Merge 2.6.38-rc5 into staging-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE 9
44
45 struct intel_dp {
46 struct intel_encoder base;
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
50 bool has_audio;
51 int force_audio;
52 int dpms_mode;
53 uint8_t link_bw;
54 uint8_t lane_count;
55 uint8_t dpcd[4];
56 struct i2c_adapter adapter;
57 struct i2c_algo_dp_aux_data algo;
58 bool is_pch_edp;
59 uint8_t train_set[4];
60 uint8_t link_status[DP_LINK_STATUS_SIZE];
61
62 struct drm_property *force_audio_property;
63 };
64
65 /**
66 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
67 * @intel_dp: DP struct
68 *
69 * If a CPU or PCH DP output is attached to an eDP panel, this function
70 * will return true, and false otherwise.
71 */
72 static bool is_edp(struct intel_dp *intel_dp)
73 {
74 return intel_dp->base.type == INTEL_OUTPUT_EDP;
75 }
76
77 /**
78 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
79 * @intel_dp: DP struct
80 *
81 * Returns true if the given DP struct corresponds to a PCH DP port attached
82 * to an eDP panel, false otherwise. Helpful for determining whether we
83 * may need FDI resources for a given DP output or not.
84 */
85 static bool is_pch_edp(struct intel_dp *intel_dp)
86 {
87 return intel_dp->is_pch_edp;
88 }
89
90 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
91 {
92 return container_of(encoder, struct intel_dp, base.base);
93 }
94
95 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
96 {
97 return container_of(intel_attached_encoder(connector),
98 struct intel_dp, base);
99 }
100
101 /**
102 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
103 * @encoder: DRM encoder
104 *
105 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
106 * by intel_display.c.
107 */
108 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
109 {
110 struct intel_dp *intel_dp;
111
112 if (!encoder)
113 return false;
114
115 intel_dp = enc_to_intel_dp(encoder);
116
117 return is_pch_edp(intel_dp);
118 }
119
120 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
121 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
122 static void intel_dp_link_down(struct intel_dp *intel_dp);
123
124 void
125 intel_edp_link_config (struct intel_encoder *intel_encoder,
126 int *lane_num, int *link_bw)
127 {
128 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
129
130 *lane_num = intel_dp->lane_count;
131 if (intel_dp->link_bw == DP_LINK_BW_1_62)
132 *link_bw = 162000;
133 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
134 *link_bw = 270000;
135 }
136
137 static int
138 intel_dp_max_lane_count(struct intel_dp *intel_dp)
139 {
140 int max_lane_count = 4;
141
142 if (intel_dp->dpcd[0] >= 0x11) {
143 max_lane_count = intel_dp->dpcd[2] & 0x1f;
144 switch (max_lane_count) {
145 case 1: case 2: case 4:
146 break;
147 default:
148 max_lane_count = 4;
149 }
150 }
151 return max_lane_count;
152 }
153
154 static int
155 intel_dp_max_link_bw(struct intel_dp *intel_dp)
156 {
157 int max_link_bw = intel_dp->dpcd[1];
158
159 switch (max_link_bw) {
160 case DP_LINK_BW_1_62:
161 case DP_LINK_BW_2_7:
162 break;
163 default:
164 max_link_bw = DP_LINK_BW_1_62;
165 break;
166 }
167 return max_link_bw;
168 }
169
170 static int
171 intel_dp_link_clock(uint8_t link_bw)
172 {
173 if (link_bw == DP_LINK_BW_2_7)
174 return 270000;
175 else
176 return 162000;
177 }
178
179 /* I think this is a fiction */
180 static int
181 intel_dp_link_required(struct drm_device *dev, struct intel_dp *intel_dp, int pixel_clock)
182 {
183 struct drm_i915_private *dev_priv = dev->dev_private;
184
185 if (is_edp(intel_dp))
186 return (pixel_clock * dev_priv->edp.bpp + 7) / 8;
187 else
188 return pixel_clock * 3;
189 }
190
191 static int
192 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
193 {
194 return (max_link_clock * max_lanes * 8) / 10;
195 }
196
197 static int
198 intel_dp_mode_valid(struct drm_connector *connector,
199 struct drm_display_mode *mode)
200 {
201 struct intel_dp *intel_dp = intel_attached_dp(connector);
202 struct drm_device *dev = connector->dev;
203 struct drm_i915_private *dev_priv = dev->dev_private;
204 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
205 int max_lanes = intel_dp_max_lane_count(intel_dp);
206
207 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
208 if (mode->hdisplay > dev_priv->panel_fixed_mode->hdisplay)
209 return MODE_PANEL;
210
211 if (mode->vdisplay > dev_priv->panel_fixed_mode->vdisplay)
212 return MODE_PANEL;
213 }
214
215 /* only refuse the mode on non eDP since we have seen some wierd eDP panels
216 which are outside spec tolerances but somehow work by magic */
217 if (!is_edp(intel_dp) &&
218 (intel_dp_link_required(connector->dev, intel_dp, mode->clock)
219 > intel_dp_max_data_rate(max_link_clock, max_lanes)))
220 return MODE_CLOCK_HIGH;
221
222 if (mode->clock < 10000)
223 return MODE_CLOCK_LOW;
224
225 return MODE_OK;
226 }
227
228 static uint32_t
229 pack_aux(uint8_t *src, int src_bytes)
230 {
231 int i;
232 uint32_t v = 0;
233
234 if (src_bytes > 4)
235 src_bytes = 4;
236 for (i = 0; i < src_bytes; i++)
237 v |= ((uint32_t) src[i]) << ((3-i) * 8);
238 return v;
239 }
240
241 static void
242 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244 int i;
245 if (dst_bytes > 4)
246 dst_bytes = 4;
247 for (i = 0; i < dst_bytes; i++)
248 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 uint32_t clkcfg;
257
258 clkcfg = I915_READ(CLKCFG);
259 switch (clkcfg & CLKCFG_FSB_MASK) {
260 case CLKCFG_FSB_400:
261 return 100;
262 case CLKCFG_FSB_533:
263 return 133;
264 case CLKCFG_FSB_667:
265 return 166;
266 case CLKCFG_FSB_800:
267 return 200;
268 case CLKCFG_FSB_1067:
269 return 266;
270 case CLKCFG_FSB_1333:
271 return 333;
272 /* these two are just a guess; one of them might be right */
273 case CLKCFG_FSB_1600:
274 case CLKCFG_FSB_1600_ALT:
275 return 400;
276 default:
277 return 133;
278 }
279 }
280
281 static int
282 intel_dp_aux_ch(struct intel_dp *intel_dp,
283 uint8_t *send, int send_bytes,
284 uint8_t *recv, int recv_size)
285 {
286 uint32_t output_reg = intel_dp->output_reg;
287 struct drm_device *dev = intel_dp->base.base.dev;
288 struct drm_i915_private *dev_priv = dev->dev_private;
289 uint32_t ch_ctl = output_reg + 0x10;
290 uint32_t ch_data = ch_ctl + 4;
291 int i;
292 int recv_bytes;
293 uint32_t status;
294 uint32_t aux_clock_divider;
295 int try, precharge;
296
297 /* The clock divider is based off the hrawclk,
298 * and would like to run at 2MHz. So, take the
299 * hrawclk value and divide by 2 and use that
300 *
301 * Note that PCH attached eDP panels should use a 125MHz input
302 * clock divider.
