drm/i915: Move intel_dp->lane_count into pipe_config
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
99 243000, 270000, 324000, 405000,
100 420000, 432000, 540000 };
101 static const int default_rates[] = { 162000, 270000, 540000 };
102
103 /**
104 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
105 * @intel_dp: DP struct
106 *
107 * If a CPU or PCH DP output is attached to an eDP panel, this function
108 * will return true, and false otherwise.
109 */
110 static bool is_edp(struct intel_dp *intel_dp)
111 {
112 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
113
114 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
115 }
116
117 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
118 {
119 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
120
121 return intel_dig_port->base.base.dev;
122 }
123
124 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
125 {
126 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
127 }
128
129 static void intel_dp_link_down(struct intel_dp *intel_dp);
130 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
131 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
132 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
133 static void vlv_steal_power_sequencer(struct drm_device *dev,
134 enum pipe pipe);
135
136 static int
137 intel_dp_max_link_bw(struct intel_dp *intel_dp)
138 {
139 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
140
141 switch (max_link_bw) {
142 case DP_LINK_BW_1_62:
143 case DP_LINK_BW_2_7:
144 case DP_LINK_BW_5_4:
145 break;
146 default:
147 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
148 max_link_bw);
149 max_link_bw = DP_LINK_BW_1_62;
150 break;
151 }
152 return max_link_bw;
153 }
154
155 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
158 struct drm_device *dev = intel_dig_port->base.base.dev;
159 u8 source_max, sink_max;
160
161 source_max = 4;
162 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
163 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
164 source_max = 2;
165
166 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
167
168 return min(source_max, sink_max);
169 }
170
171 /*
172 * The units on the numbers in the next two are... bizarre. Examples will
173 * make it clearer; this one parallels an example in the eDP spec.
174 *
175 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
176 *
177 * 270000 * 1 * 8 / 10 == 216000
178 *
179 * The actual data capacity of that configuration is 2.16Gbit/s, so the
180 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
181 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
182 * 119000. At 18bpp that's 2142000 kilobits per second.
183 *
184 * Thus the strange-looking division by 10 in intel_dp_link_required, to
185 * get the result in decakilobits instead of kilobits.
186 */
187
188 static int
189 intel_dp_link_required(int pixel_clock, int bpp)
190 {
191 return (pixel_clock * bpp + 9) / 10;
192 }
193
194 static int
195 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
196 {
197 return (max_link_clock * max_lanes * 8) / 10;
198 }
199
200 static enum drm_mode_status
201 intel_dp_mode_valid(struct drm_connector *connector,
202 struct drm_display_mode *mode)
203 {
204 struct intel_dp *intel_dp = intel_attached_dp(connector);
205 struct intel_connector *intel_connector = to_intel_connector(connector);
206 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
207 int target_clock = mode->clock;
208 int max_rate, mode_rate, max_lanes, max_link_clock;
209
210 if (is_edp(intel_dp) && fixed_mode) {
211 if (mode->hdisplay > fixed_mode->hdisplay)
212 return MODE_PANEL;
213
214 if (mode->vdisplay > fixed_mode->vdisplay)
215 return MODE_PANEL;
216
217 target_clock = fixed_mode->clock;
218 }
219
220 max_link_clock = intel_dp_max_link_rate(intel_dp);
221 max_lanes = intel_dp_max_lane_count(intel_dp);
222
223 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
224 mode_rate = intel_dp_link_required(target_clock, 18);
225
226 if (mode_rate > max_rate)
227 return MODE_CLOCK_HIGH;
228
229 if (mode->clock < 10000)
230 return MODE_CLOCK_LOW;
231
232 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
233 return MODE_H_ILLEGAL;
234
235 return MODE_OK;
236 }
237
238 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
239 {
240 int i;
241 uint32_t v = 0;
242
243 if (src_bytes > 4)
244 src_bytes = 4;
245 for (i = 0; i < src_bytes; i++)
246 v |= ((uint32_t) src[i]) << ((3-i) * 8);
247 return v;
248 }
249
250 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
251 {
252 int i;
253 if (dst_bytes > 4)
254 dst_bytes = 4;
255 for (i = 0; i < dst_bytes; i++)
256 dst[i] = src >> ((3-i) * 8);
257 }
258
259 /* hrawclock is 1/4 the FSB frequency */
260 static int
261 intel_hrawclk(struct drm_device *dev)
262 {
263 struct drm_i915_private *dev_priv = dev->dev_private;
264 uint32_t clkcfg;
265
266 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
267 if (IS_VALLEYVIEW(dev))
268 return 200;
269
270 clkcfg = I915_READ(CLKCFG);
271 switch (clkcfg & CLKCFG_FSB_MASK) {
272 case CLKCFG_FSB_400:
273 return 100;
274 case CLKCFG_FSB_533:
275 return 133;
276 case CLKCFG_FSB_667:
277 return 166;
278 case CLKCFG_FSB_800:
279 return 200;
280 case CLKCFG_FSB_1067:
281 return 266;
282 case CLKCFG_FSB_1333:
283 return 333;
284 /* these two are just a guess; one of them might be right */
285 case CLKCFG_FSB_1600:
286 case CLKCFG_FSB_1600_ALT:
287 return 400;
288 default:
289 return 133;
290 }
291 }
292
293 static void
294 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
295 struct intel_dp *intel_dp);
296 static void
297 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
298 struct intel_dp *intel_dp);
299
300 static void pps_lock(struct intel_dp *intel_dp)
301 {
302 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
303 struct intel_encoder *encoder = &intel_dig_port->base;
304 struct drm_device *dev = encoder->base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum intel_display_power_domain power_domain;
307
308 /*
309 * See vlv_power_sequencer_reset() why we need
310 * a power domain reference here.
311 */
312 power_domain = intel_display_port_power_domain(encoder);
313 intel_display_power_get(dev_priv, power_domain);
314
315 mutex_lock(&dev_priv->pps_mutex);
316 }
317
318 static void pps_unlock(struct intel_dp *intel_dp)
319 {
320 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
321 struct intel_encoder *encoder = &intel_dig_port->base;
322 struct drm_device *dev = encoder->base.dev;
323 struct drm_i915_private *dev_priv = dev->dev_private;
324 enum intel_display_power_domain power_domain;
325
326 mutex_unlock(&dev_priv->pps_mutex);
327
328 power_domain = intel_display_port_power_domain(encoder);
329 intel_display_power_put(dev_priv, power_domain);
330 }
331
332 static void
333 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
334 {
335 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
336 struct drm_device *dev = intel_dig_port->base.base.dev;
337 struct drm_i915_private *dev_priv = dev->dev_private;
338 enum pipe pipe = intel_dp->pps_pipe;
339 bool pll_enabled;
340 uint32_t DP;
341
342 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
343 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
344 pipe_name(pipe), port_name(intel_dig_port->port)))
345 return;
346
347 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
348 pipe_name(pipe), port_name(intel_dig_port->port));
349
350 /* Preserve the BIOS-computed detected bit. This is
351 * supposed to be read-only.
352 */
353 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
354 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
355 DP |= DP_PORT_WIDTH(1);
356 DP |= DP_LINK_TRAIN_PAT_1;
357
358 if (IS_CHERRYVIEW(dev))
359 DP |= DP_PIPE_SELECT_CHV(pipe);
360 else if (pipe == PIPE_B)
361 DP |= DP_PIPEB_SELECT;
362
363 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
364
365 /*
366 * The DPLL for the pipe must be enabled for this to work.
367 * So enable temporarily it if it's not already enabled.
368 */
369 if (!pll_enabled)
370 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
371 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
372
373 /*
374 * Similar magic as in intel_dp_enable_port().
375 * We _must_ do this port enable + disable trick
376 * to make this power seqeuencer lock onto the port.
377 * Otherwise even VDD force bit won't work.
378 */
379 I915_WRITE(intel_dp->output_reg, DP);
380 POSTING_READ(intel_dp->output_reg);
381
382 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
383 POSTING_READ(intel_dp->output_reg);
384
385 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
386 POSTING_READ(intel_dp->output_reg);
387
388 if (!pll_enabled)
389 vlv_force_pll_off(dev, pipe);
390 }
391
392 static enum pipe
393 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
394 {
395 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
396 struct drm_device *dev = intel_dig_port->base.base.dev;
397 struct drm_i915_private *dev_priv = dev->dev_private;
398 struct intel_encoder *encoder;
399 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
400 enum pipe pipe;
401
402 lockdep_assert_held(&dev_priv->pps_mutex);
403
404 /* We should never land here with regular DP ports */
405 WARN_ON(!is_edp(intel_dp));
406
407 if (intel_dp->pps_pipe != INVALID_PIPE)
408 return intel_dp->pps_pipe;
409
410 /*
411 * We don't have power sequencer currently.
412 * Pick one that's not used by other ports.
413 */
414 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
415 base.head) {
416 struct intel_dp *tmp;
417
418 if (encoder->type != INTEL_OUTPUT_EDP)
419 continue;
420
421 tmp = enc_to_intel_dp(&encoder->base);
422
423 if (tmp->pps_pipe != INVALID_PIPE)
424 pipes &= ~(1 << tmp->pps_pipe);
425 }
426
427 /*
428 * Didn't find one. This should not happen since there
429 * are two power sequencers and up to two eDP ports.
430 */
431 if (WARN_ON(pipes == 0))
432 pipe = PIPE_A;
433 else
434 pipe = ffs(pipes) - 1;
435
436 vlv_steal_power_sequencer(dev, pipe);
437 intel_dp->pps_pipe = pipe;
438
439 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
440 pipe_name(intel_dp->pps_pipe),
441 port_name(intel_dig_port->port));
442
443 /* init power sequencer on this pipe and port */
444 intel_dp_init_panel_power_sequencer(dev, intel_dp);
445 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
446
447 /*
448 * Even vdd force doesn't work until we've made
449 * the power sequencer lock in on the port.
450 */
451 vlv_power_sequencer_kick(intel_dp);
452
453 return intel_dp->pps_pipe;
454 }
455
456 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
457 enum pipe pipe);
458
459 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
460 enum pipe pipe)
461 {
462 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
463 }
464
465 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
466 enum pipe pipe)
467 {
468 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
469 }
470
471 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
472 enum pipe pipe)
473 {
474 return true;
475 }
476
477 static enum pipe
478 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
479 enum port port,
480 vlv_pipe_check pipe_check)
481 {
482 enum pipe pipe;
483
484 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
485 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
486 PANEL_PORT_SELECT_MASK;
487
488 if (port_sel != PANEL_PORT_SELECT_VLV(port))
489 continue;
490
491 if (!pipe_check(dev_priv, pipe))
492 continue;
493
494 return pipe;
495 }
496
497 return INVALID_PIPE;
498 }
499
500 static void
501 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
502 {
503 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
504 struct drm_device *dev = intel_dig_port->base.base.dev;
505 struct drm_i915_private *dev_priv = dev->dev_private;
506 enum port port = intel_dig_port->port;
507
508 lockdep_assert_held(&dev_priv->pps_mutex);
509
510 /* try to find a pipe with this port selected */
511 /* first pick one where the panel is on */
512 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513 vlv_pipe_has_pp_on);
514 /* didn't find one? pick one where vdd is on */
515 if (intel_dp->pps_pipe == INVALID_PIPE)
516 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
517 vlv_pipe_has_vdd_on);
518 /* didn't find one? pick one with just the correct port */
519 if (intel_dp->pps_pipe == INVALID_PIPE)
520 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
521 vlv_pipe_any);
522
523 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
524 if (intel_dp->pps_pipe == INVALID_PIPE) {
525 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
526 port_name(port));
527 return;
528 }
529
530 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
531 port_name(port), pipe_name(intel_dp->pps_pipe));
532
533 intel_dp_init_panel_power_sequencer(dev, intel_dp);
534 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
535 }
536
537 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
538 {
539 struct drm_device *dev = dev_priv->dev;
540 struct intel_encoder *encoder;
541
542 if (WARN_ON(!IS_VALLEYVIEW(dev)))
543 return;
544
545 /*
546 * We can't grab pps_mutex here due to deadlock with power_domain
547 * mutex when power_domain functions are called while holding pps_mutex.
548 * That also means that in order to use pps_pipe the code needs to
549 * hold both a power domain reference and pps_mutex, and the power domain
550 * reference get/put must be done while _not_ holding pps_mutex.
551 * pps_{lock,unlock}() do these steps in the correct order, so one
552 * should use them always.
553 */
554
555 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
556 struct intel_dp *intel_dp;
557
558 if (encoder->type != INTEL_OUTPUT_EDP)
559 continue;
560
561 intel_dp = enc_to_intel_dp(&encoder->base);
562 intel_dp->pps_pipe = INVALID_PIPE;
563 }
564 }
565
566 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
567 {
568 struct drm_device *dev = intel_dp_to_dev(intel_dp);
569
570 if (IS_BROXTON(dev))
571 return BXT_PP_CONTROL(0);
572 else if (HAS_PCH_SPLIT(dev))
573 return PCH_PP_CONTROL;
574 else
575 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
576 }
577
578 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
579 {
580 struct drm_device *dev = intel_dp_to_dev(intel_dp);
581
582 if (IS_BROXTON(dev))
583 return BXT_PP_STATUS(0);
584 else if (HAS_PCH_SPLIT(dev))
585 return PCH_PP_STATUS;
586 else
587 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
588 }
589
590 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
591 This function only applicable when panel PM state is not to be tracked */
592 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
593 void *unused)
594 {
595 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
596 edp_notifier);
597 struct drm_device *dev = intel_dp_to_dev(intel_dp);
598 struct drm_i915_private *dev_priv = dev->dev_private;
599 u32 pp_div;
600 u32 pp_ctrl_reg, pp_div_reg;
601
602 if (!is_edp(intel_dp) || code != SYS_RESTART)
603 return 0;
604
605 pps_lock(intel_dp);
606
607 if (IS_VALLEYVIEW(dev)) {
608 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
609
610 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
611 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
612 pp_div = I915_READ(pp_div_reg);
613 pp_div &= PP_REFERENCE_DIVIDER_MASK;
614
615 /* 0x1F write to PP_DIV_REG sets max cycle delay */
616 I915_WRITE(pp_div_reg, pp_div | 0x1F);
617 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
618 msleep(intel_dp->panel_power_cycle_delay);
619 }
620
621 pps_unlock(intel_dp);
622
623 return 0;
624 }
625
626 static bool edp_have_panel_power(struct intel_dp *intel_dp)
627 {
628 struct drm_device *dev = intel_dp_to_dev(intel_dp);
629 struct drm_i915_private *dev_priv = dev->dev_private;
630
631 lockdep_assert_held(&dev_priv->pps_mutex);
632
633 if (IS_VALLEYVIEW(dev) &&
634 intel_dp->pps_pipe == INVALID_PIPE)
635 return false;
636
637 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
638 }
639
640 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
641 {
642 struct drm_device *dev = intel_dp_to_dev(intel_dp);
643 struct drm_i915_private *dev_priv = dev->dev_private;
644
645 lockdep_assert_held(&dev_priv->pps_mutex);
646
647 if (IS_VALLEYVIEW(dev) &&
648 intel_dp->pps_pipe == INVALID_PIPE)
649 return false;
650
651 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
652 }
653
654 static void
655 intel_dp_check_edp(struct intel_dp *intel_dp)
656 {
657 struct drm_device *dev = intel_dp_to_dev(intel_dp);
658 struct drm_i915_private *dev_priv = dev->dev_private;
659
660 if (!is_edp(intel_dp))
661 return;
662
663 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
664 WARN(1, "eDP powered off while attempting aux channel communication.\n");
665 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
666 I915_READ(_pp_stat_reg(intel_dp)),
667 I915_READ(_pp_ctrl_reg(intel_dp)));
668 }
669 }
670
671 static uint32_t
672 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
673 {
674 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
675 struct drm_device *dev = intel_dig_port->base.base.dev;
676 struct drm_i915_private *dev_priv = dev->dev_private;
677 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
678 uint32_t status;
679 bool done;
680
681 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
682 if (has_aux_irq)
683 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
684 msecs_to_jiffies_timeout(10));
685 else
686 done = wait_for_atomic(C, 10) == 0;
687 if (!done)
688 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
689 has_aux_irq);
690 #undef C
691
692 return status;
693 }
694
695 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
696 {
697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
698 struct drm_device *dev = intel_dig_port->base.base.dev;
699
700 /*
701 * The clock divider is based off the hrawclk, and would like to run at
702 * 2MHz. So, take the hrawclk value and divide by 2 and use that
703 */
704 return index ? 0 : intel_hrawclk(dev) / 2;
705 }
706
707 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
708 {
709 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
710 struct drm_device *dev = intel_dig_port->base.base.dev;
711 struct drm_i915_private *dev_priv = dev->dev_private;
712
713 if (index)
714 return 0;
715
716 if (intel_dig_port->port == PORT_A) {
717 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
718
719 } else {
720 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721 }
722 }
723
724 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
727 struct drm_device *dev = intel_dig_port->base.base.dev;
728 struct drm_i915_private *dev_priv = dev->dev_private;
729
730 if (intel_dig_port->port == PORT_A) {
731 if (index)
732 return 0;
733 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
734 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
735 /* Workaround for non-ULT HSW */
736 switch (index) {
737 case 0: return 63;
738 case 1: return 72;
739 default: return 0;
740 }
741 } else {
742 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
743 }
744 }
745
746 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
747 {
748 return index ? 0 : 100;
749 }
750
751 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
752 {
753 /*
754 * SKL doesn't need us to program the AUX clock divider (Hardware will
755 * derive the clock from CDCLK automatically). We still implement the
756 * get_aux_clock_divider vfunc to plug-in into the existing code.
757 */
758 return index ? 0 : 1;
759 }
760
761 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
762 bool has_aux_irq,
763 int send_bytes,
764 uint32_t aux_clock_divider)
765 {
766 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
767 struct drm_device *dev = intel_dig_port->base.base.dev;
768 uint32_t precharge, timeout;
769
770 if (IS_GEN6(dev))
771 precharge = 3;
772 else
773 precharge = 5;
774
775 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
776 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
777 else
778 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
779
780 return DP_AUX_CH_CTL_SEND_BUSY |
781 DP_AUX_CH_CTL_DONE |
782 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
783 DP_AUX_CH_CTL_TIME_OUT_ERROR |
784 timeout |
785 DP_AUX_CH_CTL_RECEIVE_ERROR |
786 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
787 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
788 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
789 }
790
791 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
792 bool has_aux_irq,
793 int send_bytes,
794 uint32_t unused)
795 {
796 return DP_AUX_CH_CTL_SEND_BUSY |
797 DP_AUX_CH_CTL_DONE |
798 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
799 DP_AUX_CH_CTL_TIME_OUT_ERROR |
800 DP_AUX_CH_CTL_TIME_OUT_1600us |
801 DP_AUX_CH_CTL_RECEIVE_ERROR |
802 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
803 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
804 }
805
806 static int
807 intel_dp_aux_ch(struct intel_dp *intel_dp,
808 const uint8_t *send, int send_bytes,
809 uint8_t *recv, int recv_size)
810 {
811 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
812 struct drm_device *dev = intel_dig_port->base.base.dev;
813 struct drm_i915_private *dev_priv = dev->dev_private;
814 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
815 uint32_t ch_data = ch_ctl + 4;
816 uint32_t aux_clock_divider;
817 int i, ret, recv_bytes;
818 uint32_t status;
819 int try, clock = 0;
820 bool has_aux_irq = HAS_AUX_IRQ(dev);
821 bool vdd;
822
823 pps_lock(intel_dp);
824
825 /*
826 * We will be called with VDD already enabled for dpcd/edid/oui reads.
827 * In such cases we want to leave VDD enabled and it's up to upper layers
828 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
829 * ourselves.
830 */
831 vdd = edp_panel_vdd_on(intel_dp);
832
833 /* dp aux is extremely sensitive to irq latency, hence request the
834 * lowest possible wakeup latency and so prevent the cpu from going into
835 * deep sleep states.
