIV6,
2972 temp);
2973
2974
2975 /* Enable modulator and associated divider */
2976 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2977 temp &= ~SBI_SSCCTL_DISABLE;
2978 intel_sbi_write(dev_priv,
2979 SBI_SSCCTL6,
2980 temp);
2981
2982 /* Wait for initialization time */
2983 udelay(24);
2984
2985 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2986 }
2987
2988 /*
2989 * Enable PCH resources required for PCH ports:
2990 * - PCH PLLs
2991 * - FDI training & RX/TX
2992 * - update transcoder timings
2993 * - DP transcoding bits
2994 * - transcoder
2995 */
2996 static void ironlake_pch_enable(struct drm_crtc *crtc)
2997 {
2998 struct drm_device *dev = crtc->dev;
2999 struct drm_i915_private *dev_priv = dev->dev_private;
3000 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3001 int pipe = intel_crtc->pipe;
3002 u32 reg, temp;
3003
3004 assert_transcoder_disabled(dev_priv, pipe);
3005
3006 /* For PCH output, training FDI link */
3007 dev_priv->display.fdi_link_train(crtc);
3008
3009 intel_enable_pch_pll(intel_crtc);
3010
3011 if (HAS_PCH_LPT(dev)) {
3012 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3013 lpt_program_iclkip(crtc);
3014 } else if (HAS_PCH_CPT(dev)) {
3015 u32 sel;
3016
3017 temp = I915_READ(PCH_DPLL_SEL);
3018 switch (pipe) {
3019 default:
3020 case 0:
3021 temp |= TRANSA_DPLL_ENABLE;
3022 sel = TRANSA_DPLLB_SEL;
3023 break;
3024 case 1:
3025 temp |= TRANSB_DPLL_ENABLE;
3026 sel = TRANSB_DPLLB_SEL;
3027 break;
3028 case 2:
3029 temp |= TRANSC_DPLL_ENABLE;
3030 sel = TRANSC_DPLLB_SEL;
3031 break;
3032 }
3033 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3034 temp |= sel;
3035 else
3036 temp &= ~sel;
3037 I915_WRITE(PCH_DPLL_SEL, temp);
3038 }
3039
3040 /* set transcoder timing, panel must allow it */
3041 assert_panel_unlocked(dev_priv, pipe);
3042 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3043 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3044 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3045
3046 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3047 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3048 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3049 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3050
3051 if (!IS_HASWELL(dev))
3052 intel_fdi_normal_train(crtc);
3053
3054 /* For PCH DP, enable TRANS_DP_CTL */
3055 if (HAS_PCH_CPT(dev) &&
3056 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3057 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3058 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3059 reg = TRANS_DP_CTL(pipe);
3060 temp = I915_READ(reg);
3061 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3062 TRANS_DP_SYNC_MASK |
3063 TRANS_DP_BPC_MASK);
3064 temp |= (TRANS_DP_OUTPUT_ENABLE |
3065 TRANS_DP_ENH_FRAMING);
3066 temp |= bpc << 9; /* same format but at 11:9 */
3067
3068 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3069 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3070 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3071 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3072
3073 switch (intel_trans_dp_port_sel(crtc)) {
3074 case PCH_DP_B:
3075 temp |= TRANS_DP_PORT_SEL_B;
3076 break;
3077 case PCH_DP_C:
3078 temp |= TRANS_DP_PORT_SEL_C;
3079 break;
3080 case PCH_DP_D:
3081 temp |= TRANS_DP_PORT_SEL_D;
3082 break;
3083 default:
3084 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3085 temp |= TRANS_DP_PORT_SEL_B;
3086 break;
3087 }
3088
3089 I915_WRITE(reg, temp);
3090 }
3091
3092 intel_enable_transcoder(dev_priv, pipe);
3093 }
3094
3095 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3096 {
3097 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3098
3099 if (pll == NULL)
3100 return;
3101
3102 if (pll->refcount == 0) {
3103 WARN(1, "bad PCH PLL refcount\n");
3104 return;
3105 }
3106
3107 --pll->refcount;
3108 intel_crtc->pch_pll = NULL;
3109 }
3110
3111 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3112 {
3113 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3114 struct intel_pch_pll *pll;
3115 int i;
3116
3117 pll = intel_crtc->pch_pll;
3118 if (pll) {
3119 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3120 intel_crtc->base.base.id, pll->pll_reg);
3121 goto prepare;
3122 }
3123
3124 if (HAS_PCH_IBX(dev_priv->dev)) {
3125 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3126 i = intel_crtc->pipe;
3127 pll = &dev_priv->pch_plls[i];
3128
3129 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3130 intel_crtc->base.base.id, pll->pll_reg);
3131
3132 goto found;
3133 }
3134
3135 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3136 pll = &dev_priv->pch_plls[i];
3137
3138 /* Only want to check enabled timings first */
3139 if (pll->refcount == 0)
3140 continue;
3141
3142 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3143 fp == I915_READ(pll->fp0_reg)) {
3144 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3145 intel_crtc->base.base.id,
3146 pll->pll_reg, pll->refcount, pll->active);
3147
3148 goto found;
3149 }
3150 }
3151
3152 /* Ok no matching timings, maybe there's a free one? */
3153 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3154 pll = &dev_priv->pch_plls[i];
3155 if (pll->refcount == 0) {
3156 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3157 intel_crtc->base.base.id, pll->pll_reg);
3158 goto found;
3159 }
3160 }
3161
3162 return NULL;
3163
3164 found:
3165 intel_crtc->pch_pll = pll;
3166 pll->refcount++;
3167 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3168 prepare: /* separate function? */
3169 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3170
3171 /* Wait for the clocks to stabilize before rewriting the regs */
3172 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3173 POSTING_READ(pll->pll_reg);
3174 udelay(150);
3175
3176 I915_WRITE(pll->fp0_reg, fp);
3177 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3178 pll->on = false;
3179 return pll;
3180 }
3181
3182 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3183 {
3184 struct drm_i915_private *dev_priv = dev->dev_private;
3185 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3186 u32 temp;
3187
3188 temp = I915_READ(dslreg);
3189 udelay(500);
3190 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3191 /* Without this, mode sets may fail silently on FDI */
3192 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3193 udelay(250);
3194 I915_WRITE(tc2reg, 0);
3195 if (wait_for(I915_READ(dslreg) != temp, 5))
3196 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3197 }
3198 }
3199
3200 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3201 {
3202 struct drm_device *dev = crtc->dev;
3203 struct drm_i915_private *dev_priv = dev->dev_private;
3204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3205 struct intel_encoder *encoder;
3206 int pipe = intel_crtc->pipe;
3207 int plane = intel_crtc->plane;
3208 u32 temp;
3209 bool is_pch_port;
3210
3211 WARN_ON(!crtc->enabled);
3212
3213 if (intel_crtc->active)
3214 return;
3215
3216 intel_crtc->active = true;
3217 intel_update_watermarks(dev);
3218
3219 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3220 temp = I915_READ(PCH_LVDS);
3221 if ((temp & LVDS_PORT_EN) == 0)
3222 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3223 }
3224
3225 is_pch_port = ironlake_crtc_driving_pch(crtc);
3226
3227 if (is_pch_port) {
3228 ironlake_fdi_pll_enable(intel_crtc);
3229 } else {
3230 assert_fdi_tx_disabled(dev_priv, pipe);
3231 assert_fdi_rx_disabled(dev_priv, pipe);
3232 }
3233
3234 for_each_encoder_on_crtc(dev, crtc, encoder)
3235 if (encoder->pre_enable)
3236 encoder->pre_enable(encoder);
3237
3238 /* Enable panel fitting for LVDS */
3239 if (dev_priv->pch_pf_size &&
3240 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3241 /* Force use of hard-coded filter coefficients
3242 * as some pre-programmed values are broken,
3243 * e.g. x201.
3244 */
3245 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3246 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3247 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3248 }
3249
3250 /*
3251 * On ILK+ LUT must be loaded before the pipe is running but with
3252 * clocks enabled
3253 */
3254 intel_crtc_load_lut(crtc);
3255
3256 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3257 intel_enable_plane(dev_priv, plane, pipe);
3258
3259 if (is_pch_port)
3260 ironlake_pch_enable(crtc);
3261
3262 mutex_lock(&dev->struct_mutex);
3263 intel_update_fbc(dev);
3264 mutex_unlock(&dev->struct_mutex);
3265
3266 intel_crtc_update_cursor(crtc, true);
3267
3268 for_each_encoder_on_crtc(dev, crtc, encoder)
3269 encoder->enable(encoder);
3270
3271 if (HAS_PCH_CPT(dev))
3272 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3273
3274 /*
3275 * There seems to be a race in PCH platform hw (at least on some
3276 * outputs) where an enabled pipe still completes any pageflip right
3277 * away (as if the pipe is off) instead of waiting for vblank. As soon
3278 * as the first vblank happend, everything works as expected. Hence just
3279 * wait for one vblank before returning to avoid strange things
3280 * happening.
3281 */
3282 intel_wait_for_vblank(dev, intel_crtc->pipe);
3283 }
3284
3285 static void haswell_crtc_enable(struct drm_crtc *crtc)
3286 {
3287 struct drm_device *dev = crtc->dev;
3288 struct drm_i915_private *dev_priv = dev->dev_private;
3289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290 struct intel_encoder *encoder;
3291 int pipe = intel_crtc->pipe;
3292 int plane = intel_crtc->plane;
3293 bool is_pch_port;
3294
3295 WARN_ON(!crtc->enabled);
3296
3297 if (intel_crtc->active)
3298 return;
3299
3300 intel_crtc->active = true;
3301 intel_update_watermarks(dev);
3302
3303 is_pch_port = haswell_crtc_driving_pch(crtc);
3304
3305 if (is_pch_port)
3306 ironlake_fdi_pll_enable(intel_crtc);
3307
3308 for_each_encoder_on_crtc(dev, crtc, encoder)
3309 if (encoder->pre_enable)
3310 encoder->pre_enable(encoder);
3311
3312 intel_ddi_enable_pipe_clock(intel_crtc);
3313
3314 /* Enable panel fitting for eDP */
3315 if (dev_priv->pch_pf_size && HAS_eDP) {
3316 /* Force use of hard-coded filter coefficients
3317 * as some pre-programmed values are broken,
3318 * e.g. x201.
3319 */
3320 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3321 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3322 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3323 }
3324
3325 /*
3326 * On ILK+ LUT must be loaded before the pipe is running but with
3327 * clocks enabled
3328 */
3329 intel_crtc_load_lut(crtc);
3330
3331 intel_ddi_set_pipe_settings(crtc);
3332 intel_ddi_enable_pipe_func(crtc);
3333
3334 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3335 intel_enable_plane(dev_priv, plane, pipe);
3336
3337 if (is_pch_port)
3338 ironlake_pch_enable(crtc);
3339
3340 mutex_lock(&dev->struct_mutex);
3341 intel_update_fbc(dev);
3342 mutex_unlock(&dev->struct_mutex);
3343
3344 intel_crtc_update_cursor(crtc, true);
3345
3346 for_each_encoder_on_crtc(dev, crtc, encoder)
3347 encoder->enable(encoder);
3348
3349 /*
3350 * There seems to be a race in PCH platform hw (at least on some
3351 * outputs) where an enabled pipe still completes any pageflip right
3352 * away (as if the pipe is off) instead of waiting for vblank. As soon
3353 * as the first vblank happend, everything works as expected. Hence just
3354 * wait for one vblank before returning to avoid strange things
3355 * happening.
3356 */
3357 intel_wait_for_vblank(dev, intel_crtc->pipe);
3358 }
3359
3360 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3361 {
3362 struct drm_device *dev = crtc->dev;
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3365 struct intel_encoder *encoder;
3366 int pipe = intel_crtc->pipe;
3367 int plane = intel_crtc->plane;
3368 u32 reg, temp;
3369
3370
3371 if (!intel_crtc->active)
3372 return;
3373
3374 for_each_encoder_on_crtc(dev, crtc, encoder)
3375 encoder->disable(encoder);
3376
3377 intel_crtc_wait_for_pending_flips(crtc);
3378 drm_vblank_off(dev, pipe);
3379 intel_crtc_update_cursor(crtc, false);
3380
3381 intel_disable_plane(dev_priv, plane, pipe);
3382
3383 if (dev_priv->cfb_plane == plane)
3384 intel_disable_fbc(dev);
3385
3386 intel_disable_pipe(dev_priv, pipe);
3387
3388 /* Disable PF */
3389 I915_WRITE(PF_CTL(pipe), 0);
3390 I915_WRITE(PF_WIN_SZ(pipe), 0);
3391
3392 for_each_encoder_on_crtc(dev, crtc, encoder)
3393 if (encoder->post_disable)
3394 encoder->post_disable(encoder);
3395
3396 ironlake_fdi_disable(crtc);
3397
3398 intel_disable_transcoder(dev_priv, pipe);
3399
3400 if (HAS_PCH_CPT(dev)) {
3401 /* disable TRANS_DP_CTL */
3402 reg = TRANS_DP_CTL(pipe);
3403 temp = I915_READ(reg);
3404 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3405 temp |= TRANS_DP_PORT_SEL_NONE;
3406 I915_WRITE(reg, temp);
3407
3408 /* disable DPLL_SEL */
3409 temp = I915_READ(PCH_DPLL_SEL);
3410 switch (pipe) {
3411 case 0:
3412 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3413 break;
3414 case 1:
3415 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3416 break;
3417 case 2:
3418 /* C shares PLL A or B */
3419 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3420 break;
3421 default:
3422 BUG(); /* wtf */
3423 }
3424 I915_WRITE(PCH_DPLL_SEL, temp);
3425 }
3426
3427 /* disable PCH DPLL */
3428 intel_disable_pch_pll(intel_crtc);
3429
3430 ironlake_fdi_pll_disable(intel_crtc);
3431
3432 intel_crtc->active = false;
3433 intel_update_watermarks(dev);
3434
3435 mutex_lock(&dev->struct_mutex);
3436 intel_update_fbc(dev);
3437 mutex_unlock(&dev->struct_mutex);
3438 }
3439
3440 static void haswell_crtc_disable(struct drm_crtc *crtc)
3441 {
3442 struct drm_device *dev = crtc->dev;
3443 struct drm_i915_private *dev_priv = dev->dev_private;
3444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3445 struct intel_encoder *encoder;
3446 int pipe = intel_crtc->pipe;
3447 int plane = intel_crtc->plane;
3448 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3449 bool is_pch_port;
3450
3451 if (!intel_crtc->active)
3452 return;
3453
3454 is_pch_port = haswell_crtc_driving_pch(crtc);
3455
3456 for_each_encoder_on_crtc(dev, crtc, encoder)
3457 encoder->disable(encoder);
3458
3459 intel_crtc_wait_for_pending_flips(crtc);
3460 drm_vblank_off(dev, pipe);
3461 intel_crtc_update_cursor(crtc, false);
3462
3463 intel_disable_plane(dev_priv, plane, pipe);
3464
3465 if (dev_priv->cfb_plane == plane)
3466 intel_disable_fbc(dev);
3467
3468 intel_disable_pipe(dev_priv, pipe);
3469
3470 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3471
3472 /* Disable PF */
3473 I915_WRITE(PF_CTL(pipe), 0);
3474 I915_WRITE(PF_WIN_SZ(pipe), 0);
3475
3476 intel_ddi_disable_pipe_clock(intel_crtc);
3477
3478 for_each_encoder_on_crtc(dev, crtc, encoder)
3479 if (encoder->post_disable)
3480 encoder->post_disable(encoder);
3481
3482 if (is_pch_port) {
3483 ironlake_fdi_disable(crtc);
3484 intel_disable_transcoder(dev_priv, pipe);
3485 intel_disable_pch_pll(intel_crtc);
3486 ironlake_fdi_pll_disable(intel_crtc);
3487 }
3488
3489 intel_crtc->active = false;
3490 intel_update_watermarks(dev);
3491
3492 mutex_lock(&dev->struct_mutex);
3493 intel_update_fbc(dev);
3494 mutex_unlock(&dev->struct_mutex);
3495 }
3496
3497 static void ironlake_crtc_off(struct drm_crtc *crtc)
3498 {
3499 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3500 intel_put_pch_pll(intel_crtc);
3501 }
3502
3503 static void haswell_crtc_off(struct drm_crtc *crtc)
3504 {
3505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3506
3507 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3508 * start using it. */
3509 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3510
3511 intel_ddi_put_crtc_pll(crtc);
3512 }
3513
3514 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3515 {
3516 if (!enable && intel_crtc->overlay) {
3517 struct drm_device *dev = intel_crtc->base.dev;
3518 struct drm_i915_private *dev_priv = dev->dev_private;
3519
3520 mutex_lock(&dev->struct_mutex);
3521 dev_priv->mm.interruptible = false;
3522 (void) intel_overlay_switch_off(intel_crtc->overlay);
3523 dev_priv->mm.interruptible = true;
3524 mutex_unlock(&dev->struct_mutex);
3525 }
3526
3527 /* Let userspace switch the overlay on again. In most cases userspace
3528 * has to recompute where to put it anyway.
3529 */
3530 }
3531
3532 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3533 {
3534 struct drm_device *dev = crtc->dev;
3535 struct drm_i915_private *dev_priv = dev->dev_private;
3536 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3537 struct intel_encoder *encoder;
3538 int pipe = intel_crtc->pipe;
3539 int plane = intel_crtc->plane;
3540
3541 WARN_ON(!crtc->enabled);
3542
3543 if (intel_crtc->active)
3544 return;
3545
3546 intel_crtc->active = true;
3547 intel_update_watermarks(dev);
3548
3549 intel_enable_pll(dev_priv, pipe);
3550 intel_enable_pipe(dev_priv, pipe, false);
3551 intel_enable_plane(dev_priv, plane, pipe);
3552
3553 intel_crtc_load_lut(crtc);
3554 intel_update_fbc(dev);
3555
3556 /* Give the overlay scaler a chance to enable if it's on this pipe */
3557 intel_crtc_dpms_overlay(intel_crtc, true);
3558 intel_crtc_update_cursor(crtc, true);
3559
3560 for_each_encoder_on_crtc(dev, crtc, encoder)
3561 encoder->enable(encoder);
3562 }
3563
3564 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3565 {
3566 struct drm_device *dev = crtc->dev;
3567 struct drm_i915_private *dev_priv = dev->dev_private;
3568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569 struct intel_encoder *encoder;
3570 int pipe = intel_crtc->pipe;
3571 int plane = intel_crtc->plane;
3572
3573
3574 if (!intel_crtc->active)
3575 return;
3576
3577 for_each_encoder_on_crtc(dev, crtc, encoder)
3578 encoder->disable(encoder);
3579
3580 /* Give the overlay scaler a chance to disable if it's on this pipe */
3581 intel_crtc_wait_for_pending_flips(crtc);
3582 drm_vblank_off(dev, pipe);
3583 intel_crtc_dpms_overlay(intel_crtc, false);
3584 intel_crtc_update_cursor(crtc, false);
3585
3586 if (dev_priv->cfb_plane == plane)
3587 intel_disable_fbc(dev);
3588
3589 intel_disable_plane(dev_priv, plane, pipe);
3590 intel_disable_pipe(dev_priv, pipe);
3591 intel_disable_pll(dev_priv, pipe);
3592
3593 intel_crtc->active = false;
3594 intel_update_fbc(dev);
3595 intel_update_watermarks(dev);
3596 }
3597
3598 static void i9xx_crtc_off(struct drm_crtc *crtc)
3599 {
3600 }
3601
3602 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3603 bool enabled)
3604 {
3605 struct drm_device *dev = crtc->dev;
3606 struct drm_i915_master_private *master_priv;
3607 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3608 int pipe = intel_crtc->pipe;
3609
3610 if (!dev->primary->master)
3611 return;
3612
3613 master_priv = dev->primary->master->driver_priv;
3614 if (!master_priv->sarea_priv)
3615 return;
3616
3617 switch (pipe) {
3618 case 0:
3619 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3620 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3621 break;
3622 case 1:
3623 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3624 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3625 break;
3626 default:
3627 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3628 break;
3629 }
3630 }
3631
3632 /**
3633 * Sets the power management mode of the pipe and plane.
