drm/i915: Unduplicate VLV signal level code
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 u8 source_max, sink_max;
157
158 source_max = intel_dig_port->max_lanes;
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195 struct drm_display_mode *mode)
196 {
197 struct intel_dp *intel_dp = intel_attached_dp(connector);
198 struct intel_connector *intel_connector = to_intel_connector(connector);
199 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200 int target_clock = mode->clock;
201 int max_rate, mode_rate, max_lanes, max_link_clock;
202 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
203
204 if (is_edp(intel_dp) && fixed_mode) {
205 if (mode->hdisplay > fixed_mode->hdisplay)
206 return MODE_PANEL;
207
208 if (mode->vdisplay > fixed_mode->vdisplay)
209 return MODE_PANEL;
210
211 target_clock = fixed_mode->clock;
212 }
213
214 max_link_clock = intel_dp_max_link_rate(intel_dp);
215 max_lanes = intel_dp_max_lane_count(intel_dp);
216
217 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
218 mode_rate = intel_dp_link_required(target_clock, 18);
219
220 if (mode_rate > max_rate || target_clock > max_dotclk)
221 return MODE_CLOCK_HIGH;
222
223 if (mode->clock < 10000)
224 return MODE_CLOCK_LOW;
225
226 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
227 return MODE_H_ILLEGAL;
228
229 return MODE_OK;
230 }
231
232 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
233 {
234 int i;
235 uint32_t v = 0;
236
237 if (src_bytes > 4)
238 src_bytes = 4;
239 for (i = 0; i < src_bytes; i++)
240 v |= ((uint32_t) src[i]) << ((3-i) * 8);
241 return v;
242 }
243
244 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
245 {
246 int i;
247 if (dst_bytes > 4)
248 dst_bytes = 4;
249 for (i = 0; i < dst_bytes; i++)
250 dst[i] = src >> ((3-i) * 8);
251 }
252
253 static void
254 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
255 struct intel_dp *intel_dp);
256 static void
257 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
258 struct intel_dp *intel_dp);
259
260 static void pps_lock(struct intel_dp *intel_dp)
261 {
262 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
263 struct intel_encoder *encoder = &intel_dig_port->base;
264 struct drm_device *dev = encoder->base.dev;
265 struct drm_i915_private *dev_priv = dev->dev_private;
266 enum intel_display_power_domain power_domain;
267
268 /*
269 * See vlv_power_sequencer_reset() why we need
270 * a power domain reference here.
271 */
272 power_domain = intel_display_port_aux_power_domain(encoder);
273 intel_display_power_get(dev_priv, power_domain);
274
275 mutex_lock(&dev_priv->pps_mutex);
276 }
277
278 static void pps_unlock(struct intel_dp *intel_dp)
279 {
280 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
281 struct intel_encoder *encoder = &intel_dig_port->base;
282 struct drm_device *dev = encoder->base.dev;
283 struct drm_i915_private *dev_priv = dev->dev_private;
284 enum intel_display_power_domain power_domain;
285
286 mutex_unlock(&dev_priv->pps_mutex);
287
288 power_domain = intel_display_port_aux_power_domain(encoder);
289 intel_display_power_put(dev_priv, power_domain);
290 }
291
292 static void
293 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct drm_device *dev = intel_dig_port->base.base.dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 enum pipe pipe = intel_dp->pps_pipe;
299 bool pll_enabled, release_cl_override = false;
300 enum dpio_phy phy = DPIO_PHY(pipe);
301 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
302 uint32_t DP;
303
304 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
305 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
306 pipe_name(pipe), port_name(intel_dig_port->port)))
307 return;
308
309 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
310 pipe_name(pipe), port_name(intel_dig_port->port));
311
312 /* Preserve the BIOS-computed detected bit. This is
313 * supposed to be read-only.
314 */
315 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
316 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
317 DP |= DP_PORT_WIDTH(1);
318 DP |= DP_LINK_TRAIN_PAT_1;
319
320 if (IS_CHERRYVIEW(dev))
321 DP |= DP_PIPE_SELECT_CHV(pipe);
322 else if (pipe == PIPE_B)
323 DP |= DP_PIPEB_SELECT;
324
325 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
326
327 /*
328 * The DPLL for the pipe must be enabled for this to work.
329 * So enable temporarily it if it's not already enabled.
330 */
331 if (!pll_enabled) {
332 release_cl_override = IS_CHERRYVIEW(dev) &&
333 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
334
335 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
336 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
337 DRM_ERROR("Failed to force on pll for pipe %c!\n",
338 pipe_name(pipe));
339 return;
340 }
341 }
342
343 /*
344 * Similar magic as in intel_dp_enable_port().
345 * We _must_ do this port enable + disable trick
346 * to make this power seqeuencer lock onto the port.
347 * Otherwise even VDD force bit won't work.
348 */
349 I915_WRITE(intel_dp->output_reg, DP);
350 POSTING_READ(intel_dp->output_reg);
351
352 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
353 POSTING_READ(intel_dp->output_reg);
354
355 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
356 POSTING_READ(intel_dp->output_reg);
357
358 if (!pll_enabled) {
359 vlv_force_pll_off(dev, pipe);
360
361 if (release_cl_override)
362 chv_phy_powergate_ch(dev_priv, phy, ch, false);
363 }
364 }
365
366 static enum pipe
367 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
368 {
369 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
370 struct drm_device *dev = intel_dig_port->base.base.dev;
371 struct drm_i915_private *dev_priv = dev->dev_private;
372 struct intel_encoder *encoder;
373 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
374 enum pipe pipe;
375
376 lockdep_assert_held(&dev_priv->pps_mutex);
377
378 /* We should never land here with regular DP ports */
379 WARN_ON(!is_edp(intel_dp));
380
381 if (intel_dp->pps_pipe != INVALID_PIPE)
382 return intel_dp->pps_pipe;
383
384 /*
385 * We don't have power sequencer currently.
386 * Pick one that's not used by other ports.
387 */
388 for_each_intel_encoder(dev, encoder) {
389 struct intel_dp *tmp;
390
391 if (encoder->type != INTEL_OUTPUT_EDP)
392 continue;
393
394 tmp = enc_to_intel_dp(&encoder->base);
395
396 if (tmp->pps_pipe != INVALID_PIPE)
397 pipes &= ~(1 << tmp->pps_pipe);
398 }
399
400 /*
401 * Didn't find one. This should not happen since there
402 * are two power sequencers and up to two eDP ports.
403 */
404 if (WARN_ON(pipes == 0))
405 pipe = PIPE_A;
406 else
407 pipe = ffs(pipes) - 1;
408
409 vlv_steal_power_sequencer(dev, pipe);
410 intel_dp->pps_pipe = pipe;
411
412 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
413 pipe_name(intel_dp->pps_pipe),
414 port_name(intel_dig_port->port));
415
416 /* init power sequencer on this pipe and port */
417 intel_dp_init_panel_power_sequencer(dev, intel_dp);
418 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
419
420 /*
421 * Even vdd force doesn't work until we've made
422 * the power sequencer lock in on the port.
423 */
424 vlv_power_sequencer_kick(intel_dp);
425
426 return intel_dp->pps_pipe;
427 }
428
429 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
430 enum pipe pipe);
431
432 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
433 enum pipe pipe)
434 {
435 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
436 }
437
438 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
439 enum pipe pipe)
440 {
441 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
442 }
443
444 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
445 enum pipe pipe)
446 {
447 return true;
448 }
449
450 static enum pipe
451 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
452 enum port port,
453 vlv_pipe_check pipe_check)
454 {
455 enum pipe pipe;
456
457 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
458 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
459 PANEL_PORT_SELECT_MASK;
460
461 if (port_sel != PANEL_PORT_SELECT_VLV(port))
462 continue;
463
464 if (!pipe_check(dev_priv, pipe))
465 continue;
466
467 return pipe;
468 }
469
470 return INVALID_PIPE;
471 }
472
473 static void
474 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
475 {
476 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
477 struct drm_device *dev = intel_dig_port->base.base.dev;
478 struct drm_i915_private *dev_priv = dev->dev_private;
479 enum port port = intel_dig_port->port;
480
481 lockdep_assert_held(&dev_priv->pps_mutex);
482
483 /* try to find a pipe with this port selected */
484 /* first pick one where the panel is on */
485 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
486 vlv_pipe_has_pp_on);
487 /* didn't find one? pick one where vdd is on */
488 if (intel_dp->pps_pipe == INVALID_PIPE)
489 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
490 vlv_pipe_has_vdd_on);
491 /* didn't find one? pick one with just the correct port */
492 if (intel_dp->pps_pipe == INVALID_PIPE)
493 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
494 vlv_pipe_any);
495
496 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
497 if (intel_dp->pps_pipe == INVALID_PIPE) {
498 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
499 port_name(port));
500 return;
501 }
502
503 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
504 port_name(port), pipe_name(intel_dp->pps_pipe));
505
506 intel_dp_init_panel_power_sequencer(dev, intel_dp);
507 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
508 }
509
510 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
511 {
512 struct drm_device *dev = dev_priv->dev;
513 struct intel_encoder *encoder;
514
515 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
516 return;
517
518 /*
519 * We can't grab pps_mutex here due to deadlock with power_domain
520 * mutex when power_domain functions are called while holding pps_mutex.
521 * That also means that in order to use pps_pipe the code needs to
522 * hold both a power domain reference and pps_mutex, and the power domain
523 * reference get/put must be done while _not_ holding pps_mutex.
524 * pps_{lock,unlock}() do these steps in the correct order, so one
525 * should use them always.
526 */
527
528 for_each_intel_encoder(dev, encoder) {
529 struct intel_dp *intel_dp;
530
531 if (encoder->type != INTEL_OUTPUT_EDP)
532 continue;
533
534 intel_dp = enc_to_intel_dp(&encoder->base);
535 intel_dp->pps_pipe = INVALID_PIPE;
536 }
537 }
538
539 static i915_reg_t
540 _pp_ctrl_reg(struct intel_dp *intel_dp)
541 {
542 struct drm_device *dev = intel_dp_to_dev(intel_dp);
543
544 if (IS_BROXTON(dev))
545 return BXT_PP_CONTROL(0);
546 else if (HAS_PCH_SPLIT(dev))
547 return PCH_PP_CONTROL;
548 else
549 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
550 }
551
552 static i915_reg_t
553 _pp_stat_reg(struct intel_dp *intel_dp)
554 {
555 struct drm_device *dev = intel_dp_to_dev(intel_dp);
556
557 if (IS_BROXTON(dev))
558 return BXT_PP_STATUS(0);
559 else if (HAS_PCH_SPLIT(dev))
560 return PCH_PP_STATUS;
561 else
562 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
563 }
564
565 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
566 This function only applicable when panel PM state is not to be tracked */
567 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
568 void *unused)
569 {
570 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
571 edp_notifier);
572 struct drm_device *dev = intel_dp_to_dev(intel_dp);
573 struct drm_i915_private *dev_priv = dev->dev_private;
574
575 if (!is_edp(intel_dp) || code != SYS_RESTART)
576 return 0;
577
578 pps_lock(intel_dp);
579
580 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
581 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
582 i915_reg_t pp_ctrl_reg, pp_div_reg;
583 u32 pp_div;
584
585 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
586 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
587 pp_div = I915_READ(pp_div_reg);
588 pp_div &= PP_REFERENCE_DIVIDER_MASK;
589
590 /* 0x1F write to PP_DIV_REG sets max cycle delay */
591 I915_WRITE(pp_div_reg, pp_div | 0x1F);
592 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
593 msleep(intel_dp->panel_power_cycle_delay);
594 }
595
596 pps_unlock(intel_dp);
597
598 return 0;
599 }
600
601 static bool edp_have_panel_power(struct intel_dp *intel_dp)
602 {
603 struct drm_device *dev = intel_dp_to_dev(intel_dp);
604 struct drm_i915_private *dev_priv = dev->dev_private;
605
606 lockdep_assert_held(&dev_priv->pps_mutex);
607
608 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
609 intel_dp->pps_pipe == INVALID_PIPE)
610 return false;
611
612 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
613 }
614
615 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
616 {
617 struct drm_device *dev = intel_dp_to_dev(intel_dp);
618 struct drm_i915_private *dev_priv = dev->dev_private;
619
620 lockdep_assert_held(&dev_priv->pps_mutex);
621
622 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
623 intel_dp->pps_pipe == INVALID_PIPE)
624 return false;
625
626 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
627 }
628
629 static void
630 intel_dp_check_edp(struct intel_dp *intel_dp)
631 {
632 struct drm_device *dev = intel_dp_to_dev(intel_dp);
633 struct drm_i915_private *dev_priv = dev->dev_private;
634
635 if (!is_edp(intel_dp))
636 return;
637
638 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
639 WARN(1, "eDP powered off while attempting aux channel communication.\n");
640 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
641 I915_READ(_pp_stat_reg(intel_dp)),
642 I915_READ(_pp_ctrl_reg(intel_dp)));
643 }
644 }
645
646 static uint32_t
647 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
648 {
649 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
650 struct drm_device *dev = intel_dig_port->base.base.dev;
651 struct drm_i915_private *dev_priv = dev->dev_private;
652 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
653 uint32_t status;
654 bool done;
655
656 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
657 if (has_aux_irq)
658 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
659 msecs_to_jiffies_timeout(10));
660 else
661 done = wait_for_atomic(C, 10) == 0;
662 if (!done)
663 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
664 has_aux_irq);
665 #undef C
666
667 return status;
668 }
669
670 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
671 {
672 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
673 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
674
675 if (index)
676 return 0;
677
678 /*
679 * The clock divider is based off the hrawclk, and would like to run at
680 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
681 */
682 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
683 }
684
685 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
689
690 if (index)
691 return 0;
692
693 /*
694 * The clock divider is based off the cdclk or PCH rawclk, and would
695 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
696 * divide by 2000 and use that
697 */
698 if (intel_dig_port->port == PORT_A)
699 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
700 else
701 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
702 }
703
704 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
705 {
706 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
707 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
708
709 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
710 /* Workaround for non-ULT HSW */
711 switch (index) {
712 case 0: return 63;
713 case 1: return 72;
714 default: return 0;
715 }
716 }
717
718 return ilk_get_aux_clock_divider(intel_dp, index);
719 }
720
721 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
722 {
723 /*
724 * SKL doesn't need us to program the AUX clock divider (Hardware will
725 * derive the clock from CDCLK automatically). We still implement the
726 * get_aux_clock_divider vfunc to plug-in into the existing code.
727 */
728 return index ? 0 : 1;
729 }
730
731 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
732 bool has_aux_irq,
733 int send_bytes,
734 uint32_t aux_clock_divider)
735 {
736 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
737 struct drm_device *dev = intel_dig_port->base.base.dev;
738 uint32_t precharge, timeout;
739
740 if (IS_GEN6(dev))
741 precharge = 3;
742 else
743 precharge = 5;
744
745 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
746 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
747 else
748 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
749
750 return DP_AUX_CH_CTL_SEND_BUSY |
751 DP_AUX_CH_CTL_DONE |
752 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
753 DP_AUX_CH_CTL_TIME_OUT_ERROR |
754 timeout |
755 DP_AUX_CH_CTL_RECEIVE_ERROR |
756 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
757 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
758 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
759 }
760
761 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
762 bool has_aux_irq,
763 int send_bytes,
764 uint32_t unused)
765 {
766 return DP_AUX_CH_CTL_SEND_BUSY |
767 DP_AUX_CH_CTL_DONE |
768 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
769 DP_AUX_CH_CTL_TIME_OUT_ERROR |
770 DP_AUX_CH_CTL_TIME_OUT_1600us |
771 DP_AUX_CH_CTL_RECEIVE_ERROR |
772 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
773 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
774 }
775
776 static int
777 intel_dp_aux_ch(struct intel_dp *intel_dp,
778 const uint8_t *send, int send_bytes,
779 uint8_t *recv, int recv_size)
780 {
781 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
782 struct drm_device *dev = intel_dig_port->base.base.dev;
783 struct drm_i915_private *dev_priv = dev->dev_private;
784 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
785 uint32_t aux_clock_divider;
786 int i, ret, recv_bytes;
787 uint32_t status;
788 int try, clock = 0;
789 bool has_aux_irq = HAS_AUX_IRQ(dev);
790 bool vdd;
791
792 pps_lock(intel_dp);
793
794 /*
795 * We will be called with VDD already enabled for dpcd/edid/oui reads.
796 * In such cases we want to leave VDD enabled and it's up to upper layers
797 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
798 * ourselves.
799 */
800 vdd = edp_panel_vdd_on(intel_dp);
801
802 /* dp aux is extremely sensitive to irq latency, hence request the
803 * lowest possible wakeup latency and so prevent the cpu from going into
804 * deep sleep states.
805 */
806 pm_qos_update_request(&dev_priv->pm_qos, 0);
807
808 intel_dp_check_edp(intel_dp);
809
810 /* Try to wait for any previous AUX channel activity */
811 for (try = 0; try < 3; try++) {
812 status = I915_READ_NOTRACE(ch_ctl);
813 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
814 break;
815 msleep(1);
816 }
817
818 if (try == 3) {
819 static u32 last_status = -1;
820 const u32 status = I915_READ(ch_ctl);
821
822 if (status != last_status) {
823 WARN(1, "dp_aux_ch not started status 0x%08x\n",
824 status);
825 last_status = status;
826 }
827
828 ret = -EBUSY;
829 goto out;
830 }
831
832 /* Only 5 data registers! */
833 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
834 ret = -E2BIG;
835 goto out;
836 }
837
838 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
839 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
840 has_aux_irq,
841 send_bytes,
842 aux_clock_divider);
843
844 /* Must try at least 3 times according to DP spec */
845 for (try = 0; try < 5; try++) {
846 /* Load the send data into the aux channel data registers */
847 for (i = 0; i < send_bytes; i += 4)
848 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
849 intel_dp_pack_aux(send + i,
850 send_bytes - i));
851
852 /* Send the command and wait for it to complete */
853 I915_WRITE(ch_ctl, send_ctl);
854
855 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
856
857 /* Clear done status and any errors */
858 I915_WRITE(ch_ctl,
859 status |
860 DP_AUX_CH_CTL_DONE |
861 DP_AUX_CH_CTL_TIME_OUT_ERROR |
862 DP_AUX_CH_CTL_RECEIVE_ERROR);
863
864 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
865 continue;
866
867 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
868 * 400us delay required for errors and timeouts
869 * Timeout errors from the HW already meet this
870 * requirement so skip to next iteration
871 */
872 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
873 usleep_range(400, 500);
874 continue;
875 }
876 if (status & DP_AUX_CH_CTL_DONE)
877 goto done;
878 }
879 }
880
881 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
882 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
883 ret = -EBUSY;
884 goto out;
885 }
886
887 done:
888 /* Check for timeout or receive error.
889 * Timeouts occur when the sink is not connected
890 */
891 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
892 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
893 ret = -EIO;
894 goto out;
895 }
896
897 /* Timeouts occur when the device isn't connected, so they're
898 * "normal" -- don't fill the kernel log with these */
899 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
900 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
901 ret = -ETIMEDOUT;
902 goto out;
903 }
904
905 /* Unload any bytes sent back from the other side */
906 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
907 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
908
909 /*
910 * By BSpec: "Message sizes of 0 or >20 are not allowed."
911 * We have no idea of what happened so we return -EBUSY so
912 * drm layer takes care for the necessary retries.
