drm/i915: Constify adjusted_mode
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135 return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp *intel_dp)
140 {
141 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143 switch (max_link_bw) {
144 case DP_LINK_BW_1_62:
145 case DP_LINK_BW_2_7:
146 case DP_LINK_BW_5_4:
147 break;
148 default:
149 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150 max_link_bw);
151 max_link_bw = DP_LINK_BW_1_62;
152 break;
153 }
154 return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160 struct drm_device *dev = intel_dig_port->base.base.dev;
161 u8 source_max, sink_max;
162
163 source_max = 4;
164 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
165 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
166 source_max = 2;
167
168 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
169
170 return min(source_max, sink_max);
171 }
172
173 /*
174 * The units on the numbers in the next two are... bizarre. Examples will
175 * make it clearer; this one parallels an example in the eDP spec.
176 *
177 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
178 *
179 * 270000 * 1 * 8 / 10 == 216000
180 *
181 * The actual data capacity of that configuration is 2.16Gbit/s, so the
182 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
183 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
184 * 119000. At 18bpp that's 2142000 kilobits per second.
185 *
186 * Thus the strange-looking division by 10 in intel_dp_link_required, to
187 * get the result in decakilobits instead of kilobits.
188 */
189
190 static int
191 intel_dp_link_required(int pixel_clock, int bpp)
192 {
193 return (pixel_clock * bpp + 9) / 10;
194 }
195
196 static int
197 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
198 {
199 return (max_link_clock * max_lanes * 8) / 10;
200 }
201
202 static enum drm_mode_status
203 intel_dp_mode_valid(struct drm_connector *connector,
204 struct drm_display_mode *mode)
205 {
206 struct intel_dp *intel_dp = intel_attached_dp(connector);
207 struct intel_connector *intel_connector = to_intel_connector(connector);
208 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209 int target_clock = mode->clock;
210 int max_rate, mode_rate, max_lanes, max_link_clock;
211
212 if (is_edp(intel_dp) && fixed_mode) {
213 if (mode->hdisplay > fixed_mode->hdisplay)
214 return MODE_PANEL;
215
216 if (mode->vdisplay > fixed_mode->vdisplay)
217 return MODE_PANEL;
218
219 target_clock = fixed_mode->clock;
220 }
221
222 max_link_clock = intel_dp_max_link_rate(intel_dp);
223 max_lanes = intel_dp_max_lane_count(intel_dp);
224
225 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
226 mode_rate = intel_dp_link_required(target_clock, 18);
227
228 if (mode_rate > max_rate)
229 return MODE_CLOCK_HIGH;
230
231 if (mode->clock < 10000)
232 return MODE_CLOCK_LOW;
233
234 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
235 return MODE_H_ILLEGAL;
236
237 return MODE_OK;
238 }
239
240 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241 {
242 int i;
243 uint32_t v = 0;
244
245 if (src_bytes > 4)
246 src_bytes = 4;
247 for (i = 0; i < src_bytes; i++)
248 v |= ((uint32_t) src[i]) << ((3-i) * 8);
249 return v;
250 }
251
252 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253 {
254 int i;
255 if (dst_bytes > 4)
256 dst_bytes = 4;
257 for (i = 0; i < dst_bytes; i++)
258 dst[i] = src >> ((3-i) * 8);
259 }
260
261 static void
262 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263 struct intel_dp *intel_dp);
264 static void
265 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266 struct intel_dp *intel_dp);
267
268 static void pps_lock(struct intel_dp *intel_dp)
269 {
270 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
271 struct intel_encoder *encoder = &intel_dig_port->base;
272 struct drm_device *dev = encoder->base.dev;
273 struct drm_i915_private *dev_priv = dev->dev_private;
274 enum intel_display_power_domain power_domain;
275
276 /*
277 * See vlv_power_sequencer_reset() why we need
278 * a power domain reference here.
279 */
280 power_domain = intel_display_port_power_domain(encoder);
281 intel_display_power_get(dev_priv, power_domain);
282
283 mutex_lock(&dev_priv->pps_mutex);
284 }
285
286 static void pps_unlock(struct intel_dp *intel_dp)
287 {
288 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
289 struct intel_encoder *encoder = &intel_dig_port->base;
290 struct drm_device *dev = encoder->base.dev;
291 struct drm_i915_private *dev_priv = dev->dev_private;
292 enum intel_display_power_domain power_domain;
293
294 mutex_unlock(&dev_priv->pps_mutex);
295
296 power_domain = intel_display_port_power_domain(encoder);
297 intel_display_power_put(dev_priv, power_domain);
298 }
299
300 static void
301 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
302 {
303 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304 struct drm_device *dev = intel_dig_port->base.base.dev;
305 struct drm_i915_private *dev_priv = dev->dev_private;
306 enum pipe pipe = intel_dp->pps_pipe;
307 bool pll_enabled, release_cl_override = false;
308 enum dpio_phy phy = DPIO_PHY(pipe);
309 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310 uint32_t DP;
311
312 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
313 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
314 pipe_name(pipe), port_name(intel_dig_port->port)))
315 return;
316
317 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
318 pipe_name(pipe), port_name(intel_dig_port->port));
319
320 /* Preserve the BIOS-computed detected bit. This is
321 * supposed to be read-only.
322 */
323 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
324 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
325 DP |= DP_PORT_WIDTH(1);
326 DP |= DP_LINK_TRAIN_PAT_1;
327
328 if (IS_CHERRYVIEW(dev))
329 DP |= DP_PIPE_SELECT_CHV(pipe);
330 else if (pipe == PIPE_B)
331 DP |= DP_PIPEB_SELECT;
332
333 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
334
335 /*
336 * The DPLL for the pipe must be enabled for this to work.
337 * So enable temporarily it if it's not already enabled.
338 */
339 if (!pll_enabled) {
340 release_cl_override = IS_CHERRYVIEW(dev) &&
341 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
342
343 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
344 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345 }
346
347 /*
348 * Similar magic as in intel_dp_enable_port().
349 * We _must_ do this port enable + disable trick
350 * to make this power seqeuencer lock onto the port.
351 * Otherwise even VDD force bit won't work.
352 */
353 I915_WRITE(intel_dp->output_reg, DP);
354 POSTING_READ(intel_dp->output_reg);
355
356 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357 POSTING_READ(intel_dp->output_reg);
358
359 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360 POSTING_READ(intel_dp->output_reg);
361
362 if (!pll_enabled) {
363 vlv_force_pll_off(dev, pipe);
364
365 if (release_cl_override)
366 chv_phy_powergate_ch(dev_priv, phy, ch, false);
367 }
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374 struct drm_device *dev = intel_dig_port->base.base.dev;
375 struct drm_i915_private *dev_priv = dev->dev_private;
376 struct intel_encoder *encoder;
377 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378 enum pipe pipe;
379
380 lockdep_assert_held(&dev_priv->pps_mutex);
381
382 /* We should never land here with regular DP ports */
383 WARN_ON(!is_edp(intel_dp));
384
385 if (intel_dp->pps_pipe != INVALID_PIPE)
386 return intel_dp->pps_pipe;
387
388 /*
389 * We don't have power sequencer currently.
390 * Pick one that's not used by other ports.
391 */
392 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
393 base.head) {
394 struct intel_dp *tmp;
395
396 if (encoder->type != INTEL_OUTPUT_EDP)
397 continue;
398
399 tmp = enc_to_intel_dp(&encoder->base);
400
401 if (tmp->pps_pipe != INVALID_PIPE)
402 pipes &= ~(1 << tmp->pps_pipe);
403 }
404
405 /*
406 * Didn't find one. This should not happen since there
407 * are two power sequencers and up to two eDP ports.
408 */
409 if (WARN_ON(pipes == 0))
410 pipe = PIPE_A;
411 else
412 pipe = ffs(pipes) - 1;
413
414 vlv_steal_power_sequencer(dev, pipe);
415 intel_dp->pps_pipe = pipe;
416
417 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418 pipe_name(intel_dp->pps_pipe),
419 port_name(intel_dig_port->port));
420
421 /* init power sequencer on this pipe and port */
422 intel_dp_init_panel_power_sequencer(dev, intel_dp);
423 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425 /*
426 * Even vdd force doesn't work until we've made
427 * the power sequencer lock in on the port.
428 */
429 vlv_power_sequencer_kick(intel_dp);
430
431 return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435 enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438 enum pipe pipe)
439 {
440 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444 enum pipe pipe)
445 {
446 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450 enum pipe pipe)
451 {
452 return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457 enum port port,
458 vlv_pipe_check pipe_check)
459 {
460 enum pipe pipe;
461
462 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464 PANEL_PORT_SELECT_MASK;
465
466 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467 continue;
468
469 if (!pipe_check(dev_priv, pipe))
470 continue;
471
472 return pipe;
473 }
474
475 return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482 struct drm_device *dev = intel_dig_port->base.base.dev;
483 struct drm_i915_private *dev_priv = dev->dev_private;
484 enum port port = intel_dig_port->port;
485
486 lockdep_assert_held(&dev_priv->pps_mutex);
487
488 /* try to find a pipe with this port selected */
489 /* first pick one where the panel is on */
490 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491 vlv_pipe_has_pp_on);
492 /* didn't find one? pick one where vdd is on */
493 if (intel_dp->pps_pipe == INVALID_PIPE)
494 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495 vlv_pipe_has_vdd_on);
496 /* didn't find one? pick one with just the correct port */
497 if (intel_dp->pps_pipe == INVALID_PIPE)
498 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499 vlv_pipe_any);
500
501 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502 if (intel_dp->pps_pipe == INVALID_PIPE) {
503 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504 port_name(port));
505 return;
506 }
507
508 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509 port_name(port), pipe_name(intel_dp->pps_pipe));
510
511 intel_dp_init_panel_power_sequencer(dev, intel_dp);
512 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517 struct drm_device *dev = dev_priv->dev;
518 struct intel_encoder *encoder;
519
520 if (WARN_ON(!IS_VALLEYVIEW(dev)))
521 return;
522
523 /*
524 * We can't grab pps_mutex here due to deadlock with power_domain
525 * mutex when power_domain functions are called while holding pps_mutex.
526 * That also means that in order to use pps_pipe the code needs to
527 * hold both a power domain reference and pps_mutex, and the power domain
528 * reference get/put must be done while _not_ holding pps_mutex.
529 * pps_{lock,unlock}() do these steps in the correct order, so one
530 * should use them always.
531 */
532
533 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
534 struct intel_dp *intel_dp;
535
536 if (encoder->type != INTEL_OUTPUT_EDP)
537 continue;
538
539 intel_dp = enc_to_intel_dp(&encoder->base);
540 intel_dp->pps_pipe = INVALID_PIPE;
541 }
542 }
543
544 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
545 {
546 struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548 if (IS_BROXTON(dev))
549 return BXT_PP_CONTROL(0);
550 else if (HAS_PCH_SPLIT(dev))
551 return PCH_PP_CONTROL;
552 else
553 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554 }
555
556 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559
560 if (IS_BROXTON(dev))
561 return BXT_PP_STATUS(0);
562 else if (HAS_PCH_SPLIT(dev))
563 return PCH_PP_STATUS;
564 else
565 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
569 This function only applicable when panel PM state is not to be tracked */
570 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
571 void *unused)
572 {
573 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
574 edp_notifier);
575 struct drm_device *dev = intel_dp_to_dev(intel_dp);
576 struct drm_i915_private *dev_priv = dev->dev_private;
577 u32 pp_div;
578 u32 pp_ctrl_reg, pp_div_reg;
579
580 if (!is_edp(intel_dp) || code != SYS_RESTART)
581 return 0;
582
583 pps_lock(intel_dp);
584
585 if (IS_VALLEYVIEW(dev)) {
586 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
587
588 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
589 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
590 pp_div = I915_READ(pp_div_reg);
591 pp_div &= PP_REFERENCE_DIVIDER_MASK;
592
593 /* 0x1F write to PP_DIV_REG sets max cycle delay */
594 I915_WRITE(pp_div_reg, pp_div | 0x1F);
595 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
596 msleep(intel_dp->panel_power_cycle_delay);
597 }
598
599 pps_unlock(intel_dp);
600
601 return 0;
602 }
603
604 static bool edp_have_panel_power(struct intel_dp *intel_dp)
605 {
606 struct drm_device *dev = intel_dp_to_dev(intel_dp);
607 struct drm_i915_private *dev_priv = dev->dev_private;
608
609 lockdep_assert_held(&dev_priv->pps_mutex);
610
611 if (IS_VALLEYVIEW(dev) &&
612 intel_dp->pps_pipe == INVALID_PIPE)
613 return false;
614
615 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616 }
617
618 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619 {
620 struct drm_device *dev = intel_dp_to_dev(intel_dp);
621 struct drm_i915_private *dev_priv = dev->dev_private;
622
623 lockdep_assert_held(&dev_priv->pps_mutex);
624
625 if (IS_VALLEYVIEW(dev) &&
626 intel_dp->pps_pipe == INVALID_PIPE)
627 return false;
628
629 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630 }
631
632 static void
633 intel_dp_check_edp(struct intel_dp *intel_dp)
634 {
635 struct drm_device *dev = intel_dp_to_dev(intel_dp);
636 struct drm_i915_private *dev_priv = dev->dev_private;
637
638 if (!is_edp(intel_dp))
639 return;
640
641 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642 WARN(1, "eDP powered off while attempting aux channel communication.\n");
643 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644 I915_READ(_pp_stat_reg(intel_dp)),
645 I915_READ(_pp_ctrl_reg(intel_dp)));
646 }
647 }
648
649 static uint32_t
650 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
651 {
652 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
653 struct drm_device *dev = intel_dig_port->base.base.dev;
654 struct drm_i915_private *dev_priv = dev->dev_private;
655 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656 uint32_t status;
657 bool done;
658
659 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660 if (has_aux_irq)
661 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662 msecs_to_jiffies_timeout(10));
663 else
664 done = wait_for_atomic(C, 10) == 0;
665 if (!done)
666 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
667 has_aux_irq);
668 #undef C
669
670 return status;
671 }
672
673 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674 {
675 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
676 struct drm_device *dev = intel_dig_port->base.base.dev;
677
678 /*
679 * The clock divider is based off the hrawclk, and would like to run at
680 * 2MHz. So, take the hrawclk value and divide by 2 and use that
681 */
682 return index ? 0 : intel_hrawclk(dev) / 2;
683 }
684
685 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688 struct drm_device *dev = intel_dig_port->base.base.dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690
691 if (index)
692 return 0;
693
694 if (intel_dig_port->port == PORT_A) {
695 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
696
697 } else {
698 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
699 }
700 }
701
702 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
703 {
704 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705 struct drm_device *dev = intel_dig_port->base.base.dev;
706 struct drm_i915_private *dev_priv = dev->dev_private;
707
708 if (intel_dig_port->port == PORT_A) {
709 if (index)
710 return 0;
711 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
713 /* Workaround for non-ULT HSW */
714 switch (index) {
715 case 0: return 63;
716 case 1: return 72;
717 default: return 0;
718 }
719 } else {
720 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721 }
722 }
723
724 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726 return index ? 0 : 100;
727 }
728
729 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
730 {
731 /*
732 * SKL doesn't need us to program the AUX clock divider (Hardware will
733 * derive the clock from CDCLK automatically). We still implement the
734 * get_aux_clock_divider vfunc to plug-in into the existing code.
735 */
736 return index ? 0 : 1;
737 }
738
739 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
740 bool has_aux_irq,
741 int send_bytes,
742 uint32_t aux_clock_divider)
743 {
744 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
745 struct drm_device *dev = intel_dig_port->base.base.dev;
746 uint32_t precharge, timeout;
747
748 if (IS_GEN6(dev))
749 precharge = 3;
750 else
751 precharge = 5;
752
753 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
754 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
755 else
756 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
757
758 return DP_AUX_CH_CTL_SEND_BUSY |
759 DP_AUX_CH_CTL_DONE |
760 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761 DP_AUX_CH_CTL_TIME_OUT_ERROR |
762 timeout |
763 DP_AUX_CH_CTL_RECEIVE_ERROR |
764 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
765 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767 }
768
769 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
770 bool has_aux_irq,
771 int send_bytes,
772 uint32_t unused)
773 {
774 return DP_AUX_CH_CTL_SEND_BUSY |
775 DP_AUX_CH_CTL_DONE |
776 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
777 DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_TIME_OUT_1600us |
779 DP_AUX_CH_CTL_RECEIVE_ERROR |
780 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
781 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
782 }
783
784 static int
785 intel_dp_aux_ch(struct intel_dp *intel_dp,
786 const uint8_t *send, int send_bytes,
787 uint8_t *recv, int recv_size)
788 {
789 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
790 struct drm_device *dev = intel_dig_port->base.base.dev;
791 struct drm_i915_private *dev_priv = dev->dev_private;
792 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793 uint32_t ch_data = ch_ctl + 4;
794 uint32_t aux_clock_divider;
795 int i, ret, recv_bytes;
796 uint32_t status;
797 int try, clock = 0;
798 bool has_aux_irq = HAS_AUX_IRQ(dev);
799 bool vdd;
800
801 pps_lock(intel_dp);
802
803 /*
804 * We will be called with VDD already enabled for dpcd/edid/oui reads.
805 * In such cases we want to leave VDD enabled and it's up to upper layers
806 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
807 * ourselves.
808 */
809 vdd = edp_panel_vdd_on(intel_dp);
810
811 /* dp aux is extremely sensitive to irq latency, hence request the
812 * lowest possible wakeup latency and so prevent the cpu from going into
813 * deep sleep states.
814 */
815 pm_qos_update_request(&dev_priv->pm_qos, 0);
816
817 intel_dp_check_edp(intel_dp);
818
819 intel_aux_display_runtime_get(dev_priv);
820
821 /* Try to wait for any previous AUX channel activity */
822 for (try = 0; try < 3; try++) {
823 status = I915_READ_NOTRACE(ch_ctl);
824 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
825 break;
826 msleep(1);
827 }
828
829 if (try == 3) {
830 static u32 last_status = -1;
831 const u32 status = I915_READ(ch_ctl);
832
833 if (status != last_status) {
834 WARN(1, "dp_aux_ch not started status 0x%08x\n",
835 status);
836 last_status = status;
837 }
838
839 ret = -EBUSY;
840 goto out;
841 }
842
843 /* Only 5 data registers! */
844 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
845 ret = -E2BIG;
846 goto out;
847 }
848
849 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
850 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
851 has_aux_irq,
852 send_bytes,
853 aux_clock_divider);
854
855 /* Must try at least 3 times according to DP spec */
856 for (try = 0; try < 5; try++) {
857 /* Load the send data into the aux channel data registers */
858 for (i = 0; i < send_bytes; i += 4)
859 I915_WRITE(ch_data + i,
860 intel_dp_pack_aux(send + i,
861 send_bytes - i));
862
863 /* Send the command and wait for it to complete */
864 I915_WRITE(ch_ctl, send_ctl);
865
866 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
867
868 /* Clear done status and any errors */
869 I915_WRITE(ch_ctl,
870 status |
871 DP_AUX_CH_CTL_DONE |
872 DP_AUX_CH_CTL_TIME_OUT_ERROR |
873 DP_AUX_CH_CTL_RECEIVE_ERROR);
874
875 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
876 continue;
877
878 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
879 * 400us delay required for errors and timeouts
880 * Timeout errors from the HW already meet this
881 * requirement so skip to next iteration
882 */
883 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
884 usleep_range(400, 500);
885 continue;
886 }
887 if (status & DP_AUX_CH_CTL_DONE)
888 goto done;
889 }
890 }
891
892 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
893 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
894 ret = -EBUSY;
895 goto out;
896 }
897
898 done:
899 /* Check for timeout or receive error.
900 * Timeouts occur when the sink is not connected
901 */
902 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
903 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
904 ret = -EIO;
905 goto out;
906 }
907
908 /* Timeouts occur when the device isn't connected, so they're
909 * "normal" -- don't fill the kernel log with these */
910 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
911 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
912 ret = -ETIMEDOUT;
913 goto out;
914 }
915
916 /* Unload any bytes sent back from the other side */
917 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
918 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
919 if (recv_bytes > recv_size)
920 recv_bytes = recv_size;
921
922 for (i = 0; i < recv_bytes; i += 4)
923 intel_dp_unpack_aux(I915_READ(ch_data + i),
924 recv + i, recv_bytes - i);
925
926 ret = recv_bytes;
927 out:
928 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
929 intel_aux_display_runtime_put(dev_priv);
930
931 if (vdd)
932 edp_panel_vdd_off(intel_dp, false);
933
934 pps_unlock(intel_dp);
935
936 return ret;
937 }
938
939 #define BARE_ADDRESS_SIZE 3
940 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
941 static ssize_t
942 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
943 {
944 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
945 uint8_t txbuf[20], rxbuf[20];
946 size_t txsize, rxsize;
947 int ret;
948
949 txbuf[0] = (msg->request << 4) |
950 ((msg->address >> 16) & 0xf);
951 txbuf[1] = (msg->address >> 8) & 0xff;
952 txbuf[2] = msg->address & 0xff;
953 txbuf[3] = msg->size - 1;
954
955 switch (msg->request & ~DP_AUX_I2C_MOT) {
956 case DP_AUX_NATIVE_WRITE:
957 case DP_AUX_I2C_WRITE:
958 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
959 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
960 rxsize = 2; /* 0 or 1 data bytes */
961
962 if (WARN_ON(txsize > 20))
963 return -E2BIG;
964
965 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
966
967 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
968 if (ret > 0) {
969 msg->reply = rxbuf[0] >> 4;
970
971 if (ret > 1) {
972 /* Number of bytes written in a short write. */
973 ret = clamp_t(int, rxbuf[1], 0, msg->size);
974 } else {
975 /* Return payload size. */
976 ret = msg->size;
977 }
978 }
979 break;
980
981 case DP_AUX_NATIVE_READ:
982 case DP_AUX_I2C_READ:
983 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
984 rxsize = msg->size + 1;
985
986 if (WARN_ON(rxsize > 20))
987 return -E2BIG;
988
989 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
990 if (ret > 0) {
991 msg->reply = rxbuf[0] >> 4;
992 /*
993 * Assume happy day, and copy the data. The caller is
994 * expected to check msg->reply before touching it.
