drm/i915: Avoid TP3 on CHV
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int link_bw;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { DP_LINK_BW_1_62,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { DP_LINK_BW_2_7,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int skl_rates[] = { 162000, 216000, 270000,
95 324000, 432000, 540000 };
96 static const int default_rates[] = { 162000, 270000, 540000 };
97
98 /**
99 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
100 * @intel_dp: DP struct
101 *
102 * If a CPU or PCH DP output is attached to an eDP panel, this function
103 * will return true, and false otherwise.
104 */
105 static bool is_edp(struct intel_dp *intel_dp)
106 {
107 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
108
109 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
110 }
111
112 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
113 {
114 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
115
116 return intel_dig_port->base.base.dev;
117 }
118
119 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
120 {
121 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
122 }
123
124 static void intel_dp_link_down(struct intel_dp *intel_dp);
125 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
126 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
127 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
128 static void vlv_steal_power_sequencer(struct drm_device *dev,
129 enum pipe pipe);
130
131 static int
132 intel_dp_max_link_bw(struct intel_dp *intel_dp)
133 {
134 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
135
136 switch (max_link_bw) {
137 case DP_LINK_BW_1_62:
138 case DP_LINK_BW_2_7:
139 case DP_LINK_BW_5_4:
140 break;
141 default:
142 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
143 max_link_bw);
144 max_link_bw = DP_LINK_BW_1_62;
145 break;
146 }
147 return max_link_bw;
148 }
149
150 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
151 {
152 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
153 struct drm_device *dev = intel_dig_port->base.base.dev;
154 u8 source_max, sink_max;
155
156 source_max = 4;
157 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
158 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
159 source_max = 2;
160
161 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
162
163 return min(source_max, sink_max);
164 }
165
166 /*
167 * The units on the numbers in the next two are... bizarre. Examples will
168 * make it clearer; this one parallels an example in the eDP spec.
169 *
170 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
171 *
172 * 270000 * 1 * 8 / 10 == 216000
173 *
174 * The actual data capacity of that configuration is 2.16Gbit/s, so the
175 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
176 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
177 * 119000. At 18bpp that's 2142000 kilobits per second.
178 *
179 * Thus the strange-looking division by 10 in intel_dp_link_required, to
180 * get the result in decakilobits instead of kilobits.
181 */
182
183 static int
184 intel_dp_link_required(int pixel_clock, int bpp)
185 {
186 return (pixel_clock * bpp + 9) / 10;
187 }
188
189 static int
190 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
191 {
192 return (max_link_clock * max_lanes * 8) / 10;
193 }
194
195 static enum drm_mode_status
196 intel_dp_mode_valid(struct drm_connector *connector,
197 struct drm_display_mode *mode)
198 {
199 struct intel_dp *intel_dp = intel_attached_dp(connector);
200 struct intel_connector *intel_connector = to_intel_connector(connector);
201 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
202 int target_clock = mode->clock;
203 int max_rate, mode_rate, max_lanes, max_link_clock;
204
205 if (is_edp(intel_dp) && fixed_mode) {
206 if (mode->hdisplay > fixed_mode->hdisplay)
207 return MODE_PANEL;
208
209 if (mode->vdisplay > fixed_mode->vdisplay)
210 return MODE_PANEL;
211
212 target_clock = fixed_mode->clock;
213 }
214
215 max_link_clock = intel_dp_max_link_rate(intel_dp);
216 max_lanes = intel_dp_max_lane_count(intel_dp);
217
218 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
219 mode_rate = intel_dp_link_required(target_clock, 18);
220
221 if (mode_rate > max_rate)
222 return MODE_CLOCK_HIGH;
223
224 if (mode->clock < 10000)
225 return MODE_CLOCK_LOW;
226
227 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
228 return MODE_H_ILLEGAL;
229
230 return MODE_OK;
231 }
232
233 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
234 {
235 int i;
236 uint32_t v = 0;
237
238 if (src_bytes > 4)
239 src_bytes = 4;
240 for (i = 0; i < src_bytes; i++)
241 v |= ((uint32_t) src[i]) << ((3-i) * 8);
242 return v;
243 }
244
245 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
246 {
247 int i;
248 if (dst_bytes > 4)
249 dst_bytes = 4;
250 for (i = 0; i < dst_bytes; i++)
251 dst[i] = src >> ((3-i) * 8);
252 }
253
254 /* hrawclock is 1/4 the FSB frequency */
255 static int
256 intel_hrawclk(struct drm_device *dev)
257 {
258 struct drm_i915_private *dev_priv = dev->dev_private;
259 uint32_t clkcfg;
260
261 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
262 if (IS_VALLEYVIEW(dev))
263 return 200;
264
265 clkcfg = I915_READ(CLKCFG);
266 switch (clkcfg & CLKCFG_FSB_MASK) {
267 case CLKCFG_FSB_400:
268 return 100;
269 case CLKCFG_FSB_533:
270 return 133;
271 case CLKCFG_FSB_667:
272 return 166;
273 case CLKCFG_FSB_800:
274 return 200;
275 case CLKCFG_FSB_1067:
276 return 266;
277 case CLKCFG_FSB_1333:
278 return 333;
279 /* these two are just a guess; one of them might be right */
280 case CLKCFG_FSB_1600:
281 case CLKCFG_FSB_1600_ALT:
282 return 400;
283 default:
284 return 133;
285 }
286 }
287
288 static void
289 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
290 struct intel_dp *intel_dp);
291 static void
292 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
293 struct intel_dp *intel_dp);
294
295 static void pps_lock(struct intel_dp *intel_dp)
296 {
297 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
298 struct intel_encoder *encoder = &intel_dig_port->base;
299 struct drm_device *dev = encoder->base.dev;
300 struct drm_i915_private *dev_priv = dev->dev_private;
301 enum intel_display_power_domain power_domain;
302
303 /*
304 * See vlv_power_sequencer_reset() why we need
305 * a power domain reference here.
306 */
307 power_domain = intel_display_port_power_domain(encoder);
308 intel_display_power_get(dev_priv, power_domain);
309
310 mutex_lock(&dev_priv->pps_mutex);
311 }
312
313 static void pps_unlock(struct intel_dp *intel_dp)
314 {
315 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
316 struct intel_encoder *encoder = &intel_dig_port->base;
317 struct drm_device *dev = encoder->base.dev;
318 struct drm_i915_private *dev_priv = dev->dev_private;
319 enum intel_display_power_domain power_domain;
320
321 mutex_unlock(&dev_priv->pps_mutex);
322
323 power_domain = intel_display_port_power_domain(encoder);
324 intel_display_power_put(dev_priv, power_domain);
325 }
326
327 static void
328 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
329 {
330 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
331 struct drm_device *dev = intel_dig_port->base.base.dev;
332 struct drm_i915_private *dev_priv = dev->dev_private;
333 enum pipe pipe = intel_dp->pps_pipe;
334 bool pll_enabled;
335 uint32_t DP;
336
337 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
338 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
339 pipe_name(pipe), port_name(intel_dig_port->port)))
340 return;
341
342 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
343 pipe_name(pipe), port_name(intel_dig_port->port));
344
345 /* Preserve the BIOS-computed detected bit. This is
346 * supposed to be read-only.
347 */
348 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
349 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
350 DP |= DP_PORT_WIDTH(1);
351 DP |= DP_LINK_TRAIN_PAT_1;
352
353 if (IS_CHERRYVIEW(dev))
354 DP |= DP_PIPE_SELECT_CHV(pipe);
355 else if (pipe == PIPE_B)
356 DP |= DP_PIPEB_SELECT;
357
358 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
359
360 /*
361 * The DPLL for the pipe must be enabled for this to work.
362 * So enable temporarily it if it's not already enabled.
363 */
364 if (!pll_enabled)
365 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
366 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
367
368 /*
369 * Similar magic as in intel_dp_enable_port().
370 * We _must_ do this port enable + disable trick
371 * to make this power seqeuencer lock onto the port.
372 * Otherwise even VDD force bit won't work.
373 */
374 I915_WRITE(intel_dp->output_reg, DP);
375 POSTING_READ(intel_dp->output_reg);
376
377 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
378 POSTING_READ(intel_dp->output_reg);
379
380 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
381 POSTING_READ(intel_dp->output_reg);
382
383 if (!pll_enabled)
384 vlv_force_pll_off(dev, pipe);
385 }
386
387 static enum pipe
388 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
389 {
390 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
391 struct drm_device *dev = intel_dig_port->base.base.dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 struct intel_encoder *encoder;
394 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
395 enum pipe pipe;
396
397 lockdep_assert_held(&dev_priv->pps_mutex);
398
399 /* We should never land here with regular DP ports */
400 WARN_ON(!is_edp(intel_dp));
401
402 if (intel_dp->pps_pipe != INVALID_PIPE)
403 return intel_dp->pps_pipe;
404
405 /*
406 * We don't have power sequencer currently.
407 * Pick one that's not used by other ports.
408 */
409 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
410 base.head) {
411 struct intel_dp *tmp;
412
413 if (encoder->type != INTEL_OUTPUT_EDP)
414 continue;
415
416 tmp = enc_to_intel_dp(&encoder->base);
417
418 if (tmp->pps_pipe != INVALID_PIPE)
419 pipes &= ~(1 << tmp->pps_pipe);
420 }
421
422 /*
423 * Didn't find one. This should not happen since there
424 * are two power sequencers and up to two eDP ports.
425 */
426 if (WARN_ON(pipes == 0))
427 pipe = PIPE_A;
428 else
429 pipe = ffs(pipes) - 1;
430
431 vlv_steal_power_sequencer(dev, pipe);
432 intel_dp->pps_pipe = pipe;
433
434 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
435 pipe_name(intel_dp->pps_pipe),
436 port_name(intel_dig_port->port));
437
438 /* init power sequencer on this pipe and port */
439 intel_dp_init_panel_power_sequencer(dev, intel_dp);
440 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
441
442 /*
443 * Even vdd force doesn't work until we've made
444 * the power sequencer lock in on the port.
445 */
446 vlv_power_sequencer_kick(intel_dp);
447
448 return intel_dp->pps_pipe;
449 }
450
451 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
452 enum pipe pipe);
453
454 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
455 enum pipe pipe)
456 {
457 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
458 }
459
460 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
461 enum pipe pipe)
462 {
463 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
464 }
465
466 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
467 enum pipe pipe)
468 {
469 return true;
470 }
471
472 static enum pipe
473 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
474 enum port port,
475 vlv_pipe_check pipe_check)
476 {
477 enum pipe pipe;
478
479 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
480 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
481 PANEL_PORT_SELECT_MASK;
482
483 if (port_sel != PANEL_PORT_SELECT_VLV(port))
484 continue;
485
486 if (!pipe_check(dev_priv, pipe))
487 continue;
488
489 return pipe;
490 }
491
492 return INVALID_PIPE;
493 }
494
495 static void
496 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
497 {
498 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
499 struct drm_device *dev = intel_dig_port->base.base.dev;
500 struct drm_i915_private *dev_priv = dev->dev_private;
501 enum port port = intel_dig_port->port;
502
503 lockdep_assert_held(&dev_priv->pps_mutex);
504
505 /* try to find a pipe with this port selected */
506 /* first pick one where the panel is on */
507 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
508 vlv_pipe_has_pp_on);
509 /* didn't find one? pick one where vdd is on */
510 if (intel_dp->pps_pipe == INVALID_PIPE)
511 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
512 vlv_pipe_has_vdd_on);
513 /* didn't find one? pick one with just the correct port */
514 if (intel_dp->pps_pipe == INVALID_PIPE)
515 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
516 vlv_pipe_any);
517
518 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
519 if (intel_dp->pps_pipe == INVALID_PIPE) {
520 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
521 port_name(port));
522 return;
523 }
524
525 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
526 port_name(port), pipe_name(intel_dp->pps_pipe));
527
528 intel_dp_init_panel_power_sequencer(dev, intel_dp);
529 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
530 }
531
532 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
533 {
534 struct drm_device *dev = dev_priv->dev;
535 struct intel_encoder *encoder;
536
537 if (WARN_ON(!IS_VALLEYVIEW(dev)))
538 return;
539
540 /*
541 * We can't grab pps_mutex here due to deadlock with power_domain
542 * mutex when power_domain functions are called while holding pps_mutex.
543 * That also means that in order to use pps_pipe the code needs to
544 * hold both a power domain reference and pps_mutex, and the power domain
545 * reference get/put must be done while _not_ holding pps_mutex.
546 * pps_{lock,unlock}() do these steps in the correct order, so one
547 * should use them always.
548 */
549
550 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
551 struct intel_dp *intel_dp;
552
553 if (encoder->type != INTEL_OUTPUT_EDP)
554 continue;
555
556 intel_dp = enc_to_intel_dp(&encoder->base);
557 intel_dp->pps_pipe = INVALID_PIPE;
558 }
559 }
560
561 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
562 {
563 struct drm_device *dev = intel_dp_to_dev(intel_dp);
564
565 if (HAS_PCH_SPLIT(dev))
566 return PCH_PP_CONTROL;
567 else
568 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
569 }
570
571 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
572 {
573 struct drm_device *dev = intel_dp_to_dev(intel_dp);
574
575 if (HAS_PCH_SPLIT(dev))
576 return PCH_PP_STATUS;
577 else
578 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
579 }
580
581 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
582 This function only applicable when panel PM state is not to be tracked */
583 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
584 void *unused)
585 {
586 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
587 edp_notifier);
588 struct drm_device *dev = intel_dp_to_dev(intel_dp);
589 struct drm_i915_private *dev_priv = dev->dev_private;
590 u32 pp_div;
591 u32 pp_ctrl_reg, pp_div_reg;
592
593 if (!is_edp(intel_dp) || code != SYS_RESTART)
594 return 0;
595
596 pps_lock(intel_dp);
597
598 if (IS_VALLEYVIEW(dev)) {
599 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
600
601 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
602 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
603 pp_div = I915_READ(pp_div_reg);
604 pp_div &= PP_REFERENCE_DIVIDER_MASK;
605
606 /* 0x1F write to PP_DIV_REG sets max cycle delay */
607 I915_WRITE(pp_div_reg, pp_div | 0x1F);
608 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
609 msleep(intel_dp->panel_power_cycle_delay);
610 }
611
612 pps_unlock(intel_dp);
613
614 return 0;
615 }
616
617 static bool edp_have_panel_power(struct intel_dp *intel_dp)
618 {
619 struct drm_device *dev = intel_dp_to_dev(intel_dp);
620 struct drm_i915_private *dev_priv = dev->dev_private;
621
622 lockdep_assert_held(&dev_priv->pps_mutex);
623
624 if (IS_VALLEYVIEW(dev) &&
625 intel_dp->pps_pipe == INVALID_PIPE)
626 return false;
627
628 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
629 }
630
631 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
632 {
633 struct drm_device *dev = intel_dp_to_dev(intel_dp);
634 struct drm_i915_private *dev_priv = dev->dev_private;
635
636 lockdep_assert_held(&dev_priv->pps_mutex);
637
638 if (IS_VALLEYVIEW(dev) &&
639 intel_dp->pps_pipe == INVALID_PIPE)
640 return false;
641
642 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
643 }
644
645 static void
646 intel_dp_check_edp(struct intel_dp *intel_dp)
647 {
648 struct drm_device *dev = intel_dp_to_dev(intel_dp);
649 struct drm_i915_private *dev_priv = dev->dev_private;
650
651 if (!is_edp(intel_dp))
652 return;
653
654 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
655 WARN(1, "eDP powered off while attempting aux channel communication.\n");
656 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
657 I915_READ(_pp_stat_reg(intel_dp)),
658 I915_READ(_pp_ctrl_reg(intel_dp)));
659 }
660 }
661
662 static uint32_t
663 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
664 {
665 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
666 struct drm_device *dev = intel_dig_port->base.base.dev;
667 struct drm_i915_private *dev_priv = dev->dev_private;
668 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
669 uint32_t status;
670 bool done;
671
672 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
673 if (has_aux_irq)
674 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
675 msecs_to_jiffies_timeout(10));
676 else
677 done = wait_for_atomic(C, 10) == 0;
678 if (!done)
679 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
680 has_aux_irq);
681 #undef C
682
683 return status;
684 }
685
686 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
687 {
688 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
689 struct drm_device *dev = intel_dig_port->base.base.dev;
690
691 /*
692 * The clock divider is based off the hrawclk, and would like to run at
693 * 2MHz. So, take the hrawclk value and divide by 2 and use that
694 */
695 return index ? 0 : intel_hrawclk(dev) / 2;
696 }
697
698 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
699 {
700 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
701 struct drm_device *dev = intel_dig_port->base.base.dev;
702 struct drm_i915_private *dev_priv = dev->dev_private;
703
704 if (index)
705 return 0;
706
707 if (intel_dig_port->port == PORT_A) {
708 return DIV_ROUND_UP(dev_priv->display.get_display_clock_speed(dev), 2000);
709 } else {
710 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
711 }
712 }
713
714 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
715 {
716 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
717 struct drm_device *dev = intel_dig_port->base.base.dev;
718 struct drm_i915_private *dev_priv = dev->dev_private;
719
720 if (intel_dig_port->port == PORT_A) {
721 if (index)
722 return 0;
723 return DIV_ROUND_CLOSEST(dev_priv->display.get_display_clock_speed(dev), 2000);
724 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
725 /* Workaround for non-ULT HSW */
726 switch (index) {
727 case 0: return 63;
728 case 1: return 72;
729 default: return 0;
730 }
731 } else {
732 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
733 }
734 }
735
736 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
737 {
738 return index ? 0 : 100;
739 }
740
741 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
742 {
743 /*
744 * SKL doesn't need us to program the AUX clock divider (Hardware will
745 * derive the clock from CDCLK automatically). We still implement the
746 * get_aux_clock_divider vfunc to plug-in into the existing code.
747 */
748 return index ? 0 : 1;
749 }
750
751 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
752 bool has_aux_irq,
753 int send_bytes,
754 uint32_t aux_clock_divider)
755 {
756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 struct drm_device *dev = intel_dig_port->base.base.dev;
758 uint32_t precharge, timeout;
759
760 if (IS_GEN6(dev))
761 precharge = 3;
762 else
763 precharge = 5;
764
765 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
766 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
767 else
768 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
769
770 return DP_AUX_CH_CTL_SEND_BUSY |
771 DP_AUX_CH_CTL_DONE |
772 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
773 DP_AUX_CH_CTL_TIME_OUT_ERROR |
774 timeout |
775 DP_AUX_CH_CTL_RECEIVE_ERROR |
776 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
777 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
778 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
779 }
780
781 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
782 bool has_aux_irq,
783 int send_bytes,
784 uint32_t unused)
785 {
786 return DP_AUX_CH_CTL_SEND_BUSY |
787 DP_AUX_CH_CTL_DONE |
788 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
789 DP_AUX_CH_CTL_TIME_OUT_ERROR |
790 DP_AUX_CH_CTL_TIME_OUT_1600us |
791 DP_AUX_CH_CTL_RECEIVE_ERROR |
792 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
793 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
794 }
795
796 static int
797 intel_dp_aux_ch(struct intel_dp *intel_dp,
798 const uint8_t *send, int send_bytes,
799 uint8_t *recv, int recv_size)
800 {
801 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
802 struct drm_device *dev = intel_dig_port->base.base.dev;
803 struct drm_i915_private *dev_priv = dev->dev_private;
804 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
805 uint32_t ch_data = ch_ctl + 4;
806 uint32_t aux_clock_divider;
807 int i, ret, recv_bytes;
808 uint32_t status;
809 int try, clock = 0;
810 bool has_aux_irq = HAS_AUX_IRQ(dev);
811 bool vdd;
812
813 pps_lock(intel_dp);
814
815 /*
816 * We will be called with VDD already enabled for dpcd/edid/oui reads.
817 * In such cases we want to leave VDD enabled and it's up to upper layers
818 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
819 * ourselves.
820 */
821 vdd = edp_panel_vdd_on(intel_dp);
822
823 /* dp aux is extremely sensitive to irq latency, hence request the
824 * lowest possible wakeup latency and so prevent the cpu from going into
825 * deep sleep states.