303 */
304 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
305 if (IS_GEN6(dev))
306 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
307 else
308 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
309 } else if (HAS_PCH_SPLIT(dev))
310 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
311 else
312 aux_clock_divider = intel_hrawclk(dev) / 2;
313
314 if (IS_GEN6(dev))
315 precharge = 3;
316 else
317 precharge = 5;
318
319 if (I915_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
320 DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
321 I915_READ(ch_ctl));
322 return -EBUSY;
323 }
324
325 /* Must try at least 3 times according to DP spec */
326 for (try = 0; try < 5; try++) {
327 /* Load the send data into the aux channel data registers */
328 for (i = 0; i < send_bytes; i += 4)
329 I915_WRITE(ch_data + i,
330 pack_aux(send + i, send_bytes - i));
331
332 /* Send the command and wait for it to complete */
333 I915_WRITE(ch_ctl,
334 DP_AUX_CH_CTL_SEND_BUSY |
335 DP_AUX_CH_CTL_TIME_OUT_400us |
336 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
337 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
338 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
339 DP_AUX_CH_CTL_DONE |
340 DP_AUX_CH_CTL_TIME_OUT_ERROR |
341 DP_AUX_CH_CTL_RECEIVE_ERROR);
342 for (;;) {
343 status = I915_READ(ch_ctl);
344 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
345 break;
346 udelay(100);
347 }
348
349 /* Clear done status and any errors */
350 I915_WRITE(ch_ctl,
351 status |
352 DP_AUX_CH_CTL_DONE |
353 DP_AUX_CH_CTL_TIME_OUT_ERROR |
354 DP_AUX_CH_CTL_RECEIVE_ERROR);
355 if (status & DP_AUX_CH_CTL_DONE)
356 break;
357 }
358
359 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
360 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
361 return -EBUSY;
362 }
363
364 /* Check for timeout or receive error.
365 * Timeouts occur when the sink is not connected
366 */
367 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
368 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
369 return -EIO;
370 }
371
372 /* Timeouts occur when the device isn't connected, so they're
373 * "normal" -- don't fill the kernel log with these */
374 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
375 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
376 return -ETIMEDOUT;
377 }
378
379 /* Unload any bytes sent back from the other side */
380 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
381 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
382 if (recv_bytes > recv_size)
383 recv_bytes = recv_size;
384
385 for (i = 0; i < recv_bytes; i += 4)
386 unpack_aux(I915_READ(ch_data + i),
387 recv + i, recv_bytes - i);
388
389 return recv_bytes;
390 }
391
392 /* Write data to the aux channel in native mode */
393 static int
394 intel_dp_aux_native_write(struct intel_dp *intel_dp,
395 uint16_t address, uint8_t *send, int send_bytes)
396 {
397 int ret;
398 uint8_t msg[20];
399 int msg_bytes;
400 uint8_t ack;
401
402 if (send_bytes > 16)
403 return -1;
404 msg[0] = AUX_NATIVE_WRITE << 4;
405 msg[1] = address >> 8;
406 msg[2] = address & 0xff;
407 msg[3] = send_bytes - 1;
408 memcpy(&msg[4], send, send_bytes);
409 msg_bytes = send_bytes + 4;
410 for (;;) {
411 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
412 if (ret < 0)
413 return ret;
414 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
415 break;
416 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
417 udelay(100);
418 else
419 return -EIO;
420 }
421 return send_bytes;
422 }
423
424 /* Write a single byte to the aux channel in native mode */
425 static int
426 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
427 uint16_t address, uint8_t byte)
428 {
429 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
430 }
431
432 /* read bytes from a native aux channel */
433 static int
434 intel_dp_aux_native_read(struct intel_dp *intel_dp,
435 uint16_t address, uint8_t *recv, int recv_bytes)
436 {
437 uint8_t msg[4];
438 int msg_bytes;
439 uint8_t reply[20];
440 int reply_bytes;
441 uint8_t ack;
442 int ret;
443
444 msg[0] = AUX_NATIVE_READ << 4;
445 msg[1] = address >> 8;
446 msg[2] = address & 0xff;
447 msg[3] = recv_bytes - 1;
448
449 msg_bytes = 4;
450 reply_bytes = recv_bytes + 1;
451
452 for (;;) {
453 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
454 reply, reply_bytes);
455 if (ret == 0)
456 return -EPROTO;
457 if (ret < 0)
458 return ret;
459 ack = reply[0];
460 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
461 memcpy(recv, reply + 1, ret - 1);
462 return ret - 1;
463 }
464 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
465 udelay(100);
466 else
467 return -EIO;
468 }
469 }
470
471 static int
472 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
473 uint8_t write_byte, uint8_t *read_byte)
474 {
475 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
476 struct intel_dp *intel_dp = container_of(adapter,
477 struct intel_dp,
478 adapter);
479 uint16_t address = algo_data->address;
480 uint8_t msg[5];
481 uint8_t reply[2];
482 unsigned retry;
483 int msg_bytes;
484 int reply_bytes;
485 int ret;
486
487 /* Set up the command byte */
488 if (mode & MODE_I2C_READ)
489 msg[0] = AUX_I2C_READ << 4;
490 else
491 msg[0] = AUX_I2C_WRITE << 4;
492
493 if (!(mode & MODE_I2C_STOP))
494 msg[0] |= AUX_I2C_MOT << 4;
495
496 msg[1] = address >> 8;
497 msg[2] = address;
498
499 switch (mode) {
500 case MODE_I2C_WRITE:
501 msg[3] = 0;
502 msg[4] = write_byte;
503 msg_bytes = 5;
504 reply_bytes = 1;
505 break;
506 case MODE_I2C_READ:
507 msg[3] = 0;
508 msg_bytes = 4;
509 reply_bytes = 2;
510 break;
511 default:
512 msg_bytes = 3;
513 reply_bytes = 1;
514 break;
515 }
516
517 for (retry = 0; retry < 5; retry++) {
518 ret = intel_dp_aux_ch(intel_dp,
519 msg, msg_bytes,
520 reply, reply_bytes);
521 if (ret < 0) {
522 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
523 return ret;
524 }
525
526 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
527 case AUX_NATIVE_REPLY_ACK:
528 /* I2C-over-AUX Reply field is only valid
529 * when paired with AUX ACK.