995 *
996 * Return payload size.
997 */
998 ret--;
999 memcpy(msg->buffer, rxbuf + 1, ret);
1000 }
1001 break;
1002
1003 default:
1004 ret = -EINVAL;
1005 break;
1006 }
1007
1008 return ret;
1009 }
1010
1011 static void
1012 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1013 {
1014 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1015 struct drm_i915_private *dev_priv = dev->dev_private;
1016 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1017 enum port port = intel_dig_port->port;
1018 struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1019 const char *name = NULL;
1020 uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1021 int ret;
1022
1023 /* On SKL we don't have Aux for port E so we rely on VBT to set
1024 * a proper alternate aux channel.
1025 */
1026 if (IS_SKYLAKE(dev) && port == PORT_E) {
1027 switch (info->alternate_aux_channel) {
1028 case DP_AUX_B:
1029 porte_aux_ctl_reg = DPB_AUX_CH_CTL;
1030 break;
1031 case DP_AUX_C:
1032 porte_aux_ctl_reg = DPC_AUX_CH_CTL;
1033 break;
1034 case DP_AUX_D:
1035 porte_aux_ctl_reg = DPD_AUX_CH_CTL;
1036 break;
1037 case DP_AUX_A:
1038 default:
1039 porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1040 }
1041 }
1042
1043 switch (port) {
1044 case PORT_A:
1045 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1046 name = "DPDDC-A";
1047 break;
1048 case PORT_B:
1049 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1050 name = "DPDDC-B";
1051 break;
1052 case PORT_C:
1053 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1054 name = "DPDDC-C";
1055 break;
1056 case PORT_D:
1057 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1058 name = "DPDDC-D";
1059 break;
1060 case PORT_E:
1061 intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
1062 name = "DPDDC-E";
1063 break;
1064 default:
1065 BUG();
1066 }
1067
1068 /*
1069 * The AUX_CTL register is usually DP_CTL + 0x10.
1070 *
1071 * On Haswell and Broadwell though:
1072 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1073 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1074 *
1075 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1076 */
1077 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
1078 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1079
1080 intel_dp->aux.name = name;
1081 intel_dp->aux.dev = dev->dev;
1082 intel_dp->aux.transfer = intel_dp_aux_transfer;
1083
1084 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1085 connector->base.kdev->kobj.name);
1086
1087 ret = drm_dp_aux_register(&intel_dp->aux);
1088 if (ret < 0) {
1089 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1090 name, ret);
1091 return;
1092 }
1093
1094 ret = sysfs_create_link(&connector->base.kdev->kobj,
1095 &intel_dp->aux.ddc.dev.kobj,
1096 intel_dp->aux.ddc.dev.kobj.name);
1097 if (ret < 0) {
1098 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1099 drm_dp_aux_unregister(&intel_dp->aux);
1100 }
1101 }
1102
1103 static void
1104 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1105 {
1106 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1107
1108 if (!intel_connector->mst_port)
1109 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1110 intel_dp->aux.ddc.dev.kobj.name);
1111 intel_connector_unregister(intel_connector);
1112 }
1113
1114 static void
1115 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1116 {
1117 u32 ctrl1;
1118
1119 memset(&pipe_config->dpll_hw_state, 0,
1120 sizeof(pipe_config->dpll_hw_state));
1121
1122 pipe_config->ddi_pll_sel = SKL_DPLL0;
1123 pipe_config->dpll_hw_state.cfgcr1 = 0;
1124 pipe_config->dpll_hw_state.cfgcr2 = 0;
1125
1126 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1127 switch (pipe_config->port_clock / 2) {
1128 case 81000:
1129 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1130 SKL_DPLL0);
1131 break;
1132 case 135000:
1133 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1134 SKL_DPLL0);
1135 break;
1136 case 270000:
1137 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1138 SKL_DPLL0);
1139 break;
1140 case 162000:
1141 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1142 SKL_DPLL0);
1143 break;
1144 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1145 results in CDCLK change. Need to handle the change of CDCLK by
1146 disabling pipes and re-enabling them */
1147 case 108000:
1148 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1149 SKL_DPLL0);
1150 break;
1151 case 216000:
1152 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1153 SKL_DPLL0);
1154 break;
1155
1156 }
1157 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1158 }
1159
1160 void
1161 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1162 {
1163 memset(&pipe_config->dpll_hw_state, 0,
1164 sizeof(pipe_config->dpll_hw_state));
1165
1166 switch (pipe_config->port_clock / 2) {
1167 case 81000:
1168 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1169 break;
1170 case 135000:
1171 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1172 break;
1173 case 270000:
1174 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1175 break;
1176 }
1177 }
1178
1179 static int
1180 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1181 {
1182 if (intel_dp->num_sink_rates) {
1183 *sink_rates = intel_dp->sink_rates;
1184 return intel_dp->num_sink_rates;
1185 }
1186
1187 *sink_rates = default_rates;
1188
1189 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1190 }
1191
1192 static bool intel_dp_source_supports_hbr2(struct drm_device *dev)
1193 {
1194 /* WaDisableHBR2:skl */
1195 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1196 return false;
1197
1198 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1199 (INTEL_INFO(dev)->gen >= 9))
1200 return true;
1201 else
1202 return false;
1203 }
1204
1205 static int
1206 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1207 {
1208 int size;
1209
1210 if (IS_BROXTON(dev)) {
1211 *source_rates = bxt_rates;
1212 size = ARRAY_SIZE(bxt_rates);
1213 } else if (IS_SKYLAKE(dev)) {
1214 *source_rates = skl_rates;
1215 size = ARRAY_SIZE(skl_rates);
1216 } else {
1217 *source_rates = default_rates;
1218 size = ARRAY_SIZE(default_rates);
1219 }
1220
1221 /* This depends on the fact that 5.4 is last value in the array */
1222 if (!intel_dp_source_supports_hbr2(dev))
1223 size--;
1224
1225 return size;
1226 }
1227
1228 static void
1229 intel_dp_set_clock(struct intel_encoder *encoder,
1230 struct intel_crtc_state *pipe_config)
1231 {
1232 struct drm_device *dev = encoder->base.dev;
1233 const struct dp_link_dpll *divisor = NULL;
1234 int i, count = 0;
1235
1236 if (IS_G4X(dev)) {
1237 divisor = gen4_dpll;
1238 count = ARRAY_SIZE(gen4_dpll);
1239 } else if (HAS_PCH_SPLIT(dev)) {
1240 divisor = pch_dpll;
1241 count = ARRAY_SIZE(pch_dpll);
1242 } else if (IS_CHERRYVIEW(dev)) {
1243 divisor = chv_dpll;
1244 count = ARRAY_SIZE(chv_dpll);
1245 } else if (IS_VALLEYVIEW(dev)) {
1246 divisor = vlv_dpll;
1247 count = ARRAY_SIZE(vlv_dpll);
1248 }
1249
1250 if (divisor && count) {
1251 for (i = 0; i < count; i++) {
1252 if (pipe_config->port_clock == divisor[i].clock) {
1253 pipe_config->dpll = divisor[i].dpll;
1254 pipe_config->clock_set = true;
1255 break;
1256 }
1257 }
1258 }
1259 }
1260
1261 static int intersect_rates(const int *source_rates, int source_len,
1262 const int *sink_rates, int sink_len,
1263 int *common_rates)
1264 {
1265 int i = 0, j = 0, k = 0;
1266
1267 while (i < source_len && j < sink_len) {
1268 if (source_rates[i] == sink_rates[j]) {
1269 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1270 return k;
1271 common_rates[k] = source_rates[i];
1272 ++k;
1273 ++i;
1274 ++j;
1275 } else if (source_rates[i] < sink_rates[j]) {
1276 ++i;
1277 } else {
1278 ++j;
1279 }
1280 }
1281 return k;
1282 }
1283
1284 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1285 int *common_rates)
1286 {
1287 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1288 const int *source_rates, *sink_rates;
1289 int source_len, sink_len;
1290
1291 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1292 source_len = intel_dp_source_rates(dev, &source_rates);
1293
1294 return intersect_rates(source_rates, source_len,
1295 sink_rates, sink_len,
1296 common_rates);
1297 }
1298
1299 static void snprintf_int_array(char *str, size_t len,
1300 const int *array, int nelem)
1301 {
1302 int i;
1303
1304 str[0] = '\0';
1305
1306 for (i = 0; i < nelem; i++) {
1307 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1308 if (r >= len)
1309 return;
1310 str += r;
1311 len -= r;
1312 }
1313 }
1314
1315 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1316 {
1317 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1318 const int *source_rates, *sink_rates;
1319 int source_len, sink_len, common_len;
1320 int common_rates[DP_MAX_SUPPORTED_RATES];
1321 char str[128]; /* FIXME: too big for stack? */
1322
1323 if ((drm_debug & DRM_UT_KMS) == 0)
1324 return;
1325
1326 source_len = intel_dp_source_rates(dev, &source_rates);
1327 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1328 DRM_DEBUG_KMS("source rates: %s\n", str);
1329
1330 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1331 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1332 DRM_DEBUG_KMS("sink rates: %s\n", str);
1333
1334 common_len = intel_dp_common_rates(intel_dp, common_rates);
1335 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1336 DRM_DEBUG_KMS("common rates: %s\n", str);
1337 }
1338
1339 static int rate_to_index(int find, const int *rates)
1340 {
1341 int i = 0;
1342
1343 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1344 if (find == rates[i])
1345 break;
1346
1347 return i;
1348 }
1349
1350 int
1351 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1352 {
1353 int rates[DP_MAX_SUPPORTED_RATES] = {};
1354 int len;
1355
1356 len = intel_dp_common_rates(intel_dp, rates);
1357 if (WARN_ON(len <= 0))
1358 return 162000;
1359
1360 return rates[rate_to_index(0, rates) - 1];
1361 }
1362
1363 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1364 {
1365 return rate_to_index(rate, intel_dp->sink_rates);
1366 }
1367
1368 static void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1369 uint8_t *link_bw, uint8_t *rate_select)
1370 {
1371 if (intel_dp->num_sink_rates) {
1372 *link_bw = 0;
1373 *rate_select =
1374 intel_dp_rate_select(intel_dp, port_clock);
1375 } else {
1376 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1377 *rate_select = 0;
1378 }
1379 }
1380
1381 bool
1382 intel_dp_compute_config(struct intel_encoder *encoder,
1383 struct intel_crtc_state *pipe_config)
1384 {
1385 struct drm_device *dev = encoder->base.dev;
1386 struct drm_i915_private *dev_priv = dev->dev_private;
1387 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1388 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1389 enum port port = dp_to_dig_port(intel_dp)->port;
1390 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1391 struct intel_connector *intel_connector = intel_dp->attached_connector;
1392 int lane_count, clock;
1393 int min_lane_count = 1;
1394 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1395 /* Conveniently, the link BW constants become indices with a shift...*/
1396 int min_clock = 0;
1397 int max_clock;
1398 int bpp, mode_rate;
1399 int link_avail, link_clock;
1400 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1401 int common_len;
1402 uint8_t link_bw, rate_select;
1403
1404 common_len = intel_dp_common_rates(intel_dp, common_rates);
1405
1406 /* No common link rates between source and sink */
1407 WARN_ON(common_len <= 0);
1408
1409 max_clock = common_len - 1;
1410
1411 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1412 pipe_config->has_pch_encoder = true;
1413
1414 pipe_config->has_dp_encoder = true;
1415 pipe_config->has_drrs = false;
1416 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1417
1418 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1419 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1420 adjusted_mode);
1421
1422 if (INTEL_INFO(dev)->gen >= 9) {
1423 int ret;
1424 ret = skl_update_scaler_crtc(pipe_config);
1425 if (ret)
1426 return ret;
1427 }
1428
1429 if (!HAS_PCH_SPLIT(dev))
1430 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1431 intel_connector->panel.fitting_mode);
1432 else
1433 intel_pch_panel_fitting(intel_crtc, pipe_config,
1434 intel_connector->panel.fitting_mode);
1435 }
1436
1437 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1438 return false;
1439
1440 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1441 "max bw %d pixel clock %iKHz\n",
1442 max_lane_count, common_rates[max_clock],
1443 adjusted_mode->crtc_clock);
1444
1445 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1446 * bpc in between. */
1447 bpp = pipe_config->pipe_bpp;
1448 if (is_edp(intel_dp)) {
1449
1450 /* Get bpp from vbt only for panels that dont have bpp in edid */
1451 if (intel_connector->base.display_info.bpc == 0 &&
1452 (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1453 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1454 dev_priv->vbt.edp_bpp);
1455 bpp = dev_priv->vbt.edp_bpp;
1456 }
1457
1458 /*
1459 * Use the maximum clock and number of lanes the eDP panel
1460 * advertizes being capable of. The panels are generally
1461 * designed to support only a single clock and lane
1462 * configuration, and typically these values correspond to the
1463 * native resolution of the panel.
1464 */
1465 min_lane_count = max_lane_count;
1466 min_clock = max_clock;
1467 }
1468
1469 for (; bpp >= 6*3; bpp -= 2*3) {
1470 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1471 bpp);
1472
1473 for (clock = min_clock; clock <= max_clock; clock++) {
1474 for (lane_count = min_lane_count;
1475 lane_count <= max_lane_count;
1476 lane_count <<= 1) {
1477
1478 link_clock = common_rates[clock];
1479 link_avail = intel_dp_max_data_rate(link_clock,
1480 lane_count);
1481
1482 if (mode_rate <= link_avail) {
1483 goto found;
1484 }
1485 }
1486 }
1487 }
1488
1489 return false;
1490
1491 found:
1492 if (intel_dp->color_range_auto) {
1493 /*
1494 * See:
1495 * CEA-861-E - 5.1 Default Encoding Parameters
1496 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1497 */
1498 pipe_config->limited_color_range =
1499 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1500 } else {
1501 pipe_config->limited_color_range =
1502 intel_dp->limited_color_range;
1503 }
1504
1505 pipe_config->lane_count = lane_count;
1506
1507 pipe_config->pipe_bpp = bpp;
1508 pipe_config->port_clock = common_rates[clock];
1509
1510 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1511 &link_bw, &rate_select);
1512
1513 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1514 link_bw, rate_select, pipe_config->lane_count,
1515 pipe_config->port_clock, bpp);
1516 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1517 mode_rate, link_avail);
1518
1519 intel_link_compute_m_n(bpp, lane_count,
1520 adjusted_mode->crtc_clock,
1521 pipe_config->port_clock,
1522 &pipe_config->dp_m_n);
1523
1524 if (intel_connector->panel.downclock_mode != NULL &&
1525 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1526 pipe_config->has_drrs = true;
1527 intel_link_compute_m_n(bpp, lane_count,
1528 intel_connector->panel.downclock_mode->clock,
1529 pipe_config->port_clock,
1530 &pipe_config->dp_m2_n2);
1531 }
1532
1533 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1534 skl_edp_set_pll_config(pipe_config);
1535 else if (IS_BROXTON(dev))
1536 /* handled in ddi */;
1537 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1538 hsw_dp_set_ddi_pll_sel(pipe_config);
1539 else
1540 intel_dp_set_clock(encoder, pipe_config);
1541
1542 return true;
1543 }
1544
1545 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1546 {
1547 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1548 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1549 struct drm_device *dev = crtc->base.dev;
1550 struct drm_i915_private *dev_priv = dev->dev_private;
1551 u32 dpa_ctl;
1552
1553 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1554 crtc->config->port_clock);
1555 dpa_ctl = I915_READ(DP_A);
1556 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1557
1558 if (crtc->config->port_clock == 162000) {
1559 /* For a long time we've carried around a ILK-DevA w/a for the
1560 * 160MHz clock. If we're really unlucky, it's still required.
1561 */
1562 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1563 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1564 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1565 } else {
1566 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1567 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1568 }
1569
1570 I915_WRITE(DP_A, dpa_ctl);
1571
1572 POSTING_READ(DP_A);
1573 udelay(500);
1574 }
1575
1576 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1577 const struct intel_crtc_state *pipe_config)
1578 {
1579 intel_dp->link_rate = pipe_config->port_clock;
1580 intel_dp->lane_count = pipe_config->lane_count;
1581 }
1582
1583 static void intel_dp_prepare(struct intel_encoder *encoder)
1584 {
1585 struct drm_device *dev = encoder->base.dev;
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1588 enum port port = dp_to_dig_port(intel_dp)->port;
1589 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1590 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1591
1592 intel_dp_set_link_params(intel_dp, crtc->config);
1593
1594 /*
1595 * There are four kinds of DP registers:
1596 *
1597 * IBX PCH
1598 * SNB CPU
1599 * IVB CPU
1600 * CPT PCH
1601 *
1602 * IBX PCH and CPU are the same for almost everything,
1603 * except that the CPU DP PLL is configured in this
1604 * register
1605 *
1606 * CPT PCH is quite different, having many bits moved
1607 * to the TRANS_DP_CTL register instead. That
1608 * configuration happens (oddly) in ironlake_pch_enable
1609 */
1610
1611 /* Preserve the BIOS-computed detected bit. This is
1612 * supposed to be read-only.
1613 */
1614 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1615
1616 /* Handle DP bits in common between all three register formats */
1617 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1618 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1619
1620 if (crtc->config->has_audio)
1621 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1622
1623 /* Split out the IBX/CPU vs CPT settings */
1624
1625 if (IS_GEN7(dev) && port == PORT_A) {
1626 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1627 intel_dp->DP |= DP_SYNC_HS_HIGH;
1628 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1629 intel_dp->DP |= DP_SYNC_VS_HIGH;
1630 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1631
1632 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1633 intel_dp->DP |= DP_ENHANCED_FRAMING;
1634
1635 intel_dp->DP |= crtc->pipe << 29;
1636 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1637 u32 trans_dp;
1638
1639 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1640
1641 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1642 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1643 trans_dp |= TRANS_DP_ENH_FRAMING;
1644 else
1645 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1646 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1647 } else {
1648 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1649 crtc->config->limited_color_range)
1650 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1651
1652 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1653 intel_dp->DP |= DP_SYNC_HS_HIGH;
1654 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1655 intel_dp->DP |= DP_SYNC_VS_HIGH;
1656 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1657
1658 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1659 intel_dp->DP |= DP_ENHANCED_FRAMING;
1660
1661 if (IS_CHERRYVIEW(dev))
1662 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1663 else if (crtc->pipe == PIPE_B)
1664 intel_dp->DP |= DP_PIPEB_SELECT;
1665 }
1666 }
1667
1668 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1669 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1670
1671 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1672 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1673
1674 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1675 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1676
1677 static void wait_panel_status(struct intel_dp *intel_dp,
1678 u32 mask,
1679 u32 value)
1680 {
1681 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683 u32 pp_stat_reg, pp_ctrl_reg;
1684
1685 lockdep_assert_held(&dev_priv->pps_mutex);
1686
1687 pp_stat_reg = _pp_stat_reg(intel_dp);
1688 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1689
1690 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1691 mask, value,
1692 I915_READ(pp_stat_reg),
1693 I915_READ(pp_ctrl_reg));
1694
1695 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1696 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1697 I915_READ(pp_stat_reg),
1698 I915_READ(pp_ctrl_reg));
1699 }
1700
1701 DRM_DEBUG_KMS("Wait complete\n");
1702 }
1703
1704 static void wait_panel_on(struct intel_dp *intel_dp)
1705 {
1706 DRM_DEBUG_KMS("Wait for panel power on\n");
1707 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1708 }
1709
1710 static void wait_panel_off(struct intel_dp *intel_dp)
1711 {
1712 DRM_DEBUG_KMS("Wait for panel power off time\n");
1713 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1714 }
1715
1716 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1717 {
1718 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1719
1720 /* When we disable the VDD override bit last we have to do the manual
1721 * wait. */
1722 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1723 intel_dp->panel_power_cycle_delay);
1724
1725 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1726 }
1727
1728 static void wait_backlight_on(struct intel_dp *intel_dp)
1729 {
1730 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1731 intel_dp->backlight_on_delay);
1732 }
1733
1734 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1735 {
1736 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1737 intel_dp->backlight_off_delay);
1738 }
1739
1740 /* Read the current pp_control value, unlocking the register if it
1741 * is locked
1742 */
1743
1744 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1745 {
1746 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1747 struct drm_i915_private *dev_priv = dev->dev_private;
1748 u32 control;
1749
1750 lockdep_assert_held(&dev_priv->pps_mutex);
1751
1752 control = I915_READ(_pp_ctrl_reg(intel_dp));
1753 if (!IS_BROXTON(dev)) {
1754 control &= ~PANEL_UNLOCK_MASK;
1755 control |= PANEL_UNLOCK_REGS;
1756 }
1757 return control;
1758 }
1759
1760 /*
1761 * Must be paired with edp_panel_vdd_off().
