drm/i915: Initialize CHV digital lock detect threshold
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_dp_helper.h>
42 #include <drm/drm_crtc_helper.h>
43 #include <drm/drm_plane_helper.h>
44 #include <drm/drm_rect.h>
45 #include <linux/dma_remapping.h>
46
47 /* Primary plane formats supported by all gen */
48 #define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
53
54 /* Primary plane formats for gen <= 3 */
55 static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
59 };
60
61 /* Primary plane formats for gen >= 4 */
62 static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
70 };
71
72 /* Cursor formats */
73 static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
75 };
76
77 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
78
79 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
80 struct intel_crtc_state *pipe_config);
81 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
82 struct intel_crtc_state *pipe_config);
83
84 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
86 static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
90 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
92 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
95 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
96 static void haswell_set_pipeconf(struct drm_crtc *crtc);
97 static void intel_set_pipe_csc(struct drm_crtc *crtc);
98 static void vlv_prepare_pll(struct intel_crtc *crtc,
99 const struct intel_crtc_state *pipe_config);
100 static void chv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
104
105 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106 {
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111 }
112
113 typedef struct {
114 int min, max;
115 } intel_range_t;
116
117 typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4800000, .max = 6480000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static void vlv_clock(int refclk, intel_clock_t *clock)
402 {
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409 }
410
411 /**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
415 {
416 struct drm_device *dev = crtc->base.dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424 }
425
426 /**
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
431 */
432 static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433 {
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
440
441 return false;
442 }
443
444 static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
445 int refclk)
446 {
447 struct drm_device *dev = crtc->base.dev;
448 const intel_limit_t *limit;
449
450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
451 if (intel_is_dual_link_lvds(dev)) {
452 if (refclk == 100000)
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
457 if (refclk == 100000)
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
461 }
462 } else
463 limit = &intel_limits_ironlake_dac;
464
465 return limit;
466 }
467
468 static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
469 {
470 struct drm_device *dev = crtc->base.dev;
471 const intel_limit_t *limit;
472
473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
474 if (intel_is_dual_link_lvds(dev))
475 limit = &intel_limits_g4x_dual_channel_lvds;
476 else
477 limit = &intel_limits_g4x_single_channel_lvds;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
480 limit = &intel_limits_g4x_hdmi;
481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
482 limit = &intel_limits_g4x_sdvo;
483 } else /* The option is for other outputs */
484 limit = &intel_limits_i9xx_sdvo;
485
486 return limit;
487 }
488
489 static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
490 {
491 struct drm_device *dev = crtc->base.dev;
492 const intel_limit_t *limit;
493
494 if (HAS_PCH_SPLIT(dev))
495 limit = intel_ironlake_limit(crtc, refclk);
496 else if (IS_G4X(dev)) {
497 limit = intel_g4x_limit(crtc);
498 } else if (IS_PINEVIEW(dev)) {
499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
500 limit = &intel_limits_pineview_lvds;
501 else
502 limit = &intel_limits_pineview_sdvo;
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
505 } else if (IS_VALLEYVIEW(dev)) {
506 limit = &intel_limits_vlv;
507 } else if (!IS_GEN2(dev)) {
508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
512 } else {
513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
514 limit = &intel_limits_i8xx_lvds;
515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
516 limit = &intel_limits_i8xx_dvo;
517 else
518 limit = &intel_limits_i8xx_dac;
519 }
520 return limit;
521 }
522
523 /* m1 is reserved as 0 in Pineview, n is a ring counter */
524 static void pineview_clock(int refclk, intel_clock_t *clock)
525 {
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
532 }
533
534 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535 {
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537 }
538
539 static void i9xx_clock(int refclk, intel_clock_t *clock)
540 {
541 clock->m = i9xx_dpll_compute_m(clock);
542 clock->p = clock->p1 * clock->p2;
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
547 }
548
549 static void chv_clock(int refclk, intel_clock_t *clock)
550 {
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558 }
559
560 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
561 /**
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
564 */
565
566 static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
569 {
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
573 INTELPllInvalid("p1 out of range\n");
574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
575 INTELPllInvalid("m2 out of range\n");
576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
577 INTELPllInvalid("m1 out of range\n");
578
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
582
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 }
589
590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
591 INTELPllInvalid("vco out of range\n");
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
596 INTELPllInvalid("dot out of range\n");
597
598 return true;
599 }
600
601 static bool
602 i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
605 {
606 struct drm_device *dev = crtc->base.dev;
607 intel_clock_t clock;
608 int err = target;
609
610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
611 /*
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
615 */
616 if (intel_is_dual_link_lvds(dev))
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
625 }
626
627 memset(best_clock, 0, sizeof(*best_clock));
628
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
633 if (clock.m2 >= clock.m1)
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
639 int this_err;
640
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
653 }
654 }
655 }
656 }
657 }
658
659 return (err != target);
660 }
661
662 static bool
663 pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
666 {
667 struct drm_device *dev = crtc->base.dev;
668 intel_clock_t clock;
669 int err = target;
670
671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
672 /*
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
676 */
677 if (intel_is_dual_link_lvds(dev))
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
686 }
687
688 memset(best_clock, 0, sizeof(*best_clock));
689
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
698 int this_err;
699
700 pineview_clock(refclk, &clock);
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719 }
720
721 static bool
722 g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
725 {
726 struct drm_device *dev = crtc->base.dev;
727 intel_clock_t clock;
728 int max_n;
729 bool found;
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
732 found = false;
733
734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
735 if (intel_is_dual_link_lvds(dev))
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
748 /* based on hardware requirement, prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirement, prefere larger m1,m2 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
759 i9xx_clock(refclk, &clock);
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
762 continue;
763
764 this_err = abs(clock.dot - target);
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
775 return found;
776 }
777
778 static bool
779 vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
782 {
783 struct drm_device *dev = crtc->base.dev;
784 intel_clock_t clock;
785 unsigned int bestppm = 1000000;
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
788 bool found = false;
789
790 target *= 5; /* fast clock */
791
792 memset(best_clock, 0, sizeof(*best_clock));
793
794 /* based on hardware requirement, prefer smaller n to precision */
795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799 clock.p = clock.p1 * clock.p2;
800 /* based on hardware requirement, prefer bigger m1,m2 values */
801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
802 unsigned int ppm, diff;
803
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
806
807 vlv_clock(refclk, &clock);
808
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
811 continue;
812
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
815
816 if (ppm < 100 && clock.p > best_clock->p) {
817 bestppm = 0;
818 *best_clock = clock;
819 found = true;
820 }
821
822 if (bestppm >= 10 && ppm < bestppm - 10) {
823 bestppm = ppm;
824 *best_clock = clock;
825 found = true;
826 }
827 }
828 }
829 }
830 }
831
832 return found;
833 }
834
835 static bool
836 chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839 {
840 struct drm_device *dev = crtc->base.dev;
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
844
845 memset(best_clock, 0, sizeof(*best_clock));
846
847 /*
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
851 */
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
854
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860 clock.p = clock.p1 * clock.p2;
861
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
864
865 if (m2 > INT_MAX/clock.m1)
866 continue;
867
868 clock.m2 = m2;
869
870 chv_clock(refclk, &clock);
871
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
874
875 /* based on hardware requirement, prefer bigger p
876 */
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
880 }
881 }
882 }
883
884 return found;
885 }
886
887 bool intel_crtc_active(struct drm_crtc *crtc)
888 {
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
893 *
894 * We can ditch the adjusted_mode.crtc_clock check as soon
895 * as Haswell has gained clock readout/fastboot support.
896 *
897 * We can ditch the crtc->primary->fb check as soon as we can
898 * properly reconstruct framebuffers.
899 *
900 * FIXME: The intel_crtc->active here should be switched to
901 * crtc->state->active once we have proper CRTC states wired up
902 * for atomic.
903 */
904 return intel_crtc->active && crtc->primary->state->fb &&
905 intel_crtc->config->base.adjusted_mode.crtc_clock;
906 }
907
908 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
909 enum pipe pipe)
910 {
911 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
913
914 return intel_crtc->config->cpu_transcoder;
915 }
916
917 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
918 {
919 struct drm_i915_private *dev_priv = dev->dev_private;
920 u32 reg = PIPEDSL(pipe);
921 u32 line1, line2;
922 u32 line_mask;
923
924 if (IS_GEN2(dev))
925 line_mask = DSL_LINEMASK_GEN2;
926 else
927 line_mask = DSL_LINEMASK_GEN3;
928
929 line1 = I915_READ(reg) & line_mask;
930 mdelay(5);
931 line2 = I915_READ(reg) & line_mask;
932
933 return line1 == line2;
934 }
935
936 /*
937 * intel_wait_for_pipe_off - wait for pipe to turn off
938 * @crtc: crtc whose pipe to wait for
939 *
940 * After disabling a pipe, we can't wait for vblank in the usual way,
941 * spinning on the vblank interrupt status bit, since we won't actually
942 * see an interrupt when the pipe is disabled.
943 *
944 * On Gen4 and above:
945 * wait for the pipe register state bit to turn off
946 *
947 * Otherwise:
948 * wait for the display line value to settle (it usually
949 * ends up stopping at the start of the next frame).
950 *
951 */
952 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
953 {
954 struct drm_device *dev = crtc->base.dev;
955 struct drm_i915_private *dev_priv = dev->dev_private;
956 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
957 enum pipe pipe = crtc->pipe;
958
959 if (INTEL_INFO(dev)->gen >= 4) {
960 int reg = PIPECONF(cpu_transcoder);
961
962 /* Wait for the Pipe State to go off */
963 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
964 100))
965 WARN(1, "pipe_off wait timed out\n");
966 } else {
967 /* Wait for the display line to settle */
968 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
969 WARN(1, "pipe_off wait timed out\n");
970 }
971 }
972
973 /*
974 * ibx_digital_port_connected - is the specified port connected?
975 * @dev_priv: i915 private structure
976 * @port: the port to test
977 *
978 * Returns true if @port is connected, false otherwise.
979 */
980 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
981 struct intel_digital_port *port)
982 {
983 u32 bit;
984
985 if (HAS_PCH_IBX(dev_priv->dev)) {
986 switch (port->port) {
987 case PORT_B:
988 bit = SDE_PORTB_HOTPLUG;
989 break;
990 case PORT_C:
991 bit = SDE_PORTC_HOTPLUG;
992 break;
993 case PORT_D:
994 bit = SDE_PORTD_HOTPLUG;
995 break;
996 default:
997 return true;
998 }
999 } else {
1000 switch (port->port) {
1001 case PORT_B:
1002 bit = SDE_PORTB_HOTPLUG_CPT;
1003 break;
1004 case PORT_C:
1005 bit = SDE_PORTC_HOTPLUG_CPT;
1006 break;
1007 case PORT_D:
1008 bit = SDE_PORTD_HOTPLUG_CPT;
1009 break;
1010 default:
1011 return true;
1012 }
1013 }
1014
1015 return I915_READ(SDEISR) & bit;
1016 }
1017
1018 static const char *state_string(bool enabled)
1019 {
1020 return enabled ? "on" : "off";
1021 }
1022
1023 /* Only for pre-ILK configs */
1024 void assert_pll(struct drm_i915_private *dev_priv,
1025 enum pipe pipe, bool state)
1026 {
1027 int reg;
1028 u32 val;
1029 bool cur_state;
1030
1031 reg = DPLL(pipe);
1032 val = I915_READ(reg);
1033 cur_state = !!(val & DPLL_VCO_ENABLE);
1034 I915_STATE_WARN(cur_state != state,
1035 "PLL state assertion failure (expected %s, current %s)\n",
1036 state_string(state), state_string(cur_state));
1037 }
1038
1039 /* XXX: the dsi pll is shared between MIPI DSI ports */
1040 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1041 {
1042 u32 val;
1043 bool cur_state;
1044
1045 mutex_lock(&dev_priv->dpio_lock);
1046 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1047 mutex_unlock(&dev_priv->dpio_lock);
1048
1049 cur_state = val & DSI_PLL_VCO_EN;
1050 I915_STATE_WARN(cur_state != state,
1051 "DSI PLL state assertion failure (expected %s, current %s)\n",
1052 state_string(state), state_string(cur_state));
1053 }
1054 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1055 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1056
1057 struct intel_shared_dpll *
1058 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1059 {
1060 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1061
1062 if (crtc->config->shared_dpll < 0)
1063 return NULL;
1064
1065 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1066 }
1067
1068 /* For ILK+ */
1069 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1070 struct intel_shared_dpll *pll,
1071 bool state)
1072 {
1073 bool cur_state;
1074 struct intel_dpll_hw_state hw_state;
1075
1076 if (WARN (!pll,
1077 "asserting DPLL %s with no DPLL\n", state_string(state)))
1078 return;
1079
1080 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1081 I915_STATE_WARN(cur_state != state,
1082 "%s assertion failure (expected %s, current %s)\n",
1083 pll->name, state_string(state), state_string(cur_state));
1084 }
1085
1086 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1087 enum pipe pipe, bool state)
1088 {
1089 int reg;
1090 u32 val;
1091 bool cur_state;
1092 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1093 pipe);
1094
1095 if (HAS_DDI(dev_priv->dev)) {
1096 /* DDI does not have a specific FDI_TX register */
1097 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1100 } else {
1101 reg = FDI_TX_CTL(pipe);
1102 val = I915_READ(reg);
1103 cur_state = !!(val & FDI_TX_ENABLE);
1104 }
1105 I915_STATE_WARN(cur_state != state,
1106 "FDI TX state assertion failure (expected %s, current %s)\n",
1107 state_string(state), state_string(cur_state));
1108 }
1109 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1110 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1111
1112 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114 {
1115 int reg;
1116 u32 val;
1117 bool cur_state;
1118
1119 reg = FDI_RX_CTL(pipe);
1120 val = I915_READ(reg);
1121 cur_state = !!(val & FDI_RX_ENABLE);
1122 I915_STATE_WARN(cur_state != state,
1123 "FDI RX state assertion failure (expected %s, current %s)\n",
1124 state_string(state), state_string(cur_state));
1125 }
1126 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1127 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1128
1129 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1130 enum pipe pipe)
1131 {
1132 int reg;
1133 u32 val;
1134
1135 /* ILK FDI PLL is always enabled */
1136 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1137 return;
1138
1139 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1140 if (HAS_DDI(dev_priv->dev))
1141 return;
1142
1143 reg = FDI_TX_CTL(pipe);
1144 val = I915_READ(reg);
1145 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1146 }
1147
1148 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1149 enum pipe pipe, bool state)
1150 {
1151 int reg;
1152 u32 val;
1153 bool cur_state;
1154
1155 reg = FDI_RX_CTL(pipe);
1156 val = I915_READ(reg);
1157 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1158 I915_STATE_WARN(cur_state != state,
1159 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1160 state_string(state), state_string(cur_state));
1161 }
1162
1163 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1164 enum pipe pipe)
1165 {
1166 struct drm_device *dev = dev_priv->dev;
1167 int pp_reg;
1168 u32 val;
1169 enum pipe panel_pipe = PIPE_A;
1170 bool locked = true;
1171
1172 if (WARN_ON(HAS_DDI(dev)))
1173 return;
1174
1175 if (HAS_PCH_SPLIT(dev)) {
1176 u32 port_sel;
1177
1178 pp_reg = PCH_PP_CONTROL;
1179 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1180
1181 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1182 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1183 panel_pipe = PIPE_B;
1184 /* XXX: else fix for eDP */
1185 } else if (IS_VALLEYVIEW(dev)) {
1186 /* presumably write lock depends on pipe, not port select */
1187 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1188 panel_pipe = pipe;
1189 } else {
1190 pp_reg = PP_CONTROL;
1191 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1192 panel_pipe = PIPE_B;
1193 }
1194
1195 val = I915_READ(pp_reg);
1196 if (!(val & PANEL_POWER_ON) ||
1197 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1198 locked = false;
1199
1200 I915_STATE_WARN(panel_pipe == pipe && locked,
1201 "panel assertion failure, pipe %c regs locked\n",
1202 pipe_name(pipe));
1203 }
1204
1205 static void assert_cursor(struct drm_i915_private *dev_priv,
1206 enum pipe pipe, bool state)
1207 {
1208 struct drm_device *dev = dev_priv->dev;
1209 bool cur_state;
1210
1211 if (IS_845G(dev) || IS_I865G(dev))
1212 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1213 else
1214 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1215
1216 I915_STATE_WARN(cur_state != state,
1217 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1218 pipe_name(pipe), state_string(state), state_string(cur_state));
1219 }
1220 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1221 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1222
1223 void assert_pipe(struct drm_i915_private *dev_priv,
1224 enum pipe pipe, bool state)
1225 {
1226 int reg;
1227 u32 val;
1228 bool cur_state;
1229 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1230 pipe);
1231
1232 /* if we need the pipe quirk it must be always on */
1233 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1234 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1235 state = true;
1236
1237 if (!intel_display_power_is_enabled(dev_priv,
1238 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1239 cur_state = false;
1240 } else {
1241 reg = PIPECONF(cpu_transcoder);
1242 val = I915_READ(reg);
1243 cur_state = !!(val & PIPECONF_ENABLE);
1244 }
1245
1246 I915_STATE_WARN(cur_state != state,
1247 "pipe %c assertion failure (expected %s, current %s)\n",
1248 pipe_name(pipe), state_string(state), state_string(cur_state));
1249 }
1250
1251 static void assert_plane(struct drm_i915_private *dev_priv,
1252 enum plane plane, bool state)
1253 {
1254 int reg;
1255 u32 val;
1256 bool cur_state;
1257
1258 reg = DSPCNTR(plane);
1259 val = I915_READ(reg);
1260 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1261 I915_STATE_WARN(cur_state != state,
1262 "plane %c assertion failure (expected %s, current %s)\n",
1263 plane_name(plane), state_string(state), state_string(cur_state));
1264 }
1265
1266 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1267 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1268
1269 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1270 enum pipe pipe)
1271 {
1272 struct drm_device *dev = dev_priv->dev;
1273 int reg, i;
1274 u32 val;
1275 int cur_pipe;
1276
1277 /* Primary planes are fixed to pipes on gen4+ */
1278 if (INTEL_INFO(dev)->gen >= 4) {
1279 reg = DSPCNTR(pipe);
1280 val = I915_READ(reg);
1281 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1282 "plane %c assertion failure, should be disabled but not\n",
1283 plane_name(pipe));
1284 return;
1285 }
1286
1287 /* Need to check both planes against the pipe */
1288 for_each_pipe(dev_priv, i) {
1289 reg = DSPCNTR(i);
1290 val = I915_READ(reg);
1291 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1292 DISPPLANE_SEL_PIPE_SHIFT;
1293 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1294 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1295 plane_name(i), pipe_name(pipe));
1296 }
1297 }
1298
1299 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1300 enum pipe pipe)
1301 {
1302 struct drm_device *dev = dev_priv->dev;
1303 int reg, sprite;
1304 u32 val;
1305
1306 if (INTEL_INFO(dev)->gen >= 9) {
1307 for_each_sprite(dev_priv, pipe, sprite) {
1308 val = I915_READ(PLANE_CTL(pipe, sprite));
1309 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1310 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1311 sprite, pipe_name(pipe));
1312 }
1313 } else if (IS_VALLEYVIEW(dev)) {
1314 for_each_sprite(dev_priv, pipe, sprite) {
1315 reg = SPCNTR(pipe, sprite);
1316 val = I915_READ(reg);
1317 I915_STATE_WARN(val & SP_ENABLE,
1318 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1319 sprite_name(pipe, sprite), pipe_name(pipe));
1320 }
1321 } else if (INTEL_INFO(dev)->gen >= 7) {
1322 reg = SPRCTL(pipe);
1323 val = I915_READ(reg);
1324 I915_STATE_WARN(val & SPRITE_ENABLE,
1325 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1326 plane_name(pipe), pipe_name(pipe));
1327 } else if (INTEL_INFO(dev)->gen >= 5) {
1328 reg = DVSCNTR(pipe);
1329 val = I915_READ(reg);
1330 I915_STATE_WARN(val & DVS_ENABLE,
1331 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1332 plane_name(pipe), pipe_name(pipe));
1333 }
1334 }
1335
1336 static void assert_vblank_disabled(struct drm_crtc *crtc)
1337 {
1338 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1339 drm_crtc_vblank_put(crtc);
1340 }
1341
1342 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1343 {
1344 u32 val;
1345 bool enabled;
1346
1347 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1348
1349 val = I915_READ(PCH_DREF_CONTROL);
1350 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1351 DREF_SUPERSPREAD_SOURCE_MASK));
1352 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1353 }
1354
1355 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1356 enum pipe pipe)
1357 {
1358 int reg;
1359 u32 val;
1360 bool enabled;
1361
1362 reg = PCH_TRANSCONF(pipe);
1363 val = I915_READ(reg);
1364 enabled = !!(val & TRANS_ENABLE);
1365 I915_STATE_WARN(enabled,
1366 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1367 pipe_name(pipe));
1368 }
1369
1370 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1371 enum pipe pipe, u32 port_sel, u32 val)
1372 {
1373 if ((val & DP_PORT_EN) == 0)
1374 return false;
1375
1376 if (HAS_PCH_CPT(dev_priv->dev)) {
1377 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1378 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1379 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1380 return false;
1381 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1382 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1383 return false;
1384 } else {
1385 if ((val & DP_PIPE_MASK) != (pipe << 30))
1386 return false;
1387 }
1388 return true;
1389 }
1390
1391 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1392 enum pipe pipe, u32 val)
1393 {
1394 if ((val & SDVO_ENABLE) == 0)
1395 return false;
1396
1397 if (HAS_PCH_CPT(dev_priv->dev)) {
1398 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1399 return false;
1400 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1401 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1402 return false;
1403 } else {
1404 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1405 return false;
1406 }
1407 return true;
1408 }
1409
1410 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe, u32 val)
1412 {
1413 if ((val & LVDS_PORT_EN) == 0)
1414 return false;
1415
1416 if (HAS_PCH_CPT(dev_priv->dev)) {
1417 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1418 return false;
1419 } else {
1420 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1421 return false;
1422 }
1423 return true;
1424 }
1425
1426 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1427 enum pipe pipe, u32 val)
1428 {
1429 if ((val & ADPA_DAC_ENABLE) == 0)
1430 return false;
1431 if (HAS_PCH_CPT(dev_priv->dev)) {
1432 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1433 return false;
1434 } else {
1435 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1436 return false;
1437 }
1438 return true;
1439 }
1440
1441 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1442 enum pipe pipe, int reg, u32 port_sel)
1443 {
1444 u32 val = I915_READ(reg);
1445 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1446 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1447 reg, pipe_name(pipe));
1448
1449 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1450 && (val & DP_PIPEB_SELECT),
1451 "IBX PCH dp port still using transcoder B\n");
1452 }
1453
1454 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1455 enum pipe pipe, int reg)
1456 {
1457 u32 val = I915_READ(reg);
1458 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1459 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1460 reg, pipe_name(pipe));
1461
1462 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1463 && (val & SDVO_PIPE_B_SELECT),
1464 "IBX PCH hdmi port still using transcoder B\n");
1465 }
1466
1467 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1468 enum pipe pipe)
1469 {
1470 int reg;
1471 u32 val;
1472
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1476
1477 reg = PCH_ADPA;
1478 val = I915_READ(reg);
1479 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480 "PCH VGA enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 reg = PCH_LVDS;
1484 val = I915_READ(reg);
1485 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1486 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1487 pipe_name(pipe));
1488
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1491 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1492 }
1493
1494 static void intel_init_dpio(struct drm_device *dev)
1495 {
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497
1498 if (!IS_VALLEYVIEW(dev))
1499 return;
1500
1501 /*
1502 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1503 * CHV x1 PHY (DP/HDMI D)
1504 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1505 */
1506 if (IS_CHERRYVIEW(dev)) {
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1508 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1509 } else {
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1511 }
1512 }
1513
1514 static void vlv_enable_pll(struct intel_crtc *crtc,
1515 const struct intel_crtc_state *pipe_config)
1516 {
1517 struct drm_device *dev = crtc->base.dev;
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519 int reg = DPLL(crtc->pipe);
1520 u32 dpll = pipe_config->dpll_hw_state.dpll;
1521
1522 assert_pipe_disabled(dev_priv, crtc->pipe);
1523
1524 /* No really, not for ILK+ */
1525 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1526
1527 /* PLL is protected by panel, make sure we can write it */
1528 if (IS_MOBILE(dev_priv->dev))
1529 assert_panel_unlocked(dev_priv, crtc->pipe);
1530
1531 I915_WRITE(reg, dpll);
1532 POSTING_READ(reg);
1533 udelay(150);
1534
1535 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1536 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1537
1538 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1539 POSTING_READ(DPLL_MD(crtc->pipe));
1540
1541 /* We do this three times for luck */
1542 I915_WRITE(reg, dpll);
1543 POSTING_READ(reg);
1544 udelay(150); /* wait for warmup */
1545 I915_WRITE(reg, dpll);
1546 POSTING_READ(reg);
1547 udelay(150); /* wait for warmup */
1548 I915_WRITE(reg, dpll);
1549 POSTING_READ(reg);
1550 udelay(150); /* wait for warmup */
1551 }
1552
1553 static void chv_enable_pll(struct intel_crtc *crtc,
1554 const struct intel_crtc_state *pipe_config)
1555 {
1556 struct drm_device *dev = crtc->base.dev;
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 int pipe = crtc->pipe;
1559 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1560 u32 tmp;
1561
1562 assert_pipe_disabled(dev_priv, crtc->pipe);
1563
1564 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1565
1566 mutex_lock(&dev_priv->dpio_lock);
1567
1568 /* Enable back the 10bit clock to display controller */
1569 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1570 tmp |= DPIO_DCLKP_EN;
1571 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1572
1573 /*
1574 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1575 */
1576 udelay(1);
1577
1578 /* Enable PLL */
1579 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1580
1581 /* Check PLL is locked */
1582 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1583 DRM_ERROR("PLL %d failed to lock\n", pipe);
1584
1585 /* not sure when this should be written */
1586 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1587 POSTING_READ(DPLL_MD(pipe));
1588
1589 mutex_unlock(&dev_priv->dpio_lock);
1590 }
1591
1592 static int intel_num_dvo_pipes(struct drm_device *dev)
1593 {
1594 struct intel_crtc *crtc;
1595 int count = 0;
1596
1597 for_each_intel_crtc(dev, crtc)
1598 count += crtc->active &&
1599 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1600
1601 return count;
1602 }
1603
1604 static void i9xx_enable_pll(struct intel_crtc *crtc)
1605 {
1606 struct drm_device *dev = crtc->base.dev;
1607 struct drm_i915_private *dev_priv = dev->dev_private;
1608 int reg = DPLL(crtc->pipe);
1609 u32 dpll = crtc->config->dpll_hw_state.dpll;
1610
1611 assert_pipe_disabled(dev_priv, crtc->pipe);
1612
1613 /* No really, not for ILK+ */
1614 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1615
1616 /* PLL is protected by panel, make sure we can write it */
1617 if (IS_MOBILE(dev) && !IS_I830(dev))
1618 assert_panel_unlocked(dev_priv, crtc->pipe);
1619
1620 /* Enable DVO 2x clock on both PLLs if necessary */
1621 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1622 /*
1623 * It appears to be important that we don't enable this
1624 * for the current pipe before otherwise configuring the
1625 * PLL. No idea how this should be handled if multiple
1626 * DVO outputs are enabled simultaneosly.
1627 */
1628 dpll |= DPLL_DVO_2X_MODE;
1629 I915_WRITE(DPLL(!crtc->pipe),
1630 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1631 }
1632
1633 /* Wait for the clocks to stabilize. */
1634 POSTING_READ(reg);
1635 udelay(150);
1636
1637 if (INTEL_INFO(dev)->gen >= 4) {
1638 I915_WRITE(DPLL_MD(crtc->pipe),
1639 crtc->config->dpll_hw_state.dpll_md);
1640 } else {
1641 /* The pixel multiplier can only be updated once the
1642 * DPLL is enabled and the clocks are stable.
1643 *
1644 * So write it again.
1645 */
1646 I915_WRITE(reg, dpll);
1647 }
1648
1649 /* We do this three times for luck */
1650 I915_WRITE(reg, dpll);
1651 POSTING_READ(reg);
1652 udelay(150); /* wait for warmup */
1653 I915_WRITE(reg, dpll);
1654 POSTING_READ(reg);
1655 udelay(150); /* wait for warmup */
1656 I915_WRITE(reg, dpll);
1657 POSTING_READ(reg);
1658 udelay(150); /* wait for warmup */
1659 }
1660
1661 /**
1662 * i9xx_disable_pll - disable a PLL
1663 * @dev_priv: i915 private structure
1664 * @pipe: pipe PLL to disable
1665 *
1666 * Disable the PLL for @pipe, making sure the pipe is off first.
1667 *
1668 * Note! This is for pre-ILK only.
1669 */
1670 static void i9xx_disable_pll(struct intel_crtc *crtc)
1671 {
1672 struct drm_device *dev = crtc->base.dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674 enum pipe pipe = crtc->pipe;
1675
1676 /* Disable DVO 2x clock on both PLLs if necessary */
1677 if (IS_I830(dev) &&
1678 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1679 intel_num_dvo_pipes(dev) == 1) {
1680 I915_WRITE(DPLL(PIPE_B),
1681 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1682 I915_WRITE(DPLL(PIPE_A),
1683 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1684 }
1685
1686 /* Don't disable pipe or pipe PLLs if needed */
1687 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1688 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1689 return;
1690
1691 /* Make sure the pipe isn't still relying on us */
1692 assert_pipe_disabled(dev_priv, pipe);
1693
1694 I915_WRITE(DPLL(pipe), 0);
1695 POSTING_READ(DPLL(pipe));
1696 }
1697
1698 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1699 {
1700 u32 val = 0;
1701
1702 /* Make sure the pipe isn't still relying on us */
1703 assert_pipe_disabled(dev_priv, pipe);
1704
1705 /*
1706 * Leave integrated clock source and reference clock enabled for pipe B.
1707 * The latter is needed for VGA hotplug / manual detection.
1708 */
1709 if (pipe == PIPE_B)
1710 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1711 I915_WRITE(DPLL(pipe), val);
1712 POSTING_READ(DPLL(pipe));
1713
1714 }
1715
1716 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1717 {
1718 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1719 u32 val;
1720
1721 /* Make sure the pipe isn't still relying on us */
1722 assert_pipe_disabled(dev_priv, pipe);
1723
1724 /* Set PLL en = 0 */
1725 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1726 if (pipe != PIPE_A)
1727 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1728 I915_WRITE(DPLL(pipe), val);
1729 POSTING_READ(DPLL(pipe));
1730
1731 mutex_lock(&dev_priv->dpio_lock);
1732
1733 /* Disable 10bit clock to display controller */
1734 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1735 val &= ~DPIO_DCLKP_EN;
1736 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1737
1738 /* disable left/right clock distribution */
1739 if (pipe != PIPE_B) {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1741 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1743 } else {
1744 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1745 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1746 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1747 }
1748
1749 mutex_unlock(&dev_priv->dpio_lock);
1750 }
1751
1752 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1753 struct intel_digital_port *dport)
1754 {
1755 u32 port_mask;
1756 int dpll_reg;
1757
1758 switch (dport->port) {
1759 case PORT_B:
1760 port_mask = DPLL_PORTB_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_C:
1764 port_mask = DPLL_PORTC_READY_MASK;
1765 dpll_reg = DPLL(0);
1766 break;
1767 case PORT_D:
1768 port_mask = DPLL_PORTD_READY_MASK;
1769 dpll_reg = DPIO_PHY_STATUS;
1770 break;
1771 default:
1772 BUG();
1773 }
1774
1775 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1776 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1777 port_name(dport->port), I915_READ(dpll_reg));
1778 }
1779
1780 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1781 {
1782 struct drm_device *dev = crtc->base.dev;
1783 struct drm_i915_private *dev_priv = dev->dev_private;
1784 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1785
1786 if (WARN_ON(pll == NULL))
1787 return;
1788
1789 WARN_ON(!pll->config.crtc_mask);
1790 if (pll->active == 0) {
1791 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1792 WARN_ON(pll->on);
1793 assert_shared_dpll_disabled(dev_priv, pll);
1794
1795 pll->mode_set(dev_priv, pll);
1796 }
1797 }
1798
1799 /**
1800 * intel_enable_shared_dpll - enable PCH PLL
1801 * @dev_priv: i915 private structure
1802 * @pipe: pipe PLL to enable
1803 *
1804 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1805 * drives the transcoder clock.
1806 */
1807 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1808 {
1809 struct drm_device *dev = crtc->base.dev;
1810 struct drm_i915_private *dev_priv = dev->dev_private;
1811 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1812
1813 if (WARN_ON(pll == NULL))
1814 return;
1815
1816 if (WARN_ON(pll->config.crtc_mask == 0))
1817 return;
1818
1819 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1820 pll->name, pll->active, pll->on,
1821 crtc->base.base.id);
1822
1823 if (pll->active++) {
1824 WARN_ON(!pll->on);
1825 assert_shared_dpll_enabled(dev_priv, pll);
1826 return;
1827 }
1828 WARN_ON(pll->on);
1829
1830 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1831
1832 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1833 pll->enable(dev_priv, pll);
1834 pll->on = true;
1835 }
1836
1837 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1838 {
1839 struct drm_device *dev = crtc->base.dev;
1840 struct drm_i915_private *dev_priv = dev->dev_private;
1841 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1842
1843 /* PCH only available on ILK+ */
1844 BUG_ON(INTEL_INFO(dev)->gen < 5);
1845 if (WARN_ON(pll == NULL))
1846 return;
1847
1848 if (WARN_ON(pll->config.crtc_mask == 0))
1849 return;
1850
1851 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1852 pll->name, pll->active, pll->on,
1853 crtc->base.base.id);
1854
1855 if (WARN_ON(pll->active == 0)) {
1856 assert_shared_dpll_disabled(dev_priv, pll);
1857 return;
1858 }
1859
1860 assert_shared_dpll_enabled(dev_priv, pll);
1861 WARN_ON(!pll->on);
1862 if (--pll->active)
1863 return;
1864
1865 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1866 pll->disable(dev_priv, pll);
1867 pll->on = false;
1868
1869 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1870 }
1871
1872 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1873 enum pipe pipe)
1874 {
1875 struct drm_device *dev = dev_priv->dev;
1876 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1878 uint32_t reg, val, pipeconf_val;
1879
1880 /* PCH only available on ILK+ */
1881 BUG_ON(!HAS_PCH_SPLIT(dev));
1882
1883 /* Make sure PCH DPLL is enabled */
1884 assert_shared_dpll_enabled(dev_priv,
1885 intel_crtc_to_shared_dpll(intel_crtc));
1886
1887 /* FDI must be feeding us bits for PCH ports */
1888 assert_fdi_tx_enabled(dev_priv, pipe);
1889 assert_fdi_rx_enabled(dev_priv, pipe);
1890
1891 if (HAS_PCH_CPT(dev)) {
1892 /* Workaround: Set the timing override bit before enabling the
1893 * pch transcoder. */
1894 reg = TRANS_CHICKEN2(pipe);
1895 val = I915_READ(reg);
1896 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1897 I915_WRITE(reg, val);
1898 }
1899
1900 reg = PCH_TRANSCONF(pipe);
1901 val = I915_READ(reg);
1902 pipeconf_val = I915_READ(PIPECONF(pipe));
1903
1904 if (HAS_PCH_IBX(dev_priv->dev)) {
1905 /*
1906 * make the BPC in transcoder be consistent with
1907 * that in pipeconf reg.
1908 */
1909 val &= ~PIPECONF_BPC_MASK;
1910 val |= pipeconf_val & PIPECONF_BPC_MASK;
1911 }
1912
1913 val &= ~TRANS_INTERLACE_MASK;
1914 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1915 if (HAS_PCH_IBX(dev_priv->dev) &&
1916 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1917 val |= TRANS_LEGACY_INTERLACED_ILK;
1918 else
1919 val |= TRANS_INTERLACED;
1920 else
1921 val |= TRANS_PROGRESSIVE;
1922
1923 I915_WRITE(reg, val | TRANS_ENABLE);
1924 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1925 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1926 }
1927
1928 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1929 enum transcoder cpu_transcoder)
1930 {
1931 u32 val, pipeconf_val;
1932
1933 /* PCH only available on ILK+ */
1934 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1935
1936 /* FDI must be feeding us bits for PCH ports */
1937 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1938 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1939
1940 /* Workaround: set timing override bit. */
1941 val = I915_READ(_TRANSA_CHICKEN2);
1942 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1943 I915_WRITE(_TRANSA_CHICKEN2, val);
1944
1945 val = TRANS_ENABLE;
1946 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1947
1948 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1949 PIPECONF_INTERLACED_ILK)
1950 val |= TRANS_INTERLACED;
1951 else
1952 val |= TRANS_PROGRESSIVE;
1953
1954 I915_WRITE(LPT_TRANSCONF, val);
1955 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1956 DRM_ERROR("Failed to enable PCH transcoder\n");
1957 }
1958
1959 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1960 enum pipe pipe)
1961 {
1962 struct drm_device *dev = dev_priv->dev;
1963 uint32_t reg, val;
1964
1965 /* FDI relies on the transcoder */
1966 assert_fdi_tx_disabled(dev_priv, pipe);
1967 assert_fdi_rx_disabled(dev_priv, pipe);
1968
1969 /* Ports must be off as well */
1970 assert_pch_ports_disabled(dev_priv, pipe);
1971
1972 reg = PCH_TRANSCONF(pipe);
1973 val = I915_READ(reg);
1974 val &= ~TRANS_ENABLE;
1975 I915_WRITE(reg, val);
1976 /* wait for PCH transcoder off, transcoder state */
1977 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1978 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1979
1980 if (!HAS_PCH_IBX(dev)) {
1981 /* Workaround: Clear the timing override chicken bit again. */
1982 reg = TRANS_CHICKEN2(pipe);
1983 val = I915_READ(reg);
1984 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1985 I915_WRITE(reg, val);
1986 }
1987 }
1988
1989 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1990 {
1991 u32 val;
1992
1993 val = I915_READ(LPT_TRANSCONF);
1994 val &= ~TRANS_ENABLE;
1995 I915_WRITE(LPT_TRANSCONF, val);
1996 /* wait for PCH transcoder off, transcoder state */
1997 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1998 DRM_ERROR("Failed to disable PCH transcoder\n");
1999
2000 /* Workaround: clear timing override bit. */
2001 val = I915_READ(_TRANSA_CHICKEN2);
2002 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2003 I915_WRITE(_TRANSA_CHICKEN2, val);
2004 }
2005
2006 /**
2007 * intel_enable_pipe - enable a pipe, asserting requirements
2008 * @crtc: crtc responsible for the pipe
2009 *
2010 * Enable @crtc's pipe, making sure that various hardware specific requirements
2011 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2012 */
2013 static void intel_enable_pipe(struct intel_crtc *crtc)
2014 {
2015 struct drm_device *dev = crtc->base.dev;
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 enum pipe pipe = crtc->pipe;
2018 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2019 pipe);
2020 enum pipe pch_transcoder;
2021 int reg;
2022 u32 val;
2023
2024 assert_planes_disabled(dev_priv, pipe);
2025 assert_cursor_disabled(dev_priv, pipe);
2026 assert_sprites_disabled(dev_priv, pipe);
2027
2028 if (HAS_PCH_LPT(dev_priv->dev))
2029 pch_transcoder = TRANSCODER_A;
2030 else
2031 pch_transcoder = pipe;
2032
2033 /*
2034 * A pipe without a PLL won't actually be able to drive bits from
2035 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2036 * need the check.
2037 */
2038 if (!HAS_PCH_SPLIT(dev_priv->dev))
2039 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2040 assert_dsi_pll_enabled(dev_priv);
2041 else
2042 assert_pll_enabled(dev_priv, pipe);
2043 else {
2044 if (crtc->config->has_pch_encoder) {
2045 /* if driving the PCH, we need FDI enabled */
2046 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2047 assert_fdi_tx_pll_enabled(dev_priv,
2048 (enum pipe) cpu_transcoder);
2049 }
2050 /* FIXME: assert CPU port conditions for SNB+ */
2051 }
2052
2053 reg = PIPECONF(cpu_transcoder);
2054 val = I915_READ(reg);
2055 if (val & PIPECONF_ENABLE) {
2056 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2057 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2058 return;
2059 }
2060
2061 I915_WRITE(reg, val | PIPECONF_ENABLE);
2062 POSTING_READ(reg);
2063 }
2064
2065 /**
2066 * intel_disable_pipe - disable a pipe, asserting requirements
2067 * @crtc: crtc whose pipes is to be disabled
2068 *
2069 * Disable the pipe of @crtc, making sure that various hardware
2070 * specific requirements are met, if applicable, e.g. plane
2071 * disabled, panel fitter off, etc.
2072 *
2073 * Will wait until the pipe has shut down before returning.
2074 */
2075 static void intel_disable_pipe(struct intel_crtc *crtc)
2076 {
2077 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2078 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2079 enum pipe pipe = crtc->pipe;
2080 int reg;
2081 u32 val;
2082
2083 /*
2084 * Make sure planes won't keep trying to pump pixels to us,
2085 * or we might hang the display.
2086 */
2087 assert_planes_disabled(dev_priv, pipe);
2088 assert_cursor_disabled(dev_priv, pipe);
2089 assert_sprites_disabled(dev_priv, pipe);
2090
2091 reg = PIPECONF(cpu_transcoder);
2092 val = I915_READ(reg);
2093 if ((val & PIPECONF_ENABLE) == 0)
2094 return;
2095
2096 /*
2097 * Double wide has implications for planes
2098 * so best keep it disabled when not needed.
2099 */
2100 if (crtc->config->double_wide)
2101 val &= ~PIPECONF_DOUBLE_WIDE;
2102
2103 /* Don't disable pipe or pipe PLLs if needed */
2104 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2105 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2106 val &= ~PIPECONF_ENABLE;
2107
2108 I915_WRITE(reg, val);
2109 if ((val & PIPECONF_ENABLE) == 0)
2110 intel_wait_for_pipe_off(crtc);
2111 }
2112
2113 /*
2114 * Plane regs are double buffered, going from enabled->disabled needs a
2115 * trigger in order to latch. The display address reg provides this.
2116 */
2117 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2118 enum plane plane)
2119 {
2120 struct drm_device *dev = dev_priv->dev;
2121 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2122
2123 I915_WRITE(reg, I915_READ(reg));
2124 POSTING_READ(reg);
2125 }
2126
2127 /**
2128 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2129 * @plane: plane to be enabled
2130 * @crtc: crtc for the plane
2131 *
2132 * Enable @plane on @crtc, making sure that the pipe is running first.
2133 */
2134 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2135 struct drm_crtc *crtc)
2136 {
2137 struct drm_device *dev = plane->dev;
2138 struct drm_i915_private *dev_priv = dev->dev_private;
2139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2140
2141 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2142 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2143
2144 if (intel_crtc->primary_enabled)
2145 return;
2146
2147 intel_crtc->primary_enabled = true;
2148
2149 dev_priv->display.update_primary_plane(crtc, plane->fb,
2150 crtc->x, crtc->y);
2151
2152 /*
2153 * BDW signals flip done immediately if the plane
2154 * is disabled, even if the plane enable is already
2155 * armed to occur at the next vblank :(
2156 */
2157 if (IS_BROADWELL(dev))
2158 intel_wait_for_vblank(dev, intel_crtc->pipe);
2159 }
2160
2161 /**
2162 * intel_disable_primary_hw_plane - disable the primary hardware plane
2163 * @plane: plane to be disabled
2164 * @crtc: crtc for the plane
2165 *
2166 * Disable @plane on @crtc, making sure that the pipe is running first.
2167 */
2168 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2169 struct drm_crtc *crtc)
2170 {
2171 struct drm_device *dev = plane->dev;
2172 struct drm_i915_private *dev_priv = dev->dev_private;
2173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2174
2175 if (WARN_ON(!intel_crtc->active))
2176 return;
2177
2178 if (!intel_crtc->primary_enabled)
2179 return;
2180
2181 intel_crtc->primary_enabled = false;
2182
2183 dev_priv->display.update_primary_plane(crtc, plane->fb,
2184 crtc->x, crtc->y);
2185 }
2186
2187 static bool need_vtd_wa(struct drm_device *dev)
2188 {
2189 #ifdef CONFIG_INTEL_IOMMU
2190 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2191 return true;
2192 #endif
2193 return false;
2194 }
2195
2196 int
2197 intel_fb_align_height(struct drm_device *dev, int height,
2198 uint32_t pixel_format,
2199 uint64_t fb_format_modifier)
2200 {
2201 int tile_height;
2202 uint32_t bits_per_pixel;
2203
2204 switch (fb_format_modifier) {
2205 case DRM_FORMAT_MOD_NONE:
2206 tile_height = 1;
2207 break;
2208 case I915_FORMAT_MOD_X_TILED:
2209 tile_height = IS_GEN2(dev) ? 16 : 8;
2210 break;
2211 case I915_FORMAT_MOD_Y_TILED:
2212 tile_height = 32;
2213 break;
2214 case I915_FORMAT_MOD_Yf_TILED:
2215 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2216 switch (bits_per_pixel) {
2217 default:
2218 case 8:
2219 tile_height = 64;
2220 break;
2221 case 16:
2222 case 32:
2223 tile_height = 32;
2224 break;
2225 case 64:
2226 tile_height = 16;
2227 break;
2228 case 128:
2229 WARN_ONCE(1,
2230 "128-bit pixels are not supported for display!");
2231 tile_height = 16;
2232 break;
2233 }
2234 break;
2235 default:
2236 MISSING_CASE(fb_format_modifier);
2237 tile_height = 1;
2238 break;
2239 }
2240
2241 return ALIGN(height, tile_height);
2242 }
2243
2244 int
2245 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2246 struct drm_framebuffer *fb,
2247 struct intel_engine_cs *pipelined)
2248 {
2249 struct drm_device *dev = fb->dev;
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2252 u32 alignment;
2253 int ret;
2254
2255 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2256
2257 switch (fb->modifier[0]) {
2258 case DRM_FORMAT_MOD_NONE:
2259 if (INTEL_INFO(dev)->gen >= 9)
2260 alignment = 256 * 1024;
2261 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2262 alignment = 128 * 1024;
2263 else if (INTEL_INFO(dev)->gen >= 4)
2264 alignment = 4 * 1024;
2265 else
2266 alignment = 64 * 1024;
2267 break;
2268 case I915_FORMAT_MOD_X_TILED:
2269 if (INTEL_INFO(dev)->gen >= 9)
2270 alignment = 256 * 1024;
2271 else {
2272 /* pin() will align the object as required by fence */
2273 alignment = 0;
2274 }
2275 break;
2276 case I915_FORMAT_MOD_Y_TILED:
2277 case I915_FORMAT_MOD_Yf_TILED:
2278 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2279 "Y tiling bo slipped through, driver bug!\n"))
2280 return -EINVAL;
2281 alignment = 1 * 1024 * 1024;
2282 break;
2283 default:
2284 MISSING_CASE(fb->modifier[0]);
2285 return -EINVAL;
2286 }
2287
2288 /* Note that the w/a also requires 64 PTE of padding following the
2289 * bo. We currently fill all unused PTE with the shadow page and so
2290 * we should always have valid PTE following the scanout preventing
2291 * the VT-d warning.
2292 */
2293 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2294 alignment = 256 * 1024;
2295
2296 /*
2297 * Global gtt pte registers are special registers which actually forward
2298 * writes to a chunk of system memory. Which means that there is no risk
2299 * that the register values disappear as soon as we call
2300 * intel_runtime_pm_put(), so it is correct to wrap only the
2301 * pin/unpin/fence and not more.
2302 */
2303 intel_runtime_pm_get(dev_priv);
2304
2305 dev_priv->mm.interruptible = false;
2306 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2307 if (ret)
2308 goto err_interruptible;
2309
2310 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2311 * fence, whereas 965+ only requires a fence if using
2312 * framebuffer compression. For simplicity, we always install
2313 * a fence as the cost is not that onerous.
