drm/i915: add DP support to intel_ddi_enable_pipe_func
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DP_RECEIVER_CAP_SIZE 0xf
41 #define DP_LINK_STATUS_SIZE 6
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /**
45 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
46 * @intel_dp: DP struct
47 *
48 * If a CPU or PCH DP output is attached to an eDP panel, this function
49 * will return true, and false otherwise.
50 */
51 static bool is_edp(struct intel_dp *intel_dp)
52 {
53 return intel_dp->base.type == INTEL_OUTPUT_EDP;
54 }
55
56 /**
57 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
58 * @intel_dp: DP struct
59 *
60 * Returns true if the given DP struct corresponds to a PCH DP port attached
61 * to an eDP panel, false otherwise. Helpful for determining whether we
62 * may need FDI resources for a given DP output or not.
63 */
64 static bool is_pch_edp(struct intel_dp *intel_dp)
65 {
66 return intel_dp->is_pch_edp;
67 }
68
69 /**
70 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
71 * @intel_dp: DP struct
72 *
73 * Returns true if the given DP struct corresponds to a CPU eDP port.
74 */
75 static bool is_cpu_edp(struct intel_dp *intel_dp)
76 {
77 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
78 }
79
80 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
81 {
82 return container_of(intel_attached_encoder(connector),
83 struct intel_dp, base);
84 }
85
86 /**
87 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
88 * @encoder: DRM encoder
89 *
90 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
91 * by intel_display.c.
92 */
93 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
94 {
95 struct intel_dp *intel_dp;
96
97 if (!encoder)
98 return false;
99
100 intel_dp = enc_to_intel_dp(encoder);
101
102 return is_pch_edp(intel_dp);
103 }
104
105 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
106 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
107 static void intel_dp_link_down(struct intel_dp *intel_dp);
108
109 void
110 intel_edp_link_config(struct intel_encoder *intel_encoder,
111 int *lane_num, int *link_bw)
112 {
113 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
114
115 *lane_num = intel_dp->lane_count;
116 if (intel_dp->link_bw == DP_LINK_BW_1_62)
117 *link_bw = 162000;
118 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
119 *link_bw = 270000;
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124 struct drm_display_mode *mode)
125 {
126 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
127
128 if (intel_dp->panel_fixed_mode)
129 return intel_dp->panel_fixed_mode->clock;
130 else
131 return mode->clock;
132 }
133
134 static int
135 intel_dp_max_lane_count(struct intel_dp *intel_dp)
136 {
137 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
138 switch (max_lane_count) {
139 case 1: case 2: case 4:
140 break;
141 default:
142 max_lane_count = 4;
143 }
144 return max_lane_count;
145 }
146
147 static int
148 intel_dp_max_link_bw(struct intel_dp *intel_dp)
149 {
150 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
151
152 switch (max_link_bw) {
153 case DP_LINK_BW_1_62:
154 case DP_LINK_BW_2_7:
155 break;
156 default:
157 max_link_bw = DP_LINK_BW_1_62;
158 break;
159 }
160 return max_link_bw;
161 }
162
163 static int
164 intel_dp_link_clock(uint8_t link_bw)
165 {
166 if (link_bw == DP_LINK_BW_2_7)
167 return 270000;
168 else
169 return 162000;
170 }
171
172 /*
173 * The units on the numbers in the next two are... bizarre. Examples will
174 * make it clearer; this one parallels an example in the eDP spec.
175 *
176 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
177 *
178 * 270000 * 1 * 8 / 10 == 216000
179 *
180 * The actual data capacity of that configuration is 2.16Gbit/s, so the
181 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
182 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
183 * 119000. At 18bpp that's 2142000 kilobits per second.
184 *
185 * Thus the strange-looking division by 10 in intel_dp_link_required, to
186 * get the result in decakilobits instead of kilobits.
187 */
188
189 static int
190 intel_dp_link_required(int pixel_clock, int bpp)
191 {
192 return (pixel_clock * bpp + 9) / 10;
193 }
194
195 static int
196 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
197 {
198 return (max_link_clock * max_lanes * 8) / 10;
199 }
200
201 static bool
202 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
203 struct drm_display_mode *mode,
204 bool adjust_mode)
205 {
206 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
207 int max_lanes = intel_dp_max_lane_count(intel_dp);
208 int max_rate, mode_rate;
209
210 mode_rate = intel_dp_link_required(mode->clock, 24);
211 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
212
213 if (mode_rate > max_rate) {
214 mode_rate = intel_dp_link_required(mode->clock, 18);
215 if (mode_rate > max_rate)
216 return false;
217
218 if (adjust_mode)
219 mode->private_flags
220 |= INTEL_MODE_DP_FORCE_6BPC;
221
222 return true;
223 }
224
225 return true;
226 }
227
228 static int
229 intel_dp_mode_valid(struct drm_connector *connector,
230 struct drm_display_mode *mode)
231 {
232 struct intel_dp *intel_dp = intel_attached_dp(connector);
233
234 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
235 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
236 return MODE_PANEL;
237
238 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
239 return MODE_PANEL;
240 }
241
242 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
243 return MODE_CLOCK_HIGH;
244
245 if (mode->clock < 10000)
246 return MODE_CLOCK_LOW;
247
248 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
249 return MODE_H_ILLEGAL;
250
251 return MODE_OK;
252 }
253
254 static uint32_t
255 pack_aux(uint8_t *src, int src_bytes)
256 {
257 int i;
258 uint32_t v = 0;
259
260 if (src_bytes > 4)
261 src_bytes = 4;
262 for (i = 0; i < src_bytes; i++)
263 v |= ((uint32_t) src[i]) << ((3-i) * 8);
264 return v;
265 }
266
267 static void
268 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
269 {
270 int i;
271 if (dst_bytes > 4)
272 dst_bytes = 4;
273 for (i = 0; i < dst_bytes; i++)
274 dst[i] = src >> ((3-i) * 8);
275 }
276
277 /* hrawclock is 1/4 the FSB frequency */
278 static int
279 intel_hrawclk(struct drm_device *dev)
280 {
281 struct drm_i915_private *dev_priv = dev->dev_private;
282 uint32_t clkcfg;
283
284 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
285 if (IS_VALLEYVIEW(dev))
286 return 200;
287
288 clkcfg = I915_READ(CLKCFG);
289 switch (clkcfg & CLKCFG_FSB_MASK) {
290 case CLKCFG_FSB_400:
291 return 100;
292 case CLKCFG_FSB_533:
293 return 133;
294 case CLKCFG_FSB_667:
295 return 166;
296 case CLKCFG_FSB_800:
297 return 200;
298 case CLKCFG_FSB_1067:
299 return 266;
300 case CLKCFG_FSB_1333:
301 return 333;
302 /* these two are just a guess; one of them might be right */
303 case CLKCFG_FSB_1600:
304 case CLKCFG_FSB_1600_ALT:
305 return 400;
306 default:
307 return 133;
308 }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313 struct drm_device *dev = intel_dp->base.base.dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330 struct drm_device *dev = intel_dp->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332
333 if (!is_edp(intel_dp))
334 return;
335 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338 I915_READ(PCH_PP_STATUS),
339 I915_READ(PCH_PP_CONTROL));
340 }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345 uint8_t *send, int send_bytes,
346 uint8_t *recv, int recv_size)
347 {
348 uint32_t output_reg = intel_dp->output_reg;
349 struct drm_device *dev = intel_dp->base.base.dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 uint32_t ch_ctl = output_reg + 0x10;
352 uint32_t ch_data = ch_ctl + 4;
353 int i;
354 int recv_bytes;
355 uint32_t status;
356 uint32_t aux_clock_divider;
357 int try, precharge;
358
359 intel_dp_check_edp(intel_dp);
360 /* The clock divider is based off the hrawclk,
361 * and would like to run at 2MHz. So, take the
362 * hrawclk value and divide by 2 and use that
363 *
364 * Note that PCH attached eDP panels should use a 125MHz input
365 * clock divider.
366 */
367 if (is_cpu_edp(intel_dp)) {
368 if (IS_VALLEYVIEW(dev))
369 aux_clock_divider = 100;
370 else if (IS_GEN6(dev) || IS_GEN7(dev))
371 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
372 else
373 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
374 } else if (HAS_PCH_SPLIT(dev))
375 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
376 else
377 aux_clock_divider = intel_hrawclk(dev) / 2;
378
379 if (IS_GEN6(dev))
380 precharge = 3;
381 else
382 precharge = 5;
383
384 /* Try to wait for any previous AUX channel activity */
385 for (try = 0; try < 3; try++) {
386 status = I915_READ(ch_ctl);
387 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
388 break;
389 msleep(1);
390 }
391
392 if (try == 3) {
393 WARN(1, "dp_aux_ch not started status 0x%08x\n",
394 I915_READ(ch_ctl));
395 return -EBUSY;
396 }
397
398 /* Must try at least 3 times according to DP spec */
399 for (try = 0; try < 5; try++) {
400 /* Load the send data into the aux channel data registers */
401 for (i = 0; i < send_bytes; i += 4)
402 I915_WRITE(ch_data + i,
403 pack_aux(send + i, send_bytes - i));
404
405 /* Send the command and wait for it to complete */
406 I915_WRITE(ch_ctl,
407 DP_AUX_CH_CTL_SEND_BUSY |
408 DP_AUX_CH_CTL_TIME_OUT_400us |
409 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
410 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
411 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
412 DP_AUX_CH_CTL_DONE |
413 DP_AUX_CH_CTL_TIME_OUT_ERROR |
414 DP_AUX_CH_CTL_RECEIVE_ERROR);
415 for (;;) {
416 status = I915_READ(ch_ctl);
417 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
418 break;
419 udelay(100);
420 }
421
422 /* Clear done status and any errors */
423 I915_WRITE(ch_ctl,
424 status |
425 DP_AUX_CH_CTL_DONE |
426 DP_AUX_CH_CTL_TIME_OUT_ERROR |
427 DP_AUX_CH_CTL_RECEIVE_ERROR);
428
429 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
430 DP_AUX_CH_CTL_RECEIVE_ERROR))
431 continue;
432 if (status & DP_AUX_CH_CTL_DONE)
433 break;
434 }
435
436 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
437 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
438 return -EBUSY;
439 }
440
441 /* Check for timeout or receive error.