913 */
914 if (recv_bytes == 0 || recv_bytes > 20) {
915 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
916 recv_bytes);
917 /*
918 * FIXME: This patch was created on top of a series that
919 * organize the retries at drm level. There EBUSY should
920 * also take care for 1ms wait before retrying.
921 * That aux retries re-org is still needed and after that is
922 * merged we remove this sleep from here.
923 */
924 usleep_range(1000, 1500);
925 ret = -EBUSY;
926 goto out;
927 }
928
929 if (recv_bytes > recv_size)
930 recv_bytes = recv_size;
931
932 for (i = 0; i < recv_bytes; i += 4)
933 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
934 recv + i, recv_bytes - i);
935
936 ret = recv_bytes;
937 out:
938 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
939
940 if (vdd)
941 edp_panel_vdd_off(intel_dp, false);
942
943 pps_unlock(intel_dp);
944
945 return ret;
946 }
947
948 #define BARE_ADDRESS_SIZE 3
949 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
950 static ssize_t
951 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
952 {
953 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
954 uint8_t txbuf[20], rxbuf[20];
955 size_t txsize, rxsize;
956 int ret;
957
958 txbuf[0] = (msg->request << 4) |
959 ((msg->address >> 16) & 0xf);
960 txbuf[1] = (msg->address >> 8) & 0xff;
961 txbuf[2] = msg->address & 0xff;
962 txbuf[3] = msg->size - 1;
963
964 switch (msg->request & ~DP_AUX_I2C_MOT) {
965 case DP_AUX_NATIVE_WRITE:
966 case DP_AUX_I2C_WRITE:
967 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
968 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
969 rxsize = 2; /* 0 or 1 data bytes */
970
971 if (WARN_ON(txsize > 20))
972 return -E2BIG;
973
974 if (msg->buffer)
975 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
976 else
977 WARN_ON(msg->size);
978
979 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
980 if (ret > 0) {
981 msg->reply = rxbuf[0] >> 4;
982
983 if (ret > 1) {
984 /* Number of bytes written in a short write. */
985 ret = clamp_t(int, rxbuf[1], 0, msg->size);
986 } else {
987 /* Return payload size. */
988 ret = msg->size;
989 }
990 }
991 break;
992
993 case DP_AUX_NATIVE_READ:
994 case DP_AUX_I2C_READ:
995 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
996 rxsize = msg->size + 1;
997
998 if (WARN_ON(rxsize > 20))
999 return -E2BIG;
1000
1001 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1002 if (ret > 0) {
1003 msg->reply = rxbuf[0] >> 4;
1004 /*
1005 * Assume happy day, and copy the data. The caller is
1006 * expected to check msg->reply before touching it.
1007 *
1008 * Return payload size.
1009 */
1010 ret--;
1011 memcpy(msg->buffer, rxbuf + 1, ret);
1012 }
1013 break;
1014
1015 default:
1016 ret = -EINVAL;
1017 break;
1018 }
1019
1020 return ret;
1021 }
1022
1023 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1024 enum port port)
1025 {
1026 switch (port) {
1027 case PORT_B:
1028 case PORT_C:
1029 case PORT_D:
1030 return DP_AUX_CH_CTL(port);
1031 default:
1032 MISSING_CASE(port);
1033 return DP_AUX_CH_CTL(PORT_B);
1034 }
1035 }
1036
1037 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1038 enum port port, int index)
1039 {
1040 switch (port) {
1041 case PORT_B:
1042 case PORT_C:
1043 case PORT_D:
1044 return DP_AUX_CH_DATA(port, index);
1045 default:
1046 MISSING_CASE(port);
1047 return DP_AUX_CH_DATA(PORT_B, index);
1048 }
1049 }
1050
1051 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1052 enum port port)
1053 {
1054 switch (port) {
1055 case PORT_A:
1056 return DP_AUX_CH_CTL(port);
1057 case PORT_B:
1058 case PORT_C:
1059 case PORT_D:
1060 return PCH_DP_AUX_CH_CTL(port);
1061 default:
1062 MISSING_CASE(port);
1063 return DP_AUX_CH_CTL(PORT_A);
1064 }
1065 }
1066
1067 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1068 enum port port, int index)
1069 {
1070 switch (port) {
1071 case PORT_A:
1072 return DP_AUX_CH_DATA(port, index);
1073 case PORT_B:
1074 case PORT_C:
1075 case PORT_D:
1076 return PCH_DP_AUX_CH_DATA(port, index);
1077 default:
1078 MISSING_CASE(port);
1079 return DP_AUX_CH_DATA(PORT_A, index);
1080 }
1081 }
1082
1083 /*
1084 * On SKL we don't have Aux for port E so we rely
1085 * on VBT to set a proper alternate aux channel.
1086 */
1087 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1088 {
1089 const struct ddi_vbt_port_info *info =
1090 &dev_priv->vbt.ddi_port_info[PORT_E];
1091
1092 switch (info->alternate_aux_channel) {
1093 case DP_AUX_A:
1094 return PORT_A;
1095 case DP_AUX_B:
1096 return PORT_B;
1097 case DP_AUX_C:
1098 return PORT_C;
1099 case DP_AUX_D:
1100 return PORT_D;
1101 default:
1102 MISSING_CASE(info->alternate_aux_channel);
1103 return PORT_A;
1104 }
1105 }
1106
1107 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1108 enum port port)
1109 {
1110 if (port == PORT_E)
1111 port = skl_porte_aux_port(dev_priv);
1112
1113 switch (port) {
1114 case PORT_A:
1115 case PORT_B:
1116 case PORT_C:
1117 case PORT_D:
1118 return DP_AUX_CH_CTL(port);
1119 default:
1120 MISSING_CASE(port);
1121 return DP_AUX_CH_CTL(PORT_A);
1122 }
1123 }
1124
1125 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1126 enum port port, int index)
1127 {
1128 if (port == PORT_E)
1129 port = skl_porte_aux_port(dev_priv);
1130
1131 switch (port) {
1132 case PORT_A:
1133 case PORT_B:
1134 case PORT_C:
1135 case PORT_D:
1136 return DP_AUX_CH_DATA(port, index);
1137 default:
1138 MISSING_CASE(port);
1139 return DP_AUX_CH_DATA(PORT_A, index);
1140 }
1141 }
1142
1143 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1144 enum port port)
1145 {
1146 if (INTEL_INFO(dev_priv)->gen >= 9)
1147 return skl_aux_ctl_reg(dev_priv, port);
1148 else if (HAS_PCH_SPLIT(dev_priv))
1149 return ilk_aux_ctl_reg(dev_priv, port);
1150 else
1151 return g4x_aux_ctl_reg(dev_priv, port);
1152 }
1153
1154 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1155 enum port port, int index)
1156 {
1157 if (INTEL_INFO(dev_priv)->gen >= 9)
1158 return skl_aux_data_reg(dev_priv, port, index);
1159 else if (HAS_PCH_SPLIT(dev_priv))
1160 return ilk_aux_data_reg(dev_priv, port, index);
1161 else
1162 return g4x_aux_data_reg(dev_priv, port, index);
1163 }
1164
1165 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1166 {
1167 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1168 enum port port = dp_to_dig_port(intel_dp)->port;
1169 int i;
1170
1171 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1172 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1173 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1174 }
1175
1176 static void
1177 intel_dp_aux_fini(struct intel_dp *intel_dp)
1178 {
1179 drm_dp_aux_unregister(&intel_dp->aux);
1180 kfree(intel_dp->aux.name);
1181 }
1182
1183 static int
1184 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1185 {
1186 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1187 enum port port = intel_dig_port->port;
1188 int ret;
1189
1190 intel_aux_reg_init(intel_dp);
1191
1192 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1193 if (!intel_dp->aux.name)
1194 return -ENOMEM;
1195
1196 intel_dp->aux.dev = connector->base.kdev;
1197 intel_dp->aux.transfer = intel_dp_aux_transfer;
1198
1199 DRM_DEBUG_KMS("registering %s bus for %s\n",
1200 intel_dp->aux.name,
1201 connector->base.kdev->kobj.name);
1202
1203 ret = drm_dp_aux_register(&intel_dp->aux);
1204 if (ret < 0) {
1205 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1206 intel_dp->aux.name, ret);
1207 kfree(intel_dp->aux.name);
1208 return ret;
1209 }
1210
1211 return 0;
1212 }
1213
1214 static void
1215 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1216 {
1217 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1218
1219 intel_dp_aux_fini(intel_dp);
1220 intel_connector_unregister(intel_connector);
1221 }
1222
1223 static int
1224 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1225 {
1226 if (intel_dp->num_sink_rates) {
1227 *sink_rates = intel_dp->sink_rates;
1228 return intel_dp->num_sink_rates;
1229 }
1230
1231 *sink_rates = default_rates;
1232
1233 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1234 }
1235
1236 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1237 {
1238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1239 struct drm_device *dev = dig_port->base.base.dev;
1240
1241 /* WaDisableHBR2:skl */
1242 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1243 return false;
1244
1245 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1246 (INTEL_INFO(dev)->gen >= 9))
1247 return true;
1248 else
1249 return false;
1250 }
1251
1252 static int
1253 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1254 {
1255 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1256 struct drm_device *dev = dig_port->base.base.dev;
1257 int size;
1258
1259 if (IS_BROXTON(dev)) {
1260 *source_rates = bxt_rates;
1261 size = ARRAY_SIZE(bxt_rates);
1262 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1263 *source_rates = skl_rates;
1264 size = ARRAY_SIZE(skl_rates);
1265 } else {
1266 *source_rates = default_rates;
1267 size = ARRAY_SIZE(default_rates);
1268 }
1269
1270 /* This depends on the fact that 5.4 is last value in the array */
1271 if (!intel_dp_source_supports_hbr2(intel_dp))
1272 size--;
1273
1274 return size;
1275 }
1276
1277 static void
1278 intel_dp_set_clock(struct intel_encoder *encoder,
1279 struct intel_crtc_state *pipe_config)
1280 {
1281 struct drm_device *dev = encoder->base.dev;
1282 const struct dp_link_dpll *divisor = NULL;
1283 int i, count = 0;
1284
1285 if (IS_G4X(dev)) {
1286 divisor = gen4_dpll;
1287 count = ARRAY_SIZE(gen4_dpll);
1288 } else if (HAS_PCH_SPLIT(dev)) {
1289 divisor = pch_dpll;
1290 count = ARRAY_SIZE(pch_dpll);
1291 } else if (IS_CHERRYVIEW(dev)) {
1292 divisor = chv_dpll;
1293 count = ARRAY_SIZE(chv_dpll);
1294 } else if (IS_VALLEYVIEW(dev)) {
1295 divisor = vlv_dpll;
1296 count = ARRAY_SIZE(vlv_dpll);
1297 }
1298
1299 if (divisor && count) {
1300 for (i = 0; i < count; i++) {
1301 if (pipe_config->port_clock == divisor[i].clock) {
1302 pipe_config->dpll = divisor[i].dpll;
1303 pipe_config->clock_set = true;
1304 break;
1305 }
1306 }
1307 }
1308 }
1309
1310 static int intersect_rates(const int *source_rates, int source_len,
1311 const int *sink_rates, int sink_len,
1312 int *common_rates)
1313 {
1314 int i = 0, j = 0, k = 0;
1315
1316 while (i < source_len && j < sink_len) {
1317 if (source_rates[i] == sink_rates[j]) {
1318 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1319 return k;
1320 common_rates[k] = source_rates[i];
1321 ++k;
1322 ++i;
1323 ++j;
1324 } else if (source_rates[i] < sink_rates[j]) {
1325 ++i;
1326 } else {
1327 ++j;
1328 }
1329 }
1330 return k;
1331 }
1332
1333 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1334 int *common_rates)
1335 {
1336 const int *source_rates, *sink_rates;
1337 int source_len, sink_len;
1338
1339 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1340 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1341
1342 return intersect_rates(source_rates, source_len,
1343 sink_rates, sink_len,
1344 common_rates);
1345 }
1346
1347 static void snprintf_int_array(char *str, size_t len,
1348 const int *array, int nelem)
1349 {
1350 int i;
1351
1352 str[0] = '\0';
1353
1354 for (i = 0; i < nelem; i++) {
1355 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1356 if (r >= len)
1357 return;
1358 str += r;
1359 len -= r;
1360 }
1361 }
1362
1363 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1364 {
1365 const int *source_rates, *sink_rates;
1366 int source_len, sink_len, common_len;
1367 int common_rates[DP_MAX_SUPPORTED_RATES];
1368 char str[128]; /* FIXME: too big for stack? */
1369
1370 if ((drm_debug & DRM_UT_KMS) == 0)
1371 return;
1372
1373 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1374 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1375 DRM_DEBUG_KMS("source rates: %s\n", str);
1376
1377 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1378 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1379 DRM_DEBUG_KMS("sink rates: %s\n", str);
1380
1381 common_len = intel_dp_common_rates(intel_dp, common_rates);
1382 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1383 DRM_DEBUG_KMS("common rates: %s\n", str);
1384 }
1385
1386 static int rate_to_index(int find, const int *rates)
1387 {
1388 int i = 0;
1389
1390 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1391 if (find == rates[i])
1392 break;
1393
1394 return i;
1395 }
1396
1397 int
1398 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1399 {
1400 int rates[DP_MAX_SUPPORTED_RATES] = {};
1401 int len;
1402
1403 len = intel_dp_common_rates(intel_dp, rates);
1404 if (WARN_ON(len <= 0))
1405 return 162000;
1406
1407 return rates[rate_to_index(0, rates) - 1];
1408 }
1409
1410 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1411 {
1412 return rate_to_index(rate, intel_dp->sink_rates);
1413 }
1414
1415 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1416 uint8_t *link_bw, uint8_t *rate_select)
1417 {
1418 if (intel_dp->num_sink_rates) {
1419 *link_bw = 0;
1420 *rate_select =
1421 intel_dp_rate_select(intel_dp, port_clock);
1422 } else {
1423 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1424 *rate_select = 0;
1425 }
1426 }
1427
1428 bool
1429 intel_dp_compute_config(struct intel_encoder *encoder,
1430 struct intel_crtc_state *pipe_config)
1431 {
1432 struct drm_device *dev = encoder->base.dev;
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1435 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1436 enum port port = dp_to_dig_port(intel_dp)->port;
1437 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1438 struct intel_connector *intel_connector = intel_dp->attached_connector;
1439 int lane_count, clock;
1440 int min_lane_count = 1;
1441 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1442 /* Conveniently, the link BW constants become indices with a shift...*/
1443 int min_clock = 0;
1444 int max_clock;
1445 int bpp, mode_rate;
1446 int link_avail, link_clock;
1447 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1448 int common_len;
1449 uint8_t link_bw, rate_select;
1450
1451 common_len = intel_dp_common_rates(intel_dp, common_rates);
1452
1453 /* No common link rates between source and sink */
1454 WARN_ON(common_len <= 0);
1455
1456 max_clock = common_len - 1;
1457
1458 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1459 pipe_config->has_pch_encoder = true;
1460
1461 pipe_config->has_dp_encoder = true;
1462 pipe_config->has_drrs = false;
1463 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1464
1465 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1466 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1467 adjusted_mode);
1468
1469 if (INTEL_INFO(dev)->gen >= 9) {
1470 int ret;
1471 ret = skl_update_scaler_crtc(pipe_config);
1472 if (ret)
1473 return ret;
1474 }
1475
1476 if (HAS_GMCH_DISPLAY(dev))
1477 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1478 intel_connector->panel.fitting_mode);
1479 else
1480 intel_pch_panel_fitting(intel_crtc, pipe_config,
1481 intel_connector->panel.fitting_mode);
1482 }
1483
1484 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1485 return false;
1486
1487 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1488 "max bw %d pixel clock %iKHz\n",
1489 max_lane_count, common_rates[max_clock],
1490 adjusted_mode->crtc_clock);
1491
1492 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1493 * bpc in between. */
1494 bpp = pipe_config->pipe_bpp;
1495 if (is_edp(intel_dp)) {
1496
1497 /* Get bpp from vbt only for panels that dont have bpp in edid */
1498 if (intel_connector->base.display_info.bpc == 0 &&
1499 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1500 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1501 dev_priv->vbt.edp.bpp);
1502 bpp = dev_priv->vbt.edp.bpp;
1503 }
1504
1505 /*
1506 * Use the maximum clock and number of lanes the eDP panel
1507 * advertizes being capable of. The panels are generally
1508 * designed to support only a single clock and lane
1509 * configuration, and typically these values correspond to the
1510 * native resolution of the panel.
1511 */
1512 min_lane_count = max_lane_count;
1513 min_clock = max_clock;
1514 }
1515
1516 for (; bpp >= 6*3; bpp -= 2*3) {
1517 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1518 bpp);
1519
1520 for (clock = min_clock; clock <= max_clock; clock++) {
1521 for (lane_count = min_lane_count;
1522 lane_count <= max_lane_count;
1523 lane_count <<= 1) {
1524
1525 link_clock = common_rates[clock];
1526 link_avail = intel_dp_max_data_rate(link_clock,
1527 lane_count);
1528
1529 if (mode_rate <= link_avail) {
1530 goto found;
1531 }
1532 }
1533 }
1534 }
1535
1536 return false;
1537
1538 found:
1539 if (intel_dp->color_range_auto) {
1540 /*
1541 * See:
1542 * CEA-861-E - 5.1 Default Encoding Parameters
1543 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1544 */
1545 pipe_config->limited_color_range =
1546 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1547 } else {
1548 pipe_config->limited_color_range =
1549 intel_dp->limited_color_range;
1550 }
1551
1552 pipe_config->lane_count = lane_count;
1553
1554 pipe_config->pipe_bpp = bpp;
1555 pipe_config->port_clock = common_rates[clock];
1556
1557 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1558 &link_bw, &rate_select);
1559
1560 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1561 link_bw, rate_select, pipe_config->lane_count,
1562 pipe_config->port_clock, bpp);
1563 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1564 mode_rate, link_avail);
1565
1566 intel_link_compute_m_n(bpp, lane_count,
1567 adjusted_mode->crtc_clock,
1568 pipe_config->port_clock,
1569 &pipe_config->dp_m_n);
1570
1571 if (intel_connector->panel.downclock_mode != NULL &&
1572 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1573 pipe_config->has_drrs = true;
1574 intel_link_compute_m_n(bpp, lane_count,
1575 intel_connector->panel.downclock_mode->clock,
1576 pipe_config->port_clock,
1577 &pipe_config->dp_m2_n2);
1578 }
1579
1580 if (!HAS_DDI(dev))
1581 intel_dp_set_clock(encoder, pipe_config);
1582
1583 return true;
1584 }
1585
1586 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1587 const struct intel_crtc_state *pipe_config)
1588 {
1589 intel_dp->link_rate = pipe_config->port_clock;
1590 intel_dp->lane_count = pipe_config->lane_count;
1591 }
1592
1593 static void intel_dp_prepare(struct intel_encoder *encoder)
1594 {
1595 struct drm_device *dev = encoder->base.dev;
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1598 enum port port = dp_to_dig_port(intel_dp)->port;
1599 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1600 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1601
1602 intel_dp_set_link_params(intel_dp, crtc->config);
1603
1604 /*
1605 * There are four kinds of DP registers:
1606 *
1607 * IBX PCH
1608 * SNB CPU
1609 * IVB CPU
1610 * CPT PCH
1611 *
1612 * IBX PCH and CPU are the same for almost everything,
1613 * except that the CPU DP PLL is configured in this
1614 * register
1615 *
1616 * CPT PCH is quite different, having many bits moved
1617 * to the TRANS_DP_CTL register instead. That
1618 * configuration happens (oddly) in ironlake_pch_enable
1619 */
1620
1621 /* Preserve the BIOS-computed detected bit. This is
1622 * supposed to be read-only.
