Merge branch 'upstream/pvhvm' into upstream/xen
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47 /* given values */
48 int n;
49 int m1, m2;
50 int p1, p2;
51 /* derived values */
52 int dot;
53 int vco;
54 int m;
55 int p;
56 } intel_clock_t;
57
58 typedef struct {
59 int min, max;
60 } intel_range_t;
61
62 typedef struct {
63 int dot_limit;
64 int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM 2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70 intel_range_t dot, vco, n, m, m1, m2, p, p1;
71 intel_p2_t p2;
72 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73 int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN 25000
77 #define I8XX_DOT_MAX 350000
78 #define I8XX_VCO_MIN 930000
79 #define I8XX_VCO_MAX 1400000
80 #define I8XX_N_MIN 3
81 #define I8XX_N_MAX 16
82 #define I8XX_M_MIN 96
83 #define I8XX_M_MAX 140
84 #define I8XX_M1_MIN 18
85 #define I8XX_M1_MAX 26
86 #define I8XX_M2_MIN 6
87 #define I8XX_M2_MAX 16
88 #define I8XX_P_MIN 4
89 #define I8XX_P_MAX 128
90 #define I8XX_P1_MIN 2
91 #define I8XX_P1_MAX 33
92 #define I8XX_P1_LVDS_MIN 1
93 #define I8XX_P1_LVDS_MAX 6
94 #define I8XX_P2_SLOW 4
95 #define I8XX_P2_FAST 2
96 #define I8XX_P2_LVDS_SLOW 14
97 #define I8XX_P2_LVDS_FAST 7
98 #define I8XX_P2_SLOW_LIMIT 165000
99
100 #define I9XX_DOT_MIN 20000
101 #define I9XX_DOT_MAX 400000
102 #define I9XX_VCO_MIN 1400000
103 #define I9XX_VCO_MAX 2800000
104 #define PINEVIEW_VCO_MIN 1700000
105 #define PINEVIEW_VCO_MAX 3500000
106 #define I9XX_N_MIN 1
107 #define I9XX_N_MAX 6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN 3
110 #define PINEVIEW_N_MAX 6
111 #define I9XX_M_MIN 70
112 #define I9XX_M_MAX 120
113 #define PINEVIEW_M_MIN 2
114 #define PINEVIEW_M_MAX 256
115 #define I9XX_M1_MIN 10
116 #define I9XX_M1_MAX 22
117 #define I9XX_M2_MIN 5
118 #define I9XX_M2_MAX 9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN 0
121 #define PINEVIEW_M1_MAX 0
122 #define PINEVIEW_M2_MIN 0
123 #define PINEVIEW_M2_MAX 254
124 #define I9XX_P_SDVO_DAC_MIN 5
125 #define I9XX_P_SDVO_DAC_MAX 80
126 #define I9XX_P_LVDS_MIN 7
127 #define I9XX_P_LVDS_MAX 98
128 #define PINEVIEW_P_LVDS_MIN 7
129 #define PINEVIEW_P_LVDS_MAX 112
130 #define I9XX_P1_MIN 1
131 #define I9XX_P1_MAX 8
132 #define I9XX_P2_SDVO_DAC_SLOW 10
133 #define I9XX_P2_SDVO_DAC_FAST 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
135 #define I9XX_P2_LVDS_SLOW 14
136 #define I9XX_P2_LVDS_FAST 7
137 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN 25000
141 #define G4X_DOT_SDVO_MAX 270000
142 #define G4X_VCO_MIN 1750000
143 #define G4X_VCO_MAX 3500000
144 #define G4X_N_SDVO_MIN 1
145 #define G4X_N_SDVO_MAX 4
146 #define G4X_M_SDVO_MIN 104
147 #define G4X_M_SDVO_MAX 138
148 #define G4X_M1_SDVO_MIN 17
149 #define G4X_M1_SDVO_MAX 23
150 #define G4X_M2_SDVO_MIN 5
151 #define G4X_M2_SDVO_MAX 11
152 #define G4X_P_SDVO_MIN 10
153 #define G4X_P_SDVO_MAX 30
154 #define G4X_P1_SDVO_MIN 1
155 #define G4X_P1_SDVO_MAX 3
156 #define G4X_P2_SDVO_SLOW 10
157 #define G4X_P2_SDVO_FAST 10
158 #define G4X_P2_SDVO_LIMIT 270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN 22000
162 #define G4X_DOT_HDMI_DAC_MAX 400000
163 #define G4X_N_HDMI_DAC_MIN 1
164 #define G4X_N_HDMI_DAC_MAX 4
165 #define G4X_M_HDMI_DAC_MIN 104
166 #define G4X_M_HDMI_DAC_MAX 138
167 #define G4X_M1_HDMI_DAC_MIN 16
168 #define G4X_M1_HDMI_DAC_MAX 23
169 #define G4X_M2_HDMI_DAC_MIN 5
170 #define G4X_M2_HDMI_DAC_MAX 11
171 #define G4X_P_HDMI_DAC_MIN 5
172 #define G4X_P_HDMI_DAC_MAX 80
173 #define G4X_P1_HDMI_DAC_MIN 1
174 #define G4X_P1_HDMI_DAC_MAX 8
175 #define G4X_P2_HDMI_DAC_SLOW 10
176 #define G4X_P2_HDMI_DAC_FAST 5
177 #define G4X_P2_HDMI_DAC_LIMIT 165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN 161670
219 #define G4X_DOT_DISPLAY_PORT_MAX 227000
220 #define G4X_N_DISPLAY_PORT_MIN 1
221 #define G4X_N_DISPLAY_PORT_MAX 2
222 #define G4X_M_DISPLAY_PORT_MIN 97
223 #define G4X_M_DISPLAY_PORT_MAX 108
224 #define G4X_M1_DISPLAY_PORT_MIN 0x10
225 #define G4X_M1_DISPLAY_PORT_MAX 0x12
226 #define G4X_M2_DISPLAY_PORT_MIN 0x05
227 #define G4X_M2_DISPLAY_PORT_MAX 0x06
228 #define G4X_P_DISPLAY_PORT_MIN 10
229 #define G4X_P_DISPLAY_PORT_MAX 20
230 #define G4X_P1_DISPLAY_PORT_MIN 1
231 #define G4X_P1_DISPLAY_PORT_MAX 2
232 #define G4X_P2_DISPLAY_PORT_SLOW 10
233 #define G4X_P2_DISPLAY_PORT_FAST 10
234 #define G4X_P2_DISPLAY_PORT_LIMIT 0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238 N/M1/M2, so here the range value for them is (actual_value-2).
239 */
240 #define IRONLAKE_DOT_MIN 25000
241 #define IRONLAKE_DOT_MAX 350000
242 #define IRONLAKE_VCO_MIN 1760000
243 #define IRONLAKE_VCO_MAX 3510000
244 #define IRONLAKE_M1_MIN 12
245 #define IRONLAKE_M1_MAX 22
246 #define IRONLAKE_M2_MIN 5
247 #define IRONLAKE_M2_MAX 9
248 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN 1
254 #define IRONLAKE_DAC_N_MAX 5
255 #define IRONLAKE_DAC_M_MIN 79
256 #define IRONLAKE_DAC_M_MAX 127
257 #define IRONLAKE_DAC_P_MIN 5
258 #define IRONLAKE_DAC_P_MAX 80
259 #define IRONLAKE_DAC_P1_MIN 1
260 #define IRONLAKE_DAC_P1_MAX 8
261 #define IRONLAKE_DAC_P2_SLOW 10
262 #define IRONLAKE_DAC_P2_FAST 5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN 1
266 #define IRONLAKE_LVDS_S_N_MAX 3
267 #define IRONLAKE_LVDS_S_M_MIN 79
268 #define IRONLAKE_LVDS_S_M_MAX 118
269 #define IRONLAKE_LVDS_S_P_MIN 28
270 #define IRONLAKE_LVDS_S_P_MAX 112
271 #define IRONLAKE_LVDS_S_P1_MIN 2
272 #define IRONLAKE_LVDS_S_P1_MAX 8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN 1
278 #define IRONLAKE_LVDS_D_N_MAX 3
279 #define IRONLAKE_LVDS_D_M_MIN 79
280 #define IRONLAKE_LVDS_D_M_MAX 127
281 #define IRONLAKE_LVDS_D_P_MIN 14
282 #define IRONLAKE_LVDS_D_P_MAX 56
283 #define IRONLAKE_LVDS_D_P1_MIN 2
284 #define IRONLAKE_LVDS_D_P1_MAX 8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN 1
314 #define IRONLAKE_DP_N_MAX 2
315 #define IRONLAKE_DP_M_MIN 81
316 #define IRONLAKE_DP_M_MAX 90
317 #define IRONLAKE_DP_P_MIN 10
318 #define IRONLAKE_DP_P_MAX 20
319 #define IRONLAKE_DP_P2_FAST 10
320 #define IRONLAKE_DP_P2_SLOW 10
321 #define IRONLAKE_DP_P2_LIMIT 0
322 #define IRONLAKE_DP_P1_MIN 1
323 #define IRONLAKE_DP_P1_MAX 2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327 int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330 int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334 int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337 int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
341 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
342 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
343 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
344 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
345 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
346 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
347 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
348 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
350 .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
355 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
356 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
357 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
358 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
359 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
360 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
361 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
362 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
364 .find_pll = intel_find_best_PLL,
365 };
366
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
369 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
370 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
371 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
372 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
373 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
374 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
375 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
376 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378 .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
383 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
384 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
385 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
386 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
387 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
388 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
389 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
390 /* The single-channel range is 25-112Mhz, and dual-channel
391 * is 80-224Mhz. Prefer single channel as much as possible.
392 */
393 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
395 .find_pll = intel_find_best_PLL,
396 };
397
398 /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
401 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
402 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
403 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
404 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
405 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
406 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
407 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
408 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
409 .p2_slow = G4X_P2_SDVO_SLOW,
410 .p2_fast = G4X_P2_SDVO_FAST
411 },
412 .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
417 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
418 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
419 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
420 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
421 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
422 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
423 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
424 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426 .p2_fast = G4X_P2_HDMI_DAC_FAST
427 },
428 .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434 .vco = { .min = G4X_VCO_MIN,
435 .max = G4X_VCO_MAX },
436 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451 },
452 .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458 .vco = { .min = G4X_VCO_MIN,
459 .max = G4X_VCO_MAX },
460 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475 },
476 .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481 .max = G4X_DOT_DISPLAY_PORT_MAX },
482 .vco = { .min = G4X_VCO_MIN,
483 .max = G4X_VCO_MAX},
484 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
485 .max = G4X_N_DISPLAY_PORT_MAX },
486 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
487 .max = G4X_M_DISPLAY_PORT_MAX },
488 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
489 .max = G4X_M1_DISPLAY_PORT_MAX },
490 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
491 .max = G4X_M2_DISPLAY_PORT_MAX },
492 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
493 .max = G4X_P_DISPLAY_PORT_MAX },
494 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
495 .max = G4X_P1_DISPLAY_PORT_MAX},
496 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499 .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
504 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
505 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
506 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
507 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
508 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
509 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
510 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
511 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513 .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
518 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
519 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
520 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
521 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
522 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
523 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
524 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
525 /* Pineview only supports single-channel mode. */
526 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
528 .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
533 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
534 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
535 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
536 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
537 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
538 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
539 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
540 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541 .p2_slow = IRONLAKE_DAC_P2_SLOW,
542 .p2_fast = IRONLAKE_DAC_P2_FAST },
543 .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
548 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
549 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
550 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
551 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
552 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
553 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
554 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
555 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558 .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
563 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
564 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
565 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
566 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
567 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
568 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
569 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
570 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573 .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
578 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
579 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
582 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
583 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588 .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
593 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
594 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
597 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
598 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603 .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607 .dot = { .min = IRONLAKE_DOT_MIN,
608 .max = IRONLAKE_DOT_MAX },
609 .vco = { .min = IRONLAKE_VCO_MIN,
610 .max = IRONLAKE_VCO_MAX},
611 .n = { .min = IRONLAKE_DP_N_MIN,
612 .max = IRONLAKE_DP_N_MAX },
613 .m = { .min = IRONLAKE_DP_M_MIN,
614 .max = IRONLAKE_DP_M_MAX },
615 .m1 = { .min = IRONLAKE_M1_MIN,
616 .max = IRONLAKE_M1_MAX },
617 .m2 = { .min = IRONLAKE_M2_MIN,
618 .max = IRONLAKE_M2_MAX },
619 .p = { .min = IRONLAKE_DP_P_MIN,
620 .max = IRONLAKE_DP_P_MAX },
621 .p1 = { .min = IRONLAKE_DP_P1_MIN,
622 .max = IRONLAKE_DP_P1_MAX},
623 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624 .p2_slow = IRONLAKE_DP_P2_SLOW,
625 .p2_fast = IRONLAKE_DP_P2_FAST },
626 .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631 struct drm_device *dev = crtc->dev;
632 struct drm_i915_private *dev_priv = dev->dev_private;
633 const intel_limit_t *limit;
634 int refclk = 120;
635
636 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638 refclk = 100;
639
640 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641 LVDS_CLKB_POWER_UP) {
642 /* LVDS dual channel */
643 if (refclk == 100)
644 limit = &intel_limits_ironlake_dual_lvds_100m;
645 else
646 limit = &intel_limits_ironlake_dual_lvds;
647 } else {
648 if (refclk == 100)
649 limit = &intel_limits_ironlake_single_lvds_100m;
650 else
651 limit = &intel_limits_ironlake_single_lvds;
652 }
653 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654 HAS_eDP)
655 limit = &intel_limits_ironlake_display_port;
656 else
657 limit = &intel_limits_ironlake_dac;
658
659 return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664 struct drm_device *dev = crtc->dev;
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 const intel_limit_t *limit;
667
668 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670 LVDS_CLKB_POWER_UP)
671 /* LVDS with dual channel */
672 limit = &intel_limits_g4x_dual_channel_lvds;
673 else
674 /* LVDS with dual channel */
675 limit = &intel_limits_g4x_single_channel_lvds;
676 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678 limit = &intel_limits_g4x_hdmi;
679 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680 limit = &intel_limits_g4x_sdvo;
681 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682 limit = &intel_limits_g4x_display_port;
683 } else /* The option is for other outputs */
684 limit = &intel_limits_i9xx_sdvo;
685
686 return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691 struct drm_device *dev = crtc->dev;
692 const intel_limit_t *limit;
693
694 if (HAS_PCH_SPLIT(dev))
695 limit = intel_ironlake_limit(crtc);
696 else if (IS_G4X(dev)) {
697 limit = intel_g4x_limit(crtc);
698 } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700 limit = &intel_limits_i9xx_lvds;
701 else
702 limit = &intel_limits_i9xx_sdvo;
703 } else if (IS_PINEVIEW(dev)) {
704 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705 limit = &intel_limits_pineview_lvds;
706 else
707 limit = &intel_limits_pineview_sdvo;
708 } else {
709 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710 limit = &intel_limits_i8xx_lvds;
711 else
712 limit = &intel_limits_i8xx_dvo;
713 }
714 return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720 clock->m = clock->m2 + 2;
721 clock->p = clock->p1 * clock->p2;
722 clock->vco = refclk * clock->m / clock->n;
723 clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728 if (IS_PINEVIEW(dev)) {
729 pineview_clock(refclk, clock);
730 return;
731 }
732 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733 clock->p = clock->p1 * clock->p2;
734 clock->vco = refclk * clock->m / (clock->n + 2);
735 clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739 * Returns whether any output on the specified pipe is of the specified type
740 */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743 struct drm_device *dev = crtc->dev;
744 struct drm_mode_config *mode_config = &dev->mode_config;
745 struct drm_encoder *l_entry;
746
747 list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748 if (l_entry && l_entry->crtc == crtc) {
749 struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750 if (intel_encoder->type == type)
751 return true;
752 }
753 }
754 return false;
755 }
756
757 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
758 /**
759 * Returns whether the given set of divisors are valid for a given refclk with
760 * the given connectors.
761 */
762
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
764 {
765 const intel_limit_t *limit = intel_limit (crtc);
766 struct drm_device *dev = crtc->dev;
767
768 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
769 INTELPllInvalid ("p1 out of range\n");
770 if (clock->p < limit->p.min || limit->p.max < clock->p)
771 INTELPllInvalid ("p out of range\n");
772 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
773 INTELPllInvalid ("m2 out of range\n");
774 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
775 INTELPllInvalid ("m1 out of range\n");
776 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777 INTELPllInvalid ("m1 <= m2\n");
778 if (clock->m < limit->m.min || limit->m.max < clock->m)
779 INTELPllInvalid ("m out of range\n");
780 if (clock->n < limit->n.min || limit->n.max < clock->n)
781 INTELPllInvalid ("n out of range\n");
782 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783 INTELPllInvalid ("vco out of range\n");
784 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785 * connector, etc., rather than just a single range.
786 */
787 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788 INTELPllInvalid ("dot out of range\n");
789
790 return true;
791 }
792
793 static bool
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795 int target, int refclk, intel_clock_t *best_clock)
796
797 {
798 struct drm_device *dev = crtc->dev;
799 struct drm_i915_private *dev_priv = dev->dev_private;
800 intel_clock_t clock;
801 int err = target;
802
803 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804 (I915_READ(LVDS)) != 0) {
805 /*
806 * For LVDS, if the panel is on, just rely on its current
807 * settings for dual-channel. We haven't figured out how to
808 * reliably set up different single/dual channel state, if we
809 * even can.