836 */
837 pm_qos_update_request(&dev_priv->pm_qos, 0);
838
839 intel_dp_check_edp(intel_dp);
840
841 intel_aux_display_runtime_get(dev_priv);
842
843 /* Try to wait for any previous AUX channel activity */
844 for (try = 0; try < 3; try++) {
845 status = I915_READ_NOTRACE(ch_ctl);
846 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
847 break;
848 msleep(1);
849 }
850
851 if (try == 3) {
852 static u32 last_status = -1;
853 const u32 status = I915_READ(ch_ctl);
854
855 if (status != last_status) {
856 WARN(1, "dp_aux_ch not started status 0x%08x\n",
857 status);
858 last_status = status;
859 }
860
861 ret = -EBUSY;
862 goto out;
863 }
864
865 /* Only 5 data registers! */
866 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
867 ret = -E2BIG;
868 goto out;
869 }
870
871 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
872 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
873 has_aux_irq,
874 send_bytes,
875 aux_clock_divider);
876
877 /* Must try at least 3 times according to DP spec */
878 for (try = 0; try < 5; try++) {
879 /* Load the send data into the aux channel data registers */
880 for (i = 0; i < send_bytes; i += 4)
881 I915_WRITE(ch_data + i,
882 intel_dp_pack_aux(send + i,
883 send_bytes - i));
884
885 /* Send the command and wait for it to complete */
886 I915_WRITE(ch_ctl, send_ctl);
887
888 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
889
890 /* Clear done status and any errors */
891 I915_WRITE(ch_ctl,
892 status |
893 DP_AUX_CH_CTL_DONE |
894 DP_AUX_CH_CTL_TIME_OUT_ERROR |
895 DP_AUX_CH_CTL_RECEIVE_ERROR);
896
897 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
898 continue;
899
900 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
901 * 400us delay required for errors and timeouts
902 * Timeout errors from the HW already meet this
903 * requirement so skip to next iteration
904 */
905 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
906 usleep_range(400, 500);
907 continue;
908 }
909 if (status & DP_AUX_CH_CTL_DONE)
910 goto done;
911 }
912 }
913
914 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
915 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
916 ret = -EBUSY;
917 goto out;
918 }
919
920 done:
921 /* Check for timeout or receive error.
922 * Timeouts occur when the sink is not connected
923 */
924 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
925 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
926 ret = -EIO;
927 goto out;
928 }
929
930 /* Timeouts occur when the device isn't connected, so they're
931 * "normal" -- don't fill the kernel log with these */
932 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
933 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
934 ret = -ETIMEDOUT;
935 goto out;
936 }
937
938 /* Unload any bytes sent back from the other side */
939 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
940 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
941 if (recv_bytes > recv_size)
942 recv_bytes = recv_size;
943
944 for (i = 0; i < recv_bytes; i += 4)
945 intel_dp_unpack_aux(I915_READ(ch_data + i),
946 recv + i, recv_bytes - i);
947
948 ret = recv_bytes;
949 out:
950 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
951 intel_aux_display_runtime_put(dev_priv);
952
953 if (vdd)
954 edp_panel_vdd_off(intel_dp, false);
955
956 pps_unlock(intel_dp);
957
958 return ret;
959 }
960
961 #define BARE_ADDRESS_SIZE 3
962 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
963 static ssize_t
964 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
965 {
966 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
967 uint8_t txbuf[20], rxbuf[20];
968 size_t txsize, rxsize;
969 int ret;
970
971 txbuf[0] = (msg->request << 4) |
972 ((msg->address >> 16) & 0xf);
973 txbuf[1] = (msg->address >> 8) & 0xff;
974 txbuf[2] = msg->address & 0xff;
975 txbuf[3] = msg->size - 1;
976
977 switch (msg->request & ~DP_AUX_I2C_MOT) {
978 case DP_AUX_NATIVE_WRITE:
979 case DP_AUX_I2C_WRITE:
980 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
981 rxsize = 2; /* 0 or 1 data bytes */
982
983 if (WARN_ON(txsize > 20))
984 return -E2BIG;
985
986 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
987
988 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
989 if (ret > 0) {
990 msg->reply = rxbuf[0] >> 4;
991
992 if (ret > 1) {
993 /* Number of bytes written in a short write. */
994 ret = clamp_t(int, rxbuf[1], 0, msg->size);
995 } else {
996 /* Return payload size. */
997 ret = msg->size;
998 }
999 }
1000 break;
1001
1002 case DP_AUX_NATIVE_READ:
1003 case DP_AUX_I2C_READ:
1004 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1005 rxsize = msg->size + 1;
1006
1007 if (WARN_ON(rxsize > 20))
1008 return -E2BIG;
1009
1010 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1011 if (ret > 0) {
1012 msg->reply = rxbuf[0] >> 4;
1013 /*
1014 * Assume happy day, and copy the data. The caller is
1015 * expected to check msg->reply before touching it.
1016 *
1017 * Return payload size.
1018 */
1019 ret--;
1020 memcpy(msg->buffer, rxbuf + 1, ret);
1021 }
1022 break;
1023
1024 default:
1025 ret = -EINVAL;
1026 break;
1027 }
1028
1029 return ret;
1030 }
1031
1032 static void
1033 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1034 {
1035 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1036 struct drm_i915_private *dev_priv = dev->dev_private;
1037 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1038 enum port port = intel_dig_port->port;
1039 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1040 const char *name = NULL;
1041 uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1042 int ret;
1043
1044 /* On SKL we don't have Aux for port E so we rely on VBT to set
1045 * a proper alternate aux channel.
1046 */
1047 if (IS_SKYLAKE(dev) && port == PORT_E) {
1048 switch (info->alternate_aux_channel) {
1049 case DP_AUX_B:
1050 porte_aux_ctl_reg = DPB_AUX_CH_CTL;
1051 break;
1052 case DP_AUX_C:
1053 porte_aux_ctl_reg = DPC_AUX_CH_CTL;
1054 break;
1055 case DP_AUX_D:
1056 porte_aux_ctl_reg = DPD_AUX_CH_CTL;
1057 break;
1058 case DP_AUX_A:
1059 default:
1060 porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1061 }
1062 }
1063
1064 switch (port) {
1065 case PORT_A:
1066 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1067 name = "DPDDC-A";
1068 break;
1069 case PORT_B:
1070 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1071 name = "DPDDC-B";
1072 break;
1073 case PORT_C:
1074 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1075 name = "DPDDC-C";
1076 break;
1077 case PORT_D:
1078 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1079 name = "DPDDC-D";
1080 break;
1081 case PORT_E:
1082 intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
1083 name = "DPDDC-E";
1084 break;
1085 default:
1086 BUG();
1087 }
1088
1089 /*
1090 * The AUX_CTL register is usually DP_CTL + 0x10.
1091 *
1092 * On Haswell and Broadwell though:
1093 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1094 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1095 *
1096 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1097 */
1098 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
1099 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1100
1101 intel_dp->aux.name = name;
1102 intel_dp->aux.dev = dev->dev;
1103 intel_dp->aux.transfer = intel_dp_aux_transfer;
1104
1105 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1106 connector->base.kdev->kobj.name);
1107
1108 ret = drm_dp_aux_register(&intel_dp->aux);
1109 if (ret < 0) {
1110 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1111 name, ret);
1112 return;
1113 }
1114
1115 ret = sysfs_create_link(&connector->base.kdev->kobj,
1116 &intel_dp->aux.ddc.dev.kobj,
1117 intel_dp->aux.ddc.dev.kobj.name);
1118 if (ret < 0) {
1119 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1120 drm_dp_aux_unregister(&intel_dp->aux);
1121 }
1122 }
1123
1124 static void
1125 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1126 {
1127 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1128
1129 if (!intel_connector->mst_port)
1130 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1131 intel_dp->aux.ddc.dev.kobj.name);
1132 intel_connector_unregister(intel_connector);
1133 }
1134
1135 static void
1136 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1137 {
1138 u32 ctrl1;
1139
1140 memset(&pipe_config->dpll_hw_state, 0,
1141 sizeof(pipe_config->dpll_hw_state));
1142
1143 pipe_config->ddi_pll_sel = SKL_DPLL0;
1144 pipe_config->dpll_hw_state.cfgcr1 = 0;
1145 pipe_config->dpll_hw_state.cfgcr2 = 0;
1146
1147 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1148 switch (pipe_config->port_clock / 2) {
1149 case 81000:
1150 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1151 SKL_DPLL0);
1152 break;
1153 case 135000:
1154 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1155 SKL_DPLL0);
1156 break;
1157 case 270000:
1158 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1159 SKL_DPLL0);
1160 break;
1161 case 162000:
1162 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1163 SKL_DPLL0);
1164 break;
1165 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1166 results in CDCLK change. Need to handle the change of CDCLK by
1167 disabling pipes and re-enabling them */
1168 case 108000:
1169 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1170 SKL_DPLL0);
1171 break;
1172 case 216000:
1173 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1174 SKL_DPLL0);
1175 break;
1176
1177 }
1178 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1179 }
1180
1181 static void
1182 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1183 {
1184 memset(&pipe_config->dpll_hw_state, 0,
1185 sizeof(pipe_config->dpll_hw_state));
1186
1187 switch (pipe_config->port_clock / 2) {
1188 case 81000:
1189 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1190 break;
1191 case 135000:
1192 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1193 break;
1194 case 270000:
1195 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1196 break;
1197 }
1198 }
1199
1200 static int
1201 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1202 {
1203 if (intel_dp->num_sink_rates) {
1204 *sink_rates = intel_dp->sink_rates;
1205 return intel_dp->num_sink_rates;
1206 }
1207
1208 *sink_rates = default_rates;
1209
1210 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1211 }
1212
1213 static int
1214 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1215 {
1216 if (IS_BROXTON(dev)) {
1217 *source_rates = bxt_rates;
1218 return ARRAY_SIZE(bxt_rates);
1219 } else if (IS_SKYLAKE(dev)) {
1220 *source_rates = skl_rates;
1221 return ARRAY_SIZE(skl_rates);
1222 } else if (IS_CHERRYVIEW(dev)) {
1223 *source_rates = chv_rates;
1224 return ARRAY_SIZE(chv_rates);
1225 }
1226
1227 *source_rates = default_rates;
1228
1229 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1230 /* WaDisableHBR2:skl */
1231 return (DP_LINK_BW_2_7 >> 3) + 1;
1232 else if (INTEL_INFO(dev)->gen >= 8 ||
1233 (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1234 return (DP_LINK_BW_5_4 >> 3) + 1;
1235 else
1236 return (DP_LINK_BW_2_7 >> 3) + 1;
1237 }
1238
1239 static void
1240 intel_dp_set_clock(struct intel_encoder *encoder,
1241 struct intel_crtc_state *pipe_config)
1242 {
1243 struct drm_device *dev = encoder->base.dev;
1244 const struct dp_link_dpll *divisor = NULL;
1245 int i, count = 0;
1246
1247 if (IS_G4X(dev)) {
1248 divisor = gen4_dpll;
1249 count = ARRAY_SIZE(gen4_dpll);
1250 } else if (HAS_PCH_SPLIT(dev)) {
1251 divisor = pch_dpll;
1252 count = ARRAY_SIZE(pch_dpll);
1253 } else if (IS_CHERRYVIEW(dev)) {
1254 divisor = chv_dpll;
1255 count = ARRAY_SIZE(chv_dpll);
1256 } else if (IS_VALLEYVIEW(dev)) {
1257 divisor = vlv_dpll;
1258 count = ARRAY_SIZE(vlv_dpll);
1259 }
1260
1261 if (divisor && count) {
1262 for (i = 0; i < count; i++) {
1263 if (pipe_config->port_clock == divisor[i].clock) {
1264 pipe_config->dpll = divisor[i].dpll;
1265 pipe_config->clock_set = true;
1266 break;
1267 }
1268 }
1269 }
1270 }
1271
1272 static int intersect_rates(const int *source_rates, int source_len,
1273 const int *sink_rates, int sink_len,
1274 int *common_rates)
1275 {
1276 int i = 0, j = 0, k = 0;
1277
1278 while (i < source_len && j < sink_len) {
1279 if (source_rates[i] == sink_rates[j]) {
1280 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1281 return k;
1282 common_rates[k] = source_rates[i];
1283 ++k;
1284 ++i;
1285 ++j;
1286 } else if (source_rates[i] < sink_rates[j]) {
1287 ++i;
1288 } else {
1289 ++j;
1290 }
1291 }
1292 return k;
1293 }
1294
1295 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1296 int *common_rates)
1297 {
1298 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1299 const int *source_rates, *sink_rates;
1300 int source_len, sink_len;
1301
1302 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1303 source_len = intel_dp_source_rates(dev, &source_rates);
1304
1305 return intersect_rates(source_rates, source_len,
1306 sink_rates, sink_len,
1307 common_rates);
1308 }
1309
1310 static void snprintf_int_array(char *str, size_t len,
1311 const int *array, int nelem)
1312 {
1313 int i;
1314
1315 str[0] = '\0';
1316
1317 for (i = 0; i < nelem; i++) {
1318 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1319 if (r >= len)
1320 return;
1321 str += r;
1322 len -= r;
1323 }
1324 }
1325
1326 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1327 {
1328 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1329 const int *source_rates, *sink_rates;
1330 int source_len, sink_len, common_len;
1331 int common_rates[DP_MAX_SUPPORTED_RATES];
1332 char str[128]; /* FIXME: too big for stack? */
1333
1334 if ((drm_debug & DRM_UT_KMS) == 0)
1335 return;
1336
1337 source_len = intel_dp_source_rates(dev, &source_rates);
1338 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1339 DRM_DEBUG_KMS("source rates: %s\n", str);
1340
1341 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1342 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1343 DRM_DEBUG_KMS("sink rates: %s\n", str);
1344
1345 common_len = intel_dp_common_rates(intel_dp, common_rates);
1346 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1347 DRM_DEBUG_KMS("common rates: %s\n", str);
1348 }
1349
1350 static int rate_to_index(int find, const int *rates)
1351 {
1352 int i = 0;
1353
1354 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1355 if (find == rates[i])
1356 break;
1357
1358 return i;
1359 }
1360
1361 int
1362 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1363 {
1364 int rates[DP_MAX_SUPPORTED_RATES] = {};
1365 int len;
1366
1367 len = intel_dp_common_rates(intel_dp, rates);
1368 if (WARN_ON(len <= 0))
1369 return 162000;
1370
1371 return rates[rate_to_index(0, rates) - 1];
1372 }
1373
1374 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1375 {
1376 return rate_to_index(rate, intel_dp->sink_rates);
1377 }
1378
1379 bool
1380 intel_dp_compute_config(struct intel_encoder *encoder,
1381 struct intel_crtc_state *pipe_config)
1382 {
1383 struct drm_device *dev = encoder->base.dev;
1384 struct drm_i915_private *dev_priv = dev->dev_private;
1385 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1386 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1387 enum port port = dp_to_dig_port(intel_dp)->port;
1388 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1389 struct intel_connector *intel_connector = intel_dp->attached_connector;
1390 int lane_count, clock;
1391 int min_lane_count = 1;
1392 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1393 /* Conveniently, the link BW constants become indices with a shift...*/
1394 int min_clock = 0;
1395 int max_clock;
1396 int bpp, mode_rate;
1397 int link_avail, link_clock;
1398 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1399 int common_len;
1400
1401 common_len = intel_dp_common_rates(intel_dp, common_rates);
1402
1403 /* No common link rates between source and sink */
1404 WARN_ON(common_len <= 0);
1405
1406 max_clock = common_len - 1;
1407
1408 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1409 pipe_config->has_pch_encoder = true;
1410
1411 pipe_config->has_dp_encoder = true;
1412 pipe_config->has_drrs = false;
1413 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1414
1415 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1416 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1417 adjusted_mode);
1418
1419 if (INTEL_INFO(dev)->gen >= 9) {
1420 int ret;
1421 ret = skl_update_scaler_crtc(pipe_config);
1422 if (ret)
1423 return ret;
1424 }
1425
1426 if (!HAS_PCH_SPLIT(dev))
1427 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1428 intel_connector->panel.fitting_mode);
1429 else
1430 intel_pch_panel_fitting(intel_crtc, pipe_config,
1431 intel_connector->panel.fitting_mode);
1432 }
1433
1434 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1435 return false;
1436
1437 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1438 "max bw %d pixel clock %iKHz\n",
1439 max_lane_count, common_rates[max_clock],
1440 adjusted_mode->crtc_clock);
1441
1442 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1443 * bpc in between. */
1444 bpp = pipe_config->pipe_bpp;
1445 if (is_edp(intel_dp)) {
1446
1447 /* Get bpp from vbt only for panels that dont have bpp in edid */
1448 if (intel_connector->base.display_info.bpc == 0 &&
1449 (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1450 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1451 dev_priv->vbt.edp_bpp);
1452 bpp = dev_priv->vbt.edp_bpp;
1453 }
1454
1455 /*
1456 * Use the maximum clock and number of lanes the eDP panel
1457 * advertizes being capable of. The panels are generally
1458 * designed to support only a single clock and lane
1459 * configuration, and typically these values correspond to the
1460 * native resolution of the panel.
1461 */
1462 min_lane_count = max_lane_count;
1463 min_clock = max_clock;
1464 }
1465
1466 for (; bpp >= 6*3; bpp -= 2*3) {
1467 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1468 bpp);
1469
1470 for (clock = min_clock; clock <= max_clock; clock++) {
1471 for (lane_count = min_lane_count;
1472 lane_count <= max_lane_count;
1473 lane_count <<= 1) {
1474
1475 link_clock = common_rates[clock];
1476 link_avail = intel_dp_max_data_rate(link_clock,
1477 lane_count);
1478
1479 if (mode_rate <= link_avail) {
1480 goto found;
1481 }
1482 }
1483 }
1484 }
1485
1486 return false;
1487
1488 found:
1489 if (intel_dp->color_range_auto) {
1490 /*
1491 * See:
1492 * CEA-861-E - 5.1 Default Encoding Parameters
1493 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1494 */
1495 pipe_config->limited_color_range =
1496 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1497 } else {
1498 pipe_config->limited_color_range =
1499 intel_dp->limited_color_range;
1500 }
1501
1502 pipe_config->lane_count = lane_count;
1503
1504 if (intel_dp->num_sink_rates) {
1505 intel_dp->link_bw = 0;
1506 intel_dp->rate_select =
1507 intel_dp_rate_select(intel_dp, common_rates[clock]);
1508 } else {
1509 intel_dp->link_bw =
1510 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1511 intel_dp->rate_select = 0;
1512 }
1513
1514 pipe_config->pipe_bpp = bpp;
1515 pipe_config->port_clock = common_rates[clock];
1516
1517 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1518 intel_dp->link_bw, pipe_config->lane_count,
1519 pipe_config->port_clock, bpp);
1520 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1521 mode_rate, link_avail);
1522
1523 intel_link_compute_m_n(bpp, lane_count,
1524 adjusted_mode->crtc_clock,
1525 pipe_config->port_clock,
1526 &pipe_config->dp_m_n);
1527
1528 if (intel_connector->panel.downclock_mode != NULL &&
1529 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1530 pipe_config->has_drrs = true;
1531 intel_link_compute_m_n(bpp, lane_count,
1532 intel_connector->panel.downclock_mode->clock,
1533 pipe_config->port_clock,
1534 &pipe_config->dp_m2_n2);
1535 }
1536
1537 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1538 skl_edp_set_pll_config(pipe_config);
1539 else if (IS_BROXTON(dev))
1540 /* handled in ddi */;
1541 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1542 hsw_dp_set_ddi_pll_sel(pipe_config);
1543 else
1544 intel_dp_set_clock(encoder, pipe_config);
1545
1546 return true;
1547 }
1548
1549 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1550 {
1551 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1552 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1553 struct drm_device *dev = crtc->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 u32 dpa_ctl;
1556
1557 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1558 crtc->config->port_clock);
1559 dpa_ctl = I915_READ(DP_A);
1560 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1561
1562 if (crtc->config->port_clock == 162000) {
1563 /* For a long time we've carried around a ILK-DevA w/a for the
1564 * 160MHz clock. If we're really unlucky, it's still required.
1565 */
1566 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1567 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1568 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1569 } else {
1570 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1571 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1572 }
1573
1574 I915_WRITE(DP_A, dpa_ctl);
1575
1576 POSTING_READ(DP_A);
1577 udelay(500);
1578 }
1579
1580 static void intel_dp_prepare(struct intel_encoder *encoder)
1581 {
1582 struct drm_device *dev = encoder->base.dev;
1583 struct drm_i915_private *dev_priv = dev->dev_private;
1584 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1585 enum port port = dp_to_dig_port(intel_dp)->port;
1586 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1587 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1588
1589 /*
1590 * There are four kinds of DP registers:
1591 *
1592 * IBX PCH
1593 * SNB CPU
1594 * IVB CPU
1595 * CPT PCH
1596 *
1597 * IBX PCH and CPU are the same for almost everything,
1598 * except that the CPU DP PLL is configured in this
1599 * register
1600 *
1601 * CPT PCH is quite different, having many bits moved
1602 * to the TRANS_DP_CTL register instead. That
1603 * configuration happens (oddly) in ironlake_pch_enable
1604 */
1605
1606 /* Preserve the BIOS-computed detected bit. This is
1607 * supposed to be read-only.