1623 */
1624 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1625
1626 /* Handle DP bits in common between all three register formats */
1627 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1628 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1629
1630 /* Split out the IBX/CPU vs CPT settings */
1631
1632 if (IS_GEN7(dev) && port == PORT_A) {
1633 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1634 intel_dp->DP |= DP_SYNC_HS_HIGH;
1635 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1636 intel_dp->DP |= DP_SYNC_VS_HIGH;
1637 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1638
1639 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1640 intel_dp->DP |= DP_ENHANCED_FRAMING;
1641
1642 intel_dp->DP |= crtc->pipe << 29;
1643 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1644 u32 trans_dp;
1645
1646 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1647
1648 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1649 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1650 trans_dp |= TRANS_DP_ENH_FRAMING;
1651 else
1652 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1653 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1654 } else {
1655 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1656 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1657 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1658
1659 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1660 intel_dp->DP |= DP_SYNC_HS_HIGH;
1661 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1662 intel_dp->DP |= DP_SYNC_VS_HIGH;
1663 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1664
1665 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1666 intel_dp->DP |= DP_ENHANCED_FRAMING;
1667
1668 if (IS_CHERRYVIEW(dev))
1669 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1670 else if (crtc->pipe == PIPE_B)
1671 intel_dp->DP |= DP_PIPEB_SELECT;
1672 }
1673 }
1674
1675 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1676 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1677
1678 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1679 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1680
1681 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1682 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1683
1684 static void wait_panel_status(struct intel_dp *intel_dp,
1685 u32 mask,
1686 u32 value)
1687 {
1688 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1689 struct drm_i915_private *dev_priv = dev->dev_private;
1690 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1691
1692 lockdep_assert_held(&dev_priv->pps_mutex);
1693
1694 pp_stat_reg = _pp_stat_reg(intel_dp);
1695 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1696
1697 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1698 mask, value,
1699 I915_READ(pp_stat_reg),
1700 I915_READ(pp_ctrl_reg));
1701
1702 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
1703 5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
1704 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1705 I915_READ(pp_stat_reg),
1706 I915_READ(pp_ctrl_reg));
1707
1708 DRM_DEBUG_KMS("Wait complete\n");
1709 }
1710
1711 static void wait_panel_on(struct intel_dp *intel_dp)
1712 {
1713 DRM_DEBUG_KMS("Wait for panel power on\n");
1714 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1715 }
1716
1717 static void wait_panel_off(struct intel_dp *intel_dp)
1718 {
1719 DRM_DEBUG_KMS("Wait for panel power off time\n");
1720 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1721 }
1722
1723 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1724 {
1725 ktime_t panel_power_on_time;
1726 s64 panel_power_off_duration;
1727
1728 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1729
1730 /* take the difference of currrent time and panel power off time
1731 * and then make panel wait for t11_t12 if needed. */
1732 panel_power_on_time = ktime_get_boottime();
1733 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1734
1735 /* When we disable the VDD override bit last we have to do the manual
1736 * wait. */
1737 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1738 wait_remaining_ms_from_jiffies(jiffies,
1739 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1740
1741 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1742 }
1743
1744 static void wait_backlight_on(struct intel_dp *intel_dp)
1745 {
1746 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1747 intel_dp->backlight_on_delay);
1748 }
1749
1750 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1751 {
1752 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1753 intel_dp->backlight_off_delay);
1754 }
1755
1756 /* Read the current pp_control value, unlocking the register if it
1757 * is locked
1758 */
1759
1760 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1761 {
1762 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1763 struct drm_i915_private *dev_priv = dev->dev_private;
1764 u32 control;
1765
1766 lockdep_assert_held(&dev_priv->pps_mutex);
1767
1768 control = I915_READ(_pp_ctrl_reg(intel_dp));
1769 if (!IS_BROXTON(dev)) {
1770 control &= ~PANEL_UNLOCK_MASK;
1771 control |= PANEL_UNLOCK_REGS;
1772 }
1773 return control;
1774 }
1775
1776 /*
1777 * Must be paired with edp_panel_vdd_off().
1778 * Must hold pps_mutex around the whole on/off sequence.
1779 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1780 */
1781 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1782 {
1783 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1784 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1785 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1786 struct drm_i915_private *dev_priv = dev->dev_private;
1787 enum intel_display_power_domain power_domain;
1788 u32 pp;
1789 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1790 bool need_to_disable = !intel_dp->want_panel_vdd;
1791
1792 lockdep_assert_held(&dev_priv->pps_mutex);
1793
1794 if (!is_edp(intel_dp))
1795 return false;
1796
1797 cancel_delayed_work(&intel_dp->panel_vdd_work);
1798 intel_dp->want_panel_vdd = true;
1799
1800 if (edp_have_panel_vdd(intel_dp))
1801 return need_to_disable;
1802
1803 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1804 intel_display_power_get(dev_priv, power_domain);
1805
1806 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1807 port_name(intel_dig_port->port));
1808
1809 if (!edp_have_panel_power(intel_dp))
1810 wait_panel_power_cycle(intel_dp);
1811
1812 pp = ironlake_get_pp_control(intel_dp);
1813 pp |= EDP_FORCE_VDD;
1814
1815 pp_stat_reg = _pp_stat_reg(intel_dp);
1816 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1817
1818 I915_WRITE(pp_ctrl_reg, pp);
1819 POSTING_READ(pp_ctrl_reg);
1820 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1821 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1822 /*
1823 * If the panel wasn't on, delay before accessing aux channel
1824 */
1825 if (!edp_have_panel_power(intel_dp)) {
1826 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1827 port_name(intel_dig_port->port));
1828 msleep(intel_dp->panel_power_up_delay);
1829 }
1830
1831 return need_to_disable;
1832 }
1833
1834 /*
1835 * Must be paired with intel_edp_panel_vdd_off() or
1836 * intel_edp_panel_off().
1837 * Nested calls to these functions are not allowed since
1838 * we drop the lock. Caller must use some higher level
1839 * locking to prevent nested calls from other threads.
1840 */
1841 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1842 {
1843 bool vdd;
1844
1845 if (!is_edp(intel_dp))
1846 return;
1847
1848 pps_lock(intel_dp);
1849 vdd = edp_panel_vdd_on(intel_dp);
1850 pps_unlock(intel_dp);
1851
1852 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1853 port_name(dp_to_dig_port(intel_dp)->port));
1854 }
1855
1856 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1857 {
1858 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1859 struct drm_i915_private *dev_priv = dev->dev_private;
1860 struct intel_digital_port *intel_dig_port =
1861 dp_to_dig_port(intel_dp);
1862 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1863 enum intel_display_power_domain power_domain;
1864 u32 pp;
1865 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1866
1867 lockdep_assert_held(&dev_priv->pps_mutex);
1868
1869 WARN_ON(intel_dp->want_panel_vdd);
1870
1871 if (!edp_have_panel_vdd(intel_dp))
1872 return;
1873
1874 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1875 port_name(intel_dig_port->port));
1876
1877 pp = ironlake_get_pp_control(intel_dp);
1878 pp &= ~EDP_FORCE_VDD;
1879
1880 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1881 pp_stat_reg = _pp_stat_reg(intel_dp);
1882
1883 I915_WRITE(pp_ctrl_reg, pp);
1884 POSTING_READ(pp_ctrl_reg);
1885
1886 /* Make sure sequencer is idle before allowing subsequent activity */
1887 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1888 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1889
1890 if ((pp & POWER_TARGET_ON) == 0)
1891 intel_dp->panel_power_off_time = ktime_get_boottime();
1892
1893 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1894 intel_display_power_put(dev_priv, power_domain);
1895 }
1896
1897 static void edp_panel_vdd_work(struct work_struct *__work)
1898 {
1899 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1900 struct intel_dp, panel_vdd_work);
1901
1902 pps_lock(intel_dp);
1903 if (!intel_dp->want_panel_vdd)
1904 edp_panel_vdd_off_sync(intel_dp);
1905 pps_unlock(intel_dp);
1906 }
1907
1908 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1909 {
1910 unsigned long delay;
1911
1912 /*
1913 * Queue the timer to fire a long time from now (relative to the power
1914 * down delay) to keep the panel power up across a sequence of
1915 * operations.
1916 */
1917 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1918 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1919 }
1920
1921 /*
1922 * Must be paired with edp_panel_vdd_on().
1923 * Must hold pps_mutex around the whole on/off sequence.
1924 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1925 */
1926 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1927 {
1928 struct drm_i915_private *dev_priv =
1929 intel_dp_to_dev(intel_dp)->dev_private;
1930
1931 lockdep_assert_held(&dev_priv->pps_mutex);
1932
1933 if (!is_edp(intel_dp))
1934 return;
1935
1936 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1937 port_name(dp_to_dig_port(intel_dp)->port));
1938
1939 intel_dp->want_panel_vdd = false;
1940
1941 if (sync)
1942 edp_panel_vdd_off_sync(intel_dp);
1943 else
1944 edp_panel_vdd_schedule_off(intel_dp);
1945 }
1946
1947 static void edp_panel_on(struct intel_dp *intel_dp)
1948 {
1949 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 u32 pp;
1952 i915_reg_t pp_ctrl_reg;
1953
1954 lockdep_assert_held(&dev_priv->pps_mutex);
1955
1956 if (!is_edp(intel_dp))
1957 return;
1958
1959 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1960 port_name(dp_to_dig_port(intel_dp)->port));
1961
1962 if (WARN(edp_have_panel_power(intel_dp),
1963 "eDP port %c panel power already on\n",
1964 port_name(dp_to_dig_port(intel_dp)->port)))
1965 return;
1966
1967 wait_panel_power_cycle(intel_dp);
1968
1969 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1970 pp = ironlake_get_pp_control(intel_dp);
1971 if (IS_GEN5(dev)) {
1972 /* ILK workaround: disable reset around power sequence */
1973 pp &= ~PANEL_POWER_RESET;
1974 I915_WRITE(pp_ctrl_reg, pp);
1975 POSTING_READ(pp_ctrl_reg);
1976 }
1977
1978 pp |= POWER_TARGET_ON;
1979 if (!IS_GEN5(dev))
1980 pp |= PANEL_POWER_RESET;
1981
1982 I915_WRITE(pp_ctrl_reg, pp);
1983 POSTING_READ(pp_ctrl_reg);
1984
1985 wait_panel_on(intel_dp);
1986 intel_dp->last_power_on = jiffies;
1987
1988 if (IS_GEN5(dev)) {
1989 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1990 I915_WRITE(pp_ctrl_reg, pp);
1991 POSTING_READ(pp_ctrl_reg);
1992 }
1993 }
1994
1995 void intel_edp_panel_on(struct intel_dp *intel_dp)
1996 {
1997 if (!is_edp(intel_dp))
1998 return;
1999
2000 pps_lock(intel_dp);
2001 edp_panel_on(intel_dp);
2002 pps_unlock(intel_dp);
2003 }
2004
2005
2006 static void edp_panel_off(struct intel_dp *intel_dp)
2007 {
2008 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2009 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2010 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 enum intel_display_power_domain power_domain;
2013 u32 pp;
2014 i915_reg_t pp_ctrl_reg;
2015
2016 lockdep_assert_held(&dev_priv->pps_mutex);
2017
2018 if (!is_edp(intel_dp))
2019 return;
2020
2021 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2022 port_name(dp_to_dig_port(intel_dp)->port));
2023
2024 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2025 port_name(dp_to_dig_port(intel_dp)->port));
2026
2027 pp = ironlake_get_pp_control(intel_dp);
2028 /* We need to switch off panel power _and_ force vdd, for otherwise some
2029 * panels get very unhappy and cease to work. */
2030 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2031 EDP_BLC_ENABLE);
2032
2033 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2034
2035 intel_dp->want_panel_vdd = false;
2036
2037 I915_WRITE(pp_ctrl_reg, pp);
2038 POSTING_READ(pp_ctrl_reg);
2039
2040 intel_dp->panel_power_off_time = ktime_get_boottime();
2041 wait_panel_off(intel_dp);
2042
2043 /* We got a reference when we enabled the VDD. */
2044 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2045 intel_display_power_put(dev_priv, power_domain);
2046 }
2047
2048 void intel_edp_panel_off(struct intel_dp *intel_dp)
2049 {
2050 if (!is_edp(intel_dp))
2051 return;
2052
2053 pps_lock(intel_dp);
2054 edp_panel_off(intel_dp);
2055 pps_unlock(intel_dp);
2056 }
2057
2058 /* Enable backlight in the panel power control. */
2059 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2060 {
2061 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2062 struct drm_device *dev = intel_dig_port->base.base.dev;
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 u32 pp;
2065 i915_reg_t pp_ctrl_reg;
2066
2067 /*
2068 * If we enable the backlight right away following a panel power
2069 * on, we may see slight flicker as the panel syncs with the eDP
2070 * link. So delay a bit to make sure the image is solid before
2071 * allowing it to appear.
2072 */
2073 wait_backlight_on(intel_dp);
2074
2075 pps_lock(intel_dp);
2076
2077 pp = ironlake_get_pp_control(intel_dp);
2078 pp |= EDP_BLC_ENABLE;
2079
2080 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2081
2082 I915_WRITE(pp_ctrl_reg, pp);
2083 POSTING_READ(pp_ctrl_reg);
2084
2085 pps_unlock(intel_dp);
2086 }
2087
2088 /* Enable backlight PWM and backlight PP control. */
2089 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2090 {
2091 if (!is_edp(intel_dp))
2092 return;
2093
2094 DRM_DEBUG_KMS("\n");
2095
2096 intel_panel_enable_backlight(intel_dp->attached_connector);
2097 _intel_edp_backlight_on(intel_dp);
2098 }
2099
2100 /* Disable backlight in the panel power control. */
2101 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2102 {
2103 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 u32 pp;
2106 i915_reg_t pp_ctrl_reg;
2107
2108 if (!is_edp(intel_dp))
2109 return;
2110
2111 pps_lock(intel_dp);
2112
2113 pp = ironlake_get_pp_control(intel_dp);
2114 pp &= ~EDP_BLC_ENABLE;
2115
2116 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2117
2118 I915_WRITE(pp_ctrl_reg, pp);
2119 POSTING_READ(pp_ctrl_reg);
2120
2121 pps_unlock(intel_dp);
2122
2123 intel_dp->last_backlight_off = jiffies;
2124 edp_wait_backlight_off(intel_dp);
2125 }
2126
2127 /* Disable backlight PP control and backlight PWM. */
2128 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2129 {
2130 if (!is_edp(intel_dp))
2131 return;
2132
2133 DRM_DEBUG_KMS("\n");
2134
2135 _intel_edp_backlight_off(intel_dp);
2136 intel_panel_disable_backlight(intel_dp->attached_connector);
2137 }
2138
2139 /*
2140 * Hook for controlling the panel power control backlight through the bl_power
2141 * sysfs attribute. Take care to handle multiple calls.
2142 */
2143 static void intel_edp_backlight_power(struct intel_connector *connector,
2144 bool enable)
2145 {
2146 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2147 bool is_enabled;
2148
2149 pps_lock(intel_dp);
2150 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2151 pps_unlock(intel_dp);
2152
2153 if (is_enabled == enable)
2154 return;
2155
2156 DRM_DEBUG_KMS("panel power control backlight %s\n",
2157 enable ? "enable" : "disable");
2158
2159 if (enable)
2160 _intel_edp_backlight_on(intel_dp);
2161 else
2162 _intel_edp_backlight_off(intel_dp);
2163 }
2164
2165 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2166 {
2167 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2168 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2169 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2170
2171 I915_STATE_WARN(cur_state != state,
2172 "DP port %c state assertion failure (expected %s, current %s)\n",
2173 port_name(dig_port->port),
2174 onoff(state), onoff(cur_state));
2175 }
2176 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2177
2178 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2179 {
2180 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2181
2182 I915_STATE_WARN(cur_state != state,
2183 "eDP PLL state assertion failure (expected %s, current %s)\n",
2184 onoff(state), onoff(cur_state));
2185 }
2186 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2187 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2188
2189 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2190 {
2191 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2192 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2193 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2194
2195 assert_pipe_disabled(dev_priv, crtc->pipe);
2196 assert_dp_port_disabled(intel_dp);
2197 assert_edp_pll_disabled(dev_priv);
2198
2199 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2200 crtc->config->port_clock);
2201
2202 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2203
2204 if (crtc->config->port_clock == 162000)
2205 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2206 else
2207 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2208
2209 I915_WRITE(DP_A, intel_dp->DP);
2210 POSTING_READ(DP_A);
2211 udelay(500);
2212
2213 /*
2214 * [DevILK] Work around required when enabling DP PLL
2215 * while a pipe is enabled going to FDI:
2216 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2217 * 2. Program DP PLL enable
2218 */
2219 if (IS_GEN5(dev_priv))
2220 intel_wait_for_vblank_if_active(dev_priv->dev, !crtc->pipe);
2221
2222 intel_dp->DP |= DP_PLL_ENABLE;
2223
2224 I915_WRITE(DP_A, intel_dp->DP);
2225 POSTING_READ(DP_A);
2226 udelay(200);
2227 }
2228
2229 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2230 {
2231 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2232 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2233 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2234
2235 assert_pipe_disabled(dev_priv, crtc->pipe);
2236 assert_dp_port_disabled(intel_dp);
2237 assert_edp_pll_enabled(dev_priv);
2238
2239 DRM_DEBUG_KMS("disabling eDP PLL\n");
2240
2241 intel_dp->DP &= ~DP_PLL_ENABLE;
2242
2243 I915_WRITE(DP_A, intel_dp->DP);
2244 POSTING_READ(DP_A);
2245 udelay(200);
2246 }
2247
2248 /* If the sink supports it, try to set the power state appropriately */
2249 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2250 {
2251 int ret, i;
2252
2253 /* Should have a valid DPCD by this point */
2254 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2255 return;
2256
2257 if (mode != DRM_MODE_DPMS_ON) {
2258 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2259 DP_SET_POWER_D3);
2260 } else {
2261 /*
2262 * When turning on, we need to retry for 1ms to give the sink
2263 * time to wake up.