442 * Timeouts occur when the sink is not connected
443 */
444 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
445 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
446 return -EIO;
447 }
448
449 /* Timeouts occur when the device isn't connected, so they're
450 * "normal" -- don't fill the kernel log with these */
451 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
452 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
453 return -ETIMEDOUT;
454 }
455
456 /* Unload any bytes sent back from the other side */
457 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
458 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
459 if (recv_bytes > recv_size)
460 recv_bytes = recv_size;
461
462 for (i = 0; i < recv_bytes; i += 4)
463 unpack_aux(I915_READ(ch_data + i),
464 recv + i, recv_bytes - i);
465
466 return recv_bytes;
467 }
468
469 /* Write data to the aux channel in native mode */
470 static int
471 intel_dp_aux_native_write(struct intel_dp *intel_dp,
472 uint16_t address, uint8_t *send, int send_bytes)
473 {
474 int ret;
475 uint8_t msg[20];
476 int msg_bytes;
477 uint8_t ack;
478
479 intel_dp_check_edp(intel_dp);
480 if (send_bytes > 16)
481 return -1;
482 msg[0] = AUX_NATIVE_WRITE << 4;
483 msg[1] = address >> 8;
484 msg[2] = address & 0xff;
485 msg[3] = send_bytes - 1;
486 memcpy(&msg[4], send, send_bytes);
487 msg_bytes = send_bytes + 4;
488 for (;;) {
489 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
490 if (ret < 0)
491 return ret;
492 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
493 break;
494 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
495 udelay(100);
496 else
497 return -EIO;
498 }
499 return send_bytes;
500 }
501
502 /* Write a single byte to the aux channel in native mode */
503 static int
504 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
505 uint16_t address, uint8_t byte)
506 {
507 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
508 }
509
510 /* read bytes from a native aux channel */
511 static int
512 intel_dp_aux_native_read(struct intel_dp *intel_dp,
513 uint16_t address, uint8_t *recv, int recv_bytes)
514 {
515 uint8_t msg[4];
516 int msg_bytes;
517 uint8_t reply[20];
518 int reply_bytes;
519 uint8_t ack;
520 int ret;
521
522 intel_dp_check_edp(intel_dp);
523 msg[0] = AUX_NATIVE_READ << 4;
524 msg[1] = address >> 8;
525 msg[2] = address & 0xff;
526 msg[3] = recv_bytes - 1;
527
528 msg_bytes = 4;
529 reply_bytes = recv_bytes + 1;
530
531 for (;;) {
532 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
533 reply, reply_bytes);
534 if (ret == 0)
535 return -EPROTO;
536 if (ret < 0)
537 return ret;
538 ack = reply[0];
539 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
540 memcpy(recv, reply + 1, ret - 1);
541 return ret - 1;
542 }
543 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
544 udelay(100);
545 else
546 return -EIO;
547 }
548 }
549
550 static int
551 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
552 uint8_t write_byte, uint8_t *read_byte)
553 {
554 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
555 struct intel_dp *intel_dp = container_of(adapter,
556 struct intel_dp,
557 adapter);
558 uint16_t address = algo_data->address;
559 uint8_t msg[5];
560 uint8_t reply[2];
561 unsigned retry;
562 int msg_bytes;
563 int reply_bytes;
564 int ret;
565
566 intel_dp_check_edp(intel_dp);
567 /* Set up the command byte */
568 if (mode & MODE_I2C_READ)
569 msg[0] = AUX_I2C_READ << 4;
570 else
571 msg[0] = AUX_I2C_WRITE << 4;
572
573 if (!(mode & MODE_I2C_STOP))
574 msg[0] |= AUX_I2C_MOT << 4;
575
576 msg[1] = address >> 8;
577 msg[2] = address;
578
579 switch (mode) {
580 case MODE_I2C_WRITE:
581 msg[3] = 0;
582 msg[4] = write_byte;
583 msg_bytes = 5;
584 reply_bytes = 1;
585 break;
586 case MODE_I2C_READ:
587 msg[3] = 0;
588 msg_bytes = 4;
589 reply_bytes = 2;
590 break;
591 default:
592 msg_bytes = 3;
593 reply_bytes = 1;
594 break;
595 }
596
597 for (retry = 0; retry < 5; retry++) {
598 ret = intel_dp_aux_ch(intel_dp,
599 msg, msg_bytes,
600 reply, reply_bytes);
601 if (ret < 0) {
602 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
603 return ret;
604 }
605
606 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
607 case AUX_NATIVE_REPLY_ACK:
608 /* I2C-over-AUX Reply field is only valid
609 * when paired with AUX ACK.
610 */
611 break;
612 case AUX_NATIVE_REPLY_NACK:
613 DRM_DEBUG_KMS("aux_ch native nack\n");
614 return -EREMOTEIO;
615 case AUX_NATIVE_REPLY_DEFER:
616 udelay(100);
617 continue;
618 default:
619 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
620 reply[0]);
621 return -EREMOTEIO;
622 }
623
624 switch (reply[0] & AUX_I2C_REPLY_MASK) {
625 case AUX_I2C_REPLY_ACK:
626 if (mode == MODE_I2C_READ) {
627 *read_byte = reply[1];
628 }
629 return reply_bytes - 1;
630 case AUX_I2C_REPLY_NACK:
631 DRM_DEBUG_KMS("aux_i2c nack\n");
632 return -EREMOTEIO;
633 case AUX_I2C_REPLY_DEFER:
634 DRM_DEBUG_KMS("aux_i2c defer\n");
635 udelay(100);
636 break;
637 default:
638 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
639 return -EREMOTEIO;
640 }
641 }
642
643 DRM_ERROR("too many retries, giving up\n");
644 return -EREMOTEIO;
645 }
646
647 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
648 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
649
650 static int
651 intel_dp_i2c_init(struct intel_dp *intel_dp,
652 struct intel_connector *intel_connector, const char *name)
653 {
654 int ret;
655
656 DRM_DEBUG_KMS("i2c_init %s\n", name);
657 intel_dp->algo.running = false;
658 intel_dp->algo.address = 0;
659 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
660
661 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
662 intel_dp->adapter.owner = THIS_MODULE;
663 intel_dp->adapter.class = I2C_CLASS_DDC;
664 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
665 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
666 intel_dp->adapter.algo_data = &intel_dp->algo;
667 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
668
669 ironlake_edp_panel_vdd_on(intel_dp);
670 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
671 ironlake_edp_panel_vdd_off(intel_dp, false);
672 return ret;
673 }
674
675 static bool
676 intel_dp_mode_fixup(struct drm_encoder *encoder,
677 const struct drm_display_mode *mode,
678 struct drm_display_mode *adjusted_mode)
679 {
680 struct drm_device *dev = encoder->dev;
681 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
682 int lane_count, clock;
683 int max_lane_count = intel_dp_max_lane_count(intel_dp);
684 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
685 int bpp, mode_rate;
686 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
687
688 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
689 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
690 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
691 mode, adjusted_mode);
692 }
693
694 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
695 return false;
696
697 DRM_DEBUG_KMS("DP link computation with max lane count %i "
698 "max bw %02x pixel clock %iKHz\n",
699 max_lane_count, bws[max_clock], adjusted_mode->clock);
700
701 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
702 return false;
703
704 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
705 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
706
707 for (clock = 0; clock <= max_clock; clock++) {
708 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
709 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
710
711 if (mode_rate <= link_avail) {
712 intel_dp->link_bw = bws[clock];
713 intel_dp->lane_count = lane_count;
714 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
715 DRM_DEBUG_KMS("DP link bw %02x lane "
716 "count %d clock %d bpp %d\n",
717 intel_dp->link_bw, intel_dp->lane_count,
718 adjusted_mode->clock, bpp);
719 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
720 mode_rate, link_avail);
721 return true;
722 }
723 }
724 }
725
726 return false;
727 }
728
729 struct intel_dp_m_n {
730 uint32_t tu;
731 uint32_t gmch_m;
732 uint32_t gmch_n;
733 uint32_t link_m;
734 uint32_t link_n;
735 };
736
737 static void
738 intel_reduce_ratio(uint32_t *num, uint32_t *den)
739 {
740 while (*num > 0xffffff || *den > 0xffffff) {
741 *num >>= 1;
742 *den >>= 1;
743 }
744 }
745
746 static void
747 intel_dp_compute_m_n(int bpp,
748 int nlanes,
749 int pixel_clock,
750 int link_clock,
751 struct intel_dp_m_n *m_n)
752 {
753 m_n->tu = 64;
754 m_n->gmch_m = (pixel_clock * bpp) >> 3;
755 m_n->gmch_n = link_clock * nlanes;
756 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
757 m_n->link_m = pixel_clock;
758 m_n->link_n = link_clock;
759 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
760 }
761
762 void
763 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
764 struct drm_display_mode *adjusted_mode)
765 {
766 struct drm_device *dev = crtc->dev;
767 struct intel_encoder *encoder;
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
770 int lane_count = 4;
771 struct intel_dp_m_n m_n;
772 int pipe = intel_crtc->pipe;
773
774 /*
775 * Find the lane count in the intel_encoder private
776 */
777 for_each_encoder_on_crtc(dev, crtc, encoder) {
778 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
779
780 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
781 intel_dp->base.type == INTEL_OUTPUT_EDP)
782 {
783 lane_count = intel_dp->lane_count;
784 break;
785 }
786 }
787
788 /*
789 * Compute the GMCH and Link ratios. The '3' here is
790 * the number of bytes_per_pixel post-LUT, which we always
791 * set up for 8-bits of R/G/B, or 3 bytes total.