810 */
811 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
812 LVDS_CLKB_POWER_UP)
813 clock.p2 = limit->p2.p2_fast;
814 else
815 clock.p2 = limit->p2.p2_slow;
816 } else {
817 if (target < limit->p2.dot_limit)
818 clock.p2 = limit->p2.p2_slow;
819 else
820 clock.p2 = limit->p2.p2_fast;
821 }
822
823 memset (best_clock, 0, sizeof (*best_clock));
824
825 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826 clock.m1++) {
827 for (clock.m2 = limit->m2.min;
828 clock.m2 <= limit->m2.max; clock.m2++) {
829 /* m1 is always 0 in Pineview */
830 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
831 break;
832 for (clock.n = limit->n.min;
833 clock.n <= limit->n.max; clock.n++) {
834 for (clock.p1 = limit->p1.min;
835 clock.p1 <= limit->p1.max; clock.p1++) {
836 int this_err;
837
838 intel_clock(dev, refclk, &clock);
839
840 if (!intel_PLL_is_valid(crtc, &clock))
841 continue;
842
843 this_err = abs(clock.dot - target);
844 if (this_err < err) {
845 *best_clock = clock;
846 err = this_err;
847 }
848 }
849 }
850 }
851 }
852
853 return (err != target);
854 }
855
856 static bool
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858 int target, int refclk, intel_clock_t *best_clock)
859 {
860 struct drm_device *dev = crtc->dev;
861 struct drm_i915_private *dev_priv = dev->dev_private;
862 intel_clock_t clock;
863 int max_n;
864 bool found;
865 /* approximately equals target * 0.00585 */
866 int err_most = (target >> 8) + (target >> 9);
867 found = false;
868
869 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
870 int lvds_reg;
871
872 if (HAS_PCH_SPLIT(dev))
873 lvds_reg = PCH_LVDS;
874 else
875 lvds_reg = LVDS;
876 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
877 LVDS_CLKB_POWER_UP)
878 clock.p2 = limit->p2.p2_fast;
879 else
880 clock.p2 = limit->p2.p2_slow;
881 } else {
882 if (target < limit->p2.dot_limit)
883 clock.p2 = limit->p2.p2_slow;
884 else
885 clock.p2 = limit->p2.p2_fast;
886 }
887
888 memset(best_clock, 0, sizeof(*best_clock));
889 max_n = limit->n.max;
890 /* based on hardware requirement, prefer smaller n to precision */
891 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892 /* based on hardware requirement, prefere larger m1,m2 */
893 for (clock.m1 = limit->m1.max;
894 clock.m1 >= limit->m1.min; clock.m1--) {
895 for (clock.m2 = limit->m2.max;
896 clock.m2 >= limit->m2.min; clock.m2--) {
897 for (clock.p1 = limit->p1.max;
898 clock.p1 >= limit->p1.min; clock.p1--) {
899 int this_err;
900
901 intel_clock(dev, refclk, &clock);
902 if (!intel_PLL_is_valid(crtc, &clock))
903 continue;
904 this_err = abs(clock.dot - target) ;
905 if (this_err < err_most) {
906 *best_clock = clock;
907 err_most = this_err;
908 max_n = clock.n;
909 found = true;
910 }
911 }
912 }
913 }
914 }
915 return found;
916 }
917
918 static bool
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920 int target, int refclk, intel_clock_t *best_clock)
921 {
922 struct drm_device *dev = crtc->dev;
923 intel_clock_t clock;
924
925 /* return directly when it is eDP */
926 if (HAS_eDP)
927 return true;
928
929 if (target < 200000) {
930 clock.n = 1;
931 clock.p1 = 2;
932 clock.p2 = 10;
933 clock.m1 = 12;
934 clock.m2 = 9;
935 } else {
936 clock.n = 2;
937 clock.p1 = 1;
938 clock.p2 = 10;
939 clock.m1 = 14;
940 clock.m2 = 8;
941 }
942 intel_clock(dev, refclk, &clock);
943 memcpy(best_clock, &clock, sizeof(intel_clock_t));
944 return true;
945 }
946
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
948 static bool
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950 int target, int refclk, intel_clock_t *best_clock)
951 {
952 intel_clock_t clock;
953 if (target < 200000) {
954 clock.p1 = 2;
955 clock.p2 = 10;
956 clock.n = 2;
957 clock.m1 = 23;
958 clock.m2 = 8;
959 } else {
960 clock.p1 = 1;
961 clock.p2 = 10;
962 clock.n = 1;
963 clock.m1 = 14;
964 clock.m2 = 2;
965 }
966 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967 clock.p = (clock.p1 * clock.p2);
968 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
969 clock.vco = 0;
970 memcpy(best_clock, &clock, sizeof(intel_clock_t));
971 return true;
972 }
973
974 void
975 intel_wait_for_vblank(struct drm_device *dev)
976 {
977 /* Wait for 20ms, i.e. one cycle at 50hz. */
978 msleep(20);
979 }
980
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
983 {
984 struct drm_device *dev = crtc->dev;
985 struct drm_i915_private *dev_priv = dev->dev_private;
986 struct drm_framebuffer *fb = crtc->fb;
987 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
990 int plane, i;
991 u32 fbc_ctl, fbc_ctl2;
992
993 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
994
995 if (fb->pitch < dev_priv->cfb_pitch)
996 dev_priv->cfb_pitch = fb->pitch;
997
998 /* FBC_CTL wants 64B units */
999 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000 dev_priv->cfb_fence = obj_priv->fence_reg;
1001 dev_priv->cfb_plane = intel_crtc->plane;
1002 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1003
1004 /* Clear old tags */
1005 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006 I915_WRITE(FBC_TAG + (i * 4), 0);
1007
1008 /* Set it up... */
1009 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010 if (obj_priv->tiling_mode != I915_TILING_NONE)
1011 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1014
1015 /* enable it... */
1016 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1017 if (IS_I945GM(dev))
1018 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021 if (obj_priv->tiling_mode != I915_TILING_NONE)
1022 fbc_ctl |= dev_priv->cfb_fence;
1023 I915_WRITE(FBC_CONTROL, fbc_ctl);
1024
1025 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1027 }
1028
1029 void i8xx_disable_fbc(struct drm_device *dev)
1030 {
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 unsigned long timeout = jiffies + msecs_to_jiffies(1);
1033 u32 fbc_ctl;
1034
1035 if (!I915_HAS_FBC(dev))
1036 return;
1037
1038 if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1039 return; /* Already off, just return */
1040
1041 /* Disable compression */
1042 fbc_ctl = I915_READ(FBC_CONTROL);
1043 fbc_ctl &= ~FBC_CTL_EN;
1044 I915_WRITE(FBC_CONTROL, fbc_ctl);
1045
1046 /* Wait for compressing bit to clear */
1047 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1048 if (time_after(jiffies, timeout)) {
1049 DRM_DEBUG_DRIVER("FBC idle timed out\n");
1050 break;
1051 }
1052 ; /* do nothing */
1053 }
1054
1055 intel_wait_for_vblank(dev);
1056
1057 DRM_DEBUG_KMS("disabled FBC\n");
1058 }
1059
1060 static bool i8xx_fbc_enabled(struct drm_device *dev)
1061 {
1062 struct drm_i915_private *dev_priv = dev->dev_private;
1063
1064 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1065 }
1066
1067 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1068 {
1069 struct drm_device *dev = crtc->dev;
1070 struct drm_i915_private *dev_priv = dev->dev_private;
1071 struct drm_framebuffer *fb = crtc->fb;
1072 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1073 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1075 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1076 DPFC_CTL_PLANEB);
1077 unsigned long stall_watermark = 200;
1078 u32 dpfc_ctl;
1079
1080 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1081 dev_priv->cfb_fence = obj_priv->fence_reg;
1082 dev_priv->cfb_plane = intel_crtc->plane;
1083
1084 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1085 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1086 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1087 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1088 } else {
1089 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1090 }
1091
1092 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1093 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1094 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1095 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1096 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1097
1098 /* enable it... */
1099 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1100
1101 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1102 }
1103
1104 void g4x_disable_fbc(struct drm_device *dev)
1105 {
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1107 u32 dpfc_ctl;
1108
1109 /* Disable compression */
1110 dpfc_ctl = I915_READ(DPFC_CONTROL);
1111 dpfc_ctl &= ~DPFC_CTL_EN;
1112 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1113 intel_wait_for_vblank(dev);
1114
1115 DRM_DEBUG_KMS("disabled FBC\n");
1116 }
1117
1118 static bool g4x_fbc_enabled(struct drm_device *dev)
1119 {
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121
1122 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1123 }
1124
1125 bool intel_fbc_enabled(struct drm_device *dev)
1126 {
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129 if (!dev_priv->display.fbc_enabled)
1130 return false;
1131
1132 return dev_priv->display.fbc_enabled(dev);
1133 }
1134
1135 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1136 {
1137 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1138
1139 if (!dev_priv->display.enable_fbc)
1140 return;
1141
1142 dev_priv->display.enable_fbc(crtc, interval);
1143 }
1144
1145 void intel_disable_fbc(struct drm_device *dev)
1146 {
1147 struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149 if (!dev_priv->display.disable_fbc)
1150 return;
1151
1152 dev_priv->display.disable_fbc(dev);
1153 }
1154
1155 /**
1156 * intel_update_fbc - enable/disable FBC as needed
1157 * @crtc: CRTC to point the compressor at
1158 * @mode: mode in use
1159 *
1160 * Set up the framebuffer compression hardware at mode set time. We
1161 * enable it if possible:
1162 * - plane A only (on pre-965)
1163 * - no pixel mulitply/line duplication
1164 * - no alpha buffer discard
1165 * - no dual wide
1166 * - framebuffer <= 2048 in width, 1536 in height
1167 *
1168 * We can't assume that any compression will take place (worst case),
1169 * so the compressed buffer has to be the same size as the uncompressed
1170 * one. It also must reside (along with the line length buffer) in
1171 * stolen memory.
1172 *
1173 * We need to enable/disable FBC on a global basis.
1174 */
1175 static void intel_update_fbc(struct drm_crtc *crtc,
1176 struct drm_display_mode *mode)
1177 {
1178 struct drm_device *dev = crtc->dev;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 struct drm_framebuffer *fb = crtc->fb;
1181 struct intel_framebuffer *intel_fb;
1182 struct drm_i915_gem_object *obj_priv;
1183 struct drm_crtc *tmp_crtc;
1184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1185 int plane = intel_crtc->plane;
1186 int crtcs_enabled = 0;
1187
1188 DRM_DEBUG_KMS("\n");
1189
1190 if (!i915_powersave)
1191 return;
1192
1193 if (!I915_HAS_FBC(dev))
1194 return;
1195
1196 if (!crtc->fb)
1197 return;
1198
1199 intel_fb = to_intel_framebuffer(fb);
1200 obj_priv = to_intel_bo(intel_fb->obj);
1201
1202 /*
1203 * If FBC is already on, we just have to verify that we can
1204 * keep it that way...
1205 * Need to disable if:
1206 * - more than one pipe is active
1207 * - changing FBC params (stride, fence, mode)
1208 * - new fb is too large to fit in compressed buffer
1209 * - going to an unsupported config (interlace, pixel multiply, etc.)
1210 */
1211 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1212 if (tmp_crtc->enabled)
1213 crtcs_enabled++;
1214 }
1215 DRM_DEBUG_KMS("%d pipes active\n", crtcs_enabled);
1216 if (crtcs_enabled > 1) {
1217 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1218 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1219 goto out_disable;
1220 }
1221 if (intel_fb->obj->size > dev_priv->cfb_size) {
1222 DRM_DEBUG_KMS("framebuffer too large, disabling "
1223 "compression\n");
1224 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1225 goto out_disable;
1226 }
1227 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1228 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1229 DRM_DEBUG_KMS("mode incompatible with compression, "
1230 "disabling\n");
1231 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1232 goto out_disable;
1233 }
1234 if ((mode->hdisplay > 2048) ||
1235 (mode->vdisplay > 1536)) {
1236 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1237 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1238 goto out_disable;
1239 }
1240 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1241 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1242 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1243 goto out_disable;
1244 }
1245 if (obj_priv->tiling_mode != I915_TILING_X) {
1246 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1247 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1248 goto out_disable;
1249 }
1250
1251 if (intel_fbc_enabled(dev)) {
1252 /* We can re-enable it in this case, but need to update pitch */
1253 if ((fb->pitch > dev_priv->cfb_pitch) ||
1254 (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1255 (plane != dev_priv->cfb_plane))
1256 intel_disable_fbc(dev);
1257 }
1258
1259 /* Now try to turn it back on if possible */
1260 if (!intel_fbc_enabled(dev))
1261 intel_enable_fbc(crtc, 500);
1262
1263 return;
1264
1265 out_disable:
1266 /* Multiple disables should be harmless */
1267 if (intel_fbc_enabled(dev)) {
1268 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1269 intel_disable_fbc(dev);
1270 }
1271 }
1272
1273 int
1274 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1275 {
1276 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1277 u32 alignment;
1278 int ret;
1279
1280 switch (obj_priv->tiling_mode) {
1281 case I915_TILING_NONE:
1282 alignment = 64 * 1024;
1283 break;
1284 case I915_TILING_X:
1285 /* pin() will align the object as required by fence */
1286 alignment = 0;
1287 break;
1288 case I915_TILING_Y:
1289 /* FIXME: Is this true? */
1290 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1291 return -EINVAL;
1292 default:
1293 BUG();
1294 }
1295
1296 ret = i915_gem_object_pin(obj, alignment);
1297 if (ret != 0)
1298 return ret;
1299
1300 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1301 * fence, whereas 965+ only requires a fence if using
1302 * framebuffer compression. For simplicity, we always install
1303 * a fence as the cost is not that onerous.
1304 */
1305 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1306 obj_priv->tiling_mode != I915_TILING_NONE) {
1307 ret = i915_gem_object_get_fence_reg(obj);
1308 if (ret != 0) {
1309 i915_gem_object_unpin(obj);
1310 return ret;
1311 }
1312 }
1313
1314 return 0;
1315 }
1316
1317 static int
1318 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1319 struct drm_framebuffer *old_fb)
1320 {
1321 struct drm_device *dev = crtc->dev;
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 struct drm_i915_master_private *master_priv;
1324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1325 struct intel_framebuffer *intel_fb;
1326 struct drm_i915_gem_object *obj_priv;
1327 struct drm_gem_object *obj;
1328 int pipe = intel_crtc->pipe;
1329 int plane = intel_crtc->plane;
1330 unsigned long Start, Offset;
1331 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1332 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1333 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1334 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1335 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1336 u32 dspcntr;
1337 int ret;
1338
1339 /* no fb bound */
1340 if (!crtc->fb) {
1341 DRM_DEBUG_KMS("No FB bound\n");
1342 return 0;
1343 }
1344
1345 switch (plane) {
1346 case 0:
1347 case 1:
1348 break;
1349 default:
1350 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1351 return -EINVAL;
1352 }
1353
1354 intel_fb = to_intel_framebuffer(crtc->fb);
1355 obj = intel_fb->obj;
1356 obj_priv = to_intel_bo(obj);
1357
1358 mutex_lock(&dev->struct_mutex);
1359 ret = intel_pin_and_fence_fb_obj(dev, obj);
1360 if (ret != 0) {
1361 mutex_unlock(&dev->struct_mutex);
1362 return ret;
1363 }
1364
1365 ret = i915_gem_object_set_to_display_plane(obj);
1366 if (ret != 0) {
1367 i915_gem_object_unpin(obj);
1368 mutex_unlock(&dev->struct_mutex);
1369 return ret;
1370 }
1371
1372 dspcntr = I915_READ(dspcntr_reg);
1373 /* Mask out pixel format bits in case we change it */
1374 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1375 switch (crtc->fb->bits_per_pixel) {
1376 case 8:
1377 dspcntr |= DISPPLANE_8BPP;
1378 break;
1379 case 16:
1380 if (crtc->fb->depth == 15)
1381 dspcntr |= DISPPLANE_15_16BPP;
1382 else
1383 dspcntr |= DISPPLANE_16BPP;
1384 break;
1385 case 24:
1386 case 32:
1387 if (crtc->fb->depth == 30)
1388 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1389 else
1390 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1391 break;
1392 default:
1393 DRM_ERROR("Unknown color depth\n");
1394 i915_gem_object_unpin(obj);
1395 mutex_unlock(&dev->struct_mutex);
1396 return -EINVAL;
1397 }
1398 if (IS_I965G(dev)) {
1399 if (obj_priv->tiling_mode != I915_TILING_NONE)
1400 dspcntr |= DISPPLANE_TILED;
1401 else
1402 dspcntr &= ~DISPPLANE_TILED;
1403 }
1404
1405 if (HAS_PCH_SPLIT(dev))
1406 /* must disable */
1407 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1408
1409 I915_WRITE(dspcntr_reg, dspcntr);
1410
1411 Start = obj_priv->gtt_offset;
1412 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1413
1414 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1415 Start, Offset, x, y, crtc->fb->pitch);
1416 I915_WRITE(dspstride, crtc->fb->pitch);
1417 if (IS_I965G(dev)) {
1418 I915_WRITE(dspbase, Offset);
1419 I915_READ(dspbase);
1420 I915_WRITE(dspsurf, Start);
1421 I915_READ(dspsurf);
1422 I915_WRITE(dsptileoff, (y << 16) | x);
1423 } else {
1424 I915_WRITE(dspbase, Start + Offset);
1425 I915_READ(dspbase);
1426 }
1427
1428 if ((IS_I965G(dev) || plane == 0))
1429 intel_update_fbc(crtc, &crtc->mode);
1430
1431 intel_wait_for_vblank(dev);
1432
1433 if (old_fb) {
1434 intel_fb = to_intel_framebuffer(old_fb);
1435 obj_priv = to_intel_bo(intel_fb->obj);
1436 i915_gem_object_unpin(intel_fb->obj);
1437 }
1438 intel_increase_pllclock(crtc, true);
1439
1440 mutex_unlock(&dev->struct_mutex);
1441
1442 if (!dev->primary->master)
1443 return 0;
1444
1445 master_priv = dev->primary->master->driver_priv;
1446 if (!master_priv->sarea_priv)
1447 return 0;
1448
1449 if (pipe) {
1450 master_priv->sarea_priv->pipeB_x = x;
1451 master_priv->sarea_priv->pipeB_y = y;
1452 } else {
1453 master_priv->sarea_priv->pipeA_x = x;
1454 master_priv->sarea_priv->pipeA_y = y;
1455 }
1456
1457 return 0;
1458 }
1459
1460 /* Disable the VGA plane that we never use */
1461 static void i915_disable_vga (struct drm_device *dev)
1462 {
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464 u8 sr1;
1465 u32 vga_reg;
1466
1467 if (HAS_PCH_SPLIT(dev))
1468 vga_reg = CPU_VGACNTRL;
1469 else
1470 vga_reg = VGACNTRL;
1471
1472 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1473 return;
1474
1475 I915_WRITE8(VGA_SR_INDEX, 1);
1476 sr1 = I915_READ8(VGA_SR_DATA);
1477 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1478 udelay(100);
1479
1480 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1481 }
1482
1483 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1484 {
1485 struct drm_device *dev = crtc->dev;
1486 struct drm_i915_private *dev_priv = dev->dev_private;
1487 u32 dpa_ctl;
1488
1489 DRM_DEBUG_KMS("\n");
1490 dpa_ctl = I915_READ(DP_A);
1491 dpa_ctl &= ~DP_PLL_ENABLE;
1492 I915_WRITE(DP_A, dpa_ctl);
1493 }
1494
1495 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1496 {
1497 struct drm_device *dev = crtc->dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 u32 dpa_ctl;
1500
1501 dpa_ctl = I915_READ(DP_A);
1502 dpa_ctl |= DP_PLL_ENABLE;
1503 I915_WRITE(DP_A, dpa_ctl);
1504 udelay(200);
1505 }
1506
1507
1508 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1509 {
1510 struct drm_device *dev = crtc->dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 u32 dpa_ctl;
1513
1514 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1515 dpa_ctl = I915_READ(DP_A);
1516 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1517
1518 if (clock < 200000) {
1519 u32 temp;
1520 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1521 /* workaround for 160Mhz:
1522 1) program 0x4600c bits 15:0 = 0x8124
1523 2) program 0x46010 bit 0 = 1
1524 3) program 0x46034 bit 24 = 1
1525 4) program 0x64000 bit 14 = 1
1526 */
1527 temp = I915_READ(0x4600c);
1528 temp &= 0xffff0000;
1529 I915_WRITE(0x4600c, temp | 0x8124);
1530
1531 temp = I915_READ(0x46010);
1532 I915_WRITE(0x46010, temp | 1);
1533
1534 temp = I915_READ(0x46034);
1535 I915_WRITE(0x46034, temp | (1 << 24));
1536 } else {
1537 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1538 }
1539 I915_WRITE(DP_A, dpa_ctl);
1540
1541 udelay(500);
1542 }
1543
1544 /* The FDI link training functions for ILK/Ibexpeak. */
1545 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1546 {
1547 struct drm_device *dev = crtc->dev;
1548 struct drm_i915_private *dev_priv = dev->dev_private;
1549 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1550 int pipe = intel_crtc->pipe;
1551 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1552 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1553 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1554 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1555 u32 temp, tries = 0;
1556
1557 /* enable CPU FDI TX and PCH FDI RX */
1558 temp = I915_READ(fdi_tx_reg);
1559 temp |= FDI_TX_ENABLE;
1560 temp &= ~(7 << 19);
1561 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1562 temp &= ~FDI_LINK_TRAIN_NONE;
1563 temp |= FDI_LINK_TRAIN_PATTERN_1;
1564 I915_WRITE(fdi_tx_reg, temp);
1565 I915_READ(fdi_tx_reg);
1566
1567 temp = I915_READ(fdi_rx_reg);
1568 temp &= ~FDI_LINK_TRAIN_NONE;
1569 temp |= FDI_LINK_TRAIN_PATTERN_1;
1570 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1571 I915_READ(fdi_rx_reg);
1572 udelay(150);
1573
1574 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1575 for train result */
1576 temp = I915_READ(fdi_rx_imr_reg);
1577 temp &= ~FDI_RX_SYMBOL_LOCK;
1578 temp &= ~FDI_RX_BIT_LOCK;
1579 I915_WRITE(fdi_rx_imr_reg, temp);
1580 I915_READ(fdi_rx_imr_reg);
1581 udelay(150);
1582
1583 for (;;) {
1584 temp = I915_READ(fdi_rx_iir_reg);
1585 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1586
1587 if ((temp & FDI_RX_BIT_LOCK)) {
1588 DRM_DEBUG_KMS("FDI train 1 done.\n");
1589 I915_WRITE(fdi_rx_iir_reg,
1590 temp | FDI_RX_BIT_LOCK);
1591 break;
1592 }
1593
1594 tries++;
1595
1596 if (tries > 5) {
1597 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1598 break;
1599 }
1600 }
1601
1602 /* Train 2 */
1603 temp = I915_READ(fdi_tx_reg);
1604 temp &= ~FDI_LINK_TRAIN_NONE;
1605 temp |= FDI_LINK_TRAIN_PATTERN_2;
1606 I915_WRITE(fdi_tx_reg, temp);
1607
1608 temp = I915_READ(fdi_rx_reg);
1609 temp &= ~FDI_LINK_TRAIN_NONE;
1610 temp |= FDI_LINK_TRAIN_PATTERN_2;
1611 I915_WRITE(fdi_rx_reg, temp);
1612 udelay(150);
1613
1614 tries = 0;
1615
1616 for (;;) {
1617 temp = I915_READ(fdi_rx_iir_reg);
1618 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1619
1620 if (temp & FDI_RX_SYMBOL_LOCK) {
1621 I915_WRITE(fdi_rx_iir_reg,
1622 temp | FDI_RX_SYMBOL_LOCK);
1623 DRM_DEBUG_KMS("FDI train 2 done.\n");
1624 break;
1625 }
1626
1627 tries++;
1628
1629 if (tries > 5) {
1630 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1631 break;
1632 }
1633 }
1634
1635 DRM_DEBUG_KMS("FDI train done\n");
1636 }
1637
1638 static int snb_b_fdi_train_param [] = {
1639 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1640 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1641 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1642 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1643 };
1644
1645 /* The FDI link training functions for SNB/Cougarpoint. */
1646 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1647 {
1648 struct drm_device *dev = crtc->dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1651 int pipe = intel_crtc->pipe;
1652 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1653 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1654 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1655 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1656 u32 temp, i;
1657
1658 /* enable CPU FDI TX and PCH FDI RX */
1659 temp = I915_READ(fdi_tx_reg);
1660 temp |= FDI_TX_ENABLE;
1661 temp &= ~(7 << 19);
1662 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1663 temp &= ~FDI_LINK_TRAIN_NONE;
1664 temp |= FDI_LINK_TRAIN_PATTERN_1;
1665 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1666 /* SNB-B */
1667 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1668 I915_WRITE(fdi_tx_reg, temp);
1669 I915_READ(fdi_tx_reg);
1670
1671 temp = I915_READ(fdi_rx_reg);
1672 if (HAS_PCH_CPT(dev)) {
1673 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1674 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1675 } else {
1676 temp &= ~FDI_LINK_TRAIN_NONE;
1677 temp |= FDI_LINK_TRAIN_PATTERN_1;
1678 }
1679 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1680 I915_READ(fdi_rx_reg);
1681 udelay(150);
1682
1683 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1684 for train result */
1685 temp = I915_READ(fdi_rx_imr_reg);
1686 temp &= ~FDI_RX_SYMBOL_LOCK;
1687 temp &= ~FDI_RX_BIT_LOCK;
1688 I915_WRITE(fdi_rx_imr_reg, temp);
1689 I915_READ(fdi_rx_imr_reg);
1690 udelay(150);
1691
1692 for (i = 0; i < 4; i++ ) {
1693 temp = I915_READ(fdi_tx_reg);
1694 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1695 temp |= snb_b_fdi_train_param[i];
1696 I915_WRITE(fdi_tx_reg, temp);
1697 udelay(500);
1698
1699 temp = I915_READ(fdi_rx_iir_reg);
1700 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1701
1702 if (temp & FDI_RX_BIT_LOCK) {
1703 I915_WRITE(fdi_rx_iir_reg,
1704 temp | FDI_RX_BIT_LOCK);
1705 DRM_DEBUG_KMS("FDI train 1 done.\n");
1706 break;
1707 }
1708 }
1709 if (i == 4)
1710 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1711
1712 /* Train 2 */
1713 temp = I915_READ(fdi_tx_reg);
1714 temp &= ~FDI_LINK_TRAIN_NONE;
1715 temp |= FDI_LINK_TRAIN_PATTERN_2;
1716 if (IS_GEN6(dev)) {
1717 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1718 /* SNB-B */
1719 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1720 }
1721 I915_WRITE(fdi_tx_reg, temp);
1722
1723 temp = I915_READ(fdi_rx_reg);
1724 if (HAS_PCH_CPT(dev)) {
1725 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1726 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1727 } else {
1728 temp &= ~FDI_LINK_TRAIN_NONE;
1729 temp |= FDI_LINK_TRAIN_PATTERN_2;
1730 }
1731 I915_WRITE(fdi_rx_reg, temp);
1732 udelay(150);
1733
1734 for (i = 0; i < 4; i++ ) {
1735 temp = I915_READ(fdi_tx_reg);
1736 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1737 temp |= snb_b_fdi_train_param[i];
1738 I915_WRITE(fdi_tx_reg, temp);
1739 udelay(500);
1740
1741 temp = I915_READ(fdi_rx_iir_reg);
1742 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1743
1744 if (temp & FDI_RX_SYMBOL_LOCK) {
1745 I915_WRITE(fdi_rx_iir_reg,
1746 temp | FDI_RX_SYMBOL_LOCK);
1747 DRM_DEBUG_KMS("FDI train 2 done.\n");
1748 break;
1749 }
1750 }
1751 if (i == 4)
1752 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1753
1754 DRM_DEBUG_KMS("FDI train done.\n");
1755 }
1756
1757 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1758 {
1759 struct drm_device *dev = crtc->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1762 int pipe = intel_crtc->pipe;
1763 int plane = intel_crtc->plane;
1764 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1765 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1766 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1767 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1768 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1769 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1770 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1771 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1772 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1773 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1774 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1775 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1776 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1777 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1778 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1779 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1780 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1781 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1782 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1783 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1784 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1785 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1786 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1787 u32 temp;
1788 int n;
1789 u32 pipe_bpc;
1790
1791 temp = I915_READ(pipeconf_reg);
1792 pipe_bpc = temp & PIPE_BPC_MASK;
1793
1794 /* XXX: When our outputs are all unaware of DPMS modes other than off
1795 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1796 */
1797 switch (mode) {
1798 case DRM_MODE_DPMS_ON:
1799 case DRM_MODE_DPMS_STANDBY:
1800 case DRM_MODE_DPMS_SUSPEND:
1801 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1802
1803 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1804 temp = I915_READ(PCH_LVDS);
1805 if ((temp & LVDS_PORT_EN) == 0) {
1806 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1807 POSTING_READ(PCH_LVDS);
1808 }
1809 }
1810
1811 if (HAS_eDP) {
1812 /* enable eDP PLL */
1813 ironlake_enable_pll_edp(crtc);
1814 } else {
1815
1816 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1817 temp = I915_READ(fdi_rx_reg);
1818 /*
1819 * make the BPC in FDI Rx be consistent with that in
1820 * pipeconf reg.
