Merge tag 'drm-intel-next-2015-04-23-fixed' of git://anongit.freedesktop.org/drm...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats supported by all gen */
49 #define COMMON_PRIMARY_FORMATS \
50 DRM_FORMAT_C8, \
51 DRM_FORMAT_RGB565, \
52 DRM_FORMAT_XRGB8888, \
53 DRM_FORMAT_ARGB8888
54
55 /* Primary plane formats for gen <= 3 */
56 static const uint32_t intel_primary_formats_gen2[] = {
57 COMMON_PRIMARY_FORMATS,
58 DRM_FORMAT_XRGB1555,
59 DRM_FORMAT_ARGB1555,
60 };
61
62 /* Primary plane formats for gen >= 4 */
63 static const uint32_t intel_primary_formats_gen4[] = {
64 COMMON_PRIMARY_FORMATS, \
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_ABGR8888,
67 DRM_FORMAT_XRGB2101010,
68 DRM_FORMAT_ARGB2101010,
69 DRM_FORMAT_XBGR2101010,
70 DRM_FORMAT_ABGR2101010,
71 };
72
73 /* Cursor formats */
74 static const uint32_t intel_cursor_formats[] = {
75 DRM_FORMAT_ARGB8888,
76 };
77
78 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79
80 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
81 struct intel_crtc_state *pipe_config);
82 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
83 struct intel_crtc_state *pipe_config);
84
85 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
86 int x, int y, struct drm_framebuffer *old_fb,
87 struct drm_atomic_state *state);
88 static int intel_framebuffer_init(struct drm_device *dev,
89 struct intel_framebuffer *ifb,
90 struct drm_mode_fb_cmd2 *mode_cmd,
91 struct drm_i915_gem_object *obj);
92 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
93 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
94 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
95 struct intel_link_m_n *m_n,
96 struct intel_link_m_n *m2_n2);
97 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
98 static void haswell_set_pipeconf(struct drm_crtc *crtc);
99 static void intel_set_pipe_csc(struct drm_crtc *crtc);
100 static void vlv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102 static void chv_prepare_pll(struct intel_crtc *crtc,
103 const struct intel_crtc_state *pipe_config);
104 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
105 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
106 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
107 struct intel_crtc_state *crtc_state);
108 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
109 int num_connectors);
110
111 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
112 {
113 if (!connector->mst_port)
114 return connector->encoder;
115 else
116 return &connector->mst_port->mst_encoders[pipe]->base;
117 }
118
119 typedef struct {
120 int min, max;
121 } intel_range_t;
122
123 typedef struct {
124 int dot_limit;
125 int p2_slow, p2_fast;
126 } intel_p2_t;
127
128 typedef struct intel_limit intel_limit_t;
129 struct intel_limit {
130 intel_range_t dot, vco, n, m, m1, m2, p, p1;
131 intel_p2_t p2;
132 };
133
134 int
135 intel_pch_rawclk(struct drm_device *dev)
136 {
137 struct drm_i915_private *dev_priv = dev->dev_private;
138
139 WARN_ON(!HAS_PCH_SPLIT(dev));
140
141 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
142 }
143
144 static inline u32 /* units of 100MHz */
145 intel_fdi_link_freq(struct drm_device *dev)
146 {
147 if (IS_GEN5(dev)) {
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
150 } else
151 return 27;
152 }
153
154 static const intel_limit_t intel_limits_i8xx_dac = {
155 .dot = { .min = 25000, .max = 350000 },
156 .vco = { .min = 908000, .max = 1512000 },
157 .n = { .min = 2, .max = 16 },
158 .m = { .min = 96, .max = 140 },
159 .m1 = { .min = 18, .max = 26 },
160 .m2 = { .min = 6, .max = 16 },
161 .p = { .min = 4, .max = 128 },
162 .p1 = { .min = 2, .max = 33 },
163 .p2 = { .dot_limit = 165000,
164 .p2_slow = 4, .p2_fast = 2 },
165 };
166
167 static const intel_limit_t intel_limits_i8xx_dvo = {
168 .dot = { .min = 25000, .max = 350000 },
169 .vco = { .min = 908000, .max = 1512000 },
170 .n = { .min = 2, .max = 16 },
171 .m = { .min = 96, .max = 140 },
172 .m1 = { .min = 18, .max = 26 },
173 .m2 = { .min = 6, .max = 16 },
174 .p = { .min = 4, .max = 128 },
175 .p1 = { .min = 2, .max = 33 },
176 .p2 = { .dot_limit = 165000,
177 .p2_slow = 4, .p2_fast = 4 },
178 };
179
180 static const intel_limit_t intel_limits_i8xx_lvds = {
181 .dot = { .min = 25000, .max = 350000 },
182 .vco = { .min = 908000, .max = 1512000 },
183 .n = { .min = 2, .max = 16 },
184 .m = { .min = 96, .max = 140 },
185 .m1 = { .min = 18, .max = 26 },
186 .m2 = { .min = 6, .max = 16 },
187 .p = { .min = 4, .max = 128 },
188 .p1 = { .min = 1, .max = 6 },
189 .p2 = { .dot_limit = 165000,
190 .p2_slow = 14, .p2_fast = 7 },
191 };
192
193 static const intel_limit_t intel_limits_i9xx_sdvo = {
194 .dot = { .min = 20000, .max = 400000 },
195 .vco = { .min = 1400000, .max = 2800000 },
196 .n = { .min = 1, .max = 6 },
197 .m = { .min = 70, .max = 120 },
198 .m1 = { .min = 8, .max = 18 },
199 .m2 = { .min = 3, .max = 7 },
200 .p = { .min = 5, .max = 80 },
201 .p1 = { .min = 1, .max = 8 },
202 .p2 = { .dot_limit = 200000,
203 .p2_slow = 10, .p2_fast = 5 },
204 };
205
206 static const intel_limit_t intel_limits_i9xx_lvds = {
207 .dot = { .min = 20000, .max = 400000 },
208 .vco = { .min = 1400000, .max = 2800000 },
209 .n = { .min = 1, .max = 6 },
210 .m = { .min = 70, .max = 120 },
211 .m1 = { .min = 8, .max = 18 },
212 .m2 = { .min = 3, .max = 7 },
213 .p = { .min = 7, .max = 98 },
214 .p1 = { .min = 1, .max = 8 },
215 .p2 = { .dot_limit = 112000,
216 .p2_slow = 14, .p2_fast = 7 },
217 };
218
219
220 static const intel_limit_t intel_limits_g4x_sdvo = {
221 .dot = { .min = 25000, .max = 270000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 17, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 10, .max = 30 },
228 .p1 = { .min = 1, .max = 3},
229 .p2 = { .dot_limit = 270000,
230 .p2_slow = 10,
231 .p2_fast = 10
232 },
233 };
234
235 static const intel_limit_t intel_limits_g4x_hdmi = {
236 .dot = { .min = 22000, .max = 400000 },
237 .vco = { .min = 1750000, .max = 3500000},
238 .n = { .min = 1, .max = 4 },
239 .m = { .min = 104, .max = 138 },
240 .m1 = { .min = 16, .max = 23 },
241 .m2 = { .min = 5, .max = 11 },
242 .p = { .min = 5, .max = 80 },
243 .p1 = { .min = 1, .max = 8},
244 .p2 = { .dot_limit = 165000,
245 .p2_slow = 10, .p2_fast = 5 },
246 };
247
248 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
249 .dot = { .min = 20000, .max = 115000 },
250 .vco = { .min = 1750000, .max = 3500000 },
251 .n = { .min = 1, .max = 3 },
252 .m = { .min = 104, .max = 138 },
253 .m1 = { .min = 17, .max = 23 },
254 .m2 = { .min = 5, .max = 11 },
255 .p = { .min = 28, .max = 112 },
256 .p1 = { .min = 2, .max = 8 },
257 .p2 = { .dot_limit = 0,
258 .p2_slow = 14, .p2_fast = 14
259 },
260 };
261
262 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
263 .dot = { .min = 80000, .max = 224000 },
264 .vco = { .min = 1750000, .max = 3500000 },
265 .n = { .min = 1, .max = 3 },
266 .m = { .min = 104, .max = 138 },
267 .m1 = { .min = 17, .max = 23 },
268 .m2 = { .min = 5, .max = 11 },
269 .p = { .min = 14, .max = 42 },
270 .p1 = { .min = 2, .max = 6 },
271 .p2 = { .dot_limit = 0,
272 .p2_slow = 7, .p2_fast = 7
273 },
274 };
275
276 static const intel_limit_t intel_limits_pineview_sdvo = {
277 .dot = { .min = 20000, .max = 400000},
278 .vco = { .min = 1700000, .max = 3500000 },
279 /* Pineview's Ncounter is a ring counter */
280 .n = { .min = 3, .max = 6 },
281 .m = { .min = 2, .max = 256 },
282 /* Pineview only has one combined m divider, which we treat as m2. */
283 .m1 = { .min = 0, .max = 0 },
284 .m2 = { .min = 0, .max = 254 },
285 .p = { .min = 5, .max = 80 },
286 .p1 = { .min = 1, .max = 8 },
287 .p2 = { .dot_limit = 200000,
288 .p2_slow = 10, .p2_fast = 5 },
289 };
290
291 static const intel_limit_t intel_limits_pineview_lvds = {
292 .dot = { .min = 20000, .max = 400000 },
293 .vco = { .min = 1700000, .max = 3500000 },
294 .n = { .min = 3, .max = 6 },
295 .m = { .min = 2, .max = 256 },
296 .m1 = { .min = 0, .max = 0 },
297 .m2 = { .min = 0, .max = 254 },
298 .p = { .min = 7, .max = 112 },
299 .p1 = { .min = 1, .max = 8 },
300 .p2 = { .dot_limit = 112000,
301 .p2_slow = 14, .p2_fast = 14 },
302 };
303
304 /* Ironlake / Sandybridge
305 *
306 * We calculate clock using (register_value + 2) for N/M1/M2, so here
307 * the range value for them is (actual_value - 2).
308 */
309 static const intel_limit_t intel_limits_ironlake_dac = {
310 .dot = { .min = 25000, .max = 350000 },
311 .vco = { .min = 1760000, .max = 3510000 },
312 .n = { .min = 1, .max = 5 },
313 .m = { .min = 79, .max = 127 },
314 .m1 = { .min = 12, .max = 22 },
315 .m2 = { .min = 5, .max = 9 },
316 .p = { .min = 5, .max = 80 },
317 .p1 = { .min = 1, .max = 8 },
318 .p2 = { .dot_limit = 225000,
319 .p2_slow = 10, .p2_fast = 5 },
320 };
321
322 static const intel_limit_t intel_limits_ironlake_single_lvds = {
323 .dot = { .min = 25000, .max = 350000 },
324 .vco = { .min = 1760000, .max = 3510000 },
325 .n = { .min = 1, .max = 3 },
326 .m = { .min = 79, .max = 118 },
327 .m1 = { .min = 12, .max = 22 },
328 .m2 = { .min = 5, .max = 9 },
329 .p = { .min = 28, .max = 112 },
330 .p1 = { .min = 2, .max = 8 },
331 .p2 = { .dot_limit = 225000,
332 .p2_slow = 14, .p2_fast = 14 },
333 };
334
335 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 3 },
339 .m = { .min = 79, .max = 127 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 14, .max = 56 },
343 .p1 = { .min = 2, .max = 8 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 7, .p2_fast = 7 },
346 };
347
348 /* LVDS 100mhz refclk limits. */
349 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 2 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 28, .max = 112 },
357 .p1 = { .min = 2, .max = 8 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 14, .p2_fast = 14 },
360 };
361
362 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
363 .dot = { .min = 25000, .max = 350000 },
364 .vco = { .min = 1760000, .max = 3510000 },
365 .n = { .min = 1, .max = 3 },
366 .m = { .min = 79, .max = 126 },
367 .m1 = { .min = 12, .max = 22 },
368 .m2 = { .min = 5, .max = 9 },
369 .p = { .min = 14, .max = 42 },
370 .p1 = { .min = 2, .max = 6 },
371 .p2 = { .dot_limit = 225000,
372 .p2_slow = 7, .p2_fast = 7 },
373 };
374
375 static const intel_limit_t intel_limits_vlv = {
376 /*
377 * These are the data rate limits (measured in fast clocks)
378 * since those are the strictest limits we have. The fast
379 * clock and actual rate limits are more relaxed, so checking
380 * them would make no difference.
381 */
382 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
383 .vco = { .min = 4000000, .max = 6000000 },
384 .n = { .min = 1, .max = 7 },
385 .m1 = { .min = 2, .max = 3 },
386 .m2 = { .min = 11, .max = 156 },
387 .p1 = { .min = 2, .max = 3 },
388 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
389 };
390
391 static const intel_limit_t intel_limits_chv = {
392 /*
393 * These are the data rate limits (measured in fast clocks)
394 * since those are the strictest limits we have. The fast
395 * clock and actual rate limits are more relaxed, so checking
396 * them would make no difference.
397 */
398 .dot = { .min = 25000 * 5, .max = 540000 * 5},
399 .vco = { .min = 4800000, .max = 6480000 },
400 .n = { .min = 1, .max = 1 },
401 .m1 = { .min = 2, .max = 2 },
402 .m2 = { .min = 24 << 22, .max = 175 << 22 },
403 .p1 = { .min = 2, .max = 4 },
404 .p2 = { .p2_slow = 1, .p2_fast = 14 },
405 };
406
407 static const intel_limit_t intel_limits_bxt = {
408 /* FIXME: find real dot limits */
409 .dot = { .min = 0, .max = INT_MAX },
410 .vco = { .min = 4800000, .max = 6480000 },
411 .n = { .min = 1, .max = 1 },
412 .m1 = { .min = 2, .max = 2 },
413 /* FIXME: find real m2 limits */
414 .m2 = { .min = 2 << 22, .max = 255 << 22 },
415 .p1 = { .min = 2, .max = 4 },
416 .p2 = { .p2_slow = 1, .p2_fast = 20 },
417 };
418
419 static void vlv_clock(int refclk, intel_clock_t *clock)
420 {
421 clock->m = clock->m1 * clock->m2;
422 clock->p = clock->p1 * clock->p2;
423 if (WARN_ON(clock->n == 0 || clock->p == 0))
424 return;
425 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
426 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
427 }
428
429 /**
430 * Returns whether any output on the specified pipe is of the specified type
431 */
432 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
433 {
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
438 if (encoder->type == type)
439 return true;
440
441 return false;
442 }
443
444 /**
445 * Returns whether any output on the specified pipe will have the specified
446 * type after a staged modeset is complete, i.e., the same as
447 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
448 * encoder->crtc.
449 */
450 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
451 int type)
452 {
453 struct drm_atomic_state *state = crtc_state->base.state;
454 struct drm_connector_state *connector_state;
455 struct intel_encoder *encoder;
456 int i, num_connectors = 0;
457
458 for (i = 0; i < state->num_connector; i++) {
459 if (!state->connectors[i])
460 continue;
461
462 connector_state = state->connector_states[i];
463 if (connector_state->crtc != crtc_state->base.crtc)
464 continue;
465
466 num_connectors++;
467
468 encoder = to_intel_encoder(connector_state->best_encoder);
469 if (encoder->type == type)
470 return true;
471 }
472
473 WARN_ON(num_connectors == 0);
474
475 return false;
476 }
477
478 static const intel_limit_t *
479 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
480 {
481 struct drm_device *dev = crtc_state->base.crtc->dev;
482 const intel_limit_t *limit;
483
484 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
485 if (intel_is_dual_link_lvds(dev)) {
486 if (refclk == 100000)
487 limit = &intel_limits_ironlake_dual_lvds_100m;
488 else
489 limit = &intel_limits_ironlake_dual_lvds;
490 } else {
491 if (refclk == 100000)
492 limit = &intel_limits_ironlake_single_lvds_100m;
493 else
494 limit = &intel_limits_ironlake_single_lvds;
495 }
496 } else
497 limit = &intel_limits_ironlake_dac;
498
499 return limit;
500 }
501
502 static const intel_limit_t *
503 intel_g4x_limit(struct intel_crtc_state *crtc_state)
504 {
505 struct drm_device *dev = crtc_state->base.crtc->dev;
506 const intel_limit_t *limit;
507
508 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
509 if (intel_is_dual_link_lvds(dev))
510 limit = &intel_limits_g4x_dual_channel_lvds;
511 else
512 limit = &intel_limits_g4x_single_channel_lvds;
513 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
514 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
515 limit = &intel_limits_g4x_hdmi;
516 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
517 limit = &intel_limits_g4x_sdvo;
518 } else /* The option is for other outputs */
519 limit = &intel_limits_i9xx_sdvo;
520
521 return limit;
522 }
523
524 static const intel_limit_t *
525 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
526 {
527 struct drm_device *dev = crtc_state->base.crtc->dev;
528 const intel_limit_t *limit;
529
530 if (IS_BROXTON(dev))
531 limit = &intel_limits_bxt;
532 else if (HAS_PCH_SPLIT(dev))
533 limit = intel_ironlake_limit(crtc_state, refclk);
534 else if (IS_G4X(dev)) {
535 limit = intel_g4x_limit(crtc_state);
536 } else if (IS_PINEVIEW(dev)) {
537 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
538 limit = &intel_limits_pineview_lvds;
539 else
540 limit = &intel_limits_pineview_sdvo;
541 } else if (IS_CHERRYVIEW(dev)) {
542 limit = &intel_limits_chv;
543 } else if (IS_VALLEYVIEW(dev)) {
544 limit = &intel_limits_vlv;
545 } else if (!IS_GEN2(dev)) {
546 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
547 limit = &intel_limits_i9xx_lvds;
548 else
549 limit = &intel_limits_i9xx_sdvo;
550 } else {
551 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
552 limit = &intel_limits_i8xx_lvds;
553 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
554 limit = &intel_limits_i8xx_dvo;
555 else
556 limit = &intel_limits_i8xx_dac;
557 }
558 return limit;
559 }
560
561 /* m1 is reserved as 0 in Pineview, n is a ring counter */
562 static void pineview_clock(int refclk, intel_clock_t *clock)
563 {
564 clock->m = clock->m2 + 2;
565 clock->p = clock->p1 * clock->p2;
566 if (WARN_ON(clock->n == 0 || clock->p == 0))
567 return;
568 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
569 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
570 }
571
572 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
573 {
574 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
575 }
576
577 static void i9xx_clock(int refclk, intel_clock_t *clock)
578 {
579 clock->m = i9xx_dpll_compute_m(clock);
580 clock->p = clock->p1 * clock->p2;
581 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
582 return;
583 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
584 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
585 }
586
587 static void chv_clock(int refclk, intel_clock_t *clock)
588 {
589 clock->m = clock->m1 * clock->m2;
590 clock->p = clock->p1 * clock->p2;
591 if (WARN_ON(clock->n == 0 || clock->p == 0))
592 return;
593 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
594 clock->n << 22);
595 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
596 }
597
598 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
599 /**
600 * Returns whether the given set of divisors are valid for a given refclk with
601 * the given connectors.
602 */
603
604 static bool intel_PLL_is_valid(struct drm_device *dev,
605 const intel_limit_t *limit,
606 const intel_clock_t *clock)
607 {
608 if (clock->n < limit->n.min || limit->n.max < clock->n)
609 INTELPllInvalid("n out of range\n");
610 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
611 INTELPllInvalid("p1 out of range\n");
612 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
613 INTELPllInvalid("m2 out of range\n");
614 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
615 INTELPllInvalid("m1 out of range\n");
616
617 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
622 if (clock->p < limit->p.min || limit->p.max < clock->p)
623 INTELPllInvalid("p out of range\n");
624 if (clock->m < limit->m.min || limit->m.max < clock->m)
625 INTELPllInvalid("m out of range\n");
626 }
627
628 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
629 INTELPllInvalid("vco out of range\n");
630 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 * connector, etc., rather than just a single range.
632 */
633 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
634 INTELPllInvalid("dot out of range\n");
635
636 return true;
637 }
638
639 static bool
640 i9xx_find_best_dpll(const intel_limit_t *limit,
641 struct intel_crtc_state *crtc_state,
642 int target, int refclk, intel_clock_t *match_clock,
643 intel_clock_t *best_clock)
644 {
645 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
646 struct drm_device *dev = crtc->base.dev;
647 intel_clock_t clock;
648 int err = target;
649
650 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
651 /*
652 * For LVDS just rely on its current settings for dual-channel.
653 * We haven't figured out how to reliably set up different
654 * single/dual channel state, if we even can.
655 */
656 if (intel_is_dual_link_lvds(dev))
657 clock.p2 = limit->p2.p2_fast;
658 else
659 clock.p2 = limit->p2.p2_slow;
660 } else {
661 if (target < limit->p2.dot_limit)
662 clock.p2 = limit->p2.p2_slow;
663 else
664 clock.p2 = limit->p2.p2_fast;
665 }
666
667 memset(best_clock, 0, sizeof(*best_clock));
668
669 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
670 clock.m1++) {
671 for (clock.m2 = limit->m2.min;
672 clock.m2 <= limit->m2.max; clock.m2++) {
673 if (clock.m2 >= clock.m1)
674 break;
675 for (clock.n = limit->n.min;
676 clock.n <= limit->n.max; clock.n++) {
677 for (clock.p1 = limit->p1.min;
678 clock.p1 <= limit->p1.max; clock.p1++) {
679 int this_err;
680
681 i9xx_clock(refclk, &clock);
682 if (!intel_PLL_is_valid(dev, limit,
683 &clock))
684 continue;
685 if (match_clock &&
686 clock.p != match_clock->p)
687 continue;
688
689 this_err = abs(clock.dot - target);
690 if (this_err < err) {
691 *best_clock = clock;
692 err = this_err;
693 }
694 }
695 }
696 }
697 }
698
699 return (err != target);
700 }
701
702 static bool
703 pnv_find_best_dpll(const intel_limit_t *limit,
704 struct intel_crtc_state *crtc_state,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
707 {
708 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
709 struct drm_device *dev = crtc->base.dev;
710 intel_clock_t clock;
711 int err = target;
712
713 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
714 /*
715 * For LVDS just rely on its current settings for dual-channel.
716 * We haven't figured out how to reliably set up different
717 * single/dual channel state, if we even can.
718 */
719 if (intel_is_dual_link_lvds(dev))
720 clock.p2 = limit->p2.p2_fast;
721 else
722 clock.p2 = limit->p2.p2_slow;
723 } else {
724 if (target < limit->p2.dot_limit)
725 clock.p2 = limit->p2.p2_slow;
726 else
727 clock.p2 = limit->p2.p2_fast;
728 }
729
730 memset(best_clock, 0, sizeof(*best_clock));
731
732 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
733 clock.m1++) {
734 for (clock.m2 = limit->m2.min;
735 clock.m2 <= limit->m2.max; clock.m2++) {
736 for (clock.n = limit->n.min;
737 clock.n <= limit->n.max; clock.n++) {
738 for (clock.p1 = limit->p1.min;
739 clock.p1 <= limit->p1.max; clock.p1++) {
740 int this_err;
741
742 pineview_clock(refclk, &clock);
743 if (!intel_PLL_is_valid(dev, limit,
744 &clock))
745 continue;
746 if (match_clock &&
747 clock.p != match_clock->p)
748 continue;
749
750 this_err = abs(clock.dot - target);
751 if (this_err < err) {
752 *best_clock = clock;
753 err = this_err;
754 }
755 }
756 }
757 }
758 }
759
760 return (err != target);
761 }
762
763 static bool
764 g4x_find_best_dpll(const intel_limit_t *limit,
765 struct intel_crtc_state *crtc_state,
766 int target, int refclk, intel_clock_t *match_clock,
767 intel_clock_t *best_clock)
768 {
769 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
770 struct drm_device *dev = crtc->base.dev;
771 intel_clock_t clock;
772 int max_n;
773 bool found;
774 /* approximately equals target * 0.00585 */
775 int err_most = (target >> 8) + (target >> 9);
776 found = false;
777
778 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
779 if (intel_is_dual_link_lvds(dev))
780 clock.p2 = limit->p2.p2_fast;
781 else
782 clock.p2 = limit->p2.p2_slow;
783 } else {
784 if (target < limit->p2.dot_limit)
785 clock.p2 = limit->p2.p2_slow;
786 else
787 clock.p2 = limit->p2.p2_fast;
788 }
789
790 memset(best_clock, 0, sizeof(*best_clock));
791 max_n = limit->n.max;
792 /* based on hardware requirement, prefer smaller n to precision */
793 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
794 /* based on hardware requirement, prefere larger m1,m2 */
795 for (clock.m1 = limit->m1.max;
796 clock.m1 >= limit->m1.min; clock.m1--) {
797 for (clock.m2 = limit->m2.max;
798 clock.m2 >= limit->m2.min; clock.m2--) {
799 for (clock.p1 = limit->p1.max;
800 clock.p1 >= limit->p1.min; clock.p1--) {
801 int this_err;
802
803 i9xx_clock(refclk, &clock);
804 if (!intel_PLL_is_valid(dev, limit,
805 &clock))
806 continue;
807
808 this_err = abs(clock.dot - target);
809 if (this_err < err_most) {
810 *best_clock = clock;
811 err_most = this_err;
812 max_n = clock.n;
813 found = true;
814 }
815 }
816 }
817 }
818 }
819 return found;
820 }
821
822 /*
823 * Check if the calculated PLL configuration is more optimal compared to the
824 * best configuration and error found so far. Return the calculated error.
825 */
826 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
827 const intel_clock_t *calculated_clock,
828 const intel_clock_t *best_clock,
829 unsigned int best_error_ppm,
830 unsigned int *error_ppm)
831 {
832 /*
833 * For CHV ignore the error and consider only the P value.
834 * Prefer a bigger P value based on HW requirements.
835 */
836 if (IS_CHERRYVIEW(dev)) {
837 *error_ppm = 0;
838
839 return calculated_clock->p > best_clock->p;
840 }
841
842 if (WARN_ON_ONCE(!target_freq))
843 return false;
844
845 *error_ppm = div_u64(1000000ULL *
846 abs(target_freq - calculated_clock->dot),
847 target_freq);
848 /*
849 * Prefer a better P value over a better (smaller) error if the error
850 * is small. Ensure this preference for future configurations too by
851 * setting the error to 0.
852 */
853 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
854 *error_ppm = 0;
855
856 return true;
857 }
858
859 return *error_ppm + 10 < best_error_ppm;
860 }
861
862 static bool
863 vlv_find_best_dpll(const intel_limit_t *limit,
864 struct intel_crtc_state *crtc_state,
865 int target, int refclk, intel_clock_t *match_clock,
866 intel_clock_t *best_clock)
867 {
868 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
869 struct drm_device *dev = crtc->base.dev;
870 intel_clock_t clock;
871 unsigned int bestppm = 1000000;
872 /* min update 19.2 MHz */
873 int max_n = min(limit->n.max, refclk / 19200);
874 bool found = false;
875
876 target *= 5; /* fast clock */
877
878 memset(best_clock, 0, sizeof(*best_clock));
879
880 /* based on hardware requirement, prefer smaller n to precision */
881 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
882 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
883 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
884 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
885 clock.p = clock.p1 * clock.p2;
886 /* based on hardware requirement, prefer bigger m1,m2 values */
887 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
888 unsigned int ppm;
889
890 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
891 refclk * clock.m1);
892
893 vlv_clock(refclk, &clock);
894
895 if (!intel_PLL_is_valid(dev, limit,
896 &clock))
897 continue;
898
899 if (!vlv_PLL_is_optimal(dev, target,
900 &clock,
901 best_clock,
902 bestppm, &ppm))
903 continue;
904
905 *best_clock = clock;
906 bestppm = ppm;
907 found = true;
908 }
909 }
910 }
911 }
912
913 return found;
914 }
915
916 static bool
917 chv_find_best_dpll(const intel_limit_t *limit,
918 struct intel_crtc_state *crtc_state,
919 int target, int refclk, intel_clock_t *match_clock,
920 intel_clock_t *best_clock)
921 {
922 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
923 struct drm_device *dev = crtc->base.dev;
924 unsigned int best_error_ppm;
925 intel_clock_t clock;
926 uint64_t m2;
927 int found = false;
928
929 memset(best_clock, 0, sizeof(*best_clock));
930 best_error_ppm = 1000000;
931
932 /*
933 * Based on hardware doc, the n always set to 1, and m1 always
934 * set to 2. If requires to support 200Mhz refclk, we need to
935 * revisit this because n may not 1 anymore.
936 */
937 clock.n = 1, clock.m1 = 2;
938 target *= 5; /* fast clock */
939
940 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
941 for (clock.p2 = limit->p2.p2_fast;
942 clock.p2 >= limit->p2.p2_slow;
943 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
944 unsigned int error_ppm;
945
946 clock.p = clock.p1 * clock.p2;
947
948 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
949 clock.n) << 22, refclk * clock.m1);
950
951 if (m2 > INT_MAX/clock.m1)
952 continue;
953
954 clock.m2 = m2;
955
956 chv_clock(refclk, &clock);
957
958 if (!intel_PLL_is_valid(dev, limit, &clock))
959 continue;
960
961 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
962 best_error_ppm, &error_ppm))
963 continue;
964
965 *best_clock = clock;
966 best_error_ppm = error_ppm;
967 found = true;
968 }
969 }
970
971 return found;
972 }
973
974 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
975 intel_clock_t *best_clock)
976 {
977 int refclk = i9xx_get_refclk(crtc_state, 0);
978
979 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
980 target_clock, refclk, NULL, best_clock);
981 }
982
983 bool intel_crtc_active(struct drm_crtc *crtc)
984 {
985 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
986
987 /* Be paranoid as we can arrive here with only partial
988 * state retrieved from the hardware during setup.
989 *
990 * We can ditch the adjusted_mode.crtc_clock check as soon
991 * as Haswell has gained clock readout/fastboot support.
992 *
993 * We can ditch the crtc->primary->fb check as soon as we can
994 * properly reconstruct framebuffers.
995 *
996 * FIXME: The intel_crtc->active here should be switched to
997 * crtc->state->active once we have proper CRTC states wired up
998 * for atomic.
999 */
1000 return intel_crtc->active && crtc->primary->state->fb &&
1001 intel_crtc->config->base.adjusted_mode.crtc_clock;
1002 }
1003
1004 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1005 enum pipe pipe)
1006 {
1007 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009
1010 return intel_crtc->config->cpu_transcoder;
1011 }
1012
1013 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1014 {
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 u32 reg = PIPEDSL(pipe);
1017 u32 line1, line2;
1018 u32 line_mask;
1019
1020 if (IS_GEN2(dev))
1021 line_mask = DSL_LINEMASK_GEN2;
1022 else
1023 line_mask = DSL_LINEMASK_GEN3;
1024
1025 line1 = I915_READ(reg) & line_mask;
1026 mdelay(5);
1027 line2 = I915_READ(reg) & line_mask;
1028
1029 return line1 == line2;
1030 }
1031
1032 /*
1033 * intel_wait_for_pipe_off - wait for pipe to turn off
1034 * @crtc: crtc whose pipe to wait for
1035 *
1036 * After disabling a pipe, we can't wait for vblank in the usual way,
1037 * spinning on the vblank interrupt status bit, since we won't actually
1038 * see an interrupt when the pipe is disabled.
1039 *
1040 * On Gen4 and above:
1041 * wait for the pipe register state bit to turn off
1042 *
1043 * Otherwise:
1044 * wait for the display line value to settle (it usually
1045 * ends up stopping at the start of the next frame).
1046 *
1047 */
1048 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1049 {
1050 struct drm_device *dev = crtc->base.dev;
1051 struct drm_i915_private *dev_priv = dev->dev_private;
1052 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1053 enum pipe pipe = crtc->pipe;
1054
1055 if (INTEL_INFO(dev)->gen >= 4) {
1056 int reg = PIPECONF(cpu_transcoder);
1057
1058 /* Wait for the Pipe State to go off */
1059 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1060 100))
1061 WARN(1, "pipe_off wait timed out\n");
1062 } else {
1063 /* Wait for the display line to settle */
1064 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1065 WARN(1, "pipe_off wait timed out\n");
1066 }
1067 }
1068
1069 /*
1070 * ibx_digital_port_connected - is the specified port connected?
1071 * @dev_priv: i915 private structure
1072 * @port: the port to test
1073 *
1074 * Returns true if @port is connected, false otherwise.
1075 */
1076 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1077 struct intel_digital_port *port)
1078 {
1079 u32 bit;
1080
1081 if (HAS_PCH_IBX(dev_priv->dev)) {
1082 switch (port->port) {
1083 case PORT_B:
1084 bit = SDE_PORTB_HOTPLUG;
1085 break;
1086 case PORT_C:
1087 bit = SDE_PORTC_HOTPLUG;
1088 break;
1089 case PORT_D:
1090 bit = SDE_PORTD_HOTPLUG;
1091 break;
1092 default:
1093 return true;
1094 }
1095 } else {
1096 switch (port->port) {
1097 case PORT_B:
1098 bit = SDE_PORTB_HOTPLUG_CPT;
1099 break;
1100 case PORT_C:
1101 bit = SDE_PORTC_HOTPLUG_CPT;
1102 break;
1103 case PORT_D:
1104 bit = SDE_PORTD_HOTPLUG_CPT;
1105 break;
1106 default:
1107 return true;
1108 }
1109 }
1110
1111 return I915_READ(SDEISR) & bit;
1112 }
1113
1114 static const char *state_string(bool enabled)
1115 {
1116 return enabled ? "on" : "off";
1117 }
1118
1119 /* Only for pre-ILK configs */
1120 void assert_pll(struct drm_i915_private *dev_priv,
1121 enum pipe pipe, bool state)
1122 {
1123 int reg;
1124 u32 val;
1125 bool cur_state;
1126
1127 reg = DPLL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & DPLL_VCO_ENABLE);
1130 I915_STATE_WARN(cur_state != state,
1131 "PLL state assertion failure (expected %s, current %s)\n",
1132 state_string(state), state_string(cur_state));
1133 }
1134
1135 /* XXX: the dsi pll is shared between MIPI DSI ports */
1136 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1137 {
1138 u32 val;
1139 bool cur_state;
1140
1141 mutex_lock(&dev_priv->dpio_lock);
1142 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1143 mutex_unlock(&dev_priv->dpio_lock);
1144
1145 cur_state = val & DSI_PLL_VCO_EN;
1146 I915_STATE_WARN(cur_state != state,
1147 "DSI PLL state assertion failure (expected %s, current %s)\n",
1148 state_string(state), state_string(cur_state));
1149 }
1150 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1151 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1152
1153 struct intel_shared_dpll *
1154 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1155 {
1156 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1157
1158 if (crtc->config->shared_dpll < 0)
1159 return NULL;
1160
1161 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1162 }
1163
1164 /* For ILK+ */
1165 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1166 struct intel_shared_dpll *pll,
1167 bool state)
1168 {
1169 bool cur_state;
1170 struct intel_dpll_hw_state hw_state;
1171
1172 if (WARN (!pll,
1173 "asserting DPLL %s with no DPLL\n", state_string(state)))
1174 return;
1175
1176 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1177 I915_STATE_WARN(cur_state != state,
1178 "%s assertion failure (expected %s, current %s)\n",
1179 pll->name, state_string(state), state_string(cur_state));
1180 }
1181
1182 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1183 enum pipe pipe, bool state)
1184 {
1185 int reg;
1186 u32 val;
1187 bool cur_state;
1188 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1189 pipe);
1190
1191 if (HAS_DDI(dev_priv->dev)) {
1192 /* DDI does not have a specific FDI_TX register */
1193 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1194 val = I915_READ(reg);
1195 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1196 } else {
1197 reg = FDI_TX_CTL(pipe);
1198 val = I915_READ(reg);
1199 cur_state = !!(val & FDI_TX_ENABLE);
1200 }
1201 I915_STATE_WARN(cur_state != state,
1202 "FDI TX state assertion failure (expected %s, current %s)\n",
1203 state_string(state), state_string(cur_state));
1204 }
1205 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1206 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1207
1208 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1209 enum pipe pipe, bool state)
1210 {
1211 int reg;
1212 u32 val;
1213 bool cur_state;
1214
1215 reg = FDI_RX_CTL(pipe);
1216 val = I915_READ(reg);
1217 cur_state = !!(val & FDI_RX_ENABLE);
1218 I915_STATE_WARN(cur_state != state,
1219 "FDI RX state assertion failure (expected %s, current %s)\n",
1220 state_string(state), state_string(cur_state));
1221 }
1222 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1223 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1224
1225 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1226 enum pipe pipe)
1227 {
1228 int reg;
1229 u32 val;
1230
1231 /* ILK FDI PLL is always enabled */
1232 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1233 return;
1234
1235 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1236 if (HAS_DDI(dev_priv->dev))
1237 return;
1238
1239 reg = FDI_TX_CTL(pipe);
1240 val = I915_READ(reg);
1241 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1242 }
1243
1244 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1245 enum pipe pipe, bool state)
1246 {
1247 int reg;
1248 u32 val;
1249 bool cur_state;
1250
1251 reg = FDI_RX_CTL(pipe);
1252 val = I915_READ(reg);
1253 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1254 I915_STATE_WARN(cur_state != state,
1255 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1256 state_string(state), state_string(cur_state));
1257 }
1258
1259 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1260 enum pipe pipe)
1261 {
1262 struct drm_device *dev = dev_priv->dev;
1263 int pp_reg;
1264 u32 val;
1265 enum pipe panel_pipe = PIPE_A;
1266 bool locked = true;
1267
1268 if (WARN_ON(HAS_DDI(dev)))
1269 return;
1270
1271 if (HAS_PCH_SPLIT(dev)) {
1272 u32 port_sel;
1273
1274 pp_reg = PCH_PP_CONTROL;
1275 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1276
1277 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1278 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1279 panel_pipe = PIPE_B;
1280 /* XXX: else fix for eDP */
1281 } else if (IS_VALLEYVIEW(dev)) {
1282 /* presumably write lock depends on pipe, not port select */
1283 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1284 panel_pipe = pipe;
1285 } else {
1286 pp_reg = PP_CONTROL;
1287 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1288 panel_pipe = PIPE_B;
1289 }
1290
1291 val = I915_READ(pp_reg);
1292 if (!(val & PANEL_POWER_ON) ||
1293 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1294 locked = false;
1295
1296 I915_STATE_WARN(panel_pipe == pipe && locked,
1297 "panel assertion failure, pipe %c regs locked\n",
1298 pipe_name(pipe));
1299 }
1300
1301 static void assert_cursor(struct drm_i915_private *dev_priv,
1302 enum pipe pipe, bool state)
1303 {
1304 struct drm_device *dev = dev_priv->dev;
1305 bool cur_state;
1306
1307 if (IS_845G(dev) || IS_I865G(dev))
1308 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1309 else
1310 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1311
1312 I915_STATE_WARN(cur_state != state,
1313 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1314 pipe_name(pipe), state_string(state), state_string(cur_state));
1315 }
1316 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1317 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1318
1319 void assert_pipe(struct drm_i915_private *dev_priv,
1320 enum pipe pipe, bool state)
1321 {
1322 int reg;
1323 u32 val;
1324 bool cur_state;
1325 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1326 pipe);
1327
1328 /* if we need the pipe quirk it must be always on */
1329 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1330 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1331 state = true;
1332
1333 if (!intel_display_power_is_enabled(dev_priv,
1334 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1335 cur_state = false;
1336 } else {
1337 reg = PIPECONF(cpu_transcoder);
1338 val = I915_READ(reg);
1339 cur_state = !!(val & PIPECONF_ENABLE);
1340 }
1341
1342 I915_STATE_WARN(cur_state != state,
1343 "pipe %c assertion failure (expected %s, current %s)\n",
1344 pipe_name(pipe), state_string(state), state_string(cur_state));
1345 }
1346
1347 static void assert_plane(struct drm_i915_private *dev_priv,
1348 enum plane plane, bool state)
1349 {
1350 int reg;
1351 u32 val;
1352 bool cur_state;
1353
1354 reg = DSPCNTR(plane);
1355 val = I915_READ(reg);
1356 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1357 I915_STATE_WARN(cur_state != state,
1358 "plane %c assertion failure (expected %s, current %s)\n",
1359 plane_name(plane), state_string(state), state_string(cur_state));
1360 }
1361
1362 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1363 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1364
1365 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe)
1367 {
1368 struct drm_device *dev = dev_priv->dev;
1369 int reg, i;
1370 u32 val;
1371 int cur_pipe;
1372
1373 /* Primary planes are fixed to pipes on gen4+ */
1374 if (INTEL_INFO(dev)->gen >= 4) {
1375 reg = DSPCNTR(pipe);
1376 val = I915_READ(reg);
1377 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1378 "plane %c assertion failure, should be disabled but not\n",
1379 plane_name(pipe));
1380 return;
1381 }
1382
1383 /* Need to check both planes against the pipe */
1384 for_each_pipe(dev_priv, i) {
1385 reg = DSPCNTR(i);
1386 val = I915_READ(reg);
1387 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1388 DISPPLANE_SEL_PIPE_SHIFT;
1389 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1390 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1391 plane_name(i), pipe_name(pipe));
1392 }
1393 }
1394
1395 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe)
1397 {
1398 struct drm_device *dev = dev_priv->dev;
1399 int reg, sprite;
1400 u32 val;
1401
1402 if (INTEL_INFO(dev)->gen >= 9) {
1403 for_each_sprite(dev_priv, pipe, sprite) {
1404 val = I915_READ(PLANE_CTL(pipe, sprite));
1405 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1406 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1407 sprite, pipe_name(pipe));
1408 }
1409 } else if (IS_VALLEYVIEW(dev)) {
1410 for_each_sprite(dev_priv, pipe, sprite) {
1411 reg = SPCNTR(pipe, sprite);
1412 val = I915_READ(reg);
1413 I915_STATE_WARN(val & SP_ENABLE,
1414 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1415 sprite_name(pipe, sprite), pipe_name(pipe));
1416 }
1417 } else if (INTEL_INFO(dev)->gen >= 7) {
1418 reg = SPRCTL(pipe);
1419 val = I915_READ(reg);
1420 I915_STATE_WARN(val & SPRITE_ENABLE,
1421 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1422 plane_name(pipe), pipe_name(pipe));
1423 } else if (INTEL_INFO(dev)->gen >= 5) {
1424 reg = DVSCNTR(pipe);
1425 val = I915_READ(reg);
1426 I915_STATE_WARN(val & DVS_ENABLE,
1427 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1428 plane_name(pipe), pipe_name(pipe));
1429 }
1430 }
1431
1432 static void assert_vblank_disabled(struct drm_crtc *crtc)
1433 {
1434 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1435 drm_crtc_vblank_put(crtc);
1436 }
1437
1438 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1439 {
1440 u32 val;
1441 bool enabled;
1442
1443 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1444
1445 val = I915_READ(PCH_DREF_CONTROL);
1446 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1447 DREF_SUPERSPREAD_SOURCE_MASK));
1448 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1449 }
1450
1451 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1452 enum pipe pipe)
1453 {
1454 int reg;
1455 u32 val;
1456 bool enabled;
1457
1458 reg = PCH_TRANSCONF(pipe);
1459 val = I915_READ(reg);
1460 enabled = !!(val & TRANS_ENABLE);
1461 I915_STATE_WARN(enabled,
1462 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1463 pipe_name(pipe));
1464 }
1465
1466 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe, u32 port_sel, u32 val)
1468 {
1469 if ((val & DP_PORT_EN) == 0)
1470 return false;
1471
1472 if (HAS_PCH_CPT(dev_priv->dev)) {
1473 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1474 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1475 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1476 return false;
1477 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1478 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1479 return false;
1480 } else {
1481 if ((val & DP_PIPE_MASK) != (pipe << 30))
1482 return false;
1483 }
1484 return true;
1485 }
1486
1487 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1488 enum pipe pipe, u32 val)
1489 {
1490 if ((val & SDVO_ENABLE) == 0)
1491 return false;
1492
1493 if (HAS_PCH_CPT(dev_priv->dev)) {
1494 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1495 return false;
1496 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1497 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1498 return false;
1499 } else {
1500 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1501 return false;
1502 }
1503 return true;
1504 }
1505
1506 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1507 enum pipe pipe, u32 val)
1508 {
1509 if ((val & LVDS_PORT_EN) == 0)
1510 return false;
1511
1512 if (HAS_PCH_CPT(dev_priv->dev)) {
1513 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1514 return false;
1515 } else {
1516 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1517 return false;
1518 }
1519 return true;
1520 }
1521
1522 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1523 enum pipe pipe, u32 val)
1524 {
1525 if ((val & ADPA_DAC_ENABLE) == 0)
1526 return false;
1527 if (HAS_PCH_CPT(dev_priv->dev)) {
1528 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1529 return false;
1530 } else {
1531 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1532 return false;
1533 }
1534 return true;
1535 }
1536
1537 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1538 enum pipe pipe, int reg, u32 port_sel)
1539 {
1540 u32 val = I915_READ(reg);
1541 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1542 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1543 reg, pipe_name(pipe));
1544
1545 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1546 && (val & DP_PIPEB_SELECT),
1547 "IBX PCH dp port still using transcoder B\n");
1548 }
1549
1550 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1551 enum pipe pipe, int reg)
1552 {
1553 u32 val = I915_READ(reg);
1554 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1555 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1556 reg, pipe_name(pipe));
1557
1558 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1559 && (val & SDVO_PIPE_B_SELECT),
1560 "IBX PCH hdmi port still using transcoder B\n");
1561 }
1562
1563 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1564 enum pipe pipe)
1565 {
1566 int reg;
1567 u32 val;
1568
1569 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1570 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1571 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1572
1573 reg = PCH_ADPA;
1574 val = I915_READ(reg);
1575 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1576 "PCH VGA enabled on transcoder %c, should be disabled\n",
1577 pipe_name(pipe));
1578
1579 reg = PCH_LVDS;
1580 val = I915_READ(reg);
1581 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1582 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1583 pipe_name(pipe));
1584
1585 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1586 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1587 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1588 }
1589
1590 static void intel_init_dpio(struct drm_device *dev)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593
1594 if (!IS_VALLEYVIEW(dev))
1595 return;
1596
1597 /*
1598 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1599 * CHV x1 PHY (DP/HDMI D)
1600 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1601 */
1602 if (IS_CHERRYVIEW(dev)) {
1603 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1604 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1605 } else {
1606 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1607 }
1608 }
1609
1610 static void vlv_enable_pll(struct intel_crtc *crtc,
1611 const struct intel_crtc_state *pipe_config)
1612 {
1613 struct drm_device *dev = crtc->base.dev;
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 int reg = DPLL(crtc->pipe);
1616 u32 dpll = pipe_config->dpll_hw_state.dpll;
1617
1618 assert_pipe_disabled(dev_priv, crtc->pipe);
1619
1620 /* No really, not for ILK+ */
1621 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1622
1623 /* PLL is protected by panel, make sure we can write it */
1624 if (IS_MOBILE(dev_priv->dev))
1625 assert_panel_unlocked(dev_priv, crtc->pipe);
1626
1627 I915_WRITE(reg, dpll);
1628 POSTING_READ(reg);
1629 udelay(150);
1630
1631 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1632 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1633
1634 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1635 POSTING_READ(DPLL_MD(crtc->pipe));
1636
1637 /* We do this three times for luck */
1638 I915_WRITE(reg, dpll);
1639 POSTING_READ(reg);
1640 udelay(150); /* wait for warmup */
1641 I915_WRITE(reg, dpll);
1642 POSTING_READ(reg);
1643 udelay(150); /* wait for warmup */
1644 I915_WRITE(reg, dpll);
1645 POSTING_READ(reg);
1646 udelay(150); /* wait for warmup */
1647 }
1648
1649 static void chv_enable_pll(struct intel_crtc *crtc,
1650 const struct intel_crtc_state *pipe_config)
1651 {
1652 struct drm_device *dev = crtc->base.dev;
1653 struct drm_i915_private *dev_priv = dev->dev_private;
1654 int pipe = crtc->pipe;
1655 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1656 u32 tmp;
1657
1658 assert_pipe_disabled(dev_priv, crtc->pipe);
1659
1660 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1661
1662 mutex_lock(&dev_priv->dpio_lock);
1663
1664 /* Enable back the 10bit clock to display controller */
1665 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1666 tmp |= DPIO_DCLKP_EN;
1667 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1668
1669 /*
1670 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1671 */
1672 udelay(1);
1673
1674 /* Enable PLL */
1675 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1676
1677 /* Check PLL is locked */
1678 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1679 DRM_ERROR("PLL %d failed to lock\n", pipe);
1680
1681 /* not sure when this should be written */
1682 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1683 POSTING_READ(DPLL_MD(pipe));
1684
1685 mutex_unlock(&dev_priv->dpio_lock);
1686 }
1687
1688 static int intel_num_dvo_pipes(struct drm_device *dev)
1689 {
1690 struct intel_crtc *crtc;
1691 int count = 0;
1692
1693 for_each_intel_crtc(dev, crtc)
1694 count += crtc->active &&
1695 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1696
1697 return count;
1698 }
1699
1700 static void i9xx_enable_pll(struct intel_crtc *crtc)
1701 {
1702 struct drm_device *dev = crtc->base.dev;
1703 struct drm_i915_private *dev_priv = dev->dev_private;
1704 int reg = DPLL(crtc->pipe);
1705 u32 dpll = crtc->config->dpll_hw_state.dpll;
1706
1707 assert_pipe_disabled(dev_priv, crtc->pipe);
1708
1709 /* No really, not for ILK+ */
1710 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1711
1712 /* PLL is protected by panel, make sure we can write it */
1713 if (IS_MOBILE(dev) && !IS_I830(dev))
1714 assert_panel_unlocked(dev_priv, crtc->pipe);
1715
1716 /* Enable DVO 2x clock on both PLLs if necessary */
1717 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1718 /*
1719 * It appears to be important that we don't enable this
1720 * for the current pipe before otherwise configuring the
1721 * PLL. No idea how this should be handled if multiple
1722 * DVO outputs are enabled simultaneosly.
1723 */
1724 dpll |= DPLL_DVO_2X_MODE;
1725 I915_WRITE(DPLL(!crtc->pipe),
1726 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1727 }
1728
1729 /* Wait for the clocks to stabilize. */
1730 POSTING_READ(reg);
1731 udelay(150);
1732
1733 if (INTEL_INFO(dev)->gen >= 4) {
1734 I915_WRITE(DPLL_MD(crtc->pipe),
1735 crtc->config->dpll_hw_state.dpll_md);
1736 } else {
1737 /* The pixel multiplier can only be updated once the
1738 * DPLL is enabled and the clocks are stable.
1739 *
1740 * So write it again.
1741 */
1742 I915_WRITE(reg, dpll);
1743 }
1744
1745 /* We do this three times for luck */
1746 I915_WRITE(reg, dpll);
1747 POSTING_READ(reg);
1748 udelay(150); /* wait for warmup */
1749 I915_WRITE(reg, dpll);
1750 POSTING_READ(reg);
1751 udelay(150); /* wait for warmup */
1752 I915_WRITE(reg, dpll);
1753 POSTING_READ(reg);
1754 udelay(150); /* wait for warmup */
1755 }
1756
1757 /**
1758 * i9xx_disable_pll - disable a PLL
1759 * @dev_priv: i915 private structure
1760 * @pipe: pipe PLL to disable
1761 *
1762 * Disable the PLL for @pipe, making sure the pipe is off first.
1763 *
1764 * Note! This is for pre-ILK only.
1765 */
1766 static void i9xx_disable_pll(struct intel_crtc *crtc)
1767 {
1768 struct drm_device *dev = crtc->base.dev;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 enum pipe pipe = crtc->pipe;
1771
1772 /* Disable DVO 2x clock on both PLLs if necessary */
1773 if (IS_I830(dev) &&
1774 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1775 intel_num_dvo_pipes(dev) == 1) {
1776 I915_WRITE(DPLL(PIPE_B),
1777 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1778 I915_WRITE(DPLL(PIPE_A),
1779 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1780 }
1781
1782 /* Don't disable pipe or pipe PLLs if needed */
1783 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1784 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1785 return;
1786
1787 /* Make sure the pipe isn't still relying on us */
1788 assert_pipe_disabled(dev_priv, pipe);
1789
1790 I915_WRITE(DPLL(pipe), 0);
1791 POSTING_READ(DPLL(pipe));
1792 }
1793
1794 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1795 {
1796 u32 val = 0;
1797
1798 /* Make sure the pipe isn't still relying on us */
1799 assert_pipe_disabled(dev_priv, pipe);
1800
1801 /*
1802 * Leave integrated clock source and reference clock enabled for pipe B.
1803 * The latter is needed for VGA hotplug / manual detection.
1804 */
1805 if (pipe == PIPE_B)
1806 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1807 I915_WRITE(DPLL(pipe), val);
1808 POSTING_READ(DPLL(pipe));
1809
1810 }
1811
1812 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1813 {
1814 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1815 u32 val;
1816
1817 /* Make sure the pipe isn't still relying on us */
1818 assert_pipe_disabled(dev_priv, pipe);
1819
1820 /* Set PLL en = 0 */
1821 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1822 if (pipe != PIPE_A)
1823 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1824 I915_WRITE(DPLL(pipe), val);
1825 POSTING_READ(DPLL(pipe));
1826
1827 mutex_lock(&dev_priv->dpio_lock);
1828
1829 /* Disable 10bit clock to display controller */
1830 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1831 val &= ~DPIO_DCLKP_EN;
1832 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1833
1834 /* disable left/right clock distribution */
1835 if (pipe != PIPE_B) {
1836 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1837 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1838 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1839 } else {
1840 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1841 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1842 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1843 }
1844
1845 mutex_unlock(&dev_priv->dpio_lock);
1846 }
1847
1848 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1849 struct intel_digital_port *dport)
1850 {
1851 u32 port_mask;
1852 int dpll_reg;
1853
1854 switch (dport->port) {
1855 case PORT_B:
1856 port_mask = DPLL_PORTB_READY_MASK;
1857 dpll_reg = DPLL(0);
1858 break;
1859 case PORT_C:
1860 port_mask = DPLL_PORTC_READY_MASK;
1861 dpll_reg = DPLL(0);
1862 break;
1863 case PORT_D:
1864 port_mask = DPLL_PORTD_READY_MASK;
1865 dpll_reg = DPIO_PHY_STATUS;
1866 break;
1867 default:
1868 BUG();
1869 }
1870
1871 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1872 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1873 port_name(dport->port), I915_READ(dpll_reg));
1874 }
1875
1876 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1877 {
1878 struct drm_device *dev = crtc->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1881
1882 if (WARN_ON(pll == NULL))
1883 return;
1884
1885 WARN_ON(!pll->config.crtc_mask);
1886 if (pll->active == 0) {
1887 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1888 WARN_ON(pll->on);
1889 assert_shared_dpll_disabled(dev_priv, pll);
1890
1891 pll->mode_set(dev_priv, pll);
1892 }
1893 }
1894
1895 /**
1896 * intel_enable_shared_dpll - enable PCH PLL
1897 * @dev_priv: i915 private structure
1898 * @pipe: pipe PLL to enable
1899 *
1900 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1901 * drives the transcoder clock.
1902 */
1903 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1904 {
1905 struct drm_device *dev = crtc->base.dev;
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1908
1909 if (WARN_ON(pll == NULL))
1910 return;
1911
1912 if (WARN_ON(pll->config.crtc_mask == 0))
1913 return;
1914
1915 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1916 pll->name, pll->active, pll->on,
1917 crtc->base.base.id);
1918
1919 if (pll->active++) {
1920 WARN_ON(!pll->on);
1921 assert_shared_dpll_enabled(dev_priv, pll);
1922 return;
1923 }
1924 WARN_ON(pll->on);
1925
1926 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1927
1928 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1929 pll->enable(dev_priv, pll);
1930 pll->on = true;
1931 }
1932
1933 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1934 {
1935 struct drm_device *dev = crtc->base.dev;
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1938
1939 /* PCH only available on ILK+ */
1940 BUG_ON(INTEL_INFO(dev)->gen < 5);
1941 if (WARN_ON(pll == NULL))
1942 return;
1943
1944 if (WARN_ON(pll->config.crtc_mask == 0))
1945 return;
1946
1947 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1948 pll->name, pll->active, pll->on,
1949 crtc->base.base.id);
1950
1951 if (WARN_ON(pll->active == 0)) {
1952 assert_shared_dpll_disabled(dev_priv, pll);
1953 return;
1954 }
1955
1956 assert_shared_dpll_enabled(dev_priv, pll);
1957 WARN_ON(!pll->on);
1958 if (--pll->active)
1959 return;
1960
1961 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1962 pll->disable(dev_priv, pll);
1963 pll->on = false;
1964
1965 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1966 }
1967
1968 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1969 enum pipe pipe)
1970 {
1971 struct drm_device *dev = dev_priv->dev;
1972 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1974 uint32_t reg, val, pipeconf_val;
1975
1976 /* PCH only available on ILK+ */
1977 BUG_ON(!HAS_PCH_SPLIT(dev));
1978
1979 /* Make sure PCH DPLL is enabled */
1980 assert_shared_dpll_enabled(dev_priv,
1981 intel_crtc_to_shared_dpll(intel_crtc));
1982
1983 /* FDI must be feeding us bits for PCH ports */
1984 assert_fdi_tx_enabled(dev_priv, pipe);
1985 assert_fdi_rx_enabled(dev_priv, pipe);
1986
1987 if (HAS_PCH_CPT(dev)) {
1988 /* Workaround: Set the timing override bit before enabling the
1989 * pch transcoder. */
1990 reg = TRANS_CHICKEN2(pipe);
1991 val = I915_READ(reg);
1992 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1993 I915_WRITE(reg, val);
1994 }
1995
1996 reg = PCH_TRANSCONF(pipe);
1997 val = I915_READ(reg);
1998 pipeconf_val = I915_READ(PIPECONF(pipe));
1999
2000 if (HAS_PCH_IBX(dev_priv->dev)) {
2001 /*
2002 * make the BPC in transcoder be consistent with
2003 * that in pipeconf reg.
