Merge tag 'master-2014-11-25' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static enum pipe
326 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 struct intel_encoder *encoder;
332 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
333 struct edp_power_seq power_seq;
334
335 lockdep_assert_held(&dev_priv->pps_mutex);
336
337 if (intel_dp->pps_pipe != INVALID_PIPE)
338 return intel_dp->pps_pipe;
339
340 /*
341 * We don't have power sequencer currently.
342 * Pick one that's not used by other ports.
343 */
344 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
345 base.head) {
346 struct intel_dp *tmp;
347
348 if (encoder->type != INTEL_OUTPUT_EDP)
349 continue;
350
351 tmp = enc_to_intel_dp(&encoder->base);
352
353 if (tmp->pps_pipe != INVALID_PIPE)
354 pipes &= ~(1 << tmp->pps_pipe);
355 }
356
357 /*
358 * Didn't find one. This should not happen since there
359 * are two power sequencers and up to two eDP ports.
360 */
361 if (WARN_ON(pipes == 0))
362 return PIPE_A;
363
364 intel_dp->pps_pipe = ffs(pipes) - 1;
365
366 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
367 pipe_name(intel_dp->pps_pipe),
368 port_name(intel_dig_port->port));
369
370 /* init power sequencer on this pipe and port */
371 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
372 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
373 &power_seq);
374
375 return intel_dp->pps_pipe;
376 }
377
378 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
379 enum pipe pipe);
380
381 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
382 enum pipe pipe)
383 {
384 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
385 }
386
387 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
388 enum pipe pipe)
389 {
390 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
391 }
392
393 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
394 enum pipe pipe)
395 {
396 return true;
397 }
398
399 static enum pipe
400 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
401 enum port port,
402 vlv_pipe_check pipe_check)
403 {
404 enum pipe pipe;
405
406 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
407 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
408 PANEL_PORT_SELECT_MASK;
409
410 if (port_sel != PANEL_PORT_SELECT_VLV(port))
411 continue;
412
413 if (!pipe_check(dev_priv, pipe))
414 continue;
415
416 return pipe;
417 }
418
419 return INVALID_PIPE;
420 }
421
422 static void
423 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
424 {
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 struct edp_power_seq power_seq;
429 enum port port = intel_dig_port->port;
430
431 lockdep_assert_held(&dev_priv->pps_mutex);
432
433 /* try to find a pipe with this port selected */
434 /* first pick one where the panel is on */
435 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
436 vlv_pipe_has_pp_on);
437 /* didn't find one? pick one where vdd is on */
438 if (intel_dp->pps_pipe == INVALID_PIPE)
439 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
440 vlv_pipe_has_vdd_on);
441 /* didn't find one? pick one with just the correct port */
442 if (intel_dp->pps_pipe == INVALID_PIPE)
443 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
444 vlv_pipe_any);
445
446 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
447 if (intel_dp->pps_pipe == INVALID_PIPE) {
448 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
449 port_name(port));
450 return;
451 }
452
453 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
454 port_name(port), pipe_name(intel_dp->pps_pipe));
455
456 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
457 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
458 &power_seq);
459 }
460
461 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
462 {
463 struct drm_device *dev = dev_priv->dev;
464 struct intel_encoder *encoder;
465
466 if (WARN_ON(!IS_VALLEYVIEW(dev)))
467 return;
468
469 /*
470 * We can't grab pps_mutex here due to deadlock with power_domain
471 * mutex when power_domain functions are called while holding pps_mutex.
472 * That also means that in order to use pps_pipe the code needs to
473 * hold both a power domain reference and pps_mutex, and the power domain
474 * reference get/put must be done while _not_ holding pps_mutex.
475 * pps_{lock,unlock}() do these steps in the correct order, so one
476 * should use them always.
477 */
478
479 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
480 struct intel_dp *intel_dp;
481
482 if (encoder->type != INTEL_OUTPUT_EDP)
483 continue;
484
485 intel_dp = enc_to_intel_dp(&encoder->base);
486 intel_dp->pps_pipe = INVALID_PIPE;
487 }
488 }
489
490 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
491 {
492 struct drm_device *dev = intel_dp_to_dev(intel_dp);
493
494 if (HAS_PCH_SPLIT(dev))
495 return PCH_PP_CONTROL;
496 else
497 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
498 }
499
500 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
501 {
502 struct drm_device *dev = intel_dp_to_dev(intel_dp);
503
504 if (HAS_PCH_SPLIT(dev))
505 return PCH_PP_STATUS;
506 else
507 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
508 }
509
510 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
511 This function only applicable when panel PM state is not to be tracked */
512 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
513 void *unused)
514 {
515 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
516 edp_notifier);
517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 u32 pp_div;
520 u32 pp_ctrl_reg, pp_div_reg;
521
522 if (!is_edp(intel_dp) || code != SYS_RESTART)
523 return 0;
524
525 pps_lock(intel_dp);
526
527 if (IS_VALLEYVIEW(dev)) {
528 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
529
530 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
531 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
532 pp_div = I915_READ(pp_div_reg);
533 pp_div &= PP_REFERENCE_DIVIDER_MASK;
534
535 /* 0x1F write to PP_DIV_REG sets max cycle delay */
536 I915_WRITE(pp_div_reg, pp_div | 0x1F);
537 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
538 msleep(intel_dp->panel_power_cycle_delay);
539 }
540
541 pps_unlock(intel_dp);
542
543 return 0;
544 }
545
546 static bool edp_have_panel_power(struct intel_dp *intel_dp)
547 {
548 struct drm_device *dev = intel_dp_to_dev(intel_dp);
549 struct drm_i915_private *dev_priv = dev->dev_private;
550
551 lockdep_assert_held(&dev_priv->pps_mutex);
552
553 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
554 }
555
556 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559 struct drm_i915_private *dev_priv = dev->dev_private;
560
561 lockdep_assert_held(&dev_priv->pps_mutex);
562
563 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
564 }
565
566 static void
567 intel_dp_check_edp(struct intel_dp *intel_dp)
568 {
569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
570 struct drm_i915_private *dev_priv = dev->dev_private;
571
572 if (!is_edp(intel_dp))
573 return;
574
575 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
576 WARN(1, "eDP powered off while attempting aux channel communication.\n");
577 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
578 I915_READ(_pp_stat_reg(intel_dp)),
579 I915_READ(_pp_ctrl_reg(intel_dp)));
580 }
581 }
582
583 static uint32_t
584 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
585 {
586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
587 struct drm_device *dev = intel_dig_port->base.base.dev;
588 struct drm_i915_private *dev_priv = dev->dev_private;
589 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
590 uint32_t status;
591 bool done;
592
593 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
594 if (has_aux_irq)
595 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
596 msecs_to_jiffies_timeout(10));
597 else
598 done = wait_for_atomic(C, 10) == 0;
599 if (!done)
600 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
601 has_aux_irq);
602 #undef C
603
604 return status;
605 }
606
607 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
608 {
609 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
610 struct drm_device *dev = intel_dig_port->base.base.dev;
611
612 /*
613 * The clock divider is based off the hrawclk, and would like to run at
614 * 2MHz. So, take the hrawclk value and divide by 2 and use that
615 */
616 return index ? 0 : intel_hrawclk(dev) / 2;
617 }
618
619 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
620 {
621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
622 struct drm_device *dev = intel_dig_port->base.base.dev;
623
624 if (index)
625 return 0;
626
627 if (intel_dig_port->port == PORT_A) {
628 if (IS_GEN6(dev) || IS_GEN7(dev))
629 return 200; /* SNB & IVB eDP input clock at 400Mhz */
630 else
631 return 225; /* eDP input clock at 450Mhz */
632 } else {
633 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
634 }
635 }
636
637 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
638 {
639 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
640 struct drm_device *dev = intel_dig_port->base.base.dev;
641 struct drm_i915_private *dev_priv = dev->dev_private;
642
643 if (intel_dig_port->port == PORT_A) {
644 if (index)
645 return 0;
646 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
647 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
648 /* Workaround for non-ULT HSW */
649 switch (index) {
650 case 0: return 63;
651 case 1: return 72;
652 default: return 0;
653 }
654 } else {
655 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
656 }
657 }
658
659 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 return index ? 0 : 100;
662 }
663
664 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
665 bool has_aux_irq,
666 int send_bytes,
667 uint32_t aux_clock_divider)
668 {
669 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670 struct drm_device *dev = intel_dig_port->base.base.dev;
671 uint32_t precharge, timeout;
672
673 if (IS_GEN6(dev))
674 precharge = 3;
675 else
676 precharge = 5;
677
678 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
679 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
680 else
681 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
682
683 return DP_AUX_CH_CTL_SEND_BUSY |
684 DP_AUX_CH_CTL_DONE |
685 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
686 DP_AUX_CH_CTL_TIME_OUT_ERROR |
687 timeout |
688 DP_AUX_CH_CTL_RECEIVE_ERROR |
689 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
690 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
691 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
692 }
693
694 static int
695 intel_dp_aux_ch(struct intel_dp *intel_dp,
696 uint8_t *send, int send_bytes,
697 uint8_t *recv, int recv_size)
698 {
699 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
700 struct drm_device *dev = intel_dig_port->base.base.dev;
701 struct drm_i915_private *dev_priv = dev->dev_private;
702 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
703 uint32_t ch_data = ch_ctl + 4;
704 uint32_t aux_clock_divider;
705 int i, ret, recv_bytes;
706 uint32_t status;
707 int try, clock = 0;
708 bool has_aux_irq = HAS_AUX_IRQ(dev);
709 bool vdd;
710
711 pps_lock(intel_dp);
712
713 /*
714 * We will be called with VDD already enabled for dpcd/edid/oui reads.
715 * In such cases we want to leave VDD enabled and it's up to upper layers
716 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
717 * ourselves.
718 */
719 vdd = edp_panel_vdd_on(intel_dp);
720
721 /* dp aux is extremely sensitive to irq latency, hence request the
722 * lowest possible wakeup latency and so prevent the cpu from going into
723 * deep sleep states.
724 */
725 pm_qos_update_request(&dev_priv->pm_qos, 0);
726
727 intel_dp_check_edp(intel_dp);
728
729 intel_aux_display_runtime_get(dev_priv);
730
731 /* Try to wait for any previous AUX channel activity */
732 for (try = 0; try < 3; try++) {
733 status = I915_READ_NOTRACE(ch_ctl);
734 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
735 break;
736 msleep(1);
737 }
738
739 if (try == 3) {
740 WARN(1, "dp_aux_ch not started status 0x%08x\n",
741 I915_READ(ch_ctl));
742 ret = -EBUSY;
743 goto out;
744 }
745
746 /* Only 5 data registers! */
747 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
748 ret = -E2BIG;
749 goto out;
750 }
751
752 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
753 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
754 has_aux_irq,
755 send_bytes,
756 aux_clock_divider);
757
758 /* Must try at least 3 times according to DP spec */
759 for (try = 0; try < 5; try++) {
760 /* Load the send data into the aux channel data registers */
761 for (i = 0; i < send_bytes; i += 4)
762 I915_WRITE(ch_data + i,
763 pack_aux(send + i, send_bytes - i));
764
765 /* Send the command and wait for it to complete */
766 I915_WRITE(ch_ctl, send_ctl);
767
768 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
769
770 /* Clear done status and any errors */
771 I915_WRITE(ch_ctl,
772 status |
773 DP_AUX_CH_CTL_DONE |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 DP_AUX_CH_CTL_RECEIVE_ERROR);
776
777 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_RECEIVE_ERROR))
779 continue;
780 if (status & DP_AUX_CH_CTL_DONE)
781 break;
782 }
783 if (status & DP_AUX_CH_CTL_DONE)
784 break;
785 }
786
787 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
788 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
789 ret = -EBUSY;
790 goto out;
791 }
792
793 /* Check for timeout or receive error.
794 * Timeouts occur when the sink is not connected
795 */
796 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
797 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
798 ret = -EIO;
799 goto out;
800 }
801
802 /* Timeouts occur when the device isn't connected, so they're
803 * "normal" -- don't fill the kernel log with these */
804 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
805 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
806 ret = -ETIMEDOUT;
807 goto out;
808 }
809
810 /* Unload any bytes sent back from the other side */
811 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
812 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
813 if (recv_bytes > recv_size)
814 recv_bytes = recv_size;
815
816 for (i = 0; i < recv_bytes; i += 4)
817 unpack_aux(I915_READ(ch_data + i),
818 recv + i, recv_bytes - i);
819
820 ret = recv_bytes;
821 out:
822 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
823 intel_aux_display_runtime_put(dev_priv);
824
825 if (vdd)
826 edp_panel_vdd_off(intel_dp, false);
827
828 pps_unlock(intel_dp);
829
830 return ret;
831 }
832
833 #define BARE_ADDRESS_SIZE 3
834 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
835 static ssize_t
836 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
837 {
838 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
839 uint8_t txbuf[20], rxbuf[20];
840 size_t txsize, rxsize;
841 int ret;
842
843 txbuf[0] = msg->request << 4;
844 txbuf[1] = msg->address >> 8;
845 txbuf[2] = msg->address & 0xff;
846 txbuf[3] = msg->size - 1;
847
848 switch (msg->request & ~DP_AUX_I2C_MOT) {
849 case DP_AUX_NATIVE_WRITE:
850 case DP_AUX_I2C_WRITE:
851 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
852 rxsize = 1;
853
854 if (WARN_ON(txsize > 20))
855 return -E2BIG;
856
857 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
858
859 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
860 if (ret > 0) {
861 msg->reply = rxbuf[0] >> 4;
862
863 /* Return payload size. */
864 ret = msg->size;
865 }
866 break;
867
868 case DP_AUX_NATIVE_READ:
869 case DP_AUX_I2C_READ:
870 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
871 rxsize = msg->size + 1;
872
873 if (WARN_ON(rxsize > 20))
874 return -E2BIG;
875
876 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
877 if (ret > 0) {
878 msg->reply = rxbuf[0] >> 4;
879 /*
880 * Assume happy day, and copy the data. The caller is
881 * expected to check msg->reply before touching it.
882 *
883 * Return payload size.
884 */
885 ret--;
886 memcpy(msg->buffer, rxbuf + 1, ret);
887 }
888 break;
889
890 default:
891 ret = -EINVAL;
892 break;
893 }
894
895 return ret;
896 }
897
898 static void
899 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
900 {
901 struct drm_device *dev = intel_dp_to_dev(intel_dp);
902 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
903 enum port port = intel_dig_port->port;
904 const char *name = NULL;
905 int ret;
906
907 switch (port) {
908 case PORT_A:
909 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
910 name = "DPDDC-A";
911 break;
912 case PORT_B:
913 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
914 name = "DPDDC-B";
915 break;
916 case PORT_C:
917 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
918 name = "DPDDC-C";
919 break;
920 case PORT_D:
921 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
922 name = "DPDDC-D";
923 break;
924 default:
925 BUG();
926 }
927
928 if (!HAS_DDI(dev))
929 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
930
931 intel_dp->aux.name = name;
932 intel_dp->aux.dev = dev->dev;
933 intel_dp->aux.transfer = intel_dp_aux_transfer;
934
935 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
936 connector->base.kdev->kobj.name);
937
938 ret = drm_dp_aux_register(&intel_dp->aux);
939 if (ret < 0) {
940 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
941 name, ret);
942 return;
943 }
944
945 ret = sysfs_create_link(&connector->base.kdev->kobj,
946 &intel_dp->aux.ddc.dev.kobj,
947 intel_dp->aux.ddc.dev.kobj.name);
948 if (ret < 0) {
949 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
950 drm_dp_aux_unregister(&intel_dp->aux);
951 }
952 }
953
954 static void
955 intel_dp_connector_unregister(struct intel_connector *intel_connector)
956 {
957 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
958
959 if (!intel_connector->mst_port)
960 sysfs_remove_link(&intel_connector->base.kdev->kobj,
961 intel_dp->aux.ddc.dev.kobj.name);
962 intel_connector_unregister(intel_connector);
963 }
964
965 static void
966 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
967 {
968 switch (link_bw) {
969 case DP_LINK_BW_1_62:
970 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
971 break;
972 case DP_LINK_BW_2_7:
973 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
974 break;
975 case DP_LINK_BW_5_4:
976 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
977 break;
978 }
979 }
980
981 static void
982 intel_dp_set_clock(struct intel_encoder *encoder,
983 struct intel_crtc_config *pipe_config, int link_bw)
984 {
985 struct drm_device *dev = encoder->base.dev;
986 const struct dp_link_dpll *divisor = NULL;
987 int i, count = 0;
988
989 if (IS_G4X(dev)) {
990 divisor = gen4_dpll;
991 count = ARRAY_SIZE(gen4_dpll);
992 } else if (HAS_PCH_SPLIT(dev)) {
993 divisor = pch_dpll;
994 count = ARRAY_SIZE(pch_dpll);
995 } else if (IS_CHERRYVIEW(dev)) {
996 divisor = chv_dpll;
997 count = ARRAY_SIZE(chv_dpll);
998 } else if (IS_VALLEYVIEW(dev)) {
999 divisor = vlv_dpll;
1000 count = ARRAY_SIZE(vlv_dpll);
1001 }
1002
1003 if (divisor && count) {
1004 for (i = 0; i < count; i++) {
1005 if (link_bw == divisor[i].link_bw) {
1006 pipe_config->dpll = divisor[i].dpll;
1007 pipe_config->clock_set = true;
1008 break;
1009 }
1010 }
1011 }
1012 }
1013
1014 bool
1015 intel_dp_compute_config(struct intel_encoder *encoder,
1016 struct intel_crtc_config *pipe_config)
1017 {
1018 struct drm_device *dev = encoder->base.dev;
1019 struct drm_i915_private *dev_priv = dev->dev_private;
1020 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1021 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022 enum port port = dp_to_dig_port(intel_dp)->port;
1023 struct intel_crtc *intel_crtc = encoder->new_crtc;
1024 struct intel_connector *intel_connector = intel_dp->attached_connector;
1025 int lane_count, clock;
1026 int min_lane_count = 1;
1027 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1028 /* Conveniently, the link BW constants become indices with a shift...*/
1029 int min_clock = 0;
1030 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1031 int bpp, mode_rate;
1032 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1033 int link_avail, link_clock;
1034
1035 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1036 pipe_config->has_pch_encoder = true;
1037
1038 pipe_config->has_dp_encoder = true;
1039 pipe_config->has_drrs = false;
1040 pipe_config->has_audio = intel_dp->has_audio;
1041
1042 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1043 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1044 adjusted_mode);
1045 if (!HAS_PCH_SPLIT(dev))
1046 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1047 intel_connector->panel.fitting_mode);
1048 else
1049 intel_pch_panel_fitting(intel_crtc, pipe_config,
1050 intel_connector->panel.fitting_mode);
1051 }
1052
1053 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1054 return false;
1055
1056 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1057 "max bw %02x pixel clock %iKHz\n",
1058 max_lane_count, bws[max_clock],
1059 adjusted_mode->crtc_clock);
1060
1061 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1062 * bpc in between. */
1063 bpp = pipe_config->pipe_bpp;
1064 if (is_edp(intel_dp)) {
1065 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1066 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1067 dev_priv->vbt.edp_bpp);
1068 bpp = dev_priv->vbt.edp_bpp;
1069 }
1070
1071 /*
1072 * Use the maximum clock and number of lanes the eDP panel
1073 * advertizes being capable of. The panels are generally
1074 * designed to support only a single clock and lane
1075 * configuration, and typically these values correspond to the
1076 * native resolution of the panel.