792 */
793 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
794 mode->clock, adjusted_mode->clock, &m_n);
795
796 if (HAS_PCH_SPLIT(dev)) {
797 I915_WRITE(TRANSDATA_M1(pipe),
798 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
799 m_n.gmch_m);
800 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
801 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
802 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
803 } else if (IS_VALLEYVIEW(dev)) {
804 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
805 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
806 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
807 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
808 } else {
809 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
810 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
811 m_n.gmch_m);
812 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
813 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
814 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
815 }
816 }
817
818 static void
819 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
820 struct drm_display_mode *adjusted_mode)
821 {
822 struct drm_device *dev = encoder->dev;
823 struct drm_i915_private *dev_priv = dev->dev_private;
824 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
825 struct drm_crtc *crtc = intel_dp->base.base.crtc;
826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
827
828 /*
829 * There are four kinds of DP registers:
830 *
831 * IBX PCH
832 * SNB CPU
833 * IVB CPU
834 * CPT PCH
835 *
836 * IBX PCH and CPU are the same for almost everything,
837 * except that the CPU DP PLL is configured in this
838 * register
839 *
840 * CPT PCH is quite different, having many bits moved
841 * to the TRANS_DP_CTL register instead. That
842 * configuration happens (oddly) in ironlake_pch_enable
843 */
844
845 /* Preserve the BIOS-computed detected bit. This is
846 * supposed to be read-only.
847 */
848 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
849
850 /* Handle DP bits in common between all three register formats */
851 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
852
853 switch (intel_dp->lane_count) {
854 case 1:
855 intel_dp->DP |= DP_PORT_WIDTH_1;
856 break;
857 case 2:
858 intel_dp->DP |= DP_PORT_WIDTH_2;
859 break;
860 case 4:
861 intel_dp->DP |= DP_PORT_WIDTH_4;
862 break;
863 }
864 if (intel_dp->has_audio) {
865 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
866 pipe_name(intel_crtc->pipe));
867 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
868 intel_write_eld(encoder, adjusted_mode);
869 }
870 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
871 intel_dp->link_configuration[0] = intel_dp->link_bw;
872 intel_dp->link_configuration[1] = intel_dp->lane_count;
873 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
874 /*
875 * Check for DPCD version > 1.1 and enhanced framing support
876 */
877 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
878 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
879 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
880 }
881
882 /* Split out the IBX/CPU vs CPT settings */
883
884 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
885 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
886 intel_dp->DP |= DP_SYNC_HS_HIGH;
887 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
888 intel_dp->DP |= DP_SYNC_VS_HIGH;
889 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
890
891 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
892 intel_dp->DP |= DP_ENHANCED_FRAMING;
893
894 intel_dp->DP |= intel_crtc->pipe << 29;
895
896 /* don't miss out required setting for eDP */
897 if (adjusted_mode->clock < 200000)
898 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
899 else
900 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
901 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
902 intel_dp->DP |= intel_dp->color_range;
903
904 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
905 intel_dp->DP |= DP_SYNC_HS_HIGH;
906 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
907 intel_dp->DP |= DP_SYNC_VS_HIGH;
908 intel_dp->DP |= DP_LINK_TRAIN_OFF;
909
910 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
911 intel_dp->DP |= DP_ENHANCED_FRAMING;
912
913 if (intel_crtc->pipe == 1)
914 intel_dp->DP |= DP_PIPEB_SELECT;
915
916 if (is_cpu_edp(intel_dp)) {
917 /* don't miss out required setting for eDP */
918 if (adjusted_mode->clock < 200000)
919 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
920 else
921 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
922 }
923 } else {
924 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
925 }
926 }
927
928 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
929 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
930
931 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
932 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
933
934 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
935 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
936
937 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
938 u32 mask,
939 u32 value)
940 {
941 struct drm_device *dev = intel_dp->base.base.dev;
942 struct drm_i915_private *dev_priv = dev->dev_private;
943
944 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
945 mask, value,
946 I915_READ(PCH_PP_STATUS),
947 I915_READ(PCH_PP_CONTROL));
948
949 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
950 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
951 I915_READ(PCH_PP_STATUS),
952 I915_READ(PCH_PP_CONTROL));
953 }
954 }
955
956 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
957 {
958 DRM_DEBUG_KMS("Wait for panel power on\n");
959 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
960 }
961
962 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
963 {
964 DRM_DEBUG_KMS("Wait for panel power off time\n");
965 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
966 }
967
968 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
969 {
970 DRM_DEBUG_KMS("Wait for panel power cycle\n");
971 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
972 }
973
974
975 /* Read the current pp_control value, unlocking the register if it
976 * is locked
977 */
978
979 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
980 {
981 u32 control = I915_READ(PCH_PP_CONTROL);
982
983 control &= ~PANEL_UNLOCK_MASK;
984 control |= PANEL_UNLOCK_REGS;
985 return control;
986 }
987
988 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
989 {
990 struct drm_device *dev = intel_dp->base.base.dev;
991 struct drm_i915_private *dev_priv = dev->dev_private;
992 u32 pp;
993
994 if (!is_edp(intel_dp))
995 return;
996 DRM_DEBUG_KMS("Turn eDP VDD on\n");
997
998 WARN(intel_dp->want_panel_vdd,
999 "eDP VDD already requested on\n");
1000
1001 intel_dp->want_panel_vdd = true;
1002
1003 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1004 DRM_DEBUG_KMS("eDP VDD already on\n");
1005 return;
1006 }
1007
1008 if (!ironlake_edp_have_panel_power(intel_dp))
1009 ironlake_wait_panel_power_cycle(intel_dp);
1010
1011 pp = ironlake_get_pp_control(dev_priv);
1012 pp |= EDP_FORCE_VDD;
1013 I915_WRITE(PCH_PP_CONTROL, pp);
1014 POSTING_READ(PCH_PP_CONTROL);
1015 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1016 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1017
1018 /*
1019 * If the panel wasn't on, delay before accessing aux channel
1020 */
1021 if (!ironlake_edp_have_panel_power(intel_dp)) {
1022 DRM_DEBUG_KMS("eDP was not running\n");
1023 msleep(intel_dp->panel_power_up_delay);
1024 }
1025 }
1026
1027 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1028 {
1029 struct drm_device *dev = intel_dp->base.base.dev;
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 u32 pp;
1032
1033 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1034 pp = ironlake_get_pp_control(dev_priv);
1035 pp &= ~EDP_FORCE_VDD;
1036 I915_WRITE(PCH_PP_CONTROL, pp);
1037 POSTING_READ(PCH_PP_CONTROL);
1038
1039 /* Make sure sequencer is idle before allowing subsequent activity */
1040 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1041 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1042
1043 msleep(intel_dp->panel_power_down_delay);
1044 }
1045 }
1046
1047 static void ironlake_panel_vdd_work(struct work_struct *__work)
1048 {
1049 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1050 struct intel_dp, panel_vdd_work);
1051 struct drm_device *dev = intel_dp->base.base.dev;
1052
1053 mutex_lock(&dev->mode_config.mutex);
1054 ironlake_panel_vdd_off_sync(intel_dp);
1055 mutex_unlock(&dev->mode_config.mutex);
1056 }
1057
1058 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1059 {
1060 if (!is_edp(intel_dp))
1061 return;
1062
1063 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1064 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1065
1066 intel_dp->want_panel_vdd = false;
1067
1068 if (sync) {
1069 ironlake_panel_vdd_off_sync(intel_dp);
1070 } else {
1071 /*
1072 * Queue the timer to fire a long
1073 * time from now (relative to the power down delay)
1074 * to keep the panel power up across a sequence of operations
1075 */
1076 schedule_delayed_work(&intel_dp->panel_vdd_work,
1077 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1078 }
1079 }
1080
1081 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1082 {
1083 struct drm_device *dev = intel_dp->base.base.dev;
1084 struct drm_i915_private *dev_priv = dev->dev_private;
1085 u32 pp;
1086
1087 if (!is_edp(intel_dp))
1088 return;
1089
1090 DRM_DEBUG_KMS("Turn eDP power on\n");
1091
1092 if (ironlake_edp_have_panel_power(intel_dp)) {
1093 DRM_DEBUG_KMS("eDP power already on\n");
1094 return;
1095 }
1096
1097 ironlake_wait_panel_power_cycle(intel_dp);
1098
1099 pp = ironlake_get_pp_control(dev_priv);
1100 if (IS_GEN5(dev)) {
1101 /* ILK workaround: disable reset around power sequence */
1102 pp &= ~PANEL_POWER_RESET;
1103 I915_WRITE(PCH_PP_CONTROL, pp);
1104 POSTING_READ(PCH_PP_CONTROL);
1105 }
1106
1107 pp |= POWER_TARGET_ON;
1108 if (!IS_GEN5(dev))
1109 pp |= PANEL_POWER_RESET;
1110
1111 I915_WRITE(PCH_PP_CONTROL, pp);
1112 POSTING_READ(PCH_PP_CONTROL);
1113
1114 ironlake_wait_panel_on(intel_dp);
1115
1116 if (IS_GEN5(dev)) {
1117 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1118 I915_WRITE(PCH_PP_CONTROL, pp);
1119 POSTING_READ(PCH_PP_CONTROL);
1120 }
1121 }
1122
1123 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1124 {
1125 struct drm_device *dev = intel_dp->base.base.dev;
1126 struct drm_i915_private *dev_priv = dev->dev_private;
1127 u32 pp;
1128
1129 if (!is_edp(intel_dp))
1130 return;
1131
1132 DRM_DEBUG_KMS("Turn eDP power off\n");
1133
1134 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1135
1136 pp = ironlake_get_pp_control(dev_priv);
1137 /* We need to switch off panel power _and_ force vdd, for otherwise some
1138 * panels get very unhappy and cease to work. */
1139 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1140 I915_WRITE(PCH_PP_CONTROL, pp);
1141 POSTING_READ(PCH_PP_CONTROL);
1142
1143 intel_dp->want_panel_vdd = false;
1144
1145 ironlake_wait_panel_off(intel_dp);
1146 }
1147
1148 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1149 {
1150 struct drm_device *dev = intel_dp->base.base.dev;
1151 struct drm_i915_private *dev_priv = dev->dev_private;
1152 u32 pp;
1153
1154 if (!is_edp(intel_dp))
1155 return;
1156
1157 DRM_DEBUG_KMS("\n");
1158 /*
1159 * If we enable the backlight right away following a panel power
1160 * on, we may see slight flicker as the panel syncs with the eDP
1161 * link. So delay a bit to make sure the image is solid before
1162 * allowing it to appear.
