2f2ec42a417af282f750459df85e1463f3bc59ed
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83 return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
96 * by intel_display.c.
97 */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100 struct intel_dp *intel_dp;
101
102 if (!encoder)
103 return false;
104
105 intel_dp = enc_to_intel_dp(encoder);
106
107 return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 void
113 intel_edp_link_config(struct intel_encoder *intel_encoder,
114 int *lane_num, int *link_bw)
115 {
116 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118 *lane_num = intel_dp->lane_count;
119 *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124 struct drm_display_mode *mode)
125 {
126 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127 struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129 if (intel_connector->panel.fixed_mode)
130 return intel_connector->panel.fixed_mode->clock;
131 else
132 return mode->clock;
133 }
134
135 static int
136 intel_dp_max_link_bw(struct intel_dp *intel_dp)
137 {
138 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140 switch (max_link_bw) {
141 case DP_LINK_BW_1_62:
142 case DP_LINK_BW_2_7:
143 break;
144 default:
145 max_link_bw = DP_LINK_BW_1_62;
146 break;
147 }
148 return max_link_bw;
149 }
150
151 /*
152 * The units on the numbers in the next two are... bizarre. Examples will
153 * make it clearer; this one parallels an example in the eDP spec.
154 *
155 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
156 *
157 * 270000 * 1 * 8 / 10 == 216000
158 *
159 * The actual data capacity of that configuration is 2.16Gbit/s, so the
160 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
161 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
162 * 119000. At 18bpp that's 2142000 kilobits per second.
163 *
164 * Thus the strange-looking division by 10 in intel_dp_link_required, to
165 * get the result in decakilobits instead of kilobits.
166 */
167
168 static int
169 intel_dp_link_required(int pixel_clock, int bpp)
170 {
171 return (pixel_clock * bpp + 9) / 10;
172 }
173
174 static int
175 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
176 {
177 return (max_link_clock * max_lanes * 8) / 10;
178 }
179
180 static bool
181 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
182 struct drm_display_mode *mode,
183 bool adjust_mode)
184 {
185 int max_link_clock =
186 drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
187 int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
188 int max_rate, mode_rate;
189
190 mode_rate = intel_dp_link_required(mode->clock, 24);
191 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
192
193 if (mode_rate > max_rate) {
194 mode_rate = intel_dp_link_required(mode->clock, 18);
195 if (mode_rate > max_rate)
196 return false;
197
198 if (adjust_mode)
199 mode->private_flags
200 |= INTEL_MODE_DP_FORCE_6BPC;
201
202 return true;
203 }
204
205 return true;
206 }
207
208 static int
209 intel_dp_mode_valid(struct drm_connector *connector,
210 struct drm_display_mode *mode)
211 {
212 struct intel_dp *intel_dp = intel_attached_dp(connector);
213 struct intel_connector *intel_connector = to_intel_connector(connector);
214 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
215
216 if (is_edp(intel_dp) && fixed_mode) {
217 if (mode->hdisplay > fixed_mode->hdisplay)
218 return MODE_PANEL;
219
220 if (mode->vdisplay > fixed_mode->vdisplay)
221 return MODE_PANEL;
222 }
223
224 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
225 return MODE_CLOCK_HIGH;
226
227 if (mode->clock < 10000)
228 return MODE_CLOCK_LOW;
229
230 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231 return MODE_H_ILLEGAL;
232
233 return MODE_OK;
234 }
235
236 static uint32_t
237 pack_aux(uint8_t *src, int src_bytes)
238 {
239 int i;
240 uint32_t v = 0;
241
242 if (src_bytes > 4)
243 src_bytes = 4;
244 for (i = 0; i < src_bytes; i++)
245 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246 return v;
247 }
248
249 static void
250 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
294 {
295 struct drm_device *dev = intel_dp_to_dev(intel_dp);
296 struct drm_i915_private *dev_priv = dev->dev_private;
297
298 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
299 }
300
301 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
302 {
303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
304 struct drm_i915_private *dev_priv = dev->dev_private;
305
306 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
307 }
308
309 static void
310 intel_dp_check_edp(struct intel_dp *intel_dp)
311 {
312 struct drm_device *dev = intel_dp_to_dev(intel_dp);
313 struct drm_i915_private *dev_priv = dev->dev_private;
314
315 if (!is_edp(intel_dp))
316 return;
317 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
318 WARN(1, "eDP powered off while attempting aux channel communication.\n");
319 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
320 I915_READ(PCH_PP_STATUS),
321 I915_READ(PCH_PP_CONTROL));
322 }
323 }
324
325 static uint32_t
326 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
332 uint32_t status;
333 bool done;
334
335 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
336 if (has_aux_irq)
337 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
338 msecs_to_jiffies(10));
339 else
340 done = wait_for_atomic(C, 10) == 0;
341 if (!done)
342 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
343 has_aux_irq);
344 #undef C
345
346 return status;
347 }
348
349 static int
350 intel_dp_aux_ch(struct intel_dp *intel_dp,
351 uint8_t *send, int send_bytes,
352 uint8_t *recv, int recv_size)
353 {
354 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
355 struct drm_device *dev = intel_dig_port->base.base.dev;
356 struct drm_i915_private *dev_priv = dev->dev_private;
357 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
358 uint32_t ch_data = ch_ctl + 4;
359 int i, ret, recv_bytes;
360 uint32_t status;
361 uint32_t aux_clock_divider;
362 int try, precharge;
363 bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
364
365 /* dp aux is extremely sensitive to irq latency, hence request the
366 * lowest possible wakeup latency and so prevent the cpu from going into
367 * deep sleep states.
368 */
369 pm_qos_update_request(&dev_priv->pm_qos, 0);
370
371 intel_dp_check_edp(intel_dp);
372 /* The clock divider is based off the hrawclk,
373 * and would like to run at 2MHz. So, take the
374 * hrawclk value and divide by 2 and use that
375 *
376 * Note that PCH attached eDP panels should use a 125MHz input
377 * clock divider.
378 */
379 if (is_cpu_edp(intel_dp)) {
380 if (HAS_DDI(dev))
381 aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
382 else if (IS_VALLEYVIEW(dev))
383 aux_clock_divider = 100;
384 else if (IS_GEN6(dev) || IS_GEN7(dev))
385 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
386 else
387 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
388 } else if (HAS_PCH_SPLIT(dev))
389 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
390 else
391 aux_clock_divider = intel_hrawclk(dev) / 2;
392
393 if (IS_GEN6(dev))
394 precharge = 3;
395 else
396 precharge = 5;
397
398 /* Try to wait for any previous AUX channel activity */
399 for (try = 0; try < 3; try++) {
400 status = I915_READ_NOTRACE(ch_ctl);
401 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
402 break;
403 msleep(1);
404 }
405
406 if (try == 3) {
407 WARN(1, "dp_aux_ch not started status 0x%08x\n",
408 I915_READ(ch_ctl));
409 ret = -EBUSY;
410 goto out;
411 }
412
413 /* Must try at least 3 times according to DP spec */
414 for (try = 0; try < 5; try++) {
415 /* Load the send data into the aux channel data registers */
416 for (i = 0; i < send_bytes; i += 4)
417 I915_WRITE(ch_data + i,
418 pack_aux(send + i, send_bytes - i));
419
420 /* Send the command and wait for it to complete */
421 I915_WRITE(ch_ctl,
422 DP_AUX_CH_CTL_SEND_BUSY |
423 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
424 DP_AUX_CH_CTL_TIME_OUT_400us |
425 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
426 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
427 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
428 DP_AUX_CH_CTL_DONE |
429 DP_AUX_CH_CTL_TIME_OUT_ERROR |
430 DP_AUX_CH_CTL_RECEIVE_ERROR);
431
432 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
433
434 /* Clear done status and any errors */
435 I915_WRITE(ch_ctl,
436 status |
437 DP_AUX_CH_CTL_DONE |
438 DP_AUX_CH_CTL_TIME_OUT_ERROR |
439 DP_AUX_CH_CTL_RECEIVE_ERROR);
440
441 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
442 DP_AUX_CH_CTL_RECEIVE_ERROR))
443 continue;
444 if (status & DP_AUX_CH_CTL_DONE)
445 break;
446 }
447
448 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
449 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
450 ret = -EBUSY;
451 goto out;
452 }
453
454 /* Check for timeout or receive error.
