drm/i915: Use EIO instead of EAGAIN for sink CRC error.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static enum pipe
326 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 struct intel_encoder *encoder;
332 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
333 struct edp_power_seq power_seq;
334
335 lockdep_assert_held(&dev_priv->pps_mutex);
336
337 if (intel_dp->pps_pipe != INVALID_PIPE)
338 return intel_dp->pps_pipe;
339
340 /*
341 * We don't have power sequencer currently.
342 * Pick one that's not used by other ports.
343 */
344 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
345 base.head) {
346 struct intel_dp *tmp;
347
348 if (encoder->type != INTEL_OUTPUT_EDP)
349 continue;
350
351 tmp = enc_to_intel_dp(&encoder->base);
352
353 if (tmp->pps_pipe != INVALID_PIPE)
354 pipes &= ~(1 << tmp->pps_pipe);
355 }
356
357 /*
358 * Didn't find one. This should not happen since there
359 * are two power sequencers and up to two eDP ports.
360 */
361 if (WARN_ON(pipes == 0))
362 return PIPE_A;
363
364 intel_dp->pps_pipe = ffs(pipes) - 1;
365
366 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
367 pipe_name(intel_dp->pps_pipe),
368 port_name(intel_dig_port->port));
369
370 /* init power sequencer on this pipe and port */
371 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
372 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
373 &power_seq);
374
375 return intel_dp->pps_pipe;
376 }
377
378 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
379 enum pipe pipe);
380
381 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
382 enum pipe pipe)
383 {
384 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
385 }
386
387 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
388 enum pipe pipe)
389 {
390 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
391 }
392
393 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
394 enum pipe pipe)
395 {
396 return true;
397 }
398
399 static enum pipe
400 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
401 enum port port,
402 vlv_pipe_check pipe_check)
403 {
404 enum pipe pipe;
405
406 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
407 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
408 PANEL_PORT_SELECT_MASK;
409
410 if (port_sel != PANEL_PORT_SELECT_VLV(port))
411 continue;
412
413 if (!pipe_check(dev_priv, pipe))
414 continue;
415
416 return pipe;
417 }
418
419 return INVALID_PIPE;
420 }
421
422 static void
423 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
424 {
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 struct edp_power_seq power_seq;
429 enum port port = intel_dig_port->port;
430
431 lockdep_assert_held(&dev_priv->pps_mutex);
432
433 /* try to find a pipe with this port selected */
434 /* first pick one where the panel is on */
435 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
436 vlv_pipe_has_pp_on);
437 /* didn't find one? pick one where vdd is on */
438 if (intel_dp->pps_pipe == INVALID_PIPE)
439 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
440 vlv_pipe_has_vdd_on);
441 /* didn't find one? pick one with just the correct port */
442 if (intel_dp->pps_pipe == INVALID_PIPE)
443 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
444 vlv_pipe_any);
445
446 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
447 if (intel_dp->pps_pipe == INVALID_PIPE) {
448 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
449 port_name(port));
450 return;
451 }
452
453 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
454 port_name(port), pipe_name(intel_dp->pps_pipe));
455
456 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
457 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
458 &power_seq);
459 }
460
461 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
462 {
463 struct drm_device *dev = dev_priv->dev;
464 struct intel_encoder *encoder;
465
466 if (WARN_ON(!IS_VALLEYVIEW(dev)))
467 return;
468
469 /*
470 * We can't grab pps_mutex here due to deadlock with power_domain
471 * mutex when power_domain functions are called while holding pps_mutex.
472 * That also means that in order to use pps_pipe the code needs to
473 * hold both a power domain reference and pps_mutex, and the power domain
474 * reference get/put must be done while _not_ holding pps_mutex.
475 * pps_{lock,unlock}() do these steps in the correct order, so one
476 * should use them always.
477 */
478
479 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
480 struct intel_dp *intel_dp;
481
482 if (encoder->type != INTEL_OUTPUT_EDP)
483 continue;
484
485 intel_dp = enc_to_intel_dp(&encoder->base);
486 intel_dp->pps_pipe = INVALID_PIPE;
487 }
488 }
489
490 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
491 {
492 struct drm_device *dev = intel_dp_to_dev(intel_dp);
493
494 if (HAS_PCH_SPLIT(dev))
495 return PCH_PP_CONTROL;
496 else
497 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
498 }
499
500 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
501 {
502 struct drm_device *dev = intel_dp_to_dev(intel_dp);
503
504 if (HAS_PCH_SPLIT(dev))
505 return PCH_PP_STATUS;
506 else
507 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
508 }
509
510 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
511 This function only applicable when panel PM state is not to be tracked */
512 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
513 void *unused)
514 {
515 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
516 edp_notifier);
517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 u32 pp_div;
520 u32 pp_ctrl_reg, pp_div_reg;
521
522 if (!is_edp(intel_dp) || code != SYS_RESTART)
523 return 0;
524
525 pps_lock(intel_dp);
526
527 if (IS_VALLEYVIEW(dev)) {
528 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
529
530 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
531 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
532 pp_div = I915_READ(pp_div_reg);
533 pp_div &= PP_REFERENCE_DIVIDER_MASK;
534
535 /* 0x1F write to PP_DIV_REG sets max cycle delay */
536 I915_WRITE(pp_div_reg, pp_div | 0x1F);
537 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
538 msleep(intel_dp->panel_power_cycle_delay);
539 }
540
541 pps_unlock(intel_dp);
542
543 return 0;
544 }
545
546 static bool edp_have_panel_power(struct intel_dp *intel_dp)
547 {
548 struct drm_device *dev = intel_dp_to_dev(intel_dp);
549 struct drm_i915_private *dev_priv = dev->dev_private;
550
551 lockdep_assert_held(&dev_priv->pps_mutex);
552
553 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
554 }
555
556 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559 struct drm_i915_private *dev_priv = dev->dev_private;
560
561 lockdep_assert_held(&dev_priv->pps_mutex);
562
563 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
564 }
565
566 static void
567 intel_dp_check_edp(struct intel_dp *intel_dp)
568 {
569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
570 struct drm_i915_private *dev_priv = dev->dev_private;
571
572 if (!is_edp(intel_dp))
573 return;
574
575 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
576 WARN(1, "eDP powered off while attempting aux channel communication.\n");
577 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
578 I915_READ(_pp_stat_reg(intel_dp)),
579 I915_READ(_pp_ctrl_reg(intel_dp)));
580 }
581 }
582
583 static uint32_t
584 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
585 {
586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
587 struct drm_device *dev = intel_dig_port->base.base.dev;
588 struct drm_i915_private *dev_priv = dev->dev_private;
589 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
590 uint32_t status;
591 bool done;
592
593 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
594 if (has_aux_irq)
595 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
596 msecs_to_jiffies_timeout(10));
597 else
598 done = wait_for_atomic(C, 10) == 0;
599 if (!done)
600 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
601 has_aux_irq);
602 #undef C
603
604 return status;
605 }
606
607 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
608 {
609 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
610 struct drm_device *dev = intel_dig_port->base.base.dev;
611
612 /*
613 * The clock divider is based off the hrawclk, and would like to run at
614 * 2MHz. So, take the hrawclk value and divide by 2 and use that
615 */
616 return index ? 0 : intel_hrawclk(dev) / 2;
617 }
618
619 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
620 {
621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
622 struct drm_device *dev = intel_dig_port->base.base.dev;
623
624 if (index)
625 return 0;
626
627 if (intel_dig_port->port == PORT_A) {
628 if (IS_GEN6(dev) || IS_GEN7(dev))
629 return 200; /* SNB & IVB eDP input clock at 400Mhz */
630 else
631 return 225; /* eDP input clock at 450Mhz */
632 } else {
633 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
634 }
635 }
636
637 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
638 {
639 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
640 struct drm_device *dev = intel_dig_port->base.base.dev;
641 struct drm_i915_private *dev_priv = dev->dev_private;
642
643 if (intel_dig_port->port == PORT_A) {
644 if (index)
645 return 0;
646 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
647 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
648 /* Workaround for non-ULT HSW */
649 switch (index) {
650 case 0: return 63;
651 case 1: return 72;
652 default: return 0;
653 }
654 } else {
655 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
656 }
657 }
658
659 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 return index ? 0 : 100;
662 }
663
664 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
665 bool has_aux_irq,
666 int send_bytes,
667 uint32_t aux_clock_divider)
668 {
669 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670 struct drm_device *dev = intel_dig_port->base.base.dev;
671 uint32_t precharge, timeout;
672
673 if (IS_GEN6(dev))
674 precharge = 3;
675 else
676 precharge = 5;
677
678 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
679 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
680 else
681 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
682
683 return DP_AUX_CH_CTL_SEND_BUSY |
684 DP_AUX_CH_CTL_DONE |
685 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
686 DP_AUX_CH_CTL_TIME_OUT_ERROR |
687 timeout |
688 DP_AUX_CH_CTL_RECEIVE_ERROR |
689 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
690 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
691 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
692 }
693
694 static int
695 intel_dp_aux_ch(struct intel_dp *intel_dp,
696 uint8_t *send, int send_bytes,
697 uint8_t *recv, int recv_size)
698 {
699 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
700 struct drm_device *dev = intel_dig_port->base.base.dev;
701 struct drm_i915_private *dev_priv = dev->dev_private;
702 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
703 uint32_t ch_data = ch_ctl + 4;
704 uint32_t aux_clock_divider;
705 int i, ret, recv_bytes;
706 uint32_t status;
707 int try, clock = 0;
708 bool has_aux_irq = HAS_AUX_IRQ(dev);
709 bool vdd;
710
711 pps_lock(intel_dp);
712
713 /*
714 * We will be called with VDD already enabled for dpcd/edid/oui reads.
715 * In such cases we want to leave VDD enabled and it's up to upper layers
716 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
717 * ourselves.
718 */
719 vdd = edp_panel_vdd_on(intel_dp);
720
721 /* dp aux is extremely sensitive to irq latency, hence request the
722 * lowest possible wakeup latency and so prevent the cpu from going into
723 * deep sleep states.
724 */
725 pm_qos_update_request(&dev_priv->pm_qos, 0);
726
727 intel_dp_check_edp(intel_dp);
728
729 intel_aux_display_runtime_get(dev_priv);
730
731 /* Try to wait for any previous AUX channel activity */
732 for (try = 0; try < 3; try++) {
733 status = I915_READ_NOTRACE(ch_ctl);
734 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
735 break;
736 msleep(1);
737 }
738
739 if (try == 3) {
740 WARN(1, "dp_aux_ch not started status 0x%08x\n",
741 I915_READ(ch_ctl));
742 ret = -EBUSY;
743 goto out;
744 }
745
746 /* Only 5 data registers! */
747 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
748 ret = -E2BIG;
749 goto out;
750 }
751
752 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
753 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
754 has_aux_irq,
755 send_bytes,
756 aux_clock_divider);
757
758 /* Must try at least 3 times according to DP spec */
759 for (try = 0; try < 5; try++) {
760 /* Load the send data into the aux channel data registers */
761 for (i = 0; i < send_bytes; i += 4)
762 I915_WRITE(ch_data + i,
763 pack_aux(send + i, send_bytes - i));
764
765 /* Send the command and wait for it to complete */
766 I915_WRITE(ch_ctl, send_ctl);
767
768 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
769
770 /* Clear done status and any errors */
771 I915_WRITE(ch_ctl,
772 status |
773 DP_AUX_CH_CTL_DONE |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 DP_AUX_CH_CTL_RECEIVE_ERROR);
776
777 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_RECEIVE_ERROR))
779 continue;
780 if (status & DP_AUX_CH_CTL_DONE)
781 break;
782 }
783 if (status & DP_AUX_CH_CTL_DONE)
784 break;
785 }
786
787 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
788 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
789 ret = -EBUSY;
790 goto out;
791 }
792
793 /* Check for timeout or receive error.
794 * Timeouts occur when the sink is not connected
795 */
796 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
797 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
798 ret = -EIO;
799 goto out;
800 }
801
802 /* Timeouts occur when the device isn't connected, so they're
803 * "normal" -- don't fill the kernel log with these */
804 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
805 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
806 ret = -ETIMEDOUT;
807 goto out;
808 }
809
810 /* Unload any bytes sent back from the other side */
811 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
812 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
813 if (recv_bytes > recv_size)
814 recv_bytes = recv_size;
815
816 for (i = 0; i < recv_bytes; i += 4)
817 unpack_aux(I915_READ(ch_data + i),
818 recv + i, recv_bytes - i);
819
820 ret = recv_bytes;
821 out:
822 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
823 intel_aux_display_runtime_put(dev_priv);
824
825 if (vdd)
826 edp_panel_vdd_off(intel_dp, false);
827
828 pps_unlock(intel_dp);
829
830 return ret;
831 }
832
833 #define BARE_ADDRESS_SIZE 3
834 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
835 static ssize_t
836 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
837 {
838 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
839 uint8_t txbuf[20], rxbuf[20];
840 size_t txsize, rxsize;
841 int ret;
842
843 txbuf[0] = msg->request << 4;
844 txbuf[1] = msg->address >> 8;
845 txbuf[2] = msg->address & 0xff;
846 txbuf[3] = msg->size - 1;
847
848 switch (msg->request & ~DP_AUX_I2C_MOT) {
849 case DP_AUX_NATIVE_WRITE:
850 case DP_AUX_I2C_WRITE:
851 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
852 rxsize = 1;
853
854 if (WARN_ON(txsize > 20))
855 return -E2BIG;
856
857 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
858
859 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
860 if (ret > 0) {
861 msg->reply = rxbuf[0] >> 4;
862
863 /* Return payload size. */
864 ret = msg->size;
865 }
866 break;
867
868 case DP_AUX_NATIVE_READ:
869 case DP_AUX_I2C_READ:
870 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
871 rxsize = msg->size + 1;
872
873 if (WARN_ON(rxsize > 20))
874 return -E2BIG;
875
876 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
877 if (ret > 0) {
878 msg->reply = rxbuf[0] >> 4;
879 /*
880 * Assume happy day, and copy the data. The caller is
881 * expected to check msg->reply before touching it.
882 *
883 * Return payload size.
884 */
885 ret--;
886 memcpy(msg->buffer, rxbuf + 1, ret);
887 }
888 break;
889
890 default:
891 ret = -EINVAL;
892 break;
893 }
894
895 return ret;
896 }
897
898 static void
899 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
900 {
901 struct drm_device *dev = intel_dp_to_dev(intel_dp);
902 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
903 enum port port = intel_dig_port->port;
904 const char *name = NULL;
905 int ret;
906
907 switch (port) {
908 case PORT_A:
909 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
910 name = "DPDDC-A";
911 break;
912 case PORT_B:
913 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
914 name = "DPDDC-B";
915 break;
916 case PORT_C:
917 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
918 name = "DPDDC-C";
919 break;
920 case PORT_D:
921 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
922 name = "DPDDC-D";
923 break;
924 default:
925 BUG();
926 }
927
928 if (!HAS_DDI(dev))
929 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
930
931 intel_dp->aux.name = name;
932 intel_dp->aux.dev = dev->dev;
933 intel_dp->aux.transfer = intel_dp_aux_transfer;
934
935 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
936 connector->base.kdev->kobj.name);
937
938 ret = drm_dp_aux_register(&intel_dp->aux);
939 if (ret < 0) {
940 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
941 name, ret);
942 return;
943 }
944
945 ret = sysfs_create_link(&connector->base.kdev->kobj,
946 &intel_dp->aux.ddc.dev.kobj,
947 intel_dp->aux.ddc.dev.kobj.name);
948 if (ret < 0) {
949 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
950 drm_dp_aux_unregister(&intel_dp->aux);
951 }
952 }
953
954 static void
955 intel_dp_connector_unregister(struct intel_connector *intel_connector)
956 {
957 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
958
959 if (!intel_connector->mst_port)
960 sysfs_remove_link(&intel_connector->base.kdev->kobj,
961 intel_dp->aux.ddc.dev.kobj.name);
962 intel_connector_unregister(intel_connector);
963 }
964
965 static void
966 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
967 {
968 switch (link_bw) {
969 case DP_LINK_BW_1_62:
970 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
971 break;
972 case DP_LINK_BW_2_7:
973 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
974 break;
975 case DP_LINK_BW_5_4:
976 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
977 break;
978 }
979 }
980
981 static void
982 intel_dp_set_clock(struct intel_encoder *encoder,
983 struct intel_crtc_config *pipe_config, int link_bw)
984 {
985 struct drm_device *dev = encoder->base.dev;
986 const struct dp_link_dpll *divisor = NULL;
987 int i, count = 0;
988
989 if (IS_G4X(dev)) {
990 divisor = gen4_dpll;
991 count = ARRAY_SIZE(gen4_dpll);
992 } else if (HAS_PCH_SPLIT(dev)) {
993 divisor = pch_dpll;
994 count = ARRAY_SIZE(pch_dpll);
995 } else if (IS_CHERRYVIEW(dev)) {
996 divisor = chv_dpll;
997 count = ARRAY_SIZE(chv_dpll);
998 } else if (IS_VALLEYVIEW(dev)) {
999 divisor = vlv_dpll;
1000 count = ARRAY_SIZE(vlv_dpll);
1001 }
1002
1003 if (divisor && count) {
1004 for (i = 0; i < count; i++) {
1005 if (link_bw == divisor[i].link_bw) {
1006 pipe_config->dpll = divisor[i].dpll;
1007 pipe_config->clock_set = true;
1008 break;
1009 }
1010 }
1011 }
1012 }
1013
1014 bool
1015 intel_dp_compute_config(struct intel_encoder *encoder,
1016 struct intel_crtc_config *pipe_config)
1017 {
1018 struct drm_device *dev = encoder->base.dev;
1019 struct drm_i915_private *dev_priv = dev->dev_private;
1020 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1021 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022 enum port port = dp_to_dig_port(intel_dp)->port;
1023 struct intel_crtc *intel_crtc = encoder->new_crtc;
1024 struct intel_connector *intel_connector = intel_dp->attached_connector;
1025 int lane_count, clock;
1026 int min_lane_count = 1;
1027 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1028 /* Conveniently, the link BW constants become indices with a shift...*/
1029 int min_clock = 0;
1030 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1031 int bpp, mode_rate;
1032 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1033 int link_avail, link_clock;
1034
1035 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1036 pipe_config->has_pch_encoder = true;
1037
1038 pipe_config->has_dp_encoder = true;
1039 pipe_config->has_drrs = false;
1040 pipe_config->has_audio = intel_dp->has_audio;
1041
1042 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1043 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1044 adjusted_mode);
1045 if (!HAS_PCH_SPLIT(dev))
1046 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1047 intel_connector->panel.fitting_mode);
1048 else
1049 intel_pch_panel_fitting(intel_crtc, pipe_config,
1050 intel_connector->panel.fitting_mode);
1051 }
1052
1053 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1054 return false;
1055
1056 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1057 "max bw %02x pixel clock %iKHz\n",
1058 max_lane_count, bws[max_clock],
1059 adjusted_mode->crtc_clock);
1060
1061 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1062 * bpc in between. */
1063 bpp = pipe_config->pipe_bpp;
1064 if (is_edp(intel_dp)) {
1065 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1066 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1067 dev_priv->vbt.edp_bpp);
1068 bpp = dev_priv->vbt.edp_bpp;
1069 }
1070
1071 /*
1072 * Use the maximum clock and number of lanes the eDP panel
1073 * advertizes being capable of. The panels are generally
1074 * designed to support only a single clock and lane
1075 * configuration, and typically these values correspond to the
1076 * native resolution of the panel.