3634 */
3635 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3636 {
3637 struct drm_device *dev = crtc->dev;
3638 struct drm_i915_private *dev_priv = dev->dev_private;
3639 struct intel_encoder *intel_encoder;
3640 bool enable = false;
3641
3642 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3643 enable |= intel_encoder->connectors_active;
3644
3645 if (enable)
3646 dev_priv->display.crtc_enable(crtc);
3647 else
3648 dev_priv->display.crtc_disable(crtc);
3649
3650 intel_crtc_update_sarea(crtc, enable);
3651 }
3652
3653 static void intel_crtc_noop(struct drm_crtc *crtc)
3654 {
3655 }
3656
3657 static void intel_crtc_disable(struct drm_crtc *crtc)
3658 {
3659 struct drm_device *dev = crtc->dev;
3660 struct drm_connector *connector;
3661 struct drm_i915_private *dev_priv = dev->dev_private;
3662
3663 /* crtc should still be enabled when we disable it. */
3664 WARN_ON(!crtc->enabled);
3665
3666 dev_priv->display.crtc_disable(crtc);
3667 intel_crtc_update_sarea(crtc, false);
3668 dev_priv->display.off(crtc);
3669
3670 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3671 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3672
3673 if (crtc->fb) {
3674 mutex_lock(&dev->struct_mutex);
3675 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3676 mutex_unlock(&dev->struct_mutex);
3677 crtc->fb = NULL;
3678 }
3679
3680 /* Update computed state. */
3681 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3682 if (!connector->encoder || !connector->encoder->crtc)
3683 continue;
3684
3685 if (connector->encoder->crtc != crtc)
3686 continue;
3687
3688 connector->dpms = DRM_MODE_DPMS_OFF;
3689 to_intel_encoder(connector->encoder)->connectors_active = false;
3690 }
3691 }
3692
3693 void intel_modeset_disable(struct drm_device *dev)
3694 {
3695 struct drm_crtc *crtc;
3696
3697 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3698 if (crtc->enabled)
3699 intel_crtc_disable(crtc);
3700 }
3701 }
3702
3703 void intel_encoder_noop(struct drm_encoder *encoder)
3704 {
3705 }
3706
3707 void intel_encoder_destroy(struct drm_encoder *encoder)
3708 {
3709 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3710
3711 drm_encoder_cleanup(encoder);
3712 kfree(intel_encoder);
3713 }
3714
3715 /* Simple dpms helper for encodres with just one connector, no cloning and only
3716 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3717 * state of the entire output pipe. */
3718 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3719 {
3720 if (mode == DRM_MODE_DPMS_ON) {
3721 encoder->connectors_active = true;
3722
3723 intel_crtc_update_dpms(encoder->base.crtc);
3724 } else {
3725 encoder->connectors_active = false;
3726
3727 intel_crtc_update_dpms(encoder->base.crtc);
3728 }
3729 }
3730
3731 /* Cross check the actual hw state with our own modeset state tracking (and it's
3732 * internal consistency). */
3733 static void intel_connector_check_state(struct intel_connector *connector)
3734 {
3735 if (connector->get_hw_state(connector)) {
3736 struct intel_encoder *encoder = connector->encoder;
3737 struct drm_crtc *crtc;
3738 bool encoder_enabled;
3739 enum pipe pipe;
3740
3741 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3742 connector->base.base.id,
3743 drm_get_connector_name(&connector->base));
3744
3745 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3746 "wrong connector dpms state\n");
3747 WARN(connector->base.encoder != &encoder->base,
3748 "active connector not linked to encoder\n");
3749 WARN(!encoder->connectors_active,
3750 "encoder->connectors_active not set\n");
3751
3752 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3753 WARN(!encoder_enabled, "encoder not enabled\n");
3754 if (WARN_ON(!encoder->base.crtc))
3755 return;
3756
3757 crtc = encoder->base.crtc;
3758
3759 WARN(!crtc->enabled, "crtc not enabled\n");
3760 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3761 WARN(pipe != to_intel_crtc(crtc)->pipe,
3762 "encoder active on the wrong pipe\n");
3763 }
3764 }
3765
3766 /* Even simpler default implementation, if there's really no special case to
3767 * consider. */
3768 void intel_connector_dpms(struct drm_connector *connector, int mode)
3769 {
3770 struct intel_encoder *encoder = intel_attached_encoder(connector);
3771
3772 /* All the simple cases only support two dpms states. */
3773 if (mode != DRM_MODE_DPMS_ON)
3774 mode = DRM_MODE_DPMS_OFF;
3775
3776 if (mode == connector->dpms)
3777 return;
3778
3779 connector->dpms = mode;
3780
3781 /* Only need to change hw state when actually enabled */
3782 if (encoder->base.crtc)
3783 intel_encoder_dpms(encoder, mode);
3784 else
3785 WARN_ON(encoder->connectors_active != false);
3786
3787 intel_modeset_check_state(connector->dev);
3788 }
3789
3790 /* Simple connector->get_hw_state implementation for encoders that support only
3791 * one connector and no cloning and hence the encoder state determines the state
3792 * of the connector. */
3793 bool intel_connector_get_hw_state(struct intel_connector *connector)
3794 {
3795 enum pipe pipe = 0;
3796 struct intel_encoder *encoder = connector->encoder;
3797
3798 return encoder->get_hw_state(encoder, &pipe);
3799 }
3800
3801 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3802 const struct drm_display_mode *mode,
3803 struct drm_display_mode *adjusted_mode)
3804 {
3805 struct drm_device *dev = crtc->dev;
3806
3807 if (HAS_PCH_SPLIT(dev)) {
3808 /* FDI link clock is fixed at 2.7G */
3809 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3810 return false;
3811 }
3812
3813 /* All interlaced capable intel hw wants timings in frames. Note though
3814 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3815 * timings, so we need to be careful not to clobber these.*/
3816 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3817 drm_mode_set_crtcinfo(adjusted_mode, 0);
3818
3819 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3820 * with a hsync front porch of 0.
3821 */
3822 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3823 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3824 return false;
3825
3826 return true;
3827 }
3828
3829 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3830 {
3831 return 400000; /* FIXME */
3832 }
3833
3834 static int i945_get_display_clock_speed(struct drm_device *dev)
3835 {
3836 return 400000;
3837 }
3838
3839 static int i915_get_display_clock_speed(struct drm_device *dev)
3840 {
3841 return 333000;
3842 }
3843
3844 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3845 {
3846 return 200000;
3847 }
3848
3849 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3850 {
3851 u16 gcfgc = 0;
3852
3853 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3854
3855 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3856 return 133000;
3857 else {
3858 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3859 case GC_DISPLAY_CLOCK_333_MHZ:
3860 return 333000;
3861 default:
3862 case GC_DISPLAY_CLOCK_190_200_MHZ:
3863 return 190000;
3864 }
3865 }
3866 }
3867
3868 static int i865_get_display_clock_speed(struct drm_device *dev)
3869 {
3870 return 266000;
3871 }
3872
3873 static int i855_get_display_clock_speed(struct drm_device *dev)
3874 {
3875 u16 hpllcc = 0;
3876 /* Assume that the hardware is in the high speed state. This
3877 * should be the default.
3878 */
3879 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3880 case GC_CLOCK_133_200:
3881 case GC_CLOCK_100_200:
3882 return 200000;
3883 case GC_CLOCK_166_250:
3884 return 250000;
3885 case GC_CLOCK_100_133:
3886 return 133000;
3887 }
3888
3889 /* Shouldn't happen */
3890 return 0;
3891 }
3892
3893 static int i830_get_display_clock_speed(struct drm_device *dev)
3894 {
3895 return 133000;
3896 }
3897
3898 struct fdi_m_n {
3899 u32 tu;
3900 u32 gmch_m;
3901 u32 gmch_n;
3902 u32 link_m;
3903 u32 link_n;
3904 };
3905
3906 static void
3907 fdi_reduce_ratio(u32 *num, u32 *den)
3908 {
3909 while (*num > 0xffffff || *den > 0xffffff) {
3910 *num >>= 1;
3911 *den >>= 1;
3912 }
3913 }
3914
3915 static void
3916 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3917 int link_clock, struct fdi_m_n *m_n)
3918 {
3919 m_n->tu = 64; /* default size */
3920
3921 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3922 m_n->gmch_m = bits_per_pixel * pixel_clock;
3923 m_n->gmch_n = link_clock * nlanes * 8;
3924 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3925
3926 m_n->link_m = pixel_clock;
3927 m_n->link_n = link_clock;
3928 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3929 }
3930
3931 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3932 {
3933 if (i915_panel_use_ssc >= 0)
3934 return i915_panel_use_ssc != 0;
3935 return dev_priv->lvds_use_ssc
3936 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3937 }
3938
3939 /**
3940 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3941 * @crtc: CRTC structure
3942 * @mode: requested mode
3943 *
3944 * A pipe may be connected to one or more outputs. Based on the depth of the
3945 * attached framebuffer, choose a good color depth to use on the pipe.
3946 *
3947 * If possible, match the pipe depth to the fb depth. In some cases, this
3948 * isn't ideal, because the connected output supports a lesser or restricted
3949 * set of depths. Resolve that here:
3950 * LVDS typically supports only 6bpc, so clamp down in that case
3951 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3952 * Displays may support a restricted set as well, check EDID and clamp as
3953 * appropriate.
3954 * DP may want to dither down to 6bpc to fit larger modes
3955 *
3956 * RETURNS:
3957 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3958 * true if they don't match).
3959 */
3960 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3961 struct drm_framebuffer *fb,
3962 unsigned int *pipe_bpp,
3963 struct drm_display_mode *mode)
3964 {
3965 struct drm_device *dev = crtc->dev;
3966 struct drm_i915_private *dev_priv = dev->dev_private;
3967 struct drm_connector *connector;
3968 struct intel_encoder *intel_encoder;
3969 unsigned int display_bpc = UINT_MAX, bpc;
3970
3971 /* Walk the encoders & connectors on this crtc, get min bpc */
3972 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3973
3974 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3975 unsigned int lvds_bpc;
3976
3977 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3978 LVDS_A3_POWER_UP)
3979 lvds_bpc = 8;
3980 else
3981 lvds_bpc = 6;
3982
3983 if (lvds_bpc < display_bpc) {
3984 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3985 display_bpc = lvds_bpc;
3986 }
3987 continue;
3988 }
3989
3990 /* Not one of the known troublemakers, check the EDID */
3991 list_for_each_entry(connector, &dev->mode_config.connector_list,
3992 head) {
3993 if (connector->encoder != &intel_encoder->base)
3994 continue;
3995
3996 /* Don't use an invalid EDID bpc value */
3997 if (connector->display_info.bpc &&
3998 connector->display_info.bpc < display_bpc) {
3999 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4000 display_bpc = connector->display_info.bpc;
4001 }
4002 }
4003
4004 /*
4005 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4006 * through, clamp it down. (Note: >12bpc will be caught below.)
4007 */
4008 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4009 if (display_bpc > 8 && display_bpc < 12) {
4010 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4011 display_bpc = 12;
4012 } else {
4013 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4014 display_bpc = 8;
4015 }
4016 }
4017 }
4018
4019 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4020 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4021 display_bpc = 6;
4022 }
4023
4024 /*
4025 * We could just drive the pipe at the highest bpc all the time and
4026 * enable dithering as needed, but that costs bandwidth. So choose
4027 * the minimum value that expresses the full color range of the fb but
4028 * also stays within the max display bpc discovered above.
4029 */
4030
4031 switch (fb->depth) {
4032 case 8:
4033 bpc = 8; /* since we go through a colormap */
4034 break;
4035 case 15:
4036 case 16:
4037 bpc = 6; /* min is 18bpp */
4038 break;
4039 case 24:
4040 bpc = 8;
4041 break;
4042 case 30:
4043 bpc = 10;
4044 break;
4045 case 48:
4046 bpc = 12;
4047 break;
4048 default:
4049 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4050 bpc = min((unsigned int)8, display_bpc);
4051 break;
4052 }
4053
4054 display_bpc = min(display_bpc, bpc);
4055
4056 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4057 bpc, display_bpc);
4058
4059 *pipe_bpp = display_bpc * 3;
4060
4061 return display_bpc != bpc;
4062 }
4063
4064 static int vlv_get_refclk(struct drm_crtc *crtc)
4065 {
4066 struct drm_device *dev = crtc->dev;
4067 struct drm_i915_private *dev_priv = dev->dev_private;
4068 int refclk = 27000; /* for DP & HDMI */
4069
4070 return 100000; /* only one validated so far */
4071
4072 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4073 refclk = 96000;
4074 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4075 if (intel_panel_use_ssc(dev_priv))
4076 refclk = 100000;
4077 else
4078 refclk = 96000;
4079 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4080 refclk = 100000;
4081 }
4082
4083 return refclk;
4084 }
4085
4086 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4087 {
4088 struct drm_device *dev = crtc->dev;
4089 struct drm_i915_private *dev_priv = dev->dev_private;
4090 int refclk;
4091
4092 if (IS_VALLEYVIEW(dev)) {
4093 refclk = vlv_get_refclk(crtc);
4094 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4095 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4096 refclk = dev_priv->lvds_ssc_freq * 1000;
4097 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4098 refclk / 1000);
4099 } else if (!IS_GEN2(dev)) {
4100 refclk = 96000;
4101 } else {
4102 refclk = 48000;
4103 }
4104
4105 return refclk;
4106 }
4107
4108 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4109 intel_clock_t *clock)
4110 {
4111 /* SDVO TV has fixed PLL values depend on its clock range,
4112 this mirrors vbios setting. */
4113 if (adjusted_mode->clock >= 100000
4114 && adjusted_mode->clock < 140500) {
4115 clock->p1 = 2;
4116 clock->p2 = 10;
4117 clock->n = 3;
4118 clock->m1 = 16;
4119 clock->m2 = 8;
4120 } else if (adjusted_mode->clock >= 140500
4121 && adjusted_mode->clock <= 200000) {
4122 clock->p1 = 1;
4123 clock->p2 = 10;
4124 clock->n = 6;
4125 clock->m1 = 12;
4126 clock->m2 = 8;
4127 }
4128 }
4129
4130 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4131 intel_clock_t *clock,
4132 intel_clock_t *reduced_clock)
4133 {
4134 struct drm_device *dev = crtc->dev;
4135 struct drm_i915_private *dev_priv = dev->dev_private;
4136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4137 int pipe = intel_crtc->pipe;
4138 u32 fp, fp2 = 0;
4139
4140 if (IS_PINEVIEW(dev)) {
4141 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4142 if (reduced_clock)
4143 fp2 = (1 << reduced_clock->n) << 16 |
4144 reduced_clock->m1 << 8 | reduced_clock->m2;
4145 } else {
4146 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4147 if (reduced_clock)
4148 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4149 reduced_clock->m2;
4150 }
4151
4152 I915_WRITE(FP0(pipe), fp);
4153
4154 intel_crtc->lowfreq_avail = false;
4155 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4156 reduced_clock && i915_powersave) {
4157 I915_WRITE(FP1(pipe), fp2);
4158 intel_crtc->lowfreq_avail = true;
4159 } else {
4160 I915_WRITE(FP1(pipe), fp);
4161 }
4162 }
4163
4164 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4165 struct drm_display_mode *adjusted_mode)
4166 {
4167 struct drm_device *dev = crtc->dev;
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4170 int pipe = intel_crtc->pipe;
4171 u32 temp;
4172
4173 temp = I915_READ(LVDS);
4174 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4175 if (pipe == 1) {
4176 temp |= LVDS_PIPEB_SELECT;
4177 } else {
4178 temp &= ~LVDS_PIPEB_SELECT;
4179 }
4180 /* set the corresponsding LVDS_BORDER bit */
4181 temp |= dev_priv->lvds_border_bits;
4182 /* Set the B0-B3 data pairs corresponding to whether we're going to
4183 * set the DPLLs for dual-channel mode or not.
4184 */
4185 if (clock->p2 == 7)
4186 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4187 else
4188 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4189
4190 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4191 * appropriately here, but we need to look more thoroughly into how
4192 * panels behave in the two modes.
4193 */
4194 /* set the dithering flag on LVDS as needed */
4195 if (INTEL_INFO(dev)->gen >= 4) {
4196 if (dev_priv->lvds_dither)
4197 temp |= LVDS_ENABLE_DITHER;
4198 else
4199 temp &= ~LVDS_ENABLE_DITHER;
4200 }
4201 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4202 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4203 temp |= LVDS_HSYNC_POLARITY;
4204 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4205 temp |= LVDS_VSYNC_POLARITY;
4206 I915_WRITE(LVDS, temp);
4207 }
4208
4209 static void vlv_update_pll(struct drm_crtc *crtc,
4210 struct drm_display_mode *mode,
4211 struct drm_display_mode *adjusted_mode,
4212 intel_clock_t *clock, intel_clock_t *reduced_clock,
4213 int num_connectors)
4214 {
4215 struct drm_device *dev = crtc->dev;
4216 struct drm_i915_private *dev_priv = dev->dev_private;
4217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4218 int pipe = intel_crtc->pipe;
4219 u32 dpll, mdiv, pdiv;
4220 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4221 bool is_sdvo;
4222 u32 temp;
4223
4224 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4225 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4226
4227 dpll = DPLL_VGA_MODE_DIS;
4228 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4229 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4230 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4231
4232 I915_WRITE(DPLL(pipe), dpll);
4233 POSTING_READ(DPLL(pipe));
4234
4235 bestn = clock->n;
4236 bestm1 = clock->m1;
4237 bestm2 = clock->m2;
4238 bestp1 = clock->p1;
4239 bestp2 = clock->p2;
4240
4241 /*
4242 * In Valleyview PLL and program lane counter registers are exposed
4243 * through DPIO interface
4244 */
4245 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4246 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4247 mdiv |= ((bestn << DPIO_N_SHIFT));
4248 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4249 mdiv |= (1 << DPIO_K_SHIFT);
4250 mdiv |= DPIO_ENABLE_CALIBRATION;
4251 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4252
4253 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4254
4255 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4256 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4257 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4258 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4259 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4260
4261 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4262
4263 dpll |= DPLL_VCO_ENABLE;
4264 I915_WRITE(DPLL(pipe), dpll);
4265 POSTING_READ(DPLL(pipe));
4266 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4267 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4268
4269 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4270
4271 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4272 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4273
4274 I915_WRITE(DPLL(pipe), dpll);
4275
4276 /* Wait for the clocks to stabilize. */
4277 POSTING_READ(DPLL(pipe));
4278 udelay(150);
4279
4280 temp = 0;
4281 if (is_sdvo) {
4282 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4283 if (temp > 1)
4284 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4285 else
4286 temp = 0;
4287 }
4288 I915_WRITE(DPLL_MD(pipe), temp);
4289 POSTING_READ(DPLL_MD(pipe));
4290
4291 /* Now program lane control registers */
4292 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4293 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4294 {
4295 temp = 0x1000C4;
4296 if(pipe == 1)
4297 temp |= (1 << 21);
4298 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4299 }
4300 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4301 {
4302 temp = 0x1000C4;
4303 if(pipe == 1)
4304 temp |= (1 << 21);
4305 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4306 }
4307 }
4308
4309 static void i9xx_update_pll(struct drm_crtc *crtc,
4310 struct drm_display_mode *mode,
4311 struct drm_display_mode *adjusted_mode,
4312 intel_clock_t *clock, intel_clock_t *reduced_clock,
4313 int num_connectors)
4314 {
4315 struct drm_device *dev = crtc->dev;
4316 struct drm_i915_private *dev_priv = dev->dev_private;
4317 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4318 int pipe = intel_crtc->pipe;
4319 u32 dpll;
4320 bool is_sdvo;
4321
4322 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4323
4324 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4325 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4326
4327 dpll = DPLL_VGA_MODE_DIS;
4328
4329 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4330 dpll |= DPLLB_MODE_LVDS;
4331 else
4332 dpll |= DPLLB_MODE_DAC_SERIAL;
4333 if (is_sdvo) {
4334 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4335 if (pixel_multiplier > 1) {
4336 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4337 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4338 }
4339 dpll |= DPLL_DVO_HIGH_SPEED;
4340 }
4341 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4342 dpll |= DPLL_DVO_HIGH_SPEED;
4343
4344 /* compute bitmask from p1 value */
4345 if (IS_PINEVIEW(dev))
4346 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4347 else {
4348 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4349 if (IS_G4X(dev) && reduced_clock)
4350 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4351 }
4352 switch (clock->p2) {
4353 case 5:
4354 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4355 break;
4356 case 7:
4357 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4358 break;
4359 case 10:
4360 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4361 break;
4362 case 14:
4363 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4364 break;
4365 }
4366 if (INTEL_INFO(dev)->gen >= 4)
4367 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4368
4369 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4370 dpll |= PLL_REF_INPUT_TVCLKINBC;
4371 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4372 /* XXX: just matching BIOS for now */
4373 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4374 dpll |= 3;
4375 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4376 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4377 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4378 else
4379 dpll |= PLL_REF_INPUT_DREFCLK;
4380
4381 dpll |= DPLL_VCO_ENABLE;
4382 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4383 POSTING_READ(DPLL(pipe));
4384 udelay(150);
4385
4386 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4387 * This is an exception to the general rule that mode_set doesn't turn
4388 * things on.
4389 */
4390 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4391 intel_update_lvds(crtc, clock, adjusted_mode);
4392
4393 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4394 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4395
4396 I915_WRITE(DPLL(pipe), dpll);
4397
4398 /* Wait for the clocks to stabilize. */
4399 POSTING_READ(DPLL(pipe));
4400 udelay(150);
4401
4402 if (INTEL_INFO(dev)->gen >= 4) {
4403 u32 temp = 0;
4404 if (is_sdvo) {
4405 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4406 if (temp > 1)
4407 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4408 else
4409 temp = 0;
4410 }
4411 I915_WRITE(DPLL_MD(pipe), temp);
4412 } else {
4413 /* The pixel multiplier can only be updated once the
4414 * DPLL is enabled and the clocks are stable.
4415 *
4416 * So write it again.
4417 */
4418 I915_WRITE(DPLL(pipe), dpll);
4419 }
4420 }
4421
4422 static void i8xx_update_pll(struct drm_crtc *crtc,
4423 struct drm_display_mode *adjusted_mode,
4424 intel_clock_t *clock, intel_clock_t *reduced_clock,
4425 int num_connectors)
4426 {
4427 struct drm_device *dev = crtc->dev;
4428 struct drm_i915_private *dev_priv = dev->dev_private;
4429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4430 int pipe = intel_crtc->pipe;
4431 u32 dpll;
4432
4433 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4434
4435 dpll = DPLL_VGA_MODE_DIS;
4436
4437 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4438 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4439 } else {
4440 if (clock->p1 == 2)
4441 dpll |= PLL_P1_DIVIDE_BY_TWO;
4442 else
4443 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4444 if (clock->p2 == 4)
4445 dpll |= PLL_P2_DIVIDE_BY_4;
4446 }
4447
4448 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4449 /* XXX: just matching BIOS for now */
4450 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4451 dpll |= 3;
4452 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4453 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4454 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4455 else
4456 dpll |= PLL_REF_INPUT_DREFCLK;
4457
4458 dpll |= DPLL_VCO_ENABLE;
4459 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4460 POSTING_READ(DPLL(pipe));
4461 udelay(150);
4462
4463 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4464 * This is an exception to the general rule that mode_set doesn't turn
4465 * things on.
4466 */
4467 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4468 intel_update_lvds(crtc, clock, adjusted_mode);
4469
4470 I915_WRITE(DPLL(pipe), dpll);
4471
4472 /* Wait for the clocks to stabilize. */
4473 POSTING_READ(DPLL(pipe));
4474 udelay(150);
4475
4476 /* The pixel multiplier can only be updated once the
4477 * DPLL is enabled and the clocks are stable.
4478 *
4479 * So write it again.