2314 */
2315 ret = i915_gem_object_get_fence(obj);
2316 if (ret)
2317 goto err_unpin;
2318
2319 i915_gem_object_pin_fence(obj);
2320
2321 dev_priv->mm.interruptible = true;
2322 intel_runtime_pm_put(dev_priv);
2323 return 0;
2324
2325 err_unpin:
2326 i915_gem_object_unpin_from_display_plane(obj);
2327 err_interruptible:
2328 dev_priv->mm.interruptible = true;
2329 intel_runtime_pm_put(dev_priv);
2330 return ret;
2331 }
2332
2333 static void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2334 {
2335 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2336
2337 i915_gem_object_unpin_fence(obj);
2338 i915_gem_object_unpin_from_display_plane(obj);
2339 }
2340
2341 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2342 * is assumed to be a power-of-two. */
2343 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2344 unsigned int tiling_mode,
2345 unsigned int cpp,
2346 unsigned int pitch)
2347 {
2348 if (tiling_mode != I915_TILING_NONE) {
2349 unsigned int tile_rows, tiles;
2350
2351 tile_rows = *y / 8;
2352 *y %= 8;
2353
2354 tiles = *x / (512/cpp);
2355 *x %= 512/cpp;
2356
2357 return tile_rows * pitch * 8 + tiles * 4096;
2358 } else {
2359 unsigned int offset;
2360
2361 offset = *y * pitch + *x * cpp;
2362 *y = 0;
2363 *x = (offset & 4095) / cpp;
2364 return offset & -4096;
2365 }
2366 }
2367
2368 static int i9xx_format_to_fourcc(int format)
2369 {
2370 switch (format) {
2371 case DISPPLANE_8BPP:
2372 return DRM_FORMAT_C8;
2373 case DISPPLANE_BGRX555:
2374 return DRM_FORMAT_XRGB1555;
2375 case DISPPLANE_BGRX565:
2376 return DRM_FORMAT_RGB565;
2377 default:
2378 case DISPPLANE_BGRX888:
2379 return DRM_FORMAT_XRGB8888;
2380 case DISPPLANE_RGBX888:
2381 return DRM_FORMAT_XBGR8888;
2382 case DISPPLANE_BGRX101010:
2383 return DRM_FORMAT_XRGB2101010;
2384 case DISPPLANE_RGBX101010:
2385 return DRM_FORMAT_XBGR2101010;
2386 }
2387 }
2388
2389 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2390 {
2391 switch (format) {
2392 case PLANE_CTL_FORMAT_RGB_565:
2393 return DRM_FORMAT_RGB565;
2394 default:
2395 case PLANE_CTL_FORMAT_XRGB_8888:
2396 if (rgb_order) {
2397 if (alpha)
2398 return DRM_FORMAT_ABGR8888;
2399 else
2400 return DRM_FORMAT_XBGR8888;
2401 } else {
2402 if (alpha)
2403 return DRM_FORMAT_ARGB8888;
2404 else
2405 return DRM_FORMAT_XRGB8888;
2406 }
2407 case PLANE_CTL_FORMAT_XRGB_2101010:
2408 if (rgb_order)
2409 return DRM_FORMAT_XBGR2101010;
2410 else
2411 return DRM_FORMAT_XRGB2101010;
2412 }
2413 }
2414
2415 static bool
2416 intel_alloc_plane_obj(struct intel_crtc *crtc,
2417 struct intel_initial_plane_config *plane_config)
2418 {
2419 struct drm_device *dev = crtc->base.dev;
2420 struct drm_i915_gem_object *obj = NULL;
2421 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2422 struct drm_framebuffer *fb = &plane_config->fb->base;
2423 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2424 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2425 PAGE_SIZE);
2426
2427 size_aligned -= base_aligned;
2428
2429 if (plane_config->size == 0)
2430 return false;
2431
2432 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2433 base_aligned,
2434 base_aligned,
2435 size_aligned);
2436 if (!obj)
2437 return false;
2438
2439 obj->tiling_mode = plane_config->tiling;
2440 if (obj->tiling_mode == I915_TILING_X)
2441 obj->stride = fb->pitches[0];
2442
2443 mode_cmd.pixel_format = fb->pixel_format;
2444 mode_cmd.width = fb->width;
2445 mode_cmd.height = fb->height;
2446 mode_cmd.pitches[0] = fb->pitches[0];
2447 mode_cmd.modifier[0] = fb->modifier[0];
2448 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2449
2450 mutex_lock(&dev->struct_mutex);
2451
2452 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2453 &mode_cmd, obj)) {
2454 DRM_DEBUG_KMS("intel fb init failed\n");
2455 goto out_unref_obj;
2456 }
2457
2458 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2459 mutex_unlock(&dev->struct_mutex);
2460
2461 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2462 return true;
2463
2464 out_unref_obj:
2465 drm_gem_object_unreference(&obj->base);
2466 mutex_unlock(&dev->struct_mutex);
2467 return false;
2468 }
2469
2470 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2471 static void
2472 update_state_fb(struct drm_plane *plane)
2473 {
2474 if (plane->fb == plane->state->fb)
2475 return;
2476
2477 if (plane->state->fb)
2478 drm_framebuffer_unreference(plane->state->fb);
2479 plane->state->fb = plane->fb;
2480 if (plane->state->fb)
2481 drm_framebuffer_reference(plane->state->fb);
2482 }
2483
2484 static void
2485 intel_find_plane_obj(struct intel_crtc *intel_crtc,
2486 struct intel_initial_plane_config *plane_config)
2487 {
2488 struct drm_device *dev = intel_crtc->base.dev;
2489 struct drm_i915_private *dev_priv = dev->dev_private;
2490 struct drm_crtc *c;
2491 struct intel_crtc *i;
2492 struct drm_i915_gem_object *obj;
2493
2494 if (!plane_config->fb)
2495 return;
2496
2497 if (intel_alloc_plane_obj(intel_crtc, plane_config)) {
2498 struct drm_plane *primary = intel_crtc->base.primary;
2499
2500 primary->fb = &plane_config->fb->base;
2501 primary->state->crtc = &intel_crtc->base;
2502 update_state_fb(primary);
2503
2504 return;
2505 }
2506
2507 kfree(plane_config->fb);
2508
2509 /*
2510 * Failed to alloc the obj, check to see if we should share
2511 * an fb with another CRTC instead
2512 */
2513 for_each_crtc(dev, c) {
2514 i = to_intel_crtc(c);
2515
2516 if (c == &intel_crtc->base)
2517 continue;
2518
2519 if (!i->active)
2520 continue;
2521
2522 obj = intel_fb_obj(c->primary->fb);
2523 if (obj == NULL)
2524 continue;
2525
2526 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2527 struct drm_plane *primary = intel_crtc->base.primary;
2528
2529 if (obj->tiling_mode != I915_TILING_NONE)
2530 dev_priv->preserve_bios_swizzle = true;
2531
2532 drm_framebuffer_reference(c->primary->fb);
2533 primary->fb = c->primary->fb;
2534 primary->state->crtc = &intel_crtc->base;
2535 update_state_fb(intel_crtc->base.primary);
2536 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2537 break;
2538 }
2539 }
2540
2541 }
2542
2543 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2544 struct drm_framebuffer *fb,
2545 int x, int y)
2546 {
2547 struct drm_device *dev = crtc->dev;
2548 struct drm_i915_private *dev_priv = dev->dev_private;
2549 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2550 struct drm_i915_gem_object *obj;
2551 int plane = intel_crtc->plane;
2552 unsigned long linear_offset;
2553 u32 dspcntr;
2554 u32 reg = DSPCNTR(plane);
2555 int pixel_size;
2556
2557 if (!intel_crtc->primary_enabled) {
2558 I915_WRITE(reg, 0);
2559 if (INTEL_INFO(dev)->gen >= 4)
2560 I915_WRITE(DSPSURF(plane), 0);
2561 else
2562 I915_WRITE(DSPADDR(plane), 0);
2563 POSTING_READ(reg);
2564 return;
2565 }
2566
2567 obj = intel_fb_obj(fb);
2568 if (WARN_ON(obj == NULL))
2569 return;
2570
2571 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2572
2573 dspcntr = DISPPLANE_GAMMA_ENABLE;
2574
2575 dspcntr |= DISPLAY_PLANE_ENABLE;
2576
2577 if (INTEL_INFO(dev)->gen < 4) {
2578 if (intel_crtc->pipe == PIPE_B)
2579 dspcntr |= DISPPLANE_SEL_PIPE_B;
2580
2581 /* pipesrc and dspsize control the size that is scaled from,
2582 * which should always be the user's requested size.
2583 */
2584 I915_WRITE(DSPSIZE(plane),
2585 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2586 (intel_crtc->config->pipe_src_w - 1));
2587 I915_WRITE(DSPPOS(plane), 0);
2588 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2589 I915_WRITE(PRIMSIZE(plane),
2590 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2591 (intel_crtc->config->pipe_src_w - 1));
2592 I915_WRITE(PRIMPOS(plane), 0);
2593 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2594 }
2595
2596 switch (fb->pixel_format) {
2597 case DRM_FORMAT_C8:
2598 dspcntr |= DISPPLANE_8BPP;
2599 break;
2600 case DRM_FORMAT_XRGB1555:
2601 case DRM_FORMAT_ARGB1555:
2602 dspcntr |= DISPPLANE_BGRX555;
2603 break;
2604 case DRM_FORMAT_RGB565:
2605 dspcntr |= DISPPLANE_BGRX565;
2606 break;
2607 case DRM_FORMAT_XRGB8888:
2608 case DRM_FORMAT_ARGB8888:
2609 dspcntr |= DISPPLANE_BGRX888;
2610 break;
2611 case DRM_FORMAT_XBGR8888:
2612 case DRM_FORMAT_ABGR8888:
2613 dspcntr |= DISPPLANE_RGBX888;
2614 break;
2615 case DRM_FORMAT_XRGB2101010:
2616 case DRM_FORMAT_ARGB2101010:
2617 dspcntr |= DISPPLANE_BGRX101010;
2618 break;
2619 case DRM_FORMAT_XBGR2101010:
2620 case DRM_FORMAT_ABGR2101010:
2621 dspcntr |= DISPPLANE_RGBX101010;
2622 break;
2623 default:
2624 BUG();
2625 }
2626
2627 if (INTEL_INFO(dev)->gen >= 4 &&
2628 obj->tiling_mode != I915_TILING_NONE)
2629 dspcntr |= DISPPLANE_TILED;
2630
2631 if (IS_G4X(dev))
2632 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2633
2634 linear_offset = y * fb->pitches[0] + x * pixel_size;
2635
2636 if (INTEL_INFO(dev)->gen >= 4) {
2637 intel_crtc->dspaddr_offset =
2638 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2639 pixel_size,
2640 fb->pitches[0]);
2641 linear_offset -= intel_crtc->dspaddr_offset;
2642 } else {
2643 intel_crtc->dspaddr_offset = linear_offset;
2644 }
2645
2646 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2647 dspcntr |= DISPPLANE_ROTATE_180;
2648
2649 x += (intel_crtc->config->pipe_src_w - 1);
2650 y += (intel_crtc->config->pipe_src_h - 1);
2651
2652 /* Finding the last pixel of the last line of the display
2653 data and adding to linear_offset*/
2654 linear_offset +=
2655 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2656 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2657 }
2658
2659 I915_WRITE(reg, dspcntr);
2660
2661 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2662 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2663 fb->pitches[0]);
2664 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2665 if (INTEL_INFO(dev)->gen >= 4) {
2666 I915_WRITE(DSPSURF(plane),
2667 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2668 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2669 I915_WRITE(DSPLINOFF(plane), linear_offset);
2670 } else
2671 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2672 POSTING_READ(reg);
2673 }
2674
2675 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2676 struct drm_framebuffer *fb,
2677 int x, int y)
2678 {
2679 struct drm_device *dev = crtc->dev;
2680 struct drm_i915_private *dev_priv = dev->dev_private;
2681 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2682 struct drm_i915_gem_object *obj;
2683 int plane = intel_crtc->plane;
2684 unsigned long linear_offset;
2685 u32 dspcntr;
2686 u32 reg = DSPCNTR(plane);
2687 int pixel_size;
2688
2689 if (!intel_crtc->primary_enabled) {
2690 I915_WRITE(reg, 0);
2691 I915_WRITE(DSPSURF(plane), 0);
2692 POSTING_READ(reg);
2693 return;
2694 }
2695
2696 obj = intel_fb_obj(fb);
2697 if (WARN_ON(obj == NULL))
2698 return;
2699
2700 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2701
2702 dspcntr = DISPPLANE_GAMMA_ENABLE;
2703
2704 dspcntr |= DISPLAY_PLANE_ENABLE;
2705
2706 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2707 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2708
2709 switch (fb->pixel_format) {
2710 case DRM_FORMAT_C8:
2711 dspcntr |= DISPPLANE_8BPP;
2712 break;
2713 case DRM_FORMAT_RGB565:
2714 dspcntr |= DISPPLANE_BGRX565;
2715 break;
2716 case DRM_FORMAT_XRGB8888:
2717 case DRM_FORMAT_ARGB8888:
2718 dspcntr |= DISPPLANE_BGRX888;
2719 break;
2720 case DRM_FORMAT_XBGR8888:
2721 case DRM_FORMAT_ABGR8888:
2722 dspcntr |= DISPPLANE_RGBX888;
2723 break;
2724 case DRM_FORMAT_XRGB2101010:
2725 case DRM_FORMAT_ARGB2101010:
2726 dspcntr |= DISPPLANE_BGRX101010;
2727 break;
2728 case DRM_FORMAT_XBGR2101010:
2729 case DRM_FORMAT_ABGR2101010:
2730 dspcntr |= DISPPLANE_RGBX101010;
2731 break;
2732 default:
2733 BUG();
2734 }
2735
2736 if (obj->tiling_mode != I915_TILING_NONE)
2737 dspcntr |= DISPPLANE_TILED;
2738
2739 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2740 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2741
2742 linear_offset = y * fb->pitches[0] + x * pixel_size;
2743 intel_crtc->dspaddr_offset =
2744 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2745 pixel_size,
2746 fb->pitches[0]);
2747 linear_offset -= intel_crtc->dspaddr_offset;
2748 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2749 dspcntr |= DISPPLANE_ROTATE_180;
2750
2751 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2752 x += (intel_crtc->config->pipe_src_w - 1);
2753 y += (intel_crtc->config->pipe_src_h - 1);
2754
2755 /* Finding the last pixel of the last line of the display
2756 data and adding to linear_offset*/
2757 linear_offset +=
2758 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2759 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2760 }
2761 }
2762
2763 I915_WRITE(reg, dspcntr);
2764
2765 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2766 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2767 fb->pitches[0]);
2768 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2769 I915_WRITE(DSPSURF(plane),
2770 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2771 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2772 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2773 } else {
2774 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2775 I915_WRITE(DSPLINOFF(plane), linear_offset);
2776 }
2777 POSTING_READ(reg);
2778 }
2779
2780 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2781 uint32_t pixel_format)
2782 {
2783 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2784
2785 /*
2786 * The stride is either expressed as a multiple of 64 bytes
2787 * chunks for linear buffers or in number of tiles for tiled
2788 * buffers.
2789 */
2790 switch (fb_modifier) {
2791 case DRM_FORMAT_MOD_NONE:
2792 return 64;
2793 case I915_FORMAT_MOD_X_TILED:
2794 if (INTEL_INFO(dev)->gen == 2)
2795 return 128;
2796 return 512;
2797 case I915_FORMAT_MOD_Y_TILED:
2798 /* No need to check for old gens and Y tiling since this is
2799 * about the display engine and those will be blocked before
2800 * we get here.
2801 */
2802 return 128;
2803 case I915_FORMAT_MOD_Yf_TILED:
2804 if (bits_per_pixel == 8)
2805 return 64;
2806 else
2807 return 128;
2808 default:
2809 MISSING_CASE(fb_modifier);
2810 return 64;
2811 }
2812 }
2813
2814 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2815 struct drm_framebuffer *fb,
2816 int x, int y)
2817 {
2818 struct drm_device *dev = crtc->dev;
2819 struct drm_i915_private *dev_priv = dev->dev_private;
2820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2821 struct drm_i915_gem_object *obj;
2822 int pipe = intel_crtc->pipe;
2823 u32 plane_ctl, stride_div;
2824
2825 if (!intel_crtc->primary_enabled) {
2826 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2827 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2828 POSTING_READ(PLANE_CTL(pipe, 0));
2829 return;
2830 }
2831
2832 plane_ctl = PLANE_CTL_ENABLE |
2833 PLANE_CTL_PIPE_GAMMA_ENABLE |
2834 PLANE_CTL_PIPE_CSC_ENABLE;
2835
2836 switch (fb->pixel_format) {
2837 case DRM_FORMAT_RGB565:
2838 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2839 break;
2840 case DRM_FORMAT_XRGB8888:
2841 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2842 break;
2843 case DRM_FORMAT_ARGB8888:
2844 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2845 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2846 break;
2847 case DRM_FORMAT_XBGR8888:
2848 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2849 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2850 break;
2851 case DRM_FORMAT_ABGR8888:
2852 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2853 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2854 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2855 break;
2856 case DRM_FORMAT_XRGB2101010:
2857 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2858 break;
2859 case DRM_FORMAT_XBGR2101010:
2860 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2861 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2862 break;
2863 default:
2864 BUG();
2865 }
2866
2867 switch (fb->modifier[0]) {
2868 case DRM_FORMAT_MOD_NONE:
2869 break;
2870 case I915_FORMAT_MOD_X_TILED:
2871 plane_ctl |= PLANE_CTL_TILED_X;
2872 break;
2873 case I915_FORMAT_MOD_Y_TILED:
2874 plane_ctl |= PLANE_CTL_TILED_Y;
2875 break;
2876 case I915_FORMAT_MOD_Yf_TILED:
2877 plane_ctl |= PLANE_CTL_TILED_YF;
2878 break;
2879 default:
2880 MISSING_CASE(fb->modifier[0]);
2881 }
2882
2883 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2884 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2885 plane_ctl |= PLANE_CTL_ROTATE_180;
2886
2887 obj = intel_fb_obj(fb);
2888 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
2889 fb->pixel_format);
2890
2891 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2892
2893 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2894 i915_gem_obj_ggtt_offset(obj),
2895 x, y, fb->width, fb->height,
2896 fb->pitches[0]);
2897
2898 I915_WRITE(PLANE_POS(pipe, 0), 0);
2899 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2900 I915_WRITE(PLANE_SIZE(pipe, 0),
2901 (intel_crtc->config->pipe_src_h - 1) << 16 |
2902 (intel_crtc->config->pipe_src_w - 1));
2903 I915_WRITE(PLANE_STRIDE(pipe, 0), fb->pitches[0] / stride_div);
2904 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2905
2906 POSTING_READ(PLANE_SURF(pipe, 0));
2907 }
2908
2909 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2910 static int
2911 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2912 int x, int y, enum mode_set_atomic state)
2913 {
2914 struct drm_device *dev = crtc->dev;
2915 struct drm_i915_private *dev_priv = dev->dev_private;
2916
2917 if (dev_priv->display.disable_fbc)
2918 dev_priv->display.disable_fbc(dev);
2919
2920 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2921
2922 return 0;
2923 }
2924
2925 static void intel_complete_page_flips(struct drm_device *dev)
2926 {
2927 struct drm_crtc *crtc;
2928
2929 for_each_crtc(dev, crtc) {
2930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2931 enum plane plane = intel_crtc->plane;
2932
2933 intel_prepare_page_flip(dev, plane);
2934 intel_finish_page_flip_plane(dev, plane);
2935 }
2936 }
2937
2938 static void intel_update_primary_planes(struct drm_device *dev)
2939 {
2940 struct drm_i915_private *dev_priv = dev->dev_private;
2941 struct drm_crtc *crtc;
2942
2943 for_each_crtc(dev, crtc) {
2944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2945
2946 drm_modeset_lock(&crtc->mutex, NULL);
2947 /*
2948 * FIXME: Once we have proper support for primary planes (and
2949 * disabling them without disabling the entire crtc) allow again
2950 * a NULL crtc->primary->fb.
2951 */
2952 if (intel_crtc->active && crtc->primary->fb)
2953 dev_priv->display.update_primary_plane(crtc,
2954 crtc->primary->fb,
2955 crtc->x,
2956 crtc->y);
2957 drm_modeset_unlock(&crtc->mutex);
2958 }
2959 }
2960
2961 void intel_prepare_reset(struct drm_device *dev)
2962 {
2963 struct drm_i915_private *dev_priv = to_i915(dev);
2964 struct intel_crtc *crtc;
2965
2966 /* no reset support for gen2 */
2967 if (IS_GEN2(dev))
2968 return;
2969
2970 /* reset doesn't touch the display */
2971 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2972 return;
2973
2974 drm_modeset_lock_all(dev);
2975
2976 /*
2977 * Disabling the crtcs gracefully seems nicer. Also the
2978 * g33 docs say we should at least disable all the planes.
2979 */
2980 for_each_intel_crtc(dev, crtc) {
2981 if (crtc->active)
2982 dev_priv->display.crtc_disable(&crtc->base);
2983 }
2984 }
2985
2986 void intel_finish_reset(struct drm_device *dev)
2987 {
2988 struct drm_i915_private *dev_priv = to_i915(dev);
2989
2990 /*
2991 * Flips in the rings will be nuked by the reset,
2992 * so complete all pending flips so that user space
2993 * will get its events and not get stuck.
2994 */
2995 intel_complete_page_flips(dev);
2996
2997 /* no reset support for gen2 */
2998 if (IS_GEN2(dev))
2999 return;
3000
3001 /* reset doesn't touch the display */
3002 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3003 /*
3004 * Flips in the rings have been nuked by the reset,
3005 * so update the base address of all primary
3006 * planes to the the last fb to make sure we're
3007 * showing the correct fb after a reset.
3008 */
3009 intel_update_primary_planes(dev);
3010 return;
3011 }
3012
3013 /*
3014 * The display has been reset as well,
3015 * so need a full re-initialization.
3016 */
3017 intel_runtime_pm_disable_interrupts(dev_priv);
3018 intel_runtime_pm_enable_interrupts(dev_priv);
3019
3020 intel_modeset_init_hw(dev);
3021
3022 spin_lock_irq(&dev_priv->irq_lock);
3023 if (dev_priv->display.hpd_irq_setup)
3024 dev_priv->display.hpd_irq_setup(dev);
3025 spin_unlock_irq(&dev_priv->irq_lock);
3026
3027 intel_modeset_setup_hw_state(dev, true);
3028
3029 intel_hpd_init(dev_priv);
3030
3031 drm_modeset_unlock_all(dev);
3032 }
3033
3034 static int
3035 intel_finish_fb(struct drm_framebuffer *old_fb)
3036 {
3037 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3038 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3039 bool was_interruptible = dev_priv->mm.interruptible;
3040 int ret;
3041
3042 /* Big Hammer, we also need to ensure that any pending
3043 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3044 * current scanout is retired before unpinning the old
3045 * framebuffer.
3046 *
3047 * This should only fail upon a hung GPU, in which case we
3048 * can safely continue.
3049 */
3050 dev_priv->mm.interruptible = false;
3051 ret = i915_gem_object_finish_gpu(obj);
3052 dev_priv->mm.interruptible = was_interruptible;
3053
3054 return ret;
3055 }
3056
3057 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3058 {
3059 struct drm_device *dev = crtc->dev;
3060 struct drm_i915_private *dev_priv = dev->dev_private;
3061 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3062 bool pending;
3063
3064 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3065 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3066 return false;
3067
3068 spin_lock_irq(&dev->event_lock);
3069 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3070 spin_unlock_irq(&dev->event_lock);
3071
3072 return pending;
3073 }
3074
3075 static void intel_update_pipe_size(struct intel_crtc *crtc)
3076 {
3077 struct drm_device *dev = crtc->base.dev;
3078 struct drm_i915_private *dev_priv = dev->dev_private;
3079 const struct drm_display_mode *adjusted_mode;
3080
3081 if (!i915.fastboot)
3082 return;
3083
3084 /*
3085 * Update pipe size and adjust fitter if needed: the reason for this is
3086 * that in compute_mode_changes we check the native mode (not the pfit
3087 * mode) to see if we can flip rather than do a full mode set. In the
3088 * fastboot case, we'll flip, but if we don't update the pipesrc and
3089 * pfit state, we'll end up with a big fb scanned out into the wrong
3090 * sized surface.
3091 *
3092 * To fix this properly, we need to hoist the checks up into
3093 * compute_mode_changes (or above), check the actual pfit state and
3094 * whether the platform allows pfit disable with pipe active, and only
3095 * then update the pipesrc and pfit state, even on the flip path.
3096 */
3097
3098 adjusted_mode = &crtc->config->base.adjusted_mode;
3099
3100 I915_WRITE(PIPESRC(crtc->pipe),
3101 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3102 (adjusted_mode->crtc_vdisplay - 1));
3103 if (!crtc->config->pch_pfit.enabled &&
3104 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3105 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3106 I915_WRITE(PF_CTL(crtc->pipe), 0);
3107 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3108 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3109 }
3110 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3111 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3112 }
3113
3114 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3115 {
3116 struct drm_device *dev = crtc->dev;
3117 struct drm_i915_private *dev_priv = dev->dev_private;
3118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119 int pipe = intel_crtc->pipe;
3120 u32 reg, temp;
3121
3122 /* enable normal train */
3123 reg = FDI_TX_CTL(pipe);
3124 temp = I915_READ(reg);
3125 if (IS_IVYBRIDGE(dev)) {
3126 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3127 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3128 } else {
3129 temp &= ~FDI_LINK_TRAIN_NONE;
3130 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3131 }
3132 I915_WRITE(reg, temp);
3133
3134 reg = FDI_RX_CTL(pipe);
3135 temp = I915_READ(reg);
3136 if (HAS_PCH_CPT(dev)) {
3137 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3138 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3139 } else {
3140 temp &= ~FDI_LINK_TRAIN_NONE;
3141 temp |= FDI_LINK_TRAIN_NONE;
3142 }
3143 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3144
3145 /* wait one idle pattern time */
3146 POSTING_READ(reg);
3147 udelay(1000);
3148
3149 /* IVB wants error correction enabled */
3150 if (IS_IVYBRIDGE(dev))
3151 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3152 FDI_FE_ERRC_ENABLE);
3153 }
3154
3155 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3156 {
3157 return crtc->base.state->enable && crtc->active &&
3158 crtc->config->has_pch_encoder;
3159 }
3160
3161 static void ivb_modeset_global_resources(struct drm_device *dev)
3162 {
3163 struct drm_i915_private *dev_priv = dev->dev_private;
3164 struct intel_crtc *pipe_B_crtc =
3165 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3166 struct intel_crtc *pipe_C_crtc =
3167 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3168 uint32_t temp;
3169
3170 /*
3171 * When everything is off disable fdi C so that we could enable fdi B
3172 * with all lanes. Note that we don't care about enabled pipes without
3173 * an enabled pch encoder.
3174 */
3175 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3176 !pipe_has_enabled_pch(pipe_C_crtc)) {
3177 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3178 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3179
3180 temp = I915_READ(SOUTH_CHICKEN1);
3181 temp &= ~FDI_BC_BIFURCATION_SELECT;
3182 DRM_DEBUG_KMS("disabling fdi C rx\n");
3183 I915_WRITE(SOUTH_CHICKEN1, temp);
3184 }
3185 }
3186
3187 /* The FDI link training functions for ILK/Ibexpeak. */
3188 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3189 {
3190 struct drm_device *dev = crtc->dev;
3191 struct drm_i915_private *dev_priv = dev->dev_private;
3192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3193 int pipe = intel_crtc->pipe;
3194 u32 reg, temp, tries;
3195
3196 /* FDI needs bits from pipe first */
3197 assert_pipe_enabled(dev_priv, pipe);
3198
3199 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3200 for train result */
3201 reg = FDI_RX_IMR(pipe);
3202 temp = I915_READ(reg);
3203 temp &= ~FDI_RX_SYMBOL_LOCK;
3204 temp &= ~FDI_RX_BIT_LOCK;
3205 I915_WRITE(reg, temp);
3206 I915_READ(reg);
3207 udelay(150);
3208
3209 /* enable CPU FDI TX and PCH FDI RX */
3210 reg = FDI_TX_CTL(pipe);
3211 temp = I915_READ(reg);
3212 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3213 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3214 temp &= ~FDI_LINK_TRAIN_NONE;
3215 temp |= FDI_LINK_TRAIN_PATTERN_1;
3216 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3217
3218 reg = FDI_RX_CTL(pipe);
3219 temp = I915_READ(reg);
3220 temp &= ~FDI_LINK_TRAIN_NONE;
3221 temp |= FDI_LINK_TRAIN_PATTERN_1;
3222 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3223
3224 POSTING_READ(reg);
3225 udelay(150);
3226
3227 /* Ironlake workaround, enable clock pointer after FDI enable*/
3228 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3229 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3230 FDI_RX_PHASE_SYNC_POINTER_EN);
3231
3232 reg = FDI_RX_IIR(pipe);
3233 for (tries = 0; tries < 5; tries++) {
3234 temp = I915_READ(reg);
3235 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3236
3237 if ((temp & FDI_RX_BIT_LOCK)) {
3238 DRM_DEBUG_KMS("FDI train 1 done.\n");
3239 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3240 break;
3241 }
3242 }
3243 if (tries == 5)
3244 DRM_ERROR("FDI train 1 fail!\n");
3245
3246 /* Train 2 */
3247 reg = FDI_TX_CTL(pipe);
3248 temp = I915_READ(reg);
3249 temp &= ~FDI_LINK_TRAIN_NONE;
3250 temp |= FDI_LINK_TRAIN_PATTERN_2;
3251 I915_WRITE(reg, temp);
3252
3253 reg = FDI_RX_CTL(pipe);
3254 temp = I915_READ(reg);
3255 temp &= ~FDI_LINK_TRAIN_NONE;
3256 temp |= FDI_LINK_TRAIN_PATTERN_2;
3257 I915_WRITE(reg, temp);
3258
3259 POSTING_READ(reg);
3260 udelay(150);
3261
3262 reg = FDI_RX_IIR(pipe);
3263 for (tries = 0; tries < 5; tries++) {
3264 temp = I915_READ(reg);
3265 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3266
3267 if (temp & FDI_RX_SYMBOL_LOCK) {
3268 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3269 DRM_DEBUG_KMS("FDI train 2 done.\n");
3270 break;
3271 }
3272 }
3273 if (tries == 5)
3274 DRM_ERROR("FDI train 2 fail!\n");
3275
3276 DRM_DEBUG_KMS("FDI train done\n");
3277
3278 }
3279
3280 static const int snb_b_fdi_train_param[] = {
3281 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3282 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3283 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3284 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3285 };
3286
3287 /* The FDI link training functions for SNB/Cougarpoint. */
3288 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3289 {
3290 struct drm_device *dev = crtc->dev;
3291 struct drm_i915_private *dev_priv = dev->dev_private;
3292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3293 int pipe = intel_crtc->pipe;
3294 u32 reg, temp, i, retry;
3295
3296 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3297 for train result */
3298 reg = FDI_RX_IMR(pipe);
3299 temp = I915_READ(reg);
3300 temp &= ~FDI_RX_SYMBOL_LOCK;
3301 temp &= ~FDI_RX_BIT_LOCK;
3302 I915_WRITE(reg, temp);
3303
3304 POSTING_READ(reg);
3305 udelay(150);
3306
3307 /* enable CPU FDI TX and PCH FDI RX */
3308 reg = FDI_TX_CTL(pipe);
3309 temp = I915_READ(reg);
3310 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3311 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3312 temp &= ~FDI_LINK_TRAIN_NONE;
3313 temp |= FDI_LINK_TRAIN_PATTERN_1;
3314 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3315 /* SNB-B */
3316 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3317 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3318
3319 I915_WRITE(FDI_RX_MISC(pipe),
3320 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3321
3322 reg = FDI_RX_CTL(pipe);
3323 temp = I915_READ(reg);
3324 if (HAS_PCH_CPT(dev)) {
3325 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3326 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3327 } else {
3328 temp &= ~FDI_LINK_TRAIN_NONE;
3329 temp |= FDI_LINK_TRAIN_PATTERN_1;
3330 }
3331 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3332
3333 POSTING_READ(reg);
3334 udelay(150);
3335
3336 for (i = 0; i < 4; i++) {
3337 reg = FDI_TX_CTL(pipe);
3338 temp = I915_READ(reg);
3339 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3340 temp |= snb_b_fdi_train_param[i];
3341 I915_WRITE(reg, temp);
3342
3343 POSTING_READ(reg);
3344 udelay(500);
3345
3346 for (retry = 0; retry < 5; retry++) {
3347 reg = FDI_RX_IIR(pipe);
3348 temp = I915_READ(reg);
3349 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3350 if (temp & FDI_RX_BIT_LOCK) {
3351 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3352 DRM_DEBUG_KMS("FDI train 1 done.\n");
3353 break;
3354 }
3355 udelay(50);
3356 }
3357 if (retry < 5)
3358 break;
3359 }
3360 if (i == 4)
3361 DRM_ERROR("FDI train 1 fail!\n");
3362
3363 /* Train 2 */
3364 reg = FDI_TX_CTL(pipe);
3365 temp = I915_READ(reg);
3366 temp &= ~FDI_LINK_TRAIN_NONE;
3367 temp |= FDI_LINK_TRAIN_PATTERN_2;
3368 if (IS_GEN6(dev)) {
3369 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3370 /* SNB-B */
3371 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3372 }
3373 I915_WRITE(reg, temp);
3374
3375 reg = FDI_RX_CTL(pipe);
3376 temp = I915_READ(reg);
3377 if (HAS_PCH_CPT(dev)) {
3378 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3379 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3380 } else {
3381 temp &= ~FDI_LINK_TRAIN_NONE;
3382 temp |= FDI_LINK_TRAIN_PATTERN_2;
3383 }
3384 I915_WRITE(reg, temp);
3385
3386 POSTING_READ(reg);
3387 udelay(150);
3388
3389 for (i = 0; i < 4; i++) {
3390 reg = FDI_TX_CTL(pipe);
3391 temp = I915_READ(reg);
3392 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3393 temp |= snb_b_fdi_train_param[i];
3394 I915_WRITE(reg, temp);
3395
3396 POSTING_READ(reg);
3397 udelay(500);
3398
3399 for (retry = 0; retry < 5; retry++) {
3400 reg = FDI_RX_IIR(pipe);
3401 temp = I915_READ(reg);
3402 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3403 if (temp & FDI_RX_SYMBOL_LOCK) {
3404 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3405 DRM_DEBUG_KMS("FDI train 2 done.\n");
3406 break;
3407 }
3408 udelay(50);
3409 }
3410 if (retry < 5)
3411 break;
3412 }
3413 if (i == 4)
3414 DRM_ERROR("FDI train 2 fail!\n");
3415
3416 DRM_DEBUG_KMS("FDI train done.\n");
3417 }
3418
3419 /* Manual link training for Ivy Bridge A0 parts */
3420 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3421 {
3422 struct drm_device *dev = crtc->dev;
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3425 int pipe = intel_crtc->pipe;
3426 u32 reg, temp, i, j;
3427
3428 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3429 for train result */
3430 reg = FDI_RX_IMR(pipe);
3431 temp = I915_READ(reg);
3432 temp &= ~FDI_RX_SYMBOL_LOCK;
3433 temp &= ~FDI_RX_BIT_LOCK;
3434 I915_WRITE(reg, temp);
3435
3436 POSTING_READ(reg);
3437 udelay(150);
3438
3439 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3440 I915_READ(FDI_RX_IIR(pipe)));
3441
3442 /* Try each vswing and preemphasis setting twice before moving on */
3443 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3444 /* disable first in case we need to retry */
3445 reg = FDI_TX_CTL(pipe);
3446 temp = I915_READ(reg);
3447 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3448 temp &= ~FDI_TX_ENABLE;
3449 I915_WRITE(reg, temp);
3450
3451 reg = FDI_RX_CTL(pipe);
3452 temp = I915_READ(reg);
3453 temp &= ~FDI_LINK_TRAIN_AUTO;
3454 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3455 temp &= ~FDI_RX_ENABLE;
3456 I915_WRITE(reg, temp);
3457
3458 /* enable CPU FDI TX and PCH FDI RX */
3459 reg = FDI_TX_CTL(pipe);
3460 temp = I915_READ(reg);
3461 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3462 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3463 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3464 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3465 temp |= snb_b_fdi_train_param[j/2];
3466 temp |= FDI_COMPOSITE_SYNC;
3467 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3468
3469 I915_WRITE(FDI_RX_MISC(pipe),
3470 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3471
3472 reg = FDI_RX_CTL(pipe);
3473 temp = I915_READ(reg);
3474 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3475 temp |= FDI_COMPOSITE_SYNC;
3476 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3477
3478 POSTING_READ(reg);
3479 udelay(1); /* should be 0.5us */
3480
3481 for (i = 0; i < 4; i++) {
3482 reg = FDI_RX_IIR(pipe);
3483 temp = I915_READ(reg);
3484 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3485
3486 if (temp & FDI_RX_BIT_LOCK ||
3487 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3488 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3489 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3490 i);
3491 break;
3492 }
3493 udelay(1); /* should be 0.5us */
3494 }
3495 if (i == 4) {
3496 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3497 continue;
3498 }
3499
3500 /* Train 2 */
3501 reg = FDI_TX_CTL(pipe);
3502 temp = I915_READ(reg);
3503 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3504 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3505 I915_WRITE(reg, temp);
3506
3507 reg = FDI_RX_CTL(pipe);
3508 temp = I915_READ(reg);
3509 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3510 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3511 I915_WRITE(reg, temp);
3512
3513 POSTING_READ(reg);
3514 udelay(2); /* should be 1.5us */
3515
3516 for (i = 0; i < 4; i++) {
3517 reg = FDI_RX_IIR(pipe);
3518 temp = I915_READ(reg);
3519 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3520
3521 if (temp & FDI_RX_SYMBOL_LOCK ||
3522 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3523 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3524 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3525 i);
3526 goto train_done;
3527 }
3528 udelay(2); /* should be 1.5us */
3529 }
3530 if (i == 4)
3531 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3532 }
3533
3534 train_done:
3535 DRM_DEBUG_KMS("FDI train done.\n");
3536 }
3537
3538 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3539 {
3540 struct drm_device *dev = intel_crtc->base.dev;
3541 struct drm_i915_private *dev_priv = dev->dev_private;
3542 int pipe = intel_crtc->pipe;
3543 u32 reg, temp;
3544
3545
3546 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3547 reg = FDI_RX_CTL(pipe);
3548 temp = I915_READ(reg);
3549 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3550 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3551 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3552 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3553
3554 POSTING_READ(reg);
3555 udelay(200);
3556
3557 /* Switch from Rawclk to PCDclk */
3558 temp = I915_READ(reg);
3559 I915_WRITE(reg, temp | FDI_PCDCLK);
3560
3561 POSTING_READ(reg);
3562 udelay(200);
3563
3564 /* Enable CPU FDI TX PLL, always on for Ironlake */
3565 reg = FDI_TX_CTL(pipe);
3566 temp = I915_READ(reg);
3567 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3568 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3569
3570 POSTING_READ(reg);
3571 udelay(100);
3572 }
3573 }
3574
3575 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3576 {
3577 struct drm_device *dev = intel_crtc->base.dev;
3578 struct drm_i915_private *dev_priv = dev->dev_private;
3579 int pipe = intel_crtc->pipe;
3580 u32 reg, temp;
3581
3582 /* Switch from PCDclk to Rawclk */
3583 reg = FDI_RX_CTL(pipe);
3584 temp = I915_READ(reg);
3585 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3586
3587 /* Disable CPU FDI TX PLL */
3588 reg = FDI_TX_CTL(pipe);
3589 temp = I915_READ(reg);
3590 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3591
3592 POSTING_READ(reg);
3593 udelay(100);
3594
3595 reg = FDI_RX_CTL(pipe);
3596 temp = I915_READ(reg);
3597 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3598
3599 /* Wait for the clocks to turn off. */
3600 POSTING_READ(reg);
3601 udelay(100);
3602 }
3603
3604 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3605 {
3606 struct drm_device *dev = crtc->dev;
3607 struct drm_i915_private *dev_priv = dev->dev_private;
3608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3609 int pipe = intel_crtc->pipe;
3610 u32 reg, temp;
3611
3612 /* disable CPU FDI tx and PCH FDI rx */
3613 reg = FDI_TX_CTL(pipe);
3614 temp = I915_READ(reg);
3615 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3616 POSTING_READ(reg);
3617
3618 reg = FDI_RX_CTL(pipe);
3619 temp = I915_READ(reg);
3620 temp &= ~(0x7 << 16);
3621 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3622 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3623
3624 POSTING_READ(reg);
3625 udelay(100);
3626
3627 /* Ironlake workaround, disable clock pointer after downing FDI */
3628 if (HAS_PCH_IBX(dev))
3629 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3630
3631 /* still set train pattern 1 */
3632 reg = FDI_TX_CTL(pipe);
3633 temp = I915_READ(reg);
3634 temp &= ~FDI_LINK_TRAIN_NONE;
3635 temp |= FDI_LINK_TRAIN_PATTERN_1;
3636 I915_WRITE(reg, temp);
3637
3638 reg = FDI_RX_CTL(pipe);
3639 temp = I915_READ(reg);
3640 if (HAS_PCH_CPT(dev)) {
3641 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3642 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3643 } else {
3644 temp &= ~FDI_LINK_TRAIN_NONE;
3645 temp |= FDI_LINK_TRAIN_PATTERN_1;
3646 }
3647 /* BPC in FDI rx is consistent with that in PIPECONF */
3648 temp &= ~(0x07 << 16);
3649 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3650 I915_WRITE(reg, temp);
3651
3652 POSTING_READ(reg);
3653 udelay(100);
3654 }
3655
3656 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3657 {
3658 struct intel_crtc *crtc;
3659
3660 /* Note that we don't need to be called with mode_config.lock here
3661 * as our list of CRTC objects is static for the lifetime of the
3662 * device and so cannot disappear as we iterate. Similarly, we can
3663 * happily treat the predicates as racy, atomic checks as userspace
3664 * cannot claim and pin a new fb without at least acquring the
3665 * struct_mutex and so serialising with us.
3666 */
3667 for_each_intel_crtc(dev, crtc) {
3668 if (atomic_read(&crtc->unpin_work_count) == 0)
3669 continue;
3670
3671 if (crtc->unpin_work)
3672 intel_wait_for_vblank(dev, crtc->pipe);
3673
3674 return true;
3675 }
3676
3677 return false;
3678 }
3679
3680 static void page_flip_completed(struct intel_crtc *intel_crtc)
3681 {
3682 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3683 struct intel_unpin_work *work = intel_crtc->unpin_work;
3684
3685 /* ensure that the unpin work is consistent wrt ->pending. */
3686 smp_rmb();
3687 intel_crtc->unpin_work = NULL;
3688
3689 if (work->event)
3690 drm_send_vblank_event(intel_crtc->base.dev,
3691 intel_crtc->pipe,
3692 work->event);
3693
3694 drm_crtc_vblank_put(&intel_crtc->base);
3695
3696 wake_up_all(&dev_priv->pending_flip_queue);
3697 queue_work(dev_priv->wq, &work->work);
3698
3699 trace_i915_flip_complete(intel_crtc->plane,
3700 work->pending_flip_obj);
3701 }
3702
3703 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3704 {
3705 struct drm_device *dev = crtc->dev;
3706 struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3709 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3710 !intel_crtc_has_pending_flip(crtc),
3711 60*HZ) == 0)) {
3712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3713
3714 spin_lock_irq(&dev->event_lock);
3715 if (intel_crtc->unpin_work) {
3716 WARN_ONCE(1, "Removing stuck page flip\n");
3717 page_flip_completed(intel_crtc);
3718 }
3719 spin_unlock_irq(&dev->event_lock);
3720 }
3721
3722 if (crtc->primary->fb) {
3723 mutex_lock(&dev->struct_mutex);
3724 intel_finish_fb(crtc->primary->fb);
3725 mutex_unlock(&dev->struct_mutex);
3726 }
3727 }
3728
3729 /* Program iCLKIP clock to the desired frequency */
3730 static void lpt_program_iclkip(struct drm_crtc *crtc)
3731 {
3732 struct drm_device *dev = crtc->dev;
3733 struct drm_i915_private *dev_priv = dev->dev_private;
3734 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3735 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3736 u32 temp;
3737
3738 mutex_lock(&dev_priv->dpio_lock);
3739
3740 /* It is necessary to ungate the pixclk gate prior to programming
3741 * the divisors, and gate it back when it is done.
3742 */
3743 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3744
3745 /* Disable SSCCTL */
3746 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3747 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3748 SBI_SSCCTL_DISABLE,
3749 SBI_ICLK);
3750
3751 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3752 if (clock == 20000) {
3753 auxdiv = 1;
3754 divsel = 0x41;
3755 phaseinc = 0x20;
3756 } else {
3757 /* The iCLK virtual clock root frequency is in MHz,
3758 * but the adjusted_mode->crtc_clock in in KHz. To get the
3759 * divisors, it is necessary to divide one by another, so we
3760 * convert the virtual clock precision to KHz here for higher
3761 * precision.
3762 */
3763 u32 iclk_virtual_root_freq = 172800 * 1000;
3764 u32 iclk_pi_range = 64;
3765 u32 desired_divisor, msb_divisor_value, pi_value;
3766
3767 desired_divisor = (iclk_virtual_root_freq / clock);
3768 msb_divisor_value = desired_divisor / iclk_pi_range;
3769 pi_value = desired_divisor % iclk_pi_range;
3770
3771 auxdiv = 0;
3772 divsel = msb_divisor_value - 2;
3773 phaseinc = pi_value;
3774 }
3775
3776 /* This should not happen with any sane values */
3777 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3778 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3779 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3780 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3781
3782 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3783 clock,
3784 auxdiv,
3785 divsel,
3786 phasedir,
3787 phaseinc);
3788
3789 /* Program SSCDIVINTPHASE6 */
3790 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3791 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3792 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3793 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3794 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3795 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3796 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3797 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3798
3799 /* Program SSCAUXDIV */
3800 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3801 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3802 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3803 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3804
3805 /* Enable modulator and associated divider */
3806 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3807 temp &= ~SBI_SSCCTL_DISABLE;
3808 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3809
3810 /* Wait for initialization time */
3811 udelay(24);
3812
3813 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3814
3815 mutex_unlock(&dev_priv->dpio_lock);
3816 }
3817
3818 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3819 enum pipe pch_transcoder)
3820 {
3821 struct drm_device *dev = crtc->base.dev;
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3824
3825 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3826 I915_READ(HTOTAL(cpu_transcoder)));
3827 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3828 I915_READ(HBLANK(cpu_transcoder)));
3829 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3830 I915_READ(HSYNC(cpu_transcoder)));
3831
3832 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3833 I915_READ(VTOTAL(cpu_transcoder)));
3834 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3835 I915_READ(VBLANK(cpu_transcoder)));
3836 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3837 I915_READ(VSYNC(cpu_transcoder)));
3838 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3839 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3840 }
3841
3842 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3843 {
3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845 uint32_t temp;
3846
3847 temp = I915_READ(SOUTH_CHICKEN1);
3848 if (temp & FDI_BC_BIFURCATION_SELECT)
3849 return;
3850
3851 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3852 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3853
3854 temp |= FDI_BC_BIFURCATION_SELECT;
3855 DRM_DEBUG_KMS("enabling fdi C rx\n");
3856 I915_WRITE(SOUTH_CHICKEN1, temp);
3857 POSTING_READ(SOUTH_CHICKEN1);
3858 }
3859
3860 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3861 {
3862 struct drm_device *dev = intel_crtc->base.dev;
3863 struct drm_i915_private *dev_priv = dev->dev_private;
3864
3865 switch (intel_crtc->pipe) {
3866 case PIPE_A:
3867 break;
3868 case PIPE_B:
3869 if (intel_crtc->config->fdi_lanes > 2)
3870 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3871 else
3872 cpt_enable_fdi_bc_bifurcation(dev);
3873
3874 break;
3875 case PIPE_C:
3876 cpt_enable_fdi_bc_bifurcation(dev);
3877
3878 break;
3879 default:
3880 BUG();
3881 }
3882 }
3883
3884 /*
3885 * Enable PCH resources required for PCH ports:
3886 * - PCH PLLs
3887 * - FDI training & RX/TX
3888 * - update transcoder timings
3889 * - DP transcoding bits
3890 * - transcoder
3891 */
3892 static void ironlake_pch_enable(struct drm_crtc *crtc)
3893 {
3894 struct drm_device *dev = crtc->dev;
3895 struct drm_i915_private *dev_priv = dev->dev_private;
3896 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3897 int pipe = intel_crtc->pipe;
3898 u32 reg, temp;
3899
3900 assert_pch_transcoder_disabled(dev_priv, pipe);
3901
3902 if (IS_IVYBRIDGE(dev))
3903 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3904
3905 /* Write the TU size bits before fdi link training, so that error
3906 * detection works. */
3907 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3908 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3909
3910 /* For PCH output, training FDI link */
3911 dev_priv->display.fdi_link_train(crtc);
3912
3913 /* We need to program the right clock selection before writing the pixel
3914 * mutliplier into the DPLL. */
3915 if (HAS_PCH_CPT(dev)) {
3916 u32 sel;
3917
3918 temp = I915_READ(PCH_DPLL_SEL);
3919 temp |= TRANS_DPLL_ENABLE(pipe);
3920 sel = TRANS_DPLLB_SEL(pipe);
3921 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3922 temp |= sel;
3923 else
3924 temp &= ~sel;
3925 I915_WRITE(PCH_DPLL_SEL, temp);
3926 }
3927
3928 /* XXX: pch pll's can be enabled any time before we enable the PCH
3929 * transcoder, and we actually should do this to not upset any PCH
3930 * transcoder that already use the clock when we share it.
3931 *
3932 * Note that enable_shared_dpll tries to do the right thing, but
3933 * get_shared_dpll unconditionally resets the pll - we need that to have
3934 * the right LVDS enable sequence. */
3935 intel_enable_shared_dpll(intel_crtc);
3936
3937 /* set transcoder timing, panel must allow it */
3938 assert_panel_unlocked(dev_priv, pipe);
3939 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3940
3941 intel_fdi_normal_train(crtc);
3942
3943 /* For PCH DP, enable TRANS_DP_CTL */
3944 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3945 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3946 reg = TRANS_DP_CTL(pipe);
3947 temp = I915_READ(reg);
3948 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3949 TRANS_DP_SYNC_MASK |
3950 TRANS_DP_BPC_MASK);
3951 temp |= (TRANS_DP_OUTPUT_ENABLE |
3952 TRANS_DP_ENH_FRAMING);
3953 temp |= bpc << 9; /* same format but at 11:9 */
3954
3955 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3956 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3957 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3958 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3959
3960 switch (intel_trans_dp_port_sel(crtc)) {
3961 case PCH_DP_B:
3962 temp |= TRANS_DP_PORT_SEL_B;
3963 break;
3964 case PCH_DP_C:
3965 temp |= TRANS_DP_PORT_SEL_C;
3966 break;
3967 case PCH_DP_D:
3968 temp |= TRANS_DP_PORT_SEL_D;
3969 break;
3970 default:
3971 BUG();
3972 }
3973
3974 I915_WRITE(reg, temp);
3975 }
3976
3977 ironlake_enable_pch_transcoder(dev_priv, pipe);
3978 }
3979
3980 static void lpt_pch_enable(struct drm_crtc *crtc)
3981 {
3982 struct drm_device *dev = crtc->dev;
3983 struct drm_i915_private *dev_priv = dev->dev_private;
3984 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3985 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3986
3987 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3988
3989 lpt_program_iclkip(crtc);
3990
3991 /* Set transcoder timing. */
3992 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3993
3994 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3995 }
3996
3997 void intel_put_shared_dpll(struct intel_crtc *crtc)
3998 {
3999 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4000
4001 if (pll == NULL)
4002 return;
4003
4004 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4005 WARN(1, "bad %s crtc mask\n", pll->name);
4006 return;
4007 }
4008
4009 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4010 if (pll->config.crtc_mask == 0) {
4011 WARN_ON(pll->on);
4012 WARN_ON(pll->active);
4013 }
4014
4015 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4016 }
4017
4018 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4019 struct intel_crtc_state *crtc_state)
4020 {
4021 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4022 struct intel_shared_dpll *pll;
4023 enum intel_dpll_id i;
4024
4025 if (HAS_PCH_IBX(dev_priv->dev)) {
4026 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4027 i = (enum intel_dpll_id) crtc->pipe;
4028 pll = &dev_priv->shared_dplls[i];
4029
4030 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4031 crtc->base.base.id, pll->name);
4032
4033 WARN_ON(pll->new_config->crtc_mask);
4034
4035 goto found;
4036 }
4037
4038 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4039 pll = &dev_priv->shared_dplls[i];
4040
4041 /* Only want to check enabled timings first */
4042 if (pll->new_config->crtc_mask == 0)
4043 continue;
4044
4045 if (memcmp(&crtc_state->dpll_hw_state,
4046 &pll->new_config->hw_state,
4047 sizeof(pll->new_config->hw_state)) == 0) {
4048 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4049 crtc->base.base.id, pll->name,
4050 pll->new_config->crtc_mask,
4051 pll->active);
4052 goto found;
4053 }
4054 }
4055
4056 /* Ok no matching timings, maybe there's a free one? */
4057 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4058 pll = &dev_priv->shared_dplls[i];
4059 if (pll->new_config->crtc_mask == 0) {
4060 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4061 crtc->base.base.id, pll->name);
4062 goto found;
4063 }
4064 }
4065
4066 return NULL;
4067
4068 found:
4069 if (pll->new_config->crtc_mask == 0)
4070 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4071
4072 crtc_state->shared_dpll = i;
4073 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4074 pipe_name(crtc->pipe));
4075
4076 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4077
4078 return pll;
4079 }
4080
4081 /**
4082 * intel_shared_dpll_start_config - start a new PLL staged config
4083 * @dev_priv: DRM device
4084 * @clear_pipes: mask of pipes that will have their PLLs freed
4085 *
4086 * Starts a new PLL staged config, copying the current config but
4087 * releasing the references of pipes specified in clear_pipes.