826 */
827 pm_qos_update_request(&dev_priv->pm_qos, 0);
828
829 intel_dp_check_edp(intel_dp);
830
831 intel_aux_display_runtime_get(dev_priv);
832
833 /* Try to wait for any previous AUX channel activity */
834 for (try = 0; try < 3; try++) {
835 status = I915_READ_NOTRACE(ch_ctl);
836 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
837 break;
838 msleep(1);
839 }
840
841 if (try == 3) {
842 WARN(1, "dp_aux_ch not started status 0x%08x\n",
843 I915_READ(ch_ctl));
844 ret = -EBUSY;
845 goto out;
846 }
847
848 /* Only 5 data registers! */
849 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
850 ret = -E2BIG;
851 goto out;
852 }
853
854 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
855 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
856 has_aux_irq,
857 send_bytes,
858 aux_clock_divider);
859
860 /* Must try at least 3 times according to DP spec */
861 for (try = 0; try < 5; try++) {
862 /* Load the send data into the aux channel data registers */
863 for (i = 0; i < send_bytes; i += 4)
864 I915_WRITE(ch_data + i,
865 intel_dp_pack_aux(send + i,
866 send_bytes - i));
867
868 /* Send the command and wait for it to complete */
869 I915_WRITE(ch_ctl, send_ctl);
870
871 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
872
873 /* Clear done status and any errors */
874 I915_WRITE(ch_ctl,
875 status |
876 DP_AUX_CH_CTL_DONE |
877 DP_AUX_CH_CTL_TIME_OUT_ERROR |
878 DP_AUX_CH_CTL_RECEIVE_ERROR);
879
880 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
881 continue;
882
883 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
884 * 400us delay required for errors and timeouts
885 * Timeout errors from the HW already meet this
886 * requirement so skip to next iteration
887 */
888 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
889 usleep_range(400, 500);
890 continue;
891 }
892 if (status & DP_AUX_CH_CTL_DONE)
893 goto done;
894 }
895 }
896
897 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
898 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
899 ret = -EBUSY;
900 goto out;
901 }
902
903 done:
904 /* Check for timeout or receive error.
905 * Timeouts occur when the sink is not connected
906 */
907 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
908 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
909 ret = -EIO;
910 goto out;
911 }
912
913 /* Timeouts occur when the device isn't connected, so they're
914 * "normal" -- don't fill the kernel log with these */
915 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
916 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
917 ret = -ETIMEDOUT;
918 goto out;
919 }
920
921 /* Unload any bytes sent back from the other side */
922 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
923 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
924 if (recv_bytes > recv_size)
925 recv_bytes = recv_size;
926
927 for (i = 0; i < recv_bytes; i += 4)
928 intel_dp_unpack_aux(I915_READ(ch_data + i),
929 recv + i, recv_bytes - i);
930
931 ret = recv_bytes;
932 out:
933 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
934 intel_aux_display_runtime_put(dev_priv);
935
936 if (vdd)
937 edp_panel_vdd_off(intel_dp, false);
938
939 pps_unlock(intel_dp);
940
941 return ret;
942 }
943
944 #define BARE_ADDRESS_SIZE 3
945 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
946 static ssize_t
947 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
948 {
949 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
950 uint8_t txbuf[20], rxbuf[20];
951 size_t txsize, rxsize;
952 int ret;
953
954 txbuf[0] = (msg->request << 4) |
955 ((msg->address >> 16) & 0xf);
956 txbuf[1] = (msg->address >> 8) & 0xff;
957 txbuf[2] = msg->address & 0xff;
958 txbuf[3] = msg->size - 1;
959
960 switch (msg->request & ~DP_AUX_I2C_MOT) {
961 case DP_AUX_NATIVE_WRITE:
962 case DP_AUX_I2C_WRITE:
963 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
964 rxsize = 2; /* 0 or 1 data bytes */
965
966 if (WARN_ON(txsize > 20))
967 return -E2BIG;
968
969 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
970
971 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
972 if (ret > 0) {
973 msg->reply = rxbuf[0] >> 4;
974
975 if (ret > 1) {
976 /* Number of bytes written in a short write. */
977 ret = clamp_t(int, rxbuf[1], 0, msg->size);
978 } else {
979 /* Return payload size. */
980 ret = msg->size;
981 }
982 }
983 break;
984
985 case DP_AUX_NATIVE_READ:
986 case DP_AUX_I2C_READ:
987 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
988 rxsize = msg->size + 1;
989
990 if (WARN_ON(rxsize > 20))
991 return -E2BIG;
992
993 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
994 if (ret > 0) {
995 msg->reply = rxbuf[0] >> 4;
996 /*
997 * Assume happy day, and copy the data. The caller is
998 * expected to check msg->reply before touching it.
999 *
1000 * Return payload size.
1001 */
1002 ret--;
1003 memcpy(msg->buffer, rxbuf + 1, ret);
1004 }
1005 break;
1006
1007 default:
1008 ret = -EINVAL;
1009 break;
1010 }
1011
1012 return ret;
1013 }
1014
1015 static void
1016 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1017 {
1018 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1019 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1020 enum port port = intel_dig_port->port;
1021 const char *name = NULL;
1022 int ret;
1023
1024 switch (port) {
1025 case PORT_A:
1026 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1027 name = "DPDDC-A";
1028 break;
1029 case PORT_B:
1030 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1031 name = "DPDDC-B";
1032 break;
1033 case PORT_C:
1034 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1035 name = "DPDDC-C";
1036 break;
1037 case PORT_D:
1038 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1039 name = "DPDDC-D";
1040 break;
1041 default:
1042 BUG();
1043 }
1044
1045 /*
1046 * The AUX_CTL register is usually DP_CTL + 0x10.
1047 *
1048 * On Haswell and Broadwell though:
1049 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1050 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1051 *
1052 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1053 */
1054 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1055 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1056
1057 intel_dp->aux.name = name;
1058 intel_dp->aux.dev = dev->dev;
1059 intel_dp->aux.transfer = intel_dp_aux_transfer;
1060
1061 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1062 connector->base.kdev->kobj.name);
1063
1064 ret = drm_dp_aux_register(&intel_dp->aux);
1065 if (ret < 0) {
1066 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1067 name, ret);
1068 return;
1069 }
1070
1071 ret = sysfs_create_link(&connector->base.kdev->kobj,
1072 &intel_dp->aux.ddc.dev.kobj,
1073 intel_dp->aux.ddc.dev.kobj.name);
1074 if (ret < 0) {
1075 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1076 drm_dp_aux_unregister(&intel_dp->aux);
1077 }
1078 }
1079
1080 static void
1081 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1082 {
1083 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1084
1085 if (!intel_connector->mst_port)
1086 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1087 intel_dp->aux.ddc.dev.kobj.name);
1088 intel_connector_unregister(intel_connector);
1089 }
1090
1091 static void
1092 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1093 {
1094 u32 ctrl1;
1095
1096 memset(&pipe_config->dpll_hw_state, 0,
1097 sizeof(pipe_config->dpll_hw_state));
1098
1099 pipe_config->ddi_pll_sel = SKL_DPLL0;
1100 pipe_config->dpll_hw_state.cfgcr1 = 0;
1101 pipe_config->dpll_hw_state.cfgcr2 = 0;
1102
1103 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1104 switch (link_clock / 2) {
1105 case 81000:
1106 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1107 SKL_DPLL0);
1108 break;
1109 case 135000:
1110 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1111 SKL_DPLL0);
1112 break;
1113 case 270000:
1114 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1115 SKL_DPLL0);
1116 break;
1117 case 162000:
1118 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1119 SKL_DPLL0);
1120 break;
1121 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1122 results in CDCLK change. Need to handle the change of CDCLK by
1123 disabling pipes and re-enabling them */
1124 case 108000:
1125 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1126 SKL_DPLL0);
1127 break;
1128 case 216000:
1129 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1130 SKL_DPLL0);
1131 break;
1132
1133 }
1134 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1135 }
1136
1137 static void
1138 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1139 {
1140 memset(&pipe_config->dpll_hw_state, 0,
1141 sizeof(pipe_config->dpll_hw_state));
1142
1143 switch (link_bw) {
1144 case DP_LINK_BW_1_62:
1145 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1146 break;
1147 case DP_LINK_BW_2_7:
1148 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1149 break;
1150 case DP_LINK_BW_5_4:
1151 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1152 break;
1153 }
1154 }
1155
1156 static int
1157 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1158 {
1159 if (intel_dp->num_sink_rates) {
1160 *sink_rates = intel_dp->sink_rates;
1161 return intel_dp->num_sink_rates;
1162 }
1163
1164 *sink_rates = default_rates;
1165
1166 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1167 }
1168
1169 static bool intel_dp_source_supports_hbr2(struct drm_device *dev)
1170 {
1171 /* WaDisableHBR2:skl */
1172 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1173 return false;
1174
1175 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1176 (INTEL_INFO(dev)->gen >= 9))
1177 return true;
1178 else
1179 return false;
1180 }
1181
1182 static int
1183 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1184 {
1185 if (IS_SKYLAKE(dev)) {
1186 *source_rates = skl_rates;
1187 return ARRAY_SIZE(skl_rates);
1188 }
1189
1190 *source_rates = default_rates;
1191
1192 /* This depends on the fact that 5.4 is last value in the array */
1193 if (intel_dp_source_supports_hbr2(dev))
1194 return (DP_LINK_BW_5_4 >> 3) + 1;
1195 else
1196 return (DP_LINK_BW_2_7 >> 3) + 1;
1197 }
1198
1199 static void
1200 intel_dp_set_clock(struct intel_encoder *encoder,
1201 struct intel_crtc_state *pipe_config, int link_bw)
1202 {
1203 struct drm_device *dev = encoder->base.dev;
1204 const struct dp_link_dpll *divisor = NULL;
1205 int i, count = 0;
1206
1207 if (IS_G4X(dev)) {
1208 divisor = gen4_dpll;
1209 count = ARRAY_SIZE(gen4_dpll);
1210 } else if (HAS_PCH_SPLIT(dev)) {
1211 divisor = pch_dpll;
1212 count = ARRAY_SIZE(pch_dpll);
1213 } else if (IS_CHERRYVIEW(dev)) {
1214 divisor = chv_dpll;
1215 count = ARRAY_SIZE(chv_dpll);
1216 } else if (IS_VALLEYVIEW(dev)) {
1217 divisor = vlv_dpll;
1218 count = ARRAY_SIZE(vlv_dpll);
1219 }
1220
1221 if (divisor && count) {
1222 for (i = 0; i < count; i++) {
1223 if (link_bw == divisor[i].link_bw) {
1224 pipe_config->dpll = divisor[i].dpll;
1225 pipe_config->clock_set = true;
1226 break;
1227 }
1228 }
1229 }
1230 }
1231
1232 static int intersect_rates(const int *source_rates, int source_len,
1233 const int *sink_rates, int sink_len,
1234 int *common_rates)
1235 {
1236 int i = 0, j = 0, k = 0;
1237
1238 while (i < source_len && j < sink_len) {
1239 if (source_rates[i] == sink_rates[j]) {
1240 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1241 return k;
1242 common_rates[k] = source_rates[i];
1243 ++k;
1244 ++i;
1245 ++j;
1246 } else if (source_rates[i] < sink_rates[j]) {
1247 ++i;
1248 } else {
1249 ++j;
1250 }
1251 }
1252 return k;
1253 }
1254
1255 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1256 int *common_rates)
1257 {
1258 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1259 const int *source_rates, *sink_rates;
1260 int source_len, sink_len;
1261
1262 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1263 source_len = intel_dp_source_rates(dev, &source_rates);
1264
1265 return intersect_rates(source_rates, source_len,
1266 sink_rates, sink_len,
1267 common_rates);
1268 }
1269
1270 static void snprintf_int_array(char *str, size_t len,
1271 const int *array, int nelem)
1272 {
1273 int i;
1274
1275 str[0] = '\0';
1276
1277 for (i = 0; i < nelem; i++) {
1278 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1279 if (r >= len)
1280 return;
1281 str += r;
1282 len -= r;
1283 }
1284 }
1285
1286 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1287 {
1288 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1289 const int *source_rates, *sink_rates;
1290 int source_len, sink_len, common_len;
1291 int common_rates[DP_MAX_SUPPORTED_RATES];
1292 char str[128]; /* FIXME: too big for stack? */
1293
1294 if ((drm_debug & DRM_UT_KMS) == 0)
1295 return;
1296
1297 source_len = intel_dp_source_rates(dev, &source_rates);
1298 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1299 DRM_DEBUG_KMS("source rates: %s\n", str);
1300
1301 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1302 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1303 DRM_DEBUG_KMS("sink rates: %s\n", str);
1304
1305 common_len = intel_dp_common_rates(intel_dp, common_rates);
1306 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1307 DRM_DEBUG_KMS("common rates: %s\n", str);
1308 }
1309
1310 static int rate_to_index(int find, const int *rates)
1311 {
1312 int i = 0;
1313
1314 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1315 if (find == rates[i])
1316 break;
1317
1318 return i;
1319 }
1320
1321 int
1322 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1323 {
1324 int rates[DP_MAX_SUPPORTED_RATES] = {};
1325 int len;
1326
1327 len = intel_dp_common_rates(intel_dp, rates);
1328 if (WARN_ON(len <= 0))
1329 return 162000;
1330
1331 return rates[rate_to_index(0, rates) - 1];
1332 }
1333
1334 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1335 {
1336 return rate_to_index(rate, intel_dp->sink_rates);
1337 }
1338
1339 bool
1340 intel_dp_compute_config(struct intel_encoder *encoder,
1341 struct intel_crtc_state *pipe_config)
1342 {
1343 struct drm_device *dev = encoder->base.dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1346 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1347 enum port port = dp_to_dig_port(intel_dp)->port;
1348 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1349 struct intel_connector *intel_connector = intel_dp->attached_connector;
1350 int lane_count, clock;
1351 int min_lane_count = 1;
1352 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1353 /* Conveniently, the link BW constants become indices with a shift...*/
1354 int min_clock = 0;
1355 int max_clock;
1356 int bpp, mode_rate;
1357 int link_avail, link_clock;
1358 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1359 int common_len;
1360
1361 common_len = intel_dp_common_rates(intel_dp, common_rates);
1362
1363 /* No common link rates between source and sink */
1364 WARN_ON(common_len <= 0);
1365
1366 max_clock = common_len - 1;
1367
1368 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1369 pipe_config->has_pch_encoder = true;
1370
1371 pipe_config->has_dp_encoder = true;
1372 pipe_config->has_drrs = false;
1373 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1374
1375 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1376 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1377 adjusted_mode);
1378
1379 if (INTEL_INFO(dev)->gen >= 9) {
1380 int ret;
1381 ret = skl_update_scaler_users(intel_crtc, pipe_config, NULL, NULL, 0);
1382 if (ret)
1383 return ret;
1384 }
1385
1386 if (!HAS_PCH_SPLIT(dev))
1387 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1388 intel_connector->panel.fitting_mode);
1389 else
1390 intel_pch_panel_fitting(intel_crtc, pipe_config,
1391 intel_connector->panel.fitting_mode);
1392 }
1393
1394 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1395 return false;
1396
1397 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1398 "max bw %d pixel clock %iKHz\n",
1399 max_lane_count, common_rates[max_clock],
1400 adjusted_mode->crtc_clock);
1401
1402 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1403 * bpc in between. */
1404 bpp = pipe_config->pipe_bpp;
1405 if (is_edp(intel_dp)) {
1406 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1407 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1408 dev_priv->vbt.edp_bpp);
1409 bpp = dev_priv->vbt.edp_bpp;
1410 }
1411
1412 /*
1413 * Use the maximum clock and number of lanes the eDP panel
1414 * advertizes being capable of. The panels are generally
1415 * designed to support only a single clock and lane
1416 * configuration, and typically these values correspond to the
1417 * native resolution of the panel.
1418 */
1419 min_lane_count = max_lane_count;
1420 min_clock = max_clock;
1421 }
1422
1423 for (; bpp >= 6*3; bpp -= 2*3) {
1424 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1425 bpp);
1426
1427 for (clock = min_clock; clock <= max_clock; clock++) {
1428 for (lane_count = min_lane_count;
1429 lane_count <= max_lane_count;
1430 lane_count <<= 1) {
1431
1432 link_clock = common_rates[clock];
1433 link_avail = intel_dp_max_data_rate(link_clock,
1434 lane_count);
1435
1436 if (mode_rate <= link_avail) {
1437 goto found;
1438 }
1439 }
1440 }
1441 }
1442
1443 return false;
1444
1445 found:
1446 if (intel_dp->color_range_auto) {
1447 /*
1448 * See:
1449 * CEA-861-E - 5.1 Default Encoding Parameters
1450 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1451 */
1452 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1453 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1454 else
1455 intel_dp->color_range = 0;
1456 }
1457
1458 if (intel_dp->color_range)
1459 pipe_config->limited_color_range = true;
1460
1461 intel_dp->lane_count = lane_count;
1462
1463 if (intel_dp->num_sink_rates) {
1464 intel_dp->link_bw = 0;
1465 intel_dp->rate_select =
1466 intel_dp_rate_select(intel_dp, common_rates[clock]);
1467 } else {
1468 intel_dp->link_bw =
1469 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1470 intel_dp->rate_select = 0;
1471 }
1472
1473 pipe_config->pipe_bpp = bpp;
1474 pipe_config->port_clock = common_rates[clock];
1475
1476 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1477 intel_dp->link_bw, intel_dp->lane_count,
1478 pipe_config->port_clock, bpp);
1479 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1480 mode_rate, link_avail);
1481
1482 intel_link_compute_m_n(bpp, lane_count,
1483 adjusted_mode->crtc_clock,
1484 pipe_config->port_clock,
1485 &pipe_config->dp_m_n);
1486
1487 if (intel_connector->panel.downclock_mode != NULL &&
1488 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1489 pipe_config->has_drrs = true;
1490 intel_link_compute_m_n(bpp, lane_count,
1491 intel_connector->panel.downclock_mode->clock,
1492 pipe_config->port_clock,
1493 &pipe_config->dp_m2_n2);
1494 }
1495
1496 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1497 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1498 else if (IS_BROXTON(dev))
1499 /* handled in ddi */;
1500 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1501 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1502 else
1503 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1504
1505 return true;
1506 }
1507
1508 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1509 {
1510 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1511 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1512 struct drm_device *dev = crtc->base.dev;
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 u32 dpa_ctl;
1515
1516 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1517 crtc->config->port_clock);
1518 dpa_ctl = I915_READ(DP_A);
1519 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1520
1521 if (crtc->config->port_clock == 162000) {
1522 /* For a long time we've carried around a ILK-DevA w/a for the
1523 * 160MHz clock. If we're really unlucky, it's still required.
1524 */
1525 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1526 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1527 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1528 } else {
1529 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1530 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1531 }
1532
1533 I915_WRITE(DP_A, dpa_ctl);
1534
1535 POSTING_READ(DP_A);
1536 udelay(500);
1537 }
1538
1539 static void intel_dp_prepare(struct intel_encoder *encoder)
1540 {
1541 struct drm_device *dev = encoder->base.dev;
1542 struct drm_i915_private *dev_priv = dev->dev_private;
1543 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1544 enum port port = dp_to_dig_port(intel_dp)->port;
1545 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1546 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1547
1548 /*
1549 * There are four kinds of DP registers:
1550 *
1551 * IBX PCH
1552 * SNB CPU
1553 * IVB CPU
1554 * CPT PCH
1555 *
1556 * IBX PCH and CPU are the same for almost everything,
1557 * except that the CPU DP PLL is configured in this
1558 * register
1559 *
1560 * CPT PCH is quite different, having many bits moved
1561 * to the TRANS_DP_CTL register instead. That
1562 * configuration happens (oddly) in ironlake_pch_enable
1563 */
1564
1565 /* Preserve the BIOS-computed detected bit. This is
1566 * supposed to be read-only.