455 * Timeouts occur when the sink is not connected
456 */
457 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
458 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
459 ret = -EIO;
460 goto out;
461 }
462
463 /* Timeouts occur when the device isn't connected, so they're
464 * "normal" -- don't fill the kernel log with these */
465 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
466 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
467 ret = -ETIMEDOUT;
468 goto out;
469 }
470
471 /* Unload any bytes sent back from the other side */
472 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
473 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
474 if (recv_bytes > recv_size)
475 recv_bytes = recv_size;
476
477 for (i = 0; i < recv_bytes; i += 4)
478 unpack_aux(I915_READ(ch_data + i),
479 recv + i, recv_bytes - i);
480
481 ret = recv_bytes;
482 out:
483 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
484
485 return ret;
486 }
487
488 /* Write data to the aux channel in native mode */
489 static int
490 intel_dp_aux_native_write(struct intel_dp *intel_dp,
491 uint16_t address, uint8_t *send, int send_bytes)
492 {
493 int ret;
494 uint8_t msg[20];
495 int msg_bytes;
496 uint8_t ack;
497
498 intel_dp_check_edp(intel_dp);
499 if (send_bytes > 16)
500 return -1;
501 msg[0] = AUX_NATIVE_WRITE << 4;
502 msg[1] = address >> 8;
503 msg[2] = address & 0xff;
504 msg[3] = send_bytes - 1;
505 memcpy(&msg[4], send, send_bytes);
506 msg_bytes = send_bytes + 4;
507 for (;;) {
508 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
509 if (ret < 0)
510 return ret;
511 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
512 break;
513 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
514 udelay(100);
515 else
516 return -EIO;
517 }
518 return send_bytes;
519 }
520
521 /* Write a single byte to the aux channel in native mode */
522 static int
523 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
524 uint16_t address, uint8_t byte)
525 {
526 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
527 }
528
529 /* read bytes from a native aux channel */
530 static int
531 intel_dp_aux_native_read(struct intel_dp *intel_dp,
532 uint16_t address, uint8_t *recv, int recv_bytes)
533 {
534 uint8_t msg[4];
535 int msg_bytes;
536 uint8_t reply[20];
537 int reply_bytes;
538 uint8_t ack;
539 int ret;
540
541 intel_dp_check_edp(intel_dp);
542 msg[0] = AUX_NATIVE_READ << 4;
543 msg[1] = address >> 8;
544 msg[2] = address & 0xff;
545 msg[3] = recv_bytes - 1;
546
547 msg_bytes = 4;
548 reply_bytes = recv_bytes + 1;
549
550 for (;;) {
551 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
552 reply, reply_bytes);
553 if (ret == 0)
554 return -EPROTO;
555 if (ret < 0)
556 return ret;
557 ack = reply[0];
558 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
559 memcpy(recv, reply + 1, ret - 1);
560 return ret - 1;
561 }
562 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
563 udelay(100);
564 else
565 return -EIO;
566 }
567 }
568
569 static int
570 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
571 uint8_t write_byte, uint8_t *read_byte)
572 {
573 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
574 struct intel_dp *intel_dp = container_of(adapter,
575 struct intel_dp,
576 adapter);
577 uint16_t address = algo_data->address;
578 uint8_t msg[5];
579 uint8_t reply[2];
580 unsigned retry;
581 int msg_bytes;
582 int reply_bytes;
583 int ret;
584
585 intel_dp_check_edp(intel_dp);
586 /* Set up the command byte */
587 if (mode & MODE_I2C_READ)
588 msg[0] = AUX_I2C_READ << 4;
589 else
590 msg[0] = AUX_I2C_WRITE << 4;
591
592 if (!(mode & MODE_I2C_STOP))
593 msg[0] |= AUX_I2C_MOT << 4;
594
595 msg[1] = address >> 8;
596 msg[2] = address;
597
598 switch (mode) {
599 case MODE_I2C_WRITE:
600 msg[3] = 0;
601 msg[4] = write_byte;
602 msg_bytes = 5;
603 reply_bytes = 1;
604 break;
605 case MODE_I2C_READ:
606 msg[3] = 0;
607 msg_bytes = 4;
608 reply_bytes = 2;
609 break;
610 default:
611 msg_bytes = 3;
612 reply_bytes = 1;
613 break;
614 }
615
616 for (retry = 0; retry < 5; retry++) {
617 ret = intel_dp_aux_ch(intel_dp,
618 msg, msg_bytes,
619 reply, reply_bytes);
620 if (ret < 0) {
621 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
622 return ret;
623 }
624
625 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
626 case AUX_NATIVE_REPLY_ACK:
627 /* I2C-over-AUX Reply field is only valid
628 * when paired with AUX ACK.
629 */
630 break;
631 case AUX_NATIVE_REPLY_NACK:
632 DRM_DEBUG_KMS("aux_ch native nack\n");
633 return -EREMOTEIO;
634 case AUX_NATIVE_REPLY_DEFER:
635 udelay(100);
636 continue;
637 default:
638 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
639 reply[0]);
640 return -EREMOTEIO;
641 }
642
643 switch (reply[0] & AUX_I2C_REPLY_MASK) {
644 case AUX_I2C_REPLY_ACK:
645 if (mode == MODE_I2C_READ) {
646 *read_byte = reply[1];
647 }
648 return reply_bytes - 1;
649 case AUX_I2C_REPLY_NACK:
650 DRM_DEBUG_KMS("aux_i2c nack\n");
651 return -EREMOTEIO;
652 case AUX_I2C_REPLY_DEFER:
653 DRM_DEBUG_KMS("aux_i2c defer\n");
654 udelay(100);
655 break;
656 default:
657 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
658 return -EREMOTEIO;
659 }
660 }
661
662 DRM_ERROR("too many retries, giving up\n");
663 return -EREMOTEIO;
664 }
665
666 static int
667 intel_dp_i2c_init(struct intel_dp *intel_dp,
668 struct intel_connector *intel_connector, const char *name)
669 {
670 int ret;
671
672 DRM_DEBUG_KMS("i2c_init %s\n", name);
673 intel_dp->algo.running = false;
674 intel_dp->algo.address = 0;
675 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
676
677 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
678 intel_dp->adapter.owner = THIS_MODULE;
679 intel_dp->adapter.class = I2C_CLASS_DDC;
680 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
681 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
682 intel_dp->adapter.algo_data = &intel_dp->algo;
683 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
684
685 ironlake_edp_panel_vdd_on(intel_dp);
686 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
687 ironlake_edp_panel_vdd_off(intel_dp, false);
688 return ret;
689 }
690
691 bool
692 intel_dp_mode_fixup(struct drm_encoder *encoder,
693 const struct drm_display_mode *mode,
694 struct drm_display_mode *adjusted_mode)
695 {
696 struct drm_device *dev = encoder->dev;
697 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
698 struct intel_connector *intel_connector = intel_dp->attached_connector;
699 int lane_count, clock;
700 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
701 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
702 int bpp, mode_rate;
703 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
704
705 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
706 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
707 adjusted_mode);
708 intel_pch_panel_fitting(dev,
709 intel_connector->panel.fitting_mode,
710 mode, adjusted_mode);
711 }
712
713 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
714 return false;
715
716 DRM_DEBUG_KMS("DP link computation with max lane count %i "
717 "max bw %02x pixel clock %iKHz\n",
718 max_lane_count, bws[max_clock], adjusted_mode->clock);
719
720 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
721 return false;
722
723 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
724
725 if (intel_dp->color_range_auto) {
726 /*
727 * See:
728 * CEA-861-E - 5.1 Default Encoding Parameters
729 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
730 */
731 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
732 intel_dp->color_range = DP_COLOR_RANGE_16_235;
733 else
734 intel_dp->color_range = 0;
735 }
736
737 if (intel_dp->color_range)
738 adjusted_mode->private_flags |= INTEL_MODE_LIMITED_COLOR_RANGE;
739
740 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
741
742 for (clock = 0; clock <= max_clock; clock++) {
743 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
744 int link_bw_clock =
745 drm_dp_bw_code_to_link_rate(bws[clock]);
746 int link_avail = intel_dp_max_data_rate(link_bw_clock,
747 lane_count);
748
749 if (mode_rate <= link_avail) {
750 intel_dp->link_bw = bws[clock];
751 intel_dp->lane_count = lane_count;
752 adjusted_mode->clock = link_bw_clock;
753 DRM_DEBUG_KMS("DP link bw %02x lane "
754 "count %d clock %d bpp %d\n",
755 intel_dp->link_bw, intel_dp->lane_count,
756 adjusted_mode->clock, bpp);
757 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
758 mode_rate, link_avail);
759 return true;
760 }
761 }
762 }
763
764 return false;
765 }
766
767 void
768 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
769 struct drm_display_mode *adjusted_mode)
770 {
771 struct drm_device *dev = crtc->dev;
772 struct intel_encoder *intel_encoder;
773 struct intel_dp *intel_dp;
774 struct drm_i915_private *dev_priv = dev->dev_private;
775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
776 int lane_count = 4;
777 struct intel_link_m_n m_n;
778 int pipe = intel_crtc->pipe;
779 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
780
781 /*
782 * Find the lane count in the intel_encoder private
783 */
784 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
785 intel_dp = enc_to_intel_dp(&intel_encoder->base);
786
787 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
788 intel_encoder->type == INTEL_OUTPUT_EDP)
789 {
790 lane_count = intel_dp->lane_count;
791 break;
792 }
793 }
794
795 /*
796 * Compute the GMCH and Link ratios. The '3' here is
797 * the number of bytes_per_pixel post-LUT, which we always
798 * set up for 8-bits of R/G/B, or 3 bytes total.
799 */
800 intel_link_compute_m_n(intel_crtc->bpp, lane_count,
801 mode->clock, adjusted_mode->clock, &m_n);
802
803 if (HAS_DDI(dev)) {
804 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
805 TU_SIZE(m_n.tu) | m_n.gmch_m);
806 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
807 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
808 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
809 } else if (HAS_PCH_SPLIT(dev)) {
810 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
811 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
812 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
813 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
814 } else if (IS_VALLEYVIEW(dev)) {
815 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
816 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
817 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
818 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
819 } else {
820 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
821 TU_SIZE(m_n.tu) | m_n.gmch_m);
822 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
823 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
824 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
825 }
826 }
827
828 void intel_dp_init_link_config(struct intel_dp *intel_dp)
829 {
830 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
831 intel_dp->link_configuration[0] = intel_dp->link_bw;
832 intel_dp->link_configuration[1] = intel_dp->lane_count;
833 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
834 /*
835 * Check for DPCD version > 1.1 and enhanced framing support
836 */
837 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
838 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
839 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
840 }
841 }
842
843 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
844 {
845 struct drm_device *dev = crtc->dev;
846 struct drm_i915_private *dev_priv = dev->dev_private;
847 u32 dpa_ctl;
848
849 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
850 dpa_ctl = I915_READ(DP_A);
851 dpa_ctl &= ~DP_PLL_FREQ_MASK;
852
853 if (clock < 200000) {
854 /* For a long time we've carried around a ILK-DevA w/a for the
855 * 160MHz clock. If we're really unlucky, it's still required.
856 */
857 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
858 dpa_ctl |= DP_PLL_FREQ_160MHZ;
859 } else {
860 dpa_ctl |= DP_PLL_FREQ_270MHZ;
861 }
862
863 I915_WRITE(DP_A, dpa_ctl);
864
865 POSTING_READ(DP_A);
866 udelay(500);
867 }
868
869 static void
870 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
871 struct drm_display_mode *adjusted_mode)
872 {
873 struct drm_device *dev = encoder->dev;
874 struct drm_i915_private *dev_priv = dev->dev_private;
875 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
876 struct drm_crtc *crtc = encoder->crtc;
877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
878
879 /*
880 * There are four kinds of DP registers:
881 *
882 * IBX PCH
883 * SNB CPU
884 * IVB CPU
885 * CPT PCH
886 *
887 * IBX PCH and CPU are the same for almost everything,
888 * except that the CPU DP PLL is configured in this
889 * register
890 *
891 * CPT PCH is quite different, having many bits moved
892 * to the TRANS_DP_CTL register instead. That
893 * configuration happens (oddly) in ironlake_pch_enable
894 */
895
896 /* Preserve the BIOS-computed detected bit. This is
897 * supposed to be read-only.