1077 */
1078 min_lane_count = max_lane_count;
1079 min_clock = max_clock;
1080 }
1081
1082 for (; bpp >= 6*3; bpp -= 2*3) {
1083 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1084 bpp);
1085
1086 for (clock = min_clock; clock <= max_clock; clock++) {
1087 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1088 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1089 link_avail = intel_dp_max_data_rate(link_clock,
1090 lane_count);
1091
1092 if (mode_rate <= link_avail) {
1093 goto found;
1094 }
1095 }
1096 }
1097 }
1098
1099 return false;
1100
1101 found:
1102 if (intel_dp->color_range_auto) {
1103 /*
1104 * See:
1105 * CEA-861-E - 5.1 Default Encoding Parameters
1106 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1107 */
1108 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1109 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1110 else
1111 intel_dp->color_range = 0;
1112 }
1113
1114 if (intel_dp->color_range)
1115 pipe_config->limited_color_range = true;
1116
1117 intel_dp->link_bw = bws[clock];
1118 intel_dp->lane_count = lane_count;
1119 pipe_config->pipe_bpp = bpp;
1120 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1121
1122 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1123 intel_dp->link_bw, intel_dp->lane_count,
1124 pipe_config->port_clock, bpp);
1125 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1126 mode_rate, link_avail);
1127
1128 intel_link_compute_m_n(bpp, lane_count,
1129 adjusted_mode->crtc_clock,
1130 pipe_config->port_clock,
1131 &pipe_config->dp_m_n);
1132
1133 if (intel_connector->panel.downclock_mode != NULL &&
1134 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1135 pipe_config->has_drrs = true;
1136 intel_link_compute_m_n(bpp, lane_count,
1137 intel_connector->panel.downclock_mode->clock,
1138 pipe_config->port_clock,
1139 &pipe_config->dp_m2_n2);
1140 }
1141
1142 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1143 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1144 else
1145 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1146
1147 return true;
1148 }
1149
1150 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1151 {
1152 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1153 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1154 struct drm_device *dev = crtc->base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 u32 dpa_ctl;
1157
1158 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1159 dpa_ctl = I915_READ(DP_A);
1160 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1161
1162 if (crtc->config.port_clock == 162000) {
1163 /* For a long time we've carried around a ILK-DevA w/a for the
1164 * 160MHz clock. If we're really unlucky, it's still required.
1165 */
1166 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1167 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1168 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1169 } else {
1170 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1171 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1172 }
1173
1174 I915_WRITE(DP_A, dpa_ctl);
1175
1176 POSTING_READ(DP_A);
1177 udelay(500);
1178 }
1179
1180 static void intel_dp_prepare(struct intel_encoder *encoder)
1181 {
1182 struct drm_device *dev = encoder->base.dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1185 enum port port = dp_to_dig_port(intel_dp)->port;
1186 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1187 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1188
1189 /*
1190 * There are four kinds of DP registers:
1191 *
1192 * IBX PCH
1193 * SNB CPU
1194 * IVB CPU
1195 * CPT PCH
1196 *
1197 * IBX PCH and CPU are the same for almost everything,
1198 * except that the CPU DP PLL is configured in this
1199 * register
1200 *
1201 * CPT PCH is quite different, having many bits moved
1202 * to the TRANS_DP_CTL register instead. That
1203 * configuration happens (oddly) in ironlake_pch_enable
1204 */
1205
1206 /* Preserve the BIOS-computed detected bit. This is
1207 * supposed to be read-only.
1208 */
1209 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1210
1211 /* Handle DP bits in common between all three register formats */
1212 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1213 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1214
1215 if (crtc->config.has_audio) {
1216 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1217 pipe_name(crtc->pipe));
1218 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1219 intel_write_eld(&encoder->base, adjusted_mode);
1220 }
1221
1222 /* Split out the IBX/CPU vs CPT settings */
1223
1224 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1225 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1226 intel_dp->DP |= DP_SYNC_HS_HIGH;
1227 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1228 intel_dp->DP |= DP_SYNC_VS_HIGH;
1229 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1230
1231 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1232 intel_dp->DP |= DP_ENHANCED_FRAMING;
1233
1234 intel_dp->DP |= crtc->pipe << 29;
1235 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1236 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1237 intel_dp->DP |= intel_dp->color_range;
1238
1239 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1240 intel_dp->DP |= DP_SYNC_HS_HIGH;
1241 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1242 intel_dp->DP |= DP_SYNC_VS_HIGH;
1243 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1244
1245 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1246 intel_dp->DP |= DP_ENHANCED_FRAMING;
1247
1248 if (!IS_CHERRYVIEW(dev)) {
1249 if (crtc->pipe == 1)
1250 intel_dp->DP |= DP_PIPEB_SELECT;
1251 } else {
1252 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1253 }
1254 } else {
1255 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1256 }
1257 }
1258
1259 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1260 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1261
1262 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1263 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1264
1265 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1266 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1267
1268 static void wait_panel_status(struct intel_dp *intel_dp,
1269 u32 mask,
1270 u32 value)
1271 {
1272 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 u32 pp_stat_reg, pp_ctrl_reg;
1275
1276 lockdep_assert_held(&dev_priv->pps_mutex);
1277
1278 pp_stat_reg = _pp_stat_reg(intel_dp);
1279 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1280
1281 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1282 mask, value,
1283 I915_READ(pp_stat_reg),
1284 I915_READ(pp_ctrl_reg));
1285
1286 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1287 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1288 I915_READ(pp_stat_reg),
1289 I915_READ(pp_ctrl_reg));
1290 }
1291
1292 DRM_DEBUG_KMS("Wait complete\n");
1293 }
1294
1295 static void wait_panel_on(struct intel_dp *intel_dp)
1296 {
1297 DRM_DEBUG_KMS("Wait for panel power on\n");
1298 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1299 }
1300
1301 static void wait_panel_off(struct intel_dp *intel_dp)
1302 {
1303 DRM_DEBUG_KMS("Wait for panel power off time\n");
1304 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1305 }
1306
1307 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1308 {
1309 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1310
1311 /* When we disable the VDD override bit last we have to do the manual
1312 * wait. */
1313 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1314 intel_dp->panel_power_cycle_delay);
1315
1316 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1317 }
1318
1319 static void wait_backlight_on(struct intel_dp *intel_dp)
1320 {
1321 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1322 intel_dp->backlight_on_delay);
1323 }
1324
1325 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1326 {
1327 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1328 intel_dp->backlight_off_delay);
1329 }
1330
1331 /* Read the current pp_control value, unlocking the register if it
1332 * is locked
1333 */
1334
1335 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1336 {
1337 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 u32 control;
1340
1341 lockdep_assert_held(&dev_priv->pps_mutex);
1342
1343 control = I915_READ(_pp_ctrl_reg(intel_dp));
1344 control &= ~PANEL_UNLOCK_MASK;
1345 control |= PANEL_UNLOCK_REGS;
1346 return control;
1347 }
1348
1349 /*
1350 * Must be paired with edp_panel_vdd_off().
1351 * Must hold pps_mutex around the whole on/off sequence.
1352 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1353 */
1354 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1355 {
1356 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 enum intel_display_power_domain power_domain;
1361 u32 pp;
1362 u32 pp_stat_reg, pp_ctrl_reg;
1363 bool need_to_disable = !intel_dp->want_panel_vdd;
1364
1365 lockdep_assert_held(&dev_priv->pps_mutex);
1366
1367 if (!is_edp(intel_dp))
1368 return false;
1369
1370 intel_dp->want_panel_vdd = true;
1371
1372 if (edp_have_panel_vdd(intel_dp))
1373 return need_to_disable;
1374
1375 power_domain = intel_display_port_power_domain(intel_encoder);
1376 intel_display_power_get(dev_priv, power_domain);
1377
1378 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1379
1380 if (!edp_have_panel_power(intel_dp))
1381 wait_panel_power_cycle(intel_dp);
1382
1383 pp = ironlake_get_pp_control(intel_dp);
1384 pp |= EDP_FORCE_VDD;
1385
1386 pp_stat_reg = _pp_stat_reg(intel_dp);
1387 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389 I915_WRITE(pp_ctrl_reg, pp);
1390 POSTING_READ(pp_ctrl_reg);
1391 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1392 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1393 /*
1394 * If the panel wasn't on, delay before accessing aux channel
1395 */
1396 if (!edp_have_panel_power(intel_dp)) {
1397 DRM_DEBUG_KMS("eDP was not running\n");
1398 msleep(intel_dp->panel_power_up_delay);
1399 }
1400
1401 return need_to_disable;
1402 }
1403
1404 /*
1405 * Must be paired with intel_edp_panel_vdd_off() or
1406 * intel_edp_panel_off().
1407 * Nested calls to these functions are not allowed since
1408 * we drop the lock. Caller must use some higher level
1409 * locking to prevent nested calls from other threads.
1410 */
1411 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1412 {
1413 bool vdd;
1414
1415 if (!is_edp(intel_dp))
1416 return;
1417
1418 pps_lock(intel_dp);
1419 vdd = edp_panel_vdd_on(intel_dp);
1420 pps_unlock(intel_dp);
1421
1422 WARN(!vdd, "eDP VDD already requested on\n");
1423 }
1424
1425 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1426 {
1427 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 struct intel_digital_port *intel_dig_port =
1430 dp_to_dig_port(intel_dp);
1431 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1432 enum intel_display_power_domain power_domain;
1433 u32 pp;
1434 u32 pp_stat_reg, pp_ctrl_reg;
1435
1436 lockdep_assert_held(&dev_priv->pps_mutex);
1437
1438 WARN_ON(intel_dp->want_panel_vdd);
1439
1440 if (!edp_have_panel_vdd(intel_dp))
1441 return;
1442
1443 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1444
1445 pp = ironlake_get_pp_control(intel_dp);
1446 pp &= ~EDP_FORCE_VDD;
1447
1448 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1449 pp_stat_reg = _pp_stat_reg(intel_dp);
1450
1451 I915_WRITE(pp_ctrl_reg, pp);
1452 POSTING_READ(pp_ctrl_reg);
1453
1454 /* Make sure sequencer is idle before allowing subsequent activity */
1455 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1456 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1457
1458 if ((pp & POWER_TARGET_ON) == 0)
1459 intel_dp->last_power_cycle = jiffies;
1460
1461 power_domain = intel_display_port_power_domain(intel_encoder);
1462 intel_display_power_put(dev_priv, power_domain);
1463 }
1464
1465 static void edp_panel_vdd_work(struct work_struct *__work)
1466 {
1467 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1468 struct intel_dp, panel_vdd_work);
1469
1470 pps_lock(intel_dp);
1471 if (!intel_dp->want_panel_vdd)
1472 edp_panel_vdd_off_sync(intel_dp);
1473 pps_unlock(intel_dp);
1474 }
1475
1476 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1477 {
1478 unsigned long delay;
1479
1480 /*
1481 * Queue the timer to fire a long time from now (relative to the power
1482 * down delay) to keep the panel power up across a sequence of
1483 * operations.
1484 */
1485 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1486 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1487 }
1488
1489 /*
1490 * Must be paired with edp_panel_vdd_on().
1491 * Must hold pps_mutex around the whole on/off sequence.
1492 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1493 */
1494 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1495 {
1496 struct drm_i915_private *dev_priv =
1497 intel_dp_to_dev(intel_dp)->dev_private;
1498
1499 lockdep_assert_held(&dev_priv->pps_mutex);
1500
1501 if (!is_edp(intel_dp))
1502 return;
1503
1504 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1505
1506 intel_dp->want_panel_vdd = false;
1507
1508 if (sync)
1509 edp_panel_vdd_off_sync(intel_dp);
1510 else
1511 edp_panel_vdd_schedule_off(intel_dp);
1512 }
1513
1514 /*
1515 * Must be paired with intel_edp_panel_vdd_on().
1516 * Nested calls to these functions are not allowed since
1517 * we drop the lock. Caller must use some higher level
1518 * locking to prevent nested calls from other threads.
1519 */
1520 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1521 {
1522 if (!is_edp(intel_dp))
1523 return;
1524
1525 pps_lock(intel_dp);
1526 edp_panel_vdd_off(intel_dp, sync);
1527 pps_unlock(intel_dp);
1528 }
1529
1530 void intel_edp_panel_on(struct intel_dp *intel_dp)
1531 {
1532 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 u32 pp;
1535 u32 pp_ctrl_reg;
1536
1537 if (!is_edp(intel_dp))
1538 return;
1539
1540 DRM_DEBUG_KMS("Turn eDP power on\n");
1541
1542 pps_lock(intel_dp);
1543
1544 if (edp_have_panel_power(intel_dp)) {
1545 DRM_DEBUG_KMS("eDP power already on\n");
1546 goto out;
1547 }
1548
1549 wait_panel_power_cycle(intel_dp);
1550
1551 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1552 pp = ironlake_get_pp_control(intel_dp);
1553 if (IS_GEN5(dev)) {
1554 /* ILK workaround: disable reset around power sequence */
1555 pp &= ~PANEL_POWER_RESET;
1556 I915_WRITE(pp_ctrl_reg, pp);
1557 POSTING_READ(pp_ctrl_reg);
1558 }
1559
1560 pp |= POWER_TARGET_ON;
1561 if (!IS_GEN5(dev))
1562 pp |= PANEL_POWER_RESET;
1563
1564 I915_WRITE(pp_ctrl_reg, pp);
1565 POSTING_READ(pp_ctrl_reg);
1566
1567 wait_panel_on(intel_dp);
1568 intel_dp->last_power_on = jiffies;
1569
1570 if (IS_GEN5(dev)) {
1571 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1572 I915_WRITE(pp_ctrl_reg, pp);
1573 POSTING_READ(pp_ctrl_reg);
1574 }
1575
1576 out:
1577 pps_unlock(intel_dp);
1578 }
1579
1580 void intel_edp_panel_off(struct intel_dp *intel_dp)
1581 {
1582 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1583 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1584 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 enum intel_display_power_domain power_domain;
1587 u32 pp;
1588 u32 pp_ctrl_reg;
1589
1590 if (!is_edp(intel_dp))
1591 return;
1592
1593 DRM_DEBUG_KMS("Turn eDP power off\n");
1594
1595 pps_lock(intel_dp);
1596
1597 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1598
1599 pp = ironlake_get_pp_control(intel_dp);
1600 /* We need to switch off panel power _and_ force vdd, for otherwise some
1601 * panels get very unhappy and cease to work. */
1602 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1603 EDP_BLC_ENABLE);
1604
1605 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1606
1607 intel_dp->want_panel_vdd = false;
1608
1609 I915_WRITE(pp_ctrl_reg, pp);
1610 POSTING_READ(pp_ctrl_reg);
1611
1612 intel_dp->last_power_cycle = jiffies;
1613 wait_panel_off(intel_dp);
1614
1615 /* We got a reference when we enabled the VDD. */
1616 power_domain = intel_display_port_power_domain(intel_encoder);
1617 intel_display_power_put(dev_priv, power_domain);
1618
1619 pps_unlock(intel_dp);
1620 }
1621
1622 /* Enable backlight in the panel power control. */
1623 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1624 {
1625 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1626 struct drm_device *dev = intel_dig_port->base.base.dev;
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 u32 pp;
1629 u32 pp_ctrl_reg;
1630
1631 /*
1632 * If we enable the backlight right away following a panel power
1633 * on, we may see slight flicker as the panel syncs with the eDP
1634 * link. So delay a bit to make sure the image is solid before
1635 * allowing it to appear.
