drm/i915: Setup dummy atomic state for connectors (v3)
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 struct dp_link_dpll {
45 int link_bw;
46 struct dpll dpll;
47 };
48
49 static const struct dp_link_dpll gen4_dpll[] = {
50 { DP_LINK_BW_1_62,
51 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
52 { DP_LINK_BW_2_7,
53 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
54 };
55
56 static const struct dp_link_dpll pch_dpll[] = {
57 { DP_LINK_BW_1_62,
58 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
59 { DP_LINK_BW_2_7,
60 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
61 };
62
63 static const struct dp_link_dpll vlv_dpll[] = {
64 { DP_LINK_BW_1_62,
65 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
66 { DP_LINK_BW_2_7,
67 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
68 };
69
70 /*
71 * CHV supports eDP 1.4 that have more link rates.
72 * Below only provides the fixed rate but exclude variable rate.
73 */
74 static const struct dp_link_dpll chv_dpll[] = {
75 /*
76 * CHV requires to program fractional division for m2.
77 * m2 is stored in fixed point format using formula below
78 * (m2_int << 22) | m2_fraction
79 */
80 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
81 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
82 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
83 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
84 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
85 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
86 };
87
88 /**
89 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
90 * @intel_dp: DP struct
91 *
92 * If a CPU or PCH DP output is attached to an eDP panel, this function
93 * will return true, and false otherwise.
94 */
95 static bool is_edp(struct intel_dp *intel_dp)
96 {
97 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
98
99 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
100 }
101
102 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
103 {
104 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
105
106 return intel_dig_port->base.base.dev;
107 }
108
109 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
110 {
111 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
112 }
113
114 static void intel_dp_link_down(struct intel_dp *intel_dp);
115 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
116 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
117 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
118 static void vlv_steal_power_sequencer(struct drm_device *dev,
119 enum pipe pipe);
120
121 int
122 intel_dp_max_link_bw(struct intel_dp *intel_dp)
123 {
124 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
125 struct drm_device *dev = intel_dp->attached_connector->base.dev;
126
127 switch (max_link_bw) {
128 case DP_LINK_BW_1_62:
129 case DP_LINK_BW_2_7:
130 break;
131 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
132 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
133 INTEL_INFO(dev)->gen >= 8) &&
134 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
135 max_link_bw = DP_LINK_BW_5_4;
136 else
137 max_link_bw = DP_LINK_BW_2_7;
138 break;
139 default:
140 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
141 max_link_bw);
142 max_link_bw = DP_LINK_BW_1_62;
143 break;
144 }
145 return max_link_bw;
146 }
147
148 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
149 {
150 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
151 struct drm_device *dev = intel_dig_port->base.base.dev;
152 u8 source_max, sink_max;
153
154 source_max = 4;
155 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
156 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
157 source_max = 2;
158
159 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
160
161 return min(source_max, sink_max);
162 }
163
164 /*
165 * The units on the numbers in the next two are... bizarre. Examples will
166 * make it clearer; this one parallels an example in the eDP spec.
167 *
168 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
169 *
170 * 270000 * 1 * 8 / 10 == 216000
171 *
172 * The actual data capacity of that configuration is 2.16Gbit/s, so the
173 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
174 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
175 * 119000. At 18bpp that's 2142000 kilobits per second.
176 *
177 * Thus the strange-looking division by 10 in intel_dp_link_required, to
178 * get the result in decakilobits instead of kilobits.