1567 */
1568 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1569
1570 /* Handle DP bits in common between all three register formats */
1571 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1572 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1573
1574 if (crtc->config->has_audio)
1575 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1576
1577 /* Split out the IBX/CPU vs CPT settings */
1578
1579 if (IS_GEN7(dev) && port == PORT_A) {
1580 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1581 intel_dp->DP |= DP_SYNC_HS_HIGH;
1582 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1583 intel_dp->DP |= DP_SYNC_VS_HIGH;
1584 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1585
1586 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1587 intel_dp->DP |= DP_ENHANCED_FRAMING;
1588
1589 intel_dp->DP |= crtc->pipe << 29;
1590 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1591 u32 trans_dp;
1592
1593 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1594
1595 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1596 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1597 trans_dp |= TRANS_DP_ENH_FRAMING;
1598 else
1599 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1600 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1601 } else {
1602 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1603 intel_dp->DP |= intel_dp->color_range;
1604
1605 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1606 intel_dp->DP |= DP_SYNC_HS_HIGH;
1607 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1608 intel_dp->DP |= DP_SYNC_VS_HIGH;
1609 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1610
1611 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1612 intel_dp->DP |= DP_ENHANCED_FRAMING;
1613
1614 if (IS_CHERRYVIEW(dev))
1615 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1616 else if (crtc->pipe == PIPE_B)
1617 intel_dp->DP |= DP_PIPEB_SELECT;
1618 }
1619 }
1620
1621 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1622 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1623
1624 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1625 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1626
1627 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1628 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1629
1630 static void wait_panel_status(struct intel_dp *intel_dp,
1631 u32 mask,
1632 u32 value)
1633 {
1634 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 u32 pp_stat_reg, pp_ctrl_reg;
1637
1638 lockdep_assert_held(&dev_priv->pps_mutex);
1639
1640 pp_stat_reg = _pp_stat_reg(intel_dp);
1641 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1642
1643 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1644 mask, value,
1645 I915_READ(pp_stat_reg),
1646 I915_READ(pp_ctrl_reg));
1647
1648 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1649 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1650 I915_READ(pp_stat_reg),
1651 I915_READ(pp_ctrl_reg));
1652 }
1653
1654 DRM_DEBUG_KMS("Wait complete\n");
1655 }
1656
1657 static void wait_panel_on(struct intel_dp *intel_dp)
1658 {
1659 DRM_DEBUG_KMS("Wait for panel power on\n");
1660 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1661 }
1662
1663 static void wait_panel_off(struct intel_dp *intel_dp)
1664 {
1665 DRM_DEBUG_KMS("Wait for panel power off time\n");
1666 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1667 }
1668
1669 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1670 {
1671 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1672
1673 /* When we disable the VDD override bit last we have to do the manual
1674 * wait. */
1675 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1676 intel_dp->panel_power_cycle_delay);
1677
1678 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1679 }
1680
1681 static void wait_backlight_on(struct intel_dp *intel_dp)
1682 {
1683 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1684 intel_dp->backlight_on_delay);
1685 }
1686
1687 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1688 {
1689 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1690 intel_dp->backlight_off_delay);
1691 }
1692
1693 /* Read the current pp_control value, unlocking the register if it
1694 * is locked
1695 */
1696
1697 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1698 {
1699 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1700 struct drm_i915_private *dev_priv = dev->dev_private;
1701 u32 control;
1702
1703 lockdep_assert_held(&dev_priv->pps_mutex);
1704
1705 control = I915_READ(_pp_ctrl_reg(intel_dp));
1706 control &= ~PANEL_UNLOCK_MASK;
1707 control |= PANEL_UNLOCK_REGS;
1708 return control;
1709 }
1710
1711 /*
1712 * Must be paired with edp_panel_vdd_off().
1713 * Must hold pps_mutex around the whole on/off sequence.
1714 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1715 */
1716 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1717 {
1718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1720 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1721 struct drm_i915_private *dev_priv = dev->dev_private;
1722 enum intel_display_power_domain power_domain;
1723 u32 pp;
1724 u32 pp_stat_reg, pp_ctrl_reg;
1725 bool need_to_disable = !intel_dp->want_panel_vdd;
1726
1727 lockdep_assert_held(&dev_priv->pps_mutex);
1728
1729 if (!is_edp(intel_dp))
1730 return false;
1731
1732 cancel_delayed_work(&intel_dp->panel_vdd_work);
1733 intel_dp->want_panel_vdd = true;
1734
1735 if (edp_have_panel_vdd(intel_dp))
1736 return need_to_disable;
1737
1738 power_domain = intel_display_port_power_domain(intel_encoder);
1739 intel_display_power_get(dev_priv, power_domain);
1740
1741 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1742 port_name(intel_dig_port->port));
1743
1744 if (!edp_have_panel_power(intel_dp))
1745 wait_panel_power_cycle(intel_dp);
1746
1747 pp = ironlake_get_pp_control(intel_dp);
1748 pp |= EDP_FORCE_VDD;
1749
1750 pp_stat_reg = _pp_stat_reg(intel_dp);
1751 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1752
1753 I915_WRITE(pp_ctrl_reg, pp);
1754 POSTING_READ(pp_ctrl_reg);
1755 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1756 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1757 /*
1758 * If the panel wasn't on, delay before accessing aux channel
1759 */
1760 if (!edp_have_panel_power(intel_dp)) {
1761 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1762 port_name(intel_dig_port->port));
1763 msleep(intel_dp->panel_power_up_delay);
1764 }
1765
1766 return need_to_disable;
1767 }
1768
1769 /*
1770 * Must be paired with intel_edp_panel_vdd_off() or
1771 * intel_edp_panel_off().
1772 * Nested calls to these functions are not allowed since
1773 * we drop the lock. Caller must use some higher level
1774 * locking to prevent nested calls from other threads.
1775 */
1776 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1777 {
1778 bool vdd;
1779
1780 if (!is_edp(intel_dp))
1781 return;
1782
1783 pps_lock(intel_dp);
1784 vdd = edp_panel_vdd_on(intel_dp);
1785 pps_unlock(intel_dp);
1786
1787 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1788 port_name(dp_to_dig_port(intel_dp)->port));
1789 }
1790
1791 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1792 {
1793 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1794 struct drm_i915_private *dev_priv = dev->dev_private;
1795 struct intel_digital_port *intel_dig_port =
1796 dp_to_dig_port(intel_dp);
1797 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1798 enum intel_display_power_domain power_domain;
1799 u32 pp;
1800 u32 pp_stat_reg, pp_ctrl_reg;
1801
1802 lockdep_assert_held(&dev_priv->pps_mutex);
1803
1804 WARN_ON(intel_dp->want_panel_vdd);
1805
1806 if (!edp_have_panel_vdd(intel_dp))
1807 return;
1808
1809 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1810 port_name(intel_dig_port->port));
1811
1812 pp = ironlake_get_pp_control(intel_dp);
1813 pp &= ~EDP_FORCE_VDD;
1814
1815 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1816 pp_stat_reg = _pp_stat_reg(intel_dp);
1817
1818 I915_WRITE(pp_ctrl_reg, pp);
1819 POSTING_READ(pp_ctrl_reg);
1820
1821 /* Make sure sequencer is idle before allowing subsequent activity */
1822 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1823 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1824
1825 if ((pp & POWER_TARGET_ON) == 0)
1826 intel_dp->last_power_cycle = jiffies;
1827
1828 power_domain = intel_display_port_power_domain(intel_encoder);
1829 intel_display_power_put(dev_priv, power_domain);
1830 }
1831
1832 static void edp_panel_vdd_work(struct work_struct *__work)
1833 {
1834 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1835 struct intel_dp, panel_vdd_work);
1836
1837 pps_lock(intel_dp);
1838 if (!intel_dp->want_panel_vdd)
1839 edp_panel_vdd_off_sync(intel_dp);
1840 pps_unlock(intel_dp);
1841 }
1842
1843 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1844 {
1845 unsigned long delay;
1846
1847 /*
1848 * Queue the timer to fire a long time from now (relative to the power
1849 * down delay) to keep the panel power up across a sequence of
1850 * operations.
1851 */
1852 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1853 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1854 }
1855
1856 /*
1857 * Must be paired with edp_panel_vdd_on().
1858 * Must hold pps_mutex around the whole on/off sequence.
1859 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1860 */
1861 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1862 {
1863 struct drm_i915_private *dev_priv =
1864 intel_dp_to_dev(intel_dp)->dev_private;
1865
1866 lockdep_assert_held(&dev_priv->pps_mutex);
1867
1868 if (!is_edp(intel_dp))
1869 return;
1870
1871 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1872 port_name(dp_to_dig_port(intel_dp)->port));
1873
1874 intel_dp->want_panel_vdd = false;
1875
1876 if (sync)
1877 edp_panel_vdd_off_sync(intel_dp);
1878 else
1879 edp_panel_vdd_schedule_off(intel_dp);
1880 }
1881
1882 static void edp_panel_on(struct intel_dp *intel_dp)
1883 {
1884 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1885 struct drm_i915_private *dev_priv = dev->dev_private;
1886 u32 pp;
1887 u32 pp_ctrl_reg;
1888
1889 lockdep_assert_held(&dev_priv->pps_mutex);
1890
1891 if (!is_edp(intel_dp))
1892 return;
1893
1894 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1895 port_name(dp_to_dig_port(intel_dp)->port));
1896
1897 if (WARN(edp_have_panel_power(intel_dp),
1898 "eDP port %c panel power already on\n",
1899 port_name(dp_to_dig_port(intel_dp)->port)))
1900 return;
1901
1902 wait_panel_power_cycle(intel_dp);
1903
1904 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1905 pp = ironlake_get_pp_control(intel_dp);
1906 if (IS_GEN5(dev)) {
1907 /* ILK workaround: disable reset around power sequence */
1908 pp &= ~PANEL_POWER_RESET;
1909 I915_WRITE(pp_ctrl_reg, pp);
1910 POSTING_READ(pp_ctrl_reg);
1911 }
1912
1913 pp |= POWER_TARGET_ON;
1914 if (!IS_GEN5(dev))
1915 pp |= PANEL_POWER_RESET;
1916
1917 I915_WRITE(pp_ctrl_reg, pp);
1918 POSTING_READ(pp_ctrl_reg);
1919
1920 wait_panel_on(intel_dp);
1921 intel_dp->last_power_on = jiffies;
1922
1923 if (IS_GEN5(dev)) {
1924 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1925 I915_WRITE(pp_ctrl_reg, pp);
1926 POSTING_READ(pp_ctrl_reg);
1927 }
1928 }
1929
1930 void intel_edp_panel_on(struct intel_dp *intel_dp)
1931 {
1932 if (!is_edp(intel_dp))
1933 return;
1934
1935 pps_lock(intel_dp);
1936 edp_panel_on(intel_dp);
1937 pps_unlock(intel_dp);
1938 }
1939
1940
1941 static void edp_panel_off(struct intel_dp *intel_dp)
1942 {
1943 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1944 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1945 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 enum intel_display_power_domain power_domain;
1948 u32 pp;
1949 u32 pp_ctrl_reg;
1950
1951 lockdep_assert_held(&dev_priv->pps_mutex);
1952
1953 if (!is_edp(intel_dp))
1954 return;
1955
1956 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1957 port_name(dp_to_dig_port(intel_dp)->port));
1958
1959 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1960 port_name(dp_to_dig_port(intel_dp)->port));
1961
1962 pp = ironlake_get_pp_control(intel_dp);
1963 /* We need to switch off panel power _and_ force vdd, for otherwise some
1964 * panels get very unhappy and cease to work. */
1965 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1966 EDP_BLC_ENABLE);
1967
1968 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1969
1970 intel_dp->want_panel_vdd = false;
1971
1972 I915_WRITE(pp_ctrl_reg, pp);
1973 POSTING_READ(pp_ctrl_reg);
1974
1975 intel_dp->last_power_cycle = jiffies;
1976 wait_panel_off(intel_dp);
1977
1978 /* We got a reference when we enabled the VDD. */
1979 power_domain = intel_display_port_power_domain(intel_encoder);
1980 intel_display_power_put(dev_priv, power_domain);
1981 }
1982
1983 void intel_edp_panel_off(struct intel_dp *intel_dp)
1984 {
1985 if (!is_edp(intel_dp))
1986 return;
1987
1988 pps_lock(intel_dp);
1989 edp_panel_off(intel_dp);
1990 pps_unlock(intel_dp);
1991 }
1992
1993 /* Enable backlight in the panel power control. */
1994 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1995 {
1996 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1997 struct drm_device *dev = intel_dig_port->base.base.dev;
1998 struct drm_i915_private *dev_priv = dev->dev_private;
1999 u32 pp;
2000 u32 pp_ctrl_reg;
2001
2002 /*
2003 * If we enable the backlight right away following a panel power
2004 * on, we may see slight flicker as the panel syncs with the eDP
2005 * link. So delay a bit to make sure the image is solid before
2006 * allowing it to appear.
2007 */
2008 wait_backlight_on(intel_dp);
2009
2010 pps_lock(intel_dp);
2011
2012 pp = ironlake_get_pp_control(intel_dp);
2013 pp |= EDP_BLC_ENABLE;
2014
2015 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2016
2017 I915_WRITE(pp_ctrl_reg, pp);
2018 POSTING_READ(pp_ctrl_reg);
2019
2020 pps_unlock(intel_dp);
2021 }
2022
2023 /* Enable backlight PWM and backlight PP control. */
2024 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2025 {
2026 if (!is_edp(intel_dp))
2027 return;
2028
2029 DRM_DEBUG_KMS("\n");
2030
2031 intel_panel_enable_backlight(intel_dp->attached_connector);
2032 _intel_edp_backlight_on(intel_dp);
2033 }
2034
2035 /* Disable backlight in the panel power control. */
2036 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2037 {
2038 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2039 struct drm_i915_private *dev_priv = dev->dev_private;
2040 u32 pp;
2041 u32 pp_ctrl_reg;
2042
2043 if (!is_edp(intel_dp))
2044 return;
2045
2046 pps_lock(intel_dp);
2047
2048 pp = ironlake_get_pp_control(intel_dp);
2049 pp &= ~EDP_BLC_ENABLE;
2050
2051 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2052
2053 I915_WRITE(pp_ctrl_reg, pp);
2054 POSTING_READ(pp_ctrl_reg);
2055
2056 pps_unlock(intel_dp);
2057
2058 intel_dp->last_backlight_off = jiffies;
2059 edp_wait_backlight_off(intel_dp);
2060 }
2061
2062 /* Disable backlight PP control and backlight PWM. */
2063 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2064 {
2065 if (!is_edp(intel_dp))
2066 return;
2067
2068 DRM_DEBUG_KMS("\n");
2069
2070 _intel_edp_backlight_off(intel_dp);
2071 intel_panel_disable_backlight(intel_dp->attached_connector);
2072 }
2073
2074 /*
2075 * Hook for controlling the panel power control backlight through the bl_power
2076 * sysfs attribute. Take care to handle multiple calls.
2077 */
2078 static void intel_edp_backlight_power(struct intel_connector *connector,
2079 bool enable)
2080 {
2081 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2082 bool is_enabled;
2083
2084 pps_lock(intel_dp);
2085 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2086 pps_unlock(intel_dp);
2087
2088 if (is_enabled == enable)
2089 return;
2090
2091 DRM_DEBUG_KMS("panel power control backlight %s\n",
2092 enable ? "enable" : "disable");
2093
2094 if (enable)
2095 _intel_edp_backlight_on(intel_dp);
2096 else
2097 _intel_edp_backlight_off(intel_dp);
2098 }
2099
2100 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2101 {
2102 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2103 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2104 struct drm_device *dev = crtc->dev;
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 u32 dpa_ctl;
2107
2108 assert_pipe_disabled(dev_priv,
2109 to_intel_crtc(crtc)->pipe);
2110
2111 DRM_DEBUG_KMS("\n");
2112 dpa_ctl = I915_READ(DP_A);
2113 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2114 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2115
2116 /* We don't adjust intel_dp->DP while tearing down the link, to
2117 * facilitate link retraining (e.g. after hotplug). Hence clear all
2118 * enable bits here to ensure that we don't enable too much. */
2119 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2120 intel_dp->DP |= DP_PLL_ENABLE;
2121 I915_WRITE(DP_A, intel_dp->DP);
2122 POSTING_READ(DP_A);
2123 udelay(200);
2124 }
2125
2126 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2127 {
2128 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2129 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2130 struct drm_device *dev = crtc->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 u32 dpa_ctl;
2133
2134 assert_pipe_disabled(dev_priv,
2135 to_intel_crtc(crtc)->pipe);
2136
2137 dpa_ctl = I915_READ(DP_A);
2138 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2139 "dp pll off, should be on\n");
2140 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2141
2142 /* We can't rely on the value tracked for the DP register in
2143 * intel_dp->DP because link_down must not change that (otherwise link
2144 * re-training will fail. */
2145 dpa_ctl &= ~DP_PLL_ENABLE;
2146 I915_WRITE(DP_A, dpa_ctl);
2147 POSTING_READ(DP_A);
2148 udelay(200);
2149 }
2150
2151 /* If the sink supports it, try to set the power state appropriately */
2152 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2153 {
2154 int ret, i;
2155
2156 /* Should have a valid DPCD by this point */
2157 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2158 return;
2159
2160 if (mode != DRM_MODE_DPMS_ON) {
2161 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2162 DP_SET_POWER_D3);
2163 } else {
2164 /*
2165 * When turning on, we need to retry for 1ms to give the sink
2166 * time to wake up.
2167 */
2168 for (i = 0; i < 3; i++) {
2169 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2170 DP_SET_POWER_D0);
2171 if (ret == 1)
2172 break;
2173 msleep(1);
2174 }
2175 }
2176
2177 if (ret != 1)
2178 DRM_DEBUG_KMS("failed to %s sink power state\n",
2179 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2180 }
2181
2182 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2183 enum pipe *pipe)
2184 {
2185 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2186 enum port port = dp_to_dig_port(intel_dp)->port;
2187 struct drm_device *dev = encoder->base.dev;
2188 struct drm_i915_private *dev_priv = dev->dev_private;
2189 enum intel_display_power_domain power_domain;
2190 u32 tmp;
2191
2192 power_domain = intel_display_port_power_domain(encoder);
2193 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2194 return false;
2195
2196 tmp = I915_READ(intel_dp->output_reg);
2197
2198 if (!(tmp & DP_PORT_EN))
2199 return false;
2200
2201 if (IS_GEN7(dev) && port == PORT_A) {
2202 *pipe = PORT_TO_PIPE_CPT(tmp);
2203 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2204 enum pipe p;
2205
2206 for_each_pipe(dev_priv, p) {
2207 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2208 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2209 *pipe = p;
2210 return true;
2211 }
2212 }
2213
2214 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2215 intel_dp->output_reg);
2216 } else if (IS_CHERRYVIEW(dev)) {
2217 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2218 } else {
2219 *pipe = PORT_TO_PIPE(tmp);
2220 }
2221
2222 return true;
2223 }
2224
2225 static void intel_dp_get_config(struct intel_encoder *encoder,
2226 struct intel_crtc_state *pipe_config)
2227 {
2228 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2229 u32 tmp, flags = 0;
2230 struct drm_device *dev = encoder->base.dev;
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 enum port port = dp_to_dig_port(intel_dp)->port;
2233 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2234 int dotclock;
2235
2236 tmp = I915_READ(intel_dp->output_reg);
2237
2238 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2239
2240 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2241 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2242 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2243 flags |= DRM_MODE_FLAG_PHSYNC;
2244 else
2245 flags |= DRM_MODE_FLAG_NHSYNC;
2246
2247 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2248 flags |= DRM_MODE_FLAG_PVSYNC;
2249 else
2250 flags |= DRM_MODE_FLAG_NVSYNC;
2251 } else {
2252 if (tmp & DP_SYNC_HS_HIGH)
2253 flags |= DRM_MODE_FLAG_PHSYNC;
2254 else
2255 flags |= DRM_MODE_FLAG_NHSYNC;
2256
2257 if (tmp & DP_SYNC_VS_HIGH)
2258 flags |= DRM_MODE_FLAG_PVSYNC;
2259 else
2260 flags |= DRM_MODE_FLAG_NVSYNC;
2261 }
2262
2263 pipe_config->base.adjusted_mode.flags |= flags;
2264
2265 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2266 tmp & DP_COLOR_RANGE_16_235)
2267 pipe_config->limited_color_range = true;
2268
2269 pipe_config->has_dp_encoder = true;
2270
2271 intel_dp_get_m_n(crtc, pipe_config);
2272
2273 if (port == PORT_A) {
2274 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2275 pipe_config->port_clock = 162000;
2276 else
2277 pipe_config->port_clock = 270000;
2278 }
2279
2280 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2281 &pipe_config->dp_m_n);
2282
2283 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2284 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2285
2286 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2287
2288 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2289 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2290 /*
2291 * This is a big fat ugly hack.
2292 *
2293 * Some machines in UEFI boot mode provide us a VBT that has 18
2294 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2295 * unknown we fail to light up. Yet the same BIOS boots up with
2296 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2297 * max, not what it tells us to use.
2298 *
2299 * Note: This will still be broken if the eDP panel is not lit
2300 * up by the BIOS, and thus we can't get the mode at module
2301 * load.