1608 */
1609 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1610
1611 /* Handle DP bits in common between all three register formats */
1612 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1613 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1614
1615 if (crtc->config->has_audio)
1616 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1617
1618 /* Split out the IBX/CPU vs CPT settings */
1619
1620 if (IS_GEN7(dev) && port == PORT_A) {
1621 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1622 intel_dp->DP |= DP_SYNC_HS_HIGH;
1623 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1624 intel_dp->DP |= DP_SYNC_VS_HIGH;
1625 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1626
1627 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1628 intel_dp->DP |= DP_ENHANCED_FRAMING;
1629
1630 intel_dp->DP |= crtc->pipe << 29;
1631 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1632 u32 trans_dp;
1633
1634 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1635
1636 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1637 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1638 trans_dp |= TRANS_DP_ENH_FRAMING;
1639 else
1640 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1641 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1642 } else {
1643 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1644 crtc->config->limited_color_range)
1645 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1646
1647 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1648 intel_dp->DP |= DP_SYNC_HS_HIGH;
1649 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1650 intel_dp->DP |= DP_SYNC_VS_HIGH;
1651 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1652
1653 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1654 intel_dp->DP |= DP_ENHANCED_FRAMING;
1655
1656 if (IS_CHERRYVIEW(dev))
1657 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1658 else if (crtc->pipe == PIPE_B)
1659 intel_dp->DP |= DP_PIPEB_SELECT;
1660 }
1661 }
1662
1663 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1664 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1665
1666 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1667 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1668
1669 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1670 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1671
1672 static void wait_panel_status(struct intel_dp *intel_dp,
1673 u32 mask,
1674 u32 value)
1675 {
1676 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678 u32 pp_stat_reg, pp_ctrl_reg;
1679
1680 lockdep_assert_held(&dev_priv->pps_mutex);
1681
1682 pp_stat_reg = _pp_stat_reg(intel_dp);
1683 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1684
1685 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1686 mask, value,
1687 I915_READ(pp_stat_reg),
1688 I915_READ(pp_ctrl_reg));
1689
1690 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1691 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1692 I915_READ(pp_stat_reg),
1693 I915_READ(pp_ctrl_reg));
1694 }
1695
1696 DRM_DEBUG_KMS("Wait complete\n");
1697 }
1698
1699 static void wait_panel_on(struct intel_dp *intel_dp)
1700 {
1701 DRM_DEBUG_KMS("Wait for panel power on\n");
1702 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1703 }
1704
1705 static void wait_panel_off(struct intel_dp *intel_dp)
1706 {
1707 DRM_DEBUG_KMS("Wait for panel power off time\n");
1708 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1709 }
1710
1711 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1712 {
1713 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1714
1715 /* When we disable the VDD override bit last we have to do the manual
1716 * wait. */
1717 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1718 intel_dp->panel_power_cycle_delay);
1719
1720 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1721 }
1722
1723 static void wait_backlight_on(struct intel_dp *intel_dp)
1724 {
1725 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1726 intel_dp->backlight_on_delay);
1727 }
1728
1729 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1730 {
1731 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1732 intel_dp->backlight_off_delay);
1733 }
1734
1735 /* Read the current pp_control value, unlocking the register if it
1736 * is locked
1737 */
1738
1739 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1740 {
1741 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 u32 control;
1744
1745 lockdep_assert_held(&dev_priv->pps_mutex);
1746
1747 control = I915_READ(_pp_ctrl_reg(intel_dp));
1748 if (!IS_BROXTON(dev)) {
1749 control &= ~PANEL_UNLOCK_MASK;
1750 control |= PANEL_UNLOCK_REGS;
1751 }
1752 return control;
1753 }
1754
1755 /*
1756 * Must be paired with edp_panel_vdd_off().
1757 * Must hold pps_mutex around the whole on/off sequence.
1758 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1759 */
1760 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1761 {
1762 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1763 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1764 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 enum intel_display_power_domain power_domain;
1767 u32 pp;
1768 u32 pp_stat_reg, pp_ctrl_reg;
1769 bool need_to_disable = !intel_dp->want_panel_vdd;
1770
1771 lockdep_assert_held(&dev_priv->pps_mutex);
1772
1773 if (!is_edp(intel_dp))
1774 return false;
1775
1776 cancel_delayed_work(&intel_dp->panel_vdd_work);
1777 intel_dp->want_panel_vdd = true;
1778
1779 if (edp_have_panel_vdd(intel_dp))
1780 return need_to_disable;
1781
1782 power_domain = intel_display_port_power_domain(intel_encoder);
1783 intel_display_power_get(dev_priv, power_domain);
1784
1785 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1786 port_name(intel_dig_port->port));
1787
1788 if (!edp_have_panel_power(intel_dp))
1789 wait_panel_power_cycle(intel_dp);
1790
1791 pp = ironlake_get_pp_control(intel_dp);
1792 pp |= EDP_FORCE_VDD;
1793
1794 pp_stat_reg = _pp_stat_reg(intel_dp);
1795 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1796
1797 I915_WRITE(pp_ctrl_reg, pp);
1798 POSTING_READ(pp_ctrl_reg);
1799 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1800 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1801 /*
1802 * If the panel wasn't on, delay before accessing aux channel
1803 */
1804 if (!edp_have_panel_power(intel_dp)) {
1805 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1806 port_name(intel_dig_port->port));
1807 msleep(intel_dp->panel_power_up_delay);
1808 }
1809
1810 return need_to_disable;
1811 }
1812
1813 /*
1814 * Must be paired with intel_edp_panel_vdd_off() or
1815 * intel_edp_panel_off().
1816 * Nested calls to these functions are not allowed since
1817 * we drop the lock. Caller must use some higher level
1818 * locking to prevent nested calls from other threads.
1819 */
1820 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1821 {
1822 bool vdd;
1823
1824 if (!is_edp(intel_dp))
1825 return;
1826
1827 pps_lock(intel_dp);
1828 vdd = edp_panel_vdd_on(intel_dp);
1829 pps_unlock(intel_dp);
1830
1831 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1832 port_name(dp_to_dig_port(intel_dp)->port));
1833 }
1834
1835 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1836 {
1837 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1838 struct drm_i915_private *dev_priv = dev->dev_private;
1839 struct intel_digital_port *intel_dig_port =
1840 dp_to_dig_port(intel_dp);
1841 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1842 enum intel_display_power_domain power_domain;
1843 u32 pp;
1844 u32 pp_stat_reg, pp_ctrl_reg;
1845
1846 lockdep_assert_held(&dev_priv->pps_mutex);
1847
1848 WARN_ON(intel_dp->want_panel_vdd);
1849
1850 if (!edp_have_panel_vdd(intel_dp))
1851 return;
1852
1853 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1854 port_name(intel_dig_port->port));
1855
1856 pp = ironlake_get_pp_control(intel_dp);
1857 pp &= ~EDP_FORCE_VDD;
1858
1859 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1860 pp_stat_reg = _pp_stat_reg(intel_dp);
1861
1862 I915_WRITE(pp_ctrl_reg, pp);
1863 POSTING_READ(pp_ctrl_reg);
1864
1865 /* Make sure sequencer is idle before allowing subsequent activity */
1866 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1867 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1868
1869 if ((pp & POWER_TARGET_ON) == 0)
1870 intel_dp->last_power_cycle = jiffies;
1871
1872 power_domain = intel_display_port_power_domain(intel_encoder);
1873 intel_display_power_put(dev_priv, power_domain);
1874 }
1875
1876 static void edp_panel_vdd_work(struct work_struct *__work)
1877 {
1878 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1879 struct intel_dp, panel_vdd_work);
1880
1881 pps_lock(intel_dp);
1882 if (!intel_dp->want_panel_vdd)
1883 edp_panel_vdd_off_sync(intel_dp);
1884 pps_unlock(intel_dp);
1885 }
1886
1887 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1888 {
1889 unsigned long delay;
1890
1891 /*
1892 * Queue the timer to fire a long time from now (relative to the power
1893 * down delay) to keep the panel power up across a sequence of
1894 * operations.
1895 */
1896 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1897 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1898 }
1899
1900 /*
1901 * Must be paired with edp_panel_vdd_on().
1902 * Must hold pps_mutex around the whole on/off sequence.
1903 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1904 */
1905 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1906 {
1907 struct drm_i915_private *dev_priv =
1908 intel_dp_to_dev(intel_dp)->dev_private;
1909
1910 lockdep_assert_held(&dev_priv->pps_mutex);
1911
1912 if (!is_edp(intel_dp))
1913 return;
1914
1915 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1916 port_name(dp_to_dig_port(intel_dp)->port));
1917
1918 intel_dp->want_panel_vdd = false;
1919
1920 if (sync)
1921 edp_panel_vdd_off_sync(intel_dp);
1922 else
1923 edp_panel_vdd_schedule_off(intel_dp);
1924 }
1925
1926 static void edp_panel_on(struct intel_dp *intel_dp)
1927 {
1928 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1929 struct drm_i915_private *dev_priv = dev->dev_private;
1930 u32 pp;
1931 u32 pp_ctrl_reg;
1932
1933 lockdep_assert_held(&dev_priv->pps_mutex);
1934
1935 if (!is_edp(intel_dp))
1936 return;
1937
1938 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1939 port_name(dp_to_dig_port(intel_dp)->port));
1940
1941 if (WARN(edp_have_panel_power(intel_dp),
1942 "eDP port %c panel power already on\n",
1943 port_name(dp_to_dig_port(intel_dp)->port)))
1944 return;
1945
1946 wait_panel_power_cycle(intel_dp);
1947
1948 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1949 pp = ironlake_get_pp_control(intel_dp);
1950 if (IS_GEN5(dev)) {
1951 /* ILK workaround: disable reset around power sequence */
1952 pp &= ~PANEL_POWER_RESET;
1953 I915_WRITE(pp_ctrl_reg, pp);
1954 POSTING_READ(pp_ctrl_reg);
1955 }
1956
1957 pp |= POWER_TARGET_ON;
1958 if (!IS_GEN5(dev))
1959 pp |= PANEL_POWER_RESET;
1960
1961 I915_WRITE(pp_ctrl_reg, pp);
1962 POSTING_READ(pp_ctrl_reg);
1963
1964 wait_panel_on(intel_dp);
1965 intel_dp->last_power_on = jiffies;
1966
1967 if (IS_GEN5(dev)) {
1968 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1969 I915_WRITE(pp_ctrl_reg, pp);
1970 POSTING_READ(pp_ctrl_reg);
1971 }
1972 }
1973
1974 void intel_edp_panel_on(struct intel_dp *intel_dp)
1975 {
1976 if (!is_edp(intel_dp))
1977 return;
1978
1979 pps_lock(intel_dp);
1980 edp_panel_on(intel_dp);
1981 pps_unlock(intel_dp);
1982 }
1983
1984
1985 static void edp_panel_off(struct intel_dp *intel_dp)
1986 {
1987 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1988 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1989 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1990 struct drm_i915_private *dev_priv = dev->dev_private;
1991 enum intel_display_power_domain power_domain;
1992 u32 pp;
1993 u32 pp_ctrl_reg;
1994
1995 lockdep_assert_held(&dev_priv->pps_mutex);
1996
1997 if (!is_edp(intel_dp))
1998 return;
1999
2000 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2001 port_name(dp_to_dig_port(intel_dp)->port));
2002
2003 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2004 port_name(dp_to_dig_port(intel_dp)->port));
2005
2006 pp = ironlake_get_pp_control(intel_dp);
2007 /* We need to switch off panel power _and_ force vdd, for otherwise some
2008 * panels get very unhappy and cease to work. */
2009 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2010 EDP_BLC_ENABLE);
2011
2012 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2013
2014 intel_dp->want_panel_vdd = false;
2015
2016 I915_WRITE(pp_ctrl_reg, pp);
2017 POSTING_READ(pp_ctrl_reg);
2018
2019 intel_dp->last_power_cycle = jiffies;
2020 wait_panel_off(intel_dp);
2021
2022 /* We got a reference when we enabled the VDD. */
2023 power_domain = intel_display_port_power_domain(intel_encoder);
2024 intel_display_power_put(dev_priv, power_domain);
2025 }
2026
2027 void intel_edp_panel_off(struct intel_dp *intel_dp)
2028 {
2029 if (!is_edp(intel_dp))
2030 return;
2031
2032 pps_lock(intel_dp);
2033 edp_panel_off(intel_dp);
2034 pps_unlock(intel_dp);
2035 }
2036
2037 /* Enable backlight in the panel power control. */
2038 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2039 {
2040 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2041 struct drm_device *dev = intel_dig_port->base.base.dev;
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 u32 pp;
2044 u32 pp_ctrl_reg;
2045
2046 /*
2047 * If we enable the backlight right away following a panel power
2048 * on, we may see slight flicker as the panel syncs with the eDP
2049 * link. So delay a bit to make sure the image is solid before
2050 * allowing it to appear.
2051 */
2052 wait_backlight_on(intel_dp);
2053
2054 pps_lock(intel_dp);
2055
2056 pp = ironlake_get_pp_control(intel_dp);
2057 pp |= EDP_BLC_ENABLE;
2058
2059 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2060
2061 I915_WRITE(pp_ctrl_reg, pp);
2062 POSTING_READ(pp_ctrl_reg);
2063
2064 pps_unlock(intel_dp);
2065 }
2066
2067 /* Enable backlight PWM and backlight PP control. */
2068 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2069 {
2070 if (!is_edp(intel_dp))
2071 return;
2072
2073 DRM_DEBUG_KMS("\n");
2074
2075 intel_panel_enable_backlight(intel_dp->attached_connector);
2076 _intel_edp_backlight_on(intel_dp);
2077 }
2078
2079 /* Disable backlight in the panel power control. */
2080 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2081 {
2082 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084 u32 pp;
2085 u32 pp_ctrl_reg;
2086
2087 if (!is_edp(intel_dp))
2088 return;
2089
2090 pps_lock(intel_dp);
2091
2092 pp = ironlake_get_pp_control(intel_dp);
2093 pp &= ~EDP_BLC_ENABLE;
2094
2095 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2096
2097 I915_WRITE(pp_ctrl_reg, pp);
2098 POSTING_READ(pp_ctrl_reg);
2099
2100 pps_unlock(intel_dp);
2101
2102 intel_dp->last_backlight_off = jiffies;
2103 edp_wait_backlight_off(intel_dp);
2104 }
2105
2106 /* Disable backlight PP control and backlight PWM. */
2107 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2108 {
2109 if (!is_edp(intel_dp))
2110 return;
2111
2112 DRM_DEBUG_KMS("\n");
2113
2114 _intel_edp_backlight_off(intel_dp);
2115 intel_panel_disable_backlight(intel_dp->attached_connector);
2116 }
2117
2118 /*
2119 * Hook for controlling the panel power control backlight through the bl_power
2120 * sysfs attribute. Take care to handle multiple calls.
2121 */
2122 static void intel_edp_backlight_power(struct intel_connector *connector,
2123 bool enable)
2124 {
2125 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2126 bool is_enabled;
2127
2128 pps_lock(intel_dp);
2129 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2130 pps_unlock(intel_dp);
2131
2132 if (is_enabled == enable)
2133 return;
2134
2135 DRM_DEBUG_KMS("panel power control backlight %s\n",
2136 enable ? "enable" : "disable");
2137
2138 if (enable)
2139 _intel_edp_backlight_on(intel_dp);
2140 else
2141 _intel_edp_backlight_off(intel_dp);
2142 }
2143
2144 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2145 {
2146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2147 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2148 struct drm_device *dev = crtc->dev;
2149 struct drm_i915_private *dev_priv = dev->dev_private;
2150 u32 dpa_ctl;
2151
2152 assert_pipe_disabled(dev_priv,
2153 to_intel_crtc(crtc)->pipe);
2154
2155 DRM_DEBUG_KMS("\n");
2156 dpa_ctl = I915_READ(DP_A);
2157 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2158 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2159
2160 /* We don't adjust intel_dp->DP while tearing down the link, to
2161 * facilitate link retraining (e.g. after hotplug). Hence clear all
2162 * enable bits here to ensure that we don't enable too much. */
2163 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2164 intel_dp->DP |= DP_PLL_ENABLE;
2165 I915_WRITE(DP_A, intel_dp->DP);
2166 POSTING_READ(DP_A);
2167 udelay(200);
2168 }
2169
2170 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2171 {
2172 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2173 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2174 struct drm_device *dev = crtc->dev;
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 u32 dpa_ctl;
2177
2178 assert_pipe_disabled(dev_priv,
2179 to_intel_crtc(crtc)->pipe);
2180
2181 dpa_ctl = I915_READ(DP_A);
2182 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2183 "dp pll off, should be on\n");
2184 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2185
2186 /* We can't rely on the value tracked for the DP register in
2187 * intel_dp->DP because link_down must not change that (otherwise link
2188 * re-training will fail. */
2189 dpa_ctl &= ~DP_PLL_ENABLE;
2190 I915_WRITE(DP_A, dpa_ctl);
2191 POSTING_READ(DP_A);
2192 udelay(200);
2193 }
2194
2195 /* If the sink supports it, try to set the power state appropriately */
2196 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2197 {
2198 int ret, i;
2199
2200 /* Should have a valid DPCD by this point */
2201 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2202 return;
2203
2204 if (mode != DRM_MODE_DPMS_ON) {
2205 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2206 DP_SET_POWER_D3);
2207 } else {
2208 /*
2209 * When turning on, we need to retry for 1ms to give the sink
2210 * time to wake up.
2211 */
2212 for (i = 0; i < 3; i++) {
2213 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2214 DP_SET_POWER_D0);
2215 if (ret == 1)
2216 break;
2217 msleep(1);
2218 }
2219 }
2220
2221 if (ret != 1)
2222 DRM_DEBUG_KMS("failed to %s sink power state\n",
2223 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2224 }
2225
2226 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2227 enum pipe *pipe)
2228 {
2229 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2230 enum port port = dp_to_dig_port(intel_dp)->port;
2231 struct drm_device *dev = encoder->base.dev;
2232 struct drm_i915_private *dev_priv = dev->dev_private;
2233 enum intel_display_power_domain power_domain;
2234 u32 tmp;
2235
2236 power_domain = intel_display_port_power_domain(encoder);
2237 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2238 return false;
2239
2240 tmp = I915_READ(intel_dp->output_reg);
2241
2242 if (!(tmp & DP_PORT_EN))
2243 return false;
2244
2245 if (IS_GEN7(dev) && port == PORT_A) {
2246 *pipe = PORT_TO_PIPE_CPT(tmp);
2247 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2248 enum pipe p;
2249
2250 for_each_pipe(dev_priv, p) {
2251 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2252 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2253 *pipe = p;
2254 return true;
2255 }
2256 }
2257
2258 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2259 intel_dp->output_reg);
2260 } else if (IS_CHERRYVIEW(dev)) {
2261 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2262 } else {
2263 *pipe = PORT_TO_PIPE(tmp);
2264 }
2265
2266 return true;
2267 }
2268
2269 static void intel_dp_get_config(struct intel_encoder *encoder,
2270 struct intel_crtc_state *pipe_config)
2271 {
2272 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2273 u32 tmp, flags = 0;
2274 struct drm_device *dev = encoder->base.dev;
2275 struct drm_i915_private *dev_priv = dev->dev_private;
2276 enum port port = dp_to_dig_port(intel_dp)->port;
2277 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2278 int dotclock;
2279
2280 tmp = I915_READ(intel_dp->output_reg);
2281
2282 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2283
2284 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2285 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2286
2287 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2288 flags |= DRM_MODE_FLAG_PHSYNC;
2289 else
2290 flags |= DRM_MODE_FLAG_NHSYNC;
2291
2292 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2293 flags |= DRM_MODE_FLAG_PVSYNC;
2294 else
2295 flags |= DRM_MODE_FLAG_NVSYNC;
2296 } else {
2297 if (tmp & DP_SYNC_HS_HIGH)
2298 flags |= DRM_MODE_FLAG_PHSYNC;
2299 else
2300 flags |= DRM_MODE_FLAG_NHSYNC;
2301
2302 if (tmp & DP_SYNC_VS_HIGH)
2303 flags |= DRM_MODE_FLAG_PVSYNC;
2304 else
2305 flags |= DRM_MODE_FLAG_NVSYNC;
2306 }
2307
2308 pipe_config->base.adjusted_mode.flags |= flags;
2309
2310 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2311 tmp & DP_COLOR_RANGE_16_235)
2312 pipe_config->limited_color_range = true;
2313
2314 pipe_config->has_dp_encoder = true;
2315
2316 pipe_config->lane_count =
2317 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2318
2319 intel_dp_get_m_n(crtc, pipe_config);
2320
2321 if (port == PORT_A) {
2322 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2323 pipe_config->port_clock = 162000;
2324 else
2325 pipe_config->port_clock = 270000;
2326 }
2327
2328 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2329 &pipe_config->dp_m_n);
2330
2331 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2332 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2333
2334 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2335
2336 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2337 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2338 /*
2339 * This is a big fat ugly hack.
2340 *
2341 * Some machines in UEFI boot mode provide us a VBT that has 18
2342 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2343 * unknown we fail to light up. Yet the same BIOS boots up with
2344 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2345 * max, not what it tells us to use.
2346 *
2347 * Note: This will still be broken if the eDP panel is not lit
2348 * up by the BIOS, and thus we can't get the mode at module
2349 * load.