179 */
180
181 static int
182 intel_dp_link_required(int pixel_clock, int bpp)
183 {
184 return (pixel_clock * bpp + 9) / 10;
185 }
186
187 static int
188 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
189 {
190 return (max_link_clock * max_lanes * 8) / 10;
191 }
192
193 static enum drm_mode_status
194 intel_dp_mode_valid(struct drm_connector *connector,
195 struct drm_display_mode *mode)
196 {
197 struct intel_dp *intel_dp = intel_attached_dp(connector);
198 struct intel_connector *intel_connector = to_intel_connector(connector);
199 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
200 int target_clock = mode->clock;
201 int max_rate, mode_rate, max_lanes, max_link_clock;
202
203 if (is_edp(intel_dp) && fixed_mode) {
204 if (mode->hdisplay > fixed_mode->hdisplay)
205 return MODE_PANEL;
206
207 if (mode->vdisplay > fixed_mode->vdisplay)
208 return MODE_PANEL;
209
210 target_clock = fixed_mode->clock;
211 }
212
213 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
214 max_lanes = intel_dp_max_lane_count(intel_dp);
215
216 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
217 mode_rate = intel_dp_link_required(target_clock, 18);
218
219 if (mode_rate > max_rate)
220 return MODE_CLOCK_HIGH;
221
222 if (mode->clock < 10000)
223 return MODE_CLOCK_LOW;
224
225 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
226 return MODE_H_ILLEGAL;
227
228 return MODE_OK;
229 }
230
231 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
232 {
233 int i;
234 uint32_t v = 0;
235
236 if (src_bytes > 4)
237 src_bytes = 4;
238 for (i = 0; i < src_bytes; i++)
239 v |= ((uint32_t) src[i]) << ((3-i) * 8);
240 return v;
241 }
242
243 void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
244 {
245 int i;
246 if (dst_bytes > 4)
247 dst_bytes = 4;
248 for (i = 0; i < dst_bytes; i++)
249 dst[i] = src >> ((3-i) * 8);
250 }
251
252 /* hrawclock is 1/4 the FSB frequency */
253 static int
254 intel_hrawclk(struct drm_device *dev)
255 {
256 struct drm_i915_private *dev_priv = dev->dev_private;
257 uint32_t clkcfg;
258
259 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
260 if (IS_VALLEYVIEW(dev))
261 return 200;
262
263 clkcfg = I915_READ(CLKCFG);
264 switch (clkcfg & CLKCFG_FSB_MASK) {
265 case CLKCFG_FSB_400:
266 return 100;
267 case CLKCFG_FSB_533:
268 return 133;
269 case CLKCFG_FSB_667:
270 return 166;
271 case CLKCFG_FSB_800:
272 return 200;
273 case CLKCFG_FSB_1067:
274 return 266;
275 case CLKCFG_FSB_1333:
276 return 333;
277 /* these two are just a guess; one of them might be right */
278 case CLKCFG_FSB_1600:
279 case CLKCFG_FSB_1600_ALT:
280 return 400;
281 default:
282 return 133;
283 }
284 }
285
286 static void
287 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
288 struct intel_dp *intel_dp);
289 static void
290 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
291 struct intel_dp *intel_dp);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static void
326 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 enum pipe pipe = intel_dp->pps_pipe;
332 bool pll_enabled;
333 uint32_t DP;
334
335 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
336 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
337 pipe_name(pipe), port_name(intel_dig_port->port)))
338 return;
339
340 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
341 pipe_name(pipe), port_name(intel_dig_port->port));
342
343 /* Preserve the BIOS-computed detected bit. This is
344 * supposed to be read-only.
345 */
346 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
347 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
348 DP |= DP_PORT_WIDTH(1);
349 DP |= DP_LINK_TRAIN_PAT_1;
350
351 if (IS_CHERRYVIEW(dev))
352 DP |= DP_PIPE_SELECT_CHV(pipe);
353 else if (pipe == PIPE_B)
354 DP |= DP_PIPEB_SELECT;
355
356 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
357
358 /*
359 * The DPLL for the pipe must be enabled for this to work.
360 * So enable temporarily it if it's not already enabled.
361 */
362 if (!pll_enabled)
363 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
364 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
365
366 /*
367 * Similar magic as in intel_dp_enable_port().
368 * We _must_ do this port enable + disable trick
369 * to make this power seqeuencer lock onto the port.
370 * Otherwise even VDD force bit won't work.