4480 */
4481 I915_WRITE(DPLL(pipe), dpll);
4482 }
4483
4484 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4485 struct drm_display_mode *mode,
4486 struct drm_display_mode *adjusted_mode)
4487 {
4488 struct drm_device *dev = intel_crtc->base.dev;
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 enum pipe pipe = intel_crtc->pipe;
4491 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4492 uint32_t vsyncshift;
4493
4494 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4495 /* the chip adds 2 halflines automatically */
4496 adjusted_mode->crtc_vtotal -= 1;
4497 adjusted_mode->crtc_vblank_end -= 1;
4498 vsyncshift = adjusted_mode->crtc_hsync_start
4499 - adjusted_mode->crtc_htotal / 2;
4500 } else {
4501 vsyncshift = 0;
4502 }
4503
4504 if (INTEL_INFO(dev)->gen > 3)
4505 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4506
4507 I915_WRITE(HTOTAL(cpu_transcoder),
4508 (adjusted_mode->crtc_hdisplay - 1) |
4509 ((adjusted_mode->crtc_htotal - 1) << 16));
4510 I915_WRITE(HBLANK(cpu_transcoder),
4511 (adjusted_mode->crtc_hblank_start - 1) |
4512 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4513 I915_WRITE(HSYNC(cpu_transcoder),
4514 (adjusted_mode->crtc_hsync_start - 1) |
4515 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4516
4517 I915_WRITE(VTOTAL(cpu_transcoder),
4518 (adjusted_mode->crtc_vdisplay - 1) |
4519 ((adjusted_mode->crtc_vtotal - 1) << 16));
4520 I915_WRITE(VBLANK(cpu_transcoder),
4521 (adjusted_mode->crtc_vblank_start - 1) |
4522 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4523 I915_WRITE(VSYNC(cpu_transcoder),
4524 (adjusted_mode->crtc_vsync_start - 1) |
4525 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4526
4527 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4528 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4529 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4530 * bits. */
4531 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4532 (pipe == PIPE_B || pipe == PIPE_C))
4533 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4534
4535 /* pipesrc controls the size that is scaled from, which should
4536 * always be the user's requested size.
4537 */
4538 I915_WRITE(PIPESRC(pipe),
4539 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4540 }
4541
4542 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4543 struct drm_display_mode *mode,
4544 struct drm_display_mode *adjusted_mode,
4545 int x, int y,
4546 struct drm_framebuffer *fb)
4547 {
4548 struct drm_device *dev = crtc->dev;
4549 struct drm_i915_private *dev_priv = dev->dev_private;
4550 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4551 int pipe = intel_crtc->pipe;
4552 int plane = intel_crtc->plane;
4553 int refclk, num_connectors = 0;
4554 intel_clock_t clock, reduced_clock;
4555 u32 dspcntr, pipeconf;
4556 bool ok, has_reduced_clock = false, is_sdvo = false;
4557 bool is_lvds = false, is_tv = false, is_dp = false;
4558 struct intel_encoder *encoder;
4559 const intel_limit_t *limit;
4560 int ret;
4561
4562 for_each_encoder_on_crtc(dev, crtc, encoder) {
4563 switch (encoder->type) {
4564 case INTEL_OUTPUT_LVDS:
4565 is_lvds = true;
4566 break;
4567 case INTEL_OUTPUT_SDVO:
4568 case INTEL_OUTPUT_HDMI:
4569 is_sdvo = true;
4570 if (encoder->needs_tv_clock)
4571 is_tv = true;
4572 break;
4573 case INTEL_OUTPUT_TVOUT:
4574 is_tv = true;
4575 break;
4576 case INTEL_OUTPUT_DISPLAYPORT:
4577 is_dp = true;
4578 break;
4579 }
4580
4581 num_connectors++;
4582 }
4583
4584 refclk = i9xx_get_refclk(crtc, num_connectors);
4585
4586 /*
4587 * Returns a set of divisors for the desired target clock with the given
4588 * refclk, or FALSE. The returned values represent the clock equation:
4589 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4590 */
4591 limit = intel_limit(crtc, refclk);
4592 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4593 &clock);
4594 if (!ok) {
4595 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4596 return -EINVAL;
4597 }
4598
4599 /* Ensure that the cursor is valid for the new mode before changing... */
4600 intel_crtc_update_cursor(crtc, true);
4601
4602 if (is_lvds && dev_priv->lvds_downclock_avail) {
4603 /*
4604 * Ensure we match the reduced clock's P to the target clock.
4605 * If the clocks don't match, we can't switch the display clock
4606 * by using the FP0/FP1. In such case we will disable the LVDS
4607 * downclock feature.
4608 */
4609 has_reduced_clock = limit->find_pll(limit, crtc,
4610 dev_priv->lvds_downclock,
4611 refclk,
4612 &clock,
4613 &reduced_clock);
4614 }
4615
4616 if (is_sdvo && is_tv)
4617 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4618
4619 if (IS_GEN2(dev))
4620 i8xx_update_pll(crtc, adjusted_mode, &clock,
4621 has_reduced_clock ? &reduced_clock : NULL,
4622 num_connectors);
4623 else if (IS_VALLEYVIEW(dev))
4624 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4625 has_reduced_clock ? &reduced_clock : NULL,
4626 num_connectors);
4627 else
4628 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4629 has_reduced_clock ? &reduced_clock : NULL,
4630 num_connectors);
4631
4632 /* setup pipeconf */
4633 pipeconf = I915_READ(PIPECONF(pipe));
4634
4635 /* Set up the display plane register */
4636 dspcntr = DISPPLANE_GAMMA_ENABLE;
4637
4638 if (pipe == 0)
4639 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4640 else
4641 dspcntr |= DISPPLANE_SEL_PIPE_B;
4642
4643 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4644 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4645 * core speed.
4646 *
4647 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4648 * pipe == 0 check?
4649 */
4650 if (mode->clock >
4651 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4652 pipeconf |= PIPECONF_DOUBLE_WIDE;
4653 else
4654 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4655 }
4656
4657 /* default to 8bpc */
4658 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4659 if (is_dp) {
4660 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4661 pipeconf |= PIPECONF_BPP_6 |
4662 PIPECONF_DITHER_EN |
4663 PIPECONF_DITHER_TYPE_SP;
4664 }
4665 }
4666
4667 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4668 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4669 pipeconf |= PIPECONF_BPP_6 |
4670 PIPECONF_ENABLE |
4671 I965_PIPECONF_ACTIVE;
4672 }
4673 }
4674
4675 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4676 drm_mode_debug_printmodeline(mode);
4677
4678 if (HAS_PIPE_CXSR(dev)) {
4679 if (intel_crtc->lowfreq_avail) {
4680 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4681 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4682 } else {
4683 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4684 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4685 }
4686 }
4687
4688 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4689 if (!IS_GEN2(dev) &&
4690 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4691 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4692 else
4693 pipeconf |= PIPECONF_PROGRESSIVE;
4694
4695 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4696
4697 /* pipesrc and dspsize control the size that is scaled from,
4698 * which should always be the user's requested size.
4699 */
4700 I915_WRITE(DSPSIZE(plane),
4701 ((mode->vdisplay - 1) << 16) |
4702 (mode->hdisplay - 1));
4703 I915_WRITE(DSPPOS(plane), 0);
4704
4705 I915_WRITE(PIPECONF(pipe), pipeconf);
4706 POSTING_READ(PIPECONF(pipe));
4707 intel_enable_pipe(dev_priv, pipe, false);
4708
4709 intel_wait_for_vblank(dev, pipe);
4710
4711 I915_WRITE(DSPCNTR(plane), dspcntr);
4712 POSTING_READ(DSPCNTR(plane));
4713
4714 ret = intel_pipe_set_base(crtc, x, y, fb);
4715
4716 intel_update_watermarks(dev);
4717
4718 return ret;
4719 }
4720
4721 /*
4722 * Initialize reference clocks when the driver loads
4723 */
4724 void ironlake_init_pch_refclk(struct drm_device *dev)
4725 {
4726 struct drm_i915_private *dev_priv = dev->dev_private;
4727 struct drm_mode_config *mode_config = &dev->mode_config;
4728 struct intel_encoder *encoder;
4729 u32 temp;
4730 bool has_lvds = false;
4731 bool has_cpu_edp = false;
4732 bool has_pch_edp = false;
4733 bool has_panel = false;
4734 bool has_ck505 = false;
4735 bool can_ssc = false;
4736
4737 /* We need to take the global config into account */
4738 list_for_each_entry(encoder, &mode_config->encoder_list,
4739 base.head) {
4740 switch (encoder->type) {
4741 case INTEL_OUTPUT_LVDS:
4742 has_panel = true;
4743 has_lvds = true;
4744 break;
4745 case INTEL_OUTPUT_EDP:
4746 has_panel = true;
4747 if (intel_encoder_is_pch_edp(&encoder->base))
4748 has_pch_edp = true;
4749 else
4750 has_cpu_edp = true;
4751 break;
4752 }
4753 }
4754
4755 if (HAS_PCH_IBX(dev)) {
4756 has_ck505 = dev_priv->display_clock_mode;
4757 can_ssc = has_ck505;
4758 } else {
4759 has_ck505 = false;
4760 can_ssc = true;
4761 }
4762
4763 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4764 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4765 has_ck505);
4766
4767 /* Ironlake: try to setup display ref clock before DPLL
4768 * enabling. This is only under driver's control after
4769 * PCH B stepping, previous chipset stepping should be
4770 * ignoring this setting.
4771 */
4772 temp = I915_READ(PCH_DREF_CONTROL);
4773 /* Always enable nonspread source */
4774 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4775
4776 if (has_ck505)
4777 temp |= DREF_NONSPREAD_CK505_ENABLE;
4778 else
4779 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4780
4781 if (has_panel) {
4782 temp &= ~DREF_SSC_SOURCE_MASK;
4783 temp |= DREF_SSC_SOURCE_ENABLE;
4784
4785 /* SSC must be turned on before enabling the CPU output */
4786 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4787 DRM_DEBUG_KMS("Using SSC on panel\n");
4788 temp |= DREF_SSC1_ENABLE;
4789 } else
4790 temp &= ~DREF_SSC1_ENABLE;
4791
4792 /* Get SSC going before enabling the outputs */
4793 I915_WRITE(PCH_DREF_CONTROL, temp);
4794 POSTING_READ(PCH_DREF_CONTROL);
4795 udelay(200);
4796
4797 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4798
4799 /* Enable CPU source on CPU attached eDP */
4800 if (has_cpu_edp) {
4801 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4802 DRM_DEBUG_KMS("Using SSC on eDP\n");
4803 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4804 }
4805 else
4806 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4807 } else
4808 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4809
4810 I915_WRITE(PCH_DREF_CONTROL, temp);
4811 POSTING_READ(PCH_DREF_CONTROL);
4812 udelay(200);
4813 } else {
4814 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4815
4816 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4817
4818 /* Turn off CPU output */
4819 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4820
4821 I915_WRITE(PCH_DREF_CONTROL, temp);
4822 POSTING_READ(PCH_DREF_CONTROL);
4823 udelay(200);
4824
4825 /* Turn off the SSC source */
4826 temp &= ~DREF_SSC_SOURCE_MASK;
4827 temp |= DREF_SSC_SOURCE_DISABLE;
4828
4829 /* Turn off SSC1 */
4830 temp &= ~ DREF_SSC1_ENABLE;
4831
4832 I915_WRITE(PCH_DREF_CONTROL, temp);
4833 POSTING_READ(PCH_DREF_CONTROL);
4834 udelay(200);
4835 }
4836 }
4837
4838 static int ironlake_get_refclk(struct drm_crtc *crtc)
4839 {
4840 struct drm_device *dev = crtc->dev;
4841 struct drm_i915_private *dev_priv = dev->dev_private;
4842 struct intel_encoder *encoder;
4843 struct intel_encoder *edp_encoder = NULL;
4844 int num_connectors = 0;
4845 bool is_lvds = false;
4846
4847 for_each_encoder_on_crtc(dev, crtc, encoder) {
4848 switch (encoder->type) {
4849 case INTEL_OUTPUT_LVDS:
4850 is_lvds = true;
4851 break;
4852 case INTEL_OUTPUT_EDP:
4853 edp_encoder = encoder;
4854 break;
4855 }
4856 num_connectors++;
4857 }
4858
4859 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4860 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4861 dev_priv->lvds_ssc_freq);
4862 return dev_priv->lvds_ssc_freq * 1000;
4863 }
4864
4865 return 120000;
4866 }
4867
4868 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4869 struct drm_display_mode *adjusted_mode,
4870 bool dither)
4871 {
4872 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4874 int pipe = intel_crtc->pipe;
4875 uint32_t val;
4876
4877 val = I915_READ(PIPECONF(pipe));
4878
4879 val &= ~PIPE_BPC_MASK;
4880 switch (intel_crtc->bpp) {
4881 case 18:
4882 val |= PIPE_6BPC;
4883 break;
4884 case 24:
4885 val |= PIPE_8BPC;
4886 break;
4887 case 30:
4888 val |= PIPE_10BPC;
4889 break;
4890 case 36:
4891 val |= PIPE_12BPC;
4892 break;
4893 default:
4894 /* Case prevented by intel_choose_pipe_bpp_dither. */
4895 BUG();
4896 }
4897
4898 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4899 if (dither)
4900 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4901
4902 val &= ~PIPECONF_INTERLACE_MASK;
4903 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4904 val |= PIPECONF_INTERLACED_ILK;
4905 else
4906 val |= PIPECONF_PROGRESSIVE;
4907
4908 I915_WRITE(PIPECONF(pipe), val);
4909 POSTING_READ(PIPECONF(pipe));
4910 }
4911
4912 static void haswell_set_pipeconf(struct drm_crtc *crtc,
4913 struct drm_display_mode *adjusted_mode,
4914 bool dither)
4915 {
4916 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4918 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4919 uint32_t val;
4920
4921 val = I915_READ(PIPECONF(cpu_transcoder));
4922
4923 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4924 if (dither)
4925 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4926
4927 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4928 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4929 val |= PIPECONF_INTERLACED_ILK;
4930 else
4931 val |= PIPECONF_PROGRESSIVE;
4932
4933 I915_WRITE(PIPECONF(cpu_transcoder), val);
4934 POSTING_READ(PIPECONF(cpu_transcoder));
4935 }
4936
4937 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4938 struct drm_display_mode *adjusted_mode,
4939 intel_clock_t *clock,
4940 bool *has_reduced_clock,
4941 intel_clock_t *reduced_clock)
4942 {
4943 struct drm_device *dev = crtc->dev;
4944 struct drm_i915_private *dev_priv = dev->dev_private;
4945 struct intel_encoder *intel_encoder;
4946 int refclk;
4947 const intel_limit_t *limit;
4948 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4949
4950 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4951 switch (intel_encoder->type) {
4952 case INTEL_OUTPUT_LVDS:
4953 is_lvds = true;
4954 break;
4955 case INTEL_OUTPUT_SDVO:
4956 case INTEL_OUTPUT_HDMI:
4957 is_sdvo = true;
4958 if (intel_encoder->needs_tv_clock)
4959 is_tv = true;
4960 break;
4961 case INTEL_OUTPUT_TVOUT:
4962 is_tv = true;
4963 break;
4964 }
4965 }
4966
4967 refclk = ironlake_get_refclk(crtc);
4968
4969 /*
4970 * Returns a set of divisors for the desired target clock with the given
4971 * refclk, or FALSE. The returned values represent the clock equation:
4972 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4973 */
4974 limit = intel_limit(crtc, refclk);
4975 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4976 clock);
4977 if (!ret)
4978 return false;
4979
4980 if (is_lvds && dev_priv->lvds_downclock_avail) {
4981 /*
4982 * Ensure we match the reduced clock's P to the target clock.
4983 * If the clocks don't match, we can't switch the display clock
4984 * by using the FP0/FP1. In such case we will disable the LVDS
4985 * downclock feature.
4986 */
4987 *has_reduced_clock = limit->find_pll(limit, crtc,
4988 dev_priv->lvds_downclock,
4989 refclk,
4990 clock,
4991 reduced_clock);
4992 }
4993
4994 if (is_sdvo && is_tv)
4995 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4996
4997 return true;
4998 }
4999
5000 static void ironlake_set_m_n(struct drm_crtc *crtc,
5001 struct drm_display_mode *mode,
5002 struct drm_display_mode *adjusted_mode)
5003 {
5004 struct drm_device *dev = crtc->dev;
5005 struct drm_i915_private *dev_priv = dev->dev_private;
5006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5007 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5008 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5009 struct fdi_m_n m_n = {0};
5010 int target_clock, pixel_multiplier, lane, link_bw;
5011 bool is_dp = false, is_cpu_edp = false;
5012
5013 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5014 switch (intel_encoder->type) {
5015 case INTEL_OUTPUT_DISPLAYPORT:
5016 is_dp = true;
5017 break;
5018 case INTEL_OUTPUT_EDP:
5019 is_dp = true;
5020 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5021 is_cpu_edp = true;
5022 edp_encoder = intel_encoder;
5023 break;
5024 }
5025 }
5026
5027 /* FDI link */
5028 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5029 lane = 0;
5030 /* CPU eDP doesn't require FDI link, so just set DP M/N
5031 according to current link config */
5032 if (is_cpu_edp) {
5033 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5034 } else {
5035 /* FDI is a binary signal running at ~2.7GHz, encoding
5036 * each output octet as 10 bits. The actual frequency
5037 * is stored as a divider into a 100MHz clock, and the
5038 * mode pixel clock is stored in units of 1KHz.
5039 * Hence the bw of each lane in terms of the mode signal
5040 * is:
5041 */
5042 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5043 }
5044
5045 /* [e]DP over FDI requires target mode clock instead of link clock. */
5046 if (edp_encoder)
5047 target_clock = intel_edp_target_clock(edp_encoder, mode);
5048 else if (is_dp)
5049 target_clock = mode->clock;
5050 else
5051 target_clock = adjusted_mode->clock;
5052
5053 if (!lane) {
5054 /*
5055 * Account for spread spectrum to avoid
5056 * oversubscribing the link. Max center spread
5057 * is 2.5%; use 5% for safety's sake.
5058 */
5059 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5060 lane = bps / (link_bw * 8) + 1;
5061 }
5062
5063 intel_crtc->fdi_lanes = lane;
5064
5065 if (pixel_multiplier > 1)
5066 link_bw *= pixel_multiplier;
5067 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5068 &m_n);
5069
5070 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5071 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5072 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5073 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5074 }
5075
5076 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5077 struct drm_display_mode *adjusted_mode,
5078 intel_clock_t *clock, u32 fp)
5079 {
5080 struct drm_crtc *crtc = &intel_crtc->base;
5081 struct drm_device *dev = crtc->dev;
5082 struct drm_i915_private *dev_priv = dev->dev_private;
5083 struct intel_encoder *intel_encoder;
5084 uint32_t dpll;
5085 int factor, pixel_multiplier, num_connectors = 0;
5086 bool is_lvds = false, is_sdvo = false, is_tv = false;
5087 bool is_dp = false, is_cpu_edp = false;
5088
5089 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5090 switch (intel_encoder->type) {
5091 case INTEL_OUTPUT_LVDS:
5092 is_lvds = true;
5093 break;
5094 case INTEL_OUTPUT_SDVO:
5095 case INTEL_OUTPUT_HDMI:
5096 is_sdvo = true;
5097 if (intel_encoder->needs_tv_clock)
5098 is_tv = true;
5099 break;
5100 case INTEL_OUTPUT_TVOUT:
5101 is_tv = true;
5102 break;
5103 case INTEL_OUTPUT_DISPLAYPORT:
5104 is_dp = true;
5105 break;
5106 case INTEL_OUTPUT_EDP:
5107 is_dp = true;
5108 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5109 is_cpu_edp = true;
5110 break;
5111 }
5112
5113 num_connectors++;
5114 }
5115
5116 /* Enable autotuning of the PLL clock (if permissible) */
5117 factor = 21;
5118 if (is_lvds) {
5119 if ((intel_panel_use_ssc(dev_priv) &&
5120 dev_priv->lvds_ssc_freq == 100) ||
5121 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5122 factor = 25;
5123 } else if (is_sdvo && is_tv)
5124 factor = 20;
5125
5126 if (clock->m < factor * clock->n)
5127 fp |= FP_CB_TUNE;
5128
5129 dpll = 0;
5130
5131 if (is_lvds)
5132 dpll |= DPLLB_MODE_LVDS;
5133 else
5134 dpll |= DPLLB_MODE_DAC_SERIAL;
5135 if (is_sdvo) {
5136 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5137 if (pixel_multiplier > 1) {
5138 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5139 }
5140 dpll |= DPLL_DVO_HIGH_SPEED;
5141 }
5142 if (is_dp && !is_cpu_edp)
5143 dpll |= DPLL_DVO_HIGH_SPEED;
5144
5145 /* compute bitmask from p1 value */
5146 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5147 /* also FPA1 */
5148 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5149
5150 switch (clock->p2) {
5151 case 5:
5152 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5153 break;
5154 case 7:
5155 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5156 break;
5157 case 10:
5158 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5159 break;
5160 case 14:
5161 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5162 break;
5163 }
5164
5165 if (is_sdvo && is_tv)
5166 dpll |= PLL_REF_INPUT_TVCLKINBC;
5167 else if (is_tv)
5168 /* XXX: just matching BIOS for now */
5169 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5170 dpll |= 3;
5171 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5172 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5173 else
5174 dpll |= PLL_REF_INPUT_DREFCLK;
5175
5176 return dpll;
5177 }
5178
5179 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5180 struct drm_display_mode *mode,
5181 struct drm_display_mode *adjusted_mode,
5182 int x, int y,
5183 struct drm_framebuffer *fb)
5184 {
5185 struct drm_device *dev = crtc->dev;
5186 struct drm_i915_private *dev_priv = dev->dev_private;
5187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5188 int pipe = intel_crtc->pipe;
5189 int plane = intel_crtc->plane;
5190 int num_connectors = 0;
5191 intel_clock_t clock, reduced_clock;
5192 u32 dpll, fp = 0, fp2 = 0;
5193 bool ok, has_reduced_clock = false;
5194 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5195 struct intel_encoder *encoder;
5196 u32 temp;
5197 int ret;
5198 bool dither;
5199
5200 for_each_encoder_on_crtc(dev, crtc, encoder) {
5201 switch (encoder->type) {
5202 case INTEL_OUTPUT_LVDS:
5203 is_lvds = true;
5204 break;
5205 case INTEL_OUTPUT_DISPLAYPORT:
5206 is_dp = true;
5207 break;
5208 case INTEL_OUTPUT_EDP:
5209 is_dp = true;
5210 if (!intel_encoder_is_pch_edp(&encoder->base))
5211 is_cpu_edp = true;
5212 break;
5213 }
5214
5215 num_connectors++;
5216 }
5217
5218 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5219 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5220
5221 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5222 &has_reduced_clock, &reduced_clock);
5223 if (!ok) {
5224 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5225 return -EINVAL;
5226 }
5227
5228 /* Ensure that the cursor is valid for the new mode before changing... */
5229 intel_crtc_update_cursor(crtc, true);
5230
5231 /* determine panel color depth */
5232 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5233 adjusted_mode);
5234 if (is_lvds && dev_priv->lvds_dither)
5235 dither = true;
5236
5237 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5238 if (has_reduced_clock)
5239 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5240 reduced_clock.m2;
5241
5242 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5243
5244 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5245 drm_mode_debug_printmodeline(mode);
5246
5247 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5248 if (!is_cpu_edp) {
5249 struct intel_pch_pll *pll;
5250
5251 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5252 if (pll == NULL) {
5253 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5254 pipe);
5255 return -EINVAL;
5256 }
5257 } else
5258 intel_put_pch_pll(intel_crtc);
5259
5260 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5261 * This is an exception to the general rule that mode_set doesn't turn
5262 * things on.