1636 */
1637 wait_backlight_on(intel_dp);
1638
1639 pps_lock(intel_dp);
1640
1641 pp = ironlake_get_pp_control(intel_dp);
1642 pp |= EDP_BLC_ENABLE;
1643
1644 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1645
1646 I915_WRITE(pp_ctrl_reg, pp);
1647 POSTING_READ(pp_ctrl_reg);
1648
1649 pps_unlock(intel_dp);
1650 }
1651
1652 /* Enable backlight PWM and backlight PP control. */
1653 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1654 {
1655 if (!is_edp(intel_dp))
1656 return;
1657
1658 DRM_DEBUG_KMS("\n");
1659
1660 intel_panel_enable_backlight(intel_dp->attached_connector);
1661 _intel_edp_backlight_on(intel_dp);
1662 }
1663
1664 /* Disable backlight in the panel power control. */
1665 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1666 {
1667 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 u32 pp;
1670 u32 pp_ctrl_reg;
1671
1672 if (!is_edp(intel_dp))
1673 return;
1674
1675 pps_lock(intel_dp);
1676
1677 pp = ironlake_get_pp_control(intel_dp);
1678 pp &= ~EDP_BLC_ENABLE;
1679
1680 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1681
1682 I915_WRITE(pp_ctrl_reg, pp);
1683 POSTING_READ(pp_ctrl_reg);
1684
1685 pps_unlock(intel_dp);
1686
1687 intel_dp->last_backlight_off = jiffies;
1688 edp_wait_backlight_off(intel_dp);
1689 }
1690
1691 /* Disable backlight PP control and backlight PWM. */
1692 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1693 {
1694 if (!is_edp(intel_dp))
1695 return;
1696
1697 DRM_DEBUG_KMS("\n");
1698
1699 _intel_edp_backlight_off(intel_dp);
1700 intel_panel_disable_backlight(intel_dp->attached_connector);
1701 }
1702
1703 /*
1704 * Hook for controlling the panel power control backlight through the bl_power
1705 * sysfs attribute. Take care to handle multiple calls.
1706 */
1707 static void intel_edp_backlight_power(struct intel_connector *connector,
1708 bool enable)
1709 {
1710 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1711 bool is_enabled;
1712
1713 pps_lock(intel_dp);
1714 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1715 pps_unlock(intel_dp);
1716
1717 if (is_enabled == enable)
1718 return;
1719
1720 DRM_DEBUG_KMS("panel power control backlight %s\n",
1721 enable ? "enable" : "disable");
1722
1723 if (enable)
1724 _intel_edp_backlight_on(intel_dp);
1725 else
1726 _intel_edp_backlight_off(intel_dp);
1727 }
1728
1729 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1730 {
1731 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1732 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1733 struct drm_device *dev = crtc->dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 u32 dpa_ctl;
1736
1737 assert_pipe_disabled(dev_priv,
1738 to_intel_crtc(crtc)->pipe);
1739
1740 DRM_DEBUG_KMS("\n");
1741 dpa_ctl = I915_READ(DP_A);
1742 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1743 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1744
1745 /* We don't adjust intel_dp->DP while tearing down the link, to
1746 * facilitate link retraining (e.g. after hotplug). Hence clear all
1747 * enable bits here to ensure that we don't enable too much. */
1748 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1749 intel_dp->DP |= DP_PLL_ENABLE;
1750 I915_WRITE(DP_A, intel_dp->DP);
1751 POSTING_READ(DP_A);
1752 udelay(200);
1753 }
1754
1755 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1756 {
1757 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1758 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1759 struct drm_device *dev = crtc->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 u32 dpa_ctl;
1762
1763 assert_pipe_disabled(dev_priv,
1764 to_intel_crtc(crtc)->pipe);
1765
1766 dpa_ctl = I915_READ(DP_A);
1767 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1768 "dp pll off, should be on\n");
1769 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1770
1771 /* We can't rely on the value tracked for the DP register in
1772 * intel_dp->DP because link_down must not change that (otherwise link
1773 * re-training will fail. */
1774 dpa_ctl &= ~DP_PLL_ENABLE;
1775 I915_WRITE(DP_A, dpa_ctl);
1776 POSTING_READ(DP_A);
1777 udelay(200);
1778 }
1779
1780 /* If the sink supports it, try to set the power state appropriately */
1781 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1782 {
1783 int ret, i;
1784
1785 /* Should have a valid DPCD by this point */
1786 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1787 return;
1788
1789 if (mode != DRM_MODE_DPMS_ON) {
1790 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1791 DP_SET_POWER_D3);
1792 } else {
1793 /*
1794 * When turning on, we need to retry for 1ms to give the sink
1795 * time to wake up.
1796 */
1797 for (i = 0; i < 3; i++) {
1798 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1799 DP_SET_POWER_D0);
1800 if (ret == 1)
1801 break;
1802 msleep(1);
1803 }
1804 }
1805
1806 if (ret != 1)
1807 DRM_DEBUG_KMS("failed to %s sink power state\n",
1808 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1809 }
1810
1811 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1812 enum pipe *pipe)
1813 {
1814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1815 enum port port = dp_to_dig_port(intel_dp)->port;
1816 struct drm_device *dev = encoder->base.dev;
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 enum intel_display_power_domain power_domain;
1819 u32 tmp;
1820
1821 power_domain = intel_display_port_power_domain(encoder);
1822 if (!intel_display_power_enabled(dev_priv, power_domain))
1823 return false;
1824
1825 tmp = I915_READ(intel_dp->output_reg);
1826
1827 if (!(tmp & DP_PORT_EN))
1828 return false;
1829
1830 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1831 *pipe = PORT_TO_PIPE_CPT(tmp);
1832 } else if (IS_CHERRYVIEW(dev)) {
1833 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1834 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1835 *pipe = PORT_TO_PIPE(tmp);
1836 } else {
1837 u32 trans_sel;
1838 u32 trans_dp;
1839 int i;
1840
1841 switch (intel_dp->output_reg) {
1842 case PCH_DP_B:
1843 trans_sel = TRANS_DP_PORT_SEL_B;
1844 break;
1845 case PCH_DP_C:
1846 trans_sel = TRANS_DP_PORT_SEL_C;
1847 break;
1848 case PCH_DP_D:
1849 trans_sel = TRANS_DP_PORT_SEL_D;
1850 break;
1851 default:
1852 return true;
1853 }
1854
1855 for_each_pipe(dev_priv, i) {
1856 trans_dp = I915_READ(TRANS_DP_CTL(i));
1857 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1858 *pipe = i;
1859 return true;
1860 }
1861 }
1862
1863 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1864 intel_dp->output_reg);
1865 }
1866
1867 return true;
1868 }
1869
1870 static void intel_dp_get_config(struct intel_encoder *encoder,
1871 struct intel_crtc_config *pipe_config)
1872 {
1873 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1874 u32 tmp, flags = 0;
1875 struct drm_device *dev = encoder->base.dev;
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 enum port port = dp_to_dig_port(intel_dp)->port;
1878 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1879 int dotclock;
1880
1881 tmp = I915_READ(intel_dp->output_reg);
1882 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1883 pipe_config->has_audio = true;
1884
1885 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1886 if (tmp & DP_SYNC_HS_HIGH)
1887 flags |= DRM_MODE_FLAG_PHSYNC;
1888 else
1889 flags |= DRM_MODE_FLAG_NHSYNC;
1890
1891 if (tmp & DP_SYNC_VS_HIGH)
1892 flags |= DRM_MODE_FLAG_PVSYNC;
1893 else
1894 flags |= DRM_MODE_FLAG_NVSYNC;
1895 } else {
1896 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1897 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1898 flags |= DRM_MODE_FLAG_PHSYNC;
1899 else
1900 flags |= DRM_MODE_FLAG_NHSYNC;
1901
1902 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1903 flags |= DRM_MODE_FLAG_PVSYNC;
1904 else
1905 flags |= DRM_MODE_FLAG_NVSYNC;
1906 }
1907
1908 pipe_config->adjusted_mode.flags |= flags;
1909
1910 pipe_config->has_dp_encoder = true;
1911
1912 intel_dp_get_m_n(crtc, pipe_config);
1913
1914 if (port == PORT_A) {
1915 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1916 pipe_config->port_clock = 162000;
1917 else
1918 pipe_config->port_clock = 270000;
1919 }
1920
1921 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1922 &pipe_config->dp_m_n);
1923
1924 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1925 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1926
1927 pipe_config->adjusted_mode.crtc_clock = dotclock;
1928
1929 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1930 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1931 /*
1932 * This is a big fat ugly hack.
1933 *
1934 * Some machines in UEFI boot mode provide us a VBT that has 18
1935 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1936 * unknown we fail to light up. Yet the same BIOS boots up with
1937 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1938 * max, not what it tells us to use.
1939 *
1940 * Note: This will still be broken if the eDP panel is not lit
1941 * up by the BIOS, and thus we can't get the mode at module
1942 * load.
1943 */
1944 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1945 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1946 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1947 }
1948 }
1949
1950 static bool is_edp_psr(struct intel_dp *intel_dp)
1951 {
1952 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1953 }
1954
1955 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1956 {
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958
1959 if (!HAS_PSR(dev))
1960 return false;
1961
1962 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1963 }
1964
1965 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1966 struct edp_vsc_psr *vsc_psr)
1967 {
1968 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1969 struct drm_device *dev = dig_port->base.base.dev;
1970 struct drm_i915_private *dev_priv = dev->dev_private;
1971 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1972 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1973 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1974 uint32_t *data = (uint32_t *) vsc_psr;
1975 unsigned int i;
1976
1977 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1978 the video DIP being updated before program video DIP data buffer
1979 registers for DIP being updated. */
1980 I915_WRITE(ctl_reg, 0);
1981 POSTING_READ(ctl_reg);
1982
1983 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1984 if (i < sizeof(struct edp_vsc_psr))
1985 I915_WRITE(data_reg + i, *data++);
1986 else
1987 I915_WRITE(data_reg + i, 0);
1988 }
1989
1990 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1991 POSTING_READ(ctl_reg);
1992 }
1993
1994 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1995 {
1996 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1997 struct drm_i915_private *dev_priv = dev->dev_private;
1998 struct edp_vsc_psr psr_vsc;
1999
2000 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2001 memset(&psr_vsc, 0, sizeof(psr_vsc));
2002 psr_vsc.sdp_header.HB0 = 0;
2003 psr_vsc.sdp_header.HB1 = 0x7;
2004 psr_vsc.sdp_header.HB2 = 0x2;
2005 psr_vsc.sdp_header.HB3 = 0x8;
2006 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2007
2008 /* Avoid continuous PSR exit by masking memup and hpd */
2009 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2010 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2011 }
2012
2013 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2014 {
2015 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2016 struct drm_device *dev = dig_port->base.base.dev;
2017 struct drm_i915_private *dev_priv = dev->dev_private;
2018 uint32_t aux_clock_divider;
2019 int precharge = 0x3;
2020 int msg_size = 5; /* Header(4) + Message(1) */
2021 bool only_standby = false;
2022
2023 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2024
2025 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2026 only_standby = true;
2027
2028 /* Enable PSR in sink */
2029 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2030 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2031 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2032 else
2033 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2034 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2035
2036 /* Setup AUX registers */
2037 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
2038 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
2039 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2040 DP_AUX_CH_CTL_TIME_OUT_400us |
2041 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2042 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2043 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2044 }
2045
2046 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2047 {
2048 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2049 struct drm_device *dev = dig_port->base.base.dev;
2050 struct drm_i915_private *dev_priv = dev->dev_private;
2051 uint32_t max_sleep_time = 0x1f;
2052 uint32_t idle_frames = 1;
2053 uint32_t val = 0x0;
2054 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2055 bool only_standby = false;
2056
2057 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2058 only_standby = true;
2059
2060 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2061 val |= EDP_PSR_LINK_STANDBY;
2062 val |= EDP_PSR_TP2_TP3_TIME_0us;
2063 val |= EDP_PSR_TP1_TIME_0us;
2064 val |= EDP_PSR_SKIP_AUX_EXIT;
2065 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2066 } else
2067 val |= EDP_PSR_LINK_DISABLE;
2068
2069 I915_WRITE(EDP_PSR_CTL(dev), val |
2070 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2071 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2072 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2073 EDP_PSR_ENABLE);
2074 }
2075
2076 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2077 {
2078 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2079 struct drm_device *dev = dig_port->base.base.dev;
2080 struct drm_i915_private *dev_priv = dev->dev_private;
2081 struct drm_crtc *crtc = dig_port->base.base.crtc;
2082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2083
2084 lockdep_assert_held(&dev_priv->psr.lock);
2085 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2086 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2087
2088 dev_priv->psr.source_ok = false;
2089
2090 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2091 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2092 return false;
2093 }
2094
2095 if (!i915.enable_psr) {
2096 DRM_DEBUG_KMS("PSR disable by flag\n");
2097 return false;
2098 }
2099
2100 /* Below limitations aren't valid for Broadwell */
2101 if (IS_BROADWELL(dev))
2102 goto out;
2103
2104 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2105 S3D_ENABLE) {
2106 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2107 return false;
2108 }
2109
2110 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2111 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2112 return false;
2113 }
2114
2115 out:
2116 dev_priv->psr.source_ok = true;
2117 return true;
2118 }
2119
2120 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2121 {
2122 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2123 struct drm_device *dev = intel_dig_port->base.base.dev;
2124 struct drm_i915_private *dev_priv = dev->dev_private;
2125
2126 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2127 WARN_ON(dev_priv->psr.active);
2128 lockdep_assert_held(&dev_priv->psr.lock);
2129
2130 /* Enable PSR on the panel */
2131 intel_edp_psr_enable_sink(intel_dp);
2132
2133 /* Enable PSR on the host */
2134 intel_edp_psr_enable_source(intel_dp);
2135
2136 dev_priv->psr.active = true;
2137 }
2138
2139 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2140 {
2141 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2142 struct drm_i915_private *dev_priv = dev->dev_private;
2143
2144 if (!HAS_PSR(dev)) {
2145 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2146 return;
2147 }
2148
2149 if (!is_edp_psr(intel_dp)) {
2150 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2151 return;
2152 }
2153
2154 mutex_lock(&dev_priv->psr.lock);
2155 if (dev_priv->psr.enabled) {
2156 DRM_DEBUG_KMS("PSR already in use\n");
2157 mutex_unlock(&dev_priv->psr.lock);
2158 return;
2159 }
2160
2161 dev_priv->psr.busy_frontbuffer_bits = 0;
2162
2163 /* Setup PSR once */
2164 intel_edp_psr_setup(intel_dp);
2165
2166 if (intel_edp_psr_match_conditions(intel_dp))
2167 dev_priv->psr.enabled = intel_dp;
2168 mutex_unlock(&dev_priv->psr.lock);
2169 }
2170
2171 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2172 {
2173 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2174 struct drm_i915_private *dev_priv = dev->dev_private;
2175
2176 mutex_lock(&dev_priv->psr.lock);
2177 if (!dev_priv->psr.enabled) {
2178 mutex_unlock(&dev_priv->psr.lock);
2179 return;
2180 }
2181
2182 if (dev_priv->psr.active) {
2183 I915_WRITE(EDP_PSR_CTL(dev),
2184 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2185
2186 /* Wait till PSR is idle */
2187 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2188 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2189 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2190
2191 dev_priv->psr.active = false;
2192 } else {
2193 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2194 }
2195
2196 dev_priv->psr.enabled = NULL;
2197 mutex_unlock(&dev_priv->psr.lock);
2198
2199 cancel_delayed_work_sync(&dev_priv->psr.work);
2200 }
2201
2202 static void intel_edp_psr_work(struct work_struct *work)
2203 {
2204 struct drm_i915_private *dev_priv =
2205 container_of(work, typeof(*dev_priv), psr.work.work);
2206 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2207
2208 mutex_lock(&dev_priv->psr.lock);
2209 intel_dp = dev_priv->psr.enabled;
2210
2211 if (!intel_dp)
2212 goto unlock;
2213
2214 /*
2215 * The delayed work can race with an invalidate hence we need to
2216 * recheck. Since psr_flush first clears this and then reschedules we
2217 * won't ever miss a flush when bailing out here.