1163 */
1164 msleep(intel_dp->backlight_on_delay);
1165 pp = ironlake_get_pp_control(dev_priv);
1166 pp |= EDP_BLC_ENABLE;
1167 I915_WRITE(PCH_PP_CONTROL, pp);
1168 POSTING_READ(PCH_PP_CONTROL);
1169 }
1170
1171 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1172 {
1173 struct drm_device *dev = intel_dp->base.base.dev;
1174 struct drm_i915_private *dev_priv = dev->dev_private;
1175 u32 pp;
1176
1177 if (!is_edp(intel_dp))
1178 return;
1179
1180 DRM_DEBUG_KMS("\n");
1181 pp = ironlake_get_pp_control(dev_priv);
1182 pp &= ~EDP_BLC_ENABLE;
1183 I915_WRITE(PCH_PP_CONTROL, pp);
1184 POSTING_READ(PCH_PP_CONTROL);
1185 msleep(intel_dp->backlight_off_delay);
1186 }
1187
1188 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1189 {
1190 struct drm_device *dev = intel_dp->base.base.dev;
1191 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1192 struct drm_i915_private *dev_priv = dev->dev_private;
1193 u32 dpa_ctl;
1194
1195 assert_pipe_disabled(dev_priv,
1196 to_intel_crtc(crtc)->pipe);
1197
1198 DRM_DEBUG_KMS("\n");
1199 dpa_ctl = I915_READ(DP_A);
1200 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1201 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1202
1203 /* We don't adjust intel_dp->DP while tearing down the link, to
1204 * facilitate link retraining (e.g. after hotplug). Hence clear all
1205 * enable bits here to ensure that we don't enable too much. */
1206 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1207 intel_dp->DP |= DP_PLL_ENABLE;
1208 I915_WRITE(DP_A, intel_dp->DP);
1209 POSTING_READ(DP_A);
1210 udelay(200);
1211 }
1212
1213 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1214 {
1215 struct drm_device *dev = intel_dp->base.base.dev;
1216 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218 u32 dpa_ctl;
1219
1220 assert_pipe_disabled(dev_priv,
1221 to_intel_crtc(crtc)->pipe);
1222
1223 dpa_ctl = I915_READ(DP_A);
1224 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1225 "dp pll off, should be on\n");
1226 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1227
1228 /* We can't rely on the value tracked for the DP register in
1229 * intel_dp->DP because link_down must not change that (otherwise link
1230 * re-training will fail. */
1231 dpa_ctl &= ~DP_PLL_ENABLE;
1232 I915_WRITE(DP_A, dpa_ctl);
1233 POSTING_READ(DP_A);
1234 udelay(200);
1235 }
1236
1237 /* If the sink supports it, try to set the power state appropriately */
1238 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1239 {
1240 int ret, i;
1241
1242 /* Should have a valid DPCD by this point */
1243 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1244 return;
1245
1246 if (mode != DRM_MODE_DPMS_ON) {
1247 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1248 DP_SET_POWER_D3);
1249 if (ret != 1)
1250 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1251 } else {
1252 /*
1253 * When turning on, we need to retry for 1ms to give the sink
1254 * time to wake up.
1255 */
1256 for (i = 0; i < 3; i++) {
1257 ret = intel_dp_aux_native_write_1(intel_dp,
1258 DP_SET_POWER,
1259 DP_SET_POWER_D0);
1260 if (ret == 1)
1261 break;
1262 msleep(1);
1263 }
1264 }
1265 }
1266
1267 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1268 enum pipe *pipe)
1269 {
1270 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1271 struct drm_device *dev = encoder->base.dev;
1272 struct drm_i915_private *dev_priv = dev->dev_private;
1273 u32 tmp = I915_READ(intel_dp->output_reg);
1274
1275 if (!(tmp & DP_PORT_EN))
1276 return false;
1277
1278 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1279 *pipe = PORT_TO_PIPE_CPT(tmp);
1280 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1281 *pipe = PORT_TO_PIPE(tmp);
1282 } else {
1283 u32 trans_sel;
1284 u32 trans_dp;
1285 int i;
1286
1287 switch (intel_dp->output_reg) {
1288 case PCH_DP_B:
1289 trans_sel = TRANS_DP_PORT_SEL_B;
1290 break;
1291 case PCH_DP_C:
1292 trans_sel = TRANS_DP_PORT_SEL_C;
1293 break;
1294 case PCH_DP_D:
1295 trans_sel = TRANS_DP_PORT_SEL_D;
1296 break;
1297 default:
1298 return true;
1299 }
1300
1301 for_each_pipe(i) {
1302 trans_dp = I915_READ(TRANS_DP_CTL(i));
1303 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1304 *pipe = i;
1305 return true;
1306 }
1307 }
1308 }
1309
1310 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n", intel_dp->output_reg);
1311
1312 return true;
1313 }
1314
1315 static void intel_disable_dp(struct intel_encoder *encoder)
1316 {
1317 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1318
1319 /* Make sure the panel is off before trying to change the mode. But also
1320 * ensure that we have vdd while we switch off the panel. */
1321 ironlake_edp_panel_vdd_on(intel_dp);
1322 ironlake_edp_backlight_off(intel_dp);
1323 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1324 ironlake_edp_panel_off(intel_dp);
1325
1326 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1327 if (!is_cpu_edp(intel_dp))
1328 intel_dp_link_down(intel_dp);
1329 }
1330
1331 static void intel_post_disable_dp(struct intel_encoder *encoder)
1332 {
1333 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1334
1335 if (is_cpu_edp(intel_dp)) {
1336 intel_dp_link_down(intel_dp);
1337 ironlake_edp_pll_off(intel_dp);
1338 }
1339 }
1340
1341 static void intel_enable_dp(struct intel_encoder *encoder)
1342 {
1343 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1344 struct drm_device *dev = encoder->base.dev;
1345 struct drm_i915_private *dev_priv = dev->dev_private;
1346 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1347
1348 if (WARN_ON(dp_reg & DP_PORT_EN))
1349 return;
1350
1351 ironlake_edp_panel_vdd_on(intel_dp);
1352 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1353 intel_dp_start_link_train(intel_dp);
1354 ironlake_edp_panel_on(intel_dp);
1355 ironlake_edp_panel_vdd_off(intel_dp, true);
1356 intel_dp_complete_link_train(intel_dp);
1357 ironlake_edp_backlight_on(intel_dp);
1358 }
1359
1360 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1361 {
1362 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1363
1364 if (is_cpu_edp(intel_dp))
1365 ironlake_edp_pll_on(intel_dp);
1366 }
1367
1368 /*
1369 * Native read with retry for link status and receiver capability reads for
1370 * cases where the sink may still be asleep.