5263 */
5264 if (is_lvds) {
5265 temp = I915_READ(PCH_LVDS);
5266 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5267 if (HAS_PCH_CPT(dev)) {
5268 temp &= ~PORT_TRANS_SEL_MASK;
5269 temp |= PORT_TRANS_SEL_CPT(pipe);
5270 } else {
5271 if (pipe == 1)
5272 temp |= LVDS_PIPEB_SELECT;
5273 else
5274 temp &= ~LVDS_PIPEB_SELECT;
5275 }
5276
5277 /* set the corresponsding LVDS_BORDER bit */
5278 temp |= dev_priv->lvds_border_bits;
5279 /* Set the B0-B3 data pairs corresponding to whether we're going to
5280 * set the DPLLs for dual-channel mode or not.
5281 */
5282 if (clock.p2 == 7)
5283 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5284 else
5285 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5286
5287 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5288 * appropriately here, but we need to look more thoroughly into how
5289 * panels behave in the two modes.
5290 */
5291 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5292 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5293 temp |= LVDS_HSYNC_POLARITY;
5294 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5295 temp |= LVDS_VSYNC_POLARITY;
5296 I915_WRITE(PCH_LVDS, temp);
5297 }
5298
5299 if (is_dp && !is_cpu_edp) {
5300 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5301 } else {
5302 /* For non-DP output, clear any trans DP clock recovery setting.*/
5303 I915_WRITE(TRANSDATA_M1(pipe), 0);
5304 I915_WRITE(TRANSDATA_N1(pipe), 0);
5305 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5306 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5307 }
5308
5309 if (intel_crtc->pch_pll) {
5310 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5311
5312 /* Wait for the clocks to stabilize. */
5313 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5314 udelay(150);
5315
5316 /* The pixel multiplier can only be updated once the
5317 * DPLL is enabled and the clocks are stable.
5318 *
5319 * So write it again.
5320 */
5321 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5322 }
5323
5324 intel_crtc->lowfreq_avail = false;
5325 if (intel_crtc->pch_pll) {
5326 if (is_lvds && has_reduced_clock && i915_powersave) {
5327 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5328 intel_crtc->lowfreq_avail = true;
5329 } else {
5330 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5331 }
5332 }
5333
5334 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5335
5336 ironlake_set_m_n(crtc, mode, adjusted_mode);
5337
5338 if (is_cpu_edp)
5339 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5340
5341 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5342
5343 intel_wait_for_vblank(dev, pipe);
5344
5345 /* Set up the display plane register */
5346 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5347 POSTING_READ(DSPCNTR(plane));
5348
5349 ret = intel_pipe_set_base(crtc, x, y, fb);
5350
5351 intel_update_watermarks(dev);
5352
5353 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5354
5355 return ret;
5356 }
5357
5358 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5359 struct drm_display_mode *mode,
5360 struct drm_display_mode *adjusted_mode,
5361 int x, int y,
5362 struct drm_framebuffer *fb)
5363 {
5364 struct drm_device *dev = crtc->dev;
5365 struct drm_i915_private *dev_priv = dev->dev_private;
5366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5367 int pipe = intel_crtc->pipe;
5368 int plane = intel_crtc->plane;
5369 int num_connectors = 0;
5370 intel_clock_t clock, reduced_clock;
5371 u32 dpll = 0, fp = 0, fp2 = 0;
5372 bool ok, has_reduced_clock = false;
5373 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5374 struct intel_encoder *encoder;
5375 u32 temp;
5376 int ret;
5377 bool dither;
5378
5379 for_each_encoder_on_crtc(dev, crtc, encoder) {
5380 switch (encoder->type) {
5381 case INTEL_OUTPUT_LVDS:
5382 is_lvds = true;
5383 break;
5384 case INTEL_OUTPUT_DISPLAYPORT:
5385 is_dp = true;
5386 break;
5387 case INTEL_OUTPUT_EDP:
5388 is_dp = true;
5389 if (!intel_encoder_is_pch_edp(&encoder->base))
5390 is_cpu_edp = true;
5391 break;
5392 }
5393
5394 num_connectors++;
5395 }
5396
5397 if (is_cpu_edp)
5398 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5399 else
5400 intel_crtc->cpu_transcoder = pipe;
5401
5402 /* We are not sure yet this won't happen. */
5403 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5404 INTEL_PCH_TYPE(dev));
5405
5406 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5407 num_connectors, pipe_name(pipe));
5408
5409 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5410 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5411
5412 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5413
5414 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5415 return -EINVAL;
5416
5417 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5418 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5419 &has_reduced_clock,
5420 &reduced_clock);
5421 if (!ok) {
5422 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5423 return -EINVAL;
5424 }
5425 }
5426
5427 /* Ensure that the cursor is valid for the new mode before changing... */
5428 intel_crtc_update_cursor(crtc, true);
5429
5430 /* determine panel color depth */
5431 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5432 adjusted_mode);
5433 if (is_lvds && dev_priv->lvds_dither)
5434 dither = true;
5435
5436 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5437 drm_mode_debug_printmodeline(mode);
5438
5439 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5440 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5441 if (has_reduced_clock)
5442 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5443 reduced_clock.m2;
5444
5445 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5446 fp);
5447
5448 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5449 * own on pre-Haswell/LPT generation */
5450 if (!is_cpu_edp) {
5451 struct intel_pch_pll *pll;
5452
5453 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5454 if (pll == NULL) {
5455 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5456 pipe);
5457 return -EINVAL;
5458 }
5459 } else
5460 intel_put_pch_pll(intel_crtc);
5461
5462 /* The LVDS pin pair needs to be on before the DPLLs are
5463 * enabled. This is an exception to the general rule that
5464 * mode_set doesn't turn things on.
5465 */
5466 if (is_lvds) {
5467 temp = I915_READ(PCH_LVDS);
5468 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5469 if (HAS_PCH_CPT(dev)) {
5470 temp &= ~PORT_TRANS_SEL_MASK;
5471 temp |= PORT_TRANS_SEL_CPT(pipe);
5472 } else {
5473 if (pipe == 1)
5474 temp |= LVDS_PIPEB_SELECT;
5475 else
5476 temp &= ~LVDS_PIPEB_SELECT;
5477 }
5478
5479 /* set the corresponsding LVDS_BORDER bit */
5480 temp |= dev_priv->lvds_border_bits;
5481 /* Set the B0-B3 data pairs corresponding to whether
5482 * we're going to set the DPLLs for dual-channel mode or
5483 * not.
5484 */
5485 if (clock.p2 == 7)
5486 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5487 else
5488 temp &= ~(LVDS_B0B3_POWER_UP |
5489 LVDS_CLKB_POWER_UP);
5490
5491 /* It would be nice to set 24 vs 18-bit mode
5492 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5493 * look more thoroughly into how panels behave in the
5494 * two modes.
5495 */
5496 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5497 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5498 temp |= LVDS_HSYNC_POLARITY;
5499 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5500 temp |= LVDS_VSYNC_POLARITY;
5501 I915_WRITE(PCH_LVDS, temp);
5502 }
5503 }
5504
5505 if (is_dp && !is_cpu_edp) {
5506 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5507 } else {
5508 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5509 /* For non-DP output, clear any trans DP clock recovery
5510 * setting.*/
5511 I915_WRITE(TRANSDATA_M1(pipe), 0);
5512 I915_WRITE(TRANSDATA_N1(pipe), 0);
5513 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5514 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5515 }
5516 }
5517
5518 intel_crtc->lowfreq_avail = false;
5519 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5520 if (intel_crtc->pch_pll) {
5521 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5522
5523 /* Wait for the clocks to stabilize. */
5524 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5525 udelay(150);
5526
5527 /* The pixel multiplier can only be updated once the
5528 * DPLL is enabled and the clocks are stable.
5529 *
5530 * So write it again.
5531 */
5532 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5533 }
5534
5535 if (intel_crtc->pch_pll) {
5536 if (is_lvds && has_reduced_clock && i915_powersave) {
5537 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5538 intel_crtc->lowfreq_avail = true;
5539 } else {
5540 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5541 }
5542 }
5543 }
5544
5545 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5546
5547 if (!is_dp || is_cpu_edp)
5548 ironlake_set_m_n(crtc, mode, adjusted_mode);
5549
5550 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5551 if (is_cpu_edp)
5552 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5553
5554 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5555
5556 /* Set up the display plane register */
5557 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5558 POSTING_READ(DSPCNTR(plane));
5559
5560 ret = intel_pipe_set_base(crtc, x, y, fb);
5561
5562 intel_update_watermarks(dev);
5563
5564 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5565
5566 return ret;
5567 }
5568
5569 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5570 struct drm_display_mode *mode,
5571 struct drm_display_mode *adjusted_mode,
5572 int x, int y,
5573 struct drm_framebuffer *fb)
5574 {
5575 struct drm_device *dev = crtc->dev;
5576 struct drm_i915_private *dev_priv = dev->dev_private;
5577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5578 int pipe = intel_crtc->pipe;
5579 int ret;
5580
5581 drm_vblank_pre_modeset(dev, pipe);
5582
5583 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5584 x, y, fb);
5585 drm_vblank_post_modeset(dev, pipe);
5586
5587 return ret;
5588 }
5589
5590 static bool intel_eld_uptodate(struct drm_connector *connector,
5591 int reg_eldv, uint32_t bits_eldv,
5592 int reg_elda, uint32_t bits_elda,
5593 int reg_edid)
5594 {
5595 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5596 uint8_t *eld = connector->eld;
5597 uint32_t i;
5598
5599 i = I915_READ(reg_eldv);
5600 i &= bits_eldv;
5601
5602 if (!eld[0])
5603 return !i;
5604
5605 if (!i)
5606 return false;
5607
5608 i = I915_READ(reg_elda);
5609 i &= ~bits_elda;
5610 I915_WRITE(reg_elda, i);
5611
5612 for (i = 0; i < eld[2]; i++)
5613 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5614 return false;
5615
5616 return true;
5617 }
5618
5619 static void g4x_write_eld(struct drm_connector *connector,
5620 struct drm_crtc *crtc)
5621 {
5622 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5623 uint8_t *eld = connector->eld;
5624 uint32_t eldv;
5625 uint32_t len;
5626 uint32_t i;
5627
5628 i = I915_READ(G4X_AUD_VID_DID);
5629
5630 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5631 eldv = G4X_ELDV_DEVCL_DEVBLC;
5632 else
5633 eldv = G4X_ELDV_DEVCTG;
5634
5635 if (intel_eld_uptodate(connector,
5636 G4X_AUD_CNTL_ST, eldv,
5637 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5638 G4X_HDMIW_HDMIEDID))
5639 return;
5640
5641 i = I915_READ(G4X_AUD_CNTL_ST);
5642 i &= ~(eldv | G4X_ELD_ADDR);
5643 len = (i >> 9) & 0x1f; /* ELD buffer size */
5644 I915_WRITE(G4X_AUD_CNTL_ST, i);
5645
5646 if (!eld[0])
5647 return;
5648
5649 len = min_t(uint8_t, eld[2], len);
5650 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5651 for (i = 0; i < len; i++)
5652 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5653
5654 i = I915_READ(G4X_AUD_CNTL_ST);
5655 i |= eldv;
5656 I915_WRITE(G4X_AUD_CNTL_ST, i);
5657 }
5658
5659 static void haswell_write_eld(struct drm_connector *connector,
5660 struct drm_crtc *crtc)
5661 {
5662 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5663 uint8_t *eld = connector->eld;
5664 struct drm_device *dev = crtc->dev;
5665 uint32_t eldv;
5666 uint32_t i;
5667 int len;
5668 int pipe = to_intel_crtc(crtc)->pipe;
5669 int tmp;
5670
5671 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5672 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5673 int aud_config = HSW_AUD_CFG(pipe);
5674 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5675
5676
5677 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5678
5679 /* Audio output enable */
5680 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5681 tmp = I915_READ(aud_cntrl_st2);
5682 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5683 I915_WRITE(aud_cntrl_st2, tmp);
5684
5685 /* Wait for 1 vertical blank */
5686 intel_wait_for_vblank(dev, pipe);
5687
5688 /* Set ELD valid state */
5689 tmp = I915_READ(aud_cntrl_st2);
5690 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5691 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5692 I915_WRITE(aud_cntrl_st2, tmp);
5693 tmp = I915_READ(aud_cntrl_st2);
5694 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5695
5696 /* Enable HDMI mode */
5697 tmp = I915_READ(aud_config);
5698 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5699 /* clear N_programing_enable and N_value_index */
5700 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5701 I915_WRITE(aud_config, tmp);
5702
5703 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5704
5705 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5706
5707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5708 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5709 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5710 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5711 } else
5712 I915_WRITE(aud_config, 0);
5713
5714 if (intel_eld_uptodate(connector,
5715 aud_cntrl_st2, eldv,
5716 aud_cntl_st, IBX_ELD_ADDRESS,
5717 hdmiw_hdmiedid))
5718 return;
5719
5720 i = I915_READ(aud_cntrl_st2);
5721 i &= ~eldv;
5722 I915_WRITE(aud_cntrl_st2, i);
5723
5724 if (!eld[0])
5725 return;
5726
5727 i = I915_READ(aud_cntl_st);
5728 i &= ~IBX_ELD_ADDRESS;
5729 I915_WRITE(aud_cntl_st, i);
5730 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5731 DRM_DEBUG_DRIVER("port num:%d\n", i);
5732
5733 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5734 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5735 for (i = 0; i < len; i++)
5736 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5737
5738 i = I915_READ(aud_cntrl_st2);
5739 i |= eldv;
5740 I915_WRITE(aud_cntrl_st2, i);
5741
5742 }
5743
5744 static void ironlake_write_eld(struct drm_connector *connector,
5745 struct drm_crtc *crtc)
5746 {
5747 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5748 uint8_t *eld = connector->eld;
5749 uint32_t eldv;
5750 uint32_t i;
5751 int len;
5752 int hdmiw_hdmiedid;
5753 int aud_config;
5754 int aud_cntl_st;
5755 int aud_cntrl_st2;
5756 int pipe = to_intel_crtc(crtc)->pipe;
5757
5758 if (HAS_PCH_IBX(connector->dev)) {
5759 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5760 aud_config = IBX_AUD_CFG(pipe);
5761 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5762 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5763 } else {
5764 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5765 aud_config = CPT_AUD_CFG(pipe);
5766 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5767 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5768 }
5769
5770 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5771
5772 i = I915_READ(aud_cntl_st);
5773 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5774 if (!i) {
5775 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5776 /* operate blindly on all ports */
5777 eldv = IBX_ELD_VALIDB;
5778 eldv |= IBX_ELD_VALIDB << 4;
5779 eldv |= IBX_ELD_VALIDB << 8;
5780 } else {
5781 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5782 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5783 }
5784
5785 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5786 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5787 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5788 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5789 } else
5790 I915_WRITE(aud_config, 0);
5791
5792 if (intel_eld_uptodate(connector,
5793 aud_cntrl_st2, eldv,
5794 aud_cntl_st, IBX_ELD_ADDRESS,
5795 hdmiw_hdmiedid))
5796 return;
5797
5798 i = I915_READ(aud_cntrl_st2);
5799 i &= ~eldv;
5800 I915_WRITE(aud_cntrl_st2, i);
5801
5802 if (!eld[0])
5803 return;
5804
5805 i = I915_READ(aud_cntl_st);
5806 i &= ~IBX_ELD_ADDRESS;
5807 I915_WRITE(aud_cntl_st, i);
5808
5809 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5810 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5811 for (i = 0; i < len; i++)
5812 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5813
5814 i = I915_READ(aud_cntrl_st2);
5815 i |= eldv;
5816 I915_WRITE(aud_cntrl_st2, i);
5817 }
5818
5819 void intel_write_eld(struct drm_encoder *encoder,
5820 struct drm_display_mode *mode)
5821 {
5822 struct drm_crtc *crtc = encoder->crtc;
5823 struct drm_connector *connector;
5824 struct drm_device *dev = encoder->dev;
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826
5827 connector = drm_select_eld(encoder, mode);
5828 if (!connector)
5829 return;
5830
5831 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5832 connector->base.id,
5833 drm_get_connector_name(connector),
5834 connector->encoder->base.id,
5835 drm_get_encoder_name(connector->encoder));
5836
5837 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5838
5839 if (dev_priv->display.write_eld)
5840 dev_priv->display.write_eld(connector, crtc);
5841 }
5842
5843 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5844 void intel_crtc_load_lut(struct drm_crtc *crtc)
5845 {
5846 struct drm_device *dev = crtc->dev;
5847 struct drm_i915_private *dev_priv = dev->dev_private;
5848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5849 int palreg = PALETTE(intel_crtc->pipe);
5850 int i;
5851
5852 /* The clocks have to be on to load the palette. */
5853 if (!crtc->enabled || !intel_crtc->active)
5854 return;
5855
5856 /* use legacy palette for Ironlake */
5857 if (HAS_PCH_SPLIT(dev))
5858 palreg = LGC_PALETTE(intel_crtc->pipe);
5859
5860 for (i = 0; i < 256; i++) {
5861 I915_WRITE(palreg + 4 * i,
5862 (intel_crtc->lut_r[i] << 16) |
5863 (intel_crtc->lut_g[i] << 8) |
5864 intel_crtc->lut_b[i]);
5865 }
5866 }
5867
5868 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5869 {
5870 struct drm_device *dev = crtc->dev;
5871 struct drm_i915_private *dev_priv = dev->dev_private;
5872 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5873 bool visible = base != 0;
5874 u32 cntl;
5875
5876 if (intel_crtc->cursor_visible == visible)
5877 return;
5878
5879 cntl = I915_READ(_CURACNTR);
5880 if (visible) {
5881 /* On these chipsets we can only modify the base whilst
5882 * the cursor is disabled.
5883 */
5884 I915_WRITE(_CURABASE, base);
5885
5886 cntl &= ~(CURSOR_FORMAT_MASK);
5887 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5888 cntl |= CURSOR_ENABLE |
5889 CURSOR_GAMMA_ENABLE |
5890 CURSOR_FORMAT_ARGB;
5891 } else
5892 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5893 I915_WRITE(_CURACNTR, cntl);
5894
5895 intel_crtc->cursor_visible = visible;
5896 }
5897
5898 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5899 {
5900 struct drm_device *dev = crtc->dev;
5901 struct drm_i915_private *dev_priv = dev->dev_private;
5902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5903 int pipe = intel_crtc->pipe;
5904 bool visible = base != 0;
5905
5906 if (intel_crtc->cursor_visible != visible) {
5907 uint32_t cntl = I915_READ(CURCNTR(pipe));
5908 if (base) {
5909 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5910 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5911 cntl |= pipe << 28; /* Connect to correct pipe */
5912 } else {
5913 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5914 cntl |= CURSOR_MODE_DISABLE;
5915 }
5916 I915_WRITE(CURCNTR(pipe), cntl);
5917
5918 intel_crtc->cursor_visible = visible;
5919 }
5920 /* and commit changes on next vblank */
5921 I915_WRITE(CURBASE(pipe), base);
5922 }
5923
5924 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5925 {
5926 struct drm_device *dev = crtc->dev;
5927 struct drm_i915_private *dev_priv = dev->dev_private;
5928 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5929 int pipe = intel_crtc->pipe;
5930 bool visible = base != 0;
5931
5932 if (intel_crtc->cursor_visible != visible) {
5933 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5934 if (base) {
5935 cntl &= ~CURSOR_MODE;
5936 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5937 } else {
5938 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5939 cntl |= CURSOR_MODE_DISABLE;
5940 }
5941 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5942
5943 intel_crtc->cursor_visible = visible;
5944 }
5945 /* and commit changes on next vblank */
5946 I915_WRITE(CURBASE_IVB(pipe), base);
5947 }
5948
5949 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5950 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5951 bool on)
5952 {
5953 struct drm_device *dev = crtc->dev;
5954 struct drm_i915_private *dev_priv = dev->dev_private;
5955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5956 int pipe = intel_crtc->pipe;
5957 int x = intel_crtc->cursor_x;
5958 int y = intel_crtc->cursor_y;
5959 u32 base, pos;
5960 bool visible;
5961
5962 pos = 0;
5963
5964 if (on && crtc->enabled && crtc->fb) {
5965 base = intel_crtc->cursor_addr;
5966 if (x > (int) crtc->fb->width)
5967 base = 0;
5968
5969 if (y > (int) crtc->fb->height)
5970 base = 0;
5971 } else
5972 base = 0;
5973
5974 if (x < 0) {
5975 if (x + intel_crtc->cursor_width < 0)
5976 base = 0;
5977
5978 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5979 x = -x;
5980 }
5981 pos |= x << CURSOR_X_SHIFT;
5982
5983 if (y < 0) {
5984 if (y + intel_crtc->cursor_height < 0)
5985 base = 0;
5986
5987 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5988 y = -y;
5989 }
5990 pos |= y << CURSOR_Y_SHIFT;
5991
5992 visible = base != 0;
5993 if (!visible && !intel_crtc->cursor_visible)
5994 return;
5995
5996 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5997 I915_WRITE(CURPOS_IVB(pipe), pos);
5998 ivb_update_cursor(crtc, base);
5999 } else {
6000 I915_WRITE(CURPOS(pipe), pos);
6001 if (IS_845G(dev) || IS_I865G(dev))
6002 i845_update_cursor(crtc, base);
6003 else
6004 i9xx_update_cursor(crtc, base);
6005 }
6006 }
6007
6008 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6009 struct drm_file *file,
6010 uint32_t handle,
6011 uint32_t width, uint32_t height)
6012 {
6013 struct drm_device *dev = crtc->dev;
6014 struct drm_i915_private *dev_priv = dev->dev_private;
6015 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6016 struct drm_i915_gem_object *obj;
6017 uint32_t addr;
6018 int ret;
6019
6020 /* if we want to turn off the cursor ignore width and height */
6021 if (!handle) {
6022 DRM_DEBUG_KMS("cursor off\n");
6023 addr = 0;
6024 obj = NULL;
6025 mutex_lock(&dev->struct_mutex);
6026 goto finish;
6027 }
6028
6029 /* Currently we only support 64x64 cursors */
6030 if (width != 64 || height != 64) {
6031 DRM_ERROR("we currently only support 64x64 cursors\n");
6032 return -EINVAL;
6033 }
6034
6035 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6036 if (&obj->base == NULL)
6037 return -ENOENT;
6038
6039 if (obj->base.size < width * height * 4) {
6040 DRM_ERROR("buffer is to small\n");
6041 ret = -ENOMEM;
6042 goto fail;
6043 }
6044
6045 /* we only need to pin inside GTT if cursor is non-phy */
6046 mutex_lock(&dev->struct_mutex);
6047 if (!dev_priv->info->cursor_needs_physical) {
6048 if (obj->tiling_mode) {
6049 DRM_ERROR("cursor cannot be tiled\n");
6050 ret = -EINVAL;
6051 goto fail_locked;
6052 }
6053
6054 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6055 if (ret) {
6056 DRM_ERROR("failed to move cursor bo into the GTT\n");
6057 goto fail_locked;
6058 }
6059
6060 ret = i915_gem_object_put_fence(obj);
6061 if (ret) {
6062 DRM_ERROR("failed to release fence for cursor");
6063 goto fail_unpin;
6064 }
6065
6066 addr = obj->gtt_offset;
6067 } else {
6068 int align = IS_I830(dev) ? 16 * 1024 : 256;
6069 ret = i915_gem_attach_phys_object(dev, obj,
6070 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6071 align);
6072 if (ret) {
6073 DRM_ERROR("failed to attach phys object\n");
6074 goto fail_locked;
6075 }
6076 addr = obj->phys_obj->handle->busaddr;
6077 }
6078
6079 if (IS_GEN2(dev))
6080 I915_WRITE(CURSIZE, (height << 12) | width);
6081
6082 finish:
6083 if (intel_crtc->cursor_bo) {
6084 if (dev_priv->info->cursor_needs_physical) {
6085 if (intel_crtc->cursor_bo != obj)
6086 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6087 } else
6088 i915_gem_object_unpin(intel_crtc->cursor_bo);
6089 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6090 }
6091
6092 mutex_unlock(&dev->struct_mutex);
6093
6094 intel_crtc->cursor_addr = addr;
6095 intel_crtc->cursor_bo = obj;
6096 intel_crtc->cursor_width = width;
6097 intel_crtc->cursor_height = height;
6098
6099 intel_crtc_update_cursor(crtc, true);
6100
6101 return 0;
6102 fail_unpin:
6103 i915_gem_object_unpin(obj);
6104 fail_locked:
6105 mutex_unlock(&dev->struct_mutex);
6106 fail:
6107 drm_gem_object_unreference_unlocked(&obj->base);
6108 return ret;
6109 }
6110
6111 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6112 {
6113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6114
6115 intel_crtc->cursor_x = x;
6116 intel_crtc->cursor_y = y;
6117
6118 intel_crtc_update_cursor(crtc, true);
6119
6120 return 0;
6121 }
6122
6123 /** Sets the color ramps on behalf of RandR */
6124 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6125 u16 blue, int regno)
6126 {
6127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6128
6129 intel_crtc->lut_r[regno] = red >> 8;
6130 intel_crtc->lut_g[regno] = green >> 8;
6131 intel_crtc->lut_b[regno] = blue >> 8;
6132 }
6133
6134 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6135 u16 *blue, int regno)
6136 {
6137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6138
6139 *red = intel_crtc->lut_r[regno] << 8;
6140 *green = intel_crtc->lut_g[regno] << 8;
6141 *blue = intel_crtc->lut_b[regno] << 8;
6142 }
6143
6144 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6145 u16 *blue, uint32_t start, uint32_t size)
6146 {
6147 int end = (start + size > 256) ? 256 : start + size, i;
6148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6149
6150 for (i = start; i < end; i++) {
6151 intel_crtc->lut_r[i] = red[i] >> 8;
6152 intel_crtc->lut_g[i] = green[i] >> 8;
6153 intel_crtc->lut_b[i] = blue[i] >> 8;
6154 }
6155
6156 intel_crtc_load_lut(crtc);
6157 }
6158
6159 /**
6160 * Get a pipe with a simple mode set on it for doing load-based monitor
6161 * detection.
