drm/i915: Avoid confusion between DP and TRANS_DP_CTL in DP .get_config()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
99 243000, 270000, 324000, 405000,
100 420000, 432000, 540000 };
101 static const int default_rates[] = { 162000, 270000, 540000 };
102
103 /**
104 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
105 * @intel_dp: DP struct
106 *
107 * If a CPU or PCH DP output is attached to an eDP panel, this function
108 * will return true, and false otherwise.
109 */
110 static bool is_edp(struct intel_dp *intel_dp)
111 {
112 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
115 }
116
117 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
118 {
119 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
120
121 return intel_dig_port->base.base.dev;
122 }
123
124 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
125 {
126 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
127 }
128
129 static void intel_dp_link_down(struct intel_dp *intel_dp);
130 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
131 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
132 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
133 static void vlv_steal_power_sequencer(struct drm_device *dev,
134 enum pipe pipe);
135
136 static int
137 intel_dp_max_link_bw(struct intel_dp *intel_dp)
138 {
139 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
140
141 switch (max_link_bw) {
142 case DP_LINK_BW_1_62:
143 case DP_LINK_BW_2_7:
144 case DP_LINK_BW_5_4:
145 break;
146 default:
147 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
148 max_link_bw);
149 max_link_bw = DP_LINK_BW_1_62;
150 break;
151 }
152 return max_link_bw;
153 }
154
155 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
158 struct drm_device *dev = intel_dig_port->base.base.dev;
159 u8 source_max, sink_max;
160
161 source_max = 4;
162 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
163 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
164 source_max = 2;
165
166 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
167
168 return min(source_max, sink_max);
169 }
170
171 /*
172 * The units on the numbers in the next two are... bizarre. Examples will
173 * make it clearer; this one parallels an example in the eDP spec.
174 *
175 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
176 *
177 * 270000 * 1 * 8 / 10 == 216000
178 *
179 * The actual data capacity of that configuration is 2.16Gbit/s, so the
180 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
181 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
182 * 119000. At 18bpp that's 2142000 kilobits per second.
183 *
184 * Thus the strange-looking division by 10 in intel_dp_link_required, to
185 * get the result in decakilobits instead of kilobits.
186 */
187
188 static int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191 return (pixel_clock * bpp + 9) / 10;
192 }
193
194 static int
195 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
196 {
197 return (max_link_clock * max_lanes * 8) / 10;
198 }
199
200 static enum drm_mode_status
201 intel_dp_mode_valid(struct drm_connector *connector,
202 struct drm_display_mode *mode)
203 {
204 struct intel_dp *intel_dp = intel_attached_dp(connector);
205 struct intel_connector *intel_connector = to_intel_connector(connector);
206 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
207 int target_clock = mode->clock;
208 int max_rate, mode_rate, max_lanes, max_link_clock;
209
210 if (is_edp(intel_dp) && fixed_mode) {
211 if (mode->hdisplay > fixed_mode->hdisplay)
212 return MODE_PANEL;
213
214 if (mode->vdisplay > fixed_mode->vdisplay)
215 return MODE_PANEL;
216
217 target_clock = fixed_mode->clock;
218 }
219
220 max_link_clock = intel_dp_max_link_rate(intel_dp);
221 max_lanes = intel_dp_max_lane_count(intel_dp);
222
223 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
224 mode_rate = intel_dp_link_required(target_clock, 18);
225
226 if (mode_rate > max_rate)
227 return MODE_CLOCK_HIGH;
228
229 if (mode->clock < 10000)
230 return MODE_CLOCK_LOW;
231
232 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
233 return MODE_H_ILLEGAL;
234
235 return MODE_OK;
236 }
237
238 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
239 {
240 int i;
241 uint32_t v = 0;
242
243 if (src_bytes > 4)
244 src_bytes = 4;
245 for (i = 0; i < src_bytes; i++)
246 v |= ((uint32_t) src[i]) << ((3-i) * 8);
247 return v;
248 }
249
250 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static void
294 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
295 struct intel_dp *intel_dp);
296 static void
297 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
298 struct intel_dp *intel_dp);
299
300 static void pps_lock(struct intel_dp *intel_dp)
301 {
302 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
303 struct intel_encoder *encoder = &intel_dig_port->base;
304 struct drm_device *dev = encoder->base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum intel_display_power_domain power_domain;
307
308 /*
309 * See vlv_power_sequencer_reset() why we need
310 * a power domain reference here.
311 */
312 power_domain = intel_display_port_power_domain(encoder);
313 intel_display_power_get(dev_priv, power_domain);
314
315 mutex_lock(&dev_priv->pps_mutex);
316 }
317
318 static void pps_unlock(struct intel_dp *intel_dp)
319 {
320 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
321 struct intel_encoder *encoder = &intel_dig_port->base;
322 struct drm_device *dev = encoder->base.dev;
323 struct drm_i915_private *dev_priv = dev->dev_private;
324 enum intel_display_power_domain power_domain;
325
326 mutex_unlock(&dev_priv->pps_mutex);
327
328 power_domain = intel_display_port_power_domain(encoder);
329 intel_display_power_put(dev_priv, power_domain);
330 }
331
332 static void
333 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
334 {
335 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
336 struct drm_device *dev = intel_dig_port->base.base.dev;
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 enum pipe pipe = intel_dp->pps_pipe;
339 bool pll_enabled;
340 uint32_t DP;
341
342 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
343 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
344 pipe_name(pipe), port_name(intel_dig_port->port)))
345 return;
346
347 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
348 pipe_name(pipe), port_name(intel_dig_port->port));
349
350 /* Preserve the BIOS-computed detected bit. This is
351 * supposed to be read-only.
352 */
353 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
354 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
355 DP |= DP_PORT_WIDTH(1);
356 DP |= DP_LINK_TRAIN_PAT_1;
357
358 if (IS_CHERRYVIEW(dev))
359 DP |= DP_PIPE_SELECT_CHV(pipe);
360 else if (pipe == PIPE_B)
361 DP |= DP_PIPEB_SELECT;
362
363 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
364
365 /*
366 * The DPLL for the pipe must be enabled for this to work.
367 * So enable temporarily it if it's not already enabled.
368 */
369 if (!pll_enabled)
370 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
371 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
372
373 /*
374 * Similar magic as in intel_dp_enable_port().
375 * We _must_ do this port enable + disable trick
376 * to make this power seqeuencer lock onto the port.
377 * Otherwise even VDD force bit won't work.
378 */
379 I915_WRITE(intel_dp->output_reg, DP);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
386 POSTING_READ(intel_dp->output_reg);
387
388 if (!pll_enabled)
389 vlv_force_pll_off(dev, pipe);
390 }
391
392 static enum pipe
393 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
394 {
395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
396 struct drm_device *dev = intel_dig_port->base.base.dev;
397 struct drm_i915_private *dev_priv = dev->dev_private;
398 struct intel_encoder *encoder;
399 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
400 enum pipe pipe;
401
402 lockdep_assert_held(&dev_priv->pps_mutex);
403
404 /* We should never land here with regular DP ports */
405 WARN_ON(!is_edp(intel_dp));
406
407 if (intel_dp->pps_pipe != INVALID_PIPE)
408 return intel_dp->pps_pipe;
409
410 /*
411 * We don't have power sequencer currently.
412 * Pick one that's not used by other ports.
413 */
414 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
415 base.head) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
457 enum pipe pipe);
458
459 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
460 enum pipe pipe)
461 {
462 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
463 }
464
465 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
466 enum pipe pipe)
467 {
468 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
469 }
470
471 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
472 enum pipe pipe)
473 {
474 return true;
475 }
476
477 static enum pipe
478 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
479 enum port port,
480 vlv_pipe_check pipe_check)
481 {
482 enum pipe pipe;
483
484 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
485 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
486 PANEL_PORT_SELECT_MASK;
487
488 if (port_sel != PANEL_PORT_SELECT_VLV(port))
489 continue;
490
491 if (!pipe_check(dev_priv, pipe))
492 continue;
493
494 return pipe;
495 }
496
497 return INVALID_PIPE;
498 }
499
500 static void
501 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
502 {
503 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
504 struct drm_device *dev = intel_dig_port->base.base.dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 enum port port = intel_dig_port->port;
507
508 lockdep_assert_held(&dev_priv->pps_mutex);
509
510 /* try to find a pipe with this port selected */
511 /* first pick one where the panel is on */
512 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513 vlv_pipe_has_pp_on);
514 /* didn't find one? pick one where vdd is on */
515 if (intel_dp->pps_pipe == INVALID_PIPE)
516 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517 vlv_pipe_has_vdd_on);
518 /* didn't find one? pick one with just the correct port */
519 if (intel_dp->pps_pipe == INVALID_PIPE)
520 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521 vlv_pipe_any);
522
523 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
524 if (intel_dp->pps_pipe == INVALID_PIPE) {
525 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
526 port_name(port));
527 return;
528 }
529
530 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
531 port_name(port), pipe_name(intel_dp->pps_pipe));
532
533 intel_dp_init_panel_power_sequencer(dev, intel_dp);
534 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
535 }
536
537 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
538 {
539 struct drm_device *dev = dev_priv->dev;
540 struct intel_encoder *encoder;
541
542 if (WARN_ON(!IS_VALLEYVIEW(dev)))
543 return;
544
545 /*
546 * We can't grab pps_mutex here due to deadlock with power_domain
547 * mutex when power_domain functions are called while holding pps_mutex.
548 * That also means that in order to use pps_pipe the code needs to
549 * hold both a power domain reference and pps_mutex, and the power domain
550 * reference get/put must be done while _not_ holding pps_mutex.
551 * pps_{lock,unlock}() do these steps in the correct order, so one
552 * should use them always.
553 */
554
555 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
556 struct intel_dp *intel_dp;
557
558 if (encoder->type != INTEL_OUTPUT_EDP)
559 continue;
560
561 intel_dp = enc_to_intel_dp(&encoder->base);
562 intel_dp->pps_pipe = INVALID_PIPE;
563 }
564 }
565
566 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
567 {
568 struct drm_device *dev = intel_dp_to_dev(intel_dp);
569
570 if (IS_BROXTON(dev))
571 return BXT_PP_CONTROL(0);
572 else if (HAS_PCH_SPLIT(dev))
573 return PCH_PP_CONTROL;
574 else
575 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
576 }
577
578 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
579 {
580 struct drm_device *dev = intel_dp_to_dev(intel_dp);
581
582 if (IS_BROXTON(dev))
583 return BXT_PP_STATUS(0);
584 else if (HAS_PCH_SPLIT(dev))
585 return PCH_PP_STATUS;
586 else
587 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
588 }
589
590 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
591 This function only applicable when panel PM state is not to be tracked */
592 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
593 void *unused)
594 {
595 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
596 edp_notifier);
597 struct drm_device *dev = intel_dp_to_dev(intel_dp);
598 struct drm_i915_private *dev_priv = dev->dev_private;
599 u32 pp_div;
600 u32 pp_ctrl_reg, pp_div_reg;
601
602 if (!is_edp(intel_dp) || code != SYS_RESTART)
603 return 0;
604
605 pps_lock(intel_dp);
606
607 if (IS_VALLEYVIEW(dev)) {
608 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
609
610 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
611 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
612 pp_div = I915_READ(pp_div_reg);
613 pp_div &= PP_REFERENCE_DIVIDER_MASK;
614
615 /* 0x1F write to PP_DIV_REG sets max cycle delay */
616 I915_WRITE(pp_div_reg, pp_div | 0x1F);
617 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
618 msleep(intel_dp->panel_power_cycle_delay);
619 }
620
621 pps_unlock(intel_dp);
622
623 return 0;
624 }
625
626 static bool edp_have_panel_power(struct intel_dp *intel_dp)
627 {
628 struct drm_device *dev = intel_dp_to_dev(intel_dp);
629 struct drm_i915_private *dev_priv = dev->dev_private;
630
631 lockdep_assert_held(&dev_priv->pps_mutex);
632
633 if (IS_VALLEYVIEW(dev) &&
634 intel_dp->pps_pipe == INVALID_PIPE)
635 return false;
636
637 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
638 }
639
640 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
641 {
642 struct drm_device *dev = intel_dp_to_dev(intel_dp);
643 struct drm_i915_private *dev_priv = dev->dev_private;
644
645 lockdep_assert_held(&dev_priv->pps_mutex);
646
647 if (IS_VALLEYVIEW(dev) &&
648 intel_dp->pps_pipe == INVALID_PIPE)
649 return false;
650
651 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
652 }
653
654 static void
655 intel_dp_check_edp(struct intel_dp *intel_dp)
656 {
657 struct drm_device *dev = intel_dp_to_dev(intel_dp);
658 struct drm_i915_private *dev_priv = dev->dev_private;
659
660 if (!is_edp(intel_dp))
661 return;
662
663 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
664 WARN(1, "eDP powered off while attempting aux channel communication.\n");
665 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
666 I915_READ(_pp_stat_reg(intel_dp)),
667 I915_READ(_pp_ctrl_reg(intel_dp)));
668 }
669 }
670
671 static uint32_t
672 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
673 {
674 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
675 struct drm_device *dev = intel_dig_port->base.base.dev;
676 struct drm_i915_private *dev_priv = dev->dev_private;
677 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
678 uint32_t status;
679 bool done;
680
681 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
682 if (has_aux_irq)
683 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
684 msecs_to_jiffies_timeout(10));
685 else
686 done = wait_for_atomic(C, 10) == 0;
687 if (!done)
688 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
689 has_aux_irq);
690 #undef C
691
692 return status;
693 }
694
695 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
696 {
697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
698 struct drm_device *dev = intel_dig_port->base.base.dev;
699
700 /*
701 * The clock divider is based off the hrawclk, and would like to run at
702 * 2MHz. So, take the hrawclk value and divide by 2 and use that
703 */
704 return index ? 0 : intel_hrawclk(dev) / 2;
705 }
706
707 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
708 {
709 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
710 struct drm_device *dev = intel_dig_port->base.base.dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712
713 if (index)
714 return 0;
715
716 if (intel_dig_port->port == PORT_A) {
717 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
718
719 } else {
720 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721 }
722 }
723
724 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
727 struct drm_device *dev = intel_dig_port->base.base.dev;
728 struct drm_i915_private *dev_priv = dev->dev_private;
729
730 if (intel_dig_port->port == PORT_A) {
731 if (index)
732 return 0;
733 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
734 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
735 /* Workaround for non-ULT HSW */
736 switch (index) {
737 case 0: return 63;
738 case 1: return 72;
739 default: return 0;
740 }
741 } else {
742 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
743 }
744 }
745
746 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
747 {
748 return index ? 0 : 100;
749 }
750
751 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
752 {
753 /*
754 * SKL doesn't need us to program the AUX clock divider (Hardware will
755 * derive the clock from CDCLK automatically). We still implement the
756 * get_aux_clock_divider vfunc to plug-in into the existing code.
757 */
758 return index ? 0 : 1;
759 }
760
761 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
762 bool has_aux_irq,
763 int send_bytes,
764 uint32_t aux_clock_divider)
765 {
766 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
767 struct drm_device *dev = intel_dig_port->base.base.dev;
768 uint32_t precharge, timeout;
769
770 if (IS_GEN6(dev))
771 precharge = 3;
772 else
773 precharge = 5;
774
775 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
776 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
777 else
778 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
779
780 return DP_AUX_CH_CTL_SEND_BUSY |
781 DP_AUX_CH_CTL_DONE |
782 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
783 DP_AUX_CH_CTL_TIME_OUT_ERROR |
784 timeout |
785 DP_AUX_CH_CTL_RECEIVE_ERROR |
786 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
787 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
788 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
789 }
790
791 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
792 bool has_aux_irq,
793 int send_bytes,
794 uint32_t unused)
795 {
796 return DP_AUX_CH_CTL_SEND_BUSY |
797 DP_AUX_CH_CTL_DONE |
798 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
799 DP_AUX_CH_CTL_TIME_OUT_ERROR |
800 DP_AUX_CH_CTL_TIME_OUT_1600us |
801 DP_AUX_CH_CTL_RECEIVE_ERROR |
802 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
803 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
804 }
805
806 static int
807 intel_dp_aux_ch(struct intel_dp *intel_dp,
808 const uint8_t *send, int send_bytes,
809 uint8_t *recv, int recv_size)
810 {
811 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
812 struct drm_device *dev = intel_dig_port->base.base.dev;
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
815 uint32_t ch_data = ch_ctl + 4;
816 uint32_t aux_clock_divider;
817 int i, ret, recv_bytes;
818 uint32_t status;
819 int try, clock = 0;
820 bool has_aux_irq = HAS_AUX_IRQ(dev);
821 bool vdd;
822
823 pps_lock(intel_dp);
824
825 /*
826 * We will be called with VDD already enabled for dpcd/edid/oui reads.
827 * In such cases we want to leave VDD enabled and it's up to upper layers
828 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
829 * ourselves.
830 */
831 vdd = edp_panel_vdd_on(intel_dp);
832
833 /* dp aux is extremely sensitive to irq latency, hence request the
834 * lowest possible wakeup latency and so prevent the cpu from going into
835 * deep sleep states.
836 */
837 pm_qos_update_request(&dev_priv->pm_qos, 0);
838
839 intel_dp_check_edp(intel_dp);
840
841 intel_aux_display_runtime_get(dev_priv);
842
843 /* Try to wait for any previous AUX channel activity */
844 for (try = 0; try < 3; try++) {
845 status = I915_READ_NOTRACE(ch_ctl);
846 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
847 break;
848 msleep(1);
849 }
850
851 if (try == 3) {
852 static u32 last_status = -1;
853 const u32 status = I915_READ(ch_ctl);
854
855 if (status != last_status) {
856 WARN(1, "dp_aux_ch not started status 0x%08x\n",
857 status);
858 last_status = status;
859 }
860
861 ret = -EBUSY;
862 goto out;
863 }
864
865 /* Only 5 data registers! */
866 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
867 ret = -E2BIG;
868 goto out;
869 }
870
871 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
872 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
873 has_aux_irq,
874 send_bytes,
875 aux_clock_divider);
876
877 /* Must try at least 3 times according to DP spec */
878 for (try = 0; try < 5; try++) {
879 /* Load the send data into the aux channel data registers */
880 for (i = 0; i < send_bytes; i += 4)
881 I915_WRITE(ch_data + i,
882 intel_dp_pack_aux(send + i,
883 send_bytes - i));
884
885 /* Send the command and wait for it to complete */
886 I915_WRITE(ch_ctl, send_ctl);
887
888 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
889
890 /* Clear done status and any errors */
891 I915_WRITE(ch_ctl,
892 status |
893 DP_AUX_CH_CTL_DONE |
894 DP_AUX_CH_CTL_TIME_OUT_ERROR |
895 DP_AUX_CH_CTL_RECEIVE_ERROR);
896
897 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
898 continue;
899
900 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
901 * 400us delay required for errors and timeouts
902 * Timeout errors from the HW already meet this
903 * requirement so skip to next iteration
904 */
905 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
906 usleep_range(400, 500);
907 continue;
908 }
909 if (status & DP_AUX_CH_CTL_DONE)
910 goto done;
911 }
912 }
913
914 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
915 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
916 ret = -EBUSY;
917 goto out;
918 }
919
920 done:
921 /* Check for timeout or receive error.