2218 */
2219 if (dev_priv->psr.busy_frontbuffer_bits)
2220 goto unlock;
2221
2222 intel_edp_psr_do_enable(intel_dp);
2223 unlock:
2224 mutex_unlock(&dev_priv->psr.lock);
2225 }
2226
2227 static void intel_edp_psr_do_exit(struct drm_device *dev)
2228 {
2229 struct drm_i915_private *dev_priv = dev->dev_private;
2230
2231 if (dev_priv->psr.active) {
2232 u32 val = I915_READ(EDP_PSR_CTL(dev));
2233
2234 WARN_ON(!(val & EDP_PSR_ENABLE));
2235
2236 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2237
2238 dev_priv->psr.active = false;
2239 }
2240
2241 }
2242
2243 void intel_edp_psr_invalidate(struct drm_device *dev,
2244 unsigned frontbuffer_bits)
2245 {
2246 struct drm_i915_private *dev_priv = dev->dev_private;
2247 struct drm_crtc *crtc;
2248 enum pipe pipe;
2249
2250 mutex_lock(&dev_priv->psr.lock);
2251 if (!dev_priv->psr.enabled) {
2252 mutex_unlock(&dev_priv->psr.lock);
2253 return;
2254 }
2255
2256 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2257 pipe = to_intel_crtc(crtc)->pipe;
2258
2259 intel_edp_psr_do_exit(dev);
2260
2261 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2262
2263 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2264 mutex_unlock(&dev_priv->psr.lock);
2265 }
2266
2267 void intel_edp_psr_flush(struct drm_device *dev,
2268 unsigned frontbuffer_bits)
2269 {
2270 struct drm_i915_private *dev_priv = dev->dev_private;
2271 struct drm_crtc *crtc;
2272 enum pipe pipe;
2273
2274 mutex_lock(&dev_priv->psr.lock);
2275 if (!dev_priv->psr.enabled) {
2276 mutex_unlock(&dev_priv->psr.lock);
2277 return;
2278 }
2279
2280 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2281 pipe = to_intel_crtc(crtc)->pipe;
2282 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2283
2284 /*
2285 * On Haswell sprite plane updates don't result in a psr invalidating
2286 * signal in the hardware. Which means we need to manually fake this in
2287 * software for all flushes, not just when we've seen a preceding
2288 * invalidation through frontbuffer rendering.
2289 */
2290 if (IS_HASWELL(dev) &&
2291 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2292 intel_edp_psr_do_exit(dev);
2293
2294 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2295 schedule_delayed_work(&dev_priv->psr.work,
2296 msecs_to_jiffies(100));
2297 mutex_unlock(&dev_priv->psr.lock);
2298 }
2299
2300 void intel_edp_psr_init(struct drm_device *dev)
2301 {
2302 struct drm_i915_private *dev_priv = dev->dev_private;
2303
2304 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2305 mutex_init(&dev_priv->psr.lock);
2306 }
2307
2308 static void intel_disable_dp(struct intel_encoder *encoder)
2309 {
2310 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2311 struct drm_device *dev = encoder->base.dev;
2312
2313 /* Make sure the panel is off before trying to change the mode. But also
2314 * ensure that we have vdd while we switch off the panel. */
2315 intel_edp_panel_vdd_on(intel_dp);
2316 intel_edp_backlight_off(intel_dp);
2317 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2318 intel_edp_panel_off(intel_dp);
2319
2320 /* disable the port before the pipe on g4x */
2321 if (INTEL_INFO(dev)->gen < 5)
2322 intel_dp_link_down(intel_dp);
2323 }
2324
2325 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2326 {
2327 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2328 enum port port = dp_to_dig_port(intel_dp)->port;
2329
2330 intel_dp_link_down(intel_dp);
2331 if (port == PORT_A)
2332 ironlake_edp_pll_off(intel_dp);
2333 }
2334
2335 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2336 {
2337 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2338
2339 intel_dp_link_down(intel_dp);
2340 }
2341
2342 static void chv_post_disable_dp(struct intel_encoder *encoder)
2343 {
2344 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2345 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2346 struct drm_device *dev = encoder->base.dev;
2347 struct drm_i915_private *dev_priv = dev->dev_private;
2348 struct intel_crtc *intel_crtc =
2349 to_intel_crtc(encoder->base.crtc);
2350 enum dpio_channel ch = vlv_dport_to_channel(dport);
2351 enum pipe pipe = intel_crtc->pipe;
2352 u32 val;
2353
2354 intel_dp_link_down(intel_dp);
2355
2356 mutex_lock(&dev_priv->dpio_lock);
2357
2358 /* Propagate soft reset to data lane reset */
2359 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2360 val |= CHV_PCS_REQ_SOFTRESET_EN;
2361 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2362
2363 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2364 val |= CHV_PCS_REQ_SOFTRESET_EN;
2365 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2366
2367 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2368 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2369 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2370
2371 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2372 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2373 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2374
2375 mutex_unlock(&dev_priv->dpio_lock);
2376 }
2377
2378 static void
2379 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2380 uint32_t *DP,
2381 uint8_t dp_train_pat)
2382 {
2383 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2384 struct drm_device *dev = intel_dig_port->base.base.dev;
2385 struct drm_i915_private *dev_priv = dev->dev_private;
2386 enum port port = intel_dig_port->port;
2387
2388 if (HAS_DDI(dev)) {
2389 uint32_t temp = I915_READ(DP_TP_CTL(port));
2390
2391 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2392 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2393 else
2394 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2395
2396 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2397 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2398 case DP_TRAINING_PATTERN_DISABLE:
2399 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2400
2401 break;
2402 case DP_TRAINING_PATTERN_1:
2403 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2404 break;
2405 case DP_TRAINING_PATTERN_2:
2406 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2407 break;
2408 case DP_TRAINING_PATTERN_3:
2409 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2410 break;
2411 }
2412 I915_WRITE(DP_TP_CTL(port), temp);
2413
2414 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2415 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2416
2417 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2418 case DP_TRAINING_PATTERN_DISABLE:
2419 *DP |= DP_LINK_TRAIN_OFF_CPT;
2420 break;
2421 case DP_TRAINING_PATTERN_1:
2422 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2423 break;
2424 case DP_TRAINING_PATTERN_2:
2425 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2426 break;
2427 case DP_TRAINING_PATTERN_3:
2428 DRM_ERROR("DP training pattern 3 not supported\n");
2429 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2430 break;
2431 }
2432
2433 } else {
2434 if (IS_CHERRYVIEW(dev))
2435 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2436 else
2437 *DP &= ~DP_LINK_TRAIN_MASK;
2438
2439 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2440 case DP_TRAINING_PATTERN_DISABLE:
2441 *DP |= DP_LINK_TRAIN_OFF;
2442 break;
2443 case DP_TRAINING_PATTERN_1:
2444 *DP |= DP_LINK_TRAIN_PAT_1;
2445 break;
2446 case DP_TRAINING_PATTERN_2:
2447 *DP |= DP_LINK_TRAIN_PAT_2;
2448 break;
2449 case DP_TRAINING_PATTERN_3:
2450 if (IS_CHERRYVIEW(dev)) {
2451 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2452 } else {
2453 DRM_ERROR("DP training pattern 3 not supported\n");
2454 *DP |= DP_LINK_TRAIN_PAT_2;
2455 }
2456 break;
2457 }
2458 }
2459 }
2460
2461 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2462 {
2463 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2464 struct drm_i915_private *dev_priv = dev->dev_private;
2465
2466 intel_dp->DP |= DP_PORT_EN;
2467
2468 /* enable with pattern 1 (as per spec) */
2469 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2470 DP_TRAINING_PATTERN_1);
2471
2472 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2473 POSTING_READ(intel_dp->output_reg);
2474 }
2475
2476 static void intel_enable_dp(struct intel_encoder *encoder)
2477 {
2478 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2479 struct drm_device *dev = encoder->base.dev;
2480 struct drm_i915_private *dev_priv = dev->dev_private;
2481 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2482
2483 if (WARN_ON(dp_reg & DP_PORT_EN))
2484 return;
2485
2486 intel_dp_enable_port(intel_dp);
2487 intel_edp_panel_vdd_on(intel_dp);
2488 intel_edp_panel_on(intel_dp);
2489 intel_edp_panel_vdd_off(intel_dp, true);
2490 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2491 intel_dp_start_link_train(intel_dp);
2492 intel_dp_complete_link_train(intel_dp);
2493 intel_dp_stop_link_train(intel_dp);
2494 }
2495
2496 static void g4x_enable_dp(struct intel_encoder *encoder)
2497 {
2498 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2499
2500 intel_enable_dp(encoder);
2501 intel_edp_backlight_on(intel_dp);
2502 }
2503
2504 static void vlv_enable_dp(struct intel_encoder *encoder)
2505 {
2506 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2507
2508 intel_edp_backlight_on(intel_dp);
2509 }
2510
2511 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2512 {
2513 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2514 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2515
2516 intel_dp_prepare(encoder);
2517
2518 /* Only ilk+ has port A */
2519 if (dport->port == PORT_A) {
2520 ironlake_set_pll_cpu_edp(intel_dp);
2521 ironlake_edp_pll_on(intel_dp);
2522 }
2523 }
2524
2525 static void vlv_steal_power_sequencer(struct drm_device *dev,
2526 enum pipe pipe)
2527 {
2528 struct drm_i915_private *dev_priv = dev->dev_private;
2529 struct intel_encoder *encoder;
2530
2531 lockdep_assert_held(&dev_priv->pps_mutex);
2532
2533 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2534 base.head) {
2535 struct intel_dp *intel_dp;
2536 enum port port;
2537
2538 if (encoder->type != INTEL_OUTPUT_EDP)
2539 continue;
2540
2541 intel_dp = enc_to_intel_dp(&encoder->base);
2542 port = dp_to_dig_port(intel_dp)->port;
2543
2544 if (intel_dp->pps_pipe != pipe)
2545 continue;
2546
2547 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2548 pipe_name(pipe), port_name(port));
2549
2550 /* make sure vdd is off before we steal it */
2551 edp_panel_vdd_off_sync(intel_dp);
2552
2553 intel_dp->pps_pipe = INVALID_PIPE;
2554 }
2555 }
2556
2557 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2558 {
2559 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2560 struct intel_encoder *encoder = &intel_dig_port->base;
2561 struct drm_device *dev = encoder->base.dev;
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2564 struct edp_power_seq power_seq;
2565
2566 lockdep_assert_held(&dev_priv->pps_mutex);
2567
2568 if (intel_dp->pps_pipe == crtc->pipe)
2569 return;
2570
2571 /*
2572 * If another power sequencer was being used on this
2573 * port previously make sure to turn off vdd there while
2574 * we still have control of it.
2575 */
2576 if (intel_dp->pps_pipe != INVALID_PIPE)
2577 edp_panel_vdd_off_sync(intel_dp);
2578
2579 /*
2580 * We may be stealing the power
2581 * sequencer from another port.
2582 */
2583 vlv_steal_power_sequencer(dev, crtc->pipe);
2584
2585 /* now it's all ours */
2586 intel_dp->pps_pipe = crtc->pipe;
2587
2588 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2589 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2590
2591 /* init power sequencer on this pipe and port */
2592 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2593 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2594 &power_seq);
2595 }
2596
2597 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2598 {
2599 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2600 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2601 struct drm_device *dev = encoder->base.dev;
2602 struct drm_i915_private *dev_priv = dev->dev_private;
2603 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2604 enum dpio_channel port = vlv_dport_to_channel(dport);
2605 int pipe = intel_crtc->pipe;
2606 u32 val;
2607
2608 mutex_lock(&dev_priv->dpio_lock);
2609
2610 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2611 val = 0;
2612 if (pipe)
2613 val |= (1<<21);
2614 else
2615 val &= ~(1<<21);
2616 val |= 0x001000c4;
2617 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2618 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2619 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2620
2621 mutex_unlock(&dev_priv->dpio_lock);
2622
2623 if (is_edp(intel_dp)) {
2624 pps_lock(intel_dp);
2625 vlv_init_panel_power_sequencer(intel_dp);
2626 pps_unlock(intel_dp);
2627 }
2628
2629 intel_enable_dp(encoder);
2630
2631 vlv_wait_port_ready(dev_priv, dport);
2632 }
2633
2634 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2635 {
2636 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2637 struct drm_device *dev = encoder->base.dev;
2638 struct drm_i915_private *dev_priv = dev->dev_private;
2639 struct intel_crtc *intel_crtc =
2640 to_intel_crtc(encoder->base.crtc);
2641 enum dpio_channel port = vlv_dport_to_channel(dport);
2642 int pipe = intel_crtc->pipe;
2643
2644 intel_dp_prepare(encoder);
2645
2646 /* Program Tx lane resets to default */
2647 mutex_lock(&dev_priv->dpio_lock);
2648 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2649 DPIO_PCS_TX_LANE2_RESET |
2650 DPIO_PCS_TX_LANE1_RESET);
2651 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2652 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2653 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2654 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2655 DPIO_PCS_CLK_SOFT_RESET);
2656
2657 /* Fix up inter-pair skew failure */
2658 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2659 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2660 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2661 mutex_unlock(&dev_priv->dpio_lock);
2662 }
2663
2664 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2665 {
2666 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2667 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2668 struct drm_device *dev = encoder->base.dev;
2669 struct drm_i915_private *dev_priv = dev->dev_private;
2670 struct intel_crtc *intel_crtc =
2671 to_intel_crtc(encoder->base.crtc);
2672 enum dpio_channel ch = vlv_dport_to_channel(dport);
2673 int pipe = intel_crtc->pipe;
2674 int data, i;
2675 u32 val;
2676
2677 mutex_lock(&dev_priv->dpio_lock);
2678
2679 /* Deassert soft data lane reset*/
2680 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2681 val |= CHV_PCS_REQ_SOFTRESET_EN;
2682 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2683
2684 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2685 val |= CHV_PCS_REQ_SOFTRESET_EN;
2686 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2687
2688 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2689 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2690 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2691
2692 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2693 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2694 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2695
2696 /* Program Tx lane latency optimal setting*/
2697 for (i = 0; i < 4; i++) {
2698 /* Set the latency optimal bit */
2699 data = (i == 1) ? 0x0 : 0x6;
2700 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2701 data << DPIO_FRC_LATENCY_SHFIT);
2702
2703 /* Set the upar bit */
2704 data = (i == 1) ? 0x0 : 0x1;
2705 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2706 data << DPIO_UPAR_SHIFT);
2707 }
2708
2709 /* Data lane stagger programming */
2710 /* FIXME: Fix up value only after power analysis */
2711
2712 mutex_unlock(&dev_priv->dpio_lock);
2713
2714 if (is_edp(intel_dp)) {
2715 pps_lock(intel_dp);
2716 vlv_init_panel_power_sequencer(intel_dp);
2717 pps_unlock(intel_dp);
2718 }
2719
2720 intel_enable_dp(encoder);
2721
2722 vlv_wait_port_ready(dev_priv, dport);
2723 }
2724
2725 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2726 {
2727 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2728 struct drm_device *dev = encoder->base.dev;
2729 struct drm_i915_private *dev_priv = dev->dev_private;
2730 struct intel_crtc *intel_crtc =
2731 to_intel_crtc(encoder->base.crtc);
2732 enum dpio_channel ch = vlv_dport_to_channel(dport);
2733 enum pipe pipe = intel_crtc->pipe;
2734 u32 val;
2735
2736 intel_dp_prepare(encoder);
2737
2738 mutex_lock(&dev_priv->dpio_lock);
2739
2740 /* program left/right clock distribution */
2741 if (pipe != PIPE_B) {
2742 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2743 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2744 if (ch == DPIO_CH0)
2745 val |= CHV_BUFLEFTENA1_FORCE;
2746 if (ch == DPIO_CH1)
2747 val |= CHV_BUFRIGHTENA1_FORCE;
2748 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2749 } else {
2750 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2751 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2752 if (ch == DPIO_CH0)
2753 val |= CHV_BUFLEFTENA2_FORCE;
2754 if (ch == DPIO_CH1)
2755 val |= CHV_BUFRIGHTENA2_FORCE;
2756 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2757 }
2758
2759 /* program clock channel usage */
2760 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2761 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2762 if (pipe != PIPE_B)
2763 val &= ~CHV_PCS_USEDCLKCHANNEL;
2764 else
2765 val |= CHV_PCS_USEDCLKCHANNEL;
2766 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2767
2768 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2769 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2770 if (pipe != PIPE_B)
2771 val &= ~CHV_PCS_USEDCLKCHANNEL;
2772 else
2773 val |= CHV_PCS_USEDCLKCHANNEL;
2774 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2775
2776 /*
2777 * This a a bit weird since generally CL
2778 * matches the pipe, but here we need to
2779 * pick the CL based on the port.