4088 */
4089 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4090 unsigned clear_pipes)
4091 {
4092 struct intel_shared_dpll *pll;
4093 enum intel_dpll_id i;
4094
4095 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4096 pll = &dev_priv->shared_dplls[i];
4097
4098 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4099 GFP_KERNEL);
4100 if (!pll->new_config)
4101 goto cleanup;
4102
4103 pll->new_config->crtc_mask &= ~clear_pipes;
4104 }
4105
4106 return 0;
4107
4108 cleanup:
4109 while (--i >= 0) {
4110 pll = &dev_priv->shared_dplls[i];
4111 kfree(pll->new_config);
4112 pll->new_config = NULL;
4113 }
4114
4115 return -ENOMEM;
4116 }
4117
4118 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4119 {
4120 struct intel_shared_dpll *pll;
4121 enum intel_dpll_id i;
4122
4123 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4124 pll = &dev_priv->shared_dplls[i];
4125
4126 WARN_ON(pll->new_config == &pll->config);
4127
4128 pll->config = *pll->new_config;
4129 kfree(pll->new_config);
4130 pll->new_config = NULL;
4131 }
4132 }
4133
4134 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4135 {
4136 struct intel_shared_dpll *pll;
4137 enum intel_dpll_id i;
4138
4139 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4140 pll = &dev_priv->shared_dplls[i];
4141
4142 WARN_ON(pll->new_config == &pll->config);
4143
4144 kfree(pll->new_config);
4145 pll->new_config = NULL;
4146 }
4147 }
4148
4149 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4150 {
4151 struct drm_i915_private *dev_priv = dev->dev_private;
4152 int dslreg = PIPEDSL(pipe);
4153 u32 temp;
4154
4155 temp = I915_READ(dslreg);
4156 udelay(500);
4157 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4158 if (wait_for(I915_READ(dslreg) != temp, 5))
4159 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4160 }
4161 }
4162
4163 static void skylake_pfit_enable(struct intel_crtc *crtc)
4164 {
4165 struct drm_device *dev = crtc->base.dev;
4166 struct drm_i915_private *dev_priv = dev->dev_private;
4167 int pipe = crtc->pipe;
4168
4169 if (crtc->config->pch_pfit.enabled) {
4170 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4171 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4172 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4173 }
4174 }
4175
4176 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4177 {
4178 struct drm_device *dev = crtc->base.dev;
4179 struct drm_i915_private *dev_priv = dev->dev_private;
4180 int pipe = crtc->pipe;
4181
4182 if (crtc->config->pch_pfit.enabled) {
4183 /* Force use of hard-coded filter coefficients
4184 * as some pre-programmed values are broken,
4185 * e.g. x201.
4186 */
4187 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4188 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4189 PF_PIPE_SEL_IVB(pipe));
4190 else
4191 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4192 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4193 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4194 }
4195 }
4196
4197 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4198 {
4199 struct drm_device *dev = crtc->dev;
4200 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4201 struct drm_plane *plane;
4202 struct intel_plane *intel_plane;
4203
4204 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4205 intel_plane = to_intel_plane(plane);
4206 if (intel_plane->pipe == pipe)
4207 intel_plane_restore(&intel_plane->base);
4208 }
4209 }
4210
4211 /*
4212 * Disable a plane internally without actually modifying the plane's state.
4213 * This will allow us to easily restore the plane later by just reprogramming
4214 * its state.
4215 */
4216 static void disable_plane_internal(struct drm_plane *plane)
4217 {
4218 struct intel_plane *intel_plane = to_intel_plane(plane);
4219 struct drm_plane_state *state =
4220 plane->funcs->atomic_duplicate_state(plane);
4221 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4222
4223 intel_state->visible = false;
4224 intel_plane->commit_plane(plane, intel_state);
4225
4226 intel_plane_destroy_state(plane, state);
4227 }
4228
4229 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4230 {
4231 struct drm_device *dev = crtc->dev;
4232 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4233 struct drm_plane *plane;
4234 struct intel_plane *intel_plane;
4235
4236 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4237 intel_plane = to_intel_plane(plane);
4238 if (plane->fb && intel_plane->pipe == pipe)
4239 disable_plane_internal(plane);
4240 }
4241 }
4242
4243 void hsw_enable_ips(struct intel_crtc *crtc)
4244 {
4245 struct drm_device *dev = crtc->base.dev;
4246 struct drm_i915_private *dev_priv = dev->dev_private;
4247
4248 if (!crtc->config->ips_enabled)
4249 return;
4250
4251 /* We can only enable IPS after we enable a plane and wait for a vblank */
4252 intel_wait_for_vblank(dev, crtc->pipe);
4253
4254 assert_plane_enabled(dev_priv, crtc->plane);
4255 if (IS_BROADWELL(dev)) {
4256 mutex_lock(&dev_priv->rps.hw_lock);
4257 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4258 mutex_unlock(&dev_priv->rps.hw_lock);
4259 /* Quoting Art Runyan: "its not safe to expect any particular
4260 * value in IPS_CTL bit 31 after enabling IPS through the
4261 * mailbox." Moreover, the mailbox may return a bogus state,
4262 * so we need to just enable it and continue on.
4263 */
4264 } else {
4265 I915_WRITE(IPS_CTL, IPS_ENABLE);
4266 /* The bit only becomes 1 in the next vblank, so this wait here
4267 * is essentially intel_wait_for_vblank. If we don't have this
4268 * and don't wait for vblanks until the end of crtc_enable, then
4269 * the HW state readout code will complain that the expected
4270 * IPS_CTL value is not the one we read. */
4271 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4272 DRM_ERROR("Timed out waiting for IPS enable\n");
4273 }
4274 }
4275
4276 void hsw_disable_ips(struct intel_crtc *crtc)
4277 {
4278 struct drm_device *dev = crtc->base.dev;
4279 struct drm_i915_private *dev_priv = dev->dev_private;
4280
4281 if (!crtc->config->ips_enabled)
4282 return;
4283
4284 assert_plane_enabled(dev_priv, crtc->plane);
4285 if (IS_BROADWELL(dev)) {
4286 mutex_lock(&dev_priv->rps.hw_lock);
4287 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4288 mutex_unlock(&dev_priv->rps.hw_lock);
4289 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4290 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4291 DRM_ERROR("Timed out waiting for IPS disable\n");
4292 } else {
4293 I915_WRITE(IPS_CTL, 0);
4294 POSTING_READ(IPS_CTL);
4295 }
4296
4297 /* We need to wait for a vblank before we can disable the plane. */
4298 intel_wait_for_vblank(dev, crtc->pipe);
4299 }
4300
4301 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4302 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4303 {
4304 struct drm_device *dev = crtc->dev;
4305 struct drm_i915_private *dev_priv = dev->dev_private;
4306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4307 enum pipe pipe = intel_crtc->pipe;
4308 int palreg = PALETTE(pipe);
4309 int i;
4310 bool reenable_ips = false;
4311
4312 /* The clocks have to be on to load the palette. */
4313 if (!crtc->state->enable || !intel_crtc->active)
4314 return;
4315
4316 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4317 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4318 assert_dsi_pll_enabled(dev_priv);
4319 else
4320 assert_pll_enabled(dev_priv, pipe);
4321 }
4322
4323 /* use legacy palette for Ironlake */
4324 if (!HAS_GMCH_DISPLAY(dev))
4325 palreg = LGC_PALETTE(pipe);
4326
4327 /* Workaround : Do not read or write the pipe palette/gamma data while
4328 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4329 */
4330 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4331 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4332 GAMMA_MODE_MODE_SPLIT)) {
4333 hsw_disable_ips(intel_crtc);
4334 reenable_ips = true;
4335 }
4336
4337 for (i = 0; i < 256; i++) {
4338 I915_WRITE(palreg + 4 * i,
4339 (intel_crtc->lut_r[i] << 16) |
4340 (intel_crtc->lut_g[i] << 8) |
4341 intel_crtc->lut_b[i]);
4342 }
4343
4344 if (reenable_ips)
4345 hsw_enable_ips(intel_crtc);
4346 }
4347
4348 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4349 {
4350 if (!enable && intel_crtc->overlay) {
4351 struct drm_device *dev = intel_crtc->base.dev;
4352 struct drm_i915_private *dev_priv = dev->dev_private;
4353
4354 mutex_lock(&dev->struct_mutex);
4355 dev_priv->mm.interruptible = false;
4356 (void) intel_overlay_switch_off(intel_crtc->overlay);
4357 dev_priv->mm.interruptible = true;
4358 mutex_unlock(&dev->struct_mutex);
4359 }
4360
4361 /* Let userspace switch the overlay on again. In most cases userspace
4362 * has to recompute where to put it anyway.
4363 */
4364 }
4365
4366 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4367 {
4368 struct drm_device *dev = crtc->dev;
4369 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4370 int pipe = intel_crtc->pipe;
4371
4372 intel_enable_primary_hw_plane(crtc->primary, crtc);
4373 intel_enable_sprite_planes(crtc);
4374 intel_crtc_update_cursor(crtc, true);
4375 intel_crtc_dpms_overlay(intel_crtc, true);
4376
4377 hsw_enable_ips(intel_crtc);
4378
4379 mutex_lock(&dev->struct_mutex);
4380 intel_fbc_update(dev);
4381 mutex_unlock(&dev->struct_mutex);
4382
4383 /*
4384 * FIXME: Once we grow proper nuclear flip support out of this we need
4385 * to compute the mask of flip planes precisely. For the time being
4386 * consider this a flip from a NULL plane.
4387 */
4388 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4389 }
4390
4391 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4392 {
4393 struct drm_device *dev = crtc->dev;
4394 struct drm_i915_private *dev_priv = dev->dev_private;
4395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4396 int pipe = intel_crtc->pipe;
4397
4398 intel_crtc_wait_for_pending_flips(crtc);
4399
4400 if (dev_priv->fbc.crtc == intel_crtc)
4401 intel_fbc_disable(dev);
4402
4403 hsw_disable_ips(intel_crtc);
4404
4405 intel_crtc_dpms_overlay(intel_crtc, false);
4406 intel_crtc_update_cursor(crtc, false);
4407 intel_disable_sprite_planes(crtc);
4408 intel_disable_primary_hw_plane(crtc->primary, crtc);
4409
4410 /*
4411 * FIXME: Once we grow proper nuclear flip support out of this we need
4412 * to compute the mask of flip planes precisely. For the time being
4413 * consider this a flip to a NULL plane.
4414 */
4415 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4416 }
4417
4418 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4419 {
4420 struct drm_device *dev = crtc->dev;
4421 struct drm_i915_private *dev_priv = dev->dev_private;
4422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4423 struct intel_encoder *encoder;
4424 int pipe = intel_crtc->pipe;
4425
4426 WARN_ON(!crtc->state->enable);
4427
4428 if (intel_crtc->active)
4429 return;
4430
4431 if (intel_crtc->config->has_pch_encoder)
4432 intel_prepare_shared_dpll(intel_crtc);
4433
4434 if (intel_crtc->config->has_dp_encoder)
4435 intel_dp_set_m_n(intel_crtc, M1_N1);
4436
4437 intel_set_pipe_timings(intel_crtc);
4438
4439 if (intel_crtc->config->has_pch_encoder) {
4440 intel_cpu_transcoder_set_m_n(intel_crtc,
4441 &intel_crtc->config->fdi_m_n, NULL);
4442 }
4443
4444 ironlake_set_pipeconf(crtc);
4445
4446 intel_crtc->active = true;
4447
4448 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4449 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4450
4451 for_each_encoder_on_crtc(dev, crtc, encoder)
4452 if (encoder->pre_enable)
4453 encoder->pre_enable(encoder);
4454
4455 if (intel_crtc->config->has_pch_encoder) {
4456 /* Note: FDI PLL enabling _must_ be done before we enable the
4457 * cpu pipes, hence this is separate from all the other fdi/pch
4458 * enabling. */
4459 ironlake_fdi_pll_enable(intel_crtc);
4460 } else {
4461 assert_fdi_tx_disabled(dev_priv, pipe);
4462 assert_fdi_rx_disabled(dev_priv, pipe);
4463 }
4464
4465 ironlake_pfit_enable(intel_crtc);
4466
4467 /*
4468 * On ILK+ LUT must be loaded before the pipe is running but with
4469 * clocks enabled
4470 */
4471 intel_crtc_load_lut(crtc);
4472
4473 intel_update_watermarks(crtc);
4474 intel_enable_pipe(intel_crtc);
4475
4476 if (intel_crtc->config->has_pch_encoder)
4477 ironlake_pch_enable(crtc);
4478
4479 assert_vblank_disabled(crtc);
4480 drm_crtc_vblank_on(crtc);
4481
4482 for_each_encoder_on_crtc(dev, crtc, encoder)
4483 encoder->enable(encoder);
4484
4485 if (HAS_PCH_CPT(dev))
4486 cpt_verify_modeset(dev, intel_crtc->pipe);
4487
4488 intel_crtc_enable_planes(crtc);
4489 }
4490
4491 /* IPS only exists on ULT machines and is tied to pipe A. */
4492 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4493 {
4494 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4495 }
4496
4497 /*
4498 * This implements the workaround described in the "notes" section of the mode
4499 * set sequence documentation. When going from no pipes or single pipe to
4500 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4501 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4502 */
4503 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4504 {
4505 struct drm_device *dev = crtc->base.dev;
4506 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4507
4508 /* We want to get the other_active_crtc only if there's only 1 other
4509 * active crtc. */
4510 for_each_intel_crtc(dev, crtc_it) {
4511 if (!crtc_it->active || crtc_it == crtc)
4512 continue;
4513
4514 if (other_active_crtc)
4515 return;
4516
4517 other_active_crtc = crtc_it;
4518 }
4519 if (!other_active_crtc)
4520 return;
4521
4522 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4523 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4524 }
4525
4526 static void haswell_crtc_enable(struct drm_crtc *crtc)
4527 {
4528 struct drm_device *dev = crtc->dev;
4529 struct drm_i915_private *dev_priv = dev->dev_private;
4530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4531 struct intel_encoder *encoder;
4532 int pipe = intel_crtc->pipe;
4533
4534 WARN_ON(!crtc->state->enable);
4535
4536 if (intel_crtc->active)
4537 return;
4538
4539 if (intel_crtc_to_shared_dpll(intel_crtc))
4540 intel_enable_shared_dpll(intel_crtc);
4541
4542 if (intel_crtc->config->has_dp_encoder)
4543 intel_dp_set_m_n(intel_crtc, M1_N1);
4544
4545 intel_set_pipe_timings(intel_crtc);
4546
4547 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4548 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4549 intel_crtc->config->pixel_multiplier - 1);
4550 }
4551
4552 if (intel_crtc->config->has_pch_encoder) {
4553 intel_cpu_transcoder_set_m_n(intel_crtc,
4554 &intel_crtc->config->fdi_m_n, NULL);
4555 }
4556
4557 haswell_set_pipeconf(crtc);
4558
4559 intel_set_pipe_csc(crtc);
4560
4561 intel_crtc->active = true;
4562
4563 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4564 for_each_encoder_on_crtc(dev, crtc, encoder)
4565 if (encoder->pre_enable)
4566 encoder->pre_enable(encoder);
4567
4568 if (intel_crtc->config->has_pch_encoder) {
4569 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4570 true);
4571 dev_priv->display.fdi_link_train(crtc);
4572 }
4573
4574 intel_ddi_enable_pipe_clock(intel_crtc);
4575
4576 if (IS_SKYLAKE(dev))
4577 skylake_pfit_enable(intel_crtc);
4578 else
4579 ironlake_pfit_enable(intel_crtc);
4580
4581 /*
4582 * On ILK+ LUT must be loaded before the pipe is running but with
4583 * clocks enabled
4584 */
4585 intel_crtc_load_lut(crtc);
4586
4587 intel_ddi_set_pipe_settings(crtc);
4588 intel_ddi_enable_transcoder_func(crtc);
4589
4590 intel_update_watermarks(crtc);
4591 intel_enable_pipe(intel_crtc);
4592
4593 if (intel_crtc->config->has_pch_encoder)
4594 lpt_pch_enable(crtc);
4595
4596 if (intel_crtc->config->dp_encoder_is_mst)
4597 intel_ddi_set_vc_payload_alloc(crtc, true);
4598
4599 assert_vblank_disabled(crtc);
4600 drm_crtc_vblank_on(crtc);
4601
4602 for_each_encoder_on_crtc(dev, crtc, encoder) {
4603 encoder->enable(encoder);
4604 intel_opregion_notify_encoder(encoder, true);
4605 }
4606
4607 /* If we change the relative order between pipe/planes enabling, we need
4608 * to change the workaround. */
4609 haswell_mode_set_planes_workaround(intel_crtc);
4610 intel_crtc_enable_planes(crtc);
4611 }
4612
4613 static void skylake_pfit_disable(struct intel_crtc *crtc)
4614 {
4615 struct drm_device *dev = crtc->base.dev;
4616 struct drm_i915_private *dev_priv = dev->dev_private;
4617 int pipe = crtc->pipe;
4618
4619 /* To avoid upsetting the power well on haswell only disable the pfit if
4620 * it's in use. The hw state code will make sure we get this right. */
4621 if (crtc->config->pch_pfit.enabled) {
4622 I915_WRITE(PS_CTL(pipe), 0);
4623 I915_WRITE(PS_WIN_POS(pipe), 0);
4624 I915_WRITE(PS_WIN_SZ(pipe), 0);
4625 }
4626 }
4627
4628 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4629 {
4630 struct drm_device *dev = crtc->base.dev;
4631 struct drm_i915_private *dev_priv = dev->dev_private;
4632 int pipe = crtc->pipe;
4633
4634 /* To avoid upsetting the power well on haswell only disable the pfit if
4635 * it's in use. The hw state code will make sure we get this right. */
4636 if (crtc->config->pch_pfit.enabled) {
4637 I915_WRITE(PF_CTL(pipe), 0);
4638 I915_WRITE(PF_WIN_POS(pipe), 0);
4639 I915_WRITE(PF_WIN_SZ(pipe), 0);
4640 }
4641 }
4642
4643 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4644 {
4645 struct drm_device *dev = crtc->dev;
4646 struct drm_i915_private *dev_priv = dev->dev_private;
4647 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4648 struct intel_encoder *encoder;
4649 int pipe = intel_crtc->pipe;
4650 u32 reg, temp;
4651
4652 if (!intel_crtc->active)
4653 return;
4654
4655 intel_crtc_disable_planes(crtc);
4656
4657 for_each_encoder_on_crtc(dev, crtc, encoder)
4658 encoder->disable(encoder);
4659
4660 drm_crtc_vblank_off(crtc);
4661 assert_vblank_disabled(crtc);
4662
4663 if (intel_crtc->config->has_pch_encoder)
4664 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4665
4666 intel_disable_pipe(intel_crtc);
4667
4668 ironlake_pfit_disable(intel_crtc);
4669
4670 for_each_encoder_on_crtc(dev, crtc, encoder)
4671 if (encoder->post_disable)
4672 encoder->post_disable(encoder);
4673
4674 if (intel_crtc->config->has_pch_encoder) {
4675 ironlake_fdi_disable(crtc);
4676
4677 ironlake_disable_pch_transcoder(dev_priv, pipe);
4678
4679 if (HAS_PCH_CPT(dev)) {
4680 /* disable TRANS_DP_CTL */
4681 reg = TRANS_DP_CTL(pipe);
4682 temp = I915_READ(reg);
4683 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4684 TRANS_DP_PORT_SEL_MASK);
4685 temp |= TRANS_DP_PORT_SEL_NONE;
4686 I915_WRITE(reg, temp);
4687
4688 /* disable DPLL_SEL */
4689 temp = I915_READ(PCH_DPLL_SEL);
4690 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4691 I915_WRITE(PCH_DPLL_SEL, temp);
4692 }
4693
4694 /* disable PCH DPLL */
4695 intel_disable_shared_dpll(intel_crtc);
4696
4697 ironlake_fdi_pll_disable(intel_crtc);
4698 }
4699
4700 intel_crtc->active = false;
4701 intel_update_watermarks(crtc);
4702
4703 mutex_lock(&dev->struct_mutex);
4704 intel_fbc_update(dev);
4705 mutex_unlock(&dev->struct_mutex);
4706 }
4707
4708 static void haswell_crtc_disable(struct drm_crtc *crtc)
4709 {
4710 struct drm_device *dev = crtc->dev;
4711 struct drm_i915_private *dev_priv = dev->dev_private;
4712 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4713 struct intel_encoder *encoder;
4714 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4715
4716 if (!intel_crtc->active)
4717 return;
4718
4719 intel_crtc_disable_planes(crtc);
4720
4721 for_each_encoder_on_crtc(dev, crtc, encoder) {
4722 intel_opregion_notify_encoder(encoder, false);
4723 encoder->disable(encoder);
4724 }
4725
4726 drm_crtc_vblank_off(crtc);
4727 assert_vblank_disabled(crtc);
4728
4729 if (intel_crtc->config->has_pch_encoder)
4730 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4731 false);
4732 intel_disable_pipe(intel_crtc);
4733
4734 if (intel_crtc->config->dp_encoder_is_mst)
4735 intel_ddi_set_vc_payload_alloc(crtc, false);
4736
4737 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4738
4739 if (IS_SKYLAKE(dev))
4740 skylake_pfit_disable(intel_crtc);
4741 else
4742 ironlake_pfit_disable(intel_crtc);
4743
4744 intel_ddi_disable_pipe_clock(intel_crtc);
4745
4746 if (intel_crtc->config->has_pch_encoder) {
4747 lpt_disable_pch_transcoder(dev_priv);
4748 intel_ddi_fdi_disable(crtc);
4749 }
4750
4751 for_each_encoder_on_crtc(dev, crtc, encoder)
4752 if (encoder->post_disable)
4753 encoder->post_disable(encoder);
4754
4755 intel_crtc->active = false;
4756 intel_update_watermarks(crtc);
4757
4758 mutex_lock(&dev->struct_mutex);
4759 intel_fbc_update(dev);
4760 mutex_unlock(&dev->struct_mutex);
4761
4762 if (intel_crtc_to_shared_dpll(intel_crtc))
4763 intel_disable_shared_dpll(intel_crtc);
4764 }
4765
4766 static void ironlake_crtc_off(struct drm_crtc *crtc)
4767 {
4768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4769 intel_put_shared_dpll(intel_crtc);
4770 }
4771
4772
4773 static void i9xx_pfit_enable(struct intel_crtc *crtc)
4774 {
4775 struct drm_device *dev = crtc->base.dev;
4776 struct drm_i915_private *dev_priv = dev->dev_private;
4777 struct intel_crtc_state *pipe_config = crtc->config;
4778
4779 if (!pipe_config->gmch_pfit.control)
4780 return;
4781
4782 /*
4783 * The panel fitter should only be adjusted whilst the pipe is disabled,
4784 * according to register description and PRM.
4785 */
4786 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4787 assert_pipe_disabled(dev_priv, crtc->pipe);
4788
4789 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4790 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4791
4792 /* Border color in case we don't scale up to the full screen. Black by
4793 * default, change to something else for debugging. */
4794 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4795 }
4796
4797 static enum intel_display_power_domain port_to_power_domain(enum port port)
4798 {
4799 switch (port) {
4800 case PORT_A:
4801 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4802 case PORT_B:
4803 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4804 case PORT_C:
4805 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4806 case PORT_D:
4807 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4808 default:
4809 WARN_ON_ONCE(1);
4810 return POWER_DOMAIN_PORT_OTHER;
4811 }
4812 }
4813
4814 #define for_each_power_domain(domain, mask) \
4815 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4816 if ((1 << (domain)) & (mask))
4817
4818 enum intel_display_power_domain
4819 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4820 {
4821 struct drm_device *dev = intel_encoder->base.dev;
4822 struct intel_digital_port *intel_dig_port;
4823
4824 switch (intel_encoder->type) {
4825 case INTEL_OUTPUT_UNKNOWN:
4826 /* Only DDI platforms should ever use this output type */
4827 WARN_ON_ONCE(!HAS_DDI(dev));
4828 case INTEL_OUTPUT_DISPLAYPORT:
4829 case INTEL_OUTPUT_HDMI:
4830 case INTEL_OUTPUT_EDP:
4831 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4832 return port_to_power_domain(intel_dig_port->port);
4833 case INTEL_OUTPUT_DP_MST:
4834 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4835 return port_to_power_domain(intel_dig_port->port);
4836 case INTEL_OUTPUT_ANALOG:
4837 return POWER_DOMAIN_PORT_CRT;
4838 case INTEL_OUTPUT_DSI:
4839 return POWER_DOMAIN_PORT_DSI;
4840 default:
4841 return POWER_DOMAIN_PORT_OTHER;
4842 }
4843 }
4844
4845 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4846 {
4847 struct drm_device *dev = crtc->dev;
4848 struct intel_encoder *intel_encoder;
4849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4850 enum pipe pipe = intel_crtc->pipe;
4851 unsigned long mask;
4852 enum transcoder transcoder;
4853
4854 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4855
4856 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4857 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4858 if (intel_crtc->config->pch_pfit.enabled ||
4859 intel_crtc->config->pch_pfit.force_thru)
4860 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4861
4862 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4863 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4864
4865 return mask;
4866 }
4867
4868 static void modeset_update_crtc_power_domains(struct drm_device *dev)
4869 {
4870 struct drm_i915_private *dev_priv = dev->dev_private;
4871 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4872 struct intel_crtc *crtc;
4873
4874 /*
4875 * First get all needed power domains, then put all unneeded, to avoid
4876 * any unnecessary toggling of the power wells.
4877 */
4878 for_each_intel_crtc(dev, crtc) {
4879 enum intel_display_power_domain domain;
4880
4881 if (!crtc->base.state->enable)
4882 continue;
4883
4884 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4885
4886 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4887 intel_display_power_get(dev_priv, domain);
4888 }
4889
4890 if (dev_priv->display.modeset_global_resources)
4891 dev_priv->display.modeset_global_resources(dev);
4892
4893 for_each_intel_crtc(dev, crtc) {
4894 enum intel_display_power_domain domain;
4895
4896 for_each_power_domain(domain, crtc->enabled_power_domains)
4897 intel_display_power_put(dev_priv, domain);
4898
4899 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4900 }
4901
4902 intel_display_set_init_power(dev_priv, false);
4903 }
4904
4905 /* returns HPLL frequency in kHz */
4906 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4907 {
4908 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4909
4910 /* Obtain SKU information */
4911 mutex_lock(&dev_priv->dpio_lock);
4912 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4913 CCK_FUSE_HPLL_FREQ_MASK;
4914 mutex_unlock(&dev_priv->dpio_lock);
4915
4916 return vco_freq[hpll_freq] * 1000;
4917 }
4918
4919 static void vlv_update_cdclk(struct drm_device *dev)
4920 {
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922
4923 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4924 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4925 dev_priv->vlv_cdclk_freq);
4926
4927 /*
4928 * Program the gmbus_freq based on the cdclk frequency.
4929 * BSpec erroneously claims we should aim for 4MHz, but
4930 * in fact 1MHz is the correct frequency.
4931 */
4932 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4933 }
4934
4935 /* Adjust CDclk dividers to allow high res or save power if possible */
4936 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4937 {
4938 struct drm_i915_private *dev_priv = dev->dev_private;
4939 u32 val, cmd;
4940
4941 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4942
4943 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4944 cmd = 2;
4945 else if (cdclk == 266667)
4946 cmd = 1;
4947 else
4948 cmd = 0;
4949
4950 mutex_lock(&dev_priv->rps.hw_lock);
4951 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4952 val &= ~DSPFREQGUAR_MASK;
4953 val |= (cmd << DSPFREQGUAR_SHIFT);
4954 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4955 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4956 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4957 50)) {
4958 DRM_ERROR("timed out waiting for CDclk change\n");
4959 }
4960 mutex_unlock(&dev_priv->rps.hw_lock);
4961
4962 if (cdclk == 400000) {
4963 u32 divider;
4964
4965 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4966
4967 mutex_lock(&dev_priv->dpio_lock);
4968 /* adjust cdclk divider */
4969 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4970 val &= ~DISPLAY_FREQUENCY_VALUES;
4971 val |= divider;
4972 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4973
4974 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4975 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4976 50))
4977 DRM_ERROR("timed out waiting for CDclk change\n");
4978 mutex_unlock(&dev_priv->dpio_lock);
4979 }
4980
4981 mutex_lock(&dev_priv->dpio_lock);
4982 /* adjust self-refresh exit latency value */
4983 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4984 val &= ~0x7f;
4985
4986 /*
4987 * For high bandwidth configs, we set a higher latency in the bunit
4988 * so that the core display fetch happens in time to avoid underruns.
4989 */
4990 if (cdclk == 400000)
4991 val |= 4500 / 250; /* 4.5 usec */
4992 else
4993 val |= 3000 / 250; /* 3.0 usec */
4994 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4995 mutex_unlock(&dev_priv->dpio_lock);
4996
4997 vlv_update_cdclk(dev);
4998 }
4999
5000 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5001 {
5002 struct drm_i915_private *dev_priv = dev->dev_private;
5003 u32 val, cmd;
5004
5005 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
5006
5007 switch (cdclk) {
5008 case 333333:
5009 case 320000:
5010 case 266667:
5011 case 200000:
5012 break;
5013 default:
5014 MISSING_CASE(cdclk);
5015 return;
5016 }
5017
5018 /*
5019 * Specs are full of misinformation, but testing on actual
5020 * hardware has shown that we just need to write the desired
5021 * CCK divider into the Punit register.
5022 */
5023 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5024
5025 mutex_lock(&dev_priv->rps.hw_lock);
5026 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5027 val &= ~DSPFREQGUAR_MASK_CHV;
5028 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5029 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5030 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5031 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5032 50)) {
5033 DRM_ERROR("timed out waiting for CDclk change\n");
5034 }
5035 mutex_unlock(&dev_priv->rps.hw_lock);
5036
5037 vlv_update_cdclk(dev);
5038 }
5039
5040 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5041 int max_pixclk)
5042 {
5043 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5044 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5045
5046 /*
5047 * Really only a few cases to deal with, as only 4 CDclks are supported:
5048 * 200MHz
5049 * 267MHz
5050 * 320/333MHz (depends on HPLL freq)
5051 * 400MHz (VLV only)
5052 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5053 * of the lower bin and adjust if needed.
5054 *
5055 * We seem to get an unstable or solid color picture at 200MHz.
5056 * Not sure what's wrong. For now use 200MHz only when all pipes
5057 * are off.
5058 */
5059 if (!IS_CHERRYVIEW(dev_priv) &&
5060 max_pixclk > freq_320*limit/100)
5061 return 400000;
5062 else if (max_pixclk > 266667*limit/100)
5063 return freq_320;
5064 else if (max_pixclk > 0)
5065 return 266667;
5066 else
5067 return 200000;
5068 }
5069
5070 /* compute the max pixel clock for new configuration */
5071 static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
5072 {
5073 struct drm_device *dev = dev_priv->dev;
5074 struct intel_crtc *intel_crtc;
5075 int max_pixclk = 0;
5076
5077 for_each_intel_crtc(dev, intel_crtc) {
5078 if (intel_crtc->new_enabled)
5079 max_pixclk = max(max_pixclk,
5080 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
5081 }
5082
5083 return max_pixclk;
5084 }
5085
5086 static void valleyview_modeset_global_pipes(struct drm_device *dev,
5087 unsigned *prepare_pipes)
5088 {
5089 struct drm_i915_private *dev_priv = dev->dev_private;
5090 struct intel_crtc *intel_crtc;
5091 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5092
5093 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
5094 dev_priv->vlv_cdclk_freq)
5095 return;
5096
5097 /* disable/enable all currently active pipes while we change cdclk */
5098 for_each_intel_crtc(dev, intel_crtc)
5099 if (intel_crtc->base.state->enable)
5100 *prepare_pipes |= (1 << intel_crtc->pipe);
5101 }
5102
5103 static void valleyview_modeset_global_resources(struct drm_device *dev)
5104 {
5105 struct drm_i915_private *dev_priv = dev->dev_private;
5106 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5107 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5108
5109 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5110 /*
5111 * FIXME: We can end up here with all power domains off, yet
5112 * with a CDCLK frequency other than the minimum. To account
5113 * for this take the PIPE-A power domain, which covers the HW
5114 * blocks needed for the following programming. This can be
5115 * removed once it's guaranteed that we get here either with
5116 * the minimum CDCLK set, or the required power domains
5117 * enabled.
5118 */
5119 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5120
5121 if (IS_CHERRYVIEW(dev))
5122 cherryview_set_cdclk(dev, req_cdclk);
5123 else
5124 valleyview_set_cdclk(dev, req_cdclk);
5125
5126 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5127 }
5128 }
5129
5130 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5131 {
5132 struct drm_device *dev = crtc->dev;
5133 struct drm_i915_private *dev_priv = to_i915(dev);
5134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5135 struct intel_encoder *encoder;
5136 int pipe = intel_crtc->pipe;
5137 bool is_dsi;
5138
5139 WARN_ON(!crtc->state->enable);
5140
5141 if (intel_crtc->active)
5142 return;
5143
5144 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5145
5146 if (!is_dsi) {
5147 if (IS_CHERRYVIEW(dev))
5148 chv_prepare_pll(intel_crtc, intel_crtc->config);
5149 else
5150 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5151 }
5152
5153 if (intel_crtc->config->has_dp_encoder)
5154 intel_dp_set_m_n(intel_crtc, M1_N1);
5155
5156 intel_set_pipe_timings(intel_crtc);
5157
5158 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5159 struct drm_i915_private *dev_priv = dev->dev_private;
5160
5161 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5162 I915_WRITE(CHV_CANVAS(pipe), 0);
5163 }
5164
5165 i9xx_set_pipeconf(intel_crtc);
5166
5167 intel_crtc->active = true;
5168
5169 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5170
5171 for_each_encoder_on_crtc(dev, crtc, encoder)
5172 if (encoder->pre_pll_enable)
5173 encoder->pre_pll_enable(encoder);
5174
5175 if (!is_dsi) {
5176 if (IS_CHERRYVIEW(dev))
5177 chv_enable_pll(intel_crtc, intel_crtc->config);
5178 else
5179 vlv_enable_pll(intel_crtc, intel_crtc->config);
5180 }
5181
5182 for_each_encoder_on_crtc(dev, crtc, encoder)
5183 if (encoder->pre_enable)
5184 encoder->pre_enable(encoder);
5185
5186 i9xx_pfit_enable(intel_crtc);
5187
5188 intel_crtc_load_lut(crtc);
5189
5190 intel_update_watermarks(crtc);
5191 intel_enable_pipe(intel_crtc);
5192
5193 assert_vblank_disabled(crtc);
5194 drm_crtc_vblank_on(crtc);
5195
5196 for_each_encoder_on_crtc(dev, crtc, encoder)
5197 encoder->enable(encoder);
5198
5199 intel_crtc_enable_planes(crtc);
5200
5201 /* Underruns don't raise interrupts, so check manually. */
5202 i9xx_check_fifo_underruns(dev_priv);
5203 }
5204
5205 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5206 {
5207 struct drm_device *dev = crtc->base.dev;
5208 struct drm_i915_private *dev_priv = dev->dev_private;
5209
5210 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5211 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5212 }
5213
5214 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5215 {
5216 struct drm_device *dev = crtc->dev;
5217 struct drm_i915_private *dev_priv = to_i915(dev);
5218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5219 struct intel_encoder *encoder;
5220 int pipe = intel_crtc->pipe;
5221
5222 WARN_ON(!crtc->state->enable);
5223
5224 if (intel_crtc->active)
5225 return;
5226
5227 i9xx_set_pll_dividers(intel_crtc);
5228
5229 if (intel_crtc->config->has_dp_encoder)
5230 intel_dp_set_m_n(intel_crtc, M1_N1);
5231
5232 intel_set_pipe_timings(intel_crtc);
5233
5234 i9xx_set_pipeconf(intel_crtc);
5235
5236 intel_crtc->active = true;
5237
5238 if (!IS_GEN2(dev))
5239 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5240
5241 for_each_encoder_on_crtc(dev, crtc, encoder)
5242 if (encoder->pre_enable)
5243 encoder->pre_enable(encoder);
5244
5245 i9xx_enable_pll(intel_crtc);
5246
5247 i9xx_pfit_enable(intel_crtc);
5248
5249 intel_crtc_load_lut(crtc);
5250
5251 intel_update_watermarks(crtc);
5252 intel_enable_pipe(intel_crtc);
5253
5254 assert_vblank_disabled(crtc);
5255 drm_crtc_vblank_on(crtc);
5256
5257 for_each_encoder_on_crtc(dev, crtc, encoder)
5258 encoder->enable(encoder);
5259
5260 intel_crtc_enable_planes(crtc);
5261
5262 /*
5263 * Gen2 reports pipe underruns whenever all planes are disabled.
5264 * So don't enable underrun reporting before at least some planes
5265 * are enabled.
5266 * FIXME: Need to fix the logic to work when we turn off all planes
5267 * but leave the pipe running.
5268 */
5269 if (IS_GEN2(dev))
5270 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5271
5272 /* Underruns don't raise interrupts, so check manually. */
5273 i9xx_check_fifo_underruns(dev_priv);
5274 }
5275
5276 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5277 {
5278 struct drm_device *dev = crtc->base.dev;
5279 struct drm_i915_private *dev_priv = dev->dev_private;
5280
5281 if (!crtc->config->gmch_pfit.control)
5282 return;
5283
5284 assert_pipe_disabled(dev_priv, crtc->pipe);
5285
5286 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5287 I915_READ(PFIT_CONTROL));
5288 I915_WRITE(PFIT_CONTROL, 0);
5289 }
5290
5291 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5292 {
5293 struct drm_device *dev = crtc->dev;
5294 struct drm_i915_private *dev_priv = dev->dev_private;
5295 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5296 struct intel_encoder *encoder;
5297 int pipe = intel_crtc->pipe;
5298
5299 if (!intel_crtc->active)
5300 return;
5301
5302 /*
5303 * Gen2 reports pipe underruns whenever all planes are disabled.
5304 * So diasble underrun reporting before all the planes get disabled.
5305 * FIXME: Need to fix the logic to work when we turn off all planes
5306 * but leave the pipe running.
5307 */
5308 if (IS_GEN2(dev))
5309 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5310
5311 /*
5312 * Vblank time updates from the shadow to live plane control register
5313 * are blocked if the memory self-refresh mode is active at that
5314 * moment. So to make sure the plane gets truly disabled, disable
5315 * first the self-refresh mode. The self-refresh enable bit in turn
5316 * will be checked/applied by the HW only at the next frame start
5317 * event which is after the vblank start event, so we need to have a
5318 * wait-for-vblank between disabling the plane and the pipe.
5319 */
5320 intel_set_memory_cxsr(dev_priv, false);
5321 intel_crtc_disable_planes(crtc);
5322
5323 /*
5324 * On gen2 planes are double buffered but the pipe isn't, so we must
5325 * wait for planes to fully turn off before disabling the pipe.
5326 * We also need to wait on all gmch platforms because of the
5327 * self-refresh mode constraint explained above.
5328 */
5329 intel_wait_for_vblank(dev, pipe);
5330
5331 for_each_encoder_on_crtc(dev, crtc, encoder)
5332 encoder->disable(encoder);
5333
5334 drm_crtc_vblank_off(crtc);
5335 assert_vblank_disabled(crtc);
5336
5337 intel_disable_pipe(intel_crtc);
5338
5339 i9xx_pfit_disable(intel_crtc);
5340
5341 for_each_encoder_on_crtc(dev, crtc, encoder)
5342 if (encoder->post_disable)
5343 encoder->post_disable(encoder);
5344
5345 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5346 if (IS_CHERRYVIEW(dev))
5347 chv_disable_pll(dev_priv, pipe);
5348 else if (IS_VALLEYVIEW(dev))
5349 vlv_disable_pll(dev_priv, pipe);
5350 else
5351 i9xx_disable_pll(intel_crtc);
5352 }
5353
5354 if (!IS_GEN2(dev))
5355 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5356
5357 intel_crtc->active = false;
5358 intel_update_watermarks(crtc);
5359
5360 mutex_lock(&dev->struct_mutex);
5361 intel_fbc_update(dev);
5362 mutex_unlock(&dev->struct_mutex);
5363 }
5364
5365 static void i9xx_crtc_off(struct drm_crtc *crtc)
5366 {
5367 }
5368
5369 /* Master function to enable/disable CRTC and corresponding power wells */
5370 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5371 {
5372 struct drm_device *dev = crtc->dev;
5373 struct drm_i915_private *dev_priv = dev->dev_private;
5374 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5375 enum intel_display_power_domain domain;
5376 unsigned long domains;
5377
5378 if (enable) {
5379 if (!intel_crtc->active) {
5380 domains = get_crtc_power_domains(crtc);
5381 for_each_power_domain(domain, domains)
5382 intel_display_power_get(dev_priv, domain);
5383 intel_crtc->enabled_power_domains = domains;
5384
5385 dev_priv->display.crtc_enable(crtc);
5386 }
5387 } else {
5388 if (intel_crtc->active) {
5389 dev_priv->display.crtc_disable(crtc);
5390
5391 domains = intel_crtc->enabled_power_domains;
5392 for_each_power_domain(domain, domains)
5393 intel_display_power_put(dev_priv, domain);
5394 intel_crtc->enabled_power_domains = 0;
5395 }
5396 }
5397 }
5398
5399 /**
5400 * Sets the power management mode of the pipe and plane.
5401 */
5402 void intel_crtc_update_dpms(struct drm_crtc *crtc)
5403 {
5404 struct drm_device *dev = crtc->dev;
5405 struct intel_encoder *intel_encoder;
5406 bool enable = false;
5407
5408 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5409 enable |= intel_encoder->connectors_active;
5410
5411 intel_crtc_control(crtc, enable);
5412 }
5413
5414 static void intel_crtc_disable(struct drm_crtc *crtc)
5415 {
5416 struct drm_device *dev = crtc->dev;
5417 struct drm_connector *connector;
5418 struct drm_i915_private *dev_priv = dev->dev_private;
5419
5420 /* crtc should still be enabled when we disable it. */
5421 WARN_ON(!crtc->state->enable);
5422
5423 dev_priv->display.crtc_disable(crtc);
5424 dev_priv->display.off(crtc);
5425
5426 crtc->primary->funcs->disable_plane(crtc->primary);
5427
5428 /* Update computed state. */
5429 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5430 if (!connector->encoder || !connector->encoder->crtc)
5431 continue;
5432
5433 if (connector->encoder->crtc != crtc)
5434 continue;
5435
5436 connector->dpms = DRM_MODE_DPMS_OFF;
5437 to_intel_encoder(connector->encoder)->connectors_active = false;
5438 }
5439 }
5440
5441 void intel_encoder_destroy(struct drm_encoder *encoder)
5442 {
5443 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5444
5445 drm_encoder_cleanup(encoder);
5446 kfree(intel_encoder);
5447 }
5448
5449 /* Simple dpms helper for encoders with just one connector, no cloning and only
5450 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5451 * state of the entire output pipe. */
5452 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5453 {
5454 if (mode == DRM_MODE_DPMS_ON) {
5455 encoder->connectors_active = true;
5456
5457 intel_crtc_update_dpms(encoder->base.crtc);
5458 } else {
5459 encoder->connectors_active = false;
5460
5461 intel_crtc_update_dpms(encoder->base.crtc);
5462 }
5463 }
5464
5465 /* Cross check the actual hw state with our own modeset state tracking (and it's
5466 * internal consistency). */
5467 static void intel_connector_check_state(struct intel_connector *connector)
5468 {
5469 if (connector->get_hw_state(connector)) {
5470 struct intel_encoder *encoder = connector->encoder;
5471 struct drm_crtc *crtc;
5472 bool encoder_enabled;
5473 enum pipe pipe;
5474
5475 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5476 connector->base.base.id,
5477 connector->base.name);
5478
5479 /* there is no real hw state for MST connectors */
5480 if (connector->mst_port)
5481 return;
5482
5483 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5484 "wrong connector dpms state\n");
5485 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5486 "active connector not linked to encoder\n");
5487
5488 if (encoder) {
5489 I915_STATE_WARN(!encoder->connectors_active,
5490 "encoder->connectors_active not set\n");
5491
5492 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5493 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5494 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5495 return;
5496
5497 crtc = encoder->base.crtc;
5498
5499 I915_STATE_WARN(!crtc->state->enable,
5500 "crtc not enabled\n");
5501 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5502 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5503 "encoder active on the wrong pipe\n");
5504 }
5505 }
5506 }
5507
5508 /* Even simpler default implementation, if there's really no special case to
5509 * consider. */
5510 void intel_connector_dpms(struct drm_connector *connector, int mode)
5511 {
5512 /* All the simple cases only support two dpms states. */
5513 if (mode != DRM_MODE_DPMS_ON)
5514 mode = DRM_MODE_DPMS_OFF;
5515
5516 if (mode == connector->dpms)
5517 return;
5518
5519 connector->dpms = mode;
5520
5521 /* Only need to change hw state when actually enabled */
5522 if (connector->encoder)
5523 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5524
5525 intel_modeset_check_state(connector->dev);
5526 }
5527
5528 /* Simple connector->get_hw_state implementation for encoders that support only
5529 * one connector and no cloning and hence the encoder state determines the state
5530 * of the connector. */
5531 bool intel_connector_get_hw_state(struct intel_connector *connector)
5532 {
5533 enum pipe pipe = 0;
5534 struct intel_encoder *encoder = connector->encoder;
5535
5536 return encoder->get_hw_state(encoder, &pipe);
5537 }
5538
5539 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5540 struct intel_crtc_state *pipe_config)
5541 {
5542 struct drm_i915_private *dev_priv = dev->dev_private;
5543 struct intel_crtc *pipe_B_crtc =
5544 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5545
5546 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5547 pipe_name(pipe), pipe_config->fdi_lanes);
5548 if (pipe_config->fdi_lanes > 4) {
5549 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5550 pipe_name(pipe), pipe_config->fdi_lanes);
5551 return false;
5552 }
5553
5554 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5555 if (pipe_config->fdi_lanes > 2) {
5556 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5557 pipe_config->fdi_lanes);
5558 return false;
5559 } else {
5560 return true;
5561 }
5562 }
5563
5564 if (INTEL_INFO(dev)->num_pipes == 2)
5565 return true;
5566
5567 /* Ivybridge 3 pipe is really complicated */
5568 switch (pipe) {
5569 case PIPE_A:
5570 return true;
5571 case PIPE_B:
5572 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5573 pipe_config->fdi_lanes > 2) {
5574 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5575 pipe_name(pipe), pipe_config->fdi_lanes);
5576 return false;
5577 }
5578 return true;
5579 case PIPE_C:
5580 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5581 pipe_B_crtc->config->fdi_lanes <= 2) {
5582 if (pipe_config->fdi_lanes > 2) {
5583 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5584 pipe_name(pipe), pipe_config->fdi_lanes);
5585 return false;
5586 }
5587 } else {
5588 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5589 return false;
5590 }
5591 return true;
5592 default:
5593 BUG();
5594 }
5595 }
5596
5597 #define RETRY 1
5598 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5599 struct intel_crtc_state *pipe_config)
5600 {
5601 struct drm_device *dev = intel_crtc->base.dev;
5602 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5603 int lane, link_bw, fdi_dotclock;
5604 bool setup_ok, needs_recompute = false;
5605
5606 retry:
5607 /* FDI is a binary signal running at ~2.7GHz, encoding
5608 * each output octet as 10 bits. The actual frequency
5609 * is stored as a divider into a 100MHz clock, and the
5610 * mode pixel clock is stored in units of 1KHz.
5611 * Hence the bw of each lane in terms of the mode signal
5612 * is:
5613 */
5614 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5615
5616 fdi_dotclock = adjusted_mode->crtc_clock;
5617
5618 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5619 pipe_config->pipe_bpp);
5620
5621 pipe_config->fdi_lanes = lane;
5622
5623 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5624 link_bw, &pipe_config->fdi_m_n);
5625
5626 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5627 intel_crtc->pipe, pipe_config);
5628 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5629 pipe_config->pipe_bpp -= 2*3;
5630 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5631 pipe_config->pipe_bpp);
5632 needs_recompute = true;
5633 pipe_config->bw_constrained = true;
5634
5635 goto retry;
5636 }
5637
5638 if (needs_recompute)
5639 return RETRY;
5640
5641 return setup_ok ? 0 : -EINVAL;
5642 }
5643
5644 static void hsw_compute_ips_config(struct intel_crtc *crtc,
5645 struct intel_crtc_state *pipe_config)
5646 {
5647 pipe_config->ips_enabled = i915.enable_ips &&
5648 hsw_crtc_supports_ips(crtc) &&
5649 pipe_config->pipe_bpp <= 24;
5650 }
5651
5652 static int intel_crtc_compute_config(struct intel_crtc *crtc,
5653 struct intel_crtc_state *pipe_config)
5654 {
5655 struct drm_device *dev = crtc->base.dev;
5656 struct drm_i915_private *dev_priv = dev->dev_private;
5657 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5658
5659 /* FIXME should check pixel clock limits on all platforms */
5660 if (INTEL_INFO(dev)->gen < 4) {
5661 int clock_limit =
5662 dev_priv->display.get_display_clock_speed(dev);
5663
5664 /*
5665 * Enable pixel doubling when the dot clock
5666 * is > 90% of the (display) core speed.
5667 *
5668 * GDG double wide on either pipe,
5669 * otherwise pipe A only.