922 * Timeouts occur when the sink is not connected
923 */
924 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
925 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
926 ret = -EIO;
927 goto out;
928 }
929
930 /* Timeouts occur when the device isn't connected, so they're
931 * "normal" -- don't fill the kernel log with these */
932 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
933 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
934 ret = -ETIMEDOUT;
935 goto out;
936 }
937
938 /* Unload any bytes sent back from the other side */
939 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
940 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
941 if (recv_bytes > recv_size)
942 recv_bytes = recv_size;
943
944 for (i = 0; i < recv_bytes; i += 4)
945 intel_dp_unpack_aux(I915_READ(ch_data + i),
946 recv + i, recv_bytes - i);
947
948 ret = recv_bytes;
949 out:
950 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
951 intel_aux_display_runtime_put(dev_priv);
952
953 if (vdd)
954 edp_panel_vdd_off(intel_dp, false);
955
956 pps_unlock(intel_dp);
957
958 return ret;
959 }
960
961 #define BARE_ADDRESS_SIZE 3
962 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
963 static ssize_t
964 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
965 {
966 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
967 uint8_t txbuf[20], rxbuf[20];
968 size_t txsize, rxsize;
969 int ret;
970
971 txbuf[0] = (msg->request << 4) |
972 ((msg->address >> 16) & 0xf);
973 txbuf[1] = (msg->address >> 8) & 0xff;
974 txbuf[2] = msg->address & 0xff;
975 txbuf[3] = msg->size - 1;
976
977 switch (msg->request & ~DP_AUX_I2C_MOT) {
978 case DP_AUX_NATIVE_WRITE:
979 case DP_AUX_I2C_WRITE:
980 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
981 rxsize = 2; /* 0 or 1 data bytes */
982
983 if (WARN_ON(txsize > 20))
984 return -E2BIG;
985
986 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
987
988 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
989 if (ret > 0) {
990 msg->reply = rxbuf[0] >> 4;
991
992 if (ret > 1) {
993 /* Number of bytes written in a short write. */
994 ret = clamp_t(int, rxbuf[1], 0, msg->size);
995 } else {
996 /* Return payload size. */
997 ret = msg->size;
998 }
999 }
1000 break;
1001
1002 case DP_AUX_NATIVE_READ:
1003 case DP_AUX_I2C_READ:
1004 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1005 rxsize = msg->size + 1;
1006
1007 if (WARN_ON(rxsize > 20))
1008 return -E2BIG;
1009
1010 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1011 if (ret > 0) {
1012 msg->reply = rxbuf[0] >> 4;
1013 /*
1014 * Assume happy day, and copy the data. The caller is
1015 * expected to check msg->reply before touching it.
1016 *
1017 * Return payload size.
1018 */
1019 ret--;
1020 memcpy(msg->buffer, rxbuf + 1, ret);
1021 }
1022 break;
1023
1024 default:
1025 ret = -EINVAL;
1026 break;
1027 }
1028
1029 return ret;
1030 }
1031
1032 static void
1033 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1034 {
1035 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1037 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1038 enum port port = intel_dig_port->port;
1039 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1040 const char *name = NULL;
1041 uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1042 int ret;
1043
1044 /* On SKL we don't have Aux for port E so we rely on VBT to set
1045 * a proper alternate aux channel.
1046 */
1047 if (IS_SKYLAKE(dev) && port == PORT_E) {
1048 switch (info->alternate_aux_channel) {
1049 case DP_AUX_B:
1050 porte_aux_ctl_reg = DPB_AUX_CH_CTL;
1051 break;
1052 case DP_AUX_C:
1053 porte_aux_ctl_reg = DPC_AUX_CH_CTL;
1054 break;
1055 case DP_AUX_D:
1056 porte_aux_ctl_reg = DPD_AUX_CH_CTL;
1057 break;
1058 case DP_AUX_A:
1059 default:
1060 porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1061 }
1062 }
1063
1064 switch (port) {
1065 case PORT_A:
1066 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1067 name = "DPDDC-A";
1068 break;
1069 case PORT_B:
1070 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1071 name = "DPDDC-B";
1072 break;
1073 case PORT_C:
1074 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1075 name = "DPDDC-C";
1076 break;
1077 case PORT_D:
1078 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1079 name = "DPDDC-D";
1080 break;
1081 case PORT_E:
1082 intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
1083 name = "DPDDC-E";
1084 break;
1085 default:
1086 BUG();
1087 }
1088
1089 /*
1090 * The AUX_CTL register is usually DP_CTL + 0x10.
1091 *
1092 * On Haswell and Broadwell though:
1093 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1094 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1095 *
1096 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1097 */
1098 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
1099 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1100
1101 intel_dp->aux.name = name;
1102 intel_dp->aux.dev = dev->dev;
1103 intel_dp->aux.transfer = intel_dp_aux_transfer;
1104
1105 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1106 connector->base.kdev->kobj.name);
1107
1108 ret = drm_dp_aux_register(&intel_dp->aux);
1109 if (ret < 0) {
1110 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1111 name, ret);
1112 return;
1113 }
1114
1115 ret = sysfs_create_link(&connector->base.kdev->kobj,
1116 &intel_dp->aux.ddc.dev.kobj,
1117 intel_dp->aux.ddc.dev.kobj.name);
1118 if (ret < 0) {
1119 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1120 drm_dp_aux_unregister(&intel_dp->aux);
1121 }
1122 }
1123
1124 static void
1125 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1126 {
1127 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1128
1129 if (!intel_connector->mst_port)
1130 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1131 intel_dp->aux.ddc.dev.kobj.name);
1132 intel_connector_unregister(intel_connector);
1133 }
1134
1135 static void
1136 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1137 {
1138 u32 ctrl1;
1139
1140 memset(&pipe_config->dpll_hw_state, 0,
1141 sizeof(pipe_config->dpll_hw_state));
1142
1143 pipe_config->ddi_pll_sel = SKL_DPLL0;
1144 pipe_config->dpll_hw_state.cfgcr1 = 0;
1145 pipe_config->dpll_hw_state.cfgcr2 = 0;
1146
1147 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1148 switch (pipe_config->port_clock / 2) {
1149 case 81000:
1150 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1151 SKL_DPLL0);
1152 break;
1153 case 135000:
1154 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1155 SKL_DPLL0);
1156 break;
1157 case 270000:
1158 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1159 SKL_DPLL0);
1160 break;
1161 case 162000:
1162 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1163 SKL_DPLL0);
1164 break;
1165 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1166 results in CDCLK change. Need to handle the change of CDCLK by
1167 disabling pipes and re-enabling them */
1168 case 108000:
1169 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1170 SKL_DPLL0);
1171 break;
1172 case 216000:
1173 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1174 SKL_DPLL0);
1175 break;
1176
1177 }
1178 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1179 }
1180
1181 static void
1182 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1183 {
1184 memset(&pipe_config->dpll_hw_state, 0,
1185 sizeof(pipe_config->dpll_hw_state));
1186
1187 switch (pipe_config->port_clock / 2) {
1188 case 81000:
1189 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1190 break;
1191 case 135000:
1192 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1193 break;
1194 case 270000:
1195 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1196 break;
1197 }
1198 }
1199
1200 static int
1201 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1202 {
1203 if (intel_dp->num_sink_rates) {
1204 *sink_rates = intel_dp->sink_rates;
1205 return intel_dp->num_sink_rates;
1206 }
1207
1208 *sink_rates = default_rates;
1209
1210 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1211 }
1212
1213 static int
1214 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1215 {
1216 if (IS_BROXTON(dev)) {
1217 *source_rates = bxt_rates;
1218 return ARRAY_SIZE(bxt_rates);
1219 } else if (IS_SKYLAKE(dev)) {
1220 *source_rates = skl_rates;
1221 return ARRAY_SIZE(skl_rates);
1222 } else if (IS_CHERRYVIEW(dev)) {
1223 *source_rates = chv_rates;
1224 return ARRAY_SIZE(chv_rates);
1225 }
1226
1227 *source_rates = default_rates;
1228
1229 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1230 /* WaDisableHBR2:skl */
1231 return (DP_LINK_BW_2_7 >> 3) + 1;
1232 else if (INTEL_INFO(dev)->gen >= 8 ||
1233 (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1234 return (DP_LINK_BW_5_4 >> 3) + 1;
1235 else
1236 return (DP_LINK_BW_2_7 >> 3) + 1;
1237 }
1238
1239 static void
1240 intel_dp_set_clock(struct intel_encoder *encoder,
1241 struct intel_crtc_state *pipe_config)
1242 {
1243 struct drm_device *dev = encoder->base.dev;
1244 const struct dp_link_dpll *divisor = NULL;
1245 int i, count = 0;
1246
1247 if (IS_G4X(dev)) {
1248 divisor = gen4_dpll;
1249 count = ARRAY_SIZE(gen4_dpll);
1250 } else if (HAS_PCH_SPLIT(dev)) {
1251 divisor = pch_dpll;
1252 count = ARRAY_SIZE(pch_dpll);
1253 } else if (IS_CHERRYVIEW(dev)) {
1254 divisor = chv_dpll;
1255 count = ARRAY_SIZE(chv_dpll);
1256 } else if (IS_VALLEYVIEW(dev)) {
1257 divisor = vlv_dpll;
1258 count = ARRAY_SIZE(vlv_dpll);
1259 }
1260
1261 if (divisor && count) {
1262 for (i = 0; i < count; i++) {
1263 if (pipe_config->port_clock == divisor[i].clock) {
1264 pipe_config->dpll = divisor[i].dpll;
1265 pipe_config->clock_set = true;
1266 break;
1267 }
1268 }
1269 }
1270 }
1271
1272 static int intersect_rates(const int *source_rates, int source_len,
1273 const int *sink_rates, int sink_len,
1274 int *common_rates)
1275 {
1276 int i = 0, j = 0, k = 0;
1277
1278 while (i < source_len && j < sink_len) {
1279 if (source_rates[i] == sink_rates[j]) {
1280 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1281 return k;
1282 common_rates[k] = source_rates[i];
1283 ++k;
1284 ++i;
1285 ++j;
1286 } else if (source_rates[i] < sink_rates[j]) {
1287 ++i;
1288 } else {
1289 ++j;
1290 }
1291 }
1292 return k;
1293 }
1294
1295 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1296 int *common_rates)
1297 {
1298 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1299 const int *source_rates, *sink_rates;
1300 int source_len, sink_len;
1301
1302 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1303 source_len = intel_dp_source_rates(dev, &source_rates);
1304
1305 return intersect_rates(source_rates, source_len,
1306 sink_rates, sink_len,
1307 common_rates);
1308 }
1309
1310 static void snprintf_int_array(char *str, size_t len,
1311 const int *array, int nelem)
1312 {
1313 int i;
1314
1315 str[0] = '\0';
1316
1317 for (i = 0; i < nelem; i++) {
1318 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1319 if (r >= len)
1320 return;
1321 str += r;
1322 len -= r;
1323 }
1324 }
1325
1326 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1327 {
1328 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1329 const int *source_rates, *sink_rates;
1330 int source_len, sink_len, common_len;
1331 int common_rates[DP_MAX_SUPPORTED_RATES];
1332 char str[128]; /* FIXME: too big for stack? */
1333
1334 if ((drm_debug & DRM_UT_KMS) == 0)
1335 return;
1336
1337 source_len = intel_dp_source_rates(dev, &source_rates);
1338 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1339 DRM_DEBUG_KMS("source rates: %s\n", str);
1340
1341 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1342 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1343 DRM_DEBUG_KMS("sink rates: %s\n", str);
1344
1345 common_len = intel_dp_common_rates(intel_dp, common_rates);
1346 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1347 DRM_DEBUG_KMS("common rates: %s\n", str);
1348 }
1349
1350 static int rate_to_index(int find, const int *rates)
1351 {
1352 int i = 0;
1353
1354 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1355 if (find == rates[i])
1356 break;
1357
1358 return i;
1359 }
1360
1361 int
1362 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1363 {
1364 int rates[DP_MAX_SUPPORTED_RATES] = {};
1365 int len;
1366
1367 len = intel_dp_common_rates(intel_dp, rates);
1368 if (WARN_ON(len <= 0))
1369 return 162000;
1370
1371 return rates[rate_to_index(0, rates) - 1];
1372 }
1373
1374 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1375 {
1376 return rate_to_index(rate, intel_dp->sink_rates);
1377 }
1378
1379 bool
1380 intel_dp_compute_config(struct intel_encoder *encoder,
1381 struct intel_crtc_state *pipe_config)
1382 {
1383 struct drm_device *dev = encoder->base.dev;
1384 struct drm_i915_private *dev_priv = dev->dev_private;
1385 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1386 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1387 enum port port = dp_to_dig_port(intel_dp)->port;
1388 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1389 struct intel_connector *intel_connector = intel_dp->attached_connector;
1390 int lane_count, clock;
1391 int min_lane_count = 1;
1392 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1393 /* Conveniently, the link BW constants become indices with a shift...*/
1394 int min_clock = 0;
1395 int max_clock;
1396 int bpp, mode_rate;
1397 int link_avail, link_clock;
1398 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1399 int common_len;
1400
1401 common_len = intel_dp_common_rates(intel_dp, common_rates);
1402
1403 /* No common link rates between source and sink */
1404 WARN_ON(common_len <= 0);
1405
1406 max_clock = common_len - 1;
1407
1408 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1409 pipe_config->has_pch_encoder = true;
1410
1411 pipe_config->has_dp_encoder = true;
1412 pipe_config->has_drrs = false;
1413 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1414
1415 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1416 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1417 adjusted_mode);
1418
1419 if (INTEL_INFO(dev)->gen >= 9) {
1420 int ret;
1421 ret = skl_update_scaler_crtc(pipe_config);
1422 if (ret)
1423 return ret;
1424 }
1425
1426 if (!HAS_PCH_SPLIT(dev))
1427 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1428 intel_connector->panel.fitting_mode);
1429 else
1430 intel_pch_panel_fitting(intel_crtc, pipe_config,
1431 intel_connector->panel.fitting_mode);
1432 }
1433
1434 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1435 return false;
1436
1437 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1438 "max bw %d pixel clock %iKHz\n",
1439 max_lane_count, common_rates[max_clock],
1440 adjusted_mode->crtc_clock);
1441
1442 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1443 * bpc in between. */
1444 bpp = pipe_config->pipe_bpp;
1445 if (is_edp(intel_dp)) {
1446
1447 /* Get bpp from vbt only for panels that dont have bpp in edid */
1448 if (intel_connector->base.display_info.bpc == 0 &&
1449 (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1450 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1451 dev_priv->vbt.edp_bpp);
1452 bpp = dev_priv->vbt.edp_bpp;
1453 }
1454
1455 /*
1456 * Use the maximum clock and number of lanes the eDP panel
1457 * advertizes being capable of. The panels are generally
1458 * designed to support only a single clock and lane
1459 * configuration, and typically these values correspond to the
1460 * native resolution of the panel.
1461 */
1462 min_lane_count = max_lane_count;
1463 min_clock = max_clock;
1464 }
1465
1466 for (; bpp >= 6*3; bpp -= 2*3) {
1467 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1468 bpp);
1469
1470 for (clock = min_clock; clock <= max_clock; clock++) {
1471 for (lane_count = min_lane_count;
1472 lane_count <= max_lane_count;
1473 lane_count <<= 1) {
1474
1475 link_clock = common_rates[clock];
1476 link_avail = intel_dp_max_data_rate(link_clock,
1477 lane_count);
1478
1479 if (mode_rate <= link_avail) {
1480 goto found;
1481 }
1482 }
1483 }
1484 }
1485
1486 return false;
1487
1488 found:
1489 if (intel_dp->color_range_auto) {
1490 /*
1491 * See:
1492 * CEA-861-E - 5.1 Default Encoding Parameters
1493 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1494 */
1495 pipe_config->limited_color_range =
1496 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1497 } else {
1498 pipe_config->limited_color_range =
1499 intel_dp->limited_color_range;
1500 }
1501
1502 intel_dp->lane_count = lane_count;
1503
1504 if (intel_dp->num_sink_rates) {
1505 intel_dp->link_bw = 0;
1506 intel_dp->rate_select =
1507 intel_dp_rate_select(intel_dp, common_rates[clock]);
1508 } else {
1509 intel_dp->link_bw =
1510 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1511 intel_dp->rate_select = 0;
1512 }
1513
1514 pipe_config->pipe_bpp = bpp;
1515 pipe_config->port_clock = common_rates[clock];
1516
1517 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1518 intel_dp->link_bw, intel_dp->lane_count,
1519 pipe_config->port_clock, bpp);
1520 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1521 mode_rate, link_avail);
1522
1523 intel_link_compute_m_n(bpp, lane_count,
1524 adjusted_mode->crtc_clock,
1525 pipe_config->port_clock,
1526 &pipe_config->dp_m_n);
1527
1528 if (intel_connector->panel.downclock_mode != NULL &&
1529 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1530 pipe_config->has_drrs = true;
1531 intel_link_compute_m_n(bpp, lane_count,
1532 intel_connector->panel.downclock_mode->clock,
1533 pipe_config->port_clock,
1534 &pipe_config->dp_m2_n2);
1535 }
1536
1537 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1538 skl_edp_set_pll_config(pipe_config);
1539 else if (IS_BROXTON(dev))
1540 /* handled in ddi */;
1541 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1542 hsw_dp_set_ddi_pll_sel(pipe_config);
1543 else
1544 intel_dp_set_clock(encoder, pipe_config);
1545
1546 return true;
1547 }
1548
1549 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1550 {
1551 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1552 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1553 struct drm_device *dev = crtc->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 u32 dpa_ctl;
1556
1557 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1558 crtc->config->port_clock);
1559 dpa_ctl = I915_READ(DP_A);
1560 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1561
1562 if (crtc->config->port_clock == 162000) {
1563 /* For a long time we've carried around a ILK-DevA w/a for the
1564 * 160MHz clock. If we're really unlucky, it's still required.
1565 */
1566 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1567 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1568 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1569 } else {
1570 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1571 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1572 }
1573
1574 I915_WRITE(DP_A, dpa_ctl);
1575
1576 POSTING_READ(DP_A);
1577 udelay(500);
1578 }
1579
1580 static void intel_dp_prepare(struct intel_encoder *encoder)
1581 {
1582 struct drm_device *dev = encoder->base.dev;
1583 struct drm_i915_private *dev_priv = dev->dev_private;
1584 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1585 enum port port = dp_to_dig_port(intel_dp)->port;
1586 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1587 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1588
1589 /*
1590 * There are four kinds of DP registers:
1591 *
1592 * IBX PCH
1593 * SNB CPU
1594 * IVB CPU
1595 * CPT PCH
1596 *
1597 * IBX PCH and CPU are the same for almost everything,
1598 * except that the CPU DP PLL is configured in this
1599 * register
1600 *
1601 * CPT PCH is quite different, having many bits moved
1602 * to the TRANS_DP_CTL register instead. That
1603 * configuration happens (oddly) in ironlake_pch_enable
1604 */
1605
1606 /* Preserve the BIOS-computed detected bit. This is
1607 * supposed to be read-only.
1608 */
1609 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1610
1611 /* Handle DP bits in common between all three register formats */
1612 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1613 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1614
1615 if (crtc->config->has_audio)
1616 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1617
1618 /* Split out the IBX/CPU vs CPT settings */
1619
1620 if (IS_GEN7(dev) && port == PORT_A) {
1621 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1622 intel_dp->DP |= DP_SYNC_HS_HIGH;
1623 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1624 intel_dp->DP |= DP_SYNC_VS_HIGH;
1625 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1626
1627 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1628 intel_dp->DP |= DP_ENHANCED_FRAMING;
1629
1630 intel_dp->DP |= crtc->pipe << 29;
1631 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1632 u32 trans_dp;
1633
1634 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1635
1636 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1637 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1638 trans_dp |= TRANS_DP_ENH_FRAMING;
1639 else
1640 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1641 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1642 } else {
1643 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1644 crtc->config->limited_color_range)
1645 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1646
1647 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1648 intel_dp->DP |= DP_SYNC_HS_HIGH;
1649 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1650 intel_dp->DP |= DP_SYNC_VS_HIGH;
1651 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1652
1653 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1654 intel_dp->DP |= DP_ENHANCED_FRAMING;
1655
1656 if (IS_CHERRYVIEW(dev))
1657 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1658 else if (crtc->pipe == PIPE_B)
1659 intel_dp->DP |= DP_PIPEB_SELECT;
1660 }
1661 }
1662
1663 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1664 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1665
1666 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1667 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1668
1669 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1670 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1671
1672 static void wait_panel_status(struct intel_dp *intel_dp,
1673 u32 mask,
1674 u32 value)
1675 {
1676 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678 u32 pp_stat_reg, pp_ctrl_reg;
1679
1680 lockdep_assert_held(&dev_priv->pps_mutex);
1681
1682 pp_stat_reg = _pp_stat_reg(intel_dp);
1683 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1684
1685 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1686 mask, value,
1687 I915_READ(pp_stat_reg),
1688 I915_READ(pp_ctrl_reg));
1689
1690 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1691 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1692 I915_READ(pp_stat_reg),
1693 I915_READ(pp_ctrl_reg));
1694 }
1695
1696 DRM_DEBUG_KMS("Wait complete\n");
1697 }
1698
1699 static void wait_panel_on(struct intel_dp *intel_dp)
1700 {
1701 DRM_DEBUG_KMS("Wait for panel power on\n");
1702 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1703 }
1704
1705 static void wait_panel_off(struct intel_dp *intel_dp)
1706 {
1707 DRM_DEBUG_KMS("Wait for panel power off time\n");
1708 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1709 }
1710
1711 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1712 {
1713 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1714
1715 /* When we disable the VDD override bit last we have to do the manual
1716 * wait. */
1717 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1718 intel_dp->panel_power_cycle_delay);
1719
1720 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1721 }
1722
1723 static void wait_backlight_on(struct intel_dp *intel_dp)
1724 {
1725 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1726 intel_dp->backlight_on_delay);
1727 }
1728
1729 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1730 {
1731 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1732 intel_dp->backlight_off_delay);
1733 }
1734
1735 /* Read the current pp_control value, unlocking the register if it
1736 * is locked
1737 */
1738
1739 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1740 {
1741 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 u32 control;
1744
1745 lockdep_assert_held(&dev_priv->pps_mutex);
1746
1747 control = I915_READ(_pp_ctrl_reg(intel_dp));
1748 if (!IS_BROXTON(dev)) {
1749 control &= ~PANEL_UNLOCK_MASK;
1750 control |= PANEL_UNLOCK_REGS;
1751 }
1752 return control;
1753 }
1754
1755 /*
1756 * Must be paired with edp_panel_vdd_off().