2264 */
2265 for (i = 0; i < 3; i++) {
2266 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2267 DP_SET_POWER_D0);
2268 if (ret == 1)
2269 break;
2270 msleep(1);
2271 }
2272 }
2273
2274 if (ret != 1)
2275 DRM_DEBUG_KMS("failed to %s sink power state\n",
2276 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2277 }
2278
2279 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2280 enum pipe *pipe)
2281 {
2282 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2283 enum port port = dp_to_dig_port(intel_dp)->port;
2284 struct drm_device *dev = encoder->base.dev;
2285 struct drm_i915_private *dev_priv = dev->dev_private;
2286 enum intel_display_power_domain power_domain;
2287 u32 tmp;
2288 bool ret;
2289
2290 power_domain = intel_display_port_power_domain(encoder);
2291 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2292 return false;
2293
2294 ret = false;
2295
2296 tmp = I915_READ(intel_dp->output_reg);
2297
2298 if (!(tmp & DP_PORT_EN))
2299 goto out;
2300
2301 if (IS_GEN7(dev) && port == PORT_A) {
2302 *pipe = PORT_TO_PIPE_CPT(tmp);
2303 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2304 enum pipe p;
2305
2306 for_each_pipe(dev_priv, p) {
2307 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2308 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2309 *pipe = p;
2310 ret = true;
2311
2312 goto out;
2313 }
2314 }
2315
2316 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2317 i915_mmio_reg_offset(intel_dp->output_reg));
2318 } else if (IS_CHERRYVIEW(dev)) {
2319 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2320 } else {
2321 *pipe = PORT_TO_PIPE(tmp);
2322 }
2323
2324 ret = true;
2325
2326 out:
2327 intel_display_power_put(dev_priv, power_domain);
2328
2329 return ret;
2330 }
2331
2332 static void intel_dp_get_config(struct intel_encoder *encoder,
2333 struct intel_crtc_state *pipe_config)
2334 {
2335 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2336 u32 tmp, flags = 0;
2337 struct drm_device *dev = encoder->base.dev;
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 enum port port = dp_to_dig_port(intel_dp)->port;
2340 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2341
2342 tmp = I915_READ(intel_dp->output_reg);
2343
2344 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2345
2346 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2347 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2348
2349 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2350 flags |= DRM_MODE_FLAG_PHSYNC;
2351 else
2352 flags |= DRM_MODE_FLAG_NHSYNC;
2353
2354 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2355 flags |= DRM_MODE_FLAG_PVSYNC;
2356 else
2357 flags |= DRM_MODE_FLAG_NVSYNC;
2358 } else {
2359 if (tmp & DP_SYNC_HS_HIGH)
2360 flags |= DRM_MODE_FLAG_PHSYNC;
2361 else
2362 flags |= DRM_MODE_FLAG_NHSYNC;
2363
2364 if (tmp & DP_SYNC_VS_HIGH)
2365 flags |= DRM_MODE_FLAG_PVSYNC;
2366 else
2367 flags |= DRM_MODE_FLAG_NVSYNC;
2368 }
2369
2370 pipe_config->base.adjusted_mode.flags |= flags;
2371
2372 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2373 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2374 pipe_config->limited_color_range = true;
2375
2376 pipe_config->has_dp_encoder = true;
2377
2378 pipe_config->lane_count =
2379 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2380
2381 intel_dp_get_m_n(crtc, pipe_config);
2382
2383 if (port == PORT_A) {
2384 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2385 pipe_config->port_clock = 162000;
2386 else
2387 pipe_config->port_clock = 270000;
2388 }
2389
2390 pipe_config->base.adjusted_mode.crtc_clock =
2391 intel_dotclock_calculate(pipe_config->port_clock,
2392 &pipe_config->dp_m_n);
2393
2394 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2395 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2396 /*
2397 * This is a big fat ugly hack.
2398 *
2399 * Some machines in UEFI boot mode provide us a VBT that has 18
2400 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2401 * unknown we fail to light up. Yet the same BIOS boots up with
2402 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2403 * max, not what it tells us to use.
2404 *
2405 * Note: This will still be broken if the eDP panel is not lit
2406 * up by the BIOS, and thus we can't get the mode at module
2407 * load.
2408 */
2409 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2410 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2411 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2412 }
2413 }
2414
2415 static void intel_disable_dp(struct intel_encoder *encoder)
2416 {
2417 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2418 struct drm_device *dev = encoder->base.dev;
2419 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2420
2421 if (crtc->config->has_audio)
2422 intel_audio_codec_disable(encoder);
2423
2424 if (HAS_PSR(dev) && !HAS_DDI(dev))
2425 intel_psr_disable(intel_dp);
2426
2427 /* Make sure the panel is off before trying to change the mode. But also
2428 * ensure that we have vdd while we switch off the panel. */
2429 intel_edp_panel_vdd_on(intel_dp);
2430 intel_edp_backlight_off(intel_dp);
2431 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2432 intel_edp_panel_off(intel_dp);
2433
2434 /* disable the port before the pipe on g4x */
2435 if (INTEL_INFO(dev)->gen < 5)
2436 intel_dp_link_down(intel_dp);
2437 }
2438
2439 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2440 {
2441 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2442 enum port port = dp_to_dig_port(intel_dp)->port;
2443
2444 intel_dp_link_down(intel_dp);
2445
2446 /* Only ilk+ has port A */
2447 if (port == PORT_A)
2448 ironlake_edp_pll_off(intel_dp);
2449 }
2450
2451 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2452 {
2453 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2454
2455 intel_dp_link_down(intel_dp);
2456 }
2457
2458 static void chv_post_disable_dp(struct intel_encoder *encoder)
2459 {
2460 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2461 struct drm_device *dev = encoder->base.dev;
2462 struct drm_i915_private *dev_priv = dev->dev_private;
2463
2464 intel_dp_link_down(intel_dp);
2465
2466 mutex_lock(&dev_priv->sb_lock);
2467
2468 /* Assert data lane reset */
2469 chv_data_lane_soft_reset(encoder, true);
2470
2471 mutex_unlock(&dev_priv->sb_lock);
2472 }
2473
2474 static void
2475 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2476 uint32_t *DP,
2477 uint8_t dp_train_pat)
2478 {
2479 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2480 struct drm_device *dev = intel_dig_port->base.base.dev;
2481 struct drm_i915_private *dev_priv = dev->dev_private;
2482 enum port port = intel_dig_port->port;
2483
2484 if (HAS_DDI(dev)) {
2485 uint32_t temp = I915_READ(DP_TP_CTL(port));
2486
2487 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2488 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2489 else
2490 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2491
2492 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2493 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2494 case DP_TRAINING_PATTERN_DISABLE:
2495 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2496
2497 break;
2498 case DP_TRAINING_PATTERN_1:
2499 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2500 break;
2501 case DP_TRAINING_PATTERN_2:
2502 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2503 break;
2504 case DP_TRAINING_PATTERN_3:
2505 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2506 break;
2507 }
2508 I915_WRITE(DP_TP_CTL(port), temp);
2509
2510 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2511 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2512 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2513
2514 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2515 case DP_TRAINING_PATTERN_DISABLE:
2516 *DP |= DP_LINK_TRAIN_OFF_CPT;
2517 break;
2518 case DP_TRAINING_PATTERN_1:
2519 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2520 break;
2521 case DP_TRAINING_PATTERN_2:
2522 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2523 break;
2524 case DP_TRAINING_PATTERN_3:
2525 DRM_ERROR("DP training pattern 3 not supported\n");
2526 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2527 break;
2528 }
2529
2530 } else {
2531 if (IS_CHERRYVIEW(dev))
2532 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2533 else
2534 *DP &= ~DP_LINK_TRAIN_MASK;
2535
2536 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2537 case DP_TRAINING_PATTERN_DISABLE:
2538 *DP |= DP_LINK_TRAIN_OFF;
2539 break;
2540 case DP_TRAINING_PATTERN_1:
2541 *DP |= DP_LINK_TRAIN_PAT_1;
2542 break;
2543 case DP_TRAINING_PATTERN_2:
2544 *DP |= DP_LINK_TRAIN_PAT_2;
2545 break;
2546 case DP_TRAINING_PATTERN_3:
2547 if (IS_CHERRYVIEW(dev)) {
2548 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2549 } else {
2550 DRM_ERROR("DP training pattern 3 not supported\n");
2551 *DP |= DP_LINK_TRAIN_PAT_2;
2552 }
2553 break;
2554 }
2555 }
2556 }
2557
2558 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2559 {
2560 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2561 struct drm_i915_private *dev_priv = dev->dev_private;
2562 struct intel_crtc *crtc =
2563 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2564
2565 /* enable with pattern 1 (as per spec) */
2566 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2567 DP_TRAINING_PATTERN_1);
2568
2569 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2570 POSTING_READ(intel_dp->output_reg);
2571
2572 /*
2573 * Magic for VLV/CHV. We _must_ first set up the register
2574 * without actually enabling the port, and then do another
2575 * write to enable the port. Otherwise link training will
2576 * fail when the power sequencer is freshly used for this port.
2577 */
2578 intel_dp->DP |= DP_PORT_EN;
2579 if (crtc->config->has_audio)
2580 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2581
2582 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2583 POSTING_READ(intel_dp->output_reg);
2584 }
2585
2586 static void intel_enable_dp(struct intel_encoder *encoder)
2587 {
2588 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2589 struct drm_device *dev = encoder->base.dev;
2590 struct drm_i915_private *dev_priv = dev->dev_private;
2591 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2592 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2593 enum pipe pipe = crtc->pipe;
2594
2595 if (WARN_ON(dp_reg & DP_PORT_EN))
2596 return;
2597
2598 pps_lock(intel_dp);
2599
2600 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2601 vlv_init_panel_power_sequencer(intel_dp);
2602
2603 intel_dp_enable_port(intel_dp);
2604
2605 edp_panel_vdd_on(intel_dp);
2606 edp_panel_on(intel_dp);
2607 edp_panel_vdd_off(intel_dp, true);
2608
2609 pps_unlock(intel_dp);
2610
2611 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2612 unsigned int lane_mask = 0x0;
2613
2614 if (IS_CHERRYVIEW(dev))
2615 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2616
2617 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2618 lane_mask);
2619 }
2620
2621 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2622 intel_dp_start_link_train(intel_dp);
2623 intel_dp_stop_link_train(intel_dp);
2624
2625 if (crtc->config->has_audio) {
2626 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2627 pipe_name(pipe));
2628 intel_audio_codec_enable(encoder);
2629 }
2630 }
2631
2632 static void g4x_enable_dp(struct intel_encoder *encoder)
2633 {
2634 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2635
2636 intel_enable_dp(encoder);
2637 intel_edp_backlight_on(intel_dp);
2638 }
2639
2640 static void vlv_enable_dp(struct intel_encoder *encoder)
2641 {
2642 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2643
2644 intel_edp_backlight_on(intel_dp);
2645 intel_psr_enable(intel_dp);
2646 }
2647
2648 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2649 {
2650 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2651 enum port port = dp_to_dig_port(intel_dp)->port;
2652
2653 intel_dp_prepare(encoder);
2654
2655 /* Only ilk+ has port A */
2656 if (port == PORT_A)
2657 ironlake_edp_pll_on(intel_dp);
2658 }
2659
2660 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2661 {
2662 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2663 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2664 enum pipe pipe = intel_dp->pps_pipe;
2665 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2666
2667 edp_panel_vdd_off_sync(intel_dp);
2668
2669 /*
2670 * VLV seems to get confused when multiple power seqeuencers
2671 * have the same port selected (even if only one has power/vdd
2672 * enabled). The failure manifests as vlv_wait_port_ready() failing
2673 * CHV on the other hand doesn't seem to mind having the same port
2674 * selected in multiple power seqeuencers, but let's clear the
2675 * port select always when logically disconnecting a power sequencer
2676 * from a port.
2677 */
2678 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2679 pipe_name(pipe), port_name(intel_dig_port->port));
2680 I915_WRITE(pp_on_reg, 0);
2681 POSTING_READ(pp_on_reg);
2682
2683 intel_dp->pps_pipe = INVALID_PIPE;
2684 }
2685
2686 static void vlv_steal_power_sequencer(struct drm_device *dev,
2687 enum pipe pipe)
2688 {
2689 struct drm_i915_private *dev_priv = dev->dev_private;
2690 struct intel_encoder *encoder;
2691
2692 lockdep_assert_held(&dev_priv->pps_mutex);
2693
2694 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2695 return;
2696
2697 for_each_intel_encoder(dev, encoder) {
2698 struct intel_dp *intel_dp;
2699 enum port port;
2700
2701 if (encoder->type != INTEL_OUTPUT_EDP)
2702 continue;
2703
2704 intel_dp = enc_to_intel_dp(&encoder->base);
2705 port = dp_to_dig_port(intel_dp)->port;
2706
2707 if (intel_dp->pps_pipe != pipe)
2708 continue;
2709
2710 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2711 pipe_name(pipe), port_name(port));
2712
2713 WARN(encoder->base.crtc,
2714 "stealing pipe %c power sequencer from active eDP port %c\n",
2715 pipe_name(pipe), port_name(port));
2716
2717 /* make sure vdd is off before we steal it */
2718 vlv_detach_power_sequencer(intel_dp);
2719 }
2720 }
2721
2722 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2723 {
2724 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2725 struct intel_encoder *encoder = &intel_dig_port->base;
2726 struct drm_device *dev = encoder->base.dev;
2727 struct drm_i915_private *dev_priv = dev->dev_private;
2728 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2729
2730 lockdep_assert_held(&dev_priv->pps_mutex);
2731
2732 if (!is_edp(intel_dp))
2733 return;
2734
2735 if (intel_dp->pps_pipe == crtc->pipe)
2736 return;
2737
2738 /*
2739 * If another power sequencer was being used on this
2740 * port previously make sure to turn off vdd there while
2741 * we still have control of it.
2742 */
2743 if (intel_dp->pps_pipe != INVALID_PIPE)
2744 vlv_detach_power_sequencer(intel_dp);
2745
2746 /*
2747 * We may be stealing the power
2748 * sequencer from another port.
2749 */
2750 vlv_steal_power_sequencer(dev, crtc->pipe);
2751
2752 /* now it's all ours */
2753 intel_dp->pps_pipe = crtc->pipe;
2754
2755 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2756 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2757
2758 /* init power sequencer on this pipe and port */
2759 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2760 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2761 }
2762
2763 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2764 {
2765 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2766 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2767 struct drm_device *dev = encoder->base.dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2770 enum dpio_channel port = vlv_dport_to_channel(dport);
2771 int pipe = intel_crtc->pipe;
2772 u32 val;
2773
2774 mutex_lock(&dev_priv->sb_lock);
2775
2776 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2777 val = 0;
2778 if (pipe)
2779 val |= (1<<21);
2780 else
2781 val &= ~(1<<21);
2782 val |= 0x001000c4;
2783 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2784 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2785 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2786
2787 mutex_unlock(&dev_priv->sb_lock);
2788
2789 intel_enable_dp(encoder);
2790 }
2791
2792 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2793 {
2794 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2795 struct drm_device *dev = encoder->base.dev;
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 struct intel_crtc *intel_crtc =
2798 to_intel_crtc(encoder->base.crtc);
2799 enum dpio_channel port = vlv_dport_to_channel(dport);
2800 int pipe = intel_crtc->pipe;
2801
2802 intel_dp_prepare(encoder);
2803
2804 /* Program Tx lane resets to default */
2805 mutex_lock(&dev_priv->sb_lock);
2806 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2807 DPIO_PCS_TX_LANE2_RESET |
2808 DPIO_PCS_TX_LANE1_RESET);
2809 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2810 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2811 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2812 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2813 DPIO_PCS_CLK_SOFT_RESET);
2814
2815 /* Fix up inter-pair skew failure */
2816 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2817 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2818 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2819 mutex_unlock(&dev_priv->sb_lock);
2820 }
2821
2822 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2823 {
2824 chv_phy_pre_encoder_enable(encoder);
2825
2826 intel_enable_dp(encoder);
2827
2828 /* Second common lane will stay alive on its own now */
2829 chv_phy_release_cl2_override(encoder);
2830 }
2831
2832 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2833 {
2834 intel_dp_prepare(encoder);
2835
2836 chv_phy_pre_pll_enable(encoder);
2837 }
2838
2839 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2840 {
2841 chv_phy_post_pll_disable(encoder);
2842 }
2843
2844 /*
2845 * Native read with retry for link status and receiver capability reads for
2846 * cases where the sink may still be asleep.
2847 *
2848 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2849 * supposed to retry 3 times per the spec.
2850 */
2851 static ssize_t
2852 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2853 void *buffer, size_t size)
2854 {
2855 ssize_t ret;
2856 int i;
2857
2858 /*
2859 * Sometime we just get the same incorrect byte repeated
2860 * over the entire buffer. Doing just one throw away read
2861 * initially seems to "solve" it.