1821 */
1822 temp &= ~(0x7 << 16);
1823 temp |= (pipe_bpc << 11);
1824 temp &= ~(7 << 19);
1825 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1826 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1827 I915_READ(fdi_rx_reg);
1828 udelay(200);
1829
1830 /* Switch from Rawclk to PCDclk */
1831 temp = I915_READ(fdi_rx_reg);
1832 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1833 I915_READ(fdi_rx_reg);
1834 udelay(200);
1835
1836 /* Enable CPU FDI TX PLL, always on for Ironlake */
1837 temp = I915_READ(fdi_tx_reg);
1838 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1839 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1840 I915_READ(fdi_tx_reg);
1841 udelay(100);
1842 }
1843 }
1844
1845 /* Enable panel fitting for LVDS */
1846 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1847 temp = I915_READ(pf_ctl_reg);
1848 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1849
1850 /* currently full aspect */
1851 I915_WRITE(pf_win_pos, 0);
1852
1853 I915_WRITE(pf_win_size,
1854 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1855 (dev_priv->panel_fixed_mode->vdisplay));
1856 }
1857
1858 /* Enable CPU pipe */
1859 temp = I915_READ(pipeconf_reg);
1860 if ((temp & PIPEACONF_ENABLE) == 0) {
1861 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1862 I915_READ(pipeconf_reg);
1863 udelay(100);
1864 }
1865
1866 /* configure and enable CPU plane */
1867 temp = I915_READ(dspcntr_reg);
1868 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1869 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1870 /* Flush the plane changes */
1871 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1872 }
1873
1874 if (!HAS_eDP) {
1875 /* For PCH output, training FDI link */
1876 if (IS_GEN6(dev))
1877 gen6_fdi_link_train(crtc);
1878 else
1879 ironlake_fdi_link_train(crtc);
1880
1881 /* enable PCH DPLL */
1882 temp = I915_READ(pch_dpll_reg);
1883 if ((temp & DPLL_VCO_ENABLE) == 0) {
1884 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1885 I915_READ(pch_dpll_reg);
1886 }
1887 udelay(200);
1888
1889 if (HAS_PCH_CPT(dev)) {
1890 /* Be sure PCH DPLL SEL is set */
1891 temp = I915_READ(PCH_DPLL_SEL);
1892 if (trans_dpll_sel == 0 &&
1893 (temp & TRANSA_DPLL_ENABLE) == 0)
1894 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1895 else if (trans_dpll_sel == 1 &&
1896 (temp & TRANSB_DPLL_ENABLE) == 0)
1897 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1898 I915_WRITE(PCH_DPLL_SEL, temp);
1899 I915_READ(PCH_DPLL_SEL);
1900 }
1901
1902 /* set transcoder timing */
1903 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1904 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1905 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1906
1907 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1908 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1909 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1910
1911 /* enable normal train */
1912 temp = I915_READ(fdi_tx_reg);
1913 temp &= ~FDI_LINK_TRAIN_NONE;
1914 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1915 FDI_TX_ENHANCE_FRAME_ENABLE);
1916 I915_READ(fdi_tx_reg);
1917
1918 temp = I915_READ(fdi_rx_reg);
1919 if (HAS_PCH_CPT(dev)) {
1920 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1921 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1922 } else {
1923 temp &= ~FDI_LINK_TRAIN_NONE;
1924 temp |= FDI_LINK_TRAIN_NONE;
1925 }
1926 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1927 I915_READ(fdi_rx_reg);
1928
1929 /* wait one idle pattern time */
1930 udelay(100);
1931
1932 /* For PCH DP, enable TRANS_DP_CTL */
1933 if (HAS_PCH_CPT(dev) &&
1934 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1935 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1936 int reg;
1937
1938 reg = I915_READ(trans_dp_ctl);
1939 reg &= ~TRANS_DP_PORT_SEL_MASK;
1940 reg = TRANS_DP_OUTPUT_ENABLE |
1941 TRANS_DP_ENH_FRAMING |
1942 TRANS_DP_VSYNC_ACTIVE_HIGH |
1943 TRANS_DP_HSYNC_ACTIVE_HIGH;
1944
1945 switch (intel_trans_dp_port_sel(crtc)) {
1946 case PCH_DP_B:
1947 reg |= TRANS_DP_PORT_SEL_B;
1948 break;
1949 case PCH_DP_C:
1950 reg |= TRANS_DP_PORT_SEL_C;
1951 break;
1952 case PCH_DP_D:
1953 reg |= TRANS_DP_PORT_SEL_D;
1954 break;
1955 default:
1956 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1957 reg |= TRANS_DP_PORT_SEL_B;
1958 break;
1959 }
1960
1961 I915_WRITE(trans_dp_ctl, reg);
1962 POSTING_READ(trans_dp_ctl);
1963 }
1964
1965 /* enable PCH transcoder */
1966 temp = I915_READ(transconf_reg);
1967 /*
1968 * make the BPC in transcoder be consistent with
1969 * that in pipeconf reg.
1970 */
1971 temp &= ~PIPE_BPC_MASK;
1972 temp |= pipe_bpc;
1973 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1974 I915_READ(transconf_reg);
1975
1976 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1977 ;
1978
1979 }
1980
1981 intel_crtc_load_lut(crtc);
1982
1983 break;
1984 case DRM_MODE_DPMS_OFF:
1985 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1986
1987 drm_vblank_off(dev, pipe);
1988 /* Disable display plane */
1989 temp = I915_READ(dspcntr_reg);
1990 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1991 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1992 /* Flush the plane changes */
1993 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1994 I915_READ(dspbase_reg);
1995 }
1996
1997 i915_disable_vga(dev);
1998
1999 /* disable cpu pipe, disable after all planes disabled */
2000 temp = I915_READ(pipeconf_reg);
2001 if ((temp & PIPEACONF_ENABLE) != 0) {
2002 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2003 I915_READ(pipeconf_reg);
2004 n = 0;
2005 /* wait for cpu pipe off, pipe state */
2006 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
2007 n++;
2008 if (n < 60) {
2009 udelay(500);
2010 continue;
2011 } else {
2012 DRM_DEBUG_KMS("pipe %d off delay\n",
2013 pipe);
2014 break;
2015 }
2016 }
2017 } else
2018 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2019
2020 udelay(100);
2021
2022 /* Disable PF */
2023 temp = I915_READ(pf_ctl_reg);
2024 if ((temp & PF_ENABLE) != 0) {
2025 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2026 I915_READ(pf_ctl_reg);
2027 }
2028 I915_WRITE(pf_win_size, 0);
2029 POSTING_READ(pf_win_size);
2030
2031
2032 /* disable CPU FDI tx and PCH FDI rx */
2033 temp = I915_READ(fdi_tx_reg);
2034 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2035 I915_READ(fdi_tx_reg);
2036
2037 temp = I915_READ(fdi_rx_reg);
2038 /* BPC in FDI rx is consistent with that in pipeconf */
2039 temp &= ~(0x07 << 16);
2040 temp |= (pipe_bpc << 11);
2041 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2042 I915_READ(fdi_rx_reg);
2043
2044 udelay(100);
2045
2046 /* still set train pattern 1 */
2047 temp = I915_READ(fdi_tx_reg);
2048 temp &= ~FDI_LINK_TRAIN_NONE;
2049 temp |= FDI_LINK_TRAIN_PATTERN_1;
2050 I915_WRITE(fdi_tx_reg, temp);
2051 POSTING_READ(fdi_tx_reg);
2052
2053 temp = I915_READ(fdi_rx_reg);
2054 if (HAS_PCH_CPT(dev)) {
2055 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2056 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2057 } else {
2058 temp &= ~FDI_LINK_TRAIN_NONE;
2059 temp |= FDI_LINK_TRAIN_PATTERN_1;
2060 }
2061 I915_WRITE(fdi_rx_reg, temp);
2062 POSTING_READ(fdi_rx_reg);
2063
2064 udelay(100);
2065
2066 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2067 temp = I915_READ(PCH_LVDS);
2068 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2069 I915_READ(PCH_LVDS);
2070 udelay(100);
2071 }
2072
2073 /* disable PCH transcoder */
2074 temp = I915_READ(transconf_reg);
2075 if ((temp & TRANS_ENABLE) != 0) {
2076 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2077 I915_READ(transconf_reg);
2078 n = 0;
2079 /* wait for PCH transcoder off, transcoder state */
2080 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2081 n++;
2082 if (n < 60) {
2083 udelay(500);
2084 continue;
2085 } else {
2086 DRM_DEBUG_KMS("transcoder %d off "
2087 "delay\n", pipe);
2088 break;
2089 }
2090 }
2091 }
2092
2093 temp = I915_READ(transconf_reg);
2094 /* BPC in transcoder is consistent with that in pipeconf */
2095 temp &= ~PIPE_BPC_MASK;
2096 temp |= pipe_bpc;
2097 I915_WRITE(transconf_reg, temp);
2098 I915_READ(transconf_reg);
2099 udelay(100);
2100
2101 if (HAS_PCH_CPT(dev)) {
2102 /* disable TRANS_DP_CTL */
2103 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2104 int reg;
2105
2106 reg = I915_READ(trans_dp_ctl);
2107 reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2108 I915_WRITE(trans_dp_ctl, reg);
2109 POSTING_READ(trans_dp_ctl);
2110
2111 /* disable DPLL_SEL */
2112 temp = I915_READ(PCH_DPLL_SEL);
2113 if (trans_dpll_sel == 0)
2114 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2115 else
2116 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2117 I915_WRITE(PCH_DPLL_SEL, temp);
2118 I915_READ(PCH_DPLL_SEL);
2119
2120 }
2121
2122 /* disable PCH DPLL */
2123 temp = I915_READ(pch_dpll_reg);
2124 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2125 I915_READ(pch_dpll_reg);
2126
2127 if (HAS_eDP) {
2128 ironlake_disable_pll_edp(crtc);
2129 }
2130
2131 /* Switch from PCDclk to Rawclk */
2132 temp = I915_READ(fdi_rx_reg);
2133 temp &= ~FDI_SEL_PCDCLK;
2134 I915_WRITE(fdi_rx_reg, temp);
2135 I915_READ(fdi_rx_reg);
2136
2137 /* Disable CPU FDI TX PLL */
2138 temp = I915_READ(fdi_tx_reg);
2139 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2140 I915_READ(fdi_tx_reg);
2141 udelay(100);
2142
2143 temp = I915_READ(fdi_rx_reg);
2144 temp &= ~FDI_RX_PLL_ENABLE;
2145 I915_WRITE(fdi_rx_reg, temp);
2146 I915_READ(fdi_rx_reg);
2147
2148 /* Wait for the clocks to turn off. */
2149 udelay(100);
2150 break;
2151 }
2152 }
2153
2154 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2155 {
2156 struct intel_overlay *overlay;
2157 int ret;
2158
2159 if (!enable && intel_crtc->overlay) {
2160 overlay = intel_crtc->overlay;
2161 mutex_lock(&overlay->dev->struct_mutex);
2162 for (;;) {
2163 ret = intel_overlay_switch_off(overlay);
2164 if (ret == 0)
2165 break;
2166
2167 ret = intel_overlay_recover_from_interrupt(overlay, 0);
2168 if (ret != 0) {
2169 /* overlay doesn't react anymore. Usually
2170 * results in a black screen and an unkillable
2171 * X server. */
2172 BUG();
2173 overlay->hw_wedged = HW_WEDGED;
2174 break;
2175 }
2176 }
2177 mutex_unlock(&overlay->dev->struct_mutex);
2178 }
2179 /* Let userspace switch the overlay on again. In most cases userspace
2180 * has to recompute where to put it anyway. */
2181
2182 return;
2183 }
2184
2185 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2186 {
2187 struct drm_device *dev = crtc->dev;
2188 struct drm_i915_private *dev_priv = dev->dev_private;
2189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2190 int pipe = intel_crtc->pipe;
2191 int plane = intel_crtc->plane;
2192 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2193 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2194 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2195 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2196 u32 temp;
2197
2198 /* XXX: When our outputs are all unaware of DPMS modes other than off
2199 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2200 */
2201 switch (mode) {
2202 case DRM_MODE_DPMS_ON:
2203 case DRM_MODE_DPMS_STANDBY:
2204 case DRM_MODE_DPMS_SUSPEND:
2205 intel_update_watermarks(dev);
2206
2207 /* Enable the DPLL */
2208 temp = I915_READ(dpll_reg);
2209 if ((temp & DPLL_VCO_ENABLE) == 0) {
2210 I915_WRITE(dpll_reg, temp);
2211 I915_READ(dpll_reg);
2212 /* Wait for the clocks to stabilize. */
2213 udelay(150);
2214 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2215 I915_READ(dpll_reg);
2216 /* Wait for the clocks to stabilize. */
2217 udelay(150);
2218 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2219 I915_READ(dpll_reg);
2220 /* Wait for the clocks to stabilize. */
2221 udelay(150);
2222 }
2223
2224 /* Enable the pipe */
2225 temp = I915_READ(pipeconf_reg);
2226 if ((temp & PIPEACONF_ENABLE) == 0)
2227 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2228
2229 /* Enable the plane */
2230 temp = I915_READ(dspcntr_reg);
2231 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2232 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2233 /* Flush the plane changes */
2234 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2235 }
2236
2237 intel_crtc_load_lut(crtc);
2238
2239 if ((IS_I965G(dev) || plane == 0))
2240 intel_update_fbc(crtc, &crtc->mode);
2241
2242 /* Give the overlay scaler a chance to enable if it's on this pipe */
2243 intel_crtc_dpms_overlay(intel_crtc, true);
2244 break;
2245 case DRM_MODE_DPMS_OFF:
2246 intel_update_watermarks(dev);
2247
2248 /* Give the overlay scaler a chance to disable if it's on this pipe */
2249 intel_crtc_dpms_overlay(intel_crtc, false);
2250 drm_vblank_off(dev, pipe);
2251
2252 if (dev_priv->cfb_plane == plane &&
2253 dev_priv->display.disable_fbc)
2254 dev_priv->display.disable_fbc(dev);
2255
2256 /* Disable the VGA plane that we never use */
2257 i915_disable_vga(dev);
2258
2259 /* Disable display plane */
2260 temp = I915_READ(dspcntr_reg);
2261 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2262 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2263 /* Flush the plane changes */
2264 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2265 I915_READ(dspbase_reg);
2266 }
2267
2268 if (!IS_I9XX(dev)) {
2269 /* Wait for vblank for the disable to take effect */
2270 intel_wait_for_vblank(dev);
2271 }
2272
2273 /* Don't disable pipe A or pipe A PLLs if needed */
2274 if (pipeconf_reg == PIPEACONF &&
2275 (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2276 goto skip_pipe_off;
2277
2278 /* Next, disable display pipes */
2279 temp = I915_READ(pipeconf_reg);
2280 if ((temp & PIPEACONF_ENABLE) != 0) {
2281 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2282 I915_READ(pipeconf_reg);
2283 }
2284
2285 /* Wait for vblank for the disable to take effect. */
2286 intel_wait_for_vblank(dev);
2287
2288 temp = I915_READ(dpll_reg);
2289 if ((temp & DPLL_VCO_ENABLE) != 0) {
2290 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2291 I915_READ(dpll_reg);
2292 }
2293 skip_pipe_off:
2294 /* Wait for the clocks to turn off. */
2295 udelay(150);
2296 break;
2297 }
2298 }
2299
2300 /**
2301 * Sets the power management mode of the pipe and plane.
2302 *
2303 * This code should probably grow support for turning the cursor off and back
2304 * on appropriately at the same time as we're turning the pipe off/on.