1757 * Must hold pps_mutex around the whole on/off sequence.
1758 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1759 */
1760 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1761 {
1762 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1763 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1764 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 enum intel_display_power_domain power_domain;
1767 u32 pp;
1768 u32 pp_stat_reg, pp_ctrl_reg;
1769 bool need_to_disable = !intel_dp->want_panel_vdd;
1770
1771 lockdep_assert_held(&dev_priv->pps_mutex);
1772
1773 if (!is_edp(intel_dp))
1774 return false;
1775
1776 cancel_delayed_work(&intel_dp->panel_vdd_work);
1777 intel_dp->want_panel_vdd = true;
1778
1779 if (edp_have_panel_vdd(intel_dp))
1780 return need_to_disable;
1781
1782 power_domain = intel_display_port_power_domain(intel_encoder);
1783 intel_display_power_get(dev_priv, power_domain);
1784
1785 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1786 port_name(intel_dig_port->port));
1787
1788 if (!edp_have_panel_power(intel_dp))
1789 wait_panel_power_cycle(intel_dp);
1790
1791 pp = ironlake_get_pp_control(intel_dp);
1792 pp |= EDP_FORCE_VDD;
1793
1794 pp_stat_reg = _pp_stat_reg(intel_dp);
1795 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1796
1797 I915_WRITE(pp_ctrl_reg, pp);
1798 POSTING_READ(pp_ctrl_reg);
1799 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1800 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1801 /*
1802 * If the panel wasn't on, delay before accessing aux channel
1803 */
1804 if (!edp_have_panel_power(intel_dp)) {
1805 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1806 port_name(intel_dig_port->port));
1807 msleep(intel_dp->panel_power_up_delay);
1808 }
1809
1810 return need_to_disable;
1811 }
1812
1813 /*
1814 * Must be paired with intel_edp_panel_vdd_off() or
1815 * intel_edp_panel_off().
1816 * Nested calls to these functions are not allowed since
1817 * we drop the lock. Caller must use some higher level
1818 * locking to prevent nested calls from other threads.
1819 */
1820 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1821 {
1822 bool vdd;
1823
1824 if (!is_edp(intel_dp))
1825 return;
1826
1827 pps_lock(intel_dp);
1828 vdd = edp_panel_vdd_on(intel_dp);
1829 pps_unlock(intel_dp);
1830
1831 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1832 port_name(dp_to_dig_port(intel_dp)->port));
1833 }
1834
1835 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1836 {
1837 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1838 struct drm_i915_private *dev_priv = dev->dev_private;
1839 struct intel_digital_port *intel_dig_port =
1840 dp_to_dig_port(intel_dp);
1841 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1842 enum intel_display_power_domain power_domain;
1843 u32 pp;
1844 u32 pp_stat_reg, pp_ctrl_reg;
1845
1846 lockdep_assert_held(&dev_priv->pps_mutex);
1847
1848 WARN_ON(intel_dp->want_panel_vdd);
1849
1850 if (!edp_have_panel_vdd(intel_dp))
1851 return;
1852
1853 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1854 port_name(intel_dig_port->port));
1855
1856 pp = ironlake_get_pp_control(intel_dp);
1857 pp &= ~EDP_FORCE_VDD;
1858
1859 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1860 pp_stat_reg = _pp_stat_reg(intel_dp);
1861
1862 I915_WRITE(pp_ctrl_reg, pp);
1863 POSTING_READ(pp_ctrl_reg);
1864
1865 /* Make sure sequencer is idle before allowing subsequent activity */
1866 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1867 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1868
1869 if ((pp & POWER_TARGET_ON) == 0)
1870 intel_dp->last_power_cycle = jiffies;
1871
1872 power_domain = intel_display_port_power_domain(intel_encoder);
1873 intel_display_power_put(dev_priv, power_domain);
1874 }
1875
1876 static void edp_panel_vdd_work(struct work_struct *__work)
1877 {
1878 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1879 struct intel_dp, panel_vdd_work);
1880
1881 pps_lock(intel_dp);
1882 if (!intel_dp->want_panel_vdd)
1883 edp_panel_vdd_off_sync(intel_dp);
1884 pps_unlock(intel_dp);
1885 }
1886
1887 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1888 {
1889 unsigned long delay;
1890
1891 /*
1892 * Queue the timer to fire a long time from now (relative to the power
1893 * down delay) to keep the panel power up across a sequence of
1894 * operations.
1895 */
1896 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1897 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1898 }
1899
1900 /*
1901 * Must be paired with edp_panel_vdd_on().
1902 * Must hold pps_mutex around the whole on/off sequence.
1903 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1904 */
1905 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1906 {
1907 struct drm_i915_private *dev_priv =
1908 intel_dp_to_dev(intel_dp)->dev_private;
1909
1910 lockdep_assert_held(&dev_priv->pps_mutex);
1911
1912 if (!is_edp(intel_dp))
1913 return;
1914
1915 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1916 port_name(dp_to_dig_port(intel_dp)->port));
1917
1918 intel_dp->want_panel_vdd = false;
1919
1920 if (sync)
1921 edp_panel_vdd_off_sync(intel_dp);
1922 else
1923 edp_panel_vdd_schedule_off(intel_dp);
1924 }
1925
1926 static void edp_panel_on(struct intel_dp *intel_dp)
1927 {
1928 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 u32 pp;
1931 u32 pp_ctrl_reg;
1932
1933 lockdep_assert_held(&dev_priv->pps_mutex);
1934
1935 if (!is_edp(intel_dp))
1936 return;
1937
1938 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1939 port_name(dp_to_dig_port(intel_dp)->port));
1940
1941 if (WARN(edp_have_panel_power(intel_dp),
1942 "eDP port %c panel power already on\n",
1943 port_name(dp_to_dig_port(intel_dp)->port)))
1944 return;
1945
1946 wait_panel_power_cycle(intel_dp);
1947
1948 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1949 pp = ironlake_get_pp_control(intel_dp);
1950 if (IS_GEN5(dev)) {
1951 /* ILK workaround: disable reset around power sequence */
1952 pp &= ~PANEL_POWER_RESET;
1953 I915_WRITE(pp_ctrl_reg, pp);
1954 POSTING_READ(pp_ctrl_reg);
1955 }
1956
1957 pp |= POWER_TARGET_ON;
1958 if (!IS_GEN5(dev))
1959 pp |= PANEL_POWER_RESET;
1960
1961 I915_WRITE(pp_ctrl_reg, pp);
1962 POSTING_READ(pp_ctrl_reg);
1963
1964 wait_panel_on(intel_dp);
1965 intel_dp->last_power_on = jiffies;
1966
1967 if (IS_GEN5(dev)) {
1968 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1969 I915_WRITE(pp_ctrl_reg, pp);
1970 POSTING_READ(pp_ctrl_reg);
1971 }
1972 }
1973
1974 void intel_edp_panel_on(struct intel_dp *intel_dp)
1975 {
1976 if (!is_edp(intel_dp))
1977 return;
1978
1979 pps_lock(intel_dp);
1980 edp_panel_on(intel_dp);
1981 pps_unlock(intel_dp);
1982 }
1983
1984
1985 static void edp_panel_off(struct intel_dp *intel_dp)
1986 {
1987 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1988 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1989 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1990 struct drm_i915_private *dev_priv = dev->dev_private;
1991 enum intel_display_power_domain power_domain;
1992 u32 pp;
1993 u32 pp_ctrl_reg;
1994
1995 lockdep_assert_held(&dev_priv->pps_mutex);
1996
1997 if (!is_edp(intel_dp))
1998 return;
1999
2000 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2001 port_name(dp_to_dig_port(intel_dp)->port));
2002
2003 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2004 port_name(dp_to_dig_port(intel_dp)->port));
2005
2006 pp = ironlake_get_pp_control(intel_dp);
2007 /* We need to switch off panel power _and_ force vdd, for otherwise some
2008 * panels get very unhappy and cease to work. */
2009 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2010 EDP_BLC_ENABLE);
2011
2012 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2013
2014 intel_dp->want_panel_vdd = false;
2015
2016 I915_WRITE(pp_ctrl_reg, pp);
2017 POSTING_READ(pp_ctrl_reg);
2018
2019 intel_dp->last_power_cycle = jiffies;
2020 wait_panel_off(intel_dp);
2021
2022 /* We got a reference when we enabled the VDD. */
2023 power_domain = intel_display_port_power_domain(intel_encoder);
2024 intel_display_power_put(dev_priv, power_domain);
2025 }
2026
2027 void intel_edp_panel_off(struct intel_dp *intel_dp)
2028 {
2029 if (!is_edp(intel_dp))
2030 return;
2031
2032 pps_lock(intel_dp);
2033 edp_panel_off(intel_dp);
2034 pps_unlock(intel_dp);
2035 }
2036
2037 /* Enable backlight in the panel power control. */
2038 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2039 {
2040 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2041 struct drm_device *dev = intel_dig_port->base.base.dev;
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 u32 pp;
2044 u32 pp_ctrl_reg;
2045
2046 /*
2047 * If we enable the backlight right away following a panel power
2048 * on, we may see slight flicker as the panel syncs with the eDP
2049 * link. So delay a bit to make sure the image is solid before
2050 * allowing it to appear.
2051 */
2052 wait_backlight_on(intel_dp);
2053
2054 pps_lock(intel_dp);
2055
2056 pp = ironlake_get_pp_control(intel_dp);
2057 pp |= EDP_BLC_ENABLE;
2058
2059 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2060
2061 I915_WRITE(pp_ctrl_reg, pp);
2062 POSTING_READ(pp_ctrl_reg);
2063
2064 pps_unlock(intel_dp);
2065 }
2066
2067 /* Enable backlight PWM and backlight PP control. */
2068 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2069 {
2070 if (!is_edp(intel_dp))
2071 return;
2072
2073 DRM_DEBUG_KMS("\n");
2074
2075 intel_panel_enable_backlight(intel_dp->attached_connector);
2076 _intel_edp_backlight_on(intel_dp);
2077 }
2078
2079 /* Disable backlight in the panel power control. */
2080 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2081 {
2082 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084 u32 pp;
2085 u32 pp_ctrl_reg;
2086
2087 if (!is_edp(intel_dp))
2088 return;
2089
2090 pps_lock(intel_dp);
2091
2092 pp = ironlake_get_pp_control(intel_dp);
2093 pp &= ~EDP_BLC_ENABLE;
2094
2095 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2096
2097 I915_WRITE(pp_ctrl_reg, pp);
2098 POSTING_READ(pp_ctrl_reg);
2099
2100 pps_unlock(intel_dp);
2101
2102 intel_dp->last_backlight_off = jiffies;
2103 edp_wait_backlight_off(intel_dp);
2104 }
2105
2106 /* Disable backlight PP control and backlight PWM. */
2107 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2108 {
2109 if (!is_edp(intel_dp))
2110 return;
2111
2112 DRM_DEBUG_KMS("\n");
2113
2114 _intel_edp_backlight_off(intel_dp);
2115 intel_panel_disable_backlight(intel_dp->attached_connector);
2116 }
2117
2118 /*
2119 * Hook for controlling the panel power control backlight through the bl_power
2120 * sysfs attribute. Take care to handle multiple calls.
2121 */
2122 static void intel_edp_backlight_power(struct intel_connector *connector,
2123 bool enable)
2124 {
2125 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2126 bool is_enabled;
2127
2128 pps_lock(intel_dp);
2129 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2130 pps_unlock(intel_dp);
2131
2132 if (is_enabled == enable)
2133 return;
2134
2135 DRM_DEBUG_KMS("panel power control backlight %s\n",
2136 enable ? "enable" : "disable");
2137
2138 if (enable)
2139 _intel_edp_backlight_on(intel_dp);
2140 else
2141 _intel_edp_backlight_off(intel_dp);
2142 }
2143
2144 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2145 {
2146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2147 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2148 struct drm_device *dev = crtc->dev;
2149 struct drm_i915_private *dev_priv = dev->dev_private;
2150 u32 dpa_ctl;
2151
2152 assert_pipe_disabled(dev_priv,
2153 to_intel_crtc(crtc)->pipe);
2154
2155 DRM_DEBUG_KMS("\n");
2156 dpa_ctl = I915_READ(DP_A);
2157 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2158 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2159
2160 /* We don't adjust intel_dp->DP while tearing down the link, to
2161 * facilitate link retraining (e.g. after hotplug). Hence clear all
2162 * enable bits here to ensure that we don't enable too much. */
2163 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2164 intel_dp->DP |= DP_PLL_ENABLE;
2165 I915_WRITE(DP_A, intel_dp->DP);
2166 POSTING_READ(DP_A);
2167 udelay(200);
2168 }
2169
2170 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2171 {
2172 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2173 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2174 struct drm_device *dev = crtc->dev;
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 u32 dpa_ctl;
2177
2178 assert_pipe_disabled(dev_priv,
2179 to_intel_crtc(crtc)->pipe);
2180
2181 dpa_ctl = I915_READ(DP_A);
2182 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2183 "dp pll off, should be on\n");
2184 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2185
2186 /* We can't rely on the value tracked for the DP register in
2187 * intel_dp->DP because link_down must not change that (otherwise link
2188 * re-training will fail. */
2189 dpa_ctl &= ~DP_PLL_ENABLE;
2190 I915_WRITE(DP_A, dpa_ctl);
2191 POSTING_READ(DP_A);
2192 udelay(200);
2193 }
2194
2195 /* If the sink supports it, try to set the power state appropriately */
2196 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2197 {
2198 int ret, i;
2199
2200 /* Should have a valid DPCD by this point */
2201 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2202 return;
2203
2204 if (mode != DRM_MODE_DPMS_ON) {
2205 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2206 DP_SET_POWER_D3);
2207 } else {
2208 /*
2209 * When turning on, we need to retry for 1ms to give the sink
2210 * time to wake up.
2211 */
2212 for (i = 0; i < 3; i++) {
2213 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2214 DP_SET_POWER_D0);
2215 if (ret == 1)
2216 break;
2217 msleep(1);
2218 }
2219 }
2220
2221 if (ret != 1)
2222 DRM_DEBUG_KMS("failed to %s sink power state\n",
2223 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2224 }
2225
2226 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2227 enum pipe *pipe)
2228 {
2229 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2230 enum port port = dp_to_dig_port(intel_dp)->port;
2231 struct drm_device *dev = encoder->base.dev;
2232 struct drm_i915_private *dev_priv = dev->dev_private;
2233 enum intel_display_power_domain power_domain;
2234 u32 tmp;
2235
2236 power_domain = intel_display_port_power_domain(encoder);
2237 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2238 return false;
2239
2240 tmp = I915_READ(intel_dp->output_reg);
2241
2242 if (!(tmp & DP_PORT_EN))
2243 return false;
2244
2245 if (IS_GEN7(dev) && port == PORT_A) {
2246 *pipe = PORT_TO_PIPE_CPT(tmp);
2247 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2248 enum pipe p;
2249
2250 for_each_pipe(dev_priv, p) {
2251 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2252 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2253 *pipe = p;
2254 return true;
2255 }
2256 }
2257
2258 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2259 intel_dp->output_reg);
2260 } else if (IS_CHERRYVIEW(dev)) {
2261 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2262 } else {
2263 *pipe = PORT_TO_PIPE(tmp);
2264 }
2265
2266 return true;
2267 }
2268
2269 static void intel_dp_get_config(struct intel_encoder *encoder,
2270 struct intel_crtc_state *pipe_config)
2271 {
2272 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2273 u32 tmp, flags = 0;
2274 struct drm_device *dev = encoder->base.dev;
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276 enum port port = dp_to_dig_port(intel_dp)->port;
2277 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2278 int dotclock;
2279
2280 tmp = I915_READ(intel_dp->output_reg);
2281
2282 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2283
2284 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2285 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2286
2287 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2288 flags |= DRM_MODE_FLAG_PHSYNC;
2289 else
2290 flags |= DRM_MODE_FLAG_NHSYNC;
2291
2292 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2293 flags |= DRM_MODE_FLAG_PVSYNC;
2294 else
2295 flags |= DRM_MODE_FLAG_NVSYNC;
2296 } else {
2297 if (tmp & DP_SYNC_HS_HIGH)
2298 flags |= DRM_MODE_FLAG_PHSYNC;
2299 else
2300 flags |= DRM_MODE_FLAG_NHSYNC;
2301
2302 if (tmp & DP_SYNC_VS_HIGH)
2303 flags |= DRM_MODE_FLAG_PVSYNC;
2304 else
2305 flags |= DRM_MODE_FLAG_NVSYNC;
2306 }
2307
2308 pipe_config->base.adjusted_mode.flags |= flags;
2309
2310 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2311 tmp & DP_COLOR_RANGE_16_235)
2312 pipe_config->limited_color_range = true;
2313
2314 pipe_config->has_dp_encoder = true;
2315
2316 intel_dp_get_m_n(crtc, pipe_config);
2317
2318 if (port == PORT_A) {
2319 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2320 pipe_config->port_clock = 162000;
2321 else
2322 pipe_config->port_clock = 270000;
2323 }
2324
2325 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2326 &pipe_config->dp_m_n);
2327
2328 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2329 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2330
2331 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2332
2333 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2334 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2335 /*
2336 * This is a big fat ugly hack.
2337 *
2338 * Some machines in UEFI boot mode provide us a VBT that has 18
2339 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2340 * unknown we fail to light up. Yet the same BIOS boots up with
2341 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2342 * max, not what it tells us to use.
2343 *
2344 * Note: This will still be broken if the eDP panel is not lit
2345 * up by the BIOS, and thus we can't get the mode at module
2346 * load.