2862 */
2863 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2864
2865 for (i = 0; i < 3; i++) {
2866 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2867 if (ret == size)
2868 return ret;
2869 msleep(1);
2870 }
2871
2872 return ret;
2873 }
2874
2875 /*
2876 * Fetch AUX CH registers 0x202 - 0x207 which contain
2877 * link status information
2878 */
2879 bool
2880 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2881 {
2882 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2883 DP_LANE0_1_STATUS,
2884 link_status,
2885 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2886 }
2887
2888 /* These are source-specific values. */
2889 uint8_t
2890 intel_dp_voltage_max(struct intel_dp *intel_dp)
2891 {
2892 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 enum port port = dp_to_dig_port(intel_dp)->port;
2895
2896 if (IS_BROXTON(dev))
2897 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2898 else if (INTEL_INFO(dev)->gen >= 9) {
2899 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
2900 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2901 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2902 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2903 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2904 else if (IS_GEN7(dev) && port == PORT_A)
2905 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2906 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2907 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2908 else
2909 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2910 }
2911
2912 uint8_t
2913 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2914 {
2915 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2916 enum port port = dp_to_dig_port(intel_dp)->port;
2917
2918 if (INTEL_INFO(dev)->gen >= 9) {
2919 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2920 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2921 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2922 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2923 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2924 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2925 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2926 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2927 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2928 default:
2929 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2930 }
2931 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2932 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2934 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2935 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2936 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2938 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2939 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2940 default:
2941 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2942 }
2943 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2944 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2945 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2946 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2948 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2949 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2950 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2952 default:
2953 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2954 }
2955 } else if (IS_GEN7(dev) && port == PORT_A) {
2956 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2957 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2958 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2960 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2961 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2962 default:
2963 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2964 }
2965 } else {
2966 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2967 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2968 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2969 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2970 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2972 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2973 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2974 default:
2975 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2976 }
2977 }
2978 }
2979
2980 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2981 {
2982 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
2983 unsigned long demph_reg_value, preemph_reg_value,
2984 uniqtranscale_reg_value;
2985 uint8_t train_set = intel_dp->train_set[0];
2986
2987 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2988 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2989 preemph_reg_value = 0x0004000;
2990 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2992 demph_reg_value = 0x2B405555;
2993 uniqtranscale_reg_value = 0x552AB83A;
2994 break;
2995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2996 demph_reg_value = 0x2B404040;
2997 uniqtranscale_reg_value = 0x5548B83A;
2998 break;
2999 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3000 demph_reg_value = 0x2B245555;
3001 uniqtranscale_reg_value = 0x5560B83A;
3002 break;
3003 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3004 demph_reg_value = 0x2B405555;
3005 uniqtranscale_reg_value = 0x5598DA3A;
3006 break;
3007 default:
3008 return 0;
3009 }
3010 break;
3011 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3012 preemph_reg_value = 0x0002000;
3013 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3015 demph_reg_value = 0x2B404040;
3016 uniqtranscale_reg_value = 0x5552B83A;
3017 break;
3018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3019 demph_reg_value = 0x2B404848;
3020 uniqtranscale_reg_value = 0x5580B83A;
3021 break;
3022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3023 demph_reg_value = 0x2B404040;
3024 uniqtranscale_reg_value = 0x55ADDA3A;
3025 break;
3026 default:
3027 return 0;
3028 }
3029 break;
3030 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3031 preemph_reg_value = 0x0000000;
3032 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3034 demph_reg_value = 0x2B305555;
3035 uniqtranscale_reg_value = 0x5570B83A;
3036 break;
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3038 demph_reg_value = 0x2B2B4040;
3039 uniqtranscale_reg_value = 0x55ADDA3A;
3040 break;
3041 default:
3042 return 0;
3043 }
3044 break;
3045 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3046 preemph_reg_value = 0x0006000;
3047 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3048 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3049 demph_reg_value = 0x1B405555;
3050 uniqtranscale_reg_value = 0x55ADDA3A;
3051 break;
3052 default:
3053 return 0;
3054 }
3055 break;
3056 default:
3057 return 0;
3058 }
3059
3060 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3061 uniqtranscale_reg_value, 0);
3062
3063 return 0;
3064 }
3065
3066 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3067 {
3068 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3069 u32 deemph_reg_value, margin_reg_value;
3070 bool uniq_trans_scale = false;
3071 uint8_t train_set = intel_dp->train_set[0];
3072
3073 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3074 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3075 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3076 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3077 deemph_reg_value = 128;
3078 margin_reg_value = 52;
3079 break;
3080 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3081 deemph_reg_value = 128;
3082 margin_reg_value = 77;
3083 break;
3084 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3085 deemph_reg_value = 128;
3086 margin_reg_value = 102;
3087 break;
3088 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3089 deemph_reg_value = 128;
3090 margin_reg_value = 154;
3091 uniq_trans_scale = true;
3092 break;
3093 default:
3094 return 0;
3095 }
3096 break;
3097 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3098 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3099 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3100 deemph_reg_value = 85;
3101 margin_reg_value = 78;
3102 break;
3103 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3104 deemph_reg_value = 85;
3105 margin_reg_value = 116;
3106 break;
3107 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3108 deemph_reg_value = 85;
3109 margin_reg_value = 154;
3110 break;
3111 default:
3112 return 0;
3113 }
3114 break;
3115 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3116 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3117 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3118 deemph_reg_value = 64;
3119 margin_reg_value = 104;
3120 break;
3121 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3122 deemph_reg_value = 64;
3123 margin_reg_value = 154;
3124 break;
3125 default:
3126 return 0;
3127 }
3128 break;
3129 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3130 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3132 deemph_reg_value = 43;
3133 margin_reg_value = 154;
3134 break;
3135 default:
3136 return 0;
3137 }
3138 break;
3139 default:
3140 return 0;
3141 }
3142
3143 chv_set_phy_signal_level(encoder, deemph_reg_value,
3144 margin_reg_value, uniq_trans_scale);
3145
3146 return 0;
3147 }
3148
3149 static uint32_t
3150 gen4_signal_levels(uint8_t train_set)
3151 {
3152 uint32_t signal_levels = 0;
3153
3154 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3155 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3156 default:
3157 signal_levels |= DP_VOLTAGE_0_4;
3158 break;
3159 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3160 signal_levels |= DP_VOLTAGE_0_6;
3161 break;
3162 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3163 signal_levels |= DP_VOLTAGE_0_8;
3164 break;
3165 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3166 signal_levels |= DP_VOLTAGE_1_2;
3167 break;
3168 }
3169 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3170 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3171 default:
3172 signal_levels |= DP_PRE_EMPHASIS_0;
3173 break;
3174 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3175 signal_levels |= DP_PRE_EMPHASIS_3_5;
3176 break;
3177 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3178 signal_levels |= DP_PRE_EMPHASIS_6;
3179 break;
3180 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3181 signal_levels |= DP_PRE_EMPHASIS_9_5;
3182 break;
3183 }
3184 return signal_levels;
3185 }
3186
3187 /* Gen6's DP voltage swing and pre-emphasis control */
3188 static uint32_t
3189 gen6_edp_signal_levels(uint8_t train_set)
3190 {
3191 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3192 DP_TRAIN_PRE_EMPHASIS_MASK);
3193 switch (signal_levels) {
3194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3196 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3197 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3198 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3200 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3201 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3203 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3204 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3206 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3207 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3208 default:
3209 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3210 "0x%x\n", signal_levels);
3211 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3212 }
3213 }
3214
3215 /* Gen7's DP voltage swing and pre-emphasis control */
3216 static uint32_t
3217 gen7_edp_signal_levels(uint8_t train_set)
3218 {
3219 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3220 DP_TRAIN_PRE_EMPHASIS_MASK);
3221 switch (signal_levels) {
3222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3223 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3224 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3225 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3226 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3227 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3228
3229 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3230 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3231 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3232 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3233
3234 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3235 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3236 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3237 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3238
3239 default:
3240 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3241 "0x%x\n", signal_levels);
3242 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3243 }
3244 }
3245
3246 void
3247 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3248 {
3249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3250 enum port port = intel_dig_port->port;
3251 struct drm_device *dev = intel_dig_port->base.base.dev;
3252 struct drm_i915_private *dev_priv = to_i915(dev);
3253 uint32_t signal_levels, mask = 0;
3254 uint8_t train_set = intel_dp->train_set[0];
3255
3256 if (HAS_DDI(dev)) {
3257 signal_levels = ddi_signal_levels(intel_dp);
3258
3259 if (IS_BROXTON(dev))
3260 signal_levels = 0;
3261 else
3262 mask = DDI_BUF_EMP_MASK;
3263 } else if (IS_CHERRYVIEW(dev)) {
3264 signal_levels = chv_signal_levels(intel_dp);
3265 } else if (IS_VALLEYVIEW(dev)) {
3266 signal_levels = vlv_signal_levels(intel_dp);
3267 } else if (IS_GEN7(dev) && port == PORT_A) {
3268 signal_levels = gen7_edp_signal_levels(train_set);
3269 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3270 } else if (IS_GEN6(dev) && port == PORT_A) {
3271 signal_levels = gen6_edp_signal_levels(train_set);
3272 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3273 } else {
3274 signal_levels = gen4_signal_levels(train_set);
3275 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3276 }
3277
3278 if (mask)
3279 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3280
3281 DRM_DEBUG_KMS("Using vswing level %d\n",
3282 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3283 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3284 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3285 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3286
3287 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3288
3289 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3290 POSTING_READ(intel_dp->output_reg);
3291 }
3292
3293 void
3294 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3295 uint8_t dp_train_pat)
3296 {
3297 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3298 struct drm_i915_private *dev_priv =
3299 to_i915(intel_dig_port->base.base.dev);
3300
3301 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3302
3303 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3304 POSTING_READ(intel_dp->output_reg);
3305 }
3306
3307 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3308 {
3309 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3310 struct drm_device *dev = intel_dig_port->base.base.dev;
3311 struct drm_i915_private *dev_priv = dev->dev_private;
3312 enum port port = intel_dig_port->port;
3313 uint32_t val;
3314
3315 if (!HAS_DDI(dev))
3316 return;
3317
3318 val = I915_READ(DP_TP_CTL(port));
3319 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3320 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3321 I915_WRITE(DP_TP_CTL(port), val);
3322
3323 /*
3324 * On PORT_A we can have only eDP in SST mode. There the only reason
3325 * we need to set idle transmission mode is to work around a HW issue
3326 * where we enable the pipe while not in idle link-training mode.
3327 * In this case there is requirement to wait for a minimum number of
3328 * idle patterns to be sent.
3329 */
3330 if (port == PORT_A)
3331 return;
3332
3333 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3334 1))
3335 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3336 }
3337
3338 static void
3339 intel_dp_link_down(struct intel_dp *intel_dp)
3340 {
3341 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3342 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3343 enum port port = intel_dig_port->port;
3344 struct drm_device *dev = intel_dig_port->base.base.dev;
3345 struct drm_i915_private *dev_priv = dev->dev_private;
3346 uint32_t DP = intel_dp->DP;
3347
3348 if (WARN_ON(HAS_DDI(dev)))
3349 return;
3350
3351 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3352 return;
3353
3354 DRM_DEBUG_KMS("\n");
3355
3356 if ((IS_GEN7(dev) && port == PORT_A) ||
3357 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3358 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3359 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3360 } else {
3361 if (IS_CHERRYVIEW(dev))
3362 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3363 else
3364 DP &= ~DP_LINK_TRAIN_MASK;
3365 DP |= DP_LINK_TRAIN_PAT_IDLE;
3366 }
3367 I915_WRITE(intel_dp->output_reg, DP);
3368 POSTING_READ(intel_dp->output_reg);
3369
3370 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3371 I915_WRITE(intel_dp->output_reg, DP);
3372 POSTING_READ(intel_dp->output_reg);
3373
3374 /*
3375 * HW workaround for IBX, we need to move the port
3376 * to transcoder A after disabling it to allow the
3377 * matching HDMI port to be enabled on transcoder A.
3378 */
3379 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3380 /*
3381 * We get CPU/PCH FIFO underruns on the other pipe when
3382 * doing the workaround. Sweep them under the rug.
3383 */
3384 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3385 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3386
3387 /* always enable with pattern 1 (as per spec) */
3388 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3389 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3390 I915_WRITE(intel_dp->output_reg, DP);
3391 POSTING_READ(intel_dp->output_reg);
3392
3393 DP &= ~DP_PORT_EN;
3394 I915_WRITE(intel_dp->output_reg, DP);
3395 POSTING_READ(intel_dp->output_reg);
3396
3397 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3398 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3399 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3400 }
3401
3402 msleep(intel_dp->panel_power_down_delay);
3403
3404 intel_dp->DP = DP;
3405 }
3406
3407 static bool
3408 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3409 {
3410 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3411 struct drm_device *dev = dig_port->base.base.dev;
3412 struct drm_i915_private *dev_priv = dev->dev_private;
3413
3414 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3415 sizeof(intel_dp->dpcd)) < 0)
3416 return false; /* aux transfer failed */
3417
3418 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3419
3420 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3421 return false; /* DPCD not present */
3422
3423 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3424 &intel_dp->sink_count, 1) < 0)
3425 return false;
3426
3427 /*
3428 * Sink count can change between short pulse hpd hence
3429 * a member variable in intel_dp will track any changes
3430 * between short pulse interrupts.
3431 */
3432 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3433
3434 /*
3435 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3436 * a dongle is present but no display. Unless we require to know
3437 * if a dongle is present or not, we don't need to update
3438 * downstream port information. So, an early return here saves
3439 * time from performing other operations which are not required.
3440 */
3441 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3442 return false;
3443
3444 /* Check if the panel supports PSR */
3445 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3446 if (is_edp(intel_dp)) {
3447 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3448 intel_dp->psr_dpcd,
3449 sizeof(intel_dp->psr_dpcd));
3450 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3451 dev_priv->psr.sink_support = true;
3452 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3453 }
3454
3455 if (INTEL_INFO(dev)->gen >= 9 &&
3456 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3457 uint8_t frame_sync_cap;
3458
3459 dev_priv->psr.sink_support = true;
3460 intel_dp_dpcd_read_wake(&intel_dp->aux,
3461 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3462 &frame_sync_cap, 1);
3463 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3464 /* PSR2 needs frame sync as well */
3465 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3466 DRM_DEBUG_KMS("PSR2 %s on sink",
3467 dev_priv->psr.psr2_support ? "supported" : "not supported");
3468 }
3469
3470 /* Read the eDP Display control capabilities registers */
3471 memset(intel_dp->edp_dpcd, 0, sizeof(intel_dp->edp_dpcd));
3472 if ((intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3473 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV,
3474 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
3475 sizeof(intel_dp->edp_dpcd)))
3476 DRM_DEBUG_KMS("EDP DPCD : %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
3477 intel_dp->edp_dpcd);
3478 }
3479
3480 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3481 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3482 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3483
3484 /* Intermediate frequency support */
3485 if (is_edp(intel_dp) && (intel_dp->edp_dpcd[0] >= 0x03)) { /* eDp v1.4 or higher */
3486 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3487 int i;
3488
3489 intel_dp_dpcd_read_wake(&intel_dp->aux,
3490 DP_SUPPORTED_LINK_RATES,
3491 sink_rates,
3492 sizeof(sink_rates));
3493
3494 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3495 int val = le16_to_cpu(sink_rates[i]);
3496
3497 if (val == 0)
3498 break;
3499
3500 /* Value read is in kHz while drm clock is saved in deca-kHz */
3501 intel_dp->sink_rates[i] = (val * 200) / 10;
3502 }
3503 intel_dp->num_sink_rates = i;
3504 }
3505
3506 intel_dp_print_rates(intel_dp);
3507
3508 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3509 DP_DWN_STRM_PORT_PRESENT))
3510 return true; /* native DP sink */
3511
3512 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3513 return true; /* no per-port downstream info */
3514
3515 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3516 intel_dp->downstream_ports,
3517 DP_MAX_DOWNSTREAM_PORTS) < 0)
3518 return false; /* downstream port status fetch failed */
3519
3520 return true;
3521 }
3522
3523 static void
3524 intel_dp_probe_oui(struct intel_dp *intel_dp)
3525 {
3526 u8 buf[3];
3527
3528 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3529 return;
3530
3531 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3532 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3533 buf[0], buf[1], buf[2]);
3534
3535 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3536 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3537 buf[0], buf[1], buf[2]);
3538 }
3539
3540 static bool
3541 intel_dp_probe_mst(struct intel_dp *intel_dp)
3542 {
3543 u8 buf[1];
3544
3545 if (!i915.enable_dp_mst)
3546 return false;
3547
3548 if (!intel_dp->can_mst)
3549 return false;
3550
3551 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3552 return false;
3553
3554 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3555 if (buf[0] & DP_MST_CAP) {
3556 DRM_DEBUG_KMS("Sink is MST capable\n");
3557 intel_dp->is_mst = true;
3558 } else {
3559 DRM_DEBUG_KMS("Sink is not MST capable\n");
3560 intel_dp->is_mst = false;
3561 }
3562 }
3563
3564 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3565 return intel_dp->is_mst;
3566 }
3567
3568 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3569 {
3570 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3571 struct drm_device *dev = dig_port->base.base.dev;
3572 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3573 u8 buf;
3574 int ret = 0;
3575 int count = 0;
3576 int attempts = 10;
3577
3578 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3579 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3580 ret = -EIO;
3581 goto out;
3582 }
3583
3584 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3585 buf & ~DP_TEST_SINK_START) < 0) {
3586 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3587 ret = -EIO;
3588 goto out;
3589 }
3590
3591 do {
3592 intel_wait_for_vblank(dev, intel_crtc->pipe);
3593
3594 if (drm_dp_dpcd_readb(&intel_dp->aux,
3595 DP_TEST_SINK_MISC, &buf) < 0) {
3596 ret = -EIO;
3597 goto out;
3598 }
3599 count = buf & DP_TEST_COUNT_MASK;
3600 } while (--attempts && count);
3601
3602 if (attempts == 0) {
3603 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3604 ret = -ETIMEDOUT;
3605 }
3606
3607 out:
3608 hsw_enable_ips(intel_crtc);
3609 return ret;
3610 }
3611
3612 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3613 {
3614 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3615 struct drm_device *dev = dig_port->base.base.dev;
3616 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3617 u8 buf;
3618 int ret;
3619
3620 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3621 return -EIO;
3622
3623 if (!(buf & DP_TEST_CRC_SUPPORTED))
3624 return -ENOTTY;
3625
3626 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3627 return -EIO;
3628
3629 if (buf & DP_TEST_SINK_START) {
3630 ret = intel_dp_sink_crc_stop(intel_dp);
3631 if (ret)
3632 return ret;
3633 }
3634
3635 hsw_disable_ips(intel_crtc);
3636
3637 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3638 buf | DP_TEST_SINK_START) < 0) {
3639 hsw_enable_ips(intel_crtc);
3640 return -EIO;
3641 }
3642
3643 intel_wait_for_vblank(dev, intel_crtc->pipe);
3644 return 0;
3645 }
3646
3647 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3648 {
3649 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3650 struct drm_device *dev = dig_port->base.base.dev;
3651 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3652 u8 buf;
3653 int count, ret;
3654 int attempts = 6;
3655
3656 ret = intel_dp_sink_crc_start(intel_dp);
3657 if (ret)
3658 return ret;
3659
3660 do {
3661 intel_wait_for_vblank(dev, intel_crtc->pipe);
3662
3663 if (drm_dp_dpcd_readb(&intel_dp->aux,
3664 DP_TEST_SINK_MISC, &buf) < 0) {
3665 ret = -EIO;
3666 goto stop;
3667 }
3668 count = buf & DP_TEST_COUNT_MASK;
3669
3670 } while (--attempts && count == 0);
3671
3672 if (attempts == 0) {
3673 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
3674 ret = -ETIMEDOUT;
3675 goto stop;
3676 }
3677
3678 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
3679 ret = -EIO;
3680 goto stop;
3681 }
3682
3683 stop:
3684 intel_dp_sink_crc_stop(intel_dp);
3685 return ret;
3686 }
3687
3688 static bool
3689 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3690 {
3691 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3692 DP_DEVICE_SERVICE_IRQ_VECTOR,
3693 sink_irq_vector, 1) == 1;
3694 }
3695
3696 static bool
3697 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3698 {
3699 int ret;
3700
3701 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3702 DP_SINK_COUNT_ESI,
3703 sink_irq_vector, 14);
3704 if (ret != 14)
3705 return false;
3706
3707 return true;
3708 }
3709
3710 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
3711 {
3712 uint8_t test_result = DP_TEST_ACK;
3713 return test_result;
3714 }
3715
3716 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
3717 {
3718 uint8_t test_result = DP_TEST_NAK;
3719 return test_result;
3720 }
3721
3722 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
3723 {
3724 uint8_t test_result = DP_TEST_NAK;
3725 struct intel_connector *intel_connector = intel_dp->attached_connector;
3726 struct drm_connector *connector = &intel_connector->base;
3727
3728 if (intel_connector->detect_edid == NULL ||
3729 connector->edid_corrupt ||
3730 intel_dp->aux.i2c_defer_count > 6) {
3731 /* Check EDID read for NACKs, DEFERs and corruption
3732 * (DP CTS 1.2 Core r1.1)
3733 * 4.2.2.4 : Failed EDID read, I2C_NAK
3734 * 4.2.2.5 : Failed EDID read, I2C_DEFER
3735 * 4.2.2.6 : EDID corruption detected
3736 * Use failsafe mode for all cases
3737 */
3738 if (intel_dp->aux.i2c_nack_count > 0 ||
3739 intel_dp->aux.i2c_defer_count > 0)
3740 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
3741 intel_dp->aux.i2c_nack_count,
3742 intel_dp->aux.i2c_defer_count);
3743 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
3744 } else {
3745 struct edid *block = intel_connector->detect_edid;
3746
3747 /* We have to write the checksum
3748 * of the last block read
3749 */
3750 block += intel_connector->detect_edid->extensions;
3751
3752 if (!drm_dp_dpcd_write(&intel_dp->aux,
3753 DP_TEST_EDID_CHECKSUM,
3754 &block->checksum,
3755 1))
3756 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
3757
3758 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
3759 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
3760 }
3761
3762 /* Set test active flag here so userspace doesn't interrupt things */
3763 intel_dp->compliance_test_active = 1;
3764
3765 return test_result;
3766 }
3767
3768 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
3769 {
3770 uint8_t test_result = DP_TEST_NAK;
3771 return test_result;
3772 }
3773
3774 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
3775 {
3776 uint8_t response = DP_TEST_NAK;
3777 uint8_t rxdata = 0;
3778 int status = 0;
3779
3780 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
3781 if (status <= 0) {
3782 DRM_DEBUG_KMS("Could not read test request from sink\n");
3783 goto update_status;
3784 }
3785
3786 switch (rxdata) {
3787 case DP_TEST_LINK_TRAINING:
3788 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
3789 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
3790 response = intel_dp_autotest_link_training(intel_dp);
3791 break;
3792 case DP_TEST_LINK_VIDEO_PATTERN:
3793 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
3794 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
3795 response = intel_dp_autotest_video_pattern(intel_dp);
3796 break;
3797 case DP_TEST_LINK_EDID_READ:
3798 DRM_DEBUG_KMS("EDID test requested\n");
3799 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
3800 response = intel_dp_autotest_edid(intel_dp);
3801 break;
3802 case DP_TEST_LINK_PHY_TEST_PATTERN:
3803 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
3804 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
3805 response = intel_dp_autotest_phy_pattern(intel_dp);
3806 break;
3807 default:
3808 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
3809 break;
3810 }
3811
3812 update_status:
3813 status = drm_dp_dpcd_write(&intel_dp->aux,
3814 DP_TEST_RESPONSE,
3815 &response, 1);
3816 if (status <= 0)
3817 DRM_DEBUG_KMS("Could not write test response to sink\n");
3818 }
3819
3820 static int
3821 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3822 {
3823 bool bret;
3824
3825 if (intel_dp->is_mst) {
3826 u8 esi[16] = { 0 };
3827 int ret = 0;
3828 int retry;
3829 bool handled;
3830 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3831 go_again:
3832 if (bret == true) {
3833
3834 /* check link status - esi[10] = 0x200c */
3835 if (intel_dp->active_mst_links &&
3836 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3837 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3838 intel_dp_start_link_train(intel_dp);
3839 intel_dp_stop_link_train(intel_dp);
3840 }
3841
3842 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3843 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3844
3845 if (handled) {
3846 for (retry = 0; retry < 3; retry++) {
3847 int wret;
3848 wret = drm_dp_dpcd_write(&intel_dp->aux,
3849 DP_SINK_COUNT_ESI+1,
3850 &esi[1], 3);
3851 if (wret == 3) {
3852 break;
3853 }
3854 }
3855
3856 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3857 if (bret == true) {
3858 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3859 goto go_again;
3860 }
3861 } else
3862 ret = 0;
3863
3864 return ret;
3865 } else {
3866 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3867 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3868 intel_dp->is_mst = false;
3869 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3870 /* send a hotplug event */
3871 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3872 }
3873 }
3874 return -EINVAL;
3875 }
3876
3877 static void
3878 intel_dp_check_link_status(struct intel_dp *intel_dp)
3879 {
3880 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3881 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3882 u8 link_status[DP_LINK_STATUS_SIZE];
3883
3884 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3885
3886 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3887 DRM_ERROR("Failed to get link status\n");
3888 return;
3889 }
3890
3891 if (!intel_encoder->base.crtc)
3892 return;
3893
3894 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3895 return;
3896
3897 /* if link training is requested we should perform it always */
3898 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
3899 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
3900 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3901 intel_encoder->base.name);
3902 intel_dp_start_link_train(intel_dp);
3903 intel_dp_stop_link_train(intel_dp);
3904 }
3905 }
3906
3907 /*
3908 * According to DP spec
3909 * 5.1.2:
3910 * 1. Read DPCD
3911 * 2. Configure link according to Receiver Capabilities
3912 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3913 * 4. Check link status on receipt of hot-plug interrupt
3914 *
3915 * intel_dp_short_pulse - handles short pulse interrupts
3916 * when full detection is not required.