2004 */
2005 val &= ~PIPECONF_BPC_MASK;
2006 val |= pipeconf_val & PIPECONF_BPC_MASK;
2007 }
2008
2009 val &= ~TRANS_INTERLACE_MASK;
2010 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2011 if (HAS_PCH_IBX(dev_priv->dev) &&
2012 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2013 val |= TRANS_LEGACY_INTERLACED_ILK;
2014 else
2015 val |= TRANS_INTERLACED;
2016 else
2017 val |= TRANS_PROGRESSIVE;
2018
2019 I915_WRITE(reg, val | TRANS_ENABLE);
2020 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2021 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2022 }
2023
2024 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2025 enum transcoder cpu_transcoder)
2026 {
2027 u32 val, pipeconf_val;
2028
2029 /* PCH only available on ILK+ */
2030 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2031
2032 /* FDI must be feeding us bits for PCH ports */
2033 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2034 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2035
2036 /* Workaround: set timing override bit. */
2037 val = I915_READ(_TRANSA_CHICKEN2);
2038 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2039 I915_WRITE(_TRANSA_CHICKEN2, val);
2040
2041 val = TRANS_ENABLE;
2042 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2043
2044 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2045 PIPECONF_INTERLACED_ILK)
2046 val |= TRANS_INTERLACED;
2047 else
2048 val |= TRANS_PROGRESSIVE;
2049
2050 I915_WRITE(LPT_TRANSCONF, val);
2051 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2052 DRM_ERROR("Failed to enable PCH transcoder\n");
2053 }
2054
2055 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2056 enum pipe pipe)
2057 {
2058 struct drm_device *dev = dev_priv->dev;
2059 uint32_t reg, val;
2060
2061 /* FDI relies on the transcoder */
2062 assert_fdi_tx_disabled(dev_priv, pipe);
2063 assert_fdi_rx_disabled(dev_priv, pipe);
2064
2065 /* Ports must be off as well */
2066 assert_pch_ports_disabled(dev_priv, pipe);
2067
2068 reg = PCH_TRANSCONF(pipe);
2069 val = I915_READ(reg);
2070 val &= ~TRANS_ENABLE;
2071 I915_WRITE(reg, val);
2072 /* wait for PCH transcoder off, transcoder state */
2073 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2074 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2075
2076 if (!HAS_PCH_IBX(dev)) {
2077 /* Workaround: Clear the timing override chicken bit again. */
2078 reg = TRANS_CHICKEN2(pipe);
2079 val = I915_READ(reg);
2080 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2081 I915_WRITE(reg, val);
2082 }
2083 }
2084
2085 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2086 {
2087 u32 val;
2088
2089 val = I915_READ(LPT_TRANSCONF);
2090 val &= ~TRANS_ENABLE;
2091 I915_WRITE(LPT_TRANSCONF, val);
2092 /* wait for PCH transcoder off, transcoder state */
2093 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2094 DRM_ERROR("Failed to disable PCH transcoder\n");
2095
2096 /* Workaround: clear timing override bit. */
2097 val = I915_READ(_TRANSA_CHICKEN2);
2098 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2099 I915_WRITE(_TRANSA_CHICKEN2, val);
2100 }
2101
2102 /**
2103 * intel_enable_pipe - enable a pipe, asserting requirements
2104 * @crtc: crtc responsible for the pipe
2105 *
2106 * Enable @crtc's pipe, making sure that various hardware specific requirements
2107 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2108 */
2109 static void intel_enable_pipe(struct intel_crtc *crtc)
2110 {
2111 struct drm_device *dev = crtc->base.dev;
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 enum pipe pipe = crtc->pipe;
2114 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2115 pipe);
2116 enum pipe pch_transcoder;
2117 int reg;
2118 u32 val;
2119
2120 assert_planes_disabled(dev_priv, pipe);
2121 assert_cursor_disabled(dev_priv, pipe);
2122 assert_sprites_disabled(dev_priv, pipe);
2123
2124 if (HAS_PCH_LPT(dev_priv->dev))
2125 pch_transcoder = TRANSCODER_A;
2126 else
2127 pch_transcoder = pipe;
2128
2129 /*
2130 * A pipe without a PLL won't actually be able to drive bits from
2131 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2132 * need the check.
2133 */
2134 if (HAS_GMCH_DISPLAY(dev_priv->dev))
2135 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2136 assert_dsi_pll_enabled(dev_priv);
2137 else
2138 assert_pll_enabled(dev_priv, pipe);
2139 else {
2140 if (crtc->config->has_pch_encoder) {
2141 /* if driving the PCH, we need FDI enabled */
2142 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2143 assert_fdi_tx_pll_enabled(dev_priv,
2144 (enum pipe) cpu_transcoder);
2145 }
2146 /* FIXME: assert CPU port conditions for SNB+ */
2147 }
2148
2149 reg = PIPECONF(cpu_transcoder);
2150 val = I915_READ(reg);
2151 if (val & PIPECONF_ENABLE) {
2152 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2153 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2154 return;
2155 }
2156
2157 I915_WRITE(reg, val | PIPECONF_ENABLE);
2158 POSTING_READ(reg);
2159 }
2160
2161 /**
2162 * intel_disable_pipe - disable a pipe, asserting requirements
2163 * @crtc: crtc whose pipes is to be disabled
2164 *
2165 * Disable the pipe of @crtc, making sure that various hardware
2166 * specific requirements are met, if applicable, e.g. plane
2167 * disabled, panel fitter off, etc.
2168 *
2169 * Will wait until the pipe has shut down before returning.
2170 */
2171 static void intel_disable_pipe(struct intel_crtc *crtc)
2172 {
2173 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2174 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2175 enum pipe pipe = crtc->pipe;
2176 int reg;
2177 u32 val;
2178
2179 /*
2180 * Make sure planes won't keep trying to pump pixels to us,
2181 * or we might hang the display.
2182 */
2183 assert_planes_disabled(dev_priv, pipe);
2184 assert_cursor_disabled(dev_priv, pipe);
2185 assert_sprites_disabled(dev_priv, pipe);
2186
2187 reg = PIPECONF(cpu_transcoder);
2188 val = I915_READ(reg);
2189 if ((val & PIPECONF_ENABLE) == 0)
2190 return;
2191
2192 /*
2193 * Double wide has implications for planes
2194 * so best keep it disabled when not needed.
2195 */
2196 if (crtc->config->double_wide)
2197 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199 /* Don't disable pipe or pipe PLLs if needed */
2200 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202 val &= ~PIPECONF_ENABLE;
2203
2204 I915_WRITE(reg, val);
2205 if ((val & PIPECONF_ENABLE) == 0)
2206 intel_wait_for_pipe_off(crtc);
2207 }
2208
2209 /*
2210 * Plane regs are double buffered, going from enabled->disabled needs a
2211 * trigger in order to latch. The display address reg provides this.
2212 */
2213 void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2214 enum plane plane)
2215 {
2216 struct drm_device *dev = dev_priv->dev;
2217 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2218
2219 I915_WRITE(reg, I915_READ(reg));
2220 POSTING_READ(reg);
2221 }
2222
2223 /**
2224 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2225 * @plane: plane to be enabled
2226 * @crtc: crtc for the plane
2227 *
2228 * Enable @plane on @crtc, making sure that the pipe is running first.
2229 */
2230 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2231 struct drm_crtc *crtc)
2232 {
2233 struct drm_device *dev = plane->dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2236
2237 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2238 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2239
2240 if (intel_crtc->primary_enabled)
2241 return;
2242
2243 intel_crtc->primary_enabled = true;
2244
2245 dev_priv->display.update_primary_plane(crtc, plane->fb,
2246 crtc->x, crtc->y);
2247
2248 /*
2249 * BDW signals flip done immediately if the plane
2250 * is disabled, even if the plane enable is already
2251 * armed to occur at the next vblank :(
2252 */
2253 if (IS_BROADWELL(dev))
2254 intel_wait_for_vblank(dev, intel_crtc->pipe);
2255 }
2256
2257 /**
2258 * intel_disable_primary_hw_plane - disable the primary hardware plane
2259 * @plane: plane to be disabled
2260 * @crtc: crtc for the plane
2261 *
2262 * Disable @plane on @crtc, making sure that the pipe is running first.
2263 */
2264 static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2265 struct drm_crtc *crtc)
2266 {
2267 struct drm_device *dev = plane->dev;
2268 struct drm_i915_private *dev_priv = dev->dev_private;
2269 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2270
2271 if (WARN_ON(!intel_crtc->active))
2272 return;
2273
2274 if (!intel_crtc->primary_enabled)
2275 return;
2276
2277 intel_crtc->primary_enabled = false;
2278
2279 dev_priv->display.update_primary_plane(crtc, plane->fb,
2280 crtc->x, crtc->y);
2281 }
2282
2283 static bool need_vtd_wa(struct drm_device *dev)
2284 {
2285 #ifdef CONFIG_INTEL_IOMMU
2286 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2287 return true;
2288 #endif
2289 return false;
2290 }
2291
2292 unsigned int
2293 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2294 uint64_t fb_format_modifier)
2295 {
2296 unsigned int tile_height;
2297 uint32_t pixel_bytes;
2298
2299 switch (fb_format_modifier) {
2300 case DRM_FORMAT_MOD_NONE:
2301 tile_height = 1;
2302 break;
2303 case I915_FORMAT_MOD_X_TILED:
2304 tile_height = IS_GEN2(dev) ? 16 : 8;
2305 break;
2306 case I915_FORMAT_MOD_Y_TILED:
2307 tile_height = 32;
2308 break;
2309 case I915_FORMAT_MOD_Yf_TILED:
2310 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2311 switch (pixel_bytes) {
2312 default:
2313 case 1:
2314 tile_height = 64;
2315 break;
2316 case 2:
2317 case 4:
2318 tile_height = 32;
2319 break;
2320 case 8:
2321 tile_height = 16;
2322 break;
2323 case 16:
2324 WARN_ONCE(1,
2325 "128-bit pixels are not supported for display!");
2326 tile_height = 16;
2327 break;
2328 }
2329 break;
2330 default:
2331 MISSING_CASE(fb_format_modifier);
2332 tile_height = 1;
2333 break;
2334 }
2335
2336 return tile_height;
2337 }
2338
2339 unsigned int
2340 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2341 uint32_t pixel_format, uint64_t fb_format_modifier)
2342 {
2343 return ALIGN(height, intel_tile_height(dev, pixel_format,
2344 fb_format_modifier));
2345 }
2346
2347 static int
2348 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2349 const struct drm_plane_state *plane_state)
2350 {
2351 struct intel_rotation_info *info = &view->rotation_info;
2352
2353 *view = i915_ggtt_view_normal;
2354
2355 if (!plane_state)
2356 return 0;
2357
2358 if (!intel_rotation_90_or_270(plane_state->rotation))
2359 return 0;
2360
2361 *view = i915_ggtt_view_rotated;
2362
2363 info->height = fb->height;
2364 info->pixel_format = fb->pixel_format;
2365 info->pitch = fb->pitches[0];
2366 info->fb_modifier = fb->modifier[0];
2367
2368 return 0;
2369 }
2370
2371 int
2372 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2373 struct drm_framebuffer *fb,
2374 const struct drm_plane_state *plane_state,
2375 struct intel_engine_cs *pipelined)
2376 {
2377 struct drm_device *dev = fb->dev;
2378 struct drm_i915_private *dev_priv = dev->dev_private;
2379 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2380 struct i915_ggtt_view view;
2381 u32 alignment;
2382 int ret;
2383
2384 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2385
2386 switch (fb->modifier[0]) {
2387 case DRM_FORMAT_MOD_NONE:
2388 if (INTEL_INFO(dev)->gen >= 9)
2389 alignment = 256 * 1024;
2390 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2391 alignment = 128 * 1024;
2392 else if (INTEL_INFO(dev)->gen >= 4)
2393 alignment = 4 * 1024;
2394 else
2395 alignment = 64 * 1024;
2396 break;
2397 case I915_FORMAT_MOD_X_TILED:
2398 if (INTEL_INFO(dev)->gen >= 9)
2399 alignment = 256 * 1024;
2400 else {
2401 /* pin() will align the object as required by fence */
2402 alignment = 0;
2403 }
2404 break;
2405 case I915_FORMAT_MOD_Y_TILED:
2406 case I915_FORMAT_MOD_Yf_TILED:
2407 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2408 "Y tiling bo slipped through, driver bug!\n"))
2409 return -EINVAL;
2410 alignment = 1 * 1024 * 1024;
2411 break;
2412 default:
2413 MISSING_CASE(fb->modifier[0]);
2414 return -EINVAL;
2415 }
2416
2417 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2418 if (ret)
2419 return ret;
2420
2421 /* Note that the w/a also requires 64 PTE of padding following the
2422 * bo. We currently fill all unused PTE with the shadow page and so
2423 * we should always have valid PTE following the scanout preventing
2424 * the VT-d warning.
2425 */
2426 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2427 alignment = 256 * 1024;
2428
2429 /*
2430 * Global gtt pte registers are special registers which actually forward
2431 * writes to a chunk of system memory. Which means that there is no risk
2432 * that the register values disappear as soon as we call
2433 * intel_runtime_pm_put(), so it is correct to wrap only the
2434 * pin/unpin/fence and not more.
2435 */
2436 intel_runtime_pm_get(dev_priv);
2437
2438 dev_priv->mm.interruptible = false;
2439 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2440 &view);
2441 if (ret)
2442 goto err_interruptible;
2443
2444 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2445 * fence, whereas 965+ only requires a fence if using
2446 * framebuffer compression. For simplicity, we always install
2447 * a fence as the cost is not that onerous.
2448 */
2449 ret = i915_gem_object_get_fence(obj);
2450 if (ret)
2451 goto err_unpin;
2452
2453 i915_gem_object_pin_fence(obj);
2454
2455 dev_priv->mm.interruptible = true;
2456 intel_runtime_pm_put(dev_priv);
2457 return 0;
2458
2459 err_unpin:
2460 i915_gem_object_unpin_from_display_plane(obj, &view);
2461 err_interruptible:
2462 dev_priv->mm.interruptible = true;
2463 intel_runtime_pm_put(dev_priv);
2464 return ret;
2465 }
2466
2467 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2468 const struct drm_plane_state *plane_state)
2469 {
2470 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2471 struct i915_ggtt_view view;
2472 int ret;
2473
2474 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2475
2476 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2477 WARN_ONCE(ret, "Couldn't get view from plane state!");
2478
2479 i915_gem_object_unpin_fence(obj);
2480 i915_gem_object_unpin_from_display_plane(obj, &view);
2481 }
2482
2483 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2484 * is assumed to be a power-of-two. */
2485 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2486 unsigned int tiling_mode,
2487 unsigned int cpp,
2488 unsigned int pitch)
2489 {
2490 if (tiling_mode != I915_TILING_NONE) {
2491 unsigned int tile_rows, tiles;
2492
2493 tile_rows = *y / 8;
2494 *y %= 8;
2495
2496 tiles = *x / (512/cpp);
2497 *x %= 512/cpp;
2498
2499 return tile_rows * pitch * 8 + tiles * 4096;
2500 } else {
2501 unsigned int offset;
2502
2503 offset = *y * pitch + *x * cpp;
2504 *y = 0;
2505 *x = (offset & 4095) / cpp;
2506 return offset & -4096;
2507 }
2508 }
2509
2510 static int i9xx_format_to_fourcc(int format)
2511 {
2512 switch (format) {
2513 case DISPPLANE_8BPP:
2514 return DRM_FORMAT_C8;
2515 case DISPPLANE_BGRX555:
2516 return DRM_FORMAT_XRGB1555;
2517 case DISPPLANE_BGRX565:
2518 return DRM_FORMAT_RGB565;
2519 default:
2520 case DISPPLANE_BGRX888:
2521 return DRM_FORMAT_XRGB8888;
2522 case DISPPLANE_RGBX888:
2523 return DRM_FORMAT_XBGR8888;
2524 case DISPPLANE_BGRX101010:
2525 return DRM_FORMAT_XRGB2101010;
2526 case DISPPLANE_RGBX101010:
2527 return DRM_FORMAT_XBGR2101010;
2528 }
2529 }
2530
2531 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2532 {
2533 switch (format) {
2534 case PLANE_CTL_FORMAT_RGB_565:
2535 return DRM_FORMAT_RGB565;
2536 default:
2537 case PLANE_CTL_FORMAT_XRGB_8888:
2538 if (rgb_order) {
2539 if (alpha)
2540 return DRM_FORMAT_ABGR8888;
2541 else
2542 return DRM_FORMAT_XBGR8888;
2543 } else {
2544 if (alpha)
2545 return DRM_FORMAT_ARGB8888;
2546 else
2547 return DRM_FORMAT_XRGB8888;
2548 }
2549 case PLANE_CTL_FORMAT_XRGB_2101010:
2550 if (rgb_order)
2551 return DRM_FORMAT_XBGR2101010;
2552 else
2553 return DRM_FORMAT_XRGB2101010;
2554 }
2555 }
2556
2557 static bool
2558 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2559 struct intel_initial_plane_config *plane_config)
2560 {
2561 struct drm_device *dev = crtc->base.dev;
2562 struct drm_i915_gem_object *obj = NULL;
2563 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2564 struct drm_framebuffer *fb = &plane_config->fb->base;
2565 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2566 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2567 PAGE_SIZE);
2568
2569 size_aligned -= base_aligned;
2570
2571 if (plane_config->size == 0)
2572 return false;
2573
2574 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2575 base_aligned,
2576 base_aligned,
2577 size_aligned);
2578 if (!obj)
2579 return false;
2580
2581 obj->tiling_mode = plane_config->tiling;
2582 if (obj->tiling_mode == I915_TILING_X)
2583 obj->stride = fb->pitches[0];
2584
2585 mode_cmd.pixel_format = fb->pixel_format;
2586 mode_cmd.width = fb->width;
2587 mode_cmd.height = fb->height;
2588 mode_cmd.pitches[0] = fb->pitches[0];
2589 mode_cmd.modifier[0] = fb->modifier[0];
2590 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2591
2592 mutex_lock(&dev->struct_mutex);
2593 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2594 &mode_cmd, obj)) {
2595 DRM_DEBUG_KMS("intel fb init failed\n");
2596 goto out_unref_obj;
2597 }
2598 mutex_unlock(&dev->struct_mutex);
2599
2600 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2601 return true;
2602
2603 out_unref_obj:
2604 drm_gem_object_unreference(&obj->base);
2605 mutex_unlock(&dev->struct_mutex);
2606 return false;
2607 }
2608
2609 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2610 static void
2611 update_state_fb(struct drm_plane *plane)
2612 {
2613 if (plane->fb == plane->state->fb)
2614 return;
2615
2616 if (plane->state->fb)
2617 drm_framebuffer_unreference(plane->state->fb);
2618 plane->state->fb = plane->fb;
2619 if (plane->state->fb)
2620 drm_framebuffer_reference(plane->state->fb);
2621 }
2622
2623 static void
2624 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2625 struct intel_initial_plane_config *plane_config)
2626 {
2627 struct drm_device *dev = intel_crtc->base.dev;
2628 struct drm_i915_private *dev_priv = dev->dev_private;
2629 struct drm_crtc *c;
2630 struct intel_crtc *i;
2631 struct drm_i915_gem_object *obj;
2632 struct drm_plane *primary = intel_crtc->base.primary;
2633 struct drm_framebuffer *fb;
2634
2635 if (!plane_config->fb)
2636 return;
2637
2638 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2639 fb = &plane_config->fb->base;
2640 goto valid_fb;
2641 }
2642
2643 kfree(plane_config->fb);
2644
2645 /*
2646 * Failed to alloc the obj, check to see if we should share
2647 * an fb with another CRTC instead
2648 */
2649 for_each_crtc(dev, c) {
2650 i = to_intel_crtc(c);
2651
2652 if (c == &intel_crtc->base)
2653 continue;
2654
2655 if (!i->active)
2656 continue;
2657
2658 fb = c->primary->fb;
2659 if (!fb)
2660 continue;
2661
2662 obj = intel_fb_obj(fb);
2663 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2664 drm_framebuffer_reference(fb);
2665 goto valid_fb;
2666 }
2667 }
2668
2669 return;
2670
2671 valid_fb:
2672 obj = intel_fb_obj(fb);
2673 if (obj->tiling_mode != I915_TILING_NONE)
2674 dev_priv->preserve_bios_swizzle = true;
2675
2676 primary->fb = fb;
2677 primary->state->crtc = &intel_crtc->base;
2678 primary->crtc = &intel_crtc->base;
2679 update_state_fb(primary);
2680 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2681 }
2682
2683 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2684 struct drm_framebuffer *fb,
2685 int x, int y)
2686 {
2687 struct drm_device *dev = crtc->dev;
2688 struct drm_i915_private *dev_priv = dev->dev_private;
2689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2690 struct drm_i915_gem_object *obj;
2691 int plane = intel_crtc->plane;
2692 unsigned long linear_offset;
2693 u32 dspcntr;
2694 u32 reg = DSPCNTR(plane);
2695 int pixel_size;
2696
2697 if (!intel_crtc->primary_enabled) {
2698 I915_WRITE(reg, 0);
2699 if (INTEL_INFO(dev)->gen >= 4)
2700 I915_WRITE(DSPSURF(plane), 0);
2701 else
2702 I915_WRITE(DSPADDR(plane), 0);
2703 POSTING_READ(reg);
2704 return;
2705 }
2706
2707 obj = intel_fb_obj(fb);
2708 if (WARN_ON(obj == NULL))
2709 return;
2710
2711 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2712
2713 dspcntr = DISPPLANE_GAMMA_ENABLE;
2714
2715 dspcntr |= DISPLAY_PLANE_ENABLE;
2716
2717 if (INTEL_INFO(dev)->gen < 4) {
2718 if (intel_crtc->pipe == PIPE_B)
2719 dspcntr |= DISPPLANE_SEL_PIPE_B;
2720
2721 /* pipesrc and dspsize control the size that is scaled from,
2722 * which should always be the user's requested size.
2723 */
2724 I915_WRITE(DSPSIZE(plane),
2725 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2726 (intel_crtc->config->pipe_src_w - 1));
2727 I915_WRITE(DSPPOS(plane), 0);
2728 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2729 I915_WRITE(PRIMSIZE(plane),
2730 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2731 (intel_crtc->config->pipe_src_w - 1));
2732 I915_WRITE(PRIMPOS(plane), 0);
2733 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2734 }
2735
2736 switch (fb->pixel_format) {
2737 case DRM_FORMAT_C8:
2738 dspcntr |= DISPPLANE_8BPP;
2739 break;
2740 case DRM_FORMAT_XRGB1555:
2741 case DRM_FORMAT_ARGB1555:
2742 dspcntr |= DISPPLANE_BGRX555;
2743 break;
2744 case DRM_FORMAT_RGB565:
2745 dspcntr |= DISPPLANE_BGRX565;
2746 break;
2747 case DRM_FORMAT_XRGB8888:
2748 case DRM_FORMAT_ARGB8888:
2749 dspcntr |= DISPPLANE_BGRX888;
2750 break;
2751 case DRM_FORMAT_XBGR8888:
2752 case DRM_FORMAT_ABGR8888:
2753 dspcntr |= DISPPLANE_RGBX888;
2754 break;
2755 case DRM_FORMAT_XRGB2101010:
2756 case DRM_FORMAT_ARGB2101010:
2757 dspcntr |= DISPPLANE_BGRX101010;
2758 break;
2759 case DRM_FORMAT_XBGR2101010:
2760 case DRM_FORMAT_ABGR2101010:
2761 dspcntr |= DISPPLANE_RGBX101010;
2762 break;
2763 default:
2764 BUG();
2765 }
2766
2767 if (INTEL_INFO(dev)->gen >= 4 &&
2768 obj->tiling_mode != I915_TILING_NONE)
2769 dspcntr |= DISPPLANE_TILED;
2770
2771 if (IS_G4X(dev))
2772 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2773
2774 linear_offset = y * fb->pitches[0] + x * pixel_size;
2775
2776 if (INTEL_INFO(dev)->gen >= 4) {
2777 intel_crtc->dspaddr_offset =
2778 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2779 pixel_size,
2780 fb->pitches[0]);
2781 linear_offset -= intel_crtc->dspaddr_offset;
2782 } else {
2783 intel_crtc->dspaddr_offset = linear_offset;
2784 }
2785
2786 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2787 dspcntr |= DISPPLANE_ROTATE_180;
2788
2789 x += (intel_crtc->config->pipe_src_w - 1);
2790 y += (intel_crtc->config->pipe_src_h - 1);
2791
2792 /* Finding the last pixel of the last line of the display
2793 data and adding to linear_offset*/
2794 linear_offset +=
2795 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2796 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2797 }
2798
2799 I915_WRITE(reg, dspcntr);
2800
2801 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2802 if (INTEL_INFO(dev)->gen >= 4) {
2803 I915_WRITE(DSPSURF(plane),
2804 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2805 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2806 I915_WRITE(DSPLINOFF(plane), linear_offset);
2807 } else
2808 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2809 POSTING_READ(reg);
2810 }
2811
2812 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2813 struct drm_framebuffer *fb,
2814 int x, int y)
2815 {
2816 struct drm_device *dev = crtc->dev;
2817 struct drm_i915_private *dev_priv = dev->dev_private;
2818 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819 struct drm_i915_gem_object *obj;
2820 int plane = intel_crtc->plane;
2821 unsigned long linear_offset;
2822 u32 dspcntr;
2823 u32 reg = DSPCNTR(plane);
2824 int pixel_size;
2825
2826 if (!intel_crtc->primary_enabled) {
2827 I915_WRITE(reg, 0);
2828 I915_WRITE(DSPSURF(plane), 0);
2829 POSTING_READ(reg);
2830 return;
2831 }
2832
2833 obj = intel_fb_obj(fb);
2834 if (WARN_ON(obj == NULL))
2835 return;
2836
2837 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2838
2839 dspcntr = DISPPLANE_GAMMA_ENABLE;
2840
2841 dspcntr |= DISPLAY_PLANE_ENABLE;
2842
2843 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2844 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2845
2846 switch (fb->pixel_format) {
2847 case DRM_FORMAT_C8:
2848 dspcntr |= DISPPLANE_8BPP;
2849 break;
2850 case DRM_FORMAT_RGB565:
2851 dspcntr |= DISPPLANE_BGRX565;
2852 break;
2853 case DRM_FORMAT_XRGB8888:
2854 case DRM_FORMAT_ARGB8888:
2855 dspcntr |= DISPPLANE_BGRX888;
2856 break;
2857 case DRM_FORMAT_XBGR8888:
2858 case DRM_FORMAT_ABGR8888:
2859 dspcntr |= DISPPLANE_RGBX888;
2860 break;
2861 case DRM_FORMAT_XRGB2101010:
2862 case DRM_FORMAT_ARGB2101010:
2863 dspcntr |= DISPPLANE_BGRX101010;
2864 break;
2865 case DRM_FORMAT_XBGR2101010:
2866 case DRM_FORMAT_ABGR2101010:
2867 dspcntr |= DISPPLANE_RGBX101010;
2868 break;
2869 default:
2870 BUG();
2871 }
2872
2873 if (obj->tiling_mode != I915_TILING_NONE)
2874 dspcntr |= DISPPLANE_TILED;
2875
2876 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2877 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2878
2879 linear_offset = y * fb->pitches[0] + x * pixel_size;
2880 intel_crtc->dspaddr_offset =
2881 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2882 pixel_size,
2883 fb->pitches[0]);
2884 linear_offset -= intel_crtc->dspaddr_offset;
2885 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2886 dspcntr |= DISPPLANE_ROTATE_180;
2887
2888 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2889 x += (intel_crtc->config->pipe_src_w - 1);
2890 y += (intel_crtc->config->pipe_src_h - 1);
2891
2892 /* Finding the last pixel of the last line of the display
2893 data and adding to linear_offset*/
2894 linear_offset +=
2895 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2896 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2897 }
2898 }
2899
2900 I915_WRITE(reg, dspcntr);
2901
2902 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2903 I915_WRITE(DSPSURF(plane),
2904 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2905 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2906 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2907 } else {
2908 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2909 I915_WRITE(DSPLINOFF(plane), linear_offset);
2910 }
2911 POSTING_READ(reg);
2912 }
2913
2914 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2915 uint32_t pixel_format)
2916 {
2917 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2918
2919 /*
2920 * The stride is either expressed as a multiple of 64 bytes
2921 * chunks for linear buffers or in number of tiles for tiled
2922 * buffers.
2923 */
2924 switch (fb_modifier) {
2925 case DRM_FORMAT_MOD_NONE:
2926 return 64;
2927 case I915_FORMAT_MOD_X_TILED:
2928 if (INTEL_INFO(dev)->gen == 2)
2929 return 128;
2930 return 512;
2931 case I915_FORMAT_MOD_Y_TILED:
2932 /* No need to check for old gens and Y tiling since this is
2933 * about the display engine and those will be blocked before
2934 * we get here.
2935 */
2936 return 128;
2937 case I915_FORMAT_MOD_Yf_TILED:
2938 if (bits_per_pixel == 8)
2939 return 64;
2940 else
2941 return 128;
2942 default:
2943 MISSING_CASE(fb_modifier);
2944 return 64;
2945 }
2946 }
2947
2948 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2949 struct drm_i915_gem_object *obj)
2950 {
2951 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2952
2953 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2954 view = &i915_ggtt_view_rotated;
2955
2956 return i915_gem_obj_ggtt_offset_view(obj, view);
2957 }
2958
2959 /*
2960 * This function detaches (aka. unbinds) unused scalers in hardware
2961 */
2962 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2963 {
2964 struct drm_device *dev;
2965 struct drm_i915_private *dev_priv;
2966 struct intel_crtc_scaler_state *scaler_state;
2967 int i;
2968
2969 if (!intel_crtc || !intel_crtc->config)
2970 return;
2971
2972 dev = intel_crtc->base.dev;
2973 dev_priv = dev->dev_private;
2974 scaler_state = &intel_crtc->config->scaler_state;
2975
2976 /* loop through and disable scalers that aren't in use */
2977 for (i = 0; i < intel_crtc->num_scalers; i++) {
2978 if (!scaler_state->scalers[i].in_use) {
2979 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2980 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2981 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2982 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2983 intel_crtc->base.base.id, intel_crtc->pipe, i);
2984 }
2985 }
2986 }
2987
2988 static void skylake_update_primary_plane(struct drm_crtc *crtc,
2989 struct drm_framebuffer *fb,
2990 int x, int y)
2991 {
2992 struct drm_device *dev = crtc->dev;
2993 struct drm_i915_private *dev_priv = dev->dev_private;
2994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2995 struct drm_i915_gem_object *obj;
2996 int pipe = intel_crtc->pipe;
2997 u32 plane_ctl, stride_div, stride;
2998 u32 tile_height, plane_offset, plane_size;
2999 unsigned int rotation;
3000 int x_offset, y_offset;
3001 unsigned long surf_addr;
3002 struct drm_plane *plane;
3003
3004 if (!intel_crtc->primary_enabled) {
3005 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3006 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3007 POSTING_READ(PLANE_CTL(pipe, 0));
3008 return;
3009 }
3010
3011 plane_ctl = PLANE_CTL_ENABLE |
3012 PLANE_CTL_PIPE_GAMMA_ENABLE |
3013 PLANE_CTL_PIPE_CSC_ENABLE;
3014
3015 switch (fb->pixel_format) {
3016 case DRM_FORMAT_RGB565:
3017 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
3018 break;
3019 case DRM_FORMAT_XRGB8888:
3020 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
3021 break;
3022 case DRM_FORMAT_ARGB8888:
3023 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
3024 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3025 break;
3026 case DRM_FORMAT_XBGR8888:
3027 plane_ctl |= PLANE_CTL_ORDER_RGBX;
3028 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
3029 break;
3030 case DRM_FORMAT_ABGR8888:
3031 plane_ctl |= PLANE_CTL_ORDER_RGBX;
3032 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
3033 plane_ctl |= PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3034 break;
3035 case DRM_FORMAT_XRGB2101010:
3036 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
3037 break;
3038 case DRM_FORMAT_XBGR2101010:
3039 plane_ctl |= PLANE_CTL_ORDER_RGBX;
3040 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
3041 break;
3042 default:
3043 BUG();
3044 }
3045
3046 switch (fb->modifier[0]) {
3047 case DRM_FORMAT_MOD_NONE:
3048 break;
3049 case I915_FORMAT_MOD_X_TILED:
3050 plane_ctl |= PLANE_CTL_TILED_X;
3051 break;
3052 case I915_FORMAT_MOD_Y_TILED:
3053 plane_ctl |= PLANE_CTL_TILED_Y;
3054 break;
3055 case I915_FORMAT_MOD_Yf_TILED:
3056 plane_ctl |= PLANE_CTL_TILED_YF;
3057 break;
3058 default:
3059 MISSING_CASE(fb->modifier[0]);
3060 }
3061
3062 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3063
3064 plane = crtc->primary;
3065 rotation = plane->state->rotation;
3066 switch (rotation) {
3067 case BIT(DRM_ROTATE_90):
3068 plane_ctl |= PLANE_CTL_ROTATE_90;
3069 break;
3070
3071 case BIT(DRM_ROTATE_180):
3072 plane_ctl |= PLANE_CTL_ROTATE_180;
3073 break;
3074
3075 case BIT(DRM_ROTATE_270):
3076 plane_ctl |= PLANE_CTL_ROTATE_270;
3077 break;
3078 }
3079
3080 obj = intel_fb_obj(fb);
3081 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3082 fb->pixel_format);
3083 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3084
3085 if (intel_rotation_90_or_270(rotation)) {
3086 /* stride = Surface height in tiles */
3087 tile_height = intel_tile_height(dev, fb->bits_per_pixel,
3088 fb->modifier[0]);
3089 stride = DIV_ROUND_UP(fb->height, tile_height);
3090 x_offset = stride * tile_height - y - (plane->state->src_h >> 16);
3091 y_offset = x;
3092 plane_size = ((plane->state->src_w >> 16) - 1) << 16 |
3093 ((plane->state->src_h >> 16) - 1);
3094 } else {
3095 stride = fb->pitches[0] / stride_div;
3096 x_offset = x;
3097 y_offset = y;
3098 plane_size = ((plane->state->src_h >> 16) - 1) << 16 |
3099 ((plane->state->src_w >> 16) - 1);
3100 }
3101 plane_offset = y_offset << 16 | x_offset;
3102
3103 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3104 I915_WRITE(PLANE_POS(pipe, 0), 0);
3105 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3106 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3107 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3108 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3109
3110 POSTING_READ(PLANE_SURF(pipe, 0));
3111 }
3112
3113 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3114 static int
3115 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3116 int x, int y, enum mode_set_atomic state)
3117 {
3118 struct drm_device *dev = crtc->dev;
3119 struct drm_i915_private *dev_priv = dev->dev_private;
3120
3121 if (dev_priv->display.disable_fbc)
3122 dev_priv->display.disable_fbc(dev);
3123
3124 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3125
3126 return 0;
3127 }
3128
3129 static void intel_complete_page_flips(struct drm_device *dev)
3130 {
3131 struct drm_crtc *crtc;
3132
3133 for_each_crtc(dev, crtc) {
3134 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3135 enum plane plane = intel_crtc->plane;
3136
3137 intel_prepare_page_flip(dev, plane);
3138 intel_finish_page_flip_plane(dev, plane);
3139 }
3140 }
3141
3142 static void intel_update_primary_planes(struct drm_device *dev)
3143 {
3144 struct drm_i915_private *dev_priv = dev->dev_private;
3145 struct drm_crtc *crtc;
3146
3147 for_each_crtc(dev, crtc) {
3148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149
3150 drm_modeset_lock(&crtc->mutex, NULL);
3151 /*
3152 * FIXME: Once we have proper support for primary planes (and
3153 * disabling them without disabling the entire crtc) allow again
3154 * a NULL crtc->primary->fb.
3155 */
3156 if (intel_crtc->active && crtc->primary->fb)
3157 dev_priv->display.update_primary_plane(crtc,
3158 crtc->primary->fb,
3159 crtc->x,
3160 crtc->y);
3161 drm_modeset_unlock(&crtc->mutex);
3162 }
3163 }
3164
3165 void intel_prepare_reset(struct drm_device *dev)
3166 {
3167 struct drm_i915_private *dev_priv = to_i915(dev);
3168 struct intel_crtc *crtc;
3169
3170 /* no reset support for gen2 */
3171 if (IS_GEN2(dev))
3172 return;
3173
3174 /* reset doesn't touch the display */
3175 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3176 return;
3177
3178 drm_modeset_lock_all(dev);
3179
3180 /*
3181 * Disabling the crtcs gracefully seems nicer. Also the
3182 * g33 docs say we should at least disable all the planes.
3183 */
3184 for_each_intel_crtc(dev, crtc) {
3185 if (crtc->active)
3186 dev_priv->display.crtc_disable(&crtc->base);
3187 }
3188 }
3189
3190 void intel_finish_reset(struct drm_device *dev)
3191 {
3192 struct drm_i915_private *dev_priv = to_i915(dev);
3193
3194 /*
3195 * Flips in the rings will be nuked by the reset,
3196 * so complete all pending flips so that user space
3197 * will get its events and not get stuck.
3198 */
3199 intel_complete_page_flips(dev);
3200
3201 /* no reset support for gen2 */
3202 if (IS_GEN2(dev))
3203 return;
3204
3205 /* reset doesn't touch the display */
3206 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3207 /*
3208 * Flips in the rings have been nuked by the reset,
3209 * so update the base address of all primary
3210 * planes to the the last fb to make sure we're
3211 * showing the correct fb after a reset.
3212 */
3213 intel_update_primary_planes(dev);
3214 return;
3215 }
3216
3217 /*
3218 * The display has been reset as well,
3219 * so need a full re-initialization.
3220 */
3221 intel_runtime_pm_disable_interrupts(dev_priv);
3222 intel_runtime_pm_enable_interrupts(dev_priv);
3223
3224 intel_modeset_init_hw(dev);
3225
3226 spin_lock_irq(&dev_priv->irq_lock);
3227 if (dev_priv->display.hpd_irq_setup)
3228 dev_priv->display.hpd_irq_setup(dev);
3229 spin_unlock_irq(&dev_priv->irq_lock);
3230
3231 intel_modeset_setup_hw_state(dev, true);
3232
3233 intel_hpd_init(dev_priv);
3234
3235 drm_modeset_unlock_all(dev);
3236 }
3237
3238 static int
3239 intel_finish_fb(struct drm_framebuffer *old_fb)
3240 {
3241 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3242 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3243 bool was_interruptible = dev_priv->mm.interruptible;
3244 int ret;
3245
3246 /* Big Hammer, we also need to ensure that any pending
3247 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3248 * current scanout is retired before unpinning the old
3249 * framebuffer.
3250 *
3251 * This should only fail upon a hung GPU, in which case we
3252 * can safely continue.
3253 */
3254 dev_priv->mm.interruptible = false;
3255 ret = i915_gem_object_finish_gpu(obj);
3256 dev_priv->mm.interruptible = was_interruptible;
3257
3258 return ret;
3259 }
3260
3261 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3262 {
3263 struct drm_device *dev = crtc->dev;
3264 struct drm_i915_private *dev_priv = dev->dev_private;
3265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3266 bool pending;
3267
3268 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3269 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3270 return false;
3271
3272 spin_lock_irq(&dev->event_lock);
3273 pending = to_intel_crtc(crtc)->unpin_work != NULL;
3274 spin_unlock_irq(&dev->event_lock);
3275
3276 return pending;
3277 }
3278
3279 static void intel_update_pipe_size(struct intel_crtc *crtc)
3280 {
3281 struct drm_device *dev = crtc->base.dev;
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283 const struct drm_display_mode *adjusted_mode;
3284
3285 if (!i915.fastboot)
3286 return;
3287
3288 /*
3289 * Update pipe size and adjust fitter if needed: the reason for this is
3290 * that in compute_mode_changes we check the native mode (not the pfit
3291 * mode) to see if we can flip rather than do a full mode set. In the
3292 * fastboot case, we'll flip, but if we don't update the pipesrc and
3293 * pfit state, we'll end up with a big fb scanned out into the wrong
3294 * sized surface.
3295 *
3296 * To fix this properly, we need to hoist the checks up into
3297 * compute_mode_changes (or above), check the actual pfit state and
3298 * whether the platform allows pfit disable with pipe active, and only
3299 * then update the pipesrc and pfit state, even on the flip path.
3300 */
3301
3302 adjusted_mode = &crtc->config->base.adjusted_mode;
3303
3304 I915_WRITE(PIPESRC(crtc->pipe),
3305 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3306 (adjusted_mode->crtc_vdisplay - 1));
3307 if (!crtc->config->pch_pfit.enabled &&
3308 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3309 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3310 I915_WRITE(PF_CTL(crtc->pipe), 0);
3311 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3312 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3313 }
3314 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3315 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3316 }
3317
3318 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3319 {
3320 struct drm_device *dev = crtc->dev;
3321 struct drm_i915_private *dev_priv = dev->dev_private;
3322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3323 int pipe = intel_crtc->pipe;
3324 u32 reg, temp;
3325
3326 /* enable normal train */
3327 reg = FDI_TX_CTL(pipe);
3328 temp = I915_READ(reg);
3329 if (IS_IVYBRIDGE(dev)) {
3330 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3331 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3332 } else {
3333 temp &= ~FDI_LINK_TRAIN_NONE;
3334 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3335 }
3336 I915_WRITE(reg, temp);
3337
3338 reg = FDI_RX_CTL(pipe);
3339 temp = I915_READ(reg);
3340 if (HAS_PCH_CPT(dev)) {
3341 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3342 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3343 } else {
3344 temp &= ~FDI_LINK_TRAIN_NONE;
3345 temp |= FDI_LINK_TRAIN_NONE;
3346 }
3347 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3348
3349 /* wait one idle pattern time */
3350 POSTING_READ(reg);
3351 udelay(1000);
3352
3353 /* IVB wants error correction enabled */
3354 if (IS_IVYBRIDGE(dev))
3355 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3356 FDI_FE_ERRC_ENABLE);
3357 }
3358
3359 /* The FDI link training functions for ILK/Ibexpeak. */
3360 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3361 {
3362 struct drm_device *dev = crtc->dev;
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3365 int pipe = intel_crtc->pipe;
3366 u32 reg, temp, tries;
3367
3368 /* FDI needs bits from pipe first */
3369 assert_pipe_enabled(dev_priv, pipe);
3370
3371 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3372 for train result */
3373 reg = FDI_RX_IMR(pipe);
3374 temp = I915_READ(reg);
3375 temp &= ~FDI_RX_SYMBOL_LOCK;
3376 temp &= ~FDI_RX_BIT_LOCK;
3377 I915_WRITE(reg, temp);
3378 I915_READ(reg);
3379 udelay(150);
3380
3381 /* enable CPU FDI TX and PCH FDI RX */
3382 reg = FDI_TX_CTL(pipe);
3383 temp = I915_READ(reg);
3384 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3385 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3386 temp &= ~FDI_LINK_TRAIN_NONE;
3387 temp |= FDI_LINK_TRAIN_PATTERN_1;
3388 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3389
3390 reg = FDI_RX_CTL(pipe);
3391 temp = I915_READ(reg);
3392 temp &= ~FDI_LINK_TRAIN_NONE;
3393 temp |= FDI_LINK_TRAIN_PATTERN_1;
3394 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3395
3396 POSTING_READ(reg);
3397 udelay(150);
3398
3399 /* Ironlake workaround, enable clock pointer after FDI enable*/
3400 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3401 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3402 FDI_RX_PHASE_SYNC_POINTER_EN);
3403
3404 reg = FDI_RX_IIR(pipe);
3405 for (tries = 0; tries < 5; tries++) {
3406 temp = I915_READ(reg);
3407 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3408
3409 if ((temp & FDI_RX_BIT_LOCK)) {
3410 DRM_DEBUG_KMS("FDI train 1 done.\n");
3411 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3412 break;
3413 }
3414 }
3415 if (tries == 5)
3416 DRM_ERROR("FDI train 1 fail!\n");
3417
3418 /* Train 2 */
3419 reg = FDI_TX_CTL(pipe);
3420 temp = I915_READ(reg);
3421 temp &= ~FDI_LINK_TRAIN_NONE;
3422 temp |= FDI_LINK_TRAIN_PATTERN_2;
3423 I915_WRITE(reg, temp);
3424
3425 reg = FDI_RX_CTL(pipe);
3426 temp = I915_READ(reg);
3427 temp &= ~FDI_LINK_TRAIN_NONE;
3428 temp |= FDI_LINK_TRAIN_PATTERN_2;
3429 I915_WRITE(reg, temp);
3430
3431 POSTING_READ(reg);
3432 udelay(150);
3433
3434 reg = FDI_RX_IIR(pipe);
3435 for (tries = 0; tries < 5; tries++) {
3436 temp = I915_READ(reg);
3437 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3438
3439 if (temp & FDI_RX_SYMBOL_LOCK) {
3440 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3441 DRM_DEBUG_KMS("FDI train 2 done.\n");
3442 break;
3443 }
3444 }
3445 if (tries == 5)
3446 DRM_ERROR("FDI train 2 fail!\n");
3447
3448 DRM_DEBUG_KMS("FDI train done\n");
3449
3450 }
3451
3452 static const int snb_b_fdi_train_param[] = {
3453 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3454 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3455 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3456 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3457 };
3458
3459 /* The FDI link training functions for SNB/Cougarpoint. */
3460 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3461 {
3462 struct drm_device *dev = crtc->dev;
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3465 int pipe = intel_crtc->pipe;
3466 u32 reg, temp, i, retry;
3467
3468 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3469 for train result */
3470 reg = FDI_RX_IMR(pipe);
3471 temp = I915_READ(reg);
3472 temp &= ~FDI_RX_SYMBOL_LOCK;
3473 temp &= ~FDI_RX_BIT_LOCK;
3474 I915_WRITE(reg, temp);
3475
3476 POSTING_READ(reg);
3477 udelay(150);
3478
3479 /* enable CPU FDI TX and PCH FDI RX */
3480 reg = FDI_TX_CTL(pipe);
3481 temp = I915_READ(reg);
3482 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3483 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3484 temp &= ~FDI_LINK_TRAIN_NONE;
3485 temp |= FDI_LINK_TRAIN_PATTERN_1;
3486 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3487 /* SNB-B */
3488 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3489 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3490
3491 I915_WRITE(FDI_RX_MISC(pipe),
3492 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3493
3494 reg = FDI_RX_CTL(pipe);
3495 temp = I915_READ(reg);
3496 if (HAS_PCH_CPT(dev)) {
3497 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3498 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3499 } else {
3500 temp &= ~FDI_LINK_TRAIN_NONE;
3501 temp |= FDI_LINK_TRAIN_PATTERN_1;
3502 }
3503 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3504
3505 POSTING_READ(reg);
3506 udelay(150);
3507
3508 for (i = 0; i < 4; i++) {
3509 reg = FDI_TX_CTL(pipe);
3510 temp = I915_READ(reg);
3511 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3512 temp |= snb_b_fdi_train_param[i];
3513 I915_WRITE(reg, temp);
3514
3515 POSTING_READ(reg);
3516 udelay(500);
3517
3518 for (retry = 0; retry < 5; retry++) {
3519 reg = FDI_RX_IIR(pipe);
3520 temp = I915_READ(reg);
3521 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3522 if (temp & FDI_RX_BIT_LOCK) {
3523 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3524 DRM_DEBUG_KMS("FDI train 1 done.\n");
3525 break;
3526 }
3527 udelay(50);
3528 }
3529 if (retry < 5)
3530 break;
3531 }
3532 if (i == 4)
3533 DRM_ERROR("FDI train 1 fail!\n");
3534
3535 /* Train 2 */
3536 reg = FDI_TX_CTL(pipe);
3537 temp = I915_READ(reg);
3538 temp &= ~FDI_LINK_TRAIN_NONE;
3539 temp |= FDI_LINK_TRAIN_PATTERN_2;
3540 if (IS_GEN6(dev)) {
3541 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3542 /* SNB-B */
3543 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3544 }
3545 I915_WRITE(reg, temp);
3546
3547 reg = FDI_RX_CTL(pipe);
3548 temp = I915_READ(reg);
3549 if (HAS_PCH_CPT(dev)) {
3550 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3551 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3552 } else {
3553 temp &= ~FDI_LINK_TRAIN_NONE;
3554 temp |= FDI_LINK_TRAIN_PATTERN_2;
3555 }
3556 I915_WRITE(reg, temp);
3557
3558 POSTING_READ(reg);
3559 udelay(150);
3560
3561 for (i = 0; i < 4; i++) {
3562 reg = FDI_TX_CTL(pipe);
3563 temp = I915_READ(reg);
3564 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3565 temp |= snb_b_fdi_train_param[i];
3566 I915_WRITE(reg, temp);
3567
3568 POSTING_READ(reg);
3569 udelay(500);
3570
3571 for (retry = 0; retry < 5; retry++) {
3572 reg = FDI_RX_IIR(pipe);
3573 temp = I915_READ(reg);
3574 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3575 if (temp & FDI_RX_SYMBOL_LOCK) {
3576 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3577 DRM_DEBUG_KMS("FDI train 2 done.\n");
3578 break;
3579 }
3580 udelay(50);
3581 }
3582 if (retry < 5)
3583 break;
3584 }
3585 if (i == 4)
3586 DRM_ERROR("FDI train 2 fail!\n");
3587
3588 DRM_DEBUG_KMS("FDI train done.\n");
3589 }
3590
3591 /* Manual link training for Ivy Bridge A0 parts */
3592 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3593 {
3594 struct drm_device *dev = crtc->dev;
3595 struct drm_i915_private *dev_priv = dev->dev_private;
3596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3597 int pipe = intel_crtc->pipe;
3598 u32 reg, temp, i, j;
3599
3600 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3601 for train result */
3602 reg = FDI_RX_IMR(pipe);
3603 temp = I915_READ(reg);
3604 temp &= ~FDI_RX_SYMBOL_LOCK;
3605 temp &= ~FDI_RX_BIT_LOCK;
3606 I915_WRITE(reg, temp);
3607
3608 POSTING_READ(reg);
3609 udelay(150);
3610
3611 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3612 I915_READ(FDI_RX_IIR(pipe)));
3613
3614 /* Try each vswing and preemphasis setting twice before moving on */
3615 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3616 /* disable first in case we need to retry */
3617 reg = FDI_TX_CTL(pipe);
3618 temp = I915_READ(reg);
3619 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3620 temp &= ~FDI_TX_ENABLE;
3621 I915_WRITE(reg, temp);
3622
3623 reg = FDI_RX_CTL(pipe);
3624 temp = I915_READ(reg);
3625 temp &= ~FDI_LINK_TRAIN_AUTO;
3626 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3627 temp &= ~FDI_RX_ENABLE;
3628 I915_WRITE(reg, temp);
3629
3630 /* enable CPU FDI TX and PCH FDI RX */
3631 reg = FDI_TX_CTL(pipe);
3632 temp = I915_READ(reg);
3633 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3634 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3635 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3636 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3637 temp |= snb_b_fdi_train_param[j/2];
3638 temp |= FDI_COMPOSITE_SYNC;
3639 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3640
3641 I915_WRITE(FDI_RX_MISC(pipe),
3642 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3643
3644 reg = FDI_RX_CTL(pipe);
3645 temp = I915_READ(reg);
3646 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3647 temp |= FDI_COMPOSITE_SYNC;
3648 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3649
3650 POSTING_READ(reg);
3651 udelay(1); /* should be 0.5us */
3652
3653 for (i = 0; i < 4; i++) {
3654 reg = FDI_RX_IIR(pipe);
3655 temp = I915_READ(reg);
3656 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3657
3658 if (temp & FDI_RX_BIT_LOCK ||
3659 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3660 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3661 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3662 i);
3663 break;
3664 }
3665 udelay(1); /* should be 0.5us */
3666 }
3667 if (i == 4) {
3668 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3669 continue;
3670 }
3671
3672 /* Train 2 */
3673 reg = FDI_TX_CTL(pipe);
3674 temp = I915_READ(reg);
3675 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3676 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3677 I915_WRITE(reg, temp);
3678
3679 reg = FDI_RX_CTL(pipe);
3680 temp = I915_READ(reg);
3681 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3682 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3683 I915_WRITE(reg, temp);
3684
3685 POSTING_READ(reg);
3686 udelay(2); /* should be 1.5us */
3687
3688 for (i = 0; i < 4; i++) {
3689 reg = FDI_RX_IIR(pipe);
3690 temp = I915_READ(reg);
3691 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3692
3693 if (temp & FDI_RX_SYMBOL_LOCK ||
3694 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3695 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3696 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3697 i);
3698 goto train_done;
3699 }
3700 udelay(2); /* should be 1.5us */
3701 }
3702 if (i == 4)
3703 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3704 }
3705
3706 train_done:
3707 DRM_DEBUG_KMS("FDI train done.\n");
3708 }
3709
3710 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3711 {
3712 struct drm_device *dev = intel_crtc->base.dev;
3713 struct drm_i915_private *dev_priv = dev->dev_private;
3714 int pipe = intel_crtc->pipe;
3715 u32 reg, temp;
3716
3717
3718 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3719 reg = FDI_RX_CTL(pipe);
3720 temp = I915_READ(reg);
3721 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3722 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3723 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3724 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3725
3726 POSTING_READ(reg);
3727 udelay(200);
3728
3729 /* Switch from Rawclk to PCDclk */
3730 temp = I915_READ(reg);
3731 I915_WRITE(reg, temp | FDI_PCDCLK);
3732
3733 POSTING_READ(reg);
3734 udelay(200);
3735
3736 /* Enable CPU FDI TX PLL, always on for Ironlake */
3737 reg = FDI_TX_CTL(pipe);
3738 temp = I915_READ(reg);
3739 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3740 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3741
3742 POSTING_READ(reg);
3743 udelay(100);
3744 }
3745 }
3746
3747 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3748 {
3749 struct drm_device *dev = intel_crtc->base.dev;
3750 struct drm_i915_private *dev_priv = dev->dev_private;
3751 int pipe = intel_crtc->pipe;
3752 u32 reg, temp;
3753
3754 /* Switch from PCDclk to Rawclk */
3755 reg = FDI_RX_CTL(pipe);
3756 temp = I915_READ(reg);
3757 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3758
3759 /* Disable CPU FDI TX PLL */
3760 reg = FDI_TX_CTL(pipe);
3761 temp = I915_READ(reg);
3762 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3763
3764 POSTING_READ(reg);
3765 udelay(100);
3766
3767 reg = FDI_RX_CTL(pipe);
3768 temp = I915_READ(reg);
3769 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3770
3771 /* Wait for the clocks to turn off. */
3772 POSTING_READ(reg);
3773 udelay(100);
3774 }
3775
3776 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3777 {
3778 struct drm_device *dev = crtc->dev;
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3781 int pipe = intel_crtc->pipe;
3782 u32 reg, temp;
3783
3784 /* disable CPU FDI tx and PCH FDI rx */
3785 reg = FDI_TX_CTL(pipe);
3786 temp = I915_READ(reg);
3787 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3788 POSTING_READ(reg);
3789
3790 reg = FDI_RX_CTL(pipe);
3791 temp = I915_READ(reg);
3792 temp &= ~(0x7 << 16);
3793 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3794 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3795
3796 POSTING_READ(reg);
3797 udelay(100);
3798
3799 /* Ironlake workaround, disable clock pointer after downing FDI */
3800 if (HAS_PCH_IBX(dev))
3801 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3802
3803 /* still set train pattern 1 */
3804 reg = FDI_TX_CTL(pipe);
3805 temp = I915_READ(reg);
3806 temp &= ~FDI_LINK_TRAIN_NONE;
3807 temp |= FDI_LINK_TRAIN_PATTERN_1;
3808 I915_WRITE(reg, temp);
3809
3810 reg = FDI_RX_CTL(pipe);
3811 temp = I915_READ(reg);
3812 if (HAS_PCH_CPT(dev)) {
3813 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3814 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3815 } else {
3816 temp &= ~FDI_LINK_TRAIN_NONE;
3817 temp |= FDI_LINK_TRAIN_PATTERN_1;
3818 }
3819 /* BPC in FDI rx is consistent with that in PIPECONF */
3820 temp &= ~(0x07 << 16);
3821 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3822 I915_WRITE(reg, temp);
3823
3824 POSTING_READ(reg);
3825 udelay(100);
3826 }
3827
3828 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3829 {
3830 struct intel_crtc *crtc;
3831
3832 /* Note that we don't need to be called with mode_config.lock here
3833 * as our list of CRTC objects is static for the lifetime of the
3834 * device and so cannot disappear as we iterate. Similarly, we can
3835 * happily treat the predicates as racy, atomic checks as userspace
3836 * cannot claim and pin a new fb without at least acquring the
3837 * struct_mutex and so serialising with us.