2347 */
2348 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2349 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2350 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2351 }
2352 }
2353
2354 static void intel_disable_dp(struct intel_encoder *encoder)
2355 {
2356 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2357 struct drm_device *dev = encoder->base.dev;
2358 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2359
2360 if (crtc->config->has_audio)
2361 intel_audio_codec_disable(encoder);
2362
2363 if (HAS_PSR(dev) && !HAS_DDI(dev))
2364 intel_psr_disable(intel_dp);
2365
2366 /* Make sure the panel is off before trying to change the mode. But also
2367 * ensure that we have vdd while we switch off the panel. */
2368 intel_edp_panel_vdd_on(intel_dp);
2369 intel_edp_backlight_off(intel_dp);
2370 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2371 intel_edp_panel_off(intel_dp);
2372
2373 /* disable the port before the pipe on g4x */
2374 if (INTEL_INFO(dev)->gen < 5)
2375 intel_dp_link_down(intel_dp);
2376 }
2377
2378 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2379 {
2380 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2381 enum port port = dp_to_dig_port(intel_dp)->port;
2382
2383 intel_dp_link_down(intel_dp);
2384 if (port == PORT_A)
2385 ironlake_edp_pll_off(intel_dp);
2386 }
2387
2388 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2389 {
2390 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2391
2392 intel_dp_link_down(intel_dp);
2393 }
2394
2395 static void chv_post_disable_dp(struct intel_encoder *encoder)
2396 {
2397 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2398 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2399 struct drm_device *dev = encoder->base.dev;
2400 struct drm_i915_private *dev_priv = dev->dev_private;
2401 struct intel_crtc *intel_crtc =
2402 to_intel_crtc(encoder->base.crtc);
2403 enum dpio_channel ch = vlv_dport_to_channel(dport);
2404 enum pipe pipe = intel_crtc->pipe;
2405 u32 val;
2406
2407 intel_dp_link_down(intel_dp);
2408
2409 mutex_lock(&dev_priv->sb_lock);
2410
2411 /* Propagate soft reset to data lane reset */
2412 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2413 val |= CHV_PCS_REQ_SOFTRESET_EN;
2414 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2415
2416 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2417 val |= CHV_PCS_REQ_SOFTRESET_EN;
2418 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2419
2420 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2421 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2422 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2423
2424 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2425 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2426 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2427
2428 mutex_unlock(&dev_priv->sb_lock);
2429 }
2430
2431 static void
2432 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2433 uint32_t *DP,
2434 uint8_t dp_train_pat)
2435 {
2436 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2437 struct drm_device *dev = intel_dig_port->base.base.dev;
2438 struct drm_i915_private *dev_priv = dev->dev_private;
2439 enum port port = intel_dig_port->port;
2440
2441 if (HAS_DDI(dev)) {
2442 uint32_t temp = I915_READ(DP_TP_CTL(port));
2443
2444 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2445 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2446 else
2447 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2448
2449 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2450 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2451 case DP_TRAINING_PATTERN_DISABLE:
2452 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2453
2454 break;
2455 case DP_TRAINING_PATTERN_1:
2456 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2457 break;
2458 case DP_TRAINING_PATTERN_2:
2459 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2460 break;
2461 case DP_TRAINING_PATTERN_3:
2462 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2463 break;
2464 }
2465 I915_WRITE(DP_TP_CTL(port), temp);
2466
2467 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2468 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2469 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2470
2471 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2472 case DP_TRAINING_PATTERN_DISABLE:
2473 *DP |= DP_LINK_TRAIN_OFF_CPT;
2474 break;
2475 case DP_TRAINING_PATTERN_1:
2476 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2477 break;
2478 case DP_TRAINING_PATTERN_2:
2479 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2480 break;
2481 case DP_TRAINING_PATTERN_3:
2482 DRM_ERROR("DP training pattern 3 not supported\n");
2483 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2484 break;
2485 }
2486
2487 } else {
2488 if (IS_CHERRYVIEW(dev))
2489 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2490 else
2491 *DP &= ~DP_LINK_TRAIN_MASK;
2492
2493 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2494 case DP_TRAINING_PATTERN_DISABLE:
2495 *DP |= DP_LINK_TRAIN_OFF;
2496 break;
2497 case DP_TRAINING_PATTERN_1:
2498 *DP |= DP_LINK_TRAIN_PAT_1;
2499 break;
2500 case DP_TRAINING_PATTERN_2:
2501 *DP |= DP_LINK_TRAIN_PAT_2;
2502 break;
2503 case DP_TRAINING_PATTERN_3:
2504 if (IS_CHERRYVIEW(dev)) {
2505 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2506 } else {
2507 DRM_ERROR("DP training pattern 3 not supported\n");
2508 *DP |= DP_LINK_TRAIN_PAT_2;
2509 }
2510 break;
2511 }
2512 }
2513 }
2514
2515 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2516 {
2517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2518 struct drm_i915_private *dev_priv = dev->dev_private;
2519
2520 /* enable with pattern 1 (as per spec) */
2521 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2522 DP_TRAINING_PATTERN_1);
2523
2524 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2525 POSTING_READ(intel_dp->output_reg);
2526
2527 /*
2528 * Magic for VLV/CHV. We _must_ first set up the register
2529 * without actually enabling the port, and then do another
2530 * write to enable the port. Otherwise link training will
2531 * fail when the power sequencer is freshly used for this port.
2532 */
2533 intel_dp->DP |= DP_PORT_EN;
2534
2535 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2536 POSTING_READ(intel_dp->output_reg);
2537 }
2538
2539 static void intel_enable_dp(struct intel_encoder *encoder)
2540 {
2541 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2542 struct drm_device *dev = encoder->base.dev;
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2545 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2546 unsigned int lane_mask = 0x0;
2547
2548 if (WARN_ON(dp_reg & DP_PORT_EN))
2549 return;
2550
2551 pps_lock(intel_dp);
2552
2553 if (IS_VALLEYVIEW(dev))
2554 vlv_init_panel_power_sequencer(intel_dp);
2555
2556 intel_dp_enable_port(intel_dp);
2557
2558 edp_panel_vdd_on(intel_dp);
2559 edp_panel_on(intel_dp);
2560 edp_panel_vdd_off(intel_dp, true);
2561
2562 pps_unlock(intel_dp);
2563
2564 if (IS_VALLEYVIEW(dev))
2565 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2566 lane_mask);
2567
2568 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2569 intel_dp_start_link_train(intel_dp);
2570 intel_dp_complete_link_train(intel_dp);
2571 intel_dp_stop_link_train(intel_dp);
2572
2573 if (crtc->config->has_audio) {
2574 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2575 pipe_name(crtc->pipe));
2576 intel_audio_codec_enable(encoder);
2577 }
2578 }
2579
2580 static void g4x_enable_dp(struct intel_encoder *encoder)
2581 {
2582 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2583
2584 intel_enable_dp(encoder);
2585 intel_edp_backlight_on(intel_dp);
2586 }
2587
2588 static void vlv_enable_dp(struct intel_encoder *encoder)
2589 {
2590 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2591
2592 intel_edp_backlight_on(intel_dp);
2593 intel_psr_enable(intel_dp);
2594 }
2595
2596 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2597 {
2598 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2599 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2600
2601 intel_dp_prepare(encoder);
2602
2603 /* Only ilk+ has port A */
2604 if (dport->port == PORT_A) {
2605 ironlake_set_pll_cpu_edp(intel_dp);
2606 ironlake_edp_pll_on(intel_dp);
2607 }
2608 }
2609
2610 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2611 {
2612 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2613 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2614 enum pipe pipe = intel_dp->pps_pipe;
2615 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2616
2617 edp_panel_vdd_off_sync(intel_dp);
2618
2619 /*
2620 * VLV seems to get confused when multiple power seqeuencers
2621 * have the same port selected (even if only one has power/vdd
2622 * enabled). The failure manifests as vlv_wait_port_ready() failing
2623 * CHV on the other hand doesn't seem to mind having the same port
2624 * selected in multiple power seqeuencers, but let's clear the
2625 * port select always when logically disconnecting a power sequencer
2626 * from a port.
2627 */
2628 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2629 pipe_name(pipe), port_name(intel_dig_port->port));
2630 I915_WRITE(pp_on_reg, 0);
2631 POSTING_READ(pp_on_reg);
2632
2633 intel_dp->pps_pipe = INVALID_PIPE;
2634 }
2635
2636 static void vlv_steal_power_sequencer(struct drm_device *dev,
2637 enum pipe pipe)
2638 {
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 struct intel_encoder *encoder;
2641
2642 lockdep_assert_held(&dev_priv->pps_mutex);
2643
2644 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2645 return;
2646
2647 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2648 base.head) {
2649 struct intel_dp *intel_dp;
2650 enum port port;
2651
2652 if (encoder->type != INTEL_OUTPUT_EDP)
2653 continue;
2654
2655 intel_dp = enc_to_intel_dp(&encoder->base);
2656 port = dp_to_dig_port(intel_dp)->port;
2657
2658 if (intel_dp->pps_pipe != pipe)
2659 continue;
2660
2661 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2662 pipe_name(pipe), port_name(port));
2663
2664 WARN(encoder->base.crtc,
2665 "stealing pipe %c power sequencer from active eDP port %c\n",
2666 pipe_name(pipe), port_name(port));
2667
2668 /* make sure vdd is off before we steal it */
2669 vlv_detach_power_sequencer(intel_dp);
2670 }
2671 }
2672
2673 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2674 {
2675 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2676 struct intel_encoder *encoder = &intel_dig_port->base;
2677 struct drm_device *dev = encoder->base.dev;
2678 struct drm_i915_private *dev_priv = dev->dev_private;
2679 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2680
2681 lockdep_assert_held(&dev_priv->pps_mutex);
2682
2683 if (!is_edp(intel_dp))
2684 return;
2685
2686 if (intel_dp->pps_pipe == crtc->pipe)
2687 return;
2688
2689 /*
2690 * If another power sequencer was being used on this
2691 * port previously make sure to turn off vdd there while
2692 * we still have control of it.
2693 */
2694 if (intel_dp->pps_pipe != INVALID_PIPE)
2695 vlv_detach_power_sequencer(intel_dp);
2696
2697 /*
2698 * We may be stealing the power
2699 * sequencer from another port.
2700 */
2701 vlv_steal_power_sequencer(dev, crtc->pipe);
2702
2703 /* now it's all ours */
2704 intel_dp->pps_pipe = crtc->pipe;
2705
2706 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2707 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2708
2709 /* init power sequencer on this pipe and port */
2710 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2711 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2712 }
2713
2714 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2715 {
2716 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2717 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2718 struct drm_device *dev = encoder->base.dev;
2719 struct drm_i915_private *dev_priv = dev->dev_private;
2720 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2721 enum dpio_channel port = vlv_dport_to_channel(dport);
2722 int pipe = intel_crtc->pipe;
2723 u32 val;
2724
2725 mutex_lock(&dev_priv->sb_lock);
2726
2727 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2728 val = 0;
2729 if (pipe)
2730 val |= (1<<21);
2731 else
2732 val &= ~(1<<21);
2733 val |= 0x001000c4;
2734 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2735 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2736 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2737
2738 mutex_unlock(&dev_priv->sb_lock);
2739
2740 intel_enable_dp(encoder);
2741 }
2742
2743 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2744 {
2745 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2746 struct drm_device *dev = encoder->base.dev;
2747 struct drm_i915_private *dev_priv = dev->dev_private;
2748 struct intel_crtc *intel_crtc =
2749 to_intel_crtc(encoder->base.crtc);
2750 enum dpio_channel port = vlv_dport_to_channel(dport);
2751 int pipe = intel_crtc->pipe;
2752
2753 intel_dp_prepare(encoder);
2754
2755 /* Program Tx lane resets to default */
2756 mutex_lock(&dev_priv->sb_lock);
2757 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2758 DPIO_PCS_TX_LANE2_RESET |
2759 DPIO_PCS_TX_LANE1_RESET);
2760 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2761 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2762 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2763 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2764 DPIO_PCS_CLK_SOFT_RESET);
2765
2766 /* Fix up inter-pair skew failure */
2767 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2768 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2769 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2770 mutex_unlock(&dev_priv->sb_lock);
2771 }
2772
2773 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2774 {
2775 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2776 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2777 struct drm_device *dev = encoder->base.dev;
2778 struct drm_i915_private *dev_priv = dev->dev_private;
2779 struct intel_crtc *intel_crtc =
2780 to_intel_crtc(encoder->base.crtc);
2781 enum dpio_channel ch = vlv_dport_to_channel(dport);
2782 int pipe = intel_crtc->pipe;
2783 int data, i, stagger;
2784 u32 val;
2785
2786 mutex_lock(&dev_priv->sb_lock);
2787
2788 /* allow hardware to manage TX FIFO reset source */
2789 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2790 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2791 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2792
2793 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2794 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2795 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2796
2797 /* Deassert soft data lane reset*/
2798 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2799 val |= CHV_PCS_REQ_SOFTRESET_EN;
2800 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2801
2802 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2803 val |= CHV_PCS_REQ_SOFTRESET_EN;
2804 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2805
2806 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2807 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2808 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2809
2810 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2811 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2812 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2813
2814 /* Program Tx lane latency optimal setting*/
2815 for (i = 0; i < 4; i++) {
2816 /* Set the upar bit */
2817 data = (i == 1) ? 0x0 : 0x1;
2818 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2819 data << DPIO_UPAR_SHIFT);
2820 }
2821
2822 /* Data lane stagger programming */
2823 if (intel_crtc->config->port_clock > 270000)
2824 stagger = 0x18;
2825 else if (intel_crtc->config->port_clock > 135000)
2826 stagger = 0xd;
2827 else if (intel_crtc->config->port_clock > 67500)
2828 stagger = 0x7;
2829 else if (intel_crtc->config->port_clock > 33750)
2830 stagger = 0x4;
2831 else
2832 stagger = 0x2;
2833
2834 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2835 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2836 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2837
2838 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2839 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2840 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2841
2842 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2843 DPIO_LANESTAGGER_STRAP(stagger) |
2844 DPIO_LANESTAGGER_STRAP_OVRD |
2845 DPIO_TX1_STAGGER_MASK(0x1f) |
2846 DPIO_TX1_STAGGER_MULT(6) |
2847 DPIO_TX2_STAGGER_MULT(0));
2848
2849 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2850 DPIO_LANESTAGGER_STRAP(stagger) |
2851 DPIO_LANESTAGGER_STRAP_OVRD |
2852 DPIO_TX1_STAGGER_MASK(0x1f) |
2853 DPIO_TX1_STAGGER_MULT(7) |
2854 DPIO_TX2_STAGGER_MULT(5));
2855
2856 mutex_unlock(&dev_priv->sb_lock);
2857
2858 intel_enable_dp(encoder);
2859 }
2860
2861 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2862 {
2863 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2864 struct drm_device *dev = encoder->base.dev;
2865 struct drm_i915_private *dev_priv = dev->dev_private;
2866 struct intel_crtc *intel_crtc =
2867 to_intel_crtc(encoder->base.crtc);
2868 enum dpio_channel ch = vlv_dport_to_channel(dport);
2869 enum pipe pipe = intel_crtc->pipe;
2870 u32 val;
2871
2872 intel_dp_prepare(encoder);
2873
2874 mutex_lock(&dev_priv->sb_lock);
2875
2876 /* program left/right clock distribution */
2877 if (pipe != PIPE_B) {
2878 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2879 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2880 if (ch == DPIO_CH0)
2881 val |= CHV_BUFLEFTENA1_FORCE;
2882 if (ch == DPIO_CH1)
2883 val |= CHV_BUFRIGHTENA1_FORCE;
2884 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2885 } else {
2886 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2887 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2888 if (ch == DPIO_CH0)
2889 val |= CHV_BUFLEFTENA2_FORCE;
2890 if (ch == DPIO_CH1)
2891 val |= CHV_BUFRIGHTENA2_FORCE;
2892 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2893 }
2894
2895 /* program clock channel usage */
2896 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2897 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2898 if (pipe != PIPE_B)
2899 val &= ~CHV_PCS_USEDCLKCHANNEL;
2900 else
2901 val |= CHV_PCS_USEDCLKCHANNEL;
2902 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2903
2904 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2905 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2906 if (pipe != PIPE_B)
2907 val &= ~CHV_PCS_USEDCLKCHANNEL;
2908 else
2909 val |= CHV_PCS_USEDCLKCHANNEL;
2910 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2911
2912 /*
2913 * This a a bit weird since generally CL
2914 * matches the pipe, but here we need to
2915 * pick the CL based on the port.
2916 */
2917 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2918 if (pipe != PIPE_B)
2919 val &= ~CHV_CMN_USEDCLKCHANNEL;
2920 else
2921 val |= CHV_CMN_USEDCLKCHANNEL;
2922 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2923
2924 mutex_unlock(&dev_priv->sb_lock);
2925 }
2926
2927 /*
2928 * Native read with retry for link status and receiver capability reads for
2929 * cases where the sink may still be asleep.
2930 *
2931 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2932 * supposed to retry 3 times per the spec.
2933 */
2934 static ssize_t
2935 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2936 void *buffer, size_t size)
2937 {
2938 ssize_t ret;
2939 int i;
2940
2941 /*
2942 * Sometime we just get the same incorrect byte repeated
2943 * over the entire buffer. Doing just one throw away read
2944 * initially seems to "solve" it.
2945 */
2946 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2947
2948 for (i = 0; i < 3; i++) {
2949 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2950 if (ret == size)
2951 return ret;
2952 msleep(1);
2953 }
2954
2955 return ret;
2956 }
2957
2958 /*
2959 * Fetch AUX CH registers 0x202 - 0x207 which contain
2960 * link status information
2961 */
2962 static bool
2963 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2964 {
2965 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2966 DP_LANE0_1_STATUS,
2967 link_status,
2968 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2969 }
2970
2971 /* These are source-specific values. */
2972 static uint8_t
2973 intel_dp_voltage_max(struct intel_dp *intel_dp)
2974 {
2975 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2976 struct drm_i915_private *dev_priv = dev->dev_private;
2977 enum port port = dp_to_dig_port(intel_dp)->port;
2978
2979 if (IS_BROXTON(dev))
2980 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2981 else if (INTEL_INFO(dev)->gen >= 9) {
2982 if (dev_priv->edp_low_vswing && port == PORT_A)
2983 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2984 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2985 } else if (IS_VALLEYVIEW(dev))
2986 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2987 else if (IS_GEN7(dev) && port == PORT_A)
2988 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2989 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2990 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2991 else
2992 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2993 }
2994
2995 static uint8_t
2996 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2997 {
2998 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2999 enum port port = dp_to_dig_port(intel_dp)->port;
3000
3001 if (INTEL_INFO(dev)->gen >= 9) {
3002 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3003 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3004 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3005 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3006 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3007 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3008 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3009 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3010 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3011 default:
3012 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3013 }
3014 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3015 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3017 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3019 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3020 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3021 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3023 default:
3024 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3025 }
3026 } else if (IS_VALLEYVIEW(dev)) {
3027 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3028 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3029 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3030 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3031 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3032 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3033 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3034 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3035 default:
3036 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3037 }
3038 } else if (IS_GEN7(dev) && port == PORT_A) {
3039 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3040 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3041 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3044 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3045 default:
3046 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3047 }
3048 } else {
3049 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3050 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3051 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3052 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3053 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3054 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3055 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3056 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3057 default:
3058 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3059 }
3060 }
3061 }
3062
3063 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3064 {
3065 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3068 struct intel_crtc *intel_crtc =
3069 to_intel_crtc(dport->base.base.crtc);
3070 unsigned long demph_reg_value, preemph_reg_value,
3071 uniqtranscale_reg_value;
3072 uint8_t train_set = intel_dp->train_set[0];
3073 enum dpio_channel port = vlv_dport_to_channel(dport);
3074 int pipe = intel_crtc->pipe;
3075
3076 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3077 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3078 preemph_reg_value = 0x0004000;
3079 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3080 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3081 demph_reg_value = 0x2B405555;
3082 uniqtranscale_reg_value = 0x552AB83A;
3083 break;
3084 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3085 demph_reg_value = 0x2B404040;
3086 uniqtranscale_reg_value = 0x5548B83A;
3087 break;
3088 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3089 demph_reg_value = 0x2B245555;
3090 uniqtranscale_reg_value = 0x5560B83A;
3091 break;
3092 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3093 demph_reg_value = 0x2B405555;
3094 uniqtranscale_reg_value = 0x5598DA3A;
3095 break;
3096 default:
3097 return 0;
3098 }
3099 break;
3100 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3101 preemph_reg_value = 0x0002000;
3102 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3103 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3104 demph_reg_value = 0x2B404040;
3105 uniqtranscale_reg_value = 0x5552B83A;
3106 break;
3107 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3108 demph_reg_value = 0x2B404848;
3109 uniqtranscale_reg_value = 0x5580B83A;
3110 break;
3111 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3112 demph_reg_value = 0x2B404040;
3113 uniqtranscale_reg_value = 0x55ADDA3A;
3114 break;
3115 default:
3116 return 0;
3117 }
3118 break;
3119 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3120 preemph_reg_value = 0x0000000;
3121 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3122 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3123 demph_reg_value = 0x2B305555;
3124 uniqtranscale_reg_value = 0x5570B83A;
3125 break;
3126 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3127 demph_reg_value = 0x2B2B4040;
3128 uniqtranscale_reg_value = 0x55ADDA3A;
3129 break;
3130 default:
3131 return 0;
3132 }
3133 break;
3134 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3135 preemph_reg_value = 0x0006000;
3136 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3137 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3138 demph_reg_value = 0x1B405555;
3139 uniqtranscale_reg_value = 0x55ADDA3A;
3140 break;
3141 default:
3142 return 0;
3143 }
3144 break;
3145 default:
3146 return 0;
3147 }
3148
3149 mutex_lock(&dev_priv->sb_lock);
3150 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3151 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3152 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3153 uniqtranscale_reg_value);
3154 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3155 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3156 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3157 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3158 mutex_unlock(&dev_priv->sb_lock);
3159
3160 return 0;
3161 }
3162
3163 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3164 {
3165 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3168 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3169 u32 deemph_reg_value, margin_reg_value, val;
3170 uint8_t train_set = intel_dp->train_set[0];
3171 enum dpio_channel ch = vlv_dport_to_channel(dport);
3172 enum pipe pipe = intel_crtc->pipe;
3173 int i;
3174
3175 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3176 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3177 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3178 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3179 deemph_reg_value = 128;
3180 margin_reg_value = 52;
3181 break;
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3183 deemph_reg_value = 128;
3184 margin_reg_value = 77;
3185 break;
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3187 deemph_reg_value = 128;
3188 margin_reg_value = 102;
3189 break;
3190 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3191 deemph_reg_value = 128;
3192 margin_reg_value = 154;
3193 /* FIXME extra to set for 1200 */
3194 break;
3195 default:
3196 return 0;
3197 }
3198 break;
3199 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3200 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3201 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3202 deemph_reg_value = 85;
3203 margin_reg_value = 78;
3204 break;
3205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3206 deemph_reg_value = 85;
3207 margin_reg_value = 116;
3208 break;
3209 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3210 deemph_reg_value = 85;
3211 margin_reg_value = 154;
3212 break;
3213 default:
3214 return 0;
3215 }
3216 break;
3217 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3218 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3220 deemph_reg_value = 64;
3221 margin_reg_value = 104;
3222 break;
3223 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3224 deemph_reg_value = 64;
3225 margin_reg_value = 154;
3226 break;
3227 default:
3228 return 0;
3229 }
3230 break;
3231 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3232 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3234 deemph_reg_value = 43;
3235 margin_reg_value = 154;
3236 break;
3237 default:
3238 return 0;
3239 }
3240 break;
3241 default:
3242 return 0;
3243 }
3244
3245 mutex_lock(&dev_priv->sb_lock);
3246
3247 /* Clear calc init */
3248 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3249 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3250 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3251 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3252 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3253
3254 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3255 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3256 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3257 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3258 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3259
3260 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3261 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3262 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3263 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3264
3265 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3266 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3267 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3268 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3269
3270 /* Program swing deemph */
3271 for (i = 0; i < 4; i++) {
3272 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3273 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3274 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3275 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3276 }
3277
3278 /* Program swing margin */
3279 for (i = 0; i < 4; i++) {
3280 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3281 val &= ~DPIO_SWING_MARGIN000_MASK;
3282 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3283 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3284 }
3285
3286 /* Disable unique transition scale */
3287 for (i = 0; i < 4; i++) {
3288 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3289 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3290 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3291 }
3292
3293 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3294 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3295 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3296 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3297
3298 /*
3299 * The document said it needs to set bit 27 for ch0 and bit 26
3300 * for ch1. Might be a typo in the doc.