2780 */
2781 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2782 if (pipe != PIPE_B)
2783 val &= ~CHV_CMN_USEDCLKCHANNEL;
2784 else
2785 val |= CHV_CMN_USEDCLKCHANNEL;
2786 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2787
2788 mutex_unlock(&dev_priv->dpio_lock);
2789 }
2790
2791 /*
2792 * Native read with retry for link status and receiver capability reads for
2793 * cases where the sink may still be asleep.
2794 *
2795 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2796 * supposed to retry 3 times per the spec.
2797 */
2798 static ssize_t
2799 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2800 void *buffer, size_t size)
2801 {
2802 ssize_t ret;
2803 int i;
2804
2805 for (i = 0; i < 3; i++) {
2806 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2807 if (ret == size)
2808 return ret;
2809 msleep(1);
2810 }
2811
2812 return ret;
2813 }
2814
2815 /*
2816 * Fetch AUX CH registers 0x202 - 0x207 which contain
2817 * link status information
2818 */
2819 static bool
2820 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2821 {
2822 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2823 DP_LANE0_1_STATUS,
2824 link_status,
2825 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2826 }
2827
2828 /* These are source-specific values. */
2829 static uint8_t
2830 intel_dp_voltage_max(struct intel_dp *intel_dp)
2831 {
2832 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2833 enum port port = dp_to_dig_port(intel_dp)->port;
2834
2835 if (IS_VALLEYVIEW(dev))
2836 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2837 else if (IS_GEN7(dev) && port == PORT_A)
2838 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2839 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2840 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2841 else
2842 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2843 }
2844
2845 static uint8_t
2846 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2847 {
2848 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2849 enum port port = dp_to_dig_port(intel_dp)->port;
2850
2851 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2852 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2853 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2854 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2855 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2856 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2857 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2858 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2859 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2860 default:
2861 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2862 }
2863 } else if (IS_VALLEYVIEW(dev)) {
2864 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2865 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2866 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2867 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2868 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2869 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2870 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2871 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2872 default:
2873 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2874 }
2875 } else if (IS_GEN7(dev) && port == PORT_A) {
2876 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2877 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2878 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2879 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2880 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2881 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2882 default:
2883 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2884 }
2885 } else {
2886 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2887 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2888 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2890 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2891 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2892 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2893 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2894 default:
2895 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2896 }
2897 }
2898 }
2899
2900 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2901 {
2902 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2905 struct intel_crtc *intel_crtc =
2906 to_intel_crtc(dport->base.base.crtc);
2907 unsigned long demph_reg_value, preemph_reg_value,
2908 uniqtranscale_reg_value;
2909 uint8_t train_set = intel_dp->train_set[0];
2910 enum dpio_channel port = vlv_dport_to_channel(dport);
2911 int pipe = intel_crtc->pipe;
2912
2913 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2914 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2915 preemph_reg_value = 0x0004000;
2916 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2917 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2918 demph_reg_value = 0x2B405555;
2919 uniqtranscale_reg_value = 0x552AB83A;
2920 break;
2921 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2922 demph_reg_value = 0x2B404040;
2923 uniqtranscale_reg_value = 0x5548B83A;
2924 break;
2925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2926 demph_reg_value = 0x2B245555;
2927 uniqtranscale_reg_value = 0x5560B83A;
2928 break;
2929 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2930 demph_reg_value = 0x2B405555;
2931 uniqtranscale_reg_value = 0x5598DA3A;
2932 break;
2933 default:
2934 return 0;
2935 }
2936 break;
2937 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2938 preemph_reg_value = 0x0002000;
2939 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2940 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2941 demph_reg_value = 0x2B404040;
2942 uniqtranscale_reg_value = 0x5552B83A;
2943 break;
2944 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2945 demph_reg_value = 0x2B404848;
2946 uniqtranscale_reg_value = 0x5580B83A;
2947 break;
2948 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2949 demph_reg_value = 0x2B404040;
2950 uniqtranscale_reg_value = 0x55ADDA3A;
2951 break;
2952 default:
2953 return 0;
2954 }
2955 break;
2956 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2957 preemph_reg_value = 0x0000000;
2958 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2960 demph_reg_value = 0x2B305555;
2961 uniqtranscale_reg_value = 0x5570B83A;
2962 break;
2963 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2964 demph_reg_value = 0x2B2B4040;
2965 uniqtranscale_reg_value = 0x55ADDA3A;
2966 break;
2967 default:
2968 return 0;
2969 }
2970 break;
2971 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2972 preemph_reg_value = 0x0006000;
2973 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2975 demph_reg_value = 0x1B405555;
2976 uniqtranscale_reg_value = 0x55ADDA3A;
2977 break;
2978 default:
2979 return 0;
2980 }
2981 break;
2982 default:
2983 return 0;
2984 }
2985
2986 mutex_lock(&dev_priv->dpio_lock);
2987 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2988 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2989 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2990 uniqtranscale_reg_value);
2991 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2992 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2993 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2994 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2995 mutex_unlock(&dev_priv->dpio_lock);
2996
2997 return 0;
2998 }
2999
3000 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3001 {
3002 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3003 struct drm_i915_private *dev_priv = dev->dev_private;
3004 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3005 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3006 u32 deemph_reg_value, margin_reg_value, val;
3007 uint8_t train_set = intel_dp->train_set[0];
3008 enum dpio_channel ch = vlv_dport_to_channel(dport);
3009 enum pipe pipe = intel_crtc->pipe;
3010 int i;
3011
3012 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3013 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3014 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3015 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3016 deemph_reg_value = 128;
3017 margin_reg_value = 52;
3018 break;
3019 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3020 deemph_reg_value = 128;
3021 margin_reg_value = 77;
3022 break;
3023 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3024 deemph_reg_value = 128;
3025 margin_reg_value = 102;
3026 break;
3027 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3028 deemph_reg_value = 128;
3029 margin_reg_value = 154;
3030 /* FIXME extra to set for 1200 */
3031 break;
3032 default:
3033 return 0;
3034 }
3035 break;
3036 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3037 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3038 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3039 deemph_reg_value = 85;
3040 margin_reg_value = 78;
3041 break;
3042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3043 deemph_reg_value = 85;
3044 margin_reg_value = 116;
3045 break;
3046 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3047 deemph_reg_value = 85;
3048 margin_reg_value = 154;
3049 break;
3050 default:
3051 return 0;
3052 }
3053 break;
3054 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3055 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3056 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3057 deemph_reg_value = 64;
3058 margin_reg_value = 104;
3059 break;
3060 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3061 deemph_reg_value = 64;
3062 margin_reg_value = 154;
3063 break;
3064 default:
3065 return 0;
3066 }
3067 break;
3068 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3069 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3070 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3071 deemph_reg_value = 43;
3072 margin_reg_value = 154;
3073 break;
3074 default:
3075 return 0;
3076 }
3077 break;
3078 default:
3079 return 0;
3080 }
3081
3082 mutex_lock(&dev_priv->dpio_lock);
3083
3084 /* Clear calc init */
3085 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3086 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3087 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3088
3089 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3090 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3091 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3092
3093 /* Program swing deemph */
3094 for (i = 0; i < 4; i++) {
3095 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3096 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3097 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3098 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3099 }
3100
3101 /* Program swing margin */
3102 for (i = 0; i < 4; i++) {
3103 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3104 val &= ~DPIO_SWING_MARGIN000_MASK;
3105 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3106 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3107 }
3108
3109 /* Disable unique transition scale */
3110 for (i = 0; i < 4; i++) {
3111 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3112 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3113 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3114 }
3115
3116 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3117 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3118 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3119 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3120
3121 /*
3122 * The document said it needs to set bit 27 for ch0 and bit 26
3123 * for ch1. Might be a typo in the doc.
3124 * For now, for this unique transition scale selection, set bit
3125 * 27 for ch0 and ch1.
3126 */
3127 for (i = 0; i < 4; i++) {
3128 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3129 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3130 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3131 }
3132
3133 for (i = 0; i < 4; i++) {
3134 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3135 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3136 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3137 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3138 }
3139 }
3140
3141 /* Start swing calculation */
3142 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3143 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3144 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3145
3146 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3147 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3148 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3149
3150 /* LRC Bypass */
3151 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3152 val |= DPIO_LRC_BYPASS;
3153 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3154
3155 mutex_unlock(&dev_priv->dpio_lock);
3156
3157 return 0;
3158 }
3159
3160 static void
3161 intel_get_adjust_train(struct intel_dp *intel_dp,
3162 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3163 {
3164 uint8_t v = 0;
3165 uint8_t p = 0;
3166 int lane;
3167 uint8_t voltage_max;
3168 uint8_t preemph_max;
3169
3170 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3171 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3172 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3173
3174 if (this_v > v)
3175 v = this_v;
3176 if (this_p > p)
3177 p = this_p;
3178 }
3179
3180 voltage_max = intel_dp_voltage_max(intel_dp);
3181 if (v >= voltage_max)
3182 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3183
3184 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3185 if (p >= preemph_max)
3186 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3187
3188 for (lane = 0; lane < 4; lane++)
3189 intel_dp->train_set[lane] = v | p;
3190 }
3191
3192 static uint32_t
3193 intel_gen4_signal_levels(uint8_t train_set)
3194 {
3195 uint32_t signal_levels = 0;
3196
3197 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3199 default:
3200 signal_levels |= DP_VOLTAGE_0_4;
3201 break;
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3203 signal_levels |= DP_VOLTAGE_0_6;
3204 break;
3205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3206 signal_levels |= DP_VOLTAGE_0_8;
3207 break;
3208 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3209 signal_levels |= DP_VOLTAGE_1_2;
3210 break;
3211 }
3212 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3213 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3214 default:
3215 signal_levels |= DP_PRE_EMPHASIS_0;
3216 break;
3217 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3218 signal_levels |= DP_PRE_EMPHASIS_3_5;
3219 break;
3220 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3221 signal_levels |= DP_PRE_EMPHASIS_6;
3222 break;
3223 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3224 signal_levels |= DP_PRE_EMPHASIS_9_5;
3225 break;
3226 }
3227 return signal_levels;
3228 }
3229
3230 /* Gen6's DP voltage swing and pre-emphasis control */
3231 static uint32_t
3232 intel_gen6_edp_signal_levels(uint8_t train_set)
3233 {
3234 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3235 DP_TRAIN_PRE_EMPHASIS_MASK);
3236 switch (signal_levels) {
3237 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3238 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3239 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3240 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3241 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3242 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3243 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3244 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3246 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3247 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3248 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3249 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3250 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3251 default:
3252 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3253 "0x%x\n", signal_levels);
3254 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3255 }
3256 }
3257
3258 /* Gen7's DP voltage swing and pre-emphasis control */
3259 static uint32_t
3260 intel_gen7_edp_signal_levels(uint8_t train_set)
3261 {
3262 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3263 DP_TRAIN_PRE_EMPHASIS_MASK);
3264 switch (signal_levels) {
3265 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3266 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3267 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3268 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3269 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3270 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3271
3272 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3273 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3274 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3275 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3276
3277 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3278 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3279 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3280 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3281
3282 default:
3283 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3284 "0x%x\n", signal_levels);
3285 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3286 }
3287 }
3288
3289 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3290 static uint32_t
3291 intel_hsw_signal_levels(uint8_t train_set)
3292 {
3293 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3294 DP_TRAIN_PRE_EMPHASIS_MASK);
3295 switch (signal_levels) {
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3297 return DDI_BUF_TRANS_SELECT(0);
3298 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3299 return DDI_BUF_TRANS_SELECT(1);
3300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3301 return DDI_BUF_TRANS_SELECT(2);
3302 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3303 return DDI_BUF_TRANS_SELECT(3);
3304
3305 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3306 return DDI_BUF_TRANS_SELECT(4);
3307 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3308 return DDI_BUF_TRANS_SELECT(5);
3309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3310 return DDI_BUF_TRANS_SELECT(6);
3311
3312 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3313 return DDI_BUF_TRANS_SELECT(7);
3314 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3315 return DDI_BUF_TRANS_SELECT(8);
3316 default:
3317 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3318 "0x%x\n", signal_levels);
3319 return DDI_BUF_TRANS_SELECT(0);
3320 }
3321 }
3322
3323 /* Properly updates "DP" with the correct signal levels. */
3324 static void
3325 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3326 {
3327 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3328 enum port port = intel_dig_port->port;
3329 struct drm_device *dev = intel_dig_port->base.base.dev;
3330 uint32_t signal_levels, mask;
3331 uint8_t train_set = intel_dp->train_set[0];
3332
3333 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3334 signal_levels = intel_hsw_signal_levels(train_set);
3335 mask = DDI_BUF_EMP_MASK;
3336 } else if (IS_CHERRYVIEW(dev)) {
3337 signal_levels = intel_chv_signal_levels(intel_dp);
3338 mask = 0;
3339 } else if (IS_VALLEYVIEW(dev)) {
3340 signal_levels = intel_vlv_signal_levels(intel_dp);
3341 mask = 0;
3342 } else if (IS_GEN7(dev) && port == PORT_A) {
3343 signal_levels = intel_gen7_edp_signal_levels(train_set);
3344 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3345 } else if (IS_GEN6(dev) && port == PORT_A) {
3346 signal_levels = intel_gen6_edp_signal_levels(train_set);
3347 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3348 } else {
3349 signal_levels = intel_gen4_signal_levels(train_set);
3350 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3351 }
3352
3353 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3354
3355 *DP = (*DP & ~mask) | signal_levels;
3356 }
3357
3358 static bool
3359 intel_dp_set_link_train(struct intel_dp *intel_dp,
3360 uint32_t *DP,
3361 uint8_t dp_train_pat)
3362 {
3363 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3364 struct drm_device *dev = intel_dig_port->base.base.dev;
3365 struct drm_i915_private *dev_priv = dev->dev_private;
3366 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3367 int ret, len;
3368
3369 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3370
3371 I915_WRITE(intel_dp->output_reg, *DP);
3372 POSTING_READ(intel_dp->output_reg);
3373
3374 buf[0] = dp_train_pat;
3375 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3376 DP_TRAINING_PATTERN_DISABLE) {
3377 /* don't write DP_TRAINING_LANEx_SET on disable */
3378 len = 1;
3379 } else {
3380 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3381 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3382 len = intel_dp->lane_count + 1;
3383 }
3384
3385 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3386 buf, len);
3387
3388 return ret == len;
3389 }
3390
3391 static bool
3392 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3393 uint8_t dp_train_pat)
3394 {
3395 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3396 intel_dp_set_signal_levels(intel_dp, DP);
3397 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3398 }
3399
3400 static bool
3401 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3402 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3403 {
3404 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3405 struct drm_device *dev = intel_dig_port->base.base.dev;
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407 int ret;
3408
3409 intel_get_adjust_train(intel_dp, link_status);
3410 intel_dp_set_signal_levels(intel_dp, DP);
3411
3412 I915_WRITE(intel_dp->output_reg, *DP);
3413 POSTING_READ(intel_dp->output_reg);
3414
3415 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3416 intel_dp->train_set, intel_dp->lane_count);
3417
3418 return ret == intel_dp->lane_count;
3419 }
3420
3421 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3422 {
3423 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3424 struct drm_device *dev = intel_dig_port->base.base.dev;
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 enum port port = intel_dig_port->port;
3427 uint32_t val;
3428
3429 if (!HAS_DDI(dev))
3430 return;
3431
3432 val = I915_READ(DP_TP_CTL(port));
3433 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3434 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3435 I915_WRITE(DP_TP_CTL(port), val);
3436
3437 /*
3438 * On PORT_A we can have only eDP in SST mode. There the only reason
3439 * we need to set idle transmission mode is to work around a HW issue
3440 * where we enable the pipe while not in idle link-training mode.
3441 * In this case there is requirement to wait for a minimum number of
3442 * idle patterns to be sent.