1371 */
1372 static bool
1373 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1374 uint8_t *recv, int recv_bytes)
1375 {
1376 int ret, i;
1377
1378 /*
1379 * Sinks are *supposed* to come up within 1ms from an off state,
1380 * but we're also supposed to retry 3 times per the spec.
1381 */
1382 for (i = 0; i < 3; i++) {
1383 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1384 recv_bytes);
1385 if (ret == recv_bytes)
1386 return true;
1387 msleep(1);
1388 }
1389
1390 return false;
1391 }
1392
1393 /*
1394 * Fetch AUX CH registers 0x202 - 0x207 which contain
1395 * link status information
1396 */
1397 static bool
1398 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1399 {
1400 return intel_dp_aux_native_read_retry(intel_dp,
1401 DP_LANE0_1_STATUS,
1402 link_status,
1403 DP_LINK_STATUS_SIZE);
1404 }
1405
1406 static uint8_t
1407 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1408 int r)
1409 {
1410 return link_status[r - DP_LANE0_1_STATUS];
1411 }
1412
1413 static uint8_t
1414 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1415 int lane)
1416 {
1417 int s = ((lane & 1) ?
1418 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1419 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1420 uint8_t l = adjust_request[lane>>1];
1421
1422 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1423 }
1424
1425 static uint8_t
1426 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1427 int lane)
1428 {
1429 int s = ((lane & 1) ?
1430 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1431 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1432 uint8_t l = adjust_request[lane>>1];
1433
1434 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1435 }
1436
1437
1438 #if 0
1439 static char *voltage_names[] = {
1440 "0.4V", "0.6V", "0.8V", "1.2V"
1441 };
1442 static char *pre_emph_names[] = {
1443 "0dB", "3.5dB", "6dB", "9.5dB"
1444 };
1445 static char *link_train_names[] = {
1446 "pattern 1", "pattern 2", "idle", "off"
1447 };
1448 #endif
1449
1450 /*
1451 * These are source-specific values; current Intel hardware supports
1452 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1453 */
1454
1455 static uint8_t
1456 intel_dp_voltage_max(struct intel_dp *intel_dp)
1457 {
1458 struct drm_device *dev = intel_dp->base.base.dev;
1459
1460 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1461 return DP_TRAIN_VOLTAGE_SWING_800;
1462 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1463 return DP_TRAIN_VOLTAGE_SWING_1200;
1464 else
1465 return DP_TRAIN_VOLTAGE_SWING_800;
1466 }
1467
1468 static uint8_t
1469 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1470 {
1471 struct drm_device *dev = intel_dp->base.base.dev;
1472
1473 if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1474 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1475 case DP_TRAIN_VOLTAGE_SWING_400:
1476 return DP_TRAIN_PRE_EMPHASIS_6;
1477 case DP_TRAIN_VOLTAGE_SWING_600:
1478 case DP_TRAIN_VOLTAGE_SWING_800:
1479 return DP_TRAIN_PRE_EMPHASIS_3_5;
1480 default:
1481 return DP_TRAIN_PRE_EMPHASIS_0;
1482 }
1483 } else {
1484 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1485 case DP_TRAIN_VOLTAGE_SWING_400:
1486 return DP_TRAIN_PRE_EMPHASIS_6;
1487 case DP_TRAIN_VOLTAGE_SWING_600:
1488 return DP_TRAIN_PRE_EMPHASIS_6;
1489 case DP_TRAIN_VOLTAGE_SWING_800:
1490 return DP_TRAIN_PRE_EMPHASIS_3_5;
1491 case DP_TRAIN_VOLTAGE_SWING_1200:
1492 default:
1493 return DP_TRAIN_PRE_EMPHASIS_0;
1494 }
1495 }
1496 }
1497
1498 static void
1499 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1500 {
1501 uint8_t v = 0;
1502 uint8_t p = 0;
1503 int lane;
1504 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1505 uint8_t voltage_max;
1506 uint8_t preemph_max;
1507
1508 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1509 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1510 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1511
1512 if (this_v > v)
1513 v = this_v;
1514 if (this_p > p)
1515 p = this_p;
1516 }
1517
1518 voltage_max = intel_dp_voltage_max(intel_dp);
1519 if (v >= voltage_max)
1520 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1521
1522 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1523 if (p >= preemph_max)
1524 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1525
1526 for (lane = 0; lane < 4; lane++)
1527 intel_dp->train_set[lane] = v | p;
1528 }
1529
1530 static uint32_t
1531 intel_dp_signal_levels(uint8_t train_set)
1532 {
1533 uint32_t signal_levels = 0;
1534
1535 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1536 case DP_TRAIN_VOLTAGE_SWING_400:
1537 default:
1538 signal_levels |= DP_VOLTAGE_0_4;
1539 break;
1540 case DP_TRAIN_VOLTAGE_SWING_600:
1541 signal_levels |= DP_VOLTAGE_0_6;
1542 break;
1543 case DP_TRAIN_VOLTAGE_SWING_800:
1544 signal_levels |= DP_VOLTAGE_0_8;
1545 break;
1546 case DP_TRAIN_VOLTAGE_SWING_1200:
1547 signal_levels |= DP_VOLTAGE_1_2;
1548 break;
1549 }
1550 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1551 case DP_TRAIN_PRE_EMPHASIS_0:
1552 default:
1553 signal_levels |= DP_PRE_EMPHASIS_0;
1554 break;
1555 case DP_TRAIN_PRE_EMPHASIS_3_5:
1556 signal_levels |= DP_PRE_EMPHASIS_3_5;
1557 break;
1558 case DP_TRAIN_PRE_EMPHASIS_6:
1559 signal_levels |= DP_PRE_EMPHASIS_6;
1560 break;
1561 case DP_TRAIN_PRE_EMPHASIS_9_5:
1562 signal_levels |= DP_PRE_EMPHASIS_9_5;
1563 break;
1564 }
1565 return signal_levels;
1566 }
1567
1568 /* Gen6's DP voltage swing and pre-emphasis control */
1569 static uint32_t
1570 intel_gen6_edp_signal_levels(uint8_t train_set)
1571 {
1572 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1573 DP_TRAIN_PRE_EMPHASIS_MASK);
1574 switch (signal_levels) {
1575 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1576 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1577 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1578 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1579 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1580 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1581 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1582 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1583 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1584 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1585 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1586 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1587 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1588 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1589 default:
1590 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1591 "0x%x\n", signal_levels);
1592 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1593 }
1594 }
1595
1596 /* Gen7's DP voltage swing and pre-emphasis control */
1597 static uint32_t
1598 intel_gen7_edp_signal_levels(uint8_t train_set)
1599 {
1600 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1601 DP_TRAIN_PRE_EMPHASIS_MASK);
1602 switch (signal_levels) {
1603 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1604 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1605 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1606 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1607 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1608 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1609
1610 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1611 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1612 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1613 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1614
1615 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1616 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1617 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1618 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1619
1620 default:
1621 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1622 "0x%x\n", signal_levels);
1623 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1624 }
1625 }
1626
1627 static uint8_t
1628 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1629 int lane)
1630 {
1631 int s = (lane & 1) * 4;
1632 uint8_t l = link_status[lane>>1];
1633
1634 return (l >> s) & 0xf;
1635 }
1636
1637 /* Check for clock recovery is done on all channels */
1638 static bool
1639 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1640 {
1641 int lane;
1642 uint8_t lane_status;
1643
1644 for (lane = 0; lane < lane_count; lane++) {
1645 lane_status = intel_get_lane_status(link_status, lane);
1646 if ((lane_status & DP_LANE_CR_DONE) == 0)
1647 return false;
1648 }
1649 return true;
1650 }
1651
1652 /* Check to see if channel eq is done on all channels */
1653 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1654 DP_LANE_CHANNEL_EQ_DONE|\
1655 DP_LANE_SYMBOL_LOCKED)
1656 static bool
1657 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1658 {
1659 uint8_t lane_align;
1660 uint8_t lane_status;
1661 int lane;
1662
1663 lane_align = intel_dp_link_status(link_status,