3301 * For now, for this unique transition scale selection, set bit
3302 * 27 for ch0 and ch1.
3303 */
3304 for (i = 0; i < 4; i++) {
3305 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3306 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3307 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3308 }
3309
3310 for (i = 0; i < 4; i++) {
3311 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3312 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3313 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3314 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3315 }
3316 }
3317
3318 /* Start swing calculation */
3319 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3320 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3321 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3322
3323 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3324 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3325 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3326
3327 /* LRC Bypass */
3328 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3329 val |= DPIO_LRC_BYPASS;
3330 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3331
3332 mutex_unlock(&dev_priv->sb_lock);
3333
3334 return 0;
3335 }
3336
3337 static void
3338 intel_get_adjust_train(struct intel_dp *intel_dp,
3339 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3340 {
3341 uint8_t v = 0;
3342 uint8_t p = 0;
3343 int lane;
3344 uint8_t voltage_max;
3345 uint8_t preemph_max;
3346
3347 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3348 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3349 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3350
3351 if (this_v > v)
3352 v = this_v;
3353 if (this_p > p)
3354 p = this_p;
3355 }
3356
3357 voltage_max = intel_dp_voltage_max(intel_dp);
3358 if (v >= voltage_max)
3359 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3360
3361 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3362 if (p >= preemph_max)
3363 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3364
3365 for (lane = 0; lane < 4; lane++)
3366 intel_dp->train_set[lane] = v | p;
3367 }
3368
3369 static uint32_t
3370 gen4_signal_levels(uint8_t train_set)
3371 {
3372 uint32_t signal_levels = 0;
3373
3374 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3376 default:
3377 signal_levels |= DP_VOLTAGE_0_4;
3378 break;
3379 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3380 signal_levels |= DP_VOLTAGE_0_6;
3381 break;
3382 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3383 signal_levels |= DP_VOLTAGE_0_8;
3384 break;
3385 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3386 signal_levels |= DP_VOLTAGE_1_2;
3387 break;
3388 }
3389 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3390 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3391 default:
3392 signal_levels |= DP_PRE_EMPHASIS_0;
3393 break;
3394 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3395 signal_levels |= DP_PRE_EMPHASIS_3_5;
3396 break;
3397 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3398 signal_levels |= DP_PRE_EMPHASIS_6;
3399 break;
3400 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3401 signal_levels |= DP_PRE_EMPHASIS_9_5;
3402 break;
3403 }
3404 return signal_levels;
3405 }
3406
3407 /* Gen6's DP voltage swing and pre-emphasis control */
3408 static uint32_t
3409 gen6_edp_signal_levels(uint8_t train_set)
3410 {
3411 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3412 DP_TRAIN_PRE_EMPHASIS_MASK);
3413 switch (signal_levels) {
3414 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3415 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3416 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3417 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3418 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3419 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3420 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3421 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3422 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3423 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3424 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3425 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3426 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3427 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3428 default:
3429 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3430 "0x%x\n", signal_levels);
3431 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3432 }
3433 }
3434
3435 /* Gen7's DP voltage swing and pre-emphasis control */
3436 static uint32_t
3437 gen7_edp_signal_levels(uint8_t train_set)
3438 {
3439 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3440 DP_TRAIN_PRE_EMPHASIS_MASK);
3441 switch (signal_levels) {
3442 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3443 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3444 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3445 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3446 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3447 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3448
3449 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3450 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3451 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3452 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3453
3454 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3455 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3457 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3458
3459 default:
3460 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3461 "0x%x\n", signal_levels);
3462 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3463 }
3464 }
3465
3466 /* Properly updates "DP" with the correct signal levels. */
3467 static void
3468 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3469 {
3470 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3471 enum port port = intel_dig_port->port;
3472 struct drm_device *dev = intel_dig_port->base.base.dev;
3473 uint32_t signal_levels, mask = 0;
3474 uint8_t train_set = intel_dp->train_set[0];
3475
3476 if (HAS_DDI(dev)) {
3477 signal_levels = ddi_signal_levels(intel_dp);
3478
3479 if (IS_BROXTON(dev))
3480 signal_levels = 0;
3481 else
3482 mask = DDI_BUF_EMP_MASK;
3483 } else if (IS_CHERRYVIEW(dev)) {
3484 signal_levels = chv_signal_levels(intel_dp);
3485 } else if (IS_VALLEYVIEW(dev)) {
3486 signal_levels = vlv_signal_levels(intel_dp);
3487 } else if (IS_GEN7(dev) && port == PORT_A) {
3488 signal_levels = gen7_edp_signal_levels(train_set);
3489 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3490 } else if (IS_GEN6(dev) && port == PORT_A) {
3491 signal_levels = gen6_edp_signal_levels(train_set);
3492 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3493 } else {
3494 signal_levels = gen4_signal_levels(train_set);
3495 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3496 }
3497
3498 if (mask)
3499 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3500
3501 DRM_DEBUG_KMS("Using vswing level %d\n",
3502 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3503 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3504 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3505 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3506
3507 *DP = (*DP & ~mask) | signal_levels;
3508 }
3509
3510 static bool
3511 intel_dp_set_link_train(struct intel_dp *intel_dp,
3512 uint32_t *DP,
3513 uint8_t dp_train_pat)
3514 {
3515 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3516 struct drm_device *dev = intel_dig_port->base.base.dev;
3517 struct drm_i915_private *dev_priv = dev->dev_private;
3518 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3519 int ret, len;
3520
3521 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3522
3523 I915_WRITE(intel_dp->output_reg, *DP);
3524 POSTING_READ(intel_dp->output_reg);
3525
3526 buf[0] = dp_train_pat;
3527 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3528 DP_TRAINING_PATTERN_DISABLE) {
3529 /* don't write DP_TRAINING_LANEx_SET on disable */
3530 len = 1;
3531 } else {
3532 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3533 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3534 len = intel_dp->lane_count + 1;
3535 }
3536
3537 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3538 buf, len);
3539
3540 return ret == len;
3541 }
3542
3543 static bool
3544 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3545 uint8_t dp_train_pat)
3546 {
3547 if (!intel_dp->train_set_valid)
3548 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3549 intel_dp_set_signal_levels(intel_dp, DP);
3550 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3551 }
3552
3553 static bool
3554 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3555 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3556 {
3557 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3558 struct drm_device *dev = intel_dig_port->base.base.dev;
3559 struct drm_i915_private *dev_priv = dev->dev_private;
3560 int ret;
3561
3562 intel_get_adjust_train(intel_dp, link_status);
3563 intel_dp_set_signal_levels(intel_dp, DP);
3564
3565 I915_WRITE(intel_dp->output_reg, *DP);
3566 POSTING_READ(intel_dp->output_reg);
3567
3568 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3569 intel_dp->train_set, intel_dp->lane_count);
3570
3571 return ret == intel_dp->lane_count;
3572 }
3573
3574 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3575 {
3576 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3577 struct drm_device *dev = intel_dig_port->base.base.dev;
3578 struct drm_i915_private *dev_priv = dev->dev_private;
3579 enum port port = intel_dig_port->port;
3580 uint32_t val;
3581
3582 if (!HAS_DDI(dev))
3583 return;
3584
3585 val = I915_READ(DP_TP_CTL(port));
3586 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3587 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3588 I915_WRITE(DP_TP_CTL(port), val);
3589
3590 /*
3591 * On PORT_A we can have only eDP in SST mode. There the only reason
3592 * we need to set idle transmission mode is to work around a HW issue
3593 * where we enable the pipe while not in idle link-training mode.
3594 * In this case there is requirement to wait for a minimum number of
3595 * idle patterns to be sent.
3596 */
3597 if (port == PORT_A)
3598 return;
3599
3600 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3601 1))
3602 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3603 }
3604
3605 /* Enable corresponding port and start training pattern 1 */
3606 void
3607 intel_dp_start_link_train(struct intel_dp *intel_dp)
3608 {
3609 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3610 struct drm_device *dev = encoder->dev;
3611 int i;
3612 uint8_t voltage;
3613 int voltage_tries, loop_tries;
3614 uint32_t DP = intel_dp->DP;
3615 uint8_t link_config[2];
3616
3617 if (HAS_DDI(dev))
3618 intel_ddi_prepare_link_retrain(encoder);
3619
3620 /* Write the link configuration data */
3621 link_config[0] = intel_dp->link_bw;
3622 link_config[1] = intel_dp->lane_count;
3623 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3624 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3625 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3626 if (intel_dp->num_sink_rates)
3627 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3628 &intel_dp->rate_select, 1);
3629
3630 link_config[0] = 0;
3631 link_config[1] = DP_SET_ANSI_8B10B;
3632 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3633
3634 DP |= DP_PORT_EN;
3635
3636 /* clock recovery */
3637 if (!intel_dp_reset_link_train(intel_dp, &DP,
3638 DP_TRAINING_PATTERN_1 |
3639 DP_LINK_SCRAMBLING_DISABLE)) {
3640 DRM_ERROR("failed to enable link training\n");
3641 return;
3642 }
3643
3644 voltage = 0xff;
3645 voltage_tries = 0;
3646 loop_tries = 0;
3647 for (;;) {
3648 uint8_t link_status[DP_LINK_STATUS_SIZE];
3649
3650 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3651 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3652 DRM_ERROR("failed to get link status\n");
3653 break;
3654 }
3655
3656 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3657 DRM_DEBUG_KMS("clock recovery OK\n");
3658 break;
3659 }
3660
3661 /*
3662 * if we used previously trained voltage and pre-emphasis values
3663 * and we don't get clock recovery, reset link training values
3664 */
3665 if (intel_dp->train_set_valid) {
3666 DRM_DEBUG_KMS("clock recovery not ok, reset");
3667 /* clear the flag as we are not reusing train set */
3668 intel_dp->train_set_valid = false;
3669 if (!intel_dp_reset_link_train(intel_dp, &DP,
3670 DP_TRAINING_PATTERN_1 |
3671 DP_LINK_SCRAMBLING_DISABLE)) {
3672 DRM_ERROR("failed to enable link training\n");
3673 return;
3674 }
3675 continue;
3676 }
3677
3678 /* Check to see if we've tried the max voltage */
3679 for (i = 0; i < intel_dp->lane_count; i++)
3680 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3681 break;
3682 if (i == intel_dp->lane_count) {
3683 ++loop_tries;
3684 if (loop_tries == 5) {
3685 DRM_ERROR("too many full retries, give up\n");
3686 break;
3687 }
3688 intel_dp_reset_link_train(intel_dp, &DP,
3689 DP_TRAINING_PATTERN_1 |
3690 DP_LINK_SCRAMBLING_DISABLE);
3691 voltage_tries = 0;
3692 continue;
3693 }
3694
3695 /* Check to see if we've tried the same voltage 5 times */
3696 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3697 ++voltage_tries;
3698 if (voltage_tries == 5) {
3699 DRM_ERROR("too many voltage retries, give up\n");
3700 break;
3701 }
3702 } else
3703 voltage_tries = 0;
3704 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3705
3706 /* Update training set as requested by target */
3707 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3708 DRM_ERROR("failed to update link training\n");
3709 break;
3710 }
3711 }
3712
3713 intel_dp->DP = DP;
3714 }
3715
3716 void
3717 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3718 {
3719 bool channel_eq = false;
3720 int tries, cr_tries;
3721 uint32_t DP = intel_dp->DP;
3722 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3723
3724 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3725 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3726 training_pattern = DP_TRAINING_PATTERN_3;
3727
3728 /* channel equalization */
3729 if (!intel_dp_set_link_train(intel_dp, &DP,
3730 training_pattern |
3731 DP_LINK_SCRAMBLING_DISABLE)) {
3732 DRM_ERROR("failed to start channel equalization\n");
3733 return;
3734 }
3735
3736 tries = 0;
3737 cr_tries = 0;
3738 channel_eq = false;
3739 for (;;) {
3740 uint8_t link_status[DP_LINK_STATUS_SIZE];
3741
3742 if (cr_tries > 5) {
3743 DRM_ERROR("failed to train DP, aborting\n");
3744 break;
3745 }
3746
3747 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3748 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3749 DRM_ERROR("failed to get link status\n");
3750 break;
3751 }
3752
3753 /* Make sure clock is still ok */
3754 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3755 intel_dp->train_set_valid = false;
3756 intel_dp_start_link_train(intel_dp);
3757 intel_dp_set_link_train(intel_dp, &DP,
3758 training_pattern |
3759 DP_LINK_SCRAMBLING_DISABLE);
3760 cr_tries++;
3761 continue;
3762 }
3763
3764 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3765 channel_eq = true;
3766 break;
3767 }
3768
3769 /* Try 5 times, then try clock recovery if that fails */
3770 if (tries > 5) {
3771 intel_dp->train_set_valid = false;
3772 intel_dp_start_link_train(intel_dp);
3773 intel_dp_set_link_train(intel_dp, &DP,
3774 training_pattern |
3775 DP_LINK_SCRAMBLING_DISABLE);
3776 tries = 0;
3777 cr_tries++;
3778 continue;
3779 }
3780
3781 /* Update training set as requested by target */
3782 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3783 DRM_ERROR("failed to update link training\n");
3784 break;
3785 }
3786 ++tries;
3787 }
3788
3789 intel_dp_set_idle_link_train(intel_dp);
3790
3791 intel_dp->DP = DP;
3792
3793 if (channel_eq) {
3794 intel_dp->train_set_valid = true;
3795 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3796 }
3797 }
3798
3799 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3800 {
3801 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3802 DP_TRAINING_PATTERN_DISABLE);
3803 }
3804
3805 static void
3806 intel_dp_link_down(struct intel_dp *intel_dp)
3807 {
3808 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3809 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3810 enum port port = intel_dig_port->port;
3811 struct drm_device *dev = intel_dig_port->base.base.dev;
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3813 uint32_t DP = intel_dp->DP;
3814
3815 if (WARN_ON(HAS_DDI(dev)))
3816 return;
3817
3818 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3819 return;
3820
3821 DRM_DEBUG_KMS("\n");
3822
3823 if ((IS_GEN7(dev) && port == PORT_A) ||
3824 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3825 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3826 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3827 } else {
3828 if (IS_CHERRYVIEW(dev))
3829 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3830 else
3831 DP &= ~DP_LINK_TRAIN_MASK;
3832 DP |= DP_LINK_TRAIN_PAT_IDLE;
3833 }
3834 I915_WRITE(intel_dp->output_reg, DP);
3835 POSTING_READ(intel_dp->output_reg);
3836
3837 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3838 I915_WRITE(intel_dp->output_reg, DP);
3839 POSTING_READ(intel_dp->output_reg);
3840
3841 /*
3842 * HW workaround for IBX, we need to move the port
3843 * to transcoder A after disabling it to allow the
3844 * matching HDMI port to be enabled on transcoder A.