1762 * Must hold pps_mutex around the whole on/off sequence.
1763 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1764 */
1765 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1766 {
1767 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1768 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1769 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 enum intel_display_power_domain power_domain;
1772 u32 pp;
1773 u32 pp_stat_reg, pp_ctrl_reg;
1774 bool need_to_disable = !intel_dp->want_panel_vdd;
1775
1776 lockdep_assert_held(&dev_priv->pps_mutex);
1777
1778 if (!is_edp(intel_dp))
1779 return false;
1780
1781 cancel_delayed_work(&intel_dp->panel_vdd_work);
1782 intel_dp->want_panel_vdd = true;
1783
1784 if (edp_have_panel_vdd(intel_dp))
1785 return need_to_disable;
1786
1787 power_domain = intel_display_port_power_domain(intel_encoder);
1788 intel_display_power_get(dev_priv, power_domain);
1789
1790 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1791 port_name(intel_dig_port->port));
1792
1793 if (!edp_have_panel_power(intel_dp))
1794 wait_panel_power_cycle(intel_dp);
1795
1796 pp = ironlake_get_pp_control(intel_dp);
1797 pp |= EDP_FORCE_VDD;
1798
1799 pp_stat_reg = _pp_stat_reg(intel_dp);
1800 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1801
1802 I915_WRITE(pp_ctrl_reg, pp);
1803 POSTING_READ(pp_ctrl_reg);
1804 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1805 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1806 /*
1807 * If the panel wasn't on, delay before accessing aux channel
1808 */
1809 if (!edp_have_panel_power(intel_dp)) {
1810 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1811 port_name(intel_dig_port->port));
1812 msleep(intel_dp->panel_power_up_delay);
1813 }
1814
1815 return need_to_disable;
1816 }
1817
1818 /*
1819 * Must be paired with intel_edp_panel_vdd_off() or
1820 * intel_edp_panel_off().
1821 * Nested calls to these functions are not allowed since
1822 * we drop the lock. Caller must use some higher level
1823 * locking to prevent nested calls from other threads.
1824 */
1825 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1826 {
1827 bool vdd;
1828
1829 if (!is_edp(intel_dp))
1830 return;
1831
1832 pps_lock(intel_dp);
1833 vdd = edp_panel_vdd_on(intel_dp);
1834 pps_unlock(intel_dp);
1835
1836 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1837 port_name(dp_to_dig_port(intel_dp)->port));
1838 }
1839
1840 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1841 {
1842 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844 struct intel_digital_port *intel_dig_port =
1845 dp_to_dig_port(intel_dp);
1846 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1847 enum intel_display_power_domain power_domain;
1848 u32 pp;
1849 u32 pp_stat_reg, pp_ctrl_reg;
1850
1851 lockdep_assert_held(&dev_priv->pps_mutex);
1852
1853 WARN_ON(intel_dp->want_panel_vdd);
1854
1855 if (!edp_have_panel_vdd(intel_dp))
1856 return;
1857
1858 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1859 port_name(intel_dig_port->port));
1860
1861 pp = ironlake_get_pp_control(intel_dp);
1862 pp &= ~EDP_FORCE_VDD;
1863
1864 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1865 pp_stat_reg = _pp_stat_reg(intel_dp);
1866
1867 I915_WRITE(pp_ctrl_reg, pp);
1868 POSTING_READ(pp_ctrl_reg);
1869
1870 /* Make sure sequencer is idle before allowing subsequent activity */
1871 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1872 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1873
1874 if ((pp & POWER_TARGET_ON) == 0)
1875 intel_dp->last_power_cycle = jiffies;
1876
1877 power_domain = intel_display_port_power_domain(intel_encoder);
1878 intel_display_power_put(dev_priv, power_domain);
1879 }
1880
1881 static void edp_panel_vdd_work(struct work_struct *__work)
1882 {
1883 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1884 struct intel_dp, panel_vdd_work);
1885
1886 pps_lock(intel_dp);
1887 if (!intel_dp->want_panel_vdd)
1888 edp_panel_vdd_off_sync(intel_dp);
1889 pps_unlock(intel_dp);
1890 }
1891
1892 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1893 {
1894 unsigned long delay;
1895
1896 /*
1897 * Queue the timer to fire a long time from now (relative to the power
1898 * down delay) to keep the panel power up across a sequence of
1899 * operations.
1900 */
1901 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1902 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1903 }
1904
1905 /*
1906 * Must be paired with edp_panel_vdd_on().
1907 * Must hold pps_mutex around the whole on/off sequence.
1908 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1909 */
1910 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1911 {
1912 struct drm_i915_private *dev_priv =
1913 intel_dp_to_dev(intel_dp)->dev_private;
1914
1915 lockdep_assert_held(&dev_priv->pps_mutex);
1916
1917 if (!is_edp(intel_dp))
1918 return;
1919
1920 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1921 port_name(dp_to_dig_port(intel_dp)->port));
1922
1923 intel_dp->want_panel_vdd = false;
1924
1925 if (sync)
1926 edp_panel_vdd_off_sync(intel_dp);
1927 else
1928 edp_panel_vdd_schedule_off(intel_dp);
1929 }
1930
1931 static void edp_panel_on(struct intel_dp *intel_dp)
1932 {
1933 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1934 struct drm_i915_private *dev_priv = dev->dev_private;
1935 u32 pp;
1936 u32 pp_ctrl_reg;
1937
1938 lockdep_assert_held(&dev_priv->pps_mutex);
1939
1940 if (!is_edp(intel_dp))
1941 return;
1942
1943 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1944 port_name(dp_to_dig_port(intel_dp)->port));
1945
1946 if (WARN(edp_have_panel_power(intel_dp),
1947 "eDP port %c panel power already on\n",
1948 port_name(dp_to_dig_port(intel_dp)->port)))
1949 return;
1950
1951 wait_panel_power_cycle(intel_dp);
1952
1953 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1954 pp = ironlake_get_pp_control(intel_dp);
1955 if (IS_GEN5(dev)) {
1956 /* ILK workaround: disable reset around power sequence */
1957 pp &= ~PANEL_POWER_RESET;
1958 I915_WRITE(pp_ctrl_reg, pp);
1959 POSTING_READ(pp_ctrl_reg);
1960 }
1961
1962 pp |= POWER_TARGET_ON;
1963 if (!IS_GEN5(dev))
1964 pp |= PANEL_POWER_RESET;
1965
1966 I915_WRITE(pp_ctrl_reg, pp);
1967 POSTING_READ(pp_ctrl_reg);
1968
1969 wait_panel_on(intel_dp);
1970 intel_dp->last_power_on = jiffies;
1971
1972 if (IS_GEN5(dev)) {
1973 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1974 I915_WRITE(pp_ctrl_reg, pp);
1975 POSTING_READ(pp_ctrl_reg);
1976 }
1977 }
1978
1979 void intel_edp_panel_on(struct intel_dp *intel_dp)
1980 {
1981 if (!is_edp(intel_dp))
1982 return;
1983
1984 pps_lock(intel_dp);
1985 edp_panel_on(intel_dp);
1986 pps_unlock(intel_dp);
1987 }
1988
1989
1990 static void edp_panel_off(struct intel_dp *intel_dp)
1991 {
1992 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1993 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1994 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996 enum intel_display_power_domain power_domain;
1997 u32 pp;
1998 u32 pp_ctrl_reg;
1999
2000 lockdep_assert_held(&dev_priv->pps_mutex);
2001
2002 if (!is_edp(intel_dp))
2003 return;
2004
2005 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2006 port_name(dp_to_dig_port(intel_dp)->port));
2007
2008 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2009 port_name(dp_to_dig_port(intel_dp)->port));
2010
2011 pp = ironlake_get_pp_control(intel_dp);
2012 /* We need to switch off panel power _and_ force vdd, for otherwise some
2013 * panels get very unhappy and cease to work. */
2014 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2015 EDP_BLC_ENABLE);
2016
2017 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2018
2019 intel_dp->want_panel_vdd = false;
2020
2021 I915_WRITE(pp_ctrl_reg, pp);
2022 POSTING_READ(pp_ctrl_reg);
2023
2024 intel_dp->last_power_cycle = jiffies;
2025 wait_panel_off(intel_dp);
2026
2027 /* We got a reference when we enabled the VDD. */
2028 power_domain = intel_display_port_power_domain(intel_encoder);
2029 intel_display_power_put(dev_priv, power_domain);
2030 }
2031
2032 void intel_edp_panel_off(struct intel_dp *intel_dp)
2033 {
2034 if (!is_edp(intel_dp))
2035 return;
2036
2037 pps_lock(intel_dp);
2038 edp_panel_off(intel_dp);
2039 pps_unlock(intel_dp);
2040 }
2041
2042 /* Enable backlight in the panel power control. */
2043 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2044 {
2045 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2046 struct drm_device *dev = intel_dig_port->base.base.dev;
2047 struct drm_i915_private *dev_priv = dev->dev_private;
2048 u32 pp;
2049 u32 pp_ctrl_reg;
2050
2051 /*
2052 * If we enable the backlight right away following a panel power
2053 * on, we may see slight flicker as the panel syncs with the eDP
2054 * link. So delay a bit to make sure the image is solid before
2055 * allowing it to appear.
2056 */
2057 wait_backlight_on(intel_dp);
2058
2059 pps_lock(intel_dp);
2060
2061 pp = ironlake_get_pp_control(intel_dp);
2062 pp |= EDP_BLC_ENABLE;
2063
2064 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2065
2066 I915_WRITE(pp_ctrl_reg, pp);
2067 POSTING_READ(pp_ctrl_reg);
2068
2069 pps_unlock(intel_dp);
2070 }
2071
2072 /* Enable backlight PWM and backlight PP control. */
2073 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2074 {
2075 if (!is_edp(intel_dp))
2076 return;
2077
2078 DRM_DEBUG_KMS("\n");
2079
2080 intel_panel_enable_backlight(intel_dp->attached_connector);
2081 _intel_edp_backlight_on(intel_dp);
2082 }
2083
2084 /* Disable backlight in the panel power control. */
2085 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2086 {
2087 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2088 struct drm_i915_private *dev_priv = dev->dev_private;
2089 u32 pp;
2090 u32 pp_ctrl_reg;
2091
2092 if (!is_edp(intel_dp))
2093 return;
2094
2095 pps_lock(intel_dp);
2096
2097 pp = ironlake_get_pp_control(intel_dp);
2098 pp &= ~EDP_BLC_ENABLE;
2099
2100 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2101
2102 I915_WRITE(pp_ctrl_reg, pp);
2103 POSTING_READ(pp_ctrl_reg);
2104
2105 pps_unlock(intel_dp);
2106
2107 intel_dp->last_backlight_off = jiffies;
2108 edp_wait_backlight_off(intel_dp);
2109 }
2110
2111 /* Disable backlight PP control and backlight PWM. */
2112 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2113 {
2114 if (!is_edp(intel_dp))
2115 return;
2116
2117 DRM_DEBUG_KMS("\n");
2118
2119 _intel_edp_backlight_off(intel_dp);
2120 intel_panel_disable_backlight(intel_dp->attached_connector);
2121 }
2122
2123 /*
2124 * Hook for controlling the panel power control backlight through the bl_power
2125 * sysfs attribute. Take care to handle multiple calls.
2126 */
2127 static void intel_edp_backlight_power(struct intel_connector *connector,
2128 bool enable)
2129 {
2130 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2131 bool is_enabled;
2132
2133 pps_lock(intel_dp);
2134 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2135 pps_unlock(intel_dp);
2136
2137 if (is_enabled == enable)
2138 return;
2139
2140 DRM_DEBUG_KMS("panel power control backlight %s\n",
2141 enable ? "enable" : "disable");
2142
2143 if (enable)
2144 _intel_edp_backlight_on(intel_dp);
2145 else
2146 _intel_edp_backlight_off(intel_dp);
2147 }
2148
2149 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2150 {
2151 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2152 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2153 struct drm_device *dev = crtc->dev;
2154 struct drm_i915_private *dev_priv = dev->dev_private;
2155 u32 dpa_ctl;
2156
2157 assert_pipe_disabled(dev_priv,
2158 to_intel_crtc(crtc)->pipe);
2159
2160 DRM_DEBUG_KMS("\n");
2161 dpa_ctl = I915_READ(DP_A);
2162 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2163 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2164
2165 /* We don't adjust intel_dp->DP while tearing down the link, to
2166 * facilitate link retraining (e.g. after hotplug). Hence clear all
2167 * enable bits here to ensure that we don't enable too much. */
2168 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2169 intel_dp->DP |= DP_PLL_ENABLE;
2170 I915_WRITE(DP_A, intel_dp->DP);
2171 POSTING_READ(DP_A);
2172 udelay(200);
2173 }
2174
2175 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2176 {
2177 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2178 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2179 struct drm_device *dev = crtc->dev;
2180 struct drm_i915_private *dev_priv = dev->dev_private;
2181 u32 dpa_ctl;
2182
2183 assert_pipe_disabled(dev_priv,
2184 to_intel_crtc(crtc)->pipe);
2185
2186 dpa_ctl = I915_READ(DP_A);
2187 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2188 "dp pll off, should be on\n");
2189 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2190
2191 /* We can't rely on the value tracked for the DP register in
2192 * intel_dp->DP because link_down must not change that (otherwise link
2193 * re-training will fail. */
2194 dpa_ctl &= ~DP_PLL_ENABLE;
2195 I915_WRITE(DP_A, dpa_ctl);
2196 POSTING_READ(DP_A);
2197 udelay(200);
2198 }
2199
2200 /* If the sink supports it, try to set the power state appropriately */
2201 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2202 {
2203 int ret, i;
2204
2205 /* Should have a valid DPCD by this point */
2206 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2207 return;
2208
2209 if (mode != DRM_MODE_DPMS_ON) {
2210 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2211 DP_SET_POWER_D3);
2212 } else {
2213 /*
2214 * When turning on, we need to retry for 1ms to give the sink
2215 * time to wake up.
2216 */
2217 for (i = 0; i < 3; i++) {
2218 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2219 DP_SET_POWER_D0);
2220 if (ret == 1)
2221 break;
2222 msleep(1);
2223 }
2224 }
2225
2226 if (ret != 1)
2227 DRM_DEBUG_KMS("failed to %s sink power state\n",
2228 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2229 }
2230
2231 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2232 enum pipe *pipe)
2233 {
2234 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2235 enum port port = dp_to_dig_port(intel_dp)->port;
2236 struct drm_device *dev = encoder->base.dev;
2237 struct drm_i915_private *dev_priv = dev->dev_private;
2238 enum intel_display_power_domain power_domain;
2239 u32 tmp;
2240
2241 power_domain = intel_display_port_power_domain(encoder);
2242 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2243 return false;
2244
2245 tmp = I915_READ(intel_dp->output_reg);
2246
2247 if (!(tmp & DP_PORT_EN))
2248 return false;
2249
2250 if (IS_GEN7(dev) && port == PORT_A) {
2251 *pipe = PORT_TO_PIPE_CPT(tmp);
2252 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2253 enum pipe p;
2254
2255 for_each_pipe(dev_priv, p) {
2256 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2257 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2258 *pipe = p;
2259 return true;
2260 }
2261 }
2262
2263 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2264 intel_dp->output_reg);
2265 } else if (IS_CHERRYVIEW(dev)) {
2266 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2267 } else {
2268 *pipe = PORT_TO_PIPE(tmp);
2269 }
2270
2271 return true;
2272 }
2273
2274 static void intel_dp_get_config(struct intel_encoder *encoder,
2275 struct intel_crtc_state *pipe_config)
2276 {
2277 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2278 u32 tmp, flags = 0;
2279 struct drm_device *dev = encoder->base.dev;
2280 struct drm_i915_private *dev_priv = dev->dev_private;
2281 enum port port = dp_to_dig_port(intel_dp)->port;
2282 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2283 int dotclock;
2284
2285 tmp = I915_READ(intel_dp->output_reg);
2286
2287 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2288
2289 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2290 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2291
2292 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2293 flags |= DRM_MODE_FLAG_PHSYNC;
2294 else
2295 flags |= DRM_MODE_FLAG_NHSYNC;
2296
2297 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2298 flags |= DRM_MODE_FLAG_PVSYNC;
2299 else
2300 flags |= DRM_MODE_FLAG_NVSYNC;
2301 } else {
2302 if (tmp & DP_SYNC_HS_HIGH)
2303 flags |= DRM_MODE_FLAG_PHSYNC;
2304 else
2305 flags |= DRM_MODE_FLAG_NHSYNC;
2306
2307 if (tmp & DP_SYNC_VS_HIGH)
2308 flags |= DRM_MODE_FLAG_PVSYNC;
2309 else
2310 flags |= DRM_MODE_FLAG_NVSYNC;
2311 }
2312
2313 pipe_config->base.adjusted_mode.flags |= flags;
2314
2315 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2316 tmp & DP_COLOR_RANGE_16_235)
2317 pipe_config->limited_color_range = true;
2318
2319 pipe_config->has_dp_encoder = true;
2320
2321 pipe_config->lane_count =
2322 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2323
2324 intel_dp_get_m_n(crtc, pipe_config);
2325
2326 if (port == PORT_A) {
2327 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2328 pipe_config->port_clock = 162000;
2329 else
2330 pipe_config->port_clock = 270000;
2331 }
2332
2333 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2334 &pipe_config->dp_m_n);
2335
2336 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2337 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2338
2339 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2340
2341 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2342 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2343 /*
2344 * This is a big fat ugly hack.
2345 *
2346 * Some machines in UEFI boot mode provide us a VBT that has 18
2347 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2348 * unknown we fail to light up. Yet the same BIOS boots up with
2349 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2350 * max, not what it tells us to use.
2351 *
2352 * Note: This will still be broken if the eDP panel is not lit
2353 * up by the BIOS, and thus we can't get the mode at module
2354 * load.
2355 */
2356 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2357 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2358 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2359 }
2360 }
2361
2362 static void intel_disable_dp(struct intel_encoder *encoder)
2363 {
2364 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2365 struct drm_device *dev = encoder->base.dev;
2366 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2367
2368 if (crtc->config->has_audio)
2369 intel_audio_codec_disable(encoder);
2370
2371 if (HAS_PSR(dev) && !HAS_DDI(dev))
2372 intel_psr_disable(intel_dp);
2373
2374 /* Make sure the panel is off before trying to change the mode. But also
2375 * ensure that we have vdd while we switch off the panel. */
2376 intel_edp_panel_vdd_on(intel_dp);
2377 intel_edp_backlight_off(intel_dp);
2378 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2379 intel_edp_panel_off(intel_dp);
2380
2381 /* disable the port before the pipe on g4x */
2382 if (INTEL_INFO(dev)->gen < 5)
2383 intel_dp_link_down(intel_dp);
2384 }
2385
2386 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2387 {
2388 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2389 enum port port = dp_to_dig_port(intel_dp)->port;
2390
2391 intel_dp_link_down(intel_dp);
2392 if (port == PORT_A)
2393 ironlake_edp_pll_off(intel_dp);
2394 }
2395
2396 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2397 {
2398 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2399
2400 intel_dp_link_down(intel_dp);
2401 }
2402
2403 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2404 bool reset)
2405 {
2406 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2407 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2408 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2409 enum pipe pipe = crtc->pipe;
2410 uint32_t val;
2411
2412 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2413 if (reset)
2414 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2415 else
2416 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2417 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2418
2419 if (crtc->config->lane_count > 2) {
2420 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2421 if (reset)
2422 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2423 else
2424 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2425 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2426 }
2427
2428 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2429 val |= CHV_PCS_REQ_SOFTRESET_EN;
2430 if (reset)
2431 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2432 else
2433 val |= DPIO_PCS_CLK_SOFT_RESET;
2434 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2435
2436 if (crtc->config->lane_count > 2) {
2437 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2438 val |= CHV_PCS_REQ_SOFTRESET_EN;
2439 if (reset)
2440 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2441 else
2442 val |= DPIO_PCS_CLK_SOFT_RESET;
2443 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2444 }
2445 }
2446
2447 static void chv_post_disable_dp(struct intel_encoder *encoder)
2448 {
2449 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2450 struct drm_device *dev = encoder->base.dev;
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2452
2453 intel_dp_link_down(intel_dp);
2454
2455 mutex_lock(&dev_priv->sb_lock);
2456
2457 /* Assert data lane reset */
2458 chv_data_lane_soft_reset(encoder, true);
2459
2460 mutex_unlock(&dev_priv->sb_lock);
2461 }
2462
2463 static void
2464 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2465 uint32_t *DP,
2466 uint8_t dp_train_pat)
2467 {
2468 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2469 struct drm_device *dev = intel_dig_port->base.base.dev;
2470 struct drm_i915_private *dev_priv = dev->dev_private;
2471 enum port port = intel_dig_port->port;
2472
2473 if (HAS_DDI(dev)) {
2474 uint32_t temp = I915_READ(DP_TP_CTL(port));
2475
2476 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2477 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2478 else
2479 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2480
2481 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2482 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2483 case DP_TRAINING_PATTERN_DISABLE:
2484 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2485
2486 break;
2487 case DP_TRAINING_PATTERN_1:
2488 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2489 break;
2490 case DP_TRAINING_PATTERN_2:
2491 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2492 break;
2493 case DP_TRAINING_PATTERN_3:
2494 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2495 break;
2496 }
2497 I915_WRITE(DP_TP_CTL(port), temp);
2498
2499 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2500 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2501 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2502
2503 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2504 case DP_TRAINING_PATTERN_DISABLE:
2505 *DP |= DP_LINK_TRAIN_OFF_CPT;
2506 break;
2507 case DP_TRAINING_PATTERN_1:
2508 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2509 break;
2510 case DP_TRAINING_PATTERN_2:
2511 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2512 break;
2513 case DP_TRAINING_PATTERN_3:
2514 DRM_ERROR("DP training pattern 3 not supported\n");
2515 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2516 break;
2517 }
2518
2519 } else {
2520 if (IS_CHERRYVIEW(dev))
2521 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2522 else
2523 *DP &= ~DP_LINK_TRAIN_MASK;
2524
2525 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2526 case DP_TRAINING_PATTERN_DISABLE:
2527 *DP |= DP_LINK_TRAIN_OFF;
2528 break;
2529 case DP_TRAINING_PATTERN_1:
2530 *DP |= DP_LINK_TRAIN_PAT_1;
2531 break;
2532 case DP_TRAINING_PATTERN_2:
2533 *DP |= DP_LINK_TRAIN_PAT_2;
2534 break;
2535 case DP_TRAINING_PATTERN_3:
2536 if (IS_CHERRYVIEW(dev)) {
2537 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2538 } else {
2539 DRM_ERROR("DP training pattern 3 not supported\n");
2540 *DP |= DP_LINK_TRAIN_PAT_2;
2541 }
2542 break;
2543 }
2544 }
2545 }
2546
2547 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2548 {
2549 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2550 struct drm_i915_private *dev_priv = dev->dev_private;
2551
2552 /* enable with pattern 1 (as per spec) */
2553 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2554 DP_TRAINING_PATTERN_1);
2555
2556 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2557 POSTING_READ(intel_dp->output_reg);
2558
2559 /*
2560 * Magic for VLV/CHV. We _must_ first set up the register
2561 * without actually enabling the port, and then do another
2562 * write to enable the port. Otherwise link training will
2563 * fail when the power sequencer is freshly used for this port.