1664 DP_LANE_ALIGN_STATUS_UPDATED);
1665 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1666 return false;
1667 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1668 lane_status = intel_get_lane_status(link_status, lane);
1669 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1670 return false;
1671 }
1672 return true;
1673 }
1674
1675 static bool
1676 intel_dp_set_link_train(struct intel_dp *intel_dp,
1677 uint32_t dp_reg_value,
1678 uint8_t dp_train_pat)
1679 {
1680 struct drm_device *dev = intel_dp->base.base.dev;
1681 struct drm_i915_private *dev_priv = dev->dev_private;
1682 int ret;
1683
1684 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1685 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1686
1687 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1688 case DP_TRAINING_PATTERN_DISABLE:
1689 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1690 break;
1691 case DP_TRAINING_PATTERN_1:
1692 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1693 break;
1694 case DP_TRAINING_PATTERN_2:
1695 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1696 break;
1697 case DP_TRAINING_PATTERN_3:
1698 DRM_ERROR("DP training pattern 3 not supported\n");
1699 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1700 break;
1701 }
1702
1703 } else {
1704 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1705
1706 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1707 case DP_TRAINING_PATTERN_DISABLE:
1708 dp_reg_value |= DP_LINK_TRAIN_OFF;
1709 break;
1710 case DP_TRAINING_PATTERN_1:
1711 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1712 break;
1713 case DP_TRAINING_PATTERN_2:
1714 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1715 break;
1716 case DP_TRAINING_PATTERN_3:
1717 DRM_ERROR("DP training pattern 3 not supported\n");
1718 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1719 break;
1720 }
1721 }
1722
1723 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1724 POSTING_READ(intel_dp->output_reg);
1725
1726 intel_dp_aux_native_write_1(intel_dp,
1727 DP_TRAINING_PATTERN_SET,
1728 dp_train_pat);
1729
1730 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1731 DP_TRAINING_PATTERN_DISABLE) {
1732 ret = intel_dp_aux_native_write(intel_dp,
1733 DP_TRAINING_LANE0_SET,
1734 intel_dp->train_set,
1735 intel_dp->lane_count);
1736 if (ret != intel_dp->lane_count)
1737 return false;
1738 }
1739
1740 return true;
1741 }
1742
1743 /* Enable corresponding port and start training pattern 1 */
1744 static void
1745 intel_dp_start_link_train(struct intel_dp *intel_dp)
1746 {
1747 struct drm_device *dev = intel_dp->base.base.dev;
1748 int i;
1749 uint8_t voltage;
1750 bool clock_recovery = false;
1751 int voltage_tries, loop_tries;
1752 uint32_t DP = intel_dp->DP;
1753
1754 /* Write the link configuration data */
1755 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1756 intel_dp->link_configuration,
1757 DP_LINK_CONFIGURATION_SIZE);
1758
1759 DP |= DP_PORT_EN;
1760
1761 memset(intel_dp->train_set, 0, 4);
1762 voltage = 0xff;
1763 voltage_tries = 0;
1764 loop_tries = 0;
1765 clock_recovery = false;
1766 for (;;) {
1767 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1768 uint8_t link_status[DP_LINK_STATUS_SIZE];
1769 uint32_t signal_levels;
1770
1771
1772 if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1773 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1774 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1775 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1776 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1777 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1778 } else {
1779 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1780 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1781 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1782 }
1783
1784 if (!intel_dp_set_link_train(intel_dp, DP,
1785 DP_TRAINING_PATTERN_1 |
1786 DP_LINK_SCRAMBLING_DISABLE))
1787 break;
1788 /* Set training pattern 1 */
1789
1790 udelay(100);
1791 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1792 DRM_ERROR("failed to get link status\n");
1793 break;
1794 }
1795
1796 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1797 DRM_DEBUG_KMS("clock recovery OK\n");
1798 clock_recovery = true;
1799 break;
1800 }
1801
1802 /* Check to see if we've tried the max voltage */
1803 for (i = 0; i < intel_dp->lane_count; i++)
1804 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1805 break;
1806 if (i == intel_dp->lane_count && voltage_tries == 5) {
1807 ++loop_tries;
1808 if (loop_tries == 5) {
1809 DRM_DEBUG_KMS("too many full retries, give up\n");
1810 break;
1811 }
1812 memset(intel_dp->train_set, 0, 4);
1813 voltage_tries = 0;
1814 continue;
1815 }
1816
1817 /* Check to see if we've tried the same voltage 5 times */
1818 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1819 ++voltage_tries;
1820 if (voltage_tries == 5) {
1821 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1822 break;
1823 }
1824 } else
1825 voltage_tries = 0;
1826 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1827
1828 /* Compute new intel_dp->train_set as requested by target */
1829 intel_get_adjust_train(intel_dp, link_status);
1830 }
1831
1832 intel_dp->DP = DP;
1833 }
1834
1835 static void
1836 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1837 {
1838 struct drm_device *dev = intel_dp->base.base.dev;
1839 bool channel_eq = false;
1840 int tries, cr_tries;
1841 uint32_t DP = intel_dp->DP;
1842
1843 /* channel equalization */
1844 tries = 0;
1845 cr_tries = 0;
1846 channel_eq = false;
1847 for (;;) {
1848 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1849 uint32_t signal_levels;
1850 uint8_t link_status[DP_LINK_STATUS_SIZE];
1851
1852 if (cr_tries > 5) {
1853 DRM_ERROR("failed to train DP, aborting\n");
1854 intel_dp_link_down(intel_dp);
1855 break;
1856 }
1857
1858 if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1859 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1860 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1861 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1862 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1863 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1864 } else {
1865 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1866 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1867 }
1868
1869 /* channel eq pattern */
1870 if (!intel_dp_set_link_train(intel_dp, DP,
1871 DP_TRAINING_PATTERN_2 |
1872 DP_LINK_SCRAMBLING_DISABLE))
1873 break;
1874
1875 udelay(400);
1876 if (!intel_dp_get_link_status(intel_dp, link_status))
1877 break;
1878
1879 /* Make sure clock is still ok */
1880 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1881 intel_dp_start_link_train(intel_dp);
1882 cr_tries++;
1883 continue;
1884 }
1885
1886 if (intel_channel_eq_ok(intel_dp, link_status)) {
1887 channel_eq = true;
1888 break;
1889 }
1890
1891 /* Try 5 times, then try clock recovery if that fails */
1892 if (tries > 5) {
1893 intel_dp_link_down(intel_dp);
1894 intel_dp_start_link_train(intel_dp);
1895 tries = 0;
1896 cr_tries++;
1897 continue;
1898 }
1899
1900 /* Compute new intel_dp->train_set as requested by target */
1901 intel_get_adjust_train(intel_dp, link_status);
1902 ++tries;
1903 }
1904
1905 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1906 }
1907
1908 static void
1909 intel_dp_link_down(struct intel_dp *intel_dp)
1910 {
1911 struct drm_device *dev = intel_dp->base.base.dev;
1912 struct drm_i915_private *dev_priv = dev->dev_private;
1913 uint32_t DP = intel_dp->DP;
1914
1915 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1916 return;
1917
1918 DRM_DEBUG_KMS("\n");
1919
1920 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1921 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1922 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1923 } else {
1924 DP &= ~DP_LINK_TRAIN_MASK;
1925 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1926 }
1927 POSTING_READ(intel_dp->output_reg);
1928
1929 msleep(17);
1930
1931 if (HAS_PCH_IBX(dev) &&
1932 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1933 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1934
1935 /* Hardware workaround: leaving our transcoder select
1936 * set to transcoder B while it's off will prevent the
1937 * corresponding HDMI output on transcoder A.
1938 *
1939 * Combine this with another hardware workaround:
1940 * transcoder select bit can only be cleared while the
1941 * port is enabled.
1942 */
1943 DP &= ~DP_PIPEB_SELECT;
1944 I915_WRITE(intel_dp->output_reg, DP);
1945
1946 /* Changes to enable or select take place the vblank
1947 * after being written.
1948 */
1949 if (crtc == NULL) {
1950 /* We can arrive here never having been attached
1951 * to a CRTC, for instance, due to inheriting
1952 * random state from the BIOS.
1953 *
1954 * If the pipe is not running, play safe and
1955 * wait for the clocks to stabilise before
1956 * continuing.