3917 * Returns %true if short pulse is handled and full detection
3918 * is NOT required and %false otherwise.
3919 */
3920 static bool
3921 intel_dp_short_pulse(struct intel_dp *intel_dp)
3922 {
3923 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3924 u8 sink_irq_vector;
3925 u8 old_sink_count = intel_dp->sink_count;
3926 bool ret;
3927
3928 /*
3929 * Clearing compliance test variables to allow capturing
3930 * of values for next automated test request.
3931 */
3932 intel_dp->compliance_test_active = 0;
3933 intel_dp->compliance_test_type = 0;
3934 intel_dp->compliance_test_data = 0;
3935
3936 /*
3937 * Now read the DPCD to see if it's actually running
3938 * If the current value of sink count doesn't match with
3939 * the value that was stored earlier or dpcd read failed
3940 * we need to do full detection
3941 */
3942 ret = intel_dp_get_dpcd(intel_dp);
3943
3944 if ((old_sink_count != intel_dp->sink_count) || !ret) {
3945 /* No need to proceed if we are going to do full detect */
3946 return false;
3947 }
3948
3949 /* Try to read the source of the interrupt */
3950 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3951 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3952 /* Clear interrupt source */
3953 drm_dp_dpcd_writeb(&intel_dp->aux,
3954 DP_DEVICE_SERVICE_IRQ_VECTOR,
3955 sink_irq_vector);
3956
3957 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3958 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
3959 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3960 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3961 }
3962
3963 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3964 intel_dp_check_link_status(intel_dp);
3965 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3966
3967 return true;
3968 }
3969
3970 /* XXX this is probably wrong for multiple downstream ports */
3971 static enum drm_connector_status
3972 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3973 {
3974 uint8_t *dpcd = intel_dp->dpcd;
3975 uint8_t type;
3976
3977 if (!intel_dp_get_dpcd(intel_dp))
3978 return connector_status_disconnected;
3979
3980 if (is_edp(intel_dp))
3981 return connector_status_connected;
3982
3983 /* if there's no downstream port, we're done */
3984 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3985 return connector_status_connected;
3986
3987 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3988 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3989 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3990
3991 return intel_dp->sink_count ?
3992 connector_status_connected : connector_status_disconnected;
3993 }
3994
3995 /* If no HPD, poke DDC gently */
3996 if (drm_probe_ddc(&intel_dp->aux.ddc))
3997 return connector_status_connected;
3998
3999 /* Well we tried, say unknown for unreliable port types */
4000 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4001 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4002 if (type == DP_DS_PORT_TYPE_VGA ||
4003 type == DP_DS_PORT_TYPE_NON_EDID)
4004 return connector_status_unknown;
4005 } else {
4006 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4007 DP_DWN_STRM_PORT_TYPE_MASK;
4008 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4009 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4010 return connector_status_unknown;
4011 }
4012
4013 /* Anything else is out of spec, warn and ignore */
4014 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4015 return connector_status_disconnected;
4016 }
4017
4018 static enum drm_connector_status
4019 edp_detect(struct intel_dp *intel_dp)
4020 {
4021 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4022 enum drm_connector_status status;
4023
4024 status = intel_panel_detect(dev);
4025 if (status == connector_status_unknown)
4026 status = connector_status_connected;
4027
4028 return status;
4029 }
4030
4031 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4032 struct intel_digital_port *port)
4033 {
4034 u32 bit;
4035
4036 switch (port->port) {
4037 case PORT_A:
4038 return true;
4039 case PORT_B:
4040 bit = SDE_PORTB_HOTPLUG;
4041 break;
4042 case PORT_C:
4043 bit = SDE_PORTC_HOTPLUG;
4044 break;
4045 case PORT_D:
4046 bit = SDE_PORTD_HOTPLUG;
4047 break;
4048 default:
4049 MISSING_CASE(port->port);
4050 return false;
4051 }
4052
4053 return I915_READ(SDEISR) & bit;
4054 }
4055
4056 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4057 struct intel_digital_port *port)
4058 {
4059 u32 bit;
4060
4061 switch (port->port) {
4062 case PORT_A:
4063 return true;
4064 case PORT_B:
4065 bit = SDE_PORTB_HOTPLUG_CPT;
4066 break;
4067 case PORT_C:
4068 bit = SDE_PORTC_HOTPLUG_CPT;
4069 break;
4070 case PORT_D:
4071 bit = SDE_PORTD_HOTPLUG_CPT;
4072 break;
4073 case PORT_E:
4074 bit = SDE_PORTE_HOTPLUG_SPT;
4075 break;
4076 default:
4077 MISSING_CASE(port->port);
4078 return false;
4079 }
4080
4081 return I915_READ(SDEISR) & bit;
4082 }
4083
4084 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4085 struct intel_digital_port *port)
4086 {
4087 u32 bit;
4088
4089 switch (port->port) {
4090 case PORT_B:
4091 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4092 break;
4093 case PORT_C:
4094 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4095 break;
4096 case PORT_D:
4097 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4098 break;
4099 default:
4100 MISSING_CASE(port->port);
4101 return false;
4102 }
4103
4104 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4105 }
4106
4107 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4108 struct intel_digital_port *port)
4109 {
4110 u32 bit;
4111
4112 switch (port->port) {
4113 case PORT_B:
4114 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4115 break;
4116 case PORT_C:
4117 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4118 break;
4119 case PORT_D:
4120 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4121 break;
4122 default:
4123 MISSING_CASE(port->port);
4124 return false;
4125 }
4126
4127 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4128 }
4129
4130 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4131 struct intel_digital_port *intel_dig_port)
4132 {
4133 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4134 enum port port;
4135 u32 bit;
4136
4137 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4138 switch (port) {
4139 case PORT_A:
4140 bit = BXT_DE_PORT_HP_DDIA;
4141 break;
4142 case PORT_B:
4143 bit = BXT_DE_PORT_HP_DDIB;
4144 break;
4145 case PORT_C:
4146 bit = BXT_DE_PORT_HP_DDIC;
4147 break;
4148 default:
4149 MISSING_CASE(port);
4150 return false;
4151 }
4152
4153 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4154 }
4155
4156 /*
4157 * intel_digital_port_connected - is the specified port connected?
4158 * @dev_priv: i915 private structure
4159 * @port: the port to test
4160 *
4161 * Return %true if @port is connected, %false otherwise.
4162 */
4163 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4164 struct intel_digital_port *port)
4165 {
4166 if (HAS_PCH_IBX(dev_priv))
4167 return ibx_digital_port_connected(dev_priv, port);
4168 else if (HAS_PCH_SPLIT(dev_priv))
4169 return cpt_digital_port_connected(dev_priv, port);
4170 else if (IS_BROXTON(dev_priv))
4171 return bxt_digital_port_connected(dev_priv, port);
4172 else if (IS_GM45(dev_priv))
4173 return gm45_digital_port_connected(dev_priv, port);
4174 else
4175 return g4x_digital_port_connected(dev_priv, port);
4176 }
4177
4178 static struct edid *
4179 intel_dp_get_edid(struct intel_dp *intel_dp)
4180 {
4181 struct intel_connector *intel_connector = intel_dp->attached_connector;
4182
4183 /* use cached edid if we have one */
4184 if (intel_connector->edid) {
4185 /* invalid edid */
4186 if (IS_ERR(intel_connector->edid))
4187 return NULL;
4188
4189 return drm_edid_duplicate(intel_connector->edid);
4190 } else
4191 return drm_get_edid(&intel_connector->base,
4192 &intel_dp->aux.ddc);
4193 }
4194
4195 static void
4196 intel_dp_set_edid(struct intel_dp *intel_dp)
4197 {
4198 struct intel_connector *intel_connector = intel_dp->attached_connector;
4199 struct edid *edid;
4200
4201 intel_dp_unset_edid(intel_dp);
4202 edid = intel_dp_get_edid(intel_dp);
4203 intel_connector->detect_edid = edid;
4204
4205 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4206 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4207 else
4208 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4209 }
4210
4211 static void
4212 intel_dp_unset_edid(struct intel_dp *intel_dp)
4213 {
4214 struct intel_connector *intel_connector = intel_dp->attached_connector;
4215
4216 kfree(intel_connector->detect_edid);
4217 intel_connector->detect_edid = NULL;
4218
4219 intel_dp->has_audio = false;
4220 }
4221
4222 static void
4223 intel_dp_long_pulse(struct intel_connector *intel_connector)
4224 {
4225 struct drm_connector *connector = &intel_connector->base;
4226 struct intel_dp *intel_dp = intel_attached_dp(connector);
4227 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4228 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4229 struct drm_device *dev = connector->dev;
4230 enum drm_connector_status status;
4231 enum intel_display_power_domain power_domain;
4232 bool ret;
4233 u8 sink_irq_vector;
4234
4235 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4236 intel_display_power_get(to_i915(dev), power_domain);
4237
4238 /* Can't disconnect eDP, but you can close the lid... */
4239 if (is_edp(intel_dp))
4240 status = edp_detect(intel_dp);
4241 else if (intel_digital_port_connected(to_i915(dev),
4242 dp_to_dig_port(intel_dp)))
4243 status = intel_dp_detect_dpcd(intel_dp);
4244 else
4245 status = connector_status_disconnected;
4246
4247 if (status != connector_status_connected) {
4248 intel_dp->compliance_test_active = 0;
4249 intel_dp->compliance_test_type = 0;
4250 intel_dp->compliance_test_data = 0;
4251
4252 if (intel_dp->is_mst) {
4253 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4254 intel_dp->is_mst,
4255 intel_dp->mst_mgr.mst_state);
4256 intel_dp->is_mst = false;
4257 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4258 intel_dp->is_mst);
4259 }
4260
4261 goto out;
4262 }
4263
4264 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4265 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4266
4267 intel_dp_probe_oui(intel_dp);
4268
4269 ret = intel_dp_probe_mst(intel_dp);
4270 if (ret) {
4271 /*
4272 * If we are in MST mode then this connector
4273 * won't appear connected or have anything
4274 * with EDID on it
4275 */
4276 status = connector_status_disconnected;
4277 goto out;
4278 } else if (connector->status == connector_status_connected) {
4279 /*
4280 * If display was connected already and is still connected
4281 * check links status, there has been known issues of
4282 * link loss triggerring long pulse!!!!
4283 */
4284 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4285 intel_dp_check_link_status(intel_dp);
4286 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4287 goto out;
4288 }
4289
4290 /*
4291 * Clearing NACK and defer counts to get their exact values
4292 * while reading EDID which are required by Compliance tests
4293 * 4.2.2.4 and 4.2.2.5
4294 */
4295 intel_dp->aux.i2c_nack_count = 0;
4296 intel_dp->aux.i2c_defer_count = 0;
4297
4298 intel_dp_set_edid(intel_dp);
4299
4300 status = connector_status_connected;
4301 intel_dp->detect_done = true;
4302
4303 /* Try to read the source of the interrupt */
4304 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4305 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4306 /* Clear interrupt source */
4307 drm_dp_dpcd_writeb(&intel_dp->aux,
4308 DP_DEVICE_SERVICE_IRQ_VECTOR,
4309 sink_irq_vector);
4310
4311 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4312 intel_dp_handle_test_request(intel_dp);
4313 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4314 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4315 }
4316
4317 out:
4318 if ((status != connector_status_connected) &&
4319 (intel_dp->is_mst == false))
4320 intel_dp_unset_edid(intel_dp);
4321
4322 intel_display_power_put(to_i915(dev), power_domain);
4323 return;
4324 }
4325
4326 static enum drm_connector_status
4327 intel_dp_detect(struct drm_connector *connector, bool force)
4328 {
4329 struct intel_dp *intel_dp = intel_attached_dp(connector);
4330 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4331 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4332 struct intel_connector *intel_connector = to_intel_connector(connector);
4333
4334 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4335 connector->base.id, connector->name);
4336
4337 if (intel_dp->is_mst) {
4338 /* MST devices are disconnected from a monitor POV */
4339 intel_dp_unset_edid(intel_dp);
4340 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4341 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4342 return connector_status_disconnected;
4343 }
4344
4345 /* If full detect is not performed yet, do a full detect */
4346 if (!intel_dp->detect_done)
4347 intel_dp_long_pulse(intel_dp->attached_connector);
4348
4349 intel_dp->detect_done = false;
4350
4351 if (intel_connector->detect_edid)
4352 return connector_status_connected;
4353 else
4354 return connector_status_disconnected;
4355 }
4356
4357 static void
4358 intel_dp_force(struct drm_connector *connector)
4359 {
4360 struct intel_dp *intel_dp = intel_attached_dp(connector);
4361 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4362 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4363 enum intel_display_power_domain power_domain;
4364
4365 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4366 connector->base.id, connector->name);
4367 intel_dp_unset_edid(intel_dp);
4368
4369 if (connector->status != connector_status_connected)
4370 return;
4371
4372 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4373 intel_display_power_get(dev_priv, power_domain);
4374
4375 intel_dp_set_edid(intel_dp);
4376
4377 intel_display_power_put(dev_priv, power_domain);
4378
4379 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4380 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4381 }
4382
4383 static int intel_dp_get_modes(struct drm_connector *connector)
4384 {
4385 struct intel_connector *intel_connector = to_intel_connector(connector);
4386 struct edid *edid;
4387
4388 edid = intel_connector->detect_edid;
4389 if (edid) {
4390 int ret = intel_connector_update_modes(connector, edid);
4391 if (ret)
4392 return ret;
4393 }
4394
4395 /* if eDP has no EDID, fall back to fixed mode */
4396 if (is_edp(intel_attached_dp(connector)) &&
4397 intel_connector->panel.fixed_mode) {
4398 struct drm_display_mode *mode;
4399
4400 mode = drm_mode_duplicate(connector->dev,
4401 intel_connector->panel.fixed_mode);
4402 if (mode) {
4403 drm_mode_probed_add(connector, mode);
4404 return 1;
4405 }
4406 }
4407
4408 return 0;
4409 }
4410
4411 static bool
4412 intel_dp_detect_audio(struct drm_connector *connector)
4413 {
4414 bool has_audio = false;
4415 struct edid *edid;
4416
4417 edid = to_intel_connector(connector)->detect_edid;
4418 if (edid)
4419 has_audio = drm_detect_monitor_audio(edid);
4420
4421 return has_audio;
4422 }
4423
4424 static int
4425 intel_dp_set_property(struct drm_connector *connector,
4426 struct drm_property *property,
4427 uint64_t val)
4428 {
4429 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4430 struct intel_connector *intel_connector = to_intel_connector(connector);
4431 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4432 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4433 int ret;
4434
4435 ret = drm_object_property_set_value(&connector->base, property, val);
4436 if (ret)
4437 return ret;
4438
4439 if (property == dev_priv->force_audio_property) {
4440 int i = val;
4441 bool has_audio;
4442
4443 if (i == intel_dp->force_audio)
4444 return 0;
4445
4446 intel_dp->force_audio = i;
4447
4448 if (i == HDMI_AUDIO_AUTO)
4449 has_audio = intel_dp_detect_audio(connector);
4450 else
4451 has_audio = (i == HDMI_AUDIO_ON);
4452
4453 if (has_audio == intel_dp->has_audio)
4454 return 0;
4455
4456 intel_dp->has_audio = has_audio;
4457 goto done;
4458 }
4459
4460 if (property == dev_priv->broadcast_rgb_property) {
4461 bool old_auto = intel_dp->color_range_auto;
4462 bool old_range = intel_dp->limited_color_range;
4463
4464 switch (val) {
4465 case INTEL_BROADCAST_RGB_AUTO:
4466 intel_dp->color_range_auto = true;
4467 break;
4468 case INTEL_BROADCAST_RGB_FULL:
4469 intel_dp->color_range_auto = false;
4470 intel_dp->limited_color_range = false;
4471 break;
4472 case INTEL_BROADCAST_RGB_LIMITED:
4473 intel_dp->color_range_auto = false;
4474 intel_dp->limited_color_range = true;
4475 break;
4476 default:
4477 return -EINVAL;
4478 }
4479
4480 if (old_auto == intel_dp->color_range_auto &&
4481 old_range == intel_dp->limited_color_range)
4482 return 0;
4483
4484 goto done;
4485 }
4486
4487 if (is_edp(intel_dp) &&
4488 property == connector->dev->mode_config.scaling_mode_property) {
4489 if (val == DRM_MODE_SCALE_NONE) {
4490 DRM_DEBUG_KMS("no scaling not supported\n");
4491 return -EINVAL;
4492 }
4493 if (HAS_GMCH_DISPLAY(dev_priv) &&
4494 val == DRM_MODE_SCALE_CENTER) {
4495 DRM_DEBUG_KMS("centering not supported\n");
4496 return -EINVAL;
4497 }
4498
4499 if (intel_connector->panel.fitting_mode == val) {
4500 /* the eDP scaling property is not changed */
4501 return 0;
4502 }
4503 intel_connector->panel.fitting_mode = val;
4504
4505 goto done;
4506 }
4507
4508 return -EINVAL;
4509
4510 done:
4511 if (intel_encoder->base.crtc)
4512 intel_crtc_restore_mode(intel_encoder->base.crtc);
4513
4514 return 0;
4515 }
4516
4517 static void
4518 intel_dp_connector_destroy(struct drm_connector *connector)
4519 {
4520 struct intel_connector *intel_connector = to_intel_connector(connector);
4521
4522 kfree(intel_connector->detect_edid);
4523
4524 if (!IS_ERR_OR_NULL(intel_connector->edid))
4525 kfree(intel_connector->edid);
4526
4527 /* Can't call is_edp() since the encoder may have been destroyed
4528 * already. */
4529 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4530 intel_panel_fini(&intel_connector->panel);
4531
4532 drm_connector_cleanup(connector);
4533 kfree(connector);
4534 }
4535
4536 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4537 {
4538 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4539 struct intel_dp *intel_dp = &intel_dig_port->dp;
4540
4541 intel_dp_mst_encoder_cleanup(intel_dig_port);
4542 if (is_edp(intel_dp)) {
4543 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4544 /*
4545 * vdd might still be enabled do to the delayed vdd off.