2564 */
2565 intel_dp->DP |= DP_PORT_EN;
2566
2567 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2568 POSTING_READ(intel_dp->output_reg);
2569 }
2570
2571 static void intel_enable_dp(struct intel_encoder *encoder)
2572 {
2573 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2574 struct drm_device *dev = encoder->base.dev;
2575 struct drm_i915_private *dev_priv = dev->dev_private;
2576 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2577 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2578
2579 if (WARN_ON(dp_reg & DP_PORT_EN))
2580 return;
2581
2582 pps_lock(intel_dp);
2583
2584 if (IS_VALLEYVIEW(dev))
2585 vlv_init_panel_power_sequencer(intel_dp);
2586
2587 intel_dp_enable_port(intel_dp);
2588
2589 edp_panel_vdd_on(intel_dp);
2590 edp_panel_on(intel_dp);
2591 edp_panel_vdd_off(intel_dp, true);
2592
2593 pps_unlock(intel_dp);
2594
2595 if (IS_VALLEYVIEW(dev)) {
2596 unsigned int lane_mask = 0x0;
2597
2598 if (IS_CHERRYVIEW(dev))
2599 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2600
2601 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2602 lane_mask);
2603 }
2604
2605 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2606 intel_dp_start_link_train(intel_dp);
2607 intel_dp_complete_link_train(intel_dp);
2608 intel_dp_stop_link_train(intel_dp);
2609
2610 if (crtc->config->has_audio) {
2611 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2612 pipe_name(crtc->pipe));
2613 intel_audio_codec_enable(encoder);
2614 }
2615 }
2616
2617 static void g4x_enable_dp(struct intel_encoder *encoder)
2618 {
2619 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2620
2621 intel_enable_dp(encoder);
2622 intel_edp_backlight_on(intel_dp);
2623 }
2624
2625 static void vlv_enable_dp(struct intel_encoder *encoder)
2626 {
2627 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2628
2629 intel_edp_backlight_on(intel_dp);
2630 intel_psr_enable(intel_dp);
2631 }
2632
2633 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2634 {
2635 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2636 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2637
2638 intel_dp_prepare(encoder);
2639
2640 /* Only ilk+ has port A */
2641 if (dport->port == PORT_A) {
2642 ironlake_set_pll_cpu_edp(intel_dp);
2643 ironlake_edp_pll_on(intel_dp);
2644 }
2645 }
2646
2647 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2648 {
2649 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2650 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2651 enum pipe pipe = intel_dp->pps_pipe;
2652 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2653
2654 edp_panel_vdd_off_sync(intel_dp);
2655
2656 /*
2657 * VLV seems to get confused when multiple power seqeuencers
2658 * have the same port selected (even if only one has power/vdd
2659 * enabled). The failure manifests as vlv_wait_port_ready() failing
2660 * CHV on the other hand doesn't seem to mind having the same port
2661 * selected in multiple power seqeuencers, but let's clear the
2662 * port select always when logically disconnecting a power sequencer
2663 * from a port.
2664 */
2665 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2666 pipe_name(pipe), port_name(intel_dig_port->port));
2667 I915_WRITE(pp_on_reg, 0);
2668 POSTING_READ(pp_on_reg);
2669
2670 intel_dp->pps_pipe = INVALID_PIPE;
2671 }
2672
2673 static void vlv_steal_power_sequencer(struct drm_device *dev,
2674 enum pipe pipe)
2675 {
2676 struct drm_i915_private *dev_priv = dev->dev_private;
2677 struct intel_encoder *encoder;
2678
2679 lockdep_assert_held(&dev_priv->pps_mutex);
2680
2681 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2682 return;
2683
2684 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2685 base.head) {
2686 struct intel_dp *intel_dp;
2687 enum port port;
2688
2689 if (encoder->type != INTEL_OUTPUT_EDP)
2690 continue;
2691
2692 intel_dp = enc_to_intel_dp(&encoder->base);
2693 port = dp_to_dig_port(intel_dp)->port;
2694
2695 if (intel_dp->pps_pipe != pipe)
2696 continue;
2697
2698 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2699 pipe_name(pipe), port_name(port));
2700
2701 WARN(encoder->base.crtc,
2702 "stealing pipe %c power sequencer from active eDP port %c\n",
2703 pipe_name(pipe), port_name(port));
2704
2705 /* make sure vdd is off before we steal it */
2706 vlv_detach_power_sequencer(intel_dp);
2707 }
2708 }
2709
2710 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2711 {
2712 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2713 struct intel_encoder *encoder = &intel_dig_port->base;
2714 struct drm_device *dev = encoder->base.dev;
2715 struct drm_i915_private *dev_priv = dev->dev_private;
2716 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2717
2718 lockdep_assert_held(&dev_priv->pps_mutex);
2719
2720 if (!is_edp(intel_dp))
2721 return;
2722
2723 if (intel_dp->pps_pipe == crtc->pipe)
2724 return;
2725
2726 /*
2727 * If another power sequencer was being used on this
2728 * port previously make sure to turn off vdd there while
2729 * we still have control of it.
2730 */
2731 if (intel_dp->pps_pipe != INVALID_PIPE)
2732 vlv_detach_power_sequencer(intel_dp);
2733
2734 /*
2735 * We may be stealing the power
2736 * sequencer from another port.
2737 */
2738 vlv_steal_power_sequencer(dev, crtc->pipe);
2739
2740 /* now it's all ours */
2741 intel_dp->pps_pipe = crtc->pipe;
2742
2743 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2744 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2745
2746 /* init power sequencer on this pipe and port */
2747 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2748 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2749 }
2750
2751 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2752 {
2753 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2754 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2755 struct drm_device *dev = encoder->base.dev;
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2758 enum dpio_channel port = vlv_dport_to_channel(dport);
2759 int pipe = intel_crtc->pipe;
2760 u32 val;
2761
2762 mutex_lock(&dev_priv->sb_lock);
2763
2764 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2765 val = 0;
2766 if (pipe)
2767 val |= (1<<21);
2768 else
2769 val &= ~(1<<21);
2770 val |= 0x001000c4;
2771 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2772 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2773 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2774
2775 mutex_unlock(&dev_priv->sb_lock);
2776
2777 intel_enable_dp(encoder);
2778 }
2779
2780 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2781 {
2782 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2783 struct drm_device *dev = encoder->base.dev;
2784 struct drm_i915_private *dev_priv = dev->dev_private;
2785 struct intel_crtc *intel_crtc =
2786 to_intel_crtc(encoder->base.crtc);
2787 enum dpio_channel port = vlv_dport_to_channel(dport);
2788 int pipe = intel_crtc->pipe;
2789
2790 intel_dp_prepare(encoder);
2791
2792 /* Program Tx lane resets to default */
2793 mutex_lock(&dev_priv->sb_lock);
2794 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2795 DPIO_PCS_TX_LANE2_RESET |
2796 DPIO_PCS_TX_LANE1_RESET);
2797 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2798 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2799 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2800 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2801 DPIO_PCS_CLK_SOFT_RESET);
2802
2803 /* Fix up inter-pair skew failure */
2804 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2805 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2806 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2807 mutex_unlock(&dev_priv->sb_lock);
2808 }
2809
2810 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2811 {
2812 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2813 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2814 struct drm_device *dev = encoder->base.dev;
2815 struct drm_i915_private *dev_priv = dev->dev_private;
2816 struct intel_crtc *intel_crtc =
2817 to_intel_crtc(encoder->base.crtc);
2818 enum dpio_channel ch = vlv_dport_to_channel(dport);
2819 int pipe = intel_crtc->pipe;
2820 int data, i, stagger;
2821 u32 val;
2822
2823 mutex_lock(&dev_priv->sb_lock);
2824
2825 /* allow hardware to manage TX FIFO reset source */
2826 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2827 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2828 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2829
2830 if (intel_crtc->config->lane_count > 2) {
2831 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2832 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2833 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2834 }
2835
2836 /* Program Tx lane latency optimal setting*/
2837 for (i = 0; i < intel_crtc->config->lane_count; i++) {
2838 /* Set the upar bit */
2839 if (intel_crtc->config->lane_count == 1)
2840 data = 0x0;
2841 else
2842 data = (i == 1) ? 0x0 : 0x1;
2843 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2844 data << DPIO_UPAR_SHIFT);
2845 }
2846
2847 /* Data lane stagger programming */
2848 if (intel_crtc->config->port_clock > 270000)
2849 stagger = 0x18;
2850 else if (intel_crtc->config->port_clock > 135000)
2851 stagger = 0xd;
2852 else if (intel_crtc->config->port_clock > 67500)
2853 stagger = 0x7;
2854 else if (intel_crtc->config->port_clock > 33750)
2855 stagger = 0x4;
2856 else
2857 stagger = 0x2;
2858
2859 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2860 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2861 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2862
2863 if (intel_crtc->config->lane_count > 2) {
2864 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2865 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2866 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2867 }
2868
2869 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2870 DPIO_LANESTAGGER_STRAP(stagger) |
2871 DPIO_LANESTAGGER_STRAP_OVRD |
2872 DPIO_TX1_STAGGER_MASK(0x1f) |
2873 DPIO_TX1_STAGGER_MULT(6) |
2874 DPIO_TX2_STAGGER_MULT(0));
2875
2876 if (intel_crtc->config->lane_count > 2) {
2877 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2878 DPIO_LANESTAGGER_STRAP(stagger) |
2879 DPIO_LANESTAGGER_STRAP_OVRD |
2880 DPIO_TX1_STAGGER_MASK(0x1f) |
2881 DPIO_TX1_STAGGER_MULT(7) |
2882 DPIO_TX2_STAGGER_MULT(5));
2883 }
2884
2885 /* Deassert data lane reset */
2886 chv_data_lane_soft_reset(encoder, false);
2887
2888 mutex_unlock(&dev_priv->sb_lock);
2889
2890 intel_enable_dp(encoder);
2891
2892 /* Second common lane will stay alive on its own now */
2893 if (dport->release_cl2_override) {
2894 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2895 dport->release_cl2_override = false;
2896 }
2897 }
2898
2899 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2900 {
2901 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2902 struct drm_device *dev = encoder->base.dev;
2903 struct drm_i915_private *dev_priv = dev->dev_private;
2904 struct intel_crtc *intel_crtc =
2905 to_intel_crtc(encoder->base.crtc);
2906 enum dpio_channel ch = vlv_dport_to_channel(dport);
2907 enum pipe pipe = intel_crtc->pipe;
2908 unsigned int lane_mask =
2909 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2910 u32 val;
2911
2912 intel_dp_prepare(encoder);
2913
2914 /*
2915 * Must trick the second common lane into life.
2916 * Otherwise we can't even access the PLL.
2917 */
2918 if (ch == DPIO_CH0 && pipe == PIPE_B)
2919 dport->release_cl2_override =
2920 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2921
2922 chv_phy_powergate_lanes(encoder, true, lane_mask);
2923
2924 mutex_lock(&dev_priv->sb_lock);
2925
2926 /* Assert data lane reset */
2927 chv_data_lane_soft_reset(encoder, true);
2928
2929 /* program left/right clock distribution */
2930 if (pipe != PIPE_B) {
2931 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2932 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2933 if (ch == DPIO_CH0)
2934 val |= CHV_BUFLEFTENA1_FORCE;
2935 if (ch == DPIO_CH1)
2936 val |= CHV_BUFRIGHTENA1_FORCE;
2937 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2938 } else {
2939 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2940 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2941 if (ch == DPIO_CH0)
2942 val |= CHV_BUFLEFTENA2_FORCE;
2943 if (ch == DPIO_CH1)
2944 val |= CHV_BUFRIGHTENA2_FORCE;
2945 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2946 }
2947
2948 /* program clock channel usage */
2949 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2950 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2951 if (pipe != PIPE_B)
2952 val &= ~CHV_PCS_USEDCLKCHANNEL;
2953 else
2954 val |= CHV_PCS_USEDCLKCHANNEL;
2955 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2956
2957 if (intel_crtc->config->lane_count > 2) {
2958 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2959 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2960 if (pipe != PIPE_B)
2961 val &= ~CHV_PCS_USEDCLKCHANNEL;
2962 else
2963 val |= CHV_PCS_USEDCLKCHANNEL;
2964 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2965 }
2966
2967 /*
2968 * This a a bit weird since generally CL
2969 * matches the pipe, but here we need to
2970 * pick the CL based on the port.
2971 */
2972 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2973 if (pipe != PIPE_B)
2974 val &= ~CHV_CMN_USEDCLKCHANNEL;
2975 else
2976 val |= CHV_CMN_USEDCLKCHANNEL;
2977 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2978
2979 mutex_unlock(&dev_priv->sb_lock);
2980 }
2981
2982 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2983 {
2984 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2985 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2986 u32 val;
2987
2988 mutex_lock(&dev_priv->sb_lock);
2989
2990 /* disable left/right clock distribution */
2991 if (pipe != PIPE_B) {
2992 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2993 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2994 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2995 } else {
2996 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2997 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2998 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2999 }
3000
3001 mutex_unlock(&dev_priv->sb_lock);
3002
3003 /*
3004 * Leave the power down bit cleared for at least one
3005 * lane so that chv_powergate_phy_ch() will power
3006 * on something when the channel is otherwise unused.
3007 * When the port is off and the override is removed
3008 * the lanes power down anyway, so otherwise it doesn't
3009 * really matter what the state of power down bits is
3010 * after this.
3011 */
3012 chv_phy_powergate_lanes(encoder, false, 0x0);
3013 }
3014
3015 /*
3016 * Native read with retry for link status and receiver capability reads for
3017 * cases where the sink may still be asleep.
3018 *
3019 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3020 * supposed to retry 3 times per the spec.
3021 */
3022 static ssize_t
3023 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3024 void *buffer, size_t size)
3025 {
3026 ssize_t ret;
3027 int i;
3028
3029 /*
3030 * Sometime we just get the same incorrect byte repeated
3031 * over the entire buffer. Doing just one throw away read
3032 * initially seems to "solve" it.
3033 */
3034 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3035
3036 for (i = 0; i < 3; i++) {
3037 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3038 if (ret == size)
3039 return ret;
3040 msleep(1);
3041 }
3042
3043 return ret;
3044 }
3045
3046 /*
3047 * Fetch AUX CH registers 0x202 - 0x207 which contain
3048 * link status information
3049 */
3050 static bool
3051 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3052 {
3053 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3054 DP_LANE0_1_STATUS,
3055 link_status,
3056 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3057 }
3058
3059 /* These are source-specific values. */
3060 static uint8_t
3061 intel_dp_voltage_max(struct intel_dp *intel_dp)
3062 {
3063 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3064 struct drm_i915_private *dev_priv = dev->dev_private;
3065 enum port port = dp_to_dig_port(intel_dp)->port;
3066
3067 if (IS_BROXTON(dev))
3068 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3069 else if (INTEL_INFO(dev)->gen >= 9) {
3070 if (dev_priv->edp_low_vswing && port == PORT_A)
3071 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3072 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3073 } else if (IS_VALLEYVIEW(dev))
3074 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3075 else if (IS_GEN7(dev) && port == PORT_A)
3076 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3077 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3078 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3079 else
3080 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3081 }
3082
3083 static uint8_t
3084 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3085 {
3086 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3087 enum port port = dp_to_dig_port(intel_dp)->port;
3088
3089 if (INTEL_INFO(dev)->gen >= 9) {
3090 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3094 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3095 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3096 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3097 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3098 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3099 default:
3100 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3101 }
3102 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3103 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3104 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3105 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3106 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3107 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3108 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3109 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3110 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3111 default:
3112 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3113 }
3114 } else if (IS_VALLEYVIEW(dev)) {
3115 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3116 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3117 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3118 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3119 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3120 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3121 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3122 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3123 default:
3124 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3125 }
3126 } else if (IS_GEN7(dev) && port == PORT_A) {
3127 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3128 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3129 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3132 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3133 default:
3134 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3135 }
3136 } else {
3137 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3138 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3139 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3140 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3141 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3142 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3143 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3144 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3145 default:
3146 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3147 }
3148 }
3149 }
3150
3151 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3152 {
3153 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3154 struct drm_i915_private *dev_priv = dev->dev_private;
3155 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3156 struct intel_crtc *intel_crtc =
3157 to_intel_crtc(dport->base.base.crtc);
3158 unsigned long demph_reg_value, preemph_reg_value,
3159 uniqtranscale_reg_value;
3160 uint8_t train_set = intel_dp->train_set[0];
3161 enum dpio_channel port = vlv_dport_to_channel(dport);
3162 int pipe = intel_crtc->pipe;
3163
3164 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3165 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3166 preemph_reg_value = 0x0004000;
3167 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3168 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3169 demph_reg_value = 0x2B405555;
3170 uniqtranscale_reg_value = 0x552AB83A;
3171 break;
3172 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3173 demph_reg_value = 0x2B404040;
3174 uniqtranscale_reg_value = 0x5548B83A;
3175 break;
3176 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3177 demph_reg_value = 0x2B245555;
3178 uniqtranscale_reg_value = 0x5560B83A;
3179 break;
3180 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3181 demph_reg_value = 0x2B405555;
3182 uniqtranscale_reg_value = 0x5598DA3A;
3183 break;
3184 default:
3185 return 0;
3186 }
3187 break;
3188 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3189 preemph_reg_value = 0x0002000;
3190 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3192 demph_reg_value = 0x2B404040;
3193 uniqtranscale_reg_value = 0x5552B83A;
3194 break;
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3196 demph_reg_value = 0x2B404848;
3197 uniqtranscale_reg_value = 0x5580B83A;
3198 break;
3199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3200 demph_reg_value = 0x2B404040;
3201 uniqtranscale_reg_value = 0x55ADDA3A;
3202 break;
3203 default:
3204 return 0;
3205 }
3206 break;
3207 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3208 preemph_reg_value = 0x0000000;
3209 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3210 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3211 demph_reg_value = 0x2B305555;
3212 uniqtranscale_reg_value = 0x5570B83A;
3213 break;
3214 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3215 demph_reg_value = 0x2B2B4040;
3216 uniqtranscale_reg_value = 0x55ADDA3A;
3217 break;
3218 default:
3219 return 0;
3220 }
3221 break;
3222 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3223 preemph_reg_value = 0x0006000;
3224 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3225 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3226 demph_reg_value = 0x1B405555;
3227 uniqtranscale_reg_value = 0x55ADDA3A;
3228 break;
3229 default:
3230 return 0;
3231 }
3232 break;
3233 default:
3234 return 0;
3235 }
3236
3237 mutex_lock(&dev_priv->sb_lock);
3238 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3239 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3240 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3241 uniqtranscale_reg_value);
3242 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3243 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3244 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3245 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3246 mutex_unlock(&dev_priv->sb_lock);
3247
3248 return 0;
3249 }
3250
3251 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3252 {
3253 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3254 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3255 }
3256
3257 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3258 {
3259 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3260 struct drm_i915_private *dev_priv = dev->dev_private;
3261 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3262 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3263 u32 deemph_reg_value, margin_reg_value, val;
3264 uint8_t train_set = intel_dp->train_set[0];
3265 enum dpio_channel ch = vlv_dport_to_channel(dport);
3266 enum pipe pipe = intel_crtc->pipe;
3267 int i;
3268
3269 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3270 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3271 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3272 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3273 deemph_reg_value = 128;
3274 margin_reg_value = 52;
3275 break;
3276 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3277 deemph_reg_value = 128;
3278 margin_reg_value = 77;
3279 break;
3280 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3281 deemph_reg_value = 128;
3282 margin_reg_value = 102;
3283 break;
3284 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3285 deemph_reg_value = 128;
3286 margin_reg_value = 154;
3287 /* FIXME extra to set for 1200 */
3288 break;
3289 default:
3290 return 0;
3291 }
3292 break;
3293 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3294 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3295 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3296 deemph_reg_value = 85;
3297 margin_reg_value = 78;
3298 break;
3299 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3300 deemph_reg_value = 85;
3301 margin_reg_value = 116;
3302 break;
3303 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3304 deemph_reg_value = 85;
3305 margin_reg_value = 154;
3306 break;
3307 default:
3308 return 0;
3309 }
3310 break;
3311 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3312 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3313 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3314 deemph_reg_value = 64;
3315 margin_reg_value = 104;
3316 break;
3317 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3318 deemph_reg_value = 64;
3319 margin_reg_value = 154;
3320 break;
3321 default:
3322 return 0;
3323 }
3324 break;
3325 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3326 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3327 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3328 deemph_reg_value = 43;
3329 margin_reg_value = 154;
3330 break;
3331 default:
3332 return 0;
3333 }
3334 break;
3335 default:
3336 return 0;
3337 }
3338
3339 mutex_lock(&dev_priv->sb_lock);
3340
3341 /* Clear calc init */
3342 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3343 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3344 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3345 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3346 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3347
3348 if (intel_crtc->config->lane_count > 2) {
3349 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3350 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3351 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3352 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3353 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3354 }
3355
3356 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3357 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3358 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3359 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3360
3361 if (intel_crtc->config->lane_count > 2) {
3362 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3363 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3364 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3365 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3366 }
3367
3368 /* Program swing deemph */
3369 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3370 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3371 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3372 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3373 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3374 }
3375
3376 /* Program swing margin */
3377 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3378 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3379
3380 val &= ~DPIO_SWING_MARGIN000_MASK;
3381 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3382
3383 /*
3384 * Supposedly this value shouldn't matter when unique transition
3385 * scale is disabled, but in fact it does matter. Let's just
3386 * always program the same value and hope it's OK.