6162 *
6163 * It will be up to the load-detect code to adjust the pipe as appropriate for
6164 * its requirements. The pipe will be connected to no other encoders.
6165 *
6166 * Currently this code will only succeed if there is a pipe with no encoders
6167 * configured for it. In the future, it could choose to temporarily disable
6168 * some outputs to free up a pipe for its use.
6169 *
6170 * \return crtc, or NULL if no pipes are available.
6171 */
6172
6173 /* VESA 640x480x72Hz mode to set on the pipe */
6174 static struct drm_display_mode load_detect_mode = {
6175 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6176 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6177 };
6178
6179 static struct drm_framebuffer *
6180 intel_framebuffer_create(struct drm_device *dev,
6181 struct drm_mode_fb_cmd2 *mode_cmd,
6182 struct drm_i915_gem_object *obj)
6183 {
6184 struct intel_framebuffer *intel_fb;
6185 int ret;
6186
6187 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6188 if (!intel_fb) {
6189 drm_gem_object_unreference_unlocked(&obj->base);
6190 return ERR_PTR(-ENOMEM);
6191 }
6192
6193 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6194 if (ret) {
6195 drm_gem_object_unreference_unlocked(&obj->base);
6196 kfree(intel_fb);
6197 return ERR_PTR(ret);
6198 }
6199
6200 return &intel_fb->base;
6201 }
6202
6203 static u32
6204 intel_framebuffer_pitch_for_width(int width, int bpp)
6205 {
6206 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6207 return ALIGN(pitch, 64);
6208 }
6209
6210 static u32
6211 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6212 {
6213 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6214 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6215 }
6216
6217 static struct drm_framebuffer *
6218 intel_framebuffer_create_for_mode(struct drm_device *dev,
6219 struct drm_display_mode *mode,
6220 int depth, int bpp)
6221 {
6222 struct drm_i915_gem_object *obj;
6223 struct drm_mode_fb_cmd2 mode_cmd;
6224
6225 obj = i915_gem_alloc_object(dev,
6226 intel_framebuffer_size_for_mode(mode, bpp));
6227 if (obj == NULL)
6228 return ERR_PTR(-ENOMEM);
6229
6230 mode_cmd.width = mode->hdisplay;
6231 mode_cmd.height = mode->vdisplay;
6232 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6233 bpp);
6234 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6235
6236 return intel_framebuffer_create(dev, &mode_cmd, obj);
6237 }
6238
6239 static struct drm_framebuffer *
6240 mode_fits_in_fbdev(struct drm_device *dev,
6241 struct drm_display_mode *mode)
6242 {
6243 struct drm_i915_private *dev_priv = dev->dev_private;
6244 struct drm_i915_gem_object *obj;
6245 struct drm_framebuffer *fb;
6246
6247 if (dev_priv->fbdev == NULL)
6248 return NULL;
6249
6250 obj = dev_priv->fbdev->ifb.obj;
6251 if (obj == NULL)
6252 return NULL;
6253
6254 fb = &dev_priv->fbdev->ifb.base;
6255 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6256 fb->bits_per_pixel))
6257 return NULL;
6258
6259 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6260 return NULL;
6261
6262 return fb;
6263 }
6264
6265 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6266 struct drm_display_mode *mode,
6267 struct intel_load_detect_pipe *old)
6268 {
6269 struct intel_crtc *intel_crtc;
6270 struct intel_encoder *intel_encoder =
6271 intel_attached_encoder(connector);
6272 struct drm_crtc *possible_crtc;
6273 struct drm_encoder *encoder = &intel_encoder->base;
6274 struct drm_crtc *crtc = NULL;
6275 struct drm_device *dev = encoder->dev;
6276 struct drm_framebuffer *fb;
6277 int i = -1;
6278
6279 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6280 connector->base.id, drm_get_connector_name(connector),
6281 encoder->base.id, drm_get_encoder_name(encoder));
6282
6283 /*
6284 * Algorithm gets a little messy:
6285 *
6286 * - if the connector already has an assigned crtc, use it (but make
6287 * sure it's on first)
6288 *
6289 * - try to find the first unused crtc that can drive this connector,
6290 * and use that if we find one
6291 */
6292
6293 /* See if we already have a CRTC for this connector */
6294 if (encoder->crtc) {
6295 crtc = encoder->crtc;
6296
6297 old->dpms_mode = connector->dpms;
6298 old->load_detect_temp = false;
6299
6300 /* Make sure the crtc and connector are running */
6301 if (connector->dpms != DRM_MODE_DPMS_ON)
6302 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6303
6304 return true;
6305 }
6306
6307 /* Find an unused one (if possible) */
6308 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6309 i++;
6310 if (!(encoder->possible_crtcs & (1 << i)))
6311 continue;
6312 if (!possible_crtc->enabled) {
6313 crtc = possible_crtc;
6314 break;
6315 }
6316 }
6317
6318 /*
6319 * If we didn't find an unused CRTC, don't use any.
6320 */
6321 if (!crtc) {
6322 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6323 return false;
6324 }
6325
6326 intel_encoder->new_crtc = to_intel_crtc(crtc);
6327 to_intel_connector(connector)->new_encoder = intel_encoder;
6328
6329 intel_crtc = to_intel_crtc(crtc);
6330 old->dpms_mode = connector->dpms;
6331 old->load_detect_temp = true;
6332 old->release_fb = NULL;
6333
6334 if (!mode)
6335 mode = &load_detect_mode;
6336
6337 /* We need a framebuffer large enough to accommodate all accesses
6338 * that the plane may generate whilst we perform load detection.
6339 * We can not rely on the fbcon either being present (we get called
6340 * during its initialisation to detect all boot displays, or it may
6341 * not even exist) or that it is large enough to satisfy the
6342 * requested mode.
6343 */
6344 fb = mode_fits_in_fbdev(dev, mode);
6345 if (fb == NULL) {
6346 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6347 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6348 old->release_fb = fb;
6349 } else
6350 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6351 if (IS_ERR(fb)) {
6352 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6353 goto fail;
6354 }
6355
6356 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6357 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6358 if (old->release_fb)
6359 old->release_fb->funcs->destroy(old->release_fb);
6360 goto fail;
6361 }
6362
6363 /* let the connector get through one full cycle before testing */
6364 intel_wait_for_vblank(dev, intel_crtc->pipe);
6365
6366 return true;
6367 fail:
6368 connector->encoder = NULL;
6369 encoder->crtc = NULL;
6370 return false;
6371 }
6372
6373 void intel_release_load_detect_pipe(struct drm_connector *connector,
6374 struct intel_load_detect_pipe *old)
6375 {
6376 struct intel_encoder *intel_encoder =
6377 intel_attached_encoder(connector);
6378 struct drm_encoder *encoder = &intel_encoder->base;
6379
6380 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6381 connector->base.id, drm_get_connector_name(connector),
6382 encoder->base.id, drm_get_encoder_name(encoder));
6383
6384 if (old->load_detect_temp) {
6385 struct drm_crtc *crtc = encoder->crtc;
6386
6387 to_intel_connector(connector)->new_encoder = NULL;
6388 intel_encoder->new_crtc = NULL;
6389 intel_set_mode(crtc, NULL, 0, 0, NULL);
6390
6391 if (old->release_fb)
6392 old->release_fb->funcs->destroy(old->release_fb);
6393
6394 return;
6395 }
6396
6397 /* Switch crtc and encoder back off if necessary */
6398 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6399 connector->funcs->dpms(connector, old->dpms_mode);
6400 }
6401
6402 /* Returns the clock of the currently programmed mode of the given pipe. */
6403 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6404 {
6405 struct drm_i915_private *dev_priv = dev->dev_private;
6406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6407 int pipe = intel_crtc->pipe;
6408 u32 dpll = I915_READ(DPLL(pipe));
6409 u32 fp;
6410 intel_clock_t clock;
6411
6412 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6413 fp = I915_READ(FP0(pipe));
6414 else
6415 fp = I915_READ(FP1(pipe));
6416
6417 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6418 if (IS_PINEVIEW(dev)) {
6419 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6420 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6421 } else {
6422 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6423 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6424 }
6425
6426 if (!IS_GEN2(dev)) {
6427 if (IS_PINEVIEW(dev))
6428 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6429 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6430 else
6431 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6432 DPLL_FPA01_P1_POST_DIV_SHIFT);
6433
6434 switch (dpll & DPLL_MODE_MASK) {
6435 case DPLLB_MODE_DAC_SERIAL:
6436 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6437 5 : 10;
6438 break;
6439 case DPLLB_MODE_LVDS:
6440 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6441 7 : 14;
6442 break;
6443 default:
6444 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6445 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6446 return 0;
6447 }
6448
6449 /* XXX: Handle the 100Mhz refclk */
6450 intel_clock(dev, 96000, &clock);
6451 } else {
6452 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6453
6454 if (is_lvds) {
6455 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6456 DPLL_FPA01_P1_POST_DIV_SHIFT);
6457 clock.p2 = 14;
6458
6459 if ((dpll & PLL_REF_INPUT_MASK) ==
6460 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6461 /* XXX: might not be 66MHz */
6462 intel_clock(dev, 66000, &clock);
6463 } else
6464 intel_clock(dev, 48000, &clock);
6465 } else {
6466 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6467 clock.p1 = 2;
6468 else {
6469 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6470 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6471 }
6472 if (dpll & PLL_P2_DIVIDE_BY_4)
6473 clock.p2 = 4;
6474 else
6475 clock.p2 = 2;
6476
6477 intel_clock(dev, 48000, &clock);
6478 }
6479 }
6480
6481 /* XXX: It would be nice to validate the clocks, but we can't reuse
6482 * i830PllIsValid() because it relies on the xf86_config connector
6483 * configuration being accurate, which it isn't necessarily.
6484 */
6485
6486 return clock.dot;
6487 }
6488
6489 /** Returns the currently programmed mode of the given pipe. */
6490 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6491 struct drm_crtc *crtc)
6492 {
6493 struct drm_i915_private *dev_priv = dev->dev_private;
6494 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6495 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6496 struct drm_display_mode *mode;
6497 int htot = I915_READ(HTOTAL(cpu_transcoder));
6498 int hsync = I915_READ(HSYNC(cpu_transcoder));
6499 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6500 int vsync = I915_READ(VSYNC(cpu_transcoder));
6501
6502 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6503 if (!mode)
6504 return NULL;
6505
6506 mode->clock = intel_crtc_clock_get(dev, crtc);
6507 mode->hdisplay = (htot & 0xffff) + 1;
6508 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6509 mode->hsync_start = (hsync & 0xffff) + 1;
6510 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6511 mode->vdisplay = (vtot & 0xffff) + 1;
6512 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6513 mode->vsync_start = (vsync & 0xffff) + 1;
6514 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6515
6516 drm_mode_set_name(mode);
6517
6518 return mode;
6519 }
6520
6521 static void intel_increase_pllclock(struct drm_crtc *crtc)
6522 {
6523 struct drm_device *dev = crtc->dev;
6524 drm_i915_private_t *dev_priv = dev->dev_private;
6525 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6526 int pipe = intel_crtc->pipe;
6527 int dpll_reg = DPLL(pipe);
6528 int dpll;
6529
6530 if (HAS_PCH_SPLIT(dev))
6531 return;
6532
6533 if (!dev_priv->lvds_downclock_avail)
6534 return;
6535
6536 dpll = I915_READ(dpll_reg);
6537 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6538 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6539
6540 assert_panel_unlocked(dev_priv, pipe);
6541
6542 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6543 I915_WRITE(dpll_reg, dpll);
6544 intel_wait_for_vblank(dev, pipe);
6545
6546 dpll = I915_READ(dpll_reg);
6547 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6548 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6549 }
6550 }
6551
6552 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6553 {
6554 struct drm_device *dev = crtc->dev;
6555 drm_i915_private_t *dev_priv = dev->dev_private;
6556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6557
6558 if (HAS_PCH_SPLIT(dev))
6559 return;
6560
6561 if (!dev_priv->lvds_downclock_avail)
6562 return;
6563
6564 /*
6565 * Since this is called by a timer, we should never get here in
6566 * the manual case.
6567 */
6568 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6569 int pipe = intel_crtc->pipe;
6570 int dpll_reg = DPLL(pipe);
6571 int dpll;
6572
6573 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6574
6575 assert_panel_unlocked(dev_priv, pipe);
6576
6577 dpll = I915_READ(dpll_reg);
6578 dpll |= DISPLAY_RATE_SELECT_FPA1;
6579 I915_WRITE(dpll_reg, dpll);
6580 intel_wait_for_vblank(dev, pipe);
6581 dpll = I915_READ(dpll_reg);
6582 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6583 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6584 }
6585
6586 }
6587
6588 void intel_mark_busy(struct drm_device *dev)
6589 {
6590 i915_update_gfx_val(dev->dev_private);
6591 }
6592
6593 void intel_mark_idle(struct drm_device *dev)
6594 {
6595 }
6596
6597 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6598 {
6599 struct drm_device *dev = obj->base.dev;
6600 struct drm_crtc *crtc;
6601
6602 if (!i915_powersave)
6603 return;
6604
6605 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6606 if (!crtc->fb)
6607 continue;
6608
6609 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6610 intel_increase_pllclock(crtc);
6611 }
6612 }
6613
6614 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6615 {
6616 struct drm_device *dev = obj->base.dev;
6617 struct drm_crtc *crtc;
6618
6619 if (!i915_powersave)
6620 return;
6621
6622 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6623 if (!crtc->fb)
6624 continue;
6625
6626 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6627 intel_decrease_pllclock(crtc);
6628 }
6629 }
6630
6631 static void intel_crtc_destroy(struct drm_crtc *crtc)
6632 {
6633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6634 struct drm_device *dev = crtc->dev;
6635 struct intel_unpin_work *work;
6636 unsigned long flags;
6637
6638 spin_lock_irqsave(&dev->event_lock, flags);
6639 work = intel_crtc->unpin_work;
6640 intel_crtc->unpin_work = NULL;
6641 spin_unlock_irqrestore(&dev->event_lock, flags);
6642
6643 if (work) {
6644 cancel_work_sync(&work->work);
6645 kfree(work);
6646 }
6647
6648 drm_crtc_cleanup(crtc);
6649
6650 kfree(intel_crtc);
6651 }
6652
6653 static void intel_unpin_work_fn(struct work_struct *__work)
6654 {
6655 struct intel_unpin_work *work =
6656 container_of(__work, struct intel_unpin_work, work);
6657
6658 mutex_lock(&work->dev->struct_mutex);
6659 intel_unpin_fb_obj(work->old_fb_obj);
6660 drm_gem_object_unreference(&work->pending_flip_obj->base);
6661 drm_gem_object_unreference(&work->old_fb_obj->base);
6662
6663 intel_update_fbc(work->dev);
6664 mutex_unlock(&work->dev->struct_mutex);
6665 kfree(work);
6666 }
6667
6668 static void do_intel_finish_page_flip(struct drm_device *dev,
6669 struct drm_crtc *crtc)
6670 {
6671 drm_i915_private_t *dev_priv = dev->dev_private;
6672 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6673 struct intel_unpin_work *work;
6674 struct drm_i915_gem_object *obj;
6675 struct drm_pending_vblank_event *e;
6676 struct timeval tvbl;
6677 unsigned long flags;
6678
6679 /* Ignore early vblank irqs */
6680 if (intel_crtc == NULL)
6681 return;
6682
6683 spin_lock_irqsave(&dev->event_lock, flags);
6684 work = intel_crtc->unpin_work;
6685 if (work == NULL || !work->pending) {
6686 spin_unlock_irqrestore(&dev->event_lock, flags);
6687 return;
6688 }
6689
6690 intel_crtc->unpin_work = NULL;
6691
6692 if (work->event) {
6693 e = work->event;
6694 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6695
6696 e->event.tv_sec = tvbl.tv_sec;
6697 e->event.tv_usec = tvbl.tv_usec;
6698
6699 list_add_tail(&e->base.link,
6700 &e->base.file_priv->event_list);
6701 wake_up_interruptible(&e->base.file_priv->event_wait);
6702 }
6703
6704 drm_vblank_put(dev, intel_crtc->pipe);
6705
6706 spin_unlock_irqrestore(&dev->event_lock, flags);
6707
6708 obj = work->old_fb_obj;
6709
6710 atomic_clear_mask(1 << intel_crtc->plane,
6711 &obj->pending_flip.counter);
6712
6713 wake_up(&dev_priv->pending_flip_queue);
6714 schedule_work(&work->work);
6715
6716 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6717 }
6718
6719 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6720 {
6721 drm_i915_private_t *dev_priv = dev->dev_private;
6722 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6723
6724 do_intel_finish_page_flip(dev, crtc);
6725 }
6726
6727 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6728 {
6729 drm_i915_private_t *dev_priv = dev->dev_private;
6730 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6731
6732 do_intel_finish_page_flip(dev, crtc);
6733 }
6734
6735 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6736 {
6737 drm_i915_private_t *dev_priv = dev->dev_private;
6738 struct intel_crtc *intel_crtc =
6739 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6740 unsigned long flags;
6741
6742 spin_lock_irqsave(&dev->event_lock, flags);
6743 if (intel_crtc->unpin_work) {
6744 if ((++intel_crtc->unpin_work->pending) > 1)
6745 DRM_ERROR("Prepared flip multiple times\n");
6746 } else {
6747 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6748 }
6749 spin_unlock_irqrestore(&dev->event_lock, flags);
6750 }
6751
6752 static int intel_gen2_queue_flip(struct drm_device *dev,
6753 struct drm_crtc *crtc,
6754 struct drm_framebuffer *fb,
6755 struct drm_i915_gem_object *obj)
6756 {
6757 struct drm_i915_private *dev_priv = dev->dev_private;
6758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6759 u32 flip_mask;
6760 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6761 int ret;
6762
6763 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6764 if (ret)
6765 goto err;
6766
6767 ret = intel_ring_begin(ring, 6);
6768 if (ret)
6769 goto err_unpin;
6770
6771 /* Can't queue multiple flips, so wait for the previous
6772 * one to finish before executing the next.