3838 */
3839 for_each_intel_crtc(dev, crtc) {
3840 if (atomic_read(&crtc->unpin_work_count) == 0)
3841 continue;
3842
3843 if (crtc->unpin_work)
3844 intel_wait_for_vblank(dev, crtc->pipe);
3845
3846 return true;
3847 }
3848
3849 return false;
3850 }
3851
3852 static void page_flip_completed(struct intel_crtc *intel_crtc)
3853 {
3854 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3855 struct intel_unpin_work *work = intel_crtc->unpin_work;
3856
3857 /* ensure that the unpin work is consistent wrt ->pending. */
3858 smp_rmb();
3859 intel_crtc->unpin_work = NULL;
3860
3861 if (work->event)
3862 drm_send_vblank_event(intel_crtc->base.dev,
3863 intel_crtc->pipe,
3864 work->event);
3865
3866 drm_crtc_vblank_put(&intel_crtc->base);
3867
3868 wake_up_all(&dev_priv->pending_flip_queue);
3869 queue_work(dev_priv->wq, &work->work);
3870
3871 trace_i915_flip_complete(intel_crtc->plane,
3872 work->pending_flip_obj);
3873 }
3874
3875 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3876 {
3877 struct drm_device *dev = crtc->dev;
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879
3880 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3881 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3882 !intel_crtc_has_pending_flip(crtc),
3883 60*HZ) == 0)) {
3884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3885
3886 spin_lock_irq(&dev->event_lock);
3887 if (intel_crtc->unpin_work) {
3888 WARN_ONCE(1, "Removing stuck page flip\n");
3889 page_flip_completed(intel_crtc);
3890 }
3891 spin_unlock_irq(&dev->event_lock);
3892 }
3893
3894 if (crtc->primary->fb) {
3895 mutex_lock(&dev->struct_mutex);
3896 intel_finish_fb(crtc->primary->fb);
3897 mutex_unlock(&dev->struct_mutex);
3898 }
3899 }
3900
3901 /* Program iCLKIP clock to the desired frequency */
3902 static void lpt_program_iclkip(struct drm_crtc *crtc)
3903 {
3904 struct drm_device *dev = crtc->dev;
3905 struct drm_i915_private *dev_priv = dev->dev_private;
3906 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3907 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3908 u32 temp;
3909
3910 mutex_lock(&dev_priv->dpio_lock);
3911
3912 /* It is necessary to ungate the pixclk gate prior to programming
3913 * the divisors, and gate it back when it is done.
3914 */
3915 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3916
3917 /* Disable SSCCTL */
3918 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3919 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3920 SBI_SSCCTL_DISABLE,
3921 SBI_ICLK);
3922
3923 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3924 if (clock == 20000) {
3925 auxdiv = 1;
3926 divsel = 0x41;
3927 phaseinc = 0x20;
3928 } else {
3929 /* The iCLK virtual clock root frequency is in MHz,
3930 * but the adjusted_mode->crtc_clock in in KHz. To get the
3931 * divisors, it is necessary to divide one by another, so we
3932 * convert the virtual clock precision to KHz here for higher
3933 * precision.
3934 */
3935 u32 iclk_virtual_root_freq = 172800 * 1000;
3936 u32 iclk_pi_range = 64;
3937 u32 desired_divisor, msb_divisor_value, pi_value;
3938
3939 desired_divisor = (iclk_virtual_root_freq / clock);
3940 msb_divisor_value = desired_divisor / iclk_pi_range;
3941 pi_value = desired_divisor % iclk_pi_range;
3942
3943 auxdiv = 0;
3944 divsel = msb_divisor_value - 2;
3945 phaseinc = pi_value;
3946 }
3947
3948 /* This should not happen with any sane values */
3949 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3950 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3951 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3952 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3953
3954 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3955 clock,
3956 auxdiv,
3957 divsel,
3958 phasedir,
3959 phaseinc);
3960
3961 /* Program SSCDIVINTPHASE6 */
3962 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3963 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3964 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3965 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3966 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3967 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3968 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3969 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3970
3971 /* Program SSCAUXDIV */
3972 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3973 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3974 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3975 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3976
3977 /* Enable modulator and associated divider */
3978 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3979 temp &= ~SBI_SSCCTL_DISABLE;
3980 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3981
3982 /* Wait for initialization time */
3983 udelay(24);
3984
3985 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3986
3987 mutex_unlock(&dev_priv->dpio_lock);
3988 }
3989
3990 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3991 enum pipe pch_transcoder)
3992 {
3993 struct drm_device *dev = crtc->base.dev;
3994 struct drm_i915_private *dev_priv = dev->dev_private;
3995 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3996
3997 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3998 I915_READ(HTOTAL(cpu_transcoder)));
3999 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4000 I915_READ(HBLANK(cpu_transcoder)));
4001 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4002 I915_READ(HSYNC(cpu_transcoder)));
4003
4004 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4005 I915_READ(VTOTAL(cpu_transcoder)));
4006 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4007 I915_READ(VBLANK(cpu_transcoder)));
4008 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4009 I915_READ(VSYNC(cpu_transcoder)));
4010 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4011 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4012 }
4013
4014 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4015 {
4016 struct drm_i915_private *dev_priv = dev->dev_private;
4017 uint32_t temp;
4018
4019 temp = I915_READ(SOUTH_CHICKEN1);
4020 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4021 return;
4022
4023 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4024 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4025
4026 temp &= ~FDI_BC_BIFURCATION_SELECT;
4027 if (enable)
4028 temp |= FDI_BC_BIFURCATION_SELECT;
4029
4030 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4031 I915_WRITE(SOUTH_CHICKEN1, temp);
4032 POSTING_READ(SOUTH_CHICKEN1);
4033 }
4034
4035 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4036 {
4037 struct drm_device *dev = intel_crtc->base.dev;
4038
4039 switch (intel_crtc->pipe) {
4040 case PIPE_A:
4041 break;
4042 case PIPE_B:
4043 if (intel_crtc->config->fdi_lanes > 2)
4044 cpt_set_fdi_bc_bifurcation(dev, false);
4045 else
4046 cpt_set_fdi_bc_bifurcation(dev, true);
4047
4048 break;
4049 case PIPE_C:
4050 cpt_set_fdi_bc_bifurcation(dev, true);
4051
4052 break;
4053 default:
4054 BUG();
4055 }
4056 }
4057
4058 /*
4059 * Enable PCH resources required for PCH ports:
4060 * - PCH PLLs
4061 * - FDI training & RX/TX
4062 * - update transcoder timings
4063 * - DP transcoding bits
4064 * - transcoder
4065 */
4066 static void ironlake_pch_enable(struct drm_crtc *crtc)
4067 {
4068 struct drm_device *dev = crtc->dev;
4069 struct drm_i915_private *dev_priv = dev->dev_private;
4070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4071 int pipe = intel_crtc->pipe;
4072 u32 reg, temp;
4073
4074 assert_pch_transcoder_disabled(dev_priv, pipe);
4075
4076 if (IS_IVYBRIDGE(dev))
4077 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4078
4079 /* Write the TU size bits before fdi link training, so that error
4080 * detection works. */
4081 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4082 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4083
4084 /* For PCH output, training FDI link */
4085 dev_priv->display.fdi_link_train(crtc);
4086
4087 /* We need to program the right clock selection before writing the pixel
4088 * mutliplier into the DPLL. */
4089 if (HAS_PCH_CPT(dev)) {
4090 u32 sel;
4091
4092 temp = I915_READ(PCH_DPLL_SEL);
4093 temp |= TRANS_DPLL_ENABLE(pipe);
4094 sel = TRANS_DPLLB_SEL(pipe);
4095 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4096 temp |= sel;
4097 else
4098 temp &= ~sel;
4099 I915_WRITE(PCH_DPLL_SEL, temp);
4100 }
4101
4102 /* XXX: pch pll's can be enabled any time before we enable the PCH
4103 * transcoder, and we actually should do this to not upset any PCH
4104 * transcoder that already use the clock when we share it.
4105 *
4106 * Note that enable_shared_dpll tries to do the right thing, but
4107 * get_shared_dpll unconditionally resets the pll - we need that to have
4108 * the right LVDS enable sequence. */
4109 intel_enable_shared_dpll(intel_crtc);
4110
4111 /* set transcoder timing, panel must allow it */
4112 assert_panel_unlocked(dev_priv, pipe);
4113 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4114
4115 intel_fdi_normal_train(crtc);
4116
4117 /* For PCH DP, enable TRANS_DP_CTL */
4118 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4119 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4120 reg = TRANS_DP_CTL(pipe);
4121 temp = I915_READ(reg);
4122 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4123 TRANS_DP_SYNC_MASK |
4124 TRANS_DP_BPC_MASK);
4125 temp |= (TRANS_DP_OUTPUT_ENABLE |
4126 TRANS_DP_ENH_FRAMING);
4127 temp |= bpc << 9; /* same format but at 11:9 */
4128
4129 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4130 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4131 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4132 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4133
4134 switch (intel_trans_dp_port_sel(crtc)) {
4135 case PCH_DP_B:
4136 temp |= TRANS_DP_PORT_SEL_B;
4137 break;
4138 case PCH_DP_C:
4139 temp |= TRANS_DP_PORT_SEL_C;
4140 break;
4141 case PCH_DP_D:
4142 temp |= TRANS_DP_PORT_SEL_D;
4143 break;
4144 default:
4145 BUG();
4146 }
4147
4148 I915_WRITE(reg, temp);
4149 }
4150
4151 ironlake_enable_pch_transcoder(dev_priv, pipe);
4152 }
4153
4154 static void lpt_pch_enable(struct drm_crtc *crtc)
4155 {
4156 struct drm_device *dev = crtc->dev;
4157 struct drm_i915_private *dev_priv = dev->dev_private;
4158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4159 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4160
4161 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4162
4163 lpt_program_iclkip(crtc);
4164
4165 /* Set transcoder timing. */
4166 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4167
4168 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4169 }
4170
4171 void intel_put_shared_dpll(struct intel_crtc *crtc)
4172 {
4173 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4174
4175 if (pll == NULL)
4176 return;
4177
4178 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4179 WARN(1, "bad %s crtc mask\n", pll->name);
4180 return;
4181 }
4182
4183 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4184 if (pll->config.crtc_mask == 0) {
4185 WARN_ON(pll->on);
4186 WARN_ON(pll->active);
4187 }
4188
4189 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4190 }
4191
4192 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4193 struct intel_crtc_state *crtc_state)
4194 {
4195 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4196 struct intel_shared_dpll *pll;
4197 enum intel_dpll_id i;
4198
4199 if (HAS_PCH_IBX(dev_priv->dev)) {
4200 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4201 i = (enum intel_dpll_id) crtc->pipe;
4202 pll = &dev_priv->shared_dplls[i];
4203
4204 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4205 crtc->base.base.id, pll->name);
4206
4207 WARN_ON(pll->new_config->crtc_mask);
4208
4209 goto found;
4210 }
4211
4212 if (IS_BROXTON(dev_priv->dev)) {
4213 /* PLL is attached to port in bxt */
4214 struct intel_encoder *encoder;
4215 struct intel_digital_port *intel_dig_port;
4216
4217 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4218 if (WARN_ON(!encoder))
4219 return NULL;
4220
4221 intel_dig_port = enc_to_dig_port(&encoder->base);
4222 /* 1:1 mapping between ports and PLLs */
4223 i = (enum intel_dpll_id)intel_dig_port->port;
4224 pll = &dev_priv->shared_dplls[i];
4225 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4226 crtc->base.base.id, pll->name);
4227 WARN_ON(pll->new_config->crtc_mask);
4228
4229 goto found;
4230 }
4231
4232 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4233 pll = &dev_priv->shared_dplls[i];
4234
4235 /* Only want to check enabled timings first */
4236 if (pll->new_config->crtc_mask == 0)
4237 continue;
4238
4239 if (memcmp(&crtc_state->dpll_hw_state,
4240 &pll->new_config->hw_state,
4241 sizeof(pll->new_config->hw_state)) == 0) {
4242 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4243 crtc->base.base.id, pll->name,
4244 pll->new_config->crtc_mask,
4245 pll->active);
4246 goto found;
4247 }
4248 }
4249
4250 /* Ok no matching timings, maybe there's a free one? */
4251 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4252 pll = &dev_priv->shared_dplls[i];
4253 if (pll->new_config->crtc_mask == 0) {
4254 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4255 crtc->base.base.id, pll->name);
4256 goto found;
4257 }
4258 }
4259
4260 return NULL;
4261
4262 found:
4263 if (pll->new_config->crtc_mask == 0)
4264 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4265
4266 crtc_state->shared_dpll = i;
4267 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4268 pipe_name(crtc->pipe));
4269
4270 pll->new_config->crtc_mask |= 1 << crtc->pipe;
4271
4272 return pll;
4273 }
4274
4275 /**
4276 * intel_shared_dpll_start_config - start a new PLL staged config
4277 * @dev_priv: DRM device
4278 * @clear_pipes: mask of pipes that will have their PLLs freed
4279 *
4280 * Starts a new PLL staged config, copying the current config but
4281 * releasing the references of pipes specified in clear_pipes.
4282 */
4283 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4284 unsigned clear_pipes)
4285 {
4286 struct intel_shared_dpll *pll;
4287 enum intel_dpll_id i;
4288
4289 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4290 pll = &dev_priv->shared_dplls[i];
4291
4292 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4293 GFP_KERNEL);
4294 if (!pll->new_config)
4295 goto cleanup;
4296
4297 pll->new_config->crtc_mask &= ~clear_pipes;
4298 }
4299
4300 return 0;
4301
4302 cleanup:
4303 while (--i >= 0) {
4304 pll = &dev_priv->shared_dplls[i];
4305 kfree(pll->new_config);
4306 pll->new_config = NULL;
4307 }
4308
4309 return -ENOMEM;
4310 }
4311
4312 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4313 {
4314 struct intel_shared_dpll *pll;
4315 enum intel_dpll_id i;
4316
4317 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4318 pll = &dev_priv->shared_dplls[i];
4319
4320 WARN_ON(pll->new_config == &pll->config);
4321
4322 pll->config = *pll->new_config;
4323 kfree(pll->new_config);
4324 pll->new_config = NULL;
4325 }
4326 }
4327
4328 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4329 {
4330 struct intel_shared_dpll *pll;
4331 enum intel_dpll_id i;
4332
4333 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4334 pll = &dev_priv->shared_dplls[i];
4335
4336 WARN_ON(pll->new_config == &pll->config);
4337
4338 kfree(pll->new_config);
4339 pll->new_config = NULL;
4340 }
4341 }
4342
4343 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4344 {
4345 struct drm_i915_private *dev_priv = dev->dev_private;
4346 int dslreg = PIPEDSL(pipe);
4347 u32 temp;
4348
4349 temp = I915_READ(dslreg);
4350 udelay(500);
4351 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4352 if (wait_for(I915_READ(dslreg) != temp, 5))
4353 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4354 }
4355 }
4356
4357 /**
4358 * skl_update_scaler_users - Stages update to crtc's scaler state
4359 * @intel_crtc: crtc
4360 * @crtc_state: crtc_state
4361 * @plane: plane (NULL indicates crtc is requesting update)
4362 * @plane_state: plane's state
4363 * @force_detach: request unconditional detachment of scaler
4364 *
4365 * This function updates scaler state for requested plane or crtc.
4366 * To request scaler usage update for a plane, caller shall pass plane pointer.
4367 * To request scaler usage update for crtc, caller shall pass plane pointer
4368 * as NULL.
4369 *
4370 * Return
4371 * 0 - scaler_usage updated successfully
4372 * error - requested scaling cannot be supported or other error condition
4373 */
4374 int
4375 skl_update_scaler_users(
4376 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4377 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4378 int force_detach)
4379 {
4380 int need_scaling;
4381 int idx;
4382 int src_w, src_h, dst_w, dst_h;
4383 int *scaler_id;
4384 struct drm_framebuffer *fb;
4385 struct intel_crtc_scaler_state *scaler_state;
4386
4387 if (!intel_crtc || !crtc_state)
4388 return 0;
4389
4390 scaler_state = &crtc_state->scaler_state;
4391
4392 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4393 fb = intel_plane ? plane_state->base.fb : NULL;
4394
4395 if (intel_plane) {
4396 src_w = drm_rect_width(&plane_state->src) >> 16;
4397 src_h = drm_rect_height(&plane_state->src) >> 16;
4398 dst_w = drm_rect_width(&plane_state->dst);
4399 dst_h = drm_rect_height(&plane_state->dst);
4400 scaler_id = &plane_state->scaler_id;
4401 } else {
4402 struct drm_display_mode *adjusted_mode =
4403 &crtc_state->base.adjusted_mode;
4404 src_w = crtc_state->pipe_src_w;
4405 src_h = crtc_state->pipe_src_h;
4406 dst_w = adjusted_mode->hdisplay;
4407 dst_h = adjusted_mode->vdisplay;
4408 scaler_id = &scaler_state->scaler_id;
4409 }
4410 need_scaling = (src_w != dst_w || src_h != dst_h);
4411
4412 /*
4413 * if plane is being disabled or scaler is no more required or force detach
4414 * - free scaler binded to this plane/crtc
4415 * - in order to do this, update crtc->scaler_usage
4416 *
4417 * Here scaler state in crtc_state is set free so that
4418 * scaler can be assigned to other user. Actual register
4419 * update to free the scaler is done in plane/panel-fit programming.
4420 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4421 */
4422 if (force_detach || !need_scaling || (intel_plane &&
4423 (!fb || !plane_state->visible))) {
4424 if (*scaler_id >= 0) {
4425 scaler_state->scaler_users &= ~(1 << idx);
4426 scaler_state->scalers[*scaler_id].in_use = 0;
4427
4428 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4429 "crtc_state = %p scaler_users = 0x%x\n",
4430 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4431 intel_plane ? intel_plane->base.base.id :
4432 intel_crtc->base.base.id, crtc_state,
4433 scaler_state->scaler_users);
4434 *scaler_id = -1;
4435 }
4436 return 0;
4437 }
4438
4439 /* range checks */
4440 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4441 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4442
4443 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4444 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4445 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4446 "size is out of scaler range\n",
4447 intel_plane ? "PLANE" : "CRTC",
4448 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4449 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4450 return -EINVAL;
4451 }
4452
4453 /* check colorkey */
4454 if (intel_plane && intel_plane->ckey.flags != I915_SET_COLORKEY_NONE) {
4455 DRM_DEBUG_KMS("PLANE:%d scaling with color key not allowed",
4456 intel_plane->base.base.id);
4457 return -EINVAL;
4458 }
4459
4460 /* Check src format */
4461 if (intel_plane) {
4462 switch (fb->pixel_format) {
4463 case DRM_FORMAT_RGB565:
4464 case DRM_FORMAT_XBGR8888:
4465 case DRM_FORMAT_XRGB8888:
4466 case DRM_FORMAT_ABGR8888:
4467 case DRM_FORMAT_ARGB8888:
4468 case DRM_FORMAT_XRGB2101010:
4469 case DRM_FORMAT_ARGB2101010:
4470 case DRM_FORMAT_XBGR2101010:
4471 case DRM_FORMAT_ABGR2101010:
4472 case DRM_FORMAT_YUYV:
4473 case DRM_FORMAT_YVYU:
4474 case DRM_FORMAT_UYVY:
4475 case DRM_FORMAT_VYUY:
4476 break;
4477 default:
4478 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4479 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4480 return -EINVAL;
4481 }
4482 }
4483
4484 /* mark this plane as a scaler user in crtc_state */
4485 scaler_state->scaler_users |= (1 << idx);
4486 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4487 "crtc_state = %p scaler_users = 0x%x\n",
4488 intel_plane ? "PLANE" : "CRTC",
4489 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4490 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4491 return 0;
4492 }
4493
4494 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4495 {
4496 struct drm_device *dev = crtc->base.dev;
4497 struct drm_i915_private *dev_priv = dev->dev_private;
4498 int pipe = crtc->pipe;
4499 struct intel_crtc_scaler_state *scaler_state =
4500 &crtc->config->scaler_state;
4501
4502 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4503
4504 /* To update pfit, first update scaler state */
4505 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4506 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4507 skl_detach_scalers(crtc);
4508 if (!enable)
4509 return;
4510
4511 if (crtc->config->pch_pfit.enabled) {
4512 int id;
4513
4514 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4515 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4516 return;
4517 }
4518
4519 id = scaler_state->scaler_id;
4520 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4521 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4522 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4523 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4524
4525 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4526 }
4527 }
4528
4529 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4530 {
4531 struct drm_device *dev = crtc->base.dev;
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533 int pipe = crtc->pipe;
4534
4535 if (crtc->config->pch_pfit.enabled) {
4536 /* Force use of hard-coded filter coefficients
4537 * as some pre-programmed values are broken,
4538 * e.g. x201.
4539 */
4540 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4541 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4542 PF_PIPE_SEL_IVB(pipe));
4543 else
4544 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4545 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4546 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4547 }
4548 }
4549
4550 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4551 {
4552 struct drm_device *dev = crtc->dev;
4553 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4554 struct drm_plane *plane;
4555 struct intel_plane *intel_plane;
4556
4557 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4558 intel_plane = to_intel_plane(plane);
4559 if (intel_plane->pipe == pipe)
4560 intel_plane_restore(&intel_plane->base);
4561 }
4562 }
4563
4564 /*
4565 * Disable a plane internally without actually modifying the plane's state.
4566 * This will allow us to easily restore the plane later by just reprogramming
4567 * its state.
4568 */
4569 static void disable_plane_internal(struct drm_plane *plane)
4570 {
4571 struct intel_plane *intel_plane = to_intel_plane(plane);
4572 struct drm_plane_state *state =
4573 plane->funcs->atomic_duplicate_state(plane);
4574 struct intel_plane_state *intel_state = to_intel_plane_state(state);
4575
4576 intel_state->visible = false;
4577 intel_plane->commit_plane(plane, intel_state);
4578
4579 intel_plane_destroy_state(plane, state);
4580 }
4581
4582 static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4583 {
4584 struct drm_device *dev = crtc->dev;
4585 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4586 struct drm_plane *plane;
4587 struct intel_plane *intel_plane;
4588
4589 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4590 intel_plane = to_intel_plane(plane);
4591 if (plane->fb && intel_plane->pipe == pipe)
4592 disable_plane_internal(plane);
4593 }
4594 }
4595
4596 void hsw_enable_ips(struct intel_crtc *crtc)
4597 {
4598 struct drm_device *dev = crtc->base.dev;
4599 struct drm_i915_private *dev_priv = dev->dev_private;
4600
4601 if (!crtc->config->ips_enabled)
4602 return;
4603
4604 /* We can only enable IPS after we enable a plane and wait for a vblank */
4605 intel_wait_for_vblank(dev, crtc->pipe);
4606
4607 assert_plane_enabled(dev_priv, crtc->plane);
4608 if (IS_BROADWELL(dev)) {
4609 mutex_lock(&dev_priv->rps.hw_lock);
4610 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4611 mutex_unlock(&dev_priv->rps.hw_lock);
4612 /* Quoting Art Runyan: "its not safe to expect any particular
4613 * value in IPS_CTL bit 31 after enabling IPS through the
4614 * mailbox." Moreover, the mailbox may return a bogus state,
4615 * so we need to just enable it and continue on.
4616 */
4617 } else {
4618 I915_WRITE(IPS_CTL, IPS_ENABLE);
4619 /* The bit only becomes 1 in the next vblank, so this wait here
4620 * is essentially intel_wait_for_vblank. If we don't have this
4621 * and don't wait for vblanks until the end of crtc_enable, then
4622 * the HW state readout code will complain that the expected
4623 * IPS_CTL value is not the one we read. */
4624 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4625 DRM_ERROR("Timed out waiting for IPS enable\n");
4626 }
4627 }
4628
4629 void hsw_disable_ips(struct intel_crtc *crtc)
4630 {
4631 struct drm_device *dev = crtc->base.dev;
4632 struct drm_i915_private *dev_priv = dev->dev_private;
4633
4634 if (!crtc->config->ips_enabled)
4635 return;
4636
4637 assert_plane_enabled(dev_priv, crtc->plane);
4638 if (IS_BROADWELL(dev)) {
4639 mutex_lock(&dev_priv->rps.hw_lock);
4640 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4641 mutex_unlock(&dev_priv->rps.hw_lock);
4642 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4643 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4644 DRM_ERROR("Timed out waiting for IPS disable\n");
4645 } else {
4646 I915_WRITE(IPS_CTL, 0);
4647 POSTING_READ(IPS_CTL);
4648 }
4649
4650 /* We need to wait for a vblank before we can disable the plane. */
4651 intel_wait_for_vblank(dev, crtc->pipe);
4652 }
4653
4654 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4655 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4656 {
4657 struct drm_device *dev = crtc->dev;
4658 struct drm_i915_private *dev_priv = dev->dev_private;
4659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4660 enum pipe pipe = intel_crtc->pipe;
4661 int palreg = PALETTE(pipe);
4662 int i;
4663 bool reenable_ips = false;
4664
4665 /* The clocks have to be on to load the palette. */
4666 if (!crtc->state->enable || !intel_crtc->active)
4667 return;
4668
4669 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4670 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4671 assert_dsi_pll_enabled(dev_priv);
4672 else
4673 assert_pll_enabled(dev_priv, pipe);
4674 }
4675
4676 /* use legacy palette for Ironlake */
4677 if (!HAS_GMCH_DISPLAY(dev))
4678 palreg = LGC_PALETTE(pipe);
4679
4680 /* Workaround : Do not read or write the pipe palette/gamma data while
4681 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4682 */
4683 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4684 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4685 GAMMA_MODE_MODE_SPLIT)) {
4686 hsw_disable_ips(intel_crtc);
4687 reenable_ips = true;
4688 }
4689
4690 for (i = 0; i < 256; i++) {
4691 I915_WRITE(palreg + 4 * i,
4692 (intel_crtc->lut_r[i] << 16) |
4693 (intel_crtc->lut_g[i] << 8) |
4694 intel_crtc->lut_b[i]);
4695 }
4696
4697 if (reenable_ips)
4698 hsw_enable_ips(intel_crtc);
4699 }
4700
4701 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4702 {
4703 if (!enable && intel_crtc->overlay) {
4704 struct drm_device *dev = intel_crtc->base.dev;
4705 struct drm_i915_private *dev_priv = dev->dev_private;
4706
4707 mutex_lock(&dev->struct_mutex);
4708 dev_priv->mm.interruptible = false;
4709 (void) intel_overlay_switch_off(intel_crtc->overlay);
4710 dev_priv->mm.interruptible = true;
4711 mutex_unlock(&dev->struct_mutex);
4712 }
4713
4714 /* Let userspace switch the overlay on again. In most cases userspace
4715 * has to recompute where to put it anyway.
4716 */
4717 }
4718
4719 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4720 {
4721 struct drm_device *dev = crtc->dev;
4722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4723 int pipe = intel_crtc->pipe;
4724
4725 intel_enable_primary_hw_plane(crtc->primary, crtc);
4726 intel_enable_sprite_planes(crtc);
4727 intel_crtc_update_cursor(crtc, true);
4728 intel_crtc_dpms_overlay(intel_crtc, true);
4729
4730 hsw_enable_ips(intel_crtc);
4731
4732 mutex_lock(&dev->struct_mutex);
4733 intel_fbc_update(dev);
4734 mutex_unlock(&dev->struct_mutex);
4735
4736 /*
4737 * FIXME: Once we grow proper nuclear flip support out of this we need
4738 * to compute the mask of flip planes precisely. For the time being
4739 * consider this a flip from a NULL plane.
4740 */
4741 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4742 }
4743
4744 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4745 {
4746 struct drm_device *dev = crtc->dev;
4747 struct drm_i915_private *dev_priv = dev->dev_private;
4748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4749 int pipe = intel_crtc->pipe;
4750
4751 intel_crtc_wait_for_pending_flips(crtc);
4752
4753 if (dev_priv->fbc.crtc == intel_crtc)
4754 intel_fbc_disable(dev);
4755
4756 hsw_disable_ips(intel_crtc);
4757
4758 intel_crtc_dpms_overlay(intel_crtc, false);
4759 intel_crtc_update_cursor(crtc, false);
4760 intel_disable_sprite_planes(crtc);
4761 intel_disable_primary_hw_plane(crtc->primary, crtc);
4762
4763 /*
4764 * FIXME: Once we grow proper nuclear flip support out of this we need
4765 * to compute the mask of flip planes precisely. For the time being
4766 * consider this a flip to a NULL plane.
4767 */
4768 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4769 }
4770
4771 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4772 {
4773 struct drm_device *dev = crtc->dev;
4774 struct drm_i915_private *dev_priv = dev->dev_private;
4775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4776 struct intel_encoder *encoder;
4777 int pipe = intel_crtc->pipe;
4778
4779 WARN_ON(!crtc->state->enable);
4780
4781 if (intel_crtc->active)
4782 return;
4783
4784 if (intel_crtc->config->has_pch_encoder)
4785 intel_prepare_shared_dpll(intel_crtc);
4786
4787 if (intel_crtc->config->has_dp_encoder)
4788 intel_dp_set_m_n(intel_crtc, M1_N1);
4789
4790 intel_set_pipe_timings(intel_crtc);
4791
4792 if (intel_crtc->config->has_pch_encoder) {
4793 intel_cpu_transcoder_set_m_n(intel_crtc,
4794 &intel_crtc->config->fdi_m_n, NULL);
4795 }
4796
4797 ironlake_set_pipeconf(crtc);
4798
4799 intel_crtc->active = true;
4800
4801 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4802 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4803
4804 for_each_encoder_on_crtc(dev, crtc, encoder)
4805 if (encoder->pre_enable)
4806 encoder->pre_enable(encoder);
4807
4808 if (intel_crtc->config->has_pch_encoder) {
4809 /* Note: FDI PLL enabling _must_ be done before we enable the
4810 * cpu pipes, hence this is separate from all the other fdi/pch
4811 * enabling. */
4812 ironlake_fdi_pll_enable(intel_crtc);
4813 } else {
4814 assert_fdi_tx_disabled(dev_priv, pipe);
4815 assert_fdi_rx_disabled(dev_priv, pipe);
4816 }
4817
4818 ironlake_pfit_enable(intel_crtc);
4819
4820 /*
4821 * On ILK+ LUT must be loaded before the pipe is running but with
4822 * clocks enabled
4823 */
4824 intel_crtc_load_lut(crtc);
4825
4826 intel_update_watermarks(crtc);
4827 intel_enable_pipe(intel_crtc);
4828
4829 if (intel_crtc->config->has_pch_encoder)
4830 ironlake_pch_enable(crtc);
4831
4832 assert_vblank_disabled(crtc);
4833 drm_crtc_vblank_on(crtc);
4834
4835 for_each_encoder_on_crtc(dev, crtc, encoder)
4836 encoder->enable(encoder);
4837
4838 if (HAS_PCH_CPT(dev))
4839 cpt_verify_modeset(dev, intel_crtc->pipe);
4840
4841 intel_crtc_enable_planes(crtc);
4842 }
4843
4844 /* IPS only exists on ULT machines and is tied to pipe A. */
4845 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4846 {
4847 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4848 }
4849
4850 /*
4851 * This implements the workaround described in the "notes" section of the mode
4852 * set sequence documentation. When going from no pipes or single pipe to
4853 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4854 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4855 */
4856 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4857 {
4858 struct drm_device *dev = crtc->base.dev;
4859 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4860
4861 /* We want to get the other_active_crtc only if there's only 1 other
4862 * active crtc. */
4863 for_each_intel_crtc(dev, crtc_it) {
4864 if (!crtc_it->active || crtc_it == crtc)
4865 continue;
4866
4867 if (other_active_crtc)
4868 return;
4869
4870 other_active_crtc = crtc_it;
4871 }
4872 if (!other_active_crtc)
4873 return;
4874
4875 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4876 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4877 }
4878
4879 static void haswell_crtc_enable(struct drm_crtc *crtc)
4880 {
4881 struct drm_device *dev = crtc->dev;
4882 struct drm_i915_private *dev_priv = dev->dev_private;
4883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4884 struct intel_encoder *encoder;
4885 int pipe = intel_crtc->pipe;
4886
4887 WARN_ON(!crtc->state->enable);
4888
4889 if (intel_crtc->active)
4890 return;
4891
4892 if (intel_crtc_to_shared_dpll(intel_crtc))
4893 intel_enable_shared_dpll(intel_crtc);
4894
4895 if (intel_crtc->config->has_dp_encoder)
4896 intel_dp_set_m_n(intel_crtc, M1_N1);
4897
4898 intel_set_pipe_timings(intel_crtc);
4899
4900 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4901 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4902 intel_crtc->config->pixel_multiplier - 1);
4903 }
4904
4905 if (intel_crtc->config->has_pch_encoder) {
4906 intel_cpu_transcoder_set_m_n(intel_crtc,
4907 &intel_crtc->config->fdi_m_n, NULL);
4908 }
4909
4910 haswell_set_pipeconf(crtc);
4911
4912 intel_set_pipe_csc(crtc);
4913
4914 intel_crtc->active = true;
4915
4916 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4917 for_each_encoder_on_crtc(dev, crtc, encoder)
4918 if (encoder->pre_enable)
4919 encoder->pre_enable(encoder);
4920
4921 if (intel_crtc->config->has_pch_encoder) {
4922 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4923 true);
4924 dev_priv->display.fdi_link_train(crtc);
4925 }
4926
4927 intel_ddi_enable_pipe_clock(intel_crtc);
4928
4929 if (INTEL_INFO(dev)->gen == 9)
4930 skylake_pfit_update(intel_crtc, 1);
4931 else if (INTEL_INFO(dev)->gen < 9)
4932 ironlake_pfit_enable(intel_crtc);
4933 else
4934 MISSING_CASE(INTEL_INFO(dev)->gen);
4935
4936 /*
4937 * On ILK+ LUT must be loaded before the pipe is running but with
4938 * clocks enabled
4939 */
4940 intel_crtc_load_lut(crtc);
4941
4942 intel_ddi_set_pipe_settings(crtc);
4943 intel_ddi_enable_transcoder_func(crtc);
4944
4945 intel_update_watermarks(crtc);
4946 intel_enable_pipe(intel_crtc);
4947
4948 if (intel_crtc->config->has_pch_encoder)
4949 lpt_pch_enable(crtc);
4950
4951 if (intel_crtc->config->dp_encoder_is_mst)
4952 intel_ddi_set_vc_payload_alloc(crtc, true);
4953
4954 assert_vblank_disabled(crtc);
4955 drm_crtc_vblank_on(crtc);
4956
4957 for_each_encoder_on_crtc(dev, crtc, encoder) {
4958 encoder->enable(encoder);
4959 intel_opregion_notify_encoder(encoder, true);
4960 }
4961
4962 /* If we change the relative order between pipe/planes enabling, we need
4963 * to change the workaround. */
4964 haswell_mode_set_planes_workaround(intel_crtc);
4965 intel_crtc_enable_planes(crtc);
4966 }
4967
4968 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4969 {
4970 struct drm_device *dev = crtc->base.dev;
4971 struct drm_i915_private *dev_priv = dev->dev_private;
4972 int pipe = crtc->pipe;
4973
4974 /* To avoid upsetting the power well on haswell only disable the pfit if
4975 * it's in use. The hw state code will make sure we get this right. */
4976 if (crtc->config->pch_pfit.enabled) {
4977 I915_WRITE(PF_CTL(pipe), 0);
4978 I915_WRITE(PF_WIN_POS(pipe), 0);
4979 I915_WRITE(PF_WIN_SZ(pipe), 0);
4980 }
4981 }
4982
4983 static void ironlake_crtc_disable(struct drm_crtc *crtc)
4984 {
4985 struct drm_device *dev = crtc->dev;
4986 struct drm_i915_private *dev_priv = dev->dev_private;
4987 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4988 struct intel_encoder *encoder;
4989 int pipe = intel_crtc->pipe;
4990 u32 reg, temp;
4991
4992 if (!intel_crtc->active)
4993 return;
4994
4995 intel_crtc_disable_planes(crtc);
4996
4997 for_each_encoder_on_crtc(dev, crtc, encoder)
4998 encoder->disable(encoder);
4999
5000 drm_crtc_vblank_off(crtc);
5001 assert_vblank_disabled(crtc);
5002
5003 if (intel_crtc->config->has_pch_encoder)
5004 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5005
5006 intel_disable_pipe(intel_crtc);
5007
5008 ironlake_pfit_disable(intel_crtc);
5009
5010 for_each_encoder_on_crtc(dev, crtc, encoder)
5011 if (encoder->post_disable)
5012 encoder->post_disable(encoder);
5013
5014 if (intel_crtc->config->has_pch_encoder) {
5015 ironlake_fdi_disable(crtc);
5016
5017 ironlake_disable_pch_transcoder(dev_priv, pipe);
5018
5019 if (HAS_PCH_CPT(dev)) {
5020 /* disable TRANS_DP_CTL */
5021 reg = TRANS_DP_CTL(pipe);
5022 temp = I915_READ(reg);
5023 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5024 TRANS_DP_PORT_SEL_MASK);
5025 temp |= TRANS_DP_PORT_SEL_NONE;
5026 I915_WRITE(reg, temp);
5027
5028 /* disable DPLL_SEL */
5029 temp = I915_READ(PCH_DPLL_SEL);
5030 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5031 I915_WRITE(PCH_DPLL_SEL, temp);
5032 }
5033
5034 /* disable PCH DPLL */
5035 intel_disable_shared_dpll(intel_crtc);
5036
5037 ironlake_fdi_pll_disable(intel_crtc);
5038 }
5039
5040 intel_crtc->active = false;
5041 intel_update_watermarks(crtc);
5042
5043 mutex_lock(&dev->struct_mutex);
5044 intel_fbc_update(dev);
5045 mutex_unlock(&dev->struct_mutex);
5046 }
5047
5048 static void haswell_crtc_disable(struct drm_crtc *crtc)
5049 {
5050 struct drm_device *dev = crtc->dev;
5051 struct drm_i915_private *dev_priv = dev->dev_private;
5052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5053 struct intel_encoder *encoder;
5054 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5055
5056 if (!intel_crtc->active)
5057 return;
5058
5059 intel_crtc_disable_planes(crtc);
5060
5061 for_each_encoder_on_crtc(dev, crtc, encoder) {
5062 intel_opregion_notify_encoder(encoder, false);
5063 encoder->disable(encoder);
5064 }
5065
5066 drm_crtc_vblank_off(crtc);
5067 assert_vblank_disabled(crtc);
5068
5069 if (intel_crtc->config->has_pch_encoder)
5070 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5071 false);
5072 intel_disable_pipe(intel_crtc);
5073
5074 if (intel_crtc->config->dp_encoder_is_mst)
5075 intel_ddi_set_vc_payload_alloc(crtc, false);
5076
5077 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5078
5079 if (INTEL_INFO(dev)->gen == 9)
5080 skylake_pfit_update(intel_crtc, 0);
5081 else if (INTEL_INFO(dev)->gen < 9)
5082 ironlake_pfit_disable(intel_crtc);
5083 else
5084 MISSING_CASE(INTEL_INFO(dev)->gen);
5085
5086 intel_ddi_disable_pipe_clock(intel_crtc);
5087
5088 if (intel_crtc->config->has_pch_encoder) {
5089 lpt_disable_pch_transcoder(dev_priv);
5090 intel_ddi_fdi_disable(crtc);
5091 }
5092
5093 for_each_encoder_on_crtc(dev, crtc, encoder)
5094 if (encoder->post_disable)
5095 encoder->post_disable(encoder);
5096
5097 intel_crtc->active = false;
5098 intel_update_watermarks(crtc);
5099
5100 mutex_lock(&dev->struct_mutex);
5101 intel_fbc_update(dev);
5102 mutex_unlock(&dev->struct_mutex);
5103
5104 if (intel_crtc_to_shared_dpll(intel_crtc))
5105 intel_disable_shared_dpll(intel_crtc);
5106 }
5107
5108 static void ironlake_crtc_off(struct drm_crtc *crtc)
5109 {
5110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5111 intel_put_shared_dpll(intel_crtc);
5112 }
5113
5114
5115 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5116 {
5117 struct drm_device *dev = crtc->base.dev;
5118 struct drm_i915_private *dev_priv = dev->dev_private;
5119 struct intel_crtc_state *pipe_config = crtc->config;
5120
5121 if (!pipe_config->gmch_pfit.control)
5122 return;
5123
5124 /*
5125 * The panel fitter should only be adjusted whilst the pipe is disabled,
5126 * according to register description and PRM.
5127 */
5128 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5129 assert_pipe_disabled(dev_priv, crtc->pipe);
5130
5131 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5132 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5133
5134 /* Border color in case we don't scale up to the full screen. Black by
5135 * default, change to something else for debugging. */
5136 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5137 }
5138
5139 static enum intel_display_power_domain port_to_power_domain(enum port port)
5140 {
5141 switch (port) {
5142 case PORT_A:
5143 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5144 case PORT_B:
5145 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5146 case PORT_C:
5147 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5148 case PORT_D:
5149 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5150 default:
5151 WARN_ON_ONCE(1);
5152 return POWER_DOMAIN_PORT_OTHER;
5153 }
5154 }
5155
5156 #define for_each_power_domain(domain, mask) \
5157 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5158 if ((1 << (domain)) & (mask))
5159
5160 enum intel_display_power_domain
5161 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5162 {
5163 struct drm_device *dev = intel_encoder->base.dev;
5164 struct intel_digital_port *intel_dig_port;
5165
5166 switch (intel_encoder->type) {
5167 case INTEL_OUTPUT_UNKNOWN:
5168 /* Only DDI platforms should ever use this output type */
5169 WARN_ON_ONCE(!HAS_DDI(dev));
5170 case INTEL_OUTPUT_DISPLAYPORT:
5171 case INTEL_OUTPUT_HDMI:
5172 case INTEL_OUTPUT_EDP:
5173 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5174 return port_to_power_domain(intel_dig_port->port);
5175 case INTEL_OUTPUT_DP_MST:
5176 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5177 return port_to_power_domain(intel_dig_port->port);
5178 case INTEL_OUTPUT_ANALOG:
5179 return POWER_DOMAIN_PORT_CRT;
5180 case INTEL_OUTPUT_DSI:
5181 return POWER_DOMAIN_PORT_DSI;
5182 default:
5183 return POWER_DOMAIN_PORT_OTHER;
5184 }
5185 }
5186
5187 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5188 {
5189 struct drm_device *dev = crtc->dev;
5190 struct intel_encoder *intel_encoder;
5191 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5192 enum pipe pipe = intel_crtc->pipe;
5193 unsigned long mask;
5194 enum transcoder transcoder;
5195
5196 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5197
5198 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5199 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5200 if (intel_crtc->config->pch_pfit.enabled ||
5201 intel_crtc->config->pch_pfit.force_thru)
5202 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5203
5204 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5205 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5206
5207 return mask;
5208 }
5209
5210 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5211 {
5212 struct drm_device *dev = state->dev;
5213 struct drm_i915_private *dev_priv = dev->dev_private;
5214 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5215 struct intel_crtc *crtc;
5216
5217 /*
5218 * First get all needed power domains, then put all unneeded, to avoid
5219 * any unnecessary toggling of the power wells.
5220 */
5221 for_each_intel_crtc(dev, crtc) {
5222 enum intel_display_power_domain domain;
5223
5224 if (!crtc->base.state->enable)
5225 continue;
5226
5227 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5228
5229 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5230 intel_display_power_get(dev_priv, domain);
5231 }
5232
5233 if (dev_priv->display.modeset_global_resources)
5234 dev_priv->display.modeset_global_resources(state);
5235
5236 for_each_intel_crtc(dev, crtc) {
5237 enum intel_display_power_domain domain;
5238
5239 for_each_power_domain(domain, crtc->enabled_power_domains)
5240 intel_display_power_put(dev_priv, domain);
5241
5242 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5243 }
5244
5245 intel_display_set_init_power(dev_priv, false);
5246 }
5247
5248 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5249 {
5250 struct drm_i915_private *dev_priv = dev->dev_private;
5251 uint32_t divider;
5252 uint32_t ratio;
5253 uint32_t current_freq;
5254 int ret;
5255
5256 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5257 switch (frequency) {
5258 case 144000:
5259 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5260 ratio = BXT_DE_PLL_RATIO(60);
5261 break;
5262 case 288000:
5263 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5264 ratio = BXT_DE_PLL_RATIO(60);
5265 break;
5266 case 384000:
5267 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5268 ratio = BXT_DE_PLL_RATIO(60);
5269 break;
5270 case 576000:
5271 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5272 ratio = BXT_DE_PLL_RATIO(60);
5273 break;
5274 case 624000:
5275 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5276 ratio = BXT_DE_PLL_RATIO(65);
5277 break;
5278 case 19200:
5279 /*
5280 * Bypass frequency with DE PLL disabled. Init ratio, divider
5281 * to suppress GCC warning.
5282 */
5283 ratio = 0;
5284 divider = 0;
5285 break;
5286 default:
5287 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5288
5289 return;
5290 }
5291
5292 mutex_lock(&dev_priv->rps.hw_lock);
5293 /* Inform power controller of upcoming frequency change */
5294 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5295 0x80000000);
5296 mutex_unlock(&dev_priv->rps.hw_lock);
5297
5298 if (ret) {
5299 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5300 ret, frequency);
5301 return;
5302 }
5303
5304 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5305 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5306 current_freq = current_freq * 500 + 1000;
5307
5308 /*
5309 * DE PLL has to be disabled when
5310 * - setting to 19.2MHz (bypass, PLL isn't used)
5311 * - before setting to 624MHz (PLL needs toggling)
5312 * - before setting to any frequency from 624MHz (PLL needs toggling)
5313 */
5314 if (frequency == 19200 || frequency == 624000 ||
5315 current_freq == 624000) {
5316 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5317 /* Timeout 200us */
5318 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5319 1))
5320 DRM_ERROR("timout waiting for DE PLL unlock\n");
5321 }
5322
5323 if (frequency != 19200) {
5324 uint32_t val;
5325
5326 val = I915_READ(BXT_DE_PLL_CTL);
5327 val &= ~BXT_DE_PLL_RATIO_MASK;
5328 val |= ratio;
5329 I915_WRITE(BXT_DE_PLL_CTL, val);
5330
5331 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5332 /* Timeout 200us */
5333 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5334 DRM_ERROR("timeout waiting for DE PLL lock\n");
5335
5336 val = I915_READ(CDCLK_CTL);
5337 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5338 val |= divider;
5339 /*
5340 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5341 * enable otherwise.
5342 */
5343 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5344 if (frequency >= 500000)
5345 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5346
5347 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5348 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5349 val |= (frequency - 1000) / 500;
5350 I915_WRITE(CDCLK_CTL, val);
5351 }
5352
5353 mutex_lock(&dev_priv->rps.hw_lock);
5354 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5355 DIV_ROUND_UP(frequency, 25000));
5356 mutex_unlock(&dev_priv->rps.hw_lock);
5357
5358 if (ret) {
5359 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5360 ret, frequency);
5361 return;
5362 }
5363
5364 dev_priv->cdclk_freq = frequency;
5365 }
5366
5367 void broxton_init_cdclk(struct drm_device *dev)
5368 {
5369 struct drm_i915_private *dev_priv = dev->dev_private;
5370 uint32_t val;
5371
5372 /*
5373 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5374 * or else the reset will hang because there is no PCH to respond.
5375 * Move the handshake programming to initialization sequence.
5376 * Previously was left up to BIOS.
5377 */
5378 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5379 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5380 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5381
5382 /* Enable PG1 for cdclk */
5383 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5384
5385 /* check if cd clock is enabled */
5386 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5387 DRM_DEBUG_KMS("Display already initialized\n");
5388 return;
5389 }
5390
5391 /*
5392 * FIXME:
5393 * - The initial CDCLK needs to be read from VBT.
5394 * Need to make this change after VBT has changes for BXT.
5395 * - check if setting the max (or any) cdclk freq is really necessary
5396 * here, it belongs to modeset time
5397 */
5398 broxton_set_cdclk(dev, 624000);
5399
5400 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5401 udelay(10);
5402
5403 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5404 DRM_ERROR("DBuf power enable timeout!\n");
5405 }
5406
5407 void broxton_uninit_cdclk(struct drm_device *dev)
5408 {
5409 struct drm_i915_private *dev_priv = dev->dev_private;
5410
5411 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5412 udelay(10);
5413
5414 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5415 DRM_ERROR("DBuf power disable timeout!\n");
5416
5417 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5418 broxton_set_cdclk(dev, 19200);
5419
5420 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5421 }
5422
5423 /* returns HPLL frequency in kHz */
5424 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5425 {
5426 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5427
5428 /* Obtain SKU information */
5429 mutex_lock(&dev_priv->dpio_lock);
5430 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5431 CCK_FUSE_HPLL_FREQ_MASK;
5432 mutex_unlock(&dev_priv->dpio_lock);
5433
5434 return vco_freq[hpll_freq] * 1000;
5435 }
5436
5437 static void vlv_update_cdclk(struct drm_device *dev)
5438 {
5439 struct drm_i915_private *dev_priv = dev->dev_private;
5440
5441 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5442 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5443 dev_priv->cdclk_freq);
5444
5445 /*
5446 * Program the gmbus_freq based on the cdclk frequency.
5447 * BSpec erroneously claims we should aim for 4MHz, but
5448 * in fact 1MHz is the correct frequency.
5449 */
5450 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5451 }
5452
5453 /* Adjust CDclk dividers to allow high res or save power if possible */
5454 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5455 {
5456 struct drm_i915_private *dev_priv = dev->dev_private;
5457 u32 val, cmd;
5458
5459 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5460 != dev_priv->cdclk_freq);
5461
5462 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5463 cmd = 2;
5464 else if (cdclk == 266667)
5465 cmd = 1;
5466 else
5467 cmd = 0;
5468
5469 mutex_lock(&dev_priv->rps.hw_lock);
5470 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5471 val &= ~DSPFREQGUAR_MASK;
5472 val |= (cmd << DSPFREQGUAR_SHIFT);
5473 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5474 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5475 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5476 50)) {
5477 DRM_ERROR("timed out waiting for CDclk change\n");
5478 }
5479 mutex_unlock(&dev_priv->rps.hw_lock);
5480
5481 if (cdclk == 400000) {
5482 u32 divider;
5483
5484 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5485
5486 mutex_lock(&dev_priv->dpio_lock);
5487 /* adjust cdclk divider */
5488 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5489 val &= ~DISPLAY_FREQUENCY_VALUES;
5490 val |= divider;
5491 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5492
5493 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5494 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5495 50))
5496 DRM_ERROR("timed out waiting for CDclk change\n");
5497 mutex_unlock(&dev_priv->dpio_lock);
5498 }
5499
5500 mutex_lock(&dev_priv->dpio_lock);
5501 /* adjust self-refresh exit latency value */
5502 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5503 val &= ~0x7f;
5504
5505 /*
5506 * For high bandwidth configs, we set a higher latency in the bunit
5507 * so that the core display fetch happens in time to avoid underruns.
5508 */
5509 if (cdclk == 400000)
5510 val |= 4500 / 250; /* 4.5 usec */
5511 else
5512 val |= 3000 / 250; /* 3.0 usec */
5513 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5514 mutex_unlock(&dev_priv->dpio_lock);
5515
5516 vlv_update_cdclk(dev);
5517 }
5518
5519 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5520 {
5521 struct drm_i915_private *dev_priv = dev->dev_private;
5522 u32 val, cmd;
5523
5524 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5525 != dev_priv->cdclk_freq);
5526
5527 switch (cdclk) {
5528 case 333333:
5529 case 320000:
5530 case 266667:
5531 case 200000:
5532 break;
5533 default:
5534 MISSING_CASE(cdclk);
5535 return;
5536 }
5537
5538 /*
5539 * Specs are full of misinformation, but testing on actual
5540 * hardware has shown that we just need to write the desired
5541 * CCK divider into the Punit register.
5542 */
5543 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5544
5545 mutex_lock(&dev_priv->rps.hw_lock);
5546 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5547 val &= ~DSPFREQGUAR_MASK_CHV;
5548 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5549 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5550 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5551 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5552 50)) {
5553 DRM_ERROR("timed out waiting for CDclk change\n");
5554 }
5555 mutex_unlock(&dev_priv->rps.hw_lock);
5556
5557 vlv_update_cdclk(dev);
5558 }
5559
5560 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5561 int max_pixclk)
5562 {
5563 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
5564 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5565
5566 /*
5567 * Really only a few cases to deal with, as only 4 CDclks are supported:
5568 * 200MHz
5569 * 267MHz
5570 * 320/333MHz (depends on HPLL freq)
5571 * 400MHz (VLV only)
5572 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5573 * of the lower bin and adjust if needed.
5574 *
5575 * We seem to get an unstable or solid color picture at 200MHz.
5576 * Not sure what's wrong. For now use 200MHz only when all pipes
5577 * are off.
5578 */
5579 if (!IS_CHERRYVIEW(dev_priv) &&
5580 max_pixclk > freq_320*limit/100)
5581 return 400000;
5582 else if (max_pixclk > 266667*limit/100)
5583 return freq_320;
5584 else if (max_pixclk > 0)
5585 return 266667;
5586 else
5587 return 200000;
5588 }
5589
5590 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5591 int max_pixclk)
5592 {
5593 /*
5594 * FIXME:
5595 * - remove the guardband, it's not needed on BXT
5596 * - set 19.2MHz bypass frequency if there are no active pipes
5597 */
5598 if (max_pixclk > 576000*9/10)
5599 return 624000;
5600 else if (max_pixclk > 384000*9/10)
5601 return 576000;
5602 else if (max_pixclk > 288000*9/10)
5603 return 384000;
5604 else if (max_pixclk > 144000*9/10)
5605 return 288000;
5606 else
5607 return 144000;
5608 }
5609
5610 /* compute the max pixel clock for new configuration */
5611 static int intel_mode_max_pixclk(struct drm_atomic_state *state)
5612 {
5613 struct drm_device *dev = state->dev;
5614 struct intel_crtc *intel_crtc;
5615 struct intel_crtc_state *crtc_state;
5616 int max_pixclk = 0;
5617
5618 for_each_intel_crtc(dev, intel_crtc) {
5619 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5620 if (IS_ERR(crtc_state))
5621 return PTR_ERR(crtc_state);
5622
5623 if (!crtc_state->base.enable)
5624 continue;
5625
5626 max_pixclk = max(max_pixclk,
5627 crtc_state->base.adjusted_mode.crtc_clock);
5628 }
5629
5630 return max_pixclk;
5631 }
5632
5633 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state,
5634 unsigned *prepare_pipes)
5635 {
5636 struct drm_i915_private *dev_priv = to_i915(state->dev);
5637 struct intel_crtc *intel_crtc;
5638 int max_pixclk = intel_mode_max_pixclk(state);
5639 int cdclk;
5640
5641 if (max_pixclk < 0)
5642 return max_pixclk;
5643
5644 if (IS_VALLEYVIEW(dev_priv))
5645 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5646 else
5647 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5648
5649 if (cdclk == dev_priv->cdclk_freq)
5650 return 0;
5651
5652 /* disable/enable all currently active pipes while we change cdclk */
5653 for_each_intel_crtc(state->dev, intel_crtc)
5654 if (intel_crtc->base.state->enable)
5655 *prepare_pipes |= (1 << intel_crtc->pipe);
5656
5657 return 0;
5658 }
5659
5660 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5661 {
5662 unsigned int credits, default_credits;
5663
5664 if (IS_CHERRYVIEW(dev_priv))
5665 default_credits = PFI_CREDIT(12);
5666 else
5667 default_credits = PFI_CREDIT(8);
5668
5669 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5670 /* CHV suggested value is 31 or 63 */
5671 if (IS_CHERRYVIEW(dev_priv))
5672 credits = PFI_CREDIT_31;
5673 else
5674 credits = PFI_CREDIT(15);
5675 } else {
5676 credits = default_credits;
5677 }
5678
5679 /*
5680 * WA - write default credits before re-programming
5681 * FIXME: should we also set the resend bit here?
5682 */
5683 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5684 default_credits);
5685
5686 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5687 credits | PFI_CREDIT_RESEND);
5688
5689 /*
5690 * FIXME is this guaranteed to clear
5691 * immediately or should we poll for it?
5692 */
5693 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5694 }
5695
5696 static void valleyview_modeset_global_resources(struct drm_atomic_state *state)
5697 {
5698 struct drm_device *dev = state->dev;
5699 struct drm_i915_private *dev_priv = dev->dev_private;
5700 int max_pixclk = intel_mode_max_pixclk(state);
5701 int req_cdclk;
5702
5703 /* The only reason this can fail is if we fail to add the crtc_state
5704 * to the atomic state. But that can't happen since the call to
5705 * intel_mode_max_pixclk() in valleyview_modeset_global_pipes() (which
5706 * can't have failed otherwise the mode set would be aborted) added all
5707 * the states already. */
5708 if (WARN_ON(max_pixclk < 0))
5709 return;
5710
5711 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5712
5713 if (req_cdclk != dev_priv->cdclk_freq) {
5714 /*
5715 * FIXME: We can end up here with all power domains off, yet
5716 * with a CDCLK frequency other than the minimum. To account
5717 * for this take the PIPE-A power domain, which covers the HW
5718 * blocks needed for the following programming. This can be
5719 * removed once it's guaranteed that we get here either with
5720 * the minimum CDCLK set, or the required power domains
5721 * enabled.