371 */
372 I915_WRITE(intel_dp->output_reg, DP);
373 POSTING_READ(intel_dp->output_reg);
374
375 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
376 POSTING_READ(intel_dp->output_reg);
377
378 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
379 POSTING_READ(intel_dp->output_reg);
380
381 if (!pll_enabled)
382 vlv_force_pll_off(dev, pipe);
383 }
384
385 static enum pipe
386 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
387 {
388 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
389 struct drm_device *dev = intel_dig_port->base.base.dev;
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 struct intel_encoder *encoder;
392 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
393 enum pipe pipe;
394
395 lockdep_assert_held(&dev_priv->pps_mutex);
396
397 /* We should never land here with regular DP ports */
398 WARN_ON(!is_edp(intel_dp));
399
400 if (intel_dp->pps_pipe != INVALID_PIPE)
401 return intel_dp->pps_pipe;
402
403 /*
404 * We don't have power sequencer currently.
405 * Pick one that's not used by other ports.
406 */
407 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
408 base.head) {
409 struct intel_dp *tmp;
410
411 if (encoder->type != INTEL_OUTPUT_EDP)
412 continue;
413
414 tmp = enc_to_intel_dp(&encoder->base);
415
416 if (tmp->pps_pipe != INVALID_PIPE)
417 pipes &= ~(1 << tmp->pps_pipe);
418 }
419
420 /*
421 * Didn't find one. This should not happen since there
422 * are two power sequencers and up to two eDP ports.
423 */
424 if (WARN_ON(pipes == 0))
425 pipe = PIPE_A;
426 else
427 pipe = ffs(pipes) - 1;
428
429 vlv_steal_power_sequencer(dev, pipe);
430 intel_dp->pps_pipe = pipe;
431
432 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
433 pipe_name(intel_dp->pps_pipe),
434 port_name(intel_dig_port->port));
435
436 /* init power sequencer on this pipe and port */
437 intel_dp_init_panel_power_sequencer(dev, intel_dp);
438 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
439
440 /*
441 * Even vdd force doesn't work until we've made
442 * the power sequencer lock in on the port.
443 */
444 vlv_power_sequencer_kick(intel_dp);
445
446 return intel_dp->pps_pipe;
447 }
448
449 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
450 enum pipe pipe);
451
452 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
453 enum pipe pipe)
454 {
455 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
456 }
457
458 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
459 enum pipe pipe)
460 {
461 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
462 }
463
464 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
465 enum pipe pipe)
466 {
467 return true;
468 }
469
470 static enum pipe
471 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
472 enum port port,
473 vlv_pipe_check pipe_check)
474 {
475 enum pipe pipe;
476
477 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
478 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
479 PANEL_PORT_SELECT_MASK;
480
481 if (port_sel != PANEL_PORT_SELECT_VLV(port))
482 continue;
483
484 if (!pipe_check(dev_priv, pipe))
485 continue;
486
487 return pipe;
488 }
489
490 return INVALID_PIPE;
491 }
492
493 static void
494 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
495 {
496 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497 struct drm_device *dev = intel_dig_port->base.base.dev;
498 struct drm_i915_private *dev_priv = dev->dev_private;
499 enum port port = intel_dig_port->port;
500
501 lockdep_assert_held(&dev_priv->pps_mutex);
502
503 /* try to find a pipe with this port selected */
504 /* first pick one where the panel is on */
505 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
506 vlv_pipe_has_pp_on);
507 /* didn't find one? pick one where vdd is on */
508 if (intel_dp->pps_pipe == INVALID_PIPE)
509 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
510 vlv_pipe_has_vdd_on);
511 /* didn't find one? pick one with just the correct port */
512 if (intel_dp->pps_pipe == INVALID_PIPE)
513 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
514 vlv_pipe_any);
515
516 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
517 if (intel_dp->pps_pipe == INVALID_PIPE) {
518 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
519 port_name(port));
520 return;
521 }
522
523 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
524 port_name(port), pipe_name(intel_dp->pps_pipe));
525
526 intel_dp_init_panel_power_sequencer(dev, intel_dp);
527 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
528 }
529
530 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
531 {
532 struct drm_device *dev = dev_priv->dev;
533 struct intel_encoder *encoder;
534
535 if (WARN_ON(!IS_VALLEYVIEW(dev)))
536 return;
537
538 /*
539 * We can't grab pps_mutex here due to deadlock with power_domain
540 * mutex when power_domain functions are called while holding pps_mutex.