530 */
531 break;
532 case AUX_NATIVE_REPLY_NACK:
533 DRM_DEBUG_KMS("aux_ch native nack\n");
534 return -EREMOTEIO;
535 case AUX_NATIVE_REPLY_DEFER:
536 udelay(100);
537 continue;
538 default:
539 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
540 reply[0]);
541 return -EREMOTEIO;
542 }
543
544 switch (reply[0] & AUX_I2C_REPLY_MASK) {
545 case AUX_I2C_REPLY_ACK:
546 if (mode == MODE_I2C_READ) {
547 *read_byte = reply[1];
548 }
549 return reply_bytes - 1;
550 case AUX_I2C_REPLY_NACK:
551 DRM_DEBUG_KMS("aux_i2c nack\n");
552 return -EREMOTEIO;
553 case AUX_I2C_REPLY_DEFER:
554 DRM_DEBUG_KMS("aux_i2c defer\n");
555 udelay(100);
556 break;
557 default:
558 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
559 return -EREMOTEIO;
560 }
561 }
562
563 DRM_ERROR("too many retries, giving up\n");
564 return -EREMOTEIO;
565 }
566
567 static int
568 intel_dp_i2c_init(struct intel_dp *intel_dp,
569 struct intel_connector *intel_connector, const char *name)
570 {
571 DRM_DEBUG_KMS("i2c_init %s\n", name);
572 intel_dp->algo.running = false;
573 intel_dp->algo.address = 0;
574 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
575
576 memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
577 intel_dp->adapter.owner = THIS_MODULE;
578 intel_dp->adapter.class = I2C_CLASS_DDC;
579 strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
580 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
581 intel_dp->adapter.algo_data = &intel_dp->algo;
582 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
583
584 return i2c_dp_aux_add_bus(&intel_dp->adapter);
585 }
586
587 static bool
588 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
589 struct drm_display_mode *adjusted_mode)
590 {
591 struct drm_device *dev = encoder->dev;
592 struct drm_i915_private *dev_priv = dev->dev_private;
593 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
594 int lane_count, clock;
595 int max_lane_count = intel_dp_max_lane_count(intel_dp);
596 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
597 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
598
599 if (is_edp(intel_dp) && dev_priv->panel_fixed_mode) {
600 intel_fixed_panel_mode(dev_priv->panel_fixed_mode, adjusted_mode);
601 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
602 mode, adjusted_mode);
603 /*
604 * the mode->clock is used to calculate the Data&Link M/N
605 * of the pipe. For the eDP the fixed clock should be used.
606 */
607 mode->clock = dev_priv->panel_fixed_mode->clock;
608 }
609
610 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
611 for (clock = 0; clock <= max_clock; clock++) {
612 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
613
614 if (intel_dp_link_required(encoder->dev, intel_dp, mode->clock)
615 <= link_avail) {
616 intel_dp->link_bw = bws[clock];
617 intel_dp->lane_count = lane_count;
618 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
619 DRM_DEBUG_KMS("Display port link bw %02x lane "
620 "count %d clock %d\n",
621 intel_dp->link_bw, intel_dp->lane_count,
622 adjusted_mode->clock);
623 return true;
624 }
625 }
626 }
627
628 if (is_edp(intel_dp)) {
629 /* okay we failed just pick the highest */
630 intel_dp->lane_count = max_lane_count;
631 intel_dp->link_bw = bws[max_clock];
632 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
633 DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
634 "count %d clock %d\n",
635 intel_dp->link_bw, intel_dp->lane_count,
636 adjusted_mode->clock);
637
638 return true;
639 }
640
641 return false;
642 }
643
644 struct intel_dp_m_n {
645 uint32_t tu;
646 uint32_t gmch_m;
647 uint32_t gmch_n;
648 uint32_t link_m;
649 uint32_t link_n;
650 };
651
652 static void
653 intel_reduce_ratio(uint32_t *num, uint32_t *den)
654 {
655 while (*num > 0xffffff || *den > 0xffffff) {
656 *num >>= 1;
657 *den >>= 1;
658 }
659 }
660
661 static void
662 intel_dp_compute_m_n(int bpp,
663 int nlanes,
664 int pixel_clock,
665 int link_clock,
666 struct intel_dp_m_n *m_n)
667 {
668 m_n->tu = 64;
669 m_n->gmch_m = (pixel_clock * bpp) >> 3;
670 m_n->gmch_n = link_clock * nlanes;
671 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
672 m_n->link_m = pixel_clock;
673 m_n->link_n = link_clock;
674 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
675 }
676
677 void
678 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
679 struct drm_display_mode *adjusted_mode)
680 {
681 struct drm_device *dev = crtc->dev;
682 struct drm_mode_config *mode_config = &dev->mode_config;
683 struct drm_encoder *encoder;
684 struct drm_i915_private *dev_priv = dev->dev_private;
685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
686 int lane_count = 4, bpp = 24;
687 struct intel_dp_m_n m_n;
688
689 /*
690 * Find the lane count in the intel_encoder private
691 */
692 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
693 struct intel_dp *intel_dp;
694
695 if (encoder->crtc != crtc)
696 continue;
697
698 intel_dp = enc_to_intel_dp(encoder);
699 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
700 lane_count = intel_dp->lane_count;
701 break;
702 } else if (is_edp(intel_dp)) {
703 lane_count = dev_priv->edp.lanes;
704 bpp = dev_priv->edp.bpp;
705 break;
706 }
707 }
708
709 /*
710 * Compute the GMCH and Link ratios. The '3' here is
711 * the number of bytes_per_pixel post-LUT, which we always
712 * set up for 8-bits of R/G/B, or 3 bytes total.
713 */
714 intel_dp_compute_m_n(bpp, lane_count,
715 mode->clock, adjusted_mode->clock, &m_n);
716
717 if (HAS_PCH_SPLIT(dev)) {
718 if (intel_crtc->pipe == 0) {
719 I915_WRITE(TRANSA_DATA_M1,
720 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
721 m_n.gmch_m);
722 I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
723 I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
724 I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
725 } else {
726 I915_WRITE(TRANSB_DATA_M1,
727 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
728 m_n.gmch_m);
729 I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
730 I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
731 I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
732 }
733 } else {
734 if (intel_crtc->pipe == 0) {
735 I915_WRITE(PIPEA_GMCH_DATA_M,
736 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
737 m_n.gmch_m);
738 I915_WRITE(PIPEA_GMCH_DATA_N,
739 m_n.gmch_n);
740 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
741 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
742 } else {
743 I915_WRITE(PIPEB_GMCH_DATA_M,
744 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
745 m_n.gmch_m);
746 I915_WRITE(PIPEB_GMCH_DATA_N,
747 m_n.gmch_n);
748 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
749 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
750 }
751 }
752 }
753
754 static void
755 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
756 struct drm_display_mode *adjusted_mode)
757 {
758 struct drm_device *dev = encoder->dev;
759 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
760 struct drm_crtc *crtc = intel_dp->base.base.crtc;
761 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
762
763 intel_dp->DP = (DP_VOLTAGE_0_4 |
764 DP_PRE_EMPHASIS_0);
765
766 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
767 intel_dp->DP |= DP_SYNC_HS_HIGH;
768 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
769 intel_dp->DP |= DP_SYNC_VS_HIGH;
770
771 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
772 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
773 else