4546 * Make sure vdd is actually turned off here.
4547 */
4548 pps_lock(intel_dp);
4549 edp_panel_vdd_off_sync(intel_dp);
4550 pps_unlock(intel_dp);
4551
4552 if (intel_dp->edp_notifier.notifier_call) {
4553 unregister_reboot_notifier(&intel_dp->edp_notifier);
4554 intel_dp->edp_notifier.notifier_call = NULL;
4555 }
4556 }
4557 drm_encoder_cleanup(encoder);
4558 kfree(intel_dig_port);
4559 }
4560
4561 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4562 {
4563 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4564
4565 if (!is_edp(intel_dp))
4566 return;
4567
4568 /*
4569 * vdd might still be enabled do to the delayed vdd off.
4570 * Make sure vdd is actually turned off here.
4571 */
4572 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4573 pps_lock(intel_dp);
4574 edp_panel_vdd_off_sync(intel_dp);
4575 pps_unlock(intel_dp);
4576 }
4577
4578 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4579 {
4580 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4581 struct drm_device *dev = intel_dig_port->base.base.dev;
4582 struct drm_i915_private *dev_priv = dev->dev_private;
4583 enum intel_display_power_domain power_domain;
4584
4585 lockdep_assert_held(&dev_priv->pps_mutex);
4586
4587 if (!edp_have_panel_vdd(intel_dp))
4588 return;
4589
4590 /*
4591 * The VDD bit needs a power domain reference, so if the bit is
4592 * already enabled when we boot or resume, grab this reference and
4593 * schedule a vdd off, so we don't hold on to the reference
4594 * indefinitely.
4595 */
4596 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4597 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4598 intel_display_power_get(dev_priv, power_domain);
4599
4600 edp_panel_vdd_schedule_off(intel_dp);
4601 }
4602
4603 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4604 {
4605 struct intel_dp *intel_dp;
4606
4607 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4608 return;
4609
4610 intel_dp = enc_to_intel_dp(encoder);
4611
4612 pps_lock(intel_dp);
4613
4614 /*
4615 * Read out the current power sequencer assignment,
4616 * in case the BIOS did something with it.
4617 */
4618 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4619 vlv_initial_power_sequencer_setup(intel_dp);
4620
4621 intel_edp_panel_vdd_sanitize(intel_dp);
4622
4623 pps_unlock(intel_dp);
4624 }
4625
4626 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4627 .dpms = drm_atomic_helper_connector_dpms,
4628 .detect = intel_dp_detect,
4629 .force = intel_dp_force,
4630 .fill_modes = drm_helper_probe_single_connector_modes,
4631 .set_property = intel_dp_set_property,
4632 .atomic_get_property = intel_connector_atomic_get_property,
4633 .destroy = intel_dp_connector_destroy,
4634 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4635 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4636 };
4637
4638 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4639 .get_modes = intel_dp_get_modes,
4640 .mode_valid = intel_dp_mode_valid,
4641 .best_encoder = intel_best_encoder,
4642 };
4643
4644 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4645 .reset = intel_dp_encoder_reset,
4646 .destroy = intel_dp_encoder_destroy,
4647 };
4648
4649 enum irqreturn
4650 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4651 {
4652 struct intel_dp *intel_dp = &intel_dig_port->dp;
4653 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4654 struct drm_device *dev = intel_dig_port->base.base.dev;
4655 struct drm_i915_private *dev_priv = dev->dev_private;
4656 enum intel_display_power_domain power_domain;
4657 enum irqreturn ret = IRQ_NONE;
4658
4659 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4660 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4661 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4662
4663 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4664 /*
4665 * vdd off can generate a long pulse on eDP which
4666 * would require vdd on to handle it, and thus we
4667 * would end up in an endless cycle of
4668 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4669 */
4670 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4671 port_name(intel_dig_port->port));
4672 return IRQ_HANDLED;
4673 }
4674
4675 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4676 port_name(intel_dig_port->port),
4677 long_hpd ? "long" : "short");
4678
4679 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4680 intel_display_power_get(dev_priv, power_domain);
4681
4682 if (long_hpd) {
4683 /* indicate that we need to restart link training */
4684 intel_dp->train_set_valid = false;
4685
4686 intel_dp_long_pulse(intel_dp->attached_connector);
4687 if (intel_dp->is_mst)
4688 ret = IRQ_HANDLED;
4689 goto put_power;
4690
4691 } else {
4692 if (intel_dp->is_mst) {
4693 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
4694 /*
4695 * If we were in MST mode, and device is not
4696 * there, get out of MST mode
4697 */
4698 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4699 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4700 intel_dp->is_mst = false;
4701 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4702 intel_dp->is_mst);
4703 goto put_power;
4704 }
4705 }
4706
4707 if (!intel_dp->is_mst) {
4708 if (!intel_dp_short_pulse(intel_dp)) {
4709 intel_dp_long_pulse(intel_dp->attached_connector);
4710 goto put_power;
4711 }
4712 }
4713 }
4714
4715 ret = IRQ_HANDLED;
4716
4717 put_power:
4718 intel_display_power_put(dev_priv, power_domain);
4719
4720 return ret;
4721 }
4722
4723 /* check the VBT to see whether the eDP is on another port */
4724 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4725 {
4726 struct drm_i915_private *dev_priv = dev->dev_private;
4727
4728 /*
4729 * eDP not supported on g4x. so bail out early just
4730 * for a bit extra safety in case the VBT is bonkers.
4731 */
4732 if (INTEL_INFO(dev)->gen < 5)
4733 return false;
4734
4735 if (port == PORT_A)
4736 return true;
4737
4738 return intel_bios_is_port_edp(dev_priv, port);
4739 }
4740
4741 void
4742 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4743 {
4744 struct intel_connector *intel_connector = to_intel_connector(connector);
4745
4746 intel_attach_force_audio_property(connector);
4747 intel_attach_broadcast_rgb_property(connector);
4748 intel_dp->color_range_auto = true;
4749
4750 if (is_edp(intel_dp)) {
4751 drm_mode_create_scaling_mode_property(connector->dev);
4752 drm_object_attach_property(
4753 &connector->base,
4754 connector->dev->mode_config.scaling_mode_property,
4755 DRM_MODE_SCALE_ASPECT);
4756 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4757 }
4758 }
4759
4760 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4761 {
4762 intel_dp->panel_power_off_time = ktime_get_boottime();
4763 intel_dp->last_power_on = jiffies;
4764 intel_dp->last_backlight_off = jiffies;
4765 }
4766
4767 static void
4768 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4769 struct intel_dp *intel_dp)
4770 {
4771 struct drm_i915_private *dev_priv = dev->dev_private;
4772 struct edp_power_seq cur, vbt, spec,
4773 *final = &intel_dp->pps_delays;
4774 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
4775 i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4776
4777 lockdep_assert_held(&dev_priv->pps_mutex);
4778
4779 /* already initialized? */
4780 if (final->t11_t12 != 0)
4781 return;
4782
4783 if (IS_BROXTON(dev)) {
4784 /*
4785 * TODO: BXT has 2 sets of PPS registers.
4786 * Correct Register for Broxton need to be identified
4787 * using VBT. hardcoding for now
4788 */
4789 pp_ctrl_reg = BXT_PP_CONTROL(0);
4790 pp_on_reg = BXT_PP_ON_DELAYS(0);
4791 pp_off_reg = BXT_PP_OFF_DELAYS(0);
4792 } else if (HAS_PCH_SPLIT(dev)) {
4793 pp_ctrl_reg = PCH_PP_CONTROL;
4794 pp_on_reg = PCH_PP_ON_DELAYS;
4795 pp_off_reg = PCH_PP_OFF_DELAYS;
4796 pp_div_reg = PCH_PP_DIVISOR;
4797 } else {
4798 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4799
4800 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4801 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4802 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4803 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4804 }
4805
4806 /* Workaround: Need to write PP_CONTROL with the unlock key as
4807 * the very first thing. */
4808 pp_ctl = ironlake_get_pp_control(intel_dp);
4809
4810 pp_on = I915_READ(pp_on_reg);
4811 pp_off = I915_READ(pp_off_reg);
4812 if (!IS_BROXTON(dev)) {
4813 I915_WRITE(pp_ctrl_reg, pp_ctl);
4814 pp_div = I915_READ(pp_div_reg);
4815 }
4816
4817 /* Pull timing values out of registers */
4818 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4819 PANEL_POWER_UP_DELAY_SHIFT;
4820
4821 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4822 PANEL_LIGHT_ON_DELAY_SHIFT;
4823
4824 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4825 PANEL_LIGHT_OFF_DELAY_SHIFT;
4826
4827 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4828 PANEL_POWER_DOWN_DELAY_SHIFT;
4829
4830 if (IS_BROXTON(dev)) {
4831 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
4832 BXT_POWER_CYCLE_DELAY_SHIFT;
4833 if (tmp > 0)
4834 cur.t11_t12 = (tmp - 1) * 1000;
4835 else
4836 cur.t11_t12 = 0;
4837 } else {
4838 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4839 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4840 }
4841
4842 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4843 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4844
4845 vbt = dev_priv->vbt.edp.pps;
4846
4847 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4848 * our hw here, which are all in 100usec. */
4849 spec.t1_t3 = 210 * 10;
4850 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4851 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4852 spec.t10 = 500 * 10;
4853 /* This one is special and actually in units of 100ms, but zero
4854 * based in the hw (so we need to add 100 ms). But the sw vbt
4855 * table multiplies it with 1000 to make it in units of 100usec,
4856 * too. */
4857 spec.t11_t12 = (510 + 100) * 10;
4858
4859 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4860 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4861
4862 /* Use the max of the register settings and vbt. If both are
4863 * unset, fall back to the spec limits. */
4864 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4865 spec.field : \
4866 max(cur.field, vbt.field))
4867 assign_final(t1_t3);
4868 assign_final(t8);
4869 assign_final(t9);
4870 assign_final(t10);
4871 assign_final(t11_t12);
4872 #undef assign_final
4873
4874 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4875 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4876 intel_dp->backlight_on_delay = get_delay(t8);
4877 intel_dp->backlight_off_delay = get_delay(t9);
4878 intel_dp->panel_power_down_delay = get_delay(t10);
4879 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4880 #undef get_delay
4881
4882 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4883 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4884 intel_dp->panel_power_cycle_delay);
4885
4886 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4887 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4888 }
4889
4890 static void
4891 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4892 struct intel_dp *intel_dp)
4893 {
4894 struct drm_i915_private *dev_priv = dev->dev_private;
4895 u32 pp_on, pp_off, pp_div, port_sel = 0;
4896 int div = dev_priv->rawclk_freq / 1000;
4897 i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
4898 enum port port = dp_to_dig_port(intel_dp)->port;
4899 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4900
4901 lockdep_assert_held(&dev_priv->pps_mutex);
4902
4903 if (IS_BROXTON(dev)) {
4904 /*
4905 * TODO: BXT has 2 sets of PPS registers.
4906 * Correct Register for Broxton need to be identified
4907 * using VBT. hardcoding for now
4908 */
4909 pp_ctrl_reg = BXT_PP_CONTROL(0);
4910 pp_on_reg = BXT_PP_ON_DELAYS(0);
4911 pp_off_reg = BXT_PP_OFF_DELAYS(0);
4912
4913 } else if (HAS_PCH_SPLIT(dev)) {
4914 pp_on_reg = PCH_PP_ON_DELAYS;
4915 pp_off_reg = PCH_PP_OFF_DELAYS;
4916 pp_div_reg = PCH_PP_DIVISOR;
4917 } else {
4918 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4919
4920 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4921 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4922 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4923 }
4924
4925 /*
4926 * And finally store the new values in the power sequencer. The
4927 * backlight delays are set to 1 because we do manual waits on them. For
4928 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4929 * we'll end up waiting for the backlight off delay twice: once when we
4930 * do the manual sleep, and once when we disable the panel and wait for
4931 * the PP_STATUS bit to become zero.
4932 */
4933 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4934 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4935 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4936 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4937 /* Compute the divisor for the pp clock, simply match the Bspec
4938 * formula. */
4939 if (IS_BROXTON(dev)) {
4940 pp_div = I915_READ(pp_ctrl_reg);
4941 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
4942 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
4943 << BXT_POWER_CYCLE_DELAY_SHIFT);
4944 } else {
4945 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4946 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4947 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4948 }
4949
4950 /* Haswell doesn't have any port selection bits for the panel
4951 * power sequencer any more. */
4952 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4953 port_sel = PANEL_PORT_SELECT_VLV(port);
4954 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4955 if (port == PORT_A)
4956 port_sel = PANEL_PORT_SELECT_DPA;
4957 else
4958 port_sel = PANEL_PORT_SELECT_DPD;
4959 }
4960
4961 pp_on |= port_sel;
4962
4963 I915_WRITE(pp_on_reg, pp_on);
4964 I915_WRITE(pp_off_reg, pp_off);
4965 if (IS_BROXTON(dev))
4966 I915_WRITE(pp_ctrl_reg, pp_div);
4967 else
4968 I915_WRITE(pp_div_reg, pp_div);
4969
4970 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4971 I915_READ(pp_on_reg),
4972 I915_READ(pp_off_reg),
4973 IS_BROXTON(dev) ?
4974 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
4975 I915_READ(pp_div_reg));
4976 }
4977
4978 /**
4979 * intel_dp_set_drrs_state - program registers for RR switch to take effect
4980 * @dev: DRM device
4981 * @refresh_rate: RR to be programmed
4982 *
4983 * This function gets called when refresh rate (RR) has to be changed from
4984 * one frequency to another. Switches can be between high and low RR
4985 * supported by the panel or to any other RR based on media playback (in
4986 * this case, RR value needs to be passed from user space).
4987 *
4988 * The caller of this function needs to take a lock on dev_priv->drrs.
4989 */
4990 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4991 {
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 struct intel_encoder *encoder;
4994 struct intel_digital_port *dig_port = NULL;
4995 struct intel_dp *intel_dp = dev_priv->drrs.dp;
4996 struct intel_crtc_state *config = NULL;
4997 struct intel_crtc *intel_crtc = NULL;
4998 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
4999
5000 if (refresh_rate <= 0) {
5001 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5002 return;
5003 }
5004
5005 if (intel_dp == NULL) {
5006 DRM_DEBUG_KMS("DRRS not supported.\n");
5007 return;
5008 }
5009
5010 /*
5011 * FIXME: This needs proper synchronization with psr state for some
5012 * platforms that cannot have PSR and DRRS enabled at the same time.
5013 */
5014
5015 dig_port = dp_to_dig_port(intel_dp);
5016 encoder = &dig_port->base;
5017 intel_crtc = to_intel_crtc(encoder->base.crtc);
5018
5019 if (!intel_crtc) {
5020 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5021 return;
5022 }
5023
5024 config = intel_crtc->config;
5025
5026 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5027 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5028 return;
5029 }
5030
5031 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5032 refresh_rate)
5033 index = DRRS_LOW_RR;
5034
5035 if (index == dev_priv->drrs.refresh_rate_type) {
5036 DRM_DEBUG_KMS(
5037 "DRRS requested for previously set RR...ignoring\n");
5038 return;
5039 }
5040
5041 if (!intel_crtc->active) {
5042 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5043 return;
5044 }
5045
5046 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5047 switch (index) {
5048 case DRRS_HIGH_RR:
5049 intel_dp_set_m_n(intel_crtc, M1_N1);
5050 break;
5051 case DRRS_LOW_RR:
5052 intel_dp_set_m_n(intel_crtc, M2_N2);
5053 break;
5054 case DRRS_MAX_RR:
5055 default:
5056 DRM_ERROR("Unsupported refreshrate type\n");
5057 }
5058 } else if (INTEL_INFO(dev)->gen > 6) {
5059 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5060 u32 val;
5061
5062 val = I915_READ(reg);
5063 if (index > DRRS_HIGH_RR) {
5064 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5065 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5066 else
5067 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5068 } else {
5069 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5070 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5071 else
5072 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5073 }
5074 I915_WRITE(reg, val);
5075 }
5076
5077 dev_priv->drrs.refresh_rate_type = index;
5078
5079 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5080 }
5081
5082 /**
5083 * intel_edp_drrs_enable - init drrs struct if supported
5084 * @intel_dp: DP struct
5085 *
5086 * Initializes frontbuffer_bits and drrs.dp
5087 */
5088 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5089 {
5090 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5091 struct drm_i915_private *dev_priv = dev->dev_private;
5092 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5093 struct drm_crtc *crtc = dig_port->base.base.crtc;
5094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5095
5096 if (!intel_crtc->config->has_drrs) {
5097 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5098 return;
5099 }
5100
5101 mutex_lock(&dev_priv->drrs.mutex);
5102 if (WARN_ON(dev_priv->drrs.dp)) {
5103 DRM_ERROR("DRRS already enabled\n");
5104 goto unlock;
5105 }
5106
5107 dev_priv->drrs.busy_frontbuffer_bits = 0;
5108
5109 dev_priv->drrs.dp = intel_dp;
5110
5111 unlock:
5112 mutex_unlock(&dev_priv->drrs.mutex);
5113 }
5114
5115 /**
5116 * intel_edp_drrs_disable - Disable DRRS
5117 * @intel_dp: DP struct
5118 *
5119 */
5120 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5121 {
5122 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5123 struct drm_i915_private *dev_priv = dev->dev_private;
5124 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5125 struct drm_crtc *crtc = dig_port->base.base.crtc;
5126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5127
5128 if (!intel_crtc->config->has_drrs)
5129 return;
5130
5131 mutex_lock(&dev_priv->drrs.mutex);
5132 if (!dev_priv->drrs.dp) {
5133 mutex_unlock(&dev_priv->drrs.mutex);
5134 return;
5135 }
5136
5137 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5138 intel_dp_set_drrs_state(dev_priv->dev,
5139 intel_dp->attached_connector->panel.