1957 */
1958 POSTING_READ(intel_dp->output_reg);
1959 msleep(50);
1960 } else
1961 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1962 }
1963
1964 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1965 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1966 POSTING_READ(intel_dp->output_reg);
1967 msleep(intel_dp->panel_power_down_delay);
1968 }
1969
1970 static bool
1971 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1972 {
1973 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1974 sizeof(intel_dp->dpcd)) == 0)
1975 return false; /* aux transfer failed */
1976
1977 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
1978 return false; /* DPCD not present */
1979
1980 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1981 DP_DWN_STRM_PORT_PRESENT))
1982 return true; /* native DP sink */
1983
1984 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
1985 return true; /* no per-port downstream info */
1986
1987 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
1988 intel_dp->downstream_ports,
1989 DP_MAX_DOWNSTREAM_PORTS) == 0)
1990 return false; /* downstream port status fetch failed */
1991
1992 return true;
1993 }
1994
1995 static void
1996 intel_dp_probe_oui(struct intel_dp *intel_dp)
1997 {
1998 u8 buf[3];
1999
2000 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2001 return;
2002
2003 ironlake_edp_panel_vdd_on(intel_dp);
2004
2005 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2006 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2007 buf[0], buf[1], buf[2]);
2008
2009 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2010 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2011 buf[0], buf[1], buf[2]);
2012
2013 ironlake_edp_panel_vdd_off(intel_dp, false);
2014 }
2015
2016 static bool
2017 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2018 {
2019 int ret;
2020
2021 ret = intel_dp_aux_native_read_retry(intel_dp,
2022 DP_DEVICE_SERVICE_IRQ_VECTOR,
2023 sink_irq_vector, 1);
2024 if (!ret)
2025 return false;
2026
2027 return true;
2028 }
2029
2030 static void
2031 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2032 {
2033 /* NAK by default */
2034 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2035 }
2036
2037 /*
2038 * According to DP spec
2039 * 5.1.2:
2040 * 1. Read DPCD
2041 * 2. Configure link according to Receiver Capabilities
2042 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2043 * 4. Check link status on receipt of hot-plug interrupt
2044 */
2045
2046 static void
2047 intel_dp_check_link_status(struct intel_dp *intel_dp)
2048 {
2049 u8 sink_irq_vector;
2050 u8 link_status[DP_LINK_STATUS_SIZE];
2051
2052 if (!intel_dp->base.connectors_active)
2053 return;
2054
2055 if (WARN_ON(!intel_dp->base.base.crtc))
2056 return;
2057
2058 /* Try to read receiver status if the link appears to be up */
2059 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2060 intel_dp_link_down(intel_dp);
2061 return;
2062 }
2063
2064 /* Now read the DPCD to see if it's actually running */
2065 if (!intel_dp_get_dpcd(intel_dp)) {
2066 intel_dp_link_down(intel_dp);
2067 return;
2068 }
2069
2070 /* Try to read the source of the interrupt */
2071 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2072 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2073 /* Clear interrupt source */
2074 intel_dp_aux_native_write_1(intel_dp,
2075 DP_DEVICE_SERVICE_IRQ_VECTOR,
2076 sink_irq_vector);
2077
2078 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2079 intel_dp_handle_test_request(intel_dp);
2080 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2081 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2082 }
2083
2084 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2085 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2086 drm_get_encoder_name(&intel_dp->base.base));
2087 intel_dp_start_link_train(intel_dp);
2088 intel_dp_complete_link_train(intel_dp);
2089 }
2090 }
2091
2092 /* XXX this is probably wrong for multiple downstream ports */
2093 static enum drm_connector_status
2094 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2095 {
2096 uint8_t *dpcd = intel_dp->dpcd;
2097 bool hpd;
2098 uint8_t type;
2099
2100 if (!intel_dp_get_dpcd(intel_dp))
2101 return connector_status_disconnected;
2102
2103 /* if there's no downstream port, we're done */
2104 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2105 return connector_status_connected;
2106
2107 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2108 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2109 if (hpd) {
2110 uint8_t reg;
2111 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2112 &reg, 1))
2113 return connector_status_unknown;
2114 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2115 : connector_status_disconnected;
2116 }
2117
2118 /* If no HPD, poke DDC gently */
2119 if (drm_probe_ddc(&intel_dp->adapter))
2120 return connector_status_connected;
2121
2122 /* Well we tried, say unknown for unreliable port types */
2123 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2124 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2125 return connector_status_unknown;
2126
2127 /* Anything else is out of spec, warn and ignore */
2128 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2129 return connector_status_disconnected;
2130 }
2131
2132 static enum drm_connector_status
2133 ironlake_dp_detect(struct intel_dp *intel_dp)
2134 {
2135 enum drm_connector_status status;
2136
2137 /* Can't disconnect eDP, but you can close the lid... */
2138 if (is_edp(intel_dp)) {
2139 status = intel_panel_detect(intel_dp->base.base.dev);
2140 if (status == connector_status_unknown)
2141 status = connector_status_connected;
2142 return status;
2143 }
2144
2145 return intel_dp_detect_dpcd(intel_dp);
2146 }
2147
2148 static enum drm_connector_status
2149 g4x_dp_detect(struct intel_dp *intel_dp)
2150 {
2151 struct drm_device *dev = intel_dp->base.base.dev;
2152 struct drm_i915_private *dev_priv = dev->dev_private;
2153 uint32_t bit;
2154
2155 switch (intel_dp->output_reg) {
2156 case DP_B:
2157 bit = DPB_HOTPLUG_LIVE_STATUS;
2158 break;
2159 case DP_C:
2160 bit = DPC_HOTPLUG_LIVE_STATUS;
2161 break;
2162 case DP_D:
2163 bit = DPD_HOTPLUG_LIVE_STATUS;
2164 break;
2165 default:
2166 return connector_status_unknown;
2167 }
2168
2169 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2170 return connector_status_disconnected;
2171
2172 return intel_dp_detect_dpcd(intel_dp);
2173 }
2174
2175 static struct edid *
2176 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2177 {
2178 struct intel_dp *intel_dp = intel_attached_dp(connector);
2179 struct edid *edid;
2180 int size;
2181
2182 if (is_edp(intel_dp)) {
2183 if (!intel_dp->edid)
2184 return NULL;
2185
2186 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2187 edid = kmalloc(size, GFP_KERNEL);
2188 if (!edid)
2189 return NULL;
2190
2191 memcpy(edid, intel_dp->edid, size);
2192 return edid;
2193 }
2194
2195 edid = drm_get_edid(connector, adapter);
2196 return edid;
2197 }
2198
2199 static int
2200 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2201 {
2202 struct intel_dp *intel_dp = intel_attached_dp(connector);
2203 int ret;
2204
2205 if (is_edp(intel_dp)) {
2206 drm_mode_connector_update_edid_property(connector,
2207 intel_dp->edid);
2208 ret = drm_add_edid_modes(connector, intel_dp->edid);
2209 drm_edid_to_eld(connector,
2210 intel_dp->edid);
2211 return intel_dp->edid_mode_count;
2212 }
2213
2214 ret = intel_ddc_get_modes(connector, adapter);
2215 return ret;
2216 }
2217
2218
2219 /**
2220 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2221 *
2222 * \return true if DP port is connected.
2223 * \return false if DP port is disconnected.
2224 */
2225 static enum drm_connector_status
2226 intel_dp_detect(struct drm_connector *connector, bool force)
2227 {
2228 struct intel_dp *intel_dp = intel_attached_dp(connector);
2229 struct drm_device *dev = intel_dp->base.base.dev;
2230 enum drm_connector_status status;
2231 struct edid *edid = NULL;
2232
2233 intel_dp->has_audio = false;
2234
2235 if (HAS_PCH_SPLIT(dev))
2236 status = ironlake_dp_detect(intel_dp);
2237 else
2238 status = g4x_dp_detect(intel_dp);
2239
2240 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2241 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2242 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2243 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2244
2245 if (status != connector_status_connected)
2246 return status;
2247
2248 intel_dp_probe_oui(intel_dp);
2249
2250 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2251 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2252 } else {
2253 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2254 if (edid) {
2255 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2256 kfree(edid);
2257 }
2258 }
2259
2260 return connector_status_connected;
2261 }
2262
2263 static int intel_dp_get_modes(struct drm_connector *connector)
2264 {
2265 struct intel_dp *intel_dp = intel_attached_dp(connector);
2266 struct drm_device *dev = intel_dp->base.base.dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 int ret;
2269
2270 /* We should parse the EDID data and find out if it has an audio sink
2271 */
2272
2273 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2274 if (ret) {
2275 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2276 struct drm_display_mode *newmode;
2277 list_for_each_entry(newmode, &connector->probed_modes,
2278 head) {
2279 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2280 intel_dp->panel_fixed_mode =
2281 drm_mode_duplicate(dev, newmode);
2282 break;
2283 }
2284 }
2285 }
2286 return ret;
2287 }
2288
2289 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2290 if (is_edp(intel_dp)) {
2291 /* initialize panel mode from VBT if available for eDP */
2292 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2293 intel_dp->panel_fixed_mode =
2294 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2295 if (intel_dp->panel_fixed_mode) {
2296 intel_dp->panel_fixed_mode->type |=
2297 DRM_MODE_TYPE_PREFERRED;
2298 }
2299 }
2300 if (intel_dp->panel_fixed_mode) {
2301 struct drm_display_mode *mode;
2302 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2303 drm_mode_probed_add(connector, mode);
2304 return 1;
2305 }
2306 }
2307 return 0;
2308 }
2309
2310 static bool
2311 intel_dp_detect_audio(struct drm_connector *connector)
2312 {
2313 struct intel_dp *intel_dp = intel_attached_dp(connector);
2314 struct edid *edid;
2315 bool has_audio = false;
2316
2317 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2318 if (edid) {
2319 has_audio = drm_detect_monitor_audio(edid);
2320 kfree(edid);
2321 }
2322
2323 return has_audio;
2324 }
2325
2326 static int
2327 intel_dp_set_property(struct drm_connector *connector,
2328 struct drm_property *property,
2329 uint64_t val)
2330 {
2331 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2332 struct intel_dp *intel_dp = intel_attached_dp(connector);