774 intel_dp->DP |= DP_LINK_TRAIN_OFF;
775
776 switch (intel_dp->lane_count) {
777 case 1:
778 intel_dp->DP |= DP_PORT_WIDTH_1;
779 break;
780 case 2:
781 intel_dp->DP |= DP_PORT_WIDTH_2;
782 break;
783 case 4:
784 intel_dp->DP |= DP_PORT_WIDTH_4;
785 break;
786 }
787 if (intel_dp->has_audio)
788 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
789
790 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
791 intel_dp->link_configuration[0] = intel_dp->link_bw;
792 intel_dp->link_configuration[1] = intel_dp->lane_count;
793
794 /*
795 * Check for DPCD version > 1.1 and enhanced framing support
796 */
797 if (intel_dp->dpcd[0] >= 0x11 && (intel_dp->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
798 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
799 intel_dp->DP |= DP_ENHANCED_FRAMING;
800 }
801
802 /* CPT DP's pipe select is decided in TRANS_DP_CTL */
803 if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
804 intel_dp->DP |= DP_PIPEB_SELECT;
805
806 if (is_edp(intel_dp) && !is_pch_edp(intel_dp)) {
807 /* don't miss out required setting for eDP */
808 intel_dp->DP |= DP_PLL_ENABLE;
809 if (adjusted_mode->clock < 200000)
810 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
811 else
812 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
813 }
814 }
815
816 /* Returns true if the panel was already on when called */
817 static bool ironlake_edp_panel_on (struct intel_dp *intel_dp)
818 {
819 struct drm_device *dev = intel_dp->base.base.dev;
820 struct drm_i915_private *dev_priv = dev->dev_private;
821 u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
822
823 if (I915_READ(PCH_PP_STATUS) & PP_ON)
824 return true;
825
826 pp = I915_READ(PCH_PP_CONTROL);
827
828 /* ILK workaround: disable reset around power sequence */
829 pp &= ~PANEL_POWER_RESET;
830 I915_WRITE(PCH_PP_CONTROL, pp);
831 POSTING_READ(PCH_PP_CONTROL);
832
833 pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
834 I915_WRITE(PCH_PP_CONTROL, pp);
835 POSTING_READ(PCH_PP_CONTROL);
836
837 /* Ouch. We need to wait here for some panels, like Dell e6510
838 * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
839 */
840 msleep(300);
841
842 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
843 5000))
844 DRM_ERROR("panel on wait timed out: 0x%08x\n",
845 I915_READ(PCH_PP_STATUS));
846
847 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
848 I915_WRITE(PCH_PP_CONTROL, pp);
849 POSTING_READ(PCH_PP_CONTROL);
850
851 return false;
852 }
853
854 static void ironlake_edp_panel_off (struct drm_device *dev)
855 {
856 struct drm_i915_private *dev_priv = dev->dev_private;
857 u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
858 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
859
860 pp = I915_READ(PCH_PP_CONTROL);
861
862 /* ILK workaround: disable reset around power sequence */
863 pp &= ~PANEL_POWER_RESET;
864 I915_WRITE(PCH_PP_CONTROL, pp);
865 POSTING_READ(PCH_PP_CONTROL);
866
867 pp &= ~POWER_TARGET_ON;
868 I915_WRITE(PCH_PP_CONTROL, pp);
869 POSTING_READ(PCH_PP_CONTROL);
870
871 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
872 DRM_ERROR("panel off wait timed out: 0x%08x\n",
873 I915_READ(PCH_PP_STATUS));
874
875 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
876 I915_WRITE(PCH_PP_CONTROL, pp);
877 POSTING_READ(PCH_PP_CONTROL);
878
879 /* Ouch. We need to wait here for some panels, like Dell e6510
880 * https://bugs.freedesktop.org/show_bug.cgi?id=29278i
881 */
882 msleep(300);
883 }
884
885 static void ironlake_edp_backlight_on (struct drm_device *dev)
886 {
887 struct drm_i915_private *dev_priv = dev->dev_private;
888 u32 pp;
889
890 DRM_DEBUG_KMS("\n");
891 /*
892 * If we enable the backlight right away following a panel power
893 * on, we may see slight flicker as the panel syncs with the eDP
894 * link. So delay a bit to make sure the image is solid before
895 * allowing it to appear.
896 */
897 msleep(300);
898 pp = I915_READ(PCH_PP_CONTROL);
899 pp |= EDP_BLC_ENABLE;
900 I915_WRITE(PCH_PP_CONTROL, pp);
901 }
902
903 static void ironlake_edp_backlight_off (struct drm_device *dev)
904 {
905 struct drm_i915_private *dev_priv = dev->dev_private;
906 u32 pp;
907
908 DRM_DEBUG_KMS("\n");
909 pp = I915_READ(PCH_PP_CONTROL);
910 pp &= ~EDP_BLC_ENABLE;
911 I915_WRITE(PCH_PP_CONTROL, pp);
912 }
913
914 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
915 {
916 struct drm_device *dev = encoder->dev;
917 struct drm_i915_private *dev_priv = dev->dev_private;
918 u32 dpa_ctl;
919
920 DRM_DEBUG_KMS("\n");
921 dpa_ctl = I915_READ(DP_A);
922 dpa_ctl |= DP_PLL_ENABLE;
923 I915_WRITE(DP_A, dpa_ctl);
924 POSTING_READ(DP_A);
925 udelay(200);
926 }
927
928 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
929 {
930 struct drm_device *dev = encoder->dev;
931 struct drm_i915_private *dev_priv = dev->dev_private;
932 u32 dpa_ctl;
933
934 dpa_ctl = I915_READ(DP_A);
935 dpa_ctl &= ~DP_PLL_ENABLE;
936 I915_WRITE(DP_A, dpa_ctl);
937 POSTING_READ(DP_A);
938 udelay(200);
939 }
940
941 static void intel_dp_prepare(struct drm_encoder *encoder)
942 {
943 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
944 struct drm_device *dev = encoder->dev;
945
946 if (is_edp(intel_dp)) {
947 ironlake_edp_backlight_off(dev);
948 ironlake_edp_panel_on(intel_dp);
949 if (!is_pch_edp(intel_dp))
950 ironlake_edp_pll_on(encoder);
951 else
952 ironlake_edp_pll_off(encoder);
953 }
954 intel_dp_link_down(intel_dp);
955 }
956
957 static void intel_dp_commit(struct drm_encoder *encoder)
958 {
959 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
960 struct drm_device *dev = encoder->dev;
961
962 intel_dp_start_link_train(intel_dp);
963
964 if (is_edp(intel_dp))
965 ironlake_edp_panel_on(intel_dp);
966
967 intel_dp_complete_link_train(intel_dp);
968
969 if (is_edp(intel_dp))
970 ironlake_edp_backlight_on(dev);
971 }
972
973 static void
974 intel_dp_dpms(struct drm_encoder *encoder, int mode)
975 {
976 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
977 struct drm_device *dev = encoder->dev;
978 struct drm_i915_private *dev_priv = dev->dev_private;
979 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
980
981 if (mode != DRM_MODE_DPMS_ON) {
982 if (is_edp(intel_dp))
983 ironlake_edp_backlight_off(dev);
984 intel_dp_link_down(intel_dp);
985 if (is_edp(intel_dp))
986 ironlake_edp_panel_off(dev);
987 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
988 ironlake_edp_pll_off(encoder);
989 } else {
990 if (is_edp(intel_dp))
991 ironlake_edp_panel_on(intel_dp);
992 if (!(dp_reg & DP_PORT_EN)) {
993 intel_dp_start_link_train(intel_dp);
994 intel_dp_complete_link_train(intel_dp);
995 }
996 if (is_edp(intel_dp))
997 ironlake_edp_backlight_on(dev);
998 }
999 intel_dp->dpms_mode = mode;
1000 }
1001
1002 /*
1003 * Fetch AUX CH registers 0x202 - 0x207 which contain
1004 * link status information
1005 */
1006 static bool
1007 intel_dp_get_link_status(struct intel_dp *intel_dp)
1008 {
1009 int ret;
1010
1011 ret = intel_dp_aux_native_read(intel_dp,
1012 DP_LANE0_1_STATUS,
1013 intel_dp->link_status, DP_LINK_STATUS_SIZE);
1014 if (ret != DP_LINK_STATUS_SIZE)
1015 return false;
1016 return true;
1017 }
1018
1019 static uint8_t
1020 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1021 int r)
1022 {
1023 return link_status[r - DP_LANE0_1_STATUS];
1024 }
1025
1026 static uint8_t
1027 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1028 int lane)
1029 {
1030 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1031 int s = ((lane & 1) ?