5670 */
5671 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5672 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5673 clock_limit *= 2;
5674 pipe_config->double_wide = true;
5675 }
5676
5677 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5678 return -EINVAL;
5679 }
5680
5681 /*
5682 * Pipe horizontal size must be even in:
5683 * - DVO ganged mode
5684 * - LVDS dual channel mode
5685 * - Double wide pipe
5686 */
5687 if ((intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5688 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5689 pipe_config->pipe_src_w &= ~1;
5690
5691 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5692 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5693 */
5694 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5695 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5696 return -EINVAL;
5697
5698 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5699 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5700 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5701 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5702 * for lvds. */
5703 pipe_config->pipe_bpp = 8*3;
5704 }
5705
5706 if (HAS_IPS(dev))
5707 hsw_compute_ips_config(crtc, pipe_config);
5708
5709 if (pipe_config->has_pch_encoder)
5710 return ironlake_fdi_compute_config(crtc, pipe_config);
5711
5712 return 0;
5713 }
5714
5715 static int valleyview_get_display_clock_speed(struct drm_device *dev)
5716 {
5717 struct drm_i915_private *dev_priv = dev->dev_private;
5718 u32 val;
5719 int divider;
5720
5721 if (dev_priv->hpll_freq == 0)
5722 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5723
5724 mutex_lock(&dev_priv->dpio_lock);
5725 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5726 mutex_unlock(&dev_priv->dpio_lock);
5727
5728 divider = val & DISPLAY_FREQUENCY_VALUES;
5729
5730 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5731 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5732 "cdclk change in progress\n");
5733
5734 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5735 }
5736
5737 static int i945_get_display_clock_speed(struct drm_device *dev)
5738 {
5739 return 400000;
5740 }
5741
5742 static int i915_get_display_clock_speed(struct drm_device *dev)
5743 {
5744 return 333000;
5745 }
5746
5747 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5748 {
5749 return 200000;
5750 }
5751
5752 static int pnv_get_display_clock_speed(struct drm_device *dev)
5753 {
5754 u16 gcfgc = 0;
5755
5756 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5757
5758 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5759 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5760 return 267000;
5761 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5762 return 333000;
5763 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5764 return 444000;
5765 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5766 return 200000;
5767 default:
5768 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5769 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5770 return 133000;
5771 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5772 return 167000;
5773 }
5774 }
5775
5776 static int i915gm_get_display_clock_speed(struct drm_device *dev)
5777 {
5778 u16 gcfgc = 0;
5779
5780 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5781
5782 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5783 return 133000;
5784 else {
5785 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5786 case GC_DISPLAY_CLOCK_333_MHZ:
5787 return 333000;
5788 default:
5789 case GC_DISPLAY_CLOCK_190_200_MHZ:
5790 return 190000;
5791 }
5792 }
5793 }
5794
5795 static int i865_get_display_clock_speed(struct drm_device *dev)
5796 {
5797 return 266000;
5798 }
5799
5800 static int i855_get_display_clock_speed(struct drm_device *dev)
5801 {
5802 u16 hpllcc = 0;
5803 /* Assume that the hardware is in the high speed state. This
5804 * should be the default.
5805 */
5806 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5807 case GC_CLOCK_133_200:
5808 case GC_CLOCK_100_200:
5809 return 200000;
5810 case GC_CLOCK_166_250:
5811 return 250000;
5812 case GC_CLOCK_100_133:
5813 return 133000;
5814 }
5815
5816 /* Shouldn't happen */
5817 return 0;
5818 }
5819
5820 static int i830_get_display_clock_speed(struct drm_device *dev)
5821 {
5822 return 133000;
5823 }
5824
5825 static void
5826 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5827 {
5828 while (*num > DATA_LINK_M_N_MASK ||
5829 *den > DATA_LINK_M_N_MASK) {
5830 *num >>= 1;
5831 *den >>= 1;
5832 }
5833 }
5834
5835 static void compute_m_n(unsigned int m, unsigned int n,
5836 uint32_t *ret_m, uint32_t *ret_n)
5837 {
5838 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5839 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5840 intel_reduce_m_n_ratio(ret_m, ret_n);
5841 }
5842
5843 void
5844 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5845 int pixel_clock, int link_clock,
5846 struct intel_link_m_n *m_n)
5847 {
5848 m_n->tu = 64;
5849
5850 compute_m_n(bits_per_pixel * pixel_clock,
5851 link_clock * nlanes * 8,
5852 &m_n->gmch_m, &m_n->gmch_n);
5853
5854 compute_m_n(pixel_clock, link_clock,
5855 &m_n->link_m, &m_n->link_n);
5856 }
5857
5858 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5859 {
5860 if (i915.panel_use_ssc >= 0)
5861 return i915.panel_use_ssc != 0;
5862 return dev_priv->vbt.lvds_use_ssc
5863 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5864 }
5865
5866 static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5867 {
5868 struct drm_device *dev = crtc->base.dev;
5869 struct drm_i915_private *dev_priv = dev->dev_private;
5870 int refclk;
5871
5872 if (IS_VALLEYVIEW(dev)) {
5873 refclk = 100000;
5874 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5875 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5876 refclk = dev_priv->vbt.lvds_ssc_freq;
5877 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5878 } else if (!IS_GEN2(dev)) {
5879 refclk = 96000;
5880 } else {
5881 refclk = 48000;
5882 }
5883
5884 return refclk;
5885 }
5886
5887 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5888 {
5889 return (1 << dpll->n) << 16 | dpll->m2;
5890 }
5891
5892 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5893 {
5894 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5895 }
5896
5897 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5898 struct intel_crtc_state *crtc_state,
5899 intel_clock_t *reduced_clock)
5900 {
5901 struct drm_device *dev = crtc->base.dev;
5902 u32 fp, fp2 = 0;
5903
5904 if (IS_PINEVIEW(dev)) {
5905 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5906 if (reduced_clock)
5907 fp2 = pnv_dpll_compute_fp(reduced_clock);
5908 } else {
5909 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5910 if (reduced_clock)
5911 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5912 }
5913
5914 crtc_state->dpll_hw_state.fp0 = fp;
5915
5916 crtc->lowfreq_avail = false;
5917 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5918 reduced_clock && i915.powersave) {
5919 crtc_state->dpll_hw_state.fp1 = fp2;
5920 crtc->lowfreq_avail = true;
5921 } else {
5922 crtc_state->dpll_hw_state.fp1 = fp;
5923 }
5924 }
5925
5926 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5927 pipe)
5928 {
5929 u32 reg_val;
5930
5931 /*
5932 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5933 * and set it to a reasonable value instead.
5934 */
5935 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5936 reg_val &= 0xffffff00;
5937 reg_val |= 0x00000030;
5938 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5939
5940 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5941 reg_val &= 0x8cffffff;
5942 reg_val = 0x8c000000;
5943 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5944
5945 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5946 reg_val &= 0xffffff00;
5947 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5948
5949 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5950 reg_val &= 0x00ffffff;
5951 reg_val |= 0xb0000000;
5952 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5953 }
5954
5955 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5956 struct intel_link_m_n *m_n)
5957 {
5958 struct drm_device *dev = crtc->base.dev;
5959 struct drm_i915_private *dev_priv = dev->dev_private;
5960 int pipe = crtc->pipe;
5961
5962 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5963 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5964 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5965 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5966 }
5967
5968 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5969 struct intel_link_m_n *m_n,
5970 struct intel_link_m_n *m2_n2)
5971 {
5972 struct drm_device *dev = crtc->base.dev;
5973 struct drm_i915_private *dev_priv = dev->dev_private;
5974 int pipe = crtc->pipe;
5975 enum transcoder transcoder = crtc->config->cpu_transcoder;
5976
5977 if (INTEL_INFO(dev)->gen >= 5) {
5978 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5979 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5980 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5981 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5982 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5983 * for gen < 8) and if DRRS is supported (to make sure the
5984 * registers are not unnecessarily accessed).
5985 */
5986 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
5987 crtc->config->has_drrs) {
5988 I915_WRITE(PIPE_DATA_M2(transcoder),
5989 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5990 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5991 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5992 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5993 }
5994 } else {
5995 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5996 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5997 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5998 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5999 }
6000 }
6001
6002 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6003 {
6004 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6005
6006 if (m_n == M1_N1) {
6007 dp_m_n = &crtc->config->dp_m_n;
6008 dp_m2_n2 = &crtc->config->dp_m2_n2;
6009 } else if (m_n == M2_N2) {
6010
6011 /*
6012 * M2_N2 registers are not supported. Hence m2_n2 divider value
6013 * needs to be programmed into M1_N1.
6014 */
6015 dp_m_n = &crtc->config->dp_m2_n2;
6016 } else {
6017 DRM_ERROR("Unsupported divider value\n");
6018 return;
6019 }
6020
6021 if (crtc->config->has_pch_encoder)
6022 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6023 else
6024 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6025 }
6026
6027 static void vlv_update_pll(struct intel_crtc *crtc,
6028 struct intel_crtc_state *pipe_config)
6029 {
6030 u32 dpll, dpll_md;
6031
6032 /*
6033 * Enable DPIO clock input. We should never disable the reference
6034 * clock for pipe B, since VGA hotplug / manual detection depends
6035 * on it.
6036 */
6037 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6038 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6039 /* We should never disable this, set it here for state tracking */
6040 if (crtc->pipe == PIPE_B)
6041 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6042 dpll |= DPLL_VCO_ENABLE;
6043 pipe_config->dpll_hw_state.dpll = dpll;
6044
6045 dpll_md = (pipe_config->pixel_multiplier - 1)
6046 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6047 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6048 }
6049
6050 static void vlv_prepare_pll(struct intel_crtc *crtc,
6051 const struct intel_crtc_state *pipe_config)
6052 {
6053 struct drm_device *dev = crtc->base.dev;
6054 struct drm_i915_private *dev_priv = dev->dev_private;
6055 int pipe = crtc->pipe;
6056 u32 mdiv;
6057 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6058 u32 coreclk, reg_val;
6059
6060 mutex_lock(&dev_priv->dpio_lock);
6061
6062 bestn = pipe_config->dpll.n;
6063 bestm1 = pipe_config->dpll.m1;
6064 bestm2 = pipe_config->dpll.m2;
6065 bestp1 = pipe_config->dpll.p1;
6066 bestp2 = pipe_config->dpll.p2;
6067
6068 /* See eDP HDMI DPIO driver vbios notes doc */
6069
6070 /* PLL B needs special handling */
6071 if (pipe == PIPE_B)
6072 vlv_pllb_recal_opamp(dev_priv, pipe);
6073
6074 /* Set up Tx target for periodic Rcomp update */
6075 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6076
6077 /* Disable target IRef on PLL */
6078 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6079 reg_val &= 0x00ffffff;
6080 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6081
6082 /* Disable fast lock */
6083 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6084
6085 /* Set idtafcrecal before PLL is enabled */
6086 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6087 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6088 mdiv |= ((bestn << DPIO_N_SHIFT));
6089 mdiv |= (1 << DPIO_K_SHIFT);
6090
6091 /*
6092 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6093 * but we don't support that).
6094 * Note: don't use the DAC post divider as it seems unstable.
6095 */
6096 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6097 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6098
6099 mdiv |= DPIO_ENABLE_CALIBRATION;
6100 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6101
6102 /* Set HBR and RBR LPF coefficients */
6103 if (pipe_config->port_clock == 162000 ||
6104 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6105 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6106 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6107 0x009f0003);
6108 else
6109 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6110 0x00d0000f);
6111
6112 if (pipe_config->has_dp_encoder) {
6113 /* Use SSC source */
6114 if (pipe == PIPE_A)
6115 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6116 0x0df40000);
6117 else
6118 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6119 0x0df70000);
6120 } else { /* HDMI or VGA */
6121 /* Use bend source */
6122 if (pipe == PIPE_A)
6123 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6124 0x0df70000);
6125 else
6126 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6127 0x0df40000);
6128 }
6129
6130 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6131 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6132 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6133 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6134 coreclk |= 0x01000000;
6135 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6136
6137 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6138 mutex_unlock(&dev_priv->dpio_lock);
6139 }
6140
6141 static void chv_update_pll(struct intel_crtc *crtc,
6142 struct intel_crtc_state *pipe_config)
6143 {
6144 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6145 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6146 DPLL_VCO_ENABLE;
6147 if (crtc->pipe != PIPE_A)
6148 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6149
6150 pipe_config->dpll_hw_state.dpll_md =
6151 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6152 }
6153
6154 static void chv_prepare_pll(struct intel_crtc *crtc,
6155 const struct intel_crtc_state *pipe_config)
6156 {
6157 struct drm_device *dev = crtc->base.dev;
6158 struct drm_i915_private *dev_priv = dev->dev_private;
6159 int pipe = crtc->pipe;
6160 int dpll_reg = DPLL(crtc->pipe);
6161 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6162 u32 loopfilter, intcoeff;
6163 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6164 u32 dpio_val;
6165 int refclk;
6166
6167 bestn = pipe_config->dpll.n;
6168 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6169 bestm1 = pipe_config->dpll.m1;
6170 bestm2 = pipe_config->dpll.m2 >> 22;
6171 bestp1 = pipe_config->dpll.p1;
6172 bestp2 = pipe_config->dpll.p2;
6173 dpio_val = 0;
6174
6175 /*
6176 * Enable Refclk and SSC
6177 */
6178 I915_WRITE(dpll_reg,
6179 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6180
6181 mutex_lock(&dev_priv->dpio_lock);
6182
6183 /* p1 and p2 divider */
6184 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6185 5 << DPIO_CHV_S1_DIV_SHIFT |
6186 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6187 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6188 1 << DPIO_CHV_K_DIV_SHIFT);
6189
6190 /* Feedback post-divider - m2 */
6191 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6192
6193 /* Feedback refclk divider - n and m1 */
6194 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6195 DPIO_CHV_M1_DIV_BY_2 |
6196 1 << DPIO_CHV_N_DIV_SHIFT);
6197
6198 /* M2 fraction division */
6199 if (bestm2_frac)
6200 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6201
6202 /* M2 fraction division enable */
6203 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6204 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6205 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6206 if (bestm2_frac)
6207 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6208 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6209
6210 /* Program digital lock detect threshold */
6211 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6212 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6213 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6214 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6215 if (!bestm2_frac)
6216 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6217 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6218
6219 /* Loop filter */
6220 refclk = i9xx_get_refclk(crtc, 0);
6221 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6222 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6223 if (refclk == 100000)
6224 intcoeff = 11;
6225 else if (refclk == 38400)
6226 intcoeff = 10;
6227 else
6228 intcoeff = 9;
6229 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6230 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6231
6232 /* AFC Recal */
6233 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6234 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6235 DPIO_AFC_RECAL);
6236
6237 mutex_unlock(&dev_priv->dpio_lock);
6238 }
6239
6240 /**
6241 * vlv_force_pll_on - forcibly enable just the PLL
6242 * @dev_priv: i915 private structure
6243 * @pipe: pipe PLL to enable
6244 * @dpll: PLL configuration
6245 *
6246 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6247 * in cases where we need the PLL enabled even when @pipe is not going to
6248 * be enabled.
6249 */
6250 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6251 const struct dpll *dpll)
6252 {
6253 struct intel_crtc *crtc =
6254 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6255 struct intel_crtc_state pipe_config = {
6256 .pixel_multiplier = 1,
6257 .dpll = *dpll,
6258 };
6259
6260 if (IS_CHERRYVIEW(dev)) {
6261 chv_update_pll(crtc, &pipe_config);
6262 chv_prepare_pll(crtc, &pipe_config);
6263 chv_enable_pll(crtc, &pipe_config);
6264 } else {
6265 vlv_update_pll(crtc, &pipe_config);
6266 vlv_prepare_pll(crtc, &pipe_config);
6267 vlv_enable_pll(crtc, &pipe_config);
6268 }
6269 }
6270
6271 /**
6272 * vlv_force_pll_off - forcibly disable just the PLL
6273 * @dev_priv: i915 private structure
6274 * @pipe: pipe PLL to disable
6275 *
6276 * Disable the PLL for @pipe. To be used in cases where we need
6277 * the PLL enabled even when @pipe is not going to be enabled.
6278 */
6279 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6280 {
6281 if (IS_CHERRYVIEW(dev))
6282 chv_disable_pll(to_i915(dev), pipe);
6283 else
6284 vlv_disable_pll(to_i915(dev), pipe);
6285 }
6286
6287 static void i9xx_update_pll(struct intel_crtc *crtc,
6288 struct intel_crtc_state *crtc_state,
6289 intel_clock_t *reduced_clock,
6290 int num_connectors)
6291 {
6292 struct drm_device *dev = crtc->base.dev;
6293 struct drm_i915_private *dev_priv = dev->dev_private;
6294 u32 dpll;
6295 bool is_sdvo;
6296 struct dpll *clock = &crtc_state->dpll;
6297
6298 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6299
6300 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6301 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6302
6303 dpll = DPLL_VGA_MODE_DIS;
6304
6305 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6306 dpll |= DPLLB_MODE_LVDS;
6307 else
6308 dpll |= DPLLB_MODE_DAC_SERIAL;
6309
6310 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6311 dpll |= (crtc_state->pixel_multiplier - 1)
6312 << SDVO_MULTIPLIER_SHIFT_HIRES;
6313 }
6314
6315 if (is_sdvo)
6316 dpll |= DPLL_SDVO_HIGH_SPEED;
6317
6318 if (crtc_state->has_dp_encoder)
6319 dpll |= DPLL_SDVO_HIGH_SPEED;
6320
6321 /* compute bitmask from p1 value */
6322 if (IS_PINEVIEW(dev))
6323 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6324 else {
6325 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6326 if (IS_G4X(dev) && reduced_clock)
6327 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6328 }
6329 switch (clock->p2) {
6330 case 5:
6331 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6332 break;
6333 case 7:
6334 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6335 break;
6336 case 10:
6337 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6338 break;
6339 case 14:
6340 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6341 break;
6342 }
6343 if (INTEL_INFO(dev)->gen >= 4)
6344 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6345
6346 if (crtc_state->sdvo_tv_clock)
6347 dpll |= PLL_REF_INPUT_TVCLKINBC;
6348 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6349 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6350 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6351 else
6352 dpll |= PLL_REF_INPUT_DREFCLK;
6353
6354 dpll |= DPLL_VCO_ENABLE;
6355 crtc_state->dpll_hw_state.dpll = dpll;
6356
6357 if (INTEL_INFO(dev)->gen >= 4) {
6358 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6359 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6360 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6361 }
6362 }
6363
6364 static void i8xx_update_pll(struct intel_crtc *crtc,
6365 struct intel_crtc_state *crtc_state,
6366 intel_clock_t *reduced_clock,
6367 int num_connectors)
6368 {
6369 struct drm_device *dev = crtc->base.dev;
6370 struct drm_i915_private *dev_priv = dev->dev_private;
6371 u32 dpll;
6372 struct dpll *clock = &crtc_state->dpll;
6373
6374 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6375
6376 dpll = DPLL_VGA_MODE_DIS;
6377
6378 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6379 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6380 } else {
6381 if (clock->p1 == 2)
6382 dpll |= PLL_P1_DIVIDE_BY_TWO;
6383 else
6384 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6385 if (clock->p2 == 4)
6386 dpll |= PLL_P2_DIVIDE_BY_4;
6387 }
6388
6389 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6390 dpll |= DPLL_DVO_2X_MODE;
6391
6392 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6393 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6394 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6395 else
6396 dpll |= PLL_REF_INPUT_DREFCLK;
6397
6398 dpll |= DPLL_VCO_ENABLE;
6399 crtc_state->dpll_hw_state.dpll = dpll;
6400 }
6401
6402 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6403 {
6404 struct drm_device *dev = intel_crtc->base.dev;
6405 struct drm_i915_private *dev_priv = dev->dev_private;
6406 enum pipe pipe = intel_crtc->pipe;
6407 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6408 struct drm_display_mode *adjusted_mode =
6409 &intel_crtc->config->base.adjusted_mode;
6410 uint32_t crtc_vtotal, crtc_vblank_end;
6411 int vsyncshift = 0;
6412
6413 /* We need to be careful not to changed the adjusted mode, for otherwise
6414 * the hw state checker will get angry at the mismatch. */
6415 crtc_vtotal = adjusted_mode->crtc_vtotal;
6416 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6417
6418 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6419 /* the chip adds 2 halflines automatically */
6420 crtc_vtotal -= 1;
6421 crtc_vblank_end -= 1;
6422
6423 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6424 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6425 else
6426 vsyncshift = adjusted_mode->crtc_hsync_start -
6427 adjusted_mode->crtc_htotal / 2;
6428 if (vsyncshift < 0)
6429 vsyncshift += adjusted_mode->crtc_htotal;
6430 }
6431
6432 if (INTEL_INFO(dev)->gen > 3)
6433 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6434
6435 I915_WRITE(HTOTAL(cpu_transcoder),
6436 (adjusted_mode->crtc_hdisplay - 1) |
6437 ((adjusted_mode->crtc_htotal - 1) << 16));
6438 I915_WRITE(HBLANK(cpu_transcoder),
6439 (adjusted_mode->crtc_hblank_start - 1) |
6440 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6441 I915_WRITE(HSYNC(cpu_transcoder),
6442 (adjusted_mode->crtc_hsync_start - 1) |
6443 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6444
6445 I915_WRITE(VTOTAL(cpu_transcoder),
6446 (adjusted_mode->crtc_vdisplay - 1) |
6447 ((crtc_vtotal - 1) << 16));
6448 I915_WRITE(VBLANK(cpu_transcoder),
6449 (adjusted_mode->crtc_vblank_start - 1) |
6450 ((crtc_vblank_end - 1) << 16));
6451 I915_WRITE(VSYNC(cpu_transcoder),
6452 (adjusted_mode->crtc_vsync_start - 1) |
6453 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6454
6455 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6456 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6457 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6458 * bits. */
6459 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6460 (pipe == PIPE_B || pipe == PIPE_C))
6461 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6462
6463 /* pipesrc controls the size that is scaled from, which should
6464 * always be the user's requested size.
6465 */
6466 I915_WRITE(PIPESRC(pipe),
6467 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6468 (intel_crtc->config->pipe_src_h - 1));
6469 }
6470
6471 static void intel_get_pipe_timings(struct intel_crtc *crtc,
6472 struct intel_crtc_state *pipe_config)
6473 {
6474 struct drm_device *dev = crtc->base.dev;
6475 struct drm_i915_private *dev_priv = dev->dev_private;
6476 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6477 uint32_t tmp;
6478
6479 tmp = I915_READ(HTOTAL(cpu_transcoder));
6480 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6481 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6482 tmp = I915_READ(HBLANK(cpu_transcoder));
6483 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6484 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6485 tmp = I915_READ(HSYNC(cpu_transcoder));
6486 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6487 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6488
6489 tmp = I915_READ(VTOTAL(cpu_transcoder));
6490 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6491 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6492 tmp = I915_READ(VBLANK(cpu_transcoder));
6493 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6494 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6495 tmp = I915_READ(VSYNC(cpu_transcoder));
6496 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6497 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6498
6499 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6500 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6501 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6502 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6503 }
6504
6505 tmp = I915_READ(PIPESRC(crtc->pipe));
6506 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6507 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6508
6509 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6510 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6511 }
6512
6513 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6514 struct intel_crtc_state *pipe_config)
6515 {
6516 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6517 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6518 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6519 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6520
6521 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6522 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6523 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6524 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6525
6526 mode->flags = pipe_config->base.adjusted_mode.flags;
6527
6528 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6529 mode->flags |= pipe_config->base.adjusted_mode.flags;
6530 }
6531
6532 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6533 {
6534 struct drm_device *dev = intel_crtc->base.dev;
6535 struct drm_i915_private *dev_priv = dev->dev_private;
6536 uint32_t pipeconf;
6537
6538 pipeconf = 0;
6539
6540 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6541 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6542 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6543
6544 if (intel_crtc->config->double_wide)
6545 pipeconf |= PIPECONF_DOUBLE_WIDE;
6546
6547 /* only g4x and later have fancy bpc/dither controls */
6548 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6549 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6550 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6551 pipeconf |= PIPECONF_DITHER_EN |
6552 PIPECONF_DITHER_TYPE_SP;
6553
6554 switch (intel_crtc->config->pipe_bpp) {
6555 case 18:
6556 pipeconf |= PIPECONF_6BPC;
6557 break;
6558 case 24:
6559 pipeconf |= PIPECONF_8BPC;
6560 break;
6561 case 30:
6562 pipeconf |= PIPECONF_10BPC;
6563 break;
6564 default:
6565 /* Case prevented by intel_choose_pipe_bpp_dither. */
6566 BUG();
6567 }
6568 }
6569
6570 if (HAS_PIPE_CXSR(dev)) {
6571 if (intel_crtc->lowfreq_avail) {
6572 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6573 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6574 } else {
6575 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6576 }
6577 }
6578
6579 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6580 if (INTEL_INFO(dev)->gen < 4 ||
6581 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6582 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6583 else
6584 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6585 } else
6586 pipeconf |= PIPECONF_PROGRESSIVE;
6587
6588 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6589 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6590
6591 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6592 POSTING_READ(PIPECONF(intel_crtc->pipe));
6593 }
6594
6595 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6596 struct intel_crtc_state *crtc_state)
6597 {
6598 struct drm_device *dev = crtc->base.dev;
6599 struct drm_i915_private *dev_priv = dev->dev_private;
6600 int refclk, num_connectors = 0;
6601 intel_clock_t clock, reduced_clock;
6602 bool ok, has_reduced_clock = false;
6603 bool is_lvds = false, is_dsi = false;
6604 struct intel_encoder *encoder;
6605 const intel_limit_t *limit;
6606
6607 for_each_intel_encoder(dev, encoder) {
6608 if (encoder->new_crtc != crtc)
6609 continue;
6610
6611 switch (encoder->type) {
6612 case INTEL_OUTPUT_LVDS:
6613 is_lvds = true;
6614 break;
6615 case INTEL_OUTPUT_DSI:
6616 is_dsi = true;
6617 break;
6618 default:
6619 break;
6620 }
6621
6622 num_connectors++;
6623 }
6624
6625 if (is_dsi)
6626 return 0;
6627
6628 if (!crtc_state->clock_set) {
6629 refclk = i9xx_get_refclk(crtc, num_connectors);
6630
6631 /*
6632 * Returns a set of divisors for the desired target clock with
6633 * the given refclk, or FALSE. The returned values represent
6634 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6635 * 2) / p1 / p2.
6636 */
6637 limit = intel_limit(crtc, refclk);
6638 ok = dev_priv->display.find_dpll(limit, crtc,
6639 crtc_state->port_clock,
6640 refclk, NULL, &clock);
6641 if (!ok) {
6642 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6643 return -EINVAL;
6644 }
6645
6646 if (is_lvds && dev_priv->lvds_downclock_avail) {
6647 /*
6648 * Ensure we match the reduced clock's P to the target
6649 * clock. If the clocks don't match, we can't switch
6650 * the display clock by using the FP0/FP1. In such case
6651 * we will disable the LVDS downclock feature.
6652 */
6653 has_reduced_clock =
6654 dev_priv->display.find_dpll(limit, crtc,
6655 dev_priv->lvds_downclock,
6656 refclk, &clock,
6657 &reduced_clock);
6658 }
6659 /* Compat-code for transition, will disappear. */
6660 crtc_state->dpll.n = clock.n;
6661 crtc_state->dpll.m1 = clock.m1;
6662 crtc_state->dpll.m2 = clock.m2;
6663 crtc_state->dpll.p1 = clock.p1;
6664 crtc_state->dpll.p2 = clock.p2;
6665 }
6666
6667 if (IS_GEN2(dev)) {
6668 i8xx_update_pll(crtc, crtc_state,
6669 has_reduced_clock ? &reduced_clock : NULL,
6670 num_connectors);
6671 } else if (IS_CHERRYVIEW(dev)) {
6672 chv_update_pll(crtc, crtc_state);
6673 } else if (IS_VALLEYVIEW(dev)) {
6674 vlv_update_pll(crtc, crtc_state);
6675 } else {
6676 i9xx_update_pll(crtc, crtc_state,
6677 has_reduced_clock ? &reduced_clock : NULL,
6678 num_connectors);
6679 }
6680
6681 return 0;
6682 }
6683
6684 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6685 struct intel_crtc_state *pipe_config)
6686 {
6687 struct drm_device *dev = crtc->base.dev;
6688 struct drm_i915_private *dev_priv = dev->dev_private;
6689 uint32_t tmp;
6690
6691 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6692 return;
6693
6694 tmp = I915_READ(PFIT_CONTROL);
6695 if (!(tmp & PFIT_ENABLE))
6696 return;
6697
6698 /* Check whether the pfit is attached to our pipe. */
6699 if (INTEL_INFO(dev)->gen < 4) {
6700 if (crtc->pipe != PIPE_B)
6701 return;
6702 } else {
6703 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6704 return;
6705 }
6706
6707 pipe_config->gmch_pfit.control = tmp;
6708 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6709 if (INTEL_INFO(dev)->gen < 5)
6710 pipe_config->gmch_pfit.lvds_border_bits =
6711 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6712 }
6713
6714 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6715 struct intel_crtc_state *pipe_config)
6716 {
6717 struct drm_device *dev = crtc->base.dev;
6718 struct drm_i915_private *dev_priv = dev->dev_private;
6719 int pipe = pipe_config->cpu_transcoder;
6720 intel_clock_t clock;
6721 u32 mdiv;
6722 int refclk = 100000;
6723
6724 /* In case of MIPI DPLL will not even be used */
6725 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6726 return;
6727
6728 mutex_lock(&dev_priv->dpio_lock);
6729 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6730 mutex_unlock(&dev_priv->dpio_lock);
6731
6732 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6733 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6734 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6735 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6736 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6737
6738 vlv_clock(refclk, &clock);
6739
6740 /* clock.dot is the fast clock */
6741 pipe_config->port_clock = clock.dot / 5;
6742 }
6743
6744 static void
6745 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6746 struct intel_initial_plane_config *plane_config)
6747 {
6748 struct drm_device *dev = crtc->base.dev;
6749 struct drm_i915_private *dev_priv = dev->dev_private;
6750 u32 val, base, offset;
6751 int pipe = crtc->pipe, plane = crtc->plane;
6752 int fourcc, pixel_format;
6753 int aligned_height;
6754 struct drm_framebuffer *fb;
6755 struct intel_framebuffer *intel_fb;
6756
6757 val = I915_READ(DSPCNTR(plane));
6758 if (!(val & DISPLAY_PLANE_ENABLE))
6759 return;
6760
6761 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6762 if (!intel_fb) {
6763 DRM_DEBUG_KMS("failed to alloc fb\n");
6764 return;
6765 }
6766
6767 fb = &intel_fb->base;
6768
6769 if (INTEL_INFO(dev)->gen >= 4) {
6770 if (val & DISPPLANE_TILED) {
6771 plane_config->tiling = I915_TILING_X;
6772 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6773 }
6774 }
6775
6776 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6777 fourcc = i9xx_format_to_fourcc(pixel_format);
6778 fb->pixel_format = fourcc;
6779 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6780
6781 if (INTEL_INFO(dev)->gen >= 4) {
6782 if (plane_config->tiling)
6783 offset = I915_READ(DSPTILEOFF(plane));
6784 else
6785 offset = I915_READ(DSPLINOFF(plane));
6786 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6787 } else {
6788 base = I915_READ(DSPADDR(plane));
6789 }
6790 plane_config->base = base;
6791
6792 val = I915_READ(PIPESRC(pipe));
6793 fb->width = ((val >> 16) & 0xfff) + 1;
6794 fb->height = ((val >> 0) & 0xfff) + 1;
6795
6796 val = I915_READ(DSPSTRIDE(pipe));
6797 fb->pitches[0] = val & 0xffffffc0;
6798
6799 aligned_height = intel_fb_align_height(dev, fb->height,
6800 fb->pixel_format,
6801 fb->modifier[0]);
6802
6803 plane_config->size = fb->pitches[0] * aligned_height;
6804
6805 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6806 pipe_name(pipe), plane, fb->width, fb->height,
6807 fb->bits_per_pixel, base, fb->pitches[0],
6808 plane_config->size);
6809
6810 plane_config->fb = intel_fb;
6811 }
6812
6813 static void chv_crtc_clock_get(struct intel_crtc *crtc,
6814 struct intel_crtc_state *pipe_config)
6815 {
6816 struct drm_device *dev = crtc->base.dev;
6817 struct drm_i915_private *dev_priv = dev->dev_private;
6818 int pipe = pipe_config->cpu_transcoder;
6819 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6820 intel_clock_t clock;
6821 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6822 int refclk = 100000;
6823
6824 mutex_lock(&dev_priv->dpio_lock);
6825 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6826 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6827 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6828 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6829 mutex_unlock(&dev_priv->dpio_lock);
6830
6831 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6832 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6833 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6834 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6835 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6836
6837 chv_clock(refclk, &clock);
6838
6839 /* clock.dot is the fast clock */
6840 pipe_config->port_clock = clock.dot / 5;
6841 }
6842
6843 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6844 struct intel_crtc_state *pipe_config)
6845 {
6846 struct drm_device *dev = crtc->base.dev;
6847 struct drm_i915_private *dev_priv = dev->dev_private;
6848 uint32_t tmp;
6849
6850 if (!intel_display_power_is_enabled(dev_priv,
6851 POWER_DOMAIN_PIPE(crtc->pipe)))
6852 return false;
6853
6854 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6855 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6856
6857 tmp = I915_READ(PIPECONF(crtc->pipe));
6858 if (!(tmp & PIPECONF_ENABLE))
6859 return false;
6860
6861 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6862 switch (tmp & PIPECONF_BPC_MASK) {
6863 case PIPECONF_6BPC:
6864 pipe_config->pipe_bpp = 18;
6865 break;
6866 case PIPECONF_8BPC:
6867 pipe_config->pipe_bpp = 24;
6868 break;
6869 case PIPECONF_10BPC:
6870 pipe_config->pipe_bpp = 30;
6871 break;
6872 default:
6873 break;
6874 }
6875 }
6876
6877 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6878 pipe_config->limited_color_range = true;
6879
6880 if (INTEL_INFO(dev)->gen < 4)
6881 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6882
6883 intel_get_pipe_timings(crtc, pipe_config);
6884
6885 i9xx_get_pfit_config(crtc, pipe_config);
6886
6887 if (INTEL_INFO(dev)->gen >= 4) {
6888 tmp = I915_READ(DPLL_MD(crtc->pipe));
6889 pipe_config->pixel_multiplier =
6890 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6891 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6892 pipe_config->dpll_hw_state.dpll_md = tmp;
6893 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6894 tmp = I915_READ(DPLL(crtc->pipe));
6895 pipe_config->pixel_multiplier =
6896 ((tmp & SDVO_MULTIPLIER_MASK)
6897 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6898 } else {
6899 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6900 * port and will be fixed up in the encoder->get_config
6901 * function. */
6902 pipe_config->pixel_multiplier = 1;
6903 }
6904 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6905 if (!IS_VALLEYVIEW(dev)) {
6906 /*
6907 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6908 * on 830. Filter it out here so that we don't
6909 * report errors due to that.
6910 */
6911 if (IS_I830(dev))
6912 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6913
6914 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6915 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6916 } else {
6917 /* Mask out read-only status bits. */
6918 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6919 DPLL_PORTC_READY_MASK |
6920 DPLL_PORTB_READY_MASK);
6921 }
6922
6923 if (IS_CHERRYVIEW(dev))
6924 chv_crtc_clock_get(crtc, pipe_config);
6925 else if (IS_VALLEYVIEW(dev))
6926 vlv_crtc_clock_get(crtc, pipe_config);
6927 else
6928 i9xx_crtc_clock_get(crtc, pipe_config);
6929
6930 return true;
6931 }
6932
6933 static void ironlake_init_pch_refclk(struct drm_device *dev)
6934 {
6935 struct drm_i915_private *dev_priv = dev->dev_private;
6936 struct intel_encoder *encoder;
6937 u32 val, final;
6938 bool has_lvds = false;
6939 bool has_cpu_edp = false;
6940 bool has_panel = false;
6941 bool has_ck505 = false;
6942 bool can_ssc = false;
6943
6944 /* We need to take the global config into account */
6945 for_each_intel_encoder(dev, encoder) {
6946 switch (encoder->type) {
6947 case INTEL_OUTPUT_LVDS:
6948 has_panel = true;
6949 has_lvds = true;
6950 break;
6951 case INTEL_OUTPUT_EDP:
6952 has_panel = true;
6953 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6954 has_cpu_edp = true;
6955 break;
6956 default:
6957 break;
6958 }
6959 }
6960
6961 if (HAS_PCH_IBX(dev)) {
6962 has_ck505 = dev_priv->vbt.display_clock_mode;
6963 can_ssc = has_ck505;
6964 } else {
6965 has_ck505 = false;
6966 can_ssc = true;
6967 }
6968
6969 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6970 has_panel, has_lvds, has_ck505);
6971
6972 /* Ironlake: try to setup display ref clock before DPLL
6973 * enabling. This is only under driver's control after
6974 * PCH B stepping, previous chipset stepping should be
6975 * ignoring this setting.
6976 */
6977 val = I915_READ(PCH_DREF_CONTROL);
6978
6979 /* As we must carefully and slowly disable/enable each source in turn,
6980 * compute the final state we want first and check if we need to
6981 * make any changes at all.
6982 */
6983 final = val;
6984 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6985 if (has_ck505)
6986 final |= DREF_NONSPREAD_CK505_ENABLE;
6987 else
6988 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6989
6990 final &= ~DREF_SSC_SOURCE_MASK;
6991 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6992 final &= ~DREF_SSC1_ENABLE;
6993
6994 if (has_panel) {
6995 final |= DREF_SSC_SOURCE_ENABLE;
6996
6997 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6998 final |= DREF_SSC1_ENABLE;
6999
7000 if (has_cpu_edp) {
7001 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7002 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7003 else
7004 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7005 } else
7006 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7007 } else {
7008 final |= DREF_SSC_SOURCE_DISABLE;
7009 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7010 }
7011
7012 if (final == val)
7013 return;
7014
7015 /* Always enable nonspread source */
7016 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7017
7018 if (has_ck505)
7019 val |= DREF_NONSPREAD_CK505_ENABLE;
7020 else
7021 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7022
7023 if (has_panel) {
7024 val &= ~DREF_SSC_SOURCE_MASK;
7025 val |= DREF_SSC_SOURCE_ENABLE;
7026
7027 /* SSC must be turned on before enabling the CPU output */
7028 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7029 DRM_DEBUG_KMS("Using SSC on panel\n");
7030 val |= DREF_SSC1_ENABLE;
7031 } else
7032 val &= ~DREF_SSC1_ENABLE;
7033
7034 /* Get SSC going before enabling the outputs */
7035 I915_WRITE(PCH_DREF_CONTROL, val);
7036 POSTING_READ(PCH_DREF_CONTROL);
7037 udelay(200);
7038
7039 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7040
7041 /* Enable CPU source on CPU attached eDP */
7042 if (has_cpu_edp) {
7043 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7044 DRM_DEBUG_KMS("Using SSC on eDP\n");
7045 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7046 } else
7047 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7048 } else
7049 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7050
7051 I915_WRITE(PCH_DREF_CONTROL, val);
7052 POSTING_READ(PCH_DREF_CONTROL);
7053 udelay(200);
7054 } else {
7055 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7056
7057 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7058
7059 /* Turn off CPU output */
7060 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7061
7062 I915_WRITE(PCH_DREF_CONTROL, val);
7063 POSTING_READ(PCH_DREF_CONTROL);
7064 udelay(200);
7065
7066 /* Turn off the SSC source */
7067 val &= ~DREF_SSC_SOURCE_MASK;
7068 val |= DREF_SSC_SOURCE_DISABLE;
7069
7070 /* Turn off SSC1 */
7071 val &= ~DREF_SSC1_ENABLE;
7072
7073 I915_WRITE(PCH_DREF_CONTROL, val);
7074 POSTING_READ(PCH_DREF_CONTROL);
7075 udelay(200);
7076 }
7077
7078 BUG_ON(val != final);
7079 }
7080
7081 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7082 {
7083 uint32_t tmp;
7084
7085 tmp = I915_READ(SOUTH_CHICKEN2);
7086 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7087 I915_WRITE(SOUTH_CHICKEN2, tmp);
7088
7089 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7090 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7091 DRM_ERROR("FDI mPHY reset assert timeout\n");
7092
7093 tmp = I915_READ(SOUTH_CHICKEN2);
7094 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7095 I915_WRITE(SOUTH_CHICKEN2, tmp);
7096
7097 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7098 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7099 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7100 }
7101
7102 /* WaMPhyProgramming:hsw */
7103 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7104 {
7105 uint32_t tmp;
7106
7107 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7108 tmp &= ~(0xFF << 24);
7109 tmp |= (0x12 << 24);
7110 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7111
7112 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7113 tmp |= (1 << 11);
7114 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7115
7116 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7117 tmp |= (1 << 11);
7118 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7119
7120 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7121 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7122 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7123
7124 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7125 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7126 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7127
7128 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7129 tmp &= ~(7 << 13);
7130 tmp |= (5 << 13);
7131 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7132
7133 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7134 tmp &= ~(7 << 13);
7135 tmp |= (5 << 13);
7136 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7137
7138 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7139 tmp &= ~0xFF;
7140 tmp |= 0x1C;
7141 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7142
7143 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7144 tmp &= ~0xFF;
7145 tmp |= 0x1C;
7146 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7147
7148 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7149 tmp &= ~(0xFF << 16);
7150 tmp |= (0x1C << 16);
7151 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7152
7153 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7154 tmp &= ~(0xFF << 16);
7155 tmp |= (0x1C << 16);
7156 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7157
7158 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7159 tmp |= (1 << 27);
7160 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7161
7162 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7163 tmp |= (1 << 27);
7164 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7165
7166 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7167 tmp &= ~(0xF << 28);
7168 tmp |= (4 << 28);
7169 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7170
7171 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7172 tmp &= ~(0xF << 28);
7173 tmp |= (4 << 28);
7174 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7175 }
7176
7177 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7178 * Programming" based on the parameters passed:
7179 * - Sequence to enable CLKOUT_DP
7180 * - Sequence to enable CLKOUT_DP without spread
7181 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7182 */
7183 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7184 bool with_fdi)
7185 {
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 uint32_t reg, tmp;
7188
7189 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7190 with_spread = true;
7191 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7192 with_fdi, "LP PCH doesn't have FDI\n"))
7193 with_fdi = false;
7194
7195 mutex_lock(&dev_priv->dpio_lock);
7196
7197 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7198 tmp &= ~SBI_SSCCTL_DISABLE;
7199 tmp |= SBI_SSCCTL_PATHALT;
7200 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7201
7202 udelay(24);
7203
7204 if (with_spread) {
7205 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7206 tmp &= ~SBI_SSCCTL_PATHALT;
7207 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7208
7209 if (with_fdi) {
7210 lpt_reset_fdi_mphy(dev_priv);
7211 lpt_program_fdi_mphy(dev_priv);
7212 }
7213 }
7214
7215 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7216 SBI_GEN0 : SBI_DBUFF0;
7217 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7218 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7219 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7220
7221 mutex_unlock(&dev_priv->dpio_lock);
7222 }
7223
7224 /* Sequence to disable CLKOUT_DP */
7225 static void lpt_disable_clkout_dp(struct drm_device *dev)
7226 {
7227 struct drm_i915_private *dev_priv = dev->dev_private;
7228 uint32_t reg, tmp;
7229
7230 mutex_lock(&dev_priv->dpio_lock);
7231
7232 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7233 SBI_GEN0 : SBI_DBUFF0;
7234 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7235 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7236 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7237
7238 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7239 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7240 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7241 tmp |= SBI_SSCCTL_PATHALT;
7242 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7243 udelay(32);
7244 }
7245 tmp |= SBI_SSCCTL_DISABLE;
7246 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7247 }
7248
7249 mutex_unlock(&dev_priv->dpio_lock);
7250 }
7251
7252 static void lpt_init_pch_refclk(struct drm_device *dev)
7253 {
7254 struct intel_encoder *encoder;
7255 bool has_vga = false;
7256
7257 for_each_intel_encoder(dev, encoder) {
7258 switch (encoder->type) {
7259 case INTEL_OUTPUT_ANALOG:
7260 has_vga = true;
7261 break;
7262 default:
7263 break;
7264 }
7265 }
7266
7267 if (has_vga)
7268 lpt_enable_clkout_dp(dev, true, true);
7269 else
7270 lpt_disable_clkout_dp(dev);
7271 }
7272
7273 /*
7274 * Initialize reference clocks when the driver loads
7275 */
7276 void intel_init_pch_refclk(struct drm_device *dev)
7277 {
7278 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7279 ironlake_init_pch_refclk(dev);
7280 else if (HAS_PCH_LPT(dev))
7281 lpt_init_pch_refclk(dev);
7282 }
7283
7284 static int ironlake_get_refclk(struct drm_crtc *crtc)
7285 {
7286 struct drm_device *dev = crtc->dev;
7287 struct drm_i915_private *dev_priv = dev->dev_private;
7288 struct intel_encoder *encoder;
7289 int num_connectors = 0;
7290 bool is_lvds = false;
7291
7292 for_each_intel_encoder(dev, encoder) {
7293 if (encoder->new_crtc != to_intel_crtc(crtc))
7294 continue;
7295
7296 switch (encoder->type) {
7297 case INTEL_OUTPUT_LVDS:
7298 is_lvds = true;
7299 break;
7300 default:
7301 break;
7302 }
7303 num_connectors++;
7304 }
7305
7306 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7307 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7308 dev_priv->vbt.lvds_ssc_freq);
7309 return dev_priv->vbt.lvds_ssc_freq;
7310 }
7311
7312 return 120000;
7313 }
7314
7315 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7316 {
7317 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7319 int pipe = intel_crtc->pipe;
7320 uint32_t val;
7321
7322 val = 0;
7323
7324 switch (intel_crtc->config->pipe_bpp) {
7325 case 18:
7326 val |= PIPECONF_6BPC;
7327 break;
7328 case 24:
7329 val |= PIPECONF_8BPC;
7330 break;
7331 case 30:
7332 val |= PIPECONF_10BPC;
7333 break;
7334 case 36:
7335 val |= PIPECONF_12BPC;
7336 break;
7337 default:
7338 /* Case prevented by intel_choose_pipe_bpp_dither. */
7339 BUG();
7340 }
7341
7342 if (intel_crtc->config->dither)
7343 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7344
7345 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7346 val |= PIPECONF_INTERLACED_ILK;
7347 else
7348 val |= PIPECONF_PROGRESSIVE;
7349
7350 if (intel_crtc->config->limited_color_range)
7351 val |= PIPECONF_COLOR_RANGE_SELECT;
7352
7353 I915_WRITE(PIPECONF(pipe), val);
7354 POSTING_READ(PIPECONF(pipe));
7355 }
7356
7357 /*
7358 * Set up the pipe CSC unit.
7359 *
7360 * Currently only full range RGB to limited range RGB conversion
7361 * is supported, but eventually this should handle various
7362 * RGB<->YCbCr scenarios as well.
7363 */
7364 static void intel_set_pipe_csc(struct drm_crtc *crtc)
7365 {
7366 struct drm_device *dev = crtc->dev;
7367 struct drm_i915_private *dev_priv = dev->dev_private;
7368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7369 int pipe = intel_crtc->pipe;
7370 uint16_t coeff = 0x7800; /* 1.0 */
7371
7372 /*
7373 * TODO: Check what kind of values actually come out of the pipe
7374 * with these coeff/postoff values and adjust to get the best
7375 * accuracy. Perhaps we even need to take the bpc value into
7376 * consideration.
7377 */
7378
7379 if (intel_crtc->config->limited_color_range)
7380 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7381
7382 /*
7383 * GY/GU and RY/RU should be the other way around according
7384 * to BSpec, but reality doesn't agree. Just set them up in
7385 * a way that results in the correct picture.
7386 */
7387 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7388 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7389
7390 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7391 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7392
7393 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7394 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7395
7396 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7397 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7398 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7399
7400 if (INTEL_INFO(dev)->gen > 6) {
7401 uint16_t postoff = 0;
7402
7403 if (intel_crtc->config->limited_color_range)
7404 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7405
7406 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7407 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7408 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7409
7410 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7411 } else {
7412 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7413
7414 if (intel_crtc->config->limited_color_range)
7415 mode |= CSC_BLACK_SCREEN_OFFSET;
7416
7417 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7418 }
7419 }
7420
7421 static void haswell_set_pipeconf(struct drm_crtc *crtc)
7422 {
7423 struct drm_device *dev = crtc->dev;
7424 struct drm_i915_private *dev_priv = dev->dev_private;
7425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7426 enum pipe pipe = intel_crtc->pipe;
7427 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7428 uint32_t val;
7429
7430 val = 0;
7431
7432 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7433 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7434
7435 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7436 val |= PIPECONF_INTERLACED_ILK;
7437 else
7438 val |= PIPECONF_PROGRESSIVE;
7439
7440 I915_WRITE(PIPECONF(cpu_transcoder), val);
7441 POSTING_READ(PIPECONF(cpu_transcoder));
7442
7443 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7444 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7445
7446 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7447 val = 0;
7448
7449 switch (intel_crtc->config->pipe_bpp) {
7450 case 18:
7451 val |= PIPEMISC_DITHER_6_BPC;
7452 break;
7453 case 24:
7454 val |= PIPEMISC_DITHER_8_BPC;
7455 break;
7456 case 30:
7457 val |= PIPEMISC_DITHER_10_BPC;
7458 break;
7459 case 36:
7460 val |= PIPEMISC_DITHER_12_BPC;
7461 break;
7462 default:
7463 /* Case prevented by pipe_config_set_bpp. */
7464 BUG();
7465 }
7466
7467 if (intel_crtc->config->dither)
7468 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7469
7470 I915_WRITE(PIPEMISC(pipe), val);
7471 }
7472 }
7473
7474 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7475 struct intel_crtc_state *crtc_state,
7476 intel_clock_t *clock,
7477 bool *has_reduced_clock,
7478 intel_clock_t *reduced_clock)
7479 {
7480 struct drm_device *dev = crtc->dev;
7481 struct drm_i915_private *dev_priv = dev->dev_private;
7482 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7483 int refclk;
7484 const intel_limit_t *limit;
7485 bool ret, is_lvds = false;
7486
7487 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7488
7489 refclk = ironlake_get_refclk(crtc);
7490
7491 /*
7492 * Returns a set of divisors for the desired target clock with the given
7493 * refclk, or FALSE. The returned values represent the clock equation:
7494 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7495 */
7496 limit = intel_limit(intel_crtc, refclk);
7497 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7498 crtc_state->port_clock,
7499 refclk, NULL, clock);
7500 if (!ret)
7501 return false;
7502
7503 if (is_lvds && dev_priv->lvds_downclock_avail) {
7504 /*
7505 * Ensure we match the reduced clock's P to the target clock.
7506 * If the clocks don't match, we can't switch the display clock
7507 * by using the FP0/FP1. In such case we will disable the LVDS
7508 * downclock feature.
7509 */
7510 *has_reduced_clock =
7511 dev_priv->display.find_dpll(limit, intel_crtc,
7512 dev_priv->lvds_downclock,
7513 refclk, clock,
7514 reduced_clock);
7515 }
7516
7517 return true;
7518 }
7519
7520 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7521 {
7522 /*
7523 * Account for spread spectrum to avoid
7524 * oversubscribing the link. Max center spread
7525 * is 2.5%; use 5% for safety's sake.