2302 */
2303 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2304 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2305 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2306 }
2307 }
2308
2309 static void intel_disable_dp(struct intel_encoder *encoder)
2310 {
2311 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2312 struct drm_device *dev = encoder->base.dev;
2313 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2314
2315 if (crtc->config->has_audio)
2316 intel_audio_codec_disable(encoder);
2317
2318 if (HAS_PSR(dev) && !HAS_DDI(dev))
2319 intel_psr_disable(intel_dp);
2320
2321 /* Make sure the panel is off before trying to change the mode. But also
2322 * ensure that we have vdd while we switch off the panel. */
2323 intel_edp_panel_vdd_on(intel_dp);
2324 intel_edp_backlight_off(intel_dp);
2325 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2326 intel_edp_panel_off(intel_dp);
2327
2328 /* disable the port before the pipe on g4x */
2329 if (INTEL_INFO(dev)->gen < 5)
2330 intel_dp_link_down(intel_dp);
2331 }
2332
2333 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2334 {
2335 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2336 enum port port = dp_to_dig_port(intel_dp)->port;
2337
2338 intel_dp_link_down(intel_dp);
2339 if (port == PORT_A)
2340 ironlake_edp_pll_off(intel_dp);
2341 }
2342
2343 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2344 {
2345 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2346
2347 intel_dp_link_down(intel_dp);
2348 }
2349
2350 static void chv_post_disable_dp(struct intel_encoder *encoder)
2351 {
2352 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2353 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2354 struct drm_device *dev = encoder->base.dev;
2355 struct drm_i915_private *dev_priv = dev->dev_private;
2356 struct intel_crtc *intel_crtc =
2357 to_intel_crtc(encoder->base.crtc);
2358 enum dpio_channel ch = vlv_dport_to_channel(dport);
2359 enum pipe pipe = intel_crtc->pipe;
2360 u32 val;
2361
2362 intel_dp_link_down(intel_dp);
2363
2364 mutex_lock(&dev_priv->sb_lock);
2365
2366 /* Propagate soft reset to data lane reset */
2367 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2368 val |= CHV_PCS_REQ_SOFTRESET_EN;
2369 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2370
2371 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2372 val |= CHV_PCS_REQ_SOFTRESET_EN;
2373 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2374
2375 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2376 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2377 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2378
2379 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2380 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2381 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2382
2383 mutex_unlock(&dev_priv->sb_lock);
2384 }
2385
2386 static void
2387 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2388 uint32_t *DP,
2389 uint8_t dp_train_pat)
2390 {
2391 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2392 struct drm_device *dev = intel_dig_port->base.base.dev;
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394 enum port port = intel_dig_port->port;
2395
2396 if (HAS_DDI(dev)) {
2397 uint32_t temp = I915_READ(DP_TP_CTL(port));
2398
2399 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2400 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2401 else
2402 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2403
2404 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2405 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2406 case DP_TRAINING_PATTERN_DISABLE:
2407 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2408
2409 break;
2410 case DP_TRAINING_PATTERN_1:
2411 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2412 break;
2413 case DP_TRAINING_PATTERN_2:
2414 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2415 break;
2416 case DP_TRAINING_PATTERN_3:
2417 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2418 break;
2419 }
2420 I915_WRITE(DP_TP_CTL(port), temp);
2421
2422 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2423 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2424 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2425
2426 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2427 case DP_TRAINING_PATTERN_DISABLE:
2428 *DP |= DP_LINK_TRAIN_OFF_CPT;
2429 break;
2430 case DP_TRAINING_PATTERN_1:
2431 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2432 break;
2433 case DP_TRAINING_PATTERN_2:
2434 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2435 break;
2436 case DP_TRAINING_PATTERN_3:
2437 DRM_ERROR("DP training pattern 3 not supported\n");
2438 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2439 break;
2440 }
2441
2442 } else {
2443 if (IS_CHERRYVIEW(dev))
2444 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2445 else
2446 *DP &= ~DP_LINK_TRAIN_MASK;
2447
2448 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2449 case DP_TRAINING_PATTERN_DISABLE:
2450 *DP |= DP_LINK_TRAIN_OFF;
2451 break;
2452 case DP_TRAINING_PATTERN_1:
2453 *DP |= DP_LINK_TRAIN_PAT_1;
2454 break;
2455 case DP_TRAINING_PATTERN_2:
2456 *DP |= DP_LINK_TRAIN_PAT_2;
2457 break;
2458 case DP_TRAINING_PATTERN_3:
2459 if (IS_CHERRYVIEW(dev)) {
2460 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2461 } else {
2462 DRM_ERROR("DP training pattern 3 not supported\n");
2463 *DP |= DP_LINK_TRAIN_PAT_2;
2464 }
2465 break;
2466 }
2467 }
2468 }
2469
2470 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2471 {
2472 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2473 struct drm_i915_private *dev_priv = dev->dev_private;
2474
2475 /* enable with pattern 1 (as per spec) */
2476 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2477 DP_TRAINING_PATTERN_1);
2478
2479 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2480 POSTING_READ(intel_dp->output_reg);
2481
2482 /*
2483 * Magic for VLV/CHV. We _must_ first set up the register
2484 * without actually enabling the port, and then do another
2485 * write to enable the port. Otherwise link training will
2486 * fail when the power sequencer is freshly used for this port.
2487 */
2488 intel_dp->DP |= DP_PORT_EN;
2489
2490 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2491 POSTING_READ(intel_dp->output_reg);
2492 }
2493
2494 static void intel_enable_dp(struct intel_encoder *encoder)
2495 {
2496 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2497 struct drm_device *dev = encoder->base.dev;
2498 struct drm_i915_private *dev_priv = dev->dev_private;
2499 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2500 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2501 unsigned int lane_mask = 0x0;
2502
2503 if (WARN_ON(dp_reg & DP_PORT_EN))
2504 return;
2505
2506 pps_lock(intel_dp);
2507
2508 if (IS_VALLEYVIEW(dev))
2509 vlv_init_panel_power_sequencer(intel_dp);
2510
2511 intel_dp_enable_port(intel_dp);
2512
2513 edp_panel_vdd_on(intel_dp);
2514 edp_panel_on(intel_dp);
2515 edp_panel_vdd_off(intel_dp, true);
2516
2517 pps_unlock(intel_dp);
2518
2519 if (IS_VALLEYVIEW(dev))
2520 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2521 lane_mask);
2522
2523 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2524 intel_dp_start_link_train(intel_dp);
2525 intel_dp_complete_link_train(intel_dp);
2526 intel_dp_stop_link_train(intel_dp);
2527
2528 if (crtc->config->has_audio) {
2529 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2530 pipe_name(crtc->pipe));
2531 intel_audio_codec_enable(encoder);
2532 }
2533 }
2534
2535 static void g4x_enable_dp(struct intel_encoder *encoder)
2536 {
2537 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2538
2539 intel_enable_dp(encoder);
2540 intel_edp_backlight_on(intel_dp);
2541 }
2542
2543 static void vlv_enable_dp(struct intel_encoder *encoder)
2544 {
2545 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2546
2547 intel_edp_backlight_on(intel_dp);
2548 intel_psr_enable(intel_dp);
2549 }
2550
2551 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2552 {
2553 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2554 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2555
2556 intel_dp_prepare(encoder);
2557
2558 /* Only ilk+ has port A */
2559 if (dport->port == PORT_A) {
2560 ironlake_set_pll_cpu_edp(intel_dp);
2561 ironlake_edp_pll_on(intel_dp);
2562 }
2563 }
2564
2565 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2566 {
2567 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2568 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2569 enum pipe pipe = intel_dp->pps_pipe;
2570 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2571
2572 edp_panel_vdd_off_sync(intel_dp);
2573
2574 /*
2575 * VLV seems to get confused when multiple power seqeuencers
2576 * have the same port selected (even if only one has power/vdd
2577 * enabled). The failure manifests as vlv_wait_port_ready() failing
2578 * CHV on the other hand doesn't seem to mind having the same port
2579 * selected in multiple power seqeuencers, but let's clear the
2580 * port select always when logically disconnecting a power sequencer
2581 * from a port.
2582 */
2583 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2584 pipe_name(pipe), port_name(intel_dig_port->port));
2585 I915_WRITE(pp_on_reg, 0);
2586 POSTING_READ(pp_on_reg);
2587
2588 intel_dp->pps_pipe = INVALID_PIPE;
2589 }
2590
2591 static void vlv_steal_power_sequencer(struct drm_device *dev,
2592 enum pipe pipe)
2593 {
2594 struct drm_i915_private *dev_priv = dev->dev_private;
2595 struct intel_encoder *encoder;
2596
2597 lockdep_assert_held(&dev_priv->pps_mutex);
2598
2599 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2600 return;
2601
2602 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2603 base.head) {
2604 struct intel_dp *intel_dp;
2605 enum port port;
2606
2607 if (encoder->type != INTEL_OUTPUT_EDP)
2608 continue;
2609
2610 intel_dp = enc_to_intel_dp(&encoder->base);
2611 port = dp_to_dig_port(intel_dp)->port;
2612
2613 if (intel_dp->pps_pipe != pipe)
2614 continue;
2615
2616 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2617 pipe_name(pipe), port_name(port));
2618
2619 WARN(encoder->connectors_active,
2620 "stealing pipe %c power sequencer from active eDP port %c\n",
2621 pipe_name(pipe), port_name(port));
2622
2623 /* make sure vdd is off before we steal it */
2624 vlv_detach_power_sequencer(intel_dp);
2625 }
2626 }
2627
2628 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2629 {
2630 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2631 struct intel_encoder *encoder = &intel_dig_port->base;
2632 struct drm_device *dev = encoder->base.dev;
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2635
2636 lockdep_assert_held(&dev_priv->pps_mutex);
2637
2638 if (!is_edp(intel_dp))
2639 return;
2640
2641 if (intel_dp->pps_pipe == crtc->pipe)
2642 return;
2643
2644 /*
2645 * If another power sequencer was being used on this
2646 * port previously make sure to turn off vdd there while
2647 * we still have control of it.
2648 */
2649 if (intel_dp->pps_pipe != INVALID_PIPE)
2650 vlv_detach_power_sequencer(intel_dp);
2651
2652 /*
2653 * We may be stealing the power
2654 * sequencer from another port.
2655 */
2656 vlv_steal_power_sequencer(dev, crtc->pipe);
2657
2658 /* now it's all ours */
2659 intel_dp->pps_pipe = crtc->pipe;
2660
2661 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2662 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2663
2664 /* init power sequencer on this pipe and port */
2665 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2666 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2667 }
2668
2669 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2670 {
2671 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2672 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2673 struct drm_device *dev = encoder->base.dev;
2674 struct drm_i915_private *dev_priv = dev->dev_private;
2675 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2676 enum dpio_channel port = vlv_dport_to_channel(dport);
2677 int pipe = intel_crtc->pipe;
2678 u32 val;
2679
2680 mutex_lock(&dev_priv->sb_lock);
2681
2682 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2683 val = 0;
2684 if (pipe)
2685 val |= (1<<21);
2686 else
2687 val &= ~(1<<21);
2688 val |= 0x001000c4;
2689 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2690 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2691 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2692
2693 mutex_unlock(&dev_priv->sb_lock);
2694
2695 intel_enable_dp(encoder);
2696 }
2697
2698 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2699 {
2700 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2701 struct drm_device *dev = encoder->base.dev;
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 struct intel_crtc *intel_crtc =
2704 to_intel_crtc(encoder->base.crtc);
2705 enum dpio_channel port = vlv_dport_to_channel(dport);
2706 int pipe = intel_crtc->pipe;
2707
2708 intel_dp_prepare(encoder);
2709
2710 /* Program Tx lane resets to default */
2711 mutex_lock(&dev_priv->sb_lock);
2712 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2713 DPIO_PCS_TX_LANE2_RESET |
2714 DPIO_PCS_TX_LANE1_RESET);
2715 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2716 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2717 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2718 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2719 DPIO_PCS_CLK_SOFT_RESET);
2720
2721 /* Fix up inter-pair skew failure */
2722 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2723 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2724 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2725 mutex_unlock(&dev_priv->sb_lock);
2726 }
2727
2728 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2729 {
2730 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2731 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2732 struct drm_device *dev = encoder->base.dev;
2733 struct drm_i915_private *dev_priv = dev->dev_private;
2734 struct intel_crtc *intel_crtc =
2735 to_intel_crtc(encoder->base.crtc);
2736 enum dpio_channel ch = vlv_dport_to_channel(dport);
2737 int pipe = intel_crtc->pipe;
2738 int data, i, stagger;
2739 u32 val;
2740
2741 mutex_lock(&dev_priv->sb_lock);
2742
2743 /* allow hardware to manage TX FIFO reset source */
2744 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2745 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2746 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2747
2748 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2749 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2750 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2751
2752 /* Deassert soft data lane reset*/
2753 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2754 val |= CHV_PCS_REQ_SOFTRESET_EN;
2755 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2756
2757 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2758 val |= CHV_PCS_REQ_SOFTRESET_EN;
2759 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2760
2761 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2762 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2763 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2764
2765 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2766 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2767 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2768
2769 /* Program Tx lane latency optimal setting*/
2770 for (i = 0; i < 4; i++) {
2771 /* Set the upar bit */
2772 data = (i == 1) ? 0x0 : 0x1;
2773 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2774 data << DPIO_UPAR_SHIFT);
2775 }
2776
2777 /* Data lane stagger programming */
2778 if (intel_crtc->config->port_clock > 270000)
2779 stagger = 0x18;
2780 else if (intel_crtc->config->port_clock > 135000)
2781 stagger = 0xd;
2782 else if (intel_crtc->config->port_clock > 67500)
2783 stagger = 0x7;
2784 else if (intel_crtc->config->port_clock > 33750)
2785 stagger = 0x4;
2786 else
2787 stagger = 0x2;
2788
2789 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2790 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2791 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2792
2793 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2794 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2795 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2796
2797 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2798 DPIO_LANESTAGGER_STRAP(stagger) |
2799 DPIO_LANESTAGGER_STRAP_OVRD |
2800 DPIO_TX1_STAGGER_MASK(0x1f) |
2801 DPIO_TX1_STAGGER_MULT(6) |
2802 DPIO_TX2_STAGGER_MULT(0));
2803
2804 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2805 DPIO_LANESTAGGER_STRAP(stagger) |
2806 DPIO_LANESTAGGER_STRAP_OVRD |
2807 DPIO_TX1_STAGGER_MASK(0x1f) |
2808 DPIO_TX1_STAGGER_MULT(7) |
2809 DPIO_TX2_STAGGER_MULT(5));
2810
2811 mutex_unlock(&dev_priv->sb_lock);
2812
2813 intel_enable_dp(encoder);
2814 }
2815
2816 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2817 {
2818 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2819 struct drm_device *dev = encoder->base.dev;
2820 struct drm_i915_private *dev_priv = dev->dev_private;
2821 struct intel_crtc *intel_crtc =
2822 to_intel_crtc(encoder->base.crtc);
2823 enum dpio_channel ch = vlv_dport_to_channel(dport);
2824 enum pipe pipe = intel_crtc->pipe;
2825 u32 val;
2826
2827 intel_dp_prepare(encoder);
2828
2829 mutex_lock(&dev_priv->sb_lock);
2830
2831 /* program left/right clock distribution */
2832 if (pipe != PIPE_B) {
2833 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2834 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2835 if (ch == DPIO_CH0)
2836 val |= CHV_BUFLEFTENA1_FORCE;
2837 if (ch == DPIO_CH1)
2838 val |= CHV_BUFRIGHTENA1_FORCE;
2839 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2840 } else {
2841 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2842 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2843 if (ch == DPIO_CH0)
2844 val |= CHV_BUFLEFTENA2_FORCE;
2845 if (ch == DPIO_CH1)
2846 val |= CHV_BUFRIGHTENA2_FORCE;
2847 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2848 }
2849
2850 /* program clock channel usage */
2851 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2852 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2853 if (pipe != PIPE_B)
2854 val &= ~CHV_PCS_USEDCLKCHANNEL;
2855 else
2856 val |= CHV_PCS_USEDCLKCHANNEL;
2857 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2858
2859 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2860 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2861 if (pipe != PIPE_B)
2862 val &= ~CHV_PCS_USEDCLKCHANNEL;
2863 else
2864 val |= CHV_PCS_USEDCLKCHANNEL;
2865 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2866
2867 /*
2868 * This a a bit weird since generally CL
2869 * matches the pipe, but here we need to
2870 * pick the CL based on the port.
2871 */
2872 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2873 if (pipe != PIPE_B)
2874 val &= ~CHV_CMN_USEDCLKCHANNEL;
2875 else
2876 val |= CHV_CMN_USEDCLKCHANNEL;
2877 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2878
2879 mutex_unlock(&dev_priv->sb_lock);
2880 }
2881
2882 /*
2883 * Native read with retry for link status and receiver capability reads for
2884 * cases where the sink may still be asleep.
2885 *
2886 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2887 * supposed to retry 3 times per the spec.
2888 */
2889 static ssize_t
2890 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2891 void *buffer, size_t size)
2892 {
2893 ssize_t ret;
2894 int i;
2895
2896 /*
2897 * Sometime we just get the same incorrect byte repeated
2898 * over the entire buffer. Doing just one throw away read
2899 * initially seems to "solve" it.