2305 */
2306 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2307 {
2308 struct drm_device *dev = crtc->dev;
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310 struct drm_i915_master_private *master_priv;
2311 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2312 int pipe = intel_crtc->pipe;
2313 bool enabled;
2314
2315 dev_priv->display.dpms(crtc, mode);
2316
2317 intel_crtc->dpms_mode = mode;
2318
2319 if (!dev->primary->master)
2320 return;
2321
2322 master_priv = dev->primary->master->driver_priv;
2323 if (!master_priv->sarea_priv)
2324 return;
2325
2326 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2327
2328 switch (pipe) {
2329 case 0:
2330 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2331 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2332 break;
2333 case 1:
2334 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2335 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2336 break;
2337 default:
2338 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2339 break;
2340 }
2341 }
2342
2343 static void intel_crtc_prepare (struct drm_crtc *crtc)
2344 {
2345 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2346 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2347 }
2348
2349 static void intel_crtc_commit (struct drm_crtc *crtc)
2350 {
2351 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2352 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2353 }
2354
2355 void intel_encoder_prepare (struct drm_encoder *encoder)
2356 {
2357 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2358 /* lvds has its own version of prepare see intel_lvds_prepare */
2359 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2360 }
2361
2362 void intel_encoder_commit (struct drm_encoder *encoder)
2363 {
2364 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2365 /* lvds has its own version of commit see intel_lvds_commit */
2366 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2367 }
2368
2369 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2370 struct drm_display_mode *mode,
2371 struct drm_display_mode *adjusted_mode)
2372 {
2373 struct drm_device *dev = crtc->dev;
2374 if (HAS_PCH_SPLIT(dev)) {
2375 /* FDI link clock is fixed at 2.7G */
2376 if (mode->clock * 3 > 27000 * 4)
2377 return MODE_CLOCK_HIGH;
2378 }
2379 return true;
2380 }
2381
2382 static int i945_get_display_clock_speed(struct drm_device *dev)
2383 {
2384 return 400000;
2385 }
2386
2387 static int i915_get_display_clock_speed(struct drm_device *dev)
2388 {
2389 return 333000;
2390 }
2391
2392 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2393 {
2394 return 200000;
2395 }
2396
2397 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2398 {
2399 u16 gcfgc = 0;
2400
2401 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2402
2403 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2404 return 133000;
2405 else {
2406 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2407 case GC_DISPLAY_CLOCK_333_MHZ:
2408 return 333000;
2409 default:
2410 case GC_DISPLAY_CLOCK_190_200_MHZ:
2411 return 190000;
2412 }
2413 }
2414 }
2415
2416 static int i865_get_display_clock_speed(struct drm_device *dev)
2417 {
2418 return 266000;
2419 }
2420
2421 static int i855_get_display_clock_speed(struct drm_device *dev)
2422 {
2423 u16 hpllcc = 0;
2424 /* Assume that the hardware is in the high speed state. This
2425 * should be the default.
2426 */
2427 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2428 case GC_CLOCK_133_200:
2429 case GC_CLOCK_100_200:
2430 return 200000;
2431 case GC_CLOCK_166_250:
2432 return 250000;
2433 case GC_CLOCK_100_133:
2434 return 133000;
2435 }
2436
2437 /* Shouldn't happen */
2438 return 0;
2439 }
2440
2441 static int i830_get_display_clock_speed(struct drm_device *dev)
2442 {
2443 return 133000;
2444 }
2445
2446 /**
2447 * Return the pipe currently connected to the panel fitter,
2448 * or -1 if the panel fitter is not present or not in use
2449 */
2450 int intel_panel_fitter_pipe (struct drm_device *dev)
2451 {
2452 struct drm_i915_private *dev_priv = dev->dev_private;
2453 u32 pfit_control;
2454
2455 /* i830 doesn't have a panel fitter */
2456 if (IS_I830(dev))
2457 return -1;
2458
2459 pfit_control = I915_READ(PFIT_CONTROL);
2460
2461 /* See if the panel fitter is in use */
2462 if ((pfit_control & PFIT_ENABLE) == 0)
2463 return -1;
2464
2465 /* 965 can place panel fitter on either pipe */
2466 if (IS_I965G(dev))
2467 return (pfit_control >> 29) & 0x3;
2468
2469 /* older chips can only use pipe 1 */
2470 return 1;
2471 }
2472
2473 struct fdi_m_n {
2474 u32 tu;
2475 u32 gmch_m;
2476 u32 gmch_n;
2477 u32 link_m;
2478 u32 link_n;
2479 };
2480
2481 static void
2482 fdi_reduce_ratio(u32 *num, u32 *den)
2483 {
2484 while (*num > 0xffffff || *den > 0xffffff) {
2485 *num >>= 1;
2486 *den >>= 1;
2487 }
2488 }
2489
2490 #define DATA_N 0x800000
2491 #define LINK_N 0x80000
2492
2493 static void
2494 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2495 int link_clock, struct fdi_m_n *m_n)
2496 {
2497 u64 temp;
2498
2499 m_n->tu = 64; /* default size */
2500
2501 temp = (u64) DATA_N * pixel_clock;
2502 temp = div_u64(temp, link_clock);
2503 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2504 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2505 m_n->gmch_n = DATA_N;
2506 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2507
2508 temp = (u64) LINK_N * pixel_clock;
2509 m_n->link_m = div_u64(temp, link_clock);
2510 m_n->link_n = LINK_N;
2511 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2512 }
2513
2514
2515 struct intel_watermark_params {
2516 unsigned long fifo_size;
2517 unsigned long max_wm;
2518 unsigned long default_wm;
2519 unsigned long guard_size;
2520 unsigned long cacheline_size;
2521 };
2522
2523 /* Pineview has different values for various configs */
2524 static struct intel_watermark_params pineview_display_wm = {
2525 PINEVIEW_DISPLAY_FIFO,
2526 PINEVIEW_MAX_WM,
2527 PINEVIEW_DFT_WM,
2528 PINEVIEW_GUARD_WM,
2529 PINEVIEW_FIFO_LINE_SIZE
2530 };
2531 static struct intel_watermark_params pineview_display_hplloff_wm = {
2532 PINEVIEW_DISPLAY_FIFO,
2533 PINEVIEW_MAX_WM,
2534 PINEVIEW_DFT_HPLLOFF_WM,
2535 PINEVIEW_GUARD_WM,
2536 PINEVIEW_FIFO_LINE_SIZE
2537 };
2538 static struct intel_watermark_params pineview_cursor_wm = {
2539 PINEVIEW_CURSOR_FIFO,
2540 PINEVIEW_CURSOR_MAX_WM,
2541 PINEVIEW_CURSOR_DFT_WM,
2542 PINEVIEW_CURSOR_GUARD_WM,
2543 PINEVIEW_FIFO_LINE_SIZE,
2544 };
2545 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2546 PINEVIEW_CURSOR_FIFO,
2547 PINEVIEW_CURSOR_MAX_WM,
2548 PINEVIEW_CURSOR_DFT_WM,
2549 PINEVIEW_CURSOR_GUARD_WM,
2550 PINEVIEW_FIFO_LINE_SIZE
2551 };
2552 static struct intel_watermark_params g4x_wm_info = {
2553 G4X_FIFO_SIZE,
2554 G4X_MAX_WM,
2555 G4X_MAX_WM,
2556 2,
2557 G4X_FIFO_LINE_SIZE,
2558 };
2559 static struct intel_watermark_params i945_wm_info = {
2560 I945_FIFO_SIZE,
2561 I915_MAX_WM,
2562 1,
2563 2,
2564 I915_FIFO_LINE_SIZE
2565 };
2566 static struct intel_watermark_params i915_wm_info = {
2567 I915_FIFO_SIZE,
2568 I915_MAX_WM,
2569 1,
2570 2,
2571 I915_FIFO_LINE_SIZE
2572 };
2573 static struct intel_watermark_params i855_wm_info = {
2574 I855GM_FIFO_SIZE,
2575 I915_MAX_WM,
2576 1,
2577 2,
2578 I830_FIFO_LINE_SIZE
2579 };
2580 static struct intel_watermark_params i830_wm_info = {
2581 I830_FIFO_SIZE,
2582 I915_MAX_WM,
2583 1,
2584 2,
2585 I830_FIFO_LINE_SIZE
2586 };
2587
2588 static struct intel_watermark_params ironlake_display_wm_info = {
2589 ILK_DISPLAY_FIFO,
2590 ILK_DISPLAY_MAXWM,
2591 ILK_DISPLAY_DFTWM,
2592 2,
2593 ILK_FIFO_LINE_SIZE
2594 };
2595
2596 static struct intel_watermark_params ironlake_display_srwm_info = {
2597 ILK_DISPLAY_SR_FIFO,
2598 ILK_DISPLAY_MAX_SRWM,
2599 ILK_DISPLAY_DFT_SRWM,
2600 2,
2601 ILK_FIFO_LINE_SIZE
2602 };
2603
2604 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2605 ILK_CURSOR_SR_FIFO,
2606 ILK_CURSOR_MAX_SRWM,
2607 ILK_CURSOR_DFT_SRWM,
2608 2,
2609 ILK_FIFO_LINE_SIZE
2610 };
2611
2612 /**
2613 * intel_calculate_wm - calculate watermark level
2614 * @clock_in_khz: pixel clock
2615 * @wm: chip FIFO params
2616 * @pixel_size: display pixel size
2617 * @latency_ns: memory latency for the platform
2618 *
2619 * Calculate the watermark level (the level at which the display plane will
2620 * start fetching from memory again). Each chip has a different display
2621 * FIFO size and allocation, so the caller needs to figure that out and pass
2622 * in the correct intel_watermark_params structure.
2623 *
2624 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2625 * on the pixel size. When it reaches the watermark level, it'll start
2626 * fetching FIFO line sized based chunks from memory until the FIFO fills
2627 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2628 * will occur, and a display engine hang could result.
2629 */
2630 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2631 struct intel_watermark_params *wm,
2632 int pixel_size,
2633 unsigned long latency_ns)
2634 {
2635 long entries_required, wm_size;
2636
2637 /*
2638 * Note: we need to make sure we don't overflow for various clock &
2639 * latency values.
2640 * clocks go from a few thousand to several hundred thousand.
2641 * latency is usually a few thousand
2642 */
2643 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2644 1000;
2645 entries_required /= wm->cacheline_size;
2646
2647 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2648
2649 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2650
2651 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2652
2653 /* Don't promote wm_size to unsigned... */
2654 if (wm_size > (long)wm->max_wm)
2655 wm_size = wm->max_wm;
2656 if (wm_size <= 0)
2657 wm_size = wm->default_wm;
2658 return wm_size;
2659 }
2660
2661 struct cxsr_latency {
2662 int is_desktop;
2663 int is_ddr3;
2664 unsigned long fsb_freq;
2665 unsigned long mem_freq;
2666 unsigned long display_sr;
2667 unsigned long display_hpll_disable;
2668 unsigned long cursor_sr;
2669 unsigned long cursor_hpll_disable;
2670 };
2671
2672 static struct cxsr_latency cxsr_latency_table[] = {
2673 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2674 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2675 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2676 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2677 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2678
2679 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2680 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2681 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2682 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2683 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2684
2685 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2686 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2687 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2688 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2689 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2690
2691 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2692 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2693 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2694 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2695 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2696
2697 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2698 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2699 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2700 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2701 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2702
2703 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2704 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2705 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2706 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2707 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2708 };
2709
2710 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int is_ddr3,
2711 int fsb, int mem)
2712 {
2713 int i;
2714 struct cxsr_latency *latency;
2715
2716 if (fsb == 0 || mem == 0)
2717 return NULL;
2718
2719 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2720 latency = &cxsr_latency_table[i];
2721 if (is_desktop == latency->is_desktop &&
2722 is_ddr3 == latency->is_ddr3 &&
2723 fsb == latency->fsb_freq && mem == latency->mem_freq)
2724 return latency;
2725 }
2726
2727 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2728
2729 return NULL;
2730 }
2731
2732 static void pineview_disable_cxsr(struct drm_device *dev)
2733 {
2734 struct drm_i915_private *dev_priv = dev->dev_private;
2735 u32 reg;
2736
2737 /* deactivate cxsr */
2738 reg = I915_READ(DSPFW3);
2739 reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2740 I915_WRITE(DSPFW3, reg);
2741 DRM_INFO("Big FIFO is disabled\n");
2742 }
2743
2744 /*
2745 * Latency for FIFO fetches is dependent on several factors:
2746 * - memory configuration (speed, channels)
2747 * - chipset
2748 * - current MCH state
2749 * It can be fairly high in some situations, so here we assume a fairly
2750 * pessimal value. It's a tradeoff between extra memory fetches (if we
2751 * set this value too high, the FIFO will fetch frequently to stay full)
2752 * and power consumption (set it too low to save power and we might see
2753 * FIFO underruns and display "flicker").
2754 *
2755 * A value of 5us seems to be a good balance; safe for very low end
2756 * platforms but not overly aggressive on lower latency configs.
2757 */
2758 static const int latency_ns = 5000;
2759
2760 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2761 {
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 uint32_t dsparb = I915_READ(DSPARB);
2764 int size;
2765
2766 if (plane == 0)
2767 size = dsparb & 0x7f;
2768 else
2769 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2770 (dsparb & 0x7f);
2771
2772 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2773 plane ? "B" : "A", size);
2774
2775 return size;
2776 }
2777
2778 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2779 {
2780 struct drm_i915_private *dev_priv = dev->dev_private;
2781 uint32_t dsparb = I915_READ(DSPARB);
2782 int size;
2783
2784 if (plane == 0)
2785 size = dsparb & 0x1ff;
2786 else
2787 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2788 (dsparb & 0x1ff);
2789 size >>= 1; /* Convert to cachelines */
2790
2791 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2792 plane ? "B" : "A", size);
2793
2794 return size;
2795 }
2796
2797 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2798 {
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 uint32_t dsparb = I915_READ(DSPARB);
2801 int size;
2802
2803 size = dsparb & 0x7f;
2804 size >>= 2; /* Convert to cachelines */
2805
2806 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2807 plane ? "B" : "A",
2808 size);
2809
2810 return size;
2811 }
2812
2813 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2814 {
2815 struct drm_i915_private *dev_priv = dev->dev_private;
2816 uint32_t dsparb = I915_READ(DSPARB);
2817 int size;
2818
2819 size = dsparb & 0x7f;
2820 size >>= 1; /* Convert to cachelines */
2821
2822 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2823 plane ? "B" : "A", size);
2824
2825 return size;
2826 }
2827
2828 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
2829 int planeb_clock, int sr_hdisplay, int pixel_size)
2830 {
2831 struct drm_i915_private *dev_priv = dev->dev_private;
2832 u32 reg;
2833 unsigned long wm;
2834 struct cxsr_latency *latency;
2835 int sr_clock;
2836
2837 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
2838 dev_priv->fsb_freq, dev_priv->mem_freq);
2839 if (!latency) {
2840 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2841 pineview_disable_cxsr(dev);
2842 return;
2843 }
2844
2845 if (!planea_clock || !planeb_clock) {
2846 sr_clock = planea_clock ? planea_clock : planeb_clock;
2847
2848 /* Display SR */
2849 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2850 pixel_size, latency->display_sr);
2851 reg = I915_READ(DSPFW1);
2852 reg &= ~DSPFW_SR_MASK;
2853 reg |= wm << DSPFW_SR_SHIFT;
2854 I915_WRITE(DSPFW1, reg);
2855 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2856
2857 /* cursor SR */
2858 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2859 pixel_size, latency->cursor_sr);
2860 reg = I915_READ(DSPFW3);
2861 reg &= ~DSPFW_CURSOR_SR_MASK;
2862 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2863 I915_WRITE(DSPFW3, reg);
2864
2865 /* Display HPLL off SR */
2866 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2867 pixel_size, latency->display_hpll_disable);
2868 reg = I915_READ(DSPFW3);
2869 reg &= ~DSPFW_HPLL_SR_MASK;
2870 reg |= wm & DSPFW_HPLL_SR_MASK;
2871 I915_WRITE(DSPFW3, reg);
2872
2873 /* cursor HPLL off SR */
2874 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2875 pixel_size, latency->cursor_hpll_disable);
2876 reg = I915_READ(DSPFW3);
2877 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2878 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2879 I915_WRITE(DSPFW3, reg);
2880 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2881
2882 /* activate cxsr */
2883 reg = I915_READ(DSPFW3);
2884 reg |= PINEVIEW_SELF_REFRESH_EN;
2885 I915_WRITE(DSPFW3, reg);
2886 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2887 } else {
2888 pineview_disable_cxsr(dev);
2889 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2890 }
2891 }
2892
2893 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2894 int planeb_clock, int sr_hdisplay, int pixel_size)
2895 {
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 int total_size, cacheline_size;
2898 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2899 struct intel_watermark_params planea_params, planeb_params;
2900 unsigned long line_time_us;
2901 int sr_clock, sr_entries = 0, entries_required;
2902
2903 /* Create copies of the base settings for each pipe */
2904 planea_params = planeb_params = g4x_wm_info;
2905
2906 /* Grab a couple of global values before we overwrite them */
2907 total_size = planea_params.fifo_size;
2908 cacheline_size = planea_params.cacheline_size;
2909
2910 /*
2911 * Note: we need to make sure we don't overflow for various clock &
2912 * latency values.
2913 * clocks go from a few thousand to several hundred thousand.
2914 * latency is usually a few thousand
2915 */
2916 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2917 1000;
2918 entries_required /= G4X_FIFO_LINE_SIZE;
2919 planea_wm = entries_required + planea_params.guard_size;
2920
2921 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2922 1000;
2923 entries_required /= G4X_FIFO_LINE_SIZE;
2924 planeb_wm = entries_required + planeb_params.guard_size;
2925
2926 cursora_wm = cursorb_wm = 16;
2927 cursor_sr = 32;
2928
2929 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2930
2931 /* Calc sr entries for one plane configs */
2932 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2933 /* self-refresh has much higher latency */
2934 static const int sr_latency_ns = 12000;
2935
2936 sr_clock = planea_clock ? planea_clock : planeb_clock;
2937 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2938
2939 /* Use ns/us then divide to preserve precision */
2940 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2941 pixel_size * sr_hdisplay) / 1000;
2942 sr_entries = roundup(sr_entries / cacheline_size, 1);
2943 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2944 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2945 } else {
2946 /* Turn off self refresh if both pipes are enabled */
2947 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2948 & ~FW_BLC_SELF_EN);
2949 }
2950
2951 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2952 planea_wm, planeb_wm, sr_entries);
2953
2954 planea_wm &= 0x3f;
2955 planeb_wm &= 0x3f;
2956
2957 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2958 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2959 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2960 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2961 (cursora_wm << DSPFW_CURSORA_SHIFT));
2962 /* HPLL off in SR has some issues on G4x... disable it */
2963 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2964 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2965 }
2966
2967 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2968 int planeb_clock, int sr_hdisplay, int pixel_size)
2969 {
2970 struct drm_i915_private *dev_priv = dev->dev_private;
2971 unsigned long line_time_us;
2972 int sr_clock, sr_entries, srwm = 1;
2973
2974 /* Calc sr entries for one plane configs */
2975 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2976 /* self-refresh has much higher latency */
2977 static const int sr_latency_ns = 12000;
2978
2979 sr_clock = planea_clock ? planea_clock : planeb_clock;
2980 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2981
2982 /* Use ns/us then divide to preserve precision */
2983 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2984 pixel_size * sr_hdisplay) / 1000;
2985 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2986 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2987 srwm = I945_FIFO_SIZE - sr_entries;
2988 if (srwm < 0)
2989 srwm = 1;
2990 srwm &= 0x3f;
2991 if (IS_I965GM(dev))
2992 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2993 } else {
2994 /* Turn off self refresh if both pipes are enabled */
2995 if (IS_I965GM(dev))
2996 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2997 & ~FW_BLC_SELF_EN);
2998 }
2999
3000 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3001 srwm);
3002
3003 /* 965 has limitations... */
3004 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3005 (8 << 0));
3006 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3007 }
3008
3009 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3010 int planeb_clock, int sr_hdisplay, int pixel_size)
3011 {
3012 struct drm_i915_private *dev_priv = dev->dev_private;
3013 uint32_t fwater_lo;
3014 uint32_t fwater_hi;
3015 int total_size, cacheline_size, cwm, srwm = 1;
3016 int planea_wm, planeb_wm;
3017 struct intel_watermark_params planea_params, planeb_params;
3018 unsigned long line_time_us;
3019 int sr_clock, sr_entries = 0;
3020
3021 /* Create copies of the base settings for each pipe */
3022 if (IS_I965GM(dev) || IS_I945GM(dev))
3023 planea_params = planeb_params = i945_wm_info;
3024 else if (IS_I9XX(dev))
3025 planea_params = planeb_params = i915_wm_info;
3026 else
3027 planea_params = planeb_params = i855_wm_info;
3028
3029 /* Grab a couple of global values before we overwrite them */
3030 total_size = planea_params.fifo_size;
3031 cacheline_size = planea_params.cacheline_size;
3032
3033 /* Update per-plane FIFO sizes */
3034 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3035 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3036
3037 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3038 pixel_size, latency_ns);
3039 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3040 pixel_size, latency_ns);
3041 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3042
3043 /*
3044 * Overlay gets an aggressive default since video jitter is bad.