7526 */
7527 u32 bps = target_clock * bpp * 21 / 20;
7528 return DIV_ROUND_UP(bps, link_bw * 8);
7529 }
7530
7531 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7532 {
7533 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7534 }
7535
7536 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7537 struct intel_crtc_state *crtc_state,
7538 u32 *fp,
7539 intel_clock_t *reduced_clock, u32 *fp2)
7540 {
7541 struct drm_crtc *crtc = &intel_crtc->base;
7542 struct drm_device *dev = crtc->dev;
7543 struct drm_i915_private *dev_priv = dev->dev_private;
7544 struct intel_encoder *intel_encoder;
7545 uint32_t dpll;
7546 int factor, num_connectors = 0;
7547 bool is_lvds = false, is_sdvo = false;
7548
7549 for_each_intel_encoder(dev, intel_encoder) {
7550 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7551 continue;
7552
7553 switch (intel_encoder->type) {
7554 case INTEL_OUTPUT_LVDS:
7555 is_lvds = true;
7556 break;
7557 case INTEL_OUTPUT_SDVO:
7558 case INTEL_OUTPUT_HDMI:
7559 is_sdvo = true;
7560 break;
7561 default:
7562 break;
7563 }
7564
7565 num_connectors++;
7566 }
7567
7568 /* Enable autotuning of the PLL clock (if permissible) */
7569 factor = 21;
7570 if (is_lvds) {
7571 if ((intel_panel_use_ssc(dev_priv) &&
7572 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7573 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7574 factor = 25;
7575 } else if (crtc_state->sdvo_tv_clock)
7576 factor = 20;
7577
7578 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7579 *fp |= FP_CB_TUNE;
7580
7581 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7582 *fp2 |= FP_CB_TUNE;
7583
7584 dpll = 0;
7585
7586 if (is_lvds)
7587 dpll |= DPLLB_MODE_LVDS;
7588 else
7589 dpll |= DPLLB_MODE_DAC_SERIAL;
7590
7591 dpll |= (crtc_state->pixel_multiplier - 1)
7592 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7593
7594 if (is_sdvo)
7595 dpll |= DPLL_SDVO_HIGH_SPEED;
7596 if (crtc_state->has_dp_encoder)
7597 dpll |= DPLL_SDVO_HIGH_SPEED;
7598
7599 /* compute bitmask from p1 value */
7600 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7601 /* also FPA1 */
7602 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7603
7604 switch (crtc_state->dpll.p2) {
7605 case 5:
7606 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7607 break;
7608 case 7:
7609 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7610 break;
7611 case 10:
7612 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7613 break;
7614 case 14:
7615 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7616 break;
7617 }
7618
7619 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7620 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7621 else
7622 dpll |= PLL_REF_INPUT_DREFCLK;
7623
7624 return dpll | DPLL_VCO_ENABLE;
7625 }
7626
7627 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7628 struct intel_crtc_state *crtc_state)
7629 {
7630 struct drm_device *dev = crtc->base.dev;
7631 intel_clock_t clock, reduced_clock;
7632 u32 dpll = 0, fp = 0, fp2 = 0;
7633 bool ok, has_reduced_clock = false;
7634 bool is_lvds = false;
7635 struct intel_shared_dpll *pll;
7636
7637 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7638
7639 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7640 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7641
7642 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7643 &has_reduced_clock, &reduced_clock);
7644 if (!ok && !crtc_state->clock_set) {
7645 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7646 return -EINVAL;
7647 }
7648 /* Compat-code for transition, will disappear. */
7649 if (!crtc_state->clock_set) {
7650 crtc_state->dpll.n = clock.n;
7651 crtc_state->dpll.m1 = clock.m1;
7652 crtc_state->dpll.m2 = clock.m2;
7653 crtc_state->dpll.p1 = clock.p1;
7654 crtc_state->dpll.p2 = clock.p2;
7655 }
7656
7657 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7658 if (crtc_state->has_pch_encoder) {
7659 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7660 if (has_reduced_clock)
7661 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7662
7663 dpll = ironlake_compute_dpll(crtc, crtc_state,
7664 &fp, &reduced_clock,
7665 has_reduced_clock ? &fp2 : NULL);
7666
7667 crtc_state->dpll_hw_state.dpll = dpll;
7668 crtc_state->dpll_hw_state.fp0 = fp;
7669 if (has_reduced_clock)
7670 crtc_state->dpll_hw_state.fp1 = fp2;
7671 else
7672 crtc_state->dpll_hw_state.fp1 = fp;
7673
7674 pll = intel_get_shared_dpll(crtc, crtc_state);
7675 if (pll == NULL) {
7676 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7677 pipe_name(crtc->pipe));
7678 return -EINVAL;
7679 }
7680 }
7681
7682 if (is_lvds && has_reduced_clock && i915.powersave)
7683 crtc->lowfreq_avail = true;
7684 else
7685 crtc->lowfreq_avail = false;
7686
7687 return 0;
7688 }
7689
7690 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7691 struct intel_link_m_n *m_n)
7692 {
7693 struct drm_device *dev = crtc->base.dev;
7694 struct drm_i915_private *dev_priv = dev->dev_private;
7695 enum pipe pipe = crtc->pipe;
7696
7697 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7698 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7699 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7700 & ~TU_SIZE_MASK;
7701 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7702 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7703 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7704 }
7705
7706 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7707 enum transcoder transcoder,
7708 struct intel_link_m_n *m_n,
7709 struct intel_link_m_n *m2_n2)
7710 {
7711 struct drm_device *dev = crtc->base.dev;
7712 struct drm_i915_private *dev_priv = dev->dev_private;
7713 enum pipe pipe = crtc->pipe;
7714
7715 if (INTEL_INFO(dev)->gen >= 5) {
7716 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7717 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7718 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7719 & ~TU_SIZE_MASK;
7720 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7721 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7722 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7723 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7724 * gen < 8) and if DRRS is supported (to make sure the
7725 * registers are not unnecessarily read).
7726 */
7727 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7728 crtc->config->has_drrs) {
7729 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7730 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7731 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7732 & ~TU_SIZE_MASK;
7733 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7734 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7735 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7736 }
7737 } else {
7738 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7739 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7740 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7741 & ~TU_SIZE_MASK;
7742 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7743 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7744 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7745 }
7746 }
7747
7748 void intel_dp_get_m_n(struct intel_crtc *crtc,
7749 struct intel_crtc_state *pipe_config)
7750 {
7751 if (pipe_config->has_pch_encoder)
7752 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7753 else
7754 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7755 &pipe_config->dp_m_n,
7756 &pipe_config->dp_m2_n2);
7757 }
7758
7759 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7760 struct intel_crtc_state *pipe_config)
7761 {
7762 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7763 &pipe_config->fdi_m_n, NULL);
7764 }
7765
7766 static void skylake_get_pfit_config(struct intel_crtc *crtc,
7767 struct intel_crtc_state *pipe_config)
7768 {
7769 struct drm_device *dev = crtc->base.dev;
7770 struct drm_i915_private *dev_priv = dev->dev_private;
7771 uint32_t tmp;
7772
7773 tmp = I915_READ(PS_CTL(crtc->pipe));
7774
7775 if (tmp & PS_ENABLE) {
7776 pipe_config->pch_pfit.enabled = true;
7777 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7778 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7779 }
7780 }
7781
7782 static void
7783 skylake_get_initial_plane_config(struct intel_crtc *crtc,
7784 struct intel_initial_plane_config *plane_config)
7785 {
7786 struct drm_device *dev = crtc->base.dev;
7787 struct drm_i915_private *dev_priv = dev->dev_private;
7788 u32 val, base, offset, stride_mult, tiling;
7789 int pipe = crtc->pipe;
7790 int fourcc, pixel_format;
7791 int aligned_height;
7792 struct drm_framebuffer *fb;
7793 struct intel_framebuffer *intel_fb;
7794
7795 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7796 if (!intel_fb) {
7797 DRM_DEBUG_KMS("failed to alloc fb\n");
7798 return;
7799 }
7800
7801 fb = &intel_fb->base;
7802
7803 val = I915_READ(PLANE_CTL(pipe, 0));
7804 if (!(val & PLANE_CTL_ENABLE))
7805 goto error;
7806
7807 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7808 fourcc = skl_format_to_fourcc(pixel_format,
7809 val & PLANE_CTL_ORDER_RGBX,
7810 val & PLANE_CTL_ALPHA_MASK);
7811 fb->pixel_format = fourcc;
7812 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7813
7814 tiling = val & PLANE_CTL_TILED_MASK;
7815 switch (tiling) {
7816 case PLANE_CTL_TILED_LINEAR:
7817 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
7818 break;
7819 case PLANE_CTL_TILED_X:
7820 plane_config->tiling = I915_TILING_X;
7821 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7822 break;
7823 case PLANE_CTL_TILED_Y:
7824 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
7825 break;
7826 case PLANE_CTL_TILED_YF:
7827 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
7828 break;
7829 default:
7830 MISSING_CASE(tiling);
7831 goto error;
7832 }
7833
7834 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7835 plane_config->base = base;
7836
7837 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7838
7839 val = I915_READ(PLANE_SIZE(pipe, 0));
7840 fb->height = ((val >> 16) & 0xfff) + 1;
7841 fb->width = ((val >> 0) & 0x1fff) + 1;
7842
7843 val = I915_READ(PLANE_STRIDE(pipe, 0));
7844 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
7845 fb->pixel_format);
7846 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7847
7848 aligned_height = intel_fb_align_height(dev, fb->height,
7849 fb->pixel_format,
7850 fb->modifier[0]);
7851
7852 plane_config->size = fb->pitches[0] * aligned_height;
7853
7854 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7855 pipe_name(pipe), fb->width, fb->height,
7856 fb->bits_per_pixel, base, fb->pitches[0],
7857 plane_config->size);
7858
7859 plane_config->fb = intel_fb;
7860 return;
7861
7862 error:
7863 kfree(fb);
7864 }
7865
7866 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7867 struct intel_crtc_state *pipe_config)
7868 {
7869 struct drm_device *dev = crtc->base.dev;
7870 struct drm_i915_private *dev_priv = dev->dev_private;
7871 uint32_t tmp;
7872
7873 tmp = I915_READ(PF_CTL(crtc->pipe));
7874
7875 if (tmp & PF_ENABLE) {
7876 pipe_config->pch_pfit.enabled = true;
7877 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7878 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7879
7880 /* We currently do not free assignements of panel fitters on
7881 * ivb/hsw (since we don't use the higher upscaling modes which
7882 * differentiates them) so just WARN about this case for now. */
7883 if (IS_GEN7(dev)) {
7884 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7885 PF_PIPE_SEL_IVB(crtc->pipe));
7886 }
7887 }
7888 }
7889
7890 static void
7891 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7892 struct intel_initial_plane_config *plane_config)
7893 {
7894 struct drm_device *dev = crtc->base.dev;
7895 struct drm_i915_private *dev_priv = dev->dev_private;
7896 u32 val, base, offset;
7897 int pipe = crtc->pipe;
7898 int fourcc, pixel_format;
7899 int aligned_height;
7900 struct drm_framebuffer *fb;
7901 struct intel_framebuffer *intel_fb;
7902
7903 val = I915_READ(DSPCNTR(pipe));
7904 if (!(val & DISPLAY_PLANE_ENABLE))
7905 return;
7906
7907 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7908 if (!intel_fb) {
7909 DRM_DEBUG_KMS("failed to alloc fb\n");
7910 return;
7911 }
7912
7913 fb = &intel_fb->base;
7914
7915 if (INTEL_INFO(dev)->gen >= 4) {
7916 if (val & DISPPLANE_TILED) {
7917 plane_config->tiling = I915_TILING_X;
7918 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7919 }
7920 }
7921
7922 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7923 fourcc = i9xx_format_to_fourcc(pixel_format);
7924 fb->pixel_format = fourcc;
7925 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7926
7927 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7928 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7929 offset = I915_READ(DSPOFFSET(pipe));
7930 } else {
7931 if (plane_config->tiling)
7932 offset = I915_READ(DSPTILEOFF(pipe));
7933 else
7934 offset = I915_READ(DSPLINOFF(pipe));
7935 }
7936 plane_config->base = base;
7937
7938 val = I915_READ(PIPESRC(pipe));
7939 fb->width = ((val >> 16) & 0xfff) + 1;
7940 fb->height = ((val >> 0) & 0xfff) + 1;
7941
7942 val = I915_READ(DSPSTRIDE(pipe));
7943 fb->pitches[0] = val & 0xffffffc0;
7944
7945 aligned_height = intel_fb_align_height(dev, fb->height,
7946 fb->pixel_format,
7947 fb->modifier[0]);
7948
7949 plane_config->size = fb->pitches[0] * aligned_height;
7950
7951 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7952 pipe_name(pipe), fb->width, fb->height,
7953 fb->bits_per_pixel, base, fb->pitches[0],
7954 plane_config->size);
7955
7956 plane_config->fb = intel_fb;
7957 }
7958
7959 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7960 struct intel_crtc_state *pipe_config)
7961 {
7962 struct drm_device *dev = crtc->base.dev;
7963 struct drm_i915_private *dev_priv = dev->dev_private;
7964 uint32_t tmp;
7965
7966 if (!intel_display_power_is_enabled(dev_priv,
7967 POWER_DOMAIN_PIPE(crtc->pipe)))
7968 return false;
7969
7970 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7971 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7972
7973 tmp = I915_READ(PIPECONF(crtc->pipe));
7974 if (!(tmp & PIPECONF_ENABLE))
7975 return false;
7976
7977 switch (tmp & PIPECONF_BPC_MASK) {
7978 case PIPECONF_6BPC:
7979 pipe_config->pipe_bpp = 18;
7980 break;
7981 case PIPECONF_8BPC:
7982 pipe_config->pipe_bpp = 24;
7983 break;
7984 case PIPECONF_10BPC:
7985 pipe_config->pipe_bpp = 30;
7986 break;
7987 case PIPECONF_12BPC:
7988 pipe_config->pipe_bpp = 36;
7989 break;
7990 default:
7991 break;
7992 }
7993
7994 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7995 pipe_config->limited_color_range = true;
7996
7997 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7998 struct intel_shared_dpll *pll;
7999
8000 pipe_config->has_pch_encoder = true;
8001
8002 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8003 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8004 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8005
8006 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8007
8008 if (HAS_PCH_IBX(dev_priv->dev)) {
8009 pipe_config->shared_dpll =
8010 (enum intel_dpll_id) crtc->pipe;
8011 } else {
8012 tmp = I915_READ(PCH_DPLL_SEL);
8013 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8014 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8015 else
8016 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8017 }
8018
8019 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8020
8021 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8022 &pipe_config->dpll_hw_state));
8023
8024 tmp = pipe_config->dpll_hw_state.dpll;
8025 pipe_config->pixel_multiplier =
8026 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8027 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8028
8029 ironlake_pch_clock_get(crtc, pipe_config);
8030 } else {
8031 pipe_config->pixel_multiplier = 1;
8032 }
8033
8034 intel_get_pipe_timings(crtc, pipe_config);
8035
8036 ironlake_get_pfit_config(crtc, pipe_config);
8037
8038 return true;
8039 }
8040
8041 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8042 {
8043 struct drm_device *dev = dev_priv->dev;
8044 struct intel_crtc *crtc;
8045
8046 for_each_intel_crtc(dev, crtc)
8047 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8048 pipe_name(crtc->pipe));
8049
8050 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8051 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8052 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8053 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8054 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8055 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8056 "CPU PWM1 enabled\n");
8057 if (IS_HASWELL(dev))
8058 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8059 "CPU PWM2 enabled\n");
8060 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8061 "PCH PWM1 enabled\n");
8062 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8063 "Utility pin enabled\n");
8064 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8065
8066 /*
8067 * In theory we can still leave IRQs enabled, as long as only the HPD
8068 * interrupts remain enabled. We used to check for that, but since it's
8069 * gen-specific and since we only disable LCPLL after we fully disable
8070 * the interrupts, the check below should be enough.
8071 */
8072 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8073 }
8074
8075 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8076 {
8077 struct drm_device *dev = dev_priv->dev;
8078
8079 if (IS_HASWELL(dev))
8080 return I915_READ(D_COMP_HSW);
8081 else
8082 return I915_READ(D_COMP_BDW);
8083 }
8084
8085 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8086 {
8087 struct drm_device *dev = dev_priv->dev;
8088
8089 if (IS_HASWELL(dev)) {
8090 mutex_lock(&dev_priv->rps.hw_lock);
8091 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8092 val))
8093 DRM_ERROR("Failed to write to D_COMP\n");
8094 mutex_unlock(&dev_priv->rps.hw_lock);
8095 } else {
8096 I915_WRITE(D_COMP_BDW, val);
8097 POSTING_READ(D_COMP_BDW);
8098 }
8099 }
8100
8101 /*
8102 * This function implements pieces of two sequences from BSpec:
8103 * - Sequence for display software to disable LCPLL
8104 * - Sequence for display software to allow package C8+
8105 * The steps implemented here are just the steps that actually touch the LCPLL
8106 * register. Callers should take care of disabling all the display engine
8107 * functions, doing the mode unset, fixing interrupts, etc.
8108 */
8109 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8110 bool switch_to_fclk, bool allow_power_down)
8111 {
8112 uint32_t val;
8113
8114 assert_can_disable_lcpll(dev_priv);
8115
8116 val = I915_READ(LCPLL_CTL);
8117
8118 if (switch_to_fclk) {
8119 val |= LCPLL_CD_SOURCE_FCLK;
8120 I915_WRITE(LCPLL_CTL, val);
8121
8122 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8123 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8124 DRM_ERROR("Switching to FCLK failed\n");
8125
8126 val = I915_READ(LCPLL_CTL);
8127 }
8128
8129 val |= LCPLL_PLL_DISABLE;
8130 I915_WRITE(LCPLL_CTL, val);
8131 POSTING_READ(LCPLL_CTL);
8132
8133 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8134 DRM_ERROR("LCPLL still locked\n");
8135
8136 val = hsw_read_dcomp(dev_priv);
8137 val |= D_COMP_COMP_DISABLE;
8138 hsw_write_dcomp(dev_priv, val);
8139 ndelay(100);
8140
8141 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8142 1))
8143 DRM_ERROR("D_COMP RCOMP still in progress\n");
8144
8145 if (allow_power_down) {
8146 val = I915_READ(LCPLL_CTL);
8147 val |= LCPLL_POWER_DOWN_ALLOW;
8148 I915_WRITE(LCPLL_CTL, val);
8149 POSTING_READ(LCPLL_CTL);
8150 }
8151 }
8152
8153 /*
8154 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8155 * source.
8156 */
8157 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8158 {
8159 uint32_t val;
8160
8161 val = I915_READ(LCPLL_CTL);
8162
8163 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8164 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8165 return;
8166
8167 /*
8168 * Make sure we're not on PC8 state before disabling PC8, otherwise
8169 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8170 */
8171 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8172
8173 if (val & LCPLL_POWER_DOWN_ALLOW) {
8174 val &= ~LCPLL_POWER_DOWN_ALLOW;
8175 I915_WRITE(LCPLL_CTL, val);
8176 POSTING_READ(LCPLL_CTL);
8177 }
8178
8179 val = hsw_read_dcomp(dev_priv);
8180 val |= D_COMP_COMP_FORCE;
8181 val &= ~D_COMP_COMP_DISABLE;
8182 hsw_write_dcomp(dev_priv, val);
8183
8184 val = I915_READ(LCPLL_CTL);
8185 val &= ~LCPLL_PLL_DISABLE;
8186 I915_WRITE(LCPLL_CTL, val);
8187
8188 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8189 DRM_ERROR("LCPLL not locked yet\n");
8190
8191 if (val & LCPLL_CD_SOURCE_FCLK) {
8192 val = I915_READ(LCPLL_CTL);
8193 val &= ~LCPLL_CD_SOURCE_FCLK;
8194 I915_WRITE(LCPLL_CTL, val);
8195
8196 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8197 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8198 DRM_ERROR("Switching back to LCPLL failed\n");
8199 }
8200
8201 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8202 }
8203
8204 /*
8205 * Package states C8 and deeper are really deep PC states that can only be
8206 * reached when all the devices on the system allow it, so even if the graphics
8207 * device allows PC8+, it doesn't mean the system will actually get to these
8208 * states. Our driver only allows PC8+ when going into runtime PM.
8209 *
8210 * The requirements for PC8+ are that all the outputs are disabled, the power
8211 * well is disabled and most interrupts are disabled, and these are also
8212 * requirements for runtime PM. When these conditions are met, we manually do
8213 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8214 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8215 * hang the machine.
8216 *
8217 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8218 * the state of some registers, so when we come back from PC8+ we need to
8219 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8220 * need to take care of the registers kept by RC6. Notice that this happens even
8221 * if we don't put the device in PCI D3 state (which is what currently happens
8222 * because of the runtime PM support).
8223 *
8224 * For more, read "Display Sequences for Package C8" on the hardware
8225 * documentation.
8226 */
8227 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8228 {
8229 struct drm_device *dev = dev_priv->dev;
8230 uint32_t val;
8231
8232 DRM_DEBUG_KMS("Enabling package C8+\n");
8233
8234 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8235 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8236 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8237 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8238 }
8239
8240 lpt_disable_clkout_dp(dev);
8241 hsw_disable_lcpll(dev_priv, true, true);
8242 }
8243
8244 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8245 {
8246 struct drm_device *dev = dev_priv->dev;
8247 uint32_t val;
8248
8249 DRM_DEBUG_KMS("Disabling package C8+\n");
8250
8251 hsw_restore_lcpll(dev_priv);
8252 lpt_init_pch_refclk(dev);
8253
8254 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8255 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8256 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8257 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8258 }
8259
8260 intel_prepare_ddi(dev);
8261 }
8262
8263 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8264 struct intel_crtc_state *crtc_state)
8265 {
8266 if (!intel_ddi_pll_select(crtc, crtc_state))
8267 return -EINVAL;
8268
8269 crtc->lowfreq_avail = false;
8270
8271 return 0;
8272 }
8273
8274 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8275 enum port port,
8276 struct intel_crtc_state *pipe_config)
8277 {
8278 u32 temp, dpll_ctl1;
8279
8280 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8281 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8282
8283 switch (pipe_config->ddi_pll_sel) {
8284 case SKL_DPLL0:
8285 /*
8286 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8287 * of the shared DPLL framework and thus needs to be read out
8288 * separately
8289 */
8290 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8291 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8292 break;
8293 case SKL_DPLL1:
8294 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8295 break;
8296 case SKL_DPLL2:
8297 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8298 break;
8299 case SKL_DPLL3:
8300 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8301 break;
8302 }
8303 }
8304
8305 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8306 enum port port,
8307 struct intel_crtc_state *pipe_config)
8308 {
8309 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8310
8311 switch (pipe_config->ddi_pll_sel) {
8312 case PORT_CLK_SEL_WRPLL1:
8313 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8314 break;
8315 case PORT_CLK_SEL_WRPLL2:
8316 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8317 break;
8318 }
8319 }
8320
8321 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8322 struct intel_crtc_state *pipe_config)
8323 {
8324 struct drm_device *dev = crtc->base.dev;
8325 struct drm_i915_private *dev_priv = dev->dev_private;
8326 struct intel_shared_dpll *pll;
8327 enum port port;
8328 uint32_t tmp;
8329
8330 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8331
8332 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8333
8334 if (IS_SKYLAKE(dev))
8335 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8336 else
8337 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8338
8339 if (pipe_config->shared_dpll >= 0) {
8340 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8341
8342 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8343 &pipe_config->dpll_hw_state));
8344 }
8345
8346 /*
8347 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8348 * DDI E. So just check whether this pipe is wired to DDI E and whether
8349 * the PCH transcoder is on.
8350 */
8351 if (INTEL_INFO(dev)->gen < 9 &&
8352 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8353 pipe_config->has_pch_encoder = true;
8354
8355 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8356 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8357 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8358
8359 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8360 }
8361 }
8362
8363 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8364 struct intel_crtc_state *pipe_config)
8365 {
8366 struct drm_device *dev = crtc->base.dev;
8367 struct drm_i915_private *dev_priv = dev->dev_private;
8368 enum intel_display_power_domain pfit_domain;
8369 uint32_t tmp;
8370
8371 if (!intel_display_power_is_enabled(dev_priv,
8372 POWER_DOMAIN_PIPE(crtc->pipe)))
8373 return false;
8374
8375 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8376 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8377
8378 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8379 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8380 enum pipe trans_edp_pipe;
8381 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8382 default:
8383 WARN(1, "unknown pipe linked to edp transcoder\n");
8384 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8385 case TRANS_DDI_EDP_INPUT_A_ON:
8386 trans_edp_pipe = PIPE_A;
8387 break;
8388 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8389 trans_edp_pipe = PIPE_B;
8390 break;
8391 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8392 trans_edp_pipe = PIPE_C;
8393 break;
8394 }
8395
8396 if (trans_edp_pipe == crtc->pipe)
8397 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8398 }
8399
8400 if (!intel_display_power_is_enabled(dev_priv,
8401 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8402 return false;
8403
8404 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8405 if (!(tmp & PIPECONF_ENABLE))
8406 return false;
8407
8408 haswell_get_ddi_port_state(crtc, pipe_config);
8409
8410 intel_get_pipe_timings(crtc, pipe_config);
8411
8412 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8413 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8414 if (IS_SKYLAKE(dev))
8415 skylake_get_pfit_config(crtc, pipe_config);
8416 else
8417 ironlake_get_pfit_config(crtc, pipe_config);
8418 }
8419
8420 if (IS_HASWELL(dev))
8421 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8422 (I915_READ(IPS_CTL) & IPS_ENABLE);
8423
8424 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8425 pipe_config->pixel_multiplier =
8426 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8427 } else {
8428 pipe_config->pixel_multiplier = 1;
8429 }
8430
8431 return true;
8432 }
8433
8434 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8435 {
8436 struct drm_device *dev = crtc->dev;
8437 struct drm_i915_private *dev_priv = dev->dev_private;
8438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8439 uint32_t cntl = 0, size = 0;
8440
8441 if (base) {
8442 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
8443 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
8444 unsigned int stride = roundup_pow_of_two(width) * 4;
8445
8446 switch (stride) {
8447 default:
8448 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8449 width, stride);
8450 stride = 256;
8451 /* fallthrough */
8452 case 256:
8453 case 512:
8454 case 1024:
8455 case 2048:
8456 break;
8457 }
8458
8459 cntl |= CURSOR_ENABLE |
8460 CURSOR_GAMMA_ENABLE |
8461 CURSOR_FORMAT_ARGB |
8462 CURSOR_STRIDE(stride);
8463
8464 size = (height << 12) | width;
8465 }
8466
8467 if (intel_crtc->cursor_cntl != 0 &&
8468 (intel_crtc->cursor_base != base ||
8469 intel_crtc->cursor_size != size ||
8470 intel_crtc->cursor_cntl != cntl)) {
8471 /* On these chipsets we can only modify the base/size/stride
8472 * whilst the cursor is disabled.
8473 */
8474 I915_WRITE(_CURACNTR, 0);
8475 POSTING_READ(_CURACNTR);
8476 intel_crtc->cursor_cntl = 0;
8477 }
8478
8479 if (intel_crtc->cursor_base != base) {
8480 I915_WRITE(_CURABASE, base);
8481 intel_crtc->cursor_base = base;
8482 }
8483
8484 if (intel_crtc->cursor_size != size) {
8485 I915_WRITE(CURSIZE, size);
8486 intel_crtc->cursor_size = size;
8487 }
8488
8489 if (intel_crtc->cursor_cntl != cntl) {
8490 I915_WRITE(_CURACNTR, cntl);
8491 POSTING_READ(_CURACNTR);
8492 intel_crtc->cursor_cntl = cntl;
8493 }
8494 }
8495
8496 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8497 {
8498 struct drm_device *dev = crtc->dev;
8499 struct drm_i915_private *dev_priv = dev->dev_private;
8500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8501 int pipe = intel_crtc->pipe;
8502 uint32_t cntl;
8503
8504 cntl = 0;
8505 if (base) {
8506 cntl = MCURSOR_GAMMA_ENABLE;
8507 switch (intel_crtc->base.cursor->state->crtc_w) {
8508 case 64:
8509 cntl |= CURSOR_MODE_64_ARGB_AX;
8510 break;
8511 case 128:
8512 cntl |= CURSOR_MODE_128_ARGB_AX;
8513 break;
8514 case 256:
8515 cntl |= CURSOR_MODE_256_ARGB_AX;
8516 break;
8517 default:
8518 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
8519 return;
8520 }
8521 cntl |= pipe << 28; /* Connect to correct pipe */
8522
8523 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8524 cntl |= CURSOR_PIPE_CSC_ENABLE;
8525 }
8526
8527 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8528 cntl |= CURSOR_ROTATE_180;
8529
8530 if (intel_crtc->cursor_cntl != cntl) {
8531 I915_WRITE(CURCNTR(pipe), cntl);
8532 POSTING_READ(CURCNTR(pipe));
8533 intel_crtc->cursor_cntl = cntl;
8534 }
8535
8536 /* and commit changes on next vblank */
8537 I915_WRITE(CURBASE(pipe), base);
8538 POSTING_READ(CURBASE(pipe));
8539
8540 intel_crtc->cursor_base = base;
8541 }
8542
8543 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8544 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8545 bool on)
8546 {
8547 struct drm_device *dev = crtc->dev;
8548 struct drm_i915_private *dev_priv = dev->dev_private;
8549 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8550 int pipe = intel_crtc->pipe;
8551 int x = crtc->cursor_x;
8552 int y = crtc->cursor_y;
8553 u32 base = 0, pos = 0;
8554
8555 if (on)
8556 base = intel_crtc->cursor_addr;
8557
8558 if (x >= intel_crtc->config->pipe_src_w)
8559 base = 0;
8560
8561 if (y >= intel_crtc->config->pipe_src_h)
8562 base = 0;
8563
8564 if (x < 0) {
8565 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
8566 base = 0;
8567
8568 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8569 x = -x;
8570 }
8571 pos |= x << CURSOR_X_SHIFT;
8572
8573 if (y < 0) {
8574 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
8575 base = 0;
8576
8577 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8578 y = -y;
8579 }
8580 pos |= y << CURSOR_Y_SHIFT;
8581
8582 if (base == 0 && intel_crtc->cursor_base == 0)
8583 return;
8584
8585 I915_WRITE(CURPOS(pipe), pos);
8586
8587 /* ILK+ do this automagically */
8588 if (HAS_GMCH_DISPLAY(dev) &&
8589 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8590 base += (intel_crtc->base.cursor->state->crtc_h *
8591 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
8592 }
8593
8594 if (IS_845G(dev) || IS_I865G(dev))
8595 i845_update_cursor(crtc, base);
8596 else
8597 i9xx_update_cursor(crtc, base);
8598 }
8599
8600 static bool cursor_size_ok(struct drm_device *dev,
8601 uint32_t width, uint32_t height)
8602 {
8603 if (width == 0 || height == 0)
8604 return false;
8605
8606 /*
8607 * 845g/865g are special in that they are only limited by
8608 * the width of their cursors, the height is arbitrary up to
8609 * the precision of the register. Everything else requires
8610 * square cursors, limited to a few power-of-two sizes.
8611 */
8612 if (IS_845G(dev) || IS_I865G(dev)) {
8613 if ((width & 63) != 0)
8614 return false;
8615
8616 if (width > (IS_845G(dev) ? 64 : 512))
8617 return false;
8618
8619 if (height > 1023)
8620 return false;
8621 } else {
8622 switch (width | height) {
8623 case 256:
8624 case 128:
8625 if (IS_GEN2(dev))
8626 return false;
8627 case 64:
8628 break;
8629 default:
8630 return false;
8631 }
8632 }
8633
8634 return true;
8635 }
8636
8637 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8638 u16 *blue, uint32_t start, uint32_t size)
8639 {
8640 int end = (start + size > 256) ? 256 : start + size, i;
8641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8642
8643 for (i = start; i < end; i++) {
8644 intel_crtc->lut_r[i] = red[i] >> 8;
8645 intel_crtc->lut_g[i] = green[i] >> 8;
8646 intel_crtc->lut_b[i] = blue[i] >> 8;
8647 }
8648
8649 intel_crtc_load_lut(crtc);
8650 }
8651
8652 /* VESA 640x480x72Hz mode to set on the pipe */
8653 static struct drm_display_mode load_detect_mode = {
8654 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8655 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8656 };
8657
8658 struct drm_framebuffer *
8659 __intel_framebuffer_create(struct drm_device *dev,
8660 struct drm_mode_fb_cmd2 *mode_cmd,
8661 struct drm_i915_gem_object *obj)
8662 {
8663 struct intel_framebuffer *intel_fb;
8664 int ret;
8665
8666 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8667 if (!intel_fb) {
8668 drm_gem_object_unreference(&obj->base);
8669 return ERR_PTR(-ENOMEM);
8670 }
8671
8672 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8673 if (ret)
8674 goto err;
8675
8676 return &intel_fb->base;
8677 err:
8678 drm_gem_object_unreference(&obj->base);
8679 kfree(intel_fb);
8680
8681 return ERR_PTR(ret);
8682 }
8683
8684 static struct drm_framebuffer *
8685 intel_framebuffer_create(struct drm_device *dev,
8686 struct drm_mode_fb_cmd2 *mode_cmd,
8687 struct drm_i915_gem_object *obj)
8688 {
8689 struct drm_framebuffer *fb;
8690 int ret;
8691
8692 ret = i915_mutex_lock_interruptible(dev);
8693 if (ret)
8694 return ERR_PTR(ret);
8695 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8696 mutex_unlock(&dev->struct_mutex);
8697
8698 return fb;
8699 }
8700
8701 static u32
8702 intel_framebuffer_pitch_for_width(int width, int bpp)
8703 {
8704 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8705 return ALIGN(pitch, 64);
8706 }
8707
8708 static u32
8709 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8710 {
8711 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8712 return PAGE_ALIGN(pitch * mode->vdisplay);
8713 }
8714
8715 static struct drm_framebuffer *
8716 intel_framebuffer_create_for_mode(struct drm_device *dev,
8717 struct drm_display_mode *mode,
8718 int depth, int bpp)
8719 {
8720 struct drm_i915_gem_object *obj;
8721 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8722
8723 obj = i915_gem_alloc_object(dev,
8724 intel_framebuffer_size_for_mode(mode, bpp));
8725 if (obj == NULL)
8726 return ERR_PTR(-ENOMEM);
8727
8728 mode_cmd.width = mode->hdisplay;
8729 mode_cmd.height = mode->vdisplay;
8730 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8731 bpp);
8732 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8733
8734 return intel_framebuffer_create(dev, &mode_cmd, obj);
8735 }
8736
8737 static struct drm_framebuffer *
8738 mode_fits_in_fbdev(struct drm_device *dev,
8739 struct drm_display_mode *mode)
8740 {
8741 #ifdef CONFIG_DRM_I915_FBDEV
8742 struct drm_i915_private *dev_priv = dev->dev_private;
8743 struct drm_i915_gem_object *obj;
8744 struct drm_framebuffer *fb;
8745
8746 if (!dev_priv->fbdev)
8747 return NULL;
8748
8749 if (!dev_priv->fbdev->fb)
8750 return NULL;
8751
8752 obj = dev_priv->fbdev->fb->obj;
8753 BUG_ON(!obj);
8754
8755 fb = &dev_priv->fbdev->fb->base;
8756 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8757 fb->bits_per_pixel))
8758 return NULL;
8759
8760 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8761 return NULL;
8762
8763 return fb;
8764 #else
8765 return NULL;
8766 #endif
8767 }
8768
8769 bool intel_get_load_detect_pipe(struct drm_connector *connector,
8770 struct drm_display_mode *mode,
8771 struct intel_load_detect_pipe *old,
8772 struct drm_modeset_acquire_ctx *ctx)
8773 {
8774 struct intel_crtc *intel_crtc;
8775 struct intel_encoder *intel_encoder =
8776 intel_attached_encoder(connector);
8777 struct drm_crtc *possible_crtc;
8778 struct drm_encoder *encoder = &intel_encoder->base;
8779 struct drm_crtc *crtc = NULL;
8780 struct drm_device *dev = encoder->dev;
8781 struct drm_framebuffer *fb;
8782 struct drm_mode_config *config = &dev->mode_config;
8783 int ret, i = -1;
8784
8785 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8786 connector->base.id, connector->name,
8787 encoder->base.id, encoder->name);
8788
8789 retry:
8790 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8791 if (ret)
8792 goto fail_unlock;
8793
8794 /*
8795 * Algorithm gets a little messy:
8796 *
8797 * - if the connector already has an assigned crtc, use it (but make
8798 * sure it's on first)
8799 *
8800 * - try to find the first unused crtc that can drive this connector,
8801 * and use that if we find one
8802 */
8803
8804 /* See if we already have a CRTC for this connector */
8805 if (encoder->crtc) {
8806 crtc = encoder->crtc;
8807
8808 ret = drm_modeset_lock(&crtc->mutex, ctx);
8809 if (ret)
8810 goto fail_unlock;
8811 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8812 if (ret)
8813 goto fail_unlock;
8814
8815 old->dpms_mode = connector->dpms;
8816 old->load_detect_temp = false;
8817
8818 /* Make sure the crtc and connector are running */
8819 if (connector->dpms != DRM_MODE_DPMS_ON)
8820 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8821
8822 return true;
8823 }
8824
8825 /* Find an unused one (if possible) */
8826 for_each_crtc(dev, possible_crtc) {
8827 i++;
8828 if (!(encoder->possible_crtcs & (1 << i)))
8829 continue;
8830 if (possible_crtc->state->enable)
8831 continue;
8832 /* This can occur when applying the pipe A quirk on resume. */
8833 if (to_intel_crtc(possible_crtc)->new_enabled)
8834 continue;
8835
8836 crtc = possible_crtc;
8837 break;
8838 }
8839
8840 /*
8841 * If we didn't find an unused CRTC, don't use any.
8842 */
8843 if (!crtc) {
8844 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8845 goto fail_unlock;
8846 }
8847
8848 ret = drm_modeset_lock(&crtc->mutex, ctx);
8849 if (ret)
8850 goto fail_unlock;
8851 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8852 if (ret)
8853 goto fail_unlock;
8854 intel_encoder->new_crtc = to_intel_crtc(crtc);
8855 to_intel_connector(connector)->new_encoder = intel_encoder;
8856
8857 intel_crtc = to_intel_crtc(crtc);
8858 intel_crtc->new_enabled = true;
8859 intel_crtc->new_config = intel_crtc->config;
8860 old->dpms_mode = connector->dpms;
8861 old->load_detect_temp = true;
8862 old->release_fb = NULL;
8863
8864 if (!mode)
8865 mode = &load_detect_mode;
8866
8867 /* We need a framebuffer large enough to accommodate all accesses
8868 * that the plane may generate whilst we perform load detection.
8869 * We can not rely on the fbcon either being present (we get called
8870 * during its initialisation to detect all boot displays, or it may
8871 * not even exist) or that it is large enough to satisfy the
8872 * requested mode.
8873 */
8874 fb = mode_fits_in_fbdev(dev, mode);
8875 if (fb == NULL) {
8876 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8877 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8878 old->release_fb = fb;
8879 } else
8880 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8881 if (IS_ERR(fb)) {
8882 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8883 goto fail;
8884 }
8885
8886 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8887 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8888 if (old->release_fb)
8889 old->release_fb->funcs->destroy(old->release_fb);
8890 goto fail;
8891 }
8892 crtc->primary->crtc = crtc;
8893
8894 /* let the connector get through one full cycle before testing */
8895 intel_wait_for_vblank(dev, intel_crtc->pipe);
8896 return true;
8897
8898 fail:
8899 intel_crtc->new_enabled = crtc->state->enable;
8900 if (intel_crtc->new_enabled)
8901 intel_crtc->new_config = intel_crtc->config;
8902 else
8903 intel_crtc->new_config = NULL;
8904 fail_unlock:
8905 if (ret == -EDEADLK) {
8906 drm_modeset_backoff(ctx);
8907 goto retry;
8908 }
8909
8910 return false;
8911 }
8912
8913 void intel_release_load_detect_pipe(struct drm_connector *connector,
8914 struct intel_load_detect_pipe *old)
8915 {
8916 struct intel_encoder *intel_encoder =
8917 intel_attached_encoder(connector);
8918 struct drm_encoder *encoder = &intel_encoder->base;
8919 struct drm_crtc *crtc = encoder->crtc;
8920 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8921
8922 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8923 connector->base.id, connector->name,
8924 encoder->base.id, encoder->name);
8925
8926 if (old->load_detect_temp) {
8927 to_intel_connector(connector)->new_encoder = NULL;
8928 intel_encoder->new_crtc = NULL;
8929 intel_crtc->new_enabled = false;
8930 intel_crtc->new_config = NULL;
8931 intel_set_mode(crtc, NULL, 0, 0, NULL);
8932
8933 if (old->release_fb) {
8934 drm_framebuffer_unregister_private(old->release_fb);
8935 drm_framebuffer_unreference(old->release_fb);
8936 }
8937
8938 return;
8939 }
8940
8941 /* Switch crtc and encoder back off if necessary */
8942 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8943 connector->funcs->dpms(connector, old->dpms_mode);
8944 }
8945
8946 static int i9xx_pll_refclk(struct drm_device *dev,
8947 const struct intel_crtc_state *pipe_config)
8948 {
8949 struct drm_i915_private *dev_priv = dev->dev_private;
8950 u32 dpll = pipe_config->dpll_hw_state.dpll;
8951
8952 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8953 return dev_priv->vbt.lvds_ssc_freq;
8954 else if (HAS_PCH_SPLIT(dev))
8955 return 120000;
8956 else if (!IS_GEN2(dev))
8957 return 96000;
8958 else
8959 return 48000;
8960 }
8961
8962 /* Returns the clock of the currently programmed mode of the given pipe. */
8963 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8964 struct intel_crtc_state *pipe_config)
8965 {
8966 struct drm_device *dev = crtc->base.dev;
8967 struct drm_i915_private *dev_priv = dev->dev_private;
8968 int pipe = pipe_config->cpu_transcoder;
8969 u32 dpll = pipe_config->dpll_hw_state.dpll;
8970 u32 fp;
8971 intel_clock_t clock;
8972 int refclk = i9xx_pll_refclk(dev, pipe_config);
8973
8974 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8975 fp = pipe_config->dpll_hw_state.fp0;
8976 else
8977 fp = pipe_config->dpll_hw_state.fp1;
8978
8979 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8980 if (IS_PINEVIEW(dev)) {
8981 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8982 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8983 } else {
8984 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8985 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8986 }
8987
8988 if (!IS_GEN2(dev)) {
8989 if (IS_PINEVIEW(dev))
8990 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8991 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8992 else
8993 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8994 DPLL_FPA01_P1_POST_DIV_SHIFT);
8995
8996 switch (dpll & DPLL_MODE_MASK) {
8997 case DPLLB_MODE_DAC_SERIAL:
8998 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8999 5 : 10;
9000 break;
9001 case DPLLB_MODE_LVDS:
9002 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9003 7 : 14;
9004 break;
9005 default:
9006 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9007 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9008 return;
9009 }
9010
9011 if (IS_PINEVIEW(dev))
9012 pineview_clock(refclk, &clock);
9013 else
9014 i9xx_clock(refclk, &clock);
9015 } else {
9016 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9017 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9018
9019 if (is_lvds) {
9020 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9021 DPLL_FPA01_P1_POST_DIV_SHIFT);
9022
9023 if (lvds & LVDS_CLKB_POWER_UP)
9024 clock.p2 = 7;
9025 else
9026 clock.p2 = 14;
9027 } else {
9028 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9029 clock.p1 = 2;
9030 else {
9031 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9032 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9033 }
9034 if (dpll & PLL_P2_DIVIDE_BY_4)
9035 clock.p2 = 4;
9036 else
9037 clock.p2 = 2;
9038 }
9039
9040 i9xx_clock(refclk, &clock);
9041 }
9042
9043 /*
9044 * This value includes pixel_multiplier. We will use
9045 * port_clock to compute adjusted_mode.crtc_clock in the
9046 * encoder's get_config() function.
9047 */
9048 pipe_config->port_clock = clock.dot;
9049 }
9050
9051 int intel_dotclock_calculate(int link_freq,
9052 const struct intel_link_m_n *m_n)
9053 {
9054 /*
9055 * The calculation for the data clock is:
9056 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9057 * But we want to avoid losing precison if possible, so:
9058 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9059 *
9060 * and the link clock is simpler:
9061 * link_clock = (m * link_clock) / n
9062 */
9063
9064 if (!m_n->link_n)
9065 return 0;
9066
9067 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9068 }
9069
9070 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9071 struct intel_crtc_state *pipe_config)
9072 {
9073 struct drm_device *dev = crtc->base.dev;
9074
9075 /* read out port_clock from the DPLL */
9076 i9xx_crtc_clock_get(crtc, pipe_config);
9077
9078 /*
9079 * This value does not include pixel_multiplier.
9080 * We will check that port_clock and adjusted_mode.crtc_clock
9081 * agree once we know their relationship in the encoder's
9082 * get_config() function.
9083 */
9084 pipe_config->base.adjusted_mode.crtc_clock =
9085 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9086 &pipe_config->fdi_m_n);
9087 }
9088
9089 /** Returns the currently programmed mode of the given pipe. */
9090 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9091 struct drm_crtc *crtc)
9092 {
9093 struct drm_i915_private *dev_priv = dev->dev_private;
9094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9095 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9096 struct drm_display_mode *mode;
9097 struct intel_crtc_state pipe_config;
9098 int htot = I915_READ(HTOTAL(cpu_transcoder));
9099 int hsync = I915_READ(HSYNC(cpu_transcoder));
9100 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9101 int vsync = I915_READ(VSYNC(cpu_transcoder));
9102 enum pipe pipe = intel_crtc->pipe;
9103
9104 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9105 if (!mode)
9106 return NULL;
9107
9108 /*
9109 * Construct a pipe_config sufficient for getting the clock info
9110 * back out of crtc_clock_get.
9111 *
9112 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9113 * to use a real value here instead.
9114 */
9115 pipe_config.cpu_transcoder = (enum transcoder) pipe;
9116 pipe_config.pixel_multiplier = 1;
9117 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9118 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9119 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
9120 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9121
9122 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
9123 mode->hdisplay = (htot & 0xffff) + 1;
9124 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9125 mode->hsync_start = (hsync & 0xffff) + 1;
9126 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9127 mode->vdisplay = (vtot & 0xffff) + 1;
9128 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9129 mode->vsync_start = (vsync & 0xffff) + 1;
9130 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9131
9132 drm_mode_set_name(mode);
9133
9134 return mode;
9135 }
9136
9137 static void intel_decrease_pllclock(struct drm_crtc *crtc)
9138 {
9139 struct drm_device *dev = crtc->dev;
9140 struct drm_i915_private *dev_priv = dev->dev_private;
9141 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9142
9143 if (!HAS_GMCH_DISPLAY(dev))
9144 return;
9145
9146 if (!dev_priv->lvds_downclock_avail)
9147 return;
9148
9149 /*
9150 * Since this is called by a timer, we should never get here in
9151 * the manual case.
9152 */
9153 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9154 int pipe = intel_crtc->pipe;
9155 int dpll_reg = DPLL(pipe);
9156 int dpll;
9157
9158 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9159
9160 assert_panel_unlocked(dev_priv, pipe);
9161
9162 dpll = I915_READ(dpll_reg);
9163 dpll |= DISPLAY_RATE_SELECT_FPA1;
9164 I915_WRITE(dpll_reg, dpll);
9165 intel_wait_for_vblank(dev, pipe);
9166 dpll = I915_READ(dpll_reg);
9167 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9168 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9169 }
9170
9171 }
9172
9173 void intel_mark_busy(struct drm_device *dev)
9174 {
9175 struct drm_i915_private *dev_priv = dev->dev_private;
9176
9177 if (dev_priv->mm.busy)
9178 return;
9179
9180 intel_runtime_pm_get(dev_priv);
9181 i915_update_gfx_val(dev_priv);
9182 dev_priv->mm.busy = true;
9183 }
9184
9185 void intel_mark_idle(struct drm_device *dev)
9186 {
9187 struct drm_i915_private *dev_priv = dev->dev_private;
9188 struct drm_crtc *crtc;
9189
9190 if (!dev_priv->mm.busy)
9191 return;
9192
9193 dev_priv->mm.busy = false;
9194
9195 if (!i915.powersave)
9196 goto out;
9197
9198 for_each_crtc(dev, crtc) {
9199 if (!crtc->primary->fb)
9200 continue;
9201
9202 intel_decrease_pllclock(crtc);
9203 }
9204
9205 if (INTEL_INFO(dev)->gen >= 6)
9206 gen6_rps_idle(dev->dev_private);
9207
9208 out:
9209 intel_runtime_pm_put(dev_priv);
9210 }
9211
9212 static void intel_crtc_set_state(struct intel_crtc *crtc,
9213 struct intel_crtc_state *crtc_state)
9214 {
9215 kfree(crtc->config);
9216 crtc->config = crtc_state;
9217 crtc->base.state = &crtc_state->base;
9218 }
9219
9220 static void intel_crtc_destroy(struct drm_crtc *crtc)
9221 {
9222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9223 struct drm_device *dev = crtc->dev;
9224 struct intel_unpin_work *work;
9225
9226 spin_lock_irq(&dev->event_lock);
9227 work = intel_crtc->unpin_work;
9228 intel_crtc->unpin_work = NULL;
9229 spin_unlock_irq(&dev->event_lock);
9230
9231 if (work) {
9232 cancel_work_sync(&work->work);
9233 kfree(work);
9234 }
9235
9236 intel_crtc_set_state(intel_crtc, NULL);
9237 drm_crtc_cleanup(crtc);
9238
9239 kfree(intel_crtc);
9240 }
9241
9242 static void intel_unpin_work_fn(struct work_struct *__work)
9243 {
9244 struct intel_unpin_work *work =
9245 container_of(__work, struct intel_unpin_work, work);
9246 struct drm_device *dev = work->crtc->dev;
9247 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9248
9249 mutex_lock(&dev->struct_mutex);
9250 intel_unpin_fb_obj(intel_fb_obj(work->old_fb));
9251 drm_gem_object_unreference(&work->pending_flip_obj->base);
9252 drm_framebuffer_unreference(work->old_fb);
9253
9254 intel_fbc_update(dev);
9255
9256 if (work->flip_queued_req)
9257 i915_gem_request_assign(&work->flip_queued_req, NULL);
9258 mutex_unlock(&dev->struct_mutex);
9259
9260 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9261
9262 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9263 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9264
9265 kfree(work);
9266 }
9267
9268 static void do_intel_finish_page_flip(struct drm_device *dev,
9269 struct drm_crtc *crtc)
9270 {
9271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9272 struct intel_unpin_work *work;
9273 unsigned long flags;
9274
9275 /* Ignore early vblank irqs */
9276 if (intel_crtc == NULL)
9277 return;
9278
9279 /*
9280 * This is called both by irq handlers and the reset code (to complete
9281 * lost pageflips) so needs the full irqsave spinlocks.