3845 */
3846 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3847 /* always enable with pattern 1 (as per spec) */
3848 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3849 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3850 I915_WRITE(intel_dp->output_reg, DP);
3851 POSTING_READ(intel_dp->output_reg);
3852
3853 DP &= ~DP_PORT_EN;
3854 I915_WRITE(intel_dp->output_reg, DP);
3855 POSTING_READ(intel_dp->output_reg);
3856 }
3857
3858 msleep(intel_dp->panel_power_down_delay);
3859 }
3860
3861 static bool
3862 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3863 {
3864 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3865 struct drm_device *dev = dig_port->base.base.dev;
3866 struct drm_i915_private *dev_priv = dev->dev_private;
3867 uint8_t rev;
3868
3869 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3870 sizeof(intel_dp->dpcd)) < 0)
3871 return false; /* aux transfer failed */
3872
3873 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3874
3875 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3876 return false; /* DPCD not present */
3877
3878 /* Check if the panel supports PSR */
3879 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3880 if (is_edp(intel_dp)) {
3881 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3882 intel_dp->psr_dpcd,
3883 sizeof(intel_dp->psr_dpcd));
3884 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3885 dev_priv->psr.sink_support = true;
3886 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3887 }
3888
3889 if (INTEL_INFO(dev)->gen >= 9 &&
3890 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3891 uint8_t frame_sync_cap;
3892
3893 dev_priv->psr.sink_support = true;
3894 intel_dp_dpcd_read_wake(&intel_dp->aux,
3895 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3896 &frame_sync_cap, 1);
3897 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3898 /* PSR2 needs frame sync as well */
3899 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3900 DRM_DEBUG_KMS("PSR2 %s on sink",
3901 dev_priv->psr.psr2_support ? "supported" : "not supported");
3902 }
3903 }
3904
3905 /* Training Pattern 3 support, both source and sink */
3906 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3907 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3908 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3909 intel_dp->use_tps3 = true;
3910 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3911 } else
3912 intel_dp->use_tps3 = false;
3913
3914 /* Intermediate frequency support */
3915 if (is_edp(intel_dp) &&
3916 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3917 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3918 (rev >= 0x03)) { /* eDp v1.4 or higher */
3919 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3920 int i;
3921
3922 intel_dp_dpcd_read_wake(&intel_dp->aux,
3923 DP_SUPPORTED_LINK_RATES,
3924 sink_rates,
3925 sizeof(sink_rates));
3926
3927 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3928 int val = le16_to_cpu(sink_rates[i]);
3929
3930 if (val == 0)
3931 break;
3932
3933 /* Value read is in kHz while drm clock is saved in deca-kHz */
3934 intel_dp->sink_rates[i] = (val * 200) / 10;
3935 }
3936 intel_dp->num_sink_rates = i;
3937 }
3938
3939 intel_dp_print_rates(intel_dp);
3940
3941 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3942 DP_DWN_STRM_PORT_PRESENT))
3943 return true; /* native DP sink */
3944
3945 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3946 return true; /* no per-port downstream info */
3947
3948 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3949 intel_dp->downstream_ports,
3950 DP_MAX_DOWNSTREAM_PORTS) < 0)
3951 return false; /* downstream port status fetch failed */
3952
3953 return true;
3954 }
3955
3956 static void
3957 intel_dp_probe_oui(struct intel_dp *intel_dp)
3958 {
3959 u8 buf[3];
3960
3961 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3962 return;
3963
3964 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3965 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3966 buf[0], buf[1], buf[2]);
3967
3968 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3969 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3970 buf[0], buf[1], buf[2]);
3971 }
3972
3973 static bool
3974 intel_dp_probe_mst(struct intel_dp *intel_dp)
3975 {
3976 u8 buf[1];
3977
3978 if (!intel_dp->can_mst)
3979 return false;
3980
3981 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3982 return false;
3983
3984 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3985 if (buf[0] & DP_MST_CAP) {
3986 DRM_DEBUG_KMS("Sink is MST capable\n");
3987 intel_dp->is_mst = true;
3988 } else {
3989 DRM_DEBUG_KMS("Sink is not MST capable\n");
3990 intel_dp->is_mst = false;
3991 }
3992 }
3993
3994 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3995 return intel_dp->is_mst;
3996 }
3997
3998 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3999 {
4000 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4001 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4002 u8 buf;
4003 int ret = 0;
4004
4005 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4006 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4007 ret = -EIO;
4008 goto out;
4009 }
4010
4011 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4012 buf & ~DP_TEST_SINK_START) < 0) {
4013 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4014 ret = -EIO;
4015 goto out;
4016 }
4017
4018 intel_dp->sink_crc.started = false;
4019 out:
4020 hsw_enable_ips(intel_crtc);
4021 return ret;
4022 }
4023
4024 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4025 {
4026 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4027 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4028 u8 buf;
4029 int ret;
4030
4031 if (intel_dp->sink_crc.started) {
4032 ret = intel_dp_sink_crc_stop(intel_dp);
4033 if (ret)
4034 return ret;
4035 }
4036
4037 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4038 return -EIO;
4039
4040 if (!(buf & DP_TEST_CRC_SUPPORTED))
4041 return -ENOTTY;
4042
4043 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4044
4045 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4046 return -EIO;
4047
4048 hsw_disable_ips(intel_crtc);
4049
4050 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4051 buf | DP_TEST_SINK_START) < 0) {
4052 hsw_enable_ips(intel_crtc);
4053 return -EIO;
4054 }
4055
4056 intel_dp->sink_crc.started = true;
4057 return 0;
4058 }
4059
4060 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4061 {
4062 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4063 struct drm_device *dev = dig_port->base.base.dev;
4064 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4065 u8 buf;
4066 int count, ret;
4067 int attempts = 6;
4068 bool old_equal_new;
4069
4070 ret = intel_dp_sink_crc_start(intel_dp);
4071 if (ret)
4072 return ret;
4073
4074 do {
4075 intel_wait_for_vblank(dev, intel_crtc->pipe);
4076
4077 if (drm_dp_dpcd_readb(&intel_dp->aux,
4078 DP_TEST_SINK_MISC, &buf) < 0) {
4079 ret = -EIO;
4080 goto stop;
4081 }
4082 count = buf & DP_TEST_COUNT_MASK;
4083
4084 /*
4085 * Count might be reset during the loop. In this case
4086 * last known count needs to be reset as well.
4087 */
4088 if (count == 0)
4089 intel_dp->sink_crc.last_count = 0;
4090
4091 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4092 ret = -EIO;
4093 goto stop;
4094 }
4095
4096 old_equal_new = (count == intel_dp->sink_crc.last_count &&
4097 !memcmp(intel_dp->sink_crc.last_crc, crc,
4098 6 * sizeof(u8)));
4099
4100 } while (--attempts && (count == 0 || old_equal_new));
4101
4102 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4103 memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
4104
4105 if (attempts == 0) {
4106 if (old_equal_new) {
4107 DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
4108 } else {
4109 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4110 ret = -ETIMEDOUT;
4111 goto stop;
4112 }
4113 }
4114
4115 stop:
4116 intel_dp_sink_crc_stop(intel_dp);
4117 return ret;
4118 }
4119
4120 static bool
4121 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4122 {
4123 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4124 DP_DEVICE_SERVICE_IRQ_VECTOR,
4125 sink_irq_vector, 1) == 1;
4126 }
4127
4128 static bool
4129 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4130 {
4131 int ret;
4132
4133 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4134 DP_SINK_COUNT_ESI,
4135 sink_irq_vector, 14);
4136 if (ret != 14)
4137 return false;
4138
4139 return true;
4140 }
4141
4142 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4143 {
4144 uint8_t test_result = DP_TEST_ACK;
4145 return test_result;
4146 }
4147
4148 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4149 {
4150 uint8_t test_result = DP_TEST_NAK;
4151 return test_result;
4152 }
4153
4154 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4155 {
4156 uint8_t test_result = DP_TEST_NAK;
4157 struct intel_connector *intel_connector = intel_dp->attached_connector;
4158 struct drm_connector *connector = &intel_connector->base;
4159
4160 if (intel_connector->detect_edid == NULL ||
4161 connector->edid_corrupt ||
4162 intel_dp->aux.i2c_defer_count > 6) {
4163 /* Check EDID read for NACKs, DEFERs and corruption
4164 * (DP CTS 1.2 Core r1.1)
4165 * 4.2.2.4 : Failed EDID read, I2C_NAK
4166 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4167 * 4.2.2.6 : EDID corruption detected
4168 * Use failsafe mode for all cases
4169 */
4170 if (intel_dp->aux.i2c_nack_count > 0 ||
4171 intel_dp->aux.i2c_defer_count > 0)
4172 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4173 intel_dp->aux.i2c_nack_count,
4174 intel_dp->aux.i2c_defer_count);
4175 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4176 } else {
4177 struct edid *block = intel_connector->detect_edid;
4178
4179 /* We have to write the checksum
4180 * of the last block read
4181 */
4182 block += intel_connector->detect_edid->extensions;
4183
4184 if (!drm_dp_dpcd_write(&intel_dp->aux,
4185 DP_TEST_EDID_CHECKSUM,
4186 &block->checksum,
4187 1))
4188 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4189
4190 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4191 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4192 }
4193
4194 /* Set test active flag here so userspace doesn't interrupt things */
4195 intel_dp->compliance_test_active = 1;
4196
4197 return test_result;
4198 }
4199
4200 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4201 {
4202 uint8_t test_result = DP_TEST_NAK;
4203 return test_result;
4204 }
4205
4206 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4207 {
4208 uint8_t response = DP_TEST_NAK;
4209 uint8_t rxdata = 0;
4210 int status = 0;
4211
4212 intel_dp->compliance_test_active = 0;
4213 intel_dp->compliance_test_type = 0;
4214 intel_dp->compliance_test_data = 0;
4215
4216 intel_dp->aux.i2c_nack_count = 0;
4217 intel_dp->aux.i2c_defer_count = 0;
4218
4219 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4220 if (status <= 0) {
4221 DRM_DEBUG_KMS("Could not read test request from sink\n");
4222 goto update_status;
4223 }
4224
4225 switch (rxdata) {
4226 case DP_TEST_LINK_TRAINING:
4227 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4228 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4229 response = intel_dp_autotest_link_training(intel_dp);
4230 break;
4231 case DP_TEST_LINK_VIDEO_PATTERN:
4232 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4233 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4234 response = intel_dp_autotest_video_pattern(intel_dp);
4235 break;
4236 case DP_TEST_LINK_EDID_READ:
4237 DRM_DEBUG_KMS("EDID test requested\n");
4238 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4239 response = intel_dp_autotest_edid(intel_dp);
4240 break;
4241 case DP_TEST_LINK_PHY_TEST_PATTERN:
4242 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4243 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4244 response = intel_dp_autotest_phy_pattern(intel_dp);
4245 break;
4246 default:
4247 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4248 break;
4249 }
4250
4251 update_status:
4252 status = drm_dp_dpcd_write(&intel_dp->aux,
4253 DP_TEST_RESPONSE,
4254 &response, 1);
4255 if (status <= 0)
4256 DRM_DEBUG_KMS("Could not write test response to sink\n");
4257 }
4258
4259 static int
4260 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4261 {
4262 bool bret;
4263
4264 if (intel_dp->is_mst) {
4265 u8 esi[16] = { 0 };
4266 int ret = 0;
4267 int retry;
4268 bool handled;
4269 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4270 go_again:
4271 if (bret == true) {
4272
4273 /* check link status - esi[10] = 0x200c */
4274 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4275 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4276 intel_dp_start_link_train(intel_dp);
4277 intel_dp_complete_link_train(intel_dp);
4278 intel_dp_stop_link_train(intel_dp);
4279 }
4280
4281 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4282 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4283
4284 if (handled) {
4285 for (retry = 0; retry < 3; retry++) {
4286 int wret;
4287 wret = drm_dp_dpcd_write(&intel_dp->aux,
4288 DP_SINK_COUNT_ESI+1,
4289 &esi[1], 3);
4290 if (wret == 3) {
4291 break;
4292 }
4293 }
4294
4295 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4296 if (bret == true) {
4297 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4298 goto go_again;
4299 }
4300 } else
4301 ret = 0;
4302
4303 return ret;
4304 } else {
4305 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4306 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4307 intel_dp->is_mst = false;
4308 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4309 /* send a hotplug event */
4310 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4311 }
4312 }
4313 return -EINVAL;
4314 }
4315
4316 /*
4317 * According to DP spec
4318 * 5.1.2:
4319 * 1. Read DPCD
4320 * 2. Configure link according to Receiver Capabilities
4321 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4322 * 4. Check link status on receipt of hot-plug interrupt
4323 */
4324 static void
4325 intel_dp_check_link_status(struct intel_dp *intel_dp)
4326 {
4327 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4328 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4329 u8 sink_irq_vector;
4330 u8 link_status[DP_LINK_STATUS_SIZE];
4331
4332 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4333
4334 if (!intel_encoder->base.crtc)
4335 return;
4336
4337 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4338 return;
4339
4340 /* Try to read receiver status if the link appears to be up */
4341 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4342 return;
4343 }
4344
4345 /* Now read the DPCD to see if it's actually running */
4346 if (!intel_dp_get_dpcd(intel_dp)) {
4347 return;
4348 }
4349
4350 /* Try to read the source of the interrupt */
4351 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4352 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4353 /* Clear interrupt source */
4354 drm_dp_dpcd_writeb(&intel_dp->aux,
4355 DP_DEVICE_SERVICE_IRQ_VECTOR,
4356 sink_irq_vector);
4357
4358 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4359 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4360 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4361 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4362 }
4363
4364 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4365 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4366 intel_encoder->base.name);
4367 intel_dp_start_link_train(intel_dp);
4368 intel_dp_complete_link_train(intel_dp);
4369 intel_dp_stop_link_train(intel_dp);
4370 }
4371 }
4372
4373 /* XXX this is probably wrong for multiple downstream ports */
4374 static enum drm_connector_status
4375 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4376 {
4377 uint8_t *dpcd = intel_dp->dpcd;
4378 uint8_t type;
4379
4380 if (!intel_dp_get_dpcd(intel_dp))
4381 return connector_status_disconnected;
4382
4383 /* if there's no downstream port, we're done */
4384 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4385 return connector_status_connected;
4386
4387 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4388 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4389 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4390 uint8_t reg;
4391
4392 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4393 &reg, 1) < 0)
4394 return connector_status_unknown;
4395
4396 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4397 : connector_status_disconnected;
4398 }
4399
4400 /* If no HPD, poke DDC gently */
4401 if (drm_probe_ddc(&intel_dp->aux.ddc))
4402 return connector_status_connected;
4403
4404 /* Well we tried, say unknown for unreliable port types */
4405 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4406 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4407 if (type == DP_DS_PORT_TYPE_VGA ||
4408 type == DP_DS_PORT_TYPE_NON_EDID)
4409 return connector_status_unknown;
4410 } else {
4411 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4412 DP_DWN_STRM_PORT_TYPE_MASK;
4413 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4414 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4415 return connector_status_unknown;
4416 }
4417
4418 /* Anything else is out of spec, warn and ignore */
4419 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4420 return connector_status_disconnected;
4421 }
4422
4423 static enum drm_connector_status
4424 edp_detect(struct intel_dp *intel_dp)
4425 {
4426 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4427 enum drm_connector_status status;
4428
4429 status = intel_panel_detect(dev);
4430 if (status == connector_status_unknown)
4431 status = connector_status_connected;
4432
4433 return status;
4434 }
4435
4436 static enum drm_connector_status
4437 ironlake_dp_detect(struct intel_dp *intel_dp)
4438 {
4439 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4440 struct drm_i915_private *dev_priv = dev->dev_private;
4441 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4442
4443 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4444 return connector_status_disconnected;
4445
4446 return intel_dp_detect_dpcd(intel_dp);
4447 }
4448
4449 static int g4x_digital_port_connected(struct drm_device *dev,
4450 struct intel_digital_port *intel_dig_port)
4451 {
4452 struct drm_i915_private *dev_priv = dev->dev_private;
4453 uint32_t bit;
4454
4455 if (IS_VALLEYVIEW(dev)) {
4456 switch (intel_dig_port->port) {
4457 case PORT_B:
4458 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4459 break;
4460 case PORT_C:
4461 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4462 break;
4463 case PORT_D:
4464 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4465 break;
4466 default:
4467 return -EINVAL;
4468 }
4469 } else {
4470 switch (intel_dig_port->port) {
4471 case PORT_B:
4472 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4473 break;
4474 case PORT_C:
4475 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4476 break;
4477 case PORT_D:
4478 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4479 break;
4480 default:
4481 return -EINVAL;
4482 }
4483 }
4484
4485 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4486 return 0;
4487 return 1;
4488 }
4489
4490 static enum drm_connector_status
4491 g4x_dp_detect(struct intel_dp *intel_dp)
4492 {
4493 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4494 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4495 int ret;
4496
4497 /* Can't disconnect eDP, but you can close the lid... */
4498 if (is_edp(intel_dp)) {
4499 enum drm_connector_status status;
4500
4501 status = intel_panel_detect(dev);
4502 if (status == connector_status_unknown)
4503 status = connector_status_connected;
4504 return status;
4505 }
4506
4507 ret = g4x_digital_port_connected(dev, intel_dig_port);
4508 if (ret == -EINVAL)
4509 return connector_status_unknown;
4510 else if (ret == 0)
4511 return connector_status_disconnected;
4512
4513 return intel_dp_detect_dpcd(intel_dp);
4514 }
4515
4516 static struct edid *
4517 intel_dp_get_edid(struct intel_dp *intel_dp)
4518 {
4519 struct intel_connector *intel_connector = intel_dp->attached_connector;
4520
4521 /* use cached edid if we have one */
4522 if (intel_connector->edid) {
4523 /* invalid edid */
4524 if (IS_ERR(intel_connector->edid))
4525 return NULL;
4526
4527 return drm_edid_duplicate(intel_connector->edid);
4528 } else
4529 return drm_get_edid(&intel_connector->base,
4530 &intel_dp->aux.ddc);
4531 }
4532
4533 static void
4534 intel_dp_set_edid(struct intel_dp *intel_dp)
4535 {
4536 struct intel_connector *intel_connector = intel_dp->attached_connector;
4537 struct edid *edid;
4538
4539 edid = intel_dp_get_edid(intel_dp);
4540 intel_connector->detect_edid = edid;
4541
4542 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4543 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4544 else
4545 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4546 }
4547
4548 static void
4549 intel_dp_unset_edid(struct intel_dp *intel_dp)
4550 {
4551 struct intel_connector *intel_connector = intel_dp->attached_connector;
4552
4553 kfree(intel_connector->detect_edid);
4554 intel_connector->detect_edid = NULL;
4555
4556 intel_dp->has_audio = false;
4557 }
4558
4559 static enum intel_display_power_domain
4560 intel_dp_power_get(struct intel_dp *dp)
4561 {
4562 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4563 enum intel_display_power_domain power_domain;
4564
4565 power_domain = intel_display_port_power_domain(encoder);
4566 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4567
4568 return power_domain;
4569 }
4570
4571 static void
4572 intel_dp_power_put(struct intel_dp *dp,
4573 enum intel_display_power_domain power_domain)
4574 {
4575 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4576 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4577 }
4578
4579 static enum drm_connector_status
4580 intel_dp_detect(struct drm_connector *connector, bool force)
4581 {
4582 struct intel_dp *intel_dp = intel_attached_dp(connector);
4583 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4584 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4585 struct drm_device *dev = connector->dev;
4586 enum drm_connector_status status;
4587 enum intel_display_power_domain power_domain;
4588 bool ret;
4589 u8 sink_irq_vector;
4590
4591 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4592 connector->base.id, connector->name);
4593 intel_dp_unset_edid(intel_dp);
4594
4595 if (intel_dp->is_mst) {
4596 /* MST devices are disconnected from a monitor POV */
4597 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4598 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4599 return connector_status_disconnected;
4600 }
4601
4602 power_domain = intel_dp_power_get(intel_dp);
4603
4604 /* Can't disconnect eDP, but you can close the lid... */
4605 if (is_edp(intel_dp))
4606 status = edp_detect(intel_dp);
4607 else if (HAS_PCH_SPLIT(dev))
4608 status = ironlake_dp_detect(intel_dp);
4609 else
4610 status = g4x_dp_detect(intel_dp);
4611 if (status != connector_status_connected)
4612 goto out;
4613
4614 intel_dp_probe_oui(intel_dp);
4615
4616 ret = intel_dp_probe_mst(intel_dp);
4617 if (ret) {
4618 /* if we are in MST mode then this connector
4619 won't appear connected or have anything with EDID on it */
4620 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4621 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4622 status = connector_status_disconnected;
4623 goto out;
4624 }
4625
4626 intel_dp_set_edid(intel_dp);
4627
4628 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4629 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4630 status = connector_status_connected;
4631
4632 /* Try to read the source of the interrupt */
4633 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4634 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4635 /* Clear interrupt source */
4636 drm_dp_dpcd_writeb(&intel_dp->aux,
4637 DP_DEVICE_SERVICE_IRQ_VECTOR,
4638 sink_irq_vector);
4639
4640 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4641 intel_dp_handle_test_request(intel_dp);
4642 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4643 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4644 }
4645
4646 out:
4647 intel_dp_power_put(intel_dp, power_domain);
4648 return status;
4649 }
4650
4651 static void
4652 intel_dp_force(struct drm_connector *connector)
4653 {
4654 struct intel_dp *intel_dp = intel_attached_dp(connector);
4655 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4656 enum intel_display_power_domain power_domain;
4657
4658 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4659 connector->base.id, connector->name);
4660 intel_dp_unset_edid(intel_dp);
4661
4662 if (connector->status != connector_status_connected)
4663 return;
4664
4665 power_domain = intel_dp_power_get(intel_dp);
4666
4667 intel_dp_set_edid(intel_dp);
4668
4669 intel_dp_power_put(intel_dp, power_domain);
4670
4671 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4672 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4673 }
4674
4675 static int intel_dp_get_modes(struct drm_connector *connector)
4676 {
4677 struct intel_connector *intel_connector = to_intel_connector(connector);
4678 struct edid *edid;
4679
4680 edid = intel_connector->detect_edid;
4681 if (edid) {
4682 int ret = intel_connector_update_modes(connector, edid);
4683 if (ret)
4684 return ret;
4685 }
4686
4687 /* if eDP has no EDID, fall back to fixed mode */
4688 if (is_edp(intel_attached_dp(connector)) &&
4689 intel_connector->panel.fixed_mode) {
4690 struct drm_display_mode *mode;
4691
4692 mode = drm_mode_duplicate(connector->dev,
4693 intel_connector->panel.fixed_mode);
4694 if (mode) {
4695 drm_mode_probed_add(connector, mode);
4696 return 1;
4697 }
4698 }
4699
4700 return 0;
4701 }
4702
4703 static bool
4704 intel_dp_detect_audio(struct drm_connector *connector)
4705 {
4706 bool has_audio = false;
4707 struct edid *edid;
4708
4709 edid = to_intel_connector(connector)->detect_edid;
4710 if (edid)
4711 has_audio = drm_detect_monitor_audio(edid);
4712
4713 return has_audio;
4714 }
4715
4716 static int
4717 intel_dp_set_property(struct drm_connector *connector,
4718 struct drm_property *property,
4719 uint64_t val)
4720 {
4721 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4722 struct intel_connector *intel_connector = to_intel_connector(connector);
4723 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4724 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4725 int ret;
4726
4727 ret = drm_object_property_set_value(&connector->base, property, val);
4728 if (ret)
4729 return ret;
4730
4731 if (property == dev_priv->force_audio_property) {
4732 int i = val;
4733 bool has_audio;
4734
4735 if (i == intel_dp->force_audio)
4736 return 0;
4737
4738 intel_dp->force_audio = i;
4739
4740 if (i == HDMI_AUDIO_AUTO)
4741 has_audio = intel_dp_detect_audio(connector);
4742 else
4743 has_audio = (i == HDMI_AUDIO_ON);
4744
4745 if (has_audio == intel_dp->has_audio)
4746 return 0;
4747
4748 intel_dp->has_audio = has_audio;
4749 goto done;
4750 }
4751
4752 if (property == dev_priv->broadcast_rgb_property) {
4753 bool old_auto = intel_dp->color_range_auto;
4754 bool old_range = intel_dp->limited_color_range;
4755
4756 switch (val) {
4757 case INTEL_BROADCAST_RGB_AUTO:
4758 intel_dp->color_range_auto = true;
4759 break;
4760 case INTEL_BROADCAST_RGB_FULL:
4761 intel_dp->color_range_auto = false;
4762 intel_dp->limited_color_range = false;
4763 break;
4764 case INTEL_BROADCAST_RGB_LIMITED:
4765 intel_dp->color_range_auto = false;
4766 intel_dp->limited_color_range = true;
4767 break;
4768 default:
4769 return -EINVAL;
4770 }
4771
4772 if (old_auto == intel_dp->color_range_auto &&
4773 old_range == intel_dp->limited_color_range)
4774 return 0;
4775
4776 goto done;
4777 }
4778
4779 if (is_edp(intel_dp) &&
4780 property == connector->dev->mode_config.scaling_mode_property) {
4781 if (val == DRM_MODE_SCALE_NONE) {
4782 DRM_DEBUG_KMS("no scaling not supported\n");
4783 return -EINVAL;
4784 }
4785
4786 if (intel_connector->panel.fitting_mode == val) {
4787 /* the eDP scaling property is not changed */
4788 return 0;
4789 }
4790 intel_connector->panel.fitting_mode = val;
4791
4792 goto done;
4793 }
4794
4795 return -EINVAL;
4796
4797 done:
4798 if (intel_encoder->base.crtc)
4799 intel_crtc_restore_mode(intel_encoder->base.crtc);
4800
4801 return 0;
4802 }
4803
4804 static void
4805 intel_dp_connector_destroy(struct drm_connector *connector)
4806 {
4807 struct intel_connector *intel_connector = to_intel_connector(connector);
4808
4809 kfree(intel_connector->detect_edid);
4810
4811 if (!IS_ERR_OR_NULL(intel_connector->edid))
4812 kfree(intel_connector->edid);
4813
4814 /* Can't call is_edp() since the encoder may have been destroyed
4815 * already. */
4816 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4817 intel_panel_fini(&intel_connector->panel);
4818
4819 drm_connector_cleanup(connector);
4820 kfree(connector);
4821 }
4822
4823 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4824 {
4825 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4826 struct intel_dp *intel_dp = &intel_dig_port->dp;
4827
4828 drm_dp_aux_unregister(&intel_dp->aux);
4829 intel_dp_mst_encoder_cleanup(intel_dig_port);
4830 if (is_edp(intel_dp)) {
4831 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4832 /*
4833 * vdd might still be enabled do to the delayed vdd off.