3045 */
3046 cwm = 2;
3047
3048 /* Calc sr entries for one plane configs */
3049 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3050 (!planea_clock || !planeb_clock)) {
3051 /* self-refresh has much higher latency */
3052 static const int sr_latency_ns = 6000;
3053
3054 sr_clock = planea_clock ? planea_clock : planeb_clock;
3055 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3056
3057 /* Use ns/us then divide to preserve precision */
3058 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
3059 pixel_size * sr_hdisplay) / 1000;
3060 sr_entries = roundup(sr_entries / cacheline_size, 1);
3061 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3062 srwm = total_size - sr_entries;
3063 if (srwm < 0)
3064 srwm = 1;
3065
3066 if (IS_I945G(dev) || IS_I945GM(dev))
3067 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3068 else if (IS_I915GM(dev)) {
3069 /* 915M has a smaller SRWM field */
3070 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3071 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3072 }
3073 } else {
3074 /* Turn off self refresh if both pipes are enabled */
3075 if (IS_I945G(dev) || IS_I945GM(dev)) {
3076 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3077 & ~FW_BLC_SELF_EN);
3078 } else if (IS_I915GM(dev)) {
3079 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3080 }
3081 }
3082
3083 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3084 planea_wm, planeb_wm, cwm, srwm);
3085
3086 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3087 fwater_hi = (cwm & 0x1f);
3088
3089 /* Set request length to 8 cachelines per fetch */
3090 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3091 fwater_hi = fwater_hi | (1 << 8);
3092
3093 I915_WRITE(FW_BLC, fwater_lo);
3094 I915_WRITE(FW_BLC2, fwater_hi);
3095 }
3096
3097 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3098 int unused2, int pixel_size)
3099 {
3100 struct drm_i915_private *dev_priv = dev->dev_private;
3101 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3102 int planea_wm;
3103
3104 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3105
3106 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3107 pixel_size, latency_ns);
3108 fwater_lo |= (3<<8) | planea_wm;
3109
3110 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3111
3112 I915_WRITE(FW_BLC, fwater_lo);
3113 }
3114
3115 #define ILK_LP0_PLANE_LATENCY 700
3116
3117 static void ironlake_update_wm(struct drm_device *dev, int planea_clock,
3118 int planeb_clock, int sr_hdisplay, int pixel_size)
3119 {
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3122 int sr_wm, cursor_wm;
3123 unsigned long line_time_us;
3124 int sr_clock, entries_required;
3125 u32 reg_value;
3126
3127 /* Calculate and update the watermark for plane A */
3128 if (planea_clock) {
3129 entries_required = ((planea_clock / 1000) * pixel_size *
3130 ILK_LP0_PLANE_LATENCY) / 1000;
3131 entries_required = DIV_ROUND_UP(entries_required,
3132 ironlake_display_wm_info.cacheline_size);
3133 planea_wm = entries_required +
3134 ironlake_display_wm_info.guard_size;
3135
3136 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3137 planea_wm = ironlake_display_wm_info.max_wm;
3138
3139 cursora_wm = 16;
3140 reg_value = I915_READ(WM0_PIPEA_ILK);
3141 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3142 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3143 (cursora_wm & WM0_PIPE_CURSOR_MASK);
3144 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3145 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3146 "cursor: %d\n", planea_wm, cursora_wm);
3147 }
3148 /* Calculate and update the watermark for plane B */
3149 if (planeb_clock) {
3150 entries_required = ((planeb_clock / 1000) * pixel_size *
3151 ILK_LP0_PLANE_LATENCY) / 1000;
3152 entries_required = DIV_ROUND_UP(entries_required,
3153 ironlake_display_wm_info.cacheline_size);
3154 planeb_wm = entries_required +
3155 ironlake_display_wm_info.guard_size;
3156
3157 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3158 planeb_wm = ironlake_display_wm_info.max_wm;
3159
3160 cursorb_wm = 16;
3161 reg_value = I915_READ(WM0_PIPEB_ILK);
3162 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3163 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3164 (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3165 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3166 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3167 "cursor: %d\n", planeb_wm, cursorb_wm);
3168 }
3169
3170 /*
3171 * Calculate and update the self-refresh watermark only when one
3172 * display plane is used.
3173 */
3174 if (!planea_clock || !planeb_clock) {
3175 int line_count;
3176 /* Read the self-refresh latency. The unit is 0.5us */
3177 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3178
3179 sr_clock = planea_clock ? planea_clock : planeb_clock;
3180 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3181
3182 /* Use ns/us then divide to preserve precision */
3183 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3184 / 1000;
3185
3186 /* calculate the self-refresh watermark for display plane */
3187 entries_required = line_count * sr_hdisplay * pixel_size;
3188 entries_required = DIV_ROUND_UP(entries_required,
3189 ironlake_display_srwm_info.cacheline_size);
3190 sr_wm = entries_required +
3191 ironlake_display_srwm_info.guard_size;
3192
3193 /* calculate the self-refresh watermark for display cursor */
3194 entries_required = line_count * pixel_size * 64;
3195 entries_required = DIV_ROUND_UP(entries_required,
3196 ironlake_cursor_srwm_info.cacheline_size);
3197 cursor_wm = entries_required +
3198 ironlake_cursor_srwm_info.guard_size;
3199
3200 /* configure watermark and enable self-refresh */
3201 reg_value = I915_READ(WM1_LP_ILK);
3202 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3203 WM1_LP_CURSOR_MASK);
3204 reg_value |= WM1_LP_SR_EN |
3205 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3206 (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3207
3208 I915_WRITE(WM1_LP_ILK, reg_value);
3209 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3210 "cursor %d\n", sr_wm, cursor_wm);
3211
3212 } else {
3213 /* Turn off self refresh if both pipes are enabled */
3214 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3215 }
3216 }
3217 /**
3218 * intel_update_watermarks - update FIFO watermark values based on current modes
3219 *
3220 * Calculate watermark values for the various WM regs based on current mode
3221 * and plane configuration.
3222 *
3223 * There are several cases to deal with here:
3224 * - normal (i.e. non-self-refresh)
3225 * - self-refresh (SR) mode
3226 * - lines are large relative to FIFO size (buffer can hold up to 2)
3227 * - lines are small relative to FIFO size (buffer can hold more than 2
3228 * lines), so need to account for TLB latency
3229 *
3230 * The normal calculation is:
3231 * watermark = dotclock * bytes per pixel * latency
3232 * where latency is platform & configuration dependent (we assume pessimal
3233 * values here).
3234 *
3235 * The SR calculation is:
3236 * watermark = (trunc(latency/line time)+1) * surface width *
3237 * bytes per pixel
3238 * where
3239 * line time = htotal / dotclock
3240 * and latency is assumed to be high, as above.
3241 *
3242 * The final value programmed to the register should always be rounded up,
3243 * and include an extra 2 entries to account for clock crossings.
3244 *
3245 * We don't use the sprite, so we can ignore that. And on Crestline we have
3246 * to set the non-SR watermarks to 8.
3247 */
3248 static void intel_update_watermarks(struct drm_device *dev)
3249 {
3250 struct drm_i915_private *dev_priv = dev->dev_private;
3251 struct drm_crtc *crtc;
3252 struct intel_crtc *intel_crtc;
3253 int sr_hdisplay = 0;
3254 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3255 int enabled = 0, pixel_size = 0;
3256
3257 if (!dev_priv->display.update_wm)
3258 return;
3259
3260 /* Get the clock config from both planes */
3261 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3262 intel_crtc = to_intel_crtc(crtc);
3263 if (crtc->enabled) {
3264 enabled++;
3265 if (intel_crtc->plane == 0) {
3266 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3267 intel_crtc->pipe, crtc->mode.clock);
3268 planea_clock = crtc->mode.clock;
3269 } else {
3270 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3271 intel_crtc->pipe, crtc->mode.clock);
3272 planeb_clock = crtc->mode.clock;
3273 }
3274 sr_hdisplay = crtc->mode.hdisplay;
3275 sr_clock = crtc->mode.clock;
3276 if (crtc->fb)
3277 pixel_size = crtc->fb->bits_per_pixel / 8;
3278 else
3279 pixel_size = 4; /* by default */
3280 }
3281 }
3282
3283 if (enabled <= 0)
3284 return;
3285
3286 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3287 sr_hdisplay, pixel_size);
3288 }
3289
3290 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3291 struct drm_display_mode *mode,
3292 struct drm_display_mode *adjusted_mode,
3293 int x, int y,
3294 struct drm_framebuffer *old_fb)
3295 {
3296 struct drm_device *dev = crtc->dev;
3297 struct drm_i915_private *dev_priv = dev->dev_private;
3298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3299 int pipe = intel_crtc->pipe;
3300 int plane = intel_crtc->plane;
3301 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3302 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3303 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3304 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3305 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3306 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3307 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3308 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3309 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3310 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3311 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3312 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3313 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3314 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3315 int refclk, num_connectors = 0;
3316 intel_clock_t clock, reduced_clock;
3317 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3318 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3319 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3320 bool is_edp = false;
3321 struct drm_mode_config *mode_config = &dev->mode_config;
3322 struct drm_encoder *encoder;
3323 struct intel_encoder *intel_encoder = NULL;
3324 const intel_limit_t *limit;
3325 int ret;
3326 struct fdi_m_n m_n = {0};
3327 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3328 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3329 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3330 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3331 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3332 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3333 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3334 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3335 int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3336 int lvds_reg = LVDS;
3337 u32 temp;
3338 int sdvo_pixel_multiply;
3339 int target_clock;
3340
3341 drm_vblank_pre_modeset(dev, pipe);
3342
3343 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3344
3345 if (!encoder || encoder->crtc != crtc)
3346 continue;
3347
3348 intel_encoder = enc_to_intel_encoder(encoder);
3349
3350 switch (intel_encoder->type) {
3351 case INTEL_OUTPUT_LVDS:
3352 is_lvds = true;
3353 break;
3354 case INTEL_OUTPUT_SDVO:
3355 case INTEL_OUTPUT_HDMI:
3356 is_sdvo = true;
3357 if (intel_encoder->needs_tv_clock)
3358 is_tv = true;
3359 break;
3360 case INTEL_OUTPUT_DVO:
3361 is_dvo = true;
3362 break;
3363 case INTEL_OUTPUT_TVOUT:
3364 is_tv = true;
3365 break;
3366 case INTEL_OUTPUT_ANALOG:
3367 is_crt = true;
3368 break;
3369 case INTEL_OUTPUT_DISPLAYPORT:
3370 is_dp = true;
3371 break;
3372 case INTEL_OUTPUT_EDP:
3373 is_edp = true;
3374 break;
3375 }
3376
3377 num_connectors++;
3378 }
3379
3380 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3381 refclk = dev_priv->lvds_ssc_freq * 1000;
3382 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3383 refclk / 1000);
3384 } else if (IS_I9XX(dev)) {
3385 refclk = 96000;
3386 if (HAS_PCH_SPLIT(dev))
3387 refclk = 120000; /* 120Mhz refclk */
3388 } else {
3389 refclk = 48000;
3390 }
3391
3392
3393 /*
3394 * Returns a set of divisors for the desired target clock with the given
3395 * refclk, or FALSE. The returned values represent the clock equation:
3396 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3397 */
3398 limit = intel_limit(crtc);
3399 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3400 if (!ok) {
3401 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3402 drm_vblank_post_modeset(dev, pipe);
3403 return -EINVAL;
3404 }
3405
3406 if (is_lvds && dev_priv->lvds_downclock_avail) {
3407 has_reduced_clock = limit->find_pll(limit, crtc,
3408 dev_priv->lvds_downclock,
3409 refclk,
3410 &reduced_clock);
3411 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3412 /*
3413 * If the different P is found, it means that we can't
3414 * switch the display clock by using the FP0/FP1.
3415 * In such case we will disable the LVDS downclock
3416 * feature.
3417 */
3418 DRM_DEBUG_KMS("Different P is found for "
3419 "LVDS clock/downclock\n");
3420 has_reduced_clock = 0;
3421 }
3422 }
3423 /* SDVO TV has fixed PLL values depend on its clock range,
3424 this mirrors vbios setting. */
3425 if (is_sdvo && is_tv) {
3426 if (adjusted_mode->clock >= 100000
3427 && adjusted_mode->clock < 140500) {
3428 clock.p1 = 2;
3429 clock.p2 = 10;
3430 clock.n = 3;
3431 clock.m1 = 16;
3432 clock.m2 = 8;
3433 } else if (adjusted_mode->clock >= 140500
3434 && adjusted_mode->clock <= 200000) {
3435 clock.p1 = 1;
3436 clock.p2 = 10;
3437 clock.n = 6;
3438 clock.m1 = 12;
3439 clock.m2 = 8;
3440 }
3441 }
3442
3443 /* FDI link */
3444 if (HAS_PCH_SPLIT(dev)) {
3445 int lane = 0, link_bw, bpp;
3446 /* eDP doesn't require FDI link, so just set DP M/N
3447 according to current link config */
3448 if (is_edp) {
3449 target_clock = mode->clock;
3450 intel_edp_link_config(intel_encoder,
3451 &lane, &link_bw);
3452 } else {
3453 /* DP over FDI requires target mode clock
3454 instead of link clock */
3455 if (is_dp)
3456 target_clock = mode->clock;
3457 else
3458 target_clock = adjusted_mode->clock;
3459 link_bw = 270000;
3460 }
3461
3462 /* determine panel color depth */
3463 temp = I915_READ(pipeconf_reg);
3464 temp &= ~PIPE_BPC_MASK;
3465 if (is_lvds) {
3466 int lvds_reg = I915_READ(PCH_LVDS);
3467 /* the BPC will be 6 if it is 18-bit LVDS panel */
3468 if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3469 temp |= PIPE_8BPC;
3470 else
3471 temp |= PIPE_6BPC;
3472 } else if (is_edp) {
3473 switch (dev_priv->edp_bpp/3) {
3474 case 8:
3475 temp |= PIPE_8BPC;
3476 break;
3477 case 10:
3478 temp |= PIPE_10BPC;
3479 break;
3480 case 6:
3481 temp |= PIPE_6BPC;
3482 break;
3483 case 12:
3484 temp |= PIPE_12BPC;
3485 break;
3486 }
3487 } else
3488 temp |= PIPE_8BPC;
3489 I915_WRITE(pipeconf_reg, temp);
3490 I915_READ(pipeconf_reg);
3491
3492 switch (temp & PIPE_BPC_MASK) {
3493 case PIPE_8BPC:
3494 bpp = 24;
3495 break;
3496 case PIPE_10BPC:
3497 bpp = 30;
3498 break;
3499 case PIPE_6BPC:
3500 bpp = 18;
3501 break;
3502 case PIPE_12BPC:
3503 bpp = 36;
3504 break;
3505 default:
3506 DRM_ERROR("unknown pipe bpc value\n");
3507 bpp = 24;
3508 }
3509
3510 if (!lane) {
3511 /*
3512 * Account for spread spectrum to avoid
3513 * oversubscribing the link. Max center spread
3514 * is 2.5%; use 5% for safety's sake.
3515 */
3516 u32 bps = target_clock * bpp * 21 / 20;
3517 lane = bps / (link_bw * 8) + 1;
3518 }
3519
3520 intel_crtc->fdi_lanes = lane;
3521
3522 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3523 }
3524
3525 /* Ironlake: try to setup display ref clock before DPLL
3526 * enabling. This is only under driver's control after
3527 * PCH B stepping, previous chipset stepping should be
3528 * ignoring this setting.
3529 */
3530 if (HAS_PCH_SPLIT(dev)) {
3531 temp = I915_READ(PCH_DREF_CONTROL);
3532 /* Always enable nonspread source */
3533 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3534 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3535 I915_WRITE(PCH_DREF_CONTROL, temp);
3536 POSTING_READ(PCH_DREF_CONTROL);
3537
3538 temp &= ~DREF_SSC_SOURCE_MASK;
3539 temp |= DREF_SSC_SOURCE_ENABLE;
3540 I915_WRITE(PCH_DREF_CONTROL, temp);
3541 POSTING_READ(PCH_DREF_CONTROL);
3542
3543 udelay(200);
3544
3545 if (is_edp) {
3546 if (dev_priv->lvds_use_ssc) {
3547 temp |= DREF_SSC1_ENABLE;
3548 I915_WRITE(PCH_DREF_CONTROL, temp);
3549 POSTING_READ(PCH_DREF_CONTROL);
3550
3551 udelay(200);
3552
3553 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3554 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3555 I915_WRITE(PCH_DREF_CONTROL, temp);
3556 POSTING_READ(PCH_DREF_CONTROL);
3557 } else {
3558 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3559 I915_WRITE(PCH_DREF_CONTROL, temp);
3560 POSTING_READ(PCH_DREF_CONTROL);
3561 }
3562 }
3563 }
3564
3565 if (IS_PINEVIEW(dev)) {
3566 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3567 if (has_reduced_clock)
3568 fp2 = (1 << reduced_clock.n) << 16 |
3569 reduced_clock.m1 << 8 | reduced_clock.m2;
3570 } else {
3571 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3572 if (has_reduced_clock)
3573 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3574 reduced_clock.m2;
3575 }
3576
3577 if (!HAS_PCH_SPLIT(dev))
3578 dpll = DPLL_VGA_MODE_DIS;
3579
3580 if (IS_I9XX(dev)) {
3581 if (is_lvds)
3582 dpll |= DPLLB_MODE_LVDS;
3583 else
3584 dpll |= DPLLB_MODE_DAC_SERIAL;
3585 if (is_sdvo) {
3586 dpll |= DPLL_DVO_HIGH_SPEED;
3587 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3588 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3589 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3590 else if (HAS_PCH_SPLIT(dev))
3591 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3592 }
3593 if (is_dp)
3594 dpll |= DPLL_DVO_HIGH_SPEED;
3595
3596 /* compute bitmask from p1 value */
3597 if (IS_PINEVIEW(dev))
3598 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3599 else {
3600 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3601 /* also FPA1 */
3602 if (HAS_PCH_SPLIT(dev))
3603 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3604 if (IS_G4X(dev) && has_reduced_clock)
3605 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3606 }
3607 switch (clock.p2) {
3608 case 5:
3609 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3610 break;
3611 case 7:
3612 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3613 break;
3614 case 10:
3615 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3616 break;
3617 case 14:
3618 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3619 break;
3620 }
3621 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3622 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3623 } else {
3624 if (is_lvds) {
3625 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3626 } else {
3627 if (clock.p1 == 2)
3628 dpll |= PLL_P1_DIVIDE_BY_TWO;
3629 else
3630 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3631 if (clock.p2 == 4)
3632 dpll |= PLL_P2_DIVIDE_BY_4;
3633 }
3634 }
3635
3636 if (is_sdvo && is_tv)
3637 dpll |= PLL_REF_INPUT_TVCLKINBC;
3638 else if (is_tv)
3639 /* XXX: just matching BIOS for now */
3640 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3641 dpll |= 3;
3642 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3643 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3644 else
3645 dpll |= PLL_REF_INPUT_DREFCLK;
3646
3647 /* setup pipeconf */
3648 pipeconf = I915_READ(pipeconf_reg);
3649
3650 /* Set up the display plane register */
3651 dspcntr = DISPPLANE_GAMMA_ENABLE;
3652
3653 /* Ironlake's plane is forced to pipe, bit 24 is to
3654 enable color space conversion */
3655 if (!HAS_PCH_SPLIT(dev)) {
3656 if (pipe == 0)
3657 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3658 else
3659 dspcntr |= DISPPLANE_SEL_PIPE_B;
3660 }
3661
3662 if (pipe == 0 && !IS_I965G(dev)) {
3663 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3664 * core speed.
3665 *
3666 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3667 * pipe == 0 check?
3668 */
3669 if (mode->clock >
3670 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3671 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3672 else
3673 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3674 }
3675
3676 dspcntr |= DISPLAY_PLANE_ENABLE;
3677 pipeconf |= PIPEACONF_ENABLE;
3678 dpll |= DPLL_VCO_ENABLE;
3679
3680
3681 /* Disable the panel fitter if it was on our pipe */
3682 if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3683 I915_WRITE(PFIT_CONTROL, 0);
3684
3685 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3686 drm_mode_debug_printmodeline(mode);
3687
3688 /* assign to Ironlake registers */
3689 if (HAS_PCH_SPLIT(dev)) {
3690 fp_reg = pch_fp_reg;
3691 dpll_reg = pch_dpll_reg;
3692 }
3693
3694 if (is_edp) {
3695 ironlake_disable_pll_edp(crtc);
3696 } else if ((dpll & DPLL_VCO_ENABLE)) {
3697 I915_WRITE(fp_reg, fp);
3698 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3699 I915_READ(dpll_reg);
3700 udelay(150);
3701 }
3702
3703 /* enable transcoder DPLL */
3704 if (HAS_PCH_CPT(dev)) {
3705 temp = I915_READ(PCH_DPLL_SEL);
3706 if (trans_dpll_sel == 0)
3707 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3708 else
3709 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3710 I915_WRITE(PCH_DPLL_SEL, temp);
3711 I915_READ(PCH_DPLL_SEL);
3712 udelay(150);
3713 }
3714
3715 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3716 * This is an exception to the general rule that mode_set doesn't turn
3717 * things on.