2350 */
2351 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2352 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2353 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2354 }
2355 }
2356
2357 static void intel_disable_dp(struct intel_encoder *encoder)
2358 {
2359 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2360 struct drm_device *dev = encoder->base.dev;
2361 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2362
2363 if (crtc->config->has_audio)
2364 intel_audio_codec_disable(encoder);
2365
2366 if (HAS_PSR(dev) && !HAS_DDI(dev))
2367 intel_psr_disable(intel_dp);
2368
2369 /* Make sure the panel is off before trying to change the mode. But also
2370 * ensure that we have vdd while we switch off the panel. */
2371 intel_edp_panel_vdd_on(intel_dp);
2372 intel_edp_backlight_off(intel_dp);
2373 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2374 intel_edp_panel_off(intel_dp);
2375
2376 /* disable the port before the pipe on g4x */
2377 if (INTEL_INFO(dev)->gen < 5)
2378 intel_dp_link_down(intel_dp);
2379 }
2380
2381 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2382 {
2383 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2384 enum port port = dp_to_dig_port(intel_dp)->port;
2385
2386 intel_dp_link_down(intel_dp);
2387 if (port == PORT_A)
2388 ironlake_edp_pll_off(intel_dp);
2389 }
2390
2391 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2392 {
2393 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2394
2395 intel_dp_link_down(intel_dp);
2396 }
2397
2398 static void chv_post_disable_dp(struct intel_encoder *encoder)
2399 {
2400 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2401 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2402 struct drm_device *dev = encoder->base.dev;
2403 struct drm_i915_private *dev_priv = dev->dev_private;
2404 struct intel_crtc *intel_crtc =
2405 to_intel_crtc(encoder->base.crtc);
2406 enum dpio_channel ch = vlv_dport_to_channel(dport);
2407 enum pipe pipe = intel_crtc->pipe;
2408 u32 val;
2409
2410 intel_dp_link_down(intel_dp);
2411
2412 mutex_lock(&dev_priv->sb_lock);
2413
2414 /* Propagate soft reset to data lane reset */
2415 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2416 val |= CHV_PCS_REQ_SOFTRESET_EN;
2417 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2418
2419 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2420 val |= CHV_PCS_REQ_SOFTRESET_EN;
2421 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2422
2423 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2424 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2425 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2426
2427 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2428 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2429 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2430
2431 mutex_unlock(&dev_priv->sb_lock);
2432 }
2433
2434 static void
2435 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2436 uint32_t *DP,
2437 uint8_t dp_train_pat)
2438 {
2439 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2440 struct drm_device *dev = intel_dig_port->base.base.dev;
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 enum port port = intel_dig_port->port;
2443
2444 if (HAS_DDI(dev)) {
2445 uint32_t temp = I915_READ(DP_TP_CTL(port));
2446
2447 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2448 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2449 else
2450 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2451
2452 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2453 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2454 case DP_TRAINING_PATTERN_DISABLE:
2455 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2456
2457 break;
2458 case DP_TRAINING_PATTERN_1:
2459 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2460 break;
2461 case DP_TRAINING_PATTERN_2:
2462 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2463 break;
2464 case DP_TRAINING_PATTERN_3:
2465 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2466 break;
2467 }
2468 I915_WRITE(DP_TP_CTL(port), temp);
2469
2470 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2471 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2472 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2473
2474 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2475 case DP_TRAINING_PATTERN_DISABLE:
2476 *DP |= DP_LINK_TRAIN_OFF_CPT;
2477 break;
2478 case DP_TRAINING_PATTERN_1:
2479 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2480 break;
2481 case DP_TRAINING_PATTERN_2:
2482 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2483 break;
2484 case DP_TRAINING_PATTERN_3:
2485 DRM_ERROR("DP training pattern 3 not supported\n");
2486 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2487 break;
2488 }
2489
2490 } else {
2491 if (IS_CHERRYVIEW(dev))
2492 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2493 else
2494 *DP &= ~DP_LINK_TRAIN_MASK;
2495
2496 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2497 case DP_TRAINING_PATTERN_DISABLE:
2498 *DP |= DP_LINK_TRAIN_OFF;
2499 break;
2500 case DP_TRAINING_PATTERN_1:
2501 *DP |= DP_LINK_TRAIN_PAT_1;
2502 break;
2503 case DP_TRAINING_PATTERN_2:
2504 *DP |= DP_LINK_TRAIN_PAT_2;
2505 break;
2506 case DP_TRAINING_PATTERN_3:
2507 if (IS_CHERRYVIEW(dev)) {
2508 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2509 } else {
2510 DRM_ERROR("DP training pattern 3 not supported\n");
2511 *DP |= DP_LINK_TRAIN_PAT_2;
2512 }
2513 break;
2514 }
2515 }
2516 }
2517
2518 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2519 {
2520 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523 /* enable with pattern 1 (as per spec) */
2524 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2525 DP_TRAINING_PATTERN_1);
2526
2527 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2528 POSTING_READ(intel_dp->output_reg);
2529
2530 /*
2531 * Magic for VLV/CHV. We _must_ first set up the register
2532 * without actually enabling the port, and then do another
2533 * write to enable the port. Otherwise link training will
2534 * fail when the power sequencer is freshly used for this port.
2535 */
2536 intel_dp->DP |= DP_PORT_EN;
2537
2538 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2539 POSTING_READ(intel_dp->output_reg);
2540 }
2541
2542 static void intel_enable_dp(struct intel_encoder *encoder)
2543 {
2544 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2545 struct drm_device *dev = encoder->base.dev;
2546 struct drm_i915_private *dev_priv = dev->dev_private;
2547 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2548 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2549 unsigned int lane_mask = 0x0;
2550
2551 if (WARN_ON(dp_reg & DP_PORT_EN))
2552 return;
2553
2554 pps_lock(intel_dp);
2555
2556 if (IS_VALLEYVIEW(dev))
2557 vlv_init_panel_power_sequencer(intel_dp);
2558
2559 intel_dp_enable_port(intel_dp);
2560
2561 edp_panel_vdd_on(intel_dp);
2562 edp_panel_on(intel_dp);
2563 edp_panel_vdd_off(intel_dp, true);
2564
2565 pps_unlock(intel_dp);
2566
2567 if (IS_VALLEYVIEW(dev))
2568 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2569 lane_mask);
2570
2571 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2572 intel_dp_start_link_train(intel_dp);
2573 intel_dp_complete_link_train(intel_dp);
2574 intel_dp_stop_link_train(intel_dp);
2575
2576 if (crtc->config->has_audio) {
2577 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2578 pipe_name(crtc->pipe));
2579 intel_audio_codec_enable(encoder);
2580 }
2581 }
2582
2583 static void g4x_enable_dp(struct intel_encoder *encoder)
2584 {
2585 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2586
2587 intel_enable_dp(encoder);
2588 intel_edp_backlight_on(intel_dp);
2589 }
2590
2591 static void vlv_enable_dp(struct intel_encoder *encoder)
2592 {
2593 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2594
2595 intel_edp_backlight_on(intel_dp);
2596 intel_psr_enable(intel_dp);
2597 }
2598
2599 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2600 {
2601 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2602 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2603
2604 intel_dp_prepare(encoder);
2605
2606 /* Only ilk+ has port A */
2607 if (dport->port == PORT_A) {
2608 ironlake_set_pll_cpu_edp(intel_dp);
2609 ironlake_edp_pll_on(intel_dp);
2610 }
2611 }
2612
2613 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2614 {
2615 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2616 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2617 enum pipe pipe = intel_dp->pps_pipe;
2618 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2619
2620 edp_panel_vdd_off_sync(intel_dp);
2621
2622 /*
2623 * VLV seems to get confused when multiple power seqeuencers
2624 * have the same port selected (even if only one has power/vdd
2625 * enabled). The failure manifests as vlv_wait_port_ready() failing
2626 * CHV on the other hand doesn't seem to mind having the same port
2627 * selected in multiple power seqeuencers, but let's clear the
2628 * port select always when logically disconnecting a power sequencer
2629 * from a port.
2630 */
2631 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2632 pipe_name(pipe), port_name(intel_dig_port->port));
2633 I915_WRITE(pp_on_reg, 0);
2634 POSTING_READ(pp_on_reg);
2635
2636 intel_dp->pps_pipe = INVALID_PIPE;
2637 }
2638
2639 static void vlv_steal_power_sequencer(struct drm_device *dev,
2640 enum pipe pipe)
2641 {
2642 struct drm_i915_private *dev_priv = dev->dev_private;
2643 struct intel_encoder *encoder;
2644
2645 lockdep_assert_held(&dev_priv->pps_mutex);
2646
2647 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2648 return;
2649
2650 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2651 base.head) {
2652 struct intel_dp *intel_dp;
2653 enum port port;
2654
2655 if (encoder->type != INTEL_OUTPUT_EDP)
2656 continue;
2657
2658 intel_dp = enc_to_intel_dp(&encoder->base);
2659 port = dp_to_dig_port(intel_dp)->port;
2660
2661 if (intel_dp->pps_pipe != pipe)
2662 continue;
2663
2664 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2665 pipe_name(pipe), port_name(port));
2666
2667 WARN(encoder->base.crtc,
2668 "stealing pipe %c power sequencer from active eDP port %c\n",
2669 pipe_name(pipe), port_name(port));
2670
2671 /* make sure vdd is off before we steal it */
2672 vlv_detach_power_sequencer(intel_dp);
2673 }
2674 }
2675
2676 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2677 {
2678 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2679 struct intel_encoder *encoder = &intel_dig_port->base;
2680 struct drm_device *dev = encoder->base.dev;
2681 struct drm_i915_private *dev_priv = dev->dev_private;
2682 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2683
2684 lockdep_assert_held(&dev_priv->pps_mutex);
2685
2686 if (!is_edp(intel_dp))
2687 return;
2688
2689 if (intel_dp->pps_pipe == crtc->pipe)
2690 return;
2691
2692 /*
2693 * If another power sequencer was being used on this
2694 * port previously make sure to turn off vdd there while
2695 * we still have control of it.
2696 */
2697 if (intel_dp->pps_pipe != INVALID_PIPE)
2698 vlv_detach_power_sequencer(intel_dp);
2699
2700 /*
2701 * We may be stealing the power
2702 * sequencer from another port.
2703 */
2704 vlv_steal_power_sequencer(dev, crtc->pipe);
2705
2706 /* now it's all ours */
2707 intel_dp->pps_pipe = crtc->pipe;
2708
2709 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2710 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2711
2712 /* init power sequencer on this pipe and port */
2713 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2714 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2715 }
2716
2717 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2718 {
2719 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2720 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2721 struct drm_device *dev = encoder->base.dev;
2722 struct drm_i915_private *dev_priv = dev->dev_private;
2723 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2724 enum dpio_channel port = vlv_dport_to_channel(dport);
2725 int pipe = intel_crtc->pipe;
2726 u32 val;
2727
2728 mutex_lock(&dev_priv->sb_lock);
2729
2730 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2731 val = 0;
2732 if (pipe)
2733 val |= (1<<21);
2734 else
2735 val &= ~(1<<21);
2736 val |= 0x001000c4;
2737 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2738 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2739 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2740
2741 mutex_unlock(&dev_priv->sb_lock);
2742
2743 intel_enable_dp(encoder);
2744 }
2745
2746 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2747 {
2748 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2749 struct drm_device *dev = encoder->base.dev;
2750 struct drm_i915_private *dev_priv = dev->dev_private;
2751 struct intel_crtc *intel_crtc =
2752 to_intel_crtc(encoder->base.crtc);
2753 enum dpio_channel port = vlv_dport_to_channel(dport);
2754 int pipe = intel_crtc->pipe;
2755
2756 intel_dp_prepare(encoder);
2757
2758 /* Program Tx lane resets to default */
2759 mutex_lock(&dev_priv->sb_lock);
2760 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2761 DPIO_PCS_TX_LANE2_RESET |
2762 DPIO_PCS_TX_LANE1_RESET);
2763 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2764 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2765 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2766 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2767 DPIO_PCS_CLK_SOFT_RESET);
2768
2769 /* Fix up inter-pair skew failure */
2770 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2771 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2772 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2773 mutex_unlock(&dev_priv->sb_lock);
2774 }
2775
2776 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2777 {
2778 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2779 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2780 struct drm_device *dev = encoder->base.dev;
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 struct intel_crtc *intel_crtc =
2783 to_intel_crtc(encoder->base.crtc);
2784 enum dpio_channel ch = vlv_dport_to_channel(dport);
2785 int pipe = intel_crtc->pipe;
2786 int data, i, stagger;
2787 u32 val;
2788
2789 mutex_lock(&dev_priv->sb_lock);
2790
2791 /* allow hardware to manage TX FIFO reset source */
2792 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2793 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2794 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2795
2796 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2797 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2798 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2799
2800 /* Deassert soft data lane reset*/
2801 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2802 val |= CHV_PCS_REQ_SOFTRESET_EN;
2803 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2804
2805 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2806 val |= CHV_PCS_REQ_SOFTRESET_EN;
2807 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2808
2809 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2810 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2811 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2812
2813 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2814 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2815 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2816
2817 /* Program Tx lane latency optimal setting*/
2818 for (i = 0; i < 4; i++) {
2819 /* Set the upar bit */
2820 data = (i == 1) ? 0x0 : 0x1;
2821 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2822 data << DPIO_UPAR_SHIFT);
2823 }
2824
2825 /* Data lane stagger programming */
2826 if (intel_crtc->config->port_clock > 270000)
2827 stagger = 0x18;
2828 else if (intel_crtc->config->port_clock > 135000)
2829 stagger = 0xd;
2830 else if (intel_crtc->config->port_clock > 67500)
2831 stagger = 0x7;
2832 else if (intel_crtc->config->port_clock > 33750)
2833 stagger = 0x4;
2834 else
2835 stagger = 0x2;
2836
2837 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2838 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2839 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2840
2841 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2842 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2843 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2844
2845 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2846 DPIO_LANESTAGGER_STRAP(stagger) |
2847 DPIO_LANESTAGGER_STRAP_OVRD |
2848 DPIO_TX1_STAGGER_MASK(0x1f) |
2849 DPIO_TX1_STAGGER_MULT(6) |
2850 DPIO_TX2_STAGGER_MULT(0));
2851
2852 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2853 DPIO_LANESTAGGER_STRAP(stagger) |
2854 DPIO_LANESTAGGER_STRAP_OVRD |
2855 DPIO_TX1_STAGGER_MASK(0x1f) |
2856 DPIO_TX1_STAGGER_MULT(7) |
2857 DPIO_TX2_STAGGER_MULT(5));
2858
2859 mutex_unlock(&dev_priv->sb_lock);
2860
2861 intel_enable_dp(encoder);
2862 }
2863
2864 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2865 {
2866 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2867 struct drm_device *dev = encoder->base.dev;
2868 struct drm_i915_private *dev_priv = dev->dev_private;
2869 struct intel_crtc *intel_crtc =
2870 to_intel_crtc(encoder->base.crtc);
2871 enum dpio_channel ch = vlv_dport_to_channel(dport);
2872 enum pipe pipe = intel_crtc->pipe;
2873 u32 val;
2874
2875 intel_dp_prepare(encoder);
2876
2877 mutex_lock(&dev_priv->sb_lock);
2878
2879 /* program left/right clock distribution */
2880 if (pipe != PIPE_B) {
2881 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2882 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2883 if (ch == DPIO_CH0)
2884 val |= CHV_BUFLEFTENA1_FORCE;
2885 if (ch == DPIO_CH1)
2886 val |= CHV_BUFRIGHTENA1_FORCE;
2887 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2888 } else {
2889 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2890 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2891 if (ch == DPIO_CH0)
2892 val |= CHV_BUFLEFTENA2_FORCE;
2893 if (ch == DPIO_CH1)
2894 val |= CHV_BUFRIGHTENA2_FORCE;
2895 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2896 }
2897
2898 /* program clock channel usage */
2899 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2900 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2901 if (pipe != PIPE_B)
2902 val &= ~CHV_PCS_USEDCLKCHANNEL;
2903 else
2904 val |= CHV_PCS_USEDCLKCHANNEL;
2905 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2906
2907 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2908 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2909 if (pipe != PIPE_B)
2910 val &= ~CHV_PCS_USEDCLKCHANNEL;
2911 else
2912 val |= CHV_PCS_USEDCLKCHANNEL;
2913 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2914
2915 /*
2916 * This a a bit weird since generally CL
2917 * matches the pipe, but here we need to
2918 * pick the CL based on the port.
2919 */
2920 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2921 if (pipe != PIPE_B)
2922 val &= ~CHV_CMN_USEDCLKCHANNEL;
2923 else
2924 val |= CHV_CMN_USEDCLKCHANNEL;
2925 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2926
2927 mutex_unlock(&dev_priv->sb_lock);
2928 }
2929
2930 /*
2931 * Native read with retry for link status and receiver capability reads for
2932 * cases where the sink may still be asleep.
2933 *
2934 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2935 * supposed to retry 3 times per the spec.
2936 */
2937 static ssize_t
2938 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2939 void *buffer, size_t size)
2940 {
2941 ssize_t ret;
2942 int i;
2943
2944 /*
2945 * Sometime we just get the same incorrect byte repeated
2946 * over the entire buffer. Doing just one throw away read
2947 * initially seems to "solve" it.