5722 */
5723 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5724
5725 if (IS_CHERRYVIEW(dev))
5726 cherryview_set_cdclk(dev, req_cdclk);
5727 else
5728 valleyview_set_cdclk(dev, req_cdclk);
5729
5730 vlv_program_pfi_credits(dev_priv);
5731
5732 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5733 }
5734 }
5735
5736 static void valleyview_crtc_enable(struct drm_crtc *crtc)
5737 {
5738 struct drm_device *dev = crtc->dev;
5739 struct drm_i915_private *dev_priv = to_i915(dev);
5740 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5741 struct intel_encoder *encoder;
5742 int pipe = intel_crtc->pipe;
5743 bool is_dsi;
5744
5745 WARN_ON(!crtc->state->enable);
5746
5747 if (intel_crtc->active)
5748 return;
5749
5750 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5751
5752 if (!is_dsi) {
5753 if (IS_CHERRYVIEW(dev))
5754 chv_prepare_pll(intel_crtc, intel_crtc->config);
5755 else
5756 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5757 }
5758
5759 if (intel_crtc->config->has_dp_encoder)
5760 intel_dp_set_m_n(intel_crtc, M1_N1);
5761
5762 intel_set_pipe_timings(intel_crtc);
5763
5764 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5765 struct drm_i915_private *dev_priv = dev->dev_private;
5766
5767 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5768 I915_WRITE(CHV_CANVAS(pipe), 0);
5769 }
5770
5771 i9xx_set_pipeconf(intel_crtc);
5772
5773 intel_crtc->active = true;
5774
5775 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5776
5777 for_each_encoder_on_crtc(dev, crtc, encoder)
5778 if (encoder->pre_pll_enable)
5779 encoder->pre_pll_enable(encoder);
5780
5781 if (!is_dsi) {
5782 if (IS_CHERRYVIEW(dev))
5783 chv_enable_pll(intel_crtc, intel_crtc->config);
5784 else
5785 vlv_enable_pll(intel_crtc, intel_crtc->config);
5786 }
5787
5788 for_each_encoder_on_crtc(dev, crtc, encoder)
5789 if (encoder->pre_enable)
5790 encoder->pre_enable(encoder);
5791
5792 i9xx_pfit_enable(intel_crtc);
5793
5794 intel_crtc_load_lut(crtc);
5795
5796 intel_update_watermarks(crtc);
5797 intel_enable_pipe(intel_crtc);
5798
5799 assert_vblank_disabled(crtc);
5800 drm_crtc_vblank_on(crtc);
5801
5802 for_each_encoder_on_crtc(dev, crtc, encoder)
5803 encoder->enable(encoder);
5804
5805 intel_crtc_enable_planes(crtc);
5806
5807 /* Underruns don't raise interrupts, so check manually. */
5808 i9xx_check_fifo_underruns(dev_priv);
5809 }
5810
5811 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5812 {
5813 struct drm_device *dev = crtc->base.dev;
5814 struct drm_i915_private *dev_priv = dev->dev_private;
5815
5816 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5817 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5818 }
5819
5820 static void i9xx_crtc_enable(struct drm_crtc *crtc)
5821 {
5822 struct drm_device *dev = crtc->dev;
5823 struct drm_i915_private *dev_priv = to_i915(dev);
5824 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5825 struct intel_encoder *encoder;
5826 int pipe = intel_crtc->pipe;
5827
5828 WARN_ON(!crtc->state->enable);
5829
5830 if (intel_crtc->active)
5831 return;
5832
5833 i9xx_set_pll_dividers(intel_crtc);
5834
5835 if (intel_crtc->config->has_dp_encoder)
5836 intel_dp_set_m_n(intel_crtc, M1_N1);
5837
5838 intel_set_pipe_timings(intel_crtc);
5839
5840 i9xx_set_pipeconf(intel_crtc);
5841
5842 intel_crtc->active = true;
5843
5844 if (!IS_GEN2(dev))
5845 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5846
5847 for_each_encoder_on_crtc(dev, crtc, encoder)
5848 if (encoder->pre_enable)
5849 encoder->pre_enable(encoder);
5850
5851 i9xx_enable_pll(intel_crtc);
5852
5853 i9xx_pfit_enable(intel_crtc);
5854
5855 intel_crtc_load_lut(crtc);
5856
5857 intel_update_watermarks(crtc);
5858 intel_enable_pipe(intel_crtc);
5859
5860 assert_vblank_disabled(crtc);
5861 drm_crtc_vblank_on(crtc);
5862
5863 for_each_encoder_on_crtc(dev, crtc, encoder)
5864 encoder->enable(encoder);
5865
5866 intel_crtc_enable_planes(crtc);
5867
5868 /*
5869 * Gen2 reports pipe underruns whenever all planes are disabled.
5870 * So don't enable underrun reporting before at least some planes
5871 * are enabled.
5872 * FIXME: Need to fix the logic to work when we turn off all planes
5873 * but leave the pipe running.
5874 */
5875 if (IS_GEN2(dev))
5876 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5877
5878 /* Underruns don't raise interrupts, so check manually. */
5879 i9xx_check_fifo_underruns(dev_priv);
5880 }
5881
5882 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5883 {
5884 struct drm_device *dev = crtc->base.dev;
5885 struct drm_i915_private *dev_priv = dev->dev_private;
5886
5887 if (!crtc->config->gmch_pfit.control)
5888 return;
5889
5890 assert_pipe_disabled(dev_priv, crtc->pipe);
5891
5892 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5893 I915_READ(PFIT_CONTROL));
5894 I915_WRITE(PFIT_CONTROL, 0);
5895 }
5896
5897 static void i9xx_crtc_disable(struct drm_crtc *crtc)
5898 {
5899 struct drm_device *dev = crtc->dev;
5900 struct drm_i915_private *dev_priv = dev->dev_private;
5901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5902 struct intel_encoder *encoder;
5903 int pipe = intel_crtc->pipe;
5904
5905 if (!intel_crtc->active)
5906 return;
5907
5908 /*
5909 * Gen2 reports pipe underruns whenever all planes are disabled.
5910 * So diasble underrun reporting before all the planes get disabled.
5911 * FIXME: Need to fix the logic to work when we turn off all planes
5912 * but leave the pipe running.
5913 */
5914 if (IS_GEN2(dev))
5915 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5916
5917 /*
5918 * Vblank time updates from the shadow to live plane control register
5919 * are blocked if the memory self-refresh mode is active at that
5920 * moment. So to make sure the plane gets truly disabled, disable
5921 * first the self-refresh mode. The self-refresh enable bit in turn
5922 * will be checked/applied by the HW only at the next frame start
5923 * event which is after the vblank start event, so we need to have a
5924 * wait-for-vblank between disabling the plane and the pipe.
5925 */
5926 intel_set_memory_cxsr(dev_priv, false);
5927 intel_crtc_disable_planes(crtc);
5928
5929 /*
5930 * On gen2 planes are double buffered but the pipe isn't, so we must
5931 * wait for planes to fully turn off before disabling the pipe.
5932 * We also need to wait on all gmch platforms because of the
5933 * self-refresh mode constraint explained above.
5934 */
5935 intel_wait_for_vblank(dev, pipe);
5936
5937 for_each_encoder_on_crtc(dev, crtc, encoder)
5938 encoder->disable(encoder);
5939
5940 drm_crtc_vblank_off(crtc);
5941 assert_vblank_disabled(crtc);
5942
5943 intel_disable_pipe(intel_crtc);
5944
5945 i9xx_pfit_disable(intel_crtc);
5946
5947 for_each_encoder_on_crtc(dev, crtc, encoder)
5948 if (encoder->post_disable)
5949 encoder->post_disable(encoder);
5950
5951 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5952 if (IS_CHERRYVIEW(dev))
5953 chv_disable_pll(dev_priv, pipe);
5954 else if (IS_VALLEYVIEW(dev))
5955 vlv_disable_pll(dev_priv, pipe);
5956 else
5957 i9xx_disable_pll(intel_crtc);
5958 }
5959
5960 if (!IS_GEN2(dev))
5961 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5962
5963 intel_crtc->active = false;
5964 intel_update_watermarks(crtc);
5965
5966 mutex_lock(&dev->struct_mutex);
5967 intel_fbc_update(dev);
5968 mutex_unlock(&dev->struct_mutex);
5969 }
5970
5971 static void i9xx_crtc_off(struct drm_crtc *crtc)
5972 {
5973 }
5974
5975 /* Master function to enable/disable CRTC and corresponding power wells */
5976 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5977 {
5978 struct drm_device *dev = crtc->dev;
5979 struct drm_i915_private *dev_priv = dev->dev_private;
5980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5981 enum intel_display_power_domain domain;
5982 unsigned long domains;
5983
5984 if (enable) {
5985 if (!intel_crtc->active) {
5986 domains = get_crtc_power_domains(crtc);
5987 for_each_power_domain(domain, domains)
5988 intel_display_power_get(dev_priv, domain);
5989 intel_crtc->enabled_power_domains = domains;
5990
5991 dev_priv->display.crtc_enable(crtc);
5992 }
5993 } else {
5994 if (intel_crtc->active) {
5995 dev_priv->display.crtc_disable(crtc);
5996
5997 domains = intel_crtc->enabled_power_domains;
5998 for_each_power_domain(domain, domains)
5999 intel_display_power_put(dev_priv, domain);
6000 intel_crtc->enabled_power_domains = 0;
6001 }
6002 }
6003 }
6004
6005 /**
6006 * Sets the power management mode of the pipe and plane.
6007 */
6008 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6009 {
6010 struct drm_device *dev = crtc->dev;
6011 struct intel_encoder *intel_encoder;
6012 bool enable = false;
6013
6014 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6015 enable |= intel_encoder->connectors_active;
6016
6017 intel_crtc_control(crtc, enable);
6018 }
6019
6020 static void intel_crtc_disable(struct drm_crtc *crtc)
6021 {
6022 struct drm_device *dev = crtc->dev;
6023 struct drm_connector *connector;
6024 struct drm_i915_private *dev_priv = dev->dev_private;
6025
6026 /* crtc should still be enabled when we disable it. */
6027 WARN_ON(!crtc->state->enable);
6028
6029 dev_priv->display.crtc_disable(crtc);
6030 dev_priv->display.off(crtc);
6031
6032 drm_plane_helper_disable(crtc->primary);
6033
6034 /* Update computed state. */
6035 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6036 if (!connector->encoder || !connector->encoder->crtc)
6037 continue;
6038
6039 if (connector->encoder->crtc != crtc)
6040 continue;
6041
6042 connector->dpms = DRM_MODE_DPMS_OFF;
6043 to_intel_encoder(connector->encoder)->connectors_active = false;
6044 }
6045 }
6046
6047 void intel_encoder_destroy(struct drm_encoder *encoder)
6048 {
6049 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6050
6051 drm_encoder_cleanup(encoder);
6052 kfree(intel_encoder);
6053 }
6054
6055 /* Simple dpms helper for encoders with just one connector, no cloning and only
6056 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6057 * state of the entire output pipe. */
6058 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6059 {
6060 if (mode == DRM_MODE_DPMS_ON) {
6061 encoder->connectors_active = true;
6062
6063 intel_crtc_update_dpms(encoder->base.crtc);
6064 } else {
6065 encoder->connectors_active = false;
6066
6067 intel_crtc_update_dpms(encoder->base.crtc);
6068 }
6069 }
6070
6071 /* Cross check the actual hw state with our own modeset state tracking (and it's
6072 * internal consistency). */
6073 static void intel_connector_check_state(struct intel_connector *connector)
6074 {
6075 if (connector->get_hw_state(connector)) {
6076 struct intel_encoder *encoder = connector->encoder;
6077 struct drm_crtc *crtc;
6078 bool encoder_enabled;
6079 enum pipe pipe;
6080
6081 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6082 connector->base.base.id,
6083 connector->base.name);
6084
6085 /* there is no real hw state for MST connectors */
6086 if (connector->mst_port)
6087 return;
6088
6089 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6090 "wrong connector dpms state\n");
6091 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6092 "active connector not linked to encoder\n");
6093
6094 if (encoder) {
6095 I915_STATE_WARN(!encoder->connectors_active,
6096 "encoder->connectors_active not set\n");
6097
6098 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6099 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6100 if (I915_STATE_WARN_ON(!encoder->base.crtc))
6101 return;
6102
6103 crtc = encoder->base.crtc;
6104
6105 I915_STATE_WARN(!crtc->state->enable,
6106 "crtc not enabled\n");
6107 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6108 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6109 "encoder active on the wrong pipe\n");
6110 }
6111 }
6112 }
6113
6114 int intel_connector_init(struct intel_connector *connector)
6115 {
6116 struct drm_connector_state *connector_state;
6117
6118 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6119 if (!connector_state)
6120 return -ENOMEM;
6121
6122 connector->base.state = connector_state;
6123 return 0;
6124 }
6125
6126 struct intel_connector *intel_connector_alloc(void)
6127 {
6128 struct intel_connector *connector;
6129
6130 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6131 if (!connector)
6132 return NULL;
6133
6134 if (intel_connector_init(connector) < 0) {
6135 kfree(connector);
6136 return NULL;
6137 }
6138
6139 return connector;
6140 }
6141
6142 /* Even simpler default implementation, if there's really no special case to
6143 * consider. */
6144 void intel_connector_dpms(struct drm_connector *connector, int mode)
6145 {
6146 /* All the simple cases only support two dpms states. */
6147 if (mode != DRM_MODE_DPMS_ON)
6148 mode = DRM_MODE_DPMS_OFF;
6149
6150 if (mode == connector->dpms)
6151 return;
6152
6153 connector->dpms = mode;
6154
6155 /* Only need to change hw state when actually enabled */
6156 if (connector->encoder)
6157 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6158
6159 intel_modeset_check_state(connector->dev);
6160 }
6161
6162 /* Simple connector->get_hw_state implementation for encoders that support only
6163 * one connector and no cloning and hence the encoder state determines the state
6164 * of the connector. */
6165 bool intel_connector_get_hw_state(struct intel_connector *connector)
6166 {
6167 enum pipe pipe = 0;
6168 struct intel_encoder *encoder = connector->encoder;
6169
6170 return encoder->get_hw_state(encoder, &pipe);
6171 }
6172
6173 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6174 {
6175 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6176 return crtc_state->fdi_lanes;
6177
6178 return 0;
6179 }
6180
6181 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6182 struct intel_crtc_state *pipe_config)
6183 {
6184 struct drm_atomic_state *state = pipe_config->base.state;
6185 struct intel_crtc *other_crtc;
6186 struct intel_crtc_state *other_crtc_state;
6187
6188 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6189 pipe_name(pipe), pipe_config->fdi_lanes);
6190 if (pipe_config->fdi_lanes > 4) {
6191 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6192 pipe_name(pipe), pipe_config->fdi_lanes);
6193 return -EINVAL;
6194 }
6195
6196 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6197 if (pipe_config->fdi_lanes > 2) {
6198 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6199 pipe_config->fdi_lanes);
6200 return -EINVAL;
6201 } else {
6202 return 0;
6203 }
6204 }
6205
6206 if (INTEL_INFO(dev)->num_pipes == 2)
6207 return 0;
6208
6209 /* Ivybridge 3 pipe is really complicated */
6210 switch (pipe) {
6211 case PIPE_A:
6212 return 0;
6213 case PIPE_B:
6214 if (pipe_config->fdi_lanes <= 2)
6215 return 0;
6216
6217 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6218 other_crtc_state =
6219 intel_atomic_get_crtc_state(state, other_crtc);
6220 if (IS_ERR(other_crtc_state))
6221 return PTR_ERR(other_crtc_state);
6222
6223 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6224 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6225 pipe_name(pipe), pipe_config->fdi_lanes);
6226 return -EINVAL;
6227 }
6228 return 0;
6229 case PIPE_C:
6230 if (pipe_config->fdi_lanes > 2) {
6231 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6232 pipe_name(pipe), pipe_config->fdi_lanes);
6233 return -EINVAL;
6234 }
6235
6236 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6237 other_crtc_state =
6238 intel_atomic_get_crtc_state(state, other_crtc);
6239 if (IS_ERR(other_crtc_state))
6240 return PTR_ERR(other_crtc_state);
6241
6242 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6243 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6244 return -EINVAL;
6245 }
6246 return 0;
6247 default:
6248 BUG();
6249 }
6250 }
6251
6252 #define RETRY 1
6253 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6254 struct intel_crtc_state *pipe_config)
6255 {
6256 struct drm_device *dev = intel_crtc->base.dev;
6257 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6258 int lane, link_bw, fdi_dotclock, ret;
6259 bool needs_recompute = false;
6260
6261 retry:
6262 /* FDI is a binary signal running at ~2.7GHz, encoding
6263 * each output octet as 10 bits. The actual frequency
6264 * is stored as a divider into a 100MHz clock, and the
6265 * mode pixel clock is stored in units of 1KHz.
6266 * Hence the bw of each lane in terms of the mode signal
6267 * is:
6268 */
6269 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6270
6271 fdi_dotclock = adjusted_mode->crtc_clock;
6272
6273 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6274 pipe_config->pipe_bpp);
6275
6276 pipe_config->fdi_lanes = lane;
6277
6278 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6279 link_bw, &pipe_config->fdi_m_n);
6280
6281 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6282 intel_crtc->pipe, pipe_config);
6283 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6284 pipe_config->pipe_bpp -= 2*3;
6285 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6286 pipe_config->pipe_bpp);
6287 needs_recompute = true;
6288 pipe_config->bw_constrained = true;
6289
6290 goto retry;
6291 }
6292
6293 if (needs_recompute)
6294 return RETRY;
6295
6296 return ret;
6297 }
6298
6299 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6300 struct intel_crtc_state *pipe_config)
6301 {
6302 pipe_config->ips_enabled = i915.enable_ips &&
6303 hsw_crtc_supports_ips(crtc) &&
6304 pipe_config->pipe_bpp <= 24;
6305 }
6306
6307 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6308 struct intel_crtc_state *pipe_config)
6309 {
6310 struct drm_device *dev = crtc->base.dev;
6311 struct drm_i915_private *dev_priv = dev->dev_private;
6312 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6313 int ret;
6314
6315 /* FIXME should check pixel clock limits on all platforms */
6316 if (INTEL_INFO(dev)->gen < 4) {
6317 int clock_limit =
6318 dev_priv->display.get_display_clock_speed(dev);
6319
6320 /*
6321 * Enable pixel doubling when the dot clock
6322 * is > 90% of the (display) core speed.
6323 *
6324 * GDG double wide on either pipe,
6325 * otherwise pipe A only.
6326 */
6327 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6328 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6329 clock_limit *= 2;
6330 pipe_config->double_wide = true;
6331 }
6332
6333 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6334 return -EINVAL;
6335 }
6336
6337 /*
6338 * Pipe horizontal size must be even in:
6339 * - DVO ganged mode
6340 * - LVDS dual channel mode
6341 * - Double wide pipe
6342 */
6343 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6344 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6345 pipe_config->pipe_src_w &= ~1;
6346
6347 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6348 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6349 */
6350 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6351 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6352 return -EINVAL;
6353
6354 if (HAS_IPS(dev))
6355 hsw_compute_ips_config(crtc, pipe_config);
6356
6357 if (pipe_config->has_pch_encoder)
6358 return ironlake_fdi_compute_config(crtc, pipe_config);
6359
6360 /* FIXME: remove below call once atomic mode set is place and all crtc
6361 * related checks called from atomic_crtc_check function */
6362 ret = 0;
6363 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6364 crtc, pipe_config->base.state);
6365 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6366
6367 return ret;
6368 }
6369
6370 static int skylake_get_display_clock_speed(struct drm_device *dev)
6371 {
6372 struct drm_i915_private *dev_priv = to_i915(dev);
6373 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6374 uint32_t cdctl = I915_READ(CDCLK_CTL);
6375 uint32_t linkrate;
6376
6377 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6378 WARN(1, "LCPLL1 not enabled\n");
6379 return 24000; /* 24MHz is the cd freq with NSSC ref */
6380 }
6381
6382 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6383 return 540000;
6384
6385 linkrate = (I915_READ(DPLL_CTRL1) &
6386 DPLL_CRTL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6387
6388 if (linkrate == DPLL_CRTL1_LINK_RATE_2160 ||
6389 linkrate == DPLL_CRTL1_LINK_RATE_1080) {
6390 /* vco 8640 */
6391 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6392 case CDCLK_FREQ_450_432:
6393 return 432000;
6394 case CDCLK_FREQ_337_308:
6395 return 308570;
6396 case CDCLK_FREQ_675_617:
6397 return 617140;
6398 default:
6399 WARN(1, "Unknown cd freq selection\n");
6400 }
6401 } else {
6402 /* vco 8100 */
6403 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6404 case CDCLK_FREQ_450_432:
6405 return 450000;
6406 case CDCLK_FREQ_337_308:
6407 return 337500;
6408 case CDCLK_FREQ_675_617:
6409 return 675000;
6410 default:
6411 WARN(1, "Unknown cd freq selection\n");
6412 }
6413 }
6414
6415 /* error case, do as if DPLL0 isn't enabled */
6416 return 24000;
6417 }
6418
6419 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6420 {
6421 struct drm_i915_private *dev_priv = dev->dev_private;
6422 uint32_t lcpll = I915_READ(LCPLL_CTL);
6423 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6424
6425 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6426 return 800000;
6427 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6428 return 450000;
6429 else if (freq == LCPLL_CLK_FREQ_450)
6430 return 450000;
6431 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6432 return 540000;
6433 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6434 return 337500;
6435 else
6436 return 675000;
6437 }
6438
6439 static int haswell_get_display_clock_speed(struct drm_device *dev)
6440 {
6441 struct drm_i915_private *dev_priv = dev->dev_private;
6442 uint32_t lcpll = I915_READ(LCPLL_CTL);
6443 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6444
6445 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6446 return 800000;
6447 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6448 return 450000;
6449 else if (freq == LCPLL_CLK_FREQ_450)
6450 return 450000;
6451 else if (IS_HSW_ULT(dev))
6452 return 337500;
6453 else
6454 return 540000;
6455 }
6456
6457 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6458 {
6459 struct drm_i915_private *dev_priv = dev->dev_private;
6460 u32 val;
6461 int divider;
6462
6463 if (dev_priv->hpll_freq == 0)
6464 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6465
6466 mutex_lock(&dev_priv->dpio_lock);
6467 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6468 mutex_unlock(&dev_priv->dpio_lock);
6469
6470 divider = val & DISPLAY_FREQUENCY_VALUES;
6471
6472 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6473 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6474 "cdclk change in progress\n");
6475
6476 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6477 }
6478
6479 static int ilk_get_display_clock_speed(struct drm_device *dev)
6480 {
6481 return 450000;
6482 }
6483
6484 static int i945_get_display_clock_speed(struct drm_device *dev)
6485 {
6486 return 400000;
6487 }
6488
6489 static int i915_get_display_clock_speed(struct drm_device *dev)
6490 {
6491 return 333333;
6492 }
6493
6494 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6495 {
6496 return 200000;
6497 }
6498
6499 static int pnv_get_display_clock_speed(struct drm_device *dev)
6500 {
6501 u16 gcfgc = 0;
6502
6503 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6504
6505 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6506 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6507 return 266667;
6508 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6509 return 333333;
6510 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6511 return 444444;
6512 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6513 return 200000;
6514 default:
6515 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6516 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6517 return 133333;
6518 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6519 return 166667;
6520 }
6521 }
6522
6523 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6524 {
6525 u16 gcfgc = 0;
6526
6527 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6528
6529 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6530 return 133333;
6531 else {
6532 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6533 case GC_DISPLAY_CLOCK_333_MHZ:
6534 return 333333;
6535 default:
6536 case GC_DISPLAY_CLOCK_190_200_MHZ:
6537 return 190000;
6538 }
6539 }
6540 }
6541
6542 static int i865_get_display_clock_speed(struct drm_device *dev)
6543 {
6544 return 266667;
6545 }
6546
6547 static int i855_get_display_clock_speed(struct drm_device *dev)
6548 {
6549 u16 hpllcc = 0;
6550 /* Assume that the hardware is in the high speed state. This
6551 * should be the default.
6552 */
6553 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6554 case GC_CLOCK_133_200:
6555 case GC_CLOCK_100_200:
6556 return 200000;
6557 case GC_CLOCK_166_250:
6558 return 250000;
6559 case GC_CLOCK_100_133:
6560 return 133333;
6561 }
6562
6563 /* Shouldn't happen */
6564 return 0;
6565 }
6566
6567 static int i830_get_display_clock_speed(struct drm_device *dev)
6568 {
6569 return 133333;
6570 }
6571
6572 static void
6573 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6574 {
6575 while (*num > DATA_LINK_M_N_MASK ||
6576 *den > DATA_LINK_M_N_MASK) {
6577 *num >>= 1;
6578 *den >>= 1;
6579 }
6580 }
6581
6582 static void compute_m_n(unsigned int m, unsigned int n,
6583 uint32_t *ret_m, uint32_t *ret_n)
6584 {
6585 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6586 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6587 intel_reduce_m_n_ratio(ret_m, ret_n);
6588 }
6589
6590 void
6591 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6592 int pixel_clock, int link_clock,
6593 struct intel_link_m_n *m_n)
6594 {
6595 m_n->tu = 64;
6596
6597 compute_m_n(bits_per_pixel * pixel_clock,
6598 link_clock * nlanes * 8,
6599 &m_n->gmch_m, &m_n->gmch_n);
6600
6601 compute_m_n(pixel_clock, link_clock,
6602 &m_n->link_m, &m_n->link_n);
6603 }
6604
6605 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6606 {
6607 if (i915.panel_use_ssc >= 0)
6608 return i915.panel_use_ssc != 0;
6609 return dev_priv->vbt.lvds_use_ssc
6610 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6611 }
6612
6613 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6614 int num_connectors)
6615 {
6616 struct drm_device *dev = crtc_state->base.crtc->dev;
6617 struct drm_i915_private *dev_priv = dev->dev_private;
6618 int refclk;
6619
6620 WARN_ON(!crtc_state->base.state);
6621
6622 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6623 refclk = 100000;
6624 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6625 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6626 refclk = dev_priv->vbt.lvds_ssc_freq;
6627 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6628 } else if (!IS_GEN2(dev)) {
6629 refclk = 96000;
6630 } else {
6631 refclk = 48000;
6632 }
6633
6634 return refclk;
6635 }
6636
6637 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6638 {
6639 return (1 << dpll->n) << 16 | dpll->m2;
6640 }
6641
6642 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6643 {
6644 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6645 }
6646
6647 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6648 struct intel_crtc_state *crtc_state,
6649 intel_clock_t *reduced_clock)
6650 {
6651 struct drm_device *dev = crtc->base.dev;
6652 u32 fp, fp2 = 0;
6653
6654 if (IS_PINEVIEW(dev)) {
6655 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6656 if (reduced_clock)
6657 fp2 = pnv_dpll_compute_fp(reduced_clock);
6658 } else {
6659 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6660 if (reduced_clock)
6661 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6662 }
6663
6664 crtc_state->dpll_hw_state.fp0 = fp;
6665
6666 crtc->lowfreq_avail = false;
6667 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6668 reduced_clock) {
6669 crtc_state->dpll_hw_state.fp1 = fp2;
6670 crtc->lowfreq_avail = true;
6671 } else {
6672 crtc_state->dpll_hw_state.fp1 = fp;
6673 }
6674 }
6675
6676 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6677 pipe)
6678 {
6679 u32 reg_val;
6680
6681 /*
6682 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6683 * and set it to a reasonable value instead.
6684 */
6685 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6686 reg_val &= 0xffffff00;
6687 reg_val |= 0x00000030;
6688 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6689
6690 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6691 reg_val &= 0x8cffffff;
6692 reg_val = 0x8c000000;
6693 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6694
6695 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6696 reg_val &= 0xffffff00;
6697 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6698
6699 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6700 reg_val &= 0x00ffffff;
6701 reg_val |= 0xb0000000;
6702 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6703 }
6704
6705 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6706 struct intel_link_m_n *m_n)
6707 {
6708 struct drm_device *dev = crtc->base.dev;
6709 struct drm_i915_private *dev_priv = dev->dev_private;
6710 int pipe = crtc->pipe;
6711
6712 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6713 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6714 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6715 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6716 }
6717
6718 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6719 struct intel_link_m_n *m_n,
6720 struct intel_link_m_n *m2_n2)
6721 {
6722 struct drm_device *dev = crtc->base.dev;
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724 int pipe = crtc->pipe;
6725 enum transcoder transcoder = crtc->config->cpu_transcoder;
6726
6727 if (INTEL_INFO(dev)->gen >= 5) {
6728 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6729 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6730 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6731 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6732 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6733 * for gen < 8) and if DRRS is supported (to make sure the
6734 * registers are not unnecessarily accessed).
6735 */
6736 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6737 crtc->config->has_drrs) {
6738 I915_WRITE(PIPE_DATA_M2(transcoder),
6739 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6740 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6741 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6742 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6743 }
6744 } else {
6745 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6746 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6747 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6748 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6749 }
6750 }
6751
6752 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6753 {
6754 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6755
6756 if (m_n == M1_N1) {
6757 dp_m_n = &crtc->config->dp_m_n;
6758 dp_m2_n2 = &crtc->config->dp_m2_n2;
6759 } else if (m_n == M2_N2) {
6760
6761 /*
6762 * M2_N2 registers are not supported. Hence m2_n2 divider value
6763 * needs to be programmed into M1_N1.
6764 */
6765 dp_m_n = &crtc->config->dp_m2_n2;
6766 } else {
6767 DRM_ERROR("Unsupported divider value\n");
6768 return;
6769 }
6770
6771 if (crtc->config->has_pch_encoder)
6772 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6773 else
6774 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6775 }
6776
6777 static void vlv_update_pll(struct intel_crtc *crtc,
6778 struct intel_crtc_state *pipe_config)
6779 {
6780 u32 dpll, dpll_md;
6781
6782 /*
6783 * Enable DPIO clock input. We should never disable the reference
6784 * clock for pipe B, since VGA hotplug / manual detection depends
6785 * on it.
6786 */
6787 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
6788 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
6789 /* We should never disable this, set it here for state tracking */
6790 if (crtc->pipe == PIPE_B)
6791 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6792 dpll |= DPLL_VCO_ENABLE;
6793 pipe_config->dpll_hw_state.dpll = dpll;
6794
6795 dpll_md = (pipe_config->pixel_multiplier - 1)
6796 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6797 pipe_config->dpll_hw_state.dpll_md = dpll_md;
6798 }
6799
6800 static void vlv_prepare_pll(struct intel_crtc *crtc,
6801 const struct intel_crtc_state *pipe_config)
6802 {
6803 struct drm_device *dev = crtc->base.dev;
6804 struct drm_i915_private *dev_priv = dev->dev_private;
6805 int pipe = crtc->pipe;
6806 u32 mdiv;
6807 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6808 u32 coreclk, reg_val;
6809
6810 mutex_lock(&dev_priv->dpio_lock);
6811
6812 bestn = pipe_config->dpll.n;
6813 bestm1 = pipe_config->dpll.m1;
6814 bestm2 = pipe_config->dpll.m2;
6815 bestp1 = pipe_config->dpll.p1;
6816 bestp2 = pipe_config->dpll.p2;
6817
6818 /* See eDP HDMI DPIO driver vbios notes doc */
6819
6820 /* PLL B needs special handling */
6821 if (pipe == PIPE_B)
6822 vlv_pllb_recal_opamp(dev_priv, pipe);
6823
6824 /* Set up Tx target for periodic Rcomp update */
6825 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6826
6827 /* Disable target IRef on PLL */
6828 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6829 reg_val &= 0x00ffffff;
6830 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6831
6832 /* Disable fast lock */
6833 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6834
6835 /* Set idtafcrecal before PLL is enabled */
6836 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6837 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6838 mdiv |= ((bestn << DPIO_N_SHIFT));
6839 mdiv |= (1 << DPIO_K_SHIFT);
6840
6841 /*
6842 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6843 * but we don't support that).
6844 * Note: don't use the DAC post divider as it seems unstable.
6845 */
6846 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6847 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6848
6849 mdiv |= DPIO_ENABLE_CALIBRATION;
6850 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6851
6852 /* Set HBR and RBR LPF coefficients */
6853 if (pipe_config->port_clock == 162000 ||
6854 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6855 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6856 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6857 0x009f0003);
6858 else
6859 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6860 0x00d0000f);
6861
6862 if (pipe_config->has_dp_encoder) {
6863 /* Use SSC source */
6864 if (pipe == PIPE_A)
6865 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6866 0x0df40000);
6867 else
6868 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6869 0x0df70000);
6870 } else { /* HDMI or VGA */
6871 /* Use bend source */
6872 if (pipe == PIPE_A)
6873 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6874 0x0df70000);
6875 else
6876 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6877 0x0df40000);
6878 }
6879
6880 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6881 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6882 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6883 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6884 coreclk |= 0x01000000;
6885 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6886
6887 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6888 mutex_unlock(&dev_priv->dpio_lock);
6889 }
6890
6891 static void chv_update_pll(struct intel_crtc *crtc,
6892 struct intel_crtc_state *pipe_config)
6893 {
6894 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6895 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6896 DPLL_VCO_ENABLE;
6897 if (crtc->pipe != PIPE_A)
6898 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6899
6900 pipe_config->dpll_hw_state.dpll_md =
6901 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6902 }
6903
6904 static void chv_prepare_pll(struct intel_crtc *crtc,
6905 const struct intel_crtc_state *pipe_config)
6906 {
6907 struct drm_device *dev = crtc->base.dev;
6908 struct drm_i915_private *dev_priv = dev->dev_private;
6909 int pipe = crtc->pipe;
6910 int dpll_reg = DPLL(crtc->pipe);
6911 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6912 u32 loopfilter, tribuf_calcntr;
6913 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6914 u32 dpio_val;
6915 int vco;
6916
6917 bestn = pipe_config->dpll.n;
6918 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6919 bestm1 = pipe_config->dpll.m1;
6920 bestm2 = pipe_config->dpll.m2 >> 22;
6921 bestp1 = pipe_config->dpll.p1;
6922 bestp2 = pipe_config->dpll.p2;
6923 vco = pipe_config->dpll.vco;
6924 dpio_val = 0;
6925 loopfilter = 0;
6926
6927 /*
6928 * Enable Refclk and SSC
6929 */
6930 I915_WRITE(dpll_reg,
6931 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6932
6933 mutex_lock(&dev_priv->dpio_lock);
6934
6935 /* p1 and p2 divider */
6936 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6937 5 << DPIO_CHV_S1_DIV_SHIFT |
6938 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6939 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6940 1 << DPIO_CHV_K_DIV_SHIFT);
6941
6942 /* Feedback post-divider - m2 */
6943 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6944
6945 /* Feedback refclk divider - n and m1 */
6946 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6947 DPIO_CHV_M1_DIV_BY_2 |
6948 1 << DPIO_CHV_N_DIV_SHIFT);
6949
6950 /* M2 fraction division */
6951 if (bestm2_frac)
6952 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6953
6954 /* M2 fraction division enable */
6955 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6956 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6957 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6958 if (bestm2_frac)
6959 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6960 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6961
6962 /* Program digital lock detect threshold */
6963 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6964 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6965 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6966 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6967 if (!bestm2_frac)
6968 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6969 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6970
6971 /* Loop filter */
6972 if (vco == 5400000) {
6973 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6974 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6975 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6976 tribuf_calcntr = 0x9;
6977 } else if (vco <= 6200000) {
6978 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6979 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6980 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6981 tribuf_calcntr = 0x9;
6982 } else if (vco <= 6480000) {
6983 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6984 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6985 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6986 tribuf_calcntr = 0x8;
6987 } else {
6988 /* Not supported. Apply the same limits as in the max case */
6989 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6990 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6991 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6992 tribuf_calcntr = 0;
6993 }
6994 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6995
6996 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6997 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6998 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6999 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7000
7001 /* AFC Recal */
7002 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7003 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7004 DPIO_AFC_RECAL);
7005
7006 mutex_unlock(&dev_priv->dpio_lock);
7007 }
7008
7009 /**
7010 * vlv_force_pll_on - forcibly enable just the PLL
7011 * @dev_priv: i915 private structure
7012 * @pipe: pipe PLL to enable
7013 * @dpll: PLL configuration
7014 *
7015 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7016 * in cases where we need the PLL enabled even when @pipe is not going to
7017 * be enabled.
7018 */
7019 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7020 const struct dpll *dpll)
7021 {
7022 struct intel_crtc *crtc =
7023 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7024 struct intel_crtc_state pipe_config = {
7025 .base.crtc = &crtc->base,
7026 .pixel_multiplier = 1,
7027 .dpll = *dpll,
7028 };
7029
7030 if (IS_CHERRYVIEW(dev)) {
7031 chv_update_pll(crtc, &pipe_config);
7032 chv_prepare_pll(crtc, &pipe_config);
7033 chv_enable_pll(crtc, &pipe_config);
7034 } else {
7035 vlv_update_pll(crtc, &pipe_config);
7036 vlv_prepare_pll(crtc, &pipe_config);
7037 vlv_enable_pll(crtc, &pipe_config);
7038 }
7039 }
7040
7041 /**
7042 * vlv_force_pll_off - forcibly disable just the PLL
7043 * @dev_priv: i915 private structure
7044 * @pipe: pipe PLL to disable
7045 *
7046 * Disable the PLL for @pipe. To be used in cases where we need
7047 * the PLL enabled even when @pipe is not going to be enabled.
7048 */
7049 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7050 {
7051 if (IS_CHERRYVIEW(dev))
7052 chv_disable_pll(to_i915(dev), pipe);
7053 else
7054 vlv_disable_pll(to_i915(dev), pipe);
7055 }
7056
7057 static void i9xx_update_pll(struct intel_crtc *crtc,
7058 struct intel_crtc_state *crtc_state,
7059 intel_clock_t *reduced_clock,
7060 int num_connectors)
7061 {
7062 struct drm_device *dev = crtc->base.dev;
7063 struct drm_i915_private *dev_priv = dev->dev_private;
7064 u32 dpll;
7065 bool is_sdvo;
7066 struct dpll *clock = &crtc_state->dpll;
7067
7068 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7069
7070 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7071 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7072
7073 dpll = DPLL_VGA_MODE_DIS;
7074
7075 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7076 dpll |= DPLLB_MODE_LVDS;
7077 else
7078 dpll |= DPLLB_MODE_DAC_SERIAL;
7079
7080 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7081 dpll |= (crtc_state->pixel_multiplier - 1)
7082 << SDVO_MULTIPLIER_SHIFT_HIRES;
7083 }
7084
7085 if (is_sdvo)
7086 dpll |= DPLL_SDVO_HIGH_SPEED;
7087
7088 if (crtc_state->has_dp_encoder)
7089 dpll |= DPLL_SDVO_HIGH_SPEED;
7090
7091 /* compute bitmask from p1 value */
7092 if (IS_PINEVIEW(dev))
7093 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7094 else {
7095 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7096 if (IS_G4X(dev) && reduced_clock)
7097 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7098 }
7099 switch (clock->p2) {
7100 case 5:
7101 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7102 break;
7103 case 7:
7104 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7105 break;
7106 case 10:
7107 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7108 break;
7109 case 14:
7110 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7111 break;
7112 }
7113 if (INTEL_INFO(dev)->gen >= 4)
7114 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7115
7116 if (crtc_state->sdvo_tv_clock)
7117 dpll |= PLL_REF_INPUT_TVCLKINBC;
7118 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7119 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7120 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7121 else
7122 dpll |= PLL_REF_INPUT_DREFCLK;
7123
7124 dpll |= DPLL_VCO_ENABLE;
7125 crtc_state->dpll_hw_state.dpll = dpll;
7126
7127 if (INTEL_INFO(dev)->gen >= 4) {
7128 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7129 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7130 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7131 }
7132 }
7133
7134 static void i8xx_update_pll(struct intel_crtc *crtc,
7135 struct intel_crtc_state *crtc_state,
7136 intel_clock_t *reduced_clock,
7137 int num_connectors)
7138 {
7139 struct drm_device *dev = crtc->base.dev;
7140 struct drm_i915_private *dev_priv = dev->dev_private;
7141 u32 dpll;
7142 struct dpll *clock = &crtc_state->dpll;
7143
7144 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7145
7146 dpll = DPLL_VGA_MODE_DIS;
7147
7148 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7149 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7150 } else {
7151 if (clock->p1 == 2)
7152 dpll |= PLL_P1_DIVIDE_BY_TWO;
7153 else
7154 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7155 if (clock->p2 == 4)
7156 dpll |= PLL_P2_DIVIDE_BY_4;
7157 }
7158
7159 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7160 dpll |= DPLL_DVO_2X_MODE;
7161
7162 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7163 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7164 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7165 else
7166 dpll |= PLL_REF_INPUT_DREFCLK;
7167
7168 dpll |= DPLL_VCO_ENABLE;
7169 crtc_state->dpll_hw_state.dpll = dpll;
7170 }
7171
7172 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7173 {
7174 struct drm_device *dev = intel_crtc->base.dev;
7175 struct drm_i915_private *dev_priv = dev->dev_private;
7176 enum pipe pipe = intel_crtc->pipe;
7177 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7178 struct drm_display_mode *adjusted_mode =
7179 &intel_crtc->config->base.adjusted_mode;
7180 uint32_t crtc_vtotal, crtc_vblank_end;
7181 int vsyncshift = 0;
7182
7183 /* We need to be careful not to changed the adjusted mode, for otherwise
7184 * the hw state checker will get angry at the mismatch. */
7185 crtc_vtotal = adjusted_mode->crtc_vtotal;
7186 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7187
7188 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7189 /* the chip adds 2 halflines automatically */
7190 crtc_vtotal -= 1;
7191 crtc_vblank_end -= 1;
7192
7193 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7194 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7195 else
7196 vsyncshift = adjusted_mode->crtc_hsync_start -
7197 adjusted_mode->crtc_htotal / 2;
7198 if (vsyncshift < 0)
7199 vsyncshift += adjusted_mode->crtc_htotal;
7200 }
7201
7202 if (INTEL_INFO(dev)->gen > 3)
7203 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7204
7205 I915_WRITE(HTOTAL(cpu_transcoder),
7206 (adjusted_mode->crtc_hdisplay - 1) |
7207 ((adjusted_mode->crtc_htotal - 1) << 16));
7208 I915_WRITE(HBLANK(cpu_transcoder),
7209 (adjusted_mode->crtc_hblank_start - 1) |
7210 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7211 I915_WRITE(HSYNC(cpu_transcoder),
7212 (adjusted_mode->crtc_hsync_start - 1) |
7213 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7214
7215 I915_WRITE(VTOTAL(cpu_transcoder),
7216 (adjusted_mode->crtc_vdisplay - 1) |
7217 ((crtc_vtotal - 1) << 16));
7218 I915_WRITE(VBLANK(cpu_transcoder),
7219 (adjusted_mode->crtc_vblank_start - 1) |
7220 ((crtc_vblank_end - 1) << 16));
7221 I915_WRITE(VSYNC(cpu_transcoder),
7222 (adjusted_mode->crtc_vsync_start - 1) |
7223 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7224
7225 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7226 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7227 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7228 * bits. */
7229 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7230 (pipe == PIPE_B || pipe == PIPE_C))
7231 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7232
7233 /* pipesrc controls the size that is scaled from, which should
7234 * always be the user's requested size.
7235 */
7236 I915_WRITE(PIPESRC(pipe),
7237 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7238 (intel_crtc->config->pipe_src_h - 1));
7239 }
7240
7241 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7242 struct intel_crtc_state *pipe_config)
7243 {
7244 struct drm_device *dev = crtc->base.dev;
7245 struct drm_i915_private *dev_priv = dev->dev_private;
7246 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7247 uint32_t tmp;
7248
7249 tmp = I915_READ(HTOTAL(cpu_transcoder));
7250 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7251 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7252 tmp = I915_READ(HBLANK(cpu_transcoder));
7253 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7254 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7255 tmp = I915_READ(HSYNC(cpu_transcoder));
7256 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7257 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7258
7259 tmp = I915_READ(VTOTAL(cpu_transcoder));
7260 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7261 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7262 tmp = I915_READ(VBLANK(cpu_transcoder));
7263 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7264 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7265 tmp = I915_READ(VSYNC(cpu_transcoder));
7266 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7267 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7268
7269 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7270 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7271 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7272 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7273 }
7274
7275 tmp = I915_READ(PIPESRC(crtc->pipe));
7276 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7277 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7278
7279 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7280 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7281 }
7282
7283 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7284 struct intel_crtc_state *pipe_config)
7285 {
7286 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7287 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7288 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7289 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7290
7291 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7292 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7293 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7294 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7295
7296 mode->flags = pipe_config->base.adjusted_mode.flags;
7297
7298 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7299 mode->flags |= pipe_config->base.adjusted_mode.flags;
7300 }
7301
7302 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7303 {
7304 struct drm_device *dev = intel_crtc->base.dev;
7305 struct drm_i915_private *dev_priv = dev->dev_private;
7306 uint32_t pipeconf;
7307
7308 pipeconf = 0;
7309
7310 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7311 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7312 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7313
7314 if (intel_crtc->config->double_wide)
7315 pipeconf |= PIPECONF_DOUBLE_WIDE;
7316
7317 /* only g4x and later have fancy bpc/dither controls */
7318 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7319 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7320 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7321 pipeconf |= PIPECONF_DITHER_EN |
7322 PIPECONF_DITHER_TYPE_SP;
7323
7324 switch (intel_crtc->config->pipe_bpp) {
7325 case 18:
7326 pipeconf |= PIPECONF_6BPC;
7327 break;
7328 case 24:
7329 pipeconf |= PIPECONF_8BPC;
7330 break;
7331 case 30:
7332 pipeconf |= PIPECONF_10BPC;
7333 break;
7334 default:
7335 /* Case prevented by intel_choose_pipe_bpp_dither. */
7336 BUG();
7337 }
7338 }
7339
7340 if (HAS_PIPE_CXSR(dev)) {
7341 if (intel_crtc->lowfreq_avail) {
7342 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7343 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7344 } else {
7345 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7346 }
7347 }
7348
7349 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7350 if (INTEL_INFO(dev)->gen < 4 ||
7351 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7352 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7353 else
7354 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7355 } else
7356 pipeconf |= PIPECONF_PROGRESSIVE;
7357
7358 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7359 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7360
7361 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7362 POSTING_READ(PIPECONF(intel_crtc->pipe));
7363 }
7364
7365 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7366 struct intel_crtc_state *crtc_state)
7367 {
7368 struct drm_device *dev = crtc->base.dev;
7369 struct drm_i915_private *dev_priv = dev->dev_private;
7370 int refclk, num_connectors = 0;
7371 intel_clock_t clock, reduced_clock;
7372 bool ok, has_reduced_clock = false;
7373 bool is_lvds = false, is_dsi = false;
7374 struct intel_encoder *encoder;
7375 const intel_limit_t *limit;
7376 struct drm_atomic_state *state = crtc_state->base.state;
7377 struct drm_connector_state *connector_state;
7378 int i;
7379
7380 for (i = 0; i < state->num_connector; i++) {
7381 if (!state->connectors[i])
7382 continue;
7383
7384 connector_state = state->connector_states[i];
7385 if (connector_state->crtc != &crtc->base)
7386 continue;
7387
7388 encoder = to_intel_encoder(connector_state->best_encoder);
7389
7390 switch (encoder->type) {
7391 case INTEL_OUTPUT_LVDS:
7392 is_lvds = true;
7393 break;
7394 case INTEL_OUTPUT_DSI:
7395 is_dsi = true;
7396 break;
7397 default:
7398 break;
7399 }
7400
7401 num_connectors++;
7402 }
7403
7404 if (is_dsi)
7405 return 0;
7406
7407 if (!crtc_state->clock_set) {
7408 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7409
7410 /*
7411 * Returns a set of divisors for the desired target clock with
7412 * the given refclk, or FALSE. The returned values represent
7413 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7414 * 2) / p1 / p2.
7415 */
7416 limit = intel_limit(crtc_state, refclk);
7417 ok = dev_priv->display.find_dpll(limit, crtc_state,
7418 crtc_state->port_clock,
7419 refclk, NULL, &clock);
7420 if (!ok) {
7421 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7422 return -EINVAL;
7423 }
7424
7425 if (is_lvds && dev_priv->lvds_downclock_avail) {
7426 /*
7427 * Ensure we match the reduced clock's P to the target
7428 * clock. If the clocks don't match, we can't switch
7429 * the display clock by using the FP0/FP1. In such case
7430 * we will disable the LVDS downclock feature.
7431 */
7432 has_reduced_clock =
7433 dev_priv->display.find_dpll(limit, crtc_state,
7434 dev_priv->lvds_downclock,
7435 refclk, &clock,
7436 &reduced_clock);
7437 }
7438 /* Compat-code for transition, will disappear. */
7439 crtc_state->dpll.n = clock.n;
7440 crtc_state->dpll.m1 = clock.m1;
7441 crtc_state->dpll.m2 = clock.m2;
7442 crtc_state->dpll.p1 = clock.p1;
7443 crtc_state->dpll.p2 = clock.p2;
7444 }
7445
7446 if (IS_GEN2(dev)) {
7447 i8xx_update_pll(crtc, crtc_state,
7448 has_reduced_clock ? &reduced_clock : NULL,
7449 num_connectors);
7450 } else if (IS_CHERRYVIEW(dev)) {
7451 chv_update_pll(crtc, crtc_state);
7452 } else if (IS_VALLEYVIEW(dev)) {
7453 vlv_update_pll(crtc, crtc_state);
7454 } else {
7455 i9xx_update_pll(crtc, crtc_state,
7456 has_reduced_clock ? &reduced_clock : NULL,
7457 num_connectors);
7458 }
7459
7460 return 0;
7461 }
7462
7463 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7464 struct intel_crtc_state *pipe_config)
7465 {
7466 struct drm_device *dev = crtc->base.dev;
7467 struct drm_i915_private *dev_priv = dev->dev_private;
7468 uint32_t tmp;
7469
7470 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7471 return;
7472
7473 tmp = I915_READ(PFIT_CONTROL);
7474 if (!(tmp & PFIT_ENABLE))
7475 return;
7476
7477 /* Check whether the pfit is attached to our pipe. */
7478 if (INTEL_INFO(dev)->gen < 4) {
7479 if (crtc->pipe != PIPE_B)
7480 return;
7481 } else {
7482 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7483 return;
7484 }
7485
7486 pipe_config->gmch_pfit.control = tmp;
7487 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7488 if (INTEL_INFO(dev)->gen < 5)
7489 pipe_config->gmch_pfit.lvds_border_bits =
7490 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7491 }
7492
7493 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7494 struct intel_crtc_state *pipe_config)
7495 {
7496 struct drm_device *dev = crtc->base.dev;
7497 struct drm_i915_private *dev_priv = dev->dev_private;
7498 int pipe = pipe_config->cpu_transcoder;
7499 intel_clock_t clock;
7500 u32 mdiv;
7501 int refclk = 100000;
7502
7503 /* In case of MIPI DPLL will not even be used */
7504 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7505 return;
7506
7507 mutex_lock(&dev_priv->dpio_lock);
7508 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7509 mutex_unlock(&dev_priv->dpio_lock);
7510
7511 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7512 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7513 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7514 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7515 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7516
7517 vlv_clock(refclk, &clock);
7518
7519 /* clock.dot is the fast clock */
7520 pipe_config->port_clock = clock.dot / 5;
7521 }
7522
7523 static void
7524 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7525 struct intel_initial_plane_config *plane_config)
7526 {
7527 struct drm_device *dev = crtc->base.dev;
7528 struct drm_i915_private *dev_priv = dev->dev_private;
7529 u32 val, base, offset;
7530 int pipe = crtc->pipe, plane = crtc->plane;
7531 int fourcc, pixel_format;
7532 unsigned int aligned_height;
7533 struct drm_framebuffer *fb;
7534 struct intel_framebuffer *intel_fb;
7535
7536 val = I915_READ(DSPCNTR(plane));
7537 if (!(val & DISPLAY_PLANE_ENABLE))
7538 return;
7539
7540 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7541 if (!intel_fb) {
7542 DRM_DEBUG_KMS("failed to alloc fb\n");
7543 return;
7544 }
7545
7546 fb = &intel_fb->base;
7547
7548 if (INTEL_INFO(dev)->gen >= 4) {
7549 if (val & DISPPLANE_TILED) {
7550 plane_config->tiling = I915_TILING_X;
7551 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7552 }
7553 }
7554
7555 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7556 fourcc = i9xx_format_to_fourcc(pixel_format);
7557 fb->pixel_format = fourcc;
7558 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7559
7560 if (INTEL_INFO(dev)->gen >= 4) {
7561 if (plane_config->tiling)
7562 offset = I915_READ(DSPTILEOFF(plane));
7563 else
7564 offset = I915_READ(DSPLINOFF(plane));
7565 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7566 } else {
7567 base = I915_READ(DSPADDR(plane));
7568 }
7569 plane_config->base = base;
7570
7571 val = I915_READ(PIPESRC(pipe));
7572 fb->width = ((val >> 16) & 0xfff) + 1;
7573 fb->height = ((val >> 0) & 0xfff) + 1;
7574
7575 val = I915_READ(DSPSTRIDE(pipe));
7576 fb->pitches[0] = val & 0xffffffc0;
7577
7578 aligned_height = intel_fb_align_height(dev, fb->height,
7579 fb->pixel_format,
7580 fb->modifier[0]);
7581
7582 plane_config->size = fb->pitches[0] * aligned_height;
7583
7584 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7585 pipe_name(pipe), plane, fb->width, fb->height,
7586 fb->bits_per_pixel, base, fb->pitches[0],
7587 plane_config->size);
7588
7589 plane_config->fb = intel_fb;
7590 }
7591
7592 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7593 struct intel_crtc_state *pipe_config)
7594 {
7595 struct drm_device *dev = crtc->base.dev;
7596 struct drm_i915_private *dev_priv = dev->dev_private;
7597 int pipe = pipe_config->cpu_transcoder;
7598 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7599 intel_clock_t clock;
7600 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
7601 int refclk = 100000;
7602
7603 mutex_lock(&dev_priv->dpio_lock);
7604 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7605 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7606 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7607 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7608 mutex_unlock(&dev_priv->dpio_lock);
7609
7610 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7611 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
7612 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7613 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7614 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7615
7616 chv_clock(refclk, &clock);
7617
7618 /* clock.dot is the fast clock */
7619 pipe_config->port_clock = clock.dot / 5;
7620 }
7621
7622 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7623 struct intel_crtc_state *pipe_config)
7624 {
7625 struct drm_device *dev = crtc->base.dev;
7626 struct drm_i915_private *dev_priv = dev->dev_private;
7627 uint32_t tmp;
7628
7629 if (!intel_display_power_is_enabled(dev_priv,
7630 POWER_DOMAIN_PIPE(crtc->pipe)))
7631 return false;
7632
7633 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7634 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7635
7636 tmp = I915_READ(PIPECONF(crtc->pipe));
7637 if (!(tmp & PIPECONF_ENABLE))
7638 return false;
7639
7640 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7641 switch (tmp & PIPECONF_BPC_MASK) {
7642 case PIPECONF_6BPC:
7643 pipe_config->pipe_bpp = 18;
7644 break;
7645 case PIPECONF_8BPC:
7646 pipe_config->pipe_bpp = 24;
7647 break;
7648 case PIPECONF_10BPC:
7649 pipe_config->pipe_bpp = 30;
7650 break;
7651 default:
7652 break;
7653 }
7654 }
7655
7656 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7657 pipe_config->limited_color_range = true;
7658
7659 if (INTEL_INFO(dev)->gen < 4)
7660 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7661
7662 intel_get_pipe_timings(crtc, pipe_config);
7663
7664 i9xx_get_pfit_config(crtc, pipe_config);
7665
7666 if (INTEL_INFO(dev)->gen >= 4) {
7667 tmp = I915_READ(DPLL_MD(crtc->pipe));
7668 pipe_config->pixel_multiplier =
7669 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7670 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7671 pipe_config->dpll_hw_state.dpll_md = tmp;
7672 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7673 tmp = I915_READ(DPLL(crtc->pipe));
7674 pipe_config->pixel_multiplier =
7675 ((tmp & SDVO_MULTIPLIER_MASK)
7676 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7677 } else {
7678 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7679 * port and will be fixed up in the encoder->get_config
7680 * function. */
7681 pipe_config->pixel_multiplier = 1;
7682 }
7683 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7684 if (!IS_VALLEYVIEW(dev)) {
7685 /*
7686 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7687 * on 830. Filter it out here so that we don't
7688 * report errors due to that.
7689 */
7690 if (IS_I830(dev))
7691 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7692
7693 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7694 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7695 } else {
7696 /* Mask out read-only status bits. */
7697 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7698 DPLL_PORTC_READY_MASK |
7699 DPLL_PORTB_READY_MASK);
7700 }
7701
7702 if (IS_CHERRYVIEW(dev))
7703 chv_crtc_clock_get(crtc, pipe_config);
7704 else if (IS_VALLEYVIEW(dev))
7705 vlv_crtc_clock_get(crtc, pipe_config);
7706 else
7707 i9xx_crtc_clock_get(crtc, pipe_config);
7708
7709 return true;
7710 }
7711
7712 static void ironlake_init_pch_refclk(struct drm_device *dev)
7713 {
7714 struct drm_i915_private *dev_priv = dev->dev_private;
7715 struct intel_encoder *encoder;
7716 u32 val, final;
7717 bool has_lvds = false;
7718 bool has_cpu_edp = false;
7719 bool has_panel = false;
7720 bool has_ck505 = false;
7721 bool can_ssc = false;
7722
7723 /* We need to take the global config into account */
7724 for_each_intel_encoder(dev, encoder) {
7725 switch (encoder->type) {
7726 case INTEL_OUTPUT_LVDS:
7727 has_panel = true;
7728 has_lvds = true;
7729 break;
7730 case INTEL_OUTPUT_EDP:
7731 has_panel = true;
7732 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7733 has_cpu_edp = true;
7734 break;
7735 default:
7736 break;
7737 }
7738 }
7739
7740 if (HAS_PCH_IBX(dev)) {
7741 has_ck505 = dev_priv->vbt.display_clock_mode;
7742 can_ssc = has_ck505;
7743 } else {
7744 has_ck505 = false;
7745 can_ssc = true;
7746 }
7747
7748 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
7749 has_panel, has_lvds, has_ck505);
7750
7751 /* Ironlake: try to setup display ref clock before DPLL
7752 * enabling. This is only under driver's control after
7753 * PCH B stepping, previous chipset stepping should be
7754 * ignoring this setting.
7755 */
7756 val = I915_READ(PCH_DREF_CONTROL);
7757
7758 /* As we must carefully and slowly disable/enable each source in turn,
7759 * compute the final state we want first and check if we need to
7760 * make any changes at all.