3387 */
3388 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3389 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3390
3391 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3392 }
3393
3394 /*
3395 * The document said it needs to set bit 27 for ch0 and bit 26
3396 * for ch1. Might be a typo in the doc.
3397 * For now, for this unique transition scale selection, set bit
3398 * 27 for ch0 and ch1.
3399 */
3400 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3401 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3402 if (chv_need_uniq_trans_scale(train_set))
3403 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3404 else
3405 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3406 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3407 }
3408
3409 /* Start swing calculation */
3410 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3411 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3412 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3413
3414 if (intel_crtc->config->lane_count > 2) {
3415 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3416 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3417 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3418 }
3419
3420 /* LRC Bypass */
3421 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3422 val |= DPIO_LRC_BYPASS;
3423 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3424
3425 mutex_unlock(&dev_priv->sb_lock);
3426
3427 return 0;
3428 }
3429
3430 static void
3431 intel_get_adjust_train(struct intel_dp *intel_dp,
3432 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3433 {
3434 uint8_t v = 0;
3435 uint8_t p = 0;
3436 int lane;
3437 uint8_t voltage_max;
3438 uint8_t preemph_max;
3439
3440 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3441 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3442 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3443
3444 if (this_v > v)
3445 v = this_v;
3446 if (this_p > p)
3447 p = this_p;
3448 }
3449
3450 voltage_max = intel_dp_voltage_max(intel_dp);
3451 if (v >= voltage_max)
3452 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3453
3454 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3455 if (p >= preemph_max)
3456 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3457
3458 for (lane = 0; lane < 4; lane++)
3459 intel_dp->train_set[lane] = v | p;
3460 }
3461
3462 static uint32_t
3463 gen4_signal_levels(uint8_t train_set)
3464 {
3465 uint32_t signal_levels = 0;
3466
3467 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3468 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3469 default:
3470 signal_levels |= DP_VOLTAGE_0_4;
3471 break;
3472 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3473 signal_levels |= DP_VOLTAGE_0_6;
3474 break;
3475 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3476 signal_levels |= DP_VOLTAGE_0_8;
3477 break;
3478 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3479 signal_levels |= DP_VOLTAGE_1_2;
3480 break;
3481 }
3482 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3483 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3484 default:
3485 signal_levels |= DP_PRE_EMPHASIS_0;
3486 break;
3487 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3488 signal_levels |= DP_PRE_EMPHASIS_3_5;
3489 break;
3490 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3491 signal_levels |= DP_PRE_EMPHASIS_6;
3492 break;
3493 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3494 signal_levels |= DP_PRE_EMPHASIS_9_5;
3495 break;
3496 }
3497 return signal_levels;
3498 }
3499
3500 /* Gen6's DP voltage swing and pre-emphasis control */
3501 static uint32_t
3502 gen6_edp_signal_levels(uint8_t train_set)
3503 {
3504 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3505 DP_TRAIN_PRE_EMPHASIS_MASK);
3506 switch (signal_levels) {
3507 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3508 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3509 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3510 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3511 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3512 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3513 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3514 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3515 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3516 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3517 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3518 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3519 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3520 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3521 default:
3522 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3523 "0x%x\n", signal_levels);
3524 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3525 }
3526 }
3527
3528 /* Gen7's DP voltage swing and pre-emphasis control */
3529 static uint32_t
3530 gen7_edp_signal_levels(uint8_t train_set)
3531 {
3532 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3533 DP_TRAIN_PRE_EMPHASIS_MASK);
3534 switch (signal_levels) {
3535 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3536 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3537 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3538 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3539 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3540 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3541
3542 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3543 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3544 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3545 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3546
3547 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3548 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3549 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3550 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3551
3552 default:
3553 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3554 "0x%x\n", signal_levels);
3555 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3556 }
3557 }
3558
3559 /* Properly updates "DP" with the correct signal levels. */
3560 static void
3561 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3562 {
3563 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3564 enum port port = intel_dig_port->port;
3565 struct drm_device *dev = intel_dig_port->base.base.dev;
3566 uint32_t signal_levels, mask = 0;
3567 uint8_t train_set = intel_dp->train_set[0];
3568
3569 if (HAS_DDI(dev)) {
3570 signal_levels = ddi_signal_levels(intel_dp);
3571
3572 if (IS_BROXTON(dev))
3573 signal_levels = 0;
3574 else
3575 mask = DDI_BUF_EMP_MASK;
3576 } else if (IS_CHERRYVIEW(dev)) {
3577 signal_levels = chv_signal_levels(intel_dp);
3578 } else if (IS_VALLEYVIEW(dev)) {
3579 signal_levels = vlv_signal_levels(intel_dp);
3580 } else if (IS_GEN7(dev) && port == PORT_A) {
3581 signal_levels = gen7_edp_signal_levels(train_set);
3582 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3583 } else if (IS_GEN6(dev) && port == PORT_A) {
3584 signal_levels = gen6_edp_signal_levels(train_set);
3585 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3586 } else {
3587 signal_levels = gen4_signal_levels(train_set);
3588 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3589 }
3590
3591 if (mask)
3592 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3593
3594 DRM_DEBUG_KMS("Using vswing level %d\n",
3595 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3596 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3597 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3598 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3599
3600 *DP = (*DP & ~mask) | signal_levels;
3601 }
3602
3603 static bool
3604 intel_dp_set_link_train(struct intel_dp *intel_dp,
3605 uint32_t *DP,
3606 uint8_t dp_train_pat)
3607 {
3608 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3609 struct drm_i915_private *dev_priv =
3610 to_i915(intel_dig_port->base.base.dev);
3611 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3612 int ret, len;
3613
3614 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3615
3616 I915_WRITE(intel_dp->output_reg, *DP);
3617 POSTING_READ(intel_dp->output_reg);
3618
3619 buf[0] = dp_train_pat;
3620 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3621 DP_TRAINING_PATTERN_DISABLE) {
3622 /* don't write DP_TRAINING_LANEx_SET on disable */
3623 len = 1;
3624 } else {
3625 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3626 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3627 len = intel_dp->lane_count + 1;
3628 }
3629
3630 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3631 buf, len);
3632
3633 return ret == len;
3634 }
3635
3636 static bool
3637 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3638 uint8_t dp_train_pat)
3639 {
3640 if (!intel_dp->train_set_valid)
3641 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3642 intel_dp_set_signal_levels(intel_dp, DP);
3643 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3644 }
3645
3646 static bool
3647 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3648 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3649 {
3650 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3651 struct drm_i915_private *dev_priv =
3652 to_i915(intel_dig_port->base.base.dev);
3653 int ret;
3654
3655 intel_get_adjust_train(intel_dp, link_status);
3656 intel_dp_set_signal_levels(intel_dp, DP);
3657
3658 I915_WRITE(intel_dp->output_reg, *DP);
3659 POSTING_READ(intel_dp->output_reg);
3660
3661 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3662 intel_dp->train_set, intel_dp->lane_count);
3663
3664 return ret == intel_dp->lane_count;
3665 }
3666
3667 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3668 {
3669 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3670 struct drm_device *dev = intel_dig_port->base.base.dev;
3671 struct drm_i915_private *dev_priv = dev->dev_private;
3672 enum port port = intel_dig_port->port;
3673 uint32_t val;
3674
3675 if (!HAS_DDI(dev))
3676 return;
3677
3678 val = I915_READ(DP_TP_CTL(port));
3679 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3680 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3681 I915_WRITE(DP_TP_CTL(port), val);
3682
3683 /*
3684 * On PORT_A we can have only eDP in SST mode. There the only reason
3685 * we need to set idle transmission mode is to work around a HW issue
3686 * where we enable the pipe while not in idle link-training mode.
3687 * In this case there is requirement to wait for a minimum number of
3688 * idle patterns to be sent.
3689 */
3690 if (port == PORT_A)
3691 return;
3692
3693 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3694 1))
3695 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3696 }
3697
3698 /* Enable corresponding port and start training pattern 1 */
3699 void
3700 intel_dp_start_link_train(struct intel_dp *intel_dp)
3701 {
3702 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3703 struct drm_device *dev = encoder->dev;
3704 int i;
3705 uint8_t voltage;
3706 int voltage_tries, loop_tries;
3707 uint32_t DP = intel_dp->DP;
3708 uint8_t link_config[2];
3709 uint8_t link_bw, rate_select;
3710
3711 if (HAS_DDI(dev))
3712 intel_ddi_prepare_link_retrain(encoder);
3713
3714 intel_dp_compute_rate(intel_dp, intel_dp->link_rate,
3715 &link_bw, &rate_select);
3716
3717 /* Write the link configuration data */
3718 link_config[0] = link_bw;
3719 link_config[1] = intel_dp->lane_count;
3720 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3721 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3722 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3723 if (intel_dp->num_sink_rates)
3724 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3725 &rate_select, 1);
3726
3727 link_config[0] = 0;
3728 link_config[1] = DP_SET_ANSI_8B10B;
3729 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3730
3731 DP |= DP_PORT_EN;
3732
3733 /* clock recovery */
3734 if (!intel_dp_reset_link_train(intel_dp, &DP,
3735 DP_TRAINING_PATTERN_1 |
3736 DP_LINK_SCRAMBLING_DISABLE)) {
3737 DRM_ERROR("failed to enable link training\n");
3738 return;
3739 }
3740
3741 voltage = 0xff;
3742 voltage_tries = 0;
3743 loop_tries = 0;
3744 for (;;) {
3745 uint8_t link_status[DP_LINK_STATUS_SIZE];
3746
3747 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3748 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3749 DRM_ERROR("failed to get link status\n");
3750 break;
3751 }
3752
3753 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3754 DRM_DEBUG_KMS("clock recovery OK\n");
3755 break;
3756 }
3757
3758 /*
3759 * if we used previously trained voltage and pre-emphasis values
3760 * and we don't get clock recovery, reset link training values
3761 */
3762 if (intel_dp->train_set_valid) {
3763 DRM_DEBUG_KMS("clock recovery not ok, reset");
3764 /* clear the flag as we are not reusing train set */
3765 intel_dp->train_set_valid = false;
3766 if (!intel_dp_reset_link_train(intel_dp, &DP,
3767 DP_TRAINING_PATTERN_1 |
3768 DP_LINK_SCRAMBLING_DISABLE)) {
3769 DRM_ERROR("failed to enable link training\n");
3770 return;
3771 }
3772 continue;
3773 }
3774
3775 /* Check to see if we've tried the max voltage */
3776 for (i = 0; i < intel_dp->lane_count; i++)
3777 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3778 break;
3779 if (i == intel_dp->lane_count) {
3780 ++loop_tries;
3781 if (loop_tries == 5) {
3782 DRM_ERROR("too many full retries, give up\n");
3783 break;
3784 }
3785 intel_dp_reset_link_train(intel_dp, &DP,
3786 DP_TRAINING_PATTERN_1 |
3787 DP_LINK_SCRAMBLING_DISABLE);
3788 voltage_tries = 0;
3789 continue;
3790 }
3791
3792 /* Check to see if we've tried the same voltage 5 times */
3793 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3794 ++voltage_tries;
3795 if (voltage_tries == 5) {
3796 DRM_ERROR("too many voltage retries, give up\n");
3797 break;
3798 }
3799 } else
3800 voltage_tries = 0;
3801 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3802
3803 /* Update training set as requested by target */
3804 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3805 DRM_ERROR("failed to update link training\n");
3806 break;
3807 }
3808 }
3809
3810 intel_dp->DP = DP;
3811 }
3812
3813 void
3814 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3815 {
3816 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3817 struct drm_device *dev = dig_port->base.base.dev;
3818 bool channel_eq = false;
3819 int tries, cr_tries;
3820 uint32_t DP = intel_dp->DP;
3821 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3822
3823 /*
3824 * Training Pattern 3 for HBR2 or 1.2 devices that support it.
3825 *
3826 * Intel platforms that support HBR2 also support TPS3. TPS3 support is
3827 * also mandatory for downstream devices that support HBR2.
3828 *
3829 * Due to WaDisableHBR2 SKL < B0 is the only exception where TPS3 is
3830 * supported but still not enabled.
3831 */
3832 if (intel_dp_source_supports_hbr2(dev) &&
3833 drm_dp_tps3_supported(intel_dp->dpcd))
3834 training_pattern = DP_TRAINING_PATTERN_3;
3835 else if (intel_dp->link_rate == 540000)
3836 DRM_ERROR("5.4 Gbps link rate without HBR2/TPS3 support\n");
3837
3838 /* channel equalization */
3839 if (!intel_dp_set_link_train(intel_dp, &DP,
3840 training_pattern |
3841 DP_LINK_SCRAMBLING_DISABLE)) {
3842 DRM_ERROR("failed to start channel equalization\n");
3843 return;
3844 }
3845
3846 tries = 0;
3847 cr_tries = 0;
3848 channel_eq = false;
3849 for (;;) {
3850 uint8_t link_status[DP_LINK_STATUS_SIZE];
3851
3852 if (cr_tries > 5) {
3853 DRM_ERROR("failed to train DP, aborting\n");
3854 break;
3855 }
3856
3857 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3858 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3859 DRM_ERROR("failed to get link status\n");
3860 break;
3861 }
3862
3863 /* Make sure clock is still ok */
3864 if (!drm_dp_clock_recovery_ok(link_status,
3865 intel_dp->lane_count)) {
3866 intel_dp->train_set_valid = false;
3867 intel_dp_start_link_train(intel_dp);
3868 intel_dp_set_link_train(intel_dp, &DP,
3869 training_pattern |
3870 DP_LINK_SCRAMBLING_DISABLE);
3871 cr_tries++;
3872 continue;
3873 }
3874
3875 if (drm_dp_channel_eq_ok(link_status,
3876 intel_dp->lane_count)) {
3877 channel_eq = true;
3878 break;
3879 }
3880
3881 /* Try 5 times, then try clock recovery if that fails */
3882 if (tries > 5) {
3883 intel_dp->train_set_valid = false;
3884 intel_dp_start_link_train(intel_dp);
3885 intel_dp_set_link_train(intel_dp, &DP,
3886 training_pattern |
3887 DP_LINK_SCRAMBLING_DISABLE);
3888 tries = 0;
3889 cr_tries++;
3890 continue;
3891 }
3892
3893 /* Update training set as requested by target */
3894 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3895 DRM_ERROR("failed to update link training\n");
3896 break;
3897 }
3898 ++tries;
3899 }
3900
3901 intel_dp_set_idle_link_train(intel_dp);
3902
3903 intel_dp->DP = DP;
3904
3905 if (channel_eq) {
3906 intel_dp->train_set_valid = true;
3907 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3908 }
3909 }
3910
3911 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3912 {
3913 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3914 DP_TRAINING_PATTERN_DISABLE);
3915 }
3916
3917 static void
3918 intel_dp_link_down(struct intel_dp *intel_dp)
3919 {
3920 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3921 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3922 enum port port = intel_dig_port->port;
3923 struct drm_device *dev = intel_dig_port->base.base.dev;
3924 struct drm_i915_private *dev_priv = dev->dev_private;
3925 uint32_t DP = intel_dp->DP;
3926
3927 if (WARN_ON(HAS_DDI(dev)))
3928 return;
3929
3930 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3931 return;
3932
3933 DRM_DEBUG_KMS("\n");
3934
3935 if ((IS_GEN7(dev) && port == PORT_A) ||
3936 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3937 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3938 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3939 } else {
3940 if (IS_CHERRYVIEW(dev))
3941 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3942 else
3943 DP &= ~DP_LINK_TRAIN_MASK;
3944 DP |= DP_LINK_TRAIN_PAT_IDLE;
3945 }
3946 I915_WRITE(intel_dp->output_reg, DP);
3947 POSTING_READ(intel_dp->output_reg);
3948
3949 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3950 I915_WRITE(intel_dp->output_reg, DP);
3951 POSTING_READ(intel_dp->output_reg);
3952
3953 /*
3954 * HW workaround for IBX, we need to move the port
3955 * to transcoder A after disabling it to allow the
3956 * matching HDMI port to be enabled on transcoder A.