4834 * Make sure vdd is actually turned off here.
4835 */
4836 pps_lock(intel_dp);
4837 edp_panel_vdd_off_sync(intel_dp);
4838 pps_unlock(intel_dp);
4839
4840 if (intel_dp->edp_notifier.notifier_call) {
4841 unregister_reboot_notifier(&intel_dp->edp_notifier);
4842 intel_dp->edp_notifier.notifier_call = NULL;
4843 }
4844 }
4845 drm_encoder_cleanup(encoder);
4846 kfree(intel_dig_port);
4847 }
4848
4849 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4850 {
4851 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4852
4853 if (!is_edp(intel_dp))
4854 return;
4855
4856 /*
4857 * vdd might still be enabled do to the delayed vdd off.
4858 * Make sure vdd is actually turned off here.
4859 */
4860 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4861 pps_lock(intel_dp);
4862 edp_panel_vdd_off_sync(intel_dp);
4863 pps_unlock(intel_dp);
4864 }
4865
4866 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4867 {
4868 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4869 struct drm_device *dev = intel_dig_port->base.base.dev;
4870 struct drm_i915_private *dev_priv = dev->dev_private;
4871 enum intel_display_power_domain power_domain;
4872
4873 lockdep_assert_held(&dev_priv->pps_mutex);
4874
4875 if (!edp_have_panel_vdd(intel_dp))
4876 return;
4877
4878 /*
4879 * The VDD bit needs a power domain reference, so if the bit is
4880 * already enabled when we boot or resume, grab this reference and
4881 * schedule a vdd off, so we don't hold on to the reference
4882 * indefinitely.
4883 */
4884 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4885 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4886 intel_display_power_get(dev_priv, power_domain);
4887
4888 edp_panel_vdd_schedule_off(intel_dp);
4889 }
4890
4891 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4892 {
4893 struct intel_dp *intel_dp;
4894
4895 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4896 return;
4897
4898 intel_dp = enc_to_intel_dp(encoder);
4899
4900 pps_lock(intel_dp);
4901
4902 /*
4903 * Read out the current power sequencer assignment,
4904 * in case the BIOS did something with it.
4905 */
4906 if (IS_VALLEYVIEW(encoder->dev))
4907 vlv_initial_power_sequencer_setup(intel_dp);
4908
4909 intel_edp_panel_vdd_sanitize(intel_dp);
4910
4911 pps_unlock(intel_dp);
4912 }
4913
4914 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4915 .dpms = drm_atomic_helper_connector_dpms,
4916 .detect = intel_dp_detect,
4917 .force = intel_dp_force,
4918 .fill_modes = drm_helper_probe_single_connector_modes,
4919 .set_property = intel_dp_set_property,
4920 .atomic_get_property = intel_connector_atomic_get_property,
4921 .destroy = intel_dp_connector_destroy,
4922 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4923 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4924 };
4925
4926 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4927 .get_modes = intel_dp_get_modes,
4928 .mode_valid = intel_dp_mode_valid,
4929 .best_encoder = intel_best_encoder,
4930 };
4931
4932 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4933 .reset = intel_dp_encoder_reset,
4934 .destroy = intel_dp_encoder_destroy,
4935 };
4936
4937 enum irqreturn
4938 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4939 {
4940 struct intel_dp *intel_dp = &intel_dig_port->dp;
4941 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4942 struct drm_device *dev = intel_dig_port->base.base.dev;
4943 struct drm_i915_private *dev_priv = dev->dev_private;
4944 enum intel_display_power_domain power_domain;
4945 enum irqreturn ret = IRQ_NONE;
4946
4947 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4948 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4949
4950 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4951 /*
4952 * vdd off can generate a long pulse on eDP which
4953 * would require vdd on to handle it, and thus we
4954 * would end up in an endless cycle of
4955 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4956 */
4957 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4958 port_name(intel_dig_port->port));
4959 return IRQ_HANDLED;
4960 }
4961
4962 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4963 port_name(intel_dig_port->port),
4964 long_hpd ? "long" : "short");
4965
4966 power_domain = intel_display_port_power_domain(intel_encoder);
4967 intel_display_power_get(dev_priv, power_domain);
4968
4969 if (long_hpd) {
4970 /* indicate that we need to restart link training */
4971 intel_dp->train_set_valid = false;
4972
4973 if (HAS_PCH_SPLIT(dev)) {
4974 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4975 goto mst_fail;
4976 } else {
4977 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4978 goto mst_fail;
4979 }
4980
4981 if (!intel_dp_get_dpcd(intel_dp)) {
4982 goto mst_fail;
4983 }
4984
4985 intel_dp_probe_oui(intel_dp);
4986
4987 if (!intel_dp_probe_mst(intel_dp))
4988 goto mst_fail;
4989
4990 } else {
4991 if (intel_dp->is_mst) {
4992 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4993 goto mst_fail;
4994 }
4995
4996 if (!intel_dp->is_mst) {
4997 /*
4998 * we'll check the link status via the normal hot plug path later -
4999 * but for short hpds we should check it now
5000 */
5001 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5002 intel_dp_check_link_status(intel_dp);
5003 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5004 }
5005 }
5006
5007 ret = IRQ_HANDLED;
5008
5009 goto put_power;
5010 mst_fail:
5011 /* if we were in MST mode, and device is not there get out of MST mode */
5012 if (intel_dp->is_mst) {
5013 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5014 intel_dp->is_mst = false;
5015 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5016 }
5017 put_power:
5018 intel_display_power_put(dev_priv, power_domain);
5019
5020 return ret;
5021 }
5022
5023 /* Return which DP Port should be selected for Transcoder DP control */
5024 int
5025 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5026 {
5027 struct drm_device *dev = crtc->dev;
5028 struct intel_encoder *intel_encoder;
5029 struct intel_dp *intel_dp;
5030
5031 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5032 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5033
5034 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5035 intel_encoder->type == INTEL_OUTPUT_EDP)
5036 return intel_dp->output_reg;
5037 }
5038
5039 return -1;
5040 }
5041
5042 /* check the VBT to see whether the eDP is on DP-D port */
5043 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5044 {
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 union child_device_config *p_child;
5047 int i;
5048 static const short port_mapping[] = {
5049 [PORT_B] = PORT_IDPB,
5050 [PORT_C] = PORT_IDPC,
5051 [PORT_D] = PORT_IDPD,
5052 };
5053
5054 if (port == PORT_A)
5055 return true;
5056
5057 if (!dev_priv->vbt.child_dev_num)
5058 return false;
5059
5060 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5061 p_child = dev_priv->vbt.child_dev + i;
5062
5063 if (p_child->common.dvo_port == port_mapping[port] &&
5064 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5065 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5066 return true;
5067 }
5068 return false;
5069 }
5070
5071 void
5072 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5073 {
5074 struct intel_connector *intel_connector = to_intel_connector(connector);
5075
5076 intel_attach_force_audio_property(connector);
5077 intel_attach_broadcast_rgb_property(connector);
5078 intel_dp->color_range_auto = true;
5079
5080 if (is_edp(intel_dp)) {
5081 drm_mode_create_scaling_mode_property(connector->dev);
5082 drm_object_attach_property(
5083 &connector->base,
5084 connector->dev->mode_config.scaling_mode_property,
5085 DRM_MODE_SCALE_ASPECT);
5086 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5087 }
5088 }
5089
5090 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5091 {
5092 intel_dp->last_power_cycle = jiffies;
5093 intel_dp->last_power_on = jiffies;
5094 intel_dp->last_backlight_off = jiffies;
5095 }
5096
5097 static void
5098 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5099 struct intel_dp *intel_dp)
5100 {
5101 struct drm_i915_private *dev_priv = dev->dev_private;
5102 struct edp_power_seq cur, vbt, spec,
5103 *final = &intel_dp->pps_delays;
5104 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5105 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5106
5107 lockdep_assert_held(&dev_priv->pps_mutex);
5108
5109 /* already initialized? */
5110 if (final->t11_t12 != 0)
5111 return;
5112
5113 if (IS_BROXTON(dev)) {
5114 /*
5115 * TODO: BXT has 2 sets of PPS registers.
5116 * Correct Register for Broxton need to be identified
5117 * using VBT. hardcoding for now
5118 */
5119 pp_ctrl_reg = BXT_PP_CONTROL(0);
5120 pp_on_reg = BXT_PP_ON_DELAYS(0);
5121 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5122 } else if (HAS_PCH_SPLIT(dev)) {
5123 pp_ctrl_reg = PCH_PP_CONTROL;
5124 pp_on_reg = PCH_PP_ON_DELAYS;
5125 pp_off_reg = PCH_PP_OFF_DELAYS;
5126 pp_div_reg = PCH_PP_DIVISOR;
5127 } else {
5128 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5129
5130 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5131 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5132 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5133 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5134 }
5135
5136 /* Workaround: Need to write PP_CONTROL with the unlock key as
5137 * the very first thing. */
5138 pp_ctl = ironlake_get_pp_control(intel_dp);
5139
5140 pp_on = I915_READ(pp_on_reg);
5141 pp_off = I915_READ(pp_off_reg);
5142 if (!IS_BROXTON(dev)) {
5143 I915_WRITE(pp_ctrl_reg, pp_ctl);
5144 pp_div = I915_READ(pp_div_reg);
5145 }
5146
5147 /* Pull timing values out of registers */
5148 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5149 PANEL_POWER_UP_DELAY_SHIFT;
5150
5151 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5152 PANEL_LIGHT_ON_DELAY_SHIFT;
5153
5154 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5155 PANEL_LIGHT_OFF_DELAY_SHIFT;
5156
5157 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5158 PANEL_POWER_DOWN_DELAY_SHIFT;
5159
5160 if (IS_BROXTON(dev)) {
5161 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5162 BXT_POWER_CYCLE_DELAY_SHIFT;
5163 if (tmp > 0)
5164 cur.t11_t12 = (tmp - 1) * 1000;
5165 else
5166 cur.t11_t12 = 0;
5167 } else {
5168 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5169 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5170 }
5171
5172 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5173 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5174
5175 vbt = dev_priv->vbt.edp_pps;
5176
5177 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5178 * our hw here, which are all in 100usec. */
5179 spec.t1_t3 = 210 * 10;
5180 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5181 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5182 spec.t10 = 500 * 10;
5183 /* This one is special and actually in units of 100ms, but zero
5184 * based in the hw (so we need to add 100 ms). But the sw vbt
5185 * table multiplies it with 1000 to make it in units of 100usec,
5186 * too. */
5187 spec.t11_t12 = (510 + 100) * 10;
5188
5189 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5190 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5191
5192 /* Use the max of the register settings and vbt. If both are
5193 * unset, fall back to the spec limits. */
5194 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5195 spec.field : \
5196 max(cur.field, vbt.field))
5197 assign_final(t1_t3);
5198 assign_final(t8);
5199 assign_final(t9);
5200 assign_final(t10);
5201 assign_final(t11_t12);
5202 #undef assign_final
5203
5204 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5205 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5206 intel_dp->backlight_on_delay = get_delay(t8);
5207 intel_dp->backlight_off_delay = get_delay(t9);
5208 intel_dp->panel_power_down_delay = get_delay(t10);
5209 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5210 #undef get_delay
5211
5212 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5213 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5214 intel_dp->panel_power_cycle_delay);
5215
5216 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5217 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5218 }
5219
5220 static void
5221 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5222 struct intel_dp *intel_dp)
5223 {
5224 struct drm_i915_private *dev_priv = dev->dev_private;
5225 u32 pp_on, pp_off, pp_div, port_sel = 0;
5226 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5227 int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5228 enum port port = dp_to_dig_port(intel_dp)->port;
5229 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5230
5231 lockdep_assert_held(&dev_priv->pps_mutex);
5232
5233 if (IS_BROXTON(dev)) {
5234 /*
5235 * TODO: BXT has 2 sets of PPS registers.
5236 * Correct Register for Broxton need to be identified
5237 * using VBT. hardcoding for now
5238 */
5239 pp_ctrl_reg = BXT_PP_CONTROL(0);
5240 pp_on_reg = BXT_PP_ON_DELAYS(0);
5241 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5242
5243 } else if (HAS_PCH_SPLIT(dev)) {
5244 pp_on_reg = PCH_PP_ON_DELAYS;
5245 pp_off_reg = PCH_PP_OFF_DELAYS;
5246 pp_div_reg = PCH_PP_DIVISOR;
5247 } else {
5248 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5249
5250 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5251 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5252 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5253 }
5254
5255 /*
5256 * And finally store the new values in the power sequencer. The
5257 * backlight delays are set to 1 because we do manual waits on them. For
5258 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5259 * we'll end up waiting for the backlight off delay twice: once when we
5260 * do the manual sleep, and once when we disable the panel and wait for
5261 * the PP_STATUS bit to become zero.
5262 */
5263 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5264 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5265 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5266 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5267 /* Compute the divisor for the pp clock, simply match the Bspec
5268 * formula. */
5269 if (IS_BROXTON(dev)) {
5270 pp_div = I915_READ(pp_ctrl_reg);
5271 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5272 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5273 << BXT_POWER_CYCLE_DELAY_SHIFT);
5274 } else {
5275 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5276 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5277 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5278 }
5279
5280 /* Haswell doesn't have any port selection bits for the panel
5281 * power sequencer any more. */
5282 if (IS_VALLEYVIEW(dev)) {
5283 port_sel = PANEL_PORT_SELECT_VLV(port);
5284 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5285 if (port == PORT_A)
5286 port_sel = PANEL_PORT_SELECT_DPA;
5287 else
5288 port_sel = PANEL_PORT_SELECT_DPD;
5289 }
5290
5291 pp_on |= port_sel;
5292
5293 I915_WRITE(pp_on_reg, pp_on);
5294 I915_WRITE(pp_off_reg, pp_off);
5295 if (IS_BROXTON(dev))
5296 I915_WRITE(pp_ctrl_reg, pp_div);
5297 else
5298 I915_WRITE(pp_div_reg, pp_div);
5299
5300 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5301 I915_READ(pp_on_reg),
5302 I915_READ(pp_off_reg),
5303 IS_BROXTON(dev) ?
5304 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5305 I915_READ(pp_div_reg));
5306 }
5307
5308 /**
5309 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5310 * @dev: DRM device
5311 * @refresh_rate: RR to be programmed
5312 *
5313 * This function gets called when refresh rate (RR) has to be changed from
5314 * one frequency to another. Switches can be between high and low RR
5315 * supported by the panel or to any other RR based on media playback (in
5316 * this case, RR value needs to be passed from user space).
5317 *
5318 * The caller of this function needs to take a lock on dev_priv->drrs.
5319 */
5320 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5321 {
5322 struct drm_i915_private *dev_priv = dev->dev_private;
5323 struct intel_encoder *encoder;
5324 struct intel_digital_port *dig_port = NULL;
5325 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5326 struct intel_crtc_state *config = NULL;
5327 struct intel_crtc *intel_crtc = NULL;
5328 u32 reg, val;
5329 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5330
5331 if (refresh_rate <= 0) {
5332 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5333 return;
5334 }
5335
5336 if (intel_dp == NULL) {
5337 DRM_DEBUG_KMS("DRRS not supported.\n");
5338 return;
5339 }
5340
5341 /*
5342 * FIXME: This needs proper synchronization with psr state for some
5343 * platforms that cannot have PSR and DRRS enabled at the same time.