2900 */
2901 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2902
2903 for (i = 0; i < 3; i++) {
2904 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2905 if (ret == size)
2906 return ret;
2907 msleep(1);
2908 }
2909
2910 return ret;
2911 }
2912
2913 /*
2914 * Fetch AUX CH registers 0x202 - 0x207 which contain
2915 * link status information
2916 */
2917 static bool
2918 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2919 {
2920 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2921 DP_LANE0_1_STATUS,
2922 link_status,
2923 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2924 }
2925
2926 /* These are source-specific values. */
2927 static uint8_t
2928 intel_dp_voltage_max(struct intel_dp *intel_dp)
2929 {
2930 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 enum port port = dp_to_dig_port(intel_dp)->port;
2933
2934 if (IS_BROXTON(dev))
2935 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2936 else if (INTEL_INFO(dev)->gen >= 9) {
2937 if (dev_priv->edp_low_vswing && port == PORT_A)
2938 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2939 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2940 } else if (IS_VALLEYVIEW(dev))
2941 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2942 else if (IS_GEN7(dev) && port == PORT_A)
2943 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2944 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2945 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2946 else
2947 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2948 }
2949
2950 static uint8_t
2951 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2952 {
2953 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2954 enum port port = dp_to_dig_port(intel_dp)->port;
2955
2956 if (INTEL_INFO(dev)->gen >= 9) {
2957 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2958 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2959 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2960 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2961 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2962 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2963 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2964 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2965 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2966 default:
2967 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2968 }
2969 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2970 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2972 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2973 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2974 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2975 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2976 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2977 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2978 default:
2979 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2980 }
2981 } else if (IS_VALLEYVIEW(dev)) {
2982 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2983 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2984 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2985 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2986 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2987 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2988 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2989 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2990 default:
2991 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2992 }
2993 } else if (IS_GEN7(dev) && port == PORT_A) {
2994 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2996 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2997 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2998 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2999 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3000 default:
3001 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3002 }
3003 } else {
3004 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3005 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3006 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3007 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3008 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3009 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3010 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3011 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3012 default:
3013 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3014 }
3015 }
3016 }
3017
3018 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3019 {
3020 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3023 struct intel_crtc *intel_crtc =
3024 to_intel_crtc(dport->base.base.crtc);
3025 unsigned long demph_reg_value, preemph_reg_value,
3026 uniqtranscale_reg_value;
3027 uint8_t train_set = intel_dp->train_set[0];
3028 enum dpio_channel port = vlv_dport_to_channel(dport);
3029 int pipe = intel_crtc->pipe;
3030
3031 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3032 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3033 preemph_reg_value = 0x0004000;
3034 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3036 demph_reg_value = 0x2B405555;
3037 uniqtranscale_reg_value = 0x552AB83A;
3038 break;
3039 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3040 demph_reg_value = 0x2B404040;
3041 uniqtranscale_reg_value = 0x5548B83A;
3042 break;
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3044 demph_reg_value = 0x2B245555;
3045 uniqtranscale_reg_value = 0x5560B83A;
3046 break;
3047 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3048 demph_reg_value = 0x2B405555;
3049 uniqtranscale_reg_value = 0x5598DA3A;
3050 break;
3051 default:
3052 return 0;
3053 }
3054 break;
3055 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3056 preemph_reg_value = 0x0002000;
3057 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3058 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3059 demph_reg_value = 0x2B404040;
3060 uniqtranscale_reg_value = 0x5552B83A;
3061 break;
3062 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3063 demph_reg_value = 0x2B404848;
3064 uniqtranscale_reg_value = 0x5580B83A;
3065 break;
3066 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3067 demph_reg_value = 0x2B404040;
3068 uniqtranscale_reg_value = 0x55ADDA3A;
3069 break;
3070 default:
3071 return 0;
3072 }
3073 break;
3074 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3075 preemph_reg_value = 0x0000000;
3076 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3077 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3078 demph_reg_value = 0x2B305555;
3079 uniqtranscale_reg_value = 0x5570B83A;
3080 break;
3081 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3082 demph_reg_value = 0x2B2B4040;
3083 uniqtranscale_reg_value = 0x55ADDA3A;
3084 break;
3085 default:
3086 return 0;
3087 }
3088 break;
3089 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3090 preemph_reg_value = 0x0006000;
3091 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3092 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3093 demph_reg_value = 0x1B405555;
3094 uniqtranscale_reg_value = 0x55ADDA3A;
3095 break;
3096 default:
3097 return 0;
3098 }
3099 break;
3100 default:
3101 return 0;
3102 }
3103
3104 mutex_lock(&dev_priv->sb_lock);
3105 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3106 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3107 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3108 uniqtranscale_reg_value);
3109 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3110 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3111 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3112 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3113 mutex_unlock(&dev_priv->sb_lock);
3114
3115 return 0;
3116 }
3117
3118 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3119 {
3120 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3123 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3124 u32 deemph_reg_value, margin_reg_value, val;
3125 uint8_t train_set = intel_dp->train_set[0];
3126 enum dpio_channel ch = vlv_dport_to_channel(dport);
3127 enum pipe pipe = intel_crtc->pipe;
3128 int i;
3129
3130 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3131 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3132 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3133 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3134 deemph_reg_value = 128;
3135 margin_reg_value = 52;
3136 break;
3137 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3138 deemph_reg_value = 128;
3139 margin_reg_value = 77;
3140 break;
3141 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3142 deemph_reg_value = 128;
3143 margin_reg_value = 102;
3144 break;
3145 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3146 deemph_reg_value = 128;
3147 margin_reg_value = 154;
3148 /* FIXME extra to set for 1200 */
3149 break;
3150 default:
3151 return 0;
3152 }
3153 break;
3154 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3155 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3156 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3157 deemph_reg_value = 85;
3158 margin_reg_value = 78;
3159 break;
3160 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3161 deemph_reg_value = 85;
3162 margin_reg_value = 116;
3163 break;
3164 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3165 deemph_reg_value = 85;
3166 margin_reg_value = 154;
3167 break;
3168 default:
3169 return 0;
3170 }
3171 break;
3172 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3173 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3174 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3175 deemph_reg_value = 64;
3176 margin_reg_value = 104;
3177 break;
3178 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3179 deemph_reg_value = 64;
3180 margin_reg_value = 154;
3181 break;
3182 default:
3183 return 0;
3184 }
3185 break;
3186 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3187 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3189 deemph_reg_value = 43;
3190 margin_reg_value = 154;
3191 break;
3192 default:
3193 return 0;
3194 }
3195 break;
3196 default:
3197 return 0;
3198 }
3199
3200 mutex_lock(&dev_priv->sb_lock);
3201
3202 /* Clear calc init */
3203 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3204 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3205 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3206 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3207 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3208
3209 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3210 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3211 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3212 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3213 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3214
3215 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3216 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3217 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3218 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3219
3220 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3221 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3222 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3223 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3224
3225 /* Program swing deemph */
3226 for (i = 0; i < 4; i++) {
3227 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3228 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3229 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3230 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3231 }
3232
3233 /* Program swing margin */
3234 for (i = 0; i < 4; i++) {
3235 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3236 val &= ~DPIO_SWING_MARGIN000_MASK;
3237 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3238 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3239 }
3240
3241 /* Disable unique transition scale */
3242 for (i = 0; i < 4; i++) {
3243 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3244 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3245 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3246 }
3247
3248 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3249 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3250 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3251 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3252
3253 /*
3254 * The document said it needs to set bit 27 for ch0 and bit 26
3255 * for ch1. Might be a typo in the doc.
3256 * For now, for this unique transition scale selection, set bit
3257 * 27 for ch0 and ch1.
3258 */
3259 for (i = 0; i < 4; i++) {
3260 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3261 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3262 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3263 }
3264
3265 for (i = 0; i < 4; i++) {
3266 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3267 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3268 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3269 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3270 }
3271 }
3272
3273 /* Start swing calculation */
3274 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3275 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3276 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3277
3278 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3279 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3280 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3281
3282 /* LRC Bypass */
3283 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3284 val |= DPIO_LRC_BYPASS;
3285 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3286
3287 mutex_unlock(&dev_priv->sb_lock);
3288
3289 return 0;
3290 }
3291
3292 static void
3293 intel_get_adjust_train(struct intel_dp *intel_dp,
3294 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3295 {
3296 uint8_t v = 0;
3297 uint8_t p = 0;
3298 int lane;
3299 uint8_t voltage_max;
3300 uint8_t preemph_max;
3301
3302 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3303 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3304 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3305
3306 if (this_v > v)
3307 v = this_v;
3308 if (this_p > p)
3309 p = this_p;
3310 }
3311
3312 voltage_max = intel_dp_voltage_max(intel_dp);
3313 if (v >= voltage_max)
3314 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3315
3316 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3317 if (p >= preemph_max)
3318 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3319
3320 for (lane = 0; lane < 4; lane++)
3321 intel_dp->train_set[lane] = v | p;
3322 }
3323
3324 static uint32_t
3325 gen4_signal_levels(uint8_t train_set)
3326 {
3327 uint32_t signal_levels = 0;
3328
3329 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3331 default:
3332 signal_levels |= DP_VOLTAGE_0_4;
3333 break;
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3335 signal_levels |= DP_VOLTAGE_0_6;
3336 break;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3338 signal_levels |= DP_VOLTAGE_0_8;
3339 break;
3340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3341 signal_levels |= DP_VOLTAGE_1_2;
3342 break;
3343 }
3344 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3345 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3346 default:
3347 signal_levels |= DP_PRE_EMPHASIS_0;
3348 break;
3349 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3350 signal_levels |= DP_PRE_EMPHASIS_3_5;
3351 break;
3352 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3353 signal_levels |= DP_PRE_EMPHASIS_6;
3354 break;
3355 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3356 signal_levels |= DP_PRE_EMPHASIS_9_5;
3357 break;
3358 }
3359 return signal_levels;
3360 }
3361
3362 /* Gen6's DP voltage swing and pre-emphasis control */
3363 static uint32_t
3364 gen6_edp_signal_levels(uint8_t train_set)
3365 {
3366 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3367 DP_TRAIN_PRE_EMPHASIS_MASK);
3368 switch (signal_levels) {
3369 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3370 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3371 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3372 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3373 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3376 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3377 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3378 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3379 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3380 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3381 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3382 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3383 default:
3384 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3385 "0x%x\n", signal_levels);
3386 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3387 }
3388 }
3389
3390 /* Gen7's DP voltage swing and pre-emphasis control */
3391 static uint32_t
3392 gen7_edp_signal_levels(uint8_t train_set)
3393 {
3394 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3395 DP_TRAIN_PRE_EMPHASIS_MASK);
3396 switch (signal_levels) {
3397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3398 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3399 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3400 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3401 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3402 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3403
3404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3405 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3406 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3407 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3408
3409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3410 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3411 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3412 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3413
3414 default:
3415 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3416 "0x%x\n", signal_levels);
3417 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3418 }
3419 }
3420
3421 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3422 static uint32_t
3423 hsw_signal_levels(uint8_t train_set)
3424 {
3425 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3426 DP_TRAIN_PRE_EMPHASIS_MASK);
3427 switch (signal_levels) {
3428 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3429 return DDI_BUF_TRANS_SELECT(0);
3430 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3431 return DDI_BUF_TRANS_SELECT(1);
3432 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3433 return DDI_BUF_TRANS_SELECT(2);
3434 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3435 return DDI_BUF_TRANS_SELECT(3);
3436
3437 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3438 return DDI_BUF_TRANS_SELECT(4);
3439 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3440 return DDI_BUF_TRANS_SELECT(5);
3441 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3442 return DDI_BUF_TRANS_SELECT(6);
3443
3444 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3445 return DDI_BUF_TRANS_SELECT(7);
3446 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3447 return DDI_BUF_TRANS_SELECT(8);
3448
3449 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3450 return DDI_BUF_TRANS_SELECT(9);
3451 default:
3452 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3453 "0x%x\n", signal_levels);
3454 return DDI_BUF_TRANS_SELECT(0);
3455 }
3456 }
3457
3458 static void bxt_signal_levels(struct intel_dp *intel_dp)
3459 {
3460 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3461 enum port port = dport->port;
3462 struct drm_device *dev = dport->base.base.dev;
3463 struct intel_encoder *encoder = &dport->base;
3464 uint8_t train_set = intel_dp->train_set[0];
3465 uint32_t level = 0;
3466
3467 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3468 DP_TRAIN_PRE_EMPHASIS_MASK);
3469 switch (signal_levels) {
3470 default:
3471 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n");
3472 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3473 level = 0;
3474 break;
3475 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3476 level = 1;
3477 break;
3478 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3479 level = 2;
3480 break;
3481 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3482 level = 3;
3483 break;
3484 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3485 level = 4;
3486 break;
3487 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3488 level = 5;
3489 break;
3490 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3491 level = 6;
3492 break;
3493 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3494 level = 7;
3495 break;
3496 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3497 level = 8;
3498 break;
3499 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3500 level = 9;
3501 break;
3502 }
3503
3504 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
3505 }
3506
3507 /* Properly updates "DP" with the correct signal levels. */
3508 static void
3509 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3510 {
3511 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3512 enum port port = intel_dig_port->port;
3513 struct drm_device *dev = intel_dig_port->base.base.dev;
3514 uint32_t signal_levels, mask;
3515 uint8_t train_set = intel_dp->train_set[0];
3516
3517 if (IS_BROXTON(dev)) {
3518 signal_levels = 0;
3519 bxt_signal_levels(intel_dp);
3520 mask = 0;
3521 } else if (HAS_DDI(dev)) {
3522 signal_levels = hsw_signal_levels(train_set);
3523 mask = DDI_BUF_EMP_MASK;
3524 } else if (IS_CHERRYVIEW(dev)) {
3525 signal_levels = chv_signal_levels(intel_dp);
3526 mask = 0;
3527 } else if (IS_VALLEYVIEW(dev)) {
3528 signal_levels = vlv_signal_levels(intel_dp);
3529 mask = 0;
3530 } else if (IS_GEN7(dev) && port == PORT_A) {
3531 signal_levels = gen7_edp_signal_levels(train_set);
3532 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3533 } else if (IS_GEN6(dev) && port == PORT_A) {
3534 signal_levels = gen6_edp_signal_levels(train_set);
3535 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3536 } else {
3537 signal_levels = gen4_signal_levels(train_set);
3538 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3539 }
3540
3541 if (mask)
3542 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3543
3544 DRM_DEBUG_KMS("Using vswing level %d\n",
3545 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3546 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3547 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3548 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3549
3550 *DP = (*DP & ~mask) | signal_levels;
3551 }
3552
3553 static bool
3554 intel_dp_set_link_train(struct intel_dp *intel_dp,
3555 uint32_t *DP,
3556 uint8_t dp_train_pat)
3557 {
3558 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3559 struct drm_device *dev = intel_dig_port->base.base.dev;
3560 struct drm_i915_private *dev_priv = dev->dev_private;
3561 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3562 int ret, len;
3563
3564 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3565
3566 I915_WRITE(intel_dp->output_reg, *DP);
3567 POSTING_READ(intel_dp->output_reg);
3568
3569 buf[0] = dp_train_pat;
3570 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3571 DP_TRAINING_PATTERN_DISABLE) {
3572 /* don't write DP_TRAINING_LANEx_SET on disable */
3573 len = 1;
3574 } else {
3575 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3576 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3577 len = intel_dp->lane_count + 1;
3578 }
3579
3580 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3581 buf, len);
3582
3583 return ret == len;
3584 }
3585
3586 static bool
3587 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3588 uint8_t dp_train_pat)
3589 {
3590 if (!intel_dp->train_set_valid)
3591 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3592 intel_dp_set_signal_levels(intel_dp, DP);
3593 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3594 }
3595
3596 static bool
3597 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3598 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3599 {
3600 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3601 struct drm_device *dev = intel_dig_port->base.base.dev;
3602 struct drm_i915_private *dev_priv = dev->dev_private;
3603 int ret;
3604
3605 intel_get_adjust_train(intel_dp, link_status);
3606 intel_dp_set_signal_levels(intel_dp, DP);
3607
3608 I915_WRITE(intel_dp->output_reg, *DP);
3609 POSTING_READ(intel_dp->output_reg);
3610
3611 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3612 intel_dp->train_set, intel_dp->lane_count);
3613
3614 return ret == intel_dp->lane_count;
3615 }
3616
3617 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3618 {
3619 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3620 struct drm_device *dev = intel_dig_port->base.base.dev;
3621 struct drm_i915_private *dev_priv = dev->dev_private;
3622 enum port port = intel_dig_port->port;
3623 uint32_t val;
3624
3625 if (!HAS_DDI(dev))
3626 return;
3627
3628 val = I915_READ(DP_TP_CTL(port));
3629 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3630 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3631 I915_WRITE(DP_TP_CTL(port), val);
3632
3633 /*
3634 * On PORT_A we can have only eDP in SST mode. There the only reason
3635 * we need to set idle transmission mode is to work around a HW issue
3636 * where we enable the pipe while not in idle link-training mode.
3637 * In this case there is requirement to wait for a minimum number of
3638 * idle patterns to be sent.
3639 */
3640 if (port == PORT_A)
3641 return;
3642
3643 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3644 1))
3645 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3646 }
3647
3648 /* Enable corresponding port and start training pattern 1 */
3649 void
3650 intel_dp_start_link_train(struct intel_dp *intel_dp)
3651 {
3652 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3653 struct drm_device *dev = encoder->dev;
3654 int i;
3655 uint8_t voltage;
3656 int voltage_tries, loop_tries;
3657 uint32_t DP = intel_dp->DP;
3658 uint8_t link_config[2];
3659
3660 if (HAS_DDI(dev))
3661 intel_ddi_prepare_link_retrain(encoder);
3662
3663 /* Write the link configuration data */
3664 link_config[0] = intel_dp->link_bw;
3665 link_config[1] = intel_dp->lane_count;
3666 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3667 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3668 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3669 if (intel_dp->num_sink_rates)
3670 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3671 &intel_dp->rate_select, 1);
3672
3673 link_config[0] = 0;
3674 link_config[1] = DP_SET_ANSI_8B10B;
3675 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3676
3677 DP |= DP_PORT_EN;
3678
3679 /* clock recovery */
3680 if (!intel_dp_reset_link_train(intel_dp, &DP,
3681 DP_TRAINING_PATTERN_1 |
3682 DP_LINK_SCRAMBLING_DISABLE)) {
3683 DRM_ERROR("failed to enable link training\n");
3684 return;
3685 }
3686
3687 voltage = 0xff;
3688 voltage_tries = 0;
3689 loop_tries = 0;
3690 for (;;) {
3691 uint8_t link_status[DP_LINK_STATUS_SIZE];
3692
3693 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3694 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3695 DRM_ERROR("failed to get link status\n");
3696 break;
3697 }
3698
3699 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3700 DRM_DEBUG_KMS("clock recovery OK\n");
3701 break;
3702 }
3703
3704 /*
3705 * if we used previously trained voltage and pre-emphasis values
3706 * and we don't get clock recovery, reset link training values
3707 */
3708 if (intel_dp->train_set_valid) {
3709 DRM_DEBUG_KMS("clock recovery not ok, reset");
3710 /* clear the flag as we are not reusing train set */
3711 intel_dp->train_set_valid = false;
3712 if (!intel_dp_reset_link_train(intel_dp, &DP,
3713 DP_TRAINING_PATTERN_1 |
3714 DP_LINK_SCRAMBLING_DISABLE)) {
3715 DRM_ERROR("failed to enable link training\n");
3716 return;
3717 }
3718 continue;
3719 }
3720
3721 /* Check to see if we've tried the max voltage */
3722 for (i = 0; i < intel_dp->lane_count; i++)
3723 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3724 break;
3725 if (i == intel_dp->lane_count) {
3726 ++loop_tries;
3727 if (loop_tries == 5) {
3728 DRM_ERROR("too many full retries, give up\n");
3729 break;
3730 }
3731 intel_dp_reset_link_train(intel_dp, &DP,
3732 DP_TRAINING_PATTERN_1 |
3733 DP_LINK_SCRAMBLING_DISABLE);
3734 voltage_tries = 0;
3735 continue;
3736 }
3737
3738 /* Check to see if we've tried the same voltage 5 times */
3739 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3740 ++voltage_tries;
3741 if (voltage_tries == 5) {
3742 DRM_ERROR("too many voltage retries, give up\n");
3743 break;
3744 }
3745 } else
3746 voltage_tries = 0;
3747 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3748
3749 /* Update training set as requested by target */
3750 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3751 DRM_ERROR("failed to update link training\n");
3752 break;
3753 }
3754 }
3755
3756 intel_dp->DP = DP;
3757 }
3758
3759 void
3760 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3761 {
3762 bool channel_eq = false;
3763 int tries, cr_tries;
3764 uint32_t DP = intel_dp->DP;
3765 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3766
3767 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3768 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3769 training_pattern = DP_TRAINING_PATTERN_3;
3770
3771 /* channel equalization */
3772 if (!intel_dp_set_link_train(intel_dp, &DP,
3773 training_pattern |
3774 DP_LINK_SCRAMBLING_DISABLE)) {
3775 DRM_ERROR("failed to start channel equalization\n");
3776 return;
3777 }
3778
3779 tries = 0;
3780 cr_tries = 0;
3781 channel_eq = false;
3782 for (;;) {
3783 uint8_t link_status[DP_LINK_STATUS_SIZE];
3784
3785 if (cr_tries > 5) {
3786 DRM_ERROR("failed to train DP, aborting\n");
3787 break;
3788 }
3789
3790 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3791 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3792 DRM_ERROR("failed to get link status\n");
3793 break;
3794 }
3795
3796 /* Make sure clock is still ok */
3797 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3798 intel_dp->train_set_valid = false;
3799 intel_dp_start_link_train(intel_dp);
3800 intel_dp_set_link_train(intel_dp, &DP,
3801 training_pattern |
3802 DP_LINK_SCRAMBLING_DISABLE);
3803 cr_tries++;
3804 continue;
3805 }
3806
3807 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3808 channel_eq = true;
3809 break;
3810 }
3811
3812 /* Try 5 times, then try clock recovery if that fails */
3813 if (tries > 5) {
3814 intel_dp->train_set_valid = false;
3815 intel_dp_start_link_train(intel_dp);
3816 intel_dp_set_link_train(intel_dp, &DP,
3817 training_pattern |
3818 DP_LINK_SCRAMBLING_DISABLE);
3819 tries = 0;
3820 cr_tries++;
3821 continue;
3822 }
3823
3824 /* Update training set as requested by target */
3825 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3826 DRM_ERROR("failed to update link training\n");
3827 break;
3828 }
3829 ++tries;
3830 }
3831
3832 intel_dp_set_idle_link_train(intel_dp);
3833
3834 intel_dp->DP = DP;
3835
3836 if (channel_eq) {
3837 intel_dp->train_set_valid = true;
3838 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3839 }
3840 }
3841
3842 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3843 {
3844 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3845 DP_TRAINING_PATTERN_DISABLE);
3846 }
3847
3848 static void
3849 intel_dp_link_down(struct intel_dp *intel_dp)
3850 {
3851 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3852 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3853 enum port port = intel_dig_port->port;
3854 struct drm_device *dev = intel_dig_port->base.base.dev;
3855 struct drm_i915_private *dev_priv = dev->dev_private;
3856 uint32_t DP = intel_dp->DP;
3857
3858 if (WARN_ON(HAS_DDI(dev)))
3859 return;
3860
3861 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3862 return;
3863
3864 DRM_DEBUG_KMS("\n");
3865
3866 if ((IS_GEN7(dev) && port == PORT_A) ||
3867 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3868 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3869 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3870 } else {
3871 if (IS_CHERRYVIEW(dev))
3872 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3873 else
3874 DP &= ~DP_LINK_TRAIN_MASK;
3875 DP |= DP_LINK_TRAIN_PAT_IDLE;
3876 }
3877 I915_WRITE(intel_dp->output_reg, DP);
3878 POSTING_READ(intel_dp->output_reg);
3879
3880 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3881 I915_WRITE(intel_dp->output_reg, DP);
3882 POSTING_READ(intel_dp->output_reg);
3883
3884 /*
3885 * HW workaround for IBX, we need to move the port
3886 * to transcoder A after disabling it to allow the
3887 * matching HDMI port to be enabled on transcoder A.