898 */
899 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
900
901 /* Handle DP bits in common between all three register formats */
902 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
903
904 switch (intel_dp->lane_count) {
905 case 1:
906 intel_dp->DP |= DP_PORT_WIDTH_1;
907 break;
908 case 2:
909 intel_dp->DP |= DP_PORT_WIDTH_2;
910 break;
911 case 4:
912 intel_dp->DP |= DP_PORT_WIDTH_4;
913 break;
914 }
915 if (intel_dp->has_audio) {
916 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
917 pipe_name(intel_crtc->pipe));
918 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
919 intel_write_eld(encoder, adjusted_mode);
920 }
921
922 intel_dp_init_link_config(intel_dp);
923
924 /* Split out the IBX/CPU vs CPT settings */
925
926 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
927 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
928 intel_dp->DP |= DP_SYNC_HS_HIGH;
929 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
930 intel_dp->DP |= DP_SYNC_VS_HIGH;
931 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
932
933 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
934 intel_dp->DP |= DP_ENHANCED_FRAMING;
935
936 intel_dp->DP |= intel_crtc->pipe << 29;
937
938 /* don't miss out required setting for eDP */
939 if (adjusted_mode->clock < 200000)
940 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
941 else
942 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
943 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
944 if (!HAS_PCH_SPLIT(dev))
945 intel_dp->DP |= intel_dp->color_range;
946
947 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
948 intel_dp->DP |= DP_SYNC_HS_HIGH;
949 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
950 intel_dp->DP |= DP_SYNC_VS_HIGH;
951 intel_dp->DP |= DP_LINK_TRAIN_OFF;
952
953 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
954 intel_dp->DP |= DP_ENHANCED_FRAMING;
955
956 if (intel_crtc->pipe == 1)
957 intel_dp->DP |= DP_PIPEB_SELECT;
958
959 if (is_cpu_edp(intel_dp)) {
960 /* don't miss out required setting for eDP */
961 if (adjusted_mode->clock < 200000)
962 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
963 else
964 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
965 }
966 } else {
967 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
968 }
969
970 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
971 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
972 }
973
974 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
975 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
976
977 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
978 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
979
980 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
981 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
982
983 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
984 u32 mask,
985 u32 value)
986 {
987 struct drm_device *dev = intel_dp_to_dev(intel_dp);
988 struct drm_i915_private *dev_priv = dev->dev_private;
989
990 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
991 mask, value,
992 I915_READ(PCH_PP_STATUS),
993 I915_READ(PCH_PP_CONTROL));
994
995 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
996 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
997 I915_READ(PCH_PP_STATUS),
998 I915_READ(PCH_PP_CONTROL));
999 }
1000 }
1001
1002 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1003 {
1004 DRM_DEBUG_KMS("Wait for panel power on\n");
1005 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1006 }
1007
1008 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1009 {
1010 DRM_DEBUG_KMS("Wait for panel power off time\n");
1011 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1012 }
1013
1014 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1015 {
1016 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1017 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1018 }
1019
1020
1021 /* Read the current pp_control value, unlocking the register if it
1022 * is locked
1023 */
1024
1025 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1026 {
1027 u32 control = I915_READ(PCH_PP_CONTROL);
1028
1029 control &= ~PANEL_UNLOCK_MASK;
1030 control |= PANEL_UNLOCK_REGS;
1031 return control;
1032 }
1033
1034 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1035 {
1036 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038 u32 pp;
1039
1040 if (!is_edp(intel_dp))
1041 return;
1042 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1043
1044 WARN(intel_dp->want_panel_vdd,
1045 "eDP VDD already requested on\n");
1046
1047 intel_dp->want_panel_vdd = true;
1048
1049 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1050 DRM_DEBUG_KMS("eDP VDD already on\n");
1051 return;
1052 }
1053
1054 if (!ironlake_edp_have_panel_power(intel_dp))
1055 ironlake_wait_panel_power_cycle(intel_dp);
1056
1057 pp = ironlake_get_pp_control(dev_priv);
1058 pp |= EDP_FORCE_VDD;
1059 I915_WRITE(PCH_PP_CONTROL, pp);
1060 POSTING_READ(PCH_PP_CONTROL);
1061 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1062 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1063
1064 /*
1065 * If the panel wasn't on, delay before accessing aux channel
1066 */
1067 if (!ironlake_edp_have_panel_power(intel_dp)) {
1068 DRM_DEBUG_KMS("eDP was not running\n");
1069 msleep(intel_dp->panel_power_up_delay);
1070 }
1071 }
1072
1073 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1074 {
1075 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1076 struct drm_i915_private *dev_priv = dev->dev_private;
1077 u32 pp;
1078
1079 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1080
1081 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1082 pp = ironlake_get_pp_control(dev_priv);
1083 pp &= ~EDP_FORCE_VDD;
1084 I915_WRITE(PCH_PP_CONTROL, pp);
1085 POSTING_READ(PCH_PP_CONTROL);
1086
1087 /* Make sure sequencer is idle before allowing subsequent activity */
1088 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1089 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1090
1091 msleep(intel_dp->panel_power_down_delay);
1092 }
1093 }
1094
1095 static void ironlake_panel_vdd_work(struct work_struct *__work)
1096 {
1097 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1098 struct intel_dp, panel_vdd_work);
1099 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1100
1101 mutex_lock(&dev->mode_config.mutex);
1102 ironlake_panel_vdd_off_sync(intel_dp);
1103 mutex_unlock(&dev->mode_config.mutex);
1104 }
1105
1106 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1107 {
1108 if (!is_edp(intel_dp))
1109 return;
1110
1111 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1112 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1113
1114 intel_dp->want_panel_vdd = false;
1115
1116 if (sync) {
1117 ironlake_panel_vdd_off_sync(intel_dp);
1118 } else {
1119 /*
1120 * Queue the timer to fire a long
1121 * time from now (relative to the power down delay)
1122 * to keep the panel power up across a sequence of operations
1123 */
1124 schedule_delayed_work(&intel_dp->panel_vdd_work,
1125 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1126 }
1127 }
1128
1129 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1130 {
1131 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1132 struct drm_i915_private *dev_priv = dev->dev_private;
1133 u32 pp;
1134
1135 if (!is_edp(intel_dp))
1136 return;
1137
1138 DRM_DEBUG_KMS("Turn eDP power on\n");
1139
1140 if (ironlake_edp_have_panel_power(intel_dp)) {
1141 DRM_DEBUG_KMS("eDP power already on\n");
1142 return;
1143 }
1144
1145 ironlake_wait_panel_power_cycle(intel_dp);
1146
1147 pp = ironlake_get_pp_control(dev_priv);
1148 if (IS_GEN5(dev)) {
1149 /* ILK workaround: disable reset around power sequence */
1150 pp &= ~PANEL_POWER_RESET;
1151 I915_WRITE(PCH_PP_CONTROL, pp);
1152 POSTING_READ(PCH_PP_CONTROL);
1153 }
1154
1155 pp |= POWER_TARGET_ON;
1156 if (!IS_GEN5(dev))
1157 pp |= PANEL_POWER_RESET;
1158
1159 I915_WRITE(PCH_PP_CONTROL, pp);
1160 POSTING_READ(PCH_PP_CONTROL);
1161
1162 ironlake_wait_panel_on(intel_dp);
1163
1164 if (IS_GEN5(dev)) {
1165 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1166 I915_WRITE(PCH_PP_CONTROL, pp);
1167 POSTING_READ(PCH_PP_CONTROL);
1168 }
1169 }
1170
1171 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1172 {
1173 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1174 struct drm_i915_private *dev_priv = dev->dev_private;
1175 u32 pp;
1176
1177 if (!is_edp(intel_dp))
1178 return;
1179
1180 DRM_DEBUG_KMS("Turn eDP power off\n");
1181
1182 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1183
1184 pp = ironlake_get_pp_control(dev_priv);
1185 /* We need to switch off panel power _and_ force vdd, for otherwise some
1186 * panels get very unhappy and cease to work. */
1187 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1188 I915_WRITE(PCH_PP_CONTROL, pp);
1189 POSTING_READ(PCH_PP_CONTROL);
1190
1191 intel_dp->want_panel_vdd = false;
1192
1193 ironlake_wait_panel_off(intel_dp);
1194 }
1195
1196 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1197 {
1198 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1199 struct drm_device *dev = intel_dig_port->base.base.dev;
1200 struct drm_i915_private *dev_priv = dev->dev_private;
1201 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1202 u32 pp;
1203
1204 if (!is_edp(intel_dp))
1205 return;
1206
1207 DRM_DEBUG_KMS("\n");
1208 /*
1209 * If we enable the backlight right away following a panel power
1210 * on, we may see slight flicker as the panel syncs with the eDP
1211 * link. So delay a bit to make sure the image is solid before
1212 * allowing it to appear.