2948 */
2949 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2950
2951 for (i = 0; i < 3; i++) {
2952 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2953 if (ret == size)
2954 return ret;
2955 msleep(1);
2956 }
2957
2958 return ret;
2959 }
2960
2961 /*
2962 * Fetch AUX CH registers 0x202 - 0x207 which contain
2963 * link status information
2964 */
2965 static bool
2966 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2967 {
2968 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2969 DP_LANE0_1_STATUS,
2970 link_status,
2971 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2972 }
2973
2974 /* These are source-specific values. */
2975 static uint8_t
2976 intel_dp_voltage_max(struct intel_dp *intel_dp)
2977 {
2978 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2979 struct drm_i915_private *dev_priv = dev->dev_private;
2980 enum port port = dp_to_dig_port(intel_dp)->port;
2981
2982 if (IS_BROXTON(dev))
2983 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2984 else if (INTEL_INFO(dev)->gen >= 9) {
2985 if (dev_priv->edp_low_vswing && port == PORT_A)
2986 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2987 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2988 } else if (IS_VALLEYVIEW(dev))
2989 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2990 else if (IS_GEN7(dev) && port == PORT_A)
2991 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2992 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2993 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2994 else
2995 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2996 }
2997
2998 static uint8_t
2999 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3000 {
3001 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3002 enum port port = dp_to_dig_port(intel_dp)->port;
3003
3004 if (INTEL_INFO(dev)->gen >= 9) {
3005 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3007 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3008 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3009 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3011 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3012 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3013 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3014 default:
3015 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3016 }
3017 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3018 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3019 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3020 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3021 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3022 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3023 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3024 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3025 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3026 default:
3027 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3028 }
3029 } else if (IS_VALLEYVIEW(dev)) {
3030 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3031 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3032 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3034 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3036 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3038 default:
3039 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3040 }
3041 } else if (IS_GEN7(dev) && port == PORT_A) {
3042 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3044 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3045 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3046 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3047 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3048 default:
3049 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3050 }
3051 } else {
3052 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3054 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3055 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3056 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3057 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3058 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3059 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3060 default:
3061 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3062 }
3063 }
3064 }
3065
3066 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3067 {
3068 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3069 struct drm_i915_private *dev_priv = dev->dev_private;
3070 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3071 struct intel_crtc *intel_crtc =
3072 to_intel_crtc(dport->base.base.crtc);
3073 unsigned long demph_reg_value, preemph_reg_value,
3074 uniqtranscale_reg_value;
3075 uint8_t train_set = intel_dp->train_set[0];
3076 enum dpio_channel port = vlv_dport_to_channel(dport);
3077 int pipe = intel_crtc->pipe;
3078
3079 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3080 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3081 preemph_reg_value = 0x0004000;
3082 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3083 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3084 demph_reg_value = 0x2B405555;
3085 uniqtranscale_reg_value = 0x552AB83A;
3086 break;
3087 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3088 demph_reg_value = 0x2B404040;
3089 uniqtranscale_reg_value = 0x5548B83A;
3090 break;
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3092 demph_reg_value = 0x2B245555;
3093 uniqtranscale_reg_value = 0x5560B83A;
3094 break;
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3096 demph_reg_value = 0x2B405555;
3097 uniqtranscale_reg_value = 0x5598DA3A;
3098 break;
3099 default:
3100 return 0;
3101 }
3102 break;
3103 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3104 preemph_reg_value = 0x0002000;
3105 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3106 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3107 demph_reg_value = 0x2B404040;
3108 uniqtranscale_reg_value = 0x5552B83A;
3109 break;
3110 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3111 demph_reg_value = 0x2B404848;
3112 uniqtranscale_reg_value = 0x5580B83A;
3113 break;
3114 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3115 demph_reg_value = 0x2B404040;
3116 uniqtranscale_reg_value = 0x55ADDA3A;
3117 break;
3118 default:
3119 return 0;
3120 }
3121 break;
3122 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3123 preemph_reg_value = 0x0000000;
3124 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3125 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3126 demph_reg_value = 0x2B305555;
3127 uniqtranscale_reg_value = 0x5570B83A;
3128 break;
3129 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3130 demph_reg_value = 0x2B2B4040;
3131 uniqtranscale_reg_value = 0x55ADDA3A;
3132 break;
3133 default:
3134 return 0;
3135 }
3136 break;
3137 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3138 preemph_reg_value = 0x0006000;
3139 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3140 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3141 demph_reg_value = 0x1B405555;
3142 uniqtranscale_reg_value = 0x55ADDA3A;
3143 break;
3144 default:
3145 return 0;
3146 }
3147 break;
3148 default:
3149 return 0;
3150 }
3151
3152 mutex_lock(&dev_priv->sb_lock);
3153 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3154 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3155 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3156 uniqtranscale_reg_value);
3157 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3158 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3159 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3160 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3161 mutex_unlock(&dev_priv->sb_lock);
3162
3163 return 0;
3164 }
3165
3166 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3167 {
3168 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3169 struct drm_i915_private *dev_priv = dev->dev_private;
3170 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3171 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3172 u32 deemph_reg_value, margin_reg_value, val;
3173 uint8_t train_set = intel_dp->train_set[0];
3174 enum dpio_channel ch = vlv_dport_to_channel(dport);
3175 enum pipe pipe = intel_crtc->pipe;
3176 int i;
3177
3178 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3179 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3180 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3181 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3182 deemph_reg_value = 128;
3183 margin_reg_value = 52;
3184 break;
3185 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3186 deemph_reg_value = 128;
3187 margin_reg_value = 77;
3188 break;
3189 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3190 deemph_reg_value = 128;
3191 margin_reg_value = 102;
3192 break;
3193 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3194 deemph_reg_value = 128;
3195 margin_reg_value = 154;
3196 /* FIXME extra to set for 1200 */
3197 break;
3198 default:
3199 return 0;
3200 }
3201 break;
3202 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3203 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3204 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3205 deemph_reg_value = 85;
3206 margin_reg_value = 78;
3207 break;
3208 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3209 deemph_reg_value = 85;
3210 margin_reg_value = 116;
3211 break;
3212 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3213 deemph_reg_value = 85;
3214 margin_reg_value = 154;
3215 break;
3216 default:
3217 return 0;
3218 }
3219 break;
3220 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3221 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3223 deemph_reg_value = 64;
3224 margin_reg_value = 104;
3225 break;
3226 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3227 deemph_reg_value = 64;
3228 margin_reg_value = 154;
3229 break;
3230 default:
3231 return 0;
3232 }
3233 break;
3234 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3235 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3236 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3237 deemph_reg_value = 43;
3238 margin_reg_value = 154;
3239 break;
3240 default:
3241 return 0;
3242 }
3243 break;
3244 default:
3245 return 0;
3246 }
3247
3248 mutex_lock(&dev_priv->sb_lock);
3249
3250 /* Clear calc init */
3251 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3252 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3253 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3254 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3255 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3256
3257 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3258 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3259 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3260 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3261 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3262
3263 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3264 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3265 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3266 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3267
3268 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3269 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3270 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3271 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3272
3273 /* Program swing deemph */
3274 for (i = 0; i < 4; i++) {
3275 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3276 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3277 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3278 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3279 }
3280
3281 /* Program swing margin */
3282 for (i = 0; i < 4; i++) {
3283 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3284 val &= ~DPIO_SWING_MARGIN000_MASK;
3285 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3286 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3287 }
3288
3289 /* Disable unique transition scale */
3290 for (i = 0; i < 4; i++) {
3291 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3292 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3293 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3294 }
3295
3296 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3297 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3298 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3299 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3300
3301 /*
3302 * The document said it needs to set bit 27 for ch0 and bit 26
3303 * for ch1. Might be a typo in the doc.
3304 * For now, for this unique transition scale selection, set bit
3305 * 27 for ch0 and ch1.
3306 */
3307 for (i = 0; i < 4; i++) {
3308 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3309 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3310 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3311 }
3312
3313 for (i = 0; i < 4; i++) {
3314 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3315 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3316 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3317 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3318 }
3319 }
3320
3321 /* Start swing calculation */
3322 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3323 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3324 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3325
3326 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3327 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3328 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3329
3330 /* LRC Bypass */
3331 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3332 val |= DPIO_LRC_BYPASS;
3333 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3334
3335 mutex_unlock(&dev_priv->sb_lock);
3336
3337 return 0;
3338 }
3339
3340 static void
3341 intel_get_adjust_train(struct intel_dp *intel_dp,
3342 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3343 {
3344 struct intel_crtc *crtc =
3345 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
3346 uint8_t v = 0;
3347 uint8_t p = 0;
3348 int lane;
3349 uint8_t voltage_max;
3350 uint8_t preemph_max;
3351
3352 for (lane = 0; lane < crtc->config->lane_count; lane++) {
3353 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3354 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3355
3356 if (this_v > v)
3357 v = this_v;
3358 if (this_p > p)
3359 p = this_p;
3360 }
3361
3362 voltage_max = intel_dp_voltage_max(intel_dp);
3363 if (v >= voltage_max)
3364 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3365
3366 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3367 if (p >= preemph_max)
3368 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3369
3370 for (lane = 0; lane < 4; lane++)
3371 intel_dp->train_set[lane] = v | p;
3372 }
3373
3374 static uint32_t
3375 gen4_signal_levels(uint8_t train_set)
3376 {
3377 uint32_t signal_levels = 0;
3378
3379 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3380 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3381 default:
3382 signal_levels |= DP_VOLTAGE_0_4;
3383 break;
3384 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3385 signal_levels |= DP_VOLTAGE_0_6;
3386 break;
3387 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3388 signal_levels |= DP_VOLTAGE_0_8;
3389 break;
3390 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3391 signal_levels |= DP_VOLTAGE_1_2;
3392 break;
3393 }
3394 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3395 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3396 default:
3397 signal_levels |= DP_PRE_EMPHASIS_0;
3398 break;
3399 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3400 signal_levels |= DP_PRE_EMPHASIS_3_5;
3401 break;
3402 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3403 signal_levels |= DP_PRE_EMPHASIS_6;
3404 break;
3405 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3406 signal_levels |= DP_PRE_EMPHASIS_9_5;
3407 break;
3408 }
3409 return signal_levels;
3410 }
3411
3412 /* Gen6's DP voltage swing and pre-emphasis control */
3413 static uint32_t
3414 gen6_edp_signal_levels(uint8_t train_set)
3415 {
3416 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3417 DP_TRAIN_PRE_EMPHASIS_MASK);
3418 switch (signal_levels) {
3419 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3420 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3421 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3422 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3423 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3424 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3425 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3426 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3427 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3428 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3429 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3430 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3431 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3432 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3433 default:
3434 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3435 "0x%x\n", signal_levels);
3436 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3437 }
3438 }
3439
3440 /* Gen7's DP voltage swing and pre-emphasis control */
3441 static uint32_t
3442 gen7_edp_signal_levels(uint8_t train_set)
3443 {
3444 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3445 DP_TRAIN_PRE_EMPHASIS_MASK);
3446 switch (signal_levels) {
3447 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3448 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3449 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3450 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3451 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3452 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3453
3454 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3455 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3457 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3458
3459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3460 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3461 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3462 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3463
3464 default:
3465 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3466 "0x%x\n", signal_levels);
3467 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3468 }
3469 }
3470
3471 /* Properly updates "DP" with the correct signal levels. */
3472 static void
3473 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3474 {
3475 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3476 enum port port = intel_dig_port->port;
3477 struct drm_device *dev = intel_dig_port->base.base.dev;
3478 uint32_t signal_levels, mask = 0;
3479 uint8_t train_set = intel_dp->train_set[0];
3480
3481 if (HAS_DDI(dev)) {
3482 signal_levels = ddi_signal_levels(intel_dp);
3483
3484 if (IS_BROXTON(dev))
3485 signal_levels = 0;
3486 else
3487 mask = DDI_BUF_EMP_MASK;
3488 } else if (IS_CHERRYVIEW(dev)) {
3489 signal_levels = chv_signal_levels(intel_dp);
3490 } else if (IS_VALLEYVIEW(dev)) {
3491 signal_levels = vlv_signal_levels(intel_dp);
3492 } else if (IS_GEN7(dev) && port == PORT_A) {
3493 signal_levels = gen7_edp_signal_levels(train_set);
3494 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3495 } else if (IS_GEN6(dev) && port == PORT_A) {
3496 signal_levels = gen6_edp_signal_levels(train_set);
3497 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3498 } else {
3499 signal_levels = gen4_signal_levels(train_set);
3500 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3501 }
3502
3503 if (mask)
3504 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3505
3506 DRM_DEBUG_KMS("Using vswing level %d\n",
3507 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3508 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3509 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3510 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3511
3512 *DP = (*DP & ~mask) | signal_levels;
3513 }
3514
3515 static bool
3516 intel_dp_set_link_train(struct intel_dp *intel_dp,
3517 uint32_t *DP,
3518 uint8_t dp_train_pat)
3519 {
3520 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3521 struct drm_i915_private *dev_priv =
3522 to_i915(intel_dig_port->base.base.dev);
3523 struct intel_crtc *crtc =
3524 to_intel_crtc(intel_dig_port->base.base.crtc);
3525 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3526 int ret, len;
3527
3528 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3529
3530 I915_WRITE(intel_dp->output_reg, *DP);
3531 POSTING_READ(intel_dp->output_reg);
3532
3533 buf[0] = dp_train_pat;
3534 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3535 DP_TRAINING_PATTERN_DISABLE) {
3536 /* don't write DP_TRAINING_LANEx_SET on disable */
3537 len = 1;
3538 } else {
3539 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3540 memcpy(buf + 1, intel_dp->train_set, crtc->config->lane_count);
3541 len = crtc->config->lane_count + 1;
3542 }
3543
3544 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3545 buf, len);
3546
3547 return ret == len;
3548 }
3549
3550 static bool
3551 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3552 uint8_t dp_train_pat)
3553 {
3554 if (!intel_dp->train_set_valid)
3555 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3556 intel_dp_set_signal_levels(intel_dp, DP);
3557 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3558 }
3559
3560 static bool
3561 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3562 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3563 {
3564 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3565 struct drm_i915_private *dev_priv =
3566 to_i915(intel_dig_port->base.base.dev);
3567 struct intel_crtc *crtc =
3568 to_intel_crtc(intel_dig_port->base.base.crtc);
3569 int ret;
3570
3571 intel_get_adjust_train(intel_dp, link_status);
3572 intel_dp_set_signal_levels(intel_dp, DP);
3573
3574 I915_WRITE(intel_dp->output_reg, *DP);
3575 POSTING_READ(intel_dp->output_reg);
3576
3577 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3578 intel_dp->train_set, crtc->config->lane_count);
3579
3580 return ret == crtc->config->lane_count;
3581 }
3582
3583 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3584 {
3585 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3586 struct drm_device *dev = intel_dig_port->base.base.dev;
3587 struct drm_i915_private *dev_priv = dev->dev_private;
3588 enum port port = intel_dig_port->port;
3589 uint32_t val;
3590
3591 if (!HAS_DDI(dev))
3592 return;
3593
3594 val = I915_READ(DP_TP_CTL(port));
3595 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3596 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3597 I915_WRITE(DP_TP_CTL(port), val);
3598
3599 /*
3600 * On PORT_A we can have only eDP in SST mode. There the only reason
3601 * we need to set idle transmission mode is to work around a HW issue
3602 * where we enable the pipe while not in idle link-training mode.
3603 * In this case there is requirement to wait for a minimum number of
3604 * idle patterns to be sent.
3605 */
3606 if (port == PORT_A)
3607 return;
3608
3609 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3610 1))
3611 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3612 }
3613
3614 /* Enable corresponding port and start training pattern 1 */
3615 void
3616 intel_dp_start_link_train(struct intel_dp *intel_dp)
3617 {
3618 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3619 struct intel_crtc *crtc =
3620 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
3621 struct drm_device *dev = encoder->dev;
3622 int i;
3623 uint8_t voltage;
3624 int voltage_tries, loop_tries;
3625 uint32_t DP = intel_dp->DP;
3626 uint8_t link_config[2];
3627
3628 if (HAS_DDI(dev))
3629 intel_ddi_prepare_link_retrain(encoder);
3630
3631 /* Write the link configuration data */
3632 link_config[0] = intel_dp->link_bw;
3633 link_config[1] = crtc->config->lane_count;
3634 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3635 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3636 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3637 if (intel_dp->num_sink_rates)
3638 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3639 &intel_dp->rate_select, 1);
3640
3641 link_config[0] = 0;
3642 link_config[1] = DP_SET_ANSI_8B10B;
3643 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3644
3645 DP |= DP_PORT_EN;
3646
3647 /* clock recovery */
3648 if (!intel_dp_reset_link_train(intel_dp, &DP,
3649 DP_TRAINING_PATTERN_1 |
3650 DP_LINK_SCRAMBLING_DISABLE)) {
3651 DRM_ERROR("failed to enable link training\n");
3652 return;
3653 }
3654
3655 voltage = 0xff;
3656 voltage_tries = 0;
3657 loop_tries = 0;
3658 for (;;) {
3659 uint8_t link_status[DP_LINK_STATUS_SIZE];
3660
3661 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3662 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3663 DRM_ERROR("failed to get link status\n");
3664 break;
3665 }
3666
3667 if (drm_dp_clock_recovery_ok(link_status, crtc->config->lane_count)) {
3668 DRM_DEBUG_KMS("clock recovery OK\n");
3669 break;
3670 }
3671
3672 /*
3673 * if we used previously trained voltage and pre-emphasis values
3674 * and we don't get clock recovery, reset link training values
3675 */
3676 if (intel_dp->train_set_valid) {
3677 DRM_DEBUG_KMS("clock recovery not ok, reset");
3678 /* clear the flag as we are not reusing train set */
3679 intel_dp->train_set_valid = false;
3680 if (!intel_dp_reset_link_train(intel_dp, &DP,
3681 DP_TRAINING_PATTERN_1 |
3682 DP_LINK_SCRAMBLING_DISABLE)) {
3683 DRM_ERROR("failed to enable link training\n");
3684 return;
3685 }
3686 continue;
3687 }
3688
3689 /* Check to see if we've tried the max voltage */
3690 for (i = 0; i < crtc->config->lane_count; i++)
3691 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3692 break;
3693 if (i == crtc->config->lane_count) {
3694 ++loop_tries;
3695 if (loop_tries == 5) {
3696 DRM_ERROR("too many full retries, give up\n");
3697 break;
3698 }
3699 intel_dp_reset_link_train(intel_dp, &DP,
3700 DP_TRAINING_PATTERN_1 |
3701 DP_LINK_SCRAMBLING_DISABLE);
3702 voltage_tries = 0;
3703 continue;
3704 }
3705
3706 /* Check to see if we've tried the same voltage 5 times */
3707 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3708 ++voltage_tries;
3709 if (voltage_tries == 5) {
3710 DRM_ERROR("too many voltage retries, give up\n");
3711 break;
3712 }
3713 } else
3714 voltage_tries = 0;
3715 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3716
3717 /* Update training set as requested by target */
3718 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3719 DRM_ERROR("failed to update link training\n");
3720 break;
3721 }
3722 }
3723
3724 intel_dp->DP = DP;
3725 }
3726
3727 void
3728 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3729 {
3730 struct intel_crtc *crtc =
3731 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
3732 bool channel_eq = false;
3733 int tries, cr_tries;
3734 uint32_t DP = intel_dp->DP;
3735 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3736
3737 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3738 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3739 training_pattern = DP_TRAINING_PATTERN_3;
3740
3741 /* channel equalization */
3742 if (!intel_dp_set_link_train(intel_dp, &DP,
3743 training_pattern |
3744 DP_LINK_SCRAMBLING_DISABLE)) {
3745 DRM_ERROR("failed to start channel equalization\n");
3746 return;
3747 }
3748
3749 tries = 0;
3750 cr_tries = 0;
3751 channel_eq = false;
3752 for (;;) {
3753 uint8_t link_status[DP_LINK_STATUS_SIZE];
3754
3755 if (cr_tries > 5) {
3756 DRM_ERROR("failed to train DP, aborting\n");
3757 break;
3758 }
3759
3760 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3761 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3762 DRM_ERROR("failed to get link status\n");
3763 break;
3764 }
3765
3766 /* Make sure clock is still ok */
3767 if (!drm_dp_clock_recovery_ok(link_status,
3768 crtc->config->lane_count)) {
3769 intel_dp->train_set_valid = false;
3770 intel_dp_start_link_train(intel_dp);
3771 intel_dp_set_link_train(intel_dp, &DP,
3772 training_pattern |
3773 DP_LINK_SCRAMBLING_DISABLE);
3774 cr_tries++;
3775 continue;
3776 }
3777
3778 if (drm_dp_channel_eq_ok(link_status,
3779 crtc->config->lane_count)) {
3780 channel_eq = true;
3781 break;
3782 }
3783
3784 /* Try 5 times, then try clock recovery if that fails */
3785 if (tries > 5) {
3786 intel_dp->train_set_valid = false;
3787 intel_dp_start_link_train(intel_dp);
3788 intel_dp_set_link_train(intel_dp, &DP,
3789 training_pattern |
3790 DP_LINK_SCRAMBLING_DISABLE);
3791 tries = 0;
3792 cr_tries++;
3793 continue;
3794 }
3795
3796 /* Update training set as requested by target */
3797 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3798 DRM_ERROR("failed to update link training\n");
3799 break;
3800 }
3801 ++tries;
3802 }
3803
3804 intel_dp_set_idle_link_train(intel_dp);
3805
3806 intel_dp->DP = DP;
3807
3808 if (channel_eq) {
3809 intel_dp->train_set_valid = true;
3810 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3811 }
3812 }
3813
3814 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3815 {
3816 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3817 DP_TRAINING_PATTERN_DISABLE);
3818 }
3819
3820 static void
3821 intel_dp_link_down(struct intel_dp *intel_dp)
3822 {
3823 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3824 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3825 enum port port = intel_dig_port->port;
3826 struct drm_device *dev = intel_dig_port->base.base.dev;
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 uint32_t DP = intel_dp->DP;
3829
3830 if (WARN_ON(HAS_DDI(dev)))
3831 return;
3832
3833 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3834 return;
3835
3836 DRM_DEBUG_KMS("\n");
3837
3838 if ((IS_GEN7(dev) && port == PORT_A) ||
3839 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3840 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3841 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3842 } else {
3843 if (IS_CHERRYVIEW(dev))
3844 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3845 else
3846 DP &= ~DP_LINK_TRAIN_MASK;
3847 DP |= DP_LINK_TRAIN_PAT_IDLE;
3848 }
3849 I915_WRITE(intel_dp->output_reg, DP);
3850 POSTING_READ(intel_dp->output_reg);
3851
3852 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3853 I915_WRITE(intel_dp->output_reg, DP);
3854 POSTING_READ(intel_dp->output_reg);
3855
3856 /*
3857 * HW workaround for IBX, we need to move the port
3858 * to transcoder A after disabling it to allow the
3859 * matching HDMI port to be enabled on transcoder A.