3718 */
3719 if (is_lvds) {
3720 u32 lvds;
3721
3722 if (HAS_PCH_SPLIT(dev))
3723 lvds_reg = PCH_LVDS;
3724
3725 lvds = I915_READ(lvds_reg);
3726 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3727 if (pipe == 1) {
3728 if (HAS_PCH_CPT(dev))
3729 lvds |= PORT_TRANS_B_SEL_CPT;
3730 else
3731 lvds |= LVDS_PIPEB_SELECT;
3732 } else {
3733 if (HAS_PCH_CPT(dev))
3734 lvds &= ~PORT_TRANS_SEL_MASK;
3735 else
3736 lvds &= ~LVDS_PIPEB_SELECT;
3737 }
3738 /* set the corresponsding LVDS_BORDER bit */
3739 lvds |= dev_priv->lvds_border_bits;
3740 /* Set the B0-B3 data pairs corresponding to whether we're going to
3741 * set the DPLLs for dual-channel mode or not.
3742 */
3743 if (clock.p2 == 7)
3744 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3745 else
3746 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3747
3748 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3749 * appropriately here, but we need to look more thoroughly into how
3750 * panels behave in the two modes.
3751 */
3752 /* set the dithering flag */
3753 if (IS_I965G(dev)) {
3754 if (dev_priv->lvds_dither) {
3755 if (HAS_PCH_SPLIT(dev)) {
3756 pipeconf |= PIPE_ENABLE_DITHER;
3757 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3758 pipeconf |= PIPE_DITHER_TYPE_ST01;
3759 } else
3760 lvds |= LVDS_ENABLE_DITHER;
3761 } else {
3762 if (HAS_PCH_SPLIT(dev)) {
3763 pipeconf &= ~PIPE_ENABLE_DITHER;
3764 pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3765 } else
3766 lvds &= ~LVDS_ENABLE_DITHER;
3767 }
3768 }
3769 I915_WRITE(lvds_reg, lvds);
3770 I915_READ(lvds_reg);
3771 }
3772 if (is_dp)
3773 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3774 else if (HAS_PCH_SPLIT(dev)) {
3775 /* For non-DP output, clear any trans DP clock recovery setting.*/
3776 if (pipe == 0) {
3777 I915_WRITE(TRANSA_DATA_M1, 0);
3778 I915_WRITE(TRANSA_DATA_N1, 0);
3779 I915_WRITE(TRANSA_DP_LINK_M1, 0);
3780 I915_WRITE(TRANSA_DP_LINK_N1, 0);
3781 } else {
3782 I915_WRITE(TRANSB_DATA_M1, 0);
3783 I915_WRITE(TRANSB_DATA_N1, 0);
3784 I915_WRITE(TRANSB_DP_LINK_M1, 0);
3785 I915_WRITE(TRANSB_DP_LINK_N1, 0);
3786 }
3787 }
3788
3789 if (!is_edp) {
3790 I915_WRITE(fp_reg, fp);
3791 I915_WRITE(dpll_reg, dpll);
3792 I915_READ(dpll_reg);
3793 /* Wait for the clocks to stabilize. */
3794 udelay(150);
3795
3796 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3797 if (is_sdvo) {
3798 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3799 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3800 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3801 } else
3802 I915_WRITE(dpll_md_reg, 0);
3803 } else {
3804 /* write it again -- the BIOS does, after all */
3805 I915_WRITE(dpll_reg, dpll);
3806 }
3807 I915_READ(dpll_reg);
3808 /* Wait for the clocks to stabilize. */
3809 udelay(150);
3810 }
3811
3812 if (is_lvds && has_reduced_clock && i915_powersave) {
3813 I915_WRITE(fp_reg + 4, fp2);
3814 intel_crtc->lowfreq_avail = true;
3815 if (HAS_PIPE_CXSR(dev)) {
3816 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3817 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3818 }
3819 } else {
3820 I915_WRITE(fp_reg + 4, fp);
3821 intel_crtc->lowfreq_avail = false;
3822 if (HAS_PIPE_CXSR(dev)) {
3823 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3824 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3825 }
3826 }
3827
3828 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
3829 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
3830 /* the chip adds 2 halflines automatically */
3831 adjusted_mode->crtc_vdisplay -= 1;
3832 adjusted_mode->crtc_vtotal -= 1;
3833 adjusted_mode->crtc_vblank_start -= 1;
3834 adjusted_mode->crtc_vblank_end -= 1;
3835 adjusted_mode->crtc_vsync_end -= 1;
3836 adjusted_mode->crtc_vsync_start -= 1;
3837 } else
3838 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
3839
3840 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3841 ((adjusted_mode->crtc_htotal - 1) << 16));
3842 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3843 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3844 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3845 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3846 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3847 ((adjusted_mode->crtc_vtotal - 1) << 16));
3848 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3849 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3850 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3851 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3852 /* pipesrc and dspsize control the size that is scaled from, which should
3853 * always be the user's requested size.
3854 */
3855 if (!HAS_PCH_SPLIT(dev)) {
3856 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3857 (mode->hdisplay - 1));
3858 I915_WRITE(dsppos_reg, 0);
3859 }
3860 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3861
3862 if (HAS_PCH_SPLIT(dev)) {
3863 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3864 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3865 I915_WRITE(link_m1_reg, m_n.link_m);
3866 I915_WRITE(link_n1_reg, m_n.link_n);
3867
3868 if (is_edp) {
3869 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3870 } else {
3871 /* enable FDI RX PLL too */
3872 temp = I915_READ(fdi_rx_reg);
3873 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3874 I915_READ(fdi_rx_reg);
3875 udelay(200);
3876
3877 /* enable FDI TX PLL too */
3878 temp = I915_READ(fdi_tx_reg);
3879 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3880 I915_READ(fdi_tx_reg);
3881
3882 /* enable FDI RX PCDCLK */
3883 temp = I915_READ(fdi_rx_reg);
3884 I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3885 I915_READ(fdi_rx_reg);
3886 udelay(200);
3887 }
3888 }
3889
3890 I915_WRITE(pipeconf_reg, pipeconf);
3891 I915_READ(pipeconf_reg);
3892
3893 intel_wait_for_vblank(dev);
3894
3895 if (IS_IRONLAKE(dev)) {
3896 /* enable address swizzle for tiling buffer */
3897 temp = I915_READ(DISP_ARB_CTL);
3898 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3899 }
3900
3901 I915_WRITE(dspcntr_reg, dspcntr);
3902
3903 /* Flush the plane changes */
3904 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3905
3906 if ((IS_I965G(dev) || plane == 0))
3907 intel_update_fbc(crtc, &crtc->mode);
3908
3909 intel_update_watermarks(dev);
3910
3911 drm_vblank_post_modeset(dev, pipe);
3912
3913 return ret;
3914 }
3915
3916 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3917 void intel_crtc_load_lut(struct drm_crtc *crtc)
3918 {
3919 struct drm_device *dev = crtc->dev;
3920 struct drm_i915_private *dev_priv = dev->dev_private;
3921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3922 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3923 int i;
3924
3925 /* The clocks have to be on to load the palette. */
3926 if (!crtc->enabled)
3927 return;
3928
3929 /* use legacy palette for Ironlake */
3930 if (HAS_PCH_SPLIT(dev))
3931 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3932 LGC_PALETTE_B;
3933
3934 for (i = 0; i < 256; i++) {
3935 I915_WRITE(palreg + 4 * i,
3936 (intel_crtc->lut_r[i] << 16) |
3937 (intel_crtc->lut_g[i] << 8) |
3938 intel_crtc->lut_b[i]);
3939 }
3940 }
3941
3942 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3943 struct drm_file *file_priv,
3944 uint32_t handle,
3945 uint32_t width, uint32_t height)
3946 {
3947 struct drm_device *dev = crtc->dev;
3948 struct drm_i915_private *dev_priv = dev->dev_private;
3949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3950 struct drm_gem_object *bo;
3951 struct drm_i915_gem_object *obj_priv;
3952 int pipe = intel_crtc->pipe;
3953 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3954 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3955 uint32_t temp = I915_READ(control);
3956 size_t addr;
3957 int ret;
3958
3959 DRM_DEBUG_KMS("\n");
3960
3961 /* if we want to turn off the cursor ignore width and height */
3962 if (!handle) {
3963 DRM_DEBUG_KMS("cursor off\n");
3964 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3965 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3966 temp |= CURSOR_MODE_DISABLE;
3967 } else {
3968 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3969 }
3970 addr = 0;
3971 bo = NULL;
3972 mutex_lock(&dev->struct_mutex);
3973 goto finish;
3974 }
3975
3976 /* Currently we only support 64x64 cursors */
3977 if (width != 64 || height != 64) {
3978 DRM_ERROR("we currently only support 64x64 cursors\n");
3979 return -EINVAL;
3980 }
3981
3982 bo = drm_gem_object_lookup(dev, file_priv, handle);
3983 if (!bo)
3984 return -ENOENT;
3985
3986 obj_priv = to_intel_bo(bo);
3987
3988 if (bo->size < width * height * 4) {
3989 DRM_ERROR("buffer is to small\n");
3990 ret = -ENOMEM;
3991 goto fail;
3992 }
3993
3994 /* we only need to pin inside GTT if cursor is non-phy */
3995 mutex_lock(&dev->struct_mutex);
3996 if (!dev_priv->info->cursor_needs_physical) {
3997 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3998 if (ret) {
3999 DRM_ERROR("failed to pin cursor bo\n");
4000 goto fail_locked;
4001 }
4002
4003 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4004 if (ret) {
4005 DRM_ERROR("failed to move cursor bo into the GTT\n");
4006 goto fail_unpin;
4007 }
4008
4009 addr = obj_priv->gtt_offset;
4010 } else {
4011 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
4012 if (ret) {
4013 DRM_ERROR("failed to attach phys object\n");
4014 goto fail_locked;
4015 }
4016 addr = obj_priv->phys_obj->handle->busaddr;
4017 }
4018
4019 if (!IS_I9XX(dev))
4020 I915_WRITE(CURSIZE, (height << 12) | width);
4021
4022 /* Hooray for CUR*CNTR differences */
4023 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
4024 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4025 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4026 temp |= (pipe << 28); /* Connect to correct pipe */
4027 } else {
4028 temp &= ~(CURSOR_FORMAT_MASK);
4029 temp |= CURSOR_ENABLE;
4030 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
4031 }
4032
4033 finish:
4034 I915_WRITE(control, temp);
4035 I915_WRITE(base, addr);
4036
4037 if (intel_crtc->cursor_bo) {
4038 if (dev_priv->info->cursor_needs_physical) {
4039 if (intel_crtc->cursor_bo != bo)
4040 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4041 } else
4042 i915_gem_object_unpin(intel_crtc->cursor_bo);
4043 drm_gem_object_unreference(intel_crtc->cursor_bo);
4044 }
4045
4046 mutex_unlock(&dev->struct_mutex);
4047
4048 intel_crtc->cursor_addr = addr;
4049 intel_crtc->cursor_bo = bo;
4050
4051 return 0;
4052 fail_unpin:
4053 i915_gem_object_unpin(bo);
4054 fail_locked:
4055 mutex_unlock(&dev->struct_mutex);
4056 fail:
4057 drm_gem_object_unreference_unlocked(bo);
4058 return ret;
4059 }
4060
4061 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4062 {
4063 struct drm_device *dev = crtc->dev;
4064 struct drm_i915_private *dev_priv = dev->dev_private;
4065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4066 struct intel_framebuffer *intel_fb;
4067 int pipe = intel_crtc->pipe;
4068 uint32_t temp = 0;
4069 uint32_t adder;
4070
4071 if (crtc->fb) {
4072 intel_fb = to_intel_framebuffer(crtc->fb);
4073 intel_mark_busy(dev, intel_fb->obj);
4074 }
4075
4076 if (x < 0) {
4077 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4078 x = -x;
4079 }
4080 if (y < 0) {
4081 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4082 y = -y;
4083 }
4084
4085 temp |= x << CURSOR_X_SHIFT;
4086 temp |= y << CURSOR_Y_SHIFT;
4087
4088 adder = intel_crtc->cursor_addr;
4089 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
4090 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
4091
4092 return 0;
4093 }
4094
4095 /** Sets the color ramps on behalf of RandR */
4096 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4097 u16 blue, int regno)
4098 {
4099 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4100
4101 intel_crtc->lut_r[regno] = red >> 8;
4102 intel_crtc->lut_g[regno] = green >> 8;
4103 intel_crtc->lut_b[regno] = blue >> 8;
4104 }
4105
4106 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4107 u16 *blue, int regno)
4108 {
4109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4110
4111 *red = intel_crtc->lut_r[regno] << 8;
4112 *green = intel_crtc->lut_g[regno] << 8;
4113 *blue = intel_crtc->lut_b[regno] << 8;
4114 }
4115
4116 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4117 u16 *blue, uint32_t size)
4118 {
4119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4120 int i;
4121
4122 if (size != 256)
4123 return;
4124
4125 for (i = 0; i < 256; i++) {
4126 intel_crtc->lut_r[i] = red[i] >> 8;
4127 intel_crtc->lut_g[i] = green[i] >> 8;
4128 intel_crtc->lut_b[i] = blue[i] >> 8;
4129 }
4130
4131 intel_crtc_load_lut(crtc);
4132 }
4133
4134 /**
4135 * Get a pipe with a simple mode set on it for doing load-based monitor
4136 * detection.
4137 *
4138 * It will be up to the load-detect code to adjust the pipe as appropriate for
4139 * its requirements. The pipe will be connected to no other encoders.
4140 *
4141 * Currently this code will only succeed if there is a pipe with no encoders
4142 * configured for it. In the future, it could choose to temporarily disable
4143 * some outputs to free up a pipe for its use.
4144 *
4145 * \return crtc, or NULL if no pipes are available.
4146 */
4147
4148 /* VESA 640x480x72Hz mode to set on the pipe */
4149 static struct drm_display_mode load_detect_mode = {
4150 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4151 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4152 };
4153
4154 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4155 struct drm_connector *connector,
4156 struct drm_display_mode *mode,
4157 int *dpms_mode)
4158 {
4159 struct intel_crtc *intel_crtc;
4160 struct drm_crtc *possible_crtc;
4161 struct drm_crtc *supported_crtc =NULL;
4162 struct drm_encoder *encoder = &intel_encoder->enc;
4163 struct drm_crtc *crtc = NULL;
4164 struct drm_device *dev = encoder->dev;
4165 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4166 struct drm_crtc_helper_funcs *crtc_funcs;
4167 int i = -1;
4168
4169 /*
4170 * Algorithm gets a little messy:
4171 * - if the connector already has an assigned crtc, use it (but make
4172 * sure it's on first)
4173 * - try to find the first unused crtc that can drive this connector,
4174 * and use that if we find one
4175 * - if there are no unused crtcs available, try to use the first
4176 * one we found that supports the connector
4177 */
4178
4179 /* See if we already have a CRTC for this connector */
4180 if (encoder->crtc) {
4181 crtc = encoder->crtc;
4182 /* Make sure the crtc and connector are running */
4183 intel_crtc = to_intel_crtc(crtc);
4184 *dpms_mode = intel_crtc->dpms_mode;
4185 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4186 crtc_funcs = crtc->helper_private;
4187 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4188 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4189 }
4190 return crtc;
4191 }
4192
4193 /* Find an unused one (if possible) */
4194 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4195 i++;
4196 if (!(encoder->possible_crtcs & (1 << i)))
4197 continue;
4198 if (!possible_crtc->enabled) {
4199 crtc = possible_crtc;
4200 break;
4201 }
4202 if (!supported_crtc)
4203 supported_crtc = possible_crtc;
4204 }
4205
4206 /*
4207 * If we didn't find an unused CRTC, don't use any.
4208 */
4209 if (!crtc) {
4210 return NULL;
4211 }
4212
4213 encoder->crtc = crtc;
4214 connector->encoder = encoder;
4215 intel_encoder->load_detect_temp = true;
4216
4217 intel_crtc = to_intel_crtc(crtc);
4218 *dpms_mode = intel_crtc->dpms_mode;
4219
4220 if (!crtc->enabled) {
4221 if (!mode)
4222 mode = &load_detect_mode;
4223 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4224 } else {
4225 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4226 crtc_funcs = crtc->helper_private;
4227 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4228 }
4229
4230 /* Add this connector to the crtc */
4231 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4232 encoder_funcs->commit(encoder);
4233 }
4234 /* let the connector get through one full cycle before testing */
4235 intel_wait_for_vblank(dev);
4236
4237 return crtc;
4238 }
4239
4240 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4241 struct drm_connector *connector, int dpms_mode)
4242 {
4243 struct drm_encoder *encoder = &intel_encoder->enc;
4244 struct drm_device *dev = encoder->dev;
4245 struct drm_crtc *crtc = encoder->crtc;
4246 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4247 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4248
4249 if (intel_encoder->load_detect_temp) {
4250 encoder->crtc = NULL;
4251 connector->encoder = NULL;
4252 intel_encoder->load_detect_temp = false;
4253 crtc->enabled = drm_helper_crtc_in_use(crtc);
4254 drm_helper_disable_unused_functions(dev);
4255 }
4256
4257 /* Switch crtc and encoder back off if necessary */
4258 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4259 if (encoder->crtc == crtc)
4260 encoder_funcs->dpms(encoder, dpms_mode);
4261 crtc_funcs->dpms(crtc, dpms_mode);
4262 }
4263 }
4264
4265 /* Returns the clock of the currently programmed mode of the given pipe. */
4266 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4267 {
4268 struct drm_i915_private *dev_priv = dev->dev_private;
4269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4270 int pipe = intel_crtc->pipe;
4271 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4272 u32 fp;
4273 intel_clock_t clock;
4274
4275 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4276 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4277 else
4278 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4279
4280 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4281 if (IS_PINEVIEW(dev)) {
4282 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4283 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4284 } else {
4285 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4286 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4287 }
4288
4289 if (IS_I9XX(dev)) {
4290 if (IS_PINEVIEW(dev))
4291 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4292 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4293 else
4294 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4295 DPLL_FPA01_P1_POST_DIV_SHIFT);
4296
4297 switch (dpll & DPLL_MODE_MASK) {
4298 case DPLLB_MODE_DAC_SERIAL:
4299 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4300 5 : 10;
4301 break;
4302 case DPLLB_MODE_LVDS:
4303 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4304 7 : 14;
4305 break;
4306 default:
4307 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4308 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4309 return 0;
4310 }
4311
4312 /* XXX: Handle the 100Mhz refclk */
4313 intel_clock(dev, 96000, &clock);
4314 } else {
4315 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4316
4317 if (is_lvds) {
4318 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4319 DPLL_FPA01_P1_POST_DIV_SHIFT);
4320 clock.p2 = 14;
4321
4322 if ((dpll & PLL_REF_INPUT_MASK) ==
4323 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4324 /* XXX: might not be 66MHz */
4325 intel_clock(dev, 66000, &clock);
4326 } else
4327 intel_clock(dev, 48000, &clock);
4328 } else {
4329 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4330 clock.p1 = 2;
4331 else {
4332 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4333 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4334 }
4335 if (dpll & PLL_P2_DIVIDE_BY_4)
4336 clock.p2 = 4;
4337 else
4338 clock.p2 = 2;
4339
4340 intel_clock(dev, 48000, &clock);
4341 }
4342 }
4343
4344 /* XXX: It would be nice to validate the clocks, but we can't reuse
4345 * i830PllIsValid() because it relies on the xf86_config connector
4346 * configuration being accurate, which it isn't necessarily.