9282 */
9283 spin_lock_irqsave(&dev->event_lock, flags);
9284 work = intel_crtc->unpin_work;
9285
9286 /* Ensure we don't miss a work->pending update ... */
9287 smp_rmb();
9288
9289 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9290 spin_unlock_irqrestore(&dev->event_lock, flags);
9291 return;
9292 }
9293
9294 page_flip_completed(intel_crtc);
9295
9296 spin_unlock_irqrestore(&dev->event_lock, flags);
9297 }
9298
9299 void intel_finish_page_flip(struct drm_device *dev, int pipe)
9300 {
9301 struct drm_i915_private *dev_priv = dev->dev_private;
9302 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9303
9304 do_intel_finish_page_flip(dev, crtc);
9305 }
9306
9307 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9308 {
9309 struct drm_i915_private *dev_priv = dev->dev_private;
9310 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9311
9312 do_intel_finish_page_flip(dev, crtc);
9313 }
9314
9315 /* Is 'a' after or equal to 'b'? */
9316 static bool g4x_flip_count_after_eq(u32 a, u32 b)
9317 {
9318 return !((a - b) & 0x80000000);
9319 }
9320
9321 static bool page_flip_finished(struct intel_crtc *crtc)
9322 {
9323 struct drm_device *dev = crtc->base.dev;
9324 struct drm_i915_private *dev_priv = dev->dev_private;
9325
9326 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9327 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9328 return true;
9329
9330 /*
9331 * The relevant registers doen't exist on pre-ctg.
9332 * As the flip done interrupt doesn't trigger for mmio
9333 * flips on gmch platforms, a flip count check isn't
9334 * really needed there. But since ctg has the registers,
9335 * include it in the check anyway.
9336 */
9337 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9338 return true;
9339
9340 /*
9341 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9342 * used the same base address. In that case the mmio flip might
9343 * have completed, but the CS hasn't even executed the flip yet.
9344 *
9345 * A flip count check isn't enough as the CS might have updated
9346 * the base address just after start of vblank, but before we
9347 * managed to process the interrupt. This means we'd complete the
9348 * CS flip too soon.
9349 *
9350 * Combining both checks should get us a good enough result. It may
9351 * still happen that the CS flip has been executed, but has not
9352 * yet actually completed. But in case the base address is the same
9353 * anyway, we don't really care.
9354 */
9355 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9356 crtc->unpin_work->gtt_offset &&
9357 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9358 crtc->unpin_work->flip_count);
9359 }
9360
9361 void intel_prepare_page_flip(struct drm_device *dev, int plane)
9362 {
9363 struct drm_i915_private *dev_priv = dev->dev_private;
9364 struct intel_crtc *intel_crtc =
9365 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9366 unsigned long flags;
9367
9368
9369 /*
9370 * This is called both by irq handlers and the reset code (to complete
9371 * lost pageflips) so needs the full irqsave spinlocks.
9372 *
9373 * NB: An MMIO update of the plane base pointer will also
9374 * generate a page-flip completion irq, i.e. every modeset
9375 * is also accompanied by a spurious intel_prepare_page_flip().
9376 */
9377 spin_lock_irqsave(&dev->event_lock, flags);
9378 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9379 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9380 spin_unlock_irqrestore(&dev->event_lock, flags);
9381 }
9382
9383 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9384 {
9385 /* Ensure that the work item is consistent when activating it ... */
9386 smp_wmb();
9387 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9388 /* and that it is marked active as soon as the irq could fire. */
9389 smp_wmb();
9390 }
9391
9392 static int intel_gen2_queue_flip(struct drm_device *dev,
9393 struct drm_crtc *crtc,
9394 struct drm_framebuffer *fb,
9395 struct drm_i915_gem_object *obj,
9396 struct intel_engine_cs *ring,
9397 uint32_t flags)
9398 {
9399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9400 u32 flip_mask;
9401 int ret;
9402
9403 ret = intel_ring_begin(ring, 6);
9404 if (ret)
9405 return ret;
9406
9407 /* Can't queue multiple flips, so wait for the previous
9408 * one to finish before executing the next.
9409 */
9410 if (intel_crtc->plane)
9411 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9412 else
9413 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9414 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9415 intel_ring_emit(ring, MI_NOOP);
9416 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9417 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9418 intel_ring_emit(ring, fb->pitches[0]);
9419 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9420 intel_ring_emit(ring, 0); /* aux display base address, unused */
9421
9422 intel_mark_page_flip_active(intel_crtc);
9423 __intel_ring_advance(ring);
9424 return 0;
9425 }
9426
9427 static int intel_gen3_queue_flip(struct drm_device *dev,
9428 struct drm_crtc *crtc,
9429 struct drm_framebuffer *fb,
9430 struct drm_i915_gem_object *obj,
9431 struct intel_engine_cs *ring,
9432 uint32_t flags)
9433 {
9434 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9435 u32 flip_mask;
9436 int ret;
9437
9438 ret = intel_ring_begin(ring, 6);
9439 if (ret)
9440 return ret;
9441
9442 if (intel_crtc->plane)
9443 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9444 else
9445 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9446 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9447 intel_ring_emit(ring, MI_NOOP);
9448 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9449 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9450 intel_ring_emit(ring, fb->pitches[0]);
9451 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9452 intel_ring_emit(ring, MI_NOOP);
9453
9454 intel_mark_page_flip_active(intel_crtc);
9455 __intel_ring_advance(ring);
9456 return 0;
9457 }
9458
9459 static int intel_gen4_queue_flip(struct drm_device *dev,
9460 struct drm_crtc *crtc,
9461 struct drm_framebuffer *fb,
9462 struct drm_i915_gem_object *obj,
9463 struct intel_engine_cs *ring,
9464 uint32_t flags)
9465 {
9466 struct drm_i915_private *dev_priv = dev->dev_private;
9467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9468 uint32_t pf, pipesrc;
9469 int ret;
9470
9471 ret = intel_ring_begin(ring, 4);
9472 if (ret)
9473 return ret;
9474
9475 /* i965+ uses the linear or tiled offsets from the
9476 * Display Registers (which do not change across a page-flip)
9477 * so we need only reprogram the base address.
9478 */
9479 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9480 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9481 intel_ring_emit(ring, fb->pitches[0]);
9482 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9483 obj->tiling_mode);
9484
9485 /* XXX Enabling the panel-fitter across page-flip is so far
9486 * untested on non-native modes, so ignore it for now.
9487 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9488 */
9489 pf = 0;
9490 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9491 intel_ring_emit(ring, pf | pipesrc);
9492
9493 intel_mark_page_flip_active(intel_crtc);
9494 __intel_ring_advance(ring);
9495 return 0;
9496 }
9497
9498 static int intel_gen6_queue_flip(struct drm_device *dev,
9499 struct drm_crtc *crtc,
9500 struct drm_framebuffer *fb,
9501 struct drm_i915_gem_object *obj,
9502 struct intel_engine_cs *ring,
9503 uint32_t flags)
9504 {
9505 struct drm_i915_private *dev_priv = dev->dev_private;
9506 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9507 uint32_t pf, pipesrc;
9508 int ret;
9509
9510 ret = intel_ring_begin(ring, 4);
9511 if (ret)
9512 return ret;
9513
9514 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9515 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9516 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9517 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9518
9519 /* Contrary to the suggestions in the documentation,
9520 * "Enable Panel Fitter" does not seem to be required when page
9521 * flipping with a non-native mode, and worse causes a normal
9522 * modeset to fail.
9523 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9524 */
9525 pf = 0;
9526 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9527 intel_ring_emit(ring, pf | pipesrc);
9528
9529 intel_mark_page_flip_active(intel_crtc);
9530 __intel_ring_advance(ring);
9531 return 0;
9532 }
9533
9534 static int intel_gen7_queue_flip(struct drm_device *dev,
9535 struct drm_crtc *crtc,
9536 struct drm_framebuffer *fb,
9537 struct drm_i915_gem_object *obj,
9538 struct intel_engine_cs *ring,
9539 uint32_t flags)
9540 {
9541 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9542 uint32_t plane_bit = 0;
9543 int len, ret;
9544
9545 switch (intel_crtc->plane) {
9546 case PLANE_A:
9547 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9548 break;
9549 case PLANE_B:
9550 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9551 break;
9552 case PLANE_C:
9553 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9554 break;
9555 default:
9556 WARN_ONCE(1, "unknown plane in flip command\n");
9557 return -ENODEV;
9558 }
9559
9560 len = 4;
9561 if (ring->id == RCS) {
9562 len += 6;
9563 /*
9564 * On Gen 8, SRM is now taking an extra dword to accommodate
9565 * 48bits addresses, and we need a NOOP for the batch size to
9566 * stay even.
9567 */
9568 if (IS_GEN8(dev))
9569 len += 2;
9570 }
9571
9572 /*
9573 * BSpec MI_DISPLAY_FLIP for IVB:
9574 * "The full packet must be contained within the same cache line."
9575 *
9576 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9577 * cacheline, if we ever start emitting more commands before
9578 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9579 * then do the cacheline alignment, and finally emit the
9580 * MI_DISPLAY_FLIP.
9581 */
9582 ret = intel_ring_cacheline_align(ring);
9583 if (ret)
9584 return ret;
9585
9586 ret = intel_ring_begin(ring, len);
9587 if (ret)
9588 return ret;
9589
9590 /* Unmask the flip-done completion message. Note that the bspec says that
9591 * we should do this for both the BCS and RCS, and that we must not unmask
9592 * more than one flip event at any time (or ensure that one flip message
9593 * can be sent by waiting for flip-done prior to queueing new flips).
9594 * Experimentation says that BCS works despite DERRMR masking all
9595 * flip-done completion events and that unmasking all planes at once
9596 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9597 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9598 */
9599 if (ring->id == RCS) {
9600 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9601 intel_ring_emit(ring, DERRMR);
9602 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9603 DERRMR_PIPEB_PRI_FLIP_DONE |
9604 DERRMR_PIPEC_PRI_FLIP_DONE));
9605 if (IS_GEN8(dev))
9606 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9607 MI_SRM_LRM_GLOBAL_GTT);
9608 else
9609 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9610 MI_SRM_LRM_GLOBAL_GTT);
9611 intel_ring_emit(ring, DERRMR);
9612 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9613 if (IS_GEN8(dev)) {
9614 intel_ring_emit(ring, 0);
9615 intel_ring_emit(ring, MI_NOOP);
9616 }
9617 }
9618
9619 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9620 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9621 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9622 intel_ring_emit(ring, (MI_NOOP));
9623
9624 intel_mark_page_flip_active(intel_crtc);
9625 __intel_ring_advance(ring);
9626 return 0;
9627 }
9628
9629 static bool use_mmio_flip(struct intel_engine_cs *ring,
9630 struct drm_i915_gem_object *obj)
9631 {
9632 /*
9633 * This is not being used for older platforms, because
9634 * non-availability of flip done interrupt forces us to use
9635 * CS flips. Older platforms derive flip done using some clever
9636 * tricks involving the flip_pending status bits and vblank irqs.
9637 * So using MMIO flips there would disrupt this mechanism.
9638 */
9639
9640 if (ring == NULL)
9641 return true;
9642
9643 if (INTEL_INFO(ring->dev)->gen < 5)
9644 return false;
9645
9646 if (i915.use_mmio_flip < 0)
9647 return false;
9648 else if (i915.use_mmio_flip > 0)
9649 return true;
9650 else if (i915.enable_execlists)
9651 return true;
9652 else
9653 return ring != i915_gem_request_get_ring(obj->last_read_req);
9654 }
9655
9656 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9657 {
9658 struct drm_device *dev = intel_crtc->base.dev;
9659 struct drm_i915_private *dev_priv = dev->dev_private;
9660 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9661 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9662 struct drm_i915_gem_object *obj = intel_fb->obj;
9663 const enum pipe pipe = intel_crtc->pipe;
9664 u32 ctl, stride;
9665
9666 ctl = I915_READ(PLANE_CTL(pipe, 0));
9667 ctl &= ~PLANE_CTL_TILED_MASK;
9668 if (obj->tiling_mode == I915_TILING_X)
9669 ctl |= PLANE_CTL_TILED_X;
9670
9671 /*
9672 * The stride is either expressed as a multiple of 64 bytes chunks for
9673 * linear buffers or in number of tiles for tiled buffers.
9674 */
9675 stride = fb->pitches[0] >> 6;
9676 if (obj->tiling_mode == I915_TILING_X)
9677 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9678
9679 /*
9680 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9681 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9682 */
9683 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9684 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9685
9686 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9687 POSTING_READ(PLANE_SURF(pipe, 0));
9688 }
9689
9690 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9691 {
9692 struct drm_device *dev = intel_crtc->base.dev;
9693 struct drm_i915_private *dev_priv = dev->dev_private;
9694 struct intel_framebuffer *intel_fb =
9695 to_intel_framebuffer(intel_crtc->base.primary->fb);
9696 struct drm_i915_gem_object *obj = intel_fb->obj;
9697 u32 dspcntr;
9698 u32 reg;
9699
9700 reg = DSPCNTR(intel_crtc->plane);
9701 dspcntr = I915_READ(reg);
9702
9703 if (obj->tiling_mode != I915_TILING_NONE)
9704 dspcntr |= DISPPLANE_TILED;
9705 else
9706 dspcntr &= ~DISPPLANE_TILED;
9707
9708 I915_WRITE(reg, dspcntr);
9709
9710 I915_WRITE(DSPSURF(intel_crtc->plane),
9711 intel_crtc->unpin_work->gtt_offset);
9712 POSTING_READ(DSPSURF(intel_crtc->plane));
9713
9714 }
9715
9716 /*
9717 * XXX: This is the temporary way to update the plane registers until we get
9718 * around to using the usual plane update functions for MMIO flips
9719 */
9720 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9721 {
9722 struct drm_device *dev = intel_crtc->base.dev;
9723 bool atomic_update;
9724 u32 start_vbl_count;
9725
9726 intel_mark_page_flip_active(intel_crtc);
9727
9728 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9729
9730 if (INTEL_INFO(dev)->gen >= 9)
9731 skl_do_mmio_flip(intel_crtc);
9732 else
9733 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9734 ilk_do_mmio_flip(intel_crtc);
9735
9736 if (atomic_update)
9737 intel_pipe_update_end(intel_crtc, start_vbl_count);
9738 }
9739
9740 static void intel_mmio_flip_work_func(struct work_struct *work)
9741 {
9742 struct intel_crtc *crtc =
9743 container_of(work, struct intel_crtc, mmio_flip.work);
9744 struct intel_mmio_flip *mmio_flip;
9745
9746 mmio_flip = &crtc->mmio_flip;
9747 if (mmio_flip->req)
9748 WARN_ON(__i915_wait_request(mmio_flip->req,
9749 crtc->reset_counter,
9750 false, NULL, NULL) != 0);
9751
9752 intel_do_mmio_flip(crtc);
9753 if (mmio_flip->req) {
9754 mutex_lock(&crtc->base.dev->struct_mutex);
9755 i915_gem_request_assign(&mmio_flip->req, NULL);
9756 mutex_unlock(&crtc->base.dev->struct_mutex);
9757 }
9758 }
9759
9760 static int intel_queue_mmio_flip(struct drm_device *dev,
9761 struct drm_crtc *crtc,
9762 struct drm_framebuffer *fb,
9763 struct drm_i915_gem_object *obj,
9764 struct intel_engine_cs *ring,
9765 uint32_t flags)
9766 {
9767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9768
9769 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9770 obj->last_write_req);
9771
9772 schedule_work(&intel_crtc->mmio_flip.work);
9773
9774 return 0;
9775 }
9776
9777 static int intel_default_queue_flip(struct drm_device *dev,
9778 struct drm_crtc *crtc,
9779 struct drm_framebuffer *fb,
9780 struct drm_i915_gem_object *obj,
9781 struct intel_engine_cs *ring,
9782 uint32_t flags)
9783 {
9784 return -ENODEV;
9785 }
9786
9787 static bool __intel_pageflip_stall_check(struct drm_device *dev,
9788 struct drm_crtc *crtc)
9789 {
9790 struct drm_i915_private *dev_priv = dev->dev_private;
9791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9792 struct intel_unpin_work *work = intel_crtc->unpin_work;
9793 u32 addr;
9794
9795 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9796 return true;
9797
9798 if (!work->enable_stall_check)
9799 return false;
9800
9801 if (work->flip_ready_vblank == 0) {
9802 if (work->flip_queued_req &&
9803 !i915_gem_request_completed(work->flip_queued_req, true))
9804 return false;
9805
9806 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
9807 }
9808
9809 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
9810 return false;
9811
9812 /* Potential stall - if we see that the flip has happened,
9813 * assume a missed interrupt. */
9814 if (INTEL_INFO(dev)->gen >= 4)
9815 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9816 else
9817 addr = I915_READ(DSPADDR(intel_crtc->plane));
9818
9819 /* There is a potential issue here with a false positive after a flip
9820 * to the same address. We could address this by checking for a
9821 * non-incrementing frame counter.
9822 */
9823 return addr == work->gtt_offset;
9824 }
9825
9826 void intel_check_page_flip(struct drm_device *dev, int pipe)
9827 {
9828 struct drm_i915_private *dev_priv = dev->dev_private;
9829 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9831
9832 WARN_ON(!in_irq());
9833
9834 if (crtc == NULL)
9835 return;
9836
9837 spin_lock(&dev->event_lock);
9838 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9839 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9840 intel_crtc->unpin_work->flip_queued_vblank,
9841 drm_vblank_count(dev, pipe));
9842 page_flip_completed(intel_crtc);
9843 }
9844 spin_unlock(&dev->event_lock);
9845 }
9846
9847 static int intel_crtc_page_flip(struct drm_crtc *crtc,
9848 struct drm_framebuffer *fb,
9849 struct drm_pending_vblank_event *event,
9850 uint32_t page_flip_flags)
9851 {
9852 struct drm_device *dev = crtc->dev;
9853 struct drm_i915_private *dev_priv = dev->dev_private;
9854 struct drm_framebuffer *old_fb = crtc->primary->fb;
9855 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9857 struct drm_plane *primary = crtc->primary;
9858 enum pipe pipe = intel_crtc->pipe;
9859 struct intel_unpin_work *work;
9860 struct intel_engine_cs *ring;
9861 int ret;
9862
9863 /*
9864 * drm_mode_page_flip_ioctl() should already catch this, but double
9865 * check to be safe. In the future we may enable pageflipping from
9866 * a disabled primary plane.
9867 */
9868 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9869 return -EBUSY;
9870
9871 /* Can't change pixel format via MI display flips. */
9872 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9873 return -EINVAL;
9874
9875 /*
9876 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9877 * Note that pitch changes could also affect these register.
9878 */
9879 if (INTEL_INFO(dev)->gen > 3 &&
9880 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9881 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9882 return -EINVAL;
9883
9884 if (i915_terminally_wedged(&dev_priv->gpu_error))
9885 goto out_hang;
9886
9887 work = kzalloc(sizeof(*work), GFP_KERNEL);
9888 if (work == NULL)
9889 return -ENOMEM;
9890
9891 work->event = event;
9892 work->crtc = crtc;
9893 work->old_fb = old_fb;
9894 INIT_WORK(&work->work, intel_unpin_work_fn);
9895
9896 ret = drm_crtc_vblank_get(crtc);
9897 if (ret)
9898 goto free_work;
9899
9900 /* We borrow the event spin lock for protecting unpin_work */
9901 spin_lock_irq(&dev->event_lock);
9902 if (intel_crtc->unpin_work) {
9903 /* Before declaring the flip queue wedged, check if
9904 * the hardware completed the operation behind our backs.
9905 */
9906 if (__intel_pageflip_stall_check(dev, crtc)) {
9907 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9908 page_flip_completed(intel_crtc);
9909 } else {
9910 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9911 spin_unlock_irq(&dev->event_lock);
9912
9913 drm_crtc_vblank_put(crtc);
9914 kfree(work);
9915 return -EBUSY;
9916 }
9917 }
9918 intel_crtc->unpin_work = work;
9919 spin_unlock_irq(&dev->event_lock);
9920
9921 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9922 flush_workqueue(dev_priv->wq);
9923
9924 ret = i915_mutex_lock_interruptible(dev);
9925 if (ret)
9926 goto cleanup;
9927
9928 /* Reference the objects for the scheduled work. */
9929 drm_framebuffer_reference(work->old_fb);
9930 drm_gem_object_reference(&obj->base);
9931
9932 crtc->primary->fb = fb;
9933 update_state_fb(crtc->primary);
9934
9935 work->pending_flip_obj = obj;
9936
9937 atomic_inc(&intel_crtc->unpin_work_count);
9938 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9939
9940 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9941 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9942
9943 if (IS_VALLEYVIEW(dev)) {
9944 ring = &dev_priv->ring[BCS];
9945 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
9946 /* vlv: DISPLAY_FLIP fails to change tiling */
9947 ring = NULL;
9948 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9949 ring = &dev_priv->ring[BCS];
9950 } else if (INTEL_INFO(dev)->gen >= 7) {
9951 ring = i915_gem_request_get_ring(obj->last_read_req);
9952 if (ring == NULL || ring->id != RCS)
9953 ring = &dev_priv->ring[BCS];
9954 } else {
9955 ring = &dev_priv->ring[RCS];
9956 }
9957
9958 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9959 if (ret)
9960 goto cleanup_pending;
9961
9962 work->gtt_offset =
9963 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9964
9965 if (use_mmio_flip(ring, obj)) {
9966 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9967 page_flip_flags);
9968 if (ret)
9969 goto cleanup_unpin;
9970
9971 i915_gem_request_assign(&work->flip_queued_req,
9972 obj->last_write_req);
9973 } else {
9974 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9975 page_flip_flags);
9976 if (ret)
9977 goto cleanup_unpin;
9978
9979 i915_gem_request_assign(&work->flip_queued_req,
9980 intel_ring_get_request(ring));
9981 }
9982
9983 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
9984 work->enable_stall_check = true;
9985
9986 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
9987 INTEL_FRONTBUFFER_PRIMARY(pipe));
9988
9989 intel_fbc_disable(dev);
9990 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9991 mutex_unlock(&dev->struct_mutex);
9992
9993 trace_i915_flip_request(intel_crtc->plane, obj);
9994
9995 return 0;
9996
9997 cleanup_unpin:
9998 intel_unpin_fb_obj(obj);
9999 cleanup_pending:
10000 atomic_dec(&intel_crtc->unpin_work_count);
10001 crtc->primary->fb = old_fb;
10002 update_state_fb(crtc->primary);
10003 drm_framebuffer_unreference(work->old_fb);
10004 drm_gem_object_unreference(&obj->base);
10005 mutex_unlock(&dev->struct_mutex);
10006
10007 cleanup:
10008 spin_lock_irq(&dev->event_lock);
10009 intel_crtc->unpin_work = NULL;
10010 spin_unlock_irq(&dev->event_lock);
10011
10012 drm_crtc_vblank_put(crtc);
10013 free_work:
10014 kfree(work);
10015
10016 if (ret == -EIO) {
10017 out_hang:
10018 ret = intel_plane_restore(primary);
10019 if (ret == 0 && event) {
10020 spin_lock_irq(&dev->event_lock);
10021 drm_send_vblank_event(dev, pipe, event);
10022 spin_unlock_irq(&dev->event_lock);
10023 }
10024 }
10025 return ret;
10026 }
10027
10028 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10029 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10030 .load_lut = intel_crtc_load_lut,
10031 .atomic_begin = intel_begin_crtc_commit,
10032 .atomic_flush = intel_finish_crtc_commit,
10033 };
10034
10035 /**
10036 * intel_modeset_update_staged_output_state
10037 *
10038 * Updates the staged output configuration state, e.g. after we've read out the
10039 * current hw state.
10040 */
10041 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10042 {
10043 struct intel_crtc *crtc;
10044 struct intel_encoder *encoder;
10045 struct intel_connector *connector;
10046
10047 for_each_intel_connector(dev, connector) {
10048 connector->new_encoder =
10049 to_intel_encoder(connector->base.encoder);
10050 }
10051
10052 for_each_intel_encoder(dev, encoder) {
10053 encoder->new_crtc =
10054 to_intel_crtc(encoder->base.crtc);
10055 }
10056
10057 for_each_intel_crtc(dev, crtc) {
10058 crtc->new_enabled = crtc->base.state->enable;
10059
10060 if (crtc->new_enabled)
10061 crtc->new_config = crtc->config;
10062 else
10063 crtc->new_config = NULL;
10064 }
10065 }
10066
10067 /**
10068 * intel_modeset_commit_output_state
10069 *
10070 * This function copies the stage display pipe configuration to the real one.
10071 */
10072 static void intel_modeset_commit_output_state(struct drm_device *dev)
10073 {
10074 struct intel_crtc *crtc;
10075 struct intel_encoder *encoder;
10076 struct intel_connector *connector;
10077
10078 for_each_intel_connector(dev, connector) {
10079 connector->base.encoder = &connector->new_encoder->base;
10080 }
10081
10082 for_each_intel_encoder(dev, encoder) {
10083 encoder->base.crtc = &encoder->new_crtc->base;
10084 }
10085
10086 for_each_intel_crtc(dev, crtc) {
10087 crtc->base.state->enable = crtc->new_enabled;
10088 crtc->base.enabled = crtc->new_enabled;
10089 }
10090 }
10091
10092 static void
10093 connected_sink_compute_bpp(struct intel_connector *connector,
10094 struct intel_crtc_state *pipe_config)
10095 {
10096 int bpp = pipe_config->pipe_bpp;
10097
10098 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10099 connector->base.base.id,
10100 connector->base.name);
10101
10102 /* Don't use an invalid EDID bpc value */
10103 if (connector->base.display_info.bpc &&
10104 connector->base.display_info.bpc * 3 < bpp) {
10105 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10106 bpp, connector->base.display_info.bpc*3);
10107 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10108 }
10109
10110 /* Clamp bpp to 8 on screens without EDID 1.4 */
10111 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10112 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10113 bpp);
10114 pipe_config->pipe_bpp = 24;
10115 }
10116 }
10117
10118 static int
10119 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10120 struct drm_framebuffer *fb,
10121 struct intel_crtc_state *pipe_config)
10122 {
10123 struct drm_device *dev = crtc->base.dev;
10124 struct intel_connector *connector;
10125 int bpp;
10126
10127 switch (fb->pixel_format) {
10128 case DRM_FORMAT_C8:
10129 bpp = 8*3; /* since we go through a colormap */
10130 break;
10131 case DRM_FORMAT_XRGB1555:
10132 case DRM_FORMAT_ARGB1555:
10133 /* checked in intel_framebuffer_init already */
10134 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10135 return -EINVAL;
10136 case DRM_FORMAT_RGB565:
10137 bpp = 6*3; /* min is 18bpp */
10138 break;
10139 case DRM_FORMAT_XBGR8888:
10140 case DRM_FORMAT_ABGR8888:
10141 /* checked in intel_framebuffer_init already */
10142 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10143 return -EINVAL;
10144 case DRM_FORMAT_XRGB8888:
10145 case DRM_FORMAT_ARGB8888:
10146 bpp = 8*3;
10147 break;
10148 case DRM_FORMAT_XRGB2101010:
10149 case DRM_FORMAT_ARGB2101010:
10150 case DRM_FORMAT_XBGR2101010:
10151 case DRM_FORMAT_ABGR2101010:
10152 /* checked in intel_framebuffer_init already */
10153 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10154 return -EINVAL;
10155 bpp = 10*3;
10156 break;
10157 /* TODO: gen4+ supports 16 bpc floating point, too. */
10158 default:
10159 DRM_DEBUG_KMS("unsupported depth\n");
10160 return -EINVAL;
10161 }
10162
10163 pipe_config->pipe_bpp = bpp;
10164
10165 /* Clamp display bpp to EDID value */
10166 for_each_intel_connector(dev, connector) {
10167 if (!connector->new_encoder ||
10168 connector->new_encoder->new_crtc != crtc)
10169 continue;
10170
10171 connected_sink_compute_bpp(connector, pipe_config);
10172 }
10173
10174 return bpp;
10175 }
10176
10177 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10178 {
10179 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10180 "type: 0x%x flags: 0x%x\n",
10181 mode->crtc_clock,
10182 mode->crtc_hdisplay, mode->crtc_hsync_start,
10183 mode->crtc_hsync_end, mode->crtc_htotal,
10184 mode->crtc_vdisplay, mode->crtc_vsync_start,
10185 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10186 }
10187
10188 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10189 struct intel_crtc_state *pipe_config,
10190 const char *context)
10191 {
10192 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10193 context, pipe_name(crtc->pipe));
10194
10195 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10196 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10197 pipe_config->pipe_bpp, pipe_config->dither);
10198 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10199 pipe_config->has_pch_encoder,
10200 pipe_config->fdi_lanes,
10201 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10202 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10203 pipe_config->fdi_m_n.tu);
10204 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10205 pipe_config->has_dp_encoder,
10206 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10207 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10208 pipe_config->dp_m_n.tu);
10209
10210 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10211 pipe_config->has_dp_encoder,
10212 pipe_config->dp_m2_n2.gmch_m,
10213 pipe_config->dp_m2_n2.gmch_n,
10214 pipe_config->dp_m2_n2.link_m,
10215 pipe_config->dp_m2_n2.link_n,
10216 pipe_config->dp_m2_n2.tu);
10217
10218 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10219 pipe_config->has_audio,
10220 pipe_config->has_infoframe);
10221
10222 DRM_DEBUG_KMS("requested mode:\n");
10223 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10224 DRM_DEBUG_KMS("adjusted mode:\n");
10225 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10226 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10227 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10228 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10229 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10230 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10231 pipe_config->gmch_pfit.control,
10232 pipe_config->gmch_pfit.pgm_ratios,
10233 pipe_config->gmch_pfit.lvds_border_bits);
10234 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10235 pipe_config->pch_pfit.pos,
10236 pipe_config->pch_pfit.size,
10237 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10238 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10239 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10240 }
10241
10242 static bool encoders_cloneable(const struct intel_encoder *a,
10243 const struct intel_encoder *b)
10244 {
10245 /* masks could be asymmetric, so check both ways */
10246 return a == b || (a->cloneable & (1 << b->type) &&
10247 b->cloneable & (1 << a->type));
10248 }
10249
10250 static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10251 struct intel_encoder *encoder)
10252 {
10253 struct drm_device *dev = crtc->base.dev;
10254 struct intel_encoder *source_encoder;
10255
10256 for_each_intel_encoder(dev, source_encoder) {
10257 if (source_encoder->new_crtc != crtc)
10258 continue;
10259
10260 if (!encoders_cloneable(encoder, source_encoder))
10261 return false;
10262 }
10263
10264 return true;
10265 }
10266
10267 static bool check_encoder_cloning(struct intel_crtc *crtc)
10268 {
10269 struct drm_device *dev = crtc->base.dev;
10270 struct intel_encoder *encoder;
10271
10272 for_each_intel_encoder(dev, encoder) {
10273 if (encoder->new_crtc != crtc)
10274 continue;
10275
10276 if (!check_single_encoder_cloning(crtc, encoder))
10277 return false;
10278 }
10279
10280 return true;
10281 }
10282
10283 static bool check_digital_port_conflicts(struct drm_device *dev)
10284 {
10285 struct intel_connector *connector;
10286 unsigned int used_ports = 0;
10287
10288 /*
10289 * Walk the connector list instead of the encoder
10290 * list to detect the problem on ddi platforms
10291 * where there's just one encoder per digital port.
10292 */
10293 for_each_intel_connector(dev, connector) {
10294 struct intel_encoder *encoder = connector->new_encoder;
10295
10296 if (!encoder)
10297 continue;
10298
10299 WARN_ON(!encoder->new_crtc);
10300
10301 switch (encoder->type) {
10302 unsigned int port_mask;
10303 case INTEL_OUTPUT_UNKNOWN:
10304 if (WARN_ON(!HAS_DDI(dev)))
10305 break;
10306 case INTEL_OUTPUT_DISPLAYPORT:
10307 case INTEL_OUTPUT_HDMI:
10308 case INTEL_OUTPUT_EDP:
10309 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10310
10311 /* the same port mustn't appear more than once */
10312 if (used_ports & port_mask)
10313 return false;
10314
10315 used_ports |= port_mask;
10316 default:
10317 break;
10318 }
10319 }
10320
10321 return true;
10322 }
10323
10324 static struct intel_crtc_state *
10325 intel_modeset_pipe_config(struct drm_crtc *crtc,
10326 struct drm_framebuffer *fb,
10327 struct drm_display_mode *mode)
10328 {
10329 struct drm_device *dev = crtc->dev;
10330 struct intel_encoder *encoder;
10331 struct intel_crtc_state *pipe_config;
10332 int plane_bpp, ret = -EINVAL;
10333 bool retry = true;
10334
10335 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10336 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10337 return ERR_PTR(-EINVAL);
10338 }
10339
10340 if (!check_digital_port_conflicts(dev)) {
10341 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10342 return ERR_PTR(-EINVAL);
10343 }
10344
10345 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10346 if (!pipe_config)
10347 return ERR_PTR(-ENOMEM);
10348
10349 pipe_config->base.crtc = crtc;
10350 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10351 drm_mode_copy(&pipe_config->base.mode, mode);
10352
10353 pipe_config->cpu_transcoder =
10354 (enum transcoder) to_intel_crtc(crtc)->pipe;
10355 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10356
10357 /*
10358 * Sanitize sync polarity flags based on requested ones. If neither
10359 * positive or negative polarity is requested, treat this as meaning
10360 * negative polarity.
10361 */
10362 if (!(pipe_config->base.adjusted_mode.flags &
10363 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10364 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10365
10366 if (!(pipe_config->base.adjusted_mode.flags &
10367 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10368 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10369
10370 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10371 * plane pixel format and any sink constraints into account. Returns the
10372 * source plane bpp so that dithering can be selected on mismatches
10373 * after encoders and crtc also have had their say. */
10374 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10375 fb, pipe_config);
10376 if (plane_bpp < 0)
10377 goto fail;
10378
10379 /*
10380 * Determine the real pipe dimensions. Note that stereo modes can
10381 * increase the actual pipe size due to the frame doubling and
10382 * insertion of additional space for blanks between the frame. This
10383 * is stored in the crtc timings. We use the requested mode to do this
10384 * computation to clearly distinguish it from the adjusted mode, which
10385 * can be changed by the connectors in the below retry loop.
10386 */
10387 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10388 &pipe_config->pipe_src_w,
10389 &pipe_config->pipe_src_h);
10390
10391 encoder_retry:
10392 /* Ensure the port clock defaults are reset when retrying. */
10393 pipe_config->port_clock = 0;
10394 pipe_config->pixel_multiplier = 1;
10395
10396 /* Fill in default crtc timings, allow encoders to overwrite them. */
10397 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10398 CRTC_STEREO_DOUBLE);
10399
10400 /* Pass our mode to the connectors and the CRTC to give them a chance to
10401 * adjust it according to limitations or connector properties, and also
10402 * a chance to reject the mode entirely.
10403 */
10404 for_each_intel_encoder(dev, encoder) {
10405
10406 if (&encoder->new_crtc->base != crtc)
10407 continue;
10408
10409 if (!(encoder->compute_config(encoder, pipe_config))) {
10410 DRM_DEBUG_KMS("Encoder config failure\n");
10411 goto fail;
10412 }
10413 }
10414
10415 /* Set default port clock if not overwritten by the encoder. Needs to be
10416 * done afterwards in case the encoder adjusts the mode. */
10417 if (!pipe_config->port_clock)
10418 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10419 * pipe_config->pixel_multiplier;
10420
10421 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10422 if (ret < 0) {
10423 DRM_DEBUG_KMS("CRTC fixup failed\n");
10424 goto fail;
10425 }
10426
10427 if (ret == RETRY) {
10428 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10429 ret = -EINVAL;
10430 goto fail;
10431 }
10432
10433 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10434 retry = false;
10435 goto encoder_retry;
10436 }
10437
10438 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10439 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10440 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10441
10442 return pipe_config;
10443 fail:
10444 kfree(pipe_config);
10445 return ERR_PTR(ret);
10446 }
10447
10448 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
10449 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10450 static void
10451 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10452 unsigned *prepare_pipes, unsigned *disable_pipes)
10453 {
10454 struct intel_crtc *intel_crtc;
10455 struct drm_device *dev = crtc->dev;
10456 struct intel_encoder *encoder;
10457 struct intel_connector *connector;
10458 struct drm_crtc *tmp_crtc;
10459
10460 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10461
10462 /* Check which crtcs have changed outputs connected to them, these need
10463 * to be part of the prepare_pipes mask. We don't (yet) support global
10464 * modeset across multiple crtcs, so modeset_pipes will only have one
10465 * bit set at most. */
10466 for_each_intel_connector(dev, connector) {
10467 if (connector->base.encoder == &connector->new_encoder->base)
10468 continue;
10469
10470 if (connector->base.encoder) {
10471 tmp_crtc = connector->base.encoder->crtc;
10472
10473 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10474 }
10475
10476 if (connector->new_encoder)
10477 *prepare_pipes |=
10478 1 << connector->new_encoder->new_crtc->pipe;
10479 }
10480
10481 for_each_intel_encoder(dev, encoder) {
10482 if (encoder->base.crtc == &encoder->new_crtc->base)
10483 continue;
10484
10485 if (encoder->base.crtc) {
10486 tmp_crtc = encoder->base.crtc;
10487
10488 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10489 }
10490
10491 if (encoder->new_crtc)
10492 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10493 }
10494
10495 /* Check for pipes that will be enabled/disabled ... */
10496 for_each_intel_crtc(dev, intel_crtc) {
10497 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10498 continue;
10499
10500 if (!intel_crtc->new_enabled)
10501 *disable_pipes |= 1 << intel_crtc->pipe;
10502 else
10503 *prepare_pipes |= 1 << intel_crtc->pipe;
10504 }
10505
10506
10507 /* set_mode is also used to update properties on life display pipes. */
10508 intel_crtc = to_intel_crtc(crtc);
10509 if (intel_crtc->new_enabled)
10510 *prepare_pipes |= 1 << intel_crtc->pipe;
10511
10512 /*
10513 * For simplicity do a full modeset on any pipe where the output routing
10514 * changed. We could be more clever, but that would require us to be
10515 * more careful with calling the relevant encoder->mode_set functions.
10516 */
10517 if (*prepare_pipes)
10518 *modeset_pipes = *prepare_pipes;
10519
10520 /* ... and mask these out. */
10521 *modeset_pipes &= ~(*disable_pipes);
10522 *prepare_pipes &= ~(*disable_pipes);
10523
10524 /*
10525 * HACK: We don't (yet) fully support global modesets. intel_set_config
10526 * obies this rule, but the modeset restore mode of
10527 * intel_modeset_setup_hw_state does not.
10528 */
10529 *modeset_pipes &= 1 << intel_crtc->pipe;
10530 *prepare_pipes &= 1 << intel_crtc->pipe;
10531
10532 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10533 *modeset_pipes, *prepare_pipes, *disable_pipes);
10534 }
10535
10536 static bool intel_crtc_in_use(struct drm_crtc *crtc)
10537 {
10538 struct drm_encoder *encoder;
10539 struct drm_device *dev = crtc->dev;
10540
10541 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10542 if (encoder->crtc == crtc)
10543 return true;
10544
10545 return false;
10546 }
10547
10548 static void
10549 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10550 {
10551 struct drm_i915_private *dev_priv = dev->dev_private;
10552 struct intel_encoder *intel_encoder;
10553 struct intel_crtc *intel_crtc;
10554 struct drm_connector *connector;
10555
10556 intel_shared_dpll_commit(dev_priv);
10557
10558 for_each_intel_encoder(dev, intel_encoder) {
10559 if (!intel_encoder->base.crtc)
10560 continue;
10561
10562 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10563
10564 if (prepare_pipes & (1 << intel_crtc->pipe))
10565 intel_encoder->connectors_active = false;
10566 }
10567
10568 intel_modeset_commit_output_state(dev);
10569
10570 /* Double check state. */
10571 for_each_intel_crtc(dev, intel_crtc) {
10572 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10573 WARN_ON(intel_crtc->new_config &&
10574 intel_crtc->new_config != intel_crtc->config);
10575 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10576 }
10577
10578 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10579 if (!connector->encoder || !connector->encoder->crtc)
10580 continue;
10581
10582 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10583
10584 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10585 struct drm_property *dpms_property =
10586 dev->mode_config.dpms_property;
10587
10588 connector->dpms = DRM_MODE_DPMS_ON;
10589 drm_object_property_set_value(&connector->base,
10590 dpms_property,
10591 DRM_MODE_DPMS_ON);
10592
10593 intel_encoder = to_intel_encoder(connector->encoder);
10594 intel_encoder->connectors_active = true;
10595 }
10596 }
10597
10598 }
10599
10600 static bool intel_fuzzy_clock_check(int clock1, int clock2)
10601 {
10602 int diff;
10603
10604 if (clock1 == clock2)
10605 return true;
10606
10607 if (!clock1 || !clock2)
10608 return false;
10609
10610 diff = abs(clock1 - clock2);
10611
10612 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10613 return true;
10614
10615 return false;
10616 }
10617
10618 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10619 list_for_each_entry((intel_crtc), \
10620 &(dev)->mode_config.crtc_list, \
10621 base.head) \
10622 if (mask & (1 <<(intel_crtc)->pipe))
10623
10624 static bool
10625 intel_pipe_config_compare(struct drm_device *dev,
10626 struct intel_crtc_state *current_config,
10627 struct intel_crtc_state *pipe_config)
10628 {
10629 #define PIPE_CONF_CHECK_X(name) \
10630 if (current_config->name != pipe_config->name) { \
10631 DRM_ERROR("mismatch in " #name " " \
10632 "(expected 0x%08x, found 0x%08x)\n", \
10633 current_config->name, \
10634 pipe_config->name); \
10635 return false; \
10636 }
10637
10638 #define PIPE_CONF_CHECK_I(name) \
10639 if (current_config->name != pipe_config->name) { \
10640 DRM_ERROR("mismatch in " #name " " \
10641 "(expected %i, found %i)\n", \
10642 current_config->name, \
10643 pipe_config->name); \
10644 return false; \
10645 }
10646
10647 /* This is required for BDW+ where there is only one set of registers for
10648 * switching between high and low RR.
10649 * This macro can be used whenever a comparison has to be made between one
10650 * hw state and multiple sw state variables.
10651 */
10652 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10653 if ((current_config->name != pipe_config->name) && \
10654 (current_config->alt_name != pipe_config->name)) { \
10655 DRM_ERROR("mismatch in " #name " " \
10656 "(expected %i or %i, found %i)\n", \
10657 current_config->name, \
10658 current_config->alt_name, \
10659 pipe_config->name); \
10660 return false; \
10661 }
10662
10663 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
10664 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10665 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10666 "(expected %i, found %i)\n", \
10667 current_config->name & (mask), \
10668 pipe_config->name & (mask)); \
10669 return false; \
10670 }
10671
10672 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10673 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10674 DRM_ERROR("mismatch in " #name " " \
10675 "(expected %i, found %i)\n", \
10676 current_config->name, \
10677 pipe_config->name); \
10678 return false; \
10679 }
10680
10681 #define PIPE_CONF_QUIRK(quirk) \
10682 ((current_config->quirks | pipe_config->quirks) & (quirk))
10683
10684 PIPE_CONF_CHECK_I(cpu_transcoder);
10685
10686 PIPE_CONF_CHECK_I(has_pch_encoder);
10687 PIPE_CONF_CHECK_I(fdi_lanes);
10688 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10689 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10690 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10691 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10692 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10693
10694 PIPE_CONF_CHECK_I(has_dp_encoder);
10695
10696 if (INTEL_INFO(dev)->gen < 8) {
10697 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10698 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10699 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10700 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10701 PIPE_CONF_CHECK_I(dp_m_n.tu);
10702
10703 if (current_config->has_drrs) {
10704 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10705 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10706 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10707 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10708 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10709 }
10710 } else {
10711 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10712 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10713 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10714 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10715 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10716 }
10717
10718 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10719 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10720 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10721 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10722 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10723 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10724
10725 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10726 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10727 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10728 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10729 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10730 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10731
10732 PIPE_CONF_CHECK_I(pixel_multiplier);
10733 PIPE_CONF_CHECK_I(has_hdmi_sink);
10734 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10735 IS_VALLEYVIEW(dev))
10736 PIPE_CONF_CHECK_I(limited_color_range);
10737 PIPE_CONF_CHECK_I(has_infoframe);
10738
10739 PIPE_CONF_CHECK_I(has_audio);
10740
10741 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10742 DRM_MODE_FLAG_INTERLACE);
10743
10744 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10745 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10746 DRM_MODE_FLAG_PHSYNC);
10747 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10748 DRM_MODE_FLAG_NHSYNC);
10749 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10750 DRM_MODE_FLAG_PVSYNC);
10751 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10752 DRM_MODE_FLAG_NVSYNC);
10753 }
10754
10755 PIPE_CONF_CHECK_I(pipe_src_w);
10756 PIPE_CONF_CHECK_I(pipe_src_h);
10757
10758 /*
10759 * FIXME: BIOS likes to set up a cloned config with lvds+external
10760 * screen. Since we don't yet re-compute the pipe config when moving
10761 * just the lvds port away to another pipe the sw tracking won't match.
10762 *
10763 * Proper atomic modesets with recomputed global state will fix this.
10764 * Until then just don't check gmch state for inherited modes.
10765 */
10766 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10767 PIPE_CONF_CHECK_I(gmch_pfit.control);
10768 /* pfit ratios are autocomputed by the hw on gen4+ */
10769 if (INTEL_INFO(dev)->gen < 4)
10770 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10771 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10772 }
10773
10774 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10775 if (current_config->pch_pfit.enabled) {
10776 PIPE_CONF_CHECK_I(pch_pfit.pos);
10777 PIPE_CONF_CHECK_I(pch_pfit.size);
10778 }
10779
10780 /* BDW+ don't expose a synchronous way to read the state */
10781 if (IS_HASWELL(dev))
10782 PIPE_CONF_CHECK_I(ips_enabled);
10783
10784 PIPE_CONF_CHECK_I(double_wide);
10785
10786 PIPE_CONF_CHECK_X(ddi_pll_sel);
10787
10788 PIPE_CONF_CHECK_I(shared_dpll);
10789 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10790 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10791 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10792 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10793 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10794 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10795 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10796 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10797
10798 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10799 PIPE_CONF_CHECK_I(pipe_bpp);
10800
10801 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10802 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10803
10804 #undef PIPE_CONF_CHECK_X
10805 #undef PIPE_CONF_CHECK_I
10806 #undef PIPE_CONF_CHECK_I_ALT
10807 #undef PIPE_CONF_CHECK_FLAGS
10808 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
10809 #undef PIPE_CONF_QUIRK
10810
10811 return true;
10812 }
10813
10814 static void check_wm_state(struct drm_device *dev)
10815 {
10816 struct drm_i915_private *dev_priv = dev->dev_private;
10817 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10818 struct intel_crtc *intel_crtc;
10819 int plane;
10820
10821 if (INTEL_INFO(dev)->gen < 9)
10822 return;
10823
10824 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10825 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10826
10827 for_each_intel_crtc(dev, intel_crtc) {
10828 struct skl_ddb_entry *hw_entry, *sw_entry;
10829 const enum pipe pipe = intel_crtc->pipe;
10830
10831 if (!intel_crtc->active)
10832 continue;
10833
10834 /* planes */
10835 for_each_plane(dev_priv, pipe, plane) {
10836 hw_entry = &hw_ddb.plane[pipe][plane];
10837 sw_entry = &sw_ddb->plane[pipe][plane];
10838
10839 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10840 continue;
10841
10842 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10843 "(expected (%u,%u), found (%u,%u))\n",
10844 pipe_name(pipe), plane + 1,
10845 sw_entry->start, sw_entry->end,
10846 hw_entry->start, hw_entry->end);
10847 }
10848
10849 /* cursor */
10850 hw_entry = &hw_ddb.cursor[pipe];
10851 sw_entry = &sw_ddb->cursor[pipe];
10852
10853 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10854 continue;
10855
10856 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10857 "(expected (%u,%u), found (%u,%u))\n",
10858 pipe_name(pipe),
10859 sw_entry->start, sw_entry->end,
10860 hw_entry->start, hw_entry->end);
10861 }
10862 }
10863
10864 static void
10865 check_connector_state(struct drm_device *dev)
10866 {
10867 struct intel_connector *connector;
10868
10869 for_each_intel_connector(dev, connector) {
10870 /* This also checks the encoder/connector hw state with the
10871 * ->get_hw_state callbacks. */
10872 intel_connector_check_state(connector);
10873
10874 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10875 "connector's staged encoder doesn't match current encoder\n");
10876 }
10877 }
10878
10879 static void
10880 check_encoder_state(struct drm_device *dev)
10881 {
10882 struct intel_encoder *encoder;
10883 struct intel_connector *connector;
10884
10885 for_each_intel_encoder(dev, encoder) {
10886 bool enabled = false;
10887 bool active = false;
10888 enum pipe pipe, tracked_pipe;
10889
10890 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10891 encoder->base.base.id,
10892 encoder->base.name);
10893
10894 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10895 "encoder's stage crtc doesn't match current crtc\n");
10896 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10897 "encoder's active_connectors set, but no crtc\n");
10898
10899 for_each_intel_connector(dev, connector) {
10900 if (connector->base.encoder != &encoder->base)
10901 continue;
10902 enabled = true;
10903 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10904 active = true;
10905 }
10906 /*
10907 * for MST connectors if we unplug the connector is gone
10908 * away but the encoder is still connected to a crtc
10909 * until a modeset happens in response to the hotplug.