1213 */
1214 msleep(intel_dp->backlight_on_delay);
1215 pp = ironlake_get_pp_control(dev_priv);
1216 pp |= EDP_BLC_ENABLE;
1217 I915_WRITE(PCH_PP_CONTROL, pp);
1218 POSTING_READ(PCH_PP_CONTROL);
1219
1220 intel_panel_enable_backlight(dev, pipe);
1221 }
1222
1223 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1224 {
1225 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1226 struct drm_i915_private *dev_priv = dev->dev_private;
1227 u32 pp;
1228
1229 if (!is_edp(intel_dp))
1230 return;
1231
1232 intel_panel_disable_backlight(dev);
1233
1234 DRM_DEBUG_KMS("\n");
1235 pp = ironlake_get_pp_control(dev_priv);
1236 pp &= ~EDP_BLC_ENABLE;
1237 I915_WRITE(PCH_PP_CONTROL, pp);
1238 POSTING_READ(PCH_PP_CONTROL);
1239 msleep(intel_dp->backlight_off_delay);
1240 }
1241
1242 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1243 {
1244 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1245 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1246 struct drm_device *dev = crtc->dev;
1247 struct drm_i915_private *dev_priv = dev->dev_private;
1248 u32 dpa_ctl;
1249
1250 assert_pipe_disabled(dev_priv,
1251 to_intel_crtc(crtc)->pipe);
1252
1253 DRM_DEBUG_KMS("\n");
1254 dpa_ctl = I915_READ(DP_A);
1255 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1256 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1257
1258 /* We don't adjust intel_dp->DP while tearing down the link, to
1259 * facilitate link retraining (e.g. after hotplug). Hence clear all
1260 * enable bits here to ensure that we don't enable too much. */
1261 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1262 intel_dp->DP |= DP_PLL_ENABLE;
1263 I915_WRITE(DP_A, intel_dp->DP);
1264 POSTING_READ(DP_A);
1265 udelay(200);
1266 }
1267
1268 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1269 {
1270 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1271 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1272 struct drm_device *dev = crtc->dev;
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 u32 dpa_ctl;
1275
1276 assert_pipe_disabled(dev_priv,
1277 to_intel_crtc(crtc)->pipe);
1278
1279 dpa_ctl = I915_READ(DP_A);
1280 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1281 "dp pll off, should be on\n");
1282 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1283
1284 /* We can't rely on the value tracked for the DP register in
1285 * intel_dp->DP because link_down must not change that (otherwise link
1286 * re-training will fail. */
1287 dpa_ctl &= ~DP_PLL_ENABLE;
1288 I915_WRITE(DP_A, dpa_ctl);
1289 POSTING_READ(DP_A);
1290 udelay(200);
1291 }
1292
1293 /* If the sink supports it, try to set the power state appropriately */
1294 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1295 {
1296 int ret, i;
1297
1298 /* Should have a valid DPCD by this point */
1299 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1300 return;
1301
1302 if (mode != DRM_MODE_DPMS_ON) {
1303 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1304 DP_SET_POWER_D3);
1305 if (ret != 1)
1306 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1307 } else {
1308 /*
1309 * When turning on, we need to retry for 1ms to give the sink
1310 * time to wake up.
1311 */
1312 for (i = 0; i < 3; i++) {
1313 ret = intel_dp_aux_native_write_1(intel_dp,
1314 DP_SET_POWER,
1315 DP_SET_POWER_D0);
1316 if (ret == 1)
1317 break;
1318 msleep(1);
1319 }
1320 }
1321 }
1322
1323 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1324 enum pipe *pipe)
1325 {
1326 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1327 struct drm_device *dev = encoder->base.dev;
1328 struct drm_i915_private *dev_priv = dev->dev_private;
1329 u32 tmp = I915_READ(intel_dp->output_reg);
1330
1331 if (!(tmp & DP_PORT_EN))
1332 return false;
1333
1334 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1335 *pipe = PORT_TO_PIPE_CPT(tmp);
1336 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1337 *pipe = PORT_TO_PIPE(tmp);
1338 } else {
1339 u32 trans_sel;
1340 u32 trans_dp;
1341 int i;
1342
1343 switch (intel_dp->output_reg) {
1344 case PCH_DP_B:
1345 trans_sel = TRANS_DP_PORT_SEL_B;
1346 break;
1347 case PCH_DP_C:
1348 trans_sel = TRANS_DP_PORT_SEL_C;
1349 break;
1350 case PCH_DP_D:
1351 trans_sel = TRANS_DP_PORT_SEL_D;
1352 break;
1353 default:
1354 return true;
1355 }
1356
1357 for_each_pipe(i) {
1358 trans_dp = I915_READ(TRANS_DP_CTL(i));
1359 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1360 *pipe = i;
1361 return true;
1362 }
1363 }
1364
1365 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1366 intel_dp->output_reg);
1367 }
1368
1369 return true;
1370 }
1371
1372 static void intel_disable_dp(struct intel_encoder *encoder)
1373 {
1374 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1375
1376 /* Make sure the panel is off before trying to change the mode. But also
1377 * ensure that we have vdd while we switch off the panel. */
1378 ironlake_edp_panel_vdd_on(intel_dp);
1379 ironlake_edp_backlight_off(intel_dp);
1380 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1381 ironlake_edp_panel_off(intel_dp);
1382
1383 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1384 if (!is_cpu_edp(intel_dp))
1385 intel_dp_link_down(intel_dp);
1386 }
1387
1388 static void intel_post_disable_dp(struct intel_encoder *encoder)
1389 {
1390 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1391
1392 if (is_cpu_edp(intel_dp)) {
1393 intel_dp_link_down(intel_dp);
1394 ironlake_edp_pll_off(intel_dp);
1395 }
1396 }
1397
1398 static void intel_enable_dp(struct intel_encoder *encoder)
1399 {
1400 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1401 struct drm_device *dev = encoder->base.dev;
1402 struct drm_i915_private *dev_priv = dev->dev_private;
1403 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1404
1405 if (WARN_ON(dp_reg & DP_PORT_EN))
1406 return;
1407
1408 ironlake_edp_panel_vdd_on(intel_dp);
1409 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1410 intel_dp_start_link_train(intel_dp);
1411 ironlake_edp_panel_on(intel_dp);
1412 ironlake_edp_panel_vdd_off(intel_dp, true);
1413 intel_dp_complete_link_train(intel_dp);
1414 ironlake_edp_backlight_on(intel_dp);
1415 }
1416
1417 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1418 {
1419 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1420
1421 if (is_cpu_edp(intel_dp))
1422 ironlake_edp_pll_on(intel_dp);
1423 }
1424
1425 /*
1426 * Native read with retry for link status and receiver capability reads for
1427 * cases where the sink may still be asleep.
1428 */
1429 static bool
1430 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1431 uint8_t *recv, int recv_bytes)
1432 {
1433 int ret, i;
1434
1435 /*
1436 * Sinks are *supposed* to come up within 1ms from an off state,
1437 * but we're also supposed to retry 3 times per the spec.
1438 */
1439 for (i = 0; i < 3; i++) {
1440 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1441 recv_bytes);
1442 if (ret == recv_bytes)
1443 return true;
1444 msleep(1);
1445 }
1446
1447 return false;
1448 }
1449
1450 /*
1451 * Fetch AUX CH registers 0x202 - 0x207 which contain
1452 * link status information
1453 */
1454 static bool
1455 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1456 {
1457 return intel_dp_aux_native_read_retry(intel_dp,
1458 DP_LANE0_1_STATUS,
1459 link_status,
1460 DP_LINK_STATUS_SIZE);
1461 }
1462
1463 #if 0
1464 static char *voltage_names[] = {
1465 "0.4V", "0.6V", "0.8V", "1.2V"
1466 };
1467 static char *pre_emph_names[] = {
1468 "0dB", "3.5dB", "6dB", "9.5dB"
1469 };
1470 static char *link_train_names[] = {
1471 "pattern 1", "pattern 2", "idle", "off"
1472 };
1473 #endif
1474
1475 /*
1476 * These are source-specific values; current Intel hardware supports
1477 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1478 */
1479
1480 static uint8_t
1481 intel_dp_voltage_max(struct intel_dp *intel_dp)
1482 {
1483 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1484
1485 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1486 return DP_TRAIN_VOLTAGE_SWING_800;
1487 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1488 return DP_TRAIN_VOLTAGE_SWING_1200;
1489 else
1490 return DP_TRAIN_VOLTAGE_SWING_800;
1491 }
1492
1493 static uint8_t
1494 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1495 {
1496 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1497
1498 if (HAS_DDI(dev)) {
1499 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1500 case DP_TRAIN_VOLTAGE_SWING_400:
1501 return DP_TRAIN_PRE_EMPHASIS_9_5;
1502 case DP_TRAIN_VOLTAGE_SWING_600:
1503 return DP_TRAIN_PRE_EMPHASIS_6;
1504 case DP_TRAIN_VOLTAGE_SWING_800:
1505 return DP_TRAIN_PRE_EMPHASIS_3_5;
1506 case DP_TRAIN_VOLTAGE_SWING_1200:
1507 default:
1508 return DP_TRAIN_PRE_EMPHASIS_0;
1509 }
1510 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1511 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1512 case DP_TRAIN_VOLTAGE_SWING_400:
1513 return DP_TRAIN_PRE_EMPHASIS_6;
1514 case DP_TRAIN_VOLTAGE_SWING_600:
1515 case DP_TRAIN_VOLTAGE_SWING_800:
1516 return DP_TRAIN_PRE_EMPHASIS_3_5;
1517 default:
1518 return DP_TRAIN_PRE_EMPHASIS_0;
1519 }
1520 } else {
1521 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1522 case DP_TRAIN_VOLTAGE_SWING_400:
1523 return DP_TRAIN_PRE_EMPHASIS_6;
1524 case DP_TRAIN_VOLTAGE_SWING_600:
1525 return DP_TRAIN_PRE_EMPHASIS_6;
1526 case DP_TRAIN_VOLTAGE_SWING_800:
1527 return DP_TRAIN_PRE_EMPHASIS_3_5;
1528 case DP_TRAIN_VOLTAGE_SWING_1200:
1529 default:
1530 return DP_TRAIN_PRE_EMPHASIS_0;
1531 }
1532 }
1533 }
1534
1535 static void
1536 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1537 {
1538 uint8_t v = 0;
1539 uint8_t p = 0;
1540 int lane;
1541 uint8_t voltage_max;
1542 uint8_t preemph_max;
1543
1544 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1545 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1546 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1547
1548 if (this_v > v)
1549 v = this_v;
1550 if (this_p > p)
1551 p = this_p;
1552 }
1553
1554 voltage_max = intel_dp_voltage_max(intel_dp);
1555 if (v >= voltage_max)
1556 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1557
1558 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1559 if (p >= preemph_max)
1560 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1561
1562 for (lane = 0; lane < 4; lane++)
1563 intel_dp->train_set[lane] = v | p;
1564 }
1565
1566 static uint32_t
1567 intel_gen4_signal_levels(uint8_t train_set)
1568 {
1569 uint32_t signal_levels = 0;
1570
1571 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1572 case DP_TRAIN_VOLTAGE_SWING_400:
1573 default:
1574 signal_levels |= DP_VOLTAGE_0_4;
1575 break;
1576 case DP_TRAIN_VOLTAGE_SWING_600:
1577 signal_levels |= DP_VOLTAGE_0_6;
1578 break;
1579 case DP_TRAIN_VOLTAGE_SWING_800:
1580 signal_levels |= DP_VOLTAGE_0_8;
1581 break;
1582 case DP_TRAIN_VOLTAGE_SWING_1200:
1583 signal_levels |= DP_VOLTAGE_1_2;
1584 break;
1585 }
1586 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1587 case DP_TRAIN_PRE_EMPHASIS_0:
1588 default:
1589 signal_levels |= DP_PRE_EMPHASIS_0;
1590 break;
1591 case DP_TRAIN_PRE_EMPHASIS_3_5:
1592 signal_levels |= DP_PRE_EMPHASIS_3_5;
1593 break;
1594 case DP_TRAIN_PRE_EMPHASIS_6:
1595 signal_levels |= DP_PRE_EMPHASIS_6;
1596 break;
1597 case DP_TRAIN_PRE_EMPHASIS_9_5:
1598 signal_levels |= DP_PRE_EMPHASIS_9_5;
1599 break;
1600 }
1601 return signal_levels;
1602 }
1603
1604 /* Gen6's DP voltage swing and pre-emphasis control */
1605 static uint32_t
1606 intel_gen6_edp_signal_levels(uint8_t train_set)
1607 {
1608 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1609 DP_TRAIN_PRE_EMPHASIS_MASK);
1610 switch (signal_levels) {
1611 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1612 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1613 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1614 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1615 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1616 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1617 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1618 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1619 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1620 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1621 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1622 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1623 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1624 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1625 default:
1626 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1627 "0x%x\n", signal_levels);
1628 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1629 }
1630 }
1631
1632 /* Gen7's DP voltage swing and pre-emphasis control */
1633 static uint32_t
1634 intel_gen7_edp_signal_levels(uint8_t train_set)
1635 {
1636 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1637 DP_TRAIN_PRE_EMPHASIS_MASK);
1638 switch (signal_levels) {
1639 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1640 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1641 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1642 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1643 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1644 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1645
1646 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1647 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1648 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1649 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1650
1651 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1652 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1653 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1654 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1655
1656 default:
1657 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1658 "0x%x\n", signal_levels);
1659 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1660 }
1661 }
1662
1663 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1664 static uint32_t
1665 intel_hsw_signal_levels(uint8_t train_set)
1666 {
1667 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1668 DP_TRAIN_PRE_EMPHASIS_MASK);
1669 switch (signal_levels) {
1670 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1671 return DDI_BUF_EMP_400MV_0DB_HSW;
1672 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1673 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1674 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1675 return DDI_BUF_EMP_400MV_6DB_HSW;
1676 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1677 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1678
1679 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1680 return DDI_BUF_EMP_600MV_0DB_HSW;
1681 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1682 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1683 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1684 return DDI_BUF_EMP_600MV_6DB_HSW;
1685
1686 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1687 return DDI_BUF_EMP_800MV_0DB_HSW;
1688 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1689 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1690 default:
1691 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1692 "0x%x\n", signal_levels);
1693 return DDI_BUF_EMP_400MV_0DB_HSW;
1694 }
1695 }
1696
1697 /* Properly updates "DP" with the correct signal levels. */
1698 static void
1699 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1700 {
1701 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1702 struct drm_device *dev = intel_dig_port->base.base.dev;
1703 uint32_t signal_levels, mask;
1704 uint8_t train_set = intel_dp->train_set[0];
1705
1706 if (HAS_DDI(dev)) {
1707 signal_levels = intel_hsw_signal_levels(train_set);
1708 mask = DDI_BUF_EMP_MASK;
1709 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1710 signal_levels = intel_gen7_edp_signal_levels(train_set);
1711 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1712 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1713 signal_levels = intel_gen6_edp_signal_levels(train_set);
1714 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1715 } else {
1716 signal_levels = intel_gen4_signal_levels(train_set);
1717 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1718 }
1719
1720 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1721
1722 *DP = (*DP & ~mask) | signal_levels;
1723 }
1724
1725 static bool
1726 intel_dp_set_link_train(struct intel_dp *intel_dp,
1727 uint32_t dp_reg_value,
1728 uint8_t dp_train_pat)
1729 {
1730 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1731 struct drm_device *dev = intel_dig_port->base.base.dev;
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 enum port port = intel_dig_port->port;
1734 int ret;
1735 uint32_t temp;
1736
1737 if (HAS_DDI(dev)) {
1738 temp = I915_READ(DP_TP_CTL(port));
1739
1740 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1741 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1742 else
1743 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1744
1745 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1746 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1747 case DP_TRAINING_PATTERN_DISABLE:
1748
1749 if (port != PORT_A) {
1750 temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1751 I915_WRITE(DP_TP_CTL(port), temp);
1752
1753 if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1754 DP_TP_STATUS_IDLE_DONE), 1))
1755 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1756
1757 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1758 }
1759
1760 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1761
1762 break;
1763 case DP_TRAINING_PATTERN_1:
1764 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1765 break;
1766 case DP_TRAINING_PATTERN_2:
1767 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1768 break;
1769 case DP_TRAINING_PATTERN_3:
1770 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1771 break;
1772 }
1773 I915_WRITE(DP_TP_CTL(port), temp);
1774
1775 } else if (HAS_PCH_CPT(dev) &&
1776 (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1777 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1778
1779 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1780 case DP_TRAINING_PATTERN_DISABLE:
1781 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1782 break;
1783 case DP_TRAINING_PATTERN_1:
1784 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1785 break;
1786 case DP_TRAINING_PATTERN_2:
1787 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1788 break;
1789 case DP_TRAINING_PATTERN_3:
1790 DRM_ERROR("DP training pattern 3 not supported\n");
1791 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1792 break;
1793 }
1794
1795 } else {
1796 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1797
1798 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1799 case DP_TRAINING_PATTERN_DISABLE:
1800 dp_reg_value |= DP_LINK_TRAIN_OFF;
1801 break;
1802 case DP_TRAINING_PATTERN_1:
1803 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1804 break;
1805 case DP_TRAINING_PATTERN_2:
1806 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1807 break;
1808 case DP_TRAINING_PATTERN_3:
1809 DRM_ERROR("DP training pattern 3 not supported\n");
1810 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1811 break;
1812 }
1813 }
1814
1815 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1816 POSTING_READ(intel_dp->output_reg);
1817
1818 intel_dp_aux_native_write_1(intel_dp,
1819 DP_TRAINING_PATTERN_SET,
1820 dp_train_pat);
1821
1822 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1823 DP_TRAINING_PATTERN_DISABLE) {
1824 ret = intel_dp_aux_native_write(intel_dp,
1825 DP_TRAINING_LANE0_SET,
1826 intel_dp->train_set,
1827 intel_dp->lane_count);
1828 if (ret != intel_dp->lane_count)
1829 return false;
1830 }
1831
1832 return true;
1833 }
1834
1835 /* Enable corresponding port and start training pattern 1 */
1836 void
1837 intel_dp_start_link_train(struct intel_dp *intel_dp)
1838 {
1839 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1840 struct drm_device *dev = encoder->dev;
1841 int i;
1842 uint8_t voltage;
1843 bool clock_recovery = false;
1844 int voltage_tries, loop_tries;
1845 uint32_t DP = intel_dp->DP;
1846
1847 if (HAS_DDI(dev))
1848 intel_ddi_prepare_link_retrain(encoder);
1849
1850 /* Write the link configuration data */
1851 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1852 intel_dp->link_configuration,
1853 DP_LINK_CONFIGURATION_SIZE);
1854
1855 DP |= DP_PORT_EN;
1856
1857 memset(intel_dp->train_set, 0, 4);
1858 voltage = 0xff;
1859 voltage_tries = 0;
1860 loop_tries = 0;
1861 clock_recovery = false;
1862 for (;;) {
1863 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1864 uint8_t link_status[DP_LINK_STATUS_SIZE];
1865
1866 intel_dp_set_signal_levels(intel_dp, &DP);
1867
1868 /* Set training pattern 1 */
1869 if (!intel_dp_set_link_train(intel_dp, DP,
1870 DP_TRAINING_PATTERN_1 |
1871 DP_LINK_SCRAMBLING_DISABLE))
1872 break;
1873
1874 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1875 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1876 DRM_ERROR("failed to get link status\n");
1877 break;
1878 }
1879
1880 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1881 DRM_DEBUG_KMS("clock recovery OK\n");
1882 clock_recovery = true;
1883 break;
1884 }
1885
1886 /* Check to see if we've tried the max voltage */
1887 for (i = 0; i < intel_dp->lane_count; i++)
1888 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1889 break;
1890 if (i == intel_dp->lane_count && voltage_tries == 5) {
1891 ++loop_tries;
1892 if (loop_tries == 5) {
1893 DRM_DEBUG_KMS("too many full retries, give up\n");
1894 break;
1895 }
1896 memset(intel_dp->train_set, 0, 4);
1897 voltage_tries = 0;
1898 continue;
1899 }
1900
1901 /* Check to see if we've tried the same voltage 5 times */
1902 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1903 ++voltage_tries;
1904 if (voltage_tries == 5) {
1905 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1906 break;
1907 }
1908 } else
1909 voltage_tries = 0;
1910 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1911
1912 /* Compute new intel_dp->train_set as requested by target */
1913 intel_get_adjust_train(intel_dp, link_status);
1914 }
1915
1916 intel_dp->DP = DP;
1917 }
1918
1919 void
1920 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1921 {
1922 bool channel_eq = false;
1923 int tries, cr_tries;
1924 uint32_t DP = intel_dp->DP;
1925
1926 /* channel equalization */
1927 tries = 0;
1928 cr_tries = 0;
1929 channel_eq = false;
1930 for (;;) {
1931 uint8_t link_status[DP_LINK_STATUS_SIZE];
1932
1933 if (cr_tries > 5) {
1934 DRM_ERROR("failed to train DP, aborting\n");
1935 intel_dp_link_down(intel_dp);
1936 break;
1937 }
1938
1939 intel_dp_set_signal_levels(intel_dp, &DP);
1940
1941 /* channel eq pattern */
1942 if (!intel_dp_set_link_train(intel_dp, DP,
1943 DP_TRAINING_PATTERN_2 |
1944 DP_LINK_SCRAMBLING_DISABLE))
1945 break;
1946
1947 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1948 if (!intel_dp_get_link_status(intel_dp, link_status))
1949 break;
1950
1951 /* Make sure clock is still ok */
1952 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1953 intel_dp_start_link_train(intel_dp);
1954 cr_tries++;
1955 continue;
1956 }
1957
1958 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1959 channel_eq = true;
1960 break;
1961 }
1962
1963 /* Try 5 times, then try clock recovery if that fails */
1964 if (tries > 5) {
1965 intel_dp_link_down(intel_dp);
1966 intel_dp_start_link_train(intel_dp);
1967 tries = 0;
1968 cr_tries++;
1969 continue;
1970 }
1971
1972 /* Compute new intel_dp->train_set as requested by target */
1973 intel_get_adjust_train(intel_dp, link_status);
1974 ++tries;
1975 }
1976
1977 if (channel_eq)
1978 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1979
1980 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1981 }
1982
1983 static void
1984 intel_dp_link_down(struct intel_dp *intel_dp)
1985 {
1986 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1987 struct drm_device *dev = intel_dig_port->base.base.dev;
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989 struct intel_crtc *intel_crtc =
1990 to_intel_crtc(intel_dig_port->base.base.crtc);
1991 uint32_t DP = intel_dp->DP;
1992
1993 /*
1994 * DDI code has a strict mode set sequence and we should try to respect
1995 * it, otherwise we might hang the machine in many different ways. So we
1996 * really should be disabling the port only on a complete crtc_disable
1997 * sequence. This function is just called under two conditions on DDI
1998 * code:
1999 * - Link train failed while doing crtc_enable, and on this case we
2000 * really should respect the mode set sequence and wait for a
2001 * crtc_disable.