4347 */
4348
4349 return clock.dot;
4350 }
4351
4352 /** Returns the currently programmed mode of the given pipe. */
4353 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4354 struct drm_crtc *crtc)
4355 {
4356 struct drm_i915_private *dev_priv = dev->dev_private;
4357 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4358 int pipe = intel_crtc->pipe;
4359 struct drm_display_mode *mode;
4360 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4361 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4362 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4363 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4364
4365 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4366 if (!mode)
4367 return NULL;
4368
4369 mode->clock = intel_crtc_clock_get(dev, crtc);
4370 mode->hdisplay = (htot & 0xffff) + 1;
4371 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4372 mode->hsync_start = (hsync & 0xffff) + 1;
4373 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4374 mode->vdisplay = (vtot & 0xffff) + 1;
4375 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4376 mode->vsync_start = (vsync & 0xffff) + 1;
4377 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4378
4379 drm_mode_set_name(mode);
4380 drm_mode_set_crtcinfo(mode, 0);
4381
4382 return mode;
4383 }
4384
4385 #define GPU_IDLE_TIMEOUT 500 /* ms */
4386
4387 /* When this timer fires, we've been idle for awhile */
4388 static void intel_gpu_idle_timer(unsigned long arg)
4389 {
4390 struct drm_device *dev = (struct drm_device *)arg;
4391 drm_i915_private_t *dev_priv = dev->dev_private;
4392
4393 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4394
4395 dev_priv->busy = false;
4396
4397 queue_work(dev_priv->wq, &dev_priv->idle_work);
4398 }
4399
4400 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4401
4402 static void intel_crtc_idle_timer(unsigned long arg)
4403 {
4404 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4405 struct drm_crtc *crtc = &intel_crtc->base;
4406 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4407
4408 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4409
4410 intel_crtc->busy = false;
4411
4412 queue_work(dev_priv->wq, &dev_priv->idle_work);
4413 }
4414
4415 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4416 {
4417 struct drm_device *dev = crtc->dev;
4418 drm_i915_private_t *dev_priv = dev->dev_private;
4419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4420 int pipe = intel_crtc->pipe;
4421 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4422 int dpll = I915_READ(dpll_reg);
4423
4424 if (HAS_PCH_SPLIT(dev))
4425 return;
4426
4427 if (!dev_priv->lvds_downclock_avail)
4428 return;
4429
4430 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4431 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4432
4433 /* Unlock panel regs */
4434 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4435 PANEL_UNLOCK_REGS);
4436
4437 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4438 I915_WRITE(dpll_reg, dpll);
4439 dpll = I915_READ(dpll_reg);
4440 intel_wait_for_vblank(dev);
4441 dpll = I915_READ(dpll_reg);
4442 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4443 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4444
4445 /* ...and lock them again */
4446 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4447 }
4448
4449 /* Schedule downclock */
4450 if (schedule)
4451 mod_timer(&intel_crtc->idle_timer, jiffies +
4452 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4453 }
4454
4455 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4456 {
4457 struct drm_device *dev = crtc->dev;
4458 drm_i915_private_t *dev_priv = dev->dev_private;
4459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4460 int pipe = intel_crtc->pipe;
4461 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4462 int dpll = I915_READ(dpll_reg);
4463
4464 if (HAS_PCH_SPLIT(dev))
4465 return;
4466
4467 if (!dev_priv->lvds_downclock_avail)
4468 return;
4469
4470 /*
4471 * Since this is called by a timer, we should never get here in
4472 * the manual case.
4473 */
4474 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4475 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4476
4477 /* Unlock panel regs */
4478 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4479 PANEL_UNLOCK_REGS);
4480
4481 dpll |= DISPLAY_RATE_SELECT_FPA1;
4482 I915_WRITE(dpll_reg, dpll);
4483 dpll = I915_READ(dpll_reg);
4484 intel_wait_for_vblank(dev);
4485 dpll = I915_READ(dpll_reg);
4486 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4487 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4488
4489 /* ...and lock them again */
4490 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4491 }
4492
4493 }
4494
4495 /**
4496 * intel_idle_update - adjust clocks for idleness
4497 * @work: work struct
4498 *
4499 * Either the GPU or display (or both) went idle. Check the busy status
4500 * here and adjust the CRTC and GPU clocks as necessary.
4501 */
4502 static void intel_idle_update(struct work_struct *work)
4503 {
4504 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4505 idle_work);
4506 struct drm_device *dev = dev_priv->dev;
4507 struct drm_crtc *crtc;
4508 struct intel_crtc *intel_crtc;
4509 int enabled = 0;
4510
4511 if (!i915_powersave)
4512 return;
4513
4514 mutex_lock(&dev->struct_mutex);
4515
4516 i915_update_gfx_val(dev_priv);
4517
4518 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4519 /* Skip inactive CRTCs */
4520 if (!crtc->fb)
4521 continue;
4522
4523 enabled++;
4524 intel_crtc = to_intel_crtc(crtc);
4525 if (!intel_crtc->busy)
4526 intel_decrease_pllclock(crtc);
4527 }
4528
4529 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4530 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4531 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4532 }
4533
4534 mutex_unlock(&dev->struct_mutex);
4535 }
4536
4537 /**
4538 * intel_mark_busy - mark the GPU and possibly the display busy
4539 * @dev: drm device
4540 * @obj: object we're operating on
4541 *
4542 * Callers can use this function to indicate that the GPU is busy processing
4543 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4544 * buffer), we'll also mark the display as busy, so we know to increase its
4545 * clock frequency.
4546 */
4547 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4548 {
4549 drm_i915_private_t *dev_priv = dev->dev_private;
4550 struct drm_crtc *crtc = NULL;
4551 struct intel_framebuffer *intel_fb;
4552 struct intel_crtc *intel_crtc;
4553
4554 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4555 return;
4556
4557 if (!dev_priv->busy) {
4558 if (IS_I945G(dev) || IS_I945GM(dev)) {
4559 u32 fw_blc_self;
4560
4561 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4562 fw_blc_self = I915_READ(FW_BLC_SELF);
4563 fw_blc_self &= ~FW_BLC_SELF_EN;
4564 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4565 }
4566 dev_priv->busy = true;
4567 } else
4568 mod_timer(&dev_priv->idle_timer, jiffies +
4569 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4570
4571 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4572 if (!crtc->fb)
4573 continue;
4574
4575 intel_crtc = to_intel_crtc(crtc);
4576 intel_fb = to_intel_framebuffer(crtc->fb);
4577 if (intel_fb->obj == obj) {
4578 if (!intel_crtc->busy) {
4579 if (IS_I945G(dev) || IS_I945GM(dev)) {
4580 u32 fw_blc_self;
4581
4582 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4583 fw_blc_self = I915_READ(FW_BLC_SELF);
4584 fw_blc_self &= ~FW_BLC_SELF_EN;
4585 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4586 }
4587 /* Non-busy -> busy, upclock */
4588 intel_increase_pllclock(crtc, true);
4589 intel_crtc->busy = true;
4590 } else {
4591 /* Busy -> busy, put off timer */
4592 mod_timer(&intel_crtc->idle_timer, jiffies +
4593 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4594 }
4595 }
4596 }
4597 }
4598
4599 static void intel_crtc_destroy(struct drm_crtc *crtc)
4600 {
4601 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4602
4603 drm_crtc_cleanup(crtc);
4604 kfree(intel_crtc);
4605 }
4606
4607 struct intel_unpin_work {
4608 struct work_struct work;
4609 struct drm_device *dev;
4610 struct drm_gem_object *old_fb_obj;
4611 struct drm_gem_object *pending_flip_obj;
4612 struct drm_pending_vblank_event *event;
4613 int pending;
4614 };
4615
4616 static void intel_unpin_work_fn(struct work_struct *__work)
4617 {
4618 struct intel_unpin_work *work =
4619 container_of(__work, struct intel_unpin_work, work);
4620
4621 mutex_lock(&work->dev->struct_mutex);
4622 i915_gem_object_unpin(work->old_fb_obj);
4623 drm_gem_object_unreference(work->pending_flip_obj);
4624 drm_gem_object_unreference(work->old_fb_obj);
4625 mutex_unlock(&work->dev->struct_mutex);
4626 kfree(work);
4627 }
4628
4629 static void do_intel_finish_page_flip(struct drm_device *dev,
4630 struct drm_crtc *crtc)
4631 {
4632 drm_i915_private_t *dev_priv = dev->dev_private;
4633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4634 struct intel_unpin_work *work;
4635 struct drm_i915_gem_object *obj_priv;
4636 struct drm_pending_vblank_event *e;
4637 struct timeval now;
4638 unsigned long flags;
4639
4640 /* Ignore early vblank irqs */
4641 if (intel_crtc == NULL)
4642 return;
4643
4644 spin_lock_irqsave(&dev->event_lock, flags);
4645 work = intel_crtc->unpin_work;
4646 if (work == NULL || !work->pending) {
4647 spin_unlock_irqrestore(&dev->event_lock, flags);
4648 return;
4649 }
4650
4651 intel_crtc->unpin_work = NULL;
4652 drm_vblank_put(dev, intel_crtc->pipe);
4653
4654 if (work->event) {
4655 e = work->event;
4656 do_gettimeofday(&now);
4657 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4658 e->event.tv_sec = now.tv_sec;
4659 e->event.tv_usec = now.tv_usec;
4660 list_add_tail(&e->base.link,
4661 &e->base.file_priv->event_list);
4662 wake_up_interruptible(&e->base.file_priv->event_wait);
4663 }
4664
4665 spin_unlock_irqrestore(&dev->event_lock, flags);
4666
4667 obj_priv = to_intel_bo(work->pending_flip_obj);
4668
4669 /* Initial scanout buffer will have a 0 pending flip count */
4670 if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4671 atomic_dec_and_test(&obj_priv->pending_flip))
4672 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4673 schedule_work(&work->work);
4674 }
4675
4676 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4677 {
4678 drm_i915_private_t *dev_priv = dev->dev_private;
4679 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4680
4681 do_intel_finish_page_flip(dev, crtc);
4682 }
4683
4684 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
4685 {
4686 drm_i915_private_t *dev_priv = dev->dev_private;
4687 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
4688
4689 do_intel_finish_page_flip(dev, crtc);
4690 }
4691
4692 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4693 {
4694 drm_i915_private_t *dev_priv = dev->dev_private;
4695 struct intel_crtc *intel_crtc =
4696 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4697 unsigned long flags;
4698
4699 spin_lock_irqsave(&dev->event_lock, flags);
4700 if (intel_crtc->unpin_work) {
4701 intel_crtc->unpin_work->pending = 1;
4702 } else {
4703 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4704 }
4705 spin_unlock_irqrestore(&dev->event_lock, flags);
4706 }
4707
4708 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4709 struct drm_framebuffer *fb,
4710 struct drm_pending_vblank_event *event)
4711 {
4712 struct drm_device *dev = crtc->dev;
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714 struct intel_framebuffer *intel_fb;
4715 struct drm_i915_gem_object *obj_priv;
4716 struct drm_gem_object *obj;
4717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4718 struct intel_unpin_work *work;
4719 unsigned long flags, offset;
4720 int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4721 int ret, pipesrc;
4722 u32 flip_mask;
4723
4724 work = kzalloc(sizeof *work, GFP_KERNEL);
4725 if (work == NULL)
4726 return -ENOMEM;
4727
4728 work->event = event;
4729 work->dev = crtc->dev;
4730 intel_fb = to_intel_framebuffer(crtc->fb);
4731 work->old_fb_obj = intel_fb->obj;
4732 INIT_WORK(&work->work, intel_unpin_work_fn);
4733
4734 /* We borrow the event spin lock for protecting unpin_work */
4735 spin_lock_irqsave(&dev->event_lock, flags);
4736 if (intel_crtc->unpin_work) {
4737 spin_unlock_irqrestore(&dev->event_lock, flags);
4738 kfree(work);
4739
4740 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4741 return -EBUSY;
4742 }
4743 intel_crtc->unpin_work = work;
4744 spin_unlock_irqrestore(&dev->event_lock, flags);
4745
4746 intel_fb = to_intel_framebuffer(fb);
4747 obj = intel_fb->obj;
4748
4749 mutex_lock(&dev->struct_mutex);
4750 ret = intel_pin_and_fence_fb_obj(dev, obj);
4751 if (ret != 0) {
4752 mutex_unlock(&dev->struct_mutex);
4753
4754 spin_lock_irqsave(&dev->event_lock, flags);
4755 intel_crtc->unpin_work = NULL;
4756 spin_unlock_irqrestore(&dev->event_lock, flags);
4757
4758 kfree(work);
4759
4760 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4761 to_intel_bo(obj));
4762 return ret;
4763 }
4764
4765 /* Reference the objects for the scheduled work. */
4766 drm_gem_object_reference(work->old_fb_obj);
4767 drm_gem_object_reference(obj);
4768
4769 crtc->fb = fb;
4770 i915_gem_object_flush_write_domain(obj);
4771 drm_vblank_get(dev, intel_crtc->pipe);
4772 obj_priv = to_intel_bo(obj);
4773 atomic_inc(&obj_priv->pending_flip);
4774 work->pending_flip_obj = obj;
4775
4776 if (intel_crtc->plane)
4777 flip_mask = I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4778 else
4779 flip_mask = I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT;
4780
4781 /* Wait for any previous flip to finish */
4782 if (IS_GEN3(dev))
4783 while (I915_READ(ISR) & flip_mask)
4784 ;
4785
4786 /* Offset into the new buffer for cases of shared fbs between CRTCs */
4787 offset = obj_priv->gtt_offset;
4788 offset += (crtc->y * fb->pitch) + (crtc->x * (fb->bits_per_pixel) / 8);
4789
4790 BEGIN_LP_RING(4);
4791 if (IS_I965G(dev)) {
4792 OUT_RING(MI_DISPLAY_FLIP |
4793 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4794 OUT_RING(fb->pitch);
4795 OUT_RING(offset | obj_priv->tiling_mode);
4796 pipesrc = I915_READ(pipesrc_reg);
4797 OUT_RING(pipesrc & 0x0fff0fff);
4798 } else {
4799 OUT_RING(MI_DISPLAY_FLIP_I915 |
4800 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4801 OUT_RING(fb->pitch);
4802 OUT_RING(offset);
4803 OUT_RING(MI_NOOP);
4804 }
4805 ADVANCE_LP_RING();
4806
4807 mutex_unlock(&dev->struct_mutex);
4808
4809 return 0;
4810 }
4811
4812 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4813 .dpms = intel_crtc_dpms,
4814 .mode_fixup = intel_crtc_mode_fixup,
4815 .mode_set = intel_crtc_mode_set,
4816 .mode_set_base = intel_pipe_set_base,
4817 .prepare = intel_crtc_prepare,
4818 .commit = intel_crtc_commit,
4819 .load_lut = intel_crtc_load_lut,
4820 };
4821
4822 static const struct drm_crtc_funcs intel_crtc_funcs = {
4823 .cursor_set = intel_crtc_cursor_set,
4824 .cursor_move = intel_crtc_cursor_move,
4825 .gamma_set = intel_crtc_gamma_set,
4826 .set_config = drm_crtc_helper_set_config,
4827 .destroy = intel_crtc_destroy,
4828 .page_flip = intel_crtc_page_flip,
4829 };
4830
4831
4832 static void intel_crtc_init(struct drm_device *dev, int pipe)
4833 {
4834 drm_i915_private_t *dev_priv = dev->dev_private;
4835 struct intel_crtc *intel_crtc;
4836 int i;
4837
4838 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4839 if (intel_crtc == NULL)
4840 return;
4841
4842 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4843
4844 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4845 intel_crtc->pipe = pipe;
4846 intel_crtc->plane = pipe;
4847 for (i = 0; i < 256; i++) {
4848 intel_crtc->lut_r[i] = i;
4849 intel_crtc->lut_g[i] = i;
4850 intel_crtc->lut_b[i] = i;
4851 }
4852
4853 /* Swap pipes & planes for FBC on pre-965 */
4854 intel_crtc->pipe = pipe;
4855 intel_crtc->plane = pipe;
4856 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4857 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4858 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4859 }
4860
4861 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4862 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4863 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4864 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4865
4866 intel_crtc->cursor_addr = 0;
4867 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4868 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4869
4870 intel_crtc->busy = false;
4871
4872 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4873 (unsigned long)intel_crtc);
4874 }
4875
4876 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4877 struct drm_file *file_priv)
4878 {
4879 drm_i915_private_t *dev_priv = dev->dev_private;
4880 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4881 struct drm_mode_object *drmmode_obj;
4882 struct intel_crtc *crtc;
4883
4884 if (!dev_priv) {
4885 DRM_ERROR("called with no initialization\n");
4886 return -EINVAL;
4887 }
4888
4889 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4890 DRM_MODE_OBJECT_CRTC);
4891
4892 if (!drmmode_obj) {
4893 DRM_ERROR("no such CRTC id\n");
4894 return -EINVAL;
4895 }
4896
4897 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4898 pipe_from_crtc_id->pipe = crtc->pipe;
4899
4900 return 0;
4901 }
4902
4903 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4904 {
4905 struct drm_crtc *crtc = NULL;
4906
4907 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4909 if (intel_crtc->pipe == pipe)
4910 break;
4911 }
4912 return crtc;
4913 }
4914
4915 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4916 {
4917 int index_mask = 0;
4918 struct drm_encoder *encoder;
4919 int entry = 0;
4920
4921 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4922 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4923 if (type_mask & intel_encoder->clone_mask)
4924 index_mask |= (1 << entry);
4925 entry++;
4926 }
4927 return index_mask;
4928 }
4929
4930
4931 static void intel_setup_outputs(struct drm_device *dev)
4932 {
4933 struct drm_i915_private *dev_priv = dev->dev_private;
4934 struct drm_encoder *encoder;
4935
4936 intel_crt_init(dev);
4937
4938 /* Set up integrated LVDS */
4939 if (IS_MOBILE(dev) && !IS_I830(dev))
4940 intel_lvds_init(dev);
4941
4942 if (HAS_PCH_SPLIT(dev)) {
4943 int found;
4944
4945 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4946 intel_dp_init(dev, DP_A);
4947
4948 if (I915_READ(HDMIB) & PORT_DETECTED) {
4949 /* PCH SDVOB multiplex with HDMIB */
4950 found = intel_sdvo_init(dev, PCH_SDVOB);
4951 if (!found)
4952 intel_hdmi_init(dev, HDMIB);
4953 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4954 intel_dp_init(dev, PCH_DP_B);
4955 }
4956
4957 if (I915_READ(HDMIC) & PORT_DETECTED)
4958 intel_hdmi_init(dev, HDMIC);
4959
4960 if (I915_READ(HDMID) & PORT_DETECTED)
4961 intel_hdmi_init(dev, HDMID);
4962
4963 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4964 intel_dp_init(dev, PCH_DP_C);
4965
4966 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4967 intel_dp_init(dev, PCH_DP_D);
4968
4969 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4970 bool found = false;
4971
4972 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4973 DRM_DEBUG_KMS("probing SDVOB\n");
4974 found = intel_sdvo_init(dev, SDVOB);
4975 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4976 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4977 intel_hdmi_init(dev, SDVOB);
4978 }
4979
4980 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4981 DRM_DEBUG_KMS("probing DP_B\n");
4982 intel_dp_init(dev, DP_B);
4983 }
4984 }
4985
4986 /* Before G4X SDVOC doesn't have its own detect register */
4987
4988 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4989 DRM_DEBUG_KMS("probing SDVOC\n");
4990 found = intel_sdvo_init(dev, SDVOC);
4991 }
4992
4993 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4994
4995 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4996 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4997 intel_hdmi_init(dev, SDVOC);
4998 }
4999 if (SUPPORTS_INTEGRATED_DP(dev)) {
5000 DRM_DEBUG_KMS("probing DP_C\n");
5001 intel_dp_init(dev, DP_C);
5002 }
5003 }
5004
5005 if (SUPPORTS_INTEGRATED_DP(dev) &&
5006 (I915_READ(DP_D) & DP_DETECTED)) {
5007 DRM_DEBUG_KMS("probing DP_D\n");
5008 intel_dp_init(dev, DP_D);
5009 }
5010 } else if (IS_GEN2(dev))
5011 intel_dvo_init(dev);
5012
5013 if (SUPPORTS_TV(dev))
5014 intel_tv_init(dev);
5015
5016 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5017 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
5018
5019 encoder->possible_crtcs = intel_encoder->crtc_mask;
5020 encoder->possible_clones = intel_encoder_clones(dev,
5021 intel_encoder->clone_mask);
5022 }
5023 }
5024
5025 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5026 {
5027 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5028
5029 drm_framebuffer_cleanup(fb);
5030 drm_gem_object_unreference_unlocked(intel_fb->obj);
5031
5032 kfree(intel_fb);
5033 }
5034
5035 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5036 struct drm_file *file_priv,
5037 unsigned int *handle)
5038 {