2333 int ret;
2334
2335 ret = drm_connector_property_set_value(connector, property, val);
2336 if (ret)
2337 return ret;
2338
2339 if (property == dev_priv->force_audio_property) {
2340 int i = val;
2341 bool has_audio;
2342
2343 if (i == intel_dp->force_audio)
2344 return 0;
2345
2346 intel_dp->force_audio = i;
2347
2348 if (i == HDMI_AUDIO_AUTO)
2349 has_audio = intel_dp_detect_audio(connector);
2350 else
2351 has_audio = (i == HDMI_AUDIO_ON);
2352
2353 if (has_audio == intel_dp->has_audio)
2354 return 0;
2355
2356 intel_dp->has_audio = has_audio;
2357 goto done;
2358 }
2359
2360 if (property == dev_priv->broadcast_rgb_property) {
2361 if (val == !!intel_dp->color_range)
2362 return 0;
2363
2364 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2365 goto done;
2366 }
2367
2368 return -EINVAL;
2369
2370 done:
2371 if (intel_dp->base.base.crtc) {
2372 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2373 intel_set_mode(crtc, &crtc->mode,
2374 crtc->x, crtc->y, crtc->fb);
2375 }
2376
2377 return 0;
2378 }
2379
2380 static void
2381 intel_dp_destroy(struct drm_connector *connector)
2382 {
2383 struct drm_device *dev = connector->dev;
2384
2385 if (intel_dpd_is_edp(dev))
2386 intel_panel_destroy_backlight(dev);
2387
2388 drm_sysfs_connector_remove(connector);
2389 drm_connector_cleanup(connector);
2390 kfree(connector);
2391 }
2392
2393 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2394 {
2395 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2396
2397 i2c_del_adapter(&intel_dp->adapter);
2398 drm_encoder_cleanup(encoder);
2399 if (is_edp(intel_dp)) {
2400 kfree(intel_dp->edid);
2401 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2402 ironlake_panel_vdd_off_sync(intel_dp);
2403 }
2404 kfree(intel_dp);
2405 }
2406
2407 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2408 .mode_fixup = intel_dp_mode_fixup,
2409 .mode_set = intel_dp_mode_set,
2410 .disable = intel_encoder_noop,
2411 };
2412
2413 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2414 .dpms = intel_connector_dpms,
2415 .detect = intel_dp_detect,
2416 .fill_modes = drm_helper_probe_single_connector_modes,
2417 .set_property = intel_dp_set_property,
2418 .destroy = intel_dp_destroy,
2419 };
2420
2421 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2422 .get_modes = intel_dp_get_modes,
2423 .mode_valid = intel_dp_mode_valid,
2424 .best_encoder = intel_best_encoder,
2425 };
2426
2427 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2428 .destroy = intel_dp_encoder_destroy,
2429 };
2430
2431 static void
2432 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2433 {
2434 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2435
2436 intel_dp_check_link_status(intel_dp);
2437 }
2438
2439 /* Return which DP Port should be selected for Transcoder DP control */
2440 int
2441 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2442 {
2443 struct drm_device *dev = crtc->dev;
2444 struct intel_encoder *encoder;
2445
2446 for_each_encoder_on_crtc(dev, crtc, encoder) {
2447 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2448
2449 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2450 intel_dp->base.type == INTEL_OUTPUT_EDP)
2451 return intel_dp->output_reg;
2452 }
2453
2454 return -1;
2455 }
2456
2457 /* check the VBT to see whether the eDP is on DP-D port */
2458 bool intel_dpd_is_edp(struct drm_device *dev)
2459 {
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461 struct child_device_config *p_child;
2462 int i;
2463
2464 if (!dev_priv->child_dev_num)
2465 return false;
2466
2467 for (i = 0; i < dev_priv->child_dev_num; i++) {
2468 p_child = dev_priv->child_dev + i;
2469
2470 if (p_child->dvo_port == PORT_IDPD &&
2471 p_child->device_type == DEVICE_TYPE_eDP)
2472 return true;
2473 }
2474 return false;
2475 }
2476
2477 static void
2478 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2479 {
2480 intel_attach_force_audio_property(connector);
2481 intel_attach_broadcast_rgb_property(connector);
2482 }
2483
2484 void
2485 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2486 {
2487 struct drm_i915_private *dev_priv = dev->dev_private;
2488 struct drm_connector *connector;
2489 struct intel_dp *intel_dp;
2490 struct intel_encoder *intel_encoder;
2491 struct intel_connector *intel_connector;
2492 const char *name = NULL;
2493 int type;
2494
2495 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2496 if (!intel_dp)
2497 return;
2498
2499 intel_dp->output_reg = output_reg;
2500 intel_dp->port = port;
2501 /* Preserve the current hw state. */
2502 intel_dp->DP = I915_READ(intel_dp->output_reg);
2503
2504 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2505 if (!intel_connector) {
2506 kfree(intel_dp);
2507 return;
2508 }
2509 intel_encoder = &intel_dp->base;
2510
2511 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2512 if (intel_dpd_is_edp(dev))
2513 intel_dp->is_pch_edp = true;
2514
2515 /*
2516 * FIXME : We need to initialize built-in panels before external panels.
2517 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2518 */
2519 if (IS_VALLEYVIEW(dev) && output_reg == DP_C) {
2520 type = DRM_MODE_CONNECTOR_eDP;
2521 intel_encoder->type = INTEL_OUTPUT_EDP;
2522 } else if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2523 type = DRM_MODE_CONNECTOR_eDP;
2524 intel_encoder->type = INTEL_OUTPUT_EDP;
2525 } else {
2526 type = DRM_MODE_CONNECTOR_DisplayPort;
2527 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2528 }
2529
2530 connector = &intel_connector->base;
2531 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2532 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2533
2534 connector->polled = DRM_CONNECTOR_POLL_HPD;
2535
2536 intel_encoder->cloneable = false;
2537
2538 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2539 ironlake_panel_vdd_work);
2540
2541 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2542
2543 connector->interlace_allowed = true;
2544 connector->doublescan_allowed = 0;
2545
2546 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2547 DRM_MODE_ENCODER_TMDS);
2548 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2549
2550 intel_connector_attach_encoder(intel_connector, intel_encoder);
2551 drm_sysfs_connector_add(connector);
2552
2553 intel_encoder->enable = intel_enable_dp;
2554 intel_encoder->pre_enable = intel_pre_enable_dp;
2555 intel_encoder->disable = intel_disable_dp;
2556 intel_encoder->post_disable = intel_post_disable_dp;
2557 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2558 intel_connector->get_hw_state = intel_connector_get_hw_state;
2559
2560 /* Set up the DDC bus. */
2561 switch (port) {
2562 case PORT_A:
2563 name = "DPDDC-A";
2564 break;
2565 case PORT_B:
2566 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2567 name = "DPDDC-B";
2568 break;
2569 case PORT_C:
2570 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2571 name = "DPDDC-C";
2572 break;
2573 case PORT_D:
2574 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2575 name = "DPDDC-D";
2576 break;
2577 default:
2578 WARN(1, "Invalid port %c\n", port_name(port));
2579 break;
2580 }
2581
2582 /* Cache some DPCD data in the eDP case */
2583 if (is_edp(intel_dp)) {
2584 struct edp_power_seq cur, vbt;
2585 u32 pp_on, pp_off, pp_div;
2586
2587 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2588 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2589 pp_div = I915_READ(PCH_PP_DIVISOR);
2590
2591 if (!pp_on || !pp_off || !pp_div) {
2592 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2593 intel_dp_encoder_destroy(&intel_dp->base.base);
2594 intel_dp_destroy(&intel_connector->base);
2595 return;
2596 }
2597
2598 /* Pull timing values out of registers */
2599 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2600 PANEL_POWER_UP_DELAY_SHIFT;
2601
2602 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2603 PANEL_LIGHT_ON_DELAY_SHIFT;
2604
2605 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2606 PANEL_LIGHT_OFF_DELAY_SHIFT;
2607
2608 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2609 PANEL_POWER_DOWN_DELAY_SHIFT;
2610
2611 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2612 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2613
2614 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2615 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2616
2617 vbt = dev_priv->edp.pps;
2618
2619 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2620 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2621
2622 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2623
2624 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2625 intel_dp->backlight_on_delay = get_delay(t8);
2626 intel_dp->backlight_off_delay = get_delay(t9);
2627 intel_dp->panel_power_down_delay = get_delay(t10);
2628 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2629
2630 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2631 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2632 intel_dp->panel_power_cycle_delay);
2633
2634 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2635 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2636 }
2637
2638 intel_dp_i2c_init(intel_dp, intel_connector, name);
2639
2640 if (is_edp(intel_dp)) {
2641 bool ret;
2642 struct edid *edid;
2643
2644 ironlake_edp_panel_vdd_on(intel_dp);
2645 ret = intel_dp_get_dpcd(intel_dp);
2646 ironlake_edp_panel_vdd_off(intel_dp, false);
2647
2648 if (ret) {
2649 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2650 dev_priv->no_aux_handshake =
2651 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2652 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2653 } else {
2654 /* if this fails, presume the device is a ghost */
2655 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2656 intel_dp_encoder_destroy(&intel_dp->base.base);
2657 intel_dp_destroy(&intel_connector->base);
2658 return;
2659 }
2660
2661 ironlake_edp_panel_vdd_on(intel_dp);
2662 edid = drm_get_edid(connector, &intel_dp->adapter);
2663 if (edid) {
2664 drm_mode_connector_update_edid_property(connector,
2665 edid);
2666 intel_dp->edid_mode_count =
2667 drm_add_edid_modes(connector, edid);
2668 drm_edid_to_eld(connector, edid);
2669 intel_dp->edid = edid;
2670 }
2671 ironlake_edp_panel_vdd_off(intel_dp, false);
2672 }
2673
2674 intel_encoder->hot_plug = intel_dp_hot_plug;
2675
2676 if (is_edp(intel_dp)) {
2677 dev_priv->int_edp_connector = connector;
2678 intel_panel_setup_backlight(dev);
2679 }
2680
2681 intel_dp_add_properties(intel_dp, connector);
2682
2683 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2684 * 0xd. Failure to do so will result in spurious interrupts being
2685 * generated on the port when a cable is not attached.
2686 */
2687 if (IS_G4X(dev) && !IS_GM45(dev)) {
2688 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2689 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2690 }
2691 }
This page took 0.122568 seconds and 5 git commands to generate.