3443 */
3444 if (port == PORT_A)
3445 return;
3446
3447 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3448 1))
3449 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3450 }
3451
3452 /* Enable corresponding port and start training pattern 1 */
3453 void
3454 intel_dp_start_link_train(struct intel_dp *intel_dp)
3455 {
3456 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3457 struct drm_device *dev = encoder->dev;
3458 int i;
3459 uint8_t voltage;
3460 int voltage_tries, loop_tries;
3461 uint32_t DP = intel_dp->DP;
3462 uint8_t link_config[2];
3463
3464 if (HAS_DDI(dev))
3465 intel_ddi_prepare_link_retrain(encoder);
3466
3467 /* Write the link configuration data */
3468 link_config[0] = intel_dp->link_bw;
3469 link_config[1] = intel_dp->lane_count;
3470 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3471 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3472 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3473
3474 link_config[0] = 0;
3475 link_config[1] = DP_SET_ANSI_8B10B;
3476 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3477
3478 DP |= DP_PORT_EN;
3479
3480 /* clock recovery */
3481 if (!intel_dp_reset_link_train(intel_dp, &DP,
3482 DP_TRAINING_PATTERN_1 |
3483 DP_LINK_SCRAMBLING_DISABLE)) {
3484 DRM_ERROR("failed to enable link training\n");
3485 return;
3486 }
3487
3488 voltage = 0xff;
3489 voltage_tries = 0;
3490 loop_tries = 0;
3491 for (;;) {
3492 uint8_t link_status[DP_LINK_STATUS_SIZE];
3493
3494 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3495 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3496 DRM_ERROR("failed to get link status\n");
3497 break;
3498 }
3499
3500 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3501 DRM_DEBUG_KMS("clock recovery OK\n");
3502 break;
3503 }
3504
3505 /* Check to see if we've tried the max voltage */
3506 for (i = 0; i < intel_dp->lane_count; i++)
3507 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3508 break;
3509 if (i == intel_dp->lane_count) {
3510 ++loop_tries;
3511 if (loop_tries == 5) {
3512 DRM_ERROR("too many full retries, give up\n");
3513 break;
3514 }
3515 intel_dp_reset_link_train(intel_dp, &DP,
3516 DP_TRAINING_PATTERN_1 |
3517 DP_LINK_SCRAMBLING_DISABLE);
3518 voltage_tries = 0;
3519 continue;
3520 }
3521
3522 /* Check to see if we've tried the same voltage 5 times */
3523 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3524 ++voltage_tries;
3525 if (voltage_tries == 5) {
3526 DRM_ERROR("too many voltage retries, give up\n");
3527 break;
3528 }
3529 } else
3530 voltage_tries = 0;
3531 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3532
3533 /* Update training set as requested by target */
3534 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3535 DRM_ERROR("failed to update link training\n");
3536 break;
3537 }
3538 }
3539
3540 intel_dp->DP = DP;
3541 }
3542
3543 void
3544 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3545 {
3546 bool channel_eq = false;
3547 int tries, cr_tries;
3548 uint32_t DP = intel_dp->DP;
3549 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3550
3551 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3552 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3553 training_pattern = DP_TRAINING_PATTERN_3;
3554
3555 /* channel equalization */
3556 if (!intel_dp_set_link_train(intel_dp, &DP,
3557 training_pattern |
3558 DP_LINK_SCRAMBLING_DISABLE)) {
3559 DRM_ERROR("failed to start channel equalization\n");
3560 return;
3561 }
3562
3563 tries = 0;
3564 cr_tries = 0;
3565 channel_eq = false;
3566 for (;;) {
3567 uint8_t link_status[DP_LINK_STATUS_SIZE];
3568
3569 if (cr_tries > 5) {
3570 DRM_ERROR("failed to train DP, aborting\n");
3571 break;
3572 }
3573
3574 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3575 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3576 DRM_ERROR("failed to get link status\n");
3577 break;
3578 }
3579
3580 /* Make sure clock is still ok */
3581 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3582 intel_dp_start_link_train(intel_dp);
3583 intel_dp_set_link_train(intel_dp, &DP,
3584 training_pattern |
3585 DP_LINK_SCRAMBLING_DISABLE);
3586 cr_tries++;
3587 continue;
3588 }
3589
3590 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3591 channel_eq = true;
3592 break;
3593 }
3594
3595 /* Try 5 times, then try clock recovery if that fails */
3596 if (tries > 5) {
3597 intel_dp_link_down(intel_dp);
3598 intel_dp_start_link_train(intel_dp);
3599 intel_dp_set_link_train(intel_dp, &DP,
3600 training_pattern |
3601 DP_LINK_SCRAMBLING_DISABLE);
3602 tries = 0;
3603 cr_tries++;
3604 continue;
3605 }
3606
3607 /* Update training set as requested by target */
3608 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3609 DRM_ERROR("failed to update link training\n");
3610 break;
3611 }
3612 ++tries;
3613 }
3614
3615 intel_dp_set_idle_link_train(intel_dp);
3616
3617 intel_dp->DP = DP;
3618
3619 if (channel_eq)
3620 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3621
3622 }
3623
3624 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3625 {
3626 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3627 DP_TRAINING_PATTERN_DISABLE);
3628 }
3629
3630 static void
3631 intel_dp_link_down(struct intel_dp *intel_dp)
3632 {
3633 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3634 enum port port = intel_dig_port->port;
3635 struct drm_device *dev = intel_dig_port->base.base.dev;
3636 struct drm_i915_private *dev_priv = dev->dev_private;
3637 struct intel_crtc *intel_crtc =
3638 to_intel_crtc(intel_dig_port->base.base.crtc);
3639 uint32_t DP = intel_dp->DP;
3640
3641 if (WARN_ON(HAS_DDI(dev)))
3642 return;
3643
3644 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3645 return;
3646
3647 DRM_DEBUG_KMS("\n");
3648
3649 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3650 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3651 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3652 } else {
3653 if (IS_CHERRYVIEW(dev))
3654 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3655 else
3656 DP &= ~DP_LINK_TRAIN_MASK;
3657 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3658 }
3659 POSTING_READ(intel_dp->output_reg);
3660
3661 if (HAS_PCH_IBX(dev) &&
3662 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3663 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3664
3665 /* Hardware workaround: leaving our transcoder select
3666 * set to transcoder B while it's off will prevent the
3667 * corresponding HDMI output on transcoder A.
3668 *
3669 * Combine this with another hardware workaround:
3670 * transcoder select bit can only be cleared while the
3671 * port is enabled.
3672 */
3673 DP &= ~DP_PIPEB_SELECT;
3674 I915_WRITE(intel_dp->output_reg, DP);
3675
3676 /* Changes to enable or select take place the vblank
3677 * after being written.
3678 */
3679 if (WARN_ON(crtc == NULL)) {
3680 /* We should never try to disable a port without a crtc
3681 * attached. For paranoia keep the code around for a
3682 * bit. */
3683 POSTING_READ(intel_dp->output_reg);
3684 msleep(50);
3685 } else
3686 intel_wait_for_vblank(dev, intel_crtc->pipe);
3687 }
3688
3689 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3690 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3691 POSTING_READ(intel_dp->output_reg);
3692 msleep(intel_dp->panel_power_down_delay);
3693 }
3694
3695 static bool
3696 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3697 {
3698 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3699 struct drm_device *dev = dig_port->base.base.dev;
3700 struct drm_i915_private *dev_priv = dev->dev_private;
3701
3702 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3703 sizeof(intel_dp->dpcd)) < 0)
3704 return false; /* aux transfer failed */
3705
3706 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3707
3708 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3709 return false; /* DPCD not present */
3710
3711 /* Check if the panel supports PSR */
3712 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3713 if (is_edp(intel_dp)) {
3714 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3715 intel_dp->psr_dpcd,
3716 sizeof(intel_dp->psr_dpcd));
3717 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3718 dev_priv->psr.sink_support = true;
3719 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3720 }
3721 }
3722
3723 /* Training Pattern 3 support */
3724 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3725 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3726 intel_dp->use_tps3 = true;
3727 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3728 } else
3729 intel_dp->use_tps3 = false;
3730
3731 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3732 DP_DWN_STRM_PORT_PRESENT))
3733 return true; /* native DP sink */
3734
3735 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3736 return true; /* no per-port downstream info */
3737
3738 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3739 intel_dp->downstream_ports,
3740 DP_MAX_DOWNSTREAM_PORTS) < 0)
3741 return false; /* downstream port status fetch failed */
3742
3743 return true;
3744 }
3745
3746 static void
3747 intel_dp_probe_oui(struct intel_dp *intel_dp)
3748 {
3749 u8 buf[3];
3750
3751 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3752 return;
3753
3754 intel_edp_panel_vdd_on(intel_dp);
3755
3756 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3757 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3758 buf[0], buf[1], buf[2]);
3759
3760 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3761 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3762 buf[0], buf[1], buf[2]);
3763
3764 intel_edp_panel_vdd_off(intel_dp, false);
3765 }
3766
3767 static bool
3768 intel_dp_probe_mst(struct intel_dp *intel_dp)
3769 {
3770 u8 buf[1];
3771
3772 if (!intel_dp->can_mst)
3773 return false;
3774
3775 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3776 return false;
3777
3778 intel_edp_panel_vdd_on(intel_dp);
3779 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3780 if (buf[0] & DP_MST_CAP) {
3781 DRM_DEBUG_KMS("Sink is MST capable\n");
3782 intel_dp->is_mst = true;
3783 } else {
3784 DRM_DEBUG_KMS("Sink is not MST capable\n");
3785 intel_dp->is_mst = false;
3786 }
3787 }
3788 intel_edp_panel_vdd_off(intel_dp, false);
3789
3790 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3791 return intel_dp->is_mst;
3792 }
3793
3794 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3795 {
3796 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3797 struct drm_device *dev = intel_dig_port->base.base.dev;
3798 struct intel_crtc *intel_crtc =
3799 to_intel_crtc(intel_dig_port->base.base.crtc);
3800 u8 buf[1];
3801
3802 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3803 return -EIO;
3804
3805 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3806 return -ENOTTY;
3807
3808 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3809 DP_TEST_SINK_START) < 0)
3810 return -EIO;
3811
3812 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3813 intel_wait_for_vblank(dev, intel_crtc->pipe);
3814 intel_wait_for_vblank(dev, intel_crtc->pipe);
3815
3816 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3817 return -EIO;
3818
3819 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3820 return 0;
3821 }
3822
3823 static bool
3824 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3825 {
3826 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3827 DP_DEVICE_SERVICE_IRQ_VECTOR,
3828 sink_irq_vector, 1) == 1;
3829 }
3830
3831 static bool
3832 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3833 {
3834 int ret;
3835
3836 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3837 DP_SINK_COUNT_ESI,
3838 sink_irq_vector, 14);
3839 if (ret != 14)
3840 return false;
3841
3842 return true;
3843 }
3844
3845 static void
3846 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3847 {
3848 /* NAK by default */
3849 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3850 }
3851
3852 static int
3853 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3854 {
3855 bool bret;
3856
3857 if (intel_dp->is_mst) {
3858 u8 esi[16] = { 0 };
3859 int ret = 0;
3860 int retry;
3861 bool handled;
3862 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3863 go_again:
3864 if (bret == true) {
3865
3866 /* check link status - esi[10] = 0x200c */
3867 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3868 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3869 intel_dp_start_link_train(intel_dp);
3870 intel_dp_complete_link_train(intel_dp);
3871 intel_dp_stop_link_train(intel_dp);
3872 }
3873
3874 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3875 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3876
3877 if (handled) {
3878 for (retry = 0; retry < 3; retry++) {
3879 int wret;
3880 wret = drm_dp_dpcd_write(&intel_dp->aux,
3881 DP_SINK_COUNT_ESI+1,
3882 &esi[1], 3);
3883 if (wret == 3) {
3884 break;
3885 }
3886 }
3887
3888 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3889 if (bret == true) {
3890 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3891 goto go_again;
3892 }
3893 } else
3894 ret = 0;
3895
3896 return ret;
3897 } else {
3898 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3899 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3900 intel_dp->is_mst = false;
3901 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3902 /* send a hotplug event */
3903 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3904 }
3905 }
3906 return -EINVAL;
3907 }
3908
3909 /*
3910 * According to DP spec
3911 * 5.1.2:
3912 * 1. Read DPCD
3913 * 2. Configure link according to Receiver Capabilities
3914 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3915 * 4. Check link status on receipt of hot-plug interrupt
3916 */
3917 void
3918 intel_dp_check_link_status(struct intel_dp *intel_dp)
3919 {
3920 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3921 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3922 u8 sink_irq_vector;
3923 u8 link_status[DP_LINK_STATUS_SIZE];
3924
3925 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3926
3927 if (!intel_encoder->connectors_active)
3928 return;
3929
3930 if (WARN_ON(!intel_encoder->base.crtc))
3931 return;
3932
3933 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3934 return;
3935
3936 /* Try to read receiver status if the link appears to be up */
3937 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3938 return;
3939 }
3940
3941 /* Now read the DPCD to see if it's actually running */
3942 if (!intel_dp_get_dpcd(intel_dp)) {
3943 return;
3944 }
3945
3946 /* Try to read the source of the interrupt */
3947 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3948 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3949 /* Clear interrupt source */
3950 drm_dp_dpcd_writeb(&intel_dp->aux,
3951 DP_DEVICE_SERVICE_IRQ_VECTOR,
3952 sink_irq_vector);
3953
3954 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3955 intel_dp_handle_test_request(intel_dp);
3956 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3957 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3958 }
3959
3960 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3961 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3962 intel_encoder->base.name);
3963 intel_dp_start_link_train(intel_dp);
3964 intel_dp_complete_link_train(intel_dp);
3965 intel_dp_stop_link_train(intel_dp);
3966 }
3967 }
3968
3969 /* XXX this is probably wrong for multiple downstream ports */
3970 static enum drm_connector_status
3971 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3972 {
3973 uint8_t *dpcd = intel_dp->dpcd;
3974 uint8_t type;
3975
3976 if (!intel_dp_get_dpcd(intel_dp))
3977 return connector_status_disconnected;
3978
3979 /* if there's no downstream port, we're done */
3980 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3981 return connector_status_connected;
3982
3983 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3984 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3985 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3986 uint8_t reg;
3987
3988 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3989 &reg, 1) < 0)
3990 return connector_status_unknown;
3991
3992 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3993 : connector_status_disconnected;
3994 }
3995
3996 /* If no HPD, poke DDC gently */
3997 if (drm_probe_ddc(&intel_dp->aux.ddc))
3998 return connector_status_connected;
3999
4000 /* Well we tried, say unknown for unreliable port types */
4001 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4002 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4003 if (type == DP_DS_PORT_TYPE_VGA ||
4004 type == DP_DS_PORT_TYPE_NON_EDID)
4005 return connector_status_unknown;
4006 } else {
4007 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4008 DP_DWN_STRM_PORT_TYPE_MASK;
4009 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4010 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4011 return connector_status_unknown;
4012 }
4013
4014 /* Anything else is out of spec, warn and ignore */
4015 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4016 return connector_status_disconnected;
4017 }
4018
4019 static enum drm_connector_status
4020 edp_detect(struct intel_dp *intel_dp)
4021 {
4022 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4023 enum drm_connector_status status;
4024
4025 status = intel_panel_detect(dev);
4026 if (status == connector_status_unknown)
4027 status = connector_status_connected;
4028
4029 return status;
4030 }
4031
4032 static enum drm_connector_status
4033 ironlake_dp_detect(struct intel_dp *intel_dp)
4034 {
4035 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4036 struct drm_i915_private *dev_priv = dev->dev_private;
4037 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4038
4039 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4040 return connector_status_disconnected;
4041
4042 return intel_dp_detect_dpcd(intel_dp);
4043 }
4044
4045 static int g4x_digital_port_connected(struct drm_device *dev,
4046 struct intel_digital_port *intel_dig_port)
4047 {
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 uint32_t bit;
4050
4051 if (IS_VALLEYVIEW(dev)) {
4052 switch (intel_dig_port->port) {
4053 case PORT_B:
4054 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4055 break;
4056 case PORT_C:
4057 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4058 break;
4059 case PORT_D:
4060 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4061 break;
4062 default:
4063 return -EINVAL;
4064 }
4065 } else {
4066 switch (intel_dig_port->port) {
4067 case PORT_B:
4068 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4069 break;
4070 case PORT_C:
4071 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4072 break;
4073 case PORT_D:
4074 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4075 break;
4076 default:
4077 return -EINVAL;
4078 }
4079 }
4080
4081 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4082 return 0;
4083 return 1;
4084 }
4085
4086 static enum drm_connector_status
4087 g4x_dp_detect(struct intel_dp *intel_dp)
4088 {
4089 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4090 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4091 int ret;
4092
4093 /* Can't disconnect eDP, but you can close the lid... */
4094 if (is_edp(intel_dp)) {
4095 enum drm_connector_status status;
4096
4097 status = intel_panel_detect(dev);
4098 if (status == connector_status_unknown)
4099 status = connector_status_connected;
4100 return status;
4101 }
4102
4103 ret = g4x_digital_port_connected(dev, intel_dig_port);
4104 if (ret == -EINVAL)
4105 return connector_status_unknown;
4106 else if (ret == 0)
4107 return connector_status_disconnected;
4108
4109 return intel_dp_detect_dpcd(intel_dp);
4110 }
4111
4112 static struct edid *