1032 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1033 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1034 uint8_t l = intel_dp_link_status(link_status, i);
1035
1036 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1037 }
1038
1039 static uint8_t
1040 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1041 int lane)
1042 {
1043 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1044 int s = ((lane & 1) ?
1045 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1046 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1047 uint8_t l = intel_dp_link_status(link_status, i);
1048
1049 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1050 }
1051
1052
1053 #if 0
1054 static char *voltage_names[] = {
1055 "0.4V", "0.6V", "0.8V", "1.2V"
1056 };
1057 static char *pre_emph_names[] = {
1058 "0dB", "3.5dB", "6dB", "9.5dB"
1059 };
1060 static char *link_train_names[] = {
1061 "pattern 1", "pattern 2", "idle", "off"
1062 };
1063 #endif
1064
1065 /*
1066 * These are source-specific values; current Intel hardware supports
1067 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1068 */
1069 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1070
1071 static uint8_t
1072 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1073 {
1074 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1075 case DP_TRAIN_VOLTAGE_SWING_400:
1076 return DP_TRAIN_PRE_EMPHASIS_6;
1077 case DP_TRAIN_VOLTAGE_SWING_600:
1078 return DP_TRAIN_PRE_EMPHASIS_6;
1079 case DP_TRAIN_VOLTAGE_SWING_800:
1080 return DP_TRAIN_PRE_EMPHASIS_3_5;
1081 case DP_TRAIN_VOLTAGE_SWING_1200:
1082 default:
1083 return DP_TRAIN_PRE_EMPHASIS_0;
1084 }
1085 }
1086
1087 static void
1088 intel_get_adjust_train(struct intel_dp *intel_dp)
1089 {
1090 uint8_t v = 0;
1091 uint8_t p = 0;
1092 int lane;
1093
1094 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1095 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1096 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1097
1098 if (this_v > v)
1099 v = this_v;
1100 if (this_p > p)
1101 p = this_p;
1102 }
1103
1104 if (v >= I830_DP_VOLTAGE_MAX)
1105 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1106
1107 if (p >= intel_dp_pre_emphasis_max(v))
1108 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1109
1110 for (lane = 0; lane < 4; lane++)
1111 intel_dp->train_set[lane] = v | p;
1112 }
1113
1114 static uint32_t
1115 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1116 {
1117 uint32_t signal_levels = 0;
1118
1119 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1120 case DP_TRAIN_VOLTAGE_SWING_400:
1121 default:
1122 signal_levels |= DP_VOLTAGE_0_4;
1123 break;
1124 case DP_TRAIN_VOLTAGE_SWING_600:
1125 signal_levels |= DP_VOLTAGE_0_6;
1126 break;
1127 case DP_TRAIN_VOLTAGE_SWING_800:
1128 signal_levels |= DP_VOLTAGE_0_8;
1129 break;
1130 case DP_TRAIN_VOLTAGE_SWING_1200:
1131 signal_levels |= DP_VOLTAGE_1_2;
1132 break;
1133 }
1134 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1135 case DP_TRAIN_PRE_EMPHASIS_0:
1136 default:
1137 signal_levels |= DP_PRE_EMPHASIS_0;
1138 break;
1139 case DP_TRAIN_PRE_EMPHASIS_3_5:
1140 signal_levels |= DP_PRE_EMPHASIS_3_5;
1141 break;
1142 case DP_TRAIN_PRE_EMPHASIS_6:
1143 signal_levels |= DP_PRE_EMPHASIS_6;
1144 break;
1145 case DP_TRAIN_PRE_EMPHASIS_9_5:
1146 signal_levels |= DP_PRE_EMPHASIS_9_5;
1147 break;
1148 }
1149 return signal_levels;
1150 }
1151
1152 /* Gen6's DP voltage swing and pre-emphasis control */
1153 static uint32_t
1154 intel_gen6_edp_signal_levels(uint8_t train_set)
1155 {
1156 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1157 DP_TRAIN_PRE_EMPHASIS_MASK);
1158 switch (signal_levels) {
1159 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1160 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1161 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1162 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1163 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1164 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1165 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1166 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1167 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1168 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1169 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1170 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1171 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1172 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1173 default:
1174 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1175 "0x%x\n", signal_levels);
1176 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1177 }
1178 }
1179
1180 static uint8_t
1181 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1182 int lane)
1183 {
1184 int i = DP_LANE0_1_STATUS + (lane >> 1);
1185 int s = (lane & 1) * 4;
1186 uint8_t l = intel_dp_link_status(link_status, i);
1187
1188 return (l >> s) & 0xf;
1189 }
1190
1191 /* Check for clock recovery is done on all channels */
1192 static bool
1193 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1194 {
1195 int lane;
1196 uint8_t lane_status;
1197
1198 for (lane = 0; lane < lane_count; lane++) {
1199 lane_status = intel_get_lane_status(link_status, lane);
1200 if ((lane_status & DP_LANE_CR_DONE) == 0)
1201 return false;
1202 }
1203 return true;
1204 }
1205
1206 /* Check to see if channel eq is done on all channels */
1207 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1208 DP_LANE_CHANNEL_EQ_DONE|\
1209 DP_LANE_SYMBOL_LOCKED)
1210 static bool
1211 intel_channel_eq_ok(struct intel_dp *intel_dp)
1212 {
1213 uint8_t lane_align;
1214 uint8_t lane_status;
1215 int lane;
1216
1217 lane_align = intel_dp_link_status(intel_dp->link_status,
1218 DP_LANE_ALIGN_STATUS_UPDATED);
1219 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1220 return false;
1221 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1222 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1223 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1224 return false;
1225 }
1226 return true;
1227 }
1228
1229 static bool
1230 intel_dp_set_link_train(struct intel_dp *intel_dp,
1231 uint32_t dp_reg_value,
1232 uint8_t dp_train_pat)
1233 {
1234 struct drm_device *dev = intel_dp->base.base.dev;
1235 struct drm_i915_private *dev_priv = dev->dev_private;
1236 int ret;
1237
1238 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1239 POSTING_READ(intel_dp->output_reg);
1240
1241 intel_dp_aux_native_write_1(intel_dp,
1242 DP_TRAINING_PATTERN_SET,
1243 dp_train_pat);
1244
1245 ret = intel_dp_aux_native_write(intel_dp,