10910 */
10911 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10912 continue;
10913
10914 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10915 "encoder's enabled state mismatch "
10916 "(expected %i, found %i)\n",
10917 !!encoder->base.crtc, enabled);
10918 I915_STATE_WARN(active && !encoder->base.crtc,
10919 "active encoder with no crtc\n");
10920
10921 I915_STATE_WARN(encoder->connectors_active != active,
10922 "encoder's computed active state doesn't match tracked active state "
10923 "(expected %i, found %i)\n", active, encoder->connectors_active);
10924
10925 active = encoder->get_hw_state(encoder, &pipe);
10926 I915_STATE_WARN(active != encoder->connectors_active,
10927 "encoder's hw state doesn't match sw tracking "
10928 "(expected %i, found %i)\n",
10929 encoder->connectors_active, active);
10930
10931 if (!encoder->base.crtc)
10932 continue;
10933
10934 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10935 I915_STATE_WARN(active && pipe != tracked_pipe,
10936 "active encoder's pipe doesn't match"
10937 "(expected %i, found %i)\n",
10938 tracked_pipe, pipe);
10939
10940 }
10941 }
10942
10943 static void
10944 check_crtc_state(struct drm_device *dev)
10945 {
10946 struct drm_i915_private *dev_priv = dev->dev_private;
10947 struct intel_crtc *crtc;
10948 struct intel_encoder *encoder;
10949 struct intel_crtc_state pipe_config;
10950
10951 for_each_intel_crtc(dev, crtc) {
10952 bool enabled = false;
10953 bool active = false;
10954
10955 memset(&pipe_config, 0, sizeof(pipe_config));
10956
10957 DRM_DEBUG_KMS("[CRTC:%d]\n",
10958 crtc->base.base.id);
10959
10960 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
10961 "active crtc, but not enabled in sw tracking\n");
10962
10963 for_each_intel_encoder(dev, encoder) {
10964 if (encoder->base.crtc != &crtc->base)
10965 continue;
10966 enabled = true;
10967 if (encoder->connectors_active)
10968 active = true;
10969 }
10970
10971 I915_STATE_WARN(active != crtc->active,
10972 "crtc's computed active state doesn't match tracked active state "
10973 "(expected %i, found %i)\n", active, crtc->active);
10974 I915_STATE_WARN(enabled != crtc->base.state->enable,
10975 "crtc's computed enabled state doesn't match tracked enabled state "
10976 "(expected %i, found %i)\n", enabled,
10977 crtc->base.state->enable);
10978
10979 active = dev_priv->display.get_pipe_config(crtc,
10980 &pipe_config);
10981
10982 /* hw state is inconsistent with the pipe quirk */
10983 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10984 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10985 active = crtc->active;
10986
10987 for_each_intel_encoder(dev, encoder) {
10988 enum pipe pipe;
10989 if (encoder->base.crtc != &crtc->base)
10990 continue;
10991 if (encoder->get_hw_state(encoder, &pipe))
10992 encoder->get_config(encoder, &pipe_config);
10993 }
10994
10995 I915_STATE_WARN(crtc->active != active,
10996 "crtc active state doesn't match with hw state "
10997 "(expected %i, found %i)\n", crtc->active, active);
10998
10999 if (active &&
11000 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
11001 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11002 intel_dump_pipe_config(crtc, &pipe_config,
11003 "[hw state]");
11004 intel_dump_pipe_config(crtc, crtc->config,
11005 "[sw state]");
11006 }
11007 }
11008 }
11009
11010 static void
11011 check_shared_dpll_state(struct drm_device *dev)
11012 {
11013 struct drm_i915_private *dev_priv = dev->dev_private;
11014 struct intel_crtc *crtc;
11015 struct intel_dpll_hw_state dpll_hw_state;
11016 int i;
11017
11018 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11019 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11020 int enabled_crtcs = 0, active_crtcs = 0;
11021 bool active;
11022
11023 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11024
11025 DRM_DEBUG_KMS("%s\n", pll->name);
11026
11027 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11028
11029 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
11030 "more active pll users than references: %i vs %i\n",
11031 pll->active, hweight32(pll->config.crtc_mask));
11032 I915_STATE_WARN(pll->active && !pll->on,
11033 "pll in active use but not on in sw tracking\n");
11034 I915_STATE_WARN(pll->on && !pll->active,
11035 "pll in on but not on in use in sw tracking\n");
11036 I915_STATE_WARN(pll->on != active,
11037 "pll on state mismatch (expected %i, found %i)\n",
11038 pll->on, active);
11039
11040 for_each_intel_crtc(dev, crtc) {
11041 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
11042 enabled_crtcs++;
11043 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11044 active_crtcs++;
11045 }
11046 I915_STATE_WARN(pll->active != active_crtcs,
11047 "pll active crtcs mismatch (expected %i, found %i)\n",
11048 pll->active, active_crtcs);
11049 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
11050 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11051 hweight32(pll->config.crtc_mask), enabled_crtcs);
11052
11053 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
11054 sizeof(dpll_hw_state)),
11055 "pll hw state mismatch\n");
11056 }
11057 }
11058
11059 void
11060 intel_modeset_check_state(struct drm_device *dev)
11061 {
11062 check_wm_state(dev);
11063 check_connector_state(dev);
11064 check_encoder_state(dev);
11065 check_crtc_state(dev);
11066 check_shared_dpll_state(dev);
11067 }
11068
11069 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
11070 int dotclock)
11071 {
11072 /*
11073 * FDI already provided one idea for the dotclock.
11074 * Yell if the encoder disagrees.
11075 */
11076 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
11077 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11078 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
11079 }
11080
11081 static void update_scanline_offset(struct intel_crtc *crtc)
11082 {
11083 struct drm_device *dev = crtc->base.dev;
11084
11085 /*
11086 * The scanline counter increments at the leading edge of hsync.
11087 *
11088 * On most platforms it starts counting from vtotal-1 on the
11089 * first active line. That means the scanline counter value is
11090 * always one less than what we would expect. Ie. just after
11091 * start of vblank, which also occurs at start of hsync (on the
11092 * last active line), the scanline counter will read vblank_start-1.
11093 *
11094 * On gen2 the scanline counter starts counting from 1 instead
11095 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11096 * to keep the value positive), instead of adding one.
11097 *
11098 * On HSW+ the behaviour of the scanline counter depends on the output
11099 * type. For DP ports it behaves like most other platforms, but on HDMI
11100 * there's an extra 1 line difference. So we need to add two instead of
11101 * one to the value.
11102 */
11103 if (IS_GEN2(dev)) {
11104 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
11105 int vtotal;
11106
11107 vtotal = mode->crtc_vtotal;
11108 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11109 vtotal /= 2;
11110
11111 crtc->scanline_offset = vtotal - 1;
11112 } else if (HAS_DDI(dev) &&
11113 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
11114 crtc->scanline_offset = 2;
11115 } else
11116 crtc->scanline_offset = 1;
11117 }
11118
11119 static struct intel_crtc_state *
11120 intel_modeset_compute_config(struct drm_crtc *crtc,
11121 struct drm_display_mode *mode,
11122 struct drm_framebuffer *fb,
11123 unsigned *modeset_pipes,
11124 unsigned *prepare_pipes,
11125 unsigned *disable_pipes)
11126 {
11127 struct intel_crtc_state *pipe_config = NULL;
11128
11129 intel_modeset_affected_pipes(crtc, modeset_pipes,
11130 prepare_pipes, disable_pipes);
11131
11132 if ((*modeset_pipes) == 0)
11133 goto out;
11134
11135 /*
11136 * Note this needs changes when we start tracking multiple modes
11137 * and crtcs. At that point we'll need to compute the whole config
11138 * (i.e. one pipe_config for each crtc) rather than just the one
11139 * for this crtc.
11140 */
11141 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11142 if (IS_ERR(pipe_config)) {
11143 goto out;
11144 }
11145 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11146 "[modeset]");
11147
11148 out:
11149 return pipe_config;
11150 }
11151
11152 static int __intel_set_mode_setup_plls(struct drm_device *dev,
11153 unsigned modeset_pipes,
11154 unsigned disable_pipes)
11155 {
11156 struct drm_i915_private *dev_priv = to_i915(dev);
11157 unsigned clear_pipes = modeset_pipes | disable_pipes;
11158 struct intel_crtc *intel_crtc;
11159 int ret = 0;
11160
11161 if (!dev_priv->display.crtc_compute_clock)
11162 return 0;
11163
11164 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11165 if (ret)
11166 goto done;
11167
11168 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11169 struct intel_crtc_state *state = intel_crtc->new_config;
11170 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11171 state);
11172 if (ret) {
11173 intel_shared_dpll_abort_config(dev_priv);
11174 goto done;
11175 }
11176 }
11177
11178 done:
11179 return ret;
11180 }
11181
11182 static int __intel_set_mode(struct drm_crtc *crtc,
11183 struct drm_display_mode *mode,
11184 int x, int y, struct drm_framebuffer *fb,
11185 struct intel_crtc_state *pipe_config,
11186 unsigned modeset_pipes,
11187 unsigned prepare_pipes,
11188 unsigned disable_pipes)
11189 {
11190 struct drm_device *dev = crtc->dev;
11191 struct drm_i915_private *dev_priv = dev->dev_private;
11192 struct drm_display_mode *saved_mode;
11193 struct intel_crtc *intel_crtc;
11194 int ret = 0;
11195
11196 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11197 if (!saved_mode)
11198 return -ENOMEM;
11199
11200 *saved_mode = crtc->mode;
11201
11202 if (modeset_pipes)
11203 to_intel_crtc(crtc)->new_config = pipe_config;
11204
11205 /*
11206 * See if the config requires any additional preparation, e.g.
11207 * to adjust global state with pipes off. We need to do this
11208 * here so we can get the modeset_pipe updated config for the new
11209 * mode set on this crtc. For other crtcs we need to use the
11210 * adjusted_mode bits in the crtc directly.
11211 */
11212 if (IS_VALLEYVIEW(dev)) {
11213 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11214
11215 /* may have added more to prepare_pipes than we should */
11216 prepare_pipes &= ~disable_pipes;
11217 }
11218
11219 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11220 if (ret)
11221 goto done;
11222
11223 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11224 intel_crtc_disable(&intel_crtc->base);
11225
11226 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11227 if (intel_crtc->base.state->enable)
11228 dev_priv->display.crtc_disable(&intel_crtc->base);
11229 }
11230
11231 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11232 * to set it here already despite that we pass it down the callchain.
11233 *
11234 * Note we'll need to fix this up when we start tracking multiple
11235 * pipes; here we assume a single modeset_pipe and only track the
11236 * single crtc and mode.
11237 */
11238 if (modeset_pipes) {
11239 crtc->mode = *mode;
11240 /* mode_set/enable/disable functions rely on a correct pipe
11241 * config. */
11242 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11243
11244 /*
11245 * Calculate and store various constants which
11246 * are later needed by vblank and swap-completion
11247 * timestamping. They are derived from true hwmode.
11248 */
11249 drm_calc_timestamping_constants(crtc,
11250 &pipe_config->base.adjusted_mode);
11251 }
11252
11253 /* Only after disabling all output pipelines that will be changed can we
11254 * update the the output configuration. */
11255 intel_modeset_update_state(dev, prepare_pipes);
11256
11257 modeset_update_crtc_power_domains(dev);
11258
11259 /* Set up the DPLL and any encoders state that needs to adjust or depend
11260 * on the DPLL.
11261 */
11262 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11263 struct drm_plane *primary = intel_crtc->base.primary;
11264 int vdisplay, hdisplay;
11265
11266 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11267 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11268 fb, 0, 0,
11269 hdisplay, vdisplay,
11270 x << 16, y << 16,
11271 hdisplay << 16, vdisplay << 16);
11272 }
11273
11274 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11275 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11276 update_scanline_offset(intel_crtc);
11277
11278 dev_priv->display.crtc_enable(&intel_crtc->base);
11279 }
11280
11281 /* FIXME: add subpixel order */
11282 done:
11283 if (ret && crtc->state->enable)
11284 crtc->mode = *saved_mode;
11285
11286 kfree(saved_mode);
11287 return ret;
11288 }
11289
11290 static int intel_set_mode_pipes(struct drm_crtc *crtc,
11291 struct drm_display_mode *mode,
11292 int x, int y, struct drm_framebuffer *fb,
11293 struct intel_crtc_state *pipe_config,
11294 unsigned modeset_pipes,
11295 unsigned prepare_pipes,
11296 unsigned disable_pipes)
11297 {
11298 int ret;
11299
11300 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11301 prepare_pipes, disable_pipes);
11302
11303 if (ret == 0)
11304 intel_modeset_check_state(crtc->dev);
11305
11306 return ret;
11307 }
11308
11309 static int intel_set_mode(struct drm_crtc *crtc,
11310 struct drm_display_mode *mode,
11311 int x, int y, struct drm_framebuffer *fb)
11312 {
11313 struct intel_crtc_state *pipe_config;
11314 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11315
11316 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11317 &modeset_pipes,
11318 &prepare_pipes,
11319 &disable_pipes);
11320
11321 if (IS_ERR(pipe_config))
11322 return PTR_ERR(pipe_config);
11323
11324 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11325 modeset_pipes, prepare_pipes,
11326 disable_pipes);
11327 }
11328
11329 void intel_crtc_restore_mode(struct drm_crtc *crtc)
11330 {
11331 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11332 }
11333
11334 #undef for_each_intel_crtc_masked
11335
11336 static void intel_set_config_free(struct intel_set_config *config)
11337 {
11338 if (!config)
11339 return;
11340
11341 kfree(config->save_connector_encoders);
11342 kfree(config->save_encoder_crtcs);
11343 kfree(config->save_crtc_enabled);
11344 kfree(config);
11345 }
11346
11347 static int intel_set_config_save_state(struct drm_device *dev,
11348 struct intel_set_config *config)
11349 {
11350 struct drm_crtc *crtc;
11351 struct drm_encoder *encoder;
11352 struct drm_connector *connector;
11353 int count;
11354
11355 config->save_crtc_enabled =
11356 kcalloc(dev->mode_config.num_crtc,
11357 sizeof(bool), GFP_KERNEL);
11358 if (!config->save_crtc_enabled)
11359 return -ENOMEM;
11360
11361 config->save_encoder_crtcs =
11362 kcalloc(dev->mode_config.num_encoder,
11363 sizeof(struct drm_crtc *), GFP_KERNEL);
11364 if (!config->save_encoder_crtcs)
11365 return -ENOMEM;
11366
11367 config->save_connector_encoders =
11368 kcalloc(dev->mode_config.num_connector,
11369 sizeof(struct drm_encoder *), GFP_KERNEL);
11370 if (!config->save_connector_encoders)
11371 return -ENOMEM;
11372
11373 /* Copy data. Note that driver private data is not affected.
11374 * Should anything bad happen only the expected state is
11375 * restored, not the drivers personal bookkeeping.
11376 */
11377 count = 0;
11378 for_each_crtc(dev, crtc) {
11379 config->save_crtc_enabled[count++] = crtc->state->enable;
11380 }
11381
11382 count = 0;
11383 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11384 config->save_encoder_crtcs[count++] = encoder->crtc;
11385 }
11386
11387 count = 0;
11388 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11389 config->save_connector_encoders[count++] = connector->encoder;
11390 }
11391
11392 return 0;
11393 }
11394
11395 static void intel_set_config_restore_state(struct drm_device *dev,
11396 struct intel_set_config *config)
11397 {
11398 struct intel_crtc *crtc;
11399 struct intel_encoder *encoder;
11400 struct intel_connector *connector;
11401 int count;
11402
11403 count = 0;
11404 for_each_intel_crtc(dev, crtc) {
11405 crtc->new_enabled = config->save_crtc_enabled[count++];
11406
11407 if (crtc->new_enabled)
11408 crtc->new_config = crtc->config;
11409 else
11410 crtc->new_config = NULL;
11411 }
11412
11413 count = 0;
11414 for_each_intel_encoder(dev, encoder) {
11415 encoder->new_crtc =
11416 to_intel_crtc(config->save_encoder_crtcs[count++]);
11417 }
11418
11419 count = 0;
11420 for_each_intel_connector(dev, connector) {
11421 connector->new_encoder =
11422 to_intel_encoder(config->save_connector_encoders[count++]);
11423 }
11424 }
11425
11426 static bool
11427 is_crtc_connector_off(struct drm_mode_set *set)
11428 {
11429 int i;
11430
11431 if (set->num_connectors == 0)
11432 return false;
11433
11434 if (WARN_ON(set->connectors == NULL))
11435 return false;
11436
11437 for (i = 0; i < set->num_connectors; i++)
11438 if (set->connectors[i]->encoder &&
11439 set->connectors[i]->encoder->crtc == set->crtc &&
11440 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11441 return true;
11442
11443 return false;
11444 }
11445
11446 static void
11447 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11448 struct intel_set_config *config)
11449 {
11450
11451 /* We should be able to check here if the fb has the same properties
11452 * and then just flip_or_move it */
11453 if (is_crtc_connector_off(set)) {
11454 config->mode_changed = true;
11455 } else if (set->crtc->primary->fb != set->fb) {
11456 /*
11457 * If we have no fb, we can only flip as long as the crtc is
11458 * active, otherwise we need a full mode set. The crtc may
11459 * be active if we've only disabled the primary plane, or
11460 * in fastboot situations.
11461 */
11462 if (set->crtc->primary->fb == NULL) {
11463 struct intel_crtc *intel_crtc =
11464 to_intel_crtc(set->crtc);
11465
11466 if (intel_crtc->active) {
11467 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11468 config->fb_changed = true;
11469 } else {
11470 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11471 config->mode_changed = true;
11472 }
11473 } else if (set->fb == NULL) {
11474 config->mode_changed = true;
11475 } else if (set->fb->pixel_format !=
11476 set->crtc->primary->fb->pixel_format) {
11477 config->mode_changed = true;
11478 } else {
11479 config->fb_changed = true;
11480 }
11481 }
11482
11483 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11484 config->fb_changed = true;
11485
11486 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11487 DRM_DEBUG_KMS("modes are different, full mode set\n");
11488 drm_mode_debug_printmodeline(&set->crtc->mode);
11489 drm_mode_debug_printmodeline(set->mode);
11490 config->mode_changed = true;
11491 }
11492
11493 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11494 set->crtc->base.id, config->mode_changed, config->fb_changed);
11495 }
11496
11497 static int
11498 intel_modeset_stage_output_state(struct drm_device *dev,
11499 struct drm_mode_set *set,
11500 struct intel_set_config *config)
11501 {
11502 struct intel_connector *connector;
11503 struct intel_encoder *encoder;
11504 struct intel_crtc *crtc;
11505 int ro;
11506
11507 /* The upper layers ensure that we either disable a crtc or have a list
11508 * of connectors. For paranoia, double-check this. */
11509 WARN_ON(!set->fb && (set->num_connectors != 0));
11510 WARN_ON(set->fb && (set->num_connectors == 0));
11511
11512 for_each_intel_connector(dev, connector) {
11513 /* Otherwise traverse passed in connector list and get encoders
11514 * for them. */
11515 for (ro = 0; ro < set->num_connectors; ro++) {
11516 if (set->connectors[ro] == &connector->base) {
11517 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11518 break;
11519 }
11520 }
11521
11522 /* If we disable the crtc, disable all its connectors. Also, if
11523 * the connector is on the changing crtc but not on the new
11524 * connector list, disable it. */
11525 if ((!set->fb || ro == set->num_connectors) &&
11526 connector->base.encoder &&
11527 connector->base.encoder->crtc == set->crtc) {
11528 connector->new_encoder = NULL;
11529
11530 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11531 connector->base.base.id,
11532 connector->base.name);
11533 }
11534
11535
11536 if (&connector->new_encoder->base != connector->base.encoder) {
11537 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
11538 connector->base.base.id,
11539 connector->base.name);
11540 config->mode_changed = true;
11541 }
11542 }
11543 /* connector->new_encoder is now updated for all connectors. */
11544
11545 /* Update crtc of enabled connectors. */
11546 for_each_intel_connector(dev, connector) {
11547 struct drm_crtc *new_crtc;
11548
11549 if (!connector->new_encoder)
11550 continue;
11551
11552 new_crtc = connector->new_encoder->base.crtc;
11553
11554 for (ro = 0; ro < set->num_connectors; ro++) {
11555 if (set->connectors[ro] == &connector->base)
11556 new_crtc = set->crtc;
11557 }
11558
11559 /* Make sure the new CRTC will work with the encoder */
11560 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11561 new_crtc)) {
11562 return -EINVAL;
11563 }
11564 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11565
11566 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11567 connector->base.base.id,
11568 connector->base.name,
11569 new_crtc->base.id);
11570 }
11571
11572 /* Check for any encoders that needs to be disabled. */
11573 for_each_intel_encoder(dev, encoder) {
11574 int num_connectors = 0;
11575 for_each_intel_connector(dev, connector) {
11576 if (connector->new_encoder == encoder) {
11577 WARN_ON(!connector->new_encoder->new_crtc);
11578 num_connectors++;
11579 }
11580 }
11581
11582 if (num_connectors == 0)
11583 encoder->new_crtc = NULL;
11584 else if (num_connectors > 1)
11585 return -EINVAL;
11586
11587 /* Only now check for crtc changes so we don't miss encoders
11588 * that will be disabled. */
11589 if (&encoder->new_crtc->base != encoder->base.crtc) {
11590 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
11591 encoder->base.base.id,
11592 encoder->base.name);
11593 config->mode_changed = true;
11594 }
11595 }
11596 /* Now we've also updated encoder->new_crtc for all encoders. */
11597 for_each_intel_connector(dev, connector) {
11598 if (connector->new_encoder)
11599 if (connector->new_encoder != connector->encoder)
11600 connector->encoder = connector->new_encoder;
11601 }
11602 for_each_intel_crtc(dev, crtc) {
11603 crtc->new_enabled = false;
11604
11605 for_each_intel_encoder(dev, encoder) {
11606 if (encoder->new_crtc == crtc) {
11607 crtc->new_enabled = true;
11608 break;
11609 }
11610 }
11611
11612 if (crtc->new_enabled != crtc->base.state->enable) {
11613 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
11614 crtc->base.base.id,
11615 crtc->new_enabled ? "en" : "dis");
11616 config->mode_changed = true;
11617 }
11618
11619 if (crtc->new_enabled)
11620 crtc->new_config = crtc->config;
11621 else
11622 crtc->new_config = NULL;
11623 }
11624
11625 return 0;
11626 }
11627
11628 static void disable_crtc_nofb(struct intel_crtc *crtc)
11629 {
11630 struct drm_device *dev = crtc->base.dev;
11631 struct intel_encoder *encoder;
11632 struct intel_connector *connector;
11633
11634 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11635 pipe_name(crtc->pipe));
11636
11637 for_each_intel_connector(dev, connector) {
11638 if (connector->new_encoder &&
11639 connector->new_encoder->new_crtc == crtc)
11640 connector->new_encoder = NULL;
11641 }
11642
11643 for_each_intel_encoder(dev, encoder) {
11644 if (encoder->new_crtc == crtc)
11645 encoder->new_crtc = NULL;
11646 }
11647
11648 crtc->new_enabled = false;
11649 crtc->new_config = NULL;
11650 }
11651
11652 static int intel_crtc_set_config(struct drm_mode_set *set)
11653 {
11654 struct drm_device *dev;
11655 struct drm_mode_set save_set;
11656 struct intel_set_config *config;
11657 struct intel_crtc_state *pipe_config;
11658 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11659 int ret;
11660
11661 BUG_ON(!set);
11662 BUG_ON(!set->crtc);
11663 BUG_ON(!set->crtc->helper_private);
11664
11665 /* Enforce sane interface api - has been abused by the fb helper. */
11666 BUG_ON(!set->mode && set->fb);
11667 BUG_ON(set->fb && set->num_connectors == 0);
11668
11669 if (set->fb) {
11670 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11671 set->crtc->base.id, set->fb->base.id,
11672 (int)set->num_connectors, set->x, set->y);
11673 } else {
11674 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11675 }
11676
11677 dev = set->crtc->dev;
11678
11679 ret = -ENOMEM;
11680 config = kzalloc(sizeof(*config), GFP_KERNEL);
11681 if (!config)
11682 goto out_config;
11683
11684 ret = intel_set_config_save_state(dev, config);
11685 if (ret)
11686 goto out_config;
11687
11688 save_set.crtc = set->crtc;
11689 save_set.mode = &set->crtc->mode;
11690 save_set.x = set->crtc->x;
11691 save_set.y = set->crtc->y;
11692 save_set.fb = set->crtc->primary->fb;
11693
11694 /* Compute whether we need a full modeset, only an fb base update or no
11695 * change at all. In the future we might also check whether only the
11696 * mode changed, e.g. for LVDS where we only change the panel fitter in
11697 * such cases. */
11698 intel_set_config_compute_mode_changes(set, config);
11699
11700 ret = intel_modeset_stage_output_state(dev, set, config);
11701 if (ret)
11702 goto fail;
11703
11704 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11705 set->fb,
11706 &modeset_pipes,
11707 &prepare_pipes,
11708 &disable_pipes);
11709 if (IS_ERR(pipe_config)) {
11710 ret = PTR_ERR(pipe_config);
11711 goto fail;
11712 } else if (pipe_config) {
11713 if (pipe_config->has_audio !=
11714 to_intel_crtc(set->crtc)->config->has_audio)
11715 config->mode_changed = true;
11716
11717 /*
11718 * Note we have an issue here with infoframes: current code
11719 * only updates them on the full mode set path per hw
11720 * requirements. So here we should be checking for any
11721 * required changes and forcing a mode set.
11722 */
11723 }
11724
11725 /* set_mode will free it in the mode_changed case */
11726 if (!config->mode_changed)
11727 kfree(pipe_config);
11728
11729 intel_update_pipe_size(to_intel_crtc(set->crtc));
11730
11731 if (config->mode_changed) {
11732 ret = intel_set_mode_pipes(set->crtc, set->mode,
11733 set->x, set->y, set->fb, pipe_config,
11734 modeset_pipes, prepare_pipes,
11735 disable_pipes);
11736 } else if (config->fb_changed) {
11737 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11738 struct drm_plane *primary = set->crtc->primary;
11739 int vdisplay, hdisplay;
11740
11741 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11742 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11743 0, 0, hdisplay, vdisplay,
11744 set->x << 16, set->y << 16,
11745 hdisplay << 16, vdisplay << 16);
11746
11747 /*
11748 * We need to make sure the primary plane is re-enabled if it
11749 * has previously been turned off.
11750 */
11751 if (!intel_crtc->primary_enabled && ret == 0) {
11752 WARN_ON(!intel_crtc->active);
11753 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11754 }
11755
11756 /*
11757 * In the fastboot case this may be our only check of the
11758 * state after boot. It would be better to only do it on
11759 * the first update, but we don't have a nice way of doing that
11760 * (and really, set_config isn't used much for high freq page
11761 * flipping, so increasing its cost here shouldn't be a big
11762 * deal).
11763 */
11764 if (i915.fastboot && ret == 0)
11765 intel_modeset_check_state(set->crtc->dev);
11766 }
11767
11768 if (ret) {
11769 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11770 set->crtc->base.id, ret);
11771 fail:
11772 intel_set_config_restore_state(dev, config);
11773
11774 /*
11775 * HACK: if the pipe was on, but we didn't have a framebuffer,
11776 * force the pipe off to avoid oopsing in the modeset code
11777 * due to fb==NULL. This should only happen during boot since
11778 * we don't yet reconstruct the FB from the hardware state.
11779 */
11780 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11781 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11782
11783 /* Try to restore the config */
11784 if (config->mode_changed &&
11785 intel_set_mode(save_set.crtc, save_set.mode,
11786 save_set.x, save_set.y, save_set.fb))
11787 DRM_ERROR("failed to restore config after modeset failure\n");
11788 }
11789
11790 out_config:
11791 intel_set_config_free(config);
11792 return ret;
11793 }
11794
11795 static const struct drm_crtc_funcs intel_crtc_funcs = {
11796 .gamma_set = intel_crtc_gamma_set,
11797 .set_config = intel_crtc_set_config,
11798 .destroy = intel_crtc_destroy,
11799 .page_flip = intel_crtc_page_flip,
11800 .atomic_duplicate_state = intel_crtc_duplicate_state,
11801 .atomic_destroy_state = intel_crtc_destroy_state,
11802 };
11803
11804 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11805 struct intel_shared_dpll *pll,
11806 struct intel_dpll_hw_state *hw_state)
11807 {
11808 uint32_t val;
11809
11810 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11811 return false;
11812
11813 val = I915_READ(PCH_DPLL(pll->id));
11814 hw_state->dpll = val;
11815 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11816 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11817
11818 return val & DPLL_VCO_ENABLE;
11819 }
11820
11821 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11822 struct intel_shared_dpll *pll)
11823 {
11824 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11825 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11826 }
11827
11828 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11829 struct intel_shared_dpll *pll)
11830 {
11831 /* PCH refclock must be enabled first */
11832 ibx_assert_pch_refclk_enabled(dev_priv);
11833
11834 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11835
11836 /* Wait for the clocks to stabilize. */
11837 POSTING_READ(PCH_DPLL(pll->id));
11838 udelay(150);
11839
11840 /* The pixel multiplier can only be updated once the
11841 * DPLL is enabled and the clocks are stable.
11842 *
11843 * So write it again.
11844 */
11845 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11846 POSTING_READ(PCH_DPLL(pll->id));
11847 udelay(200);
11848 }
11849
11850 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11851 struct intel_shared_dpll *pll)
11852 {
11853 struct drm_device *dev = dev_priv->dev;
11854 struct intel_crtc *crtc;
11855
11856 /* Make sure no transcoder isn't still depending on us. */
11857 for_each_intel_crtc(dev, crtc) {
11858 if (intel_crtc_to_shared_dpll(crtc) == pll)
11859 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11860 }
11861
11862 I915_WRITE(PCH_DPLL(pll->id), 0);
11863 POSTING_READ(PCH_DPLL(pll->id));
11864 udelay(200);
11865 }
11866
11867 static char *ibx_pch_dpll_names[] = {
11868 "PCH DPLL A",
11869 "PCH DPLL B",
11870 };
11871
11872 static void ibx_pch_dpll_init(struct drm_device *dev)
11873 {
11874 struct drm_i915_private *dev_priv = dev->dev_private;
11875 int i;
11876
11877 dev_priv->num_shared_dpll = 2;
11878
11879 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11880 dev_priv->shared_dplls[i].id = i;
11881 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11882 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11883 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11884 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11885 dev_priv->shared_dplls[i].get_hw_state =
11886 ibx_pch_dpll_get_hw_state;
11887 }
11888 }
11889
11890 static void intel_shared_dpll_init(struct drm_device *dev)
11891 {
11892 struct drm_i915_private *dev_priv = dev->dev_private;
11893
11894 if (HAS_DDI(dev))
11895 intel_ddi_pll_init(dev);
11896 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11897 ibx_pch_dpll_init(dev);
11898 else
11899 dev_priv->num_shared_dpll = 0;
11900
11901 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11902 }
11903
11904 /**
11905 * intel_prepare_plane_fb - Prepare fb for usage on plane
11906 * @plane: drm plane to prepare for
11907 * @fb: framebuffer to prepare for presentation
11908 *
11909 * Prepares a framebuffer for usage on a display plane. Generally this
11910 * involves pinning the underlying object and updating the frontbuffer tracking
11911 * bits. Some older platforms need special physical address handling for
11912 * cursor planes.
11913 *
11914 * Returns 0 on success, negative error code on failure.
11915 */
11916 int
11917 intel_prepare_plane_fb(struct drm_plane *plane,
11918 struct drm_framebuffer *fb,
11919 const struct drm_plane_state *new_state)
11920 {
11921 struct drm_device *dev = plane->dev;
11922 struct intel_plane *intel_plane = to_intel_plane(plane);
11923 enum pipe pipe = intel_plane->pipe;
11924 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11925 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11926 unsigned frontbuffer_bits = 0;
11927 int ret = 0;
11928
11929 if (!obj)
11930 return 0;
11931
11932 switch (plane->type) {
11933 case DRM_PLANE_TYPE_PRIMARY:
11934 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11935 break;
11936 case DRM_PLANE_TYPE_CURSOR:
11937 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11938 break;
11939 case DRM_PLANE_TYPE_OVERLAY:
11940 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11941 break;
11942 }
11943
11944 mutex_lock(&dev->struct_mutex);
11945
11946 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11947 INTEL_INFO(dev)->cursor_needs_physical) {
11948 int align = IS_I830(dev) ? 16 * 1024 : 256;
11949 ret = i915_gem_object_attach_phys(obj, align);
11950 if (ret)
11951 DRM_DEBUG_KMS("failed to attach phys object\n");
11952 } else {
11953 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11954 }
11955
11956 if (ret == 0)
11957 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11958
11959 mutex_unlock(&dev->struct_mutex);
11960
11961 return ret;
11962 }
11963
11964 /**
11965 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11966 * @plane: drm plane to clean up for
11967 * @fb: old framebuffer that was on plane
11968 *
11969 * Cleans up a framebuffer that has just been removed from a plane.
11970 */
11971 void
11972 intel_cleanup_plane_fb(struct drm_plane *plane,
11973 struct drm_framebuffer *fb,
11974 const struct drm_plane_state *old_state)
11975 {
11976 struct drm_device *dev = plane->dev;
11977 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11978
11979 if (WARN_ON(!obj))
11980 return;
11981
11982 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11983 !INTEL_INFO(dev)->cursor_needs_physical) {
11984 mutex_lock(&dev->struct_mutex);
11985 intel_unpin_fb_obj(obj);
11986 mutex_unlock(&dev->struct_mutex);
11987 }
11988 }
11989
11990 static int
11991 intel_check_primary_plane(struct drm_plane *plane,
11992 struct intel_plane_state *state)
11993 {
11994 struct drm_device *dev = plane->dev;
11995 struct drm_i915_private *dev_priv = dev->dev_private;
11996 struct drm_crtc *crtc = state->base.crtc;
11997 struct intel_crtc *intel_crtc;
11998 struct drm_framebuffer *fb = state->base.fb;
11999 struct drm_rect *dest = &state->dst;
12000 struct drm_rect *src = &state->src;
12001 const struct drm_rect *clip = &state->clip;
12002 int ret;
12003
12004 crtc = crtc ? crtc : plane->crtc;
12005 intel_crtc = to_intel_crtc(crtc);
12006
12007 ret = drm_plane_helper_check_update(plane, crtc, fb,
12008 src, dest, clip,
12009 DRM_PLANE_HELPER_NO_SCALING,
12010 DRM_PLANE_HELPER_NO_SCALING,
12011 false, true, &state->visible);
12012 if (ret)
12013 return ret;
12014
12015 if (intel_crtc->active) {
12016 intel_crtc->atomic.wait_for_flips = true;
12017
12018 /*
12019 * FBC does not work on some platforms for rotated
12020 * planes, so disable it when rotation is not 0 and
12021 * update it when rotation is set back to 0.
12022 *
12023 * FIXME: This is redundant with the fbc update done in
12024 * the primary plane enable function except that that
12025 * one is done too late. We eventually need to unify
12026 * this.
12027 */
12028 if (intel_crtc->primary_enabled &&
12029 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
12030 dev_priv->fbc.crtc == intel_crtc &&
12031 state->base.rotation != BIT(DRM_ROTATE_0)) {
12032 intel_crtc->atomic.disable_fbc = true;
12033 }
12034
12035 if (state->visible) {
12036 /*
12037 * BDW signals flip done immediately if the plane
12038 * is disabled, even if the plane enable is already
12039 * armed to occur at the next vblank :(
12040 */
12041 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
12042 intel_crtc->atomic.wait_vblank = true;
12043 }
12044
12045 intel_crtc->atomic.fb_bits |=
12046 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
12047
12048 intel_crtc->atomic.update_fbc = true;
12049
12050 /* Update watermarks on tiling changes. */
12051 if (!plane->state->fb || !state->base.fb ||
12052 plane->state->fb->modifier[0] !=
12053 state->base.fb->modifier[0])
12054 intel_crtc->atomic.update_wm = true;
12055 }
12056
12057 return 0;
12058 }
12059
12060 static void
12061 intel_commit_primary_plane(struct drm_plane *plane,
12062 struct intel_plane_state *state)
12063 {
12064 struct drm_crtc *crtc = state->base.crtc;
12065 struct drm_framebuffer *fb = state->base.fb;
12066 struct drm_device *dev = plane->dev;
12067 struct drm_i915_private *dev_priv = dev->dev_private;
12068 struct intel_crtc *intel_crtc;
12069 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12070 struct intel_plane *intel_plane = to_intel_plane(plane);
12071 struct drm_rect *src = &state->src;
12072
12073 crtc = crtc ? crtc : plane->crtc;
12074 intel_crtc = to_intel_crtc(crtc);
12075
12076 plane->fb = fb;
12077 crtc->x = src->x1 >> 16;
12078 crtc->y = src->y1 >> 16;
12079
12080 intel_plane->obj = obj;
12081
12082 if (intel_crtc->active) {
12083 if (state->visible) {
12084 /* FIXME: kill this fastboot hack */
12085 intel_update_pipe_size(intel_crtc);
12086
12087 intel_crtc->primary_enabled = true;
12088
12089 dev_priv->display.update_primary_plane(crtc, plane->fb,
12090 crtc->x, crtc->y);
12091 } else {
12092 /*
12093 * If clipping results in a non-visible primary plane,
12094 * we'll disable the primary plane. Note that this is
12095 * a bit different than what happens if userspace
12096 * explicitly disables the plane by passing fb=0
12097 * because plane->fb still gets set and pinned.
12098 */
12099 intel_disable_primary_hw_plane(plane, crtc);
12100 }
12101 }
12102 }
12103
12104 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
12105 {
12106 struct drm_device *dev = crtc->dev;
12107 struct drm_i915_private *dev_priv = dev->dev_private;
12108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12109 struct intel_plane *intel_plane;
12110 struct drm_plane *p;
12111 unsigned fb_bits = 0;
12112
12113 /* Track fb's for any planes being disabled */
12114 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
12115 intel_plane = to_intel_plane(p);
12116
12117 if (intel_crtc->atomic.disabled_planes &
12118 (1 << drm_plane_index(p))) {
12119 switch (p->type) {
12120 case DRM_PLANE_TYPE_PRIMARY:
12121 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
12122 break;
12123 case DRM_PLANE_TYPE_CURSOR:
12124 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
12125 break;
12126 case DRM_PLANE_TYPE_OVERLAY:
12127 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12128 break;
12129 }
12130
12131 mutex_lock(&dev->struct_mutex);
12132 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12133 mutex_unlock(&dev->struct_mutex);
12134 }
12135 }
12136
12137 if (intel_crtc->atomic.wait_for_flips)
12138 intel_crtc_wait_for_pending_flips(crtc);
12139
12140 if (intel_crtc->atomic.disable_fbc)
12141 intel_fbc_disable(dev);
12142
12143 if (intel_crtc->atomic.pre_disable_primary)
12144 intel_pre_disable_primary(crtc);
12145
12146 if (intel_crtc->atomic.update_wm)
12147 intel_update_watermarks(crtc);
12148
12149 intel_runtime_pm_get(dev_priv);
12150
12151 /* Perform vblank evasion around commit operation */
12152 if (intel_crtc->active)
12153 intel_crtc->atomic.evade =
12154 intel_pipe_update_start(intel_crtc,
12155 &intel_crtc->atomic.start_vbl_count);
12156 }
12157
12158 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12159 {
12160 struct drm_device *dev = crtc->dev;
12161 struct drm_i915_private *dev_priv = dev->dev_private;
12162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12163 struct drm_plane *p;
12164
12165 if (intel_crtc->atomic.evade)
12166 intel_pipe_update_end(intel_crtc,
12167 intel_crtc->atomic.start_vbl_count);
12168
12169 intel_runtime_pm_put(dev_priv);
12170
12171 if (intel_crtc->atomic.wait_vblank)
12172 intel_wait_for_vblank(dev, intel_crtc->pipe);
12173
12174 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12175
12176 if (intel_crtc->atomic.update_fbc) {
12177 mutex_lock(&dev->struct_mutex);
12178 intel_fbc_update(dev);
12179 mutex_unlock(&dev->struct_mutex);
12180 }
12181
12182 if (intel_crtc->atomic.post_enable_primary)
12183 intel_post_enable_primary(crtc);
12184
12185 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12186 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12187 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12188 false, false);
12189
12190 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12191 }
12192
12193 /**
12194 * intel_plane_destroy - destroy a plane
12195 * @plane: plane to destroy
12196 *
12197 * Common destruction function for all types of planes (primary, cursor,
12198 * sprite).
12199 */
12200 void intel_plane_destroy(struct drm_plane *plane)
12201 {
12202 struct intel_plane *intel_plane = to_intel_plane(plane);
12203 drm_plane_cleanup(plane);
12204 kfree(intel_plane);
12205 }
12206
12207 const struct drm_plane_funcs intel_plane_funcs = {
12208 .update_plane = drm_plane_helper_update,
12209 .disable_plane = drm_plane_helper_disable,
12210 .destroy = intel_plane_destroy,
12211 .set_property = drm_atomic_helper_plane_set_property,
12212 .atomic_get_property = intel_plane_atomic_get_property,
12213 .atomic_set_property = intel_plane_atomic_set_property,
12214 .atomic_duplicate_state = intel_plane_duplicate_state,
12215 .atomic_destroy_state = intel_plane_destroy_state,
12216
12217 };
12218
12219 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12220 int pipe)
12221 {
12222 struct intel_plane *primary;
12223 struct intel_plane_state *state;
12224 const uint32_t *intel_primary_formats;
12225 int num_formats;
12226
12227 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12228 if (primary == NULL)
12229 return NULL;
12230
12231 state = intel_create_plane_state(&primary->base);
12232 if (!state) {
12233 kfree(primary);
12234 return NULL;
12235 }
12236 primary->base.state = &state->base;
12237
12238 primary->can_scale = false;
12239 primary->max_downscale = 1;
12240 primary->pipe = pipe;
12241 primary->plane = pipe;
12242 primary->check_plane = intel_check_primary_plane;
12243 primary->commit_plane = intel_commit_primary_plane;
12244 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12245 primary->plane = !pipe;
12246
12247 if (INTEL_INFO(dev)->gen <= 3) {
12248 intel_primary_formats = intel_primary_formats_gen2;
12249 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12250 } else {
12251 intel_primary_formats = intel_primary_formats_gen4;
12252 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12253 }
12254
12255 drm_universal_plane_init(dev, &primary->base, 0,
12256 &intel_plane_funcs,
12257 intel_primary_formats, num_formats,
12258 DRM_PLANE_TYPE_PRIMARY);
12259
12260 if (INTEL_INFO(dev)->gen >= 4) {
12261 if (!dev->mode_config.rotation_property)
12262 dev->mode_config.rotation_property =
12263 drm_mode_create_rotation_property(dev,
12264 BIT(DRM_ROTATE_0) |
12265 BIT(DRM_ROTATE_180));
12266 if (dev->mode_config.rotation_property)
12267 drm_object_attach_property(&primary->base.base,
12268 dev->mode_config.rotation_property,
12269 state->base.rotation);
12270 }
12271
12272 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12273
12274 return &primary->base;
12275 }
12276
12277 static int
12278 intel_check_cursor_plane(struct drm_plane *plane,
12279 struct intel_plane_state *state)
12280 {
12281 struct drm_crtc *crtc = state->base.crtc;
12282 struct drm_device *dev = plane->dev;
12283 struct drm_framebuffer *fb = state->base.fb;
12284 struct drm_rect *dest = &state->dst;
12285 struct drm_rect *src = &state->src;
12286 const struct drm_rect *clip = &state->clip;
12287 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12288 struct intel_crtc *intel_crtc;
12289 unsigned stride;
12290 int ret;
12291
12292 crtc = crtc ? crtc : plane->crtc;
12293 intel_crtc = to_intel_crtc(crtc);
12294
12295 ret = drm_plane_helper_check_update(plane, crtc, fb,
12296 src, dest, clip,
12297 DRM_PLANE_HELPER_NO_SCALING,
12298 DRM_PLANE_HELPER_NO_SCALING,
12299 true, true, &state->visible);
12300 if (ret)
12301 return ret;
12302
12303
12304 /* if we want to turn off the cursor ignore width and height */
12305 if (!obj)
12306 goto finish;
12307
12308 /* Check for which cursor types we support */
12309 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12310 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12311 state->base.crtc_w, state->base.crtc_h);
12312 return -EINVAL;
12313 }
12314
12315 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12316 if (obj->base.size < stride * state->base.crtc_h) {
12317 DRM_DEBUG_KMS("buffer is too small\n");
12318 return -ENOMEM;
12319 }
12320
12321 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12322 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12323 ret = -EINVAL;
12324 }
12325
12326 finish:
12327 if (intel_crtc->active) {
12328 if (intel_crtc->base.cursor->state->crtc_w != state->base.crtc_w)
12329 intel_crtc->atomic.update_wm = true;
12330
12331 intel_crtc->atomic.fb_bits |=
12332 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12333 }
12334
12335 return ret;
12336 }
12337
12338 static void
12339 intel_commit_cursor_plane(struct drm_plane *plane,
12340 struct intel_plane_state *state)
12341 {
12342 struct drm_crtc *crtc = state->base.crtc;
12343 struct drm_device *dev = plane->dev;
12344 struct intel_crtc *intel_crtc;
12345 struct intel_plane *intel_plane = to_intel_plane(plane);
12346 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12347 uint32_t addr;
12348
12349 crtc = crtc ? crtc : plane->crtc;
12350 intel_crtc = to_intel_crtc(crtc);
12351
12352 plane->fb = state->base.fb;
12353 crtc->cursor_x = state->base.crtc_x;
12354 crtc->cursor_y = state->base.crtc_y;
12355
12356 intel_plane->obj = obj;
12357
12358 if (intel_crtc->cursor_bo == obj)
12359 goto update;
12360
12361 if (!obj)
12362 addr = 0;
12363 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12364 addr = i915_gem_obj_ggtt_offset(obj);
12365 else
12366 addr = obj->phys_handle->busaddr;
12367
12368 intel_crtc->cursor_addr = addr;
12369 intel_crtc->cursor_bo = obj;
12370 update:
12371
12372 if (intel_crtc->active)
12373 intel_crtc_update_cursor(crtc, state->visible);
12374 }
12375
12376 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12377 int pipe)
12378 {
12379 struct intel_plane *cursor;
12380 struct intel_plane_state *state;
12381
12382 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12383 if (cursor == NULL)
12384 return NULL;
12385
12386 state = intel_create_plane_state(&cursor->base);
12387 if (!state) {
12388 kfree(cursor);
12389 return NULL;
12390 }
12391 cursor->base.state = &state->base;
12392
12393 cursor->can_scale = false;
12394 cursor->max_downscale = 1;
12395 cursor->pipe = pipe;
12396 cursor->plane = pipe;
12397 cursor->check_plane = intel_check_cursor_plane;
12398 cursor->commit_plane = intel_commit_cursor_plane;
12399
12400 drm_universal_plane_init(dev, &cursor->base, 0,
12401 &intel_plane_funcs,
12402 intel_cursor_formats,
12403 ARRAY_SIZE(intel_cursor_formats),
12404 DRM_PLANE_TYPE_CURSOR);
12405
12406 if (INTEL_INFO(dev)->gen >= 4) {
12407 if (!dev->mode_config.rotation_property)
12408 dev->mode_config.rotation_property =
12409 drm_mode_create_rotation_property(dev,
12410 BIT(DRM_ROTATE_0) |
12411 BIT(DRM_ROTATE_180));
12412 if (dev->mode_config.rotation_property)
12413 drm_object_attach_property(&cursor->base.base,
12414 dev->mode_config.rotation_property,
12415 state->base.rotation);
12416 }
12417
12418 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12419
12420 return &cursor->base;
12421 }
12422
12423 static void intel_crtc_init(struct drm_device *dev, int pipe)
12424 {
12425 struct drm_i915_private *dev_priv = dev->dev_private;
12426 struct intel_crtc *intel_crtc;
12427 struct intel_crtc_state *crtc_state = NULL;
12428 struct drm_plane *primary = NULL;
12429 struct drm_plane *cursor = NULL;
12430 int i, ret;
12431
12432 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12433 if (intel_crtc == NULL)
12434 return;
12435
12436 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12437 if (!crtc_state)
12438 goto fail;
12439 intel_crtc_set_state(intel_crtc, crtc_state);
12440 crtc_state->base.crtc = &intel_crtc->base;
12441
12442 primary = intel_primary_plane_create(dev, pipe);
12443 if (!primary)
12444 goto fail;
12445
12446 cursor = intel_cursor_plane_create(dev, pipe);
12447 if (!cursor)
12448 goto fail;
12449
12450 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12451 cursor, &intel_crtc_funcs);
12452 if (ret)
12453 goto fail;
12454
12455 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12456 for (i = 0; i < 256; i++) {
12457 intel_crtc->lut_r[i] = i;
12458 intel_crtc->lut_g[i] = i;
12459 intel_crtc->lut_b[i] = i;
12460 }
12461
12462 /*
12463 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12464 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12465 */
12466 intel_crtc->pipe = pipe;
12467 intel_crtc->plane = pipe;
12468 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12469 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12470 intel_crtc->plane = !pipe;
12471 }
12472
12473 intel_crtc->cursor_base = ~0;
12474 intel_crtc->cursor_cntl = ~0;
12475 intel_crtc->cursor_size = ~0;
12476
12477 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12478 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12479 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12480 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12481
12482 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12483
12484 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12485
12486 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12487 return;
12488
12489 fail:
12490 if (primary)
12491 drm_plane_cleanup(primary);
12492 if (cursor)
12493 drm_plane_cleanup(cursor);
12494 kfree(crtc_state);
12495 kfree(intel_crtc);
12496 }
12497
12498 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12499 {
12500 struct drm_encoder *encoder = connector->base.encoder;
12501 struct drm_device *dev = connector->base.dev;
12502
12503 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12504
12505 if (!encoder || WARN_ON(!encoder->crtc))
12506 return INVALID_PIPE;
12507
12508 return to_intel_crtc(encoder->crtc)->pipe;
12509 }
12510
12511 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12512 struct drm_file *file)
12513 {
12514 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12515 struct drm_crtc *drmmode_crtc;
12516 struct intel_crtc *crtc;
12517
12518 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12519
12520 if (!drmmode_crtc) {
12521 DRM_ERROR("no such CRTC id\n");
12522 return -ENOENT;
12523 }
12524
12525 crtc = to_intel_crtc(drmmode_crtc);
12526 pipe_from_crtc_id->pipe = crtc->pipe;
12527
12528 return 0;
12529 }
12530
12531 static int intel_encoder_clones(struct intel_encoder *encoder)
12532 {
12533 struct drm_device *dev = encoder->base.dev;
12534 struct intel_encoder *source_encoder;
12535 int index_mask = 0;
12536 int entry = 0;
12537
12538 for_each_intel_encoder(dev, source_encoder) {
12539 if (encoders_cloneable(encoder, source_encoder))
12540 index_mask |= (1 << entry);
12541
12542 entry++;
12543 }
12544
12545 return index_mask;
12546 }
12547
12548 static bool has_edp_a(struct drm_device *dev)
12549 {
12550 struct drm_i915_private *dev_priv = dev->dev_private;
12551
12552 if (!IS_MOBILE(dev))
12553 return false;
12554
12555 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12556 return false;
12557
12558 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12559 return false;
12560
12561 return true;
12562 }
12563
12564 static bool intel_crt_present(struct drm_device *dev)
12565 {
12566 struct drm_i915_private *dev_priv = dev->dev_private;
12567
12568 if (INTEL_INFO(dev)->gen >= 9)
12569 return false;
12570
12571 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12572 return false;
12573
12574 if (IS_CHERRYVIEW(dev))
12575 return false;
12576
12577 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12578 return false;
12579
12580 return true;
12581 }
12582
12583 static void intel_setup_outputs(struct drm_device *dev)
12584 {
12585 struct drm_i915_private *dev_priv = dev->dev_private;
12586 struct intel_encoder *encoder;
12587 struct drm_connector *connector;
12588 bool dpd_is_edp = false;
12589
12590 intel_lvds_init(dev);
12591
12592 if (intel_crt_present(dev))
12593 intel_crt_init(dev);
12594
12595 if (HAS_DDI(dev)) {
12596 int found;
12597
12598 /*
12599 * Haswell uses DDI functions to detect digital outputs.