7761 */
7762 final = val;
7763 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7764 if (has_ck505)
7765 final |= DREF_NONSPREAD_CK505_ENABLE;
7766 else
7767 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7768
7769 final &= ~DREF_SSC_SOURCE_MASK;
7770 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7771 final &= ~DREF_SSC1_ENABLE;
7772
7773 if (has_panel) {
7774 final |= DREF_SSC_SOURCE_ENABLE;
7775
7776 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7777 final |= DREF_SSC1_ENABLE;
7778
7779 if (has_cpu_edp) {
7780 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7781 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7782 else
7783 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7784 } else
7785 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7786 } else {
7787 final |= DREF_SSC_SOURCE_DISABLE;
7788 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7789 }
7790
7791 if (final == val)
7792 return;
7793
7794 /* Always enable nonspread source */
7795 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7796
7797 if (has_ck505)
7798 val |= DREF_NONSPREAD_CK505_ENABLE;
7799 else
7800 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7801
7802 if (has_panel) {
7803 val &= ~DREF_SSC_SOURCE_MASK;
7804 val |= DREF_SSC_SOURCE_ENABLE;
7805
7806 /* SSC must be turned on before enabling the CPU output */
7807 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7808 DRM_DEBUG_KMS("Using SSC on panel\n");
7809 val |= DREF_SSC1_ENABLE;
7810 } else
7811 val &= ~DREF_SSC1_ENABLE;
7812
7813 /* Get SSC going before enabling the outputs */
7814 I915_WRITE(PCH_DREF_CONTROL, val);
7815 POSTING_READ(PCH_DREF_CONTROL);
7816 udelay(200);
7817
7818 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7819
7820 /* Enable CPU source on CPU attached eDP */
7821 if (has_cpu_edp) {
7822 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7823 DRM_DEBUG_KMS("Using SSC on eDP\n");
7824 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7825 } else
7826 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7827 } else
7828 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7829
7830 I915_WRITE(PCH_DREF_CONTROL, val);
7831 POSTING_READ(PCH_DREF_CONTROL);
7832 udelay(200);
7833 } else {
7834 DRM_DEBUG_KMS("Disabling SSC entirely\n");
7835
7836 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7837
7838 /* Turn off CPU output */
7839 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7840
7841 I915_WRITE(PCH_DREF_CONTROL, val);
7842 POSTING_READ(PCH_DREF_CONTROL);
7843 udelay(200);
7844
7845 /* Turn off the SSC source */
7846 val &= ~DREF_SSC_SOURCE_MASK;
7847 val |= DREF_SSC_SOURCE_DISABLE;
7848
7849 /* Turn off SSC1 */
7850 val &= ~DREF_SSC1_ENABLE;
7851
7852 I915_WRITE(PCH_DREF_CONTROL, val);
7853 POSTING_READ(PCH_DREF_CONTROL);
7854 udelay(200);
7855 }
7856
7857 BUG_ON(val != final);
7858 }
7859
7860 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7861 {
7862 uint32_t tmp;
7863
7864 tmp = I915_READ(SOUTH_CHICKEN2);
7865 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7866 I915_WRITE(SOUTH_CHICKEN2, tmp);
7867
7868 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
7869 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7870 DRM_ERROR("FDI mPHY reset assert timeout\n");
7871
7872 tmp = I915_READ(SOUTH_CHICKEN2);
7873 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7874 I915_WRITE(SOUTH_CHICKEN2, tmp);
7875
7876 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
7877 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7878 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7879 }
7880
7881 /* WaMPhyProgramming:hsw */
7882 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7883 {
7884 uint32_t tmp;
7885
7886 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7887 tmp &= ~(0xFF << 24);
7888 tmp |= (0x12 << 24);
7889 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7890
7891 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7892 tmp |= (1 << 11);
7893 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7894
7895 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7896 tmp |= (1 << 11);
7897 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7898
7899 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7900 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7901 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7902
7903 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7904 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7905 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7906
7907 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7908 tmp &= ~(7 << 13);
7909 tmp |= (5 << 13);
7910 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7911
7912 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7913 tmp &= ~(7 << 13);
7914 tmp |= (5 << 13);
7915 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7916
7917 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7918 tmp &= ~0xFF;
7919 tmp |= 0x1C;
7920 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7921
7922 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7923 tmp &= ~0xFF;
7924 tmp |= 0x1C;
7925 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7926
7927 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7928 tmp &= ~(0xFF << 16);
7929 tmp |= (0x1C << 16);
7930 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7931
7932 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7933 tmp &= ~(0xFF << 16);
7934 tmp |= (0x1C << 16);
7935 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7936
7937 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7938 tmp |= (1 << 27);
7939 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7940
7941 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7942 tmp |= (1 << 27);
7943 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7944
7945 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7946 tmp &= ~(0xF << 28);
7947 tmp |= (4 << 28);
7948 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7949
7950 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7951 tmp &= ~(0xF << 28);
7952 tmp |= (4 << 28);
7953 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7954 }
7955
7956 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7957 * Programming" based on the parameters passed:
7958 * - Sequence to enable CLKOUT_DP
7959 * - Sequence to enable CLKOUT_DP without spread
7960 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7961 */
7962 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7963 bool with_fdi)
7964 {
7965 struct drm_i915_private *dev_priv = dev->dev_private;
7966 uint32_t reg, tmp;
7967
7968 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7969 with_spread = true;
7970 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7971 with_fdi, "LP PCH doesn't have FDI\n"))
7972 with_fdi = false;
7973
7974 mutex_lock(&dev_priv->dpio_lock);
7975
7976 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7977 tmp &= ~SBI_SSCCTL_DISABLE;
7978 tmp |= SBI_SSCCTL_PATHALT;
7979 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7980
7981 udelay(24);
7982
7983 if (with_spread) {
7984 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7985 tmp &= ~SBI_SSCCTL_PATHALT;
7986 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7987
7988 if (with_fdi) {
7989 lpt_reset_fdi_mphy(dev_priv);
7990 lpt_program_fdi_mphy(dev_priv);
7991 }
7992 }
7993
7994 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7995 SBI_GEN0 : SBI_DBUFF0;
7996 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7997 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7998 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7999
8000 mutex_unlock(&dev_priv->dpio_lock);
8001 }
8002
8003 /* Sequence to disable CLKOUT_DP */
8004 static void lpt_disable_clkout_dp(struct drm_device *dev)
8005 {
8006 struct drm_i915_private *dev_priv = dev->dev_private;
8007 uint32_t reg, tmp;
8008
8009 mutex_lock(&dev_priv->dpio_lock);
8010
8011 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8012 SBI_GEN0 : SBI_DBUFF0;
8013 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8014 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8015 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8016
8017 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8018 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8019 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8020 tmp |= SBI_SSCCTL_PATHALT;
8021 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8022 udelay(32);
8023 }
8024 tmp |= SBI_SSCCTL_DISABLE;
8025 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8026 }
8027
8028 mutex_unlock(&dev_priv->dpio_lock);
8029 }
8030
8031 static void lpt_init_pch_refclk(struct drm_device *dev)
8032 {
8033 struct intel_encoder *encoder;
8034 bool has_vga = false;
8035
8036 for_each_intel_encoder(dev, encoder) {
8037 switch (encoder->type) {
8038 case INTEL_OUTPUT_ANALOG:
8039 has_vga = true;
8040 break;
8041 default:
8042 break;
8043 }
8044 }
8045
8046 if (has_vga)
8047 lpt_enable_clkout_dp(dev, true, true);
8048 else
8049 lpt_disable_clkout_dp(dev);
8050 }
8051
8052 /*
8053 * Initialize reference clocks when the driver loads
8054 */
8055 void intel_init_pch_refclk(struct drm_device *dev)
8056 {
8057 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8058 ironlake_init_pch_refclk(dev);
8059 else if (HAS_PCH_LPT(dev))
8060 lpt_init_pch_refclk(dev);
8061 }
8062
8063 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8064 {
8065 struct drm_device *dev = crtc_state->base.crtc->dev;
8066 struct drm_i915_private *dev_priv = dev->dev_private;
8067 struct drm_atomic_state *state = crtc_state->base.state;
8068 struct drm_connector_state *connector_state;
8069 struct intel_encoder *encoder;
8070 int num_connectors = 0, i;
8071 bool is_lvds = false;
8072
8073 for (i = 0; i < state->num_connector; i++) {
8074 if (!state->connectors[i])
8075 continue;
8076
8077 connector_state = state->connector_states[i];
8078 if (connector_state->crtc != crtc_state->base.crtc)
8079 continue;
8080
8081 encoder = to_intel_encoder(connector_state->best_encoder);
8082
8083 switch (encoder->type) {
8084 case INTEL_OUTPUT_LVDS:
8085 is_lvds = true;
8086 break;
8087 default:
8088 break;
8089 }
8090 num_connectors++;
8091 }
8092
8093 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8094 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8095 dev_priv->vbt.lvds_ssc_freq);
8096 return dev_priv->vbt.lvds_ssc_freq;
8097 }
8098
8099 return 120000;
8100 }
8101
8102 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8103 {
8104 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106 int pipe = intel_crtc->pipe;
8107 uint32_t val;
8108
8109 val = 0;
8110
8111 switch (intel_crtc->config->pipe_bpp) {
8112 case 18:
8113 val |= PIPECONF_6BPC;
8114 break;
8115 case 24:
8116 val |= PIPECONF_8BPC;
8117 break;
8118 case 30:
8119 val |= PIPECONF_10BPC;
8120 break;
8121 case 36:
8122 val |= PIPECONF_12BPC;
8123 break;
8124 default:
8125 /* Case prevented by intel_choose_pipe_bpp_dither. */
8126 BUG();
8127 }
8128
8129 if (intel_crtc->config->dither)
8130 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8131
8132 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8133 val |= PIPECONF_INTERLACED_ILK;
8134 else
8135 val |= PIPECONF_PROGRESSIVE;
8136
8137 if (intel_crtc->config->limited_color_range)
8138 val |= PIPECONF_COLOR_RANGE_SELECT;
8139
8140 I915_WRITE(PIPECONF(pipe), val);
8141 POSTING_READ(PIPECONF(pipe));
8142 }
8143
8144 /*
8145 * Set up the pipe CSC unit.
8146 *
8147 * Currently only full range RGB to limited range RGB conversion
8148 * is supported, but eventually this should handle various
8149 * RGB<->YCbCr scenarios as well.
8150 */
8151 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8152 {
8153 struct drm_device *dev = crtc->dev;
8154 struct drm_i915_private *dev_priv = dev->dev_private;
8155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8156 int pipe = intel_crtc->pipe;
8157 uint16_t coeff = 0x7800; /* 1.0 */
8158
8159 /*
8160 * TODO: Check what kind of values actually come out of the pipe
8161 * with these coeff/postoff values and adjust to get the best
8162 * accuracy. Perhaps we even need to take the bpc value into
8163 * consideration.
8164 */
8165
8166 if (intel_crtc->config->limited_color_range)
8167 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8168
8169 /*
8170 * GY/GU and RY/RU should be the other way around according
8171 * to BSpec, but reality doesn't agree. Just set them up in
8172 * a way that results in the correct picture.
8173 */
8174 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8175 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8176
8177 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8178 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8179
8180 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8181 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8182
8183 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8184 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8185 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8186
8187 if (INTEL_INFO(dev)->gen > 6) {
8188 uint16_t postoff = 0;
8189
8190 if (intel_crtc->config->limited_color_range)
8191 postoff = (16 * (1 << 12) / 255) & 0x1fff;
8192
8193 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8194 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8195 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8196
8197 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8198 } else {
8199 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8200
8201 if (intel_crtc->config->limited_color_range)
8202 mode |= CSC_BLACK_SCREEN_OFFSET;
8203
8204 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8205 }
8206 }
8207
8208 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8209 {
8210 struct drm_device *dev = crtc->dev;
8211 struct drm_i915_private *dev_priv = dev->dev_private;
8212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8213 enum pipe pipe = intel_crtc->pipe;
8214 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8215 uint32_t val;
8216
8217 val = 0;
8218
8219 if (IS_HASWELL(dev) && intel_crtc->config->dither)
8220 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8221
8222 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8223 val |= PIPECONF_INTERLACED_ILK;
8224 else
8225 val |= PIPECONF_PROGRESSIVE;
8226
8227 I915_WRITE(PIPECONF(cpu_transcoder), val);
8228 POSTING_READ(PIPECONF(cpu_transcoder));
8229
8230 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8231 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8232
8233 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8234 val = 0;
8235
8236 switch (intel_crtc->config->pipe_bpp) {
8237 case 18:
8238 val |= PIPEMISC_DITHER_6_BPC;
8239 break;
8240 case 24:
8241 val |= PIPEMISC_DITHER_8_BPC;
8242 break;
8243 case 30:
8244 val |= PIPEMISC_DITHER_10_BPC;
8245 break;
8246 case 36:
8247 val |= PIPEMISC_DITHER_12_BPC;
8248 break;
8249 default:
8250 /* Case prevented by pipe_config_set_bpp. */
8251 BUG();
8252 }
8253
8254 if (intel_crtc->config->dither)
8255 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8256
8257 I915_WRITE(PIPEMISC(pipe), val);
8258 }
8259 }
8260
8261 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8262 struct intel_crtc_state *crtc_state,
8263 intel_clock_t *clock,
8264 bool *has_reduced_clock,
8265 intel_clock_t *reduced_clock)
8266 {
8267 struct drm_device *dev = crtc->dev;
8268 struct drm_i915_private *dev_priv = dev->dev_private;
8269 int refclk;
8270 const intel_limit_t *limit;
8271 bool ret, is_lvds = false;
8272
8273 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8274
8275 refclk = ironlake_get_refclk(crtc_state);
8276
8277 /*
8278 * Returns a set of divisors for the desired target clock with the given
8279 * refclk, or FALSE. The returned values represent the clock equation:
8280 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8281 */
8282 limit = intel_limit(crtc_state, refclk);
8283 ret = dev_priv->display.find_dpll(limit, crtc_state,
8284 crtc_state->port_clock,
8285 refclk, NULL, clock);
8286 if (!ret)
8287 return false;
8288
8289 if (is_lvds && dev_priv->lvds_downclock_avail) {
8290 /*
8291 * Ensure we match the reduced clock's P to the target clock.
8292 * If the clocks don't match, we can't switch the display clock
8293 * by using the FP0/FP1. In such case we will disable the LVDS
8294 * downclock feature.
8295 */
8296 *has_reduced_clock =
8297 dev_priv->display.find_dpll(limit, crtc_state,
8298 dev_priv->lvds_downclock,
8299 refclk, clock,
8300 reduced_clock);
8301 }
8302
8303 return true;
8304 }
8305
8306 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8307 {
8308 /*
8309 * Account for spread spectrum to avoid
8310 * oversubscribing the link. Max center spread
8311 * is 2.5%; use 5% for safety's sake.
8312 */
8313 u32 bps = target_clock * bpp * 21 / 20;
8314 return DIV_ROUND_UP(bps, link_bw * 8);
8315 }
8316
8317 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8318 {
8319 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8320 }
8321
8322 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8323 struct intel_crtc_state *crtc_state,
8324 u32 *fp,
8325 intel_clock_t *reduced_clock, u32 *fp2)
8326 {
8327 struct drm_crtc *crtc = &intel_crtc->base;
8328 struct drm_device *dev = crtc->dev;
8329 struct drm_i915_private *dev_priv = dev->dev_private;
8330 struct drm_atomic_state *state = crtc_state->base.state;
8331 struct drm_connector_state *connector_state;
8332 struct intel_encoder *encoder;
8333 uint32_t dpll;
8334 int factor, num_connectors = 0, i;
8335 bool is_lvds = false, is_sdvo = false;
8336
8337 for (i = 0; i < state->num_connector; i++) {
8338 if (!state->connectors[i])
8339 continue;
8340
8341 connector_state = state->connector_states[i];
8342 if (connector_state->crtc != crtc_state->base.crtc)
8343 continue;
8344
8345 encoder = to_intel_encoder(connector_state->best_encoder);
8346
8347 switch (encoder->type) {
8348 case INTEL_OUTPUT_LVDS:
8349 is_lvds = true;
8350 break;
8351 case INTEL_OUTPUT_SDVO:
8352 case INTEL_OUTPUT_HDMI:
8353 is_sdvo = true;
8354 break;
8355 default:
8356 break;
8357 }
8358
8359 num_connectors++;
8360 }
8361
8362 /* Enable autotuning of the PLL clock (if permissible) */
8363 factor = 21;
8364 if (is_lvds) {
8365 if ((intel_panel_use_ssc(dev_priv) &&
8366 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8367 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8368 factor = 25;
8369 } else if (crtc_state->sdvo_tv_clock)
8370 factor = 20;
8371
8372 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8373 *fp |= FP_CB_TUNE;
8374
8375 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8376 *fp2 |= FP_CB_TUNE;
8377
8378 dpll = 0;
8379
8380 if (is_lvds)
8381 dpll |= DPLLB_MODE_LVDS;
8382 else
8383 dpll |= DPLLB_MODE_DAC_SERIAL;
8384
8385 dpll |= (crtc_state->pixel_multiplier - 1)
8386 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8387
8388 if (is_sdvo)
8389 dpll |= DPLL_SDVO_HIGH_SPEED;
8390 if (crtc_state->has_dp_encoder)
8391 dpll |= DPLL_SDVO_HIGH_SPEED;
8392
8393 /* compute bitmask from p1 value */
8394 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8395 /* also FPA1 */
8396 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8397
8398 switch (crtc_state->dpll.p2) {
8399 case 5:
8400 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8401 break;
8402 case 7:
8403 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8404 break;
8405 case 10:
8406 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8407 break;
8408 case 14:
8409 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8410 break;
8411 }
8412
8413 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8414 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8415 else
8416 dpll |= PLL_REF_INPUT_DREFCLK;
8417
8418 return dpll | DPLL_VCO_ENABLE;
8419 }
8420
8421 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8422 struct intel_crtc_state *crtc_state)
8423 {
8424 struct drm_device *dev = crtc->base.dev;
8425 intel_clock_t clock, reduced_clock;
8426 u32 dpll = 0, fp = 0, fp2 = 0;
8427 bool ok, has_reduced_clock = false;
8428 bool is_lvds = false;
8429 struct intel_shared_dpll *pll;
8430
8431 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8432
8433 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8434 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8435
8436 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8437 &has_reduced_clock, &reduced_clock);
8438 if (!ok && !crtc_state->clock_set) {
8439 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8440 return -EINVAL;
8441 }
8442 /* Compat-code for transition, will disappear. */
8443 if (!crtc_state->clock_set) {
8444 crtc_state->dpll.n = clock.n;
8445 crtc_state->dpll.m1 = clock.m1;
8446 crtc_state->dpll.m2 = clock.m2;
8447 crtc_state->dpll.p1 = clock.p1;
8448 crtc_state->dpll.p2 = clock.p2;
8449 }
8450
8451 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8452 if (crtc_state->has_pch_encoder) {
8453 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8454 if (has_reduced_clock)
8455 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8456
8457 dpll = ironlake_compute_dpll(crtc, crtc_state,
8458 &fp, &reduced_clock,
8459 has_reduced_clock ? &fp2 : NULL);
8460
8461 crtc_state->dpll_hw_state.dpll = dpll;
8462 crtc_state->dpll_hw_state.fp0 = fp;
8463 if (has_reduced_clock)
8464 crtc_state->dpll_hw_state.fp1 = fp2;
8465 else
8466 crtc_state->dpll_hw_state.fp1 = fp;
8467
8468 pll = intel_get_shared_dpll(crtc, crtc_state);
8469 if (pll == NULL) {
8470 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8471 pipe_name(crtc->pipe));
8472 return -EINVAL;
8473 }
8474 }
8475
8476 if (is_lvds && has_reduced_clock)
8477 crtc->lowfreq_avail = true;
8478 else
8479 crtc->lowfreq_avail = false;
8480
8481 return 0;
8482 }
8483
8484 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8485 struct intel_link_m_n *m_n)
8486 {
8487 struct drm_device *dev = crtc->base.dev;
8488 struct drm_i915_private *dev_priv = dev->dev_private;
8489 enum pipe pipe = crtc->pipe;
8490
8491 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8492 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8493 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8494 & ~TU_SIZE_MASK;
8495 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8496 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8497 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8498 }
8499
8500 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8501 enum transcoder transcoder,
8502 struct intel_link_m_n *m_n,
8503 struct intel_link_m_n *m2_n2)
8504 {
8505 struct drm_device *dev = crtc->base.dev;
8506 struct drm_i915_private *dev_priv = dev->dev_private;
8507 enum pipe pipe = crtc->pipe;
8508
8509 if (INTEL_INFO(dev)->gen >= 5) {
8510 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8511 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8512 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8513 & ~TU_SIZE_MASK;
8514 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8515 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8516 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8517 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8518 * gen < 8) and if DRRS is supported (to make sure the
8519 * registers are not unnecessarily read).
8520 */
8521 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8522 crtc->config->has_drrs) {
8523 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8524 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8525 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8526 & ~TU_SIZE_MASK;
8527 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8528 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8529 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8530 }
8531 } else {
8532 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8533 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8534 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8535 & ~TU_SIZE_MASK;
8536 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8537 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8538 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8539 }
8540 }
8541
8542 void intel_dp_get_m_n(struct intel_crtc *crtc,
8543 struct intel_crtc_state *pipe_config)
8544 {
8545 if (pipe_config->has_pch_encoder)
8546 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8547 else
8548 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8549 &pipe_config->dp_m_n,
8550 &pipe_config->dp_m2_n2);
8551 }
8552
8553 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8554 struct intel_crtc_state *pipe_config)
8555 {
8556 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8557 &pipe_config->fdi_m_n, NULL);
8558 }
8559
8560 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8561 struct intel_crtc_state *pipe_config)
8562 {
8563 struct drm_device *dev = crtc->base.dev;
8564 struct drm_i915_private *dev_priv = dev->dev_private;
8565 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8566 uint32_t ps_ctrl = 0;
8567 int id = -1;
8568 int i;
8569
8570 /* find scaler attached to this pipe */
8571 for (i = 0; i < crtc->num_scalers; i++) {
8572 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8573 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8574 id = i;
8575 pipe_config->pch_pfit.enabled = true;
8576 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8577 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8578 break;
8579 }
8580 }
8581
8582 scaler_state->scaler_id = id;
8583 if (id >= 0) {
8584 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8585 } else {
8586 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8587 }
8588 }
8589
8590 static void
8591 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8592 struct intel_initial_plane_config *plane_config)
8593 {
8594 struct drm_device *dev = crtc->base.dev;
8595 struct drm_i915_private *dev_priv = dev->dev_private;
8596 u32 val, base, offset, stride_mult, tiling;
8597 int pipe = crtc->pipe;
8598 int fourcc, pixel_format;
8599 unsigned int aligned_height;
8600 struct drm_framebuffer *fb;
8601 struct intel_framebuffer *intel_fb;
8602
8603 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8604 if (!intel_fb) {
8605 DRM_DEBUG_KMS("failed to alloc fb\n");
8606 return;
8607 }
8608
8609 fb = &intel_fb->base;
8610
8611 val = I915_READ(PLANE_CTL(pipe, 0));
8612 if (!(val & PLANE_CTL_ENABLE))
8613 goto error;
8614
8615 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8616 fourcc = skl_format_to_fourcc(pixel_format,
8617 val & PLANE_CTL_ORDER_RGBX,
8618 val & PLANE_CTL_ALPHA_MASK);
8619 fb->pixel_format = fourcc;
8620 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8621
8622 tiling = val & PLANE_CTL_TILED_MASK;
8623 switch (tiling) {
8624 case PLANE_CTL_TILED_LINEAR:
8625 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8626 break;
8627 case PLANE_CTL_TILED_X:
8628 plane_config->tiling = I915_TILING_X;
8629 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8630 break;
8631 case PLANE_CTL_TILED_Y:
8632 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8633 break;
8634 case PLANE_CTL_TILED_YF:
8635 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8636 break;
8637 default:
8638 MISSING_CASE(tiling);
8639 goto error;
8640 }
8641
8642 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8643 plane_config->base = base;
8644
8645 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8646
8647 val = I915_READ(PLANE_SIZE(pipe, 0));
8648 fb->height = ((val >> 16) & 0xfff) + 1;
8649 fb->width = ((val >> 0) & 0x1fff) + 1;
8650
8651 val = I915_READ(PLANE_STRIDE(pipe, 0));
8652 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8653 fb->pixel_format);
8654 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8655
8656 aligned_height = intel_fb_align_height(dev, fb->height,
8657 fb->pixel_format,
8658 fb->modifier[0]);
8659
8660 plane_config->size = fb->pitches[0] * aligned_height;
8661
8662 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8663 pipe_name(pipe), fb->width, fb->height,
8664 fb->bits_per_pixel, base, fb->pitches[0],
8665 plane_config->size);
8666
8667 plane_config->fb = intel_fb;
8668 return;
8669
8670 error:
8671 kfree(fb);
8672 }
8673
8674 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8675 struct intel_crtc_state *pipe_config)
8676 {
8677 struct drm_device *dev = crtc->base.dev;
8678 struct drm_i915_private *dev_priv = dev->dev_private;
8679 uint32_t tmp;
8680
8681 tmp = I915_READ(PF_CTL(crtc->pipe));
8682
8683 if (tmp & PF_ENABLE) {
8684 pipe_config->pch_pfit.enabled = true;
8685 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8686 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8687
8688 /* We currently do not free assignements of panel fitters on
8689 * ivb/hsw (since we don't use the higher upscaling modes which
8690 * differentiates them) so just WARN about this case for now. */
8691 if (IS_GEN7(dev)) {
8692 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8693 PF_PIPE_SEL_IVB(crtc->pipe));
8694 }
8695 }
8696 }
8697
8698 static void
8699 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8700 struct intel_initial_plane_config *plane_config)
8701 {
8702 struct drm_device *dev = crtc->base.dev;
8703 struct drm_i915_private *dev_priv = dev->dev_private;
8704 u32 val, base, offset;
8705 int pipe = crtc->pipe;
8706 int fourcc, pixel_format;
8707 unsigned int aligned_height;
8708 struct drm_framebuffer *fb;
8709 struct intel_framebuffer *intel_fb;
8710
8711 val = I915_READ(DSPCNTR(pipe));
8712 if (!(val & DISPLAY_PLANE_ENABLE))
8713 return;
8714
8715 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8716 if (!intel_fb) {
8717 DRM_DEBUG_KMS("failed to alloc fb\n");
8718 return;
8719 }
8720
8721 fb = &intel_fb->base;
8722
8723 if (INTEL_INFO(dev)->gen >= 4) {
8724 if (val & DISPPLANE_TILED) {
8725 plane_config->tiling = I915_TILING_X;
8726 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8727 }
8728 }
8729
8730 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8731 fourcc = i9xx_format_to_fourcc(pixel_format);
8732 fb->pixel_format = fourcc;
8733 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8734
8735 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8736 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
8737 offset = I915_READ(DSPOFFSET(pipe));
8738 } else {
8739 if (plane_config->tiling)
8740 offset = I915_READ(DSPTILEOFF(pipe));
8741 else
8742 offset = I915_READ(DSPLINOFF(pipe));
8743 }
8744 plane_config->base = base;
8745
8746 val = I915_READ(PIPESRC(pipe));
8747 fb->width = ((val >> 16) & 0xfff) + 1;
8748 fb->height = ((val >> 0) & 0xfff) + 1;
8749
8750 val = I915_READ(DSPSTRIDE(pipe));
8751 fb->pitches[0] = val & 0xffffffc0;
8752
8753 aligned_height = intel_fb_align_height(dev, fb->height,
8754 fb->pixel_format,
8755 fb->modifier[0]);
8756
8757 plane_config->size = fb->pitches[0] * aligned_height;
8758
8759 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8760 pipe_name(pipe), fb->width, fb->height,
8761 fb->bits_per_pixel, base, fb->pitches[0],
8762 plane_config->size);
8763
8764 plane_config->fb = intel_fb;
8765 }
8766
8767 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8768 struct intel_crtc_state *pipe_config)
8769 {
8770 struct drm_device *dev = crtc->base.dev;
8771 struct drm_i915_private *dev_priv = dev->dev_private;
8772 uint32_t tmp;
8773
8774 if (!intel_display_power_is_enabled(dev_priv,
8775 POWER_DOMAIN_PIPE(crtc->pipe)))
8776 return false;
8777
8778 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8779 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8780
8781 tmp = I915_READ(PIPECONF(crtc->pipe));
8782 if (!(tmp & PIPECONF_ENABLE))
8783 return false;
8784
8785 switch (tmp & PIPECONF_BPC_MASK) {
8786 case PIPECONF_6BPC:
8787 pipe_config->pipe_bpp = 18;
8788 break;
8789 case PIPECONF_8BPC:
8790 pipe_config->pipe_bpp = 24;
8791 break;
8792 case PIPECONF_10BPC:
8793 pipe_config->pipe_bpp = 30;
8794 break;
8795 case PIPECONF_12BPC:
8796 pipe_config->pipe_bpp = 36;
8797 break;
8798 default:
8799 break;
8800 }
8801
8802 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8803 pipe_config->limited_color_range = true;
8804
8805 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8806 struct intel_shared_dpll *pll;
8807
8808 pipe_config->has_pch_encoder = true;
8809
8810 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8811 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8812 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8813
8814 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8815
8816 if (HAS_PCH_IBX(dev_priv->dev)) {
8817 pipe_config->shared_dpll =
8818 (enum intel_dpll_id) crtc->pipe;
8819 } else {
8820 tmp = I915_READ(PCH_DPLL_SEL);
8821 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8822 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
8823 else
8824 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
8825 }
8826
8827 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8828
8829 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8830 &pipe_config->dpll_hw_state));
8831
8832 tmp = pipe_config->dpll_hw_state.dpll;
8833 pipe_config->pixel_multiplier =
8834 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8835 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8836
8837 ironlake_pch_clock_get(crtc, pipe_config);
8838 } else {
8839 pipe_config->pixel_multiplier = 1;
8840 }
8841
8842 intel_get_pipe_timings(crtc, pipe_config);
8843
8844 ironlake_get_pfit_config(crtc, pipe_config);
8845
8846 return true;
8847 }
8848
8849 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8850 {
8851 struct drm_device *dev = dev_priv->dev;
8852 struct intel_crtc *crtc;
8853
8854 for_each_intel_crtc(dev, crtc)
8855 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8856 pipe_name(crtc->pipe));
8857
8858 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8859 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8860 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8861 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8862 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
8863 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8864 "CPU PWM1 enabled\n");
8865 if (IS_HASWELL(dev))
8866 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8867 "CPU PWM2 enabled\n");
8868 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8869 "PCH PWM1 enabled\n");
8870 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8871 "Utility pin enabled\n");
8872 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8873
8874 /*
8875 * In theory we can still leave IRQs enabled, as long as only the HPD
8876 * interrupts remain enabled. We used to check for that, but since it's
8877 * gen-specific and since we only disable LCPLL after we fully disable
8878 * the interrupts, the check below should be enough.
8879 */
8880 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8881 }
8882
8883 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8884 {
8885 struct drm_device *dev = dev_priv->dev;
8886
8887 if (IS_HASWELL(dev))
8888 return I915_READ(D_COMP_HSW);
8889 else
8890 return I915_READ(D_COMP_BDW);
8891 }
8892
8893 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8894 {
8895 struct drm_device *dev = dev_priv->dev;
8896
8897 if (IS_HASWELL(dev)) {
8898 mutex_lock(&dev_priv->rps.hw_lock);
8899 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8900 val))
8901 DRM_ERROR("Failed to write to D_COMP\n");
8902 mutex_unlock(&dev_priv->rps.hw_lock);
8903 } else {
8904 I915_WRITE(D_COMP_BDW, val);
8905 POSTING_READ(D_COMP_BDW);
8906 }
8907 }
8908
8909 /*
8910 * This function implements pieces of two sequences from BSpec:
8911 * - Sequence for display software to disable LCPLL
8912 * - Sequence for display software to allow package C8+
8913 * The steps implemented here are just the steps that actually touch the LCPLL
8914 * register. Callers should take care of disabling all the display engine
8915 * functions, doing the mode unset, fixing interrupts, etc.
8916 */
8917 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8918 bool switch_to_fclk, bool allow_power_down)
8919 {
8920 uint32_t val;
8921
8922 assert_can_disable_lcpll(dev_priv);
8923
8924 val = I915_READ(LCPLL_CTL);
8925
8926 if (switch_to_fclk) {
8927 val |= LCPLL_CD_SOURCE_FCLK;
8928 I915_WRITE(LCPLL_CTL, val);
8929
8930 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
8931 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8932 DRM_ERROR("Switching to FCLK failed\n");
8933
8934 val = I915_READ(LCPLL_CTL);
8935 }
8936
8937 val |= LCPLL_PLL_DISABLE;
8938 I915_WRITE(LCPLL_CTL, val);
8939 POSTING_READ(LCPLL_CTL);
8940
8941 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8942 DRM_ERROR("LCPLL still locked\n");
8943
8944 val = hsw_read_dcomp(dev_priv);
8945 val |= D_COMP_COMP_DISABLE;
8946 hsw_write_dcomp(dev_priv, val);
8947 ndelay(100);
8948
8949 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8950 1))
8951 DRM_ERROR("D_COMP RCOMP still in progress\n");
8952
8953 if (allow_power_down) {
8954 val = I915_READ(LCPLL_CTL);
8955 val |= LCPLL_POWER_DOWN_ALLOW;
8956 I915_WRITE(LCPLL_CTL, val);
8957 POSTING_READ(LCPLL_CTL);
8958 }
8959 }
8960
8961 /*
8962 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8963 * source.
8964 */
8965 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8966 {
8967 uint32_t val;
8968
8969 val = I915_READ(LCPLL_CTL);
8970
8971 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8972 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8973 return;
8974
8975 /*
8976 * Make sure we're not on PC8 state before disabling PC8, otherwise
8977 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8978 */
8979 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8980
8981 if (val & LCPLL_POWER_DOWN_ALLOW) {
8982 val &= ~LCPLL_POWER_DOWN_ALLOW;
8983 I915_WRITE(LCPLL_CTL, val);
8984 POSTING_READ(LCPLL_CTL);
8985 }
8986
8987 val = hsw_read_dcomp(dev_priv);
8988 val |= D_COMP_COMP_FORCE;
8989 val &= ~D_COMP_COMP_DISABLE;
8990 hsw_write_dcomp(dev_priv, val);
8991
8992 val = I915_READ(LCPLL_CTL);
8993 val &= ~LCPLL_PLL_DISABLE;
8994 I915_WRITE(LCPLL_CTL, val);
8995
8996 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8997 DRM_ERROR("LCPLL not locked yet\n");
8998
8999 if (val & LCPLL_CD_SOURCE_FCLK) {
9000 val = I915_READ(LCPLL_CTL);
9001 val &= ~LCPLL_CD_SOURCE_FCLK;
9002 I915_WRITE(LCPLL_CTL, val);
9003
9004 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9005 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9006 DRM_ERROR("Switching back to LCPLL failed\n");
9007 }
9008
9009 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9010 }
9011
9012 /*
9013 * Package states C8 and deeper are really deep PC states that can only be
9014 * reached when all the devices on the system allow it, so even if the graphics
9015 * device allows PC8+, it doesn't mean the system will actually get to these
9016 * states. Our driver only allows PC8+ when going into runtime PM.
9017 *
9018 * The requirements for PC8+ are that all the outputs are disabled, the power
9019 * well is disabled and most interrupts are disabled, and these are also
9020 * requirements for runtime PM. When these conditions are met, we manually do
9021 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9022 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9023 * hang the machine.
9024 *
9025 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9026 * the state of some registers, so when we come back from PC8+ we need to
9027 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9028 * need to take care of the registers kept by RC6. Notice that this happens even
9029 * if we don't put the device in PCI D3 state (which is what currently happens
9030 * because of the runtime PM support).
9031 *
9032 * For more, read "Display Sequences for Package C8" on the hardware
9033 * documentation.
9034 */
9035 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9036 {
9037 struct drm_device *dev = dev_priv->dev;
9038 uint32_t val;
9039
9040 DRM_DEBUG_KMS("Enabling package C8+\n");
9041
9042 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9043 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9044 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9045 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9046 }
9047
9048 lpt_disable_clkout_dp(dev);
9049 hsw_disable_lcpll(dev_priv, true, true);
9050 }
9051
9052 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9053 {
9054 struct drm_device *dev = dev_priv->dev;
9055 uint32_t val;
9056
9057 DRM_DEBUG_KMS("Disabling package C8+\n");
9058
9059 hsw_restore_lcpll(dev_priv);
9060 lpt_init_pch_refclk(dev);
9061
9062 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9063 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9064 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9065 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9066 }
9067
9068 intel_prepare_ddi(dev);
9069 }
9070
9071 static void broxton_modeset_global_resources(struct drm_atomic_state *state)
9072 {
9073 struct drm_device *dev = state->dev;
9074 struct drm_i915_private *dev_priv = dev->dev_private;
9075 int max_pixclk = intel_mode_max_pixclk(state);
9076 int req_cdclk;
9077
9078 /* see the comment in valleyview_modeset_global_resources */
9079 if (WARN_ON(max_pixclk < 0))
9080 return;
9081
9082 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9083
9084 if (req_cdclk != dev_priv->cdclk_freq)
9085 broxton_set_cdclk(dev, req_cdclk);
9086 }
9087
9088 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9089 struct intel_crtc_state *crtc_state)
9090 {
9091 if (!intel_ddi_pll_select(crtc, crtc_state))
9092 return -EINVAL;
9093
9094 crtc->lowfreq_avail = false;
9095
9096 return 0;
9097 }
9098
9099 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9100 enum port port,
9101 struct intel_crtc_state *pipe_config)
9102 {
9103 switch (port) {
9104 case PORT_A:
9105 pipe_config->ddi_pll_sel = SKL_DPLL0;
9106 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9107 break;
9108 case PORT_B:
9109 pipe_config->ddi_pll_sel = SKL_DPLL1;
9110 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9111 break;
9112 case PORT_C:
9113 pipe_config->ddi_pll_sel = SKL_DPLL2;
9114 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9115 break;
9116 default:
9117 DRM_ERROR("Incorrect port type\n");
9118 }
9119 }
9120
9121 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9122 enum port port,
9123 struct intel_crtc_state *pipe_config)
9124 {
9125 u32 temp, dpll_ctl1;
9126
9127 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9128 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9129
9130 switch (pipe_config->ddi_pll_sel) {
9131 case SKL_DPLL0:
9132 /*
9133 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9134 * of the shared DPLL framework and thus needs to be read out
9135 * separately
9136 */
9137 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9138 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9139 break;
9140 case SKL_DPLL1:
9141 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9142 break;
9143 case SKL_DPLL2:
9144 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9145 break;
9146 case SKL_DPLL3:
9147 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9148 break;
9149 }
9150 }
9151
9152 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9153 enum port port,
9154 struct intel_crtc_state *pipe_config)
9155 {
9156 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9157
9158 switch (pipe_config->ddi_pll_sel) {
9159 case PORT_CLK_SEL_WRPLL1:
9160 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9161 break;
9162 case PORT_CLK_SEL_WRPLL2:
9163 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9164 break;
9165 }
9166 }
9167
9168 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9169 struct intel_crtc_state *pipe_config)
9170 {
9171 struct drm_device *dev = crtc->base.dev;
9172 struct drm_i915_private *dev_priv = dev->dev_private;
9173 struct intel_shared_dpll *pll;
9174 enum port port;
9175 uint32_t tmp;
9176
9177 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9178
9179 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9180
9181 if (IS_SKYLAKE(dev))
9182 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9183 else if (IS_BROXTON(dev))
9184 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9185 else
9186 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9187
9188 if (pipe_config->shared_dpll >= 0) {
9189 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9190
9191 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9192 &pipe_config->dpll_hw_state));
9193 }
9194
9195 /*
9196 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9197 * DDI E. So just check whether this pipe is wired to DDI E and whether
9198 * the PCH transcoder is on.
9199 */
9200 if (INTEL_INFO(dev)->gen < 9 &&
9201 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9202 pipe_config->has_pch_encoder = true;
9203
9204 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9205 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9206 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9207
9208 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9209 }
9210 }
9211
9212 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9213 struct intel_crtc_state *pipe_config)
9214 {
9215 struct drm_device *dev = crtc->base.dev;
9216 struct drm_i915_private *dev_priv = dev->dev_private;
9217 enum intel_display_power_domain pfit_domain;
9218 uint32_t tmp;
9219
9220 if (!intel_display_power_is_enabled(dev_priv,
9221 POWER_DOMAIN_PIPE(crtc->pipe)))
9222 return false;
9223
9224 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9225 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9226
9227 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9228 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9229 enum pipe trans_edp_pipe;
9230 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9231 default:
9232 WARN(1, "unknown pipe linked to edp transcoder\n");
9233 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9234 case TRANS_DDI_EDP_INPUT_A_ON:
9235 trans_edp_pipe = PIPE_A;
9236 break;
9237 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9238 trans_edp_pipe = PIPE_B;
9239 break;
9240 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9241 trans_edp_pipe = PIPE_C;
9242 break;
9243 }
9244
9245 if (trans_edp_pipe == crtc->pipe)
9246 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9247 }
9248
9249 if (!intel_display_power_is_enabled(dev_priv,
9250 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9251 return false;
9252
9253 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9254 if (!(tmp & PIPECONF_ENABLE))
9255 return false;
9256
9257 haswell_get_ddi_port_state(crtc, pipe_config);
9258
9259 intel_get_pipe_timings(crtc, pipe_config);
9260
9261 if (INTEL_INFO(dev)->gen >= 9) {
9262 skl_init_scalers(dev, crtc, pipe_config);
9263 }
9264
9265 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9266 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9267 if (INTEL_INFO(dev)->gen == 9)
9268 skylake_get_pfit_config(crtc, pipe_config);
9269 else if (INTEL_INFO(dev)->gen < 9)
9270 ironlake_get_pfit_config(crtc, pipe_config);
9271 else
9272 MISSING_CASE(INTEL_INFO(dev)->gen);
9273
9274 } else {
9275 pipe_config->scaler_state.scaler_id = -1;
9276 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9277 }
9278
9279 if (IS_HASWELL(dev))
9280 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9281 (I915_READ(IPS_CTL) & IPS_ENABLE);
9282
9283 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9284 pipe_config->pixel_multiplier =
9285 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9286 } else {
9287 pipe_config->pixel_multiplier = 1;
9288 }
9289
9290 return true;
9291 }
9292
9293 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9294 {
9295 struct drm_device *dev = crtc->dev;
9296 struct drm_i915_private *dev_priv = dev->dev_private;
9297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9298 uint32_t cntl = 0, size = 0;
9299
9300 if (base) {
9301 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9302 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9303 unsigned int stride = roundup_pow_of_two(width) * 4;
9304
9305 switch (stride) {
9306 default:
9307 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9308 width, stride);
9309 stride = 256;
9310 /* fallthrough */
9311 case 256:
9312 case 512:
9313 case 1024:
9314 case 2048:
9315 break;
9316 }
9317
9318 cntl |= CURSOR_ENABLE |
9319 CURSOR_GAMMA_ENABLE |
9320 CURSOR_FORMAT_ARGB |
9321 CURSOR_STRIDE(stride);
9322
9323 size = (height << 12) | width;
9324 }
9325
9326 if (intel_crtc->cursor_cntl != 0 &&
9327 (intel_crtc->cursor_base != base ||
9328 intel_crtc->cursor_size != size ||
9329 intel_crtc->cursor_cntl != cntl)) {
9330 /* On these chipsets we can only modify the base/size/stride
9331 * whilst the cursor is disabled.
9332 */
9333 I915_WRITE(_CURACNTR, 0);
9334 POSTING_READ(_CURACNTR);
9335 intel_crtc->cursor_cntl = 0;
9336 }
9337
9338 if (intel_crtc->cursor_base != base) {
9339 I915_WRITE(_CURABASE, base);
9340 intel_crtc->cursor_base = base;
9341 }
9342
9343 if (intel_crtc->cursor_size != size) {
9344 I915_WRITE(CURSIZE, size);
9345 intel_crtc->cursor_size = size;
9346 }
9347
9348 if (intel_crtc->cursor_cntl != cntl) {
9349 I915_WRITE(_CURACNTR, cntl);
9350 POSTING_READ(_CURACNTR);
9351 intel_crtc->cursor_cntl = cntl;
9352 }
9353 }
9354
9355 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9356 {
9357 struct drm_device *dev = crtc->dev;
9358 struct drm_i915_private *dev_priv = dev->dev_private;
9359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9360 int pipe = intel_crtc->pipe;
9361 uint32_t cntl;
9362
9363 cntl = 0;
9364 if (base) {
9365 cntl = MCURSOR_GAMMA_ENABLE;
9366 switch (intel_crtc->base.cursor->state->crtc_w) {
9367 case 64:
9368 cntl |= CURSOR_MODE_64_ARGB_AX;
9369 break;
9370 case 128:
9371 cntl |= CURSOR_MODE_128_ARGB_AX;
9372 break;
9373 case 256:
9374 cntl |= CURSOR_MODE_256_ARGB_AX;
9375 break;
9376 default:
9377 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9378 return;
9379 }
9380 cntl |= pipe << 28; /* Connect to correct pipe */
9381
9382 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9383 cntl |= CURSOR_PIPE_CSC_ENABLE;
9384 }
9385
9386 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9387 cntl |= CURSOR_ROTATE_180;
9388
9389 if (intel_crtc->cursor_cntl != cntl) {
9390 I915_WRITE(CURCNTR(pipe), cntl);
9391 POSTING_READ(CURCNTR(pipe));
9392 intel_crtc->cursor_cntl = cntl;
9393 }
9394
9395 /* and commit changes on next vblank */
9396 I915_WRITE(CURBASE(pipe), base);
9397 POSTING_READ(CURBASE(pipe));
9398
9399 intel_crtc->cursor_base = base;
9400 }
9401
9402 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9403 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9404 bool on)
9405 {
9406 struct drm_device *dev = crtc->dev;
9407 struct drm_i915_private *dev_priv = dev->dev_private;
9408 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9409 int pipe = intel_crtc->pipe;
9410 int x = crtc->cursor_x;
9411 int y = crtc->cursor_y;
9412 u32 base = 0, pos = 0;
9413
9414 if (on)
9415 base = intel_crtc->cursor_addr;
9416
9417 if (x >= intel_crtc->config->pipe_src_w)
9418 base = 0;
9419
9420 if (y >= intel_crtc->config->pipe_src_h)
9421 base = 0;
9422
9423 if (x < 0) {
9424 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9425 base = 0;
9426
9427 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9428 x = -x;
9429 }
9430 pos |= x << CURSOR_X_SHIFT;
9431
9432 if (y < 0) {
9433 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9434 base = 0;
9435
9436 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9437 y = -y;
9438 }
9439 pos |= y << CURSOR_Y_SHIFT;
9440
9441 if (base == 0 && intel_crtc->cursor_base == 0)
9442 return;
9443
9444 I915_WRITE(CURPOS(pipe), pos);
9445
9446 /* ILK+ do this automagically */
9447 if (HAS_GMCH_DISPLAY(dev) &&
9448 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9449 base += (intel_crtc->base.cursor->state->crtc_h *
9450 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9451 }
9452
9453 if (IS_845G(dev) || IS_I865G(dev))
9454 i845_update_cursor(crtc, base);
9455 else
9456 i9xx_update_cursor(crtc, base);
9457 }
9458
9459 static bool cursor_size_ok(struct drm_device *dev,
9460 uint32_t width, uint32_t height)
9461 {
9462 if (width == 0 || height == 0)
9463 return false;
9464
9465 /*
9466 * 845g/865g are special in that they are only limited by
9467 * the width of their cursors, the height is arbitrary up to
9468 * the precision of the register. Everything else requires
9469 * square cursors, limited to a few power-of-two sizes.
9470 */
9471 if (IS_845G(dev) || IS_I865G(dev)) {
9472 if ((width & 63) != 0)
9473 return false;
9474
9475 if (width > (IS_845G(dev) ? 64 : 512))
9476 return false;
9477
9478 if (height > 1023)
9479 return false;
9480 } else {
9481 switch (width | height) {
9482 case 256:
9483 case 128:
9484 if (IS_GEN2(dev))
9485 return false;
9486 case 64:
9487 break;
9488 default:
9489 return false;
9490 }
9491 }
9492
9493 return true;
9494 }
9495
9496 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9497 u16 *blue, uint32_t start, uint32_t size)
9498 {
9499 int end = (start + size > 256) ? 256 : start + size, i;
9500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9501
9502 for (i = start; i < end; i++) {
9503 intel_crtc->lut_r[i] = red[i] >> 8;
9504 intel_crtc->lut_g[i] = green[i] >> 8;
9505 intel_crtc->lut_b[i] = blue[i] >> 8;
9506 }
9507
9508 intel_crtc_load_lut(crtc);
9509 }
9510
9511 /* VESA 640x480x72Hz mode to set on the pipe */
9512 static struct drm_display_mode load_detect_mode = {
9513 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9514 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9515 };
9516
9517 struct drm_framebuffer *
9518 __intel_framebuffer_create(struct drm_device *dev,
9519 struct drm_mode_fb_cmd2 *mode_cmd,
9520 struct drm_i915_gem_object *obj)
9521 {
9522 struct intel_framebuffer *intel_fb;
9523 int ret;
9524
9525 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9526 if (!intel_fb) {
9527 drm_gem_object_unreference(&obj->base);
9528 return ERR_PTR(-ENOMEM);
9529 }
9530
9531 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9532 if (ret)
9533 goto err;
9534
9535 return &intel_fb->base;
9536 err:
9537 drm_gem_object_unreference(&obj->base);
9538 kfree(intel_fb);
9539
9540 return ERR_PTR(ret);
9541 }
9542
9543 static struct drm_framebuffer *
9544 intel_framebuffer_create(struct drm_device *dev,
9545 struct drm_mode_fb_cmd2 *mode_cmd,
9546 struct drm_i915_gem_object *obj)
9547 {
9548 struct drm_framebuffer *fb;
9549 int ret;
9550
9551 ret = i915_mutex_lock_interruptible(dev);
9552 if (ret)
9553 return ERR_PTR(ret);
9554 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9555 mutex_unlock(&dev->struct_mutex);
9556
9557 return fb;
9558 }
9559
9560 static u32
9561 intel_framebuffer_pitch_for_width(int width, int bpp)
9562 {
9563 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9564 return ALIGN(pitch, 64);
9565 }
9566
9567 static u32
9568 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9569 {
9570 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9571 return PAGE_ALIGN(pitch * mode->vdisplay);
9572 }
9573
9574 static struct drm_framebuffer *
9575 intel_framebuffer_create_for_mode(struct drm_device *dev,
9576 struct drm_display_mode *mode,
9577 int depth, int bpp)
9578 {
9579 struct drm_i915_gem_object *obj;
9580 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9581
9582 obj = i915_gem_alloc_object(dev,
9583 intel_framebuffer_size_for_mode(mode, bpp));
9584 if (obj == NULL)
9585 return ERR_PTR(-ENOMEM);
9586
9587 mode_cmd.width = mode->hdisplay;
9588 mode_cmd.height = mode->vdisplay;
9589 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9590 bpp);
9591 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9592
9593 return intel_framebuffer_create(dev, &mode_cmd, obj);
9594 }
9595
9596 static struct drm_framebuffer *
9597 mode_fits_in_fbdev(struct drm_device *dev,
9598 struct drm_display_mode *mode)
9599 {
9600 #ifdef CONFIG_DRM_I915_FBDEV
9601 struct drm_i915_private *dev_priv = dev->dev_private;
9602 struct drm_i915_gem_object *obj;
9603 struct drm_framebuffer *fb;
9604
9605 if (!dev_priv->fbdev)
9606 return NULL;
9607
9608 if (!dev_priv->fbdev->fb)
9609 return NULL;
9610
9611 obj = dev_priv->fbdev->fb->obj;
9612 BUG_ON(!obj);
9613
9614 fb = &dev_priv->fbdev->fb->base;
9615 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9616 fb->bits_per_pixel))
9617 return NULL;
9618
9619 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9620 return NULL;
9621
9622 return fb;
9623 #else
9624 return NULL;
9625 #endif
9626 }
9627
9628 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9629 struct drm_display_mode *mode,
9630 struct intel_load_detect_pipe *old,
9631 struct drm_modeset_acquire_ctx *ctx)
9632 {
9633 struct intel_crtc *intel_crtc;
9634 struct intel_encoder *intel_encoder =
9635 intel_attached_encoder(connector);
9636 struct drm_crtc *possible_crtc;
9637 struct drm_encoder *encoder = &intel_encoder->base;
9638 struct drm_crtc *crtc = NULL;
9639 struct drm_device *dev = encoder->dev;
9640 struct drm_framebuffer *fb;
9641 struct drm_mode_config *config = &dev->mode_config;
9642 struct drm_atomic_state *state = NULL;
9643 struct drm_connector_state *connector_state;
9644 int ret, i = -1;
9645
9646 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9647 connector->base.id, connector->name,
9648 encoder->base.id, encoder->name);
9649
9650 retry:
9651 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9652 if (ret)
9653 goto fail_unlock;
9654
9655 /*
9656 * Algorithm gets a little messy:
9657 *
9658 * - if the connector already has an assigned crtc, use it (but make
9659 * sure it's on first)
9660 *
9661 * - try to find the first unused crtc that can drive this connector,
9662 * and use that if we find one
9663 */
9664
9665 /* See if we already have a CRTC for this connector */
9666 if (encoder->crtc) {
9667 crtc = encoder->crtc;
9668
9669 ret = drm_modeset_lock(&crtc->mutex, ctx);
9670 if (ret)
9671 goto fail_unlock;
9672 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9673 if (ret)
9674 goto fail_unlock;
9675
9676 old->dpms_mode = connector->dpms;
9677 old->load_detect_temp = false;
9678
9679 /* Make sure the crtc and connector are running */
9680 if (connector->dpms != DRM_MODE_DPMS_ON)
9681 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
9682
9683 return true;
9684 }
9685
9686 /* Find an unused one (if possible) */
9687 for_each_crtc(dev, possible_crtc) {
9688 i++;
9689 if (!(encoder->possible_crtcs & (1 << i)))
9690 continue;
9691 if (possible_crtc->state->enable)
9692 continue;
9693 /* This can occur when applying the pipe A quirk on resume. */
9694 if (to_intel_crtc(possible_crtc)->new_enabled)
9695 continue;
9696
9697 crtc = possible_crtc;
9698 break;
9699 }
9700
9701 /*
9702 * If we didn't find an unused CRTC, don't use any.
9703 */
9704 if (!crtc) {
9705 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9706 goto fail_unlock;
9707 }
9708
9709 ret = drm_modeset_lock(&crtc->mutex, ctx);
9710 if (ret)
9711 goto fail_unlock;
9712 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
9713 if (ret)
9714 goto fail_unlock;
9715 intel_encoder->new_crtc = to_intel_crtc(crtc);
9716 to_intel_connector(connector)->new_encoder = intel_encoder;
9717
9718 intel_crtc = to_intel_crtc(crtc);
9719 intel_crtc->new_enabled = true;
9720 old->dpms_mode = connector->dpms;
9721 old->load_detect_temp = true;
9722 old->release_fb = NULL;
9723
9724 state = drm_atomic_state_alloc(dev);
9725 if (!state)
9726 return false;
9727
9728 state->acquire_ctx = ctx;
9729
9730 connector_state = drm_atomic_get_connector_state(state, connector);
9731 if (IS_ERR(connector_state)) {
9732 ret = PTR_ERR(connector_state);
9733 goto fail;
9734 }
9735
9736 connector_state->crtc = crtc;
9737 connector_state->best_encoder = &intel_encoder->base;
9738
9739 if (!mode)
9740 mode = &load_detect_mode;
9741
9742 /* We need a framebuffer large enough to accommodate all accesses
9743 * that the plane may generate whilst we perform load detection.
9744 * We can not rely on the fbcon either being present (we get called
9745 * during its initialisation to detect all boot displays, or it may
9746 * not even exist) or that it is large enough to satisfy the
9747 * requested mode.