6773 */
6774 if (intel_crtc->plane)
6775 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6776 else
6777 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6778 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6779 intel_ring_emit(ring, MI_NOOP);
6780 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6781 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6782 intel_ring_emit(ring, fb->pitches[0]);
6783 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6784 intel_ring_emit(ring, 0); /* aux display base address, unused */
6785 intel_ring_advance(ring);
6786 return 0;
6787
6788 err_unpin:
6789 intel_unpin_fb_obj(obj);
6790 err:
6791 return ret;
6792 }
6793
6794 static int intel_gen3_queue_flip(struct drm_device *dev,
6795 struct drm_crtc *crtc,
6796 struct drm_framebuffer *fb,
6797 struct drm_i915_gem_object *obj)
6798 {
6799 struct drm_i915_private *dev_priv = dev->dev_private;
6800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6801 u32 flip_mask;
6802 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6803 int ret;
6804
6805 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6806 if (ret)
6807 goto err;
6808
6809 ret = intel_ring_begin(ring, 6);
6810 if (ret)
6811 goto err_unpin;
6812
6813 if (intel_crtc->plane)
6814 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6815 else
6816 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6817 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6818 intel_ring_emit(ring, MI_NOOP);
6819 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6820 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6821 intel_ring_emit(ring, fb->pitches[0]);
6822 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6823 intel_ring_emit(ring, MI_NOOP);
6824
6825 intel_ring_advance(ring);
6826 return 0;
6827
6828 err_unpin:
6829 intel_unpin_fb_obj(obj);
6830 err:
6831 return ret;
6832 }
6833
6834 static int intel_gen4_queue_flip(struct drm_device *dev,
6835 struct drm_crtc *crtc,
6836 struct drm_framebuffer *fb,
6837 struct drm_i915_gem_object *obj)
6838 {
6839 struct drm_i915_private *dev_priv = dev->dev_private;
6840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6841 uint32_t pf, pipesrc;
6842 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6843 int ret;
6844
6845 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6846 if (ret)
6847 goto err;
6848
6849 ret = intel_ring_begin(ring, 4);
6850 if (ret)
6851 goto err_unpin;
6852
6853 /* i965+ uses the linear or tiled offsets from the
6854 * Display Registers (which do not change across a page-flip)
6855 * so we need only reprogram the base address.
6856 */
6857 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6858 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6859 intel_ring_emit(ring, fb->pitches[0]);
6860 intel_ring_emit(ring,
6861 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6862 obj->tiling_mode);
6863
6864 /* XXX Enabling the panel-fitter across page-flip is so far
6865 * untested on non-native modes, so ignore it for now.
6866 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6867 */
6868 pf = 0;
6869 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6870 intel_ring_emit(ring, pf | pipesrc);
6871 intel_ring_advance(ring);
6872 return 0;
6873
6874 err_unpin:
6875 intel_unpin_fb_obj(obj);
6876 err:
6877 return ret;
6878 }
6879
6880 static int intel_gen6_queue_flip(struct drm_device *dev,
6881 struct drm_crtc *crtc,
6882 struct drm_framebuffer *fb,
6883 struct drm_i915_gem_object *obj)
6884 {
6885 struct drm_i915_private *dev_priv = dev->dev_private;
6886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6887 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6888 uint32_t pf, pipesrc;
6889 int ret;
6890
6891 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6892 if (ret)
6893 goto err;
6894
6895 ret = intel_ring_begin(ring, 4);
6896 if (ret)
6897 goto err_unpin;
6898
6899 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6900 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6901 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6902 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6903
6904 /* Contrary to the suggestions in the documentation,
6905 * "Enable Panel Fitter" does not seem to be required when page
6906 * flipping with a non-native mode, and worse causes a normal
6907 * modeset to fail.
6908 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6909 */
6910 pf = 0;
6911 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6912 intel_ring_emit(ring, pf | pipesrc);
6913 intel_ring_advance(ring);
6914 return 0;
6915
6916 err_unpin:
6917 intel_unpin_fb_obj(obj);
6918 err:
6919 return ret;
6920 }
6921
6922 /*
6923 * On gen7 we currently use the blit ring because (in early silicon at least)
6924 * the render ring doesn't give us interrpts for page flip completion, which
6925 * means clients will hang after the first flip is queued. Fortunately the
6926 * blit ring generates interrupts properly, so use it instead.
6927 */
6928 static int intel_gen7_queue_flip(struct drm_device *dev,
6929 struct drm_crtc *crtc,
6930 struct drm_framebuffer *fb,
6931 struct drm_i915_gem_object *obj)
6932 {
6933 struct drm_i915_private *dev_priv = dev->dev_private;
6934 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6935 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6936 uint32_t plane_bit = 0;
6937 int ret;
6938
6939 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6940 if (ret)
6941 goto err;
6942
6943 switch(intel_crtc->plane) {
6944 case PLANE_A:
6945 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6946 break;
6947 case PLANE_B:
6948 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6949 break;
6950 case PLANE_C:
6951 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6952 break;
6953 default:
6954 WARN_ONCE(1, "unknown plane in flip command\n");
6955 ret = -ENODEV;
6956 goto err_unpin;
6957 }
6958
6959 ret = intel_ring_begin(ring, 4);
6960 if (ret)
6961 goto err_unpin;
6962
6963 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6964 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6965 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6966 intel_ring_emit(ring, (MI_NOOP));
6967 intel_ring_advance(ring);
6968 return 0;
6969
6970 err_unpin:
6971 intel_unpin_fb_obj(obj);
6972 err:
6973 return ret;
6974 }
6975
6976 static int intel_default_queue_flip(struct drm_device *dev,
6977 struct drm_crtc *crtc,
6978 struct drm_framebuffer *fb,
6979 struct drm_i915_gem_object *obj)
6980 {
6981 return -ENODEV;
6982 }
6983
6984 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6985 struct drm_framebuffer *fb,
6986 struct drm_pending_vblank_event *event)
6987 {
6988 struct drm_device *dev = crtc->dev;
6989 struct drm_i915_private *dev_priv = dev->dev_private;
6990 struct intel_framebuffer *intel_fb;
6991 struct drm_i915_gem_object *obj;
6992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6993 struct intel_unpin_work *work;
6994 unsigned long flags;
6995 int ret;
6996
6997 /* Can't change pixel format via MI display flips. */
6998 if (fb->pixel_format != crtc->fb->pixel_format)
6999 return -EINVAL;
7000
7001 /*
7002 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7003 * Note that pitch changes could also affect these register.
7004 */
7005 if (INTEL_INFO(dev)->gen > 3 &&
7006 (fb->offsets[0] != crtc->fb->offsets[0] ||
7007 fb->pitches[0] != crtc->fb->pitches[0]))
7008 return -EINVAL;
7009
7010 work = kzalloc(sizeof *work, GFP_KERNEL);
7011 if (work == NULL)
7012 return -ENOMEM;
7013
7014 work->event = event;
7015 work->dev = crtc->dev;
7016 intel_fb = to_intel_framebuffer(crtc->fb);
7017 work->old_fb_obj = intel_fb->obj;
7018 INIT_WORK(&work->work, intel_unpin_work_fn);
7019
7020 ret = drm_vblank_get(dev, intel_crtc->pipe);
7021 if (ret)
7022 goto free_work;
7023
7024 /* We borrow the event spin lock for protecting unpin_work */
7025 spin_lock_irqsave(&dev->event_lock, flags);
7026 if (intel_crtc->unpin_work) {
7027 spin_unlock_irqrestore(&dev->event_lock, flags);
7028 kfree(work);
7029 drm_vblank_put(dev, intel_crtc->pipe);
7030
7031 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7032 return -EBUSY;
7033 }
7034 intel_crtc->unpin_work = work;
7035 spin_unlock_irqrestore(&dev->event_lock, flags);
7036
7037 intel_fb = to_intel_framebuffer(fb);
7038 obj = intel_fb->obj;
7039
7040 ret = i915_mutex_lock_interruptible(dev);
7041 if (ret)
7042 goto cleanup;
7043
7044 /* Reference the objects for the scheduled work. */
7045 drm_gem_object_reference(&work->old_fb_obj->base);
7046 drm_gem_object_reference(&obj->base);
7047
7048 crtc->fb = fb;
7049
7050 work->pending_flip_obj = obj;
7051
7052 work->enable_stall_check = true;
7053
7054 /* Block clients from rendering to the new back buffer until
7055 * the flip occurs and the object is no longer visible.
7056 */
7057 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7058
7059 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7060 if (ret)
7061 goto cleanup_pending;
7062
7063 intel_disable_fbc(dev);
7064 intel_mark_fb_busy(obj);
7065 mutex_unlock(&dev->struct_mutex);
7066
7067 trace_i915_flip_request(intel_crtc->plane, obj);
7068
7069 return 0;
7070
7071 cleanup_pending:
7072 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7073 drm_gem_object_unreference(&work->old_fb_obj->base);
7074 drm_gem_object_unreference(&obj->base);
7075 mutex_unlock(&dev->struct_mutex);
7076
7077 cleanup:
7078 spin_lock_irqsave(&dev->event_lock, flags);
7079 intel_crtc->unpin_work = NULL;
7080 spin_unlock_irqrestore(&dev->event_lock, flags);
7081
7082 drm_vblank_put(dev, intel_crtc->pipe);
7083 free_work:
7084 kfree(work);
7085
7086 return ret;
7087 }
7088
7089 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7090 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7091 .load_lut = intel_crtc_load_lut,
7092 .disable = intel_crtc_noop,
7093 };
7094
7095 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7096 {
7097 struct intel_encoder *other_encoder;
7098 struct drm_crtc *crtc = &encoder->new_crtc->base;
7099
7100 if (WARN_ON(!crtc))
7101 return false;
7102
7103 list_for_each_entry(other_encoder,
7104 &crtc->dev->mode_config.encoder_list,
7105 base.head) {
7106
7107 if (&other_encoder->new_crtc->base != crtc ||
7108 encoder == other_encoder)
7109 continue;
7110 else
7111 return true;
7112 }
7113
7114 return false;
7115 }
7116
7117 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7118 struct drm_crtc *crtc)
7119 {
7120 struct drm_device *dev;
7121 struct drm_crtc *tmp;
7122 int crtc_mask = 1;
7123
7124 WARN(!crtc, "checking null crtc?\n");
7125
7126 dev = crtc->dev;
7127
7128 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7129 if (tmp == crtc)
7130 break;
7131 crtc_mask <<= 1;
7132 }
7133
7134 if (encoder->possible_crtcs & crtc_mask)
7135 return true;
7136 return false;
7137 }
7138
7139 /**
7140 * intel_modeset_update_staged_output_state
7141 *
7142 * Updates the staged output configuration state, e.g. after we've read out the
7143 * current hw state.
7144 */
7145 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7146 {
7147 struct intel_encoder *encoder;
7148 struct intel_connector *connector;
7149
7150 list_for_each_entry(connector, &dev->mode_config.connector_list,
7151 base.head) {
7152 connector->new_encoder =
7153 to_intel_encoder(connector->base.encoder);
7154 }
7155
7156 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7157 base.head) {
7158 encoder->new_crtc =
7159 to_intel_crtc(encoder->base.crtc);
7160 }
7161 }
7162
7163 /**
7164 * intel_modeset_commit_output_state
7165 *
7166 * This function copies the stage display pipe configuration to the real one.
7167 */
7168 static void intel_modeset_commit_output_state(struct drm_device *dev)
7169 {
7170 struct intel_encoder *encoder;
7171 struct intel_connector *connector;
7172
7173 list_for_each_entry(connector, &dev->mode_config.connector_list,
7174 base.head) {
7175 connector->base.encoder = &connector->new_encoder->base;
7176 }
7177
7178 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7179 base.head) {
7180 encoder->base.crtc = &encoder->new_crtc->base;
7181 }
7182 }
7183
7184 static struct drm_display_mode *
7185 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7186 struct drm_display_mode *mode)
7187 {
7188 struct drm_device *dev = crtc->dev;
7189 struct drm_display_mode *adjusted_mode;
7190 struct drm_encoder_helper_funcs *encoder_funcs;
7191 struct intel_encoder *encoder;
7192
7193 adjusted_mode = drm_mode_duplicate(dev, mode);
7194 if (!adjusted_mode)
7195 return ERR_PTR(-ENOMEM);
7196
7197 /* Pass our mode to the connectors and the CRTC to give them a chance to
7198 * adjust it according to limitations or connector properties, and also
7199 * a chance to reject the mode entirely.
7200 */
7201 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7202 base.head) {
7203
7204 if (&encoder->new_crtc->base != crtc)
7205 continue;
7206 encoder_funcs = encoder->base.helper_private;
7207 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7208 adjusted_mode))) {
7209 DRM_DEBUG_KMS("Encoder fixup failed\n");
7210 goto fail;
7211 }
7212 }
7213
7214 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7215 DRM_DEBUG_KMS("CRTC fixup failed\n");
7216 goto fail;
7217 }
7218 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7219
7220 return adjusted_mode;
7221 fail:
7222 drm_mode_destroy(dev, adjusted_mode);
7223 return ERR_PTR(-EINVAL);
7224 }
7225
7226 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7227 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7228 static void
7229 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7230 unsigned *prepare_pipes, unsigned *disable_pipes)
7231 {
7232 struct intel_crtc *intel_crtc;
7233 struct drm_device *dev = crtc->dev;
7234 struct intel_encoder *encoder;
7235 struct intel_connector *connector;
7236 struct drm_crtc *tmp_crtc;
7237
7238 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7239
7240 /* Check which crtcs have changed outputs connected to them, these need
7241 * to be part of the prepare_pipes mask. We don't (yet) support global
7242 * modeset across multiple crtcs, so modeset_pipes will only have one
7243 * bit set at most. */
7244 list_for_each_entry(connector, &dev->mode_config.connector_list,
7245 base.head) {
7246 if (connector->base.encoder == &connector->new_encoder->base)
7247 continue;
7248
7249 if (connector->base.encoder) {
7250 tmp_crtc = connector->base.encoder->crtc;
7251
7252 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7253 }
7254
7255 if (connector->new_encoder)
7256 *prepare_pipes |=
7257 1 << connector->new_encoder->new_crtc->pipe;
7258 }
7259
7260 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7261 base.head) {
7262 if (encoder->base.crtc == &encoder->new_crtc->base)
7263 continue;
7264
7265 if (encoder->base.crtc) {
7266 tmp_crtc = encoder->base.crtc;
7267
7268 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7269 }
7270
7271 if (encoder->new_crtc)
7272 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7273 }
7274
7275 /* Check for any pipes that will be fully disabled ... */
7276 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7277 base.head) {
7278 bool used = false;
7279
7280 /* Don't try to disable disabled crtcs. */
7281 if (!intel_crtc->base.enabled)
7282 continue;
7283
7284 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7285 base.head) {
7286 if (encoder->new_crtc == intel_crtc)
7287 used = true;
7288 }
7289
7290 if (!used)
7291 *disable_pipes |= 1 << intel_crtc->pipe;
7292 }
7293
7294
7295 /* set_mode is also used to update properties on life display pipes. */
7296 intel_crtc = to_intel_crtc(crtc);
7297 if (crtc->enabled)
7298 *prepare_pipes |= 1 << intel_crtc->pipe;
7299
7300 /* We only support modeset on one single crtc, hence we need to do that
7301 * only for the passed in crtc iff we change anything else than just
7302 * disable crtcs.
7303 *
7304 * This is actually not true, to be fully compatible with the old crtc
7305 * helper we automatically disable _any_ output (i.e. doesn't need to be
7306 * connected to the crtc we're modesetting on) if it's disconnected.
7307 * Which is a rather nutty api (since changed the output configuration
7308 * without userspace's explicit request can lead to confusion), but
7309 * alas. Hence we currently need to modeset on all pipes we prepare. */
7310 if (*prepare_pipes)
7311 *modeset_pipes = *prepare_pipes;
7312
7313 /* ... and mask these out. */
7314 *modeset_pipes &= ~(*disable_pipes);
7315 *prepare_pipes &= ~(*disable_pipes);
7316 }
7317
7318 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7319 {
7320 struct drm_encoder *encoder;
7321 struct drm_device *dev = crtc->dev;
7322
7323 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7324 if (encoder->crtc == crtc)
7325 return true;
7326
7327 return false;
7328 }
7329
7330 static void
7331 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7332 {
7333 struct intel_encoder *intel_encoder;
7334 struct intel_crtc *intel_crtc;
7335 struct drm_connector *connector;
7336
7337 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7338 base.head) {
7339 if (!intel_encoder->base.crtc)
7340 continue;
7341
7342 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7343
7344 if (prepare_pipes & (1 << intel_crtc->pipe))
7345 intel_encoder->connectors_active = false;
7346 }
7347
7348 intel_modeset_commit_output_state(dev);
7349
7350 /* Update computed state. */
7351 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7352 base.head) {
7353 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7354 }
7355
7356 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7357 if (!connector->encoder || !connector->encoder->crtc)
7358 continue;
7359
7360 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7361
7362 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7363 struct drm_property *dpms_property =
7364 dev->mode_config.dpms_property;
7365
7366 connector->dpms = DRM_MODE_DPMS_ON;
7367 drm_connector_property_set_value(connector,
7368 dpms_property,
7369 DRM_MODE_DPMS_ON);
7370
7371 intel_encoder = to_intel_encoder(connector->encoder);
7372 intel_encoder->connectors_active = true;
7373 }
7374 }
7375
7376 }
7377
7378 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7379 list_for_each_entry((intel_crtc), \
7380 &(dev)->mode_config.crtc_list, \
7381 base.head) \
7382 if (mask & (1 <<(intel_crtc)->pipe)) \
7383
7384 void
7385 intel_modeset_check_state(struct drm_device *dev)
7386 {
7387 struct intel_crtc *crtc;
7388 struct intel_encoder *encoder;
7389 struct intel_connector *connector;
7390
7391 list_for_each_entry(connector, &dev->mode_config.connector_list,
7392 base.head) {
7393 /* This also checks the encoder/connector hw state with the
7394 * ->get_hw_state callbacks. */
7395 intel_connector_check_state(connector);
7396
7397 WARN(&connector->new_encoder->base != connector->base.encoder,
7398 "connector's staged encoder doesn't match current encoder\n");
7399 }
7400
7401 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7402 base.head) {
7403 bool enabled = false;
7404 bool active = false;
7405 enum pipe pipe, tracked_pipe;
7406
7407 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7408 encoder->base.base.id,
7409 drm_get_encoder_name(&encoder->base));
7410
7411 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7412 "encoder's stage crtc doesn't match current crtc\n");
7413 WARN(encoder->connectors_active && !encoder->base.crtc,
7414 "encoder's active_connectors set, but no crtc\n");
7415
7416 list_for_each_entry(connector, &dev->mode_config.connector_list,
7417 base.head) {
7418 if (connector->base.encoder != &encoder->base)
7419 continue;
7420 enabled = true;
7421 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7422 active = true;
7423 }
7424 WARN(!!encoder->base.crtc != enabled,
7425 "encoder's enabled state mismatch "
7426 "(expected %i, found %i)\n",
7427 !!encoder->base.crtc, enabled);
7428 WARN(active && !encoder->base.crtc,
7429 "active encoder with no crtc\n");
7430
7431 WARN(encoder->connectors_active != active,
7432 "encoder's computed active state doesn't match tracked active state "
7433 "(expected %i, found %i)\n", active, encoder->connectors_active);
7434
7435 active = encoder->get_hw_state(encoder, &pipe);
7436 WARN(active != encoder->connectors_active,
7437 "encoder's hw state doesn't match sw tracking "
7438 "(expected %i, found %i)\n",
7439 encoder->connectors_active, active);
7440
7441 if (!encoder->base.crtc)
7442 continue;
7443
7444 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7445 WARN(active && pipe != tracked_pipe,
7446 "active encoder's pipe doesn't match"
7447 "(expected %i, found %i)\n",
7448 tracked_pipe, pipe);
7449
7450 }
7451
7452 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7453 base.head) {
7454 bool enabled = false;
7455 bool active = false;
7456
7457 DRM_DEBUG_KMS("[CRTC:%d]\n",
7458 crtc->base.base.id);
7459
7460 WARN(crtc->active && !crtc->base.enabled,
7461 "active crtc, but not enabled in sw tracking\n");
7462
7463 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7464 base.head) {
7465 if (encoder->base.crtc != &crtc->base)
7466 continue;
7467 enabled = true;
7468 if (encoder->connectors_active)
7469 active = true;
7470 }
7471 WARN(active != crtc->active,
7472 "crtc's computed active state doesn't match tracked active state "
7473 "(expected %i, found %i)\n", active, crtc->active);
7474 WARN(enabled != crtc->base.enabled,
7475 "crtc's computed enabled state doesn't match tracked enabled state "
7476 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7477
7478 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7479 }
7480 }
7481
7482 bool intel_set_mode(struct drm_crtc *crtc,
7483 struct drm_display_mode *mode,
7484 int x, int y, struct drm_framebuffer *fb)
7485 {
7486 struct drm_device *dev = crtc->dev;
7487 drm_i915_private_t *dev_priv = dev->dev_private;
7488 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7489 struct drm_encoder_helper_funcs *encoder_funcs;
7490 struct drm_encoder *encoder;
7491 struct intel_crtc *intel_crtc;
7492 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7493 bool ret = true;
7494
7495 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7496 &prepare_pipes, &disable_pipes);
7497
7498 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7499 modeset_pipes, prepare_pipes, disable_pipes);
7500
7501 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7502 intel_crtc_disable(&intel_crtc->base);
7503
7504 saved_hwmode = crtc->hwmode;
7505 saved_mode = crtc->mode;
7506
7507 /* Hack: Because we don't (yet) support global modeset on multiple
7508 * crtcs, we don't keep track of the new mode for more than one crtc.
7509 * Hence simply check whether any bit is set in modeset_pipes in all the
7510 * pieces of code that are not yet converted to deal with mutliple crtcs
7511 * changing their mode at the same time. */
7512 adjusted_mode = NULL;
7513 if (modeset_pipes) {
7514 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7515 if (IS_ERR(adjusted_mode)) {
7516 return false;
7517 }
7518 }
7519
7520 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7521 if (intel_crtc->base.enabled)
7522 dev_priv->display.crtc_disable(&intel_crtc->base);
7523 }
7524
7525 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7526 * to set it here already despite that we pass it down the callchain.
7527 */
7528 if (modeset_pipes)
7529 crtc->mode = *mode;
7530
7531 /* Only after disabling all output pipelines that will be changed can we
7532 * update the the output configuration. */
7533 intel_modeset_update_state(dev, prepare_pipes);
7534
7535 /* Set up the DPLL and any encoders state that needs to adjust or depend
7536 * on the DPLL.