3888 */
3889 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3890 /* always enable with pattern 1 (as per spec) */
3891 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3892 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3893 I915_WRITE(intel_dp->output_reg, DP);
3894 POSTING_READ(intel_dp->output_reg);
3895
3896 DP &= ~DP_PORT_EN;
3897 I915_WRITE(intel_dp->output_reg, DP);
3898 POSTING_READ(intel_dp->output_reg);
3899 }
3900
3901 msleep(intel_dp->panel_power_down_delay);
3902 }
3903
3904 static bool
3905 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3906 {
3907 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3908 struct drm_device *dev = dig_port->base.base.dev;
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910 uint8_t rev;
3911
3912 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3913 sizeof(intel_dp->dpcd)) < 0)
3914 return false; /* aux transfer failed */
3915
3916 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3917
3918 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3919 return false; /* DPCD not present */
3920
3921 /* Check if the panel supports PSR */
3922 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3923 if (is_edp(intel_dp)) {
3924 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3925 intel_dp->psr_dpcd,
3926 sizeof(intel_dp->psr_dpcd));
3927 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3928 dev_priv->psr.sink_support = true;
3929 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3930 }
3931
3932 if (INTEL_INFO(dev)->gen >= 9 &&
3933 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3934 uint8_t frame_sync_cap;
3935
3936 dev_priv->psr.sink_support = true;
3937 intel_dp_dpcd_read_wake(&intel_dp->aux,
3938 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3939 &frame_sync_cap, 1);
3940 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3941 /* PSR2 needs frame sync as well */
3942 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3943 DRM_DEBUG_KMS("PSR2 %s on sink",
3944 dev_priv->psr.psr2_support ? "supported" : "not supported");
3945 }
3946 }
3947
3948 /* Training Pattern 3 support, Intel platforms that support HBR2 alone
3949 * have support for TP3 hence that check is used along with dpcd check
3950 * to ensure TP3 can be enabled.
3951 * SKL < B0: due it's WaDisableHBR2 is the only exception where TP3 is
3952 * supported but still not enabled.
3953 */
3954 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3955 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3956 intel_dp_source_supports_hbr2(dev)) {
3957 intel_dp->use_tps3 = true;
3958 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3959 } else
3960 intel_dp->use_tps3 = false;
3961
3962 /* Intermediate frequency support */
3963 if (is_edp(intel_dp) &&
3964 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3965 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3966 (rev >= 0x03)) { /* eDp v1.4 or higher */
3967 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3968 int i;
3969
3970 intel_dp_dpcd_read_wake(&intel_dp->aux,
3971 DP_SUPPORTED_LINK_RATES,
3972 sink_rates,
3973 sizeof(sink_rates));
3974
3975 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3976 int val = le16_to_cpu(sink_rates[i]);
3977
3978 if (val == 0)
3979 break;
3980
3981 /* Value read is in kHz while drm clock is saved in deca-kHz */
3982 intel_dp->sink_rates[i] = (val * 200) / 10;
3983 }
3984 intel_dp->num_sink_rates = i;
3985 }
3986
3987 intel_dp_print_rates(intel_dp);
3988
3989 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3990 DP_DWN_STRM_PORT_PRESENT))
3991 return true; /* native DP sink */
3992
3993 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3994 return true; /* no per-port downstream info */
3995
3996 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3997 intel_dp->downstream_ports,
3998 DP_MAX_DOWNSTREAM_PORTS) < 0)
3999 return false; /* downstream port status fetch failed */
4000
4001 return true;
4002 }
4003
4004 static void
4005 intel_dp_probe_oui(struct intel_dp *intel_dp)
4006 {
4007 u8 buf[3];
4008
4009 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
4010 return;
4011
4012 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4013 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4014 buf[0], buf[1], buf[2]);
4015
4016 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4017 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4018 buf[0], buf[1], buf[2]);
4019 }
4020
4021 static bool
4022 intel_dp_probe_mst(struct intel_dp *intel_dp)
4023 {
4024 u8 buf[1];
4025
4026 if (!intel_dp->can_mst)
4027 return false;
4028
4029 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4030 return false;
4031
4032 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4033 if (buf[0] & DP_MST_CAP) {
4034 DRM_DEBUG_KMS("Sink is MST capable\n");
4035 intel_dp->is_mst = true;
4036 } else {
4037 DRM_DEBUG_KMS("Sink is not MST capable\n");
4038 intel_dp->is_mst = false;
4039 }
4040 }
4041
4042 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4043 return intel_dp->is_mst;
4044 }
4045
4046 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4047 {
4048 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4049 struct drm_device *dev = intel_dig_port->base.base.dev;
4050 struct intel_crtc *intel_crtc =
4051 to_intel_crtc(intel_dig_port->base.base.crtc);
4052 u8 buf;
4053 int test_crc_count;
4054 int attempts = 6;
4055 int ret = 0;
4056
4057 hsw_disable_ips(intel_crtc);
4058
4059 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4060 ret = -EIO;
4061 goto out;
4062 }
4063
4064 if (!(buf & DP_TEST_CRC_SUPPORTED)) {
4065 ret = -ENOTTY;
4066 goto out;
4067 }
4068
4069 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4070 ret = -EIO;
4071 goto out;
4072 }
4073
4074 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4075 buf | DP_TEST_SINK_START) < 0) {
4076 ret = -EIO;
4077 goto out;
4078 }
4079
4080 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0) {
4081 ret = -EIO;
4082 goto out;
4083 }
4084
4085 test_crc_count = buf & DP_TEST_COUNT_MASK;
4086
4087 do {
4088 if (drm_dp_dpcd_readb(&intel_dp->aux,
4089 DP_TEST_SINK_MISC, &buf) < 0) {
4090 ret = -EIO;
4091 goto out;
4092 }
4093 intel_wait_for_vblank(dev, intel_crtc->pipe);
4094 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4095
4096 if (attempts == 0) {
4097 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4098 ret = -ETIMEDOUT;
4099 goto out;
4100 }
4101
4102 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4103 ret = -EIO;
4104 goto out;
4105 }
4106
4107 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4108 ret = -EIO;
4109 goto out;
4110 }
4111 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4112 buf & ~DP_TEST_SINK_START) < 0) {
4113 ret = -EIO;
4114 goto out;
4115 }
4116 out:
4117 hsw_enable_ips(intel_crtc);
4118 return ret;
4119 }
4120
4121 static bool
4122 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4123 {
4124 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4125 DP_DEVICE_SERVICE_IRQ_VECTOR,
4126 sink_irq_vector, 1) == 1;
4127 }
4128
4129 static bool
4130 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4131 {
4132 int ret;
4133
4134 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4135 DP_SINK_COUNT_ESI,
4136 sink_irq_vector, 14);
4137 if (ret != 14)
4138 return false;
4139
4140 return true;
4141 }
4142
4143 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4144 {
4145 uint8_t test_result = DP_TEST_ACK;
4146 return test_result;
4147 }
4148
4149 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4150 {
4151 uint8_t test_result = DP_TEST_NAK;
4152 return test_result;
4153 }
4154
4155 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4156 {
4157 uint8_t test_result = DP_TEST_NAK;
4158 struct intel_connector *intel_connector = intel_dp->attached_connector;
4159 struct drm_connector *connector = &intel_connector->base;
4160
4161 if (intel_connector->detect_edid == NULL ||
4162 connector->edid_corrupt ||
4163 intel_dp->aux.i2c_defer_count > 6) {
4164 /* Check EDID read for NACKs, DEFERs and corruption
4165 * (DP CTS 1.2 Core r1.1)
4166 * 4.2.2.4 : Failed EDID read, I2C_NAK
4167 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4168 * 4.2.2.6 : EDID corruption detected
4169 * Use failsafe mode for all cases
4170 */
4171 if (intel_dp->aux.i2c_nack_count > 0 ||
4172 intel_dp->aux.i2c_defer_count > 0)
4173 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4174 intel_dp->aux.i2c_nack_count,
4175 intel_dp->aux.i2c_defer_count);
4176 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4177 } else {
4178 if (!drm_dp_dpcd_write(&intel_dp->aux,
4179 DP_TEST_EDID_CHECKSUM,
4180 &intel_connector->detect_edid->checksum,
4181 1))
4182 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4183
4184 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4185 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4186 }
4187
4188 /* Set test active flag here so userspace doesn't interrupt things */
4189 intel_dp->compliance_test_active = 1;
4190
4191 return test_result;
4192 }
4193
4194 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4195 {
4196 uint8_t test_result = DP_TEST_NAK;
4197 return test_result;
4198 }
4199
4200 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4201 {
4202 uint8_t response = DP_TEST_NAK;
4203 uint8_t rxdata = 0;
4204 int status = 0;
4205
4206 intel_dp->compliance_test_active = 0;
4207 intel_dp->compliance_test_type = 0;
4208 intel_dp->compliance_test_data = 0;
4209
4210 intel_dp->aux.i2c_nack_count = 0;
4211 intel_dp->aux.i2c_defer_count = 0;
4212
4213 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4214 if (status <= 0) {
4215 DRM_DEBUG_KMS("Could not read test request from sink\n");
4216 goto update_status;
4217 }
4218
4219 switch (rxdata) {
4220 case DP_TEST_LINK_TRAINING:
4221 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4222 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4223 response = intel_dp_autotest_link_training(intel_dp);
4224 break;
4225 case DP_TEST_LINK_VIDEO_PATTERN:
4226 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4227 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4228 response = intel_dp_autotest_video_pattern(intel_dp);
4229 break;
4230 case DP_TEST_LINK_EDID_READ:
4231 DRM_DEBUG_KMS("EDID test requested\n");
4232 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4233 response = intel_dp_autotest_edid(intel_dp);
4234 break;
4235 case DP_TEST_LINK_PHY_TEST_PATTERN:
4236 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4237 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4238 response = intel_dp_autotest_phy_pattern(intel_dp);
4239 break;
4240 default:
4241 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4242 break;
4243 }
4244
4245 update_status:
4246 status = drm_dp_dpcd_write(&intel_dp->aux,
4247 DP_TEST_RESPONSE,
4248 &response, 1);
4249 if (status <= 0)
4250 DRM_DEBUG_KMS("Could not write test response to sink\n");
4251 }
4252
4253 static int
4254 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4255 {
4256 bool bret;
4257
4258 if (intel_dp->is_mst) {
4259 u8 esi[16] = { 0 };
4260 int ret = 0;
4261 int retry;
4262 bool handled;
4263 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4264 go_again:
4265 if (bret == true) {
4266
4267 /* check link status - esi[10] = 0x200c */
4268 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4269 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4270 intel_dp_start_link_train(intel_dp);
4271 intel_dp_complete_link_train(intel_dp);
4272 intel_dp_stop_link_train(intel_dp);
4273 }
4274
4275 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4276 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4277
4278 if (handled) {
4279 for (retry = 0; retry < 3; retry++) {
4280 int wret;
4281 wret = drm_dp_dpcd_write(&intel_dp->aux,
4282 DP_SINK_COUNT_ESI+1,
4283 &esi[1], 3);
4284 if (wret == 3) {
4285 break;
4286 }
4287 }
4288
4289 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4290 if (bret == true) {
4291 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4292 goto go_again;
4293 }
4294 } else
4295 ret = 0;
4296
4297 return ret;
4298 } else {
4299 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4300 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4301 intel_dp->is_mst = false;
4302 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4303 /* send a hotplug event */
4304 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4305 }
4306 }
4307 return -EINVAL;
4308 }
4309
4310 /*
4311 * According to DP spec
4312 * 5.1.2:
4313 * 1. Read DPCD
4314 * 2. Configure link according to Receiver Capabilities
4315 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4316 * 4. Check link status on receipt of hot-plug interrupt
4317 */
4318 static void
4319 intel_dp_check_link_status(struct intel_dp *intel_dp)
4320 {
4321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4322 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4323 u8 sink_irq_vector;
4324 u8 link_status[DP_LINK_STATUS_SIZE];
4325
4326 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4327
4328 if (!intel_encoder->connectors_active)
4329 return;
4330
4331 if (WARN_ON(!intel_encoder->base.crtc))
4332 return;
4333
4334 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4335 return;
4336
4337 /* Try to read receiver status if the link appears to be up */
4338 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4339 return;
4340 }
4341
4342 /* Now read the DPCD to see if it's actually running */
4343 if (!intel_dp_get_dpcd(intel_dp)) {
4344 return;
4345 }
4346
4347 /* Try to read the source of the interrupt */
4348 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4349 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4350 /* Clear interrupt source */
4351 drm_dp_dpcd_writeb(&intel_dp->aux,
4352 DP_DEVICE_SERVICE_IRQ_VECTOR,
4353 sink_irq_vector);
4354
4355 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4356 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4357 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4358 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4359 }
4360
4361 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4362 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4363 intel_encoder->base.name);
4364 intel_dp_start_link_train(intel_dp);
4365 intel_dp_complete_link_train(intel_dp);
4366 intel_dp_stop_link_train(intel_dp);
4367 }
4368 }
4369
4370 /* XXX this is probably wrong for multiple downstream ports */
4371 static enum drm_connector_status
4372 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4373 {
4374 uint8_t *dpcd = intel_dp->dpcd;
4375 uint8_t type;
4376
4377 if (!intel_dp_get_dpcd(intel_dp))
4378 return connector_status_disconnected;
4379
4380 /* if there's no downstream port, we're done */
4381 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4382 return connector_status_connected;
4383
4384 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4385 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4386 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4387 uint8_t reg;
4388
4389 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4390 &reg, 1) < 0)
4391 return connector_status_unknown;
4392
4393 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4394 : connector_status_disconnected;
4395 }
4396
4397 /* If no HPD, poke DDC gently */
4398 if (drm_probe_ddc(&intel_dp->aux.ddc))
4399 return connector_status_connected;
4400
4401 /* Well we tried, say unknown for unreliable port types */
4402 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4403 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4404 if (type == DP_DS_PORT_TYPE_VGA ||
4405 type == DP_DS_PORT_TYPE_NON_EDID)
4406 return connector_status_unknown;
4407 } else {
4408 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4409 DP_DWN_STRM_PORT_TYPE_MASK;
4410 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4411 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4412 return connector_status_unknown;
4413 }
4414
4415 /* Anything else is out of spec, warn and ignore */
4416 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4417 return connector_status_disconnected;
4418 }
4419
4420 static enum drm_connector_status
4421 edp_detect(struct intel_dp *intel_dp)
4422 {
4423 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4424 enum drm_connector_status status;
4425
4426 status = intel_panel_detect(dev);
4427 if (status == connector_status_unknown)
4428 status = connector_status_connected;
4429
4430 return status;
4431 }
4432
4433 static enum drm_connector_status
4434 ironlake_dp_detect(struct intel_dp *intel_dp)
4435 {
4436 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4437 struct drm_i915_private *dev_priv = dev->dev_private;
4438 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4439
4440 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4441 return connector_status_disconnected;
4442
4443 return intel_dp_detect_dpcd(intel_dp);
4444 }
4445
4446 static int g4x_digital_port_connected(struct drm_device *dev,
4447 struct intel_digital_port *intel_dig_port)
4448 {
4449 struct drm_i915_private *dev_priv = dev->dev_private;
4450 uint32_t bit;
4451
4452 if (IS_VALLEYVIEW(dev)) {
4453 switch (intel_dig_port->port) {
4454 case PORT_B:
4455 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4456 break;
4457 case PORT_C:
4458 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4459 break;
4460 case PORT_D:
4461 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4462 break;
4463 default:
4464 return -EINVAL;
4465 }
4466 } else {
4467 switch (intel_dig_port->port) {
4468 case PORT_B:
4469 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4470 break;
4471 case PORT_C:
4472 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4473 break;
4474 case PORT_D:
4475 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4476 break;
4477 default:
4478 return -EINVAL;
4479 }
4480 }
4481
4482 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4483 return 0;
4484 return 1;
4485 }
4486
4487 static enum drm_connector_status
4488 g4x_dp_detect(struct intel_dp *intel_dp)
4489 {
4490 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4491 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4492 int ret;
4493
4494 /* Can't disconnect eDP, but you can close the lid... */
4495 if (is_edp(intel_dp)) {
4496 enum drm_connector_status status;
4497
4498 status = intel_panel_detect(dev);
4499 if (status == connector_status_unknown)
4500 status = connector_status_connected;
4501 return status;
4502 }
4503
4504 ret = g4x_digital_port_connected(dev, intel_dig_port);
4505 if (ret == -EINVAL)
4506 return connector_status_unknown;
4507 else if (ret == 0)
4508 return connector_status_disconnected;
4509
4510 return intel_dp_detect_dpcd(intel_dp);
4511 }
4512
4513 static struct edid *
4514 intel_dp_get_edid(struct intel_dp *intel_dp)
4515 {
4516 struct intel_connector *intel_connector = intel_dp->attached_connector;
4517
4518 /* use cached edid if we have one */
4519 if (intel_connector->edid) {
4520 /* invalid edid */
4521 if (IS_ERR(intel_connector->edid))
4522 return NULL;
4523
4524 return drm_edid_duplicate(intel_connector->edid);
4525 } else
4526 return drm_get_edid(&intel_connector->base,
4527 &intel_dp->aux.ddc);
4528 }
4529
4530 static void
4531 intel_dp_set_edid(struct intel_dp *intel_dp)
4532 {
4533 struct intel_connector *intel_connector = intel_dp->attached_connector;
4534 struct edid *edid;
4535
4536 edid = intel_dp_get_edid(intel_dp);
4537 intel_connector->detect_edid = edid;
4538
4539 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4540 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4541 else
4542 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4543 }
4544
4545 static void
4546 intel_dp_unset_edid(struct intel_dp *intel_dp)
4547 {
4548 struct intel_connector *intel_connector = intel_dp->attached_connector;
4549
4550 kfree(intel_connector->detect_edid);
4551 intel_connector->detect_edid = NULL;
4552
4553 intel_dp->has_audio = false;
4554 }
4555
4556 static enum intel_display_power_domain
4557 intel_dp_power_get(struct intel_dp *dp)
4558 {
4559 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4560 enum intel_display_power_domain power_domain;
4561
4562 power_domain = intel_display_port_power_domain(encoder);
4563 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4564
4565 return power_domain;
4566 }
4567
4568 static void
4569 intel_dp_power_put(struct intel_dp *dp,
4570 enum intel_display_power_domain power_domain)
4571 {
4572 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4573 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4574 }
4575
4576 static enum drm_connector_status
4577 intel_dp_detect(struct drm_connector *connector, bool force)
4578 {
4579 struct intel_dp *intel_dp = intel_attached_dp(connector);
4580 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4581 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4582 struct drm_device *dev = connector->dev;
4583 enum drm_connector_status status;
4584 enum intel_display_power_domain power_domain;
4585 bool ret;
4586 u8 sink_irq_vector;
4587
4588 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4589 connector->base.id, connector->name);
4590 intel_dp_unset_edid(intel_dp);
4591
4592 if (intel_dp->is_mst) {
4593 /* MST devices are disconnected from a monitor POV */
4594 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4595 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4596 return connector_status_disconnected;
4597 }
4598
4599 power_domain = intel_dp_power_get(intel_dp);
4600
4601 /* Can't disconnect eDP, but you can close the lid... */
4602 if (is_edp(intel_dp))
4603 status = edp_detect(intel_dp);
4604 else if (HAS_PCH_SPLIT(dev))
4605 status = ironlake_dp_detect(intel_dp);
4606 else
4607 status = g4x_dp_detect(intel_dp);
4608 if (status != connector_status_connected)
4609 goto out;
4610
4611 intel_dp_probe_oui(intel_dp);
4612
4613 ret = intel_dp_probe_mst(intel_dp);
4614 if (ret) {
4615 /* if we are in MST mode then this connector
4616 won't appear connected or have anything with EDID on it */
4617 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4618 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4619 status = connector_status_disconnected;
4620 goto out;
4621 }
4622
4623 intel_dp_set_edid(intel_dp);
4624
4625 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4626 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4627 status = connector_status_connected;
4628
4629 /* Try to read the source of the interrupt */
4630 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4631 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4632 /* Clear interrupt source */
4633 drm_dp_dpcd_writeb(&intel_dp->aux,
4634 DP_DEVICE_SERVICE_IRQ_VECTOR,
4635 sink_irq_vector);
4636
4637 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4638 intel_dp_handle_test_request(intel_dp);
4639 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4640 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4641 }
4642
4643 out:
4644 intel_dp_power_put(intel_dp, power_domain);
4645 return status;
4646 }
4647
4648 static void
4649 intel_dp_force(struct drm_connector *connector)
4650 {
4651 struct intel_dp *intel_dp = intel_attached_dp(connector);
4652 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4653 enum intel_display_power_domain power_domain;
4654
4655 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4656 connector->base.id, connector->name);
4657 intel_dp_unset_edid(intel_dp);
4658
4659 if (connector->status != connector_status_connected)
4660 return;
4661
4662 power_domain = intel_dp_power_get(intel_dp);
4663
4664 intel_dp_set_edid(intel_dp);
4665
4666 intel_dp_power_put(intel_dp, power_domain);
4667
4668 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4669 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4670 }
4671
4672 static int intel_dp_get_modes(struct drm_connector *connector)
4673 {
4674 struct intel_connector *intel_connector = to_intel_connector(connector);
4675 struct edid *edid;
4676
4677 edid = intel_connector->detect_edid;
4678 if (edid) {
4679 int ret = intel_connector_update_modes(connector, edid);
4680 if (ret)
4681 return ret;
4682 }
4683
4684 /* if eDP has no EDID, fall back to fixed mode */
4685 if (is_edp(intel_attached_dp(connector)) &&
4686 intel_connector->panel.fixed_mode) {
4687 struct drm_display_mode *mode;
4688
4689 mode = drm_mode_duplicate(connector->dev,
4690 intel_connector->panel.fixed_mode);
4691 if (mode) {
4692 drm_mode_probed_add(connector, mode);
4693 return 1;
4694 }
4695 }
4696
4697 return 0;
4698 }
4699
4700 static bool
4701 intel_dp_detect_audio(struct drm_connector *connector)
4702 {
4703 bool has_audio = false;
4704 struct edid *edid;
4705
4706 edid = to_intel_connector(connector)->detect_edid;
4707 if (edid)
4708 has_audio = drm_detect_monitor_audio(edid);
4709
4710 return has_audio;
4711 }
4712
4713 static int
4714 intel_dp_set_property(struct drm_connector *connector,
4715 struct drm_property *property,
4716 uint64_t val)
4717 {
4718 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4719 struct intel_connector *intel_connector = to_intel_connector(connector);
4720 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4721 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4722 int ret;
4723
4724 ret = drm_object_property_set_value(&connector->base, property, val);
4725 if (ret)
4726 return ret;
4727
4728 if (property == dev_priv->force_audio_property) {
4729 int i = val;
4730 bool has_audio;
4731
4732 if (i == intel_dp->force_audio)
4733 return 0;
4734
4735 intel_dp->force_audio = i;
4736
4737 if (i == HDMI_AUDIO_AUTO)
4738 has_audio = intel_dp_detect_audio(connector);
4739 else
4740 has_audio = (i == HDMI_AUDIO_ON);
4741
4742 if (has_audio == intel_dp->has_audio)
4743 return 0;
4744
4745 intel_dp->has_audio = has_audio;
4746 goto done;
4747 }
4748
4749 if (property == dev_priv->broadcast_rgb_property) {
4750 bool old_auto = intel_dp->color_range_auto;
4751 uint32_t old_range = intel_dp->color_range;
4752
4753 switch (val) {
4754 case INTEL_BROADCAST_RGB_AUTO:
4755 intel_dp->color_range_auto = true;
4756 break;
4757 case INTEL_BROADCAST_RGB_FULL:
4758 intel_dp->color_range_auto = false;
4759 intel_dp->color_range = 0;
4760 break;
4761 case INTEL_BROADCAST_RGB_LIMITED:
4762 intel_dp->color_range_auto = false;
4763 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4764 break;
4765 default:
4766 return -EINVAL;
4767 }
4768
4769 if (old_auto == intel_dp->color_range_auto &&
4770 old_range == intel_dp->color_range)
4771 return 0;
4772
4773 goto done;
4774 }
4775
4776 if (is_edp(intel_dp) &&
4777 property == connector->dev->mode_config.scaling_mode_property) {
4778 if (val == DRM_MODE_SCALE_NONE) {
4779 DRM_DEBUG_KMS("no scaling not supported\n");
4780 return -EINVAL;
4781 }
4782
4783 if (intel_connector->panel.fitting_mode == val) {
4784 /* the eDP scaling property is not changed */
4785 return 0;
4786 }
4787 intel_connector->panel.fitting_mode = val;
4788
4789 goto done;
4790 }
4791
4792 return -EINVAL;
4793
4794 done:
4795 if (intel_encoder->base.crtc)
4796 intel_crtc_restore_mode(intel_encoder->base.crtc);
4797
4798 return 0;
4799 }
4800
4801 static void
4802 intel_dp_connector_destroy(struct drm_connector *connector)
4803 {
4804 struct intel_connector *intel_connector = to_intel_connector(connector);
4805
4806 kfree(intel_connector->detect_edid);
4807
4808 if (!IS_ERR_OR_NULL(intel_connector->edid))
4809 kfree(intel_connector->edid);
4810
4811 /* Can't call is_edp() since the encoder may have been destroyed
4812 * already. */
4813 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4814 intel_panel_fini(&intel_connector->panel);
4815
4816 drm_connector_cleanup(connector);
4817 kfree(connector);
4818 }
4819
4820 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4821 {
4822 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4823 struct intel_dp *intel_dp = &intel_dig_port->dp;
4824
4825 drm_dp_aux_unregister(&intel_dp->aux);
4826 intel_dp_mst_encoder_cleanup(intel_dig_port);
4827 if (is_edp(intel_dp)) {
4828 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4829 /*
4830 * vdd might still be enabled do to the delayed vdd off.