3860 */
3861 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3862 /* always enable with pattern 1 (as per spec) */
3863 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3864 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3865 I915_WRITE(intel_dp->output_reg, DP);
3866 POSTING_READ(intel_dp->output_reg);
3867
3868 DP &= ~DP_PORT_EN;
3869 I915_WRITE(intel_dp->output_reg, DP);
3870 POSTING_READ(intel_dp->output_reg);
3871 }
3872
3873 msleep(intel_dp->panel_power_down_delay);
3874 }
3875
3876 static bool
3877 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3878 {
3879 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3880 struct drm_device *dev = dig_port->base.base.dev;
3881 struct drm_i915_private *dev_priv = dev->dev_private;
3882 uint8_t rev;
3883
3884 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3885 sizeof(intel_dp->dpcd)) < 0)
3886 return false; /* aux transfer failed */
3887
3888 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3889
3890 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3891 return false; /* DPCD not present */
3892
3893 /* Check if the panel supports PSR */
3894 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3895 if (is_edp(intel_dp)) {
3896 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3897 intel_dp->psr_dpcd,
3898 sizeof(intel_dp->psr_dpcd));
3899 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3900 dev_priv->psr.sink_support = true;
3901 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3902 }
3903
3904 if (INTEL_INFO(dev)->gen >= 9 &&
3905 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3906 uint8_t frame_sync_cap;
3907
3908 dev_priv->psr.sink_support = true;
3909 intel_dp_dpcd_read_wake(&intel_dp->aux,
3910 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3911 &frame_sync_cap, 1);
3912 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3913 /* PSR2 needs frame sync as well */
3914 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3915 DRM_DEBUG_KMS("PSR2 %s on sink",
3916 dev_priv->psr.psr2_support ? "supported" : "not supported");
3917 }
3918 }
3919
3920 /* Training Pattern 3 support, both source and sink */
3921 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3922 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3923 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3924 intel_dp->use_tps3 = true;
3925 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3926 } else
3927 intel_dp->use_tps3 = false;
3928
3929 /* Intermediate frequency support */
3930 if (is_edp(intel_dp) &&
3931 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3932 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3933 (rev >= 0x03)) { /* eDp v1.4 or higher */
3934 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3935 int i;
3936
3937 intel_dp_dpcd_read_wake(&intel_dp->aux,
3938 DP_SUPPORTED_LINK_RATES,
3939 sink_rates,
3940 sizeof(sink_rates));
3941
3942 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3943 int val = le16_to_cpu(sink_rates[i]);
3944
3945 if (val == 0)
3946 break;
3947
3948 /* Value read is in kHz while drm clock is saved in deca-kHz */
3949 intel_dp->sink_rates[i] = (val * 200) / 10;
3950 }
3951 intel_dp->num_sink_rates = i;
3952 }
3953
3954 intel_dp_print_rates(intel_dp);
3955
3956 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3957 DP_DWN_STRM_PORT_PRESENT))
3958 return true; /* native DP sink */
3959
3960 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3961 return true; /* no per-port downstream info */
3962
3963 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3964 intel_dp->downstream_ports,
3965 DP_MAX_DOWNSTREAM_PORTS) < 0)
3966 return false; /* downstream port status fetch failed */
3967
3968 return true;
3969 }
3970
3971 static void
3972 intel_dp_probe_oui(struct intel_dp *intel_dp)
3973 {
3974 u8 buf[3];
3975
3976 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3977 return;
3978
3979 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3980 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3981 buf[0], buf[1], buf[2]);
3982
3983 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3984 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3985 buf[0], buf[1], buf[2]);
3986 }
3987
3988 static bool
3989 intel_dp_probe_mst(struct intel_dp *intel_dp)
3990 {
3991 u8 buf[1];
3992
3993 if (!intel_dp->can_mst)
3994 return false;
3995
3996 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3997 return false;
3998
3999 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4000 if (buf[0] & DP_MST_CAP) {
4001 DRM_DEBUG_KMS("Sink is MST capable\n");
4002 intel_dp->is_mst = true;
4003 } else {
4004 DRM_DEBUG_KMS("Sink is not MST capable\n");
4005 intel_dp->is_mst = false;
4006 }
4007 }
4008
4009 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4010 return intel_dp->is_mst;
4011 }
4012
4013 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
4014 {
4015 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4016 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4017 u8 buf;
4018 int ret = 0;
4019
4020 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4021 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4022 ret = -EIO;
4023 goto out;
4024 }
4025
4026 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4027 buf & ~DP_TEST_SINK_START) < 0) {
4028 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4029 ret = -EIO;
4030 goto out;
4031 }
4032
4033 intel_dp->sink_crc.started = false;
4034 out:
4035 hsw_enable_ips(intel_crtc);
4036 return ret;
4037 }
4038
4039 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4040 {
4041 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4042 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4043 u8 buf;
4044 int ret;
4045
4046 if (intel_dp->sink_crc.started) {
4047 ret = intel_dp_sink_crc_stop(intel_dp);
4048 if (ret)
4049 return ret;
4050 }
4051
4052 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4053 return -EIO;
4054
4055 if (!(buf & DP_TEST_CRC_SUPPORTED))
4056 return -ENOTTY;
4057
4058 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4059
4060 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4061 return -EIO;
4062
4063 hsw_disable_ips(intel_crtc);
4064
4065 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4066 buf | DP_TEST_SINK_START) < 0) {
4067 hsw_enable_ips(intel_crtc);
4068 return -EIO;
4069 }
4070
4071 intel_dp->sink_crc.started = true;
4072 return 0;
4073 }
4074
4075 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4076 {
4077 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4078 struct drm_device *dev = dig_port->base.base.dev;
4079 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4080 u8 buf;
4081 int count, ret;
4082 int attempts = 6;
4083 bool old_equal_new;
4084
4085 ret = intel_dp_sink_crc_start(intel_dp);
4086 if (ret)
4087 return ret;
4088
4089 do {
4090 intel_wait_for_vblank(dev, intel_crtc->pipe);
4091
4092 if (drm_dp_dpcd_readb(&intel_dp->aux,
4093 DP_TEST_SINK_MISC, &buf) < 0) {
4094 ret = -EIO;
4095 goto stop;
4096 }
4097 count = buf & DP_TEST_COUNT_MASK;
4098
4099 /*
4100 * Count might be reset during the loop. In this case
4101 * last known count needs to be reset as well.
4102 */
4103 if (count == 0)
4104 intel_dp->sink_crc.last_count = 0;
4105
4106 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4107 ret = -EIO;
4108 goto stop;
4109 }
4110
4111 old_equal_new = (count == intel_dp->sink_crc.last_count &&
4112 !memcmp(intel_dp->sink_crc.last_crc, crc,
4113 6 * sizeof(u8)));
4114
4115 } while (--attempts && (count == 0 || old_equal_new));
4116
4117 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4118 memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
4119
4120 if (attempts == 0) {
4121 if (old_equal_new) {
4122 DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
4123 } else {
4124 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4125 ret = -ETIMEDOUT;
4126 goto stop;
4127 }
4128 }
4129
4130 stop:
4131 intel_dp_sink_crc_stop(intel_dp);
4132 return ret;
4133 }
4134
4135 static bool
4136 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4137 {
4138 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4139 DP_DEVICE_SERVICE_IRQ_VECTOR,
4140 sink_irq_vector, 1) == 1;
4141 }
4142
4143 static bool
4144 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4145 {
4146 int ret;
4147
4148 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4149 DP_SINK_COUNT_ESI,
4150 sink_irq_vector, 14);
4151 if (ret != 14)
4152 return false;
4153
4154 return true;
4155 }
4156
4157 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4158 {
4159 uint8_t test_result = DP_TEST_ACK;
4160 return test_result;
4161 }
4162
4163 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4164 {
4165 uint8_t test_result = DP_TEST_NAK;
4166 return test_result;
4167 }
4168
4169 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4170 {
4171 uint8_t test_result = DP_TEST_NAK;
4172 struct intel_connector *intel_connector = intel_dp->attached_connector;
4173 struct drm_connector *connector = &intel_connector->base;
4174
4175 if (intel_connector->detect_edid == NULL ||
4176 connector->edid_corrupt ||
4177 intel_dp->aux.i2c_defer_count > 6) {
4178 /* Check EDID read for NACKs, DEFERs and corruption
4179 * (DP CTS 1.2 Core r1.1)
4180 * 4.2.2.4 : Failed EDID read, I2C_NAK
4181 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4182 * 4.2.2.6 : EDID corruption detected
4183 * Use failsafe mode for all cases
4184 */
4185 if (intel_dp->aux.i2c_nack_count > 0 ||
4186 intel_dp->aux.i2c_defer_count > 0)
4187 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4188 intel_dp->aux.i2c_nack_count,
4189 intel_dp->aux.i2c_defer_count);
4190 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4191 } else {
4192 struct edid *block = intel_connector->detect_edid;
4193
4194 /* We have to write the checksum
4195 * of the last block read
4196 */
4197 block += intel_connector->detect_edid->extensions;
4198
4199 if (!drm_dp_dpcd_write(&intel_dp->aux,
4200 DP_TEST_EDID_CHECKSUM,
4201 &block->checksum,
4202 1))
4203 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4204
4205 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4206 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4207 }
4208
4209 /* Set test active flag here so userspace doesn't interrupt things */
4210 intel_dp->compliance_test_active = 1;
4211
4212 return test_result;
4213 }
4214
4215 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4216 {
4217 uint8_t test_result = DP_TEST_NAK;
4218 return test_result;
4219 }
4220
4221 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4222 {
4223 uint8_t response = DP_TEST_NAK;
4224 uint8_t rxdata = 0;
4225 int status = 0;
4226
4227 intel_dp->compliance_test_active = 0;
4228 intel_dp->compliance_test_type = 0;
4229 intel_dp->compliance_test_data = 0;
4230
4231 intel_dp->aux.i2c_nack_count = 0;
4232 intel_dp->aux.i2c_defer_count = 0;
4233
4234 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4235 if (status <= 0) {
4236 DRM_DEBUG_KMS("Could not read test request from sink\n");
4237 goto update_status;
4238 }
4239
4240 switch (rxdata) {
4241 case DP_TEST_LINK_TRAINING:
4242 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4243 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4244 response = intel_dp_autotest_link_training(intel_dp);
4245 break;
4246 case DP_TEST_LINK_VIDEO_PATTERN:
4247 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4248 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4249 response = intel_dp_autotest_video_pattern(intel_dp);
4250 break;
4251 case DP_TEST_LINK_EDID_READ:
4252 DRM_DEBUG_KMS("EDID test requested\n");
4253 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4254 response = intel_dp_autotest_edid(intel_dp);
4255 break;
4256 case DP_TEST_LINK_PHY_TEST_PATTERN:
4257 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4258 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4259 response = intel_dp_autotest_phy_pattern(intel_dp);
4260 break;
4261 default:
4262 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4263 break;
4264 }
4265
4266 update_status:
4267 status = drm_dp_dpcd_write(&intel_dp->aux,
4268 DP_TEST_RESPONSE,
4269 &response, 1);
4270 if (status <= 0)
4271 DRM_DEBUG_KMS("Could not write test response to sink\n");
4272 }
4273
4274 static int
4275 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4276 {
4277 struct intel_crtc *crtc =
4278 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
4279 bool bret;
4280
4281 if (intel_dp->is_mst) {
4282 u8 esi[16] = { 0 };
4283 int ret = 0;
4284 int retry;
4285 bool handled;
4286 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4287 go_again:
4288 if (bret == true) {
4289
4290 /* check link status - esi[10] = 0x200c */
4291 if (intel_dp->active_mst_links &&
4292 !drm_dp_channel_eq_ok(&esi[10], crtc->config->lane_count)) {
4293 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4294 intel_dp_start_link_train(intel_dp);
4295 intel_dp_complete_link_train(intel_dp);
4296 intel_dp_stop_link_train(intel_dp);
4297 }
4298
4299 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4300 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4301
4302 if (handled) {
4303 for (retry = 0; retry < 3; retry++) {
4304 int wret;
4305 wret = drm_dp_dpcd_write(&intel_dp->aux,
4306 DP_SINK_COUNT_ESI+1,
4307 &esi[1], 3);
4308 if (wret == 3) {
4309 break;
4310 }
4311 }
4312
4313 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4314 if (bret == true) {
4315 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4316 goto go_again;
4317 }
4318 } else
4319 ret = 0;
4320
4321 return ret;
4322 } else {
4323 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4324 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4325 intel_dp->is_mst = false;
4326 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4327 /* send a hotplug event */
4328 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4329 }
4330 }
4331 return -EINVAL;
4332 }
4333
4334 /*
4335 * According to DP spec
4336 * 5.1.2:
4337 * 1. Read DPCD
4338 * 2. Configure link according to Receiver Capabilities
4339 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4340 * 4. Check link status on receipt of hot-plug interrupt
4341 */
4342 static void
4343 intel_dp_check_link_status(struct intel_dp *intel_dp)
4344 {
4345 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4346 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4347 struct intel_crtc *crtc =
4348 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
4349 u8 sink_irq_vector;
4350 u8 link_status[DP_LINK_STATUS_SIZE];
4351
4352 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4353
4354 if (!intel_encoder->base.crtc)
4355 return;
4356
4357 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4358 return;
4359
4360 /* Try to read receiver status if the link appears to be up */
4361 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4362 return;
4363 }
4364
4365 /* Now read the DPCD to see if it's actually running */
4366 if (!intel_dp_get_dpcd(intel_dp)) {
4367 return;
4368 }
4369
4370 /* Try to read the source of the interrupt */
4371 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4372 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4373 /* Clear interrupt source */
4374 drm_dp_dpcd_writeb(&intel_dp->aux,
4375 DP_DEVICE_SERVICE_IRQ_VECTOR,
4376 sink_irq_vector);
4377
4378 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4379 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4380 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4381 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4382 }
4383
4384 if (!drm_dp_channel_eq_ok(link_status, crtc->config->lane_count)) {
4385 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4386 intel_encoder->base.name);
4387 intel_dp_start_link_train(intel_dp);
4388 intel_dp_complete_link_train(intel_dp);
4389 intel_dp_stop_link_train(intel_dp);
4390 }
4391 }
4392
4393 /* XXX this is probably wrong for multiple downstream ports */
4394 static enum drm_connector_status
4395 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4396 {
4397 uint8_t *dpcd = intel_dp->dpcd;
4398 uint8_t type;
4399
4400 if (!intel_dp_get_dpcd(intel_dp))
4401 return connector_status_disconnected;
4402
4403 /* if there's no downstream port, we're done */
4404 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4405 return connector_status_connected;
4406
4407 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4408 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4409 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4410 uint8_t reg;
4411
4412 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4413 &reg, 1) < 0)
4414 return connector_status_unknown;
4415
4416 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4417 : connector_status_disconnected;
4418 }
4419
4420 /* If no HPD, poke DDC gently */
4421 if (drm_probe_ddc(&intel_dp->aux.ddc))
4422 return connector_status_connected;
4423
4424 /* Well we tried, say unknown for unreliable port types */
4425 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4426 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4427 if (type == DP_DS_PORT_TYPE_VGA ||
4428 type == DP_DS_PORT_TYPE_NON_EDID)
4429 return connector_status_unknown;
4430 } else {
4431 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4432 DP_DWN_STRM_PORT_TYPE_MASK;
4433 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4434 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4435 return connector_status_unknown;
4436 }
4437
4438 /* Anything else is out of spec, warn and ignore */
4439 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4440 return connector_status_disconnected;
4441 }
4442
4443 static enum drm_connector_status
4444 edp_detect(struct intel_dp *intel_dp)
4445 {
4446 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4447 enum drm_connector_status status;
4448
4449 status = intel_panel_detect(dev);
4450 if (status == connector_status_unknown)
4451 status = connector_status_connected;
4452
4453 return status;
4454 }
4455
4456 static enum drm_connector_status
4457 ironlake_dp_detect(struct intel_dp *intel_dp)
4458 {
4459 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4460 struct drm_i915_private *dev_priv = dev->dev_private;
4461 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4462
4463 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4464 return connector_status_disconnected;
4465
4466 return intel_dp_detect_dpcd(intel_dp);
4467 }
4468
4469 static int g4x_digital_port_connected(struct drm_device *dev,
4470 struct intel_digital_port *intel_dig_port)
4471 {
4472 struct drm_i915_private *dev_priv = dev->dev_private;
4473 uint32_t bit;
4474
4475 if (IS_VALLEYVIEW(dev)) {
4476 switch (intel_dig_port->port) {
4477 case PORT_B:
4478 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4479 break;
4480 case PORT_C:
4481 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4482 break;
4483 case PORT_D:
4484 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4485 break;
4486 default:
4487 return -EINVAL;
4488 }
4489 } else {
4490 switch (intel_dig_port->port) {
4491 case PORT_B:
4492 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4493 break;
4494 case PORT_C:
4495 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4496 break;
4497 case PORT_D:
4498 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4499 break;
4500 default:
4501 return -EINVAL;
4502 }
4503 }
4504
4505 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4506 return 0;
4507 return 1;
4508 }
4509
4510 static enum drm_connector_status
4511 g4x_dp_detect(struct intel_dp *intel_dp)
4512 {
4513 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4514 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4515 int ret;
4516
4517 /* Can't disconnect eDP, but you can close the lid... */
4518 if (is_edp(intel_dp)) {
4519 enum drm_connector_status status;
4520
4521 status = intel_panel_detect(dev);
4522 if (status == connector_status_unknown)
4523 status = connector_status_connected;
4524 return status;
4525 }
4526
4527 ret = g4x_digital_port_connected(dev, intel_dig_port);
4528 if (ret == -EINVAL)
4529 return connector_status_unknown;
4530 else if (ret == 0)
4531 return connector_status_disconnected;
4532
4533 return intel_dp_detect_dpcd(intel_dp);
4534 }
4535
4536 static struct edid *
4537 intel_dp_get_edid(struct intel_dp *intel_dp)
4538 {
4539 struct intel_connector *intel_connector = intel_dp->attached_connector;
4540
4541 /* use cached edid if we have one */
4542 if (intel_connector->edid) {
4543 /* invalid edid */
4544 if (IS_ERR(intel_connector->edid))
4545 return NULL;
4546
4547 return drm_edid_duplicate(intel_connector->edid);
4548 } else
4549 return drm_get_edid(&intel_connector->base,
4550 &intel_dp->aux.ddc);
4551 }
4552
4553 static void
4554 intel_dp_set_edid(struct intel_dp *intel_dp)
4555 {
4556 struct intel_connector *intel_connector = intel_dp->attached_connector;
4557 struct edid *edid;
4558
4559 edid = intel_dp_get_edid(intel_dp);
4560 intel_connector->detect_edid = edid;
4561
4562 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4563 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4564 else
4565 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4566 }
4567
4568 static void
4569 intel_dp_unset_edid(struct intel_dp *intel_dp)
4570 {
4571 struct intel_connector *intel_connector = intel_dp->attached_connector;
4572
4573 kfree(intel_connector->detect_edid);
4574 intel_connector->detect_edid = NULL;
4575
4576 intel_dp->has_audio = false;
4577 }
4578
4579 static enum intel_display_power_domain
4580 intel_dp_power_get(struct intel_dp *dp)
4581 {
4582 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4583 enum intel_display_power_domain power_domain;
4584
4585 power_domain = intel_display_port_power_domain(encoder);
4586 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4587
4588 return power_domain;
4589 }
4590
4591 static void
4592 intel_dp_power_put(struct intel_dp *dp,
4593 enum intel_display_power_domain power_domain)
4594 {
4595 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4596 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4597 }
4598
4599 static enum drm_connector_status
4600 intel_dp_detect(struct drm_connector *connector, bool force)
4601 {
4602 struct intel_dp *intel_dp = intel_attached_dp(connector);
4603 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4604 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4605 struct drm_device *dev = connector->dev;
4606 enum drm_connector_status status;
4607 enum intel_display_power_domain power_domain;
4608 bool ret;
4609 u8 sink_irq_vector;
4610
4611 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4612 connector->base.id, connector->name);
4613 intel_dp_unset_edid(intel_dp);
4614
4615 if (intel_dp->is_mst) {
4616 /* MST devices are disconnected from a monitor POV */
4617 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4618 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4619 return connector_status_disconnected;
4620 }
4621
4622 power_domain = intel_dp_power_get(intel_dp);
4623
4624 /* Can't disconnect eDP, but you can close the lid... */
4625 if (is_edp(intel_dp))
4626 status = edp_detect(intel_dp);
4627 else if (HAS_PCH_SPLIT(dev))
4628 status = ironlake_dp_detect(intel_dp);
4629 else
4630 status = g4x_dp_detect(intel_dp);
4631 if (status != connector_status_connected)
4632 goto out;
4633
4634 intel_dp_probe_oui(intel_dp);
4635
4636 ret = intel_dp_probe_mst(intel_dp);
4637 if (ret) {
4638 /* if we are in MST mode then this connector
4639 won't appear connected or have anything with EDID on it */
4640 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4641 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4642 status = connector_status_disconnected;
4643 goto out;
4644 }
4645
4646 intel_dp_set_edid(intel_dp);
4647
4648 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4649 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4650 status = connector_status_connected;
4651
4652 /* Try to read the source of the interrupt */
4653 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4654 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4655 /* Clear interrupt source */
4656 drm_dp_dpcd_writeb(&intel_dp->aux,
4657 DP_DEVICE_SERVICE_IRQ_VECTOR,
4658 sink_irq_vector);
4659
4660 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4661 intel_dp_handle_test_request(intel_dp);
4662 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4663 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4664 }
4665
4666 out:
4667 intel_dp_power_put(intel_dp, power_domain);
4668 return status;
4669 }
4670
4671 static void
4672 intel_dp_force(struct drm_connector *connector)
4673 {
4674 struct intel_dp *intel_dp = intel_attached_dp(connector);
4675 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4676 enum intel_display_power_domain power_domain;
4677
4678 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4679 connector->base.id, connector->name);
4680 intel_dp_unset_edid(intel_dp);
4681
4682 if (connector->status != connector_status_connected)
4683 return;
4684
4685 power_domain = intel_dp_power_get(intel_dp);
4686
4687 intel_dp_set_edid(intel_dp);
4688
4689 intel_dp_power_put(intel_dp, power_domain);
4690
4691 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4692 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4693 }
4694
4695 static int intel_dp_get_modes(struct drm_connector *connector)
4696 {
4697 struct intel_connector *intel_connector = to_intel_connector(connector);
4698 struct edid *edid;
4699
4700 edid = intel_connector->detect_edid;
4701 if (edid) {
4702 int ret = intel_connector_update_modes(connector, edid);
4703 if (ret)
4704 return ret;
4705 }
4706
4707 /* if eDP has no EDID, fall back to fixed mode */
4708 if (is_edp(intel_attached_dp(connector)) &&
4709 intel_connector->panel.fixed_mode) {
4710 struct drm_display_mode *mode;
4711
4712 mode = drm_mode_duplicate(connector->dev,
4713 intel_connector->panel.fixed_mode);
4714 if (mode) {
4715 drm_mode_probed_add(connector, mode);
4716 return 1;
4717 }
4718 }
4719
4720 return 0;
4721 }
4722
4723 static bool
4724 intel_dp_detect_audio(struct drm_connector *connector)
4725 {
4726 bool has_audio = false;
4727 struct edid *edid;
4728
4729 edid = to_intel_connector(connector)->detect_edid;
4730 if (edid)
4731 has_audio = drm_detect_monitor_audio(edid);
4732
4733 return has_audio;
4734 }
4735
4736 static int
4737 intel_dp_set_property(struct drm_connector *connector,
4738 struct drm_property *property,
4739 uint64_t val)
4740 {
4741 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4742 struct intel_connector *intel_connector = to_intel_connector(connector);
4743 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4744 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4745 int ret;
4746
4747 ret = drm_object_property_set_value(&connector->base, property, val);
4748 if (ret)
4749 return ret;
4750
4751 if (property == dev_priv->force_audio_property) {
4752 int i = val;
4753 bool has_audio;
4754
4755 if (i == intel_dp->force_audio)
4756 return 0;
4757
4758 intel_dp->force_audio = i;
4759
4760 if (i == HDMI_AUDIO_AUTO)
4761 has_audio = intel_dp_detect_audio(connector);
4762 else
4763 has_audio = (i == HDMI_AUDIO_ON);
4764
4765 if (has_audio == intel_dp->has_audio)
4766 return 0;
4767
4768 intel_dp->has_audio = has_audio;
4769 goto done;
4770 }
4771
4772 if (property == dev_priv->broadcast_rgb_property) {
4773 bool old_auto = intel_dp->color_range_auto;
4774 bool old_range = intel_dp->limited_color_range;
4775
4776 switch (val) {
4777 case INTEL_BROADCAST_RGB_AUTO:
4778 intel_dp->color_range_auto = true;
4779 break;
4780 case INTEL_BROADCAST_RGB_FULL:
4781 intel_dp->color_range_auto = false;
4782 intel_dp->limited_color_range = false;
4783 break;
4784 case INTEL_BROADCAST_RGB_LIMITED:
4785 intel_dp->color_range_auto = false;
4786 intel_dp->limited_color_range = true;
4787 break;
4788 default:
4789 return -EINVAL;
4790 }
4791
4792 if (old_auto == intel_dp->color_range_auto &&
4793 old_range == intel_dp->limited_color_range)
4794 return 0;
4795
4796 goto done;
4797 }
4798
4799 if (is_edp(intel_dp) &&
4800 property == connector->dev->mode_config.scaling_mode_property) {
4801 if (val == DRM_MODE_SCALE_NONE) {
4802 DRM_DEBUG_KMS("no scaling not supported\n");
4803 return -EINVAL;
4804 }
4805
4806 if (intel_connector->panel.fitting_mode == val) {
4807 /* the eDP scaling property is not changed */
4808 return 0;
4809 }
4810 intel_connector->panel.fitting_mode = val;
4811
4812 goto done;
4813 }
4814
4815 return -EINVAL;
4816
4817 done:
4818 if (intel_encoder->base.crtc)
4819 intel_crtc_restore_mode(intel_encoder->base.crtc);
4820
4821 return 0;
4822 }
4823
4824 static void
4825 intel_dp_connector_destroy(struct drm_connector *connector)
4826 {
4827 struct intel_connector *intel_connector = to_intel_connector(connector);
4828
4829 kfree(intel_connector->detect_edid);
4830
4831 if (!IS_ERR_OR_NULL(intel_connector->edid))
4832 kfree(intel_connector->edid);
4833
4834 /* Can't call is_edp() since the encoder may have been destroyed
4835 * already. */
4836 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4837 intel_panel_fini(&intel_connector->panel);
4838
4839 drm_connector_cleanup(connector);
4840 kfree(connector);
4841 }
4842
4843 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4844 {
4845 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4846 struct intel_dp *intel_dp = &intel_dig_port->dp;
4847
4848 drm_dp_aux_unregister(&intel_dp->aux);
4849 intel_dp_mst_encoder_cleanup(intel_dig_port);
4850 if (is_edp(intel_dp)) {
4851 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4852 /*
4853 * vdd might still be enabled do to the delayed vdd off.