3957 */
3958 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3959 /* always enable with pattern 1 (as per spec) */
3960 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3961 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3962 I915_WRITE(intel_dp->output_reg, DP);
3963 POSTING_READ(intel_dp->output_reg);
3964
3965 DP &= ~DP_PORT_EN;
3966 I915_WRITE(intel_dp->output_reg, DP);
3967 POSTING_READ(intel_dp->output_reg);
3968 }
3969
3970 msleep(intel_dp->panel_power_down_delay);
3971 }
3972
3973 static bool
3974 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3975 {
3976 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3977 struct drm_device *dev = dig_port->base.base.dev;
3978 struct drm_i915_private *dev_priv = dev->dev_private;
3979 uint8_t rev;
3980
3981 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3982 sizeof(intel_dp->dpcd)) < 0)
3983 return false; /* aux transfer failed */
3984
3985 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3986
3987 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3988 return false; /* DPCD not present */
3989
3990 /* Check if the panel supports PSR */
3991 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3992 if (is_edp(intel_dp)) {
3993 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3994 intel_dp->psr_dpcd,
3995 sizeof(intel_dp->psr_dpcd));
3996 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3997 dev_priv->psr.sink_support = true;
3998 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3999 }
4000
4001 if (INTEL_INFO(dev)->gen >= 9 &&
4002 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
4003 uint8_t frame_sync_cap;
4004
4005 dev_priv->psr.sink_support = true;
4006 intel_dp_dpcd_read_wake(&intel_dp->aux,
4007 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
4008 &frame_sync_cap, 1);
4009 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
4010 /* PSR2 needs frame sync as well */
4011 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
4012 DRM_DEBUG_KMS("PSR2 %s on sink",
4013 dev_priv->psr.psr2_support ? "supported" : "not supported");
4014 }
4015 }
4016
4017 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4018 yesno(intel_dp_source_supports_hbr2(dev)),
4019 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4020
4021 /* Intermediate frequency support */
4022 if (is_edp(intel_dp) &&
4023 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
4024 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
4025 (rev >= 0x03)) { /* eDp v1.4 or higher */
4026 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4027 int i;
4028
4029 intel_dp_dpcd_read_wake(&intel_dp->aux,
4030 DP_SUPPORTED_LINK_RATES,
4031 sink_rates,
4032 sizeof(sink_rates));
4033
4034 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4035 int val = le16_to_cpu(sink_rates[i]);
4036
4037 if (val == 0)
4038 break;
4039
4040 /* Value read is in kHz while drm clock is saved in deca-kHz */
4041 intel_dp->sink_rates[i] = (val * 200) / 10;
4042 }
4043 intel_dp->num_sink_rates = i;
4044 }
4045
4046 intel_dp_print_rates(intel_dp);
4047
4048 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4049 DP_DWN_STRM_PORT_PRESENT))
4050 return true; /* native DP sink */
4051
4052 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4053 return true; /* no per-port downstream info */
4054
4055 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4056 intel_dp->downstream_ports,
4057 DP_MAX_DOWNSTREAM_PORTS) < 0)
4058 return false; /* downstream port status fetch failed */
4059
4060 return true;
4061 }
4062
4063 static void
4064 intel_dp_probe_oui(struct intel_dp *intel_dp)
4065 {
4066 u8 buf[3];
4067
4068 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
4069 return;
4070
4071 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4072 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4073 buf[0], buf[1], buf[2]);
4074
4075 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4076 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4077 buf[0], buf[1], buf[2]);
4078 }
4079
4080 static bool
4081 intel_dp_probe_mst(struct intel_dp *intel_dp)
4082 {
4083 u8 buf[1];
4084
4085 if (!intel_dp->can_mst)
4086 return false;
4087
4088 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4089 return false;
4090
4091 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4092 if (buf[0] & DP_MST_CAP) {
4093 DRM_DEBUG_KMS("Sink is MST capable\n");
4094 intel_dp->is_mst = true;
4095 } else {
4096 DRM_DEBUG_KMS("Sink is not MST capable\n");
4097 intel_dp->is_mst = false;
4098 }
4099 }
4100
4101 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4102 return intel_dp->is_mst;
4103 }
4104
4105 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
4106 {
4107 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4108 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4109 u8 buf;
4110 int ret = 0;
4111
4112 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4113 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4114 ret = -EIO;
4115 goto out;
4116 }
4117
4118 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4119 buf & ~DP_TEST_SINK_START) < 0) {
4120 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4121 ret = -EIO;
4122 goto out;
4123 }
4124
4125 intel_dp->sink_crc.started = false;
4126 out:
4127 hsw_enable_ips(intel_crtc);
4128 return ret;
4129 }
4130
4131 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4132 {
4133 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4134 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4135 u8 buf;
4136 int ret;
4137
4138 if (intel_dp->sink_crc.started) {
4139 ret = intel_dp_sink_crc_stop(intel_dp);
4140 if (ret)
4141 return ret;
4142 }
4143
4144 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4145 return -EIO;
4146
4147 if (!(buf & DP_TEST_CRC_SUPPORTED))
4148 return -ENOTTY;
4149
4150 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4151
4152 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4153 return -EIO;
4154
4155 hsw_disable_ips(intel_crtc);
4156
4157 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4158 buf | DP_TEST_SINK_START) < 0) {
4159 hsw_enable_ips(intel_crtc);
4160 return -EIO;
4161 }
4162
4163 intel_dp->sink_crc.started = true;
4164 return 0;
4165 }
4166
4167 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4168 {
4169 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4170 struct drm_device *dev = dig_port->base.base.dev;
4171 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4172 u8 buf;
4173 int count, ret;
4174 int attempts = 6;
4175 bool old_equal_new;
4176
4177 ret = intel_dp_sink_crc_start(intel_dp);
4178 if (ret)
4179 return ret;
4180
4181 do {
4182 intel_wait_for_vblank(dev, intel_crtc->pipe);
4183
4184 if (drm_dp_dpcd_readb(&intel_dp->aux,
4185 DP_TEST_SINK_MISC, &buf) < 0) {
4186 ret = -EIO;
4187 goto stop;
4188 }
4189 count = buf & DP_TEST_COUNT_MASK;
4190
4191 /*
4192 * Count might be reset during the loop. In this case
4193 * last known count needs to be reset as well.
4194 */
4195 if (count == 0)
4196 intel_dp->sink_crc.last_count = 0;
4197
4198 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4199 ret = -EIO;
4200 goto stop;
4201 }
4202
4203 old_equal_new = (count == intel_dp->sink_crc.last_count &&
4204 !memcmp(intel_dp->sink_crc.last_crc, crc,
4205 6 * sizeof(u8)));
4206
4207 } while (--attempts && (count == 0 || old_equal_new));
4208
4209 intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4210 memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
4211
4212 if (attempts == 0) {
4213 if (old_equal_new) {
4214 DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
4215 } else {
4216 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4217 ret = -ETIMEDOUT;
4218 goto stop;
4219 }
4220 }
4221
4222 stop:
4223 intel_dp_sink_crc_stop(intel_dp);
4224 return ret;
4225 }
4226
4227 static bool
4228 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4229 {
4230 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4231 DP_DEVICE_SERVICE_IRQ_VECTOR,
4232 sink_irq_vector, 1) == 1;
4233 }
4234
4235 static bool
4236 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4237 {
4238 int ret;
4239
4240 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4241 DP_SINK_COUNT_ESI,
4242 sink_irq_vector, 14);
4243 if (ret != 14)
4244 return false;
4245
4246 return true;
4247 }
4248
4249 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4250 {
4251 uint8_t test_result = DP_TEST_ACK;
4252 return test_result;
4253 }
4254
4255 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4256 {
4257 uint8_t test_result = DP_TEST_NAK;
4258 return test_result;
4259 }
4260
4261 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4262 {
4263 uint8_t test_result = DP_TEST_NAK;
4264 struct intel_connector *intel_connector = intel_dp->attached_connector;
4265 struct drm_connector *connector = &intel_connector->base;
4266
4267 if (intel_connector->detect_edid == NULL ||
4268 connector->edid_corrupt ||
4269 intel_dp->aux.i2c_defer_count > 6) {
4270 /* Check EDID read for NACKs, DEFERs and corruption
4271 * (DP CTS 1.2 Core r1.1)
4272 * 4.2.2.4 : Failed EDID read, I2C_NAK
4273 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4274 * 4.2.2.6 : EDID corruption detected
4275 * Use failsafe mode for all cases
4276 */
4277 if (intel_dp->aux.i2c_nack_count > 0 ||
4278 intel_dp->aux.i2c_defer_count > 0)
4279 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4280 intel_dp->aux.i2c_nack_count,
4281 intel_dp->aux.i2c_defer_count);
4282 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4283 } else {
4284 struct edid *block = intel_connector->detect_edid;
4285
4286 /* We have to write the checksum
4287 * of the last block read
4288 */
4289 block += intel_connector->detect_edid->extensions;
4290
4291 if (!drm_dp_dpcd_write(&intel_dp->aux,
4292 DP_TEST_EDID_CHECKSUM,
4293 &block->checksum,
4294 1))
4295 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4296
4297 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4298 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4299 }
4300
4301 /* Set test active flag here so userspace doesn't interrupt things */
4302 intel_dp->compliance_test_active = 1;
4303
4304 return test_result;
4305 }
4306
4307 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4308 {
4309 uint8_t test_result = DP_TEST_NAK;
4310 return test_result;
4311 }
4312
4313 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4314 {
4315 uint8_t response = DP_TEST_NAK;
4316 uint8_t rxdata = 0;
4317 int status = 0;
4318
4319 intel_dp->compliance_test_active = 0;
4320 intel_dp->compliance_test_type = 0;
4321 intel_dp->compliance_test_data = 0;
4322
4323 intel_dp->aux.i2c_nack_count = 0;
4324 intel_dp->aux.i2c_defer_count = 0;
4325
4326 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4327 if (status <= 0) {
4328 DRM_DEBUG_KMS("Could not read test request from sink\n");
4329 goto update_status;
4330 }
4331
4332 switch (rxdata) {
4333 case DP_TEST_LINK_TRAINING:
4334 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4335 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4336 response = intel_dp_autotest_link_training(intel_dp);
4337 break;
4338 case DP_TEST_LINK_VIDEO_PATTERN:
4339 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4340 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4341 response = intel_dp_autotest_video_pattern(intel_dp);
4342 break;
4343 case DP_TEST_LINK_EDID_READ:
4344 DRM_DEBUG_KMS("EDID test requested\n");
4345 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4346 response = intel_dp_autotest_edid(intel_dp);
4347 break;
4348 case DP_TEST_LINK_PHY_TEST_PATTERN:
4349 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4350 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4351 response = intel_dp_autotest_phy_pattern(intel_dp);
4352 break;
4353 default:
4354 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4355 break;
4356 }
4357
4358 update_status:
4359 status = drm_dp_dpcd_write(&intel_dp->aux,
4360 DP_TEST_RESPONSE,
4361 &response, 1);
4362 if (status <= 0)
4363 DRM_DEBUG_KMS("Could not write test response to sink\n");
4364 }
4365
4366 static int
4367 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4368 {
4369 bool bret;
4370
4371 if (intel_dp->is_mst) {
4372 u8 esi[16] = { 0 };
4373 int ret = 0;
4374 int retry;
4375 bool handled;
4376 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4377 go_again:
4378 if (bret == true) {
4379
4380 /* check link status - esi[10] = 0x200c */
4381 if (intel_dp->active_mst_links &&
4382 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4383 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4384 intel_dp_start_link_train(intel_dp);
4385 intel_dp_complete_link_train(intel_dp);
4386 intel_dp_stop_link_train(intel_dp);
4387 }
4388
4389 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4390 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4391
4392 if (handled) {
4393 for (retry = 0; retry < 3; retry++) {
4394 int wret;
4395 wret = drm_dp_dpcd_write(&intel_dp->aux,
4396 DP_SINK_COUNT_ESI+1,
4397 &esi[1], 3);
4398 if (wret == 3) {
4399 break;
4400 }
4401 }
4402
4403 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4404 if (bret == true) {
4405 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4406 goto go_again;
4407 }
4408 } else
4409 ret = 0;
4410
4411 return ret;
4412 } else {
4413 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4414 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4415 intel_dp->is_mst = false;
4416 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4417 /* send a hotplug event */
4418 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4419 }
4420 }
4421 return -EINVAL;
4422 }
4423
4424 /*
4425 * According to DP spec
4426 * 5.1.2:
4427 * 1. Read DPCD
4428 * 2. Configure link according to Receiver Capabilities
4429 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4430 * 4. Check link status on receipt of hot-plug interrupt
4431 */
4432 static void
4433 intel_dp_check_link_status(struct intel_dp *intel_dp)
4434 {
4435 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4436 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4437 u8 sink_irq_vector;
4438 u8 link_status[DP_LINK_STATUS_SIZE];
4439
4440 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4441
4442 if (!intel_encoder->base.crtc)
4443 return;
4444
4445 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4446 return;
4447
4448 /* Try to read receiver status if the link appears to be up */
4449 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4450 return;
4451 }
4452
4453 /* Now read the DPCD to see if it's actually running */
4454 if (!intel_dp_get_dpcd(intel_dp)) {
4455 return;
4456 }
4457
4458 /* Try to read the source of the interrupt */
4459 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4460 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4461 /* Clear interrupt source */
4462 drm_dp_dpcd_writeb(&intel_dp->aux,
4463 DP_DEVICE_SERVICE_IRQ_VECTOR,
4464 sink_irq_vector);
4465
4466 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4467 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4468 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4469 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4470 }
4471
4472 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4473 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4474 intel_encoder->base.name);
4475 intel_dp_start_link_train(intel_dp);
4476 intel_dp_complete_link_train(intel_dp);
4477 intel_dp_stop_link_train(intel_dp);
4478 }
4479 }
4480
4481 /* XXX this is probably wrong for multiple downstream ports */
4482 static enum drm_connector_status
4483 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4484 {
4485 uint8_t *dpcd = intel_dp->dpcd;
4486 uint8_t type;
4487
4488 if (!intel_dp_get_dpcd(intel_dp))
4489 return connector_status_disconnected;
4490
4491 /* if there's no downstream port, we're done */
4492 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4493 return connector_status_connected;
4494
4495 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4496 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4497 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4498 uint8_t reg;
4499
4500 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4501 &reg, 1) < 0)
4502 return connector_status_unknown;
4503
4504 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4505 : connector_status_disconnected;
4506 }
4507
4508 /* If no HPD, poke DDC gently */
4509 if (drm_probe_ddc(&intel_dp->aux.ddc))
4510 return connector_status_connected;
4511
4512 /* Well we tried, say unknown for unreliable port types */
4513 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4514 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4515 if (type == DP_DS_PORT_TYPE_VGA ||
4516 type == DP_DS_PORT_TYPE_NON_EDID)
4517 return connector_status_unknown;
4518 } else {
4519 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4520 DP_DWN_STRM_PORT_TYPE_MASK;
4521 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4522 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4523 return connector_status_unknown;
4524 }
4525
4526 /* Anything else is out of spec, warn and ignore */
4527 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4528 return connector_status_disconnected;
4529 }
4530
4531 static enum drm_connector_status
4532 edp_detect(struct intel_dp *intel_dp)
4533 {
4534 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4535 enum drm_connector_status status;
4536
4537 status = intel_panel_detect(dev);
4538 if (status == connector_status_unknown)
4539 status = connector_status_connected;
4540
4541 return status;
4542 }
4543
4544 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4545 struct intel_digital_port *port)
4546 {
4547 u32 bit;
4548
4549 switch (port->port) {
4550 case PORT_A:
4551 return true;
4552 case PORT_B:
4553 bit = SDE_PORTB_HOTPLUG;
4554 break;
4555 case PORT_C:
4556 bit = SDE_PORTC_HOTPLUG;
4557 break;
4558 case PORT_D:
4559 bit = SDE_PORTD_HOTPLUG;
4560 break;
4561 default:
4562 MISSING_CASE(port->port);
4563 return false;
4564 }
4565
4566 return I915_READ(SDEISR) & bit;
4567 }
4568
4569 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4570 struct intel_digital_port *port)
4571 {
4572 u32 bit;
4573
4574 switch (port->port) {
4575 case PORT_A:
4576 return true;
4577 case PORT_B:
4578 bit = SDE_PORTB_HOTPLUG_CPT;
4579 break;
4580 case PORT_C:
4581 bit = SDE_PORTC_HOTPLUG_CPT;
4582 break;
4583 case PORT_D:
4584 bit = SDE_PORTD_HOTPLUG_CPT;
4585 break;
4586 case PORT_E:
4587 bit = SDE_PORTE_HOTPLUG_SPT;
4588 break;
4589 default:
4590 MISSING_CASE(port->port);
4591 return false;
4592 }
4593
4594 return I915_READ(SDEISR) & bit;
4595 }
4596
4597 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4598 struct intel_digital_port *port)
4599 {
4600 u32 bit;
4601
4602 switch (port->port) {
4603 case PORT_B:
4604 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4605 break;
4606 case PORT_C:
4607 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4608 break;
4609 case PORT_D:
4610 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4611 break;
4612 default:
4613 MISSING_CASE(port->port);
4614 return false;
4615 }
4616
4617 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4618 }
4619
4620 static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4621 struct intel_digital_port *port)
4622 {
4623 u32 bit;
4624
4625 switch (port->port) {
4626 case PORT_B:
4627 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4628 break;
4629 case PORT_C:
4630 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4631 break;
4632 case PORT_D:
4633 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4634 break;
4635 default:
4636 MISSING_CASE(port->port);
4637 return false;
4638 }
4639
4640 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4641 }
4642
4643 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4644 struct intel_digital_port *intel_dig_port)
4645 {
4646 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4647 enum port port;
4648 u32 bit;
4649
4650 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4651 switch (port) {
4652 case PORT_A:
4653 bit = BXT_DE_PORT_HP_DDIA;
4654 break;
4655 case PORT_B:
4656 bit = BXT_DE_PORT_HP_DDIB;
4657 break;
4658 case PORT_C:
4659 bit = BXT_DE_PORT_HP_DDIC;
4660 break;
4661 default:
4662 MISSING_CASE(port);
4663 return false;
4664 }
4665
4666 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4667 }
4668
4669 /*
4670 * intel_digital_port_connected - is the specified port connected?
4671 * @dev_priv: i915 private structure
4672 * @port: the port to test
4673 *
4674 * Return %true if @port is connected, %false otherwise.
4675 */
4676 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4677 struct intel_digital_port *port)
4678 {
4679 if (HAS_PCH_IBX(dev_priv))
4680 return ibx_digital_port_connected(dev_priv, port);
4681 if (HAS_PCH_SPLIT(dev_priv))
4682 return cpt_digital_port_connected(dev_priv, port);
4683 else if (IS_BROXTON(dev_priv))
4684 return bxt_digital_port_connected(dev_priv, port);
4685 else if (IS_VALLEYVIEW(dev_priv))
4686 return vlv_digital_port_connected(dev_priv, port);
4687 else
4688 return g4x_digital_port_connected(dev_priv, port);
4689 }
4690
4691 static enum drm_connector_status
4692 ironlake_dp_detect(struct intel_dp *intel_dp)
4693 {
4694 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4695 struct drm_i915_private *dev_priv = dev->dev_private;
4696 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4697
4698 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4699 return connector_status_disconnected;
4700
4701 return intel_dp_detect_dpcd(intel_dp);
4702 }
4703
4704 static enum drm_connector_status
4705 g4x_dp_detect(struct intel_dp *intel_dp)
4706 {
4707 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4708 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4709
4710 /* Can't disconnect eDP, but you can close the lid... */
4711 if (is_edp(intel_dp)) {
4712 enum drm_connector_status status;
4713
4714 status = intel_panel_detect(dev);
4715 if (status == connector_status_unknown)
4716 status = connector_status_connected;
4717 return status;
4718 }
4719
4720 if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
4721 return connector_status_disconnected;
4722
4723 return intel_dp_detect_dpcd(intel_dp);
4724 }
4725
4726 static struct edid *
4727 intel_dp_get_edid(struct intel_dp *intel_dp)
4728 {
4729 struct intel_connector *intel_connector = intel_dp->attached_connector;
4730
4731 /* use cached edid if we have one */
4732 if (intel_connector->edid) {
4733 /* invalid edid */
4734 if (IS_ERR(intel_connector->edid))
4735 return NULL;
4736
4737 return drm_edid_duplicate(intel_connector->edid);
4738 } else
4739 return drm_get_edid(&intel_connector->base,
4740 &intel_dp->aux.ddc);
4741 }
4742
4743 static void
4744 intel_dp_set_edid(struct intel_dp *intel_dp)
4745 {
4746 struct intel_connector *intel_connector = intel_dp->attached_connector;
4747 struct edid *edid;
4748
4749 edid = intel_dp_get_edid(intel_dp);
4750 intel_connector->detect_edid = edid;
4751
4752 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4753 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4754 else
4755 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4756 }
4757
4758 static void
4759 intel_dp_unset_edid(struct intel_dp *intel_dp)
4760 {
4761 struct intel_connector *intel_connector = intel_dp->attached_connector;
4762
4763 kfree(intel_connector->detect_edid);
4764 intel_connector->detect_edid = NULL;
4765
4766 intel_dp->has_audio = false;
4767 }
4768
4769 static enum intel_display_power_domain
4770 intel_dp_power_get(struct intel_dp *dp)
4771 {
4772 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4773 enum intel_display_power_domain power_domain;
4774
4775 power_domain = intel_display_port_power_domain(encoder);
4776 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4777
4778 return power_domain;
4779 }
4780
4781 static void
4782 intel_dp_power_put(struct intel_dp *dp,
4783 enum intel_display_power_domain power_domain)
4784 {
4785 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4786 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4787 }
4788
4789 static enum drm_connector_status
4790 intel_dp_detect(struct drm_connector *connector, bool force)
4791 {
4792 struct intel_dp *intel_dp = intel_attached_dp(connector);
4793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4794 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4795 struct drm_device *dev = connector->dev;
4796 enum drm_connector_status status;
4797 enum intel_display_power_domain power_domain;
4798 bool ret;
4799 u8 sink_irq_vector;
4800
4801 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4802 connector->base.id, connector->name);
4803 intel_dp_unset_edid(intel_dp);
4804
4805 if (intel_dp->is_mst) {
4806 /* MST devices are disconnected from a monitor POV */
4807 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4808 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4809 return connector_status_disconnected;
4810 }
4811
4812 power_domain = intel_dp_power_get(intel_dp);
4813
4814 /* Can't disconnect eDP, but you can close the lid... */
4815 if (is_edp(intel_dp))
4816 status = edp_detect(intel_dp);
4817 else if (HAS_PCH_SPLIT(dev))
4818 status = ironlake_dp_detect(intel_dp);
4819 else
4820 status = g4x_dp_detect(intel_dp);
4821 if (status != connector_status_connected)
4822 goto out;
4823
4824 intel_dp_probe_oui(intel_dp);
4825
4826 ret = intel_dp_probe_mst(intel_dp);
4827 if (ret) {
4828 /* if we are in MST mode then this connector
4829 won't appear connected or have anything with EDID on it */
4830 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4831 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4832 status = connector_status_disconnected;
4833 goto out;
4834 }
4835
4836 intel_dp_set_edid(intel_dp);
4837
4838 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4839 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4840 status = connector_status_connected;
4841
4842 /* Try to read the source of the interrupt */
4843 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4844 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4845 /* Clear interrupt source */
4846 drm_dp_dpcd_writeb(&intel_dp->aux,
4847 DP_DEVICE_SERVICE_IRQ_VECTOR,
4848 sink_irq_vector);
4849
4850 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4851 intel_dp_handle_test_request(intel_dp);
4852 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4853 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4854 }
4855
4856 out:
4857 intel_dp_power_put(intel_dp, power_domain);
4858 return status;
4859 }
4860
4861 static void
4862 intel_dp_force(struct drm_connector *connector)
4863 {
4864 struct intel_dp *intel_dp = intel_attached_dp(connector);
4865 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4866 enum intel_display_power_domain power_domain;
4867
4868 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4869 connector->base.id, connector->name);
4870 intel_dp_unset_edid(intel_dp);
4871
4872 if (connector->status != connector_status_connected)
4873 return;
4874
4875 power_domain = intel_dp_power_get(intel_dp);
4876
4877 intel_dp_set_edid(intel_dp);
4878
4879 intel_dp_power_put(intel_dp, power_domain);
4880
4881 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4882 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4883 }
4884
4885 static int intel_dp_get_modes(struct drm_connector *connector)
4886 {
4887 struct intel_connector *intel_connector = to_intel_connector(connector);
4888 struct edid *edid;
4889
4890 edid = intel_connector->detect_edid;
4891 if (edid) {
4892 int ret = intel_connector_update_modes(connector, edid);
4893 if (ret)
4894 return ret;
4895 }
4896
4897 /* if eDP has no EDID, fall back to fixed mode */
4898 if (is_edp(intel_attached_dp(connector)) &&
4899 intel_connector->panel.fixed_mode) {
4900 struct drm_display_mode *mode;
4901
4902 mode = drm_mode_duplicate(connector->dev,
4903 intel_connector->panel.fixed_mode);
4904 if (mode) {
4905 drm_mode_probed_add(connector, mode);
4906 return 1;
4907 }
4908 }
4909
4910 return 0;
4911 }
4912
4913 static bool
4914 intel_dp_detect_audio(struct drm_connector *connector)
4915 {
4916 bool has_audio = false;
4917 struct edid *edid;
4918
4919 edid = to_intel_connector(connector)->detect_edid;
4920 if (edid)
4921 has_audio = drm_detect_monitor_audio(edid);
4922
4923 return has_audio;
4924 }
4925
4926 static int
4927 intel_dp_set_property(struct drm_connector *connector,
4928 struct drm_property *property,
4929 uint64_t val)
4930 {
4931 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4932 struct intel_connector *intel_connector = to_intel_connector(connector);
4933 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4934 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4935 int ret;
4936
4937 ret = drm_object_property_set_value(&connector->base, property, val);
4938 if (ret)
4939 return ret;
4940
4941 if (property == dev_priv->force_audio_property) {
4942 int i = val;
4943 bool has_audio;
4944
4945 if (i == intel_dp->force_audio)
4946 return 0;
4947
4948 intel_dp->force_audio = i;
4949
4950 if (i == HDMI_AUDIO_AUTO)
4951 has_audio = intel_dp_detect_audio(connector);
4952 else
4953 has_audio = (i == HDMI_AUDIO_ON);
4954
4955 if (has_audio == intel_dp->has_audio)
4956 return 0;
4957
4958 intel_dp->has_audio = has_audio;
4959 goto done;
4960 }
4961
4962 if (property == dev_priv->broadcast_rgb_property) {
4963 bool old_auto = intel_dp->color_range_auto;
4964 bool old_range = intel_dp->limited_color_range;
4965
4966 switch (val) {
4967 case INTEL_BROADCAST_RGB_AUTO:
4968 intel_dp->color_range_auto = true;
4969 break;
4970 case INTEL_BROADCAST_RGB_FULL:
4971 intel_dp->color_range_auto = false;
4972 intel_dp->limited_color_range = false;
4973 break;
4974 case INTEL_BROADCAST_RGB_LIMITED:
4975 intel_dp->color_range_auto = false;
4976 intel_dp->limited_color_range = true;
4977 break;
4978 default:
4979 return -EINVAL;
4980 }
4981
4982 if (old_auto == intel_dp->color_range_auto &&
4983 old_range == intel_dp->limited_color_range)
4984 return 0;
4985
4986 goto done;
4987 }
4988
4989 if (is_edp(intel_dp) &&
4990 property == connector->dev->mode_config.scaling_mode_property) {
4991 if (val == DRM_MODE_SCALE_NONE) {
4992 DRM_DEBUG_KMS("no scaling not supported\n");
4993 return -EINVAL;
4994 }
4995
4996 if (intel_connector->panel.fitting_mode == val) {
4997 /* the eDP scaling property is not changed */
4998 return 0;
4999 }
5000 intel_connector->panel.fitting_mode = val;
5001
5002 goto done;
5003 }
5004
5005 return -EINVAL;
5006
5007 done:
5008 if (intel_encoder->base.crtc)
5009 intel_crtc_restore_mode(intel_encoder->base.crtc);
5010
5011 return 0;
5012 }
5013
5014 static void
5015 intel_dp_connector_destroy(struct drm_connector *connector)
5016 {
5017 struct intel_connector *intel_connector = to_intel_connector(connector);
5018
5019 kfree(intel_connector->detect_edid);
5020
5021 if (!IS_ERR_OR_NULL(intel_connector->edid))
5022 kfree(intel_connector->edid);
5023
5024 /* Can't call is_edp() since the encoder may have been destroyed
5025 * already. */
5026 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5027 intel_panel_fini(&intel_connector->panel);
5028
5029 drm_connector_cleanup(connector);
5030 kfree(connector);
5031 }
5032
5033 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5034 {
5035 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5036 struct intel_dp *intel_dp = &intel_dig_port->dp;
5037
5038 drm_dp_aux_unregister(&intel_dp->aux);
5039 intel_dp_mst_encoder_cleanup(intel_dig_port);
5040 if (is_edp(intel_dp)) {
5041 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5042 /*
5043 * vdd might still be enabled do to the delayed vdd off.