4113 intel_dp_get_edid(struct intel_dp *intel_dp)
4114 {
4115 struct intel_connector *intel_connector = intel_dp->attached_connector;
4116
4117 /* use cached edid if we have one */
4118 if (intel_connector->edid) {
4119 /* invalid edid */
4120 if (IS_ERR(intel_connector->edid))
4121 return NULL;
4122
4123 return drm_edid_duplicate(intel_connector->edid);
4124 } else
4125 return drm_get_edid(&intel_connector->base,
4126 &intel_dp->aux.ddc);
4127 }
4128
4129 static void
4130 intel_dp_set_edid(struct intel_dp *intel_dp)
4131 {
4132 struct intel_connector *intel_connector = intel_dp->attached_connector;
4133 struct edid *edid;
4134
4135 edid = intel_dp_get_edid(intel_dp);
4136 intel_connector->detect_edid = edid;
4137
4138 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4139 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4140 else
4141 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4142 }
4143
4144 static void
4145 intel_dp_unset_edid(struct intel_dp *intel_dp)
4146 {
4147 struct intel_connector *intel_connector = intel_dp->attached_connector;
4148
4149 kfree(intel_connector->detect_edid);
4150 intel_connector->detect_edid = NULL;
4151
4152 intel_dp->has_audio = false;
4153 }
4154
4155 static enum intel_display_power_domain
4156 intel_dp_power_get(struct intel_dp *dp)
4157 {
4158 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4159 enum intel_display_power_domain power_domain;
4160
4161 power_domain = intel_display_port_power_domain(encoder);
4162 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4163
4164 return power_domain;
4165 }
4166
4167 static void
4168 intel_dp_power_put(struct intel_dp *dp,
4169 enum intel_display_power_domain power_domain)
4170 {
4171 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4172 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4173 }
4174
4175 static enum drm_connector_status
4176 intel_dp_detect(struct drm_connector *connector, bool force)
4177 {
4178 struct intel_dp *intel_dp = intel_attached_dp(connector);
4179 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4180 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4181 struct drm_device *dev = connector->dev;
4182 enum drm_connector_status status;
4183 enum intel_display_power_domain power_domain;
4184 bool ret;
4185
4186 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4187 connector->base.id, connector->name);
4188 intel_dp_unset_edid(intel_dp);
4189
4190 if (intel_dp->is_mst) {
4191 /* MST devices are disconnected from a monitor POV */
4192 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4193 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4194 return connector_status_disconnected;
4195 }
4196
4197 power_domain = intel_dp_power_get(intel_dp);
4198
4199 /* Can't disconnect eDP, but you can close the lid... */
4200 if (is_edp(intel_dp))
4201 status = edp_detect(intel_dp);
4202 else if (HAS_PCH_SPLIT(dev))
4203 status = ironlake_dp_detect(intel_dp);
4204 else
4205 status = g4x_dp_detect(intel_dp);
4206 if (status != connector_status_connected)
4207 goto out;
4208
4209 intel_dp_probe_oui(intel_dp);
4210
4211 ret = intel_dp_probe_mst(intel_dp);
4212 if (ret) {
4213 /* if we are in MST mode then this connector
4214 won't appear connected or have anything with EDID on it */
4215 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4216 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4217 status = connector_status_disconnected;
4218 goto out;
4219 }
4220
4221 intel_dp_set_edid(intel_dp);
4222
4223 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4224 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4225 status = connector_status_connected;
4226
4227 out:
4228 intel_dp_power_put(intel_dp, power_domain);
4229 return status;
4230 }
4231
4232 static void
4233 intel_dp_force(struct drm_connector *connector)
4234 {
4235 struct intel_dp *intel_dp = intel_attached_dp(connector);
4236 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4237 enum intel_display_power_domain power_domain;
4238
4239 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4240 connector->base.id, connector->name);
4241 intel_dp_unset_edid(intel_dp);
4242
4243 if (connector->status != connector_status_connected)
4244 return;
4245
4246 power_domain = intel_dp_power_get(intel_dp);
4247
4248 intel_dp_set_edid(intel_dp);
4249
4250 intel_dp_power_put(intel_dp, power_domain);
4251
4252 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4253 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4254 }
4255
4256 static int intel_dp_get_modes(struct drm_connector *connector)
4257 {
4258 struct intel_connector *intel_connector = to_intel_connector(connector);
4259 struct edid *edid;
4260
4261 edid = intel_connector->detect_edid;
4262 if (edid) {
4263 int ret = intel_connector_update_modes(connector, edid);
4264 if (ret)
4265 return ret;
4266 }
4267
4268 /* if eDP has no EDID, fall back to fixed mode */
4269 if (is_edp(intel_attached_dp(connector)) &&
4270 intel_connector->panel.fixed_mode) {
4271 struct drm_display_mode *mode;
4272
4273 mode = drm_mode_duplicate(connector->dev,
4274 intel_connector->panel.fixed_mode);
4275 if (mode) {
4276 drm_mode_probed_add(connector, mode);
4277 return 1;
4278 }
4279 }
4280
4281 return 0;
4282 }
4283
4284 static bool
4285 intel_dp_detect_audio(struct drm_connector *connector)
4286 {
4287 bool has_audio = false;
4288 struct edid *edid;
4289
4290 edid = to_intel_connector(connector)->detect_edid;
4291 if (edid)
4292 has_audio = drm_detect_monitor_audio(edid);
4293
4294 return has_audio;
4295 }
4296
4297 static int
4298 intel_dp_set_property(struct drm_connector *connector,
4299 struct drm_property *property,
4300 uint64_t val)
4301 {
4302 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4303 struct intel_connector *intel_connector = to_intel_connector(connector);
4304 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4305 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4306 int ret;
4307
4308 ret = drm_object_property_set_value(&connector->base, property, val);
4309 if (ret)
4310 return ret;
4311
4312 if (property == dev_priv->force_audio_property) {
4313 int i = val;
4314 bool has_audio;
4315
4316 if (i == intel_dp->force_audio)
4317 return 0;
4318
4319 intel_dp->force_audio = i;
4320
4321 if (i == HDMI_AUDIO_AUTO)
4322 has_audio = intel_dp_detect_audio(connector);
4323 else
4324 has_audio = (i == HDMI_AUDIO_ON);
4325
4326 if (has_audio == intel_dp->has_audio)
4327 return 0;
4328
4329 intel_dp->has_audio = has_audio;
4330 goto done;
4331 }
4332
4333 if (property == dev_priv->broadcast_rgb_property) {
4334 bool old_auto = intel_dp->color_range_auto;
4335 uint32_t old_range = intel_dp->color_range;
4336
4337 switch (val) {
4338 case INTEL_BROADCAST_RGB_AUTO:
4339 intel_dp->color_range_auto = true;
4340 break;
4341 case INTEL_BROADCAST_RGB_FULL:
4342 intel_dp->color_range_auto = false;
4343 intel_dp->color_range = 0;
4344 break;
4345 case INTEL_BROADCAST_RGB_LIMITED:
4346 intel_dp->color_range_auto = false;
4347 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4348 break;
4349 default:
4350 return -EINVAL;
4351 }
4352
4353 if (old_auto == intel_dp->color_range_auto &&
4354 old_range == intel_dp->color_range)
4355 return 0;
4356
4357 goto done;
4358 }
4359
4360 if (is_edp(intel_dp) &&
4361 property == connector->dev->mode_config.scaling_mode_property) {
4362 if (val == DRM_MODE_SCALE_NONE) {
4363 DRM_DEBUG_KMS("no scaling not supported\n");
4364 return -EINVAL;
4365 }
4366
4367 if (intel_connector->panel.fitting_mode == val) {
4368 /* the eDP scaling property is not changed */
4369 return 0;
4370 }
4371 intel_connector->panel.fitting_mode = val;
4372
4373 goto done;
4374 }
4375
4376 return -EINVAL;
4377
4378 done:
4379 if (intel_encoder->base.crtc)
4380 intel_crtc_restore_mode(intel_encoder->base.crtc);
4381
4382 return 0;
4383 }
4384
4385 static void
4386 intel_dp_connector_destroy(struct drm_connector *connector)
4387 {
4388 struct intel_connector *intel_connector = to_intel_connector(connector);
4389
4390 kfree(intel_connector->detect_edid);
4391
4392 if (!IS_ERR_OR_NULL(intel_connector->edid))
4393 kfree(intel_connector->edid);
4394
4395 /* Can't call is_edp() since the encoder may have been destroyed
4396 * already. */
4397 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4398 intel_panel_fini(&intel_connector->panel);
4399
4400 drm_connector_cleanup(connector);
4401 kfree(connector);
4402 }
4403
4404 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4405 {
4406 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4407 struct intel_dp *intel_dp = &intel_dig_port->dp;
4408
4409 drm_dp_aux_unregister(&intel_dp->aux);
4410 intel_dp_mst_encoder_cleanup(intel_dig_port);
4411 drm_encoder_cleanup(encoder);
4412 if (is_edp(intel_dp)) {
4413 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4414 /*
4415 * vdd might still be enabled do to the delayed vdd off.
4416 * Make sure vdd is actually turned off here.
4417 */
4418 pps_lock(intel_dp);
4419 edp_panel_vdd_off_sync(intel_dp);
4420 pps_unlock(intel_dp);
4421
4422 if (intel_dp->edp_notifier.notifier_call) {
4423 unregister_reboot_notifier(&intel_dp->edp_notifier);
4424 intel_dp->edp_notifier.notifier_call = NULL;
4425 }
4426 }
4427 kfree(intel_dig_port);
4428 }
4429
4430 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4431 {
4432 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4433
4434 if (!is_edp(intel_dp))
4435 return;
4436
4437 /*
4438 * vdd might still be enabled do to the delayed vdd off.
4439 * Make sure vdd is actually turned off here.
4440 */
4441 pps_lock(intel_dp);
4442 edp_panel_vdd_off_sync(intel_dp);
4443 pps_unlock(intel_dp);
4444 }
4445
4446 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4447 {
4448 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4449 }
4450
4451 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4452 .dpms = intel_connector_dpms,
4453 .detect = intel_dp_detect,
4454 .force = intel_dp_force,
4455 .fill_modes = drm_helper_probe_single_connector_modes,
4456 .set_property = intel_dp_set_property,
4457 .destroy = intel_dp_connector_destroy,
4458 };
4459
4460 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4461 .get_modes = intel_dp_get_modes,
4462 .mode_valid = intel_dp_mode_valid,
4463 .best_encoder = intel_best_encoder,
4464 };
4465
4466 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4467 .reset = intel_dp_encoder_reset,
4468 .destroy = intel_dp_encoder_destroy,
4469 };
4470
4471 void
4472 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4473 {
4474 return;
4475 }
4476
4477 bool
4478 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4479 {
4480 struct intel_dp *intel_dp = &intel_dig_port->dp;
4481 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4482 struct drm_device *dev = intel_dig_port->base.base.dev;
4483 struct drm_i915_private *dev_priv = dev->dev_private;
4484 enum intel_display_power_domain power_domain;
4485 bool ret = true;
4486
4487 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4488 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4489
4490 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4491 port_name(intel_dig_port->port),
4492 long_hpd ? "long" : "short");
4493
4494 power_domain = intel_display_port_power_domain(intel_encoder);
4495 intel_display_power_get(dev_priv, power_domain);
4496
4497 if (long_hpd) {
4498
4499 if (HAS_PCH_SPLIT(dev)) {
4500 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4501 goto mst_fail;
4502 } else {
4503 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4504 goto mst_fail;
4505 }
4506
4507 if (!intel_dp_get_dpcd(intel_dp)) {
4508 goto mst_fail;
4509 }
4510
4511 intel_dp_probe_oui(intel_dp);
4512
4513 if (!intel_dp_probe_mst(intel_dp))
4514 goto mst_fail;
4515
4516 } else {
4517 if (intel_dp->is_mst) {
4518 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4519 goto mst_fail;
4520 }
4521
4522 if (!intel_dp->is_mst) {
4523 /*
4524 * we'll check the link status via the normal hot plug path later -
4525 * but for short hpds we should check it now
4526 */
4527 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4528 intel_dp_check_link_status(intel_dp);
4529 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4530 }
4531 }
4532 ret = false;
4533 goto put_power;
4534 mst_fail:
4535 /* if we were in MST mode, and device is not there get out of MST mode */
4536 if (intel_dp->is_mst) {
4537 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4538 intel_dp->is_mst = false;
4539 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4540 }
4541 put_power:
4542 intel_display_power_put(dev_priv, power_domain);
4543
4544 return ret;
4545 }
4546
4547 /* Return which DP Port should be selected for Transcoder DP control */
4548 int
4549 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4550 {
4551 struct drm_device *dev = crtc->dev;
4552 struct intel_encoder *intel_encoder;
4553 struct intel_dp *intel_dp;
4554
4555 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4556 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4557
4558 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4559 intel_encoder->type == INTEL_OUTPUT_EDP)
4560 return intel_dp->output_reg;
4561 }
4562
4563 return -1;
4564 }
4565
4566 /* check the VBT to see whether the eDP is on DP-D port */
4567 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4568 {
4569 struct drm_i915_private *dev_priv = dev->dev_private;
4570 union child_device_config *p_child;
4571 int i;
4572 static const short port_mapping[] = {
4573 [PORT_B] = PORT_IDPB,
4574 [PORT_C] = PORT_IDPC,
4575 [PORT_D] = PORT_IDPD,
4576 };
4577
4578 if (port == PORT_A)
4579 return true;
4580
4581 if (!dev_priv->vbt.child_dev_num)
4582 return false;
4583
4584 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4585 p_child = dev_priv->vbt.child_dev + i;
4586
4587 if (p_child->common.dvo_port == port_mapping[port] &&
4588 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4589 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4590 return true;
4591 }
4592 return false;
4593 }
4594
4595 void
4596 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4597 {
4598 struct intel_connector *intel_connector = to_intel_connector(connector);
4599
4600 intel_attach_force_audio_property(connector);
4601 intel_attach_broadcast_rgb_property(connector);
4602 intel_dp->color_range_auto = true;
4603
4604 if (is_edp(intel_dp)) {
4605 drm_mode_create_scaling_mode_property(connector->dev);
4606 drm_object_attach_property(
4607 &connector->base,
4608 connector->dev->mode_config.scaling_mode_property,
4609 DRM_MODE_SCALE_ASPECT);
4610 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4611 }
4612 }
4613
4614 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4615 {
4616 intel_dp->last_power_cycle = jiffies;
4617 intel_dp->last_power_on = jiffies;
4618 intel_dp->last_backlight_off = jiffies;
4619 }
4620
4621 static void
4622 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4623 struct intel_dp *intel_dp,
4624 struct edp_power_seq *out)
4625 {
4626 struct drm_i915_private *dev_priv = dev->dev_private;
4627 struct edp_power_seq cur, vbt, spec, final;
4628 u32 pp_on, pp_off, pp_div, pp;
4629 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4630
4631 lockdep_assert_held(&dev_priv->pps_mutex);
4632
4633 if (HAS_PCH_SPLIT(dev)) {
4634 pp_ctrl_reg = PCH_PP_CONTROL;
4635 pp_on_reg = PCH_PP_ON_DELAYS;
4636 pp_off_reg = PCH_PP_OFF_DELAYS;
4637 pp_div_reg = PCH_PP_DIVISOR;
4638 } else {
4639 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4640
4641 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4642 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4643 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4644 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4645 }
4646
4647 /* Workaround: Need to write PP_CONTROL with the unlock key as
4648 * the very first thing. */
4649 pp = ironlake_get_pp_control(intel_dp);
4650 I915_WRITE(pp_ctrl_reg, pp);
4651
4652 pp_on = I915_READ(pp_on_reg);
4653 pp_off = I915_READ(pp_off_reg);
4654 pp_div = I915_READ(pp_div_reg);
4655
4656 /* Pull timing values out of registers */
4657 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4658 PANEL_POWER_UP_DELAY_SHIFT;
4659
4660 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4661 PANEL_LIGHT_ON_DELAY_SHIFT;
4662
4663 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4664 PANEL_LIGHT_OFF_DELAY_SHIFT;
4665
4666 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4667 PANEL_POWER_DOWN_DELAY_SHIFT;
4668
4669 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4670 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4671
4672 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4673 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4674
4675 vbt = dev_priv->vbt.edp_pps;
4676
4677 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4678 * our hw here, which are all in 100usec. */
4679 spec.t1_t3 = 210 * 10;
4680 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4681 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4682 spec.t10 = 500 * 10;
4683 /* This one is special and actually in units of 100ms, but zero
4684 * based in the hw (so we need to add 100 ms). But the sw vbt
4685 * table multiplies it with 1000 to make it in units of 100usec,
4686 * too. */
4687 spec.t11_t12 = (510 + 100) * 10;
4688
4689 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4690 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4691
4692 /* Use the max of the register settings and vbt. If both are
4693 * unset, fall back to the spec limits. */
4694 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4695 spec.field : \
4696 max(cur.field, vbt.field))
4697 assign_final(t1_t3);
4698 assign_final(t8);
4699 assign_final(t9);
4700 assign_final(t10);
4701 assign_final(t11_t12);
4702 #undef assign_final
4703
4704 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4705 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4706 intel_dp->backlight_on_delay = get_delay(t8);
4707 intel_dp->backlight_off_delay = get_delay(t9);
4708 intel_dp->panel_power_down_delay = get_delay(t10);
4709 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4710 #undef get_delay
4711
4712 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4713 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4714 intel_dp->panel_power_cycle_delay);
4715
4716 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4717 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4718
4719 if (out)
4720 *out = final;
4721 }
4722
4723 static void
4724 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4725 struct intel_dp *intel_dp,
4726 struct edp_power_seq *seq)
4727 {
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 u32 pp_on, pp_off, pp_div, port_sel = 0;
4730 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4731 int pp_on_reg, pp_off_reg, pp_div_reg;
4732 enum port port = dp_to_dig_port(intel_dp)->port;
4733
4734 lockdep_assert_held(&dev_priv->pps_mutex);
4735
4736 if (HAS_PCH_SPLIT(dev)) {
4737 pp_on_reg = PCH_PP_ON_DELAYS;
4738 pp_off_reg = PCH_PP_OFF_DELAYS;
4739 pp_div_reg = PCH_PP_DIVISOR;
4740 } else {
4741 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4742
4743 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4744 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4745 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4746 }
4747
4748 /*
4749 * And finally store the new values in the power sequencer. The
4750 * backlight delays are set to 1 because we do manual waits on them. For
4751 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4752 * we'll end up waiting for the backlight off delay twice: once when we
4753 * do the manual sleep, and once when we disable the panel and wait for
4754 * the PP_STATUS bit to become zero.