1077 */
1078 min_lane_count = max_lane_count;
1079 min_clock = max_clock;
1080 }
1081
1082 for (; bpp >= 6*3; bpp -= 2*3) {
1083 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1084 bpp);
1085
1086 for (clock = min_clock; clock <= max_clock; clock++) {
1087 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1088 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1089 link_avail = intel_dp_max_data_rate(link_clock,
1090 lane_count);
1091
1092 if (mode_rate <= link_avail) {
1093 goto found;
1094 }
1095 }
1096 }
1097 }
1098
1099 return false;
1100
1101 found:
1102 if (intel_dp->color_range_auto) {
1103 /*
1104 * See:
1105 * CEA-861-E - 5.1 Default Encoding Parameters
1106 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1107 */
1108 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1109 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1110 else
1111 intel_dp->color_range = 0;
1112 }
1113
1114 if (intel_dp->color_range)
1115 pipe_config->limited_color_range = true;
1116
1117 intel_dp->link_bw = bws[clock];
1118 intel_dp->lane_count = lane_count;
1119 pipe_config->pipe_bpp = bpp;
1120 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1121
1122 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1123 intel_dp->link_bw, intel_dp->lane_count,
1124 pipe_config->port_clock, bpp);
1125 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1126 mode_rate, link_avail);
1127
1128 intel_link_compute_m_n(bpp, lane_count,
1129 adjusted_mode->crtc_clock,
1130 pipe_config->port_clock,
1131 &pipe_config->dp_m_n);
1132
1133 if (intel_connector->panel.downclock_mode != NULL &&
1134 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1135 pipe_config->has_drrs = true;
1136 intel_link_compute_m_n(bpp, lane_count,
1137 intel_connector->panel.downclock_mode->clock,
1138 pipe_config->port_clock,
1139 &pipe_config->dp_m2_n2);
1140 }
1141
1142 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1143 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1144 else
1145 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1146
1147 return true;
1148 }
1149
1150 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1151 {
1152 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1153 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1154 struct drm_device *dev = crtc->base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 u32 dpa_ctl;
1157
1158 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1159 dpa_ctl = I915_READ(DP_A);
1160 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1161
1162 if (crtc->config.port_clock == 162000) {
1163 /* For a long time we've carried around a ILK-DevA w/a for the
1164 * 160MHz clock. If we're really unlucky, it's still required.
1165 */
1166 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1167 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1168 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1169 } else {
1170 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1171 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1172 }
1173
1174 I915_WRITE(DP_A, dpa_ctl);
1175
1176 POSTING_READ(DP_A);
1177 udelay(500);
1178 }
1179
1180 static void intel_dp_prepare(struct intel_encoder *encoder)
1181 {
1182 struct drm_device *dev = encoder->base.dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1185 enum port port = dp_to_dig_port(intel_dp)->port;
1186 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1187 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1188
1189 /*
1190 * There are four kinds of DP registers:
1191 *
1192 * IBX PCH
1193 * SNB CPU
1194 * IVB CPU
1195 * CPT PCH
1196 *
1197 * IBX PCH and CPU are the same for almost everything,
1198 * except that the CPU DP PLL is configured in this
1199 * register
1200 *
1201 * CPT PCH is quite different, having many bits moved
1202 * to the TRANS_DP_CTL register instead. That
1203 * configuration happens (oddly) in ironlake_pch_enable
1204 */
1205
1206 /* Preserve the BIOS-computed detected bit. This is
1207 * supposed to be read-only.
1208 */
1209 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1210
1211 /* Handle DP bits in common between all three register formats */
1212 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1213 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1214
1215 if (crtc->config.has_audio) {
1216 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1217 pipe_name(crtc->pipe));
1218 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1219 intel_write_eld(&encoder->base, adjusted_mode);
1220 }
1221
1222 /* Split out the IBX/CPU vs CPT settings */
1223
1224 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1225 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1226 intel_dp->DP |= DP_SYNC_HS_HIGH;
1227 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1228 intel_dp->DP |= DP_SYNC_VS_HIGH;
1229 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1230
1231 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1232 intel_dp->DP |= DP_ENHANCED_FRAMING;
1233
1234 intel_dp->DP |= crtc->pipe << 29;
1235 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1236 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1237 intel_dp->DP |= intel_dp->color_range;
1238
1239 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1240 intel_dp->DP |= DP_SYNC_HS_HIGH;
1241 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1242 intel_dp->DP |= DP_SYNC_VS_HIGH;
1243 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1244
1245 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1246 intel_dp->DP |= DP_ENHANCED_FRAMING;
1247
1248 if (!IS_CHERRYVIEW(dev)) {
1249 if (crtc->pipe == 1)
1250 intel_dp->DP |= DP_PIPEB_SELECT;
1251 } else {
1252 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1253 }
1254 } else {
1255 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1256 }
1257 }
1258
1259 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1260 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1261
1262 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1263 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1264
1265 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1266 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1267
1268 static void wait_panel_status(struct intel_dp *intel_dp,
1269 u32 mask,
1270 u32 value)
1271 {
1272 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 u32 pp_stat_reg, pp_ctrl_reg;
1275
1276 lockdep_assert_held(&dev_priv->pps_mutex);
1277
1278 pp_stat_reg = _pp_stat_reg(intel_dp);
1279 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1280
1281 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1282 mask, value,
1283 I915_READ(pp_stat_reg),
1284 I915_READ(pp_ctrl_reg));
1285
1286 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1287 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1288 I915_READ(pp_stat_reg),
1289 I915_READ(pp_ctrl_reg));
1290 }
1291
1292 DRM_DEBUG_KMS("Wait complete\n");
1293 }
1294
1295 static void wait_panel_on(struct intel_dp *intel_dp)
1296 {
1297 DRM_DEBUG_KMS("Wait for panel power on\n");
1298 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1299 }
1300
1301 static void wait_panel_off(struct intel_dp *intel_dp)
1302 {
1303 DRM_DEBUG_KMS("Wait for panel power off time\n");
1304 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1305 }
1306
1307 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1308 {
1309 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1310
1311 /* When we disable the VDD override bit last we have to do the manual
1312 * wait. */
1313 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1314 intel_dp->panel_power_cycle_delay);
1315
1316 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1317 }
1318
1319 static void wait_backlight_on(struct intel_dp *intel_dp)
1320 {
1321 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1322 intel_dp->backlight_on_delay);
1323 }
1324
1325 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1326 {
1327 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1328 intel_dp->backlight_off_delay);
1329 }
1330
1331 /* Read the current pp_control value, unlocking the register if it
1332 * is locked
1333 */
1334
1335 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1336 {
1337 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 u32 control;
1340
1341 lockdep_assert_held(&dev_priv->pps_mutex);
1342
1343 control = I915_READ(_pp_ctrl_reg(intel_dp));
1344 control &= ~PANEL_UNLOCK_MASK;
1345 control |= PANEL_UNLOCK_REGS;
1346 return control;
1347 }
1348
1349 /*
1350 * Must be paired with edp_panel_vdd_off().
1351 * Must hold pps_mutex around the whole on/off sequence.
1352 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1353 */
1354 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1355 {
1356 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 enum intel_display_power_domain power_domain;
1361 u32 pp;
1362 u32 pp_stat_reg, pp_ctrl_reg;
1363 bool need_to_disable = !intel_dp->want_panel_vdd;
1364
1365 lockdep_assert_held(&dev_priv->pps_mutex);
1366
1367 if (!is_edp(intel_dp))
1368 return false;
1369
1370 intel_dp->want_panel_vdd = true;
1371
1372 if (edp_have_panel_vdd(intel_dp))
1373 return need_to_disable;
1374
1375 power_domain = intel_display_port_power_domain(intel_encoder);
1376 intel_display_power_get(dev_priv, power_domain);
1377
1378 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1379
1380 if (!edp_have_panel_power(intel_dp))
1381 wait_panel_power_cycle(intel_dp);
1382
1383 pp = ironlake_get_pp_control(intel_dp);
1384 pp |= EDP_FORCE_VDD;
1385
1386 pp_stat_reg = _pp_stat_reg(intel_dp);
1387 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389 I915_WRITE(pp_ctrl_reg, pp);
1390 POSTING_READ(pp_ctrl_reg);
1391 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1392 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1393 /*
1394 * If the panel wasn't on, delay before accessing aux channel
1395 */
1396 if (!edp_have_panel_power(intel_dp)) {
1397 DRM_DEBUG_KMS("eDP was not running\n");
1398 msleep(intel_dp->panel_power_up_delay);
1399 }
1400
1401 return need_to_disable;
1402 }
1403
1404 /*
1405 * Must be paired with intel_edp_panel_vdd_off() or
1406 * intel_edp_panel_off().
1407 * Nested calls to these functions are not allowed since
1408 * we drop the lock. Caller must use some higher level
1409 * locking to prevent nested calls from other threads.
1410 */
1411 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1412 {
1413 bool vdd;
1414
1415 if (!is_edp(intel_dp))
1416 return;
1417
1418 pps_lock(intel_dp);
1419 vdd = edp_panel_vdd_on(intel_dp);
1420 pps_unlock(intel_dp);
1421
1422 WARN(!vdd, "eDP VDD already requested on\n");
1423 }
1424
1425 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1426 {
1427 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 struct intel_digital_port *intel_dig_port =
1430 dp_to_dig_port(intel_dp);
1431 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1432 enum intel_display_power_domain power_domain;
1433 u32 pp;
1434 u32 pp_stat_reg, pp_ctrl_reg;
1435
1436 lockdep_assert_held(&dev_priv->pps_mutex);
1437
1438 WARN_ON(intel_dp->want_panel_vdd);
1439
1440 if (!edp_have_panel_vdd(intel_dp))
1441 return;
1442
1443 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1444
1445 pp = ironlake_get_pp_control(intel_dp);
1446 pp &= ~EDP_FORCE_VDD;
1447
1448 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1449 pp_stat_reg = _pp_stat_reg(intel_dp);
1450
1451 I915_WRITE(pp_ctrl_reg, pp);
1452 POSTING_READ(pp_ctrl_reg);
1453
1454 /* Make sure sequencer is idle before allowing subsequent activity */
1455 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1456 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1457
1458 if ((pp & POWER_TARGET_ON) == 0)
1459 intel_dp->last_power_cycle = jiffies;
1460
1461 power_domain = intel_display_port_power_domain(intel_encoder);
1462 intel_display_power_put(dev_priv, power_domain);
1463 }
1464
1465 static void edp_panel_vdd_work(struct work_struct *__work)
1466 {
1467 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1468 struct intel_dp, panel_vdd_work);
1469
1470 pps_lock(intel_dp);
1471 if (!intel_dp->want_panel_vdd)
1472 edp_panel_vdd_off_sync(intel_dp);
1473 pps_unlock(intel_dp);
1474 }
1475
1476 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1477 {
1478 unsigned long delay;
1479
1480 /*
1481 * Queue the timer to fire a long time from now (relative to the power
1482 * down delay) to keep the panel power up across a sequence of
1483 * operations.
1484 */
1485 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1486 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1487 }
1488
1489 /*
1490 * Must be paired with edp_panel_vdd_on().
1491 * Must hold pps_mutex around the whole on/off sequence.
1492 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1493 */
1494 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1495 {
1496 struct drm_i915_private *dev_priv =
1497 intel_dp_to_dev(intel_dp)->dev_private;
1498
1499 lockdep_assert_held(&dev_priv->pps_mutex);
1500
1501 if (!is_edp(intel_dp))
1502 return;
1503
1504 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1505
1506 intel_dp->want_panel_vdd = false;
1507
1508 if (sync)
1509 edp_panel_vdd_off_sync(intel_dp);
1510 else
1511 edp_panel_vdd_schedule_off(intel_dp);
1512 }
1513
1514 /*
1515 * Must be paired with intel_edp_panel_vdd_on().
1516 * Nested calls to these functions are not allowed since
1517 * we drop the lock. Caller must use some higher level
1518 * locking to prevent nested calls from other threads.
1519 */
1520 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1521 {
1522 if (!is_edp(intel_dp))
1523 return;
1524
1525 pps_lock(intel_dp);
1526 edp_panel_vdd_off(intel_dp, sync);
1527 pps_unlock(intel_dp);
1528 }
1529
1530 void intel_edp_panel_on(struct intel_dp *intel_dp)
1531 {
1532 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 u32 pp;
1535 u32 pp_ctrl_reg;
1536
1537 if (!is_edp(intel_dp))
1538 return;
1539
1540 DRM_DEBUG_KMS("Turn eDP power on\n");
1541
1542 pps_lock(intel_dp);
1543
1544 if (edp_have_panel_power(intel_dp)) {
1545 DRM_DEBUG_KMS("eDP power already on\n");
1546 goto out;
1547 }
1548
1549 wait_panel_power_cycle(intel_dp);
1550
1551 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1552 pp = ironlake_get_pp_control(intel_dp);
1553 if (IS_GEN5(dev)) {
1554 /* ILK workaround: disable reset around power sequence */
1555 pp &= ~PANEL_POWER_RESET;
1556 I915_WRITE(pp_ctrl_reg, pp);
1557 POSTING_READ(pp_ctrl_reg);
1558 }
1559
1560 pp |= POWER_TARGET_ON;
1561 if (!IS_GEN5(dev))
1562 pp |= PANEL_POWER_RESET;
1563
1564 I915_WRITE(pp_ctrl_reg, pp);
1565 POSTING_READ(pp_ctrl_reg);
1566
1567 wait_panel_on(intel_dp);
1568 intel_dp->last_power_on = jiffies;
1569
1570 if (IS_GEN5(dev)) {
1571 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1572 I915_WRITE(pp_ctrl_reg, pp);
1573 POSTING_READ(pp_ctrl_reg);
1574 }
1575
1576 out:
1577 pps_unlock(intel_dp);
1578 }
1579
1580 void intel_edp_panel_off(struct intel_dp *intel_dp)
1581 {
1582 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1583 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1584 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 enum intel_display_power_domain power_domain;
1587 u32 pp;
1588 u32 pp_ctrl_reg;
1589
1590 if (!is_edp(intel_dp))
1591 return;
1592
1593 DRM_DEBUG_KMS("Turn eDP power off\n");
1594
1595 pps_lock(intel_dp);
1596
1597 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1598
1599 pp = ironlake_get_pp_control(intel_dp);
1600 /* We need to switch off panel power _and_ force vdd, for otherwise some
1601 * panels get very unhappy and cease to work. */
1602 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1603 EDP_BLC_ENABLE);
1604
1605 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1606
1607 intel_dp->want_panel_vdd = false;
1608
1609 I915_WRITE(pp_ctrl_reg, pp);
1610 POSTING_READ(pp_ctrl_reg);
1611
1612 intel_dp->last_power_cycle = jiffies;
1613 wait_panel_off(intel_dp);
1614
1615 /* We got a reference when we enabled the VDD. */
1616 power_domain = intel_display_port_power_domain(intel_encoder);
1617 intel_display_power_put(dev_priv, power_domain);
1618
1619 pps_unlock(intel_dp);
1620 }
1621
1622 /* Enable backlight in the panel power control. */
1623 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1624 {
1625 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1626 struct drm_device *dev = intel_dig_port->base.base.dev;
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 u32 pp;
1629 u32 pp_ctrl_reg;
1630
1631 /*
1632 * If we enable the backlight right away following a panel power
1633 * on, we may see slight flicker as the panel syncs with the eDP
1634 * link. So delay a bit to make sure the image is solid before
1635 * allowing it to appear.