5140 fixed_mode->vrefresh);
5141
5142 dev_priv->drrs.dp = NULL;
5143 mutex_unlock(&dev_priv->drrs.mutex);
5144
5145 cancel_delayed_work_sync(&dev_priv->drrs.work);
5146 }
5147
5148 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5149 {
5150 struct drm_i915_private *dev_priv =
5151 container_of(work, typeof(*dev_priv), drrs.work.work);
5152 struct intel_dp *intel_dp;
5153
5154 mutex_lock(&dev_priv->drrs.mutex);
5155
5156 intel_dp = dev_priv->drrs.dp;
5157
5158 if (!intel_dp)
5159 goto unlock;
5160
5161 /*
5162 * The delayed work can race with an invalidate hence we need to
5163 * recheck.
5164 */
5165
5166 if (dev_priv->drrs.busy_frontbuffer_bits)
5167 goto unlock;
5168
5169 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5170 intel_dp_set_drrs_state(dev_priv->dev,
5171 intel_dp->attached_connector->panel.
5172 downclock_mode->vrefresh);
5173
5174 unlock:
5175 mutex_unlock(&dev_priv->drrs.mutex);
5176 }
5177
5178 /**
5179 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5180 * @dev: DRM device
5181 * @frontbuffer_bits: frontbuffer plane tracking bits
5182 *
5183 * This function gets called everytime rendering on the given planes start.
5184 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5185 *
5186 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5187 */
5188 void intel_edp_drrs_invalidate(struct drm_device *dev,
5189 unsigned frontbuffer_bits)
5190 {
5191 struct drm_i915_private *dev_priv = dev->dev_private;
5192 struct drm_crtc *crtc;
5193 enum pipe pipe;
5194
5195 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5196 return;
5197
5198 cancel_delayed_work(&dev_priv->drrs.work);
5199
5200 mutex_lock(&dev_priv->drrs.mutex);
5201 if (!dev_priv->drrs.dp) {
5202 mutex_unlock(&dev_priv->drrs.mutex);
5203 return;
5204 }
5205
5206 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5207 pipe = to_intel_crtc(crtc)->pipe;
5208
5209 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5210 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5211
5212 /* invalidate means busy screen hence upclock */
5213 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5214 intel_dp_set_drrs_state(dev_priv->dev,
5215 dev_priv->drrs.dp->attached_connector->panel.
5216 fixed_mode->vrefresh);
5217
5218 mutex_unlock(&dev_priv->drrs.mutex);
5219 }
5220
5221 /**
5222 * intel_edp_drrs_flush - Restart Idleness DRRS
5223 * @dev: DRM device
5224 * @frontbuffer_bits: frontbuffer plane tracking bits
5225 *
5226 * This function gets called every time rendering on the given planes has
5227 * completed or flip on a crtc is completed. So DRRS should be upclocked
5228 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5229 * if no other planes are dirty.
5230 *
5231 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5232 */
5233 void intel_edp_drrs_flush(struct drm_device *dev,
5234 unsigned frontbuffer_bits)
5235 {
5236 struct drm_i915_private *dev_priv = dev->dev_private;
5237 struct drm_crtc *crtc;
5238 enum pipe pipe;
5239
5240 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5241 return;
5242
5243 cancel_delayed_work(&dev_priv->drrs.work);
5244
5245 mutex_lock(&dev_priv->drrs.mutex);
5246 if (!dev_priv->drrs.dp) {
5247 mutex_unlock(&dev_priv->drrs.mutex);
5248 return;
5249 }
5250
5251 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5252 pipe = to_intel_crtc(crtc)->pipe;
5253
5254 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5255 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5256
5257 /* flush means busy screen hence upclock */
5258 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5259 intel_dp_set_drrs_state(dev_priv->dev,
5260 dev_priv->drrs.dp->attached_connector->panel.
5261 fixed_mode->vrefresh);
5262
5263 /*
5264 * flush also means no more activity hence schedule downclock, if all
5265 * other fbs are quiescent too
5266 */
5267 if (!dev_priv->drrs.busy_frontbuffer_bits)
5268 schedule_delayed_work(&dev_priv->drrs.work,
5269 msecs_to_jiffies(1000));
5270 mutex_unlock(&dev_priv->drrs.mutex);
5271 }
5272
5273 /**
5274 * DOC: Display Refresh Rate Switching (DRRS)
5275 *
5276 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5277 * which enables swtching between low and high refresh rates,
5278 * dynamically, based on the usage scenario. This feature is applicable
5279 * for internal panels.
5280 *
5281 * Indication that the panel supports DRRS is given by the panel EDID, which
5282 * would list multiple refresh rates for one resolution.
5283 *
5284 * DRRS is of 2 types - static and seamless.
5285 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5286 * (may appear as a blink on screen) and is used in dock-undock scenario.
5287 * Seamless DRRS involves changing RR without any visual effect to the user
5288 * and can be used during normal system usage. This is done by programming
5289 * certain registers.
5290 *
5291 * Support for static/seamless DRRS may be indicated in the VBT based on
5292 * inputs from the panel spec.
5293 *
5294 * DRRS saves power by switching to low RR based on usage scenarios.
5295 *
5296 * eDP DRRS:-
5297 * The implementation is based on frontbuffer tracking implementation.
5298 * When there is a disturbance on the screen triggered by user activity or a
5299 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5300 * When there is no movement on screen, after a timeout of 1 second, a switch
5301 * to low RR is made.
5302 * For integration with frontbuffer tracking code,
5303 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5304 *
5305 * DRRS can be further extended to support other internal panels and also
5306 * the scenario of video playback wherein RR is set based on the rate
5307 * requested by userspace.
5308 */
5309
5310 /**
5311 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5312 * @intel_connector: eDP connector
5313 * @fixed_mode: preferred mode of panel
5314 *
5315 * This function is called only once at driver load to initialize basic
5316 * DRRS stuff.
5317 *
5318 * Returns:
5319 * Downclock mode if panel supports it, else return NULL.
5320 * DRRS support is determined by the presence of downclock mode (apart
5321 * from VBT setting).
5322 */
5323 static struct drm_display_mode *
5324 intel_dp_drrs_init(struct intel_connector *intel_connector,
5325 struct drm_display_mode *fixed_mode)
5326 {
5327 struct drm_connector *connector = &intel_connector->base;
5328 struct drm_device *dev = connector->dev;
5329 struct drm_i915_private *dev_priv = dev->dev_private;
5330 struct drm_display_mode *downclock_mode = NULL;
5331
5332 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5333 mutex_init(&dev_priv->drrs.mutex);
5334
5335 if (INTEL_INFO(dev)->gen <= 6) {
5336 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5337 return NULL;
5338 }
5339
5340 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5341 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5342 return NULL;
5343 }
5344
5345 downclock_mode = intel_find_panel_downclock
5346 (dev, fixed_mode, connector);
5347
5348 if (!downclock_mode) {
5349 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5350 return NULL;
5351 }
5352
5353 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5354
5355 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5356 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5357 return downclock_mode;
5358 }
5359
5360 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5361 struct intel_connector *intel_connector)
5362 {
5363 struct drm_connector *connector = &intel_connector->base;
5364 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5365 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5366 struct drm_device *dev = intel_encoder->base.dev;
5367 struct drm_i915_private *dev_priv = dev->dev_private;
5368 struct drm_display_mode *fixed_mode = NULL;
5369 struct drm_display_mode *downclock_mode = NULL;
5370 bool has_dpcd;
5371 struct drm_display_mode *scan;
5372 struct edid *edid;
5373 enum pipe pipe = INVALID_PIPE;
5374
5375 if (!is_edp(intel_dp))
5376 return true;
5377
5378 pps_lock(intel_dp);
5379 intel_edp_panel_vdd_sanitize(intel_dp);
5380 pps_unlock(intel_dp);
5381
5382 /* Cache DPCD and EDID for edp. */
5383 has_dpcd = intel_dp_get_dpcd(intel_dp);
5384
5385 if (has_dpcd) {
5386 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5387 dev_priv->no_aux_handshake =
5388 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5389 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5390 } else {
5391 /* if this fails, presume the device is a ghost */
5392 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5393 return false;
5394 }
5395
5396 /* We now know it's not a ghost, init power sequence regs. */
5397 pps_lock(intel_dp);
5398 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5399 pps_unlock(intel_dp);
5400
5401 mutex_lock(&dev->mode_config.mutex);
5402 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5403 if (edid) {
5404 if (drm_add_edid_modes(connector, edid)) {
5405 drm_mode_connector_update_edid_property(connector,
5406 edid);
5407 drm_edid_to_eld(connector, edid);
5408 } else {
5409 kfree(edid);
5410 edid = ERR_PTR(-EINVAL);
5411 }
5412 } else {
5413 edid = ERR_PTR(-ENOENT);
5414 }
5415 intel_connector->edid = edid;
5416
5417 /* prefer fixed mode from EDID if available */
5418 list_for_each_entry(scan, &connector->probed_modes, head) {
5419 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5420 fixed_mode = drm_mode_duplicate(dev, scan);
5421 downclock_mode = intel_dp_drrs_init(
5422 intel_connector, fixed_mode);
5423 break;
5424 }
5425 }
5426
5427 /* fallback to VBT if available for eDP */
5428 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5429 fixed_mode = drm_mode_duplicate(dev,
5430 dev_priv->vbt.lfp_lvds_vbt_mode);
5431 if (fixed_mode)
5432 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5433 }
5434 mutex_unlock(&dev->mode_config.mutex);
5435
5436 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5437 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5438 register_reboot_notifier(&intel_dp->edp_notifier);
5439
5440 /*
5441 * Figure out the current pipe for the initial backlight setup.
5442 * If the current pipe isn't valid, try the PPS pipe, and if that
5443 * fails just assume pipe A.
5444 */
5445 if (IS_CHERRYVIEW(dev))
5446 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5447 else
5448 pipe = PORT_TO_PIPE(intel_dp->DP);
5449
5450 if (pipe != PIPE_A && pipe != PIPE_B)
5451 pipe = intel_dp->pps_pipe;
5452
5453 if (pipe != PIPE_A && pipe != PIPE_B)
5454 pipe = PIPE_A;
5455
5456 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5457 pipe_name(pipe));
5458 }
5459
5460 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5461 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5462 intel_panel_setup_backlight(connector, pipe);
5463
5464 return true;
5465 }
5466
5467 bool
5468 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5469 struct intel_connector *intel_connector)
5470 {
5471 struct drm_connector *connector = &intel_connector->base;
5472 struct intel_dp *intel_dp = &intel_dig_port->dp;
5473 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5474 struct drm_device *dev = intel_encoder->base.dev;
5475 struct drm_i915_private *dev_priv = dev->dev_private;
5476 enum port port = intel_dig_port->port;
5477 int type, ret;
5478
5479 if (WARN(intel_dig_port->max_lanes < 1,
5480 "Not enough lanes (%d) for DP on port %c\n",
5481 intel_dig_port->max_lanes, port_name(port)))
5482 return false;
5483
5484 intel_dp->pps_pipe = INVALID_PIPE;
5485
5486 /* intel_dp vfuncs */
5487 if (INTEL_INFO(dev)->gen >= 9)
5488 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5489 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5490 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5491 else if (HAS_PCH_SPLIT(dev))
5492 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5493 else
5494 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5495
5496 if (INTEL_INFO(dev)->gen >= 9)
5497 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5498 else
5499 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5500
5501 if (HAS_DDI(dev))
5502 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5503
5504 /* Preserve the current hw state. */
5505 intel_dp->DP = I915_READ(intel_dp->output_reg);
5506 intel_dp->attached_connector = intel_connector;
5507
5508 if (intel_dp_is_edp(dev, port))
5509 type = DRM_MODE_CONNECTOR_eDP;
5510 else
5511 type = DRM_MODE_CONNECTOR_DisplayPort;
5512
5513 /*
5514 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5515 * for DP the encoder type can be set by the caller to
5516 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5517 */
5518 if (type == DRM_MODE_CONNECTOR_eDP)
5519 intel_encoder->type = INTEL_OUTPUT_EDP;
5520
5521 /* eDP only on port B and/or C on vlv/chv */
5522 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5523 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5524 return false;
5525
5526 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5527 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5528 port_name(port));
5529
5530 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5531 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5532
5533 connector->interlace_allowed = true;
5534 connector->doublescan_allowed = 0;
5535
5536 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5537 edp_panel_vdd_work);
5538
5539 intel_connector_attach_encoder(intel_connector, intel_encoder);
5540 drm_connector_register(connector);
5541
5542 if (HAS_DDI(dev))
5543 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5544 else
5545 intel_connector->get_hw_state = intel_connector_get_hw_state;
5546 intel_connector->unregister = intel_dp_connector_unregister;
5547
5548 /* Set up the hotplug pin. */
5549 switch (port) {
5550 case PORT_A:
5551 intel_encoder->hpd_pin = HPD_PORT_A;
5552 break;
5553 case PORT_B:
5554 intel_encoder->hpd_pin = HPD_PORT_B;
5555 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5556 intel_encoder->hpd_pin = HPD_PORT_A;
5557 break;
5558 case PORT_C:
5559 intel_encoder->hpd_pin = HPD_PORT_C;
5560 break;
5561 case PORT_D:
5562 intel_encoder->hpd_pin = HPD_PORT_D;
5563 break;
5564 case PORT_E:
5565 intel_encoder->hpd_pin = HPD_PORT_E;
5566 break;
5567 default:
5568 BUG();
5569 }
5570
5571 if (is_edp(intel_dp)) {
5572 pps_lock(intel_dp);
5573 intel_dp_init_panel_power_timestamps(intel_dp);
5574 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5575 vlv_initial_power_sequencer_setup(intel_dp);
5576 else
5577 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5578 pps_unlock(intel_dp);
5579 }
5580
5581 ret = intel_dp_aux_init(intel_dp, intel_connector);
5582 if (ret)
5583 goto fail;
5584
5585 /* init MST on ports that can support it */
5586 if (HAS_DP_MST(dev) &&
5587 (port == PORT_B || port == PORT_C || port == PORT_D))
5588 intel_dp_mst_encoder_init(intel_dig_port,
5589 intel_connector->base.base.id);
5590
5591 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5592 intel_dp_aux_fini(intel_dp);
5593 intel_dp_mst_encoder_cleanup(intel_dig_port);
5594 goto fail;
5595 }
5596
5597 intel_dp_add_properties(intel_dp, connector);
5598
5599 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5600 * 0xd. Failure to do so will result in spurious interrupts being
5601 * generated on the port when a cable is not attached.
5602 */
5603 if (IS_G4X(dev) && !IS_GM45(dev)) {
5604 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5605 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5606 }
5607
5608 i915_debugfs_connector_add(connector);
5609
5610 return true;
5611
5612 fail:
5613 if (is_edp(intel_dp)) {
5614 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5615 /*
5616 * vdd might still be enabled do to the delayed vdd off.
5617 * Make sure vdd is actually turned off here.
5618 */
5619 pps_lock(intel_dp);
5620 edp_panel_vdd_off_sync(intel_dp);
5621 pps_unlock(intel_dp);
5622 }
5623 drm_connector_unregister(connector);
5624 drm_connector_cleanup(connector);
5625
5626 return false;
5627 }
5628
5629 void
5630 intel_dp_init(struct drm_device *dev,
5631 i915_reg_t output_reg, enum port port)
5632 {
5633 struct drm_i915_private *dev_priv = dev->dev_private;
5634 struct intel_digital_port *intel_dig_port;
5635 struct intel_encoder *intel_encoder;
5636 struct drm_encoder *encoder;
5637 struct intel_connector *intel_connector;
5638
5639 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5640 if (!intel_dig_port)
5641 return;
5642
5643 intel_connector = intel_connector_alloc();
5644 if (!intel_connector)
5645 goto err_connector_alloc;
5646
5647 intel_encoder = &intel_dig_port->base;
5648 encoder = &intel_encoder->base;
5649
5650 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5651 DRM_MODE_ENCODER_TMDS, NULL))
5652 goto err_encoder_init;
5653
5654 intel_encoder->compute_config = intel_dp_compute_config;
5655 intel_encoder->disable = intel_disable_dp;
5656 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5657 intel_encoder->get_config = intel_dp_get_config;
5658 intel_encoder->suspend = intel_dp_encoder_suspend;
5659 if (IS_CHERRYVIEW(dev)) {
5660 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5661 intel_encoder->pre_enable = chv_pre_enable_dp;
5662 intel_encoder->enable = vlv_enable_dp;
5663 intel_encoder->post_disable = chv_post_disable_dp;
5664 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5665 } else if (IS_VALLEYVIEW(dev)) {
5666 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5667 intel_encoder->pre_enable = vlv_pre_enable_dp;
5668 intel_encoder->enable = vlv_enable_dp;
5669 intel_encoder->post_disable = vlv_post_disable_dp;
5670 } else {
5671 intel_encoder->pre_enable = g4x_pre_enable_dp;
5672 intel_encoder->enable = g4x_enable_dp;
5673 if (INTEL_INFO(dev)->gen >= 5)
5674 intel_encoder->post_disable = ilk_post_disable_dp;
5675 }
5676
5677 intel_dig_port->port = port;
5678 intel_dig_port->dp.output_reg = output_reg;
5679 intel_dig_port->max_lanes = 4;
5680
5681 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5682 if (IS_CHERRYVIEW(dev)) {
5683 if (port == PORT_D)
5684 intel_encoder->crtc_mask = 1 << 2;
5685 else
5686 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5687 } else {
5688 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5689 }
5690 intel_encoder->cloneable = 0;
5691
5692 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5693 dev_priv->hotplug.irq_port[port] = intel_dig_port;
5694
5695 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
5696 goto err_init_connector;
5697
5698 return;
5699
5700 err_init_connector:
5701 drm_encoder_cleanup(encoder);
5702 err_encoder_init:
5703 kfree(intel_connector);
5704 err_connector_alloc:
5705 kfree(intel_dig_port);
5706
5707 return;
5708 }
5709
5710 void intel_dp_mst_suspend(struct drm_device *dev)
5711 {
5712 struct drm_i915_private *dev_priv = dev->dev_private;
5713 int i;
5714
5715 /* disable MST */
5716 for (i = 0; i < I915_MAX_PORTS; i++) {
5717 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5718 if (!intel_dig_port)
5719 continue;
5720
5721 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5722 if (!intel_dig_port->dp.can_mst)
5723 continue;
5724 if (intel_dig_port->dp.is_mst)
5725 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5726 }
5727 }
5728 }
5729
5730 void intel_dp_mst_resume(struct drm_device *dev)
5731 {
5732 struct drm_i915_private *dev_priv = dev->dev_private;
5733 int i;
5734
5735 for (i = 0; i < I915_MAX_PORTS; i++) {
5736 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
5737 if (!intel_dig_port)
5738 continue;
5739 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5740 int ret;
5741
5742 if (!intel_dig_port->dp.can_mst)
5743 continue;
5744
5745 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5746 if (ret != 0) {
5747 intel_dp_check_mst_status(&intel_dig_port->dp);
5748 }
5749 }
5750 }
5751 }
This page took 0.212101 seconds and 5 git commands to generate.