1246 DP_TRAINING_LANE0_SET,
1247 intel_dp->train_set, 4);
1248 if (ret != 4)
1249 return false;
1250
1251 return true;
1252 }
1253
1254 /* Enable corresponding port and start training pattern 1 */
1255 static void
1256 intel_dp_start_link_train(struct intel_dp *intel_dp)
1257 {
1258 struct drm_device *dev = intel_dp->base.base.dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1261 int i;
1262 uint8_t voltage;
1263 bool clock_recovery = false;
1264 int tries;
1265 u32 reg;
1266 uint32_t DP = intel_dp->DP;
1267
1268 /* Enable output, wait for it to become active */
1269 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1270 POSTING_READ(intel_dp->output_reg);
1271 intel_wait_for_vblank(dev, intel_crtc->pipe);
1272
1273 /* Write the link configuration data */
1274 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1275 intel_dp->link_configuration,
1276 DP_LINK_CONFIGURATION_SIZE);
1277
1278 DP |= DP_PORT_EN;
1279 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1280 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1281 else
1282 DP &= ~DP_LINK_TRAIN_MASK;
1283 memset(intel_dp->train_set, 0, 4);
1284 voltage = 0xff;
1285 tries = 0;
1286 clock_recovery = false;
1287 for (;;) {
1288 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1289 uint32_t signal_levels;
1290 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1291 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1292 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1293 } else {
1294 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1295 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1296 }
1297
1298 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1299 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1300 else
1301 reg = DP | DP_LINK_TRAIN_PAT_1;
1302
1303 if (!intel_dp_set_link_train(intel_dp, reg,
1304 DP_TRAINING_PATTERN_1))
1305 break;
1306 /* Set training pattern 1 */
1307
1308 udelay(100);
1309 if (!intel_dp_get_link_status(intel_dp))
1310 break;
1311
1312 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1313 clock_recovery = true;
1314 break;
1315 }
1316
1317 /* Check to see if we've tried the max voltage */
1318 for (i = 0; i < intel_dp->lane_count; i++)
1319 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1320 break;
1321 if (i == intel_dp->lane_count)
1322 break;
1323
1324 /* Check to see if we've tried the same voltage 5 times */
1325 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1326 ++tries;
1327 if (tries == 5)
1328 break;
1329 } else
1330 tries = 0;
1331 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1332
1333 /* Compute new intel_dp->train_set as requested by target */
1334 intel_get_adjust_train(intel_dp);
1335 }
1336
1337 intel_dp->DP = DP;
1338 }
1339
1340 static void
1341 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1342 {
1343 struct drm_device *dev = intel_dp->base.base.dev;
1344 struct drm_i915_private *dev_priv = dev->dev_private;
1345 bool channel_eq = false;
1346 int tries, cr_tries;
1347 u32 reg;
1348 uint32_t DP = intel_dp->DP;
1349
1350 /* channel equalization */
1351 tries = 0;
1352 cr_tries = 0;
1353 channel_eq = false;
1354 for (;;) {
1355 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1356 uint32_t signal_levels;
1357
1358 if (cr_tries > 5) {
1359 DRM_ERROR("failed to train DP, aborting\n");
1360 intel_dp_link_down(intel_dp);
1361 break;
1362 }
1363
1364 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1365 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1366 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1367 } else {
1368 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1369 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1370 }
1371
1372 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1373 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1374 else
1375 reg = DP | DP_LINK_TRAIN_PAT_2;
1376
1377 /* channel eq pattern */
1378 if (!intel_dp_set_link_train(intel_dp, reg,
1379 DP_TRAINING_PATTERN_2))
1380 break;
1381
1382 udelay(400);
1383 if (!intel_dp_get_link_status(intel_dp))
1384 break;
1385
1386 /* Make sure clock is still ok */
1387 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1388 intel_dp_start_link_train(intel_dp);
1389 cr_tries++;
1390 continue;
1391 }
1392
1393 if (intel_channel_eq_ok(intel_dp)) {
1394 channel_eq = true;
1395 break;
1396 }
1397
1398 /* Try 5 times, then try clock recovery if that fails */
1399 if (tries > 5) {
1400 intel_dp_link_down(intel_dp);
1401 intel_dp_start_link_train(intel_dp);
1402 tries = 0;
1403 cr_tries++;
1404 continue;
1405 }
1406
1407 /* Compute new intel_dp->train_set as requested by target */
1408 intel_get_adjust_train(intel_dp);
1409 ++tries;
1410 }
1411
1412 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp))
1413 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1414 else
1415 reg = DP | DP_LINK_TRAIN_OFF;
1416
1417 I915_WRITE(intel_dp->output_reg, reg);
1418 POSTING_READ(intel_dp->output_reg);
1419 intel_dp_aux_native_write_1(intel_dp,
1420 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1421 }
1422
1423 static void
1424 intel_dp_link_down(struct intel_dp *intel_dp)
1425 {
1426 struct drm_device *dev = intel_dp->base.base.dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 uint32_t DP = intel_dp->DP;
1429
1430 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1431 return;
1432
1433 DRM_DEBUG_KMS("\n");
1434
1435 if (is_edp(intel_dp)) {
1436 DP &= ~DP_PLL_ENABLE;
1437 I915_WRITE(intel_dp->output_reg, DP);
1438 POSTING_READ(intel_dp->output_reg);
1439 udelay(100);
1440 }
1441
1442 if (HAS_PCH_CPT(dev) && !is_edp(intel_dp)) {
1443 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1444 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1445 } else {
1446 DP &= ~DP_LINK_TRAIN_MASK;
1447 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1448 }
1449 POSTING_READ(intel_dp->output_reg);
1450
1451 msleep(17);
1452
1453 if (is_edp(intel_dp))
1454 DP |= DP_LINK_TRAIN_OFF;
1455
1456 if (!HAS_PCH_CPT(dev) &&
1457 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1458 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1459 /* Hardware workaround: leaving our transcoder select
1460 * set to transcoder B while it's off will prevent the
1461 * corresponding HDMI output on transcoder A.
1462 *
1463 * Combine this with another hardware workaround:
1464 * transcoder select bit can only be cleared while the
1465 * port is enabled.
1466 */
1467 DP &= ~DP_PIPEB_SELECT;
1468 I915_WRITE(intel_dp->output_reg, DP);
1469
1470 /* Changes to enable or select take place the vblank
1471 * after being written.