1636 */
1637 wait_backlight_on(intel_dp);
1638
1639 pps_lock(intel_dp);
1640
1641 pp = ironlake_get_pp_control(intel_dp);
1642 pp |= EDP_BLC_ENABLE;
1643
1644 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1645
1646 I915_WRITE(pp_ctrl_reg, pp);
1647 POSTING_READ(pp_ctrl_reg);
1648
1649 pps_unlock(intel_dp);
1650 }
1651
1652 /* Enable backlight PWM and backlight PP control. */
1653 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1654 {
1655 if (!is_edp(intel_dp))
1656 return;
1657
1658 DRM_DEBUG_KMS("\n");
1659
1660 intel_panel_enable_backlight(intel_dp->attached_connector);
1661 _intel_edp_backlight_on(intel_dp);
1662 }
1663
1664 /* Disable backlight in the panel power control. */
1665 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1666 {
1667 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 u32 pp;
1670 u32 pp_ctrl_reg;
1671
1672 if (!is_edp(intel_dp))
1673 return;
1674
1675 pps_lock(intel_dp);
1676
1677 pp = ironlake_get_pp_control(intel_dp);
1678 pp &= ~EDP_BLC_ENABLE;
1679
1680 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1681
1682 I915_WRITE(pp_ctrl_reg, pp);
1683 POSTING_READ(pp_ctrl_reg);
1684
1685 pps_unlock(intel_dp);
1686
1687 intel_dp->last_backlight_off = jiffies;
1688 edp_wait_backlight_off(intel_dp);
1689 }
1690
1691 /* Disable backlight PP control and backlight PWM. */
1692 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1693 {
1694 if (!is_edp(intel_dp))
1695 return;
1696
1697 DRM_DEBUG_KMS("\n");
1698
1699 _intel_edp_backlight_off(intel_dp);
1700 intel_panel_disable_backlight(intel_dp->attached_connector);
1701 }
1702
1703 /*
1704 * Hook for controlling the panel power control backlight through the bl_power
1705 * sysfs attribute. Take care to handle multiple calls.
1706 */
1707 static void intel_edp_backlight_power(struct intel_connector *connector,
1708 bool enable)
1709 {
1710 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1711 bool is_enabled;
1712
1713 pps_lock(intel_dp);
1714 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1715 pps_unlock(intel_dp);
1716
1717 if (is_enabled == enable)
1718 return;
1719
1720 DRM_DEBUG_KMS("panel power control backlight %s\n",
1721 enable ? "enable" : "disable");
1722
1723 if (enable)
1724 _intel_edp_backlight_on(intel_dp);
1725 else
1726 _intel_edp_backlight_off(intel_dp);
1727 }
1728
1729 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1730 {
1731 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1732 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1733 struct drm_device *dev = crtc->dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 u32 dpa_ctl;
1736
1737 assert_pipe_disabled(dev_priv,
1738 to_intel_crtc(crtc)->pipe);
1739
1740 DRM_DEBUG_KMS("\n");
1741 dpa_ctl = I915_READ(DP_A);
1742 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1743 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1744
1745 /* We don't adjust intel_dp->DP while tearing down the link, to
1746 * facilitate link retraining (e.g. after hotplug). Hence clear all
1747 * enable bits here to ensure that we don't enable too much. */
1748 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1749 intel_dp->DP |= DP_PLL_ENABLE;
1750 I915_WRITE(DP_A, intel_dp->DP);
1751 POSTING_READ(DP_A);
1752 udelay(200);
1753 }
1754
1755 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1756 {
1757 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1758 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1759 struct drm_device *dev = crtc->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 u32 dpa_ctl;
1762
1763 assert_pipe_disabled(dev_priv,
1764 to_intel_crtc(crtc)->pipe);
1765
1766 dpa_ctl = I915_READ(DP_A);
1767 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1768 "dp pll off, should be on\n");
1769 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1770
1771 /* We can't rely on the value tracked for the DP register in
1772 * intel_dp->DP because link_down must not change that (otherwise link
1773 * re-training will fail. */
1774 dpa_ctl &= ~DP_PLL_ENABLE;
1775 I915_WRITE(DP_A, dpa_ctl);
1776 POSTING_READ(DP_A);
1777 udelay(200);
1778 }
1779
1780 /* If the sink supports it, try to set the power state appropriately */
1781 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1782 {
1783 int ret, i;
1784
1785 /* Should have a valid DPCD by this point */
1786 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1787 return;
1788
1789 if (mode != DRM_MODE_DPMS_ON) {
1790 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1791 DP_SET_POWER_D3);
1792 } else {
1793 /*
1794 * When turning on, we need to retry for 1ms to give the sink
1795 * time to wake up.
1796 */
1797 for (i = 0; i < 3; i++) {
1798 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1799 DP_SET_POWER_D0);
1800 if (ret == 1)
1801 break;
1802 msleep(1);
1803 }
1804 }
1805
1806 if (ret != 1)
1807 DRM_DEBUG_KMS("failed to %s sink power state\n",
1808 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1809 }
1810
1811 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1812 enum pipe *pipe)
1813 {
1814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1815 enum port port = dp_to_dig_port(intel_dp)->port;
1816 struct drm_device *dev = encoder->base.dev;
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 enum intel_display_power_domain power_domain;
1819 u32 tmp;
1820
1821 power_domain = intel_display_port_power_domain(encoder);
1822 if (!intel_display_power_enabled(dev_priv, power_domain))
1823 return false;
1824
1825 tmp = I915_READ(intel_dp->output_reg);
1826
1827 if (!(tmp & DP_PORT_EN))
1828 return false;
1829
1830 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1831 *pipe = PORT_TO_PIPE_CPT(tmp);
1832 } else if (IS_CHERRYVIEW(dev)) {
1833 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1834 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1835 *pipe = PORT_TO_PIPE(tmp);
1836 } else {
1837 u32 trans_sel;
1838 u32 trans_dp;
1839 int i;
1840
1841 switch (intel_dp->output_reg) {
1842 case PCH_DP_B:
1843 trans_sel = TRANS_DP_PORT_SEL_B;
1844 break;
1845 case PCH_DP_C:
1846 trans_sel = TRANS_DP_PORT_SEL_C;
1847 break;
1848 case PCH_DP_D:
1849 trans_sel = TRANS_DP_PORT_SEL_D;
1850 break;
1851 default:
1852 return true;
1853 }
1854
1855 for_each_pipe(dev_priv, i) {
1856 trans_dp = I915_READ(TRANS_DP_CTL(i));
1857 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1858 *pipe = i;
1859 return true;
1860 }
1861 }
1862
1863 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1864 intel_dp->output_reg);
1865 }
1866
1867 return true;
1868 }
1869
1870 static void intel_dp_get_config(struct intel_encoder *encoder,
1871 struct intel_crtc_config *pipe_config)
1872 {
1873 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1874 u32 tmp, flags = 0;
1875 struct drm_device *dev = encoder->base.dev;
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 enum port port = dp_to_dig_port(intel_dp)->port;
1878 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1879 int dotclock;
1880
1881 tmp = I915_READ(intel_dp->output_reg);
1882 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1883 pipe_config->has_audio = true;
1884
1885 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1886 if (tmp & DP_SYNC_HS_HIGH)
1887 flags |= DRM_MODE_FLAG_PHSYNC;
1888 else
1889 flags |= DRM_MODE_FLAG_NHSYNC;
1890
1891 if (tmp & DP_SYNC_VS_HIGH)
1892 flags |= DRM_MODE_FLAG_PVSYNC;
1893 else
1894 flags |= DRM_MODE_FLAG_NVSYNC;
1895 } else {
1896 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1897 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1898 flags |= DRM_MODE_FLAG_PHSYNC;
1899 else
1900 flags |= DRM_MODE_FLAG_NHSYNC;
1901
1902 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1903 flags |= DRM_MODE_FLAG_PVSYNC;
1904 else
1905 flags |= DRM_MODE_FLAG_NVSYNC;
1906 }
1907
1908 pipe_config->adjusted_mode.flags |= flags;
1909
1910 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1911 tmp & DP_COLOR_RANGE_16_235)
1912 pipe_config->limited_color_range = true;
1913
1914 pipe_config->has_dp_encoder = true;
1915
1916 intel_dp_get_m_n(crtc, pipe_config);
1917
1918 if (port == PORT_A) {
1919 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1920 pipe_config->port_clock = 162000;
1921 else
1922 pipe_config->port_clock = 270000;
1923 }
1924
1925 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1926 &pipe_config->dp_m_n);
1927
1928 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1929 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1930
1931 pipe_config->adjusted_mode.crtc_clock = dotclock;
1932
1933 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1934 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1935 /*
1936 * This is a big fat ugly hack.
1937 *
1938 * Some machines in UEFI boot mode provide us a VBT that has 18
1939 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1940 * unknown we fail to light up. Yet the same BIOS boots up with
1941 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1942 * max, not what it tells us to use.
1943 *
1944 * Note: This will still be broken if the eDP panel is not lit
1945 * up by the BIOS, and thus we can't get the mode at module
1946 * load.
1947 */
1948 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1949 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1950 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1951 }
1952 }
1953
1954 static bool is_edp_psr(struct intel_dp *intel_dp)
1955 {
1956 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1957 }
1958
1959 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1960 {
1961 struct drm_i915_private *dev_priv = dev->dev_private;
1962
1963 if (!HAS_PSR(dev))
1964 return false;
1965
1966 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1967 }
1968
1969 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1970 struct edp_vsc_psr *vsc_psr)
1971 {
1972 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1973 struct drm_device *dev = dig_port->base.base.dev;
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1976 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1977 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1978 uint32_t *data = (uint32_t *) vsc_psr;
1979 unsigned int i;
1980
1981 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1982 the video DIP being updated before program video DIP data buffer
1983 registers for DIP being updated. */
1984 I915_WRITE(ctl_reg, 0);
1985 POSTING_READ(ctl_reg);
1986
1987 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1988 if (i < sizeof(struct edp_vsc_psr))
1989 I915_WRITE(data_reg + i, *data++);
1990 else
1991 I915_WRITE(data_reg + i, 0);
1992 }
1993
1994 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1995 POSTING_READ(ctl_reg);
1996 }
1997
1998 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1999 {
2000 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct edp_vsc_psr psr_vsc;
2003
2004 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2005 memset(&psr_vsc, 0, sizeof(psr_vsc));
2006 psr_vsc.sdp_header.HB0 = 0;
2007 psr_vsc.sdp_header.HB1 = 0x7;
2008 psr_vsc.sdp_header.HB2 = 0x2;
2009 psr_vsc.sdp_header.HB3 = 0x8;
2010 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2011
2012 /* Avoid continuous PSR exit by masking memup and hpd */
2013 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2014 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2015 }
2016
2017 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2018 {
2019 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2020 struct drm_device *dev = dig_port->base.base.dev;
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022 uint32_t aux_clock_divider;
2023 int precharge = 0x3;
2024 int msg_size = 5; /* Header(4) + Message(1) */
2025 bool only_standby = false;
2026
2027 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2028
2029 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2030 only_standby = true;
2031
2032 /* Enable PSR in sink */
2033 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2034 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2035 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2036 else
2037 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2038 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2039
2040 /* Setup AUX registers */
2041 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
2042 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
2043 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2044 DP_AUX_CH_CTL_TIME_OUT_400us |
2045 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2046 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2047 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2048 }
2049
2050 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2051 {
2052 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2053 struct drm_device *dev = dig_port->base.base.dev;
2054 struct drm_i915_private *dev_priv = dev->dev_private;
2055 uint32_t max_sleep_time = 0x1f;
2056 uint32_t idle_frames = 1;
2057 uint32_t val = 0x0;
2058 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2059 bool only_standby = false;
2060
2061 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2062 only_standby = true;
2063
2064 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2065 val |= EDP_PSR_LINK_STANDBY;
2066 val |= EDP_PSR_TP2_TP3_TIME_0us;
2067 val |= EDP_PSR_TP1_TIME_0us;
2068 val |= EDP_PSR_SKIP_AUX_EXIT;
2069 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2070 } else
2071 val |= EDP_PSR_LINK_DISABLE;
2072
2073 I915_WRITE(EDP_PSR_CTL(dev), val |
2074 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2075 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2076 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2077 EDP_PSR_ENABLE);
2078 }
2079
2080 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2081 {
2082 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2083 struct drm_device *dev = dig_port->base.base.dev;
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 struct drm_crtc *crtc = dig_port->base.base.crtc;
2086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087
2088 lockdep_assert_held(&dev_priv->psr.lock);
2089 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2090 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2091
2092 dev_priv->psr.source_ok = false;
2093
2094 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2095 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2096 return false;
2097 }
2098
2099 if (!i915.enable_psr) {
2100 DRM_DEBUG_KMS("PSR disable by flag\n");
2101 return false;
2102 }
2103
2104 /* Below limitations aren't valid for Broadwell */
2105 if (IS_BROADWELL(dev))
2106 goto out;
2107
2108 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2109 S3D_ENABLE) {
2110 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2111 return false;
2112 }
2113
2114 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2115 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2116 return false;
2117 }
2118
2119 out:
2120 dev_priv->psr.source_ok = true;
2121 return true;
2122 }
2123
2124 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2125 {
2126 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2127 struct drm_device *dev = intel_dig_port->base.base.dev;
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129
2130 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2131 WARN_ON(dev_priv->psr.active);
2132 lockdep_assert_held(&dev_priv->psr.lock);
2133
2134 /* Enable PSR on the panel */
2135 intel_edp_psr_enable_sink(intel_dp);
2136
2137 /* Enable PSR on the host */
2138 intel_edp_psr_enable_source(intel_dp);
2139
2140 dev_priv->psr.active = true;
2141 }
2142
2143 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2144 {
2145 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2146 struct drm_i915_private *dev_priv = dev->dev_private;
2147
2148 if (!HAS_PSR(dev)) {
2149 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2150 return;
2151 }
2152
2153 if (!is_edp_psr(intel_dp)) {
2154 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2155 return;
2156 }
2157
2158 mutex_lock(&dev_priv->psr.lock);
2159 if (dev_priv->psr.enabled) {
2160 DRM_DEBUG_KMS("PSR already in use\n");
2161 mutex_unlock(&dev_priv->psr.lock);
2162 return;
2163 }
2164
2165 dev_priv->psr.busy_frontbuffer_bits = 0;
2166
2167 /* Setup PSR once */
2168 intel_edp_psr_setup(intel_dp);
2169
2170 if (intel_edp_psr_match_conditions(intel_dp))
2171 dev_priv->psr.enabled = intel_dp;
2172 mutex_unlock(&dev_priv->psr.lock);
2173 }
2174
2175 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2176 {
2177 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179
2180 mutex_lock(&dev_priv->psr.lock);
2181 if (!dev_priv->psr.enabled) {
2182 mutex_unlock(&dev_priv->psr.lock);
2183 return;
2184 }
2185
2186 if (dev_priv->psr.active) {
2187 I915_WRITE(EDP_PSR_CTL(dev),
2188 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2189
2190 /* Wait till PSR is idle */
2191 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2192 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2193 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2194
2195 dev_priv->psr.active = false;
2196 } else {
2197 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2198 }
2199
2200 dev_priv->psr.enabled = NULL;
2201 mutex_unlock(&dev_priv->psr.lock);
2202
2203 cancel_delayed_work_sync(&dev_priv->psr.work);
2204 }
2205
2206 static void intel_edp_psr_work(struct work_struct *work)
2207 {
2208 struct drm_i915_private *dev_priv =
2209 container_of(work, typeof(*dev_priv), psr.work.work);
2210 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2211
2212 mutex_lock(&dev_priv->psr.lock);
2213 intel_dp = dev_priv->psr.enabled;
2214
2215 if (!intel_dp)
2216 goto unlock;
2217
2218 /*
2219 * The delayed work can race with an invalidate hence we need to
2220 * recheck. Since psr_flush first clears this and then reschedules we
2221 * won't ever miss a flush when bailing out here.