2002 * - Someone turned the monitor off and intel_dp_check_link_status
2003 * called us. We don't need to disable the whole port on this case, so
2004 * when someone turns the monitor on again,
2005 * intel_ddi_prepare_link_retrain will take care of redoing the link
2006 * train.
2007 */
2008 if (HAS_DDI(dev))
2009 return;
2010
2011 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2012 return;
2013
2014 DRM_DEBUG_KMS("\n");
2015
2016 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
2017 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2018 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2019 } else {
2020 DP &= ~DP_LINK_TRAIN_MASK;
2021 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2022 }
2023 POSTING_READ(intel_dp->output_reg);
2024
2025 /* We don't really know why we're doing this */
2026 intel_wait_for_vblank(dev, intel_crtc->pipe);
2027
2028 if (HAS_PCH_IBX(dev) &&
2029 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2030 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2031
2032 /* Hardware workaround: leaving our transcoder select
2033 * set to transcoder B while it's off will prevent the
2034 * corresponding HDMI output on transcoder A.
2035 *
2036 * Combine this with another hardware workaround:
2037 * transcoder select bit can only be cleared while the
2038 * port is enabled.
2039 */
2040 DP &= ~DP_PIPEB_SELECT;
2041 I915_WRITE(intel_dp->output_reg, DP);
2042
2043 /* Changes to enable or select take place the vblank
2044 * after being written.
2045 */
2046 if (WARN_ON(crtc == NULL)) {
2047 /* We should never try to disable a port without a crtc
2048 * attached. For paranoia keep the code around for a
2049 * bit. */
2050 POSTING_READ(intel_dp->output_reg);
2051 msleep(50);
2052 } else
2053 intel_wait_for_vblank(dev, intel_crtc->pipe);
2054 }
2055
2056 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2057 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2058 POSTING_READ(intel_dp->output_reg);
2059 msleep(intel_dp->panel_power_down_delay);
2060 }
2061
2062 static bool
2063 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2064 {
2065 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2066
2067 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2068 sizeof(intel_dp->dpcd)) == 0)
2069 return false; /* aux transfer failed */
2070
2071 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2072 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2073 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2074
2075 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2076 return false; /* DPCD not present */
2077
2078 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2079 DP_DWN_STRM_PORT_PRESENT))
2080 return true; /* native DP sink */
2081
2082 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2083 return true; /* no per-port downstream info */
2084
2085 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2086 intel_dp->downstream_ports,
2087 DP_MAX_DOWNSTREAM_PORTS) == 0)
2088 return false; /* downstream port status fetch failed */
2089
2090 return true;
2091 }
2092
2093 static void
2094 intel_dp_probe_oui(struct intel_dp *intel_dp)
2095 {
2096 u8 buf[3];
2097
2098 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2099 return;
2100
2101 ironlake_edp_panel_vdd_on(intel_dp);
2102
2103 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2104 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2105 buf[0], buf[1], buf[2]);
2106
2107 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2108 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2109 buf[0], buf[1], buf[2]);
2110
2111 ironlake_edp_panel_vdd_off(intel_dp, false);
2112 }
2113
2114 static bool
2115 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2116 {
2117 int ret;
2118
2119 ret = intel_dp_aux_native_read_retry(intel_dp,
2120 DP_DEVICE_SERVICE_IRQ_VECTOR,
2121 sink_irq_vector, 1);
2122 if (!ret)
2123 return false;
2124
2125 return true;
2126 }
2127
2128 static void
2129 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2130 {
2131 /* NAK by default */
2132 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2133 }
2134
2135 /*
2136 * According to DP spec
2137 * 5.1.2:
2138 * 1. Read DPCD
2139 * 2. Configure link according to Receiver Capabilities
2140 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2141 * 4. Check link status on receipt of hot-plug interrupt
2142 */
2143
2144 void
2145 intel_dp_check_link_status(struct intel_dp *intel_dp)
2146 {
2147 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2148 u8 sink_irq_vector;
2149 u8 link_status[DP_LINK_STATUS_SIZE];
2150
2151 if (!intel_encoder->connectors_active)
2152 return;
2153
2154 if (WARN_ON(!intel_encoder->base.crtc))
2155 return;
2156
2157 /* Try to read receiver status if the link appears to be up */
2158 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2159 intel_dp_link_down(intel_dp);
2160 return;
2161 }
2162
2163 /* Now read the DPCD to see if it's actually running */
2164 if (!intel_dp_get_dpcd(intel_dp)) {
2165 intel_dp_link_down(intel_dp);
2166 return;
2167 }
2168
2169 /* Try to read the source of the interrupt */
2170 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2171 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2172 /* Clear interrupt source */
2173 intel_dp_aux_native_write_1(intel_dp,
2174 DP_DEVICE_SERVICE_IRQ_VECTOR,
2175 sink_irq_vector);
2176
2177 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2178 intel_dp_handle_test_request(intel_dp);
2179 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2180 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2181 }
2182
2183 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2184 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2185 drm_get_encoder_name(&intel_encoder->base));
2186 intel_dp_start_link_train(intel_dp);
2187 intel_dp_complete_link_train(intel_dp);
2188 }
2189 }
2190
2191 /* XXX this is probably wrong for multiple downstream ports */
2192 static enum drm_connector_status
2193 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2194 {
2195 uint8_t *dpcd = intel_dp->dpcd;
2196 bool hpd;
2197 uint8_t type;
2198
2199 if (!intel_dp_get_dpcd(intel_dp))
2200 return connector_status_disconnected;
2201
2202 /* if there's no downstream port, we're done */
2203 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2204 return connector_status_connected;
2205
2206 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2207 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2208 if (hpd) {
2209 uint8_t reg;
2210 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2211 &reg, 1))
2212 return connector_status_unknown;
2213 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2214 : connector_status_disconnected;
2215 }
2216
2217 /* If no HPD, poke DDC gently */
2218 if (drm_probe_ddc(&intel_dp->adapter))
2219 return connector_status_connected;
2220
2221 /* Well we tried, say unknown for unreliable port types */
2222 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2223 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2224 return connector_status_unknown;
2225
2226 /* Anything else is out of spec, warn and ignore */
2227 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2228 return connector_status_disconnected;
2229 }
2230
2231 static enum drm_connector_status
2232 ironlake_dp_detect(struct intel_dp *intel_dp)
2233 {
2234 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2235 struct drm_i915_private *dev_priv = dev->dev_private;
2236 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2237 enum drm_connector_status status;
2238
2239 /* Can't disconnect eDP, but you can close the lid... */
2240 if (is_edp(intel_dp)) {
2241 status = intel_panel_detect(dev);
2242 if (status == connector_status_unknown)
2243 status = connector_status_connected;
2244 return status;
2245 }
2246
2247 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2248 return connector_status_disconnected;
2249
2250 return intel_dp_detect_dpcd(intel_dp);
2251 }
2252
2253 static enum drm_connector_status
2254 g4x_dp_detect(struct intel_dp *intel_dp)
2255 {
2256 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2257 struct drm_i915_private *dev_priv = dev->dev_private;
2258 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2259 uint32_t bit;
2260
2261 /* Can't disconnect eDP, but you can close the lid... */
2262 if (is_edp(intel_dp)) {
2263 enum drm_connector_status status;
2264
2265 status = intel_panel_detect(dev);
2266 if (status == connector_status_unknown)
2267 status = connector_status_connected;
2268 return status;
2269 }
2270
2271 switch (intel_dig_port->port) {
2272 case PORT_B:
2273 bit = PORTB_HOTPLUG_LIVE_STATUS;
2274 break;
2275 case PORT_C:
2276 bit = PORTC_HOTPLUG_LIVE_STATUS;
2277 break;
2278 case PORT_D:
2279 bit = PORTD_HOTPLUG_LIVE_STATUS;
2280 break;
2281 default:
2282 return connector_status_unknown;
2283 }
2284
2285 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2286 return connector_status_disconnected;
2287
2288 return intel_dp_detect_dpcd(intel_dp);
2289 }
2290
2291 static struct edid *
2292 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2293 {
2294 struct intel_connector *intel_connector = to_intel_connector(connector);
2295
2296 /* use cached edid if we have one */
2297 if (intel_connector->edid) {
2298 struct edid *edid;
2299 int size;
2300
2301 /* invalid edid */
2302 if (IS_ERR(intel_connector->edid))
2303 return NULL;
2304
2305 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2306 edid = kmalloc(size, GFP_KERNEL);
2307 if (!edid)
2308 return NULL;
2309
2310 memcpy(edid, intel_connector->edid, size);
2311 return edid;
2312 }
2313
2314 return drm_get_edid(connector, adapter);
2315 }
2316
2317 static int
2318 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2319 {
2320 struct intel_connector *intel_connector = to_intel_connector(connector);
2321
2322 /* use cached edid if we have one */
2323 if (intel_connector->edid) {
2324 /* invalid edid */
2325 if (IS_ERR(intel_connector->edid))
2326 return 0;
2327