9748 */
9749 fb = mode_fits_in_fbdev(dev, mode);
9750 if (fb == NULL) {
9751 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
9752 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
9753 old->release_fb = fb;
9754 } else
9755 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
9756 if (IS_ERR(fb)) {
9757 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
9758 goto fail;
9759 }
9760
9761 if (intel_set_mode(crtc, mode, 0, 0, fb, state)) {
9762 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
9763 if (old->release_fb)
9764 old->release_fb->funcs->destroy(old->release_fb);
9765 goto fail;
9766 }
9767 crtc->primary->crtc = crtc;
9768
9769 /* let the connector get through one full cycle before testing */
9770 intel_wait_for_vblank(dev, intel_crtc->pipe);
9771 return true;
9772
9773 fail:
9774 intel_crtc->new_enabled = crtc->state->enable;
9775 fail_unlock:
9776 if (state) {
9777 drm_atomic_state_free(state);
9778 state = NULL;
9779 }
9780
9781 if (ret == -EDEADLK) {
9782 drm_modeset_backoff(ctx);
9783 goto retry;
9784 }
9785
9786 return false;
9787 }
9788
9789 void intel_release_load_detect_pipe(struct drm_connector *connector,
9790 struct intel_load_detect_pipe *old,
9791 struct drm_modeset_acquire_ctx *ctx)
9792 {
9793 struct drm_device *dev = connector->dev;
9794 struct intel_encoder *intel_encoder =
9795 intel_attached_encoder(connector);
9796 struct drm_encoder *encoder = &intel_encoder->base;
9797 struct drm_crtc *crtc = encoder->crtc;
9798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9799 struct drm_atomic_state *state;
9800 struct drm_connector_state *connector_state;
9801
9802 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9803 connector->base.id, connector->name,
9804 encoder->base.id, encoder->name);
9805
9806 if (old->load_detect_temp) {
9807 state = drm_atomic_state_alloc(dev);
9808 if (!state)
9809 goto fail;
9810
9811 state->acquire_ctx = ctx;
9812
9813 connector_state = drm_atomic_get_connector_state(state, connector);
9814 if (IS_ERR(connector_state))
9815 goto fail;
9816
9817 to_intel_connector(connector)->new_encoder = NULL;
9818 intel_encoder->new_crtc = NULL;
9819 intel_crtc->new_enabled = false;
9820
9821 connector_state->best_encoder = NULL;
9822 connector_state->crtc = NULL;
9823
9824 intel_set_mode(crtc, NULL, 0, 0, NULL, state);
9825
9826 drm_atomic_state_free(state);
9827
9828 if (old->release_fb) {
9829 drm_framebuffer_unregister_private(old->release_fb);
9830 drm_framebuffer_unreference(old->release_fb);
9831 }
9832
9833 return;
9834 }
9835
9836 /* Switch crtc and encoder back off if necessary */
9837 if (old->dpms_mode != DRM_MODE_DPMS_ON)
9838 connector->funcs->dpms(connector, old->dpms_mode);
9839
9840 return;
9841 fail:
9842 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
9843 drm_atomic_state_free(state);
9844 }
9845
9846 static int i9xx_pll_refclk(struct drm_device *dev,
9847 const struct intel_crtc_state *pipe_config)
9848 {
9849 struct drm_i915_private *dev_priv = dev->dev_private;
9850 u32 dpll = pipe_config->dpll_hw_state.dpll;
9851
9852 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
9853 return dev_priv->vbt.lvds_ssc_freq;
9854 else if (HAS_PCH_SPLIT(dev))
9855 return 120000;
9856 else if (!IS_GEN2(dev))
9857 return 96000;
9858 else
9859 return 48000;
9860 }
9861
9862 /* Returns the clock of the currently programmed mode of the given pipe. */
9863 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
9864 struct intel_crtc_state *pipe_config)
9865 {
9866 struct drm_device *dev = crtc->base.dev;
9867 struct drm_i915_private *dev_priv = dev->dev_private;
9868 int pipe = pipe_config->cpu_transcoder;
9869 u32 dpll = pipe_config->dpll_hw_state.dpll;
9870 u32 fp;
9871 intel_clock_t clock;
9872 int refclk = i9xx_pll_refclk(dev, pipe_config);
9873
9874 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
9875 fp = pipe_config->dpll_hw_state.fp0;
9876 else
9877 fp = pipe_config->dpll_hw_state.fp1;
9878
9879 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
9880 if (IS_PINEVIEW(dev)) {
9881 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
9882 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
9883 } else {
9884 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
9885 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
9886 }
9887
9888 if (!IS_GEN2(dev)) {
9889 if (IS_PINEVIEW(dev))
9890 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
9891 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
9892 else
9893 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
9894 DPLL_FPA01_P1_POST_DIV_SHIFT);
9895
9896 switch (dpll & DPLL_MODE_MASK) {
9897 case DPLLB_MODE_DAC_SERIAL:
9898 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
9899 5 : 10;
9900 break;
9901 case DPLLB_MODE_LVDS:
9902 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
9903 7 : 14;
9904 break;
9905 default:
9906 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
9907 "mode\n", (int)(dpll & DPLL_MODE_MASK));
9908 return;
9909 }
9910
9911 if (IS_PINEVIEW(dev))
9912 pineview_clock(refclk, &clock);
9913 else
9914 i9xx_clock(refclk, &clock);
9915 } else {
9916 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
9917 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
9918
9919 if (is_lvds) {
9920 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
9921 DPLL_FPA01_P1_POST_DIV_SHIFT);
9922
9923 if (lvds & LVDS_CLKB_POWER_UP)
9924 clock.p2 = 7;
9925 else
9926 clock.p2 = 14;
9927 } else {
9928 if (dpll & PLL_P1_DIVIDE_BY_TWO)
9929 clock.p1 = 2;
9930 else {
9931 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
9932 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
9933 }
9934 if (dpll & PLL_P2_DIVIDE_BY_4)
9935 clock.p2 = 4;
9936 else
9937 clock.p2 = 2;
9938 }
9939
9940 i9xx_clock(refclk, &clock);
9941 }
9942
9943 /*
9944 * This value includes pixel_multiplier. We will use
9945 * port_clock to compute adjusted_mode.crtc_clock in the
9946 * encoder's get_config() function.
9947 */
9948 pipe_config->port_clock = clock.dot;
9949 }
9950
9951 int intel_dotclock_calculate(int link_freq,
9952 const struct intel_link_m_n *m_n)
9953 {
9954 /*
9955 * The calculation for the data clock is:
9956 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
9957 * But we want to avoid losing precison if possible, so:
9958 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
9959 *
9960 * and the link clock is simpler:
9961 * link_clock = (m * link_clock) / n
9962 */
9963
9964 if (!m_n->link_n)
9965 return 0;
9966
9967 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9968 }
9969
9970 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9971 struct intel_crtc_state *pipe_config)
9972 {
9973 struct drm_device *dev = crtc->base.dev;
9974
9975 /* read out port_clock from the DPLL */
9976 i9xx_crtc_clock_get(crtc, pipe_config);
9977
9978 /*
9979 * This value does not include pixel_multiplier.
9980 * We will check that port_clock and adjusted_mode.crtc_clock
9981 * agree once we know their relationship in the encoder's
9982 * get_config() function.
9983 */
9984 pipe_config->base.adjusted_mode.crtc_clock =
9985 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9986 &pipe_config->fdi_m_n);
9987 }
9988
9989 /** Returns the currently programmed mode of the given pipe. */
9990 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9991 struct drm_crtc *crtc)
9992 {
9993 struct drm_i915_private *dev_priv = dev->dev_private;
9994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9995 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9996 struct drm_display_mode *mode;
9997 struct intel_crtc_state pipe_config;
9998 int htot = I915_READ(HTOTAL(cpu_transcoder));
9999 int hsync = I915_READ(HSYNC(cpu_transcoder));
10000 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10001 int vsync = I915_READ(VSYNC(cpu_transcoder));
10002 enum pipe pipe = intel_crtc->pipe;
10003
10004 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10005 if (!mode)
10006 return NULL;
10007
10008 /*
10009 * Construct a pipe_config sufficient for getting the clock info
10010 * back out of crtc_clock_get.
10011 *
10012 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10013 * to use a real value here instead.
10014 */
10015 pipe_config.cpu_transcoder = (enum transcoder) pipe;
10016 pipe_config.pixel_multiplier = 1;
10017 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10018 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10019 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10020 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10021
10022 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10023 mode->hdisplay = (htot & 0xffff) + 1;
10024 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10025 mode->hsync_start = (hsync & 0xffff) + 1;
10026 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10027 mode->vdisplay = (vtot & 0xffff) + 1;
10028 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10029 mode->vsync_start = (vsync & 0xffff) + 1;
10030 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10031
10032 drm_mode_set_name(mode);
10033
10034 return mode;
10035 }
10036
10037 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10038 {
10039 struct drm_device *dev = crtc->dev;
10040 struct drm_i915_private *dev_priv = dev->dev_private;
10041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10042
10043 if (!HAS_GMCH_DISPLAY(dev))
10044 return;
10045
10046 if (!dev_priv->lvds_downclock_avail)
10047 return;
10048
10049 /*
10050 * Since this is called by a timer, we should never get here in
10051 * the manual case.
10052 */
10053 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10054 int pipe = intel_crtc->pipe;
10055 int dpll_reg = DPLL(pipe);
10056 int dpll;
10057
10058 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10059
10060 assert_panel_unlocked(dev_priv, pipe);
10061
10062 dpll = I915_READ(dpll_reg);
10063 dpll |= DISPLAY_RATE_SELECT_FPA1;
10064 I915_WRITE(dpll_reg, dpll);
10065 intel_wait_for_vblank(dev, pipe);
10066 dpll = I915_READ(dpll_reg);
10067 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10068 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10069 }
10070
10071 }
10072
10073 void intel_mark_busy(struct drm_device *dev)
10074 {
10075 struct drm_i915_private *dev_priv = dev->dev_private;
10076
10077 if (dev_priv->mm.busy)
10078 return;
10079
10080 intel_runtime_pm_get(dev_priv);
10081 i915_update_gfx_val(dev_priv);
10082 if (INTEL_INFO(dev)->gen >= 6)
10083 gen6_rps_busy(dev_priv);
10084 dev_priv->mm.busy = true;
10085 }
10086
10087 void intel_mark_idle(struct drm_device *dev)
10088 {
10089 struct drm_i915_private *dev_priv = dev->dev_private;
10090 struct drm_crtc *crtc;
10091
10092 if (!dev_priv->mm.busy)
10093 return;
10094
10095 dev_priv->mm.busy = false;
10096
10097 for_each_crtc(dev, crtc) {
10098 if (!crtc->primary->fb)
10099 continue;
10100
10101 intel_decrease_pllclock(crtc);
10102 }
10103
10104 if (INTEL_INFO(dev)->gen >= 6)
10105 gen6_rps_idle(dev->dev_private);
10106
10107 intel_runtime_pm_put(dev_priv);
10108 }
10109
10110 static void intel_crtc_set_state(struct intel_crtc *crtc,
10111 struct intel_crtc_state *crtc_state)
10112 {
10113 kfree(crtc->config);
10114 crtc->config = crtc_state;
10115 crtc->base.state = &crtc_state->base;
10116 }
10117
10118 static void intel_crtc_destroy(struct drm_crtc *crtc)
10119 {
10120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10121 struct drm_device *dev = crtc->dev;
10122 struct intel_unpin_work *work;
10123
10124 spin_lock_irq(&dev->event_lock);
10125 work = intel_crtc->unpin_work;
10126 intel_crtc->unpin_work = NULL;
10127 spin_unlock_irq(&dev->event_lock);
10128
10129 if (work) {
10130 cancel_work_sync(&work->work);
10131 kfree(work);
10132 }
10133
10134 intel_crtc_set_state(intel_crtc, NULL);
10135 drm_crtc_cleanup(crtc);
10136
10137 kfree(intel_crtc);
10138 }
10139
10140 static void intel_unpin_work_fn(struct work_struct *__work)
10141 {
10142 struct intel_unpin_work *work =
10143 container_of(__work, struct intel_unpin_work, work);
10144 struct drm_device *dev = work->crtc->dev;
10145 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10146
10147 mutex_lock(&dev->struct_mutex);
10148 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10149 drm_gem_object_unreference(&work->pending_flip_obj->base);
10150
10151 intel_fbc_update(dev);
10152
10153 if (work->flip_queued_req)
10154 i915_gem_request_assign(&work->flip_queued_req, NULL);
10155 mutex_unlock(&dev->struct_mutex);
10156
10157 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10158 drm_framebuffer_unreference(work->old_fb);
10159
10160 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10161 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10162
10163 kfree(work);
10164 }
10165
10166 static void do_intel_finish_page_flip(struct drm_device *dev,
10167 struct drm_crtc *crtc)
10168 {
10169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10170 struct intel_unpin_work *work;
10171 unsigned long flags;
10172
10173 /* Ignore early vblank irqs */
10174 if (intel_crtc == NULL)
10175 return;
10176
10177 /*
10178 * This is called both by irq handlers and the reset code (to complete
10179 * lost pageflips) so needs the full irqsave spinlocks.
10180 */
10181 spin_lock_irqsave(&dev->event_lock, flags);
10182 work = intel_crtc->unpin_work;
10183
10184 /* Ensure we don't miss a work->pending update ... */
10185 smp_rmb();
10186
10187 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10188 spin_unlock_irqrestore(&dev->event_lock, flags);
10189 return;
10190 }
10191
10192 page_flip_completed(intel_crtc);
10193
10194 spin_unlock_irqrestore(&dev->event_lock, flags);
10195 }
10196
10197 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10198 {
10199 struct drm_i915_private *dev_priv = dev->dev_private;
10200 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10201
10202 do_intel_finish_page_flip(dev, crtc);
10203 }
10204
10205 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10206 {
10207 struct drm_i915_private *dev_priv = dev->dev_private;
10208 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10209
10210 do_intel_finish_page_flip(dev, crtc);
10211 }
10212
10213 /* Is 'a' after or equal to 'b'? */
10214 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10215 {
10216 return !((a - b) & 0x80000000);
10217 }
10218
10219 static bool page_flip_finished(struct intel_crtc *crtc)
10220 {
10221 struct drm_device *dev = crtc->base.dev;
10222 struct drm_i915_private *dev_priv = dev->dev_private;
10223
10224 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10225 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10226 return true;
10227
10228 /*
10229 * The relevant registers doen't exist on pre-ctg.
10230 * As the flip done interrupt doesn't trigger for mmio
10231 * flips on gmch platforms, a flip count check isn't
10232 * really needed there. But since ctg has the registers,
10233 * include it in the check anyway.
10234 */
10235 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10236 return true;
10237
10238 /*
10239 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10240 * used the same base address. In that case the mmio flip might
10241 * have completed, but the CS hasn't even executed the flip yet.
10242 *
10243 * A flip count check isn't enough as the CS might have updated
10244 * the base address just after start of vblank, but before we
10245 * managed to process the interrupt. This means we'd complete the
10246 * CS flip too soon.
10247 *
10248 * Combining both checks should get us a good enough result. It may
10249 * still happen that the CS flip has been executed, but has not
10250 * yet actually completed. But in case the base address is the same
10251 * anyway, we don't really care.
10252 */
10253 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10254 crtc->unpin_work->gtt_offset &&
10255 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10256 crtc->unpin_work->flip_count);
10257 }
10258
10259 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10260 {
10261 struct drm_i915_private *dev_priv = dev->dev_private;
10262 struct intel_crtc *intel_crtc =
10263 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10264 unsigned long flags;
10265
10266
10267 /*
10268 * This is called both by irq handlers and the reset code (to complete
10269 * lost pageflips) so needs the full irqsave spinlocks.
10270 *
10271 * NB: An MMIO update of the plane base pointer will also
10272 * generate a page-flip completion irq, i.e. every modeset
10273 * is also accompanied by a spurious intel_prepare_page_flip().
10274 */
10275 spin_lock_irqsave(&dev->event_lock, flags);
10276 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10277 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10278 spin_unlock_irqrestore(&dev->event_lock, flags);
10279 }
10280
10281 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10282 {
10283 /* Ensure that the work item is consistent when activating it ... */
10284 smp_wmb();
10285 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10286 /* and that it is marked active as soon as the irq could fire. */
10287 smp_wmb();
10288 }
10289
10290 static int intel_gen2_queue_flip(struct drm_device *dev,
10291 struct drm_crtc *crtc,
10292 struct drm_framebuffer *fb,
10293 struct drm_i915_gem_object *obj,
10294 struct intel_engine_cs *ring,
10295 uint32_t flags)
10296 {
10297 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10298 u32 flip_mask;
10299 int ret;
10300
10301 ret = intel_ring_begin(ring, 6);
10302 if (ret)
10303 return ret;
10304
10305 /* Can't queue multiple flips, so wait for the previous
10306 * one to finish before executing the next.
10307 */
10308 if (intel_crtc->plane)
10309 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10310 else
10311 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10312 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10313 intel_ring_emit(ring, MI_NOOP);
10314 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10315 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10316 intel_ring_emit(ring, fb->pitches[0]);
10317 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10318 intel_ring_emit(ring, 0); /* aux display base address, unused */
10319
10320 intel_mark_page_flip_active(intel_crtc);
10321 __intel_ring_advance(ring);
10322 return 0;
10323 }
10324
10325 static int intel_gen3_queue_flip(struct drm_device *dev,
10326 struct drm_crtc *crtc,
10327 struct drm_framebuffer *fb,
10328 struct drm_i915_gem_object *obj,
10329 struct intel_engine_cs *ring,
10330 uint32_t flags)
10331 {
10332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10333 u32 flip_mask;
10334 int ret;
10335
10336 ret = intel_ring_begin(ring, 6);
10337 if (ret)
10338 return ret;
10339
10340 if (intel_crtc->plane)
10341 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10342 else
10343 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10344 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10345 intel_ring_emit(ring, MI_NOOP);
10346 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10347 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10348 intel_ring_emit(ring, fb->pitches[0]);
10349 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10350 intel_ring_emit(ring, MI_NOOP);
10351
10352 intel_mark_page_flip_active(intel_crtc);
10353 __intel_ring_advance(ring);
10354 return 0;
10355 }
10356
10357 static int intel_gen4_queue_flip(struct drm_device *dev,
10358 struct drm_crtc *crtc,
10359 struct drm_framebuffer *fb,
10360 struct drm_i915_gem_object *obj,
10361 struct intel_engine_cs *ring,
10362 uint32_t flags)
10363 {
10364 struct drm_i915_private *dev_priv = dev->dev_private;
10365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10366 uint32_t pf, pipesrc;
10367 int ret;
10368
10369 ret = intel_ring_begin(ring, 4);
10370 if (ret)
10371 return ret;
10372
10373 /* i965+ uses the linear or tiled offsets from the
10374 * Display Registers (which do not change across a page-flip)
10375 * so we need only reprogram the base address.
10376 */
10377 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10378 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10379 intel_ring_emit(ring, fb->pitches[0]);
10380 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10381 obj->tiling_mode);
10382
10383 /* XXX Enabling the panel-fitter across page-flip is so far
10384 * untested on non-native modes, so ignore it for now.
10385 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10386 */
10387 pf = 0;
10388 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10389 intel_ring_emit(ring, pf | pipesrc);
10390
10391 intel_mark_page_flip_active(intel_crtc);
10392 __intel_ring_advance(ring);
10393 return 0;
10394 }
10395
10396 static int intel_gen6_queue_flip(struct drm_device *dev,
10397 struct drm_crtc *crtc,
10398 struct drm_framebuffer *fb,
10399 struct drm_i915_gem_object *obj,
10400 struct intel_engine_cs *ring,
10401 uint32_t flags)
10402 {
10403 struct drm_i915_private *dev_priv = dev->dev_private;
10404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10405 uint32_t pf, pipesrc;
10406 int ret;
10407
10408 ret = intel_ring_begin(ring, 4);
10409 if (ret)
10410 return ret;
10411
10412 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10413 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10414 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10415 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10416
10417 /* Contrary to the suggestions in the documentation,
10418 * "Enable Panel Fitter" does not seem to be required when page
10419 * flipping with a non-native mode, and worse causes a normal
10420 * modeset to fail.
10421 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10422 */
10423 pf = 0;
10424 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10425 intel_ring_emit(ring, pf | pipesrc);
10426
10427 intel_mark_page_flip_active(intel_crtc);
10428 __intel_ring_advance(ring);
10429 return 0;
10430 }
10431
10432 static int intel_gen7_queue_flip(struct drm_device *dev,
10433 struct drm_crtc *crtc,
10434 struct drm_framebuffer *fb,
10435 struct drm_i915_gem_object *obj,
10436 struct intel_engine_cs *ring,
10437 uint32_t flags)
10438 {
10439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10440 uint32_t plane_bit = 0;
10441 int len, ret;
10442
10443 switch (intel_crtc->plane) {
10444 case PLANE_A:
10445 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10446 break;
10447 case PLANE_B:
10448 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10449 break;
10450 case PLANE_C:
10451 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10452 break;
10453 default:
10454 WARN_ONCE(1, "unknown plane in flip command\n");
10455 return -ENODEV;
10456 }
10457
10458 len = 4;
10459 if (ring->id == RCS) {
10460 len += 6;
10461 /*
10462 * On Gen 8, SRM is now taking an extra dword to accommodate
10463 * 48bits addresses, and we need a NOOP for the batch size to
10464 * stay even.
10465 */
10466 if (IS_GEN8(dev))
10467 len += 2;
10468 }
10469
10470 /*
10471 * BSpec MI_DISPLAY_FLIP for IVB:
10472 * "The full packet must be contained within the same cache line."
10473 *
10474 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10475 * cacheline, if we ever start emitting more commands before
10476 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10477 * then do the cacheline alignment, and finally emit the
10478 * MI_DISPLAY_FLIP.
10479 */
10480 ret = intel_ring_cacheline_align(ring);
10481 if (ret)
10482 return ret;
10483
10484 ret = intel_ring_begin(ring, len);
10485 if (ret)
10486 return ret;
10487
10488 /* Unmask the flip-done completion message. Note that the bspec says that
10489 * we should do this for both the BCS and RCS, and that we must not unmask
10490 * more than one flip event at any time (or ensure that one flip message
10491 * can be sent by waiting for flip-done prior to queueing new flips).
10492 * Experimentation says that BCS works despite DERRMR masking all
10493 * flip-done completion events and that unmasking all planes at once
10494 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10495 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10496 */
10497 if (ring->id == RCS) {
10498 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10499 intel_ring_emit(ring, DERRMR);
10500 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10501 DERRMR_PIPEB_PRI_FLIP_DONE |
10502 DERRMR_PIPEC_PRI_FLIP_DONE));
10503 if (IS_GEN8(dev))
10504 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10505 MI_SRM_LRM_GLOBAL_GTT);
10506 else
10507 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10508 MI_SRM_LRM_GLOBAL_GTT);
10509 intel_ring_emit(ring, DERRMR);
10510 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10511 if (IS_GEN8(dev)) {
10512 intel_ring_emit(ring, 0);
10513 intel_ring_emit(ring, MI_NOOP);
10514 }
10515 }
10516
10517 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10518 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10519 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10520 intel_ring_emit(ring, (MI_NOOP));
10521
10522 intel_mark_page_flip_active(intel_crtc);
10523 __intel_ring_advance(ring);
10524 return 0;
10525 }
10526
10527 static bool use_mmio_flip(struct intel_engine_cs *ring,
10528 struct drm_i915_gem_object *obj)
10529 {
10530 /*
10531 * This is not being used for older platforms, because
10532 * non-availability of flip done interrupt forces us to use
10533 * CS flips. Older platforms derive flip done using some clever
10534 * tricks involving the flip_pending status bits and vblank irqs.
10535 * So using MMIO flips there would disrupt this mechanism.
10536 */
10537
10538 if (ring == NULL)
10539 return true;
10540
10541 if (INTEL_INFO(ring->dev)->gen < 5)
10542 return false;
10543
10544 if (i915.use_mmio_flip < 0)
10545 return false;
10546 else if (i915.use_mmio_flip > 0)
10547 return true;
10548 else if (i915.enable_execlists)
10549 return true;
10550 else
10551 return ring != i915_gem_request_get_ring(obj->last_read_req);
10552 }
10553
10554 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10555 {
10556 struct drm_device *dev = intel_crtc->base.dev;
10557 struct drm_i915_private *dev_priv = dev->dev_private;
10558 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10559 const enum pipe pipe = intel_crtc->pipe;
10560 u32 ctl, stride;
10561
10562 ctl = I915_READ(PLANE_CTL(pipe, 0));
10563 ctl &= ~PLANE_CTL_TILED_MASK;
10564 switch (fb->modifier[0]) {
10565 case DRM_FORMAT_MOD_NONE:
10566 break;
10567 case I915_FORMAT_MOD_X_TILED:
10568 ctl |= PLANE_CTL_TILED_X;
10569 break;
10570 case I915_FORMAT_MOD_Y_TILED:
10571 ctl |= PLANE_CTL_TILED_Y;
10572 break;
10573 case I915_FORMAT_MOD_Yf_TILED:
10574 ctl |= PLANE_CTL_TILED_YF;
10575 break;
10576 default:
10577 MISSING_CASE(fb->modifier[0]);
10578 }
10579
10580 /*
10581 * The stride is either expressed as a multiple of 64 bytes chunks for
10582 * linear buffers or in number of tiles for tiled buffers.
10583 */
10584 stride = fb->pitches[0] /
10585 intel_fb_stride_alignment(dev, fb->modifier[0],
10586 fb->pixel_format);
10587
10588 /*
10589 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10590 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10591 */
10592 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10593 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10594
10595 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10596 POSTING_READ(PLANE_SURF(pipe, 0));
10597 }
10598
10599 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10600 {
10601 struct drm_device *dev = intel_crtc->base.dev;
10602 struct drm_i915_private *dev_priv = dev->dev_private;
10603 struct intel_framebuffer *intel_fb =
10604 to_intel_framebuffer(intel_crtc->base.primary->fb);
10605 struct drm_i915_gem_object *obj = intel_fb->obj;
10606 u32 dspcntr;
10607 u32 reg;
10608
10609 reg = DSPCNTR(intel_crtc->plane);
10610 dspcntr = I915_READ(reg);
10611
10612 if (obj->tiling_mode != I915_TILING_NONE)
10613 dspcntr |= DISPPLANE_TILED;
10614 else
10615 dspcntr &= ~DISPPLANE_TILED;
10616
10617 I915_WRITE(reg, dspcntr);
10618
10619 I915_WRITE(DSPSURF(intel_crtc->plane),
10620 intel_crtc->unpin_work->gtt_offset);
10621 POSTING_READ(DSPSURF(intel_crtc->plane));
10622
10623 }
10624
10625 /*
10626 * XXX: This is the temporary way to update the plane registers until we get
10627 * around to using the usual plane update functions for MMIO flips
10628 */
10629 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10630 {
10631 struct drm_device *dev = intel_crtc->base.dev;
10632 bool atomic_update;
10633 u32 start_vbl_count;
10634
10635 intel_mark_page_flip_active(intel_crtc);
10636
10637 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10638
10639 if (INTEL_INFO(dev)->gen >= 9)
10640 skl_do_mmio_flip(intel_crtc);
10641 else
10642 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10643 ilk_do_mmio_flip(intel_crtc);
10644
10645 if (atomic_update)
10646 intel_pipe_update_end(intel_crtc, start_vbl_count);
10647 }
10648
10649 static void intel_mmio_flip_work_func(struct work_struct *work)
10650 {
10651 struct intel_crtc *crtc =
10652 container_of(work, struct intel_crtc, mmio_flip.work);
10653 struct intel_mmio_flip *mmio_flip;
10654
10655 mmio_flip = &crtc->mmio_flip;
10656 if (mmio_flip->req)
10657 WARN_ON(__i915_wait_request(mmio_flip->req,
10658 crtc->reset_counter,
10659 false, NULL, NULL) != 0);
10660
10661 intel_do_mmio_flip(crtc);
10662 if (mmio_flip->req) {
10663 mutex_lock(&crtc->base.dev->struct_mutex);
10664 i915_gem_request_assign(&mmio_flip->req, NULL);
10665 mutex_unlock(&crtc->base.dev->struct_mutex);
10666 }
10667 }
10668
10669 static int intel_queue_mmio_flip(struct drm_device *dev,
10670 struct drm_crtc *crtc,
10671 struct drm_framebuffer *fb,
10672 struct drm_i915_gem_object *obj,
10673 struct intel_engine_cs *ring,
10674 uint32_t flags)
10675 {
10676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10677
10678 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
10679 obj->last_write_req);
10680
10681 schedule_work(&intel_crtc->mmio_flip.work);
10682
10683 return 0;
10684 }
10685
10686 static int intel_default_queue_flip(struct drm_device *dev,
10687 struct drm_crtc *crtc,
10688 struct drm_framebuffer *fb,
10689 struct drm_i915_gem_object *obj,
10690 struct intel_engine_cs *ring,
10691 uint32_t flags)
10692 {
10693 return -ENODEV;
10694 }
10695
10696 static bool __intel_pageflip_stall_check(struct drm_device *dev,
10697 struct drm_crtc *crtc)
10698 {
10699 struct drm_i915_private *dev_priv = dev->dev_private;
10700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10701 struct intel_unpin_work *work = intel_crtc->unpin_work;
10702 u32 addr;
10703
10704 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
10705 return true;
10706
10707 if (!work->enable_stall_check)
10708 return false;
10709
10710 if (work->flip_ready_vblank == 0) {
10711 if (work->flip_queued_req &&
10712 !i915_gem_request_completed(work->flip_queued_req, true))
10713 return false;
10714
10715 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
10716 }
10717
10718 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
10719 return false;
10720
10721 /* Potential stall - if we see that the flip has happened,
10722 * assume a missed interrupt. */
10723 if (INTEL_INFO(dev)->gen >= 4)
10724 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
10725 else
10726 addr = I915_READ(DSPADDR(intel_crtc->plane));
10727
10728 /* There is a potential issue here with a false positive after a flip
10729 * to the same address. We could address this by checking for a
10730 * non-incrementing frame counter.
10731 */
10732 return addr == work->gtt_offset;
10733 }
10734
10735 void intel_check_page_flip(struct drm_device *dev, int pipe)
10736 {
10737 struct drm_i915_private *dev_priv = dev->dev_private;
10738 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10740 struct intel_unpin_work *work;
10741
10742 WARN_ON(!in_interrupt());
10743
10744 if (crtc == NULL)
10745 return;
10746
10747 spin_lock(&dev->event_lock);
10748 work = intel_crtc->unpin_work;
10749 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
10750 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
10751 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
10752 page_flip_completed(intel_crtc);
10753 work = NULL;
10754 }
10755 if (work != NULL &&
10756 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
10757 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
10758 spin_unlock(&dev->event_lock);
10759 }
10760
10761 static int intel_crtc_page_flip(struct drm_crtc *crtc,
10762 struct drm_framebuffer *fb,
10763 struct drm_pending_vblank_event *event,
10764 uint32_t page_flip_flags)
10765 {
10766 struct drm_device *dev = crtc->dev;
10767 struct drm_i915_private *dev_priv = dev->dev_private;
10768 struct drm_framebuffer *old_fb = crtc->primary->fb;
10769 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10770 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10771 struct drm_plane *primary = crtc->primary;
10772 enum pipe pipe = intel_crtc->pipe;
10773 struct intel_unpin_work *work;
10774 struct intel_engine_cs *ring;
10775 bool mmio_flip;
10776 int ret;
10777
10778 /*
10779 * drm_mode_page_flip_ioctl() should already catch this, but double
10780 * check to be safe. In the future we may enable pageflipping from
10781 * a disabled primary plane.
10782 */
10783 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
10784 return -EBUSY;
10785
10786 /* Can't change pixel format via MI display flips. */
10787 if (fb->pixel_format != crtc->primary->fb->pixel_format)
10788 return -EINVAL;
10789
10790 /*
10791 * TILEOFF/LINOFF registers can't be changed via MI display flips.
10792 * Note that pitch changes could also affect these register.
10793 */
10794 if (INTEL_INFO(dev)->gen > 3 &&
10795 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10796 fb->pitches[0] != crtc->primary->fb->pitches[0]))
10797 return -EINVAL;
10798
10799 if (i915_terminally_wedged(&dev_priv->gpu_error))
10800 goto out_hang;
10801
10802 work = kzalloc(sizeof(*work), GFP_KERNEL);
10803 if (work == NULL)
10804 return -ENOMEM;
10805
10806 work->event = event;
10807 work->crtc = crtc;
10808 work->old_fb = old_fb;
10809 INIT_WORK(&work->work, intel_unpin_work_fn);
10810
10811 ret = drm_crtc_vblank_get(crtc);
10812 if (ret)
10813 goto free_work;
10814
10815 /* We borrow the event spin lock for protecting unpin_work */
10816 spin_lock_irq(&dev->event_lock);
10817 if (intel_crtc->unpin_work) {
10818 /* Before declaring the flip queue wedged, check if
10819 * the hardware completed the operation behind our backs.
10820 */
10821 if (__intel_pageflip_stall_check(dev, crtc)) {
10822 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10823 page_flip_completed(intel_crtc);
10824 } else {
10825 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10826 spin_unlock_irq(&dev->event_lock);
10827
10828 drm_crtc_vblank_put(crtc);
10829 kfree(work);
10830 return -EBUSY;
10831 }
10832 }
10833 intel_crtc->unpin_work = work;
10834 spin_unlock_irq(&dev->event_lock);
10835
10836 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10837 flush_workqueue(dev_priv->wq);
10838
10839 /* Reference the objects for the scheduled work. */
10840 drm_framebuffer_reference(work->old_fb);
10841 drm_gem_object_reference(&obj->base);
10842
10843 crtc->primary->fb = fb;
10844 update_state_fb(crtc->primary);
10845
10846 work->pending_flip_obj = obj;
10847
10848 ret = i915_mutex_lock_interruptible(dev);
10849 if (ret)
10850 goto cleanup;
10851
10852 atomic_inc(&intel_crtc->unpin_work_count);
10853 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
10854
10855 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
10856 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
10857
10858 if (IS_VALLEYVIEW(dev)) {
10859 ring = &dev_priv->ring[BCS];
10860 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
10861 /* vlv: DISPLAY_FLIP fails to change tiling */
10862 ring = NULL;
10863 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
10864 ring = &dev_priv->ring[BCS];
10865 } else if (INTEL_INFO(dev)->gen >= 7) {
10866 ring = i915_gem_request_get_ring(obj->last_read_req);
10867 if (ring == NULL || ring->id != RCS)
10868 ring = &dev_priv->ring[BCS];
10869 } else {
10870 ring = &dev_priv->ring[RCS];
10871 }
10872
10873 mmio_flip = use_mmio_flip(ring, obj);
10874
10875 /* When using CS flips, we want to emit semaphores between rings.
10876 * However, when using mmio flips we will create a task to do the
10877 * synchronisation, so all we want here is to pin the framebuffer
10878 * into the display plane and skip any waits.
10879 */
10880 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
10881 crtc->primary->state,
10882 mmio_flip ? i915_gem_request_get_ring(obj->last_read_req) : ring);
10883 if (ret)
10884 goto cleanup_pending;
10885
10886 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
10887 + intel_crtc->dspaddr_offset;
10888
10889 if (mmio_flip) {
10890 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10891 page_flip_flags);
10892 if (ret)
10893 goto cleanup_unpin;
10894
10895 i915_gem_request_assign(&work->flip_queued_req,
10896 obj->last_write_req);
10897 } else {
10898 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
10899 page_flip_flags);
10900 if (ret)
10901 goto cleanup_unpin;
10902
10903 i915_gem_request_assign(&work->flip_queued_req,
10904 intel_ring_get_request(ring));
10905 }
10906
10907 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
10908 work->enable_stall_check = true;
10909
10910 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
10911 INTEL_FRONTBUFFER_PRIMARY(pipe));
10912
10913 intel_fbc_disable(dev);
10914 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10915 mutex_unlock(&dev->struct_mutex);
10916
10917 trace_i915_flip_request(intel_crtc->plane, obj);
10918
10919 return 0;
10920
10921 cleanup_unpin:
10922 intel_unpin_fb_obj(fb, crtc->primary->state);
10923 cleanup_pending:
10924 atomic_dec(&intel_crtc->unpin_work_count);
10925 mutex_unlock(&dev->struct_mutex);
10926 cleanup:
10927 crtc->primary->fb = old_fb;
10928 update_state_fb(crtc->primary);
10929
10930 drm_gem_object_unreference_unlocked(&obj->base);
10931 drm_framebuffer_unreference(work->old_fb);
10932
10933 spin_lock_irq(&dev->event_lock);
10934 intel_crtc->unpin_work = NULL;
10935 spin_unlock_irq(&dev->event_lock);
10936
10937 drm_crtc_vblank_put(crtc);
10938 free_work:
10939 kfree(work);
10940
10941 if (ret == -EIO) {
10942 out_hang:
10943 ret = intel_plane_restore(primary);
10944 if (ret == 0 && event) {
10945 spin_lock_irq(&dev->event_lock);
10946 drm_send_vblank_event(dev, pipe, event);
10947 spin_unlock_irq(&dev->event_lock);
10948 }
10949 }
10950 return ret;
10951 }
10952
10953 static struct drm_crtc_helper_funcs intel_helper_funcs = {
10954 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10955 .load_lut = intel_crtc_load_lut,
10956 .atomic_begin = intel_begin_crtc_commit,
10957 .atomic_flush = intel_finish_crtc_commit,
10958 };
10959
10960 /**
10961 * intel_modeset_update_staged_output_state
10962 *
10963 * Updates the staged output configuration state, e.g. after we've read out the
10964 * current hw state.
10965 */
10966 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
10967 {
10968 struct intel_crtc *crtc;
10969 struct intel_encoder *encoder;
10970 struct intel_connector *connector;
10971
10972 for_each_intel_connector(dev, connector) {
10973 connector->new_encoder =
10974 to_intel_encoder(connector->base.encoder);
10975 }
10976
10977 for_each_intel_encoder(dev, encoder) {
10978 encoder->new_crtc =
10979 to_intel_crtc(encoder->base.crtc);
10980 }
10981
10982 for_each_intel_crtc(dev, crtc) {
10983 crtc->new_enabled = crtc->base.state->enable;
10984 }
10985 }
10986
10987 /* Transitional helper to copy current connector/encoder state to
10988 * connector->state. This is needed so that code that is partially
10989 * converted to atomic does the right thing.
10990 */
10991 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10992 {
10993 struct intel_connector *connector;
10994
10995 for_each_intel_connector(dev, connector) {
10996 if (connector->base.encoder) {
10997 connector->base.state->best_encoder =
10998 connector->base.encoder;
10999 connector->base.state->crtc =
11000 connector->base.encoder->crtc;
11001 } else {
11002 connector->base.state->best_encoder = NULL;
11003 connector->base.state->crtc = NULL;
11004 }
11005 }
11006 }
11007
11008 /**
11009 * intel_modeset_commit_output_state
11010 *
11011 * This function copies the stage display pipe configuration to the real one.
11012 */
11013 static void intel_modeset_commit_output_state(struct drm_device *dev)
11014 {
11015 struct intel_crtc *crtc;
11016 struct intel_encoder *encoder;
11017 struct intel_connector *connector;
11018
11019 for_each_intel_connector(dev, connector) {
11020 connector->base.encoder = &connector->new_encoder->base;
11021 }
11022
11023 for_each_intel_encoder(dev, encoder) {
11024 encoder->base.crtc = &encoder->new_crtc->base;
11025 }
11026
11027 for_each_intel_crtc(dev, crtc) {
11028 crtc->base.state->enable = crtc->new_enabled;
11029 crtc->base.enabled = crtc->new_enabled;
11030 }
11031
11032 intel_modeset_update_connector_atomic_state(dev);
11033 }
11034
11035 static void
11036 connected_sink_compute_bpp(struct intel_connector *connector,
11037 struct intel_crtc_state *pipe_config)
11038 {
11039 int bpp = pipe_config->pipe_bpp;
11040
11041 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11042 connector->base.base.id,
11043 connector->base.name);
11044
11045 /* Don't use an invalid EDID bpc value */
11046 if (connector->base.display_info.bpc &&
11047 connector->base.display_info.bpc * 3 < bpp) {
11048 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11049 bpp, connector->base.display_info.bpc*3);
11050 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11051 }
11052
11053 /* Clamp bpp to 8 on screens without EDID 1.4 */
11054 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11055 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11056 bpp);
11057 pipe_config->pipe_bpp = 24;
11058 }
11059 }
11060
11061 static int
11062 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11063 struct intel_crtc_state *pipe_config)
11064 {
11065 struct drm_device *dev = crtc->base.dev;
11066 struct drm_atomic_state *state;
11067 struct intel_connector *connector;
11068 int bpp, i;
11069
11070 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11071 bpp = 10*3;
11072 else if (INTEL_INFO(dev)->gen >= 5)
11073 bpp = 12*3;
11074 else
11075 bpp = 8*3;
11076
11077
11078 pipe_config->pipe_bpp = bpp;
11079
11080 state = pipe_config->base.state;
11081
11082 /* Clamp display bpp to EDID value */
11083 for (i = 0; i < state->num_connector; i++) {
11084 if (!state->connectors[i])
11085 continue;
11086
11087 connector = to_intel_connector(state->connectors[i]);
11088 if (state->connector_states[i]->crtc != &crtc->base)
11089 continue;
11090
11091 connected_sink_compute_bpp(connector, pipe_config);
11092 }
11093
11094 return bpp;
11095 }
11096
11097 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11098 {
11099 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11100 "type: 0x%x flags: 0x%x\n",
11101 mode->crtc_clock,
11102 mode->crtc_hdisplay, mode->crtc_hsync_start,
11103 mode->crtc_hsync_end, mode->crtc_htotal,
11104 mode->crtc_vdisplay, mode->crtc_vsync_start,
11105 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11106 }
11107
11108 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11109 struct intel_crtc_state *pipe_config,
11110 const char *context)
11111 {
11112 struct drm_device *dev = crtc->base.dev;
11113 struct drm_plane *plane;
11114 struct intel_plane *intel_plane;
11115 struct intel_plane_state *state;
11116 struct drm_framebuffer *fb;
11117
11118 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11119 context, pipe_config, pipe_name(crtc->pipe));
11120
11121 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11122 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11123 pipe_config->pipe_bpp, pipe_config->dither);
11124 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11125 pipe_config->has_pch_encoder,
11126 pipe_config->fdi_lanes,
11127 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11128 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11129 pipe_config->fdi_m_n.tu);
11130 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11131 pipe_config->has_dp_encoder,
11132 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11133 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11134 pipe_config->dp_m_n.tu);
11135
11136 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11137 pipe_config->has_dp_encoder,
11138 pipe_config->dp_m2_n2.gmch_m,
11139 pipe_config->dp_m2_n2.gmch_n,
11140 pipe_config->dp_m2_n2.link_m,
11141 pipe_config->dp_m2_n2.link_n,
11142 pipe_config->dp_m2_n2.tu);
11143
11144 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11145 pipe_config->has_audio,
11146 pipe_config->has_infoframe);
11147
11148 DRM_DEBUG_KMS("requested mode:\n");
11149 drm_mode_debug_printmodeline(&pipe_config->base.mode);
11150 DRM_DEBUG_KMS("adjusted mode:\n");
11151 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11152 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11153 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11154 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11155 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11156 DRM_DEBUG_KMS("num_scalers: %d\n", crtc->num_scalers);
11157 DRM_DEBUG_KMS("scaler_users: 0x%x\n", pipe_config->scaler_state.scaler_users);
11158 DRM_DEBUG_KMS("scaler id: %d\n", pipe_config->scaler_state.scaler_id);
11159 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11160 pipe_config->gmch_pfit.control,
11161 pipe_config->gmch_pfit.pgm_ratios,
11162 pipe_config->gmch_pfit.lvds_border_bits);
11163 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11164 pipe_config->pch_pfit.pos,
11165 pipe_config->pch_pfit.size,
11166 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11167 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11168 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11169
11170 DRM_DEBUG_KMS("planes on this crtc\n");
11171 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11172 intel_plane = to_intel_plane(plane);
11173 if (intel_plane->pipe != crtc->pipe)
11174 continue;
11175
11176 state = to_intel_plane_state(plane->state);
11177 fb = state->base.fb;
11178 if (!fb) {
11179 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11180 "disabled, scaler_id = %d\n",
11181 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11182 plane->base.id, intel_plane->pipe,
11183 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11184 drm_plane_index(plane), state->scaler_id);
11185 continue;
11186 }
11187
11188 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11189 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11190 plane->base.id, intel_plane->pipe,
11191 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11192 drm_plane_index(plane));
11193 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11194 fb->base.id, fb->width, fb->height, fb->pixel_format);
11195 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11196 state->scaler_id,
11197 state->src.x1 >> 16, state->src.y1 >> 16,
11198 drm_rect_width(&state->src) >> 16,
11199 drm_rect_height(&state->src) >> 16,
11200 state->dst.x1, state->dst.y1,
11201 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11202 }
11203 }
11204
11205 static bool encoders_cloneable(const struct intel_encoder *a,
11206 const struct intel_encoder *b)
11207 {
11208 /* masks could be asymmetric, so check both ways */
11209 return a == b || (a->cloneable & (1 << b->type) &&
11210 b->cloneable & (1 << a->type));
11211 }
11212
11213 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11214 struct intel_crtc *crtc,
11215 struct intel_encoder *encoder)
11216 {
11217 struct intel_encoder *source_encoder;
11218 struct drm_connector_state *connector_state;
11219 int i;
11220
11221 for (i = 0; i < state->num_connector; i++) {
11222 if (!state->connectors[i])
11223 continue;
11224
11225 connector_state = state->connector_states[i];
11226 if (connector_state->crtc != &crtc->base)
11227 continue;
11228
11229 source_encoder =
11230 to_intel_encoder(connector_state->best_encoder);
11231 if (!encoders_cloneable(encoder, source_encoder))
11232 return false;
11233 }
11234
11235 return true;
11236 }
11237
11238 static bool check_encoder_cloning(struct drm_atomic_state *state,
11239 struct intel_crtc *crtc)
11240 {
11241 struct intel_encoder *encoder;
11242 struct drm_connector_state *connector_state;
11243 int i;
11244
11245 for (i = 0; i < state->num_connector; i++) {
11246 if (!state->connectors[i])
11247 continue;
11248
11249 connector_state = state->connector_states[i];
11250 if (connector_state->crtc != &crtc->base)
11251 continue;
11252
11253 encoder = to_intel_encoder(connector_state->best_encoder);
11254 if (!check_single_encoder_cloning(state, crtc, encoder))
11255 return false;
11256 }
11257
11258 return true;
11259 }
11260
11261 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11262 {
11263 struct drm_device *dev = state->dev;
11264 struct intel_encoder *encoder;
11265 struct drm_connector_state *connector_state;
11266 unsigned int used_ports = 0;
11267 int i;
11268
11269 /*
11270 * Walk the connector list instead of the encoder
11271 * list to detect the problem on ddi platforms
11272 * where there's just one encoder per digital port.
11273 */
11274 for (i = 0; i < state->num_connector; i++) {
11275 if (!state->connectors[i])
11276 continue;
11277
11278 connector_state = state->connector_states[i];
11279 if (!connector_state->best_encoder)
11280 continue;
11281
11282 encoder = to_intel_encoder(connector_state->best_encoder);
11283
11284 WARN_ON(!connector_state->crtc);
11285
11286 switch (encoder->type) {
11287 unsigned int port_mask;
11288 case INTEL_OUTPUT_UNKNOWN:
11289 if (WARN_ON(!HAS_DDI(dev)))
11290 break;
11291 case INTEL_OUTPUT_DISPLAYPORT:
11292 case INTEL_OUTPUT_HDMI:
11293 case INTEL_OUTPUT_EDP:
11294 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11295
11296 /* the same port mustn't appear more than once */
11297 if (used_ports & port_mask)
11298 return false;
11299
11300 used_ports |= port_mask;
11301 default:
11302 break;
11303 }
11304 }
11305
11306 return true;
11307 }
11308
11309 static void
11310 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11311 {
11312 struct drm_crtc_state tmp_state;
11313 struct intel_crtc_scaler_state scaler_state;
11314
11315 /* Clear only the intel specific part of the crtc state excluding scalers */
11316 tmp_state = crtc_state->base;
11317 scaler_state = crtc_state->scaler_state;
11318 memset(crtc_state, 0, sizeof *crtc_state);
11319 crtc_state->base = tmp_state;
11320 crtc_state->scaler_state = scaler_state;
11321 }
11322
11323 static struct intel_crtc_state *
11324 intel_modeset_pipe_config(struct drm_crtc *crtc,
11325 struct drm_display_mode *mode,
11326 struct drm_atomic_state *state)
11327 {
11328 struct intel_encoder *encoder;
11329 struct intel_connector *connector;
11330 struct drm_connector_state *connector_state;
11331 struct intel_crtc_state *pipe_config;
11332 int base_bpp, ret = -EINVAL;
11333 int i;
11334 bool retry = true;
11335
11336 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11337 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11338 return ERR_PTR(-EINVAL);
11339 }
11340
11341 if (!check_digital_port_conflicts(state)) {
11342 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11343 return ERR_PTR(-EINVAL);
11344 }
11345
11346 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
11347 if (IS_ERR(pipe_config))
11348 return pipe_config;
11349
11350 clear_intel_crtc_state(pipe_config);
11351
11352 pipe_config->base.crtc = crtc;
11353 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
11354 drm_mode_copy(&pipe_config->base.mode, mode);
11355
11356 pipe_config->cpu_transcoder =
11357 (enum transcoder) to_intel_crtc(crtc)->pipe;
11358 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
11359
11360 /*
11361 * Sanitize sync polarity flags based on requested ones. If neither
11362 * positive or negative polarity is requested, treat this as meaning
11363 * negative polarity.
11364 */
11365 if (!(pipe_config->base.adjusted_mode.flags &
11366 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11367 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11368
11369 if (!(pipe_config->base.adjusted_mode.flags &
11370 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11371 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11372
11373 /* Compute a starting value for pipe_config->pipe_bpp taking the source
11374 * plane pixel format and any sink constraints into account. Returns the
11375 * source plane bpp so that dithering can be selected on mismatches
11376 * after encoders and crtc also have had their say. */
11377 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11378 pipe_config);
11379 if (base_bpp < 0)
11380 goto fail;
11381
11382 /*
11383 * Determine the real pipe dimensions. Note that stereo modes can
11384 * increase the actual pipe size due to the frame doubling and
11385 * insertion of additional space for blanks between the frame. This
11386 * is stored in the crtc timings. We use the requested mode to do this
11387 * computation to clearly distinguish it from the adjusted mode, which
11388 * can be changed by the connectors in the below retry loop.
11389 */
11390 drm_crtc_get_hv_timing(&pipe_config->base.mode,
11391 &pipe_config->pipe_src_w,
11392 &pipe_config->pipe_src_h);
11393
11394 encoder_retry:
11395 /* Ensure the port clock defaults are reset when retrying. */
11396 pipe_config->port_clock = 0;
11397 pipe_config->pixel_multiplier = 1;
11398
11399 /* Fill in default crtc timings, allow encoders to overwrite them. */
11400 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11401 CRTC_STEREO_DOUBLE);
11402
11403 /* Pass our mode to the connectors and the CRTC to give them a chance to
11404 * adjust it according to limitations or connector properties, and also
11405 * a chance to reject the mode entirely.
11406 */
11407 for (i = 0; i < state->num_connector; i++) {
11408 connector = to_intel_connector(state->connectors[i]);
11409 if (!connector)
11410 continue;
11411
11412 connector_state = state->connector_states[i];
11413 if (connector_state->crtc != crtc)
11414 continue;
11415
11416 encoder = to_intel_encoder(connector_state->best_encoder);
11417
11418 if (!(encoder->compute_config(encoder, pipe_config))) {
11419 DRM_DEBUG_KMS("Encoder config failure\n");
11420 goto fail;
11421 }
11422 }
11423
11424 /* Set default port clock if not overwritten by the encoder. Needs to be
11425 * done afterwards in case the encoder adjusts the mode. */
11426 if (!pipe_config->port_clock)
11427 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11428 * pipe_config->pixel_multiplier;
11429
11430 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11431 if (ret < 0) {
11432 DRM_DEBUG_KMS("CRTC fixup failed\n");
11433 goto fail;
11434 }
11435
11436 if (ret == RETRY) {
11437 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11438 ret = -EINVAL;
11439 goto fail;
11440 }
11441
11442 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11443 retry = false;
11444 goto encoder_retry;
11445 }
11446
11447 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11448 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11449 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11450
11451 return pipe_config;
11452 fail:
11453 return ERR_PTR(ret);
11454 }
11455
11456 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
11457 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
11458 static void
11459 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
11460 unsigned *prepare_pipes, unsigned *disable_pipes)
11461 {
11462 struct intel_crtc *intel_crtc;
11463 struct drm_device *dev = crtc->dev;
11464 struct intel_encoder *encoder;
11465 struct intel_connector *connector;
11466 struct drm_crtc *tmp_crtc;
11467
11468 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
11469
11470 /* Check which crtcs have changed outputs connected to them, these need
11471 * to be part of the prepare_pipes mask. We don't (yet) support global
11472 * modeset across multiple crtcs, so modeset_pipes will only have one
11473 * bit set at most. */
11474 for_each_intel_connector(dev, connector) {
11475 if (connector->base.encoder == &connector->new_encoder->base)
11476 continue;
11477
11478 if (connector->base.encoder) {
11479 tmp_crtc = connector->base.encoder->crtc;
11480
11481 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11482 }
11483
11484 if (connector->new_encoder)
11485 *prepare_pipes |=
11486 1 << connector->new_encoder->new_crtc->pipe;
11487 }
11488
11489 for_each_intel_encoder(dev, encoder) {
11490 if (encoder->base.crtc == &encoder->new_crtc->base)
11491 continue;
11492
11493 if (encoder->base.crtc) {
11494 tmp_crtc = encoder->base.crtc;
11495
11496 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
11497 }
11498
11499 if (encoder->new_crtc)
11500 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
11501 }
11502
11503 /* Check for pipes that will be enabled/disabled ... */
11504 for_each_intel_crtc(dev, intel_crtc) {
11505 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
11506 continue;
11507
11508 if (!intel_crtc->new_enabled)
11509 *disable_pipes |= 1 << intel_crtc->pipe;
11510 else
11511 *prepare_pipes |= 1 << intel_crtc->pipe;
11512 }
11513
11514
11515 /* set_mode is also used to update properties on life display pipes. */
11516 intel_crtc = to_intel_crtc(crtc);
11517 if (intel_crtc->new_enabled)
11518 *prepare_pipes |= 1 << intel_crtc->pipe;
11519
11520 /*
11521 * For simplicity do a full modeset on any pipe where the output routing
11522 * changed. We could be more clever, but that would require us to be
11523 * more careful with calling the relevant encoder->mode_set functions.
11524 */
11525 if (*prepare_pipes)
11526 *modeset_pipes = *prepare_pipes;
11527
11528 /* ... and mask these out. */
11529 *modeset_pipes &= ~(*disable_pipes);
11530 *prepare_pipes &= ~(*disable_pipes);
11531
11532 /*
11533 * HACK: We don't (yet) fully support global modesets. intel_set_config
11534 * obies this rule, but the modeset restore mode of
11535 * intel_modeset_setup_hw_state does not.
11536 */
11537 *modeset_pipes &= 1 << intel_crtc->pipe;
11538 *prepare_pipes &= 1 << intel_crtc->pipe;
11539
11540 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
11541 *modeset_pipes, *prepare_pipes, *disable_pipes);
11542 }
11543
11544 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11545 {
11546 struct drm_encoder *encoder;
11547 struct drm_device *dev = crtc->dev;
11548
11549 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11550 if (encoder->crtc == crtc)
11551 return true;
11552
11553 return false;
11554 }
11555
11556 static void
11557 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
11558 {
11559 struct drm_i915_private *dev_priv = dev->dev_private;
11560 struct intel_encoder *intel_encoder;
11561 struct intel_crtc *intel_crtc;
11562 struct drm_connector *connector;
11563
11564 intel_shared_dpll_commit(dev_priv);
11565
11566 for_each_intel_encoder(dev, intel_encoder) {
11567 if (!intel_encoder->base.crtc)
11568 continue;
11569
11570 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
11571
11572 if (prepare_pipes & (1 << intel_crtc->pipe))
11573 intel_encoder->connectors_active = false;
11574 }
11575
11576 intel_modeset_commit_output_state(dev);
11577
11578 /* Double check state. */
11579 for_each_intel_crtc(dev, intel_crtc) {
11580 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
11581 }
11582
11583 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11584 if (!connector->encoder || !connector->encoder->crtc)
11585 continue;
11586
11587 intel_crtc = to_intel_crtc(connector->encoder->crtc);
11588
11589 if (prepare_pipes & (1 << intel_crtc->pipe)) {
11590 struct drm_property *dpms_property =
11591 dev->mode_config.dpms_property;
11592
11593 connector->dpms = DRM_MODE_DPMS_ON;
11594 drm_object_property_set_value(&connector->base,
11595 dpms_property,
11596 DRM_MODE_DPMS_ON);
11597
11598 intel_encoder = to_intel_encoder(connector->encoder);
11599 intel_encoder->connectors_active = true;
11600 }
11601 }
11602
11603 }
11604
11605 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11606 {
11607 int diff;
11608
11609 if (clock1 == clock2)
11610 return true;
11611
11612 if (!clock1 || !clock2)
11613 return false;
11614
11615 diff = abs(clock1 - clock2);
11616
11617 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11618 return true;
11619
11620 return false;
11621 }
11622
11623 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11624 list_for_each_entry((intel_crtc), \
11625 &(dev)->mode_config.crtc_list, \
11626 base.head) \
11627 if (mask & (1 <<(intel_crtc)->pipe))
11628
11629 static bool
11630 intel_pipe_config_compare(struct drm_device *dev,
11631 struct intel_crtc_state *current_config,
11632 struct intel_crtc_state *pipe_config)
11633 {
11634 #define PIPE_CONF_CHECK_X(name) \
11635 if (current_config->name != pipe_config->name) { \
11636 DRM_ERROR("mismatch in " #name " " \
11637 "(expected 0x%08x, found 0x%08x)\n", \
11638 current_config->name, \
11639 pipe_config->name); \
11640 return false; \
11641 }
11642
11643 #define PIPE_CONF_CHECK_I(name) \
11644 if (current_config->name != pipe_config->name) { \
11645 DRM_ERROR("mismatch in " #name " " \
11646 "(expected %i, found %i)\n", \
11647 current_config->name, \
11648 pipe_config->name); \
11649 return false; \
11650 }
11651
11652 /* This is required for BDW+ where there is only one set of registers for
11653 * switching between high and low RR.
11654 * This macro can be used whenever a comparison has to be made between one
11655 * hw state and multiple sw state variables.