1472 */
1473 intel_wait_for_vblank(dev, intel_crtc->pipe);
1474 }
1475
1476 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1477 POSTING_READ(intel_dp->output_reg);
1478 }
1479
1480 /*
1481 * According to DP spec
1482 * 5.1.2:
1483 * 1. Read DPCD
1484 * 2. Configure link according to Receiver Capabilities
1485 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1486 * 4. Check link status on receipt of hot-plug interrupt
1487 */
1488
1489 static void
1490 intel_dp_check_link_status(struct intel_dp *intel_dp)
1491 {
1492 if (!intel_dp->base.base.crtc)
1493 return;
1494
1495 if (!intel_dp_get_link_status(intel_dp)) {
1496 intel_dp_link_down(intel_dp);
1497 return;
1498 }
1499
1500 if (!intel_channel_eq_ok(intel_dp)) {
1501 intel_dp_start_link_train(intel_dp);
1502 intel_dp_complete_link_train(intel_dp);
1503 }
1504 }
1505
1506 static enum drm_connector_status
1507 ironlake_dp_detect(struct intel_dp *intel_dp)
1508 {
1509 enum drm_connector_status status;
1510
1511 /* Can't disconnect eDP */
1512 if (is_edp(intel_dp))
1513 return connector_status_connected;
1514
1515 status = connector_status_disconnected;
1516 if (intel_dp_aux_native_read(intel_dp,
1517 0x000, intel_dp->dpcd,
1518 sizeof (intel_dp->dpcd))
1519 == sizeof(intel_dp->dpcd)) {
1520 if (intel_dp->dpcd[0] != 0)
1521 status = connector_status_connected;
1522 }
1523 DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", intel_dp->dpcd[0],
1524 intel_dp->dpcd[1], intel_dp->dpcd[2], intel_dp->dpcd[3]);
1525 return status;
1526 }
1527
1528 static enum drm_connector_status
1529 g4x_dp_detect(struct intel_dp *intel_dp)
1530 {
1531 struct drm_device *dev = intel_dp->base.base.dev;
1532 struct drm_i915_private *dev_priv = dev->dev_private;
1533 enum drm_connector_status status;
1534 uint32_t temp, bit;
1535
1536 switch (intel_dp->output_reg) {
1537 case DP_B:
1538 bit = DPB_HOTPLUG_INT_STATUS;
1539 break;
1540 case DP_C:
1541 bit = DPC_HOTPLUG_INT_STATUS;
1542 break;
1543 case DP_D:
1544 bit = DPD_HOTPLUG_INT_STATUS;
1545 break;
1546 default:
1547 return connector_status_unknown;
1548 }
1549
1550 temp = I915_READ(PORT_HOTPLUG_STAT);
1551
1552 if ((temp & bit) == 0)
1553 return connector_status_disconnected;
1554
1555 status = connector_status_disconnected;
1556 if (intel_dp_aux_native_read(intel_dp, 0x000, intel_dp->dpcd,
1557 sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1558 {
1559 if (intel_dp->dpcd[0] != 0)
1560 status = connector_status_connected;
1561 }
1562
1563 return status;
1564 }
1565
1566 /**
1567 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1568 *
1569 * \return true if DP port is connected.
1570 * \return false if DP port is disconnected.
1571 */
1572 static enum drm_connector_status
1573 intel_dp_detect(struct drm_connector *connector, bool force)
1574 {
1575 struct intel_dp *intel_dp = intel_attached_dp(connector);
1576 struct drm_device *dev = intel_dp->base.base.dev;
1577 enum drm_connector_status status;
1578 struct edid *edid = NULL;
1579
1580 intel_dp->has_audio = false;
1581
1582 if (HAS_PCH_SPLIT(dev))
1583 status = ironlake_dp_detect(intel_dp);
1584 else
1585 status = g4x_dp_detect(intel_dp);
1586 if (status != connector_status_connected)
1587 return status;
1588
1589 if (intel_dp->force_audio) {
1590 intel_dp->has_audio = intel_dp->force_audio > 0;
1591 } else {
1592 edid = drm_get_edid(connector, &intel_dp->adapter);
1593 if (edid) {
1594 intel_dp->has_audio = drm_detect_monitor_audio(edid);
1595 connector->display_info.raw_edid = NULL;
1596 kfree(edid);
1597 }
1598 }
1599
1600 return connector_status_connected;
1601 }
1602
1603 static int intel_dp_get_modes(struct drm_connector *connector)
1604 {
1605 struct intel_dp *intel_dp = intel_attached_dp(connector);
1606 struct drm_device *dev = intel_dp->base.base.dev;
1607 struct drm_i915_private *dev_priv = dev->dev_private;
1608 int ret;
1609
1610 /* We should parse the EDID data and find out if it has an audio sink
1611 */
1612
1613 ret = intel_ddc_get_modes(connector, &intel_dp->adapter);
1614 if (ret) {
1615 if (is_edp(intel_dp) && !dev_priv->panel_fixed_mode) {
1616 struct drm_display_mode *newmode;
1617 list_for_each_entry(newmode, &connector->probed_modes,
1618 head) {
1619 if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1620 dev_priv->panel_fixed_mode =
1621 drm_mode_duplicate(dev, newmode);
1622 break;
1623 }
1624 }
1625 }
1626
1627 return ret;
1628 }
1629
1630 /* if eDP has no EDID, try to use fixed panel mode from VBT */
1631 if (is_edp(intel_dp)) {
1632 if (dev_priv->panel_fixed_mode != NULL) {
1633 struct drm_display_mode *mode;
1634 mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
1635 drm_mode_probed_add(connector, mode);
1636 return 1;
1637 }
1638 }
1639 return 0;
1640 }
1641
1642 static bool
1643 intel_dp_detect_audio(struct drm_connector *connector)
1644 {
1645 struct intel_dp *intel_dp = intel_attached_dp(connector);
1646 struct edid *edid;
1647 bool has_audio = false;
1648
1649 edid = drm_get_edid(connector, &intel_dp->adapter);
1650 if (edid) {
1651 has_audio = drm_detect_monitor_audio(edid);
1652
1653 connector->display_info.raw_edid = NULL;
1654 kfree(edid);
1655 }
1656
1657 return has_audio;
1658 }
1659
1660 static int
1661 intel_dp_set_property(struct drm_connector *connector,
1662 struct drm_property *property,
1663 uint64_t val)
1664 {
1665 struct intel_dp *intel_dp = intel_attached_dp(connector);
1666 int ret;
1667
1668 ret = drm_connector_property_set_value(connector, property, val);
1669 if (ret)
1670 return ret;
1671
1672 if (property == intel_dp->force_audio_property) {
1673 int i = val;
1674 bool has_audio;
1675
1676 if (i == intel_dp->force_audio)
1677 return 0;
1678
1679 intel_dp->force_audio = i;
1680
1681 if (i == 0)
1682 has_audio = intel_dp_detect_audio(connector);
1683 else
1684 has_audio = i > 0;
1685
1686 if (has_audio == intel_dp->has_audio)
1687 return 0;
1688
1689 intel_dp->has_audio = has_audio;
1690 goto done;
1691 }
1692
1693 return -EINVAL;
1694
1695 done:
1696 if (intel_dp->base.base.crtc) {
1697 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1698 drm_crtc_helper_set_mode(crtc, &crtc->mode,
1699 crtc->x, crtc->y,
1700 crtc->fb);
1701 }
1702
1703 return 0;
1704 }
1705
1706 static void
1707 intel_dp_destroy (struct drm_connector *connector)
1708 {
1709 drm_sysfs_connector_remove(connector);
1710 drm_connector_cleanup(connector);
1711 kfree(connector);
1712 }
1713
1714 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
1715 {
1716 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1717
1718 i2c_del_adapter(&intel_dp->adapter);
1719 drm_encoder_cleanup(encoder);
1720 kfree(intel_dp);
1721 }
1722
1723 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1724 .dpms = intel_dp_dpms,
1725 .mode_fixup = intel_dp_mode_fixup,
1726 .prepare = intel_dp_prepare,
1727 .mode_set = intel_dp_mode_set,