2328 return intel_connector_update_modes(connector,
2329 intel_connector->edid);
2330 }
2331
2332 return intel_ddc_get_modes(connector, adapter);
2333 }
2334
2335 static enum drm_connector_status
2336 intel_dp_detect(struct drm_connector *connector, bool force)
2337 {
2338 struct intel_dp *intel_dp = intel_attached_dp(connector);
2339 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2340 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2341 struct drm_device *dev = connector->dev;
2342 enum drm_connector_status status;
2343 struct edid *edid = NULL;
2344
2345 intel_dp->has_audio = false;
2346
2347 if (HAS_PCH_SPLIT(dev))
2348 status = ironlake_dp_detect(intel_dp);
2349 else
2350 status = g4x_dp_detect(intel_dp);
2351
2352 if (status != connector_status_connected)
2353 return status;
2354
2355 intel_dp_probe_oui(intel_dp);
2356
2357 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2358 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2359 } else {
2360 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2361 if (edid) {
2362 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2363 kfree(edid);
2364 }
2365 }
2366
2367 if (intel_encoder->type != INTEL_OUTPUT_EDP)
2368 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2369 return connector_status_connected;
2370 }
2371
2372 static int intel_dp_get_modes(struct drm_connector *connector)
2373 {
2374 struct intel_dp *intel_dp = intel_attached_dp(connector);
2375 struct intel_connector *intel_connector = to_intel_connector(connector);
2376 struct drm_device *dev = connector->dev;
2377 int ret;
2378
2379 /* We should parse the EDID data and find out if it has an audio sink
2380 */
2381
2382 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2383 if (ret)
2384 return ret;
2385
2386 /* if eDP has no EDID, fall back to fixed mode */
2387 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2388 struct drm_display_mode *mode;
2389 mode = drm_mode_duplicate(dev,
2390 intel_connector->panel.fixed_mode);
2391 if (mode) {
2392 drm_mode_probed_add(connector, mode);
2393 return 1;
2394 }
2395 }
2396 return 0;
2397 }
2398
2399 static bool
2400 intel_dp_detect_audio(struct drm_connector *connector)
2401 {
2402 struct intel_dp *intel_dp = intel_attached_dp(connector);
2403 struct edid *edid;
2404 bool has_audio = false;
2405
2406 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2407 if (edid) {
2408 has_audio = drm_detect_monitor_audio(edid);
2409 kfree(edid);
2410 }
2411
2412 return has_audio;
2413 }
2414
2415 static int
2416 intel_dp_set_property(struct drm_connector *connector,
2417 struct drm_property *property,
2418 uint64_t val)
2419 {
2420 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2421 struct intel_connector *intel_connector = to_intel_connector(connector);
2422 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2423 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2424 int ret;
2425
2426 ret = drm_object_property_set_value(&connector->base, property, val);
2427 if (ret)
2428 return ret;
2429
2430 if (property == dev_priv->force_audio_property) {
2431 int i = val;
2432 bool has_audio;
2433
2434 if (i == intel_dp->force_audio)
2435 return 0;
2436
2437 intel_dp->force_audio = i;
2438
2439 if (i == HDMI_AUDIO_AUTO)
2440 has_audio = intel_dp_detect_audio(connector);
2441 else
2442 has_audio = (i == HDMI_AUDIO_ON);
2443
2444 if (has_audio == intel_dp->has_audio)
2445 return 0;
2446
2447 intel_dp->has_audio = has_audio;
2448 goto done;
2449 }
2450
2451 if (property == dev_priv->broadcast_rgb_property) {
2452 switch (val) {
2453 case INTEL_BROADCAST_RGB_AUTO:
2454 intel_dp->color_range_auto = true;
2455 break;
2456 case INTEL_BROADCAST_RGB_FULL:
2457 intel_dp->color_range_auto = false;
2458 intel_dp->color_range = 0;
2459 break;
2460 case INTEL_BROADCAST_RGB_LIMITED:
2461 intel_dp->color_range_auto = false;
2462 intel_dp->color_range = DP_COLOR_RANGE_16_235;
2463 break;
2464 default:
2465 return -EINVAL;
2466 }
2467 goto done;
2468 }
2469
2470 if (is_edp(intel_dp) &&
2471 property == connector->dev->mode_config.scaling_mode_property) {
2472 if (val == DRM_MODE_SCALE_NONE) {
2473 DRM_DEBUG_KMS("no scaling not supported\n");
2474 return -EINVAL;
2475 }
2476
2477 if (intel_connector->panel.fitting_mode == val) {
2478 /* the eDP scaling property is not changed */
2479 return 0;
2480 }
2481 intel_connector->panel.fitting_mode = val;
2482
2483 goto done;
2484 }
2485
2486 return -EINVAL;
2487
2488 done:
2489 if (intel_encoder->base.crtc)
2490 intel_crtc_restore_mode(intel_encoder->base.crtc);
2491
2492 return 0;
2493 }
2494
2495 static void
2496 intel_dp_destroy(struct drm_connector *connector)
2497 {
2498 struct drm_device *dev = connector->dev;
2499 struct intel_dp *intel_dp = intel_attached_dp(connector);
2500 struct intel_connector *intel_connector = to_intel_connector(connector);
2501
2502 if (!IS_ERR_OR_NULL(intel_connector->edid))
2503 kfree(intel_connector->edid);
2504
2505 if (is_edp(intel_dp)) {
2506 intel_panel_destroy_backlight(dev);
2507 intel_panel_fini(&intel_connector->panel);
2508 }
2509
2510 drm_sysfs_connector_remove(connector);
2511 drm_connector_cleanup(connector);
2512 kfree(connector);
2513 }
2514
2515 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2516 {
2517 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2518 struct intel_dp *intel_dp = &intel_dig_port->dp;
2519
2520 i2c_del_adapter(&intel_dp->adapter);
2521 drm_encoder_cleanup(encoder);
2522 if (is_edp(intel_dp)) {
2523 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2524 ironlake_panel_vdd_off_sync(intel_dp);
2525 }
2526 kfree(intel_dig_port);
2527 }
2528
2529 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2530 .mode_fixup = intel_dp_mode_fixup,
2531 .mode_set = intel_dp_mode_set,
2532 };
2533
2534 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2535 .dpms = intel_connector_dpms,
2536 .detect = intel_dp_detect,
2537 .fill_modes = drm_helper_probe_single_connector_modes,
2538 .set_property = intel_dp_set_property,
2539 .destroy = intel_dp_destroy,
2540 };
2541
2542 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2543 .get_modes = intel_dp_get_modes,
2544 .mode_valid = intel_dp_mode_valid,
2545 .best_encoder = intel_best_encoder,
2546 };
2547
2548 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2549 .destroy = intel_dp_encoder_destroy,
2550 };
2551
2552 static void
2553 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2554 {
2555 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2556
2557 intel_dp_check_link_status(intel_dp);
2558 }
2559
2560 /* Return which DP Port should be selected for Transcoder DP control */
2561 int
2562 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2563 {
2564 struct drm_device *dev = crtc->dev;
2565 struct intel_encoder *intel_encoder;
2566 struct intel_dp *intel_dp;
2567
2568 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2569 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2570
2571 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2572 intel_encoder->type == INTEL_OUTPUT_EDP)
2573 return intel_dp->output_reg;
2574 }
2575
2576 return -1;
2577 }
2578
2579 /* check the VBT to see whether the eDP is on DP-D port */
2580 bool intel_dpd_is_edp(struct drm_device *dev)
2581 {
2582 struct drm_i915_private *dev_priv = dev->dev_private;
2583 struct child_device_config *p_child;
2584 int i;
2585
2586 if (!dev_priv->child_dev_num)
2587 return false;
2588
2589 for (i = 0; i < dev_priv->child_dev_num; i++) {
2590 p_child = dev_priv->child_dev + i;
2591
2592 if (p_child->dvo_port == PORT_IDPD &&
2593 p_child->device_type == DEVICE_TYPE_eDP)
2594 return true;
2595 }
2596 return false;
2597 }
2598
2599 static void
2600 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2601 {
2602 struct intel_connector *intel_connector = to_intel_connector(connector);
2603
2604 intel_attach_force_audio_property(connector);
2605 intel_attach_broadcast_rgb_property(connector);
2606 intel_dp->color_range_auto = true;
2607
2608 if (is_edp(intel_dp)) {
2609 drm_mode_create_scaling_mode_property(connector->dev);
2610 drm_object_attach_property(
2611 &connector->base,
2612 connector->dev->mode_config.scaling_mode_property,
2613 DRM_MODE_SCALE_ASPECT);
2614 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2615 }
2616 }
2617
2618 static void
2619 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2620 struct intel_dp *intel_dp,
2621 struct edp_power_seq *out)
2622 {
2623 struct drm_i915_private *dev_priv = dev->dev_private;
2624 struct edp_power_seq cur, vbt, spec, final;
2625 u32 pp_on, pp_off, pp_div, pp;
2626
2627 /* Workaround: Need to write PP_CONTROL with the unlock key as
2628 * the very first thing. */
2629 pp = ironlake_get_pp_control(dev_priv);
2630 I915_WRITE(PCH_PP_CONTROL, pp);
2631
2632 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2633 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2634 pp_div = I915_READ(PCH_PP_DIVISOR);
2635
2636 /* Pull timing values out of registers */
2637 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2638 PANEL_POWER_UP_DELAY_SHIFT;
2639
2640 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2641 PANEL_LIGHT_ON_DELAY_SHIFT;
2642
2643 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2644 PANEL_LIGHT_OFF_DELAY_SHIFT;
2645
2646 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2647 PANEL_POWER_DOWN_DELAY_SHIFT;
2648
2649 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2650 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2651
2652 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2653 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2654
2655 vbt = dev_priv->edp.pps;
2656
2657 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2658 * our hw here, which are all in 100usec. */
2659 spec.t1_t3 = 210 * 10;
2660 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2661 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2662 spec.t10 = 500 * 10;
2663 /* This one is special and actually in units of 100ms, but zero
2664 * based in the hw (so we need to add 100 ms). But the sw vbt