4755 */
4756 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4757 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4758 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4759 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4760 /* Compute the divisor for the pp clock, simply match the Bspec
4761 * formula. */
4762 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4763 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4764 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4765
4766 /* Haswell doesn't have any port selection bits for the panel
4767 * power sequencer any more. */
4768 if (IS_VALLEYVIEW(dev)) {
4769 port_sel = PANEL_PORT_SELECT_VLV(port);
4770 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4771 if (port == PORT_A)
4772 port_sel = PANEL_PORT_SELECT_DPA;
4773 else
4774 port_sel = PANEL_PORT_SELECT_DPD;
4775 }
4776
4777 pp_on |= port_sel;
4778
4779 I915_WRITE(pp_on_reg, pp_on);
4780 I915_WRITE(pp_off_reg, pp_off);
4781 I915_WRITE(pp_div_reg, pp_div);
4782
4783 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4784 I915_READ(pp_on_reg),
4785 I915_READ(pp_off_reg),
4786 I915_READ(pp_div_reg));
4787 }
4788
4789 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4790 {
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 struct intel_encoder *encoder;
4793 struct intel_dp *intel_dp = NULL;
4794 struct intel_crtc_config *config = NULL;
4795 struct intel_crtc *intel_crtc = NULL;
4796 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4797 u32 reg, val;
4798 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4799
4800 if (refresh_rate <= 0) {
4801 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4802 return;
4803 }
4804
4805 if (intel_connector == NULL) {
4806 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4807 return;
4808 }
4809
4810 /*
4811 * FIXME: This needs proper synchronization with psr state. But really
4812 * hard to tell without seeing the user of this function of this code.
4813 * Check locking and ordering once that lands.
4814 */
4815 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4816 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4817 return;
4818 }
4819
4820 encoder = intel_attached_encoder(&intel_connector->base);
4821 intel_dp = enc_to_intel_dp(&encoder->base);
4822 intel_crtc = encoder->new_crtc;
4823
4824 if (!intel_crtc) {
4825 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4826 return;
4827 }
4828
4829 config = &intel_crtc->config;
4830
4831 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4832 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4833 return;
4834 }
4835
4836 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4837 index = DRRS_LOW_RR;
4838
4839 if (index == intel_dp->drrs_state.refresh_rate_type) {
4840 DRM_DEBUG_KMS(
4841 "DRRS requested for previously set RR...ignoring\n");
4842 return;
4843 }
4844
4845 if (!intel_crtc->active) {
4846 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4847 return;
4848 }
4849
4850 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4851 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4852 val = I915_READ(reg);
4853 if (index > DRRS_HIGH_RR) {
4854 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4855 intel_dp_set_m_n(intel_crtc);
4856 } else {
4857 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4858 }
4859 I915_WRITE(reg, val);
4860 }
4861
4862 /*
4863 * mutex taken to ensure that there is no race between differnt
4864 * drrs calls trying to update refresh rate. This scenario may occur
4865 * in future when idleness detection based DRRS in kernel and
4866 * possible calls from user space to set differnt RR are made.
4867 */
4868
4869 mutex_lock(&intel_dp->drrs_state.mutex);
4870
4871 intel_dp->drrs_state.refresh_rate_type = index;
4872
4873 mutex_unlock(&intel_dp->drrs_state.mutex);
4874
4875 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4876 }
4877
4878 static struct drm_display_mode *
4879 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4880 struct intel_connector *intel_connector,
4881 struct drm_display_mode *fixed_mode)
4882 {
4883 struct drm_connector *connector = &intel_connector->base;
4884 struct intel_dp *intel_dp = &intel_dig_port->dp;
4885 struct drm_device *dev = intel_dig_port->base.base.dev;
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887 struct drm_display_mode *downclock_mode = NULL;
4888
4889 if (INTEL_INFO(dev)->gen <= 6) {
4890 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4891 return NULL;
4892 }
4893
4894 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4895 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4896 return NULL;
4897 }
4898
4899 downclock_mode = intel_find_panel_downclock
4900 (dev, fixed_mode, connector);
4901
4902 if (!downclock_mode) {
4903 DRM_DEBUG_KMS("DRRS not supported\n");
4904 return NULL;
4905 }
4906
4907 dev_priv->drrs.connector = intel_connector;
4908
4909 mutex_init(&intel_dp->drrs_state.mutex);
4910
4911 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4912
4913 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4914 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4915 return downclock_mode;
4916 }
4917
4918 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4919 {
4920 struct drm_device *dev = intel_encoder->base.dev;
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 struct intel_dp *intel_dp;
4923 enum intel_display_power_domain power_domain;
4924
4925 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4926 return;
4927
4928 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4929
4930 pps_lock(intel_dp);
4931
4932 if (!edp_have_panel_vdd(intel_dp))
4933 goto out;
4934 /*
4935 * The VDD bit needs a power domain reference, so if the bit is
4936 * already enabled when we boot or resume, grab this reference and
4937 * schedule a vdd off, so we don't hold on to the reference
4938 * indefinitely.
4939 */
4940 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4941 power_domain = intel_display_port_power_domain(intel_encoder);
4942 intel_display_power_get(dev_priv, power_domain);
4943
4944 edp_panel_vdd_schedule_off(intel_dp);
4945 out:
4946 pps_unlock(intel_dp);
4947 }
4948
4949 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4950 struct intel_connector *intel_connector,
4951 struct edp_power_seq *power_seq)
4952 {
4953 struct drm_connector *connector = &intel_connector->base;
4954 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4955 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4956 struct drm_device *dev = intel_encoder->base.dev;
4957 struct drm_i915_private *dev_priv = dev->dev_private;
4958 struct drm_display_mode *fixed_mode = NULL;
4959 struct drm_display_mode *downclock_mode = NULL;
4960 bool has_dpcd;
4961 struct drm_display_mode *scan;
4962 struct edid *edid;
4963
4964 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4965
4966 if (!is_edp(intel_dp))
4967 return true;
4968
4969 intel_edp_panel_vdd_sanitize(intel_encoder);
4970
4971 /* Cache DPCD and EDID for edp. */
4972 intel_edp_panel_vdd_on(intel_dp);
4973 has_dpcd = intel_dp_get_dpcd(intel_dp);
4974 intel_edp_panel_vdd_off(intel_dp, false);
4975
4976 if (has_dpcd) {
4977 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4978 dev_priv->no_aux_handshake =
4979 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4980 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4981 } else {
4982 /* if this fails, presume the device is a ghost */
4983 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4984 return false;
4985 }
4986
4987 /* We now know it's not a ghost, init power sequence regs. */
4988 pps_lock(intel_dp);
4989 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4990 pps_unlock(intel_dp);
4991
4992 mutex_lock(&dev->mode_config.mutex);
4993 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4994 if (edid) {
4995 if (drm_add_edid_modes(connector, edid)) {
4996 drm_mode_connector_update_edid_property(connector,
4997 edid);
4998 drm_edid_to_eld(connector, edid);
4999 } else {
5000 kfree(edid);
5001 edid = ERR_PTR(-EINVAL);
5002 }
5003 } else {
5004 edid = ERR_PTR(-ENOENT);
5005 }
5006 intel_connector->edid = edid;
5007
5008 /* prefer fixed mode from EDID if available */
5009 list_for_each_entry(scan, &connector->probed_modes, head) {
5010 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5011 fixed_mode = drm_mode_duplicate(dev, scan);
5012 downclock_mode = intel_dp_drrs_init(
5013 intel_dig_port,
5014 intel_connector, fixed_mode);
5015 break;
5016 }
5017 }
5018
5019 /* fallback to VBT if available for eDP */
5020 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5021 fixed_mode = drm_mode_duplicate(dev,
5022 dev_priv->vbt.lfp_lvds_vbt_mode);
5023 if (fixed_mode)
5024 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5025 }
5026 mutex_unlock(&dev->mode_config.mutex);
5027
5028 if (IS_VALLEYVIEW(dev)) {
5029 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5030 register_reboot_notifier(&intel_dp->edp_notifier);
5031 }
5032
5033 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5034 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5035 intel_panel_setup_backlight(connector);
5036
5037 return true;
5038 }
5039
5040 bool
5041 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5042 struct intel_connector *intel_connector)
5043 {
5044 struct drm_connector *connector = &intel_connector->base;
5045 struct intel_dp *intel_dp = &intel_dig_port->dp;
5046 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5047 struct drm_device *dev = intel_encoder->base.dev;
5048 struct drm_i915_private *dev_priv = dev->dev_private;
5049 enum port port = intel_dig_port->port;
5050 struct edp_power_seq power_seq = { 0 };
5051 int type;
5052
5053 intel_dp->pps_pipe = INVALID_PIPE;
5054
5055 /* intel_dp vfuncs */
5056 if (IS_VALLEYVIEW(dev))
5057 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5058 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5059 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5060 else if (HAS_PCH_SPLIT(dev))
5061 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5062 else
5063 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5064
5065 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5066
5067 /* Preserve the current hw state. */
5068 intel_dp->DP = I915_READ(intel_dp->output_reg);
5069 intel_dp->attached_connector = intel_connector;
5070
5071 if (intel_dp_is_edp(dev, port))
5072 type = DRM_MODE_CONNECTOR_eDP;
5073 else
5074 type = DRM_MODE_CONNECTOR_DisplayPort;
5075
5076 /*
5077 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5078 * for DP the encoder type can be set by the caller to
5079 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5080 */
5081 if (type == DRM_MODE_CONNECTOR_eDP)
5082 intel_encoder->type = INTEL_OUTPUT_EDP;
5083
5084 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5085 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5086 port_name(port));
5087
5088 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5089 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5090
5091 connector->interlace_allowed = true;
5092 connector->doublescan_allowed = 0;
5093
5094 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5095 edp_panel_vdd_work);
5096
5097 intel_connector_attach_encoder(intel_connector, intel_encoder);
5098 drm_connector_register(connector);
5099
5100 if (HAS_DDI(dev))
5101 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5102 else
5103 intel_connector->get_hw_state = intel_connector_get_hw_state;
5104 intel_connector->unregister = intel_dp_connector_unregister;
5105
5106 /* Set up the hotplug pin. */
5107 switch (port) {
5108 case PORT_A:
5109 intel_encoder->hpd_pin = HPD_PORT_A;
5110 break;
5111 case PORT_B:
5112 intel_encoder->hpd_pin = HPD_PORT_B;
5113 break;
5114 case PORT_C:
5115 intel_encoder->hpd_pin = HPD_PORT_C;
5116 break;
5117 case PORT_D:
5118 intel_encoder->hpd_pin = HPD_PORT_D;
5119 break;
5120 default:
5121 BUG();
5122 }
5123
5124 if (is_edp(intel_dp)) {
5125 pps_lock(intel_dp);
5126 if (IS_VALLEYVIEW(dev)) {
5127 vlv_initial_power_sequencer_setup(intel_dp);
5128 } else {
5129 intel_dp_init_panel_power_timestamps(intel_dp);
5130 intel_dp_init_panel_power_sequencer(dev, intel_dp,
5131 &power_seq);
5132 }
5133 pps_unlock(intel_dp);
5134 }
5135
5136 intel_dp_aux_init(intel_dp, intel_connector);
5137
5138 /* init MST on ports that can support it */
5139 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5140 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5141 intel_dp_mst_encoder_init(intel_dig_port,
5142 intel_connector->base.base.id);
5143 }
5144 }
5145
5146 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
5147 drm_dp_aux_unregister(&intel_dp->aux);
5148 if (is_edp(intel_dp)) {
5149 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5150 /*
5151 * vdd might still be enabled do to the delayed vdd off.
5152 * Make sure vdd is actually turned off here.
5153 */
5154 pps_lock(intel_dp);
5155 edp_panel_vdd_off_sync(intel_dp);
5156 pps_unlock(intel_dp);
5157 }
5158 drm_connector_unregister(connector);
5159 drm_connector_cleanup(connector);
5160 return false;
5161 }
5162
5163 intel_dp_add_properties(intel_dp, connector);
5164
5165 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5166 * 0xd. Failure to do so will result in spurious interrupts being
5167 * generated on the port when a cable is not attached.
5168 */
5169 if (IS_G4X(dev) && !IS_GM45(dev)) {
5170 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5171 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5172 }
5173
5174 return true;
5175 }
5176
5177 void
5178 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5179 {
5180 struct drm_i915_private *dev_priv = dev->dev_private;
5181 struct intel_digital_port *intel_dig_port;
5182 struct intel_encoder *intel_encoder;
5183 struct drm_encoder *encoder;
5184 struct intel_connector *intel_connector;
5185
5186 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5187 if (!intel_dig_port)
5188 return;
5189
5190 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5191 if (!intel_connector) {
5192 kfree(intel_dig_port);
5193 return;
5194 }
5195
5196 intel_encoder = &intel_dig_port->base;
5197 encoder = &intel_encoder->base;
5198
5199 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5200 DRM_MODE_ENCODER_TMDS);
5201
5202 intel_encoder->compute_config = intel_dp_compute_config;
5203 intel_encoder->disable = intel_disable_dp;
5204 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5205 intel_encoder->get_config = intel_dp_get_config;
5206 intel_encoder->suspend = intel_dp_encoder_suspend;
5207 if (IS_CHERRYVIEW(dev)) {
5208 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5209 intel_encoder->pre_enable = chv_pre_enable_dp;
5210 intel_encoder->enable = vlv_enable_dp;
5211 intel_encoder->post_disable = chv_post_disable_dp;
5212 } else if (IS_VALLEYVIEW(dev)) {
5213 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5214 intel_encoder->pre_enable = vlv_pre_enable_dp;
5215 intel_encoder->enable = vlv_enable_dp;
5216 intel_encoder->post_disable = vlv_post_disable_dp;
5217 } else {
5218 intel_encoder->pre_enable = g4x_pre_enable_dp;
5219 intel_encoder->enable = g4x_enable_dp;
5220 if (INTEL_INFO(dev)->gen >= 5)
5221 intel_encoder->post_disable = ilk_post_disable_dp;
5222 }
5223
5224 intel_dig_port->port = port;
5225 intel_dig_port->dp.output_reg = output_reg;
5226
5227 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5228 if (IS_CHERRYVIEW(dev)) {
5229 if (port == PORT_D)
5230 intel_encoder->crtc_mask = 1 << 2;
5231 else
5232 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5233 } else {
5234 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5235 }
5236 intel_encoder->cloneable = 0;
5237 intel_encoder->hot_plug = intel_dp_hot_plug;
5238
5239 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5240 dev_priv->hpd_irq_port[port] = intel_dig_port;
5241
5242 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5243 drm_encoder_cleanup(encoder);
5244 kfree(intel_dig_port);
5245 kfree(intel_connector);
5246 }
5247 }
5248
5249 void intel_dp_mst_suspend(struct drm_device *dev)
5250 {
5251 struct drm_i915_private *dev_priv = dev->dev_private;
5252 int i;
5253
5254 /* disable MST */
5255 for (i = 0; i < I915_MAX_PORTS; i++) {
5256 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5257 if (!intel_dig_port)
5258 continue;
5259
5260 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5261 if (!intel_dig_port->dp.can_mst)
5262 continue;
5263 if (intel_dig_port->dp.is_mst)
5264 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5265 }
5266 }
5267 }
5268
5269 void intel_dp_mst_resume(struct drm_device *dev)
5270 {
5271 struct drm_i915_private *dev_priv = dev->dev_private;
5272 int i;
5273
5274 for (i = 0; i < I915_MAX_PORTS; i++) {
5275 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5276 if (!intel_dig_port)
5277 continue;
5278 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5279 int ret;
5280
5281 if (!intel_dig_port->dp.can_mst)
5282 continue;
5283
5284 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5285 if (ret != 0) {
5286 intel_dp_check_mst_status(&intel_dig_port->dp);
5287 }
5288 }
5289 }
5290 }
This page took 0.161201 seconds and 5 git commands to generate.