12600 * On SKL pre-D0 the strap isn't connected, so we assume
12601 * it's there.
12602 */
12603 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12604 /* WaIgnoreDDIAStrap: skl */
12605 if (found ||
12606 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
12607 intel_ddi_init(dev, PORT_A);
12608
12609 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12610 * register */
12611 found = I915_READ(SFUSE_STRAP);
12612
12613 if (found & SFUSE_STRAP_DDIB_DETECTED)
12614 intel_ddi_init(dev, PORT_B);
12615 if (found & SFUSE_STRAP_DDIC_DETECTED)
12616 intel_ddi_init(dev, PORT_C);
12617 if (found & SFUSE_STRAP_DDID_DETECTED)
12618 intel_ddi_init(dev, PORT_D);
12619 } else if (HAS_PCH_SPLIT(dev)) {
12620 int found;
12621 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12622
12623 if (has_edp_a(dev))
12624 intel_dp_init(dev, DP_A, PORT_A);
12625
12626 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12627 /* PCH SDVOB multiplex with HDMIB */
12628 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12629 if (!found)
12630 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12631 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12632 intel_dp_init(dev, PCH_DP_B, PORT_B);
12633 }
12634
12635 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12636 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12637
12638 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12639 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12640
12641 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12642 intel_dp_init(dev, PCH_DP_C, PORT_C);
12643
12644 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12645 intel_dp_init(dev, PCH_DP_D, PORT_D);
12646 } else if (IS_VALLEYVIEW(dev)) {
12647 /*
12648 * The DP_DETECTED bit is the latched state of the DDC
12649 * SDA pin at boot. However since eDP doesn't require DDC
12650 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12651 * eDP ports may have been muxed to an alternate function.
12652 * Thus we can't rely on the DP_DETECTED bit alone to detect
12653 * eDP ports. Consult the VBT as well as DP_DETECTED to
12654 * detect eDP ports.
12655 */
12656 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12657 !intel_dp_is_edp(dev, PORT_B))
12658 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12659 PORT_B);
12660 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12661 intel_dp_is_edp(dev, PORT_B))
12662 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12663
12664 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12665 !intel_dp_is_edp(dev, PORT_C))
12666 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12667 PORT_C);
12668 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12669 intel_dp_is_edp(dev, PORT_C))
12670 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12671
12672 if (IS_CHERRYVIEW(dev)) {
12673 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12674 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12675 PORT_D);
12676 /* eDP not supported on port D, so don't check VBT */
12677 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12678 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12679 }
12680
12681 intel_dsi_init(dev);
12682 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12683 bool found = false;
12684
12685 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12686 DRM_DEBUG_KMS("probing SDVOB\n");
12687 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12688 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12689 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12690 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12691 }
12692
12693 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12694 intel_dp_init(dev, DP_B, PORT_B);
12695 }
12696
12697 /* Before G4X SDVOC doesn't have its own detect register */
12698
12699 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12700 DRM_DEBUG_KMS("probing SDVOC\n");
12701 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12702 }
12703
12704 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12705
12706 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12707 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12708 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12709 }
12710 if (SUPPORTS_INTEGRATED_DP(dev))
12711 intel_dp_init(dev, DP_C, PORT_C);
12712 }
12713
12714 if (SUPPORTS_INTEGRATED_DP(dev) &&
12715 (I915_READ(DP_D) & DP_DETECTED))
12716 intel_dp_init(dev, DP_D, PORT_D);
12717 } else if (IS_GEN2(dev))
12718 intel_dvo_init(dev);
12719
12720 if (SUPPORTS_TV(dev))
12721 intel_tv_init(dev);
12722
12723 /*
12724 * FIXME: We don't have full atomic support yet, but we want to be
12725 * able to enable/test plane updates via the atomic interface in the
12726 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12727 * will take some atomic codepaths to lookup properties during
12728 * drmModeGetConnector() that unconditionally dereference
12729 * connector->state.
12730 *
12731 * We create a dummy connector state here for each connector to ensure
12732 * the DRM core doesn't try to dereference a NULL connector->state.
12733 * The actual connector properties will never be updated or contain
12734 * useful information, but since we're doing this specifically for
12735 * testing/debug of the plane operations (and only when a specific
12736 * kernel module option is given), that shouldn't really matter.
12737 *
12738 * Once atomic support for crtc's + connectors lands, this loop should
12739 * be removed since we'll be setting up real connector state, which
12740 * will contain Intel-specific properties.
12741 */
12742 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12743 list_for_each_entry(connector,
12744 &dev->mode_config.connector_list,
12745 head) {
12746 if (!WARN_ON(connector->state)) {
12747 connector->state =
12748 kzalloc(sizeof(*connector->state),
12749 GFP_KERNEL);
12750 }
12751 }
12752 }
12753
12754 intel_psr_init(dev);
12755
12756 for_each_intel_encoder(dev, encoder) {
12757 encoder->base.possible_crtcs = encoder->crtc_mask;
12758 encoder->base.possible_clones =
12759 intel_encoder_clones(encoder);
12760 }
12761
12762 intel_init_pch_refclk(dev);
12763
12764 drm_helper_move_panel_connectors_to_head(dev);
12765 }
12766
12767 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12768 {
12769 struct drm_device *dev = fb->dev;
12770 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12771
12772 drm_framebuffer_cleanup(fb);
12773 mutex_lock(&dev->struct_mutex);
12774 WARN_ON(!intel_fb->obj->framebuffer_references--);
12775 drm_gem_object_unreference(&intel_fb->obj->base);
12776 mutex_unlock(&dev->struct_mutex);
12777 kfree(intel_fb);
12778 }
12779
12780 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12781 struct drm_file *file,
12782 unsigned int *handle)
12783 {
12784 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12785 struct drm_i915_gem_object *obj = intel_fb->obj;
12786
12787 return drm_gem_handle_create(file, &obj->base, handle);
12788 }
12789
12790 static const struct drm_framebuffer_funcs intel_fb_funcs = {
12791 .destroy = intel_user_framebuffer_destroy,
12792 .create_handle = intel_user_framebuffer_create_handle,
12793 };
12794
12795 static
12796 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
12797 uint32_t pixel_format)
12798 {
12799 u32 gen = INTEL_INFO(dev)->gen;
12800
12801 if (gen >= 9) {
12802 /* "The stride in bytes must not exceed the of the size of 8K
12803 * pixels and 32K bytes."
12804 */
12805 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
12806 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
12807 return 32*1024;
12808 } else if (gen >= 4) {
12809 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12810 return 16*1024;
12811 else
12812 return 32*1024;
12813 } else if (gen >= 3) {
12814 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
12815 return 8*1024;
12816 else
12817 return 16*1024;
12818 } else {
12819 /* XXX DSPC is limited to 4k tiled */
12820 return 8*1024;
12821 }
12822 }
12823
12824 static int intel_framebuffer_init(struct drm_device *dev,
12825 struct intel_framebuffer *intel_fb,
12826 struct drm_mode_fb_cmd2 *mode_cmd,
12827 struct drm_i915_gem_object *obj)
12828 {
12829 int aligned_height;
12830 int ret;
12831 u32 pitch_limit, stride_alignment;
12832
12833 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12834
12835 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12836 /* Enforce that fb modifier and tiling mode match, but only for
12837 * X-tiled. This is needed for FBC. */
12838 if (!!(obj->tiling_mode == I915_TILING_X) !=
12839 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12840 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12841 return -EINVAL;
12842 }
12843 } else {
12844 if (obj->tiling_mode == I915_TILING_X)
12845 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12846 else if (obj->tiling_mode == I915_TILING_Y) {
12847 DRM_DEBUG("No Y tiling for legacy addfb\n");
12848 return -EINVAL;
12849 }
12850 }
12851
12852 /* Passed in modifier sanity checking. */
12853 switch (mode_cmd->modifier[0]) {
12854 case I915_FORMAT_MOD_Y_TILED:
12855 case I915_FORMAT_MOD_Yf_TILED:
12856 if (INTEL_INFO(dev)->gen < 9) {
12857 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
12858 mode_cmd->modifier[0]);
12859 return -EINVAL;
12860 }
12861 case DRM_FORMAT_MOD_NONE:
12862 case I915_FORMAT_MOD_X_TILED:
12863 break;
12864 default:
12865 DRM_ERROR("Unsupported fb modifier 0x%llx!\n",
12866 mode_cmd->modifier[0]);
12867 return -EINVAL;
12868 }
12869
12870 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
12871 mode_cmd->pixel_format);
12872 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
12873 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
12874 mode_cmd->pitches[0], stride_alignment);
12875 return -EINVAL;
12876 }
12877
12878 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
12879 mode_cmd->pixel_format);
12880 if (mode_cmd->pitches[0] > pitch_limit) {
12881 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
12882 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
12883 "tiled" : "linear",
12884 mode_cmd->pitches[0], pitch_limit);
12885 return -EINVAL;
12886 }
12887
12888 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
12889 mode_cmd->pitches[0] != obj->stride) {
12890 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12891 mode_cmd->pitches[0], obj->stride);
12892 return -EINVAL;
12893 }
12894
12895 /* Reject formats not supported by any plane early. */
12896 switch (mode_cmd->pixel_format) {
12897 case DRM_FORMAT_C8:
12898 case DRM_FORMAT_RGB565:
12899 case DRM_FORMAT_XRGB8888:
12900 case DRM_FORMAT_ARGB8888:
12901 break;
12902 case DRM_FORMAT_XRGB1555:
12903 case DRM_FORMAT_ARGB1555:
12904 if (INTEL_INFO(dev)->gen > 3) {
12905 DRM_DEBUG("unsupported pixel format: %s\n",
12906 drm_get_format_name(mode_cmd->pixel_format));
12907 return -EINVAL;
12908 }
12909 break;
12910 case DRM_FORMAT_XBGR8888:
12911 case DRM_FORMAT_ABGR8888:
12912 case DRM_FORMAT_XRGB2101010:
12913 case DRM_FORMAT_ARGB2101010:
12914 case DRM_FORMAT_XBGR2101010:
12915 case DRM_FORMAT_ABGR2101010:
12916 if (INTEL_INFO(dev)->gen < 4) {
12917 DRM_DEBUG("unsupported pixel format: %s\n",
12918 drm_get_format_name(mode_cmd->pixel_format));
12919 return -EINVAL;
12920 }
12921 break;
12922 case DRM_FORMAT_YUYV:
12923 case DRM_FORMAT_UYVY:
12924 case DRM_FORMAT_YVYU:
12925 case DRM_FORMAT_VYUY:
12926 if (INTEL_INFO(dev)->gen < 5) {
12927 DRM_DEBUG("unsupported pixel format: %s\n",
12928 drm_get_format_name(mode_cmd->pixel_format));
12929 return -EINVAL;
12930 }
12931 break;
12932 default:
12933 DRM_DEBUG("unsupported pixel format: %s\n",
12934 drm_get_format_name(mode_cmd->pixel_format));
12935 return -EINVAL;
12936 }
12937
12938 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12939 if (mode_cmd->offsets[0] != 0)
12940 return -EINVAL;
12941
12942 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12943 mode_cmd->pixel_format,
12944 mode_cmd->modifier[0]);
12945 /* FIXME drm helper for size checks (especially planar formats)? */
12946 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12947 return -EINVAL;
12948
12949 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12950 intel_fb->obj = obj;
12951 intel_fb->obj->framebuffer_references++;
12952
12953 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12954 if (ret) {
12955 DRM_ERROR("framebuffer init failed %d\n", ret);
12956 return ret;
12957 }
12958
12959 return 0;
12960 }
12961
12962 static struct drm_framebuffer *
12963 intel_user_framebuffer_create(struct drm_device *dev,
12964 struct drm_file *filp,
12965 struct drm_mode_fb_cmd2 *mode_cmd)
12966 {
12967 struct drm_i915_gem_object *obj;
12968
12969 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12970 mode_cmd->handles[0]));
12971 if (&obj->base == NULL)
12972 return ERR_PTR(-ENOENT);
12973
12974 return intel_framebuffer_create(dev, mode_cmd, obj);
12975 }
12976
12977 #ifndef CONFIG_DRM_I915_FBDEV
12978 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12979 {
12980 }
12981 #endif
12982
12983 static const struct drm_mode_config_funcs intel_mode_funcs = {
12984 .fb_create = intel_user_framebuffer_create,
12985 .output_poll_changed = intel_fbdev_output_poll_changed,
12986 .atomic_check = intel_atomic_check,
12987 .atomic_commit = intel_atomic_commit,
12988 };
12989
12990 /* Set up chip specific display functions */
12991 static void intel_init_display(struct drm_device *dev)
12992 {
12993 struct drm_i915_private *dev_priv = dev->dev_private;
12994
12995 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12996 dev_priv->display.find_dpll = g4x_find_best_dpll;
12997 else if (IS_CHERRYVIEW(dev))
12998 dev_priv->display.find_dpll = chv_find_best_dpll;
12999 else if (IS_VALLEYVIEW(dev))
13000 dev_priv->display.find_dpll = vlv_find_best_dpll;
13001 else if (IS_PINEVIEW(dev))
13002 dev_priv->display.find_dpll = pnv_find_best_dpll;
13003 else
13004 dev_priv->display.find_dpll = i9xx_find_best_dpll;
13005
13006 if (INTEL_INFO(dev)->gen >= 9) {
13007 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13008 dev_priv->display.get_initial_plane_config =
13009 skylake_get_initial_plane_config;
13010 dev_priv->display.crtc_compute_clock =
13011 haswell_crtc_compute_clock;
13012 dev_priv->display.crtc_enable = haswell_crtc_enable;
13013 dev_priv->display.crtc_disable = haswell_crtc_disable;
13014 dev_priv->display.off = ironlake_crtc_off;
13015 dev_priv->display.update_primary_plane =
13016 skylake_update_primary_plane;
13017 } else if (HAS_DDI(dev)) {
13018 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
13019 dev_priv->display.get_initial_plane_config =
13020 ironlake_get_initial_plane_config;
13021 dev_priv->display.crtc_compute_clock =
13022 haswell_crtc_compute_clock;
13023 dev_priv->display.crtc_enable = haswell_crtc_enable;
13024 dev_priv->display.crtc_disable = haswell_crtc_disable;
13025 dev_priv->display.off = ironlake_crtc_off;
13026 dev_priv->display.update_primary_plane =
13027 ironlake_update_primary_plane;
13028 } else if (HAS_PCH_SPLIT(dev)) {
13029 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
13030 dev_priv->display.get_initial_plane_config =
13031 ironlake_get_initial_plane_config;
13032 dev_priv->display.crtc_compute_clock =
13033 ironlake_crtc_compute_clock;
13034 dev_priv->display.crtc_enable = ironlake_crtc_enable;
13035 dev_priv->display.crtc_disable = ironlake_crtc_disable;
13036 dev_priv->display.off = ironlake_crtc_off;
13037 dev_priv->display.update_primary_plane =
13038 ironlake_update_primary_plane;
13039 } else if (IS_VALLEYVIEW(dev)) {
13040 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13041 dev_priv->display.get_initial_plane_config =
13042 i9xx_get_initial_plane_config;
13043 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13044 dev_priv->display.crtc_enable = valleyview_crtc_enable;
13045 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13046 dev_priv->display.off = i9xx_crtc_off;
13047 dev_priv->display.update_primary_plane =
13048 i9xx_update_primary_plane;
13049 } else {
13050 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
13051 dev_priv->display.get_initial_plane_config =
13052 i9xx_get_initial_plane_config;
13053 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
13054 dev_priv->display.crtc_enable = i9xx_crtc_enable;
13055 dev_priv->display.crtc_disable = i9xx_crtc_disable;
13056 dev_priv->display.off = i9xx_crtc_off;
13057 dev_priv->display.update_primary_plane =
13058 i9xx_update_primary_plane;
13059 }
13060
13061 /* Returns the core display clock speed */
13062 if (IS_VALLEYVIEW(dev))
13063 dev_priv->display.get_display_clock_speed =
13064 valleyview_get_display_clock_speed;
13065 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
13066 dev_priv->display.get_display_clock_speed =
13067 i945_get_display_clock_speed;
13068 else if (IS_I915G(dev))
13069 dev_priv->display.get_display_clock_speed =
13070 i915_get_display_clock_speed;
13071 else if (IS_I945GM(dev) || IS_845G(dev))
13072 dev_priv->display.get_display_clock_speed =
13073 i9xx_misc_get_display_clock_speed;
13074 else if (IS_PINEVIEW(dev))
13075 dev_priv->display.get_display_clock_speed =
13076 pnv_get_display_clock_speed;
13077 else if (IS_I915GM(dev))
13078 dev_priv->display.get_display_clock_speed =
13079 i915gm_get_display_clock_speed;
13080 else if (IS_I865G(dev))
13081 dev_priv->display.get_display_clock_speed =
13082 i865_get_display_clock_speed;
13083 else if (IS_I85X(dev))
13084 dev_priv->display.get_display_clock_speed =
13085 i855_get_display_clock_speed;
13086 else /* 852, 830 */
13087 dev_priv->display.get_display_clock_speed =
13088 i830_get_display_clock_speed;
13089
13090 if (IS_GEN5(dev)) {
13091 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
13092 } else if (IS_GEN6(dev)) {
13093 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
13094 } else if (IS_IVYBRIDGE(dev)) {
13095 /* FIXME: detect B0+ stepping and use auto training */
13096 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
13097 dev_priv->display.modeset_global_resources =
13098 ivb_modeset_global_resources;
13099 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
13100 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
13101 } else if (IS_VALLEYVIEW(dev)) {
13102 dev_priv->display.modeset_global_resources =
13103 valleyview_modeset_global_resources;
13104 }
13105
13106 switch (INTEL_INFO(dev)->gen) {
13107 case 2:
13108 dev_priv->display.queue_flip = intel_gen2_queue_flip;
13109 break;
13110
13111 case 3:
13112 dev_priv->display.queue_flip = intel_gen3_queue_flip;
13113 break;
13114
13115 case 4:
13116 case 5:
13117 dev_priv->display.queue_flip = intel_gen4_queue_flip;
13118 break;
13119
13120 case 6:
13121 dev_priv->display.queue_flip = intel_gen6_queue_flip;
13122 break;
13123 case 7:
13124 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
13125 dev_priv->display.queue_flip = intel_gen7_queue_flip;
13126 break;
13127 case 9:
13128 /* Drop through - unsupported since execlist only. */
13129 default:
13130 /* Default just returns -ENODEV to indicate unsupported */
13131 dev_priv->display.queue_flip = intel_default_queue_flip;
13132 }
13133
13134 intel_panel_init_backlight_funcs(dev);
13135
13136 mutex_init(&dev_priv->pps_mutex);
13137 }
13138
13139 /*
13140 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
13141 * resume, or other times. This quirk makes sure that's the case for
13142 * affected systems.
13143 */
13144 static void quirk_pipea_force(struct drm_device *dev)
13145 {
13146 struct drm_i915_private *dev_priv = dev->dev_private;
13147
13148 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
13149 DRM_INFO("applying pipe a force quirk\n");
13150 }
13151
13152 static void quirk_pipeb_force(struct drm_device *dev)
13153 {
13154 struct drm_i915_private *dev_priv = dev->dev_private;
13155
13156 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13157 DRM_INFO("applying pipe b force quirk\n");
13158 }
13159
13160 /*
13161 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13162 */
13163 static void quirk_ssc_force_disable(struct drm_device *dev)
13164 {
13165 struct drm_i915_private *dev_priv = dev->dev_private;
13166 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13167 DRM_INFO("applying lvds SSC disable quirk\n");
13168 }
13169
13170 /*
13171 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13172 * brightness value
13173 */
13174 static void quirk_invert_brightness(struct drm_device *dev)
13175 {
13176 struct drm_i915_private *dev_priv = dev->dev_private;
13177 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13178 DRM_INFO("applying inverted panel brightness quirk\n");
13179 }
13180
13181 /* Some VBT's incorrectly indicate no backlight is present */
13182 static void quirk_backlight_present(struct drm_device *dev)
13183 {
13184 struct drm_i915_private *dev_priv = dev->dev_private;
13185 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13186 DRM_INFO("applying backlight present quirk\n");
13187 }
13188
13189 struct intel_quirk {
13190 int device;
13191 int subsystem_vendor;
13192 int subsystem_device;
13193 void (*hook)(struct drm_device *dev);
13194 };
13195
13196 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13197 struct intel_dmi_quirk {
13198 void (*hook)(struct drm_device *dev);
13199 const struct dmi_system_id (*dmi_id_list)[];
13200 };
13201
13202 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13203 {
13204 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13205 return 1;
13206 }
13207
13208 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13209 {
13210 .dmi_id_list = &(const struct dmi_system_id[]) {
13211 {
13212 .callback = intel_dmi_reverse_brightness,
13213 .ident = "NCR Corporation",
13214 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13215 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13216 },
13217 },
13218 { } /* terminating entry */
13219 },
13220 .hook = quirk_invert_brightness,
13221 },
13222 };
13223
13224 static struct intel_quirk intel_quirks[] = {
13225 /* HP Mini needs pipe A force quirk (LP: #322104) */
13226 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13227
13228 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13229 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13230
13231 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13232 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13233
13234 /* 830 needs to leave pipe A & dpll A up */
13235 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13236
13237 /* 830 needs to leave pipe B & dpll B up */
13238 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13239
13240 /* Lenovo U160 cannot use SSC on LVDS */
13241 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13242
13243 /* Sony Vaio Y cannot use SSC on LVDS */
13244 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13245
13246 /* Acer Aspire 5734Z must invert backlight brightness */
13247 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13248
13249 /* Acer/eMachines G725 */
13250 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13251
13252 /* Acer/eMachines e725 */
13253 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13254
13255 /* Acer/Packard Bell NCL20 */
13256 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13257
13258 /* Acer Aspire 4736Z */
13259 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13260
13261 /* Acer Aspire 5336 */
13262 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13263
13264 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13265 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13266
13267 /* Acer C720 Chromebook (Core i3 4005U) */
13268 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13269
13270 /* Apple Macbook 2,1 (Core 2 T7400) */
13271 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13272
13273 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13274 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13275
13276 /* HP Chromebook 14 (Celeron 2955U) */
13277 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13278
13279 /* Dell Chromebook 11 */
13280 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
13281 };
13282
13283 static void intel_init_quirks(struct drm_device *dev)
13284 {
13285 struct pci_dev *d = dev->pdev;
13286 int i;
13287
13288 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13289 struct intel_quirk *q = &intel_quirks[i];
13290
13291 if (d->device == q->device &&
13292 (d->subsystem_vendor == q->subsystem_vendor ||
13293 q->subsystem_vendor == PCI_ANY_ID) &&
13294 (d->subsystem_device == q->subsystem_device ||
13295 q->subsystem_device == PCI_ANY_ID))
13296 q->hook(dev);
13297 }
13298 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13299 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13300 intel_dmi_quirks[i].hook(dev);
13301 }
13302 }
13303
13304 /* Disable the VGA plane that we never use */
13305 static void i915_disable_vga(struct drm_device *dev)
13306 {
13307 struct drm_i915_private *dev_priv = dev->dev_private;
13308 u8 sr1;
13309 u32 vga_reg = i915_vgacntrl_reg(dev);
13310
13311 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13312 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13313 outb(SR01, VGA_SR_INDEX);
13314 sr1 = inb(VGA_SR_DATA);
13315 outb(sr1 | 1<<5, VGA_SR_DATA);
13316 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13317 udelay(300);
13318
13319 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13320 POSTING_READ(vga_reg);
13321 }
13322
13323 void intel_modeset_init_hw(struct drm_device *dev)
13324 {
13325 intel_prepare_ddi(dev);
13326
13327 if (IS_VALLEYVIEW(dev))
13328 vlv_update_cdclk(dev);
13329
13330 intel_init_clock_gating(dev);
13331
13332 intel_enable_gt_powersave(dev);
13333 }
13334
13335 void intel_modeset_init(struct drm_device *dev)
13336 {
13337 struct drm_i915_private *dev_priv = dev->dev_private;
13338 int sprite, ret;
13339 enum pipe pipe;
13340 struct intel_crtc *crtc;
13341
13342 drm_mode_config_init(dev);
13343
13344 dev->mode_config.min_width = 0;
13345 dev->mode_config.min_height = 0;
13346
13347 dev->mode_config.preferred_depth = 24;
13348 dev->mode_config.prefer_shadow = 1;
13349
13350 dev->mode_config.allow_fb_modifiers = true;
13351
13352 dev->mode_config.funcs = &intel_mode_funcs;
13353
13354 intel_init_quirks(dev);
13355
13356 intel_init_pm(dev);
13357
13358 if (INTEL_INFO(dev)->num_pipes == 0)
13359 return;
13360
13361 intel_init_display(dev);
13362 intel_init_audio(dev);
13363
13364 if (IS_GEN2(dev)) {
13365 dev->mode_config.max_width = 2048;
13366 dev->mode_config.max_height = 2048;
13367 } else if (IS_GEN3(dev)) {
13368 dev->mode_config.max_width = 4096;
13369 dev->mode_config.max_height = 4096;
13370 } else {
13371 dev->mode_config.max_width = 8192;
13372 dev->mode_config.max_height = 8192;
13373 }
13374
13375 if (IS_845G(dev) || IS_I865G(dev)) {
13376 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13377 dev->mode_config.cursor_height = 1023;
13378 } else if (IS_GEN2(dev)) {
13379 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13380 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13381 } else {
13382 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13383 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13384 }
13385
13386 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13387
13388 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13389 INTEL_INFO(dev)->num_pipes,
13390 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13391
13392 for_each_pipe(dev_priv, pipe) {
13393 intel_crtc_init(dev, pipe);
13394 for_each_sprite(dev_priv, pipe, sprite) {
13395 ret = intel_plane_init(dev, pipe, sprite);
13396 if (ret)
13397 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13398 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13399 }
13400 }
13401
13402 intel_init_dpio(dev);
13403
13404 intel_shared_dpll_init(dev);
13405
13406 /* Just disable it once at startup */
13407 i915_disable_vga(dev);
13408 intel_setup_outputs(dev);
13409
13410 /* Just in case the BIOS is doing something questionable. */
13411 intel_fbc_disable(dev);
13412
13413 drm_modeset_lock_all(dev);
13414 intel_modeset_setup_hw_state(dev, false);
13415 drm_modeset_unlock_all(dev);
13416
13417 for_each_intel_crtc(dev, crtc) {
13418 if (!crtc->active)
13419 continue;
13420
13421 /*
13422 * Note that reserving the BIOS fb up front prevents us
13423 * from stuffing other stolen allocations like the ring
13424 * on top. This prevents some ugliness at boot time, and
13425 * can even allow for smooth boot transitions if the BIOS
13426 * fb is large enough for the active pipe configuration.
13427 */
13428 if (dev_priv->display.get_initial_plane_config) {
13429 dev_priv->display.get_initial_plane_config(crtc,
13430 &crtc->plane_config);
13431 /*
13432 * If the fb is shared between multiple heads, we'll
13433 * just get the first one.
13434 */
13435 intel_find_plane_obj(crtc, &crtc->plane_config);
13436 }
13437 }
13438 }
13439
13440 static void intel_enable_pipe_a(struct drm_device *dev)
13441 {
13442 struct intel_connector *connector;
13443 struct drm_connector *crt = NULL;
13444 struct intel_load_detect_pipe load_detect_temp;
13445 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13446
13447 /* We can't just switch on the pipe A, we need to set things up with a
13448 * proper mode and output configuration. As a gross hack, enable pipe A
13449 * by enabling the load detect pipe once. */
13450 for_each_intel_connector(dev, connector) {
13451 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13452 crt = &connector->base;
13453 break;
13454 }
13455 }
13456
13457 if (!crt)
13458 return;
13459
13460 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13461 intel_release_load_detect_pipe(crt, &load_detect_temp);
13462 }
13463
13464 static bool
13465 intel_check_plane_mapping(struct intel_crtc *crtc)
13466 {
13467 struct drm_device *dev = crtc->base.dev;
13468 struct drm_i915_private *dev_priv = dev->dev_private;
13469 u32 reg, val;
13470
13471 if (INTEL_INFO(dev)->num_pipes == 1)
13472 return true;
13473
13474 reg = DSPCNTR(!crtc->plane);
13475 val = I915_READ(reg);
13476
13477 if ((val & DISPLAY_PLANE_ENABLE) &&
13478 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13479 return false;
13480
13481 return true;
13482 }
13483
13484 static void intel_sanitize_crtc(struct intel_crtc *crtc)
13485 {
13486 struct drm_device *dev = crtc->base.dev;
13487 struct drm_i915_private *dev_priv = dev->dev_private;
13488 u32 reg;
13489
13490 /* Clear any frame start delays used for debugging left by the BIOS */
13491 reg = PIPECONF(crtc->config->cpu_transcoder);
13492 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13493
13494 /* restore vblank interrupts to correct state */
13495 drm_crtc_vblank_reset(&crtc->base);
13496 if (crtc->active) {
13497 update_scanline_offset(crtc);
13498 drm_crtc_vblank_on(&crtc->base);
13499 }
13500
13501 /* We need to sanitize the plane -> pipe mapping first because this will
13502 * disable the crtc (and hence change the state) if it is wrong. Note
13503 * that gen4+ has a fixed plane -> pipe mapping. */
13504 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13505 struct intel_connector *connector;
13506 bool plane;
13507
13508 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13509 crtc->base.base.id);
13510
13511 /* Pipe has the wrong plane attached and the plane is active.
13512 * Temporarily change the plane mapping and disable everything
13513 * ... */
13514 plane = crtc->plane;
13515 crtc->plane = !plane;
13516 crtc->primary_enabled = true;
13517 dev_priv->display.crtc_disable(&crtc->base);
13518 crtc->plane = plane;
13519
13520 /* ... and break all links. */
13521 for_each_intel_connector(dev, connector) {
13522 if (connector->encoder->base.crtc != &crtc->base)
13523 continue;
13524
13525 connector->base.dpms = DRM_MODE_DPMS_OFF;
13526 connector->base.encoder = NULL;
13527 }
13528 /* multiple connectors may have the same encoder:
13529 * handle them and break crtc link separately */
13530 for_each_intel_connector(dev, connector)
13531 if (connector->encoder->base.crtc == &crtc->base) {
13532 connector->encoder->base.crtc = NULL;
13533 connector->encoder->connectors_active = false;
13534 }
13535
13536 WARN_ON(crtc->active);
13537 crtc->base.state->enable = false;
13538 crtc->base.enabled = false;
13539 }
13540
13541 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13542 crtc->pipe == PIPE_A && !crtc->active) {
13543 /* BIOS forgot to enable pipe A, this mostly happens after
13544 * resume. Force-enable the pipe to fix this, the update_dpms
13545 * call below we restore the pipe to the right state, but leave
13546 * the required bits on. */
13547 intel_enable_pipe_a(dev);
13548 }
13549
13550 /* Adjust the state of the output pipe according to whether we
13551 * have active connectors/encoders. */
13552 intel_crtc_update_dpms(&crtc->base);
13553
13554 if (crtc->active != crtc->base.state->enable) {
13555 struct intel_encoder *encoder;
13556
13557 /* This can happen either due to bugs in the get_hw_state
13558 * functions or because the pipe is force-enabled due to the
13559 * pipe A quirk. */
13560 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13561 crtc->base.base.id,
13562 crtc->base.state->enable ? "enabled" : "disabled",
13563 crtc->active ? "enabled" : "disabled");
13564
13565 crtc->base.state->enable = crtc->active;
13566 crtc->base.enabled = crtc->active;
13567
13568 /* Because we only establish the connector -> encoder ->
13569 * crtc links if something is active, this means the
13570 * crtc is now deactivated. Break the links. connector
13571 * -> encoder links are only establish when things are
13572 * actually up, hence no need to break them. */
13573 WARN_ON(crtc->active);
13574
13575 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13576 WARN_ON(encoder->connectors_active);
13577 encoder->base.crtc = NULL;
13578 }
13579 }
13580
13581 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13582 /*
13583 * We start out with underrun reporting disabled to avoid races.
13584 * For correct bookkeeping mark this on active crtcs.
13585 *
13586 * Also on gmch platforms we dont have any hardware bits to
13587 * disable the underrun reporting. Which means we need to start
13588 * out with underrun reporting disabled also on inactive pipes,
13589 * since otherwise we'll complain about the garbage we read when
13590 * e.g. coming up after runtime pm.
13591 *
13592 * No protection against concurrent access is required - at
13593 * worst a fifo underrun happens which also sets this to false.
13594 */
13595 crtc->cpu_fifo_underrun_disabled = true;
13596 crtc->pch_fifo_underrun_disabled = true;
13597 }
13598 }
13599
13600 static void intel_sanitize_encoder(struct intel_encoder *encoder)
13601 {
13602 struct intel_connector *connector;
13603 struct drm_device *dev = encoder->base.dev;
13604
13605 /* We need to check both for a crtc link (meaning that the
13606 * encoder is active and trying to read from a pipe) and the
13607 * pipe itself being active. */
13608 bool has_active_crtc = encoder->base.crtc &&
13609 to_intel_crtc(encoder->base.crtc)->active;
13610
13611 if (encoder->connectors_active && !has_active_crtc) {
13612 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13613 encoder->base.base.id,
13614 encoder->base.name);
13615
13616 /* Connector is active, but has no active pipe. This is
13617 * fallout from our resume register restoring. Disable
13618 * the encoder manually again. */
13619 if (encoder->base.crtc) {
13620 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13621 encoder->base.base.id,
13622 encoder->base.name);
13623 encoder->disable(encoder);
13624 if (encoder->post_disable)
13625 encoder->post_disable(encoder);
13626 }
13627 encoder->base.crtc = NULL;
13628 encoder->connectors_active = false;
13629
13630 /* Inconsistent output/port/pipe state happens presumably due to
13631 * a bug in one of the get_hw_state functions. Or someplace else
13632 * in our code, like the register restore mess on resume. Clamp
13633 * things to off as a safer default. */
13634 for_each_intel_connector(dev, connector) {
13635 if (connector->encoder != encoder)
13636 continue;
13637 connector->base.dpms = DRM_MODE_DPMS_OFF;
13638 connector->base.encoder = NULL;
13639 }
13640 }
13641 /* Enabled encoders without active connectors will be fixed in
13642 * the crtc fixup. */
13643 }
13644
13645 void i915_redisable_vga_power_on(struct drm_device *dev)
13646 {
13647 struct drm_i915_private *dev_priv = dev->dev_private;
13648 u32 vga_reg = i915_vgacntrl_reg(dev);
13649
13650 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13651 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13652 i915_disable_vga(dev);
13653 }
13654 }
13655
13656 void i915_redisable_vga(struct drm_device *dev)
13657 {
13658 struct drm_i915_private *dev_priv = dev->dev_private;
13659
13660 /* This function can be called both from intel_modeset_setup_hw_state or
13661 * at a very early point in our resume sequence, where the power well
13662 * structures are not yet restored. Since this function is at a very
13663 * paranoid "someone might have enabled VGA while we were not looking"
13664 * level, just check if the power well is enabled instead of trying to
13665 * follow the "don't touch the power well if we don't need it" policy
13666 * the rest of the driver uses. */
13667 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13668 return;
13669
13670 i915_redisable_vga_power_on(dev);
13671 }
13672
13673 static bool primary_get_hw_state(struct intel_crtc *crtc)
13674 {
13675 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13676
13677 if (!crtc->active)
13678 return false;
13679
13680 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13681 }
13682
13683 static void intel_modeset_readout_hw_state(struct drm_device *dev)
13684 {
13685 struct drm_i915_private *dev_priv = dev->dev_private;
13686 enum pipe pipe;
13687 struct intel_crtc *crtc;
13688 struct intel_encoder *encoder;
13689 struct intel_connector *connector;
13690 int i;
13691
13692 for_each_intel_crtc(dev, crtc) {
13693 memset(crtc->config, 0, sizeof(*crtc->config));
13694
13695 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13696
13697 crtc->active = dev_priv->display.get_pipe_config(crtc,
13698 crtc->config);
13699
13700 crtc->base.state->enable = crtc->active;
13701 crtc->base.enabled = crtc->active;
13702 crtc->primary_enabled = primary_get_hw_state(crtc);
13703
13704 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13705 crtc->base.base.id,
13706 crtc->active ? "enabled" : "disabled");
13707 }
13708
13709 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13710 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13711
13712 pll->on = pll->get_hw_state(dev_priv, pll,
13713 &pll->config.hw_state);
13714 pll->active = 0;
13715 pll->config.crtc_mask = 0;
13716 for_each_intel_crtc(dev, crtc) {
13717 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13718 pll->active++;
13719 pll->config.crtc_mask |= 1 << crtc->pipe;
13720 }
13721 }
13722
13723 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13724 pll->name, pll->config.crtc_mask, pll->on);
13725
13726 if (pll->config.crtc_mask)
13727 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13728 }
13729
13730 for_each_intel_encoder(dev, encoder) {
13731 pipe = 0;
13732
13733 if (encoder->get_hw_state(encoder, &pipe)) {
13734 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13735 encoder->base.crtc = &crtc->base;
13736 encoder->get_config(encoder, crtc->config);
13737 } else {
13738 encoder->base.crtc = NULL;
13739 }
13740
13741 encoder->connectors_active = false;
13742 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13743 encoder->base.base.id,
13744 encoder->base.name,
13745 encoder->base.crtc ? "enabled" : "disabled",
13746 pipe_name(pipe));
13747 }
13748
13749 for_each_intel_connector(dev, connector) {
13750 if (connector->get_hw_state(connector)) {
13751 connector->base.dpms = DRM_MODE_DPMS_ON;
13752 connector->encoder->connectors_active = true;
13753 connector->base.encoder = &connector->encoder->base;
13754 } else {
13755 connector->base.dpms = DRM_MODE_DPMS_OFF;
13756 connector->base.encoder = NULL;
13757 }
13758 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13759 connector->base.base.id,
13760 connector->base.name,
13761 connector->base.encoder ? "enabled" : "disabled");
13762 }
13763 }
13764
13765 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13766 * and i915 state tracking structures. */
13767 void intel_modeset_setup_hw_state(struct drm_device *dev,
13768 bool force_restore)
13769 {
13770 struct drm_i915_private *dev_priv = dev->dev_private;
13771 enum pipe pipe;
13772 struct intel_crtc *crtc;
13773 struct intel_encoder *encoder;
13774 int i;
13775
13776 intel_modeset_readout_hw_state(dev);
13777
13778 /*
13779 * Now that we have the config, copy it to each CRTC struct
13780 * Note that this could go away if we move to using crtc_config
13781 * checking everywhere.
13782 */
13783 for_each_intel_crtc(dev, crtc) {
13784 if (crtc->active && i915.fastboot) {
13785 intel_mode_from_pipe_config(&crtc->base.mode,
13786 crtc->config);
13787 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13788 crtc->base.base.id);
13789 drm_mode_debug_printmodeline(&crtc->base.mode);
13790 }
13791 }
13792
13793 /* HW state is read out, now we need to sanitize this mess. */
13794 for_each_intel_encoder(dev, encoder) {
13795 intel_sanitize_encoder(encoder);
13796 }
13797
13798 for_each_pipe(dev_priv, pipe) {
13799 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13800 intel_sanitize_crtc(crtc);
13801 intel_dump_pipe_config(crtc, crtc->config,
13802 "[setup_hw_state]");
13803 }
13804
13805 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13806 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13807
13808 if (!pll->on || pll->active)
13809 continue;
13810
13811 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13812
13813 pll->disable(dev_priv, pll);
13814 pll->on = false;
13815 }
13816
13817 if (IS_GEN9(dev))
13818 skl_wm_get_hw_state(dev);
13819 else if (HAS_PCH_SPLIT(dev))
13820 ilk_wm_get_hw_state(dev);
13821
13822 if (force_restore) {
13823 i915_redisable_vga(dev);
13824
13825 /*
13826 * We need to use raw interfaces for restoring state to avoid
13827 * checking (bogus) intermediate states.
13828 */
13829 for_each_pipe(dev_priv, pipe) {
13830 struct drm_crtc *crtc =
13831 dev_priv->pipe_to_crtc_mapping[pipe];
13832
13833 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13834 crtc->primary->fb);
13835 }
13836 } else {
13837 intel_modeset_update_staged_output_state(dev);
13838 }
13839
13840 intel_modeset_check_state(dev);
13841 }
13842
13843 void intel_modeset_gem_init(struct drm_device *dev)
13844 {
13845 struct drm_i915_private *dev_priv = dev->dev_private;
13846 struct drm_crtc *c;
13847 struct drm_i915_gem_object *obj;
13848
13849 mutex_lock(&dev->struct_mutex);
13850 intel_init_gt_powersave(dev);
13851 mutex_unlock(&dev->struct_mutex);
13852
13853 /*
13854 * There may be no VBT; and if the BIOS enabled SSC we can
13855 * just keep using it to avoid unnecessary flicker. Whereas if the
13856 * BIOS isn't using it, don't assume it will work even if the VBT
13857 * indicates as much.
13858 */
13859 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13860 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13861 DREF_SSC1_ENABLE);
13862
13863 intel_modeset_init_hw(dev);
13864
13865 intel_setup_overlay(dev);
13866
13867 /*
13868 * Make sure any fbs we allocated at startup are properly
13869 * pinned & fenced. When we do the allocation it's too early
13870 * for this.
13871 */
13872 mutex_lock(&dev->struct_mutex);
13873 for_each_crtc(dev, c) {
13874 obj = intel_fb_obj(c->primary->fb);
13875 if (obj == NULL)
13876 continue;
13877
13878 if (intel_pin_and_fence_fb_obj(c->primary,
13879 c->primary->fb,
13880 NULL)) {
13881 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13882 to_intel_crtc(c)->pipe);
13883 drm_framebuffer_unreference(c->primary->fb);
13884 c->primary->fb = NULL;
13885 update_state_fb(c->primary);
13886 }
13887 }
13888 mutex_unlock(&dev->struct_mutex);
13889
13890 intel_backlight_register(dev);
13891 }
13892
13893 void intel_connector_unregister(struct intel_connector *intel_connector)
13894 {
13895 struct drm_connector *connector = &intel_connector->base;
13896
13897 intel_panel_destroy_backlight(connector);
13898 drm_connector_unregister(connector);
13899 }
13900
13901 void intel_modeset_cleanup(struct drm_device *dev)
13902 {
13903 struct drm_i915_private *dev_priv = dev->dev_private;
13904 struct drm_connector *connector;
13905
13906 intel_disable_gt_powersave(dev);
13907
13908 intel_backlight_unregister(dev);
13909
13910 /*
13911 * Interrupts and polling as the first thing to avoid creating havoc.
13912 * Too much stuff here (turning of connectors, ...) would
13913 * experience fancy races otherwise.
13914 */
13915 intel_irq_uninstall(dev_priv);
13916
13917 /*
13918 * Due to the hpd irq storm handling the hotplug work can re-arm the
13919 * poll handlers. Hence disable polling after hpd handling is shut down.
13920 */
13921 drm_kms_helper_poll_fini(dev);
13922
13923 mutex_lock(&dev->struct_mutex);
13924
13925 intel_unregister_dsm_handler();
13926
13927 intel_fbc_disable(dev);
13928
13929 mutex_unlock(&dev->struct_mutex);
13930
13931 /* flush any delayed tasks or pending work */
13932 flush_scheduled_work();
13933
13934 /* destroy the backlight and sysfs files before encoders/connectors */
13935 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13936 struct intel_connector *intel_connector;
13937
13938 intel_connector = to_intel_connector(connector);
13939 intel_connector->unregister(intel_connector);
13940 }
13941
13942 drm_mode_config_cleanup(dev);
13943
13944 intel_cleanup_overlay(dev);
13945
13946 mutex_lock(&dev->struct_mutex);
13947 intel_cleanup_gt_powersave(dev);
13948 mutex_unlock(&dev->struct_mutex);
13949 }
13950
13951 /*
13952 * Return which encoder is currently attached for connector.
13953 */
13954 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13955 {
13956 return &intel_attached_encoder(connector)->base;
13957 }
13958
13959 void intel_connector_attach_encoder(struct intel_connector *connector,
13960 struct intel_encoder *encoder)
13961 {
13962 connector->encoder = encoder;
13963 drm_mode_connector_attach_encoder(&connector->base,
13964 &encoder->base);
13965 }
13966
13967 /*
13968 * set vga decode state - true == enable VGA decode
13969 */
13970 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13971 {
13972 struct drm_i915_private *dev_priv = dev->dev_private;
13973 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13974 u16 gmch_ctrl;
13975
13976 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13977 DRM_ERROR("failed to read control word\n");
13978 return -EIO;
13979 }
13980
13981 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13982 return 0;
13983
13984 if (state)
13985 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13986 else
13987 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13988
13989 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13990 DRM_ERROR("failed to write control word\n");
13991 return -EIO;
13992 }
13993
13994 return 0;
13995 }
13996
13997 struct intel_display_error_state {
13998
13999 u32 power_well_driver;
14000
14001 int num_transcoders;
14002
14003 struct intel_cursor_error_state {
14004 u32 control;
14005 u32 position;
14006 u32 base;
14007 u32 size;
14008 } cursor[I915_MAX_PIPES];
14009
14010 struct intel_pipe_error_state {
14011 bool power_domain_on;
14012 u32 source;
14013 u32 stat;
14014 } pipe[I915_MAX_PIPES];
14015
14016 struct intel_plane_error_state {
14017 u32 control;
14018 u32 stride;
14019 u32 size;
14020 u32 pos;
14021 u32 addr;
14022 u32 surface;
14023 u32 tile_offset;
14024 } plane[I915_MAX_PIPES];
14025
14026 struct intel_transcoder_error_state {
14027 bool power_domain_on;
14028 enum transcoder cpu_transcoder;
14029
14030 u32 conf;
14031
14032 u32 htotal;
14033 u32 hblank;
14034 u32 hsync;
14035 u32 vtotal;
14036 u32 vblank;
14037 u32 vsync;
14038 } transcoder[4];
14039 };
14040
14041 struct intel_display_error_state *
14042 intel_display_capture_error_state(struct drm_device *dev)
14043 {
14044 struct drm_i915_private *dev_priv = dev->dev_private;
14045 struct intel_display_error_state *error;
14046 int transcoders[] = {
14047 TRANSCODER_A,
14048 TRANSCODER_B,
14049 TRANSCODER_C,
14050 TRANSCODER_EDP,
14051 };
14052 int i;
14053
14054 if (INTEL_INFO(dev)->num_pipes == 0)
14055 return NULL;
14056
14057 error = kzalloc(sizeof(*error), GFP_ATOMIC);
14058 if (error == NULL)
14059 return NULL;
14060
14061 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14062 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
14063
14064 for_each_pipe(dev_priv, i) {
14065 error->pipe[i].power_domain_on =
14066 __intel_display_power_is_enabled(dev_priv,
14067 POWER_DOMAIN_PIPE(i));
14068 if (!error->pipe[i].power_domain_on)
14069 continue;
14070
14071 error->cursor[i].control = I915_READ(CURCNTR(i));
14072 error->cursor[i].position = I915_READ(CURPOS(i));
14073 error->cursor[i].base = I915_READ(CURBASE(i));
14074
14075 error->plane[i].control = I915_READ(DSPCNTR(i));
14076 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
14077 if (INTEL_INFO(dev)->gen <= 3) {
14078 error->plane[i].size = I915_READ(DSPSIZE(i));
14079 error->plane[i].pos = I915_READ(DSPPOS(i));
14080 }
14081 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14082 error->plane[i].addr = I915_READ(DSPADDR(i));
14083 if (INTEL_INFO(dev)->gen >= 4) {
14084 error->plane[i].surface = I915_READ(DSPSURF(i));
14085 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
14086 }
14087
14088 error->pipe[i].source = I915_READ(PIPESRC(i));
14089
14090 if (HAS_GMCH_DISPLAY(dev))
14091 error->pipe[i].stat = I915_READ(PIPESTAT(i));
14092 }
14093
14094 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
14095 if (HAS_DDI(dev_priv->dev))
14096 error->num_transcoders++; /* Account for eDP. */
14097
14098 for (i = 0; i < error->num_transcoders; i++) {
14099 enum transcoder cpu_transcoder = transcoders[i];
14100
14101 error->transcoder[i].power_domain_on =
14102 __intel_display_power_is_enabled(dev_priv,
14103 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
14104 if (!error->transcoder[i].power_domain_on)
14105 continue;
14106
14107 error->transcoder[i].cpu_transcoder = cpu_transcoder;
14108
14109 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
14110 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
14111 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
14112 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
14113 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
14114 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
14115 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
14116 }
14117
14118 return error;
14119 }
14120
14121 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
14122
14123 void
14124 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
14125 struct drm_device *dev,
14126 struct intel_display_error_state *error)
14127 {
14128 struct drm_i915_private *dev_priv = dev->dev_private;
14129 int i;
14130
14131 if (!error)
14132 return;
14133
14134 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
14135 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
14136 err_printf(m, "PWR_WELL_CTL2: %08x\n",
14137 error->power_well_driver);
14138 for_each_pipe(dev_priv, i) {
14139 err_printf(m, "Pipe [%d]:\n", i);
14140 err_printf(m, " Power: %s\n",
14141 error->pipe[i].power_domain_on ? "on" : "off");
14142 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
14143 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
14144
14145 err_printf(m, "Plane [%d]:\n", i);
14146 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14147 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
14148 if (INTEL_INFO(dev)->gen <= 3) {
14149 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14150 err_printf(m, " POS: %08x\n", error->plane[i].pos);
14151 }
14152 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14153 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
14154 if (INTEL_INFO(dev)->gen >= 4) {
14155 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14156 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14157 }
14158
14159 err_printf(m, "Cursor [%d]:\n", i);
14160 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14161 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14162 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14163 }
14164
14165 for (i = 0; i < error->num_transcoders; i++) {
14166 err_printf(m, "CPU transcoder: %c\n",
14167 transcoder_name(error->transcoder[i].cpu_transcoder));
14168 err_printf(m, " Power: %s\n",
14169 error->transcoder[i].power_domain_on ? "on" : "off");
14170 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14171 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14172 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14173 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14174 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14175 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14176 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14177 }
14178 }
14179
14180 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14181 {
14182 struct intel_crtc *crtc;
14183
14184 for_each_intel_crtc(dev, crtc) {
14185 struct intel_unpin_work *work;
14186
14187 spin_lock_irq(&dev->event_lock);
14188
14189 work = crtc->unpin_work;
14190
14191 if (work && work->event &&
14192 work->event->base.file_priv == file) {
14193 kfree(work->event);
14194 work->event = NULL;
14195 }
14196
14197 spin_unlock_irq(&dev->event_lock);
14198 }
14199 }
This page took 0.389561 seconds and 6 git commands to generate.