4854 * Make sure vdd is actually turned off here.
4855 */
4856 pps_lock(intel_dp);
4857 edp_panel_vdd_off_sync(intel_dp);
4858 pps_unlock(intel_dp);
4859
4860 if (intel_dp->edp_notifier.notifier_call) {
4861 unregister_reboot_notifier(&intel_dp->edp_notifier);
4862 intel_dp->edp_notifier.notifier_call = NULL;
4863 }
4864 }
4865 drm_encoder_cleanup(encoder);
4866 kfree(intel_dig_port);
4867 }
4868
4869 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4870 {
4871 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4872
4873 if (!is_edp(intel_dp))
4874 return;
4875
4876 /*
4877 * vdd might still be enabled do to the delayed vdd off.
4878 * Make sure vdd is actually turned off here.
4879 */
4880 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4881 pps_lock(intel_dp);
4882 edp_panel_vdd_off_sync(intel_dp);
4883 pps_unlock(intel_dp);
4884 }
4885
4886 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4887 {
4888 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4889 struct drm_device *dev = intel_dig_port->base.base.dev;
4890 struct drm_i915_private *dev_priv = dev->dev_private;
4891 enum intel_display_power_domain power_domain;
4892
4893 lockdep_assert_held(&dev_priv->pps_mutex);
4894
4895 if (!edp_have_panel_vdd(intel_dp))
4896 return;
4897
4898 /*
4899 * The VDD bit needs a power domain reference, so if the bit is
4900 * already enabled when we boot or resume, grab this reference and
4901 * schedule a vdd off, so we don't hold on to the reference
4902 * indefinitely.
4903 */
4904 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4905 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4906 intel_display_power_get(dev_priv, power_domain);
4907
4908 edp_panel_vdd_schedule_off(intel_dp);
4909 }
4910
4911 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4912 {
4913 struct intel_dp *intel_dp;
4914
4915 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4916 return;
4917
4918 intel_dp = enc_to_intel_dp(encoder);
4919
4920 pps_lock(intel_dp);
4921
4922 /*
4923 * Read out the current power sequencer assignment,
4924 * in case the BIOS did something with it.
4925 */
4926 if (IS_VALLEYVIEW(encoder->dev))
4927 vlv_initial_power_sequencer_setup(intel_dp);
4928
4929 intel_edp_panel_vdd_sanitize(intel_dp);
4930
4931 pps_unlock(intel_dp);
4932 }
4933
4934 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4935 .dpms = drm_atomic_helper_connector_dpms,
4936 .detect = intel_dp_detect,
4937 .force = intel_dp_force,
4938 .fill_modes = drm_helper_probe_single_connector_modes,
4939 .set_property = intel_dp_set_property,
4940 .atomic_get_property = intel_connector_atomic_get_property,
4941 .destroy = intel_dp_connector_destroy,
4942 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4943 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4944 };
4945
4946 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4947 .get_modes = intel_dp_get_modes,
4948 .mode_valid = intel_dp_mode_valid,
4949 .best_encoder = intel_best_encoder,
4950 };
4951
4952 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4953 .reset = intel_dp_encoder_reset,
4954 .destroy = intel_dp_encoder_destroy,
4955 };
4956
4957 enum irqreturn
4958 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4959 {
4960 struct intel_dp *intel_dp = &intel_dig_port->dp;
4961 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4962 struct drm_device *dev = intel_dig_port->base.base.dev;
4963 struct drm_i915_private *dev_priv = dev->dev_private;
4964 enum intel_display_power_domain power_domain;
4965 enum irqreturn ret = IRQ_NONE;
4966
4967 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4968 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4969
4970 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4971 /*
4972 * vdd off can generate a long pulse on eDP which
4973 * would require vdd on to handle it, and thus we
4974 * would end up in an endless cycle of
4975 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4976 */
4977 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4978 port_name(intel_dig_port->port));
4979 return IRQ_HANDLED;
4980 }
4981
4982 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4983 port_name(intel_dig_port->port),
4984 long_hpd ? "long" : "short");
4985
4986 power_domain = intel_display_port_power_domain(intel_encoder);
4987 intel_display_power_get(dev_priv, power_domain);
4988
4989 if (long_hpd) {
4990 /* indicate that we need to restart link training */
4991 intel_dp->train_set_valid = false;
4992
4993 if (HAS_PCH_SPLIT(dev)) {
4994 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4995 goto mst_fail;
4996 } else {
4997 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4998 goto mst_fail;
4999 }
5000
5001 if (!intel_dp_get_dpcd(intel_dp)) {
5002 goto mst_fail;
5003 }
5004
5005 intel_dp_probe_oui(intel_dp);
5006
5007 if (!intel_dp_probe_mst(intel_dp))
5008 goto mst_fail;
5009
5010 } else {
5011 if (intel_dp->is_mst) {
5012 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5013 goto mst_fail;
5014 }
5015
5016 if (!intel_dp->is_mst) {
5017 /*
5018 * we'll check the link status via the normal hot plug path later -
5019 * but for short hpds we should check it now
5020 */
5021 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5022 intel_dp_check_link_status(intel_dp);
5023 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5024 }
5025 }
5026
5027 ret = IRQ_HANDLED;
5028
5029 goto put_power;
5030 mst_fail:
5031 /* if we were in MST mode, and device is not there get out of MST mode */
5032 if (intel_dp->is_mst) {
5033 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5034 intel_dp->is_mst = false;
5035 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5036 }
5037 put_power:
5038 intel_display_power_put(dev_priv, power_domain);
5039
5040 return ret;
5041 }
5042
5043 /* Return which DP Port should be selected for Transcoder DP control */
5044 int
5045 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5046 {
5047 struct drm_device *dev = crtc->dev;
5048 struct intel_encoder *intel_encoder;
5049 struct intel_dp *intel_dp;
5050
5051 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5052 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5053
5054 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5055 intel_encoder->type == INTEL_OUTPUT_EDP)
5056 return intel_dp->output_reg;
5057 }
5058
5059 return -1;
5060 }
5061
5062 /* check the VBT to see whether the eDP is on DP-D port */
5063 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5064 {
5065 struct drm_i915_private *dev_priv = dev->dev_private;
5066 union child_device_config *p_child;
5067 int i;
5068 static const short port_mapping[] = {
5069 [PORT_B] = PORT_IDPB,
5070 [PORT_C] = PORT_IDPC,
5071 [PORT_D] = PORT_IDPD,
5072 };
5073
5074 if (port == PORT_A)
5075 return true;
5076
5077 if (!dev_priv->vbt.child_dev_num)
5078 return false;
5079
5080 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5081 p_child = dev_priv->vbt.child_dev + i;
5082
5083 if (p_child->common.dvo_port == port_mapping[port] &&
5084 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5085 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5086 return true;
5087 }
5088 return false;
5089 }
5090
5091 void
5092 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5093 {
5094 struct intel_connector *intel_connector = to_intel_connector(connector);
5095
5096 intel_attach_force_audio_property(connector);
5097 intel_attach_broadcast_rgb_property(connector);
5098 intel_dp->color_range_auto = true;
5099
5100 if (is_edp(intel_dp)) {
5101 drm_mode_create_scaling_mode_property(connector->dev);
5102 drm_object_attach_property(
5103 &connector->base,
5104 connector->dev->mode_config.scaling_mode_property,
5105 DRM_MODE_SCALE_ASPECT);
5106 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5107 }
5108 }
5109
5110 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5111 {
5112 intel_dp->last_power_cycle = jiffies;
5113 intel_dp->last_power_on = jiffies;
5114 intel_dp->last_backlight_off = jiffies;
5115 }
5116
5117 static void
5118 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5119 struct intel_dp *intel_dp)
5120 {
5121 struct drm_i915_private *dev_priv = dev->dev_private;
5122 struct edp_power_seq cur, vbt, spec,
5123 *final = &intel_dp->pps_delays;
5124 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5125 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5126
5127 lockdep_assert_held(&dev_priv->pps_mutex);
5128
5129 /* already initialized? */
5130 if (final->t11_t12 != 0)
5131 return;
5132
5133 if (IS_BROXTON(dev)) {
5134 /*
5135 * TODO: BXT has 2 sets of PPS registers.
5136 * Correct Register for Broxton need to be identified
5137 * using VBT. hardcoding for now
5138 */
5139 pp_ctrl_reg = BXT_PP_CONTROL(0);
5140 pp_on_reg = BXT_PP_ON_DELAYS(0);
5141 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5142 } else if (HAS_PCH_SPLIT(dev)) {
5143 pp_ctrl_reg = PCH_PP_CONTROL;
5144 pp_on_reg = PCH_PP_ON_DELAYS;
5145 pp_off_reg = PCH_PP_OFF_DELAYS;
5146 pp_div_reg = PCH_PP_DIVISOR;
5147 } else {
5148 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5149
5150 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5151 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5152 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5153 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5154 }
5155
5156 /* Workaround: Need to write PP_CONTROL with the unlock key as
5157 * the very first thing. */
5158 pp_ctl = ironlake_get_pp_control(intel_dp);
5159
5160 pp_on = I915_READ(pp_on_reg);
5161 pp_off = I915_READ(pp_off_reg);
5162 if (!IS_BROXTON(dev)) {
5163 I915_WRITE(pp_ctrl_reg, pp_ctl);
5164 pp_div = I915_READ(pp_div_reg);
5165 }
5166
5167 /* Pull timing values out of registers */
5168 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5169 PANEL_POWER_UP_DELAY_SHIFT;
5170
5171 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5172 PANEL_LIGHT_ON_DELAY_SHIFT;
5173
5174 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5175 PANEL_LIGHT_OFF_DELAY_SHIFT;
5176
5177 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5178 PANEL_POWER_DOWN_DELAY_SHIFT;
5179
5180 if (IS_BROXTON(dev)) {
5181 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5182 BXT_POWER_CYCLE_DELAY_SHIFT;
5183 if (tmp > 0)
5184 cur.t11_t12 = (tmp - 1) * 1000;
5185 else
5186 cur.t11_t12 = 0;
5187 } else {
5188 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5189 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5190 }
5191
5192 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5193 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5194
5195 vbt = dev_priv->vbt.edp_pps;
5196
5197 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5198 * our hw here, which are all in 100usec. */
5199 spec.t1_t3 = 210 * 10;
5200 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5201 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5202 spec.t10 = 500 * 10;
5203 /* This one is special and actually in units of 100ms, but zero
5204 * based in the hw (so we need to add 100 ms). But the sw vbt
5205 * table multiplies it with 1000 to make it in units of 100usec,
5206 * too. */
5207 spec.t11_t12 = (510 + 100) * 10;
5208
5209 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5210 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5211
5212 /* Use the max of the register settings and vbt. If both are
5213 * unset, fall back to the spec limits. */
5214 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5215 spec.field : \
5216 max(cur.field, vbt.field))
5217 assign_final(t1_t3);
5218 assign_final(t8);
5219 assign_final(t9);
5220 assign_final(t10);
5221 assign_final(t11_t12);
5222 #undef assign_final
5223
5224 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5225 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5226 intel_dp->backlight_on_delay = get_delay(t8);
5227 intel_dp->backlight_off_delay = get_delay(t9);
5228 intel_dp->panel_power_down_delay = get_delay(t10);
5229 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5230 #undef get_delay
5231
5232 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5233 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5234 intel_dp->panel_power_cycle_delay);
5235
5236 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5237 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5238 }
5239
5240 static void
5241 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5242 struct intel_dp *intel_dp)
5243 {
5244 struct drm_i915_private *dev_priv = dev->dev_private;
5245 u32 pp_on, pp_off, pp_div, port_sel = 0;
5246 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5247 int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5248 enum port port = dp_to_dig_port(intel_dp)->port;
5249 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5250
5251 lockdep_assert_held(&dev_priv->pps_mutex);
5252
5253 if (IS_BROXTON(dev)) {
5254 /*
5255 * TODO: BXT has 2 sets of PPS registers.
5256 * Correct Register for Broxton need to be identified
5257 * using VBT. hardcoding for now
5258 */
5259 pp_ctrl_reg = BXT_PP_CONTROL(0);
5260 pp_on_reg = BXT_PP_ON_DELAYS(0);
5261 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5262
5263 } else if (HAS_PCH_SPLIT(dev)) {
5264 pp_on_reg = PCH_PP_ON_DELAYS;
5265 pp_off_reg = PCH_PP_OFF_DELAYS;
5266 pp_div_reg = PCH_PP_DIVISOR;
5267 } else {
5268 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5269
5270 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5271 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5272 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5273 }
5274
5275 /*
5276 * And finally store the new values in the power sequencer. The
5277 * backlight delays are set to 1 because we do manual waits on them. For
5278 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5279 * we'll end up waiting for the backlight off delay twice: once when we
5280 * do the manual sleep, and once when we disable the panel and wait for
5281 * the PP_STATUS bit to become zero.
5282 */
5283 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5284 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5285 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5286 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5287 /* Compute the divisor for the pp clock, simply match the Bspec
5288 * formula. */
5289 if (IS_BROXTON(dev)) {
5290 pp_div = I915_READ(pp_ctrl_reg);
5291 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5292 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5293 << BXT_POWER_CYCLE_DELAY_SHIFT);
5294 } else {
5295 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5296 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5297 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5298 }
5299
5300 /* Haswell doesn't have any port selection bits for the panel
5301 * power sequencer any more. */
5302 if (IS_VALLEYVIEW(dev)) {
5303 port_sel = PANEL_PORT_SELECT_VLV(port);
5304 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5305 if (port == PORT_A)
5306 port_sel = PANEL_PORT_SELECT_DPA;
5307 else
5308 port_sel = PANEL_PORT_SELECT_DPD;
5309 }
5310
5311 pp_on |= port_sel;
5312
5313 I915_WRITE(pp_on_reg, pp_on);
5314 I915_WRITE(pp_off_reg, pp_off);
5315 if (IS_BROXTON(dev))
5316 I915_WRITE(pp_ctrl_reg, pp_div);
5317 else
5318 I915_WRITE(pp_div_reg, pp_div);
5319
5320 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5321 I915_READ(pp_on_reg),
5322 I915_READ(pp_off_reg),
5323 IS_BROXTON(dev) ?
5324 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5325 I915_READ(pp_div_reg));
5326 }
5327
5328 /**
5329 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5330 * @dev: DRM device
5331 * @refresh_rate: RR to be programmed
5332 *
5333 * This function gets called when refresh rate (RR) has to be changed from
5334 * one frequency to another. Switches can be between high and low RR
5335 * supported by the panel or to any other RR based on media playback (in
5336 * this case, RR value needs to be passed from user space).
5337 *
5338 * The caller of this function needs to take a lock on dev_priv->drrs.
5339 */
5340 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5341 {
5342 struct drm_i915_private *dev_priv = dev->dev_private;
5343 struct intel_encoder *encoder;
5344 struct intel_digital_port *dig_port = NULL;
5345 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5346 struct intel_crtc_state *config = NULL;
5347 struct intel_crtc *intel_crtc = NULL;
5348 u32 reg, val;
5349 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5350
5351 if (refresh_rate <= 0) {
5352 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5353 return;
5354 }
5355
5356 if (intel_dp == NULL) {
5357 DRM_DEBUG_KMS("DRRS not supported.\n");
5358 return;
5359 }
5360
5361 /*
5362 * FIXME: This needs proper synchronization with psr state for some
5363 * platforms that cannot have PSR and DRRS enabled at the same time.