2222 */
2223 if (dev_priv->psr.busy_frontbuffer_bits)
2224 goto unlock;
2225
2226 intel_edp_psr_do_enable(intel_dp);
2227 unlock:
2228 mutex_unlock(&dev_priv->psr.lock);
2229 }
2230
2231 static void intel_edp_psr_do_exit(struct drm_device *dev)
2232 {
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234
2235 if (dev_priv->psr.active) {
2236 u32 val = I915_READ(EDP_PSR_CTL(dev));
2237
2238 WARN_ON(!(val & EDP_PSR_ENABLE));
2239
2240 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2241
2242 dev_priv->psr.active = false;
2243 }
2244
2245 }
2246
2247 void intel_edp_psr_invalidate(struct drm_device *dev,
2248 unsigned frontbuffer_bits)
2249 {
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct drm_crtc *crtc;
2252 enum pipe pipe;
2253
2254 mutex_lock(&dev_priv->psr.lock);
2255 if (!dev_priv->psr.enabled) {
2256 mutex_unlock(&dev_priv->psr.lock);
2257 return;
2258 }
2259
2260 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2261 pipe = to_intel_crtc(crtc)->pipe;
2262
2263 intel_edp_psr_do_exit(dev);
2264
2265 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2266
2267 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2268 mutex_unlock(&dev_priv->psr.lock);
2269 }
2270
2271 void intel_edp_psr_flush(struct drm_device *dev,
2272 unsigned frontbuffer_bits)
2273 {
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 struct drm_crtc *crtc;
2276 enum pipe pipe;
2277
2278 mutex_lock(&dev_priv->psr.lock);
2279 if (!dev_priv->psr.enabled) {
2280 mutex_unlock(&dev_priv->psr.lock);
2281 return;
2282 }
2283
2284 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2285 pipe = to_intel_crtc(crtc)->pipe;
2286 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2287
2288 /*
2289 * On Haswell sprite plane updates don't result in a psr invalidating
2290 * signal in the hardware. Which means we need to manually fake this in
2291 * software for all flushes, not just when we've seen a preceding
2292 * invalidation through frontbuffer rendering.
2293 */
2294 if (IS_HASWELL(dev) &&
2295 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2296 intel_edp_psr_do_exit(dev);
2297
2298 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2299 schedule_delayed_work(&dev_priv->psr.work,
2300 msecs_to_jiffies(100));
2301 mutex_unlock(&dev_priv->psr.lock);
2302 }
2303
2304 void intel_edp_psr_init(struct drm_device *dev)
2305 {
2306 struct drm_i915_private *dev_priv = dev->dev_private;
2307
2308 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2309 mutex_init(&dev_priv->psr.lock);
2310 }
2311
2312 static void intel_disable_dp(struct intel_encoder *encoder)
2313 {
2314 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2315 struct drm_device *dev = encoder->base.dev;
2316
2317 /* Make sure the panel is off before trying to change the mode. But also
2318 * ensure that we have vdd while we switch off the panel. */
2319 intel_edp_panel_vdd_on(intel_dp);
2320 intel_edp_backlight_off(intel_dp);
2321 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2322 intel_edp_panel_off(intel_dp);
2323
2324 /* disable the port before the pipe on g4x */
2325 if (INTEL_INFO(dev)->gen < 5)
2326 intel_dp_link_down(intel_dp);
2327 }
2328
2329 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2330 {
2331 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2332 enum port port = dp_to_dig_port(intel_dp)->port;
2333
2334 intel_dp_link_down(intel_dp);
2335 if (port == PORT_A)
2336 ironlake_edp_pll_off(intel_dp);
2337 }
2338
2339 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2340 {
2341 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2342
2343 intel_dp_link_down(intel_dp);
2344 }
2345
2346 static void chv_post_disable_dp(struct intel_encoder *encoder)
2347 {
2348 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2349 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2350 struct drm_device *dev = encoder->base.dev;
2351 struct drm_i915_private *dev_priv = dev->dev_private;
2352 struct intel_crtc *intel_crtc =
2353 to_intel_crtc(encoder->base.crtc);
2354 enum dpio_channel ch = vlv_dport_to_channel(dport);
2355 enum pipe pipe = intel_crtc->pipe;
2356 u32 val;
2357
2358 intel_dp_link_down(intel_dp);
2359
2360 mutex_lock(&dev_priv->dpio_lock);
2361
2362 /* Propagate soft reset to data lane reset */
2363 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2364 val |= CHV_PCS_REQ_SOFTRESET_EN;
2365 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2366
2367 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2368 val |= CHV_PCS_REQ_SOFTRESET_EN;
2369 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2370
2371 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2372 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2373 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2374
2375 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2376 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2377 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2378
2379 mutex_unlock(&dev_priv->dpio_lock);
2380 }
2381
2382 static void
2383 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2384 uint32_t *DP,
2385 uint8_t dp_train_pat)
2386 {
2387 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2388 struct drm_device *dev = intel_dig_port->base.base.dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 enum port port = intel_dig_port->port;
2391
2392 if (HAS_DDI(dev)) {
2393 uint32_t temp = I915_READ(DP_TP_CTL(port));
2394
2395 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2396 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2397 else
2398 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2399
2400 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2401 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2402 case DP_TRAINING_PATTERN_DISABLE:
2403 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2404
2405 break;
2406 case DP_TRAINING_PATTERN_1:
2407 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2408 break;
2409 case DP_TRAINING_PATTERN_2:
2410 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2411 break;
2412 case DP_TRAINING_PATTERN_3:
2413 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2414 break;
2415 }
2416 I915_WRITE(DP_TP_CTL(port), temp);
2417
2418 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2419 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2420
2421 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2422 case DP_TRAINING_PATTERN_DISABLE:
2423 *DP |= DP_LINK_TRAIN_OFF_CPT;
2424 break;
2425 case DP_TRAINING_PATTERN_1:
2426 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2427 break;
2428 case DP_TRAINING_PATTERN_2:
2429 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2430 break;
2431 case DP_TRAINING_PATTERN_3:
2432 DRM_ERROR("DP training pattern 3 not supported\n");
2433 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2434 break;
2435 }
2436
2437 } else {
2438 if (IS_CHERRYVIEW(dev))
2439 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2440 else
2441 *DP &= ~DP_LINK_TRAIN_MASK;
2442
2443 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2444 case DP_TRAINING_PATTERN_DISABLE:
2445 *DP |= DP_LINK_TRAIN_OFF;
2446 break;
2447 case DP_TRAINING_PATTERN_1:
2448 *DP |= DP_LINK_TRAIN_PAT_1;
2449 break;
2450 case DP_TRAINING_PATTERN_2:
2451 *DP |= DP_LINK_TRAIN_PAT_2;
2452 break;
2453 case DP_TRAINING_PATTERN_3:
2454 if (IS_CHERRYVIEW(dev)) {
2455 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2456 } else {
2457 DRM_ERROR("DP training pattern 3 not supported\n");
2458 *DP |= DP_LINK_TRAIN_PAT_2;
2459 }
2460 break;
2461 }
2462 }
2463 }
2464
2465 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2466 {
2467 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2468 struct drm_i915_private *dev_priv = dev->dev_private;
2469
2470 intel_dp->DP |= DP_PORT_EN;
2471
2472 /* enable with pattern 1 (as per spec) */
2473 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2474 DP_TRAINING_PATTERN_1);
2475
2476 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2477 POSTING_READ(intel_dp->output_reg);
2478 }
2479
2480 static void intel_enable_dp(struct intel_encoder *encoder)
2481 {
2482 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2483 struct drm_device *dev = encoder->base.dev;
2484 struct drm_i915_private *dev_priv = dev->dev_private;
2485 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2486
2487 if (WARN_ON(dp_reg & DP_PORT_EN))
2488 return;
2489
2490 intel_dp_enable_port(intel_dp);
2491 intel_edp_panel_vdd_on(intel_dp);
2492 intel_edp_panel_on(intel_dp);
2493 intel_edp_panel_vdd_off(intel_dp, true);
2494 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2495 intel_dp_start_link_train(intel_dp);
2496 intel_dp_complete_link_train(intel_dp);
2497 intel_dp_stop_link_train(intel_dp);
2498 }
2499
2500 static void g4x_enable_dp(struct intel_encoder *encoder)
2501 {
2502 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2503
2504 intel_enable_dp(encoder);
2505 intel_edp_backlight_on(intel_dp);
2506 }
2507
2508 static void vlv_enable_dp(struct intel_encoder *encoder)
2509 {
2510 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2511
2512 intel_edp_backlight_on(intel_dp);
2513 }
2514
2515 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2516 {
2517 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2518 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2519
2520 intel_dp_prepare(encoder);
2521
2522 /* Only ilk+ has port A */
2523 if (dport->port == PORT_A) {
2524 ironlake_set_pll_cpu_edp(intel_dp);
2525 ironlake_edp_pll_on(intel_dp);
2526 }
2527 }
2528
2529 static void vlv_steal_power_sequencer(struct drm_device *dev,
2530 enum pipe pipe)
2531 {
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533 struct intel_encoder *encoder;
2534
2535 lockdep_assert_held(&dev_priv->pps_mutex);
2536
2537 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2538 base.head) {
2539 struct intel_dp *intel_dp;
2540 enum port port;
2541
2542 if (encoder->type != INTEL_OUTPUT_EDP)
2543 continue;
2544
2545 intel_dp = enc_to_intel_dp(&encoder->base);
2546 port = dp_to_dig_port(intel_dp)->port;
2547
2548 if (intel_dp->pps_pipe != pipe)
2549 continue;
2550
2551 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2552 pipe_name(pipe), port_name(port));
2553
2554 /* make sure vdd is off before we steal it */
2555 edp_panel_vdd_off_sync(intel_dp);
2556
2557 intel_dp->pps_pipe = INVALID_PIPE;
2558 }
2559 }
2560
2561 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2562 {
2563 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2564 struct intel_encoder *encoder = &intel_dig_port->base;
2565 struct drm_device *dev = encoder->base.dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2568 struct edp_power_seq power_seq;
2569
2570 lockdep_assert_held(&dev_priv->pps_mutex);
2571
2572 if (intel_dp->pps_pipe == crtc->pipe)
2573 return;
2574
2575 /*
2576 * If another power sequencer was being used on this
2577 * port previously make sure to turn off vdd there while
2578 * we still have control of it.
2579 */
2580 if (intel_dp->pps_pipe != INVALID_PIPE)
2581 edp_panel_vdd_off_sync(intel_dp);
2582
2583 /*
2584 * We may be stealing the power
2585 * sequencer from another port.
2586 */
2587 vlv_steal_power_sequencer(dev, crtc->pipe);
2588
2589 /* now it's all ours */
2590 intel_dp->pps_pipe = crtc->pipe;
2591
2592 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2593 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2594
2595 /* init power sequencer on this pipe and port */
2596 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2597 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2598 &power_seq);
2599 }
2600
2601 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2602 {
2603 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2604 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2605 struct drm_device *dev = encoder->base.dev;
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2608 enum dpio_channel port = vlv_dport_to_channel(dport);
2609 int pipe = intel_crtc->pipe;
2610 u32 val;
2611
2612 mutex_lock(&dev_priv->dpio_lock);
2613
2614 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2615 val = 0;
2616 if (pipe)
2617 val |= (1<<21);
2618 else
2619 val &= ~(1<<21);
2620 val |= 0x001000c4;
2621 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2622 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2623 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2624
2625 mutex_unlock(&dev_priv->dpio_lock);
2626
2627 if (is_edp(intel_dp)) {
2628 pps_lock(intel_dp);
2629 vlv_init_panel_power_sequencer(intel_dp);
2630 pps_unlock(intel_dp);
2631 }
2632
2633 intel_enable_dp(encoder);
2634
2635 vlv_wait_port_ready(dev_priv, dport);
2636 }
2637
2638 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2639 {
2640 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2641 struct drm_device *dev = encoder->base.dev;
2642 struct drm_i915_private *dev_priv = dev->dev_private;
2643 struct intel_crtc *intel_crtc =
2644 to_intel_crtc(encoder->base.crtc);
2645 enum dpio_channel port = vlv_dport_to_channel(dport);
2646 int pipe = intel_crtc->pipe;
2647
2648 intel_dp_prepare(encoder);
2649
2650 /* Program Tx lane resets to default */
2651 mutex_lock(&dev_priv->dpio_lock);
2652 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2653 DPIO_PCS_TX_LANE2_RESET |
2654 DPIO_PCS_TX_LANE1_RESET);
2655 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2656 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2657 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2658 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2659 DPIO_PCS_CLK_SOFT_RESET);
2660
2661 /* Fix up inter-pair skew failure */
2662 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2663 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2664 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2665 mutex_unlock(&dev_priv->dpio_lock);
2666 }
2667
2668 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2669 {
2670 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2671 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2672 struct drm_device *dev = encoder->base.dev;
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 struct intel_crtc *intel_crtc =
2675 to_intel_crtc(encoder->base.crtc);
2676 enum dpio_channel ch = vlv_dport_to_channel(dport);
2677 int pipe = intel_crtc->pipe;
2678 int data, i;
2679 u32 val;
2680
2681 mutex_lock(&dev_priv->dpio_lock);
2682
2683 /* Deassert soft data lane reset*/
2684 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2685 val |= CHV_PCS_REQ_SOFTRESET_EN;
2686 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2687
2688 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2689 val |= CHV_PCS_REQ_SOFTRESET_EN;
2690 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2691
2692 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2693 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2694 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2695
2696 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2697 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2698 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2699
2700 /* Program Tx lane latency optimal setting*/
2701 for (i = 0; i < 4; i++) {
2702 /* Set the latency optimal bit */
2703 data = (i == 1) ? 0x0 : 0x6;
2704 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2705 data << DPIO_FRC_LATENCY_SHFIT);
2706
2707 /* Set the upar bit */
2708 data = (i == 1) ? 0x0 : 0x1;
2709 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2710 data << DPIO_UPAR_SHIFT);
2711 }
2712
2713 /* Data lane stagger programming */
2714 /* FIXME: Fix up value only after power analysis */
2715
2716 mutex_unlock(&dev_priv->dpio_lock);
2717
2718 if (is_edp(intel_dp)) {
2719 pps_lock(intel_dp);
2720 vlv_init_panel_power_sequencer(intel_dp);
2721 pps_unlock(intel_dp);
2722 }
2723
2724 intel_enable_dp(encoder);
2725
2726 vlv_wait_port_ready(dev_priv, dport);
2727 }
2728
2729 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2730 {
2731 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2732 struct drm_device *dev = encoder->base.dev;
2733 struct drm_i915_private *dev_priv = dev->dev_private;
2734 struct intel_crtc *intel_crtc =
2735 to_intel_crtc(encoder->base.crtc);
2736 enum dpio_channel ch = vlv_dport_to_channel(dport);
2737 enum pipe pipe = intel_crtc->pipe;
2738 u32 val;
2739
2740 intel_dp_prepare(encoder);
2741
2742 mutex_lock(&dev_priv->dpio_lock);
2743
2744 /* program left/right clock distribution */
2745 if (pipe != PIPE_B) {
2746 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2747 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2748 if (ch == DPIO_CH0)
2749 val |= CHV_BUFLEFTENA1_FORCE;
2750 if (ch == DPIO_CH1)
2751 val |= CHV_BUFRIGHTENA1_FORCE;
2752 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2753 } else {
2754 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2755 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2756 if (ch == DPIO_CH0)
2757 val |= CHV_BUFLEFTENA2_FORCE;
2758 if (ch == DPIO_CH1)
2759 val |= CHV_BUFRIGHTENA2_FORCE;
2760 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2761 }
2762
2763 /* program clock channel usage */
2764 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2765 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2766 if (pipe != PIPE_B)
2767 val &= ~CHV_PCS_USEDCLKCHANNEL;
2768 else
2769 val |= CHV_PCS_USEDCLKCHANNEL;
2770 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2771
2772 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2773 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2774 if (pipe != PIPE_B)
2775 val &= ~CHV_PCS_USEDCLKCHANNEL;
2776 else
2777 val |= CHV_PCS_USEDCLKCHANNEL;
2778 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2779
2780 /*
2781 * This a a bit weird since generally CL
2782 * matches the pipe, but here we need to
2783 * pick the CL based on the port.
2784 */
2785 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2786 if (pipe != PIPE_B)
2787 val &= ~CHV_CMN_USEDCLKCHANNEL;
2788 else
2789 val |= CHV_CMN_USEDCLKCHANNEL;
2790 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2791
2792 mutex_unlock(&dev_priv->dpio_lock);
2793 }
2794
2795 /*
2796 * Native read with retry for link status and receiver capability reads for
2797 * cases where the sink may still be asleep.
2798 *
2799 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2800 * supposed to retry 3 times per the spec.
2801 */
2802 static ssize_t
2803 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2804 void *buffer, size_t size)
2805 {
2806 ssize_t ret;
2807 int i;
2808
2809 /*
2810 * Sometime we just get the same incorrect byte repeated
2811 * over the entire buffer. Doing just one throw away read
2812 * initially seems to "solve" it.