4831 * Make sure vdd is actually turned off here.
4832 */
4833 pps_lock(intel_dp);
4834 edp_panel_vdd_off_sync(intel_dp);
4835 pps_unlock(intel_dp);
4836
4837 if (intel_dp->edp_notifier.notifier_call) {
4838 unregister_reboot_notifier(&intel_dp->edp_notifier);
4839 intel_dp->edp_notifier.notifier_call = NULL;
4840 }
4841 }
4842 drm_encoder_cleanup(encoder);
4843 kfree(intel_dig_port);
4844 }
4845
4846 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4847 {
4848 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4849
4850 if (!is_edp(intel_dp))
4851 return;
4852
4853 /*
4854 * vdd might still be enabled do to the delayed vdd off.
4855 * Make sure vdd is actually turned off here.
4856 */
4857 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4858 pps_lock(intel_dp);
4859 edp_panel_vdd_off_sync(intel_dp);
4860 pps_unlock(intel_dp);
4861 }
4862
4863 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4864 {
4865 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4866 struct drm_device *dev = intel_dig_port->base.base.dev;
4867 struct drm_i915_private *dev_priv = dev->dev_private;
4868 enum intel_display_power_domain power_domain;
4869
4870 lockdep_assert_held(&dev_priv->pps_mutex);
4871
4872 if (!edp_have_panel_vdd(intel_dp))
4873 return;
4874
4875 /*
4876 * The VDD bit needs a power domain reference, so if the bit is
4877 * already enabled when we boot or resume, grab this reference and
4878 * schedule a vdd off, so we don't hold on to the reference
4879 * indefinitely.
4880 */
4881 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4882 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4883 intel_display_power_get(dev_priv, power_domain);
4884
4885 edp_panel_vdd_schedule_off(intel_dp);
4886 }
4887
4888 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4889 {
4890 struct intel_dp *intel_dp;
4891
4892 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4893 return;
4894
4895 intel_dp = enc_to_intel_dp(encoder);
4896
4897 pps_lock(intel_dp);
4898
4899 /*
4900 * Read out the current power sequencer assignment,
4901 * in case the BIOS did something with it.
4902 */
4903 if (IS_VALLEYVIEW(encoder->dev))
4904 vlv_initial_power_sequencer_setup(intel_dp);
4905
4906 intel_edp_panel_vdd_sanitize(intel_dp);
4907
4908 pps_unlock(intel_dp);
4909 }
4910
4911 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4912 .dpms = intel_connector_dpms,
4913 .detect = intel_dp_detect,
4914 .force = intel_dp_force,
4915 .fill_modes = drm_helper_probe_single_connector_modes,
4916 .set_property = intel_dp_set_property,
4917 .atomic_get_property = intel_connector_atomic_get_property,
4918 .destroy = intel_dp_connector_destroy,
4919 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4920 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4921 };
4922
4923 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4924 .get_modes = intel_dp_get_modes,
4925 .mode_valid = intel_dp_mode_valid,
4926 .best_encoder = intel_best_encoder,
4927 };
4928
4929 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4930 .reset = intel_dp_encoder_reset,
4931 .destroy = intel_dp_encoder_destroy,
4932 };
4933
4934 void
4935 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4936 {
4937 return;
4938 }
4939
4940 enum irqreturn
4941 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4942 {
4943 struct intel_dp *intel_dp = &intel_dig_port->dp;
4944 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4945 struct drm_device *dev = intel_dig_port->base.base.dev;
4946 struct drm_i915_private *dev_priv = dev->dev_private;
4947 enum intel_display_power_domain power_domain;
4948 enum irqreturn ret = IRQ_NONE;
4949
4950 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4951 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4952
4953 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4954 /*
4955 * vdd off can generate a long pulse on eDP which
4956 * would require vdd on to handle it, and thus we
4957 * would end up in an endless cycle of
4958 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4959 */
4960 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4961 port_name(intel_dig_port->port));
4962 return IRQ_HANDLED;
4963 }
4964
4965 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4966 port_name(intel_dig_port->port),
4967 long_hpd ? "long" : "short");
4968
4969 power_domain = intel_display_port_power_domain(intel_encoder);
4970 intel_display_power_get(dev_priv, power_domain);
4971
4972 if (long_hpd) {
4973 /* indicate that we need to restart link training */
4974 intel_dp->train_set_valid = false;
4975
4976 if (HAS_PCH_SPLIT(dev)) {
4977 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4978 goto mst_fail;
4979 } else {
4980 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4981 goto mst_fail;
4982 }
4983
4984 if (!intel_dp_get_dpcd(intel_dp)) {
4985 goto mst_fail;
4986 }
4987
4988 intel_dp_probe_oui(intel_dp);
4989
4990 if (!intel_dp_probe_mst(intel_dp))
4991 goto mst_fail;
4992
4993 } else {
4994 if (intel_dp->is_mst) {
4995 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4996 goto mst_fail;
4997 }
4998
4999 if (!intel_dp->is_mst) {
5000 /*
5001 * we'll check the link status via the normal hot plug path later -
5002 * but for short hpds we should check it now
5003 */
5004 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5005 intel_dp_check_link_status(intel_dp);
5006 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5007 }
5008 }
5009
5010 ret = IRQ_HANDLED;
5011
5012 goto put_power;
5013 mst_fail:
5014 /* if we were in MST mode, and device is not there get out of MST mode */
5015 if (intel_dp->is_mst) {
5016 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5017 intel_dp->is_mst = false;
5018 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5019 }
5020 put_power:
5021 intel_display_power_put(dev_priv, power_domain);
5022
5023 return ret;
5024 }
5025
5026 /* Return which DP Port should be selected for Transcoder DP control */
5027 int
5028 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5029 {
5030 struct drm_device *dev = crtc->dev;
5031 struct intel_encoder *intel_encoder;
5032 struct intel_dp *intel_dp;
5033
5034 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5035 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5036
5037 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5038 intel_encoder->type == INTEL_OUTPUT_EDP)
5039 return intel_dp->output_reg;
5040 }
5041
5042 return -1;
5043 }
5044
5045 /* check the VBT to see whether the eDP is on DP-D port */
5046 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5047 {
5048 struct drm_i915_private *dev_priv = dev->dev_private;
5049 union child_device_config *p_child;
5050 int i;
5051 static const short port_mapping[] = {
5052 [PORT_B] = PORT_IDPB,
5053 [PORT_C] = PORT_IDPC,
5054 [PORT_D] = PORT_IDPD,
5055 };
5056
5057 if (port == PORT_A)
5058 return true;
5059
5060 if (!dev_priv->vbt.child_dev_num)
5061 return false;
5062
5063 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5064 p_child = dev_priv->vbt.child_dev + i;
5065
5066 if (p_child->common.dvo_port == port_mapping[port] &&
5067 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5068 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5069 return true;
5070 }
5071 return false;
5072 }
5073
5074 void
5075 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5076 {
5077 struct intel_connector *intel_connector = to_intel_connector(connector);
5078
5079 intel_attach_force_audio_property(connector);
5080 intel_attach_broadcast_rgb_property(connector);
5081 intel_dp->color_range_auto = true;
5082
5083 if (is_edp(intel_dp)) {
5084 drm_mode_create_scaling_mode_property(connector->dev);
5085 drm_object_attach_property(
5086 &connector->base,
5087 connector->dev->mode_config.scaling_mode_property,
5088 DRM_MODE_SCALE_ASPECT);
5089 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5090 }
5091 }
5092
5093 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5094 {
5095 intel_dp->last_power_cycle = jiffies;
5096 intel_dp->last_power_on = jiffies;
5097 intel_dp->last_backlight_off = jiffies;
5098 }
5099
5100 static void
5101 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5102 struct intel_dp *intel_dp)
5103 {
5104 struct drm_i915_private *dev_priv = dev->dev_private;
5105 struct edp_power_seq cur, vbt, spec,
5106 *final = &intel_dp->pps_delays;
5107 u32 pp_on, pp_off, pp_div, pp;
5108 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5109
5110 lockdep_assert_held(&dev_priv->pps_mutex);
5111
5112 /* already initialized? */
5113 if (final->t11_t12 != 0)
5114 return;
5115
5116 if (HAS_PCH_SPLIT(dev)) {
5117 pp_ctrl_reg = PCH_PP_CONTROL;
5118 pp_on_reg = PCH_PP_ON_DELAYS;
5119 pp_off_reg = PCH_PP_OFF_DELAYS;
5120 pp_div_reg = PCH_PP_DIVISOR;
5121 } else {
5122 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5123
5124 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5125 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5126 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5127 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5128 }
5129
5130 /* Workaround: Need to write PP_CONTROL with the unlock key as
5131 * the very first thing. */
5132 pp = ironlake_get_pp_control(intel_dp);
5133 I915_WRITE(pp_ctrl_reg, pp);
5134
5135 pp_on = I915_READ(pp_on_reg);
5136 pp_off = I915_READ(pp_off_reg);
5137 pp_div = I915_READ(pp_div_reg);
5138
5139 /* Pull timing values out of registers */
5140 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5141 PANEL_POWER_UP_DELAY_SHIFT;
5142
5143 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5144 PANEL_LIGHT_ON_DELAY_SHIFT;
5145
5146 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5147 PANEL_LIGHT_OFF_DELAY_SHIFT;
5148
5149 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5150 PANEL_POWER_DOWN_DELAY_SHIFT;
5151
5152 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5153 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5154
5155 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5156 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5157
5158 vbt = dev_priv->vbt.edp_pps;
5159
5160 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5161 * our hw here, which are all in 100usec. */
5162 spec.t1_t3 = 210 * 10;
5163 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5164 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5165 spec.t10 = 500 * 10;
5166 /* This one is special and actually in units of 100ms, but zero
5167 * based in the hw (so we need to add 100 ms). But the sw vbt
5168 * table multiplies it with 1000 to make it in units of 100usec,
5169 * too. */
5170 spec.t11_t12 = (510 + 100) * 10;
5171
5172 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5173 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5174
5175 /* Use the max of the register settings and vbt. If both are
5176 * unset, fall back to the spec limits. */
5177 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5178 spec.field : \
5179 max(cur.field, vbt.field))
5180 assign_final(t1_t3);
5181 assign_final(t8);
5182 assign_final(t9);
5183 assign_final(t10);
5184 assign_final(t11_t12);
5185 #undef assign_final
5186
5187 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5188 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5189 intel_dp->backlight_on_delay = get_delay(t8);
5190 intel_dp->backlight_off_delay = get_delay(t9);
5191 intel_dp->panel_power_down_delay = get_delay(t10);
5192 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5193 #undef get_delay
5194
5195 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5196 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5197 intel_dp->panel_power_cycle_delay);
5198
5199 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5200 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5201 }
5202
5203 static void
5204 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5205 struct intel_dp *intel_dp)
5206 {
5207 struct drm_i915_private *dev_priv = dev->dev_private;
5208 u32 pp_on, pp_off, pp_div, port_sel = 0;
5209 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5210 int pp_on_reg, pp_off_reg, pp_div_reg;
5211 enum port port = dp_to_dig_port(intel_dp)->port;
5212 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5213
5214 lockdep_assert_held(&dev_priv->pps_mutex);
5215
5216 if (HAS_PCH_SPLIT(dev)) {
5217 pp_on_reg = PCH_PP_ON_DELAYS;
5218 pp_off_reg = PCH_PP_OFF_DELAYS;
5219 pp_div_reg = PCH_PP_DIVISOR;
5220 } else {
5221 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5222
5223 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5224 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5225 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5226 }
5227
5228 /*
5229 * And finally store the new values in the power sequencer. The
5230 * backlight delays are set to 1 because we do manual waits on them. For
5231 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5232 * we'll end up waiting for the backlight off delay twice: once when we
5233 * do the manual sleep, and once when we disable the panel and wait for
5234 * the PP_STATUS bit to become zero.
5235 */
5236 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5237 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5238 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5239 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5240 /* Compute the divisor for the pp clock, simply match the Bspec
5241 * formula. */
5242 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5243 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5244 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5245
5246 /* Haswell doesn't have any port selection bits for the panel
5247 * power sequencer any more. */
5248 if (IS_VALLEYVIEW(dev)) {
5249 port_sel = PANEL_PORT_SELECT_VLV(port);
5250 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5251 if (port == PORT_A)
5252 port_sel = PANEL_PORT_SELECT_DPA;
5253 else
5254 port_sel = PANEL_PORT_SELECT_DPD;
5255 }
5256
5257 pp_on |= port_sel;
5258
5259 I915_WRITE(pp_on_reg, pp_on);
5260 I915_WRITE(pp_off_reg, pp_off);
5261 I915_WRITE(pp_div_reg, pp_div);
5262
5263 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5264 I915_READ(pp_on_reg),
5265 I915_READ(pp_off_reg),
5266 I915_READ(pp_div_reg));
5267 }
5268
5269 /**
5270 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5271 * @dev: DRM device
5272 * @refresh_rate: RR to be programmed
5273 *
5274 * This function gets called when refresh rate (RR) has to be changed from
5275 * one frequency to another. Switches can be between high and low RR
5276 * supported by the panel or to any other RR based on media playback (in
5277 * this case, RR value needs to be passed from user space).
5278 *
5279 * The caller of this function needs to take a lock on dev_priv->drrs.
5280 */
5281 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5282 {
5283 struct drm_i915_private *dev_priv = dev->dev_private;
5284 struct intel_encoder *encoder;
5285 struct intel_digital_port *dig_port = NULL;
5286 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5287 struct intel_crtc_state *config = NULL;
5288 struct intel_crtc *intel_crtc = NULL;
5289 u32 reg, val;
5290 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5291
5292 if (refresh_rate <= 0) {
5293 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5294 return;
5295 }
5296
5297 if (intel_dp == NULL) {
5298 DRM_DEBUG_KMS("DRRS not supported.\n");
5299 return;
5300 }
5301
5302 /*
5303 * FIXME: This needs proper synchronization with psr state for some
5304 * platforms that cannot have PSR and DRRS enabled at the same time.