11656 */
11657 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11658 if ((current_config->name != pipe_config->name) && \
11659 (current_config->alt_name != pipe_config->name)) { \
11660 DRM_ERROR("mismatch in " #name " " \
11661 "(expected %i or %i, found %i)\n", \
11662 current_config->name, \
11663 current_config->alt_name, \
11664 pipe_config->name); \
11665 return false; \
11666 }
11667
11668 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11669 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11670 DRM_ERROR("mismatch in " #name "(" #mask ") " \
11671 "(expected %i, found %i)\n", \
11672 current_config->name & (mask), \
11673 pipe_config->name & (mask)); \
11674 return false; \
11675 }
11676
11677 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11678 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11679 DRM_ERROR("mismatch in " #name " " \
11680 "(expected %i, found %i)\n", \
11681 current_config->name, \
11682 pipe_config->name); \
11683 return false; \
11684 }
11685
11686 #define PIPE_CONF_QUIRK(quirk) \
11687 ((current_config->quirks | pipe_config->quirks) & (quirk))
11688
11689 PIPE_CONF_CHECK_I(cpu_transcoder);
11690
11691 PIPE_CONF_CHECK_I(has_pch_encoder);
11692 PIPE_CONF_CHECK_I(fdi_lanes);
11693 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
11694 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
11695 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
11696 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
11697 PIPE_CONF_CHECK_I(fdi_m_n.tu);
11698
11699 PIPE_CONF_CHECK_I(has_dp_encoder);
11700
11701 if (INTEL_INFO(dev)->gen < 8) {
11702 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
11703 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
11704 PIPE_CONF_CHECK_I(dp_m_n.link_m);
11705 PIPE_CONF_CHECK_I(dp_m_n.link_n);
11706 PIPE_CONF_CHECK_I(dp_m_n.tu);
11707
11708 if (current_config->has_drrs) {
11709 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
11710 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
11711 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
11712 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
11713 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
11714 }
11715 } else {
11716 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
11717 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
11718 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
11719 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
11720 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
11721 }
11722
11723 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11724 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11725 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11726 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11727 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11728 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11729
11730 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11731 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11732 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11733 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11734 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11735 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11736
11737 PIPE_CONF_CHECK_I(pixel_multiplier);
11738 PIPE_CONF_CHECK_I(has_hdmi_sink);
11739 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
11740 IS_VALLEYVIEW(dev))
11741 PIPE_CONF_CHECK_I(limited_color_range);
11742 PIPE_CONF_CHECK_I(has_infoframe);
11743
11744 PIPE_CONF_CHECK_I(has_audio);
11745
11746 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11747 DRM_MODE_FLAG_INTERLACE);
11748
11749 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11750 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11751 DRM_MODE_FLAG_PHSYNC);
11752 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11753 DRM_MODE_FLAG_NHSYNC);
11754 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11755 DRM_MODE_FLAG_PVSYNC);
11756 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11757 DRM_MODE_FLAG_NVSYNC);
11758 }
11759
11760 PIPE_CONF_CHECK_I(pipe_src_w);
11761 PIPE_CONF_CHECK_I(pipe_src_h);
11762
11763 /*
11764 * FIXME: BIOS likes to set up a cloned config with lvds+external
11765 * screen. Since we don't yet re-compute the pipe config when moving
11766 * just the lvds port away to another pipe the sw tracking won't match.
11767 *
11768 * Proper atomic modesets with recomputed global state will fix this.
11769 * Until then just don't check gmch state for inherited modes.
11770 */
11771 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
11772 PIPE_CONF_CHECK_I(gmch_pfit.control);
11773 /* pfit ratios are autocomputed by the hw on gen4+ */
11774 if (INTEL_INFO(dev)->gen < 4)
11775 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
11776 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
11777 }
11778
11779 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11780 if (current_config->pch_pfit.enabled) {
11781 PIPE_CONF_CHECK_I(pch_pfit.pos);
11782 PIPE_CONF_CHECK_I(pch_pfit.size);
11783 }
11784
11785 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11786
11787 /* BDW+ don't expose a synchronous way to read the state */
11788 if (IS_HASWELL(dev))
11789 PIPE_CONF_CHECK_I(ips_enabled);
11790
11791 PIPE_CONF_CHECK_I(double_wide);
11792
11793 PIPE_CONF_CHECK_X(ddi_pll_sel);
11794
11795 PIPE_CONF_CHECK_I(shared_dpll);
11796 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11797 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11798 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11799 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11800 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11801 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11802 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11803 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11804
11805 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
11806 PIPE_CONF_CHECK_I(pipe_bpp);
11807
11808 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11809 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11810
11811 #undef PIPE_CONF_CHECK_X
11812 #undef PIPE_CONF_CHECK_I
11813 #undef PIPE_CONF_CHECK_I_ALT
11814 #undef PIPE_CONF_CHECK_FLAGS
11815 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11816 #undef PIPE_CONF_QUIRK
11817
11818 return true;
11819 }
11820
11821 static void check_wm_state(struct drm_device *dev)
11822 {
11823 struct drm_i915_private *dev_priv = dev->dev_private;
11824 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11825 struct intel_crtc *intel_crtc;
11826 int plane;
11827
11828 if (INTEL_INFO(dev)->gen < 9)
11829 return;
11830
11831 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11832 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11833
11834 for_each_intel_crtc(dev, intel_crtc) {
11835 struct skl_ddb_entry *hw_entry, *sw_entry;
11836 const enum pipe pipe = intel_crtc->pipe;
11837
11838 if (!intel_crtc->active)
11839 continue;
11840
11841 /* planes */
11842 for_each_plane(dev_priv, pipe, plane) {
11843 hw_entry = &hw_ddb.plane[pipe][plane];
11844 sw_entry = &sw_ddb->plane[pipe][plane];
11845
11846 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11847 continue;
11848
11849 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
11850 "(expected (%u,%u), found (%u,%u))\n",
11851 pipe_name(pipe), plane + 1,
11852 sw_entry->start, sw_entry->end,
11853 hw_entry->start, hw_entry->end);
11854 }
11855
11856 /* cursor */
11857 hw_entry = &hw_ddb.cursor[pipe];
11858 sw_entry = &sw_ddb->cursor[pipe];
11859
11860 if (skl_ddb_entry_equal(hw_entry, sw_entry))
11861 continue;
11862
11863 DRM_ERROR("mismatch in DDB state pipe %c cursor "
11864 "(expected (%u,%u), found (%u,%u))\n",
11865 pipe_name(pipe),
11866 sw_entry->start, sw_entry->end,
11867 hw_entry->start, hw_entry->end);
11868 }
11869 }
11870
11871 static void
11872 check_connector_state(struct drm_device *dev)
11873 {
11874 struct intel_connector *connector;
11875
11876 for_each_intel_connector(dev, connector) {
11877 /* This also checks the encoder/connector hw state with the
11878 * ->get_hw_state callbacks. */
11879 intel_connector_check_state(connector);
11880
11881 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
11882 "connector's staged encoder doesn't match current encoder\n");
11883 }
11884 }
11885
11886 static void
11887 check_encoder_state(struct drm_device *dev)
11888 {
11889 struct intel_encoder *encoder;
11890 struct intel_connector *connector;
11891
11892 for_each_intel_encoder(dev, encoder) {
11893 bool enabled = false;
11894 bool active = false;
11895 enum pipe pipe, tracked_pipe;
11896
11897 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11898 encoder->base.base.id,
11899 encoder->base.name);
11900
11901 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
11902 "encoder's stage crtc doesn't match current crtc\n");
11903 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
11904 "encoder's active_connectors set, but no crtc\n");
11905
11906 for_each_intel_connector(dev, connector) {
11907 if (connector->base.encoder != &encoder->base)
11908 continue;
11909 enabled = true;
11910 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
11911 active = true;
11912 }
11913 /*
11914 * for MST connectors if we unplug the connector is gone
11915 * away but the encoder is still connected to a crtc
11916 * until a modeset happens in response to the hotplug.
11917 */
11918 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
11919 continue;
11920
11921 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11922 "encoder's enabled state mismatch "
11923 "(expected %i, found %i)\n",
11924 !!encoder->base.crtc, enabled);
11925 I915_STATE_WARN(active && !encoder->base.crtc,
11926 "active encoder with no crtc\n");
11927
11928 I915_STATE_WARN(encoder->connectors_active != active,
11929 "encoder's computed active state doesn't match tracked active state "
11930 "(expected %i, found %i)\n", active, encoder->connectors_active);
11931
11932 active = encoder->get_hw_state(encoder, &pipe);
11933 I915_STATE_WARN(active != encoder->connectors_active,
11934 "encoder's hw state doesn't match sw tracking "
11935 "(expected %i, found %i)\n",
11936 encoder->connectors_active, active);
11937
11938 if (!encoder->base.crtc)
11939 continue;
11940
11941 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
11942 I915_STATE_WARN(active && pipe != tracked_pipe,
11943 "active encoder's pipe doesn't match"
11944 "(expected %i, found %i)\n",
11945 tracked_pipe, pipe);
11946
11947 }
11948 }
11949
11950 static void
11951 check_crtc_state(struct drm_device *dev)
11952 {
11953 struct drm_i915_private *dev_priv = dev->dev_private;
11954 struct intel_crtc *crtc;
11955 struct intel_encoder *encoder;
11956 struct intel_crtc_state pipe_config;
11957
11958 for_each_intel_crtc(dev, crtc) {
11959 bool enabled = false;
11960 bool active = false;
11961
11962 memset(&pipe_config, 0, sizeof(pipe_config));
11963
11964 DRM_DEBUG_KMS("[CRTC:%d]\n",
11965 crtc->base.base.id);
11966
11967 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
11968 "active crtc, but not enabled in sw tracking\n");
11969
11970 for_each_intel_encoder(dev, encoder) {
11971 if (encoder->base.crtc != &crtc->base)
11972 continue;
11973 enabled = true;
11974 if (encoder->connectors_active)
11975 active = true;
11976 }
11977
11978 I915_STATE_WARN(active != crtc->active,
11979 "crtc's computed active state doesn't match tracked active state "
11980 "(expected %i, found %i)\n", active, crtc->active);
11981 I915_STATE_WARN(enabled != crtc->base.state->enable,
11982 "crtc's computed enabled state doesn't match tracked enabled state "
11983 "(expected %i, found %i)\n", enabled,
11984 crtc->base.state->enable);
11985
11986 active = dev_priv->display.get_pipe_config(crtc,
11987 &pipe_config);
11988
11989 /* hw state is inconsistent with the pipe quirk */
11990 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
11991 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
11992 active = crtc->active;
11993
11994 for_each_intel_encoder(dev, encoder) {
11995 enum pipe pipe;
11996 if (encoder->base.crtc != &crtc->base)
11997 continue;
11998 if (encoder->get_hw_state(encoder, &pipe))
11999 encoder->get_config(encoder, &pipe_config);
12000 }
12001
12002 I915_STATE_WARN(crtc->active != active,
12003 "crtc active state doesn't match with hw state "
12004 "(expected %i, found %i)\n", crtc->active, active);
12005
12006 if (active &&
12007 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12008 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12009 intel_dump_pipe_config(crtc, &pipe_config,
12010 "[hw state]");
12011 intel_dump_pipe_config(crtc, crtc->config,
12012 "[sw state]");
12013 }
12014 }
12015 }
12016
12017 static void
12018 check_shared_dpll_state(struct drm_device *dev)
12019 {
12020 struct drm_i915_private *dev_priv = dev->dev_private;
12021 struct intel_crtc *crtc;
12022 struct intel_dpll_hw_state dpll_hw_state;
12023 int i;
12024
12025 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12026 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12027 int enabled_crtcs = 0, active_crtcs = 0;
12028 bool active;
12029
12030 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12031
12032 DRM_DEBUG_KMS("%s\n", pll->name);
12033
12034 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12035
12036 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12037 "more active pll users than references: %i vs %i\n",
12038 pll->active, hweight32(pll->config.crtc_mask));
12039 I915_STATE_WARN(pll->active && !pll->on,
12040 "pll in active use but not on in sw tracking\n");
12041 I915_STATE_WARN(pll->on && !pll->active,
12042 "pll in on but not on in use in sw tracking\n");
12043 I915_STATE_WARN(pll->on != active,
12044 "pll on state mismatch (expected %i, found %i)\n",
12045 pll->on, active);
12046
12047 for_each_intel_crtc(dev, crtc) {
12048 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12049 enabled_crtcs++;
12050 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12051 active_crtcs++;
12052 }
12053 I915_STATE_WARN(pll->active != active_crtcs,
12054 "pll active crtcs mismatch (expected %i, found %i)\n",
12055 pll->active, active_crtcs);
12056 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12057 "pll enabled crtcs mismatch (expected %i, found %i)\n",
12058 hweight32(pll->config.crtc_mask), enabled_crtcs);
12059
12060 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12061 sizeof(dpll_hw_state)),
12062 "pll hw state mismatch\n");
12063 }
12064 }
12065
12066 void
12067 intel_modeset_check_state(struct drm_device *dev)
12068 {
12069 check_wm_state(dev);
12070 check_connector_state(dev);
12071 check_encoder_state(dev);
12072 check_crtc_state(dev);
12073 check_shared_dpll_state(dev);
12074 }
12075
12076 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12077 int dotclock)
12078 {
12079 /*
12080 * FDI already provided one idea for the dotclock.
12081 * Yell if the encoder disagrees.
12082 */
12083 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12084 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12085 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12086 }
12087
12088 static void update_scanline_offset(struct intel_crtc *crtc)
12089 {
12090 struct drm_device *dev = crtc->base.dev;
12091
12092 /*
12093 * The scanline counter increments at the leading edge of hsync.
12094 *
12095 * On most platforms it starts counting from vtotal-1 on the
12096 * first active line. That means the scanline counter value is
12097 * always one less than what we would expect. Ie. just after
12098 * start of vblank, which also occurs at start of hsync (on the
12099 * last active line), the scanline counter will read vblank_start-1.
12100 *
12101 * On gen2 the scanline counter starts counting from 1 instead
12102 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12103 * to keep the value positive), instead of adding one.
12104 *
12105 * On HSW+ the behaviour of the scanline counter depends on the output
12106 * type. For DP ports it behaves like most other platforms, but on HDMI
12107 * there's an extra 1 line difference. So we need to add two instead of
12108 * one to the value.
12109 */
12110 if (IS_GEN2(dev)) {
12111 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12112 int vtotal;
12113
12114 vtotal = mode->crtc_vtotal;
12115 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12116 vtotal /= 2;
12117
12118 crtc->scanline_offset = vtotal - 1;
12119 } else if (HAS_DDI(dev) &&
12120 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12121 crtc->scanline_offset = 2;
12122 } else
12123 crtc->scanline_offset = 1;
12124 }
12125
12126 static struct intel_crtc_state *
12127 intel_modeset_compute_config(struct drm_crtc *crtc,
12128 struct drm_display_mode *mode,
12129 struct drm_atomic_state *state,
12130 unsigned *modeset_pipes,
12131 unsigned *prepare_pipes,
12132 unsigned *disable_pipes)
12133 {
12134 struct drm_device *dev = crtc->dev;
12135 struct intel_crtc_state *pipe_config = NULL;
12136 struct intel_crtc *intel_crtc;
12137 int ret = 0;
12138
12139 ret = drm_atomic_add_affected_connectors(state, crtc);
12140 if (ret)
12141 return ERR_PTR(ret);
12142
12143 intel_modeset_affected_pipes(crtc, modeset_pipes,
12144 prepare_pipes, disable_pipes);
12145
12146 for_each_intel_crtc_masked(dev, *disable_pipes, intel_crtc) {
12147 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12148 if (IS_ERR(pipe_config))
12149 return pipe_config;
12150
12151 pipe_config->base.enable = false;
12152 }
12153
12154 /*
12155 * Note this needs changes when we start tracking multiple modes
12156 * and crtcs. At that point we'll need to compute the whole config
12157 * (i.e. one pipe_config for each crtc) rather than just the one
12158 * for this crtc.
12159 */
12160 for_each_intel_crtc_masked(dev, *modeset_pipes, intel_crtc) {
12161 /* FIXME: For now we still expect modeset_pipes has at most
12162 * one bit set. */
12163 if (WARN_ON(&intel_crtc->base != crtc))
12164 continue;
12165
12166 pipe_config = intel_modeset_pipe_config(crtc, mode, state);
12167 if (IS_ERR(pipe_config))
12168 return pipe_config;
12169
12170 pipe_config->base.enable = true;
12171
12172 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12173 "[modeset]");
12174 }
12175
12176 return intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));;
12177 }
12178
12179 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state,
12180 unsigned modeset_pipes,
12181 unsigned disable_pipes)
12182 {
12183 struct drm_device *dev = state->dev;
12184 struct drm_i915_private *dev_priv = to_i915(dev);
12185 unsigned clear_pipes = modeset_pipes | disable_pipes;
12186 struct intel_crtc *intel_crtc;
12187 int ret = 0;
12188
12189 if (!dev_priv->display.crtc_compute_clock)
12190 return 0;
12191
12192 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12193 if (ret)
12194 goto done;
12195
12196 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
12197 struct intel_crtc_state *crtc_state =
12198 intel_atomic_get_crtc_state(state, intel_crtc);
12199
12200 /* Modeset pipes should have a new state by now */
12201 if (WARN_ON(IS_ERR(crtc_state)))
12202 continue;
12203
12204 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12205 crtc_state);
12206 if (ret) {
12207 intel_shared_dpll_abort_config(dev_priv);
12208 goto done;
12209 }
12210 }
12211
12212 done:
12213 return ret;
12214 }
12215
12216 static int __intel_set_mode(struct drm_crtc *crtc,
12217 struct drm_display_mode *mode,
12218 int x, int y, struct drm_framebuffer *fb,
12219 struct intel_crtc_state *pipe_config,
12220 unsigned modeset_pipes,
12221 unsigned prepare_pipes,
12222 unsigned disable_pipes)
12223 {
12224 struct drm_device *dev = crtc->dev;
12225 struct drm_i915_private *dev_priv = dev->dev_private;
12226 struct drm_display_mode *saved_mode;
12227 struct drm_atomic_state *state = pipe_config->base.state;
12228 struct intel_crtc_state *crtc_state_copy = NULL;
12229 struct intel_crtc *intel_crtc;
12230 int ret = 0;
12231
12232 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
12233 if (!saved_mode)
12234 return -ENOMEM;
12235
12236 crtc_state_copy = kmalloc(sizeof(*crtc_state_copy), GFP_KERNEL);
12237 if (!crtc_state_copy) {
12238 ret = -ENOMEM;
12239 goto done;
12240 }
12241
12242 *saved_mode = crtc->mode;
12243
12244 /*
12245 * See if the config requires any additional preparation, e.g.
12246 * to adjust global state with pipes off. We need to do this
12247 * here so we can get the modeset_pipe updated config for the new
12248 * mode set on this crtc. For other crtcs we need to use the
12249 * adjusted_mode bits in the crtc directly.
12250 */
12251 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12252 ret = valleyview_modeset_global_pipes(state, &prepare_pipes);
12253 if (ret)
12254 goto done;
12255
12256 /* may have added more to prepare_pipes than we should */
12257 prepare_pipes &= ~disable_pipes;
12258 }
12259
12260 ret = __intel_set_mode_setup_plls(state, modeset_pipes, disable_pipes);
12261 if (ret)
12262 goto done;
12263
12264 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
12265 intel_crtc_disable(&intel_crtc->base);
12266
12267 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
12268 if (intel_crtc->base.state->enable)
12269 dev_priv->display.crtc_disable(&intel_crtc->base);
12270 }
12271
12272 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12273 * to set it here already despite that we pass it down the callchain.
12274 *
12275 * Note we'll need to fix this up when we start tracking multiple
12276 * pipes; here we assume a single modeset_pipe and only track the
12277 * single crtc and mode.
12278 */
12279 if (modeset_pipes) {
12280 crtc->mode = *mode;
12281 /* mode_set/enable/disable functions rely on a correct pipe
12282 * config. */
12283 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
12284
12285 /*
12286 * Calculate and store various constants which
12287 * are later needed by vblank and swap-completion
12288 * timestamping. They are derived from true hwmode.
12289 */
12290 drm_calc_timestamping_constants(crtc,
12291 &pipe_config->base.adjusted_mode);
12292 }
12293
12294 /* Only after disabling all output pipelines that will be changed can we
12295 * update the the output configuration. */
12296 intel_modeset_update_state(dev, prepare_pipes);
12297
12298 modeset_update_crtc_power_domains(state);
12299
12300 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
12301 struct drm_plane *primary = intel_crtc->base.primary;
12302 int vdisplay, hdisplay;
12303
12304 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
12305 ret = drm_plane_helper_update(primary, &intel_crtc->base,
12306 fb, 0, 0,
12307 hdisplay, vdisplay,
12308 x << 16, y << 16,
12309 hdisplay << 16, vdisplay << 16);
12310 }
12311
12312 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12313 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
12314 update_scanline_offset(intel_crtc);
12315
12316 dev_priv->display.crtc_enable(&intel_crtc->base);
12317 }
12318
12319 /* FIXME: add subpixel order */
12320 done:
12321 if (ret && crtc->state->enable)
12322 crtc->mode = *saved_mode;
12323
12324 if (ret == 0 && pipe_config) {
12325 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12326
12327 /* The pipe_config will be freed with the atomic state, so
12328 * make a copy. */
12329 memcpy(crtc_state_copy, intel_crtc->config,
12330 sizeof *crtc_state_copy);
12331 intel_crtc->config = crtc_state_copy;
12332 intel_crtc->base.state = &crtc_state_copy->base;
12333 } else {
12334 kfree(crtc_state_copy);
12335 }
12336
12337 kfree(saved_mode);
12338 return ret;
12339 }
12340
12341 static int intel_set_mode_pipes(struct drm_crtc *crtc,
12342 struct drm_display_mode *mode,
12343 int x, int y, struct drm_framebuffer *fb,
12344 struct intel_crtc_state *pipe_config,
12345 unsigned modeset_pipes,
12346 unsigned prepare_pipes,
12347 unsigned disable_pipes)
12348 {
12349 int ret;
12350
12351 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
12352 prepare_pipes, disable_pipes);
12353
12354 if (ret == 0)
12355 intel_modeset_check_state(crtc->dev);
12356
12357 return ret;
12358 }
12359
12360 static int intel_set_mode(struct drm_crtc *crtc,
12361 struct drm_display_mode *mode,
12362 int x, int y, struct drm_framebuffer *fb,
12363 struct drm_atomic_state *state)
12364 {
12365 struct intel_crtc_state *pipe_config;
12366 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12367 int ret = 0;
12368
12369 pipe_config = intel_modeset_compute_config(crtc, mode, state,
12370 &modeset_pipes,
12371 &prepare_pipes,
12372 &disable_pipes);
12373
12374 if (IS_ERR(pipe_config)) {
12375 ret = PTR_ERR(pipe_config);
12376 goto out;
12377 }
12378
12379 ret = intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
12380 modeset_pipes, prepare_pipes,
12381 disable_pipes);
12382 if (ret)
12383 goto out;
12384
12385 out:
12386 return ret;
12387 }
12388
12389 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12390 {
12391 struct drm_device *dev = crtc->dev;
12392 struct drm_atomic_state *state;
12393 struct intel_encoder *encoder;
12394 struct intel_connector *connector;
12395 struct drm_connector_state *connector_state;
12396
12397 state = drm_atomic_state_alloc(dev);
12398 if (!state) {
12399 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12400 crtc->base.id);
12401 return;
12402 }
12403
12404 state->acquire_ctx = dev->mode_config.acquire_ctx;
12405
12406 /* The force restore path in the HW readout code relies on the staged
12407 * config still keeping the user requested config while the actual
12408 * state has been overwritten by the configuration read from HW. We
12409 * need to copy the staged config to the atomic state, otherwise the
12410 * mode set will just reapply the state the HW is already in. */
12411 for_each_intel_encoder(dev, encoder) {
12412 if (&encoder->new_crtc->base != crtc)
12413 continue;
12414
12415 for_each_intel_connector(dev, connector) {
12416 if (connector->new_encoder != encoder)
12417 continue;
12418
12419 connector_state = drm_atomic_get_connector_state(state, &connector->base);
12420 if (IS_ERR(connector_state)) {
12421 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12422 connector->base.base.id,
12423 connector->base.name,
12424 PTR_ERR(connector_state));
12425 continue;
12426 }
12427
12428 connector_state->crtc = crtc;
12429 connector_state->best_encoder = &encoder->base;
12430 }
12431 }
12432
12433 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb,
12434 state);
12435
12436 drm_atomic_state_free(state);
12437 }
12438
12439 #undef for_each_intel_crtc_masked
12440
12441 static void intel_set_config_free(struct intel_set_config *config)
12442 {
12443 if (!config)
12444 return;
12445
12446 kfree(config->save_connector_encoders);
12447 kfree(config->save_encoder_crtcs);
12448 kfree(config->save_crtc_enabled);
12449 kfree(config);
12450 }
12451
12452 static int intel_set_config_save_state(struct drm_device *dev,
12453 struct intel_set_config *config)
12454 {
12455 struct drm_crtc *crtc;
12456 struct drm_encoder *encoder;
12457 struct drm_connector *connector;
12458 int count;
12459
12460 config->save_crtc_enabled =
12461 kcalloc(dev->mode_config.num_crtc,
12462 sizeof(bool), GFP_KERNEL);
12463 if (!config->save_crtc_enabled)
12464 return -ENOMEM;
12465
12466 config->save_encoder_crtcs =
12467 kcalloc(dev->mode_config.num_encoder,
12468 sizeof(struct drm_crtc *), GFP_KERNEL);
12469 if (!config->save_encoder_crtcs)
12470 return -ENOMEM;
12471
12472 config->save_connector_encoders =
12473 kcalloc(dev->mode_config.num_connector,
12474 sizeof(struct drm_encoder *), GFP_KERNEL);
12475 if (!config->save_connector_encoders)
12476 return -ENOMEM;
12477
12478 /* Copy data. Note that driver private data is not affected.
12479 * Should anything bad happen only the expected state is
12480 * restored, not the drivers personal bookkeeping.
12481 */
12482 count = 0;
12483 for_each_crtc(dev, crtc) {
12484 config->save_crtc_enabled[count++] = crtc->state->enable;
12485 }
12486
12487 count = 0;
12488 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
12489 config->save_encoder_crtcs[count++] = encoder->crtc;
12490 }
12491
12492 count = 0;
12493 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12494 config->save_connector_encoders[count++] = connector->encoder;
12495 }
12496
12497 return 0;
12498 }
12499
12500 static void intel_set_config_restore_state(struct drm_device *dev,
12501 struct intel_set_config *config)
12502 {
12503 struct intel_crtc *crtc;
12504 struct intel_encoder *encoder;
12505 struct intel_connector *connector;
12506 int count;
12507
12508 count = 0;
12509 for_each_intel_crtc(dev, crtc) {
12510 crtc->new_enabled = config->save_crtc_enabled[count++];
12511 }
12512
12513 count = 0;
12514 for_each_intel_encoder(dev, encoder) {
12515 encoder->new_crtc =
12516 to_intel_crtc(config->save_encoder_crtcs[count++]);
12517 }
12518
12519 count = 0;
12520 for_each_intel_connector(dev, connector) {
12521 connector->new_encoder =
12522 to_intel_encoder(config->save_connector_encoders[count++]);
12523 }
12524 }
12525
12526 static bool
12527 is_crtc_connector_off(struct drm_mode_set *set)
12528 {
12529 int i;
12530
12531 if (set->num_connectors == 0)
12532 return false;
12533
12534 if (WARN_ON(set->connectors == NULL))
12535 return false;
12536
12537 for (i = 0; i < set->num_connectors; i++)
12538 if (set->connectors[i]->encoder &&
12539 set->connectors[i]->encoder->crtc == set->crtc &&
12540 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
12541 return true;
12542
12543 return false;
12544 }
12545
12546 static void
12547 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
12548 struct intel_set_config *config)
12549 {
12550
12551 /* We should be able to check here if the fb has the same properties
12552 * and then just flip_or_move it */
12553 if (is_crtc_connector_off(set)) {
12554 config->mode_changed = true;
12555 } else if (set->crtc->primary->fb != set->fb) {
12556 /*
12557 * If we have no fb, we can only flip as long as the crtc is
12558 * active, otherwise we need a full mode set. The crtc may
12559 * be active if we've only disabled the primary plane, or
12560 * in fastboot situations.
12561 */
12562 if (set->crtc->primary->fb == NULL) {
12563 struct intel_crtc *intel_crtc =
12564 to_intel_crtc(set->crtc);
12565
12566 if (intel_crtc->active) {
12567 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
12568 config->fb_changed = true;
12569 } else {
12570 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
12571 config->mode_changed = true;
12572 }
12573 } else if (set->fb == NULL) {
12574 config->mode_changed = true;
12575 } else if (set->fb->pixel_format !=
12576 set->crtc->primary->fb->pixel_format) {
12577 config->mode_changed = true;
12578 } else {
12579 config->fb_changed = true;
12580 }
12581 }
12582
12583 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
12584 config->fb_changed = true;
12585
12586 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
12587 DRM_DEBUG_KMS("modes are different, full mode set\n");
12588 drm_mode_debug_printmodeline(&set->crtc->mode);
12589 drm_mode_debug_printmodeline(set->mode);
12590 config->mode_changed = true;
12591 }
12592
12593 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
12594 set->crtc->base.id, config->mode_changed, config->fb_changed);
12595 }
12596
12597 static int
12598 intel_modeset_stage_output_state(struct drm_device *dev,
12599 struct drm_mode_set *set,
12600 struct intel_set_config *config,
12601 struct drm_atomic_state *state)
12602 {
12603 struct intel_connector *connector;
12604 struct drm_connector_state *connector_state;
12605 struct intel_encoder *encoder;
12606 struct intel_crtc *crtc;
12607 int ro;
12608
12609 /* The upper layers ensure that we either disable a crtc or have a list
12610 * of connectors. For paranoia, double-check this. */
12611 WARN_ON(!set->fb && (set->num_connectors != 0));
12612 WARN_ON(set->fb && (set->num_connectors == 0));
12613
12614 for_each_intel_connector(dev, connector) {
12615 /* Otherwise traverse passed in connector list and get encoders
12616 * for them. */
12617 for (ro = 0; ro < set->num_connectors; ro++) {
12618 if (set->connectors[ro] == &connector->base) {
12619 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
12620 break;
12621 }
12622 }
12623
12624 /* If we disable the crtc, disable all its connectors. Also, if
12625 * the connector is on the changing crtc but not on the new
12626 * connector list, disable it. */
12627 if ((!set->fb || ro == set->num_connectors) &&
12628 connector->base.encoder &&
12629 connector->base.encoder->crtc == set->crtc) {
12630 connector->new_encoder = NULL;
12631
12632 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12633 connector->base.base.id,
12634 connector->base.name);
12635 }
12636
12637
12638 if (&connector->new_encoder->base != connector->base.encoder) {
12639 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] encoder changed, full mode switch\n",
12640 connector->base.base.id,
12641 connector->base.name);
12642 config->mode_changed = true;
12643 }
12644 }
12645 /* connector->new_encoder is now updated for all connectors. */
12646
12647 /* Update crtc of enabled connectors. */
12648 for_each_intel_connector(dev, connector) {
12649 struct drm_crtc *new_crtc;
12650
12651 if (!connector->new_encoder)
12652 continue;
12653
12654 new_crtc = connector->new_encoder->base.crtc;
12655
12656 for (ro = 0; ro < set->num_connectors; ro++) {
12657 if (set->connectors[ro] == &connector->base)
12658 new_crtc = set->crtc;
12659 }
12660
12661 /* Make sure the new CRTC will work with the encoder */
12662 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
12663 new_crtc)) {
12664 return -EINVAL;
12665 }
12666 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
12667
12668 connector_state =
12669 drm_atomic_get_connector_state(state, &connector->base);
12670 if (IS_ERR(connector_state))
12671 return PTR_ERR(connector_state);
12672
12673 connector_state->crtc = new_crtc;
12674 connector_state->best_encoder = &connector->new_encoder->base;
12675
12676 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12677 connector->base.base.id,
12678 connector->base.name,
12679 new_crtc->base.id);
12680 }
12681
12682 /* Check for any encoders that needs to be disabled. */
12683 for_each_intel_encoder(dev, encoder) {
12684 int num_connectors = 0;
12685 for_each_intel_connector(dev, connector) {
12686 if (connector->new_encoder == encoder) {
12687 WARN_ON(!connector->new_encoder->new_crtc);
12688 num_connectors++;
12689 }
12690 }
12691
12692 if (num_connectors == 0)
12693 encoder->new_crtc = NULL;
12694 else if (num_connectors > 1)
12695 return -EINVAL;
12696
12697 /* Only now check for crtc changes so we don't miss encoders
12698 * that will be disabled. */
12699 if (&encoder->new_crtc->base != encoder->base.crtc) {
12700 DRM_DEBUG_KMS("[ENCODER:%d:%s] crtc changed, full mode switch\n",
12701 encoder->base.base.id,
12702 encoder->base.name);
12703 config->mode_changed = true;
12704 }
12705 }
12706 /* Now we've also updated encoder->new_crtc for all encoders. */
12707 for_each_intel_connector(dev, connector) {
12708 connector_state =
12709 drm_atomic_get_connector_state(state, &connector->base);
12710 if (IS_ERR(connector_state))
12711 return PTR_ERR(connector_state);
12712
12713 if (connector->new_encoder) {
12714 if (connector->new_encoder != connector->encoder)
12715 connector->encoder = connector->new_encoder;
12716 } else {
12717 connector_state->crtc = NULL;
12718 connector_state->best_encoder = NULL;
12719 }
12720 }
12721 for_each_intel_crtc(dev, crtc) {
12722 crtc->new_enabled = false;
12723
12724 for_each_intel_encoder(dev, encoder) {
12725 if (encoder->new_crtc == crtc) {
12726 crtc->new_enabled = true;
12727 break;
12728 }
12729 }
12730
12731 if (crtc->new_enabled != crtc->base.state->enable) {
12732 DRM_DEBUG_KMS("[CRTC:%d] %sabled, full mode switch\n",
12733 crtc->base.base.id,
12734 crtc->new_enabled ? "en" : "dis");
12735 config->mode_changed = true;
12736 }
12737 }
12738
12739 return 0;
12740 }
12741
12742 static void disable_crtc_nofb(struct intel_crtc *crtc)
12743 {
12744 struct drm_device *dev = crtc->base.dev;
12745 struct intel_encoder *encoder;
12746 struct intel_connector *connector;
12747
12748 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
12749 pipe_name(crtc->pipe));
12750
12751 for_each_intel_connector(dev, connector) {
12752 if (connector->new_encoder &&
12753 connector->new_encoder->new_crtc == crtc)
12754 connector->new_encoder = NULL;
12755 }
12756
12757 for_each_intel_encoder(dev, encoder) {
12758 if (encoder->new_crtc == crtc)
12759 encoder->new_crtc = NULL;
12760 }
12761
12762 crtc->new_enabled = false;
12763 }
12764
12765 static int intel_crtc_set_config(struct drm_mode_set *set)
12766 {
12767 struct drm_device *dev;
12768 struct drm_mode_set save_set;
12769 struct drm_atomic_state *state = NULL;
12770 struct intel_set_config *config;
12771 struct intel_crtc_state *pipe_config;
12772 unsigned modeset_pipes, prepare_pipes, disable_pipes;
12773 int ret;
12774
12775 BUG_ON(!set);
12776 BUG_ON(!set->crtc);
12777 BUG_ON(!set->crtc->helper_private);
12778
12779 /* Enforce sane interface api - has been abused by the fb helper. */
12780 BUG_ON(!set->mode && set->fb);
12781 BUG_ON(set->fb && set->num_connectors == 0);
12782
12783 if (set->fb) {
12784 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12785 set->crtc->base.id, set->fb->base.id,
12786 (int)set->num_connectors, set->x, set->y);
12787 } else {
12788 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12789 }
12790
12791 dev = set->crtc->dev;
12792
12793 ret = -ENOMEM;
12794 config = kzalloc(sizeof(*config), GFP_KERNEL);
12795 if (!config)
12796 goto out_config;
12797
12798 ret = intel_set_config_save_state(dev, config);
12799 if (ret)
12800 goto out_config;
12801
12802 save_set.crtc = set->crtc;
12803 save_set.mode = &set->crtc->mode;
12804 save_set.x = set->crtc->x;
12805 save_set.y = set->crtc->y;
12806 save_set.fb = set->crtc->primary->fb;
12807
12808 /* Compute whether we need a full modeset, only an fb base update or no
12809 * change at all. In the future we might also check whether only the
12810 * mode changed, e.g. for LVDS where we only change the panel fitter in
12811 * such cases. */
12812 intel_set_config_compute_mode_changes(set, config);
12813
12814 state = drm_atomic_state_alloc(dev);
12815 if (!state) {
12816 ret = -ENOMEM;
12817 goto out_config;
12818 }
12819
12820 state->acquire_ctx = dev->mode_config.acquire_ctx;
12821
12822 ret = intel_modeset_stage_output_state(dev, set, config, state);
12823 if (ret)
12824 goto fail;
12825
12826 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
12827 state,
12828 &modeset_pipes,
12829 &prepare_pipes,
12830 &disable_pipes);
12831 if (IS_ERR(pipe_config)) {
12832 ret = PTR_ERR(pipe_config);
12833 goto fail;
12834 } else if (pipe_config) {
12835 if (pipe_config->has_audio !=
12836 to_intel_crtc(set->crtc)->config->has_audio)
12837 config->mode_changed = true;
12838
12839 /*
12840 * Note we have an issue here with infoframes: current code
12841 * only updates them on the full mode set path per hw
12842 * requirements. So here we should be checking for any
12843 * required changes and forcing a mode set.
12844 */
12845 }
12846
12847 intel_update_pipe_size(to_intel_crtc(set->crtc));
12848
12849 if (config->mode_changed) {
12850 ret = intel_set_mode_pipes(set->crtc, set->mode,
12851 set->x, set->y, set->fb, pipe_config,
12852 modeset_pipes, prepare_pipes,
12853 disable_pipes);
12854 } else if (config->fb_changed) {
12855 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12856 struct drm_plane *primary = set->crtc->primary;
12857 int vdisplay, hdisplay;
12858
12859 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
12860 ret = drm_plane_helper_update(primary, set->crtc, set->fb,
12861 0, 0, hdisplay, vdisplay,
12862 set->x << 16, set->y << 16,
12863 hdisplay << 16, vdisplay << 16);
12864
12865 /*
12866 * We need to make sure the primary plane is re-enabled if it
12867 * has previously been turned off.
12868 */
12869 if (!intel_crtc->primary_enabled && ret == 0) {
12870 WARN_ON(!intel_crtc->active);
12871 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
12872 }
12873
12874 /*
12875 * In the fastboot case this may be our only check of the
12876 * state after boot. It would be better to only do it on
12877 * the first update, but we don't have a nice way of doing that
12878 * (and really, set_config isn't used much for high freq page
12879 * flipping, so increasing its cost here shouldn't be a big
12880 * deal).
12881 */
12882 if (i915.fastboot && ret == 0)
12883 intel_modeset_check_state(set->crtc->dev);
12884 }
12885
12886 if (ret) {
12887 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12888 set->crtc->base.id, ret);
12889 fail:
12890 intel_set_config_restore_state(dev, config);
12891
12892 drm_atomic_state_clear(state);
12893
12894 /*
12895 * HACK: if the pipe was on, but we didn't have a framebuffer,
12896 * force the pipe off to avoid oopsing in the modeset code
12897 * due to fb==NULL. This should only happen during boot since
12898 * we don't yet reconstruct the FB from the hardware state.
12899 */
12900 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
12901 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
12902
12903 /* Try to restore the config */
12904 if (config->mode_changed &&
12905 intel_set_mode(save_set.crtc, save_set.mode,
12906 save_set.x, save_set.y, save_set.fb,
12907 state))
12908 DRM_ERROR("failed to restore config after modeset failure\n");
12909 }
12910
12911 out_config:
12912 if (state)
12913 drm_atomic_state_free(state);
12914
12915 intel_set_config_free(config);
12916 return ret;
12917 }
12918
12919 static const struct drm_crtc_funcs intel_crtc_funcs = {
12920 .gamma_set = intel_crtc_gamma_set,
12921 .set_config = intel_crtc_set_config,
12922 .destroy = intel_crtc_destroy,
12923 .page_flip = intel_crtc_page_flip,
12924 .atomic_duplicate_state = intel_crtc_duplicate_state,
12925 .atomic_destroy_state = intel_crtc_destroy_state,
12926 };
12927
12928 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12929 struct intel_shared_dpll *pll,
12930 struct intel_dpll_hw_state *hw_state)
12931 {
12932 uint32_t val;
12933
12934 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12935 return false;
12936
12937 val = I915_READ(PCH_DPLL(pll->id));
12938 hw_state->dpll = val;
12939 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12940 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12941
12942 return val & DPLL_VCO_ENABLE;
12943 }
12944
12945 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12946 struct intel_shared_dpll *pll)
12947 {
12948 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12949 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12950 }
12951
12952 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12953 struct intel_shared_dpll *pll)
12954 {
12955 /* PCH refclock must be enabled first */
12956 ibx_assert_pch_refclk_enabled(dev_priv);
12957
12958 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12959
12960 /* Wait for the clocks to stabilize. */
12961 POSTING_READ(PCH_DPLL(pll->id));
12962 udelay(150);
12963
12964 /* The pixel multiplier can only be updated once the
12965 * DPLL is enabled and the clocks are stable.
12966 *
12967 * So write it again.
12968 */
12969 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12970 POSTING_READ(PCH_DPLL(pll->id));
12971 udelay(200);
12972 }
12973
12974 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
12975 struct intel_shared_dpll *pll)
12976 {
12977 struct drm_device *dev = dev_priv->dev;
12978 struct intel_crtc *crtc;
12979
12980 /* Make sure no transcoder isn't still depending on us. */
12981 for_each_intel_crtc(dev, crtc) {
12982 if (intel_crtc_to_shared_dpll(crtc) == pll)
12983 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
12984 }
12985
12986 I915_WRITE(PCH_DPLL(pll->id), 0);
12987 POSTING_READ(PCH_DPLL(pll->id));
12988 udelay(200);
12989 }
12990
12991 static char *ibx_pch_dpll_names[] = {
12992 "PCH DPLL A",
12993 "PCH DPLL B",
12994 };
12995
12996 static void ibx_pch_dpll_init(struct drm_device *dev)
12997 {
12998 struct drm_i915_private *dev_priv = dev->dev_private;
12999 int i;
13000
13001 dev_priv->num_shared_dpll = 2;
13002
13003 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13004 dev_priv->shared_dplls[i].id = i;
13005 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13006 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13007 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13008 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13009 dev_priv->shared_dplls[i].get_hw_state =
13010 ibx_pch_dpll_get_hw_state;
13011 }
13012 }
13013
13014 static void intel_shared_dpll_init(struct drm_device *dev)
13015 {
13016 struct drm_i915_private *dev_priv = dev->dev_private;
13017
13018 if (HAS_DDI(dev))
13019 intel_ddi_pll_init(dev);
13020 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13021 ibx_pch_dpll_init(dev);
13022 else
13023 dev_priv->num_shared_dpll = 0;
13024
13025 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13026 }
13027
13028 /**
13029 * intel_wm_need_update - Check whether watermarks need updating
13030 * @plane: drm plane
13031 * @state: new plane state
13032 *
13033 * Check current plane state versus the new one to determine whether
13034 * watermarks need to be recalculated.
13035 *
13036 * Returns true or false.
13037 */
13038 bool intel_wm_need_update(struct drm_plane *plane,
13039 struct drm_plane_state *state)
13040 {
13041 /* Update watermarks on tiling changes. */
13042 if (!plane->state->fb || !state->fb ||
13043 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13044 plane->state->rotation != state->rotation)
13045 return true;
13046
13047 return false;
13048 }
13049
13050 /**
13051 * intel_prepare_plane_fb - Prepare fb for usage on plane
13052 * @plane: drm plane to prepare for
13053 * @fb: framebuffer to prepare for presentation
13054 *
13055 * Prepares a framebuffer for usage on a display plane. Generally this
13056 * involves pinning the underlying object and updating the frontbuffer tracking
13057 * bits. Some older platforms need special physical address handling for
13058 * cursor planes.
13059 *
13060 * Returns 0 on success, negative error code on failure.
13061 */
13062 int
13063 intel_prepare_plane_fb(struct drm_plane *plane,
13064 struct drm_framebuffer *fb,
13065 const struct drm_plane_state *new_state)
13066 {
13067 struct drm_device *dev = plane->dev;
13068 struct intel_plane *intel_plane = to_intel_plane(plane);
13069 enum pipe pipe = intel_plane->pipe;
13070 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13071 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13072 unsigned frontbuffer_bits = 0;
13073 int ret = 0;
13074
13075 if (!obj)
13076 return 0;
13077
13078 switch (plane->type) {
13079 case DRM_PLANE_TYPE_PRIMARY:
13080 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13081 break;
13082 case DRM_PLANE_TYPE_CURSOR:
13083 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13084 break;
13085 case DRM_PLANE_TYPE_OVERLAY:
13086 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13087 break;
13088 }
13089
13090 mutex_lock(&dev->struct_mutex);
13091
13092 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13093 INTEL_INFO(dev)->cursor_needs_physical) {
13094 int align = IS_I830(dev) ? 16 * 1024 : 256;
13095 ret = i915_gem_object_attach_phys(obj, align);
13096 if (ret)
13097 DRM_DEBUG_KMS("failed to attach phys object\n");
13098 } else {
13099 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13100 }
13101
13102 if (ret == 0)
13103 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13104
13105 mutex_unlock(&dev->struct_mutex);
13106
13107 return ret;
13108 }
13109
13110 /**
13111 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13112 * @plane: drm plane to clean up for
13113 * @fb: old framebuffer that was on plane
13114 *
13115 * Cleans up a framebuffer that has just been removed from a plane.
13116 */
13117 void
13118 intel_cleanup_plane_fb(struct drm_plane *plane,
13119 struct drm_framebuffer *fb,
13120 const struct drm_plane_state *old_state)
13121 {
13122 struct drm_device *dev = plane->dev;
13123 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13124
13125 if (WARN_ON(!obj))
13126 return;
13127
13128 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13129 !INTEL_INFO(dev)->cursor_needs_physical) {
13130 mutex_lock(&dev->struct_mutex);
13131 intel_unpin_fb_obj(fb, old_state);
13132 mutex_unlock(&dev->struct_mutex);
13133 }
13134 }
13135
13136 static int
13137 intel_check_primary_plane(struct drm_plane *plane,
13138 struct intel_plane_state *state)
13139 {
13140 struct drm_device *dev = plane->dev;
13141 struct drm_i915_private *dev_priv = dev->dev_private;
13142 struct drm_crtc *crtc = state->base.crtc;
13143 struct intel_crtc *intel_crtc;
13144 struct drm_framebuffer *fb = state->base.fb;
13145 struct drm_rect *dest = &state->dst;
13146 struct drm_rect *src = &state->src;
13147 const struct drm_rect *clip = &state->clip;
13148 bool can_position = false;
13149 int ret;
13150
13151 crtc = crtc ? crtc : plane->crtc;
13152 intel_crtc = to_intel_crtc(crtc);
13153
13154 if (INTEL_INFO(dev)->gen >= 9)
13155 can_position = true;
13156
13157 ret = drm_plane_helper_check_update(plane, crtc, fb,
13158 src, dest, clip,
13159 DRM_PLANE_HELPER_NO_SCALING,
13160 DRM_PLANE_HELPER_NO_SCALING,
13161 can_position, true,
13162 &state->visible);
13163 if (ret)
13164 return ret;
13165
13166 if (intel_crtc->active) {
13167 intel_crtc->atomic.wait_for_flips = true;
13168
13169 /*
13170 * FBC does not work on some platforms for rotated
13171 * planes, so disable it when rotation is not 0 and
13172 * update it when rotation is set back to 0.
13173 *
13174 * FIXME: This is redundant with the fbc update done in
13175 * the primary plane enable function except that that
13176 * one is done too late. We eventually need to unify
13177 * this.
13178 */
13179 if (intel_crtc->primary_enabled &&
13180 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13181 dev_priv->fbc.crtc == intel_crtc &&
13182 state->base.rotation != BIT(DRM_ROTATE_0)) {
13183 intel_crtc->atomic.disable_fbc = true;
13184 }
13185
13186 if (state->visible) {
13187 /*
13188 * BDW signals flip done immediately if the plane
13189 * is disabled, even if the plane enable is already
13190 * armed to occur at the next vblank :(
13191 */
13192 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
13193 intel_crtc->atomic.wait_vblank = true;
13194 }
13195
13196 intel_crtc->atomic.fb_bits |=
13197 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13198
13199 intel_crtc->atomic.update_fbc = true;
13200
13201 if (intel_wm_need_update(plane, &state->base))
13202 intel_crtc->atomic.update_wm = true;
13203 }
13204
13205 return 0;
13206 }
13207
13208 static void
13209 intel_commit_primary_plane(struct drm_plane *plane,
13210 struct intel_plane_state *state)
13211 {
13212 struct drm_crtc *crtc = state->base.crtc;
13213 struct drm_framebuffer *fb = state->base.fb;
13214 struct drm_device *dev = plane->dev;
13215 struct drm_i915_private *dev_priv = dev->dev_private;
13216 struct intel_crtc *intel_crtc;
13217 struct drm_rect *src = &state->src;
13218
13219 crtc = crtc ? crtc : plane->crtc;
13220 intel_crtc = to_intel_crtc(crtc);
13221
13222 plane->fb = fb;
13223 crtc->x = src->x1 >> 16;
13224 crtc->y = src->y1 >> 16;
13225
13226 if (intel_crtc->active) {
13227 if (state->visible) {
13228 /* FIXME: kill this fastboot hack */
13229 intel_update_pipe_size(intel_crtc);
13230
13231 intel_crtc->primary_enabled = true;
13232
13233 dev_priv->display.update_primary_plane(crtc, plane->fb,
13234 crtc->x, crtc->y);
13235 } else {
13236 /*
13237 * If clipping results in a non-visible primary plane,
13238 * we'll disable the primary plane. Note that this is
13239 * a bit different than what happens if userspace
13240 * explicitly disables the plane by passing fb=0
13241 * because plane->fb still gets set and pinned.
13242 */
13243 intel_disable_primary_hw_plane(plane, crtc);
13244 }
13245 }
13246 }
13247
13248 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13249 {
13250 struct drm_device *dev = crtc->dev;
13251 struct drm_i915_private *dev_priv = dev->dev_private;
13252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13253 struct intel_plane *intel_plane;
13254 struct drm_plane *p;
13255 unsigned fb_bits = 0;
13256
13257 /* Track fb's for any planes being disabled */
13258 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13259 intel_plane = to_intel_plane(p);
13260
13261 if (intel_crtc->atomic.disabled_planes &
13262 (1 << drm_plane_index(p))) {
13263 switch (p->type) {
13264 case DRM_PLANE_TYPE_PRIMARY:
13265 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13266 break;
13267 case DRM_PLANE_TYPE_CURSOR:
13268 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13269 break;
13270 case DRM_PLANE_TYPE_OVERLAY:
13271 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13272 break;
13273 }
13274
13275 mutex_lock(&dev->struct_mutex);
13276 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13277 mutex_unlock(&dev->struct_mutex);
13278 }
13279 }
13280
13281 if (intel_crtc->atomic.wait_for_flips)
13282 intel_crtc_wait_for_pending_flips(crtc);
13283
13284 if (intel_crtc->atomic.disable_fbc)
13285 intel_fbc_disable(dev);
13286
13287 if (intel_crtc->atomic.pre_disable_primary)
13288 intel_pre_disable_primary(crtc);
13289
13290 if (intel_crtc->atomic.update_wm)
13291 intel_update_watermarks(crtc);
13292
13293 intel_runtime_pm_get(dev_priv);
13294
13295 /* Perform vblank evasion around commit operation */
13296 if (intel_crtc->active)
13297 intel_crtc->atomic.evade =
13298 intel_pipe_update_start(intel_crtc,
13299 &intel_crtc->atomic.start_vbl_count);
13300 }
13301
13302 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13303 {
13304 struct drm_device *dev = crtc->dev;
13305 struct drm_i915_private *dev_priv = dev->dev_private;
13306 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13307 struct drm_plane *p;
13308
13309 if (intel_crtc->atomic.evade)
13310 intel_pipe_update_end(intel_crtc,
13311 intel_crtc->atomic.start_vbl_count);
13312
13313 intel_runtime_pm_put(dev_priv);
13314
13315 if (intel_crtc->atomic.wait_vblank)
13316 intel_wait_for_vblank(dev, intel_crtc->pipe);
13317
13318 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13319
13320 if (intel_crtc->atomic.update_fbc) {
13321 mutex_lock(&dev->struct_mutex);
13322 intel_fbc_update(dev);
13323 mutex_unlock(&dev->struct_mutex);
13324 }
13325
13326 if (intel_crtc->atomic.post_enable_primary)
13327 intel_post_enable_primary(crtc);
13328
13329 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13330 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13331 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13332 false, false);
13333
13334 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13335 }
13336
13337 /**
13338 * intel_plane_destroy - destroy a plane
13339 * @plane: plane to destroy
13340 *
13341 * Common destruction function for all types of planes (primary, cursor,
13342 * sprite).