2813 */
2814 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2815
2816 for (i = 0; i < 3; i++) {
2817 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2818 if (ret == size)
2819 return ret;
2820 msleep(1);
2821 }
2822
2823 return ret;
2824 }
2825
2826 /*
2827 * Fetch AUX CH registers 0x202 - 0x207 which contain
2828 * link status information
2829 */
2830 static bool
2831 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2832 {
2833 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2834 DP_LANE0_1_STATUS,
2835 link_status,
2836 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2837 }
2838
2839 /* These are source-specific values. */
2840 static uint8_t
2841 intel_dp_voltage_max(struct intel_dp *intel_dp)
2842 {
2843 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2844 enum port port = dp_to_dig_port(intel_dp)->port;
2845
2846 if (IS_VALLEYVIEW(dev))
2847 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2848 else if (IS_GEN7(dev) && port == PORT_A)
2849 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2850 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2851 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2852 else
2853 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2854 }
2855
2856 static uint8_t
2857 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2858 {
2859 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2860 enum port port = dp_to_dig_port(intel_dp)->port;
2861
2862 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2863 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2864 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2865 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2867 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2868 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2869 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2870 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2871 default:
2872 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2873 }
2874 } else if (IS_VALLEYVIEW(dev)) {
2875 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2876 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2877 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2878 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2879 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2880 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2881 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2882 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2883 default:
2884 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2885 }
2886 } else if (IS_GEN7(dev) && port == PORT_A) {
2887 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2888 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2889 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2890 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2891 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2892 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2893 default:
2894 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2895 }
2896 } else {
2897 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2898 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2899 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2900 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2901 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2902 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2903 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2904 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2905 default:
2906 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2907 }
2908 }
2909 }
2910
2911 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2912 {
2913 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2914 struct drm_i915_private *dev_priv = dev->dev_private;
2915 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2916 struct intel_crtc *intel_crtc =
2917 to_intel_crtc(dport->base.base.crtc);
2918 unsigned long demph_reg_value, preemph_reg_value,
2919 uniqtranscale_reg_value;
2920 uint8_t train_set = intel_dp->train_set[0];
2921 enum dpio_channel port = vlv_dport_to_channel(dport);
2922 int pipe = intel_crtc->pipe;
2923
2924 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2925 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2926 preemph_reg_value = 0x0004000;
2927 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2928 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2929 demph_reg_value = 0x2B405555;
2930 uniqtranscale_reg_value = 0x552AB83A;
2931 break;
2932 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2933 demph_reg_value = 0x2B404040;
2934 uniqtranscale_reg_value = 0x5548B83A;
2935 break;
2936 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2937 demph_reg_value = 0x2B245555;
2938 uniqtranscale_reg_value = 0x5560B83A;
2939 break;
2940 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2941 demph_reg_value = 0x2B405555;
2942 uniqtranscale_reg_value = 0x5598DA3A;
2943 break;
2944 default:
2945 return 0;
2946 }
2947 break;
2948 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2949 preemph_reg_value = 0x0002000;
2950 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2952 demph_reg_value = 0x2B404040;
2953 uniqtranscale_reg_value = 0x5552B83A;
2954 break;
2955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2956 demph_reg_value = 0x2B404848;
2957 uniqtranscale_reg_value = 0x5580B83A;
2958 break;
2959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2960 demph_reg_value = 0x2B404040;
2961 uniqtranscale_reg_value = 0x55ADDA3A;
2962 break;
2963 default:
2964 return 0;
2965 }
2966 break;
2967 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2968 preemph_reg_value = 0x0000000;
2969 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2971 demph_reg_value = 0x2B305555;
2972 uniqtranscale_reg_value = 0x5570B83A;
2973 break;
2974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2975 demph_reg_value = 0x2B2B4040;
2976 uniqtranscale_reg_value = 0x55ADDA3A;
2977 break;
2978 default:
2979 return 0;
2980 }
2981 break;
2982 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2983 preemph_reg_value = 0x0006000;
2984 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2985 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2986 demph_reg_value = 0x1B405555;
2987 uniqtranscale_reg_value = 0x55ADDA3A;
2988 break;
2989 default:
2990 return 0;
2991 }
2992 break;
2993 default:
2994 return 0;
2995 }
2996
2997 mutex_lock(&dev_priv->dpio_lock);
2998 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2999 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3000 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3001 uniqtranscale_reg_value);
3002 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3003 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3004 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3005 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3006 mutex_unlock(&dev_priv->dpio_lock);
3007
3008 return 0;
3009 }
3010
3011 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3012 {
3013 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3014 struct drm_i915_private *dev_priv = dev->dev_private;
3015 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3016 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3017 u32 deemph_reg_value, margin_reg_value, val;
3018 uint8_t train_set = intel_dp->train_set[0];
3019 enum dpio_channel ch = vlv_dport_to_channel(dport);
3020 enum pipe pipe = intel_crtc->pipe;
3021 int i;
3022
3023 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3024 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3025 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3026 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3027 deemph_reg_value = 128;
3028 margin_reg_value = 52;
3029 break;
3030 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3031 deemph_reg_value = 128;
3032 margin_reg_value = 77;
3033 break;
3034 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3035 deemph_reg_value = 128;
3036 margin_reg_value = 102;
3037 break;
3038 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3039 deemph_reg_value = 128;
3040 margin_reg_value = 154;
3041 /* FIXME extra to set for 1200 */
3042 break;
3043 default:
3044 return 0;
3045 }
3046 break;
3047 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3048 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3049 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3050 deemph_reg_value = 85;
3051 margin_reg_value = 78;
3052 break;
3053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3054 deemph_reg_value = 85;
3055 margin_reg_value = 116;
3056 break;
3057 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3058 deemph_reg_value = 85;
3059 margin_reg_value = 154;
3060 break;
3061 default:
3062 return 0;
3063 }
3064 break;
3065 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3066 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3068 deemph_reg_value = 64;
3069 margin_reg_value = 104;
3070 break;
3071 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3072 deemph_reg_value = 64;
3073 margin_reg_value = 154;
3074 break;
3075 default:
3076 return 0;
3077 }
3078 break;
3079 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3080 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3081 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3082 deemph_reg_value = 43;
3083 margin_reg_value = 154;
3084 break;
3085 default:
3086 return 0;
3087 }
3088 break;
3089 default:
3090 return 0;
3091 }
3092
3093 mutex_lock(&dev_priv->dpio_lock);
3094
3095 /* Clear calc init */
3096 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3097 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3098 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3099
3100 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3101 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3102 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3103
3104 /* Program swing deemph */
3105 for (i = 0; i < 4; i++) {
3106 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3107 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3108 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3109 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3110 }
3111
3112 /* Program swing margin */
3113 for (i = 0; i < 4; i++) {
3114 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3115 val &= ~DPIO_SWING_MARGIN000_MASK;
3116 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3117 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3118 }
3119
3120 /* Disable unique transition scale */
3121 for (i = 0; i < 4; i++) {
3122 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3123 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3124 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3125 }
3126
3127 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3128 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3129 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3130 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3131
3132 /*
3133 * The document said it needs to set bit 27 for ch0 and bit 26
3134 * for ch1. Might be a typo in the doc.
3135 * For now, for this unique transition scale selection, set bit
3136 * 27 for ch0 and ch1.
3137 */
3138 for (i = 0; i < 4; i++) {
3139 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3140 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3141 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3142 }
3143
3144 for (i = 0; i < 4; i++) {
3145 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3146 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3147 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3148 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3149 }
3150 }
3151
3152 /* Start swing calculation */
3153 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3154 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3155 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3156
3157 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3158 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3159 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3160
3161 /* LRC Bypass */
3162 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3163 val |= DPIO_LRC_BYPASS;
3164 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3165
3166 mutex_unlock(&dev_priv->dpio_lock);
3167
3168 return 0;
3169 }
3170
3171 static void
3172 intel_get_adjust_train(struct intel_dp *intel_dp,
3173 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3174 {
3175 uint8_t v = 0;
3176 uint8_t p = 0;
3177 int lane;
3178 uint8_t voltage_max;
3179 uint8_t preemph_max;
3180
3181 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3182 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3183 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3184
3185 if (this_v > v)
3186 v = this_v;
3187 if (this_p > p)
3188 p = this_p;
3189 }
3190
3191 voltage_max = intel_dp_voltage_max(intel_dp);
3192 if (v >= voltage_max)
3193 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3194
3195 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3196 if (p >= preemph_max)
3197 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3198
3199 for (lane = 0; lane < 4; lane++)
3200 intel_dp->train_set[lane] = v | p;
3201 }
3202
3203 static uint32_t
3204 intel_gen4_signal_levels(uint8_t train_set)
3205 {
3206 uint32_t signal_levels = 0;
3207
3208 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3209 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3210 default:
3211 signal_levels |= DP_VOLTAGE_0_4;
3212 break;
3213 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3214 signal_levels |= DP_VOLTAGE_0_6;
3215 break;
3216 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3217 signal_levels |= DP_VOLTAGE_0_8;
3218 break;
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3220 signal_levels |= DP_VOLTAGE_1_2;
3221 break;
3222 }
3223 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3224 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3225 default:
3226 signal_levels |= DP_PRE_EMPHASIS_0;
3227 break;
3228 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3229 signal_levels |= DP_PRE_EMPHASIS_3_5;
3230 break;
3231 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3232 signal_levels |= DP_PRE_EMPHASIS_6;
3233 break;
3234 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3235 signal_levels |= DP_PRE_EMPHASIS_9_5;
3236 break;
3237 }
3238 return signal_levels;
3239 }
3240
3241 /* Gen6's DP voltage swing and pre-emphasis control */
3242 static uint32_t
3243 intel_gen6_edp_signal_levels(uint8_t train_set)
3244 {
3245 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3246 DP_TRAIN_PRE_EMPHASIS_MASK);
3247 switch (signal_levels) {
3248 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3249 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3250 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3251 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3252 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3254 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3255 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3256 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3257 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3258 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3259 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3261 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3262 default:
3263 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3264 "0x%x\n", signal_levels);
3265 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3266 }
3267 }
3268
3269 /* Gen7's DP voltage swing and pre-emphasis control */
3270 static uint32_t
3271 intel_gen7_edp_signal_levels(uint8_t train_set)
3272 {
3273 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3274 DP_TRAIN_PRE_EMPHASIS_MASK);
3275 switch (signal_levels) {
3276 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3277 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3278 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3279 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3280 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3281 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3282
3283 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3284 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3285 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3286 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3287
3288 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3289 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3291 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3292
3293 default:
3294 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3295 "0x%x\n", signal_levels);
3296 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3297 }
3298 }
3299
3300 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3301 static uint32_t
3302 intel_hsw_signal_levels(uint8_t train_set)
3303 {
3304 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3305 DP_TRAIN_PRE_EMPHASIS_MASK);
3306 switch (signal_levels) {
3307 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3308 return DDI_BUF_TRANS_SELECT(0);
3309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3310 return DDI_BUF_TRANS_SELECT(1);
3311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3312 return DDI_BUF_TRANS_SELECT(2);
3313 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3314 return DDI_BUF_TRANS_SELECT(3);
3315
3316 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3317 return DDI_BUF_TRANS_SELECT(4);
3318 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3319 return DDI_BUF_TRANS_SELECT(5);
3320 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3321 return DDI_BUF_TRANS_SELECT(6);
3322
3323 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3324 return DDI_BUF_TRANS_SELECT(7);
3325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3326 return DDI_BUF_TRANS_SELECT(8);
3327 default:
3328 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3329 "0x%x\n", signal_levels);
3330 return DDI_BUF_TRANS_SELECT(0);
3331 }
3332 }
3333
3334 /* Properly updates "DP" with the correct signal levels. */
3335 static void
3336 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3337 {
3338 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3339 enum port port = intel_dig_port->port;
3340 struct drm_device *dev = intel_dig_port->base.base.dev;
3341 uint32_t signal_levels, mask;
3342 uint8_t train_set = intel_dp->train_set[0];
3343
3344 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3345 signal_levels = intel_hsw_signal_levels(train_set);
3346 mask = DDI_BUF_EMP_MASK;
3347 } else if (IS_CHERRYVIEW(dev)) {
3348 signal_levels = intel_chv_signal_levels(intel_dp);
3349 mask = 0;
3350 } else if (IS_VALLEYVIEW(dev)) {
3351 signal_levels = intel_vlv_signal_levels(intel_dp);
3352 mask = 0;
3353 } else if (IS_GEN7(dev) && port == PORT_A) {
3354 signal_levels = intel_gen7_edp_signal_levels(train_set);
3355 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3356 } else if (IS_GEN6(dev) && port == PORT_A) {
3357 signal_levels = intel_gen6_edp_signal_levels(train_set);
3358 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3359 } else {
3360 signal_levels = intel_gen4_signal_levels(train_set);
3361 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3362 }
3363
3364 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3365
3366 *DP = (*DP & ~mask) | signal_levels;
3367 }
3368
3369 static bool
3370 intel_dp_set_link_train(struct intel_dp *intel_dp,
3371 uint32_t *DP,
3372 uint8_t dp_train_pat)
3373 {
3374 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3375 struct drm_device *dev = intel_dig_port->base.base.dev;
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3378 int ret, len;
3379
3380 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3381
3382 I915_WRITE(intel_dp->output_reg, *DP);
3383 POSTING_READ(intel_dp->output_reg);
3384
3385 buf[0] = dp_train_pat;
3386 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3387 DP_TRAINING_PATTERN_DISABLE) {
3388 /* don't write DP_TRAINING_LANEx_SET on disable */
3389 len = 1;
3390 } else {
3391 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3392 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3393 len = intel_dp->lane_count + 1;
3394 }
3395
3396 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3397 buf, len);
3398
3399 return ret == len;
3400 }
3401
3402 static bool
3403 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3404 uint8_t dp_train_pat)
3405 {
3406 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3407 intel_dp_set_signal_levels(intel_dp, DP);
3408 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3409 }
3410
3411 static bool
3412 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3413 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3414 {
3415 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3416 struct drm_device *dev = intel_dig_port->base.base.dev;
3417 struct drm_i915_private *dev_priv = dev->dev_private;
3418 int ret;
3419
3420 intel_get_adjust_train(intel_dp, link_status);
3421 intel_dp_set_signal_levels(intel_dp, DP);
3422
3423 I915_WRITE(intel_dp->output_reg, *DP);
3424 POSTING_READ(intel_dp->output_reg);
3425
3426 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3427 intel_dp->train_set, intel_dp->lane_count);
3428
3429 return ret == intel_dp->lane_count;
3430 }
3431
3432 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3433 {
3434 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3435 struct drm_device *dev = intel_dig_port->base.base.dev;
3436 struct drm_i915_private *dev_priv = dev->dev_private;
3437 enum port port = intel_dig_port->port;
3438 uint32_t val;
3439
3440 if (!HAS_DDI(dev))
3441 return;
3442
3443 val = I915_READ(DP_TP_CTL(port));
3444 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3445 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3446 I915_WRITE(DP_TP_CTL(port), val);
3447
3448 /*
3449 * On PORT_A we can have only eDP in SST mode. There the only reason
3450 * we need to set idle transmission mode is to work around a HW issue
3451 * where we enable the pipe while not in idle link-training mode.
3452 * In this case there is requirement to wait for a minimum number of
3453 * idle patterns to be sent.