5344 */
5345
5346 dig_port = dp_to_dig_port(intel_dp);
5347 encoder = &dig_port->base;
5348 intel_crtc = to_intel_crtc(encoder->base.crtc);
5349
5350 if (!intel_crtc) {
5351 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5352 return;
5353 }
5354
5355 config = intel_crtc->config;
5356
5357 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5358 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5359 return;
5360 }
5361
5362 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5363 refresh_rate)
5364 index = DRRS_LOW_RR;
5365
5366 if (index == dev_priv->drrs.refresh_rate_type) {
5367 DRM_DEBUG_KMS(
5368 "DRRS requested for previously set RR...ignoring\n");
5369 return;
5370 }
5371
5372 if (!intel_crtc->active) {
5373 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5374 return;
5375 }
5376
5377 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5378 switch (index) {
5379 case DRRS_HIGH_RR:
5380 intel_dp_set_m_n(intel_crtc, M1_N1);
5381 break;
5382 case DRRS_LOW_RR:
5383 intel_dp_set_m_n(intel_crtc, M2_N2);
5384 break;
5385 case DRRS_MAX_RR:
5386 default:
5387 DRM_ERROR("Unsupported refreshrate type\n");
5388 }
5389 } else if (INTEL_INFO(dev)->gen > 6) {
5390 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5391 val = I915_READ(reg);
5392
5393 if (index > DRRS_HIGH_RR) {
5394 if (IS_VALLEYVIEW(dev))
5395 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5396 else
5397 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5398 } else {
5399 if (IS_VALLEYVIEW(dev))
5400 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5401 else
5402 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5403 }
5404 I915_WRITE(reg, val);
5405 }
5406
5407 dev_priv->drrs.refresh_rate_type = index;
5408
5409 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5410 }
5411
5412 /**
5413 * intel_edp_drrs_enable - init drrs struct if supported
5414 * @intel_dp: DP struct
5415 *
5416 * Initializes frontbuffer_bits and drrs.dp
5417 */
5418 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5419 {
5420 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5421 struct drm_i915_private *dev_priv = dev->dev_private;
5422 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5423 struct drm_crtc *crtc = dig_port->base.base.crtc;
5424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5425
5426 if (!intel_crtc->config->has_drrs) {
5427 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5428 return;
5429 }
5430
5431 mutex_lock(&dev_priv->drrs.mutex);
5432 if (WARN_ON(dev_priv->drrs.dp)) {
5433 DRM_ERROR("DRRS already enabled\n");
5434 goto unlock;
5435 }
5436
5437 dev_priv->drrs.busy_frontbuffer_bits = 0;
5438
5439 dev_priv->drrs.dp = intel_dp;
5440
5441 unlock:
5442 mutex_unlock(&dev_priv->drrs.mutex);
5443 }
5444
5445 /**
5446 * intel_edp_drrs_disable - Disable DRRS
5447 * @intel_dp: DP struct
5448 *
5449 */
5450 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5451 {
5452 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5453 struct drm_i915_private *dev_priv = dev->dev_private;
5454 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5455 struct drm_crtc *crtc = dig_port->base.base.crtc;
5456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5457
5458 if (!intel_crtc->config->has_drrs)
5459 return;
5460
5461 mutex_lock(&dev_priv->drrs.mutex);
5462 if (!dev_priv->drrs.dp) {
5463 mutex_unlock(&dev_priv->drrs.mutex);
5464 return;
5465 }
5466
5467 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5468 intel_dp_set_drrs_state(dev_priv->dev,
5469 intel_dp->attached_connector->panel.
5470 fixed_mode->vrefresh);
5471
5472 dev_priv->drrs.dp = NULL;
5473 mutex_unlock(&dev_priv->drrs.mutex);
5474
5475 cancel_delayed_work_sync(&dev_priv->drrs.work);
5476 }
5477
5478 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5479 {
5480 struct drm_i915_private *dev_priv =
5481 container_of(work, typeof(*dev_priv), drrs.work.work);
5482 struct intel_dp *intel_dp;
5483
5484 mutex_lock(&dev_priv->drrs.mutex);
5485
5486 intel_dp = dev_priv->drrs.dp;
5487
5488 if (!intel_dp)
5489 goto unlock;
5490
5491 /*
5492 * The delayed work can race with an invalidate hence we need to
5493 * recheck.
5494 */
5495
5496 if (dev_priv->drrs.busy_frontbuffer_bits)
5497 goto unlock;
5498
5499 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5500 intel_dp_set_drrs_state(dev_priv->dev,
5501 intel_dp->attached_connector->panel.
5502 downclock_mode->vrefresh);
5503
5504 unlock:
5505 mutex_unlock(&dev_priv->drrs.mutex);
5506 }
5507
5508 /**
5509 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5510 * @dev: DRM device
5511 * @frontbuffer_bits: frontbuffer plane tracking bits
5512 *
5513 * This function gets called everytime rendering on the given planes start.
5514 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5515 *
5516 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5517 */
5518 void intel_edp_drrs_invalidate(struct drm_device *dev,
5519 unsigned frontbuffer_bits)
5520 {
5521 struct drm_i915_private *dev_priv = dev->dev_private;
5522 struct drm_crtc *crtc;
5523 enum pipe pipe;
5524
5525 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5526 return;
5527
5528 cancel_delayed_work(&dev_priv->drrs.work);
5529
5530 mutex_lock(&dev_priv->drrs.mutex);
5531 if (!dev_priv->drrs.dp) {
5532 mutex_unlock(&dev_priv->drrs.mutex);
5533 return;
5534 }
5535
5536 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5537 pipe = to_intel_crtc(crtc)->pipe;
5538
5539 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5540 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5541
5542 /* invalidate means busy screen hence upclock */
5543 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5544 intel_dp_set_drrs_state(dev_priv->dev,
5545 dev_priv->drrs.dp->attached_connector->panel.
5546 fixed_mode->vrefresh);
5547
5548 mutex_unlock(&dev_priv->drrs.mutex);
5549 }
5550
5551 /**
5552 * intel_edp_drrs_flush - Restart Idleness DRRS
5553 * @dev: DRM device
5554 * @frontbuffer_bits: frontbuffer plane tracking bits
5555 *
5556 * This function gets called every time rendering on the given planes has
5557 * completed or flip on a crtc is completed. So DRRS should be upclocked
5558 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5559 * if no other planes are dirty.
5560 *
5561 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5562 */
5563 void intel_edp_drrs_flush(struct drm_device *dev,
5564 unsigned frontbuffer_bits)
5565 {
5566 struct drm_i915_private *dev_priv = dev->dev_private;
5567 struct drm_crtc *crtc;
5568 enum pipe pipe;
5569
5570 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5571 return;
5572
5573 cancel_delayed_work(&dev_priv->drrs.work);
5574
5575 mutex_lock(&dev_priv->drrs.mutex);
5576 if (!dev_priv->drrs.dp) {
5577 mutex_unlock(&dev_priv->drrs.mutex);
5578 return;
5579 }
5580
5581 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5582 pipe = to_intel_crtc(crtc)->pipe;
5583
5584 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5585 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5586
5587 /* flush means busy screen hence upclock */
5588 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5589 intel_dp_set_drrs_state(dev_priv->dev,
5590 dev_priv->drrs.dp->attached_connector->panel.
5591 fixed_mode->vrefresh);
5592
5593 /*
5594 * flush also means no more activity hence schedule downclock, if all
5595 * other fbs are quiescent too
5596 */
5597 if (!dev_priv->drrs.busy_frontbuffer_bits)
5598 schedule_delayed_work(&dev_priv->drrs.work,
5599 msecs_to_jiffies(1000));
5600 mutex_unlock(&dev_priv->drrs.mutex);
5601 }
5602
5603 /**
5604 * DOC: Display Refresh Rate Switching (DRRS)
5605 *
5606 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5607 * which enables swtching between low and high refresh rates,
5608 * dynamically, based on the usage scenario. This feature is applicable
5609 * for internal panels.
5610 *
5611 * Indication that the panel supports DRRS is given by the panel EDID, which
5612 * would list multiple refresh rates for one resolution.
5613 *
5614 * DRRS is of 2 types - static and seamless.
5615 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5616 * (may appear as a blink on screen) and is used in dock-undock scenario.
5617 * Seamless DRRS involves changing RR without any visual effect to the user
5618 * and can be used during normal system usage. This is done by programming
5619 * certain registers.
5620 *
5621 * Support for static/seamless DRRS may be indicated in the VBT based on
5622 * inputs from the panel spec.
5623 *
5624 * DRRS saves power by switching to low RR based on usage scenarios.
5625 *
5626 * eDP DRRS:-
5627 * The implementation is based on frontbuffer tracking implementation.
5628 * When there is a disturbance on the screen triggered by user activity or a
5629 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5630 * When there is no movement on screen, after a timeout of 1 second, a switch
5631 * to low RR is made.
5632 * For integration with frontbuffer tracking code,
5633 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5634 *
5635 * DRRS can be further extended to support other internal panels and also
5636 * the scenario of video playback wherein RR is set based on the rate
5637 * requested by userspace.
5638 */
5639
5640 /**
5641 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5642 * @intel_connector: eDP connector
5643 * @fixed_mode: preferred mode of panel
5644 *
5645 * This function is called only once at driver load to initialize basic
5646 * DRRS stuff.
5647 *
5648 * Returns:
5649 * Downclock mode if panel supports it, else return NULL.
5650 * DRRS support is determined by the presence of downclock mode (apart
5651 * from VBT setting).
5652 */
5653 static struct drm_display_mode *
5654 intel_dp_drrs_init(struct intel_connector *intel_connector,
5655 struct drm_display_mode *fixed_mode)
5656 {
5657 struct drm_connector *connector = &intel_connector->base;
5658 struct drm_device *dev = connector->dev;
5659 struct drm_i915_private *dev_priv = dev->dev_private;
5660 struct drm_display_mode *downclock_mode = NULL;
5661
5662 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5663 mutex_init(&dev_priv->drrs.mutex);
5664
5665 if (INTEL_INFO(dev)->gen <= 6) {
5666 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5667 return NULL;
5668 }
5669
5670 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5671 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5672 return NULL;
5673 }
5674
5675 downclock_mode = intel_find_panel_downclock
5676 (dev, fixed_mode, connector);
5677
5678 if (!downclock_mode) {
5679 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5680 return NULL;
5681 }
5682
5683 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5684
5685 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5686 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5687 return downclock_mode;
5688 }
5689
5690 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5691 struct intel_connector *intel_connector)
5692 {
5693 struct drm_connector *connector = &intel_connector->base;
5694 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5695 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5696 struct drm_device *dev = intel_encoder->base.dev;
5697 struct drm_i915_private *dev_priv = dev->dev_private;
5698 struct drm_display_mode *fixed_mode = NULL;
5699 struct drm_display_mode *downclock_mode = NULL;
5700 bool has_dpcd;
5701 struct drm_display_mode *scan;
5702 struct edid *edid;
5703 enum pipe pipe = INVALID_PIPE;
5704
5705 if (!is_edp(intel_dp))
5706 return true;
5707
5708 pps_lock(intel_dp);
5709 intel_edp_panel_vdd_sanitize(intel_dp);
5710 pps_unlock(intel_dp);
5711
5712 /* Cache DPCD and EDID for edp. */
5713 has_dpcd = intel_dp_get_dpcd(intel_dp);
5714
5715 if (has_dpcd) {
5716 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5717 dev_priv->no_aux_handshake =
5718 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5719 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5720 } else {
5721 /* if this fails, presume the device is a ghost */
5722 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5723 return false;
5724 }
5725
5726 /* We now know it's not a ghost, init power sequence regs. */
5727 pps_lock(intel_dp);
5728 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5729 pps_unlock(intel_dp);
5730
5731 mutex_lock(&dev->mode_config.mutex);
5732 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5733 if (edid) {
5734 if (drm_add_edid_modes(connector, edid)) {
5735 drm_mode_connector_update_edid_property(connector,
5736 edid);
5737 drm_edid_to_eld(connector, edid);
5738 } else {
5739 kfree(edid);
5740 edid = ERR_PTR(-EINVAL);
5741 }
5742 } else {
5743 edid = ERR_PTR(-ENOENT);
5744 }
5745 intel_connector->edid = edid;
5746
5747 /* prefer fixed mode from EDID if available */
5748 list_for_each_entry(scan, &connector->probed_modes, head) {
5749 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5750 fixed_mode = drm_mode_duplicate(dev, scan);
5751 downclock_mode = intel_dp_drrs_init(
5752 intel_connector, fixed_mode);
5753 break;
5754 }
5755 }
5756
5757 /* fallback to VBT if available for eDP */
5758 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5759 fixed_mode = drm_mode_duplicate(dev,
5760 dev_priv->vbt.lfp_lvds_vbt_mode);
5761 if (fixed_mode)
5762 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5763 }
5764 mutex_unlock(&dev->mode_config.mutex);
5765
5766 if (IS_VALLEYVIEW(dev)) {
5767 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5768 register_reboot_notifier(&intel_dp->edp_notifier);
5769
5770 /*
5771 * Figure out the current pipe for the initial backlight setup.
5772 * If the current pipe isn't valid, try the PPS pipe, and if that
5773 * fails just assume pipe A.
5774 */
5775 if (IS_CHERRYVIEW(dev))
5776 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5777 else
5778 pipe = PORT_TO_PIPE(intel_dp->DP);
5779
5780 if (pipe != PIPE_A && pipe != PIPE_B)
5781 pipe = intel_dp->pps_pipe;
5782
5783 if (pipe != PIPE_A && pipe != PIPE_B)
5784 pipe = PIPE_A;
5785
5786 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5787 pipe_name(pipe));
5788 }
5789
5790 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5791 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5792 intel_panel_setup_backlight(connector, pipe);
5793
5794 return true;
5795 }
5796
5797 bool
5798 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5799 struct intel_connector *intel_connector)
5800 {
5801 struct drm_connector *connector = &intel_connector->base;
5802 struct intel_dp *intel_dp = &intel_dig_port->dp;
5803 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5804 struct drm_device *dev = intel_encoder->base.dev;
5805 struct drm_i915_private *dev_priv = dev->dev_private;
5806 enum port port = intel_dig_port->port;
5807 int type;
5808
5809 intel_dp->pps_pipe = INVALID_PIPE;
5810
5811 /* intel_dp vfuncs */
5812 if (INTEL_INFO(dev)->gen >= 9)
5813 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5814 else if (IS_VALLEYVIEW(dev))
5815 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5816 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5817 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5818 else if (HAS_PCH_SPLIT(dev))
5819 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5820 else
5821 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5822
5823 if (INTEL_INFO(dev)->gen >= 9)
5824 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5825 else
5826 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5827
5828 /* Preserve the current hw state. */
5829 intel_dp->DP = I915_READ(intel_dp->output_reg);
5830 intel_dp->attached_connector = intel_connector;
5831
5832 if (intel_dp_is_edp(dev, port))
5833 type = DRM_MODE_CONNECTOR_eDP;
5834 else
5835 type = DRM_MODE_CONNECTOR_DisplayPort;
5836
5837 /*
5838 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5839 * for DP the encoder type can be set by the caller to
5840 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5841 */
5842 if (type == DRM_MODE_CONNECTOR_eDP)
5843 intel_encoder->type = INTEL_OUTPUT_EDP;
5844
5845 /* eDP only on port B and/or C on vlv/chv */
5846 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5847 port != PORT_B && port != PORT_C))
5848 return false;
5849
5850 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5851 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5852 port_name(port));
5853
5854 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5855 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5856
5857 connector->interlace_allowed = true;
5858 connector->doublescan_allowed = 0;
5859
5860 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5861 edp_panel_vdd_work);
5862
5863 intel_connector_attach_encoder(intel_connector, intel_encoder);
5864 drm_connector_register(connector);
5865
5866 if (HAS_DDI(dev))
5867 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5868 else
5869 intel_connector->get_hw_state = intel_connector_get_hw_state;
5870 intel_connector->unregister = intel_dp_connector_unregister;
5871
5872 /* Set up the hotplug pin. */
5873 switch (port) {
5874 case PORT_A:
5875 intel_encoder->hpd_pin = HPD_PORT_A;
5876 break;
5877 case PORT_B:
5878 intel_encoder->hpd_pin = HPD_PORT_B;
5879 if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
5880 intel_encoder->hpd_pin = HPD_PORT_A;
5881 break;
5882 case PORT_C:
5883 intel_encoder->hpd_pin = HPD_PORT_C;
5884 break;
5885 case PORT_D:
5886 intel_encoder->hpd_pin = HPD_PORT_D;
5887 break;
5888 default:
5889 BUG();
5890 }
5891
5892 if (is_edp(intel_dp)) {
5893 pps_lock(intel_dp);
5894 intel_dp_init_panel_power_timestamps(intel_dp);
5895 if (IS_VALLEYVIEW(dev))
5896 vlv_initial_power_sequencer_setup(intel_dp);
5897 else
5898 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5899 pps_unlock(intel_dp);
5900 }
5901
5902 intel_dp_aux_init(intel_dp, intel_connector);
5903
5904 /* init MST on ports that can support it */
5905 if (HAS_DP_MST(dev) &&
5906 (port == PORT_B || port == PORT_C || port == PORT_D))
5907 intel_dp_mst_encoder_init(intel_dig_port,
5908 intel_connector->base.base.id);
5909
5910 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5911 drm_dp_aux_unregister(&intel_dp->aux);
5912 if (is_edp(intel_dp)) {
5913 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5914 /*
5915 * vdd might still be enabled do to the delayed vdd off.
5916 * Make sure vdd is actually turned off here.
5917 */
5918 pps_lock(intel_dp);
5919 edp_panel_vdd_off_sync(intel_dp);
5920 pps_unlock(intel_dp);
5921 }
5922 drm_connector_unregister(connector);
5923 drm_connector_cleanup(connector);
5924 return false;
5925 }
5926
5927 intel_dp_add_properties(intel_dp, connector);
5928
5929 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5930 * 0xd. Failure to do so will result in spurious interrupts being
5931 * generated on the port when a cable is not attached.
5932 */
5933 if (IS_G4X(dev) && !IS_GM45(dev)) {
5934 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5935 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5936 }
5937
5938 i915_debugfs_connector_add(connector);
5939
5940 return true;
5941 }
5942
5943 void
5944 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5945 {
5946 struct drm_i915_private *dev_priv = dev->dev_private;
5947 struct intel_digital_port *intel_dig_port;
5948 struct intel_encoder *intel_encoder;
5949 struct drm_encoder *encoder;
5950 struct intel_connector *intel_connector;
5951
5952 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5953 if (!intel_dig_port)
5954 return;
5955
5956 intel_connector = intel_connector_alloc();
5957 if (!intel_connector) {
5958 kfree(intel_dig_port);
5959 return;
5960 }
5961
5962 intel_encoder = &intel_dig_port->base;
5963 encoder = &intel_encoder->base;
5964
5965 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5966 DRM_MODE_ENCODER_TMDS);
5967
5968 intel_encoder->compute_config = intel_dp_compute_config;
5969 intel_encoder->disable = intel_disable_dp;
5970 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5971 intel_encoder->get_config = intel_dp_get_config;
5972 intel_encoder->suspend = intel_dp_encoder_suspend;
5973 if (IS_CHERRYVIEW(dev)) {
5974 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5975 intel_encoder->pre_enable = chv_pre_enable_dp;
5976 intel_encoder->enable = vlv_enable_dp;
5977 intel_encoder->post_disable = chv_post_disable_dp;
5978 } else if (IS_VALLEYVIEW(dev)) {
5979 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5980 intel_encoder->pre_enable = vlv_pre_enable_dp;
5981 intel_encoder->enable = vlv_enable_dp;
5982 intel_encoder->post_disable = vlv_post_disable_dp;
5983 } else {
5984 intel_encoder->pre_enable = g4x_pre_enable_dp;
5985 intel_encoder->enable = g4x_enable_dp;
5986 if (INTEL_INFO(dev)->gen >= 5)
5987 intel_encoder->post_disable = ilk_post_disable_dp;
5988 }
5989
5990 intel_dig_port->port = port;
5991 intel_dig_port->dp.output_reg = output_reg;
5992
5993 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5994 if (IS_CHERRYVIEW(dev)) {
5995 if (port == PORT_D)
5996 intel_encoder->crtc_mask = 1 << 2;
5997 else
5998 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5999 } else {
6000 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6001 }
6002 intel_encoder->cloneable = 0;
6003
6004 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6005 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6006
6007 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
6008 drm_encoder_cleanup(encoder);
6009 kfree(intel_dig_port);
6010 kfree(intel_connector);
6011 }
6012 }
6013
6014 void intel_dp_mst_suspend(struct drm_device *dev)
6015 {
6016 struct drm_i915_private *dev_priv = dev->dev_private;
6017 int i;
6018
6019 /* disable MST */
6020 for (i = 0; i < I915_MAX_PORTS; i++) {
6021 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6022 if (!intel_dig_port)
6023 continue;
6024
6025 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6026 if (!intel_dig_port->dp.can_mst)
6027 continue;
6028 if (intel_dig_port->dp.is_mst)
6029 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6030 }
6031 }
6032 }
6033
6034 void intel_dp_mst_resume(struct drm_device *dev)
6035 {
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037 int i;
6038
6039 for (i = 0; i < I915_MAX_PORTS; i++) {
6040 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6041 if (!intel_dig_port)
6042 continue;
6043 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6044 int ret;
6045
6046 if (!intel_dig_port->dp.can_mst)
6047 continue;
6048
6049 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6050 if (ret != 0) {
6051 intel_dp_check_mst_status(&intel_dig_port->dp);
6052 }
6053 }
6054 }
6055 }
This page took 0.25579 seconds and 5 git commands to generate.