541 * That also means that in order to use pps_pipe the code needs to
542 * hold both a power domain reference and pps_mutex, and the power domain
543 * reference get/put must be done while _not_ holding pps_mutex.
544 * pps_{lock,unlock}() do these steps in the correct order, so one
545 * should use them always.
546 */
547
548 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
549 struct intel_dp *intel_dp;
550
551 if (encoder->type != INTEL_OUTPUT_EDP)
552 continue;
553
554 intel_dp = enc_to_intel_dp(&encoder->base);
555 intel_dp->pps_pipe = INVALID_PIPE;
556 }
557 }
558
559 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
560 {
561 struct drm_device *dev = intel_dp_to_dev(intel_dp);
562
563 if (HAS_PCH_SPLIT(dev))
564 return PCH_PP_CONTROL;
565 else
566 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
567 }
568
569 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
570 {
571 struct drm_device *dev = intel_dp_to_dev(intel_dp);
572
573 if (HAS_PCH_SPLIT(dev))
574 return PCH_PP_STATUS;
575 else
576 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
577 }
578
579 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
580 This function only applicable when panel PM state is not to be tracked */
581 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
582 void *unused)
583 {
584 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
585 edp_notifier);
586 struct drm_device *dev = intel_dp_to_dev(intel_dp);
587 struct drm_i915_private *dev_priv = dev->dev_private;
588 u32 pp_div;
589 u32 pp_ctrl_reg, pp_div_reg;
590
591 if (!is_edp(intel_dp) || code != SYS_RESTART)
592 return 0;
593
594 pps_lock(intel_dp);
595
596 if (IS_VALLEYVIEW(dev)) {
597 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
598
599 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
600 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
601 pp_div = I915_READ(pp_div_reg);
602 pp_div &= PP_REFERENCE_DIVIDER_MASK;
603
604 /* 0x1F write to PP_DIV_REG sets max cycle delay */
605 I915_WRITE(pp_div_reg, pp_div | 0x1F);
606 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
607 msleep(intel_dp->panel_power_cycle_delay);
608 }
609
610 pps_unlock(intel_dp);
611
612 return 0;
613 }
614
615 static bool edp_have_panel_power(struct intel_dp *intel_dp)
616 {
617 struct drm_device *dev = intel_dp_to_dev(intel_dp);
618 struct drm_i915_private *dev_priv = dev->dev_private;
619
620 lockdep_assert_held(&dev_priv->pps_mutex);
621
622 if (IS_VALLEYVIEW(dev) &&
623 intel_dp->pps_pipe == INVALID_PIPE)
624 return false;
625
626 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
627 }
628
629 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
630 {
631 struct drm_device *dev = intel_dp_to_dev(intel_dp);
632 struct drm_i915_private *dev_priv = dev->dev_private;
633
634 lockdep_assert_held(&dev_priv->pps_mutex);
635
636 if (IS_VALLEYVIEW(dev) &&
637 intel_dp->pps_pipe == INVALID_PIPE)
638 return false;
639
640 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
641 }
642
643 static void
644 intel_dp_check_edp(struct intel_dp *intel_dp)
645 {
646 struct drm_device *dev = intel_dp_to_dev(intel_dp);
647 struct drm_i915_private *dev_priv = dev->dev_private;
648
649 if (!is_edp(intel_dp))
650 return;
651
652 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
653 WARN(1, "eDP powered off while attempting aux channel communication.\n");
654 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
655 I915_READ(_pp_stat_reg(intel_dp)),
656 I915_READ(_pp_ctrl_reg(intel_dp)));
657 }
658 }
659
660 static uint32_t
661 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
662 {
663 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
664 struct drm_device *dev = intel_dig_port->base.base.dev;
665 struct drm_i915_private *dev_priv = dev->dev_private;
666 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
667 uint32_t status;
668 bool done;
669
670 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
671 if (has_aux_irq)