5364 */
5365
5366 dig_port = dp_to_dig_port(intel_dp);
5367 encoder = &dig_port->base;
5368 intel_crtc = to_intel_crtc(encoder->base.crtc);
5369
5370 if (!intel_crtc) {
5371 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5372 return;
5373 }
5374
5375 config = intel_crtc->config;
5376
5377 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5378 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5379 return;
5380 }
5381
5382 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5383 refresh_rate)
5384 index = DRRS_LOW_RR;
5385
5386 if (index == dev_priv->drrs.refresh_rate_type) {
5387 DRM_DEBUG_KMS(
5388 "DRRS requested for previously set RR...ignoring\n");
5389 return;
5390 }
5391
5392 if (!intel_crtc->active) {
5393 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5394 return;
5395 }
5396
5397 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5398 switch (index) {
5399 case DRRS_HIGH_RR:
5400 intel_dp_set_m_n(intel_crtc, M1_N1);
5401 break;
5402 case DRRS_LOW_RR:
5403 intel_dp_set_m_n(intel_crtc, M2_N2);
5404 break;
5405 case DRRS_MAX_RR:
5406 default:
5407 DRM_ERROR("Unsupported refreshrate type\n");
5408 }
5409 } else if (INTEL_INFO(dev)->gen > 6) {
5410 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5411 val = I915_READ(reg);
5412
5413 if (index > DRRS_HIGH_RR) {
5414 if (IS_VALLEYVIEW(dev))
5415 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5416 else
5417 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5418 } else {
5419 if (IS_VALLEYVIEW(dev))
5420 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5421 else
5422 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5423 }
5424 I915_WRITE(reg, val);
5425 }
5426
5427 dev_priv->drrs.refresh_rate_type = index;
5428
5429 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5430 }
5431
5432 /**
5433 * intel_edp_drrs_enable - init drrs struct if supported
5434 * @intel_dp: DP struct
5435 *
5436 * Initializes frontbuffer_bits and drrs.dp
5437 */
5438 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5439 {
5440 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5441 struct drm_i915_private *dev_priv = dev->dev_private;
5442 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5443 struct drm_crtc *crtc = dig_port->base.base.crtc;
5444 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5445
5446 if (!intel_crtc->config->has_drrs) {
5447 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5448 return;
5449 }
5450
5451 mutex_lock(&dev_priv->drrs.mutex);
5452 if (WARN_ON(dev_priv->drrs.dp)) {
5453 DRM_ERROR("DRRS already enabled\n");
5454 goto unlock;
5455 }
5456
5457 dev_priv->drrs.busy_frontbuffer_bits = 0;
5458
5459 dev_priv->drrs.dp = intel_dp;
5460
5461 unlock:
5462 mutex_unlock(&dev_priv->drrs.mutex);
5463 }
5464
5465 /**
5466 * intel_edp_drrs_disable - Disable DRRS
5467 * @intel_dp: DP struct
5468 *
5469 */
5470 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5471 {
5472 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5473 struct drm_i915_private *dev_priv = dev->dev_private;
5474 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5475 struct drm_crtc *crtc = dig_port->base.base.crtc;
5476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5477
5478 if (!intel_crtc->config->has_drrs)
5479 return;
5480
5481 mutex_lock(&dev_priv->drrs.mutex);
5482 if (!dev_priv->drrs.dp) {
5483 mutex_unlock(&dev_priv->drrs.mutex);
5484 return;
5485 }
5486
5487 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5488 intel_dp_set_drrs_state(dev_priv->dev,
5489 intel_dp->attached_connector->panel.
5490 fixed_mode->vrefresh);
5491
5492 dev_priv->drrs.dp = NULL;
5493 mutex_unlock(&dev_priv->drrs.mutex);
5494
5495 cancel_delayed_work_sync(&dev_priv->drrs.work);
5496 }
5497
5498 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5499 {
5500 struct drm_i915_private *dev_priv =
5501 container_of(work, typeof(*dev_priv), drrs.work.work);
5502 struct intel_dp *intel_dp;
5503
5504 mutex_lock(&dev_priv->drrs.mutex);
5505
5506 intel_dp = dev_priv->drrs.dp;
5507
5508 if (!intel_dp)
5509 goto unlock;
5510
5511 /*
5512 * The delayed work can race with an invalidate hence we need to
5513 * recheck.
5514 */
5515
5516 if (dev_priv->drrs.busy_frontbuffer_bits)
5517 goto unlock;
5518
5519 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5520 intel_dp_set_drrs_state(dev_priv->dev,
5521 intel_dp->attached_connector->panel.
5522 downclock_mode->vrefresh);
5523
5524 unlock:
5525 mutex_unlock(&dev_priv->drrs.mutex);
5526 }
5527
5528 /**
5529 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5530 * @dev: DRM device
5531 * @frontbuffer_bits: frontbuffer plane tracking bits
5532 *
5533 * This function gets called everytime rendering on the given planes start.
5534 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5535 *
5536 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5537 */
5538 void intel_edp_drrs_invalidate(struct drm_device *dev,
5539 unsigned frontbuffer_bits)
5540 {
5541 struct drm_i915_private *dev_priv = dev->dev_private;
5542 struct drm_crtc *crtc;
5543 enum pipe pipe;
5544
5545 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5546 return;
5547
5548 cancel_delayed_work(&dev_priv->drrs.work);
5549
5550 mutex_lock(&dev_priv->drrs.mutex);
5551 if (!dev_priv->drrs.dp) {
5552 mutex_unlock(&dev_priv->drrs.mutex);
5553 return;
5554 }
5555
5556 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5557 pipe = to_intel_crtc(crtc)->pipe;
5558
5559 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5560 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5561
5562 /* invalidate means busy screen hence upclock */
5563 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5564 intel_dp_set_drrs_state(dev_priv->dev,
5565 dev_priv->drrs.dp->attached_connector->panel.
5566 fixed_mode->vrefresh);
5567
5568 mutex_unlock(&dev_priv->drrs.mutex);
5569 }
5570
5571 /**
5572 * intel_edp_drrs_flush - Restart Idleness DRRS
5573 * @dev: DRM device
5574 * @frontbuffer_bits: frontbuffer plane tracking bits
5575 *
5576 * This function gets called every time rendering on the given planes has
5577 * completed or flip on a crtc is completed. So DRRS should be upclocked
5578 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5579 * if no other planes are dirty.
5580 *
5581 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5582 */
5583 void intel_edp_drrs_flush(struct drm_device *dev,
5584 unsigned frontbuffer_bits)
5585 {
5586 struct drm_i915_private *dev_priv = dev->dev_private;
5587 struct drm_crtc *crtc;
5588 enum pipe pipe;
5589
5590 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5591 return;
5592
5593 cancel_delayed_work(&dev_priv->drrs.work);
5594
5595 mutex_lock(&dev_priv->drrs.mutex);
5596 if (!dev_priv->drrs.dp) {
5597 mutex_unlock(&dev_priv->drrs.mutex);
5598 return;
5599 }
5600
5601 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5602 pipe = to_intel_crtc(crtc)->pipe;
5603
5604 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5605 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5606
5607 /* flush means busy screen hence upclock */
5608 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5609 intel_dp_set_drrs_state(dev_priv->dev,
5610 dev_priv->drrs.dp->attached_connector->panel.
5611 fixed_mode->vrefresh);
5612
5613 /*
5614 * flush also means no more activity hence schedule downclock, if all
5615 * other fbs are quiescent too
5616 */
5617 if (!dev_priv->drrs.busy_frontbuffer_bits)
5618 schedule_delayed_work(&dev_priv->drrs.work,
5619 msecs_to_jiffies(1000));
5620 mutex_unlock(&dev_priv->drrs.mutex);
5621 }
5622
5623 /**
5624 * DOC: Display Refresh Rate Switching (DRRS)
5625 *
5626 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5627 * which enables swtching between low and high refresh rates,
5628 * dynamically, based on the usage scenario. This feature is applicable
5629 * for internal panels.
5630 *
5631 * Indication that the panel supports DRRS is given by the panel EDID, which
5632 * would list multiple refresh rates for one resolution.
5633 *
5634 * DRRS is of 2 types - static and seamless.
5635 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5636 * (may appear as a blink on screen) and is used in dock-undock scenario.
5637 * Seamless DRRS involves changing RR without any visual effect to the user
5638 * and can be used during normal system usage. This is done by programming
5639 * certain registers.
5640 *
5641 * Support for static/seamless DRRS may be indicated in the VBT based on
5642 * inputs from the panel spec.
5643 *
5644 * DRRS saves power by switching to low RR based on usage scenarios.
5645 *
5646 * eDP DRRS:-
5647 * The implementation is based on frontbuffer tracking implementation.
5648 * When there is a disturbance on the screen triggered by user activity or a
5649 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5650 * When there is no movement on screen, after a timeout of 1 second, a switch
5651 * to low RR is made.
5652 * For integration with frontbuffer tracking code,
5653 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5654 *
5655 * DRRS can be further extended to support other internal panels and also
5656 * the scenario of video playback wherein RR is set based on the rate
5657 * requested by userspace.
5658 */
5659
5660 /**
5661 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5662 * @intel_connector: eDP connector
5663 * @fixed_mode: preferred mode of panel
5664 *
5665 * This function is called only once at driver load to initialize basic
5666 * DRRS stuff.
5667 *
5668 * Returns:
5669 * Downclock mode if panel supports it, else return NULL.
5670 * DRRS support is determined by the presence of downclock mode (apart
5671 * from VBT setting).
5672 */
5673 static struct drm_display_mode *
5674 intel_dp_drrs_init(struct intel_connector *intel_connector,
5675 struct drm_display_mode *fixed_mode)
5676 {
5677 struct drm_connector *connector = &intel_connector->base;
5678 struct drm_device *dev = connector->dev;
5679 struct drm_i915_private *dev_priv = dev->dev_private;
5680 struct drm_display_mode *downclock_mode = NULL;
5681
5682 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5683 mutex_init(&dev_priv->drrs.mutex);
5684
5685 if (INTEL_INFO(dev)->gen <= 6) {
5686 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5687 return NULL;
5688 }
5689
5690 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5691 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5692 return NULL;
5693 }
5694
5695 downclock_mode = intel_find_panel_downclock
5696 (dev, fixed_mode, connector);
5697
5698 if (!downclock_mode) {
5699 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5700 return NULL;
5701 }
5702
5703 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5704
5705 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5706 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5707 return downclock_mode;
5708 }
5709
5710 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5711 struct intel_connector *intel_connector)
5712 {
5713 struct drm_connector *connector = &intel_connector->base;
5714 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5715 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5716 struct drm_device *dev = intel_encoder->base.dev;
5717 struct drm_i915_private *dev_priv = dev->dev_private;
5718 struct drm_display_mode *fixed_mode = NULL;
5719 struct drm_display_mode *downclock_mode = NULL;
5720 bool has_dpcd;
5721 struct drm_display_mode *scan;
5722 struct edid *edid;
5723 enum pipe pipe = INVALID_PIPE;
5724
5725 if (!is_edp(intel_dp))
5726 return true;
5727
5728 pps_lock(intel_dp);
5729 intel_edp_panel_vdd_sanitize(intel_dp);
5730 pps_unlock(intel_dp);
5731
5732 /* Cache DPCD and EDID for edp. */
5733 has_dpcd = intel_dp_get_dpcd(intel_dp);
5734
5735 if (has_dpcd) {
5736 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5737 dev_priv->no_aux_handshake =
5738 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5739 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5740 } else {
5741 /* if this fails, presume the device is a ghost */
5742 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5743 return false;
5744 }
5745
5746 /* We now know it's not a ghost, init power sequence regs. */
5747 pps_lock(intel_dp);
5748 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5749 pps_unlock(intel_dp);
5750
5751 mutex_lock(&dev->mode_config.mutex);
5752 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5753 if (edid) {
5754 if (drm_add_edid_modes(connector, edid)) {
5755 drm_mode_connector_update_edid_property(connector,
5756 edid);
5757 drm_edid_to_eld(connector, edid);
5758 } else {
5759 kfree(edid);
5760 edid = ERR_PTR(-EINVAL);
5761 }
5762 } else {
5763 edid = ERR_PTR(-ENOENT);
5764 }
5765 intel_connector->edid = edid;
5766
5767 /* prefer fixed mode from EDID if available */
5768 list_for_each_entry(scan, &connector->probed_modes, head) {
5769 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5770 fixed_mode = drm_mode_duplicate(dev, scan);
5771 downclock_mode = intel_dp_drrs_init(
5772 intel_connector, fixed_mode);
5773 break;
5774 }
5775 }
5776
5777 /* fallback to VBT if available for eDP */
5778 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5779 fixed_mode = drm_mode_duplicate(dev,
5780 dev_priv->vbt.lfp_lvds_vbt_mode);
5781 if (fixed_mode)
5782 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5783 }
5784 mutex_unlock(&dev->mode_config.mutex);
5785
5786 if (IS_VALLEYVIEW(dev)) {
5787 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5788 register_reboot_notifier(&intel_dp->edp_notifier);
5789
5790 /*
5791 * Figure out the current pipe for the initial backlight setup.
5792 * If the current pipe isn't valid, try the PPS pipe, and if that
5793 * fails just assume pipe A.
5794 */
5795 if (IS_CHERRYVIEW(dev))
5796 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5797 else
5798 pipe = PORT_TO_PIPE(intel_dp->DP);
5799
5800 if (pipe != PIPE_A && pipe != PIPE_B)
5801 pipe = intel_dp->pps_pipe;
5802
5803 if (pipe != PIPE_A && pipe != PIPE_B)
5804 pipe = PIPE_A;
5805
5806 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5807 pipe_name(pipe));
5808 }
5809
5810 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5811 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5812 intel_panel_setup_backlight(connector, pipe);
5813
5814 return true;
5815 }
5816
5817 bool
5818 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5819 struct intel_connector *intel_connector)
5820 {
5821 struct drm_connector *connector = &intel_connector->base;
5822 struct intel_dp *intel_dp = &intel_dig_port->dp;
5823 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5824 struct drm_device *dev = intel_encoder->base.dev;
5825 struct drm_i915_private *dev_priv = dev->dev_private;
5826 enum port port = intel_dig_port->port;
5827 int type;
5828
5829 intel_dp->pps_pipe = INVALID_PIPE;
5830
5831 /* intel_dp vfuncs */
5832 if (INTEL_INFO(dev)->gen >= 9)
5833 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5834 else if (IS_VALLEYVIEW(dev))
5835 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5836 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5837 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5838 else if (HAS_PCH_SPLIT(dev))
5839 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5840 else
5841 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5842
5843 if (INTEL_INFO(dev)->gen >= 9)
5844 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5845 else
5846 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5847
5848 /* Preserve the current hw state. */
5849 intel_dp->DP = I915_READ(intel_dp->output_reg);
5850 intel_dp->attached_connector = intel_connector;
5851
5852 if (intel_dp_is_edp(dev, port))
5853 type = DRM_MODE_CONNECTOR_eDP;
5854 else
5855 type = DRM_MODE_CONNECTOR_DisplayPort;
5856
5857 /*
5858 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5859 * for DP the encoder type can be set by the caller to
5860 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5861 */
5862 if (type == DRM_MODE_CONNECTOR_eDP)
5863 intel_encoder->type = INTEL_OUTPUT_EDP;
5864
5865 /* eDP only on port B and/or C on vlv/chv */
5866 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5867 port != PORT_B && port != PORT_C))
5868 return false;
5869
5870 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5871 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5872 port_name(port));
5873
5874 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5875 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5876
5877 connector->interlace_allowed = true;
5878 connector->doublescan_allowed = 0;
5879
5880 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5881 edp_panel_vdd_work);
5882
5883 intel_connector_attach_encoder(intel_connector, intel_encoder);
5884 drm_connector_register(connector);
5885
5886 if (HAS_DDI(dev))
5887 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5888 else
5889 intel_connector->get_hw_state = intel_connector_get_hw_state;
5890 intel_connector->unregister = intel_dp_connector_unregister;
5891
5892 /* Set up the hotplug pin. */
5893 switch (port) {
5894 case PORT_A:
5895 intel_encoder->hpd_pin = HPD_PORT_A;
5896 break;
5897 case PORT_B:
5898 intel_encoder->hpd_pin = HPD_PORT_B;
5899 if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
5900 intel_encoder->hpd_pin = HPD_PORT_A;
5901 break;
5902 case PORT_C:
5903 intel_encoder->hpd_pin = HPD_PORT_C;
5904 break;
5905 case PORT_D:
5906 intel_encoder->hpd_pin = HPD_PORT_D;
5907 break;
5908 default:
5909 BUG();
5910 }
5911
5912 if (is_edp(intel_dp)) {
5913 pps_lock(intel_dp);
5914 intel_dp_init_panel_power_timestamps(intel_dp);
5915 if (IS_VALLEYVIEW(dev))
5916 vlv_initial_power_sequencer_setup(intel_dp);
5917 else
5918 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5919 pps_unlock(intel_dp);
5920 }
5921
5922 intel_dp_aux_init(intel_dp, intel_connector);
5923
5924 /* init MST on ports that can support it */
5925 if (HAS_DP_MST(dev) &&
5926 (port == PORT_B || port == PORT_C || port == PORT_D))
5927 intel_dp_mst_encoder_init(intel_dig_port,
5928 intel_connector->base.base.id);
5929
5930 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5931 drm_dp_aux_unregister(&intel_dp->aux);
5932 if (is_edp(intel_dp)) {
5933 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5934 /*
5935 * vdd might still be enabled do to the delayed vdd off.
5936 * Make sure vdd is actually turned off here.
5937 */
5938 pps_lock(intel_dp);
5939 edp_panel_vdd_off_sync(intel_dp);
5940 pps_unlock(intel_dp);
5941 }
5942 drm_connector_unregister(connector);
5943 drm_connector_cleanup(connector);
5944 return false;
5945 }
5946
5947 intel_dp_add_properties(intel_dp, connector);
5948
5949 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5950 * 0xd. Failure to do so will result in spurious interrupts being
5951 * generated on the port when a cable is not attached.
5952 */
5953 if (IS_G4X(dev) && !IS_GM45(dev)) {
5954 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5955 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5956 }
5957
5958 i915_debugfs_connector_add(connector);
5959
5960 return true;
5961 }
5962
5963 void
5964 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5965 {
5966 struct drm_i915_private *dev_priv = dev->dev_private;
5967 struct intel_digital_port *intel_dig_port;
5968 struct intel_encoder *intel_encoder;
5969 struct drm_encoder *encoder;
5970 struct intel_connector *intel_connector;
5971
5972 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5973 if (!intel_dig_port)
5974 return;
5975
5976 intel_connector = intel_connector_alloc();
5977 if (!intel_connector) {
5978 kfree(intel_dig_port);
5979 return;
5980 }
5981
5982 intel_encoder = &intel_dig_port->base;
5983 encoder = &intel_encoder->base;
5984
5985 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5986 DRM_MODE_ENCODER_TMDS);
5987
5988 intel_encoder->compute_config = intel_dp_compute_config;
5989 intel_encoder->disable = intel_disable_dp;
5990 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5991 intel_encoder->get_config = intel_dp_get_config;
5992 intel_encoder->suspend = intel_dp_encoder_suspend;
5993 if (IS_CHERRYVIEW(dev)) {
5994 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5995 intel_encoder->pre_enable = chv_pre_enable_dp;
5996 intel_encoder->enable = vlv_enable_dp;
5997 intel_encoder->post_disable = chv_post_disable_dp;
5998 } else if (IS_VALLEYVIEW(dev)) {
5999 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6000 intel_encoder->pre_enable = vlv_pre_enable_dp;
6001 intel_encoder->enable = vlv_enable_dp;
6002 intel_encoder->post_disable = vlv_post_disable_dp;
6003 } else {
6004 intel_encoder->pre_enable = g4x_pre_enable_dp;
6005 intel_encoder->enable = g4x_enable_dp;
6006 if (INTEL_INFO(dev)->gen >= 5)
6007 intel_encoder->post_disable = ilk_post_disable_dp;
6008 }
6009
6010 intel_dig_port->port = port;
6011 intel_dig_port->dp.output_reg = output_reg;
6012
6013 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6014 if (IS_CHERRYVIEW(dev)) {
6015 if (port == PORT_D)
6016 intel_encoder->crtc_mask = 1 << 2;
6017 else
6018 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6019 } else {
6020 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6021 }
6022 intel_encoder->cloneable = 0;
6023
6024 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6025 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6026
6027 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
6028 drm_encoder_cleanup(encoder);
6029 kfree(intel_dig_port);
6030 kfree(intel_connector);
6031 }
6032 }
6033
6034 void intel_dp_mst_suspend(struct drm_device *dev)
6035 {
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037 int i;
6038
6039 /* disable MST */
6040 for (i = 0; i < I915_MAX_PORTS; i++) {
6041 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6042 if (!intel_dig_port)
6043 continue;
6044
6045 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6046 if (!intel_dig_port->dp.can_mst)
6047 continue;
6048 if (intel_dig_port->dp.is_mst)
6049 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6050 }
6051 }
6052 }
6053
6054 void intel_dp_mst_resume(struct drm_device *dev)
6055 {
6056 struct drm_i915_private *dev_priv = dev->dev_private;
6057 int i;
6058
6059 for (i = 0; i < I915_MAX_PORTS; i++) {
6060 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6061 if (!intel_dig_port)
6062 continue;
6063 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6064 int ret;
6065
6066 if (!intel_dig_port->dp.can_mst)
6067 continue;
6068
6069 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6070 if (ret != 0) {
6071 intel_dp_check_mst_status(&intel_dig_port->dp);
6072 }
6073 }
6074 }
6075 }
This page took 0.190244 seconds and 5 git commands to generate.