5044 * Make sure vdd is actually turned off here.
5045 */
5046 pps_lock(intel_dp);
5047 edp_panel_vdd_off_sync(intel_dp);
5048 pps_unlock(intel_dp);
5049
5050 if (intel_dp->edp_notifier.notifier_call) {
5051 unregister_reboot_notifier(&intel_dp->edp_notifier);
5052 intel_dp->edp_notifier.notifier_call = NULL;
5053 }
5054 }
5055 drm_encoder_cleanup(encoder);
5056 kfree(intel_dig_port);
5057 }
5058
5059 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5060 {
5061 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5062
5063 if (!is_edp(intel_dp))
5064 return;
5065
5066 /*
5067 * vdd might still be enabled do to the delayed vdd off.
5068 * Make sure vdd is actually turned off here.
5069 */
5070 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5071 pps_lock(intel_dp);
5072 edp_panel_vdd_off_sync(intel_dp);
5073 pps_unlock(intel_dp);
5074 }
5075
5076 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5077 {
5078 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5079 struct drm_device *dev = intel_dig_port->base.base.dev;
5080 struct drm_i915_private *dev_priv = dev->dev_private;
5081 enum intel_display_power_domain power_domain;
5082
5083 lockdep_assert_held(&dev_priv->pps_mutex);
5084
5085 if (!edp_have_panel_vdd(intel_dp))
5086 return;
5087
5088 /*
5089 * The VDD bit needs a power domain reference, so if the bit is
5090 * already enabled when we boot or resume, grab this reference and
5091 * schedule a vdd off, so we don't hold on to the reference
5092 * indefinitely.
5093 */
5094 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5095 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
5096 intel_display_power_get(dev_priv, power_domain);
5097
5098 edp_panel_vdd_schedule_off(intel_dp);
5099 }
5100
5101 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
5102 {
5103 struct intel_dp *intel_dp;
5104
5105 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
5106 return;
5107
5108 intel_dp = enc_to_intel_dp(encoder);
5109
5110 pps_lock(intel_dp);
5111
5112 /*
5113 * Read out the current power sequencer assignment,
5114 * in case the BIOS did something with it.
5115 */
5116 if (IS_VALLEYVIEW(encoder->dev))
5117 vlv_initial_power_sequencer_setup(intel_dp);
5118
5119 intel_edp_panel_vdd_sanitize(intel_dp);
5120
5121 pps_unlock(intel_dp);
5122 }
5123
5124 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5125 .dpms = drm_atomic_helper_connector_dpms,
5126 .detect = intel_dp_detect,
5127 .force = intel_dp_force,
5128 .fill_modes = drm_helper_probe_single_connector_modes,
5129 .set_property = intel_dp_set_property,
5130 .atomic_get_property = intel_connector_atomic_get_property,
5131 .destroy = intel_dp_connector_destroy,
5132 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5133 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
5134 };
5135
5136 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5137 .get_modes = intel_dp_get_modes,
5138 .mode_valid = intel_dp_mode_valid,
5139 .best_encoder = intel_best_encoder,
5140 };
5141
5142 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5143 .reset = intel_dp_encoder_reset,
5144 .destroy = intel_dp_encoder_destroy,
5145 };
5146
5147 enum irqreturn
5148 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5149 {
5150 struct intel_dp *intel_dp = &intel_dig_port->dp;
5151 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5152 struct drm_device *dev = intel_dig_port->base.base.dev;
5153 struct drm_i915_private *dev_priv = dev->dev_private;
5154 enum intel_display_power_domain power_domain;
5155 enum irqreturn ret = IRQ_NONE;
5156
5157 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
5158 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
5159
5160 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5161 /*
5162 * vdd off can generate a long pulse on eDP which
5163 * would require vdd on to handle it, and thus we
5164 * would end up in an endless cycle of
5165 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5166 */
5167 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5168 port_name(intel_dig_port->port));
5169 return IRQ_HANDLED;
5170 }
5171
5172 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5173 port_name(intel_dig_port->port),
5174 long_hpd ? "long" : "short");
5175
5176 power_domain = intel_display_port_power_domain(intel_encoder);
5177 intel_display_power_get(dev_priv, power_domain);
5178
5179 if (long_hpd) {
5180 /* indicate that we need to restart link training */
5181 intel_dp->train_set_valid = false;
5182
5183 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
5184 goto mst_fail;
5185
5186 if (!intel_dp_get_dpcd(intel_dp)) {
5187 goto mst_fail;
5188 }
5189
5190 intel_dp_probe_oui(intel_dp);
5191
5192 if (!intel_dp_probe_mst(intel_dp)) {
5193 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5194 intel_dp_check_link_status(intel_dp);
5195 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5196 goto mst_fail;
5197 }
5198 } else {
5199 if (intel_dp->is_mst) {
5200 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5201 goto mst_fail;
5202 }
5203
5204 if (!intel_dp->is_mst) {
5205 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5206 intel_dp_check_link_status(intel_dp);
5207 drm_modeset_unlock(&dev->mode_config.connection_mutex);
5208 }
5209 }
5210
5211 ret = IRQ_HANDLED;
5212
5213 goto put_power;
5214 mst_fail:
5215 /* if we were in MST mode, and device is not there get out of MST mode */
5216 if (intel_dp->is_mst) {
5217 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5218 intel_dp->is_mst = false;
5219 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5220 }
5221 put_power:
5222 intel_display_power_put(dev_priv, power_domain);
5223
5224 return ret;
5225 }
5226
5227 /* Return which DP Port should be selected for Transcoder DP control */
5228 int
5229 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5230 {
5231 struct drm_device *dev = crtc->dev;
5232 struct intel_encoder *intel_encoder;
5233 struct intel_dp *intel_dp;
5234
5235 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5236 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5237
5238 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5239 intel_encoder->type == INTEL_OUTPUT_EDP)
5240 return intel_dp->output_reg;
5241 }
5242
5243 return -1;
5244 }
5245
5246 /* check the VBT to see whether the eDP is on another port */
5247 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5248 {
5249 struct drm_i915_private *dev_priv = dev->dev_private;
5250 union child_device_config *p_child;
5251 int i;
5252 static const short port_mapping[] = {
5253 [PORT_B] = DVO_PORT_DPB,
5254 [PORT_C] = DVO_PORT_DPC,
5255 [PORT_D] = DVO_PORT_DPD,
5256 [PORT_E] = DVO_PORT_DPE,
5257 };
5258
5259 /*
5260 * eDP not supported on g4x. so bail out early just
5261 * for a bit extra safety in case the VBT is bonkers.
5262 */
5263 if (INTEL_INFO(dev)->gen < 5)
5264 return false;
5265
5266 if (port == PORT_A)
5267 return true;
5268
5269 if (!dev_priv->vbt.child_dev_num)
5270 return false;
5271
5272 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5273 p_child = dev_priv->vbt.child_dev + i;
5274
5275 if (p_child->common.dvo_port == port_mapping[port] &&
5276 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5277 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5278 return true;
5279 }
5280 return false;
5281 }
5282
5283 void
5284 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5285 {
5286 struct intel_connector *intel_connector = to_intel_connector(connector);
5287
5288 intel_attach_force_audio_property(connector);
5289 intel_attach_broadcast_rgb_property(connector);
5290 intel_dp->color_range_auto = true;
5291
5292 if (is_edp(intel_dp)) {
5293 drm_mode_create_scaling_mode_property(connector->dev);
5294 drm_object_attach_property(
5295 &connector->base,
5296 connector->dev->mode_config.scaling_mode_property,
5297 DRM_MODE_SCALE_ASPECT);
5298 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5299 }
5300 }
5301
5302 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5303 {
5304 intel_dp->last_power_cycle = jiffies;
5305 intel_dp->last_power_on = jiffies;
5306 intel_dp->last_backlight_off = jiffies;
5307 }
5308
5309 static void
5310 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5311 struct intel_dp *intel_dp)
5312 {
5313 struct drm_i915_private *dev_priv = dev->dev_private;
5314 struct edp_power_seq cur, vbt, spec,
5315 *final = &intel_dp->pps_delays;
5316 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5317 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5318
5319 lockdep_assert_held(&dev_priv->pps_mutex);
5320
5321 /* already initialized? */
5322 if (final->t11_t12 != 0)
5323 return;
5324
5325 if (IS_BROXTON(dev)) {
5326 /*
5327 * TODO: BXT has 2 sets of PPS registers.
5328 * Correct Register for Broxton need to be identified
5329 * using VBT. hardcoding for now
5330 */
5331 pp_ctrl_reg = BXT_PP_CONTROL(0);
5332 pp_on_reg = BXT_PP_ON_DELAYS(0);
5333 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5334 } else if (HAS_PCH_SPLIT(dev)) {
5335 pp_ctrl_reg = PCH_PP_CONTROL;
5336 pp_on_reg = PCH_PP_ON_DELAYS;
5337 pp_off_reg = PCH_PP_OFF_DELAYS;
5338 pp_div_reg = PCH_PP_DIVISOR;
5339 } else {
5340 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5341
5342 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5343 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5344 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5345 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5346 }
5347
5348 /* Workaround: Need to write PP_CONTROL with the unlock key as
5349 * the very first thing. */
5350 pp_ctl = ironlake_get_pp_control(intel_dp);
5351
5352 pp_on = I915_READ(pp_on_reg);
5353 pp_off = I915_READ(pp_off_reg);
5354 if (!IS_BROXTON(dev)) {
5355 I915_WRITE(pp_ctrl_reg, pp_ctl);
5356 pp_div = I915_READ(pp_div_reg);
5357 }
5358
5359 /* Pull timing values out of registers */
5360 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5361 PANEL_POWER_UP_DELAY_SHIFT;
5362
5363 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5364 PANEL_LIGHT_ON_DELAY_SHIFT;
5365
5366 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5367 PANEL_LIGHT_OFF_DELAY_SHIFT;
5368
5369 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5370 PANEL_POWER_DOWN_DELAY_SHIFT;
5371
5372 if (IS_BROXTON(dev)) {
5373 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5374 BXT_POWER_CYCLE_DELAY_SHIFT;
5375 if (tmp > 0)
5376 cur.t11_t12 = (tmp - 1) * 1000;
5377 else
5378 cur.t11_t12 = 0;
5379 } else {
5380 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5381 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5382 }
5383
5384 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5385 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5386
5387 vbt = dev_priv->vbt.edp_pps;
5388
5389 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5390 * our hw here, which are all in 100usec. */
5391 spec.t1_t3 = 210 * 10;
5392 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5393 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5394 spec.t10 = 500 * 10;
5395 /* This one is special and actually in units of 100ms, but zero
5396 * based in the hw (so we need to add 100 ms). But the sw vbt
5397 * table multiplies it with 1000 to make it in units of 100usec,
5398 * too. */
5399 spec.t11_t12 = (510 + 100) * 10;
5400
5401 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5402 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5403
5404 /* Use the max of the register settings and vbt. If both are
5405 * unset, fall back to the spec limits. */
5406 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5407 spec.field : \
5408 max(cur.field, vbt.field))
5409 assign_final(t1_t3);
5410 assign_final(t8);
5411 assign_final(t9);
5412 assign_final(t10);
5413 assign_final(t11_t12);
5414 #undef assign_final
5415
5416 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5417 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5418 intel_dp->backlight_on_delay = get_delay(t8);
5419 intel_dp->backlight_off_delay = get_delay(t9);
5420 intel_dp->panel_power_down_delay = get_delay(t10);
5421 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5422 #undef get_delay
5423
5424 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5425 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5426 intel_dp->panel_power_cycle_delay);
5427
5428 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5429 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5430 }
5431
5432 static void
5433 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5434 struct intel_dp *intel_dp)
5435 {
5436 struct drm_i915_private *dev_priv = dev->dev_private;
5437 u32 pp_on, pp_off, pp_div, port_sel = 0;
5438 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5439 int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5440 enum port port = dp_to_dig_port(intel_dp)->port;
5441 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5442
5443 lockdep_assert_held(&dev_priv->pps_mutex);
5444
5445 if (IS_BROXTON(dev)) {
5446 /*
5447 * TODO: BXT has 2 sets of PPS registers.
5448 * Correct Register for Broxton need to be identified
5449 * using VBT. hardcoding for now
5450 */
5451 pp_ctrl_reg = BXT_PP_CONTROL(0);
5452 pp_on_reg = BXT_PP_ON_DELAYS(0);
5453 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5454
5455 } else if (HAS_PCH_SPLIT(dev)) {
5456 pp_on_reg = PCH_PP_ON_DELAYS;
5457 pp_off_reg = PCH_PP_OFF_DELAYS;
5458 pp_div_reg = PCH_PP_DIVISOR;
5459 } else {
5460 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5461
5462 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5463 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5464 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5465 }
5466
5467 /*
5468 * And finally store the new values in the power sequencer. The
5469 * backlight delays are set to 1 because we do manual waits on them. For
5470 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5471 * we'll end up waiting for the backlight off delay twice: once when we
5472 * do the manual sleep, and once when we disable the panel and wait for
5473 * the PP_STATUS bit to become zero.
5474 */
5475 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5476 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5477 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5478 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5479 /* Compute the divisor for the pp clock, simply match the Bspec
5480 * formula. */
5481 if (IS_BROXTON(dev)) {
5482 pp_div = I915_READ(pp_ctrl_reg);
5483 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5484 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5485 << BXT_POWER_CYCLE_DELAY_SHIFT);
5486 } else {
5487 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5488 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5489 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5490 }
5491
5492 /* Haswell doesn't have any port selection bits for the panel
5493 * power sequencer any more. */
5494 if (IS_VALLEYVIEW(dev)) {
5495 port_sel = PANEL_PORT_SELECT_VLV(port);
5496 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5497 if (port == PORT_A)
5498 port_sel = PANEL_PORT_SELECT_DPA;
5499 else
5500 port_sel = PANEL_PORT_SELECT_DPD;
5501 }
5502
5503 pp_on |= port_sel;
5504
5505 I915_WRITE(pp_on_reg, pp_on);
5506 I915_WRITE(pp_off_reg, pp_off);
5507 if (IS_BROXTON(dev))
5508 I915_WRITE(pp_ctrl_reg, pp_div);
5509 else
5510 I915_WRITE(pp_div_reg, pp_div);
5511
5512 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5513 I915_READ(pp_on_reg),
5514 I915_READ(pp_off_reg),
5515 IS_BROXTON(dev) ?
5516 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5517 I915_READ(pp_div_reg));
5518 }
5519
5520 /**
5521 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5522 * @dev: DRM device
5523 * @refresh_rate: RR to be programmed
5524 *
5525 * This function gets called when refresh rate (RR) has to be changed from
5526 * one frequency to another. Switches can be between high and low RR
5527 * supported by the panel or to any other RR based on media playback (in
5528 * this case, RR value needs to be passed from user space).
5529 *
5530 * The caller of this function needs to take a lock on dev_priv->drrs.
5531 */
5532 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5533 {
5534 struct drm_i915_private *dev_priv = dev->dev_private;
5535 struct intel_encoder *encoder;
5536 struct intel_digital_port *dig_port = NULL;
5537 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5538 struct intel_crtc_state *config = NULL;
5539 struct intel_crtc *intel_crtc = NULL;
5540 u32 reg, val;
5541 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5542
5543 if (refresh_rate <= 0) {
5544 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5545 return;
5546 }
5547
5548 if (intel_dp == NULL) {
5549 DRM_DEBUG_KMS("DRRS not supported.\n");
5550 return;
5551 }
5552
5553 /*
5554 * FIXME: This needs proper synchronization with psr state for some
5555 * platforms that cannot have PSR and DRRS enabled at the same time.