7537 */
7538 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7539 ret = !intel_crtc_mode_set(&intel_crtc->base,
7540 mode, adjusted_mode,
7541 x, y, fb);
7542 if (!ret)
7543 goto done;
7544
7545 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7546
7547 if (encoder->crtc != &intel_crtc->base)
7548 continue;
7549
7550 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7551 encoder->base.id, drm_get_encoder_name(encoder),
7552 mode->base.id, mode->name);
7553 encoder_funcs = encoder->helper_private;
7554 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7555 }
7556 }
7557
7558 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7559 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7560 dev_priv->display.crtc_enable(&intel_crtc->base);
7561
7562 if (modeset_pipes) {
7563 /* Store real post-adjustment hardware mode. */
7564 crtc->hwmode = *adjusted_mode;
7565
7566 /* Calculate and store various constants which
7567 * are later needed by vblank and swap-completion
7568 * timestamping. They are derived from true hwmode.
7569 */
7570 drm_calc_timestamping_constants(crtc);
7571 }
7572
7573 /* FIXME: add subpixel order */
7574 done:
7575 drm_mode_destroy(dev, adjusted_mode);
7576 if (!ret && crtc->enabled) {
7577 crtc->hwmode = saved_hwmode;
7578 crtc->mode = saved_mode;
7579 } else {
7580 intel_modeset_check_state(dev);
7581 }
7582
7583 return ret;
7584 }
7585
7586 #undef for_each_intel_crtc_masked
7587
7588 static void intel_set_config_free(struct intel_set_config *config)
7589 {
7590 if (!config)
7591 return;
7592
7593 kfree(config->save_connector_encoders);
7594 kfree(config->save_encoder_crtcs);
7595 kfree(config);
7596 }
7597
7598 static int intel_set_config_save_state(struct drm_device *dev,
7599 struct intel_set_config *config)
7600 {
7601 struct drm_encoder *encoder;
7602 struct drm_connector *connector;
7603 int count;
7604
7605 config->save_encoder_crtcs =
7606 kcalloc(dev->mode_config.num_encoder,
7607 sizeof(struct drm_crtc *), GFP_KERNEL);
7608 if (!config->save_encoder_crtcs)
7609 return -ENOMEM;
7610
7611 config->save_connector_encoders =
7612 kcalloc(dev->mode_config.num_connector,
7613 sizeof(struct drm_encoder *), GFP_KERNEL);
7614 if (!config->save_connector_encoders)
7615 return -ENOMEM;
7616
7617 /* Copy data. Note that driver private data is not affected.
7618 * Should anything bad happen only the expected state is
7619 * restored, not the drivers personal bookkeeping.
7620 */
7621 count = 0;
7622 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7623 config->save_encoder_crtcs[count++] = encoder->crtc;
7624 }
7625
7626 count = 0;
7627 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7628 config->save_connector_encoders[count++] = connector->encoder;
7629 }
7630
7631 return 0;
7632 }
7633
7634 static void intel_set_config_restore_state(struct drm_device *dev,
7635 struct intel_set_config *config)
7636 {
7637 struct intel_encoder *encoder;
7638 struct intel_connector *connector;
7639 int count;
7640
7641 count = 0;
7642 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7643 encoder->new_crtc =
7644 to_intel_crtc(config->save_encoder_crtcs[count++]);
7645 }
7646
7647 count = 0;
7648 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7649 connector->new_encoder =
7650 to_intel_encoder(config->save_connector_encoders[count++]);
7651 }
7652 }
7653
7654 static void
7655 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7656 struct intel_set_config *config)
7657 {
7658
7659 /* We should be able to check here if the fb has the same properties
7660 * and then just flip_or_move it */
7661 if (set->crtc->fb != set->fb) {
7662 /* If we have no fb then treat it as a full mode set */
7663 if (set->crtc->fb == NULL) {
7664 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7665 config->mode_changed = true;
7666 } else if (set->fb == NULL) {
7667 config->mode_changed = true;
7668 } else if (set->fb->depth != set->crtc->fb->depth) {
7669 config->mode_changed = true;
7670 } else if (set->fb->bits_per_pixel !=
7671 set->crtc->fb->bits_per_pixel) {
7672 config->mode_changed = true;
7673 } else
7674 config->fb_changed = true;
7675 }
7676
7677 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7678 config->fb_changed = true;
7679
7680 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7681 DRM_DEBUG_KMS("modes are different, full mode set\n");
7682 drm_mode_debug_printmodeline(&set->crtc->mode);
7683 drm_mode_debug_printmodeline(set->mode);
7684 config->mode_changed = true;
7685 }
7686 }
7687
7688 static int
7689 intel_modeset_stage_output_state(struct drm_device *dev,
7690 struct drm_mode_set *set,
7691 struct intel_set_config *config)
7692 {
7693 struct drm_crtc *new_crtc;
7694 struct intel_connector *connector;
7695 struct intel_encoder *encoder;
7696 int count, ro;
7697
7698 /* The upper layers ensure that we either disabl a crtc or have a list
7699 * of connectors. For paranoia, double-check this. */
7700 WARN_ON(!set->fb && (set->num_connectors != 0));
7701 WARN_ON(set->fb && (set->num_connectors == 0));
7702
7703 count = 0;
7704 list_for_each_entry(connector, &dev->mode_config.connector_list,
7705 base.head) {
7706 /* Otherwise traverse passed in connector list and get encoders
7707 * for them. */
7708 for (ro = 0; ro < set->num_connectors; ro++) {
7709 if (set->connectors[ro] == &connector->base) {
7710 connector->new_encoder = connector->encoder;
7711 break;
7712 }
7713 }
7714
7715 /* If we disable the crtc, disable all its connectors. Also, if
7716 * the connector is on the changing crtc but not on the new
7717 * connector list, disable it. */
7718 if ((!set->fb || ro == set->num_connectors) &&
7719 connector->base.encoder &&
7720 connector->base.encoder->crtc == set->crtc) {
7721 connector->new_encoder = NULL;
7722
7723 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7724 connector->base.base.id,
7725 drm_get_connector_name(&connector->base));
7726 }
7727
7728
7729 if (&connector->new_encoder->base != connector->base.encoder) {
7730 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7731 config->mode_changed = true;
7732 }
7733
7734 /* Disable all disconnected encoders. */
7735 if (connector->base.status == connector_status_disconnected)
7736 connector->new_encoder = NULL;
7737 }
7738 /* connector->new_encoder is now updated for all connectors. */
7739
7740 /* Update crtc of enabled connectors. */
7741 count = 0;
7742 list_for_each_entry(connector, &dev->mode_config.connector_list,
7743 base.head) {
7744 if (!connector->new_encoder)
7745 continue;
7746
7747 new_crtc = connector->new_encoder->base.crtc;
7748
7749 for (ro = 0; ro < set->num_connectors; ro++) {
7750 if (set->connectors[ro] == &connector->base)
7751 new_crtc = set->crtc;
7752 }
7753
7754 /* Make sure the new CRTC will work with the encoder */
7755 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7756 new_crtc)) {
7757 return -EINVAL;
7758 }
7759 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7760
7761 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7762 connector->base.base.id,
7763 drm_get_connector_name(&connector->base),
7764 new_crtc->base.id);
7765 }
7766
7767 /* Check for any encoders that needs to be disabled. */
7768 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7769 base.head) {
7770 list_for_each_entry(connector,
7771 &dev->mode_config.connector_list,
7772 base.head) {
7773 if (connector->new_encoder == encoder) {
7774 WARN_ON(!connector->new_encoder->new_crtc);
7775
7776 goto next_encoder;
7777 }
7778 }
7779 encoder->new_crtc = NULL;
7780 next_encoder:
7781 /* Only now check for crtc changes so we don't miss encoders
7782 * that will be disabled. */
7783 if (&encoder->new_crtc->base != encoder->base.crtc) {
7784 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7785 config->mode_changed = true;
7786 }
7787 }
7788 /* Now we've also updated encoder->new_crtc for all encoders. */
7789
7790 return 0;
7791 }
7792
7793 static int intel_crtc_set_config(struct drm_mode_set *set)
7794 {
7795 struct drm_device *dev;
7796 struct drm_mode_set save_set;
7797 struct intel_set_config *config;
7798 int ret;
7799
7800 BUG_ON(!set);
7801 BUG_ON(!set->crtc);
7802 BUG_ON(!set->crtc->helper_private);
7803
7804 if (!set->mode)
7805 set->fb = NULL;
7806
7807 /* The fb helper likes to play gross jokes with ->mode_set_config.
7808 * Unfortunately the crtc helper doesn't do much at all for this case,
7809 * so we have to cope with this madness until the fb helper is fixed up. */
7810 if (set->fb && set->num_connectors == 0)
7811 return 0;
7812
7813 if (set->fb) {
7814 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7815 set->crtc->base.id, set->fb->base.id,
7816 (int)set->num_connectors, set->x, set->y);
7817 } else {
7818 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7819 }
7820
7821 dev = set->crtc->dev;
7822
7823 ret = -ENOMEM;
7824 config = kzalloc(sizeof(*config), GFP_KERNEL);
7825 if (!config)
7826 goto out_config;
7827
7828 ret = intel_set_config_save_state(dev, config);
7829 if (ret)
7830 goto out_config;
7831
7832 save_set.crtc = set->crtc;
7833 save_set.mode = &set->crtc->mode;
7834 save_set.x = set->crtc->x;
7835 save_set.y = set->crtc->y;
7836 save_set.fb = set->crtc->fb;
7837
7838 /* Compute whether we need a full modeset, only an fb base update or no
7839 * change at all. In the future we might also check whether only the
7840 * mode changed, e.g. for LVDS where we only change the panel fitter in
7841 * such cases. */
7842 intel_set_config_compute_mode_changes(set, config);
7843
7844 ret = intel_modeset_stage_output_state(dev, set, config);
7845 if (ret)
7846 goto fail;
7847
7848 if (config->mode_changed) {
7849 if (set->mode) {
7850 DRM_DEBUG_KMS("attempting to set mode from"
7851 " userspace\n");
7852 drm_mode_debug_printmodeline(set->mode);
7853 }
7854
7855 if (!intel_set_mode(set->crtc, set->mode,
7856 set->x, set->y, set->fb)) {
7857 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7858 set->crtc->base.id);
7859 ret = -EINVAL;
7860 goto fail;
7861 }
7862 } else if (config->fb_changed) {
7863 ret = intel_pipe_set_base(set->crtc,
7864 set->x, set->y, set->fb);
7865 }
7866
7867 intel_set_config_free(config);
7868
7869 return 0;
7870
7871 fail:
7872 intel_set_config_restore_state(dev, config);
7873
7874 /* Try to restore the config */
7875 if (config->mode_changed &&
7876 !intel_set_mode(save_set.crtc, save_set.mode,
7877 save_set.x, save_set.y, save_set.fb))
7878 DRM_ERROR("failed to restore config after modeset failure\n");
7879
7880 out_config:
7881 intel_set_config_free(config);
7882 return ret;
7883 }
7884
7885 static const struct drm_crtc_funcs intel_crtc_funcs = {
7886 .cursor_set = intel_crtc_cursor_set,
7887 .cursor_move = intel_crtc_cursor_move,
7888 .gamma_set = intel_crtc_gamma_set,
7889 .set_config = intel_crtc_set_config,
7890 .destroy = intel_crtc_destroy,
7891 .page_flip = intel_crtc_page_flip,
7892 };
7893
7894 static void intel_cpu_pll_init(struct drm_device *dev)
7895 {
7896 if (IS_HASWELL(dev))
7897 intel_ddi_pll_init(dev);
7898 }
7899
7900 static void intel_pch_pll_init(struct drm_device *dev)
7901 {
7902 drm_i915_private_t *dev_priv = dev->dev_private;
7903 int i;
7904
7905 if (dev_priv->num_pch_pll == 0) {
7906 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7907 return;
7908 }
7909
7910 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7911 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7912 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7913 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7914 }
7915 }
7916
7917 static void intel_crtc_init(struct drm_device *dev, int pipe)
7918 {
7919 drm_i915_private_t *dev_priv = dev->dev_private;
7920 struct intel_crtc *intel_crtc;
7921 int i;
7922
7923 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7924 if (intel_crtc == NULL)
7925 return;
7926
7927 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7928
7929 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7930 for (i = 0; i < 256; i++) {
7931 intel_crtc->lut_r[i] = i;
7932 intel_crtc->lut_g[i] = i;
7933 intel_crtc->lut_b[i] = i;
7934 }
7935
7936 /* Swap pipes & planes for FBC on pre-965 */
7937 intel_crtc->pipe = pipe;
7938 intel_crtc->plane = pipe;
7939 intel_crtc->cpu_transcoder = pipe;
7940 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7941 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7942 intel_crtc->plane = !pipe;
7943 }
7944
7945 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7946 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7947 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7948 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7949
7950 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7951
7952 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7953 }
7954
7955 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7956 struct drm_file *file)
7957 {
7958 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7959 struct drm_mode_object *drmmode_obj;
7960 struct intel_crtc *crtc;
7961
7962 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7963 return -ENODEV;
7964
7965 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7966 DRM_MODE_OBJECT_CRTC);
7967
7968 if (!drmmode_obj) {
7969 DRM_ERROR("no such CRTC id\n");
7970 return -EINVAL;
7971 }
7972
7973 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7974 pipe_from_crtc_id->pipe = crtc->pipe;
7975
7976 return 0;
7977 }
7978
7979 static int intel_encoder_clones(struct intel_encoder *encoder)
7980 {
7981 struct drm_device *dev = encoder->base.dev;
7982 struct intel_encoder *source_encoder;
7983 int index_mask = 0;
7984 int entry = 0;
7985
7986 list_for_each_entry(source_encoder,
7987 &dev->mode_config.encoder_list, base.head) {
7988
7989 if (encoder == source_encoder)
7990 index_mask |= (1 << entry);
7991
7992 /* Intel hw has only one MUX where enocoders could be cloned. */
7993 if (encoder->cloneable && source_encoder->cloneable)
7994 index_mask |= (1 << entry);
7995
7996 entry++;
7997 }
7998
7999 return index_mask;
8000 }
8001
8002 static bool has_edp_a(struct drm_device *dev)
8003 {
8004 struct drm_i915_private *dev_priv = dev->dev_private;
8005
8006 if (!IS_MOBILE(dev))
8007 return false;
8008
8009 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8010 return false;
8011
8012 if (IS_GEN5(dev) &&
8013 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8014 return false;
8015
8016 return true;
8017 }
8018
8019 static void intel_setup_outputs(struct drm_device *dev)
8020 {
8021 struct drm_i915_private *dev_priv = dev->dev_private;
8022 struct intel_encoder *encoder;
8023 bool dpd_is_edp = false;
8024 bool has_lvds;
8025
8026 has_lvds = intel_lvds_init(dev);
8027 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8028 /* disable the panel fitter on everything but LVDS */
8029 I915_WRITE(PFIT_CONTROL, 0);
8030 }
8031
8032 if (HAS_PCH_SPLIT(dev)) {
8033 dpd_is_edp = intel_dpd_is_edp(dev);
8034
8035 if (has_edp_a(dev))
8036 intel_dp_init(dev, DP_A, PORT_A);
8037
8038 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8039 intel_dp_init(dev, PCH_DP_D, PORT_D);
8040 }
8041
8042 intel_crt_init(dev);
8043
8044 if (IS_HASWELL(dev)) {
8045 int found;
8046
8047 /* Haswell uses DDI functions to detect digital outputs */
8048 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8049 /* DDI A only supports eDP */
8050 if (found)
8051 intel_ddi_init(dev, PORT_A);
8052
8053 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8054 * register */
8055 found = I915_READ(SFUSE_STRAP);
8056
8057 if (found & SFUSE_STRAP_DDIB_DETECTED)
8058 intel_ddi_init(dev, PORT_B);
8059 if (found & SFUSE_STRAP_DDIC_DETECTED)
8060 intel_ddi_init(dev, PORT_C);
8061 if (found & SFUSE_STRAP_DDID_DETECTED)
8062 intel_ddi_init(dev, PORT_D);
8063 } else if (HAS_PCH_SPLIT(dev)) {
8064 int found;
8065
8066 if (I915_READ(HDMIB) & PORT_DETECTED) {
8067 /* PCH SDVOB multiplex with HDMIB */
8068 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8069 if (!found)
8070 intel_hdmi_init(dev, HDMIB, PORT_B);
8071 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8072 intel_dp_init(dev, PCH_DP_B, PORT_B);
8073 }
8074
8075 if (I915_READ(HDMIC) & PORT_DETECTED)
8076 intel_hdmi_init(dev, HDMIC, PORT_C);
8077
8078 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8079 intel_hdmi_init(dev, HDMID, PORT_D);
8080
8081 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8082 intel_dp_init(dev, PCH_DP_C, PORT_C);
8083
8084 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8085 intel_dp_init(dev, PCH_DP_D, PORT_D);
8086 } else if (IS_VALLEYVIEW(dev)) {
8087 int found;
8088
8089 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8090 if (I915_READ(DP_C) & DP_DETECTED)
8091 intel_dp_init(dev, DP_C, PORT_C);
8092
8093 if (I915_READ(SDVOB) & PORT_DETECTED) {
8094 /* SDVOB multiplex with HDMIB */
8095 found = intel_sdvo_init(dev, SDVOB, true);
8096 if (!found)
8097 intel_hdmi_init(dev, SDVOB, PORT_B);
8098 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8099 intel_dp_init(dev, DP_B, PORT_B);
8100 }
8101
8102 if (I915_READ(SDVOC) & PORT_DETECTED)
8103 intel_hdmi_init(dev, SDVOC, PORT_C);
8104
8105 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8106 bool found = false;
8107
8108 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8109 DRM_DEBUG_KMS("probing SDVOB\n");
8110 found = intel_sdvo_init(dev, SDVOB, true);
8111 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8112 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8113 intel_hdmi_init(dev, SDVOB, PORT_B);
8114 }
8115
8116 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8117 DRM_DEBUG_KMS("probing DP_B\n");
8118 intel_dp_init(dev, DP_B, PORT_B);
8119 }
8120 }
8121
8122 /* Before G4X SDVOC doesn't have its own detect register */
8123
8124 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8125 DRM_DEBUG_KMS("probing SDVOC\n");
8126 found = intel_sdvo_init(dev, SDVOC, false);
8127 }
8128
8129 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8130
8131 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8132 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8133 intel_hdmi_init(dev, SDVOC, PORT_C);
8134 }
8135 if (SUPPORTS_INTEGRATED_DP(dev)) {
8136 DRM_DEBUG_KMS("probing DP_C\n");
8137 intel_dp_init(dev, DP_C, PORT_C);
8138 }
8139 }
8140
8141 if (SUPPORTS_INTEGRATED_DP(dev) &&
8142 (I915_READ(DP_D) & DP_DETECTED)) {
8143 DRM_DEBUG_KMS("probing DP_D\n");
8144 intel_dp_init(dev, DP_D, PORT_D);
8145 }
8146 } else if (IS_GEN2(dev))
8147 intel_dvo_init(dev);
8148
8149 if (SUPPORTS_TV(dev))
8150 intel_tv_init(dev);
8151
8152 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8153 encoder->base.possible_crtcs = encoder->crtc_mask;
8154 encoder->base.possible_clones =
8155 intel_encoder_clones(encoder);
8156 }
8157
8158 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8159 ironlake_init_pch_refclk(dev);
8160 }
8161
8162 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8163 {
8164 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8165
8166 drm_framebuffer_cleanup(fb);
8167 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8168
8169 kfree(intel_fb);
8170 }
8171
8172 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8173 struct drm_file *file,
8174 unsigned int *handle)
8175 {
8176 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8177 struct drm_i915_gem_object *obj = intel_fb->obj;
8178
8179 return drm_gem_handle_create(file, &obj->base, handle);
8180 }
8181
8182 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8183 .destroy = intel_user_framebuffer_destroy,
8184 .create_handle = intel_user_framebuffer_create_handle,
8185 };
8186
8187 int intel_framebuffer_init(struct drm_device *dev,
8188 struct intel_framebuffer *intel_fb,
8189 struct drm_mode_fb_cmd2 *mode_cmd,
8190 struct drm_i915_gem_object *obj)
8191 {
8192 int ret;
8193
8194 if (obj->tiling_mode == I915_TILING_Y)
8195 return -EINVAL;
8196
8197 if (mode_cmd->pitches[0] & 63)
8198 return -EINVAL;
8199
8200 switch (mode_cmd->pixel_format) {
8201 case DRM_FORMAT_RGB332:
8202 case DRM_FORMAT_RGB565:
8203 case DRM_FORMAT_XRGB8888:
8204 case DRM_FORMAT_XBGR8888:
8205 case DRM_FORMAT_ARGB8888:
8206 case DRM_FORMAT_XRGB2101010:
8207 case DRM_FORMAT_ARGB2101010:
8208 /* RGB formats are common across chipsets */
8209 break;
8210 case DRM_FORMAT_YUYV:
8211 case DRM_FORMAT_UYVY:
8212 case DRM_FORMAT_YVYU:
8213 case DRM_FORMAT_VYUY:
8214 break;
8215 default:
8216 DRM_DEBUG_KMS("unsupported pixel format %u\n",
8217 mode_cmd->pixel_format);
8218 return -EINVAL;
8219 }
8220
8221 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8222 if (ret) {
8223 DRM_ERROR("framebuffer init failed %d\n", ret);
8224 return ret;
8225 }
8226
8227 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8228 intel_fb->obj = obj;
8229 return 0;
8230 }
8231
8232 static struct drm_framebuffer *
8233 intel_user_framebuffer_create(struct drm_device *dev,
8234 struct drm_file *filp,
8235 struct drm_mode_fb_cmd2 *mode_cmd)
8236 {
8237 struct drm_i915_gem_object *obj;
8238
8239 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8240 mode_cmd->handles[0]));
8241 if (&obj->base == NULL)
8242 return ERR_PTR(-ENOENT);
8243
8244 return intel_framebuffer_create(dev, mode_cmd, obj);
8245 }
8246
8247 static const struct drm_mode_config_funcs intel_mode_funcs = {
8248 .fb_create = intel_user_framebuffer_create,
8249 .output_poll_changed = intel_fb_output_poll_changed,
8250 };
8251
8252 /* Set up chip specific display functions */
8253 static void intel_init_display(struct drm_device *dev)
8254 {
8255 struct drm_i915_private *dev_priv = dev->dev_private;
8256
8257 /* We always want a DPMS function */
8258 if (IS_HASWELL(dev)) {
8259 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8260 dev_priv->display.crtc_enable = haswell_crtc_enable;
8261 dev_priv->display.crtc_disable = haswell_crtc_disable;
8262 dev_priv->display.off = haswell_crtc_off;
8263 dev_priv->display.update_plane = ironlake_update_plane;
8264 } else if (HAS_PCH_SPLIT(dev)) {
8265 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8266 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8267 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8268 dev_priv->display.off = ironlake_crtc_off;
8269 dev_priv->display.update_plane = ironlake_update_plane;
8270 } else {
8271 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8272 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8273 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8274 dev_priv->display.off = i9xx_crtc_off;
8275 dev_priv->display.update_plane = i9xx_update_plane;
8276 }
8277
8278 /* Returns the core display clock speed */
8279 if (IS_VALLEYVIEW(dev))
8280 dev_priv->display.get_display_clock_speed =
8281 valleyview_get_display_clock_speed;
8282 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8283 dev_priv->display.get_display_clock_speed =
8284 i945_get_display_clock_speed;
8285 else if (IS_I915G(dev))
8286 dev_priv->display.get_display_clock_speed =
8287 i915_get_display_clock_speed;
8288 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8289 dev_priv->display.get_display_clock_speed =
8290 i9xx_misc_get_display_clock_speed;
8291 else if (IS_I915GM(dev))
8292 dev_priv->display.get_display_clock_speed =
8293 i915gm_get_display_clock_speed;
8294 else if (IS_I865G(dev))
8295 dev_priv->display.get_display_clock_speed =
8296 i865_get_display_clock_speed;
8297 else if (IS_I85X(dev))
8298 dev_priv->display.get_display_clock_speed =
8299 i855_get_display_clock_speed;
8300 else /* 852, 830 */
8301 dev_priv->display.get_display_clock_speed =
8302 i830_get_display_clock_speed;
8303
8304 if (HAS_PCH_SPLIT(dev)) {
8305 if (IS_GEN5(dev)) {
8306 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8307 dev_priv->display.write_eld = ironlake_write_eld;
8308 } else if (IS_GEN6(dev)) {
8309 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8310 dev_priv->display.write_eld = ironlake_write_eld;
8311 } else if (IS_IVYBRIDGE(dev)) {
8312 /* FIXME: detect B0+ stepping and use auto training */
8313 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8314 dev_priv->display.write_eld = ironlake_write_eld;
8315 } else if (IS_HASWELL(dev)) {
8316 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8317 dev_priv->display.write_eld = haswell_write_eld;
8318 } else
8319 dev_priv->display.update_wm = NULL;
8320 } else if (IS_G4X(dev)) {
8321 dev_priv->display.write_eld = g4x_write_eld;
8322 }
8323
8324 /* Default just returns -ENODEV to indicate unsupported */
8325 dev_priv->display.queue_flip = intel_default_queue_flip;
8326
8327 switch (INTEL_INFO(dev)->gen) {
8328 case 2:
8329 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8330 break;
8331
8332 case 3:
8333 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8334 break;
8335
8336 case 4:
8337 case 5:
8338 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8339 break;
8340
8341 case 6:
8342 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8343 break;
8344 case 7:
8345 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8346 break;
8347 }
8348 }
8349
8350 /*
8351 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8352 * resume, or other times. This quirk makes sure that's the case for
8353 * affected systems.