3454 */
3455 if (port == PORT_A)
3456 return;
3457
3458 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3459 1))
3460 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3461 }
3462
3463 /* Enable corresponding port and start training pattern 1 */
3464 void
3465 intel_dp_start_link_train(struct intel_dp *intel_dp)
3466 {
3467 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3468 struct drm_device *dev = encoder->dev;
3469 int i;
3470 uint8_t voltage;
3471 int voltage_tries, loop_tries;
3472 uint32_t DP = intel_dp->DP;
3473 uint8_t link_config[2];
3474
3475 if (HAS_DDI(dev))
3476 intel_ddi_prepare_link_retrain(encoder);
3477
3478 /* Write the link configuration data */
3479 link_config[0] = intel_dp->link_bw;
3480 link_config[1] = intel_dp->lane_count;
3481 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3482 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3483 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3484
3485 link_config[0] = 0;
3486 link_config[1] = DP_SET_ANSI_8B10B;
3487 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3488
3489 DP |= DP_PORT_EN;
3490
3491 /* clock recovery */
3492 if (!intel_dp_reset_link_train(intel_dp, &DP,
3493 DP_TRAINING_PATTERN_1 |
3494 DP_LINK_SCRAMBLING_DISABLE)) {
3495 DRM_ERROR("failed to enable link training\n");
3496 return;
3497 }
3498
3499 voltage = 0xff;
3500 voltage_tries = 0;
3501 loop_tries = 0;
3502 for (;;) {
3503 uint8_t link_status[DP_LINK_STATUS_SIZE];
3504
3505 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3506 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3507 DRM_ERROR("failed to get link status\n");
3508 break;
3509 }
3510
3511 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3512 DRM_DEBUG_KMS("clock recovery OK\n");
3513 break;
3514 }
3515
3516 /* Check to see if we've tried the max voltage */
3517 for (i = 0; i < intel_dp->lane_count; i++)
3518 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3519 break;
3520 if (i == intel_dp->lane_count) {
3521 ++loop_tries;
3522 if (loop_tries == 5) {
3523 DRM_ERROR("too many full retries, give up\n");
3524 break;
3525 }
3526 intel_dp_reset_link_train(intel_dp, &DP,
3527 DP_TRAINING_PATTERN_1 |
3528 DP_LINK_SCRAMBLING_DISABLE);
3529 voltage_tries = 0;
3530 continue;
3531 }
3532
3533 /* Check to see if we've tried the same voltage 5 times */
3534 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3535 ++voltage_tries;
3536 if (voltage_tries == 5) {
3537 DRM_ERROR("too many voltage retries, give up\n");
3538 break;
3539 }
3540 } else
3541 voltage_tries = 0;
3542 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3543
3544 /* Update training set as requested by target */
3545 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3546 DRM_ERROR("failed to update link training\n");
3547 break;
3548 }
3549 }
3550
3551 intel_dp->DP = DP;
3552 }
3553
3554 void
3555 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3556 {
3557 bool channel_eq = false;
3558 int tries, cr_tries;
3559 uint32_t DP = intel_dp->DP;
3560 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3561
3562 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3563 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3564 training_pattern = DP_TRAINING_PATTERN_3;
3565
3566 /* channel equalization */
3567 if (!intel_dp_set_link_train(intel_dp, &DP,
3568 training_pattern |
3569 DP_LINK_SCRAMBLING_DISABLE)) {
3570 DRM_ERROR("failed to start channel equalization\n");
3571 return;
3572 }
3573
3574 tries = 0;
3575 cr_tries = 0;
3576 channel_eq = false;
3577 for (;;) {
3578 uint8_t link_status[DP_LINK_STATUS_SIZE];
3579
3580 if (cr_tries > 5) {
3581 DRM_ERROR("failed to train DP, aborting\n");
3582 break;
3583 }
3584
3585 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3586 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3587 DRM_ERROR("failed to get link status\n");
3588 break;
3589 }
3590
3591 /* Make sure clock is still ok */
3592 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3593 intel_dp_start_link_train(intel_dp);
3594 intel_dp_set_link_train(intel_dp, &DP,
3595 training_pattern |
3596 DP_LINK_SCRAMBLING_DISABLE);
3597 cr_tries++;
3598 continue;
3599 }
3600
3601 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3602 channel_eq = true;
3603 break;
3604 }
3605
3606 /* Try 5 times, then try clock recovery if that fails */
3607 if (tries > 5) {
3608 intel_dp_link_down(intel_dp);
3609 intel_dp_start_link_train(intel_dp);
3610 intel_dp_set_link_train(intel_dp, &DP,
3611 training_pattern |
3612 DP_LINK_SCRAMBLING_DISABLE);
3613 tries = 0;
3614 cr_tries++;
3615 continue;
3616 }
3617
3618 /* Update training set as requested by target */
3619 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3620 DRM_ERROR("failed to update link training\n");
3621 break;
3622 }
3623 ++tries;
3624 }
3625
3626 intel_dp_set_idle_link_train(intel_dp);
3627
3628 intel_dp->DP = DP;
3629
3630 if (channel_eq)
3631 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3632
3633 }
3634
3635 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3636 {
3637 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3638 DP_TRAINING_PATTERN_DISABLE);
3639 }
3640
3641 static void
3642 intel_dp_link_down(struct intel_dp *intel_dp)
3643 {
3644 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3645 enum port port = intel_dig_port->port;
3646 struct drm_device *dev = intel_dig_port->base.base.dev;
3647 struct drm_i915_private *dev_priv = dev->dev_private;
3648 struct intel_crtc *intel_crtc =
3649 to_intel_crtc(intel_dig_port->base.base.crtc);
3650 uint32_t DP = intel_dp->DP;
3651
3652 if (WARN_ON(HAS_DDI(dev)))
3653 return;
3654
3655 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3656 return;
3657
3658 DRM_DEBUG_KMS("\n");
3659
3660 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3661 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3662 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3663 } else {
3664 if (IS_CHERRYVIEW(dev))
3665 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3666 else
3667 DP &= ~DP_LINK_TRAIN_MASK;
3668 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3669 }
3670 POSTING_READ(intel_dp->output_reg);
3671
3672 if (HAS_PCH_IBX(dev) &&
3673 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3674 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3675
3676 /* Hardware workaround: leaving our transcoder select
3677 * set to transcoder B while it's off will prevent the
3678 * corresponding HDMI output on transcoder A.
3679 *
3680 * Combine this with another hardware workaround:
3681 * transcoder select bit can only be cleared while the
3682 * port is enabled.
3683 */
3684 DP &= ~DP_PIPEB_SELECT;
3685 I915_WRITE(intel_dp->output_reg, DP);
3686
3687 /* Changes to enable or select take place the vblank
3688 * after being written.
3689 */
3690 if (WARN_ON(crtc == NULL)) {
3691 /* We should never try to disable a port without a crtc
3692 * attached. For paranoia keep the code around for a
3693 * bit. */
3694 POSTING_READ(intel_dp->output_reg);
3695 msleep(50);
3696 } else
3697 intel_wait_for_vblank(dev, intel_crtc->pipe);
3698 }
3699
3700 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3701 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3702 POSTING_READ(intel_dp->output_reg);
3703 msleep(intel_dp->panel_power_down_delay);
3704 }
3705
3706 static bool
3707 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3708 {
3709 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3710 struct drm_device *dev = dig_port->base.base.dev;
3711 struct drm_i915_private *dev_priv = dev->dev_private;
3712
3713 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3714 sizeof(intel_dp->dpcd)) < 0)
3715 return false; /* aux transfer failed */
3716
3717 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3718
3719 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3720 return false; /* DPCD not present */
3721
3722 /* Check if the panel supports PSR */
3723 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3724 if (is_edp(intel_dp)) {
3725 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3726 intel_dp->psr_dpcd,
3727 sizeof(intel_dp->psr_dpcd));
3728 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3729 dev_priv->psr.sink_support = true;
3730 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3731 }
3732 }
3733
3734 /* Training Pattern 3 support, both source and sink */
3735 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3736 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3737 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3738 intel_dp->use_tps3 = true;
3739 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3740 } else
3741 intel_dp->use_tps3 = false;
3742
3743 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3744 DP_DWN_STRM_PORT_PRESENT))
3745 return true; /* native DP sink */
3746
3747 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3748 return true; /* no per-port downstream info */
3749
3750 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3751 intel_dp->downstream_ports,
3752 DP_MAX_DOWNSTREAM_PORTS) < 0)
3753 return false; /* downstream port status fetch failed */
3754
3755 return true;
3756 }
3757
3758 static void
3759 intel_dp_probe_oui(struct intel_dp *intel_dp)
3760 {
3761 u8 buf[3];
3762
3763 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3764 return;
3765
3766 intel_edp_panel_vdd_on(intel_dp);
3767
3768 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3769 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3770 buf[0], buf[1], buf[2]);
3771
3772 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3773 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3774 buf[0], buf[1], buf[2]);
3775
3776 intel_edp_panel_vdd_off(intel_dp, false);
3777 }
3778
3779 static bool
3780 intel_dp_probe_mst(struct intel_dp *intel_dp)
3781 {
3782 u8 buf[1];
3783
3784 if (!intel_dp->can_mst)
3785 return false;
3786
3787 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3788 return false;
3789
3790 intel_edp_panel_vdd_on(intel_dp);
3791 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3792 if (buf[0] & DP_MST_CAP) {
3793 DRM_DEBUG_KMS("Sink is MST capable\n");
3794 intel_dp->is_mst = true;
3795 } else {
3796 DRM_DEBUG_KMS("Sink is not MST capable\n");
3797 intel_dp->is_mst = false;
3798 }
3799 }
3800 intel_edp_panel_vdd_off(intel_dp, false);
3801
3802 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3803 return intel_dp->is_mst;
3804 }
3805
3806 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3807 {
3808 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3809 struct drm_device *dev = intel_dig_port->base.base.dev;
3810 struct intel_crtc *intel_crtc =
3811 to_intel_crtc(intel_dig_port->base.base.crtc);
3812 u8 buf[1];
3813
3814 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3815 return -EIO;
3816
3817 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3818 return -ENOTTY;
3819
3820 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3821 DP_TEST_SINK_START) < 0)
3822 return -EIO;
3823
3824 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3825 intel_wait_for_vblank(dev, intel_crtc->pipe);
3826 intel_wait_for_vblank(dev, intel_crtc->pipe);
3827
3828 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3829 return -EIO;
3830
3831 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3832 return 0;
3833 }
3834
3835 static bool
3836 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3837 {
3838 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3839 DP_DEVICE_SERVICE_IRQ_VECTOR,
3840 sink_irq_vector, 1) == 1;
3841 }
3842
3843 static bool
3844 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3845 {
3846 int ret;
3847
3848 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3849 DP_SINK_COUNT_ESI,
3850 sink_irq_vector, 14);
3851 if (ret != 14)
3852 return false;
3853
3854 return true;
3855 }
3856
3857 static void
3858 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3859 {
3860 /* NAK by default */
3861 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3862 }
3863
3864 static int
3865 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3866 {
3867 bool bret;
3868
3869 if (intel_dp->is_mst) {
3870 u8 esi[16] = { 0 };
3871 int ret = 0;
3872 int retry;
3873 bool handled;
3874 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3875 go_again:
3876 if (bret == true) {
3877
3878 /* check link status - esi[10] = 0x200c */
3879 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3880 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3881 intel_dp_start_link_train(intel_dp);
3882 intel_dp_complete_link_train(intel_dp);
3883 intel_dp_stop_link_train(intel_dp);
3884 }
3885
3886 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3887 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3888
3889 if (handled) {
3890 for (retry = 0; retry < 3; retry++) {
3891 int wret;
3892 wret = drm_dp_dpcd_write(&intel_dp->aux,
3893 DP_SINK_COUNT_ESI+1,
3894 &esi[1], 3);
3895 if (wret == 3) {
3896 break;
3897 }
3898 }
3899
3900 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3901 if (bret == true) {
3902 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3903 goto go_again;
3904 }
3905 } else
3906 ret = 0;
3907
3908 return ret;
3909 } else {
3910 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3911 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3912 intel_dp->is_mst = false;
3913 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3914 /* send a hotplug event */
3915 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3916 }
3917 }
3918 return -EINVAL;
3919 }
3920
3921 /*
3922 * According to DP spec
3923 * 5.1.2:
3924 * 1. Read DPCD
3925 * 2. Configure link according to Receiver Capabilities
3926 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3927 * 4. Check link status on receipt of hot-plug interrupt
3928 */
3929 void
3930 intel_dp_check_link_status(struct intel_dp *intel_dp)
3931 {
3932 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3933 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3934 u8 sink_irq_vector;
3935 u8 link_status[DP_LINK_STATUS_SIZE];
3936
3937 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3938
3939 if (!intel_encoder->connectors_active)
3940 return;
3941
3942 if (WARN_ON(!intel_encoder->base.crtc))
3943 return;
3944
3945 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3946 return;
3947
3948 /* Try to read receiver status if the link appears to be up */
3949 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3950 return;
3951 }
3952
3953 /* Now read the DPCD to see if it's actually running */
3954 if (!intel_dp_get_dpcd(intel_dp)) {
3955 return;
3956 }
3957
3958 /* Try to read the source of the interrupt */
3959 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3960 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3961 /* Clear interrupt source */
3962 drm_dp_dpcd_writeb(&intel_dp->aux,
3963 DP_DEVICE_SERVICE_IRQ_VECTOR,
3964 sink_irq_vector);
3965
3966 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3967 intel_dp_handle_test_request(intel_dp);
3968 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3969 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3970 }
3971
3972 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3973 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3974 intel_encoder->base.name);
3975 intel_dp_start_link_train(intel_dp);
3976 intel_dp_complete_link_train(intel_dp);
3977 intel_dp_stop_link_train(intel_dp);
3978 }
3979 }
3980
3981 /* XXX this is probably wrong for multiple downstream ports */
3982 static enum drm_connector_status
3983 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3984 {
3985 uint8_t *dpcd = intel_dp->dpcd;
3986 uint8_t type;
3987
3988 if (!intel_dp_get_dpcd(intel_dp))
3989 return connector_status_disconnected;
3990
3991 /* if there's no downstream port, we're done */
3992 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3993 return connector_status_connected;
3994
3995 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3996 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3997 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3998 uint8_t reg;
3999
4000 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4001 &reg, 1) < 0)
4002 return connector_status_unknown;
4003
4004 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4005 : connector_status_disconnected;
4006 }
4007
4008 /* If no HPD, poke DDC gently */
4009 if (drm_probe_ddc(&intel_dp->aux.ddc))
4010 return connector_status_connected;
4011
4012 /* Well we tried, say unknown for unreliable port types */
4013 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4014 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4015 if (type == DP_DS_PORT_TYPE_VGA ||
4016 type == DP_DS_PORT_TYPE_NON_EDID)
4017 return connector_status_unknown;
4018 } else {
4019 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4020 DP_DWN_STRM_PORT_TYPE_MASK;
4021 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4022 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4023 return connector_status_unknown;
4024 }
4025
4026 /* Anything else is out of spec, warn and ignore */
4027 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4028 return connector_status_disconnected;
4029 }
4030
4031 static enum drm_connector_status
4032 edp_detect(struct intel_dp *intel_dp)
4033 {
4034 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4035 enum drm_connector_status status;
4036
4037 status = intel_panel_detect(dev);
4038 if (status == connector_status_unknown)
4039 status = connector_status_connected;
4040
4041 return status;
4042 }
4043
4044 static enum drm_connector_status
4045 ironlake_dp_detect(struct intel_dp *intel_dp)
4046 {
4047 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4050
4051 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4052 return connector_status_disconnected;
4053
4054 return intel_dp_detect_dpcd(intel_dp);
4055 }
4056
4057 static int g4x_digital_port_connected(struct drm_device *dev,
4058 struct intel_digital_port *intel_dig_port)
4059 {
4060 struct drm_i915_private *dev_priv = dev->dev_private;
4061 uint32_t bit;
4062
4063 if (IS_VALLEYVIEW(dev)) {
4064 switch (intel_dig_port->port) {
4065 case PORT_B:
4066 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4067 break;
4068 case PORT_C:
4069 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4070 break;
4071 case PORT_D:
4072 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4073 break;
4074 default:
4075 return -EINVAL;
4076 }
4077 } else {
4078 switch (intel_dig_port->port) {
4079 case PORT_B:
4080 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4081 break;
4082 case PORT_C:
4083 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4084 break;
4085 case PORT_D:
4086 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4087 break;
4088 default:
4089 return -EINVAL;
4090 }
4091 }
4092
4093 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4094 return 0;
4095 return 1;
4096 }
4097
4098 static enum drm_connector_status
4099 g4x_dp_detect(struct intel_dp *intel_dp)
4100 {
4101 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4102 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4103 int ret;
4104
4105 /* Can't disconnect eDP, but you can close the lid... */
4106 if (is_edp(intel_dp)) {
4107 enum drm_connector_status status;
4108
4109 status = intel_panel_detect(dev);
4110 if (status == connector_status_unknown)
4111 status = connector_status_connected;
4112 return status;
4113 }
4114
4115 ret = g4x_digital_port_connected(dev, intel_dig_port);
4116 if (ret == -EINVAL)
4117 return connector_status_unknown;
4118 else if (ret == 0)
4119 return connector_status_disconnected;
4120
4121 return intel_dp_detect_dpcd(intel_dp);
4122 }
4123
4124 static struct edid *
4125 intel_dp_get_edid(struct intel_dp *intel_dp)
4126 {
4127 struct intel_connector *intel_connector = intel_dp->attached_connector;
4128
4129 /* use cached edid if we have one */
4130 if (intel_connector->edid) {