2665 * table multiplies it with 1000 to make it in units of 100usec,
2666 * too. */
2667 spec.t11_t12 = (510 + 100) * 10;
2668
2669 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2670 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2671
2672 /* Use the max of the register settings and vbt. If both are
2673 * unset, fall back to the spec limits. */
2674 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
2675 spec.field : \
2676 max(cur.field, vbt.field))
2677 assign_final(t1_t3);
2678 assign_final(t8);
2679 assign_final(t9);
2680 assign_final(t10);
2681 assign_final(t11_t12);
2682 #undef assign_final
2683
2684 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
2685 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2686 intel_dp->backlight_on_delay = get_delay(t8);
2687 intel_dp->backlight_off_delay = get_delay(t9);
2688 intel_dp->panel_power_down_delay = get_delay(t10);
2689 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2690 #undef get_delay
2691
2692 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2693 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2694 intel_dp->panel_power_cycle_delay);
2695
2696 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2697 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2698
2699 if (out)
2700 *out = final;
2701 }
2702
2703 static void
2704 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2705 struct intel_dp *intel_dp,
2706 struct edp_power_seq *seq)
2707 {
2708 struct drm_i915_private *dev_priv = dev->dev_private;
2709 u32 pp_on, pp_off, pp_div;
2710
2711 /* And finally store the new values in the power sequencer. */
2712 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2713 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2714 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2715 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2716 /* Compute the divisor for the pp clock, simply match the Bspec
2717 * formula. */
2718 pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2719 << PP_REFERENCE_DIVIDER_SHIFT;
2720 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2721 << PANEL_POWER_CYCLE_DELAY_SHIFT);
2722
2723 /* Haswell doesn't have any port selection bits for the panel
2724 * power sequencer any more. */
2725 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2726 if (is_cpu_edp(intel_dp))
2727 pp_on |= PANEL_POWER_PORT_DP_A;
2728 else
2729 pp_on |= PANEL_POWER_PORT_DP_D;
2730 }
2731
2732 I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2733 I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2734 I915_WRITE(PCH_PP_DIVISOR, pp_div);
2735
2736 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2737 I915_READ(PCH_PP_ON_DELAYS),
2738 I915_READ(PCH_PP_OFF_DELAYS),
2739 I915_READ(PCH_PP_DIVISOR));
2740 }
2741
2742 void
2743 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2744 struct intel_connector *intel_connector)
2745 {
2746 struct drm_connector *connector = &intel_connector->base;
2747 struct intel_dp *intel_dp = &intel_dig_port->dp;
2748 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2749 struct drm_device *dev = intel_encoder->base.dev;
2750 struct drm_i915_private *dev_priv = dev->dev_private;
2751 struct drm_display_mode *fixed_mode = NULL;
2752 struct edp_power_seq power_seq = { 0 };
2753 enum port port = intel_dig_port->port;
2754 const char *name = NULL;
2755 int type;
2756
2757 /* Preserve the current hw state. */
2758 intel_dp->DP = I915_READ(intel_dp->output_reg);
2759 intel_dp->attached_connector = intel_connector;
2760
2761 if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2762 if (intel_dpd_is_edp(dev))
2763 intel_dp->is_pch_edp = true;
2764
2765 /*
2766 * FIXME : We need to initialize built-in panels before external panels.
2767 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2768 */
2769 if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2770 type = DRM_MODE_CONNECTOR_eDP;
2771 intel_encoder->type = INTEL_OUTPUT_EDP;
2772 } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2773 type = DRM_MODE_CONNECTOR_eDP;
2774 intel_encoder->type = INTEL_OUTPUT_EDP;
2775 } else {
2776 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2777 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2778 * rewrite it.
2779 */
2780 type = DRM_MODE_CONNECTOR_DisplayPort;
2781 }
2782
2783 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2784 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2785
2786 connector->polled = DRM_CONNECTOR_POLL_HPD;
2787 connector->interlace_allowed = true;
2788 connector->doublescan_allowed = 0;
2789
2790 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2791 ironlake_panel_vdd_work);
2792
2793 intel_connector_attach_encoder(intel_connector, intel_encoder);
2794 drm_sysfs_connector_add(connector);
2795
2796 if (HAS_DDI(dev))
2797 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2798 else
2799 intel_connector->get_hw_state = intel_connector_get_hw_state;
2800
2801 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
2802 if (HAS_DDI(dev)) {
2803 switch (intel_dig_port->port) {
2804 case PORT_A:
2805 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
2806 break;
2807 case PORT_B:
2808 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
2809 break;
2810 case PORT_C:
2811 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
2812 break;
2813 case PORT_D:
2814 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
2815 break;
2816 default:
2817 BUG();
2818 }
2819 }
2820
2821 /* Set up the DDC bus. */
2822 switch (port) {
2823 case PORT_A:
2824 name = "DPDDC-A";
2825 break;
2826 case PORT_B:
2827 dev_priv->hotplug_supported_mask |= PORTB_HOTPLUG_INT_STATUS;
2828 name = "DPDDC-B";
2829 break;
2830 case PORT_C:
2831 dev_priv->hotplug_supported_mask |= PORTC_HOTPLUG_INT_STATUS;
2832 name = "DPDDC-C";
2833 break;
2834 case PORT_D:
2835 dev_priv->hotplug_supported_mask |= PORTD_HOTPLUG_INT_STATUS;
2836 name = "DPDDC-D";
2837 break;
2838 default:
2839 BUG();
2840 }
2841
2842 if (is_edp(intel_dp))
2843 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2844
2845 intel_dp_i2c_init(intel_dp, intel_connector, name);
2846
2847 /* Cache DPCD and EDID for edp. */
2848 if (is_edp(intel_dp)) {
2849 bool ret;
2850 struct drm_display_mode *scan;
2851 struct edid *edid;
2852
2853 ironlake_edp_panel_vdd_on(intel_dp);
2854 ret = intel_dp_get_dpcd(intel_dp);
2855 ironlake_edp_panel_vdd_off(intel_dp, false);
2856
2857 if (ret) {
2858 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2859 dev_priv->no_aux_handshake =
2860 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2861 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2862 } else {
2863 /* if this fails, presume the device is a ghost */
2864 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2865 intel_dp_encoder_destroy(&intel_encoder->base);
2866 intel_dp_destroy(connector);
2867 return;
2868 }
2869
2870 /* We now know it's not a ghost, init power sequence regs. */
2871 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2872 &power_seq);
2873
2874 ironlake_edp_panel_vdd_on(intel_dp);
2875 edid = drm_get_edid(connector, &intel_dp->adapter);
2876 if (edid) {
2877 if (drm_add_edid_modes(connector, edid)) {
2878 drm_mode_connector_update_edid_property(connector, edid);
2879 drm_edid_to_eld(connector, edid);
2880 } else {
2881 kfree(edid);
2882 edid = ERR_PTR(-EINVAL);
2883 }
2884 } else {
2885 edid = ERR_PTR(-ENOENT);
2886 }
2887 intel_connector->edid = edid;
2888
2889 /* prefer fixed mode from EDID if available */
2890 list_for_each_entry(scan, &connector->probed_modes, head) {
2891 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2892 fixed_mode = drm_mode_duplicate(dev, scan);
2893 break;
2894 }
2895 }
2896
2897 /* fallback to VBT if available for eDP */
2898 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2899 fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2900 if (fixed_mode)
2901 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2902 }
2903
2904 ironlake_edp_panel_vdd_off(intel_dp, false);
2905 }
2906
2907 if (is_edp(intel_dp)) {
2908 intel_panel_init(&intel_connector->panel, fixed_mode);
2909 intel_panel_setup_backlight(connector);
2910 }
2911
2912 intel_dp_add_properties(intel_dp, connector);
2913
2914 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2915 * 0xd. Failure to do so will result in spurious interrupts being
2916 * generated on the port when a cable is not attached.
2917 */
2918 if (IS_G4X(dev) && !IS_GM45(dev)) {
2919 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2920 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2921 }
2922 }
2923
2924 void
2925 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2926 {
2927 struct intel_digital_port *intel_dig_port;
2928 struct intel_encoder *intel_encoder;
2929 struct drm_encoder *encoder;
2930 struct intel_connector *intel_connector;
2931
2932 intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2933 if (!intel_dig_port)
2934 return;
2935
2936 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2937 if (!intel_connector) {
2938 kfree(intel_dig_port);
2939 return;
2940 }
2941
2942 intel_encoder = &intel_dig_port->base;
2943 encoder = &intel_encoder->base;
2944
2945 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2946 DRM_MODE_ENCODER_TMDS);
2947 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2948
2949 intel_encoder->enable = intel_enable_dp;
2950 intel_encoder->pre_enable = intel_pre_enable_dp;
2951 intel_encoder->disable = intel_disable_dp;
2952 intel_encoder->post_disable = intel_post_disable_dp;
2953 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2954
2955 intel_dig_port->port = port;
2956 intel_dig_port->dp.output_reg = output_reg;
2957
2958 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2959 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2960 intel_encoder->cloneable = false;
2961 intel_encoder->hot_plug = intel_dp_hot_plug;
2962
2963 intel_dp_init_connector(intel_dig_port, intel_connector);
2964 }
This page took 0.166638 seconds and 5 git commands to generate.