5305 */
5306
5307 dig_port = dp_to_dig_port(intel_dp);
5308 encoder = &dig_port->base;
5309 intel_crtc = to_intel_crtc(encoder->base.crtc);
5310
5311 if (!intel_crtc) {
5312 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5313 return;
5314 }
5315
5316 config = intel_crtc->config;
5317
5318 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5319 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5320 return;
5321 }
5322
5323 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5324 refresh_rate)
5325 index = DRRS_LOW_RR;
5326
5327 if (index == dev_priv->drrs.refresh_rate_type) {
5328 DRM_DEBUG_KMS(
5329 "DRRS requested for previously set RR...ignoring\n");
5330 return;
5331 }
5332
5333 if (!intel_crtc->active) {
5334 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5335 return;
5336 }
5337
5338 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5339 switch (index) {
5340 case DRRS_HIGH_RR:
5341 intel_dp_set_m_n(intel_crtc, M1_N1);
5342 break;
5343 case DRRS_LOW_RR:
5344 intel_dp_set_m_n(intel_crtc, M2_N2);
5345 break;
5346 case DRRS_MAX_RR:
5347 default:
5348 DRM_ERROR("Unsupported refreshrate type\n");
5349 }
5350 } else if (INTEL_INFO(dev)->gen > 6) {
5351 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5352 val = I915_READ(reg);
5353
5354 if (index > DRRS_HIGH_RR) {
5355 if (IS_VALLEYVIEW(dev))
5356 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5357 else
5358 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5359 } else {
5360 if (IS_VALLEYVIEW(dev))
5361 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5362 else
5363 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5364 }
5365 I915_WRITE(reg, val);
5366 }
5367
5368 dev_priv->drrs.refresh_rate_type = index;
5369
5370 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5371 }
5372
5373 /**
5374 * intel_edp_drrs_enable - init drrs struct if supported
5375 * @intel_dp: DP struct
5376 *
5377 * Initializes frontbuffer_bits and drrs.dp
5378 */
5379 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5380 {
5381 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5382 struct drm_i915_private *dev_priv = dev->dev_private;
5383 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5384 struct drm_crtc *crtc = dig_port->base.base.crtc;
5385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5386
5387 if (!intel_crtc->config->has_drrs) {
5388 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5389 return;
5390 }
5391
5392 mutex_lock(&dev_priv->drrs.mutex);
5393 if (WARN_ON(dev_priv->drrs.dp)) {
5394 DRM_ERROR("DRRS already enabled\n");
5395 goto unlock;
5396 }
5397
5398 dev_priv->drrs.busy_frontbuffer_bits = 0;
5399
5400 dev_priv->drrs.dp = intel_dp;
5401
5402 unlock:
5403 mutex_unlock(&dev_priv->drrs.mutex);
5404 }
5405
5406 /**
5407 * intel_edp_drrs_disable - Disable DRRS
5408 * @intel_dp: DP struct
5409 *
5410 */
5411 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5412 {
5413 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5414 struct drm_i915_private *dev_priv = dev->dev_private;
5415 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5416 struct drm_crtc *crtc = dig_port->base.base.crtc;
5417 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5418
5419 if (!intel_crtc->config->has_drrs)
5420 return;
5421
5422 mutex_lock(&dev_priv->drrs.mutex);
5423 if (!dev_priv->drrs.dp) {
5424 mutex_unlock(&dev_priv->drrs.mutex);
5425 return;
5426 }
5427
5428 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5429 intel_dp_set_drrs_state(dev_priv->dev,
5430 intel_dp->attached_connector->panel.
5431 fixed_mode->vrefresh);
5432
5433 dev_priv->drrs.dp = NULL;
5434 mutex_unlock(&dev_priv->drrs.mutex);
5435
5436 cancel_delayed_work_sync(&dev_priv->drrs.work);
5437 }
5438
5439 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5440 {
5441 struct drm_i915_private *dev_priv =
5442 container_of(work, typeof(*dev_priv), drrs.work.work);
5443 struct intel_dp *intel_dp;
5444
5445 mutex_lock(&dev_priv->drrs.mutex);
5446
5447 intel_dp = dev_priv->drrs.dp;
5448
5449 if (!intel_dp)
5450 goto unlock;
5451
5452 /*
5453 * The delayed work can race with an invalidate hence we need to
5454 * recheck.
5455 */
5456
5457 if (dev_priv->drrs.busy_frontbuffer_bits)
5458 goto unlock;
5459
5460 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5461 intel_dp_set_drrs_state(dev_priv->dev,
5462 intel_dp->attached_connector->panel.
5463 downclock_mode->vrefresh);
5464
5465 unlock:
5466 mutex_unlock(&dev_priv->drrs.mutex);
5467 }
5468
5469 /**
5470 * intel_edp_drrs_invalidate - Invalidate DRRS
5471 * @dev: DRM device
5472 * @frontbuffer_bits: frontbuffer plane tracking bits
5473 *
5474 * When there is a disturbance on screen (due to cursor movement/time
5475 * update etc), DRRS needs to be invalidated, i.e. need to switch to
5476 * high RR.
5477 *
5478 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5479 */
5480 void intel_edp_drrs_invalidate(struct drm_device *dev,
5481 unsigned frontbuffer_bits)
5482 {
5483 struct drm_i915_private *dev_priv = dev->dev_private;
5484 struct drm_crtc *crtc;
5485 enum pipe pipe;
5486
5487 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5488 return;
5489
5490 cancel_delayed_work(&dev_priv->drrs.work);
5491
5492 mutex_lock(&dev_priv->drrs.mutex);
5493 if (!dev_priv->drrs.dp) {
5494 mutex_unlock(&dev_priv->drrs.mutex);
5495 return;
5496 }
5497
5498 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5499 pipe = to_intel_crtc(crtc)->pipe;
5500
5501 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5502 intel_dp_set_drrs_state(dev_priv->dev,
5503 dev_priv->drrs.dp->attached_connector->panel.
5504 fixed_mode->vrefresh);
5505 }
5506
5507 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5508
5509 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5510 mutex_unlock(&dev_priv->drrs.mutex);
5511 }
5512
5513 /**
5514 * intel_edp_drrs_flush - Flush DRRS
5515 * @dev: DRM device
5516 * @frontbuffer_bits: frontbuffer plane tracking bits
5517 *
5518 * When there is no movement on screen, DRRS work can be scheduled.
5519 * This DRRS work is responsible for setting relevant registers after a
5520 * timeout of 1 second.
5521 *
5522 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5523 */
5524 void intel_edp_drrs_flush(struct drm_device *dev,
5525 unsigned frontbuffer_bits)
5526 {
5527 struct drm_i915_private *dev_priv = dev->dev_private;
5528 struct drm_crtc *crtc;
5529 enum pipe pipe;
5530
5531 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5532 return;
5533
5534 cancel_delayed_work(&dev_priv->drrs.work);
5535
5536 mutex_lock(&dev_priv->drrs.mutex);
5537 if (!dev_priv->drrs.dp) {
5538 mutex_unlock(&dev_priv->drrs.mutex);
5539 return;
5540 }
5541
5542 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5543 pipe = to_intel_crtc(crtc)->pipe;
5544 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5545
5546 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5547 !dev_priv->drrs.busy_frontbuffer_bits)
5548 schedule_delayed_work(&dev_priv->drrs.work,
5549 msecs_to_jiffies(1000));
5550 mutex_unlock(&dev_priv->drrs.mutex);
5551 }
5552
5553 /**
5554 * DOC: Display Refresh Rate Switching (DRRS)
5555 *
5556 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5557 * which enables swtching between low and high refresh rates,
5558 * dynamically, based on the usage scenario. This feature is applicable
5559 * for internal panels.
5560 *
5561 * Indication that the panel supports DRRS is given by the panel EDID, which
5562 * would list multiple refresh rates for one resolution.
5563 *
5564 * DRRS is of 2 types - static and seamless.
5565 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5566 * (may appear as a blink on screen) and is used in dock-undock scenario.
5567 * Seamless DRRS involves changing RR without any visual effect to the user
5568 * and can be used during normal system usage. This is done by programming
5569 * certain registers.
5570 *
5571 * Support for static/seamless DRRS may be indicated in the VBT based on
5572 * inputs from the panel spec.
5573 *
5574 * DRRS saves power by switching to low RR based on usage scenarios.
5575 *
5576 * eDP DRRS:-
5577 * The implementation is based on frontbuffer tracking implementation.
5578 * When there is a disturbance on the screen triggered by user activity or a
5579 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5580 * When there is no movement on screen, after a timeout of 1 second, a switch
5581 * to low RR is made.
5582 * For integration with frontbuffer tracking code,
5583 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5584 *
5585 * DRRS can be further extended to support other internal panels and also
5586 * the scenario of video playback wherein RR is set based on the rate
5587 * requested by userspace.
5588 */
5589
5590 /**
5591 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5592 * @intel_connector: eDP connector
5593 * @fixed_mode: preferred mode of panel
5594 *
5595 * This function is called only once at driver load to initialize basic
5596 * DRRS stuff.
5597 *
5598 * Returns:
5599 * Downclock mode if panel supports it, else return NULL.
5600 * DRRS support is determined by the presence of downclock mode (apart
5601 * from VBT setting).
5602 */
5603 static struct drm_display_mode *
5604 intel_dp_drrs_init(struct intel_connector *intel_connector,
5605 struct drm_display_mode *fixed_mode)
5606 {
5607 struct drm_connector *connector = &intel_connector->base;
5608 struct drm_device *dev = connector->dev;
5609 struct drm_i915_private *dev_priv = dev->dev_private;
5610 struct drm_display_mode *downclock_mode = NULL;
5611
5612 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5613 mutex_init(&dev_priv->drrs.mutex);
5614
5615 if (INTEL_INFO(dev)->gen <= 6) {
5616 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5617 return NULL;
5618 }
5619
5620 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5621 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5622 return NULL;
5623 }
5624
5625 downclock_mode = intel_find_panel_downclock
5626 (dev, fixed_mode, connector);
5627
5628 if (!downclock_mode) {
5629 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5630 return NULL;
5631 }
5632
5633 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5634
5635 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5636 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5637 return downclock_mode;
5638 }
5639
5640 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5641 struct intel_connector *intel_connector)
5642 {
5643 struct drm_connector *connector = &intel_connector->base;
5644 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5645 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5646 struct drm_device *dev = intel_encoder->base.dev;
5647 struct drm_i915_private *dev_priv = dev->dev_private;
5648 struct drm_display_mode *fixed_mode = NULL;
5649 struct drm_display_mode *downclock_mode = NULL;
5650 bool has_dpcd;
5651 struct drm_display_mode *scan;
5652 struct edid *edid;
5653 enum pipe pipe = INVALID_PIPE;
5654
5655 if (!is_edp(intel_dp))
5656 return true;
5657
5658 pps_lock(intel_dp);
5659 intel_edp_panel_vdd_sanitize(intel_dp);
5660 pps_unlock(intel_dp);
5661
5662 /* Cache DPCD and EDID for edp. */
5663 has_dpcd = intel_dp_get_dpcd(intel_dp);
5664
5665 if (has_dpcd) {
5666 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5667 dev_priv->no_aux_handshake =
5668 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5669 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5670 } else {
5671 /* if this fails, presume the device is a ghost */
5672 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5673 return false;
5674 }
5675
5676 /* We now know it's not a ghost, init power sequence regs. */
5677 pps_lock(intel_dp);
5678 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5679 pps_unlock(intel_dp);
5680
5681 mutex_lock(&dev->mode_config.mutex);
5682 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5683 if (edid) {
5684 if (drm_add_edid_modes(connector, edid)) {
5685 drm_mode_connector_update_edid_property(connector,
5686 edid);
5687 drm_edid_to_eld(connector, edid);
5688 } else {
5689 kfree(edid);
5690 edid = ERR_PTR(-EINVAL);
5691 }
5692 } else {
5693 edid = ERR_PTR(-ENOENT);
5694 }
5695 intel_connector->edid = edid;
5696
5697 /* prefer fixed mode from EDID if available */
5698 list_for_each_entry(scan, &connector->probed_modes, head) {
5699 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5700 fixed_mode = drm_mode_duplicate(dev, scan);
5701 downclock_mode = intel_dp_drrs_init(
5702 intel_connector, fixed_mode);
5703 break;
5704 }
5705 }
5706
5707 /* fallback to VBT if available for eDP */
5708 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5709 fixed_mode = drm_mode_duplicate(dev,
5710 dev_priv->vbt.lfp_lvds_vbt_mode);
5711 if (fixed_mode)
5712 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5713 }
5714 mutex_unlock(&dev->mode_config.mutex);
5715
5716 if (IS_VALLEYVIEW(dev)) {
5717 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5718 register_reboot_notifier(&intel_dp->edp_notifier);
5719
5720 /*
5721 * Figure out the current pipe for the initial backlight setup.
5722 * If the current pipe isn't valid, try the PPS pipe, and if that
5723 * fails just assume pipe A.
5724 */
5725 if (IS_CHERRYVIEW(dev))
5726 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5727 else
5728 pipe = PORT_TO_PIPE(intel_dp->DP);
5729
5730 if (pipe != PIPE_A && pipe != PIPE_B)
5731 pipe = intel_dp->pps_pipe;
5732
5733 if (pipe != PIPE_A && pipe != PIPE_B)
5734 pipe = PIPE_A;
5735
5736 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5737 pipe_name(pipe));
5738 }
5739
5740 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5741 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5742 intel_panel_setup_backlight(connector, pipe);
5743
5744 return true;
5745 }
5746
5747 bool
5748 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5749 struct intel_connector *intel_connector)
5750 {
5751 struct drm_connector *connector = &intel_connector->base;
5752 struct intel_dp *intel_dp = &intel_dig_port->dp;
5753 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5754 struct drm_device *dev = intel_encoder->base.dev;
5755 struct drm_i915_private *dev_priv = dev->dev_private;
5756 enum port port = intel_dig_port->port;
5757 int type;
5758
5759 intel_dp->pps_pipe = INVALID_PIPE;
5760
5761 /* intel_dp vfuncs */
5762 if (INTEL_INFO(dev)->gen >= 9)
5763 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5764 else if (IS_VALLEYVIEW(dev))
5765 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5766 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5767 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5768 else if (HAS_PCH_SPLIT(dev))
5769 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5770 else
5771 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5772
5773 if (INTEL_INFO(dev)->gen >= 9)
5774 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5775 else
5776 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5777
5778 /* Preserve the current hw state. */
5779 intel_dp->DP = I915_READ(intel_dp->output_reg);
5780 intel_dp->attached_connector = intel_connector;
5781
5782 if (intel_dp_is_edp(dev, port))
5783 type = DRM_MODE_CONNECTOR_eDP;
5784 else
5785 type = DRM_MODE_CONNECTOR_DisplayPort;
5786
5787 /*
5788 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5789 * for DP the encoder type can be set by the caller to
5790 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5791 */
5792 if (type == DRM_MODE_CONNECTOR_eDP)
5793 intel_encoder->type = INTEL_OUTPUT_EDP;
5794
5795 /* eDP only on port B and/or C on vlv/chv */
5796 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5797 port != PORT_B && port != PORT_C))
5798 return false;
5799
5800 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5801 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5802 port_name(port));
5803
5804 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5805 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5806
5807 connector->interlace_allowed = true;
5808 connector->doublescan_allowed = 0;
5809
5810 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5811 edp_panel_vdd_work);
5812
5813 intel_connector_attach_encoder(intel_connector, intel_encoder);
5814 drm_connector_register(connector);
5815
5816 if (HAS_DDI(dev))
5817 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5818 else
5819 intel_connector->get_hw_state = intel_connector_get_hw_state;
5820 intel_connector->unregister = intel_dp_connector_unregister;
5821
5822 /* Set up the hotplug pin. */
5823 switch (port) {
5824 case PORT_A:
5825 intel_encoder->hpd_pin = HPD_PORT_A;
5826 break;
5827 case PORT_B:
5828 intel_encoder->hpd_pin = HPD_PORT_B;
5829 break;
5830 case PORT_C:
5831 intel_encoder->hpd_pin = HPD_PORT_C;
5832 break;
5833 case PORT_D:
5834 intel_encoder->hpd_pin = HPD_PORT_D;
5835 break;
5836 default:
5837 BUG();
5838 }
5839
5840 if (is_edp(intel_dp)) {
5841 pps_lock(intel_dp);
5842 intel_dp_init_panel_power_timestamps(intel_dp);
5843 if (IS_VALLEYVIEW(dev))
5844 vlv_initial_power_sequencer_setup(intel_dp);
5845 else
5846 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5847 pps_unlock(intel_dp);
5848 }
5849
5850 intel_dp_aux_init(intel_dp, intel_connector);
5851
5852 /* init MST on ports that can support it */
5853 if (HAS_DP_MST(dev) &&
5854 (port == PORT_B || port == PORT_C || port == PORT_D))
5855 intel_dp_mst_encoder_init(intel_dig_port,
5856 intel_connector->base.base.id);
5857
5858 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5859 drm_dp_aux_unregister(&intel_dp->aux);
5860 if (is_edp(intel_dp)) {
5861 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5862 /*
5863 * vdd might still be enabled do to the delayed vdd off.
5864 * Make sure vdd is actually turned off here.
5865 */
5866 pps_lock(intel_dp);
5867 edp_panel_vdd_off_sync(intel_dp);
5868 pps_unlock(intel_dp);
5869 }
5870 drm_connector_unregister(connector);
5871 drm_connector_cleanup(connector);
5872 return false;
5873 }
5874
5875 intel_dp_add_properties(intel_dp, connector);
5876
5877 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5878 * 0xd. Failure to do so will result in spurious interrupts being
5879 * generated on the port when a cable is not attached.
5880 */
5881 if (IS_G4X(dev) && !IS_GM45(dev)) {
5882 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5883 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5884 }
5885
5886 i915_debugfs_connector_add(connector);
5887
5888 return true;
5889 }
5890
5891 void
5892 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5893 {
5894 struct drm_i915_private *dev_priv = dev->dev_private;
5895 struct intel_digital_port *intel_dig_port;
5896 struct intel_encoder *intel_encoder;
5897 struct drm_encoder *encoder;
5898 struct intel_connector *intel_connector;
5899
5900 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5901 if (!intel_dig_port)
5902 return;
5903
5904 intel_connector = intel_connector_alloc();
5905 if (!intel_connector) {
5906 kfree(intel_dig_port);
5907 return;
5908 }
5909
5910 intel_encoder = &intel_dig_port->base;
5911 encoder = &intel_encoder->base;
5912
5913 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5914 DRM_MODE_ENCODER_TMDS);
5915
5916 intel_encoder->compute_config = intel_dp_compute_config;
5917 intel_encoder->disable = intel_disable_dp;
5918 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5919 intel_encoder->get_config = intel_dp_get_config;
5920 intel_encoder->suspend = intel_dp_encoder_suspend;
5921 if (IS_CHERRYVIEW(dev)) {
5922 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5923 intel_encoder->pre_enable = chv_pre_enable_dp;
5924 intel_encoder->enable = vlv_enable_dp;
5925 intel_encoder->post_disable = chv_post_disable_dp;
5926 } else if (IS_VALLEYVIEW(dev)) {
5927 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5928 intel_encoder->pre_enable = vlv_pre_enable_dp;
5929 intel_encoder->enable = vlv_enable_dp;
5930 intel_encoder->post_disable = vlv_post_disable_dp;
5931 } else {
5932 intel_encoder->pre_enable = g4x_pre_enable_dp;
5933 intel_encoder->enable = g4x_enable_dp;
5934 if (INTEL_INFO(dev)->gen >= 5)
5935 intel_encoder->post_disable = ilk_post_disable_dp;
5936 }
5937
5938 intel_dig_port->port = port;
5939 intel_dig_port->dp.output_reg = output_reg;
5940
5941 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5942 if (IS_CHERRYVIEW(dev)) {
5943 if (port == PORT_D)
5944 intel_encoder->crtc_mask = 1 << 2;
5945 else
5946 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5947 } else {
5948 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5949 }
5950 intel_encoder->cloneable = 0;
5951 intel_encoder->hot_plug = intel_dp_hot_plug;
5952
5953 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5954 dev_priv->hpd_irq_port[port] = intel_dig_port;
5955
5956 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5957 drm_encoder_cleanup(encoder);
5958 kfree(intel_dig_port);
5959 kfree(intel_connector);
5960 }
5961 }
5962
5963 void intel_dp_mst_suspend(struct drm_device *dev)
5964 {
5965 struct drm_i915_private *dev_priv = dev->dev_private;
5966 int i;
5967
5968 /* disable MST */
5969 for (i = 0; i < I915_MAX_PORTS; i++) {
5970 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5971 if (!intel_dig_port)
5972 continue;
5973
5974 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5975 if (!intel_dig_port->dp.can_mst)
5976 continue;
5977 if (intel_dig_port->dp.is_mst)
5978 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5979 }
5980 }
5981 }
5982
5983 void intel_dp_mst_resume(struct drm_device *dev)
5984 {
5985 struct drm_i915_private *dev_priv = dev->dev_private;
5986 int i;
5987
5988 for (i = 0; i < I915_MAX_PORTS; i++) {
5989 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5990 if (!intel_dig_port)
5991 continue;
5992 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5993 int ret;
5994
5995 if (!intel_dig_port->dp.can_mst)
5996 continue;
5997
5998 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5999 if (ret != 0) {
6000 intel_dp_check_mst_status(&intel_dig_port->dp);
6001 }
6002 }
6003 }
6004 }
This page took 0.236198 seconds and 5 git commands to generate.