4131 /* invalid edid */
4132 if (IS_ERR(intel_connector->edid))
4133 return NULL;
4134
4135 return drm_edid_duplicate(intel_connector->edid);
4136 } else
4137 return drm_get_edid(&intel_connector->base,
4138 &intel_dp->aux.ddc);
4139 }
4140
4141 static void
4142 intel_dp_set_edid(struct intel_dp *intel_dp)
4143 {
4144 struct intel_connector *intel_connector = intel_dp->attached_connector;
4145 struct edid *edid;
4146
4147 edid = intel_dp_get_edid(intel_dp);
4148 intel_connector->detect_edid = edid;
4149
4150 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4151 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4152 else
4153 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4154 }
4155
4156 static void
4157 intel_dp_unset_edid(struct intel_dp *intel_dp)
4158 {
4159 struct intel_connector *intel_connector = intel_dp->attached_connector;
4160
4161 kfree(intel_connector->detect_edid);
4162 intel_connector->detect_edid = NULL;
4163
4164 intel_dp->has_audio = false;
4165 }
4166
4167 static enum intel_display_power_domain
4168 intel_dp_power_get(struct intel_dp *dp)
4169 {
4170 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4171 enum intel_display_power_domain power_domain;
4172
4173 power_domain = intel_display_port_power_domain(encoder);
4174 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4175
4176 return power_domain;
4177 }
4178
4179 static void
4180 intel_dp_power_put(struct intel_dp *dp,
4181 enum intel_display_power_domain power_domain)
4182 {
4183 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4184 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4185 }
4186
4187 static enum drm_connector_status
4188 intel_dp_detect(struct drm_connector *connector, bool force)
4189 {
4190 struct intel_dp *intel_dp = intel_attached_dp(connector);
4191 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4192 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4193 struct drm_device *dev = connector->dev;
4194 enum drm_connector_status status;
4195 enum intel_display_power_domain power_domain;
4196 bool ret;
4197
4198 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4199 connector->base.id, connector->name);
4200 intel_dp_unset_edid(intel_dp);
4201
4202 if (intel_dp->is_mst) {
4203 /* MST devices are disconnected from a monitor POV */
4204 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4205 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4206 return connector_status_disconnected;
4207 }
4208
4209 power_domain = intel_dp_power_get(intel_dp);
4210
4211 /* Can't disconnect eDP, but you can close the lid... */
4212 if (is_edp(intel_dp))
4213 status = edp_detect(intel_dp);
4214 else if (HAS_PCH_SPLIT(dev))
4215 status = ironlake_dp_detect(intel_dp);
4216 else
4217 status = g4x_dp_detect(intel_dp);
4218 if (status != connector_status_connected)
4219 goto out;
4220
4221 intel_dp_probe_oui(intel_dp);
4222
4223 ret = intel_dp_probe_mst(intel_dp);
4224 if (ret) {
4225 /* if we are in MST mode then this connector
4226 won't appear connected or have anything with EDID on it */
4227 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4228 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4229 status = connector_status_disconnected;
4230 goto out;
4231 }
4232
4233 intel_dp_set_edid(intel_dp);
4234
4235 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4236 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4237 status = connector_status_connected;
4238
4239 out:
4240 intel_dp_power_put(intel_dp, power_domain);
4241 return status;
4242 }
4243
4244 static void
4245 intel_dp_force(struct drm_connector *connector)
4246 {
4247 struct intel_dp *intel_dp = intel_attached_dp(connector);
4248 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4249 enum intel_display_power_domain power_domain;
4250
4251 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4252 connector->base.id, connector->name);
4253 intel_dp_unset_edid(intel_dp);
4254
4255 if (connector->status != connector_status_connected)
4256 return;
4257
4258 power_domain = intel_dp_power_get(intel_dp);
4259
4260 intel_dp_set_edid(intel_dp);
4261
4262 intel_dp_power_put(intel_dp, power_domain);
4263
4264 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4265 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4266 }
4267
4268 static int intel_dp_get_modes(struct drm_connector *connector)
4269 {
4270 struct intel_connector *intel_connector = to_intel_connector(connector);
4271 struct edid *edid;
4272
4273 edid = intel_connector->detect_edid;
4274 if (edid) {
4275 int ret = intel_connector_update_modes(connector, edid);
4276 if (ret)
4277 return ret;
4278 }
4279
4280 /* if eDP has no EDID, fall back to fixed mode */
4281 if (is_edp(intel_attached_dp(connector)) &&
4282 intel_connector->panel.fixed_mode) {
4283 struct drm_display_mode *mode;
4284
4285 mode = drm_mode_duplicate(connector->dev,
4286 intel_connector->panel.fixed_mode);
4287 if (mode) {
4288 drm_mode_probed_add(connector, mode);
4289 return 1;
4290 }
4291 }
4292
4293 return 0;
4294 }
4295
4296 static bool
4297 intel_dp_detect_audio(struct drm_connector *connector)
4298 {
4299 bool has_audio = false;
4300 struct edid *edid;
4301
4302 edid = to_intel_connector(connector)->detect_edid;
4303 if (edid)
4304 has_audio = drm_detect_monitor_audio(edid);
4305
4306 return has_audio;
4307 }
4308
4309 static int
4310 intel_dp_set_property(struct drm_connector *connector,
4311 struct drm_property *property,
4312 uint64_t val)
4313 {
4314 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4315 struct intel_connector *intel_connector = to_intel_connector(connector);
4316 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4317 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4318 int ret;
4319
4320 ret = drm_object_property_set_value(&connector->base, property, val);
4321 if (ret)
4322 return ret;
4323
4324 if (property == dev_priv->force_audio_property) {
4325 int i = val;
4326 bool has_audio;
4327
4328 if (i == intel_dp->force_audio)
4329 return 0;
4330
4331 intel_dp->force_audio = i;
4332
4333 if (i == HDMI_AUDIO_AUTO)
4334 has_audio = intel_dp_detect_audio(connector);
4335 else
4336 has_audio = (i == HDMI_AUDIO_ON);
4337
4338 if (has_audio == intel_dp->has_audio)
4339 return 0;
4340
4341 intel_dp->has_audio = has_audio;
4342 goto done;
4343 }
4344
4345 if (property == dev_priv->broadcast_rgb_property) {
4346 bool old_auto = intel_dp->color_range_auto;
4347 uint32_t old_range = intel_dp->color_range;
4348
4349 switch (val) {
4350 case INTEL_BROADCAST_RGB_AUTO:
4351 intel_dp->color_range_auto = true;
4352 break;
4353 case INTEL_BROADCAST_RGB_FULL:
4354 intel_dp->color_range_auto = false;
4355 intel_dp->color_range = 0;
4356 break;
4357 case INTEL_BROADCAST_RGB_LIMITED:
4358 intel_dp->color_range_auto = false;
4359 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4360 break;
4361 default:
4362 return -EINVAL;
4363 }
4364
4365 if (old_auto == intel_dp->color_range_auto &&
4366 old_range == intel_dp->color_range)
4367 return 0;
4368
4369 goto done;
4370 }
4371
4372 if (is_edp(intel_dp) &&
4373 property == connector->dev->mode_config.scaling_mode_property) {
4374 if (val == DRM_MODE_SCALE_NONE) {
4375 DRM_DEBUG_KMS("no scaling not supported\n");
4376 return -EINVAL;
4377 }
4378
4379 if (intel_connector->panel.fitting_mode == val) {
4380 /* the eDP scaling property is not changed */
4381 return 0;
4382 }
4383 intel_connector->panel.fitting_mode = val;
4384
4385 goto done;
4386 }
4387
4388 return -EINVAL;
4389
4390 done:
4391 if (intel_encoder->base.crtc)
4392 intel_crtc_restore_mode(intel_encoder->base.crtc);
4393
4394 return 0;
4395 }
4396
4397 static void
4398 intel_dp_connector_destroy(struct drm_connector *connector)
4399 {
4400 struct intel_connector *intel_connector = to_intel_connector(connector);
4401
4402 kfree(intel_connector->detect_edid);
4403
4404 if (!IS_ERR_OR_NULL(intel_connector->edid))
4405 kfree(intel_connector->edid);
4406
4407 /* Can't call is_edp() since the encoder may have been destroyed
4408 * already. */
4409 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4410 intel_panel_fini(&intel_connector->panel);
4411
4412 drm_connector_cleanup(connector);
4413 kfree(connector);
4414 }
4415
4416 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4417 {
4418 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4419 struct intel_dp *intel_dp = &intel_dig_port->dp;
4420
4421 drm_dp_aux_unregister(&intel_dp->aux);
4422 intel_dp_mst_encoder_cleanup(intel_dig_port);
4423 drm_encoder_cleanup(encoder);
4424 if (is_edp(intel_dp)) {
4425 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4426 /*
4427 * vdd might still be enabled do to the delayed vdd off.
4428 * Make sure vdd is actually turned off here.
4429 */
4430 pps_lock(intel_dp);
4431 edp_panel_vdd_off_sync(intel_dp);
4432 pps_unlock(intel_dp);
4433
4434 if (intel_dp->edp_notifier.notifier_call) {
4435 unregister_reboot_notifier(&intel_dp->edp_notifier);
4436 intel_dp->edp_notifier.notifier_call = NULL;
4437 }
4438 }
4439 kfree(intel_dig_port);
4440 }
4441
4442 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4443 {
4444 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4445
4446 if (!is_edp(intel_dp))
4447 return;
4448
4449 /*
4450 * vdd might still be enabled do to the delayed vdd off.
4451 * Make sure vdd is actually turned off here.
4452 */
4453 pps_lock(intel_dp);
4454 edp_panel_vdd_off_sync(intel_dp);
4455 pps_unlock(intel_dp);
4456 }
4457
4458 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4459 {
4460 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4461 }
4462
4463 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4464 .dpms = intel_connector_dpms,
4465 .detect = intel_dp_detect,
4466 .force = intel_dp_force,
4467 .fill_modes = drm_helper_probe_single_connector_modes,
4468 .set_property = intel_dp_set_property,
4469 .destroy = intel_dp_connector_destroy,
4470 };
4471
4472 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4473 .get_modes = intel_dp_get_modes,
4474 .mode_valid = intel_dp_mode_valid,
4475 .best_encoder = intel_best_encoder,
4476 };
4477
4478 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4479 .reset = intel_dp_encoder_reset,
4480 .destroy = intel_dp_encoder_destroy,
4481 };
4482
4483 void
4484 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4485 {
4486 return;
4487 }
4488
4489 bool
4490 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4491 {
4492 struct intel_dp *intel_dp = &intel_dig_port->dp;
4493 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4494 struct drm_device *dev = intel_dig_port->base.base.dev;
4495 struct drm_i915_private *dev_priv = dev->dev_private;
4496 enum intel_display_power_domain power_domain;
4497 bool ret = true;
4498
4499 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4500 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4501
4502 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4503 /*
4504 * vdd off can generate a long pulse on eDP which
4505 * would require vdd on to handle it, and thus we
4506 * would end up in an endless cycle of
4507 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4508 */
4509 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4510 port_name(intel_dig_port->port));
4511 return false;
4512 }
4513
4514 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4515 port_name(intel_dig_port->port),
4516 long_hpd ? "long" : "short");
4517
4518 power_domain = intel_display_port_power_domain(intel_encoder);
4519 intel_display_power_get(dev_priv, power_domain);
4520
4521 if (long_hpd) {
4522
4523 if (HAS_PCH_SPLIT(dev)) {
4524 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4525 goto mst_fail;
4526 } else {
4527 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4528 goto mst_fail;
4529 }
4530
4531 if (!intel_dp_get_dpcd(intel_dp)) {
4532 goto mst_fail;
4533 }
4534
4535 intel_dp_probe_oui(intel_dp);
4536
4537 if (!intel_dp_probe_mst(intel_dp))
4538 goto mst_fail;
4539
4540 } else {
4541 if (intel_dp->is_mst) {
4542 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4543 goto mst_fail;
4544 }
4545
4546 if (!intel_dp->is_mst) {
4547 /*
4548 * we'll check the link status via the normal hot plug path later -
4549 * but for short hpds we should check it now
4550 */
4551 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4552 intel_dp_check_link_status(intel_dp);
4553 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4554 }
4555 }
4556 ret = false;
4557 goto put_power;
4558 mst_fail:
4559 /* if we were in MST mode, and device is not there get out of MST mode */
4560 if (intel_dp->is_mst) {
4561 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4562 intel_dp->is_mst = false;
4563 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4564 }
4565 put_power:
4566 intel_display_power_put(dev_priv, power_domain);
4567
4568 return ret;
4569 }
4570
4571 /* Return which DP Port should be selected for Transcoder DP control */
4572 int
4573 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4574 {
4575 struct drm_device *dev = crtc->dev;
4576 struct intel_encoder *intel_encoder;
4577 struct intel_dp *intel_dp;
4578
4579 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4580 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4581
4582 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4583 intel_encoder->type == INTEL_OUTPUT_EDP)
4584 return intel_dp->output_reg;
4585 }
4586
4587 return -1;
4588 }
4589
4590 /* check the VBT to see whether the eDP is on DP-D port */
4591 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4592 {
4593 struct drm_i915_private *dev_priv = dev->dev_private;
4594 union child_device_config *p_child;
4595 int i;
4596 static const short port_mapping[] = {
4597 [PORT_B] = PORT_IDPB,
4598 [PORT_C] = PORT_IDPC,
4599 [PORT_D] = PORT_IDPD,
4600 };
4601
4602 if (port == PORT_A)
4603 return true;
4604
4605 if (!dev_priv->vbt.child_dev_num)
4606 return false;
4607
4608 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4609 p_child = dev_priv->vbt.child_dev + i;
4610
4611 if (p_child->common.dvo_port == port_mapping[port] &&
4612 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4613 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4614 return true;
4615 }
4616 return false;
4617 }
4618
4619 void
4620 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4621 {
4622 struct intel_connector *intel_connector = to_intel_connector(connector);
4623
4624 intel_attach_force_audio_property(connector);
4625 intel_attach_broadcast_rgb_property(connector);
4626 intel_dp->color_range_auto = true;
4627
4628 if (is_edp(intel_dp)) {
4629 drm_mode_create_scaling_mode_property(connector->dev);
4630 drm_object_attach_property(
4631 &connector->base,
4632 connector->dev->mode_config.scaling_mode_property,
4633 DRM_MODE_SCALE_ASPECT);
4634 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4635 }
4636 }
4637
4638 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4639 {
4640 intel_dp->last_power_cycle = jiffies;
4641 intel_dp->last_power_on = jiffies;
4642 intel_dp->last_backlight_off = jiffies;
4643 }
4644
4645 static void
4646 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4647 struct intel_dp *intel_dp,
4648 struct edp_power_seq *out)
4649 {
4650 struct drm_i915_private *dev_priv = dev->dev_private;
4651 struct edp_power_seq cur, vbt, spec, final;
4652 u32 pp_on, pp_off, pp_div, pp;
4653 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4654
4655 lockdep_assert_held(&dev_priv->pps_mutex);
4656
4657 if (HAS_PCH_SPLIT(dev)) {
4658 pp_ctrl_reg = PCH_PP_CONTROL;
4659 pp_on_reg = PCH_PP_ON_DELAYS;
4660 pp_off_reg = PCH_PP_OFF_DELAYS;
4661 pp_div_reg = PCH_PP_DIVISOR;
4662 } else {
4663 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4664
4665 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4666 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4667 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4668 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4669 }
4670
4671 /* Workaround: Need to write PP_CONTROL with the unlock key as
4672 * the very first thing. */
4673 pp = ironlake_get_pp_control(intel_dp);
4674 I915_WRITE(pp_ctrl_reg, pp);
4675
4676 pp_on = I915_READ(pp_on_reg);
4677 pp_off = I915_READ(pp_off_reg);
4678 pp_div = I915_READ(pp_div_reg);
4679
4680 /* Pull timing values out of registers */
4681 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4682 PANEL_POWER_UP_DELAY_SHIFT;
4683
4684 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4685 PANEL_LIGHT_ON_DELAY_SHIFT;
4686
4687 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4688 PANEL_LIGHT_OFF_DELAY_SHIFT;
4689
4690 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4691 PANEL_POWER_DOWN_DELAY_SHIFT;
4692
4693 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4694 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4695
4696 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4697 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4698
4699 vbt = dev_priv->vbt.edp_pps;
4700
4701 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4702 * our hw here, which are all in 100usec. */
4703 spec.t1_t3 = 210 * 10;
4704 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4705 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4706 spec.t10 = 500 * 10;
4707 /* This one is special and actually in units of 100ms, but zero
4708 * based in the hw (so we need to add 100 ms). But the sw vbt
4709 * table multiplies it with 1000 to make it in units of 100usec,
4710 * too. */
4711 spec.t11_t12 = (510 + 100) * 10;
4712
4713 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4714 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4715
4716 /* Use the max of the register settings and vbt. If both are
4717 * unset, fall back to the spec limits. */
4718 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4719 spec.field : \
4720 max(cur.field, vbt.field))
4721 assign_final(t1_t3);
4722 assign_final(t8);
4723 assign_final(t9);
4724 assign_final(t10);
4725 assign_final(t11_t12);
4726 #undef assign_final
4727
4728 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4729 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4730 intel_dp->backlight_on_delay = get_delay(t8);
4731 intel_dp->backlight_off_delay = get_delay(t9);
4732 intel_dp->panel_power_down_delay = get_delay(t10);
4733 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4734 #undef get_delay
4735
4736 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4737 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4738 intel_dp->panel_power_cycle_delay);
4739
4740 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4741 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4742
4743 if (out)
4744 *out = final;
4745 }
4746
4747 static void
4748 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4749 struct intel_dp *intel_dp,
4750 struct edp_power_seq *seq)
4751 {
4752 struct drm_i915_private *dev_priv = dev->dev_private;
4753 u32 pp_on, pp_off, pp_div, port_sel = 0;
4754 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4755 int pp_on_reg, pp_off_reg, pp_div_reg;
4756 enum port port = dp_to_dig_port(intel_dp)->port;
4757
4758 lockdep_assert_held(&dev_priv->pps_mutex);
4759
4760 if (HAS_PCH_SPLIT(dev)) {
4761 pp_on_reg = PCH_PP_ON_DELAYS;
4762 pp_off_reg = PCH_PP_OFF_DELAYS;
4763 pp_div_reg = PCH_PP_DIVISOR;
4764 } else {
4765 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4766
4767 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4768 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4769 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4770 }
4771
4772 /*
4773 * And finally store the new values in the power sequencer. The
4774 * backlight delays are set to 1 because we do manual waits on them. For
4775 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4776 * we'll end up waiting for the backlight off delay twice: once when we
4777 * do the manual sleep, and once when we disable the panel and wait for
4778 * the PP_STATUS bit to become zero.