1728 .commit = intel_dp_commit,
1729 };
1730
1731 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1732 .dpms = drm_helper_connector_dpms,
1733 .detect = intel_dp_detect,
1734 .fill_modes = drm_helper_probe_single_connector_modes,
1735 .set_property = intel_dp_set_property,
1736 .destroy = intel_dp_destroy,
1737 };
1738
1739 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1740 .get_modes = intel_dp_get_modes,
1741 .mode_valid = intel_dp_mode_valid,
1742 .best_encoder = intel_best_encoder,
1743 };
1744
1745 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1746 .destroy = intel_dp_encoder_destroy,
1747 };
1748
1749 static void
1750 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
1751 {
1752 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
1753
1754 if (intel_dp->dpms_mode == DRM_MODE_DPMS_ON)
1755 intel_dp_check_link_status(intel_dp);
1756 }
1757
1758 /* Return which DP Port should be selected for Transcoder DP control */
1759 int
1760 intel_trans_dp_port_sel (struct drm_crtc *crtc)
1761 {
1762 struct drm_device *dev = crtc->dev;
1763 struct drm_mode_config *mode_config = &dev->mode_config;
1764 struct drm_encoder *encoder;
1765
1766 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1767 struct intel_dp *intel_dp;
1768
1769 if (encoder->crtc != crtc)
1770 continue;
1771
1772 intel_dp = enc_to_intel_dp(encoder);
1773 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
1774 return intel_dp->output_reg;
1775 }
1776
1777 return -1;
1778 }
1779
1780 /* check the VBT to see whether the eDP is on DP-D port */
1781 bool intel_dpd_is_edp(struct drm_device *dev)
1782 {
1783 struct drm_i915_private *dev_priv = dev->dev_private;
1784 struct child_device_config *p_child;
1785 int i;
1786
1787 if (!dev_priv->child_dev_num)
1788 return false;
1789
1790 for (i = 0; i < dev_priv->child_dev_num; i++) {
1791 p_child = dev_priv->child_dev + i;
1792
1793 if (p_child->dvo_port == PORT_IDPD &&
1794 p_child->device_type == DEVICE_TYPE_eDP)
1795 return true;
1796 }
1797 return false;
1798 }
1799
1800 static void
1801 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
1802 {
1803 struct drm_device *dev = connector->dev;
1804
1805 intel_dp->force_audio_property =
1806 drm_property_create(dev, DRM_MODE_PROP_RANGE, "force_audio", 2);
1807 if (intel_dp->force_audio_property) {
1808 intel_dp->force_audio_property->values[0] = -1;
1809 intel_dp->force_audio_property->values[1] = 1;
1810 drm_connector_attach_property(connector, intel_dp->force_audio_property, 0);
1811 }
1812 }
1813
1814 void
1815 intel_dp_init(struct drm_device *dev, int output_reg)
1816 {
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 struct drm_connector *connector;
1819 struct intel_dp *intel_dp;
1820 struct intel_encoder *intel_encoder;
1821 struct intel_connector *intel_connector;
1822 const char *name = NULL;
1823 int type;
1824
1825 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
1826 if (!intel_dp)
1827 return;
1828
1829 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
1830 if (!intel_connector) {
1831 kfree(intel_dp);
1832 return;
1833 }
1834 intel_encoder = &intel_dp->base;
1835
1836 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
1837 if (intel_dpd_is_edp(dev))
1838 intel_dp->is_pch_edp = true;
1839
1840 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
1841 type = DRM_MODE_CONNECTOR_eDP;
1842 intel_encoder->type = INTEL_OUTPUT_EDP;
1843 } else {
1844 type = DRM_MODE_CONNECTOR_DisplayPort;
1845 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
1846 }
1847
1848 connector = &intel_connector->base;
1849 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
1850 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1851
1852 connector->polled = DRM_CONNECTOR_POLL_HPD;
1853
1854 if (output_reg == DP_B || output_reg == PCH_DP_B)
1855 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
1856 else if (output_reg == DP_C || output_reg == PCH_DP_C)
1857 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
1858 else if (output_reg == DP_D || output_reg == PCH_DP_D)
1859 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
1860
1861 if (is_edp(intel_dp))
1862 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
1863
1864 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
1865 connector->interlace_allowed = true;
1866 connector->doublescan_allowed = 0;
1867
1868 intel_dp->output_reg = output_reg;
1869 intel_dp->has_audio = false;
1870 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1871
1872 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
1873 DRM_MODE_ENCODER_TMDS);
1874 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
1875
1876 intel_connector_attach_encoder(intel_connector, intel_encoder);
1877 drm_sysfs_connector_add(connector);
1878
1879 /* Set up the DDC bus. */
1880 switch (output_reg) {
1881 case DP_A:
1882 name = "DPDDC-A";
1883 break;
1884 case DP_B:
1885 case PCH_DP_B:
1886 dev_priv->hotplug_supported_mask |=
1887 HDMIB_HOTPLUG_INT_STATUS;
1888 name = "DPDDC-B";
1889 break;
1890 case DP_C:
1891 case PCH_DP_C:
1892 dev_priv->hotplug_supported_mask |=
1893 HDMIC_HOTPLUG_INT_STATUS;
1894 name = "DPDDC-C";
1895 break;
1896 case DP_D:
1897 case PCH_DP_D:
1898 dev_priv->hotplug_supported_mask |=
1899 HDMID_HOTPLUG_INT_STATUS;
1900 name = "DPDDC-D";
1901 break;
1902 }
1903
1904 intel_dp_i2c_init(intel_dp, intel_connector, name);
1905
1906 /* Cache some DPCD data in the eDP case */
1907 if (is_edp(intel_dp)) {
1908 int ret;
1909 bool was_on;
1910
1911 was_on = ironlake_edp_panel_on(intel_dp);
1912 ret = intel_dp_aux_native_read(intel_dp, DP_DPCD_REV,
1913 intel_dp->dpcd,
1914 sizeof(intel_dp->dpcd));
1915 if (ret == sizeof(intel_dp->dpcd)) {
1916 if (intel_dp->dpcd[0] >= 0x11)
1917 dev_priv->no_aux_handshake = intel_dp->dpcd[3] &
1918 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
1919 } else {
1920 DRM_ERROR("failed to retrieve link info\n");
1921 }
1922 if (!was_on)
1923 ironlake_edp_panel_off(dev);
1924 }
1925
1926 intel_encoder->hot_plug = intel_dp_hot_plug;
1927
1928 if (is_edp(intel_dp)) {
1929 /* initialize panel mode from VBT if available for eDP */
1930 if (dev_priv->lfp_lvds_vbt_mode) {
1931 dev_priv->panel_fixed_mode =
1932 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1933 if (dev_priv->panel_fixed_mode) {
1934 dev_priv->panel_fixed_mode->type |=
1935 DRM_MODE_TYPE_PREFERRED;
1936 }
1937 }
1938 }
1939
1940 intel_dp_add_properties(intel_dp, connector);
1941
1942 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1943 * 0xd. Failure to do so will result in spurious interrupts being
1944 * generated on the port when a cable is not attached.
1945 */
1946 if (IS_G4X(dev) && !IS_GM45(dev)) {
1947 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1948 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1949 }
1950 }
This page took 0.100504 seconds and 5 git commands to generate.