5556 */
5557
5558 dig_port = dp_to_dig_port(intel_dp);
5559 encoder = &dig_port->base;
5560 intel_crtc = to_intel_crtc(encoder->base.crtc);
5561
5562 if (!intel_crtc) {
5563 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5564 return;
5565 }
5566
5567 config = intel_crtc->config;
5568
5569 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5570 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5571 return;
5572 }
5573
5574 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5575 refresh_rate)
5576 index = DRRS_LOW_RR;
5577
5578 if (index == dev_priv->drrs.refresh_rate_type) {
5579 DRM_DEBUG_KMS(
5580 "DRRS requested for previously set RR...ignoring\n");
5581 return;
5582 }
5583
5584 if (!intel_crtc->active) {
5585 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5586 return;
5587 }
5588
5589 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5590 switch (index) {
5591 case DRRS_HIGH_RR:
5592 intel_dp_set_m_n(intel_crtc, M1_N1);
5593 break;
5594 case DRRS_LOW_RR:
5595 intel_dp_set_m_n(intel_crtc, M2_N2);
5596 break;
5597 case DRRS_MAX_RR:
5598 default:
5599 DRM_ERROR("Unsupported refreshrate type\n");
5600 }
5601 } else if (INTEL_INFO(dev)->gen > 6) {
5602 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5603 val = I915_READ(reg);
5604
5605 if (index > DRRS_HIGH_RR) {
5606 if (IS_VALLEYVIEW(dev))
5607 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5608 else
5609 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5610 } else {
5611 if (IS_VALLEYVIEW(dev))
5612 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5613 else
5614 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5615 }
5616 I915_WRITE(reg, val);
5617 }
5618
5619 dev_priv->drrs.refresh_rate_type = index;
5620
5621 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5622 }
5623
5624 /**
5625 * intel_edp_drrs_enable - init drrs struct if supported
5626 * @intel_dp: DP struct
5627 *
5628 * Initializes frontbuffer_bits and drrs.dp
5629 */
5630 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5631 {
5632 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5633 struct drm_i915_private *dev_priv = dev->dev_private;
5634 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5635 struct drm_crtc *crtc = dig_port->base.base.crtc;
5636 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5637
5638 if (!intel_crtc->config->has_drrs) {
5639 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5640 return;
5641 }
5642
5643 mutex_lock(&dev_priv->drrs.mutex);
5644 if (WARN_ON(dev_priv->drrs.dp)) {
5645 DRM_ERROR("DRRS already enabled\n");
5646 goto unlock;
5647 }
5648
5649 dev_priv->drrs.busy_frontbuffer_bits = 0;
5650
5651 dev_priv->drrs.dp = intel_dp;
5652
5653 unlock:
5654 mutex_unlock(&dev_priv->drrs.mutex);
5655 }
5656
5657 /**
5658 * intel_edp_drrs_disable - Disable DRRS
5659 * @intel_dp: DP struct
5660 *
5661 */
5662 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5663 {
5664 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5665 struct drm_i915_private *dev_priv = dev->dev_private;
5666 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5667 struct drm_crtc *crtc = dig_port->base.base.crtc;
5668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5669
5670 if (!intel_crtc->config->has_drrs)
5671 return;
5672
5673 mutex_lock(&dev_priv->drrs.mutex);
5674 if (!dev_priv->drrs.dp) {
5675 mutex_unlock(&dev_priv->drrs.mutex);
5676 return;
5677 }
5678
5679 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5680 intel_dp_set_drrs_state(dev_priv->dev,
5681 intel_dp->attached_connector->panel.
5682 fixed_mode->vrefresh);
5683
5684 dev_priv->drrs.dp = NULL;
5685 mutex_unlock(&dev_priv->drrs.mutex);
5686
5687 cancel_delayed_work_sync(&dev_priv->drrs.work);
5688 }
5689
5690 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5691 {
5692 struct drm_i915_private *dev_priv =
5693 container_of(work, typeof(*dev_priv), drrs.work.work);
5694 struct intel_dp *intel_dp;
5695
5696 mutex_lock(&dev_priv->drrs.mutex);
5697
5698 intel_dp = dev_priv->drrs.dp;
5699
5700 if (!intel_dp)
5701 goto unlock;
5702
5703 /*
5704 * The delayed work can race with an invalidate hence we need to
5705 * recheck.
5706 */
5707
5708 if (dev_priv->drrs.busy_frontbuffer_bits)
5709 goto unlock;
5710
5711 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5712 intel_dp_set_drrs_state(dev_priv->dev,
5713 intel_dp->attached_connector->panel.
5714 downclock_mode->vrefresh);
5715
5716 unlock:
5717 mutex_unlock(&dev_priv->drrs.mutex);
5718 }
5719
5720 /**
5721 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5722 * @dev: DRM device
5723 * @frontbuffer_bits: frontbuffer plane tracking bits
5724 *
5725 * This function gets called everytime rendering on the given planes start.
5726 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5727 *
5728 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5729 */
5730 void intel_edp_drrs_invalidate(struct drm_device *dev,
5731 unsigned frontbuffer_bits)
5732 {
5733 struct drm_i915_private *dev_priv = dev->dev_private;
5734 struct drm_crtc *crtc;
5735 enum pipe pipe;
5736
5737 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5738 return;
5739
5740 cancel_delayed_work(&dev_priv->drrs.work);
5741
5742 mutex_lock(&dev_priv->drrs.mutex);
5743 if (!dev_priv->drrs.dp) {
5744 mutex_unlock(&dev_priv->drrs.mutex);
5745 return;
5746 }
5747
5748 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5749 pipe = to_intel_crtc(crtc)->pipe;
5750
5751 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5752 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5753
5754 /* invalidate means busy screen hence upclock */
5755 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5756 intel_dp_set_drrs_state(dev_priv->dev,
5757 dev_priv->drrs.dp->attached_connector->panel.
5758 fixed_mode->vrefresh);
5759
5760 mutex_unlock(&dev_priv->drrs.mutex);
5761 }
5762
5763 /**
5764 * intel_edp_drrs_flush - Restart Idleness DRRS
5765 * @dev: DRM device
5766 * @frontbuffer_bits: frontbuffer plane tracking bits
5767 *
5768 * This function gets called every time rendering on the given planes has
5769 * completed or flip on a crtc is completed. So DRRS should be upclocked
5770 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5771 * if no other planes are dirty.
5772 *
5773 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5774 */
5775 void intel_edp_drrs_flush(struct drm_device *dev,
5776 unsigned frontbuffer_bits)
5777 {
5778 struct drm_i915_private *dev_priv = dev->dev_private;
5779 struct drm_crtc *crtc;
5780 enum pipe pipe;
5781
5782 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5783 return;
5784
5785 cancel_delayed_work(&dev_priv->drrs.work);
5786
5787 mutex_lock(&dev_priv->drrs.mutex);
5788 if (!dev_priv->drrs.dp) {
5789 mutex_unlock(&dev_priv->drrs.mutex);
5790 return;
5791 }
5792
5793 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5794 pipe = to_intel_crtc(crtc)->pipe;
5795
5796 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5797 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5798
5799 /* flush means busy screen hence upclock */
5800 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5801 intel_dp_set_drrs_state(dev_priv->dev,
5802 dev_priv->drrs.dp->attached_connector->panel.
5803 fixed_mode->vrefresh);
5804
5805 /*
5806 * flush also means no more activity hence schedule downclock, if all
5807 * other fbs are quiescent too
5808 */
5809 if (!dev_priv->drrs.busy_frontbuffer_bits)
5810 schedule_delayed_work(&dev_priv->drrs.work,
5811 msecs_to_jiffies(1000));
5812 mutex_unlock(&dev_priv->drrs.mutex);
5813 }
5814
5815 /**
5816 * DOC: Display Refresh Rate Switching (DRRS)
5817 *
5818 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5819 * which enables swtching between low and high refresh rates,
5820 * dynamically, based on the usage scenario. This feature is applicable
5821 * for internal panels.
5822 *
5823 * Indication that the panel supports DRRS is given by the panel EDID, which
5824 * would list multiple refresh rates for one resolution.
5825 *
5826 * DRRS is of 2 types - static and seamless.
5827 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5828 * (may appear as a blink on screen) and is used in dock-undock scenario.
5829 * Seamless DRRS involves changing RR without any visual effect to the user
5830 * and can be used during normal system usage. This is done by programming
5831 * certain registers.
5832 *
5833 * Support for static/seamless DRRS may be indicated in the VBT based on
5834 * inputs from the panel spec.
5835 *
5836 * DRRS saves power by switching to low RR based on usage scenarios.
5837 *
5838 * eDP DRRS:-
5839 * The implementation is based on frontbuffer tracking implementation.
5840 * When there is a disturbance on the screen triggered by user activity or a
5841 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5842 * When there is no movement on screen, after a timeout of 1 second, a switch
5843 * to low RR is made.
5844 * For integration with frontbuffer tracking code,
5845 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5846 *
5847 * DRRS can be further extended to support other internal panels and also
5848 * the scenario of video playback wherein RR is set based on the rate
5849 * requested by userspace.
5850 */
5851
5852 /**
5853 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5854 * @intel_connector: eDP connector
5855 * @fixed_mode: preferred mode of panel
5856 *
5857 * This function is called only once at driver load to initialize basic
5858 * DRRS stuff.
5859 *
5860 * Returns:
5861 * Downclock mode if panel supports it, else return NULL.
5862 * DRRS support is determined by the presence of downclock mode (apart
5863 * from VBT setting).
5864 */
5865 static struct drm_display_mode *
5866 intel_dp_drrs_init(struct intel_connector *intel_connector,
5867 struct drm_display_mode *fixed_mode)
5868 {
5869 struct drm_connector *connector = &intel_connector->base;
5870 struct drm_device *dev = connector->dev;
5871 struct drm_i915_private *dev_priv = dev->dev_private;
5872 struct drm_display_mode *downclock_mode = NULL;
5873
5874 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5875 mutex_init(&dev_priv->drrs.mutex);
5876
5877 if (INTEL_INFO(dev)->gen <= 6) {
5878 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5879 return NULL;
5880 }
5881
5882 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5883 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5884 return NULL;
5885 }
5886
5887 downclock_mode = intel_find_panel_downclock
5888 (dev, fixed_mode, connector);
5889
5890 if (!downclock_mode) {
5891 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5892 return NULL;
5893 }
5894
5895 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5896
5897 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5898 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5899 return downclock_mode;
5900 }
5901
5902 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5903 struct intel_connector *intel_connector)
5904 {
5905 struct drm_connector *connector = &intel_connector->base;
5906 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5907 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5908 struct drm_device *dev = intel_encoder->base.dev;
5909 struct drm_i915_private *dev_priv = dev->dev_private;
5910 struct drm_display_mode *fixed_mode = NULL;
5911 struct drm_display_mode *downclock_mode = NULL;
5912 bool has_dpcd;
5913 struct drm_display_mode *scan;
5914 struct edid *edid;
5915 enum pipe pipe = INVALID_PIPE;
5916
5917 if (!is_edp(intel_dp))
5918 return true;
5919
5920 pps_lock(intel_dp);
5921 intel_edp_panel_vdd_sanitize(intel_dp);
5922 pps_unlock(intel_dp);
5923
5924 /* Cache DPCD and EDID for edp. */
5925 has_dpcd = intel_dp_get_dpcd(intel_dp);
5926
5927 if (has_dpcd) {
5928 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5929 dev_priv->no_aux_handshake =
5930 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5931 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5932 } else {
5933 /* if this fails, presume the device is a ghost */
5934 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5935 return false;
5936 }
5937
5938 /* We now know it's not a ghost, init power sequence regs. */
5939 pps_lock(intel_dp);
5940 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5941 pps_unlock(intel_dp);
5942
5943 mutex_lock(&dev->mode_config.mutex);
5944 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5945 if (edid) {
5946 if (drm_add_edid_modes(connector, edid)) {
5947 drm_mode_connector_update_edid_property(connector,
5948 edid);
5949 drm_edid_to_eld(connector, edid);
5950 } else {
5951 kfree(edid);
5952 edid = ERR_PTR(-EINVAL);
5953 }
5954 } else {
5955 edid = ERR_PTR(-ENOENT);
5956 }
5957 intel_connector->edid = edid;
5958
5959 /* prefer fixed mode from EDID if available */
5960 list_for_each_entry(scan, &connector->probed_modes, head) {
5961 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5962 fixed_mode = drm_mode_duplicate(dev, scan);
5963 downclock_mode = intel_dp_drrs_init(
5964 intel_connector, fixed_mode);
5965 break;
5966 }
5967 }
5968
5969 /* fallback to VBT if available for eDP */
5970 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5971 fixed_mode = drm_mode_duplicate(dev,
5972 dev_priv->vbt.lfp_lvds_vbt_mode);
5973 if (fixed_mode)
5974 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5975 }
5976 mutex_unlock(&dev->mode_config.mutex);
5977
5978 if (IS_VALLEYVIEW(dev)) {
5979 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5980 register_reboot_notifier(&intel_dp->edp_notifier);
5981
5982 /*
5983 * Figure out the current pipe for the initial backlight setup.
5984 * If the current pipe isn't valid, try the PPS pipe, and if that
5985 * fails just assume pipe A.
5986 */
5987 if (IS_CHERRYVIEW(dev))
5988 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5989 else
5990 pipe = PORT_TO_PIPE(intel_dp->DP);
5991
5992 if (pipe != PIPE_A && pipe != PIPE_B)
5993 pipe = intel_dp->pps_pipe;
5994
5995 if (pipe != PIPE_A && pipe != PIPE_B)
5996 pipe = PIPE_A;
5997
5998 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5999 pipe_name(pipe));
6000 }
6001
6002 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6003 intel_connector->panel.backlight_power = intel_edp_backlight_power;
6004 intel_panel_setup_backlight(connector, pipe);
6005
6006 return true;
6007 }
6008
6009 bool
6010 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6011 struct intel_connector *intel_connector)
6012 {
6013 struct drm_connector *connector = &intel_connector->base;
6014 struct intel_dp *intel_dp = &intel_dig_port->dp;
6015 struct intel_encoder *intel_encoder = &intel_dig_port->base;
6016 struct drm_device *dev = intel_encoder->base.dev;
6017 struct drm_i915_private *dev_priv = dev->dev_private;
6018 enum port port = intel_dig_port->port;
6019 int type;
6020
6021 intel_dp->pps_pipe = INVALID_PIPE;
6022
6023 /* intel_dp vfuncs */
6024 if (INTEL_INFO(dev)->gen >= 9)
6025 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
6026 else if (IS_VALLEYVIEW(dev))
6027 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
6028 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
6029 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
6030 else if (HAS_PCH_SPLIT(dev))
6031 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
6032 else
6033 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
6034
6035 if (INTEL_INFO(dev)->gen >= 9)
6036 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
6037 else
6038 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
6039
6040 /* Preserve the current hw state. */
6041 intel_dp->DP = I915_READ(intel_dp->output_reg);
6042 intel_dp->attached_connector = intel_connector;
6043
6044 if (intel_dp_is_edp(dev, port))
6045 type = DRM_MODE_CONNECTOR_eDP;
6046 else
6047 type = DRM_MODE_CONNECTOR_DisplayPort;
6048
6049 /*
6050 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6051 * for DP the encoder type can be set by the caller to
6052 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6053 */
6054 if (type == DRM_MODE_CONNECTOR_eDP)
6055 intel_encoder->type = INTEL_OUTPUT_EDP;
6056
6057 /* eDP only on port B and/or C on vlv/chv */
6058 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
6059 port != PORT_B && port != PORT_C))
6060 return false;
6061
6062 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6063 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6064 port_name(port));
6065
6066 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6067 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6068
6069 connector->interlace_allowed = true;
6070 connector->doublescan_allowed = 0;
6071
6072 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6073 edp_panel_vdd_work);
6074
6075 intel_connector_attach_encoder(intel_connector, intel_encoder);
6076 drm_connector_register(connector);
6077
6078 if (HAS_DDI(dev))
6079 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6080 else
6081 intel_connector->get_hw_state = intel_connector_get_hw_state;
6082 intel_connector->unregister = intel_dp_connector_unregister;
6083
6084 /* Set up the hotplug pin. */
6085 switch (port) {
6086 case PORT_A:
6087 intel_encoder->hpd_pin = HPD_PORT_A;
6088 break;
6089 case PORT_B:
6090 intel_encoder->hpd_pin = HPD_PORT_B;
6091 if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
6092 intel_encoder->hpd_pin = HPD_PORT_A;
6093 break;
6094 case PORT_C:
6095 intel_encoder->hpd_pin = HPD_PORT_C;
6096 break;
6097 case PORT_D:
6098 intel_encoder->hpd_pin = HPD_PORT_D;
6099 break;
6100 case PORT_E:
6101 intel_encoder->hpd_pin = HPD_PORT_E;
6102 break;
6103 default:
6104 BUG();
6105 }
6106
6107 if (is_edp(intel_dp)) {
6108 pps_lock(intel_dp);
6109 intel_dp_init_panel_power_timestamps(intel_dp);
6110 if (IS_VALLEYVIEW(dev))
6111 vlv_initial_power_sequencer_setup(intel_dp);
6112 else
6113 intel_dp_init_panel_power_sequencer(dev, intel_dp);
6114 pps_unlock(intel_dp);
6115 }
6116
6117 intel_dp_aux_init(intel_dp, intel_connector);
6118
6119 /* init MST on ports that can support it */
6120 if (HAS_DP_MST(dev) &&
6121 (port == PORT_B || port == PORT_C || port == PORT_D))
6122 intel_dp_mst_encoder_init(intel_dig_port,
6123 intel_connector->base.base.id);
6124
6125 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6126 drm_dp_aux_unregister(&intel_dp->aux);
6127 if (is_edp(intel_dp)) {
6128 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6129 /*
6130 * vdd might still be enabled do to the delayed vdd off.
6131 * Make sure vdd is actually turned off here.
6132 */
6133 pps_lock(intel_dp);
6134 edp_panel_vdd_off_sync(intel_dp);
6135 pps_unlock(intel_dp);
6136 }
6137 drm_connector_unregister(connector);
6138 drm_connector_cleanup(connector);
6139 return false;
6140 }
6141
6142 intel_dp_add_properties(intel_dp, connector);
6143
6144 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6145 * 0xd. Failure to do so will result in spurious interrupts being
6146 * generated on the port when a cable is not attached.
6147 */
6148 if (IS_G4X(dev) && !IS_GM45(dev)) {
6149 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6150 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6151 }
6152
6153 i915_debugfs_connector_add(connector);
6154
6155 return true;
6156 }
6157
6158 void
6159 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
6160 {
6161 struct drm_i915_private *dev_priv = dev->dev_private;
6162 struct intel_digital_port *intel_dig_port;
6163 struct intel_encoder *intel_encoder;
6164 struct drm_encoder *encoder;
6165 struct intel_connector *intel_connector;
6166
6167 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6168 if (!intel_dig_port)
6169 return;
6170
6171 intel_connector = intel_connector_alloc();
6172 if (!intel_connector) {
6173 kfree(intel_dig_port);
6174 return;
6175 }
6176
6177 intel_encoder = &intel_dig_port->base;
6178 encoder = &intel_encoder->base;
6179
6180 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
6181 DRM_MODE_ENCODER_TMDS);
6182
6183 intel_encoder->compute_config = intel_dp_compute_config;
6184 intel_encoder->disable = intel_disable_dp;
6185 intel_encoder->get_hw_state = intel_dp_get_hw_state;
6186 intel_encoder->get_config = intel_dp_get_config;
6187 intel_encoder->suspend = intel_dp_encoder_suspend;
6188 if (IS_CHERRYVIEW(dev)) {
6189 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6190 intel_encoder->pre_enable = chv_pre_enable_dp;
6191 intel_encoder->enable = vlv_enable_dp;
6192 intel_encoder->post_disable = chv_post_disable_dp;
6193 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6194 } else if (IS_VALLEYVIEW(dev)) {
6195 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6196 intel_encoder->pre_enable = vlv_pre_enable_dp;
6197 intel_encoder->enable = vlv_enable_dp;
6198 intel_encoder->post_disable = vlv_post_disable_dp;
6199 } else {
6200 intel_encoder->pre_enable = g4x_pre_enable_dp;
6201 intel_encoder->enable = g4x_enable_dp;
6202 if (INTEL_INFO(dev)->gen >= 5)
6203 intel_encoder->post_disable = ilk_post_disable_dp;
6204 }
6205
6206 intel_dig_port->port = port;
6207 intel_dig_port->dp.output_reg = output_reg;
6208
6209 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6210 if (IS_CHERRYVIEW(dev)) {
6211 if (port == PORT_D)
6212 intel_encoder->crtc_mask = 1 << 2;
6213 else
6214 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6215 } else {
6216 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6217 }
6218 intel_encoder->cloneable = 0;
6219
6220 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6221 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6222
6223 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
6224 drm_encoder_cleanup(encoder);
6225 kfree(intel_dig_port);
6226 kfree(intel_connector);
6227 }
6228 }
6229
6230 void intel_dp_mst_suspend(struct drm_device *dev)
6231 {
6232 struct drm_i915_private *dev_priv = dev->dev_private;
6233 int i;
6234
6235 /* disable MST */
6236 for (i = 0; i < I915_MAX_PORTS; i++) {
6237 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6238 if (!intel_dig_port)
6239 continue;
6240
6241 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6242 if (!intel_dig_port->dp.can_mst)
6243 continue;
6244 if (intel_dig_port->dp.is_mst)
6245 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6246 }
6247 }
6248 }
6249
6250 void intel_dp_mst_resume(struct drm_device *dev)
6251 {
6252 struct drm_i915_private *dev_priv = dev->dev_private;
6253 int i;
6254
6255 for (i = 0; i < I915_MAX_PORTS; i++) {
6256 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6257 if (!intel_dig_port)
6258 continue;
6259 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6260 int ret;
6261
6262 if (!intel_dig_port->dp.can_mst)
6263 continue;
6264
6265 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6266 if (ret != 0) {
6267 intel_dp_check_mst_status(&intel_dig_port->dp);
6268 }
6269 }
6270 }
6271 }
This page took 0.181513 seconds and 5 git commands to generate.