5039 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5040 struct drm_gem_object *object = intel_fb->obj;
5041
5042 return drm_gem_handle_create(file_priv, object, handle);
5043 }
5044
5045 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5046 .destroy = intel_user_framebuffer_destroy,
5047 .create_handle = intel_user_framebuffer_create_handle,
5048 };
5049
5050 int intel_framebuffer_init(struct drm_device *dev,
5051 struct intel_framebuffer *intel_fb,
5052 struct drm_mode_fb_cmd *mode_cmd,
5053 struct drm_gem_object *obj)
5054 {
5055 int ret;
5056
5057 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5058 if (ret) {
5059 DRM_ERROR("framebuffer init failed %d\n", ret);
5060 return ret;
5061 }
5062
5063 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5064 intel_fb->obj = obj;
5065 return 0;
5066 }
5067
5068 static struct drm_framebuffer *
5069 intel_user_framebuffer_create(struct drm_device *dev,
5070 struct drm_file *filp,
5071 struct drm_mode_fb_cmd *mode_cmd)
5072 {
5073 struct drm_gem_object *obj;
5074 struct intel_framebuffer *intel_fb;
5075 int ret;
5076
5077 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5078 if (!obj)
5079 return NULL;
5080
5081 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5082 if (!intel_fb)
5083 return NULL;
5084
5085 ret = intel_framebuffer_init(dev, intel_fb,
5086 mode_cmd, obj);
5087 if (ret) {
5088 drm_gem_object_unreference_unlocked(obj);
5089 kfree(intel_fb);
5090 return NULL;
5091 }
5092
5093 return &intel_fb->base;
5094 }
5095
5096 static const struct drm_mode_config_funcs intel_mode_funcs = {
5097 .fb_create = intel_user_framebuffer_create,
5098 .output_poll_changed = intel_fb_output_poll_changed,
5099 };
5100
5101 static struct drm_gem_object *
5102 intel_alloc_power_context(struct drm_device *dev)
5103 {
5104 struct drm_gem_object *pwrctx;
5105 int ret;
5106
5107 pwrctx = i915_gem_alloc_object(dev, 4096);
5108 if (!pwrctx) {
5109 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5110 return NULL;
5111 }
5112
5113 mutex_lock(&dev->struct_mutex);
5114 ret = i915_gem_object_pin(pwrctx, 4096);
5115 if (ret) {
5116 DRM_ERROR("failed to pin power context: %d\n", ret);
5117 goto err_unref;
5118 }
5119
5120 ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5121 if (ret) {
5122 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5123 goto err_unpin;
5124 }
5125 mutex_unlock(&dev->struct_mutex);
5126
5127 return pwrctx;
5128
5129 err_unpin:
5130 i915_gem_object_unpin(pwrctx);
5131 err_unref:
5132 drm_gem_object_unreference(pwrctx);
5133 mutex_unlock(&dev->struct_mutex);
5134 return NULL;
5135 }
5136
5137 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5138 {
5139 struct drm_i915_private *dev_priv = dev->dev_private;
5140 u16 rgvswctl;
5141
5142 rgvswctl = I915_READ16(MEMSWCTL);
5143 if (rgvswctl & MEMCTL_CMD_STS) {
5144 DRM_DEBUG("gpu busy, RCS change rejected\n");
5145 return false; /* still busy with another command */
5146 }
5147
5148 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5149 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5150 I915_WRITE16(MEMSWCTL, rgvswctl);
5151 POSTING_READ16(MEMSWCTL);
5152
5153 rgvswctl |= MEMCTL_CMD_STS;
5154 I915_WRITE16(MEMSWCTL, rgvswctl);
5155
5156 return true;
5157 }
5158
5159 void ironlake_enable_drps(struct drm_device *dev)
5160 {
5161 struct drm_i915_private *dev_priv = dev->dev_private;
5162 u32 rgvmodectl = I915_READ(MEMMODECTL);
5163 u8 fmax, fmin, fstart, vstart;
5164 int i = 0;
5165
5166 /* 100ms RC evaluation intervals */
5167 I915_WRITE(RCUPEI, 100000);
5168 I915_WRITE(RCDNEI, 100000);
5169
5170 /* Set max/min thresholds to 90ms and 80ms respectively */
5171 I915_WRITE(RCBMAXAVG, 90000);
5172 I915_WRITE(RCBMINAVG, 80000);
5173
5174 I915_WRITE(MEMIHYST, 1);
5175
5176 /* Set up min, max, and cur for interrupt handling */
5177 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5178 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5179 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5180 MEMMODE_FSTART_SHIFT;
5181 fstart = fmax;
5182
5183 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5184 PXVFREQ_PX_SHIFT;
5185
5186 dev_priv->fmax = fstart; /* IPS callback will increase this */
5187 dev_priv->fstart = fstart;
5188
5189 dev_priv->max_delay = fmax;
5190 dev_priv->min_delay = fmin;
5191 dev_priv->cur_delay = fstart;
5192
5193 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5194 fstart);
5195
5196 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5197
5198 /*
5199 * Interrupts will be enabled in ironlake_irq_postinstall
5200 */
5201
5202 I915_WRITE(VIDSTART, vstart);
5203 POSTING_READ(VIDSTART);
5204
5205 rgvmodectl |= MEMMODE_SWMODE_EN;
5206 I915_WRITE(MEMMODECTL, rgvmodectl);
5207
5208 while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5209 if (i++ > 100) {
5210 DRM_ERROR("stuck trying to change perf mode\n");
5211 break;
5212 }
5213 msleep(1);
5214 }
5215 msleep(1);
5216
5217 ironlake_set_drps(dev, fstart);
5218
5219 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5220 I915_READ(0x112e0);
5221 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5222 dev_priv->last_count2 = I915_READ(0x112f4);
5223 getrawmonotonic(&dev_priv->last_time2);
5224 }
5225
5226 void ironlake_disable_drps(struct drm_device *dev)
5227 {
5228 struct drm_i915_private *dev_priv = dev->dev_private;
5229 u16 rgvswctl = I915_READ16(MEMSWCTL);
5230
5231 /* Ack interrupts, disable EFC interrupt */
5232 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5233 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5234 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5235 I915_WRITE(DEIIR, DE_PCU_EVENT);
5236 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5237
5238 /* Go back to the starting frequency */
5239 ironlake_set_drps(dev, dev_priv->fstart);
5240 msleep(1);
5241 rgvswctl |= MEMCTL_CMD_STS;
5242 I915_WRITE(MEMSWCTL, rgvswctl);
5243 msleep(1);
5244
5245 }
5246
5247 static unsigned long intel_pxfreq(u32 vidfreq)
5248 {
5249 unsigned long freq;
5250 int div = (vidfreq & 0x3f0000) >> 16;
5251 int post = (vidfreq & 0x3000) >> 12;
5252 int pre = (vidfreq & 0x7);
5253
5254 if (!pre)
5255 return 0;
5256
5257 freq = ((div * 133333) / ((1<<post) * pre));
5258
5259 return freq;
5260 }
5261
5262 void intel_init_emon(struct drm_device *dev)
5263 {
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265 u32 lcfuse;
5266 u8 pxw[16];
5267 int i;
5268
5269 /* Disable to program */
5270 I915_WRITE(ECR, 0);
5271 POSTING_READ(ECR);
5272
5273 /* Program energy weights for various events */
5274 I915_WRITE(SDEW, 0x15040d00);
5275 I915_WRITE(CSIEW0, 0x007f0000);
5276 I915_WRITE(CSIEW1, 0x1e220004);
5277 I915_WRITE(CSIEW2, 0x04000004);
5278
5279 for (i = 0; i < 5; i++)
5280 I915_WRITE(PEW + (i * 4), 0);
5281 for (i = 0; i < 3; i++)
5282 I915_WRITE(DEW + (i * 4), 0);
5283
5284 /* Program P-state weights to account for frequency power adjustment */
5285 for (i = 0; i < 16; i++) {
5286 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5287 unsigned long freq = intel_pxfreq(pxvidfreq);
5288 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5289 PXVFREQ_PX_SHIFT;
5290 unsigned long val;
5291
5292 val = vid * vid;
5293 val *= (freq / 1000);
5294 val *= 255;
5295 val /= (127*127*900);
5296 if (val > 0xff)
5297 DRM_ERROR("bad pxval: %ld\n", val);
5298 pxw[i] = val;
5299 }
5300 /* Render standby states get 0 weight */
5301 pxw[14] = 0;
5302 pxw[15] = 0;
5303
5304 for (i = 0; i < 4; i++) {
5305 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5306 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5307 I915_WRITE(PXW + (i * 4), val);
5308 }
5309
5310 /* Adjust magic regs to magic values (more experimental results) */
5311 I915_WRITE(OGW0, 0);
5312 I915_WRITE(OGW1, 0);
5313 I915_WRITE(EG0, 0x00007f00);
5314 I915_WRITE(EG1, 0x0000000e);
5315 I915_WRITE(EG2, 0x000e0000);
5316 I915_WRITE(EG3, 0x68000300);
5317 I915_WRITE(EG4, 0x42000000);
5318 I915_WRITE(EG5, 0x00140031);
5319 I915_WRITE(EG6, 0);
5320 I915_WRITE(EG7, 0);
5321
5322 for (i = 0; i < 8; i++)
5323 I915_WRITE(PXWL + (i * 4), 0);
5324
5325 /* Enable PMON + select events */
5326 I915_WRITE(ECR, 0x80000019);
5327
5328 lcfuse = I915_READ(LCFUSE02);
5329
5330 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5331 }
5332
5333 void intel_init_clock_gating(struct drm_device *dev)
5334 {
5335 struct drm_i915_private *dev_priv = dev->dev_private;
5336
5337 /*
5338 * Disable clock gating reported to work incorrectly according to the
5339 * specs, but enable as much else as we can.
5340 */
5341 if (HAS_PCH_SPLIT(dev)) {
5342 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5343
5344 if (IS_IRONLAKE(dev)) {
5345 /* Required for FBC */
5346 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5347 /* Required for CxSR */
5348 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5349
5350 I915_WRITE(PCH_3DCGDIS0,
5351 MARIUNIT_CLOCK_GATE_DISABLE |
5352 SVSMUNIT_CLOCK_GATE_DISABLE);
5353 }
5354
5355 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5356
5357 /*
5358 * According to the spec the following bits should be set in
5359 * order to enable memory self-refresh
5360 * The bit 22/21 of 0x42004
5361 * The bit 5 of 0x42020
5362 * The bit 15 of 0x45000
5363 */
5364 if (IS_IRONLAKE(dev)) {
5365 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5366 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5367 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5368 I915_WRITE(ILK_DSPCLK_GATE,
5369 (I915_READ(ILK_DSPCLK_GATE) |
5370 ILK_DPARB_CLK_GATE));
5371 I915_WRITE(DISP_ARB_CTL,
5372 (I915_READ(DISP_ARB_CTL) |
5373 DISP_FBC_WM_DIS));
5374 }
5375 return;
5376 } else if (IS_G4X(dev)) {
5377 uint32_t dspclk_gate;
5378 I915_WRITE(RENCLK_GATE_D1, 0);
5379 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5380 GS_UNIT_CLOCK_GATE_DISABLE |
5381 CL_UNIT_CLOCK_GATE_DISABLE);
5382 I915_WRITE(RAMCLK_GATE_D, 0);
5383 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5384 OVRUNIT_CLOCK_GATE_DISABLE |
5385 OVCUNIT_CLOCK_GATE_DISABLE;
5386 if (IS_GM45(dev))
5387 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5388 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5389 } else if (IS_I965GM(dev)) {
5390 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5391 I915_WRITE(RENCLK_GATE_D2, 0);
5392 I915_WRITE(DSPCLK_GATE_D, 0);
5393 I915_WRITE(RAMCLK_GATE_D, 0);
5394 I915_WRITE16(DEUC, 0);
5395 } else if (IS_I965G(dev)) {
5396 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5397 I965_RCC_CLOCK_GATE_DISABLE |
5398 I965_RCPB_CLOCK_GATE_DISABLE |
5399 I965_ISC_CLOCK_GATE_DISABLE |
5400 I965_FBC_CLOCK_GATE_DISABLE);
5401 I915_WRITE(RENCLK_GATE_D2, 0);
5402 } else if (IS_I9XX(dev)) {
5403 u32 dstate = I915_READ(D_STATE);
5404
5405 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5406 DSTATE_DOT_CLOCK_GATING;
5407 I915_WRITE(D_STATE, dstate);
5408 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5409 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5410 } else if (IS_I830(dev)) {
5411 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5412 }
5413
5414 /*
5415 * GPU can automatically power down the render unit if given a page
5416 * to save state.
5417 */
5418 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5419 struct drm_i915_gem_object *obj_priv = NULL;
5420
5421 if (dev_priv->pwrctx) {
5422 obj_priv = to_intel_bo(dev_priv->pwrctx);
5423 } else {
5424 struct drm_gem_object *pwrctx;
5425
5426 pwrctx = intel_alloc_power_context(dev);
5427 if (pwrctx) {
5428 dev_priv->pwrctx = pwrctx;
5429 obj_priv = to_intel_bo(pwrctx);
5430 }
5431 }
5432
5433 if (obj_priv) {
5434 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5435 I915_WRITE(MCHBAR_RENDER_STANDBY,
5436 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5437 }
5438 }
5439 }
5440
5441 /* Set up chip specific display functions */
5442 static void intel_init_display(struct drm_device *dev)
5443 {
5444 struct drm_i915_private *dev_priv = dev->dev_private;
5445
5446 /* We always want a DPMS function */
5447 if (HAS_PCH_SPLIT(dev))
5448 dev_priv->display.dpms = ironlake_crtc_dpms;
5449 else
5450 dev_priv->display.dpms = i9xx_crtc_dpms;
5451
5452 if (I915_HAS_FBC(dev)) {
5453 if (IS_GM45(dev)) {
5454 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5455 dev_priv->display.enable_fbc = g4x_enable_fbc;
5456 dev_priv->display.disable_fbc = g4x_disable_fbc;
5457 } else if (IS_I965GM(dev)) {
5458 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5459 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5460 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5461 }
5462 /* 855GM needs testing */
5463 }
5464
5465 /* Returns the core display clock speed */
5466 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5467 dev_priv->display.get_display_clock_speed =
5468 i945_get_display_clock_speed;
5469 else if (IS_I915G(dev))
5470 dev_priv->display.get_display_clock_speed =
5471 i915_get_display_clock_speed;
5472 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5473 dev_priv->display.get_display_clock_speed =
5474 i9xx_misc_get_display_clock_speed;
5475 else if (IS_I915GM(dev))
5476 dev_priv->display.get_display_clock_speed =
5477 i915gm_get_display_clock_speed;
5478 else if (IS_I865G(dev))
5479 dev_priv->display.get_display_clock_speed =
5480 i865_get_display_clock_speed;
5481 else if (IS_I85X(dev))
5482 dev_priv->display.get_display_clock_speed =
5483 i855_get_display_clock_speed;
5484 else /* 852, 830 */
5485 dev_priv->display.get_display_clock_speed =
5486 i830_get_display_clock_speed;
5487
5488 /* For FIFO watermark updates */
5489 if (HAS_PCH_SPLIT(dev)) {
5490 if (IS_IRONLAKE(dev)) {
5491 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5492 dev_priv->display.update_wm = ironlake_update_wm;
5493 else {
5494 DRM_DEBUG_KMS("Failed to get proper latency. "
5495 "Disable CxSR\n");
5496 dev_priv->display.update_wm = NULL;
5497 }
5498 } else
5499 dev_priv->display.update_wm = NULL;
5500 } else if (IS_PINEVIEW(dev)) {
5501 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5502 dev_priv->is_ddr3,
5503 dev_priv->fsb_freq,
5504 dev_priv->mem_freq)) {
5505 DRM_INFO("failed to find known CxSR latency "
5506 "(found ddr%s fsb freq %d, mem freq %d), "
5507 "disabling CxSR\n",
5508 (dev_priv->is_ddr3 == 1) ? "3": "2",
5509 dev_priv->fsb_freq, dev_priv->mem_freq);
5510 /* Disable CxSR and never update its watermark again */
5511 pineview_disable_cxsr(dev);
5512 dev_priv->display.update_wm = NULL;
5513 } else
5514 dev_priv->display.update_wm = pineview_update_wm;
5515 } else if (IS_G4X(dev))
5516 dev_priv->display.update_wm = g4x_update_wm;
5517 else if (IS_I965G(dev))
5518 dev_priv->display.update_wm = i965_update_wm;
5519 else if (IS_I9XX(dev)) {
5520 dev_priv->display.update_wm = i9xx_update_wm;
5521 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5522 } else if (IS_I85X(dev)) {
5523 dev_priv->display.update_wm = i9xx_update_wm;
5524 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5525 } else {
5526 dev_priv->display.update_wm = i830_update_wm;
5527 if (IS_845G(dev))
5528 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5529 else
5530 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5531 }
5532 }
5533
5534 /*
5535 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5536 * resume, or other times. This quirk makes sure that's the case for
5537 * affected systems.
5538 */
5539 static void quirk_pipea_force (struct drm_device *dev)
5540 {
5541 struct drm_i915_private *dev_priv = dev->dev_private;
5542
5543 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5544 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5545 }
5546
5547 struct intel_quirk {
5548 int device;
5549 int subsystem_vendor;
5550 int subsystem_device;
5551 void (*hook)(struct drm_device *dev);
5552 };
5553
5554 struct intel_quirk intel_quirks[] = {
5555 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
5556 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
5557 /* HP Mini needs pipe A force quirk (LP: #322104) */
5558 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
5559
5560 /* Thinkpad R31 needs pipe A force quirk */
5561 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
5562 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
5563 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
5564
5565 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
5566 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
5567 /* ThinkPad X40 needs pipe A force quirk */
5568
5569 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
5570 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
5571
5572 /* 855 & before need to leave pipe A & dpll A up */
5573 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5574 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
5575 };
5576
5577 static void intel_init_quirks(struct drm_device *dev)
5578 {
5579 struct pci_dev *d = dev->pdev;
5580 int i;
5581
5582 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
5583 struct intel_quirk *q = &intel_quirks[i];
5584
5585 if (d->device == q->device &&
5586 (d->subsystem_vendor == q->subsystem_vendor ||
5587 q->subsystem_vendor == PCI_ANY_ID) &&
5588 (d->subsystem_device == q->subsystem_device ||
5589 q->subsystem_device == PCI_ANY_ID))
5590 q->hook(dev);
5591 }
5592 }
5593
5594 void intel_modeset_init(struct drm_device *dev)
5595 {
5596 struct drm_i915_private *dev_priv = dev->dev_private;
5597 int i;
5598
5599 drm_mode_config_init(dev);
5600
5601 dev->mode_config.min_width = 0;
5602 dev->mode_config.min_height = 0;
5603
5604 dev->mode_config.funcs = (void *)&intel_mode_funcs;
5605
5606 intel_init_quirks(dev);
5607
5608 intel_init_display(dev);
5609
5610 if (IS_I965G(dev)) {
5611 dev->mode_config.max_width = 8192;
5612 dev->mode_config.max_height = 8192;
5613 } else if (IS_I9XX(dev)) {
5614 dev->mode_config.max_width = 4096;
5615 dev->mode_config.max_height = 4096;
5616 } else {
5617 dev->mode_config.max_width = 2048;
5618 dev->mode_config.max_height = 2048;
5619 }
5620
5621 /* set memory base */
5622 if (IS_I9XX(dev))
5623 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5624 else
5625 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5626
5627 if (IS_MOBILE(dev) || IS_I9XX(dev))
5628 dev_priv->num_pipe = 2;
5629 else
5630 dev_priv->num_pipe = 1;
5631 DRM_DEBUG_KMS("%d display pipe%s available.\n",
5632 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
5633
5634 for (i = 0; i < dev_priv->num_pipe; i++) {
5635 intel_crtc_init(dev, i);
5636 }
5637
5638 intel_setup_outputs(dev);
5639
5640 intel_init_clock_gating(dev);
5641
5642 if (IS_IRONLAKE_M(dev)) {
5643 ironlake_enable_drps(dev);
5644 intel_init_emon(dev);
5645 }
5646
5647 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5648 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5649 (unsigned long)dev);
5650
5651 intel_setup_overlay(dev);
5652 }
5653
5654 void intel_modeset_cleanup(struct drm_device *dev)
5655 {
5656 struct drm_i915_private *dev_priv = dev->dev_private;
5657 struct drm_crtc *crtc;
5658 struct intel_crtc *intel_crtc;
5659
5660 mutex_lock(&dev->struct_mutex);
5661
5662 drm_kms_helper_poll_fini(dev);
5663 intel_fbdev_fini(dev);
5664
5665 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5666 /* Skip inactive CRTCs */
5667 if (!crtc->fb)
5668 continue;
5669
5670 intel_crtc = to_intel_crtc(crtc);
5671 intel_increase_pllclock(crtc, false);
5672 del_timer_sync(&intel_crtc->idle_timer);
5673 }
5674
5675 del_timer_sync(&dev_priv->idle_timer);
5676
5677 if (dev_priv->display.disable_fbc)
5678 dev_priv->display.disable_fbc(dev);
5679
5680 if (dev_priv->pwrctx) {
5681 struct drm_i915_gem_object *obj_priv;
5682
5683 obj_priv = to_intel_bo(dev_priv->pwrctx);
5684 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5685 I915_READ(PWRCTXA);
5686 i915_gem_object_unpin(dev_priv->pwrctx);
5687 drm_gem_object_unreference(dev_priv->pwrctx);
5688 }
5689
5690 if (IS_IRONLAKE_M(dev))
5691 ironlake_disable_drps(dev);
5692
5693 mutex_unlock(&dev->struct_mutex);
5694
5695 drm_mode_config_cleanup(dev);
5696 }
5697
5698
5699 /*
5700 * Return which encoder is currently attached for connector.
5701 */
5702 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5703 {
5704 struct drm_mode_object *obj;
5705 struct drm_encoder *encoder;
5706 int i;
5707
5708 for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5709 if (connector->encoder_ids[i] == 0)
5710 break;
5711
5712 obj = drm_mode_object_find(connector->dev,
5713 connector->encoder_ids[i],
5714 DRM_MODE_OBJECT_ENCODER);
5715 if (!obj)
5716 continue;
5717
5718 encoder = obj_to_encoder(obj);
5719 return encoder;
5720 }
5721 return NULL;
5722 }
5723
5724 /*
5725 * set vga decode state - true == enable VGA decode
5726 */
5727 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5728 {
5729 struct drm_i915_private *dev_priv = dev->dev_private;
5730 u16 gmch_ctrl;
5731
5732 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5733 if (state)
5734 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5735 else
5736 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5737 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5738 return 0;
5739 }
This page took 0.150623 seconds and 6 git commands to generate.