8354 */
8355 static void quirk_pipea_force(struct drm_device *dev)
8356 {
8357 struct drm_i915_private *dev_priv = dev->dev_private;
8358
8359 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8360 DRM_INFO("applying pipe a force quirk\n");
8361 }
8362
8363 /*
8364 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8365 */
8366 static void quirk_ssc_force_disable(struct drm_device *dev)
8367 {
8368 struct drm_i915_private *dev_priv = dev->dev_private;
8369 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8370 DRM_INFO("applying lvds SSC disable quirk\n");
8371 }
8372
8373 /*
8374 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8375 * brightness value
8376 */
8377 static void quirk_invert_brightness(struct drm_device *dev)
8378 {
8379 struct drm_i915_private *dev_priv = dev->dev_private;
8380 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8381 DRM_INFO("applying inverted panel brightness quirk\n");
8382 }
8383
8384 struct intel_quirk {
8385 int device;
8386 int subsystem_vendor;
8387 int subsystem_device;
8388 void (*hook)(struct drm_device *dev);
8389 };
8390
8391 static struct intel_quirk intel_quirks[] = {
8392 /* HP Mini needs pipe A force quirk (LP: #322104) */
8393 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8394
8395 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8396 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8397
8398 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8399 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8400
8401 /* 830/845 need to leave pipe A & dpll A up */
8402 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8403 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8404
8405 /* Lenovo U160 cannot use SSC on LVDS */
8406 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8407
8408 /* Sony Vaio Y cannot use SSC on LVDS */
8409 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8410
8411 /* Acer Aspire 5734Z must invert backlight brightness */
8412 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8413 };
8414
8415 static void intel_init_quirks(struct drm_device *dev)
8416 {
8417 struct pci_dev *d = dev->pdev;
8418 int i;
8419
8420 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8421 struct intel_quirk *q = &intel_quirks[i];
8422
8423 if (d->device == q->device &&
8424 (d->subsystem_vendor == q->subsystem_vendor ||
8425 q->subsystem_vendor == PCI_ANY_ID) &&
8426 (d->subsystem_device == q->subsystem_device ||
8427 q->subsystem_device == PCI_ANY_ID))
8428 q->hook(dev);
8429 }
8430 }
8431
8432 /* Disable the VGA plane that we never use */
8433 static void i915_disable_vga(struct drm_device *dev)
8434 {
8435 struct drm_i915_private *dev_priv = dev->dev_private;
8436 u8 sr1;
8437 u32 vga_reg;
8438
8439 if (HAS_PCH_SPLIT(dev))
8440 vga_reg = CPU_VGACNTRL;
8441 else
8442 vga_reg = VGACNTRL;
8443
8444 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8445 outb(SR01, VGA_SR_INDEX);
8446 sr1 = inb(VGA_SR_DATA);
8447 outb(sr1 | 1<<5, VGA_SR_DATA);
8448 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8449 udelay(300);
8450
8451 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8452 POSTING_READ(vga_reg);
8453 }
8454
8455 void intel_modeset_init_hw(struct drm_device *dev)
8456 {
8457 /* We attempt to init the necessary power wells early in the initialization
8458 * time, so the subsystems that expect power to be enabled can work.
8459 */
8460 intel_init_power_wells(dev);
8461
8462 intel_prepare_ddi(dev);
8463
8464 intel_init_clock_gating(dev);
8465
8466 mutex_lock(&dev->struct_mutex);
8467 intel_enable_gt_powersave(dev);
8468 mutex_unlock(&dev->struct_mutex);
8469 }
8470
8471 void intel_modeset_init(struct drm_device *dev)
8472 {
8473 struct drm_i915_private *dev_priv = dev->dev_private;
8474 int i, ret;
8475
8476 drm_mode_config_init(dev);
8477
8478 dev->mode_config.min_width = 0;
8479 dev->mode_config.min_height = 0;
8480
8481 dev->mode_config.preferred_depth = 24;
8482 dev->mode_config.prefer_shadow = 1;
8483
8484 dev->mode_config.funcs = &intel_mode_funcs;
8485
8486 intel_init_quirks(dev);
8487
8488 intel_init_pm(dev);
8489
8490 intel_init_display(dev);
8491
8492 if (IS_GEN2(dev)) {
8493 dev->mode_config.max_width = 2048;
8494 dev->mode_config.max_height = 2048;
8495 } else if (IS_GEN3(dev)) {
8496 dev->mode_config.max_width = 4096;
8497 dev->mode_config.max_height = 4096;
8498 } else {
8499 dev->mode_config.max_width = 8192;
8500 dev->mode_config.max_height = 8192;
8501 }
8502 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8503
8504 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8505 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8506
8507 for (i = 0; i < dev_priv->num_pipe; i++) {
8508 intel_crtc_init(dev, i);
8509 ret = intel_plane_init(dev, i);
8510 if (ret)
8511 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8512 }
8513
8514 intel_cpu_pll_init(dev);
8515 intel_pch_pll_init(dev);
8516
8517 /* Just disable it once at startup */
8518 i915_disable_vga(dev);
8519 intel_setup_outputs(dev);
8520 }
8521
8522 static void
8523 intel_connector_break_all_links(struct intel_connector *connector)
8524 {
8525 connector->base.dpms = DRM_MODE_DPMS_OFF;
8526 connector->base.encoder = NULL;
8527 connector->encoder->connectors_active = false;
8528 connector->encoder->base.crtc = NULL;
8529 }
8530
8531 static void intel_enable_pipe_a(struct drm_device *dev)
8532 {
8533 struct intel_connector *connector;
8534 struct drm_connector *crt = NULL;
8535 struct intel_load_detect_pipe load_detect_temp;
8536
8537 /* We can't just switch on the pipe A, we need to set things up with a
8538 * proper mode and output configuration. As a gross hack, enable pipe A
8539 * by enabling the load detect pipe once. */
8540 list_for_each_entry(connector,
8541 &dev->mode_config.connector_list,
8542 base.head) {
8543 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8544 crt = &connector->base;
8545 break;
8546 }
8547 }
8548
8549 if (!crt)
8550 return;
8551
8552 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8553 intel_release_load_detect_pipe(crt, &load_detect_temp);
8554
8555
8556 }
8557
8558 static bool
8559 intel_check_plane_mapping(struct intel_crtc *crtc)
8560 {
8561 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8562 u32 reg, val;
8563
8564 if (dev_priv->num_pipe == 1)
8565 return true;
8566
8567 reg = DSPCNTR(!crtc->plane);
8568 val = I915_READ(reg);
8569
8570 if ((val & DISPLAY_PLANE_ENABLE) &&
8571 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8572 return false;
8573
8574 return true;
8575 }
8576
8577 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8578 {
8579 struct drm_device *dev = crtc->base.dev;
8580 struct drm_i915_private *dev_priv = dev->dev_private;
8581 u32 reg;
8582
8583 /* Clear any frame start delays used for debugging left by the BIOS */
8584 reg = PIPECONF(crtc->cpu_transcoder);
8585 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8586
8587 /* We need to sanitize the plane -> pipe mapping first because this will
8588 * disable the crtc (and hence change the state) if it is wrong. Note
8589 * that gen4+ has a fixed plane -> pipe mapping. */
8590 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8591 struct intel_connector *connector;
8592 bool plane;
8593
8594 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8595 crtc->base.base.id);
8596
8597 /* Pipe has the wrong plane attached and the plane is active.
8598 * Temporarily change the plane mapping and disable everything
8599 * ... */
8600 plane = crtc->plane;
8601 crtc->plane = !plane;
8602 dev_priv->display.crtc_disable(&crtc->base);
8603 crtc->plane = plane;
8604
8605 /* ... and break all links. */
8606 list_for_each_entry(connector, &dev->mode_config.connector_list,
8607 base.head) {
8608 if (connector->encoder->base.crtc != &crtc->base)
8609 continue;
8610
8611 intel_connector_break_all_links(connector);
8612 }
8613
8614 WARN_ON(crtc->active);
8615 crtc->base.enabled = false;
8616 }
8617
8618 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8619 crtc->pipe == PIPE_A && !crtc->active) {
8620 /* BIOS forgot to enable pipe A, this mostly happens after
8621 * resume. Force-enable the pipe to fix this, the update_dpms
8622 * call below we restore the pipe to the right state, but leave
8623 * the required bits on. */
8624 intel_enable_pipe_a(dev);
8625 }
8626
8627 /* Adjust the state of the output pipe according to whether we
8628 * have active connectors/encoders. */
8629 intel_crtc_update_dpms(&crtc->base);
8630
8631 if (crtc->active != crtc->base.enabled) {
8632 struct intel_encoder *encoder;
8633
8634 /* This can happen either due to bugs in the get_hw_state
8635 * functions or because the pipe is force-enabled due to the
8636 * pipe A quirk. */
8637 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8638 crtc->base.base.id,
8639 crtc->base.enabled ? "enabled" : "disabled",
8640 crtc->active ? "enabled" : "disabled");
8641
8642 crtc->base.enabled = crtc->active;
8643
8644 /* Because we only establish the connector -> encoder ->
8645 * crtc links if something is active, this means the
8646 * crtc is now deactivated. Break the links. connector
8647 * -> encoder links are only establish when things are
8648 * actually up, hence no need to break them. */
8649 WARN_ON(crtc->active);
8650
8651 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8652 WARN_ON(encoder->connectors_active);
8653 encoder->base.crtc = NULL;
8654 }
8655 }
8656 }
8657
8658 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8659 {
8660 struct intel_connector *connector;
8661 struct drm_device *dev = encoder->base.dev;
8662
8663 /* We need to check both for a crtc link (meaning that the
8664 * encoder is active and trying to read from a pipe) and the
8665 * pipe itself being active. */
8666 bool has_active_crtc = encoder->base.crtc &&
8667 to_intel_crtc(encoder->base.crtc)->active;
8668
8669 if (encoder->connectors_active && !has_active_crtc) {
8670 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8671 encoder->base.base.id,
8672 drm_get_encoder_name(&encoder->base));
8673
8674 /* Connector is active, but has no active pipe. This is
8675 * fallout from our resume register restoring. Disable
8676 * the encoder manually again. */
8677 if (encoder->base.crtc) {
8678 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8679 encoder->base.base.id,
8680 drm_get_encoder_name(&encoder->base));
8681 encoder->disable(encoder);
8682 }
8683
8684 /* Inconsistent output/port/pipe state happens presumably due to
8685 * a bug in one of the get_hw_state functions. Or someplace else
8686 * in our code, like the register restore mess on resume. Clamp
8687 * things to off as a safer default. */
8688 list_for_each_entry(connector,
8689 &dev->mode_config.connector_list,
8690 base.head) {
8691 if (connector->encoder != encoder)
8692 continue;
8693
8694 intel_connector_break_all_links(connector);
8695 }
8696 }
8697 /* Enabled encoders without active connectors will be fixed in
8698 * the crtc fixup. */
8699 }
8700
8701 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8702 * and i915 state tracking structures. */
8703 void intel_modeset_setup_hw_state(struct drm_device *dev)
8704 {
8705 struct drm_i915_private *dev_priv = dev->dev_private;
8706 enum pipe pipe;
8707 u32 tmp;
8708 struct intel_crtc *crtc;
8709 struct intel_encoder *encoder;
8710 struct intel_connector *connector;
8711
8712 if (IS_HASWELL(dev)) {
8713 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8714
8715 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8716 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8717 case TRANS_DDI_EDP_INPUT_A_ON:
8718 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8719 pipe = PIPE_A;
8720 break;
8721 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8722 pipe = PIPE_B;
8723 break;
8724 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8725 pipe = PIPE_C;
8726 break;
8727 }
8728
8729 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8730 crtc->cpu_transcoder = TRANSCODER_EDP;
8731
8732 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8733 pipe_name(pipe));
8734 }
8735 }
8736
8737 for_each_pipe(pipe) {
8738 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8739
8740 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8741 if (tmp & PIPECONF_ENABLE)
8742 crtc->active = true;
8743 else
8744 crtc->active = false;
8745
8746 crtc->base.enabled = crtc->active;
8747
8748 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8749 crtc->base.base.id,
8750 crtc->active ? "enabled" : "disabled");
8751 }
8752
8753 if (IS_HASWELL(dev))
8754 intel_ddi_setup_hw_pll_state(dev);
8755
8756 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8757 base.head) {
8758 pipe = 0;
8759
8760 if (encoder->get_hw_state(encoder, &pipe)) {
8761 encoder->base.crtc =
8762 dev_priv->pipe_to_crtc_mapping[pipe];
8763 } else {
8764 encoder->base.crtc = NULL;
8765 }
8766
8767 encoder->connectors_active = false;
8768 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8769 encoder->base.base.id,
8770 drm_get_encoder_name(&encoder->base),
8771 encoder->base.crtc ? "enabled" : "disabled",
8772 pipe);
8773 }
8774
8775 list_for_each_entry(connector, &dev->mode_config.connector_list,
8776 base.head) {
8777 if (connector->get_hw_state(connector)) {
8778 connector->base.dpms = DRM_MODE_DPMS_ON;
8779 connector->encoder->connectors_active = true;
8780 connector->base.encoder = &connector->encoder->base;
8781 } else {
8782 connector->base.dpms = DRM_MODE_DPMS_OFF;
8783 connector->base.encoder = NULL;
8784 }
8785 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8786 connector->base.base.id,
8787 drm_get_connector_name(&connector->base),
8788 connector->base.encoder ? "enabled" : "disabled");
8789 }
8790
8791 /* HW state is read out, now we need to sanitize this mess. */
8792 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8793 base.head) {
8794 intel_sanitize_encoder(encoder);
8795 }
8796
8797 for_each_pipe(pipe) {
8798 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8799 intel_sanitize_crtc(crtc);
8800 }
8801
8802 intel_modeset_update_staged_output_state(dev);
8803
8804 intel_modeset_check_state(dev);
8805
8806 drm_mode_config_reset(dev);
8807 }
8808
8809 void intel_modeset_gem_init(struct drm_device *dev)
8810 {
8811 intel_modeset_init_hw(dev);
8812
8813 intel_setup_overlay(dev);
8814
8815 intel_modeset_setup_hw_state(dev);
8816 }
8817
8818 void intel_modeset_cleanup(struct drm_device *dev)
8819 {
8820 struct drm_i915_private *dev_priv = dev->dev_private;
8821 struct drm_crtc *crtc;
8822 struct intel_crtc *intel_crtc;
8823
8824 drm_kms_helper_poll_fini(dev);
8825 mutex_lock(&dev->struct_mutex);
8826
8827 intel_unregister_dsm_handler();
8828
8829
8830 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8831 /* Skip inactive CRTCs */
8832 if (!crtc->fb)
8833 continue;
8834
8835 intel_crtc = to_intel_crtc(crtc);
8836 intel_increase_pllclock(crtc);
8837 }
8838
8839 intel_disable_fbc(dev);
8840
8841 intel_disable_gt_powersave(dev);
8842
8843 ironlake_teardown_rc6(dev);
8844
8845 if (IS_VALLEYVIEW(dev))
8846 vlv_init_dpio(dev);
8847
8848 mutex_unlock(&dev->struct_mutex);
8849
8850 /* Disable the irq before mode object teardown, for the irq might
8851 * enqueue unpin/hotplug work. */
8852 drm_irq_uninstall(dev);
8853 cancel_work_sync(&dev_priv->hotplug_work);
8854 cancel_work_sync(&dev_priv->rps.work);
8855
8856 /* flush any delayed tasks or pending work */
8857 flush_scheduled_work();
8858
8859 drm_mode_config_cleanup(dev);
8860 }
8861
8862 /*
8863 * Return which encoder is currently attached for connector.
8864 */
8865 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8866 {
8867 return &intel_attached_encoder(connector)->base;
8868 }
8869
8870 void intel_connector_attach_encoder(struct intel_connector *connector,
8871 struct intel_encoder *encoder)
8872 {
8873 connector->encoder = encoder;
8874 drm_mode_connector_attach_encoder(&connector->base,
8875 &encoder->base);
8876 }
8877
8878 /*
8879 * set vga decode state - true == enable VGA decode
8880 */
8881 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8882 {
8883 struct drm_i915_private *dev_priv = dev->dev_private;
8884 u16 gmch_ctrl;
8885
8886 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8887 if (state)
8888 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8889 else
8890 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8891 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8892 return 0;
8893 }
8894
8895 #ifdef CONFIG_DEBUG_FS
8896 #include <linux/seq_file.h>
8897
8898 struct intel_display_error_state {
8899 struct intel_cursor_error_state {
8900 u32 control;
8901 u32 position;
8902 u32 base;
8903 u32 size;
8904 } cursor[I915_MAX_PIPES];
8905
8906 struct intel_pipe_error_state {
8907 u32 conf;
8908 u32 source;
8909
8910 u32 htotal;
8911 u32 hblank;
8912 u32 hsync;
8913 u32 vtotal;
8914 u32 vblank;
8915 u32 vsync;
8916 } pipe[I915_MAX_PIPES];
8917
8918 struct intel_plane_error_state {
8919 u32 control;
8920 u32 stride;
8921 u32 size;
8922 u32 pos;
8923 u32 addr;
8924 u32 surface;
8925 u32 tile_offset;
8926 } plane[I915_MAX_PIPES];
8927 };
8928
8929 struct intel_display_error_state *
8930 intel_display_capture_error_state(struct drm_device *dev)
8931 {
8932 drm_i915_private_t *dev_priv = dev->dev_private;
8933 struct intel_display_error_state *error;
8934 enum transcoder cpu_transcoder;
8935 int i;
8936
8937 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8938 if (error == NULL)
8939 return NULL;
8940
8941 for_each_pipe(i) {
8942 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
8943
8944 error->cursor[i].control = I915_READ(CURCNTR(i));
8945 error->cursor[i].position = I915_READ(CURPOS(i));
8946 error->cursor[i].base = I915_READ(CURBASE(i));
8947
8948 error->plane[i].control = I915_READ(DSPCNTR(i));
8949 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8950 error->plane[i].size = I915_READ(DSPSIZE(i));
8951 error->plane[i].pos = I915_READ(DSPPOS(i));
8952 error->plane[i].addr = I915_READ(DSPADDR(i));
8953 if (INTEL_INFO(dev)->gen >= 4) {
8954 error->plane[i].surface = I915_READ(DSPSURF(i));
8955 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8956 }
8957
8958 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
8959 error->pipe[i].source = I915_READ(PIPESRC(i));
8960 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
8961 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
8962 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
8963 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
8964 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
8965 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
8966 }
8967
8968 return error;
8969 }
8970
8971 void
8972 intel_display_print_error_state(struct seq_file *m,
8973 struct drm_device *dev,
8974 struct intel_display_error_state *error)
8975 {
8976 drm_i915_private_t *dev_priv = dev->dev_private;
8977 int i;
8978
8979 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8980 for_each_pipe(i) {
8981 seq_printf(m, "Pipe [%d]:\n", i);
8982 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8983 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8984 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8985 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8986 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8987 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8988 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8989 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8990
8991 seq_printf(m, "Plane [%d]:\n", i);
8992 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8993 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8994 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8995 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8996 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8997 if (INTEL_INFO(dev)->gen >= 4) {
8998 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8999 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9000 }
9001
9002 seq_printf(m, "Cursor [%d]:\n", i);
9003 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9004 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9005 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9006 }
9007 }
9008 #endif
This page took 0.402381 seconds and 6 git commands to generate.