13343 */
13344 void intel_plane_destroy(struct drm_plane *plane)
13345 {
13346 struct intel_plane *intel_plane = to_intel_plane(plane);
13347 drm_plane_cleanup(plane);
13348 kfree(intel_plane);
13349 }
13350
13351 const struct drm_plane_funcs intel_plane_funcs = {
13352 .update_plane = drm_atomic_helper_update_plane,
13353 .disable_plane = drm_atomic_helper_disable_plane,
13354 .destroy = intel_plane_destroy,
13355 .set_property = drm_atomic_helper_plane_set_property,
13356 .atomic_get_property = intel_plane_atomic_get_property,
13357 .atomic_set_property = intel_plane_atomic_set_property,
13358 .atomic_duplicate_state = intel_plane_duplicate_state,
13359 .atomic_destroy_state = intel_plane_destroy_state,
13360
13361 };
13362
13363 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13364 int pipe)
13365 {
13366 struct intel_plane *primary;
13367 struct intel_plane_state *state;
13368 const uint32_t *intel_primary_formats;
13369 int num_formats;
13370
13371 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13372 if (primary == NULL)
13373 return NULL;
13374
13375 state = intel_create_plane_state(&primary->base);
13376 if (!state) {
13377 kfree(primary);
13378 return NULL;
13379 }
13380 primary->base.state = &state->base;
13381
13382 primary->can_scale = false;
13383 primary->max_downscale = 1;
13384 state->scaler_id = -1;
13385 primary->pipe = pipe;
13386 primary->plane = pipe;
13387 primary->check_plane = intel_check_primary_plane;
13388 primary->commit_plane = intel_commit_primary_plane;
13389 primary->ckey.flags = I915_SET_COLORKEY_NONE;
13390 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13391 primary->plane = !pipe;
13392
13393 if (INTEL_INFO(dev)->gen <= 3) {
13394 intel_primary_formats = intel_primary_formats_gen2;
13395 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
13396 } else {
13397 intel_primary_formats = intel_primary_formats_gen4;
13398 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
13399 }
13400
13401 drm_universal_plane_init(dev, &primary->base, 0,
13402 &intel_plane_funcs,
13403 intel_primary_formats, num_formats,
13404 DRM_PLANE_TYPE_PRIMARY);
13405
13406 if (INTEL_INFO(dev)->gen >= 4)
13407 intel_create_rotation_property(dev, primary);
13408
13409 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13410
13411 return &primary->base;
13412 }
13413
13414 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13415 {
13416 if (!dev->mode_config.rotation_property) {
13417 unsigned long flags = BIT(DRM_ROTATE_0) |
13418 BIT(DRM_ROTATE_180);
13419
13420 if (INTEL_INFO(dev)->gen >= 9)
13421 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13422
13423 dev->mode_config.rotation_property =
13424 drm_mode_create_rotation_property(dev, flags);
13425 }
13426 if (dev->mode_config.rotation_property)
13427 drm_object_attach_property(&plane->base.base,
13428 dev->mode_config.rotation_property,
13429 plane->base.state->rotation);
13430 }
13431
13432 static int
13433 intel_check_cursor_plane(struct drm_plane *plane,
13434 struct intel_plane_state *state)
13435 {
13436 struct drm_crtc *crtc = state->base.crtc;
13437 struct drm_device *dev = plane->dev;
13438 struct drm_framebuffer *fb = state->base.fb;
13439 struct drm_rect *dest = &state->dst;
13440 struct drm_rect *src = &state->src;
13441 const struct drm_rect *clip = &state->clip;
13442 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13443 struct intel_crtc *intel_crtc;
13444 unsigned stride;
13445 int ret;
13446
13447 crtc = crtc ? crtc : plane->crtc;
13448 intel_crtc = to_intel_crtc(crtc);
13449
13450 ret = drm_plane_helper_check_update(plane, crtc, fb,
13451 src, dest, clip,
13452 DRM_PLANE_HELPER_NO_SCALING,
13453 DRM_PLANE_HELPER_NO_SCALING,
13454 true, true, &state->visible);
13455 if (ret)
13456 return ret;
13457
13458
13459 /* if we want to turn off the cursor ignore width and height */
13460 if (!obj)
13461 goto finish;
13462
13463 /* Check for which cursor types we support */
13464 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13465 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13466 state->base.crtc_w, state->base.crtc_h);
13467 return -EINVAL;
13468 }
13469
13470 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13471 if (obj->base.size < stride * state->base.crtc_h) {
13472 DRM_DEBUG_KMS("buffer is too small\n");
13473 return -ENOMEM;
13474 }
13475
13476 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13477 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13478 ret = -EINVAL;
13479 }
13480
13481 finish:
13482 if (intel_crtc->active) {
13483 if (plane->state->crtc_w != state->base.crtc_w)
13484 intel_crtc->atomic.update_wm = true;
13485
13486 intel_crtc->atomic.fb_bits |=
13487 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13488 }
13489
13490 return ret;
13491 }
13492
13493 static void
13494 intel_commit_cursor_plane(struct drm_plane *plane,
13495 struct intel_plane_state *state)
13496 {
13497 struct drm_crtc *crtc = state->base.crtc;
13498 struct drm_device *dev = plane->dev;
13499 struct intel_crtc *intel_crtc;
13500 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13501 uint32_t addr;
13502
13503 crtc = crtc ? crtc : plane->crtc;
13504 intel_crtc = to_intel_crtc(crtc);
13505
13506 plane->fb = state->base.fb;
13507 crtc->cursor_x = state->base.crtc_x;
13508 crtc->cursor_y = state->base.crtc_y;
13509
13510 if (intel_crtc->cursor_bo == obj)
13511 goto update;
13512
13513 if (!obj)
13514 addr = 0;
13515 else if (!INTEL_INFO(dev)->cursor_needs_physical)
13516 addr = i915_gem_obj_ggtt_offset(obj);
13517 else
13518 addr = obj->phys_handle->busaddr;
13519
13520 intel_crtc->cursor_addr = addr;
13521 intel_crtc->cursor_bo = obj;
13522 update:
13523
13524 if (intel_crtc->active)
13525 intel_crtc_update_cursor(crtc, state->visible);
13526 }
13527
13528 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13529 int pipe)
13530 {
13531 struct intel_plane *cursor;
13532 struct intel_plane_state *state;
13533
13534 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13535 if (cursor == NULL)
13536 return NULL;
13537
13538 state = intel_create_plane_state(&cursor->base);
13539 if (!state) {
13540 kfree(cursor);
13541 return NULL;
13542 }
13543 cursor->base.state = &state->base;
13544
13545 cursor->can_scale = false;
13546 cursor->max_downscale = 1;
13547 cursor->pipe = pipe;
13548 cursor->plane = pipe;
13549 state->scaler_id = -1;
13550 cursor->check_plane = intel_check_cursor_plane;
13551 cursor->commit_plane = intel_commit_cursor_plane;
13552
13553 drm_universal_plane_init(dev, &cursor->base, 0,
13554 &intel_plane_funcs,
13555 intel_cursor_formats,
13556 ARRAY_SIZE(intel_cursor_formats),
13557 DRM_PLANE_TYPE_CURSOR);
13558
13559 if (INTEL_INFO(dev)->gen >= 4) {
13560 if (!dev->mode_config.rotation_property)
13561 dev->mode_config.rotation_property =
13562 drm_mode_create_rotation_property(dev,
13563 BIT(DRM_ROTATE_0) |
13564 BIT(DRM_ROTATE_180));
13565 if (dev->mode_config.rotation_property)
13566 drm_object_attach_property(&cursor->base.base,
13567 dev->mode_config.rotation_property,
13568 state->base.rotation);
13569 }
13570
13571 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13572
13573 return &cursor->base;
13574 }
13575
13576 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13577 struct intel_crtc_state *crtc_state)
13578 {
13579 int i;
13580 struct intel_scaler *intel_scaler;
13581 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13582
13583 for (i = 0; i < intel_crtc->num_scalers; i++) {
13584 intel_scaler = &scaler_state->scalers[i];
13585 intel_scaler->in_use = 0;
13586 intel_scaler->id = i;
13587
13588 intel_scaler->mode = PS_SCALER_MODE_DYN;
13589 }
13590
13591 scaler_state->scaler_id = -1;
13592 }
13593
13594 static void intel_crtc_init(struct drm_device *dev, int pipe)
13595 {
13596 struct drm_i915_private *dev_priv = dev->dev_private;
13597 struct intel_crtc *intel_crtc;
13598 struct intel_crtc_state *crtc_state = NULL;
13599 struct drm_plane *primary = NULL;
13600 struct drm_plane *cursor = NULL;
13601 int i, ret;
13602
13603 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13604 if (intel_crtc == NULL)
13605 return;
13606
13607 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13608 if (!crtc_state)
13609 goto fail;
13610 intel_crtc_set_state(intel_crtc, crtc_state);
13611 crtc_state->base.crtc = &intel_crtc->base;
13612
13613 /* initialize shared scalers */
13614 if (INTEL_INFO(dev)->gen >= 9) {
13615 if (pipe == PIPE_C)
13616 intel_crtc->num_scalers = 1;
13617 else
13618 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13619
13620 skl_init_scalers(dev, intel_crtc, crtc_state);
13621 }
13622
13623 primary = intel_primary_plane_create(dev, pipe);
13624 if (!primary)
13625 goto fail;
13626
13627 cursor = intel_cursor_plane_create(dev, pipe);
13628 if (!cursor)
13629 goto fail;
13630
13631 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13632 cursor, &intel_crtc_funcs);
13633 if (ret)
13634 goto fail;
13635
13636 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13637 for (i = 0; i < 256; i++) {
13638 intel_crtc->lut_r[i] = i;
13639 intel_crtc->lut_g[i] = i;
13640 intel_crtc->lut_b[i] = i;
13641 }
13642
13643 /*
13644 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13645 * is hooked to pipe B. Hence we want plane A feeding pipe B.
13646 */
13647 intel_crtc->pipe = pipe;
13648 intel_crtc->plane = pipe;
13649 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13650 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13651 intel_crtc->plane = !pipe;
13652 }
13653
13654 intel_crtc->cursor_base = ~0;
13655 intel_crtc->cursor_cntl = ~0;
13656 intel_crtc->cursor_size = ~0;
13657
13658 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13659 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13660 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13661 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13662
13663 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
13664
13665 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13666
13667 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13668 return;
13669
13670 fail:
13671 if (primary)
13672 drm_plane_cleanup(primary);
13673 if (cursor)
13674 drm_plane_cleanup(cursor);
13675 kfree(crtc_state);
13676 kfree(intel_crtc);
13677 }
13678
13679 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13680 {
13681 struct drm_encoder *encoder = connector->base.encoder;
13682 struct drm_device *dev = connector->base.dev;
13683
13684 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13685
13686 if (!encoder || WARN_ON(!encoder->crtc))
13687 return INVALID_PIPE;
13688
13689 return to_intel_crtc(encoder->crtc)->pipe;
13690 }
13691
13692 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13693 struct drm_file *file)
13694 {
13695 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13696 struct drm_crtc *drmmode_crtc;
13697 struct intel_crtc *crtc;
13698
13699 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13700
13701 if (!drmmode_crtc) {
13702 DRM_ERROR("no such CRTC id\n");
13703 return -ENOENT;
13704 }
13705
13706 crtc = to_intel_crtc(drmmode_crtc);
13707 pipe_from_crtc_id->pipe = crtc->pipe;
13708
13709 return 0;
13710 }
13711
13712 static int intel_encoder_clones(struct intel_encoder *encoder)
13713 {
13714 struct drm_device *dev = encoder->base.dev;
13715 struct intel_encoder *source_encoder;
13716 int index_mask = 0;
13717 int entry = 0;
13718
13719 for_each_intel_encoder(dev, source_encoder) {
13720 if (encoders_cloneable(encoder, source_encoder))
13721 index_mask |= (1 << entry);
13722
13723 entry++;
13724 }
13725
13726 return index_mask;
13727 }
13728
13729 static bool has_edp_a(struct drm_device *dev)
13730 {
13731 struct drm_i915_private *dev_priv = dev->dev_private;
13732
13733 if (!IS_MOBILE(dev))
13734 return false;
13735
13736 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13737 return false;
13738
13739 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13740 return false;
13741
13742 return true;
13743 }
13744
13745 static bool intel_crt_present(struct drm_device *dev)
13746 {
13747 struct drm_i915_private *dev_priv = dev->dev_private;
13748
13749 if (INTEL_INFO(dev)->gen >= 9)
13750 return false;
13751
13752 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13753 return false;
13754
13755 if (IS_CHERRYVIEW(dev))
13756 return false;
13757
13758 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13759 return false;
13760
13761 return true;
13762 }
13763
13764 static void intel_setup_outputs(struct drm_device *dev)
13765 {
13766 struct drm_i915_private *dev_priv = dev->dev_private;
13767 struct intel_encoder *encoder;
13768 bool dpd_is_edp = false;
13769
13770 intel_lvds_init(dev);
13771
13772 if (intel_crt_present(dev))
13773 intel_crt_init(dev);
13774
13775 if (IS_BROXTON(dev)) {
13776 /*
13777 * FIXME: Broxton doesn't support port detection via the
13778 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13779 * detect the ports.
13780 */
13781 intel_ddi_init(dev, PORT_A);
13782 intel_ddi_init(dev, PORT_B);
13783 intel_ddi_init(dev, PORT_C);
13784 } else if (HAS_DDI(dev)) {
13785 int found;
13786
13787 /*
13788 * Haswell uses DDI functions to detect digital outputs.
13789 * On SKL pre-D0 the strap isn't connected, so we assume
13790 * it's there.
13791 */
13792 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13793 /* WaIgnoreDDIAStrap: skl */
13794 if (found ||
13795 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13796 intel_ddi_init(dev, PORT_A);
13797
13798 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13799 * register */
13800 found = I915_READ(SFUSE_STRAP);
13801
13802 if (found & SFUSE_STRAP_DDIB_DETECTED)
13803 intel_ddi_init(dev, PORT_B);
13804 if (found & SFUSE_STRAP_DDIC_DETECTED)
13805 intel_ddi_init(dev, PORT_C);
13806 if (found & SFUSE_STRAP_DDID_DETECTED)
13807 intel_ddi_init(dev, PORT_D);
13808 } else if (HAS_PCH_SPLIT(dev)) {
13809 int found;
13810 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13811
13812 if (has_edp_a(dev))
13813 intel_dp_init(dev, DP_A, PORT_A);
13814
13815 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13816 /* PCH SDVOB multiplex with HDMIB */
13817 found = intel_sdvo_init(dev, PCH_SDVOB, true);
13818 if (!found)
13819 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13820 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13821 intel_dp_init(dev, PCH_DP_B, PORT_B);
13822 }
13823
13824 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13825 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13826
13827 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13828 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13829
13830 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13831 intel_dp_init(dev, PCH_DP_C, PORT_C);
13832
13833 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13834 intel_dp_init(dev, PCH_DP_D, PORT_D);
13835 } else if (IS_VALLEYVIEW(dev)) {
13836 /*
13837 * The DP_DETECTED bit is the latched state of the DDC
13838 * SDA pin at boot. However since eDP doesn't require DDC
13839 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13840 * eDP ports may have been muxed to an alternate function.
13841 * Thus we can't rely on the DP_DETECTED bit alone to detect
13842 * eDP ports. Consult the VBT as well as DP_DETECTED to
13843 * detect eDP ports.
13844 */
13845 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13846 !intel_dp_is_edp(dev, PORT_B))
13847 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13848 PORT_B);
13849 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13850 intel_dp_is_edp(dev, PORT_B))
13851 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13852
13853 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13854 !intel_dp_is_edp(dev, PORT_C))
13855 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13856 PORT_C);
13857 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13858 intel_dp_is_edp(dev, PORT_C))
13859 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13860
13861 if (IS_CHERRYVIEW(dev)) {
13862 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13863 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13864 PORT_D);
13865 /* eDP not supported on port D, so don't check VBT */
13866 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13867 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13868 }
13869
13870 intel_dsi_init(dev);
13871 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
13872 bool found = false;
13873
13874 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13875 DRM_DEBUG_KMS("probing SDVOB\n");
13876 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
13877 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
13878 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13879 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
13880 }
13881
13882 if (!found && SUPPORTS_INTEGRATED_DP(dev))
13883 intel_dp_init(dev, DP_B, PORT_B);
13884 }
13885
13886 /* Before G4X SDVOC doesn't have its own detect register */
13887
13888 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13889 DRM_DEBUG_KMS("probing SDVOC\n");
13890 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
13891 }
13892
13893 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13894
13895 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
13896 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13897 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
13898 }
13899 if (SUPPORTS_INTEGRATED_DP(dev))
13900 intel_dp_init(dev, DP_C, PORT_C);
13901 }
13902
13903 if (SUPPORTS_INTEGRATED_DP(dev) &&
13904 (I915_READ(DP_D) & DP_DETECTED))
13905 intel_dp_init(dev, DP_D, PORT_D);
13906 } else if (IS_GEN2(dev))
13907 intel_dvo_init(dev);
13908
13909 if (SUPPORTS_TV(dev))
13910 intel_tv_init(dev);
13911
13912 intel_psr_init(dev);
13913
13914 for_each_intel_encoder(dev, encoder) {
13915 encoder->base.possible_crtcs = encoder->crtc_mask;
13916 encoder->base.possible_clones =
13917 intel_encoder_clones(encoder);
13918 }
13919
13920 intel_init_pch_refclk(dev);
13921
13922 drm_helper_move_panel_connectors_to_head(dev);
13923 }
13924
13925 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13926 {
13927 struct drm_device *dev = fb->dev;
13928 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13929
13930 drm_framebuffer_cleanup(fb);
13931 mutex_lock(&dev->struct_mutex);
13932 WARN_ON(!intel_fb->obj->framebuffer_references--);
13933 drm_gem_object_unreference(&intel_fb->obj->base);
13934 mutex_unlock(&dev->struct_mutex);
13935 kfree(intel_fb);
13936 }
13937
13938 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13939 struct drm_file *file,
13940 unsigned int *handle)
13941 {
13942 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13943 struct drm_i915_gem_object *obj = intel_fb->obj;
13944
13945 return drm_gem_handle_create(file, &obj->base, handle);
13946 }
13947
13948 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13949 .destroy = intel_user_framebuffer_destroy,
13950 .create_handle = intel_user_framebuffer_create_handle,
13951 };
13952
13953 static
13954 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
13955 uint32_t pixel_format)
13956 {
13957 u32 gen = INTEL_INFO(dev)->gen;
13958
13959 if (gen >= 9) {
13960 /* "The stride in bytes must not exceed the of the size of 8K
13961 * pixels and 32K bytes."
13962 */
13963 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
13964 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
13965 return 32*1024;
13966 } else if (gen >= 4) {
13967 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13968 return 16*1024;
13969 else
13970 return 32*1024;
13971 } else if (gen >= 3) {
13972 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13973 return 8*1024;
13974 else
13975 return 16*1024;
13976 } else {
13977 /* XXX DSPC is limited to 4k tiled */
13978 return 8*1024;
13979 }
13980 }
13981
13982 static int intel_framebuffer_init(struct drm_device *dev,
13983 struct intel_framebuffer *intel_fb,
13984 struct drm_mode_fb_cmd2 *mode_cmd,
13985 struct drm_i915_gem_object *obj)
13986 {
13987 unsigned int aligned_height;
13988 int ret;
13989 u32 pitch_limit, stride_alignment;
13990
13991 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
13992
13993 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13994 /* Enforce that fb modifier and tiling mode match, but only for
13995 * X-tiled. This is needed for FBC. */
13996 if (!!(obj->tiling_mode == I915_TILING_X) !=
13997 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
13998 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
13999 return -EINVAL;
14000 }
14001 } else {
14002 if (obj->tiling_mode == I915_TILING_X)
14003 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14004 else if (obj->tiling_mode == I915_TILING_Y) {
14005 DRM_DEBUG("No Y tiling for legacy addfb\n");
14006 return -EINVAL;
14007 }
14008 }
14009
14010 /* Passed in modifier sanity checking. */
14011 switch (mode_cmd->modifier[0]) {
14012 case I915_FORMAT_MOD_Y_TILED:
14013 case I915_FORMAT_MOD_Yf_TILED:
14014 if (INTEL_INFO(dev)->gen < 9) {
14015 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14016 mode_cmd->modifier[0]);
14017 return -EINVAL;
14018 }
14019 case DRM_FORMAT_MOD_NONE:
14020 case I915_FORMAT_MOD_X_TILED:
14021 break;
14022 default:
14023 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14024 mode_cmd->modifier[0]);
14025 return -EINVAL;
14026 }
14027
14028 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14029 mode_cmd->pixel_format);
14030 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14031 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14032 mode_cmd->pitches[0], stride_alignment);
14033 return -EINVAL;
14034 }
14035
14036 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14037 mode_cmd->pixel_format);
14038 if (mode_cmd->pitches[0] > pitch_limit) {
14039 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14040 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14041 "tiled" : "linear",
14042 mode_cmd->pitches[0], pitch_limit);
14043 return -EINVAL;
14044 }
14045
14046 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14047 mode_cmd->pitches[0] != obj->stride) {
14048 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14049 mode_cmd->pitches[0], obj->stride);
14050 return -EINVAL;
14051 }
14052
14053 /* Reject formats not supported by any plane early. */
14054 switch (mode_cmd->pixel_format) {
14055 case DRM_FORMAT_C8:
14056 case DRM_FORMAT_RGB565:
14057 case DRM_FORMAT_XRGB8888:
14058 case DRM_FORMAT_ARGB8888:
14059 break;
14060 case DRM_FORMAT_XRGB1555:
14061 case DRM_FORMAT_ARGB1555:
14062 if (INTEL_INFO(dev)->gen > 3) {
14063 DRM_DEBUG("unsupported pixel format: %s\n",
14064 drm_get_format_name(mode_cmd->pixel_format));
14065 return -EINVAL;
14066 }
14067 break;
14068 case DRM_FORMAT_XBGR8888:
14069 case DRM_FORMAT_ABGR8888:
14070 case DRM_FORMAT_XRGB2101010:
14071 case DRM_FORMAT_ARGB2101010:
14072 case DRM_FORMAT_XBGR2101010:
14073 case DRM_FORMAT_ABGR2101010:
14074 if (INTEL_INFO(dev)->gen < 4) {
14075 DRM_DEBUG("unsupported pixel format: %s\n",
14076 drm_get_format_name(mode_cmd->pixel_format));
14077 return -EINVAL;
14078 }
14079 break;
14080 case DRM_FORMAT_YUYV:
14081 case DRM_FORMAT_UYVY:
14082 case DRM_FORMAT_YVYU:
14083 case DRM_FORMAT_VYUY:
14084 if (INTEL_INFO(dev)->gen < 5) {
14085 DRM_DEBUG("unsupported pixel format: %s\n",
14086 drm_get_format_name(mode_cmd->pixel_format));
14087 return -EINVAL;
14088 }
14089 break;
14090 default:
14091 DRM_DEBUG("unsupported pixel format: %s\n",
14092 drm_get_format_name(mode_cmd->pixel_format));
14093 return -EINVAL;
14094 }
14095
14096 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14097 if (mode_cmd->offsets[0] != 0)
14098 return -EINVAL;
14099
14100 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14101 mode_cmd->pixel_format,
14102 mode_cmd->modifier[0]);
14103 /* FIXME drm helper for size checks (especially planar formats)? */
14104 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14105 return -EINVAL;
14106
14107 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14108 intel_fb->obj = obj;
14109 intel_fb->obj->framebuffer_references++;
14110
14111 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14112 if (ret) {
14113 DRM_ERROR("framebuffer init failed %d\n", ret);
14114 return ret;
14115 }
14116
14117 return 0;
14118 }
14119
14120 static struct drm_framebuffer *
14121 intel_user_framebuffer_create(struct drm_device *dev,
14122 struct drm_file *filp,
14123 struct drm_mode_fb_cmd2 *mode_cmd)
14124 {
14125 struct drm_i915_gem_object *obj;
14126
14127 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14128 mode_cmd->handles[0]));
14129 if (&obj->base == NULL)
14130 return ERR_PTR(-ENOENT);
14131
14132 return intel_framebuffer_create(dev, mode_cmd, obj);
14133 }
14134
14135 #ifndef CONFIG_DRM_I915_FBDEV
14136 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14137 {
14138 }
14139 #endif
14140
14141 static const struct drm_mode_config_funcs intel_mode_funcs = {
14142 .fb_create = intel_user_framebuffer_create,
14143 .output_poll_changed = intel_fbdev_output_poll_changed,
14144 .atomic_check = intel_atomic_check,
14145 .atomic_commit = intel_atomic_commit,
14146 };
14147
14148 /* Set up chip specific display functions */
14149 static void intel_init_display(struct drm_device *dev)
14150 {
14151 struct drm_i915_private *dev_priv = dev->dev_private;
14152
14153 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14154 dev_priv->display.find_dpll = g4x_find_best_dpll;
14155 else if (IS_CHERRYVIEW(dev))
14156 dev_priv->display.find_dpll = chv_find_best_dpll;
14157 else if (IS_VALLEYVIEW(dev))
14158 dev_priv->display.find_dpll = vlv_find_best_dpll;
14159 else if (IS_PINEVIEW(dev))
14160 dev_priv->display.find_dpll = pnv_find_best_dpll;
14161 else
14162 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14163
14164 if (INTEL_INFO(dev)->gen >= 9) {
14165 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14166 dev_priv->display.get_initial_plane_config =
14167 skylake_get_initial_plane_config;
14168 dev_priv->display.crtc_compute_clock =
14169 haswell_crtc_compute_clock;
14170 dev_priv->display.crtc_enable = haswell_crtc_enable;
14171 dev_priv->display.crtc_disable = haswell_crtc_disable;
14172 dev_priv->display.off = ironlake_crtc_off;
14173 dev_priv->display.update_primary_plane =
14174 skylake_update_primary_plane;
14175 } else if (HAS_DDI(dev)) {
14176 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14177 dev_priv->display.get_initial_plane_config =
14178 ironlake_get_initial_plane_config;
14179 dev_priv->display.crtc_compute_clock =
14180 haswell_crtc_compute_clock;
14181 dev_priv->display.crtc_enable = haswell_crtc_enable;
14182 dev_priv->display.crtc_disable = haswell_crtc_disable;
14183 dev_priv->display.off = ironlake_crtc_off;
14184 dev_priv->display.update_primary_plane =
14185 ironlake_update_primary_plane;
14186 } else if (HAS_PCH_SPLIT(dev)) {
14187 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14188 dev_priv->display.get_initial_plane_config =
14189 ironlake_get_initial_plane_config;
14190 dev_priv->display.crtc_compute_clock =
14191 ironlake_crtc_compute_clock;
14192 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14193 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14194 dev_priv->display.off = ironlake_crtc_off;
14195 dev_priv->display.update_primary_plane =
14196 ironlake_update_primary_plane;
14197 } else if (IS_VALLEYVIEW(dev)) {
14198 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14199 dev_priv->display.get_initial_plane_config =
14200 i9xx_get_initial_plane_config;
14201 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14202 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14203 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14204 dev_priv->display.off = i9xx_crtc_off;
14205 dev_priv->display.update_primary_plane =
14206 i9xx_update_primary_plane;
14207 } else {
14208 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14209 dev_priv->display.get_initial_plane_config =
14210 i9xx_get_initial_plane_config;
14211 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14212 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14213 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14214 dev_priv->display.off = i9xx_crtc_off;
14215 dev_priv->display.update_primary_plane =
14216 i9xx_update_primary_plane;
14217 }
14218
14219 /* Returns the core display clock speed */
14220 if (IS_SKYLAKE(dev))
14221 dev_priv->display.get_display_clock_speed =
14222 skylake_get_display_clock_speed;
14223 else if (IS_BROADWELL(dev))
14224 dev_priv->display.get_display_clock_speed =
14225 broadwell_get_display_clock_speed;
14226 else if (IS_HASWELL(dev))
14227 dev_priv->display.get_display_clock_speed =
14228 haswell_get_display_clock_speed;
14229 else if (IS_VALLEYVIEW(dev))
14230 dev_priv->display.get_display_clock_speed =
14231 valleyview_get_display_clock_speed;
14232 else if (IS_GEN5(dev))
14233 dev_priv->display.get_display_clock_speed =
14234 ilk_get_display_clock_speed;
14235 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14236 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14237 dev_priv->display.get_display_clock_speed =
14238 i945_get_display_clock_speed;
14239 else if (IS_I915G(dev))
14240 dev_priv->display.get_display_clock_speed =
14241 i915_get_display_clock_speed;
14242 else if (IS_I945GM(dev) || IS_845G(dev))
14243 dev_priv->display.get_display_clock_speed =
14244 i9xx_misc_get_display_clock_speed;
14245 else if (IS_PINEVIEW(dev))
14246 dev_priv->display.get_display_clock_speed =
14247 pnv_get_display_clock_speed;
14248 else if (IS_I915GM(dev))
14249 dev_priv->display.get_display_clock_speed =
14250 i915gm_get_display_clock_speed;
14251 else if (IS_I865G(dev))
14252 dev_priv->display.get_display_clock_speed =
14253 i865_get_display_clock_speed;
14254 else if (IS_I85X(dev))
14255 dev_priv->display.get_display_clock_speed =
14256 i855_get_display_clock_speed;
14257 else /* 852, 830 */
14258 dev_priv->display.get_display_clock_speed =
14259 i830_get_display_clock_speed;
14260
14261 if (IS_GEN5(dev)) {
14262 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14263 } else if (IS_GEN6(dev)) {
14264 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14265 } else if (IS_IVYBRIDGE(dev)) {
14266 /* FIXME: detect B0+ stepping and use auto training */
14267 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14268 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14269 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14270 } else if (IS_VALLEYVIEW(dev)) {
14271 dev_priv->display.modeset_global_resources =
14272 valleyview_modeset_global_resources;
14273 } else if (IS_BROXTON(dev)) {
14274 dev_priv->display.modeset_global_resources =
14275 broxton_modeset_global_resources;
14276 }
14277
14278 switch (INTEL_INFO(dev)->gen) {
14279 case 2:
14280 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14281 break;
14282
14283 case 3:
14284 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14285 break;
14286
14287 case 4:
14288 case 5:
14289 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14290 break;
14291
14292 case 6:
14293 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14294 break;
14295 case 7:
14296 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14297 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14298 break;
14299 case 9:
14300 /* Drop through - unsupported since execlist only. */
14301 default:
14302 /* Default just returns -ENODEV to indicate unsupported */
14303 dev_priv->display.queue_flip = intel_default_queue_flip;
14304 }
14305
14306 intel_panel_init_backlight_funcs(dev);
14307
14308 mutex_init(&dev_priv->pps_mutex);
14309 }
14310
14311 /*
14312 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14313 * resume, or other times. This quirk makes sure that's the case for
14314 * affected systems.
14315 */
14316 static void quirk_pipea_force(struct drm_device *dev)
14317 {
14318 struct drm_i915_private *dev_priv = dev->dev_private;
14319
14320 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14321 DRM_INFO("applying pipe a force quirk\n");
14322 }
14323
14324 static void quirk_pipeb_force(struct drm_device *dev)
14325 {
14326 struct drm_i915_private *dev_priv = dev->dev_private;
14327
14328 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14329 DRM_INFO("applying pipe b force quirk\n");
14330 }
14331
14332 /*
14333 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14334 */
14335 static void quirk_ssc_force_disable(struct drm_device *dev)
14336 {
14337 struct drm_i915_private *dev_priv = dev->dev_private;
14338 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14339 DRM_INFO("applying lvds SSC disable quirk\n");
14340 }
14341
14342 /*
14343 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14344 * brightness value
14345 */
14346 static void quirk_invert_brightness(struct drm_device *dev)
14347 {
14348 struct drm_i915_private *dev_priv = dev->dev_private;
14349 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14350 DRM_INFO("applying inverted panel brightness quirk\n");
14351 }
14352
14353 /* Some VBT's incorrectly indicate no backlight is present */
14354 static void quirk_backlight_present(struct drm_device *dev)
14355 {
14356 struct drm_i915_private *dev_priv = dev->dev_private;
14357 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14358 DRM_INFO("applying backlight present quirk\n");
14359 }
14360
14361 struct intel_quirk {
14362 int device;
14363 int subsystem_vendor;
14364 int subsystem_device;
14365 void (*hook)(struct drm_device *dev);
14366 };
14367
14368 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14369 struct intel_dmi_quirk {
14370 void (*hook)(struct drm_device *dev);
14371 const struct dmi_system_id (*dmi_id_list)[];
14372 };
14373
14374 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14375 {
14376 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14377 return 1;
14378 }
14379
14380 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14381 {
14382 .dmi_id_list = &(const struct dmi_system_id[]) {
14383 {
14384 .callback = intel_dmi_reverse_brightness,
14385 .ident = "NCR Corporation",
14386 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14387 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14388 },
14389 },
14390 { } /* terminating entry */
14391 },
14392 .hook = quirk_invert_brightness,
14393 },
14394 };
14395
14396 static struct intel_quirk intel_quirks[] = {
14397 /* HP Mini needs pipe A force quirk (LP: #322104) */
14398 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
14399
14400 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14401 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14402
14403 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14404 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14405
14406 /* 830 needs to leave pipe A & dpll A up */
14407 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14408
14409 /* 830 needs to leave pipe B & dpll B up */
14410 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14411
14412 /* Lenovo U160 cannot use SSC on LVDS */
14413 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14414
14415 /* Sony Vaio Y cannot use SSC on LVDS */
14416 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14417
14418 /* Acer Aspire 5734Z must invert backlight brightness */
14419 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14420
14421 /* Acer/eMachines G725 */
14422 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14423
14424 /* Acer/eMachines e725 */
14425 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14426
14427 /* Acer/Packard Bell NCL20 */
14428 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14429
14430 /* Acer Aspire 4736Z */
14431 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14432
14433 /* Acer Aspire 5336 */
14434 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14435
14436 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14437 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14438
14439 /* Acer C720 Chromebook (Core i3 4005U) */
14440 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14441
14442 /* Apple Macbook 2,1 (Core 2 T7400) */
14443 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14444
14445 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14446 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14447
14448 /* HP Chromebook 14 (Celeron 2955U) */
14449 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14450
14451 /* Dell Chromebook 11 */
14452 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14453 };
14454
14455 static void intel_init_quirks(struct drm_device *dev)
14456 {
14457 struct pci_dev *d = dev->pdev;
14458 int i;
14459
14460 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14461 struct intel_quirk *q = &intel_quirks[i];
14462
14463 if (d->device == q->device &&
14464 (d->subsystem_vendor == q->subsystem_vendor ||
14465 q->subsystem_vendor == PCI_ANY_ID) &&
14466 (d->subsystem_device == q->subsystem_device ||
14467 q->subsystem_device == PCI_ANY_ID))
14468 q->hook(dev);
14469 }
14470 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14471 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14472 intel_dmi_quirks[i].hook(dev);
14473 }
14474 }
14475
14476 /* Disable the VGA plane that we never use */
14477 static void i915_disable_vga(struct drm_device *dev)
14478 {
14479 struct drm_i915_private *dev_priv = dev->dev_private;
14480 u8 sr1;
14481 u32 vga_reg = i915_vgacntrl_reg(dev);
14482
14483 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14484 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14485 outb(SR01, VGA_SR_INDEX);
14486 sr1 = inb(VGA_SR_DATA);
14487 outb(sr1 | 1<<5, VGA_SR_DATA);
14488 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14489 udelay(300);
14490
14491 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14492 POSTING_READ(vga_reg);
14493 }
14494
14495 void intel_modeset_init_hw(struct drm_device *dev)
14496 {
14497 intel_prepare_ddi(dev);
14498
14499 if (IS_VALLEYVIEW(dev))
14500 vlv_update_cdclk(dev);
14501
14502 intel_init_clock_gating(dev);
14503
14504 intel_enable_gt_powersave(dev);
14505 }
14506
14507 void intel_modeset_init(struct drm_device *dev)
14508 {
14509 struct drm_i915_private *dev_priv = dev->dev_private;
14510 int sprite, ret;
14511 enum pipe pipe;
14512 struct intel_crtc *crtc;
14513
14514 drm_mode_config_init(dev);
14515
14516 dev->mode_config.min_width = 0;
14517 dev->mode_config.min_height = 0;
14518
14519 dev->mode_config.preferred_depth = 24;
14520 dev->mode_config.prefer_shadow = 1;
14521
14522 dev->mode_config.allow_fb_modifiers = true;
14523
14524 dev->mode_config.funcs = &intel_mode_funcs;
14525
14526 intel_init_quirks(dev);
14527
14528 intel_init_pm(dev);
14529
14530 if (INTEL_INFO(dev)->num_pipes == 0)
14531 return;
14532
14533 intel_init_display(dev);
14534 intel_init_audio(dev);
14535
14536 if (IS_GEN2(dev)) {
14537 dev->mode_config.max_width = 2048;
14538 dev->mode_config.max_height = 2048;
14539 } else if (IS_GEN3(dev)) {
14540 dev->mode_config.max_width = 4096;
14541 dev->mode_config.max_height = 4096;
14542 } else {
14543 dev->mode_config.max_width = 8192;
14544 dev->mode_config.max_height = 8192;
14545 }
14546
14547 if (IS_845G(dev) || IS_I865G(dev)) {
14548 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14549 dev->mode_config.cursor_height = 1023;
14550 } else if (IS_GEN2(dev)) {
14551 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14552 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14553 } else {
14554 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14555 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14556 }
14557
14558 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14559
14560 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14561 INTEL_INFO(dev)->num_pipes,
14562 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14563
14564 for_each_pipe(dev_priv, pipe) {
14565 intel_crtc_init(dev, pipe);
14566 for_each_sprite(dev_priv, pipe, sprite) {
14567 ret = intel_plane_init(dev, pipe, sprite);
14568 if (ret)
14569 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14570 pipe_name(pipe), sprite_name(pipe, sprite), ret);
14571 }
14572 }
14573
14574 intel_init_dpio(dev);
14575
14576 intel_shared_dpll_init(dev);
14577
14578 /* Just disable it once at startup */
14579 i915_disable_vga(dev);
14580 intel_setup_outputs(dev);
14581
14582 /* Just in case the BIOS is doing something questionable. */
14583 intel_fbc_disable(dev);
14584
14585 drm_modeset_lock_all(dev);
14586 intel_modeset_setup_hw_state(dev, false);
14587 drm_modeset_unlock_all(dev);
14588
14589 for_each_intel_crtc(dev, crtc) {
14590 if (!crtc->active)
14591 continue;
14592
14593 /*
14594 * Note that reserving the BIOS fb up front prevents us
14595 * from stuffing other stolen allocations like the ring
14596 * on top. This prevents some ugliness at boot time, and
14597 * can even allow for smooth boot transitions if the BIOS
14598 * fb is large enough for the active pipe configuration.
14599 */
14600 if (dev_priv->display.get_initial_plane_config) {
14601 dev_priv->display.get_initial_plane_config(crtc,
14602 &crtc->plane_config);
14603 /*
14604 * If the fb is shared between multiple heads, we'll
14605 * just get the first one.
14606 */
14607 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14608 }
14609 }
14610 }
14611
14612 static void intel_enable_pipe_a(struct drm_device *dev)
14613 {
14614 struct intel_connector *connector;
14615 struct drm_connector *crt = NULL;
14616 struct intel_load_detect_pipe load_detect_temp;
14617 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14618
14619 /* We can't just switch on the pipe A, we need to set things up with a
14620 * proper mode and output configuration. As a gross hack, enable pipe A
14621 * by enabling the load detect pipe once. */
14622 for_each_intel_connector(dev, connector) {
14623 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14624 crt = &connector->base;
14625 break;
14626 }
14627 }
14628
14629 if (!crt)
14630 return;
14631
14632 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14633 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14634 }
14635
14636 static bool
14637 intel_check_plane_mapping(struct intel_crtc *crtc)
14638 {
14639 struct drm_device *dev = crtc->base.dev;
14640 struct drm_i915_private *dev_priv = dev->dev_private;
14641 u32 reg, val;
14642
14643 if (INTEL_INFO(dev)->num_pipes == 1)
14644 return true;
14645
14646 reg = DSPCNTR(!crtc->plane);
14647 val = I915_READ(reg);
14648
14649 if ((val & DISPLAY_PLANE_ENABLE) &&
14650 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14651 return false;
14652
14653 return true;
14654 }
14655
14656 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14657 {
14658 struct drm_device *dev = crtc->base.dev;
14659 struct drm_i915_private *dev_priv = dev->dev_private;
14660 u32 reg;
14661
14662 /* Clear any frame start delays used for debugging left by the BIOS */
14663 reg = PIPECONF(crtc->config->cpu_transcoder);
14664 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14665
14666 /* restore vblank interrupts to correct state */
14667 drm_crtc_vblank_reset(&crtc->base);
14668 if (crtc->active) {
14669 update_scanline_offset(crtc);
14670 drm_crtc_vblank_on(&crtc->base);
14671 }
14672
14673 /* We need to sanitize the plane -> pipe mapping first because this will
14674 * disable the crtc (and hence change the state) if it is wrong. Note
14675 * that gen4+ has a fixed plane -> pipe mapping. */
14676 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14677 struct intel_connector *connector;
14678 bool plane;
14679
14680 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14681 crtc->base.base.id);
14682
14683 /* Pipe has the wrong plane attached and the plane is active.
14684 * Temporarily change the plane mapping and disable everything
14685 * ... */
14686 plane = crtc->plane;
14687 crtc->plane = !plane;
14688 crtc->primary_enabled = true;
14689 dev_priv->display.crtc_disable(&crtc->base);
14690 crtc->plane = plane;
14691
14692 /* ... and break all links. */
14693 for_each_intel_connector(dev, connector) {
14694 if (connector->encoder->base.crtc != &crtc->base)
14695 continue;
14696
14697 connector->base.dpms = DRM_MODE_DPMS_OFF;
14698 connector->base.encoder = NULL;
14699 }
14700 /* multiple connectors may have the same encoder:
14701 * handle them and break crtc link separately */
14702 for_each_intel_connector(dev, connector)
14703 if (connector->encoder->base.crtc == &crtc->base) {
14704 connector->encoder->base.crtc = NULL;
14705 connector->encoder->connectors_active = false;
14706 }
14707
14708 WARN_ON(crtc->active);
14709 crtc->base.state->enable = false;
14710 crtc->base.enabled = false;
14711 }
14712
14713 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14714 crtc->pipe == PIPE_A && !crtc->active) {
14715 /* BIOS forgot to enable pipe A, this mostly happens after
14716 * resume. Force-enable the pipe to fix this, the update_dpms
14717 * call below we restore the pipe to the right state, but leave
14718 * the required bits on. */
14719 intel_enable_pipe_a(dev);
14720 }
14721
14722 /* Adjust the state of the output pipe according to whether we
14723 * have active connectors/encoders. */
14724 intel_crtc_update_dpms(&crtc->base);
14725
14726 if (crtc->active != crtc->base.state->enable) {
14727 struct intel_encoder *encoder;
14728
14729 /* This can happen either due to bugs in the get_hw_state
14730 * functions or because the pipe is force-enabled due to the
14731 * pipe A quirk. */
14732 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14733 crtc->base.base.id,
14734 crtc->base.state->enable ? "enabled" : "disabled",
14735 crtc->active ? "enabled" : "disabled");
14736
14737 crtc->base.state->enable = crtc->active;
14738 crtc->base.enabled = crtc->active;
14739
14740 /* Because we only establish the connector -> encoder ->
14741 * crtc links if something is active, this means the
14742 * crtc is now deactivated. Break the links. connector
14743 * -> encoder links are only establish when things are
14744 * actually up, hence no need to break them. */
14745 WARN_ON(crtc->active);
14746
14747 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14748 WARN_ON(encoder->connectors_active);
14749 encoder->base.crtc = NULL;
14750 }
14751 }
14752
14753 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14754 /*
14755 * We start out with underrun reporting disabled to avoid races.
14756 * For correct bookkeeping mark this on active crtcs.
14757 *
14758 * Also on gmch platforms we dont have any hardware bits to
14759 * disable the underrun reporting. Which means we need to start
14760 * out with underrun reporting disabled also on inactive pipes,
14761 * since otherwise we'll complain about the garbage we read when
14762 * e.g. coming up after runtime pm.
14763 *
14764 * No protection against concurrent access is required - at
14765 * worst a fifo underrun happens which also sets this to false.
14766 */
14767 crtc->cpu_fifo_underrun_disabled = true;
14768 crtc->pch_fifo_underrun_disabled = true;
14769 }
14770 }
14771
14772 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14773 {
14774 struct intel_connector *connector;
14775 struct drm_device *dev = encoder->base.dev;
14776
14777 /* We need to check both for a crtc link (meaning that the
14778 * encoder is active and trying to read from a pipe) and the
14779 * pipe itself being active. */
14780 bool has_active_crtc = encoder->base.crtc &&
14781 to_intel_crtc(encoder->base.crtc)->active;
14782
14783 if (encoder->connectors_active && !has_active_crtc) {
14784 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14785 encoder->base.base.id,
14786 encoder->base.name);
14787
14788 /* Connector is active, but has no active pipe. This is
14789 * fallout from our resume register restoring. Disable
14790 * the encoder manually again. */
14791 if (encoder->base.crtc) {
14792 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14793 encoder->base.base.id,
14794 encoder->base.name);
14795 encoder->disable(encoder);
14796 if (encoder->post_disable)
14797 encoder->post_disable(encoder);
14798 }
14799 encoder->base.crtc = NULL;
14800 encoder->connectors_active = false;
14801
14802 /* Inconsistent output/port/pipe state happens presumably due to
14803 * a bug in one of the get_hw_state functions. Or someplace else
14804 * in our code, like the register restore mess on resume. Clamp
14805 * things to off as a safer default. */
14806 for_each_intel_connector(dev, connector) {
14807 if (connector->encoder != encoder)
14808 continue;
14809 connector->base.dpms = DRM_MODE_DPMS_OFF;
14810 connector->base.encoder = NULL;
14811 }
14812 }
14813 /* Enabled encoders without active connectors will be fixed in
14814 * the crtc fixup. */
14815 }
14816
14817 void i915_redisable_vga_power_on(struct drm_device *dev)
14818 {
14819 struct drm_i915_private *dev_priv = dev->dev_private;
14820 u32 vga_reg = i915_vgacntrl_reg(dev);
14821
14822 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14823 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14824 i915_disable_vga(dev);
14825 }
14826 }
14827
14828 void i915_redisable_vga(struct drm_device *dev)
14829 {
14830 struct drm_i915_private *dev_priv = dev->dev_private;
14831
14832 /* This function can be called both from intel_modeset_setup_hw_state or
14833 * at a very early point in our resume sequence, where the power well
14834 * structures are not yet restored. Since this function is at a very
14835 * paranoid "someone might have enabled VGA while we were not looking"
14836 * level, just check if the power well is enabled instead of trying to
14837 * follow the "don't touch the power well if we don't need it" policy
14838 * the rest of the driver uses. */
14839 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14840 return;
14841
14842 i915_redisable_vga_power_on(dev);
14843 }
14844
14845 static bool primary_get_hw_state(struct intel_crtc *crtc)
14846 {
14847 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14848
14849 if (!crtc->active)
14850 return false;
14851
14852 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14853 }
14854
14855 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14856 {
14857 struct drm_i915_private *dev_priv = dev->dev_private;
14858 enum pipe pipe;
14859 struct intel_crtc *crtc;
14860 struct intel_encoder *encoder;
14861 struct intel_connector *connector;
14862 int i;
14863
14864 for_each_intel_crtc(dev, crtc) {
14865 memset(crtc->config, 0, sizeof(*crtc->config));
14866
14867 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
14868
14869 crtc->active = dev_priv->display.get_pipe_config(crtc,
14870 crtc->config);
14871
14872 crtc->base.state->enable = crtc->active;
14873 crtc->base.enabled = crtc->active;
14874 crtc->primary_enabled = primary_get_hw_state(crtc);
14875
14876 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
14877 crtc->base.base.id,
14878 crtc->active ? "enabled" : "disabled");
14879 }
14880
14881 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14882 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14883
14884 pll->on = pll->get_hw_state(dev_priv, pll,
14885 &pll->config.hw_state);
14886 pll->active = 0;
14887 pll->config.crtc_mask = 0;
14888 for_each_intel_crtc(dev, crtc) {
14889 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
14890 pll->active++;
14891 pll->config.crtc_mask |= 1 << crtc->pipe;
14892 }
14893 }
14894
14895 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
14896 pll->name, pll->config.crtc_mask, pll->on);
14897
14898 if (pll->config.crtc_mask)
14899 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
14900 }
14901
14902 for_each_intel_encoder(dev, encoder) {
14903 pipe = 0;
14904
14905 if (encoder->get_hw_state(encoder, &pipe)) {
14906 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14907 encoder->base.crtc = &crtc->base;
14908 encoder->get_config(encoder, crtc->config);
14909 } else {
14910 encoder->base.crtc = NULL;
14911 }
14912
14913 encoder->connectors_active = false;
14914 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
14915 encoder->base.base.id,
14916 encoder->base.name,
14917 encoder->base.crtc ? "enabled" : "disabled",
14918 pipe_name(pipe));
14919 }
14920
14921 for_each_intel_connector(dev, connector) {
14922 if (connector->get_hw_state(connector)) {
14923 connector->base.dpms = DRM_MODE_DPMS_ON;
14924 connector->encoder->connectors_active = true;
14925 connector->base.encoder = &connector->encoder->base;
14926 } else {
14927 connector->base.dpms = DRM_MODE_DPMS_OFF;
14928 connector->base.encoder = NULL;
14929 }
14930 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
14931 connector->base.base.id,
14932 connector->base.name,
14933 connector->base.encoder ? "enabled" : "disabled");
14934 }
14935 }
14936
14937 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
14938 * and i915 state tracking structures. */
14939 void intel_modeset_setup_hw_state(struct drm_device *dev,
14940 bool force_restore)
14941 {
14942 struct drm_i915_private *dev_priv = dev->dev_private;
14943 enum pipe pipe;
14944 struct intel_crtc *crtc;
14945 struct intel_encoder *encoder;
14946 int i;
14947
14948 intel_modeset_readout_hw_state(dev);
14949
14950 /*
14951 * Now that we have the config, copy it to each CRTC struct
14952 * Note that this could go away if we move to using crtc_config
14953 * checking everywhere.
14954 */
14955 for_each_intel_crtc(dev, crtc) {
14956 if (crtc->active && i915.fastboot) {
14957 intel_mode_from_pipe_config(&crtc->base.mode,
14958 crtc->config);
14959 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
14960 crtc->base.base.id);
14961 drm_mode_debug_printmodeline(&crtc->base.mode);
14962 }
14963 }
14964
14965 /* HW state is read out, now we need to sanitize this mess. */
14966 for_each_intel_encoder(dev, encoder) {
14967 intel_sanitize_encoder(encoder);
14968 }
14969
14970 for_each_pipe(dev_priv, pipe) {
14971 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
14972 intel_sanitize_crtc(crtc);
14973 intel_dump_pipe_config(crtc, crtc->config,
14974 "[setup_hw_state]");
14975 }
14976
14977 intel_modeset_update_connector_atomic_state(dev);
14978
14979 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14980 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14981
14982 if (!pll->on || pll->active)
14983 continue;
14984
14985 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
14986
14987 pll->disable(dev_priv, pll);
14988 pll->on = false;
14989 }
14990
14991 if (IS_GEN9(dev))
14992 skl_wm_get_hw_state(dev);
14993 else if (HAS_PCH_SPLIT(dev))
14994 ilk_wm_get_hw_state(dev);
14995
14996 if (force_restore) {
14997 i915_redisable_vga(dev);
14998
14999 /*
15000 * We need to use raw interfaces for restoring state to avoid
15001 * checking (bogus) intermediate states.
15002 */
15003 for_each_pipe(dev_priv, pipe) {
15004 struct drm_crtc *crtc =
15005 dev_priv->pipe_to_crtc_mapping[pipe];
15006
15007 intel_crtc_restore_mode(crtc);
15008 }
15009 } else {
15010 intel_modeset_update_staged_output_state(dev);
15011 }
15012
15013 intel_modeset_check_state(dev);
15014 }
15015
15016 void intel_modeset_gem_init(struct drm_device *dev)
15017 {
15018 struct drm_i915_private *dev_priv = dev->dev_private;
15019 struct drm_crtc *c;
15020 struct drm_i915_gem_object *obj;
15021 int ret;
15022
15023 mutex_lock(&dev->struct_mutex);
15024 intel_init_gt_powersave(dev);
15025 mutex_unlock(&dev->struct_mutex);
15026
15027 /*
15028 * There may be no VBT; and if the BIOS enabled SSC we can
15029 * just keep using it to avoid unnecessary flicker. Whereas if the
15030 * BIOS isn't using it, don't assume it will work even if the VBT
15031 * indicates as much.
15032 */
15033 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15034 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15035 DREF_SSC1_ENABLE);
15036
15037 intel_modeset_init_hw(dev);
15038
15039 intel_setup_overlay(dev);
15040
15041 /*
15042 * Make sure any fbs we allocated at startup are properly
15043 * pinned & fenced. When we do the allocation it's too early
15044 * for this.
15045 */
15046 for_each_crtc(dev, c) {
15047 obj = intel_fb_obj(c->primary->fb);
15048 if (obj == NULL)
15049 continue;
15050
15051 mutex_lock(&dev->struct_mutex);
15052 ret = intel_pin_and_fence_fb_obj(c->primary,
15053 c->primary->fb,
15054 c->primary->state,
15055 NULL);
15056 mutex_unlock(&dev->struct_mutex);
15057 if (ret) {
15058 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15059 to_intel_crtc(c)->pipe);
15060 drm_framebuffer_unreference(c->primary->fb);
15061 c->primary->fb = NULL;
15062 update_state_fb(c->primary);
15063 }
15064 }
15065
15066 intel_backlight_register(dev);
15067 }
15068
15069 void intel_connector_unregister(struct intel_connector *intel_connector)
15070 {
15071 struct drm_connector *connector = &intel_connector->base;
15072
15073 intel_panel_destroy_backlight(connector);
15074 drm_connector_unregister(connector);
15075 }
15076
15077 void intel_modeset_cleanup(struct drm_device *dev)
15078 {
15079 struct drm_i915_private *dev_priv = dev->dev_private;
15080 struct drm_connector *connector;
15081
15082 intel_disable_gt_powersave(dev);
15083
15084 intel_backlight_unregister(dev);
15085
15086 /*
15087 * Interrupts and polling as the first thing to avoid creating havoc.
15088 * Too much stuff here (turning of connectors, ...) would
15089 * experience fancy races otherwise.
15090 */
15091 intel_irq_uninstall(dev_priv);
15092
15093 /*
15094 * Due to the hpd irq storm handling the hotplug work can re-arm the
15095 * poll handlers. Hence disable polling after hpd handling is shut down.
15096 */
15097 drm_kms_helper_poll_fini(dev);
15098
15099 mutex_lock(&dev->struct_mutex);
15100
15101 intel_unregister_dsm_handler();
15102
15103 intel_fbc_disable(dev);
15104
15105 mutex_unlock(&dev->struct_mutex);
15106
15107 /* flush any delayed tasks or pending work */
15108 flush_scheduled_work();
15109
15110 /* destroy the backlight and sysfs files before encoders/connectors */
15111 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15112 struct intel_connector *intel_connector;
15113
15114 intel_connector = to_intel_connector(connector);
15115 intel_connector->unregister(intel_connector);
15116 }
15117
15118 drm_mode_config_cleanup(dev);
15119
15120 intel_cleanup_overlay(dev);
15121
15122 mutex_lock(&dev->struct_mutex);
15123 intel_cleanup_gt_powersave(dev);
15124 mutex_unlock(&dev->struct_mutex);
15125 }
15126
15127 /*
15128 * Return which encoder is currently attached for connector.
15129 */
15130 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15131 {
15132 return &intel_attached_encoder(connector)->base;
15133 }
15134
15135 void intel_connector_attach_encoder(struct intel_connector *connector,
15136 struct intel_encoder *encoder)
15137 {
15138 connector->encoder = encoder;
15139 drm_mode_connector_attach_encoder(&connector->base,
15140 &encoder->base);
15141 }
15142
15143 /*
15144 * set vga decode state - true == enable VGA decode
15145 */
15146 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15147 {
15148 struct drm_i915_private *dev_priv = dev->dev_private;
15149 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15150 u16 gmch_ctrl;
15151
15152 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15153 DRM_ERROR("failed to read control word\n");
15154 return -EIO;
15155 }
15156
15157 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15158 return 0;
15159
15160 if (state)
15161 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15162 else
15163 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15164
15165 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15166 DRM_ERROR("failed to write control word\n");
15167 return -EIO;
15168 }
15169
15170 return 0;
15171 }
15172
15173 struct intel_display_error_state {
15174
15175 u32 power_well_driver;
15176
15177 int num_transcoders;
15178
15179 struct intel_cursor_error_state {
15180 u32 control;
15181 u32 position;
15182 u32 base;
15183 u32 size;
15184 } cursor[I915_MAX_PIPES];
15185
15186 struct intel_pipe_error_state {
15187 bool power_domain_on;
15188 u32 source;
15189 u32 stat;
15190 } pipe[I915_MAX_PIPES];
15191
15192 struct intel_plane_error_state {
15193 u32 control;
15194 u32 stride;
15195 u32 size;
15196 u32 pos;
15197 u32 addr;
15198 u32 surface;
15199 u32 tile_offset;
15200 } plane[I915_MAX_PIPES];
15201
15202 struct intel_transcoder_error_state {
15203 bool power_domain_on;
15204 enum transcoder cpu_transcoder;
15205
15206 u32 conf;
15207
15208 u32 htotal;
15209 u32 hblank;
15210 u32 hsync;
15211 u32 vtotal;
15212 u32 vblank;
15213 u32 vsync;
15214 } transcoder[4];
15215 };
15216
15217 struct intel_display_error_state *
15218 intel_display_capture_error_state(struct drm_device *dev)
15219 {
15220 struct drm_i915_private *dev_priv = dev->dev_private;
15221 struct intel_display_error_state *error;
15222 int transcoders[] = {
15223 TRANSCODER_A,
15224 TRANSCODER_B,
15225 TRANSCODER_C,
15226 TRANSCODER_EDP,
15227 };
15228 int i;
15229
15230 if (INTEL_INFO(dev)->num_pipes == 0)
15231 return NULL;
15232
15233 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15234 if (error == NULL)
15235 return NULL;
15236
15237 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15238 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15239
15240 for_each_pipe(dev_priv, i) {
15241 error->pipe[i].power_domain_on =
15242 __intel_display_power_is_enabled(dev_priv,
15243 POWER_DOMAIN_PIPE(i));
15244 if (!error->pipe[i].power_domain_on)
15245 continue;
15246
15247 error->cursor[i].control = I915_READ(CURCNTR(i));
15248 error->cursor[i].position = I915_READ(CURPOS(i));
15249 error->cursor[i].base = I915_READ(CURBASE(i));
15250
15251 error->plane[i].control = I915_READ(DSPCNTR(i));
15252 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15253 if (INTEL_INFO(dev)->gen <= 3) {
15254 error->plane[i].size = I915_READ(DSPSIZE(i));
15255 error->plane[i].pos = I915_READ(DSPPOS(i));
15256 }
15257 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15258 error->plane[i].addr = I915_READ(DSPADDR(i));
15259 if (INTEL_INFO(dev)->gen >= 4) {
15260 error->plane[i].surface = I915_READ(DSPSURF(i));
15261 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15262 }
15263
15264 error->pipe[i].source = I915_READ(PIPESRC(i));
15265
15266 if (HAS_GMCH_DISPLAY(dev))
15267 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15268 }
15269
15270 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15271 if (HAS_DDI(dev_priv->dev))
15272 error->num_transcoders++; /* Account for eDP. */
15273
15274 for (i = 0; i < error->num_transcoders; i++) {
15275 enum transcoder cpu_transcoder = transcoders[i];
15276
15277 error->transcoder[i].power_domain_on =
15278 __intel_display_power_is_enabled(dev_priv,
15279 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15280 if (!error->transcoder[i].power_domain_on)
15281 continue;
15282
15283 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15284
15285 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15286 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15287 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15288 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15289 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15290 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15291 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15292 }
15293
15294 return error;
15295 }
15296
15297 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15298
15299 void
15300 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15301 struct drm_device *dev,
15302 struct intel_display_error_state *error)
15303 {
15304 struct drm_i915_private *dev_priv = dev->dev_private;
15305 int i;
15306
15307 if (!error)
15308 return;
15309
15310 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15311 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15312 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15313 error->power_well_driver);
15314 for_each_pipe(dev_priv, i) {
15315 err_printf(m, "Pipe [%d]:\n", i);
15316 err_printf(m, " Power: %s\n",
15317 error->pipe[i].power_domain_on ? "on" : "off");
15318 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15319 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15320
15321 err_printf(m, "Plane [%d]:\n", i);
15322 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15323 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15324 if (INTEL_INFO(dev)->gen <= 3) {
15325 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15326 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15327 }
15328 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15329 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15330 if (INTEL_INFO(dev)->gen >= 4) {
15331 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15332 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15333 }
15334
15335 err_printf(m, "Cursor [%d]:\n", i);
15336 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15337 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15338 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15339 }
15340
15341 for (i = 0; i < error->num_transcoders; i++) {
15342 err_printf(m, "CPU transcoder: %c\n",
15343 transcoder_name(error->transcoder[i].cpu_transcoder));
15344 err_printf(m, " Power: %s\n",
15345 error->transcoder[i].power_domain_on ? "on" : "off");
15346 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15347 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15348 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15349 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15350 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15351 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15352 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15353 }
15354 }
15355
15356 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15357 {
15358 struct intel_crtc *crtc;
15359
15360 for_each_intel_crtc(dev, crtc) {
15361 struct intel_unpin_work *work;
15362
15363 spin_lock_irq(&dev->event_lock);
15364
15365 work = crtc->unpin_work;
15366
15367 if (work && work->event &&
15368 work->event->base.file_priv == file) {
15369 kfree(work->event);
15370 work->event = NULL;
15371 }
15372
15373 spin_unlock_irq(&dev->event_lock);
15374 }
15375 }
This page took 0.347119 seconds and 6 git commands to generate.