4779 */
4780 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4781 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4782 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4783 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4784 /* Compute the divisor for the pp clock, simply match the Bspec
4785 * formula. */
4786 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4787 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4788 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4789
4790 /* Haswell doesn't have any port selection bits for the panel
4791 * power sequencer any more. */
4792 if (IS_VALLEYVIEW(dev)) {
4793 port_sel = PANEL_PORT_SELECT_VLV(port);
4794 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4795 if (port == PORT_A)
4796 port_sel = PANEL_PORT_SELECT_DPA;
4797 else
4798 port_sel = PANEL_PORT_SELECT_DPD;
4799 }
4800
4801 pp_on |= port_sel;
4802
4803 I915_WRITE(pp_on_reg, pp_on);
4804 I915_WRITE(pp_off_reg, pp_off);
4805 I915_WRITE(pp_div_reg, pp_div);
4806
4807 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4808 I915_READ(pp_on_reg),
4809 I915_READ(pp_off_reg),
4810 I915_READ(pp_div_reg));
4811 }
4812
4813 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4814 {
4815 struct drm_i915_private *dev_priv = dev->dev_private;
4816 struct intel_encoder *encoder;
4817 struct intel_dp *intel_dp = NULL;
4818 struct intel_crtc_config *config = NULL;
4819 struct intel_crtc *intel_crtc = NULL;
4820 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4821 u32 reg, val;
4822 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4823
4824 if (refresh_rate <= 0) {
4825 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4826 return;
4827 }
4828
4829 if (intel_connector == NULL) {
4830 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4831 return;
4832 }
4833
4834 /*
4835 * FIXME: This needs proper synchronization with psr state. But really
4836 * hard to tell without seeing the user of this function of this code.
4837 * Check locking and ordering once that lands.
4838 */
4839 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4840 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4841 return;
4842 }
4843
4844 encoder = intel_attached_encoder(&intel_connector->base);
4845 intel_dp = enc_to_intel_dp(&encoder->base);
4846 intel_crtc = encoder->new_crtc;
4847
4848 if (!intel_crtc) {
4849 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4850 return;
4851 }
4852
4853 config = &intel_crtc->config;
4854
4855 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4856 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4857 return;
4858 }
4859
4860 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4861 index = DRRS_LOW_RR;
4862
4863 if (index == intel_dp->drrs_state.refresh_rate_type) {
4864 DRM_DEBUG_KMS(
4865 "DRRS requested for previously set RR...ignoring\n");
4866 return;
4867 }
4868
4869 if (!intel_crtc->active) {
4870 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4871 return;
4872 }
4873
4874 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4875 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4876 val = I915_READ(reg);
4877 if (index > DRRS_HIGH_RR) {
4878 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4879 intel_dp_set_m_n(intel_crtc);
4880 } else {
4881 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4882 }
4883 I915_WRITE(reg, val);
4884 }
4885
4886 /*
4887 * mutex taken to ensure that there is no race between differnt
4888 * drrs calls trying to update refresh rate. This scenario may occur
4889 * in future when idleness detection based DRRS in kernel and
4890 * possible calls from user space to set differnt RR are made.
4891 */
4892
4893 mutex_lock(&intel_dp->drrs_state.mutex);
4894
4895 intel_dp->drrs_state.refresh_rate_type = index;
4896
4897 mutex_unlock(&intel_dp->drrs_state.mutex);
4898
4899 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4900 }
4901
4902 static struct drm_display_mode *
4903 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4904 struct intel_connector *intel_connector,
4905 struct drm_display_mode *fixed_mode)
4906 {
4907 struct drm_connector *connector = &intel_connector->base;
4908 struct intel_dp *intel_dp = &intel_dig_port->dp;
4909 struct drm_device *dev = intel_dig_port->base.base.dev;
4910 struct drm_i915_private *dev_priv = dev->dev_private;
4911 struct drm_display_mode *downclock_mode = NULL;
4912
4913 if (INTEL_INFO(dev)->gen <= 6) {
4914 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4915 return NULL;
4916 }
4917
4918 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4919 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4920 return NULL;
4921 }
4922
4923 downclock_mode = intel_find_panel_downclock
4924 (dev, fixed_mode, connector);
4925
4926 if (!downclock_mode) {
4927 DRM_DEBUG_KMS("DRRS not supported\n");
4928 return NULL;
4929 }
4930
4931 dev_priv->drrs.connector = intel_connector;
4932
4933 mutex_init(&intel_dp->drrs_state.mutex);
4934
4935 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4936
4937 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4938 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4939 return downclock_mode;
4940 }
4941
4942 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4943 {
4944 struct drm_device *dev = intel_encoder->base.dev;
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 struct intel_dp *intel_dp;
4947 enum intel_display_power_domain power_domain;
4948
4949 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4950 return;
4951
4952 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4953
4954 pps_lock(intel_dp);
4955
4956 if (!edp_have_panel_vdd(intel_dp))
4957 goto out;
4958 /*
4959 * The VDD bit needs a power domain reference, so if the bit is
4960 * already enabled when we boot or resume, grab this reference and
4961 * schedule a vdd off, so we don't hold on to the reference
4962 * indefinitely.
4963 */
4964 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4965 power_domain = intel_display_port_power_domain(intel_encoder);
4966 intel_display_power_get(dev_priv, power_domain);
4967
4968 edp_panel_vdd_schedule_off(intel_dp);
4969 out:
4970 pps_unlock(intel_dp);
4971 }
4972
4973 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4974 struct intel_connector *intel_connector,
4975 struct edp_power_seq *power_seq)
4976 {
4977 struct drm_connector *connector = &intel_connector->base;
4978 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4979 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4980 struct drm_device *dev = intel_encoder->base.dev;
4981 struct drm_i915_private *dev_priv = dev->dev_private;
4982 struct drm_display_mode *fixed_mode = NULL;
4983 struct drm_display_mode *downclock_mode = NULL;
4984 bool has_dpcd;
4985 struct drm_display_mode *scan;
4986 struct edid *edid;
4987
4988 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4989
4990 if (!is_edp(intel_dp))
4991 return true;
4992
4993 intel_edp_panel_vdd_sanitize(intel_encoder);
4994
4995 /* Cache DPCD and EDID for edp. */
4996 intel_edp_panel_vdd_on(intel_dp);
4997 has_dpcd = intel_dp_get_dpcd(intel_dp);
4998 intel_edp_panel_vdd_off(intel_dp, false);
4999
5000 if (has_dpcd) {
5001 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5002 dev_priv->no_aux_handshake =
5003 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5004 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5005 } else {
5006 /* if this fails, presume the device is a ghost */
5007 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5008 return false;
5009 }
5010
5011 /* We now know it's not a ghost, init power sequence regs. */
5012 pps_lock(intel_dp);
5013 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
5014 pps_unlock(intel_dp);
5015
5016 mutex_lock(&dev->mode_config.mutex);
5017 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5018 if (edid) {
5019 if (drm_add_edid_modes(connector, edid)) {
5020 drm_mode_connector_update_edid_property(connector,
5021 edid);
5022 drm_edid_to_eld(connector, edid);
5023 } else {
5024 kfree(edid);
5025 edid = ERR_PTR(-EINVAL);
5026 }
5027 } else {
5028 edid = ERR_PTR(-ENOENT);
5029 }
5030 intel_connector->edid = edid;
5031
5032 /* prefer fixed mode from EDID if available */
5033 list_for_each_entry(scan, &connector->probed_modes, head) {
5034 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5035 fixed_mode = drm_mode_duplicate(dev, scan);
5036 downclock_mode = intel_dp_drrs_init(
5037 intel_dig_port,
5038 intel_connector, fixed_mode);
5039 break;
5040 }
5041 }
5042
5043 /* fallback to VBT if available for eDP */
5044 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5045 fixed_mode = drm_mode_duplicate(dev,
5046 dev_priv->vbt.lfp_lvds_vbt_mode);
5047 if (fixed_mode)
5048 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5049 }
5050 mutex_unlock(&dev->mode_config.mutex);
5051
5052 if (IS_VALLEYVIEW(dev)) {
5053 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5054 register_reboot_notifier(&intel_dp->edp_notifier);
5055 }
5056
5057 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5058 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5059 intel_panel_setup_backlight(connector);
5060
5061 return true;
5062 }
5063
5064 bool
5065 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5066 struct intel_connector *intel_connector)
5067 {
5068 struct drm_connector *connector = &intel_connector->base;
5069 struct intel_dp *intel_dp = &intel_dig_port->dp;
5070 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5071 struct drm_device *dev = intel_encoder->base.dev;
5072 struct drm_i915_private *dev_priv = dev->dev_private;
5073 enum port port = intel_dig_port->port;
5074 struct edp_power_seq power_seq = { 0 };
5075 int type;
5076
5077 intel_dp->pps_pipe = INVALID_PIPE;
5078
5079 /* intel_dp vfuncs */
5080 if (IS_VALLEYVIEW(dev))
5081 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5082 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5083 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5084 else if (HAS_PCH_SPLIT(dev))
5085 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5086 else
5087 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5088
5089 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5090
5091 /* Preserve the current hw state. */
5092 intel_dp->DP = I915_READ(intel_dp->output_reg);
5093 intel_dp->attached_connector = intel_connector;
5094
5095 if (intel_dp_is_edp(dev, port))
5096 type = DRM_MODE_CONNECTOR_eDP;
5097 else
5098 type = DRM_MODE_CONNECTOR_DisplayPort;
5099
5100 /*
5101 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5102 * for DP the encoder type can be set by the caller to
5103 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5104 */
5105 if (type == DRM_MODE_CONNECTOR_eDP)
5106 intel_encoder->type = INTEL_OUTPUT_EDP;
5107
5108 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5109 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5110 port_name(port));
5111
5112 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5113 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5114
5115 connector->interlace_allowed = true;
5116 connector->doublescan_allowed = 0;
5117
5118 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5119 edp_panel_vdd_work);
5120
5121 intel_connector_attach_encoder(intel_connector, intel_encoder);
5122 drm_connector_register(connector);
5123
5124 if (HAS_DDI(dev))
5125 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5126 else
5127 intel_connector->get_hw_state = intel_connector_get_hw_state;
5128 intel_connector->unregister = intel_dp_connector_unregister;
5129
5130 /* Set up the hotplug pin. */
5131 switch (port) {
5132 case PORT_A:
5133 intel_encoder->hpd_pin = HPD_PORT_A;
5134 break;
5135 case PORT_B:
5136 intel_encoder->hpd_pin = HPD_PORT_B;
5137 break;
5138 case PORT_C:
5139 intel_encoder->hpd_pin = HPD_PORT_C;
5140 break;
5141 case PORT_D:
5142 intel_encoder->hpd_pin = HPD_PORT_D;
5143 break;
5144 default:
5145 BUG();
5146 }
5147
5148 if (is_edp(intel_dp)) {
5149 pps_lock(intel_dp);
5150 if (IS_VALLEYVIEW(dev)) {
5151 vlv_initial_power_sequencer_setup(intel_dp);
5152 } else {
5153 intel_dp_init_panel_power_timestamps(intel_dp);
5154 intel_dp_init_panel_power_sequencer(dev, intel_dp,
5155 &power_seq);
5156 }
5157 pps_unlock(intel_dp);
5158 }
5159
5160 intel_dp_aux_init(intel_dp, intel_connector);
5161
5162 /* init MST on ports that can support it */
5163 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5164 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5165 intel_dp_mst_encoder_init(intel_dig_port,
5166 intel_connector->base.base.id);
5167 }
5168 }
5169
5170 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
5171 drm_dp_aux_unregister(&intel_dp->aux);
5172 if (is_edp(intel_dp)) {
5173 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5174 /*
5175 * vdd might still be enabled do to the delayed vdd off.
5176 * Make sure vdd is actually turned off here.
5177 */
5178 pps_lock(intel_dp);
5179 edp_panel_vdd_off_sync(intel_dp);
5180 pps_unlock(intel_dp);
5181 }
5182 drm_connector_unregister(connector);
5183 drm_connector_cleanup(connector);
5184 return false;
5185 }
5186
5187 intel_dp_add_properties(intel_dp, connector);
5188
5189 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5190 * 0xd. Failure to do so will result in spurious interrupts being
5191 * generated on the port when a cable is not attached.
5192 */
5193 if (IS_G4X(dev) && !IS_GM45(dev)) {
5194 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5195 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5196 }
5197
5198 return true;
5199 }
5200
5201 void
5202 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5203 {
5204 struct drm_i915_private *dev_priv = dev->dev_private;
5205 struct intel_digital_port *intel_dig_port;
5206 struct intel_encoder *intel_encoder;
5207 struct drm_encoder *encoder;
5208 struct intel_connector *intel_connector;
5209
5210 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5211 if (!intel_dig_port)
5212 return;
5213
5214 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5215 if (!intel_connector) {
5216 kfree(intel_dig_port);
5217 return;
5218 }
5219
5220 intel_encoder = &intel_dig_port->base;
5221 encoder = &intel_encoder->base;
5222
5223 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5224 DRM_MODE_ENCODER_TMDS);
5225
5226 intel_encoder->compute_config = intel_dp_compute_config;
5227 intel_encoder->disable = intel_disable_dp;
5228 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5229 intel_encoder->get_config = intel_dp_get_config;
5230 intel_encoder->suspend = intel_dp_encoder_suspend;
5231 if (IS_CHERRYVIEW(dev)) {
5232 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5233 intel_encoder->pre_enable = chv_pre_enable_dp;
5234 intel_encoder->enable = vlv_enable_dp;
5235 intel_encoder->post_disable = chv_post_disable_dp;
5236 } else if (IS_VALLEYVIEW(dev)) {
5237 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5238 intel_encoder->pre_enable = vlv_pre_enable_dp;
5239 intel_encoder->enable = vlv_enable_dp;
5240 intel_encoder->post_disable = vlv_post_disable_dp;
5241 } else {
5242 intel_encoder->pre_enable = g4x_pre_enable_dp;
5243 intel_encoder->enable = g4x_enable_dp;
5244 if (INTEL_INFO(dev)->gen >= 5)
5245 intel_encoder->post_disable = ilk_post_disable_dp;
5246 }
5247
5248 intel_dig_port->port = port;
5249 intel_dig_port->dp.output_reg = output_reg;
5250
5251 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5252 if (IS_CHERRYVIEW(dev)) {
5253 if (port == PORT_D)
5254 intel_encoder->crtc_mask = 1 << 2;
5255 else
5256 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5257 } else {
5258 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5259 }
5260 intel_encoder->cloneable = 0;
5261 intel_encoder->hot_plug = intel_dp_hot_plug;
5262
5263 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5264 dev_priv->hpd_irq_port[port] = intel_dig_port;
5265
5266 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5267 drm_encoder_cleanup(encoder);
5268 kfree(intel_dig_port);
5269 kfree(intel_connector);
5270 }
5271 }
5272
5273 void intel_dp_mst_suspend(struct drm_device *dev)
5274 {
5275 struct drm_i915_private *dev_priv = dev->dev_private;
5276 int i;
5277
5278 /* disable MST */
5279 for (i = 0; i < I915_MAX_PORTS; i++) {
5280 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5281 if (!intel_dig_port)
5282 continue;
5283
5284 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5285 if (!intel_dig_port->dp.can_mst)
5286 continue;
5287 if (intel_dig_port->dp.is_mst)
5288 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5289 }
5290 }
5291 }
5292
5293 void intel_dp_mst_resume(struct drm_device *dev)
5294 {
5295 struct drm_i915_private *dev_priv = dev->dev_private;
5296 int i;
5297
5298 for (i = 0; i < I915_MAX_PORTS; i++) {
5299 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5300 if (!intel_dig_port)
5301 continue;
5302 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5303 int ret;
5304
5305 if (!intel_dig_port->dp.can_mst)
5306 continue;
5307
5308 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5309 if (ret != 0) {
5310 intel_dp_check_mst_status(&intel_dig_port->dp);
5311 }
5312 }
5313 }
5314 }
This page took 0.176002 seconds and 5 git commands to generate.