672 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
673 msecs_to_jiffies_timeout(10));
674 else
675 done = wait_for_atomic(C, 10) == 0;
676 if (!done)
677 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
678 has_aux_irq);
679 #undef C
680
681 return status;
682 }
683
684 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
685 {
686 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687 struct drm_device *dev = intel_dig_port->base.base.dev;
688
689 /*
690 * The clock divider is based off the hrawclk, and would like to run at
691 * 2MHz. So, take the hrawclk value and divide by 2 and use that
692 */
693 return index ? 0 : intel_hrawclk(dev) / 2;
694 }
695
696 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
697 {
698 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
699 struct drm_device *dev = intel_dig_port->base.base.dev;
700
701 if (index)
702 return 0;
703
704 if (intel_dig_port->port == PORT_A) {
705 if (IS_GEN6(dev) || IS_GEN7(dev))
706 return 200; /* SNB & IVB eDP input clock at 400Mhz */
707 else
708 return 225; /* eDP input clock at 450Mhz */
709 } else {
710 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
711 }
712 }
713
714 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
715 {
716 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
717 struct drm_device *dev = intel_dig_port->base.base.dev;
718 struct drm_i915_private *dev_priv = dev->dev_private;
719
720 if (intel_dig_port->port == PORT_A) {
721 if (index)
722 return 0;
723 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
724 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
725 /* Workaround for non-ULT HSW */
726 switch (index) {
727 case 0: return 63;
728 case 1: return 72;
729 default: return 0;
730 }
731 } else {
732 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
733 }
734 }
735
736 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
737 {
738 return index ? 0 : 100;
739 }
740
741 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
742 {
743 /*
744 * SKL doesn't need us to program the AUX clock divider (Hardware will
745 * derive the clock from CDCLK automatically). We still implement the
746 * get_aux_clock_divider vfunc to plug-in into the existing code.
747 */
748 return index ? 0 : 1;
749 }
750
751 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
752 bool has_aux_irq,
753 int send_bytes,
754 uint32_t aux_clock_divider)
755 {
756 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757 struct drm_device *dev = intel_dig_port->base.base.dev;
758 uint32_t precharge, timeout;
759
760 if (IS_GEN6(dev))
761 precharge = 3;
762 else
763 precharge = 5;
764
765 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
766 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
767 else
768 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
769
770 return DP_AUX_CH_CTL_SEND_BUSY |
771 DP_AUX_CH_CTL_DONE |
772 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
773 DP_AUX_CH_CTL_TIME_OUT_ERROR |
774 timeout |
775 DP_AUX_CH_CTL_RECEIVE_ERROR |
776 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
777 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
778 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
779 }
780
781 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
782 bool has_aux_irq,
783 int send_bytes,
784 uint32_t unused)
785 {
786 return DP_AUX_CH_CTL_SEND_BUSY |
787 DP_AUX_CH_CTL_DONE |
788 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
789 DP_AUX_CH_CTL_TIME_OUT_ERROR |
790 DP_AUX_CH_CTL_TIME_OUT_1600us |
791 DP_AUX_CH_CTL_RECEIVE_ERROR |
792 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
793 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
794 }
795
796 static int
797 intel_dp_aux_ch(struct intel_dp *intel_dp,
798 const uint8_t *send, int send_bytes,
799 uint8_t *recv, int recv_size)
800 {
801 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
802 struct drm_device *dev = intel_dig_port->base.base.dev;
803 struct drm_i915_private *dev_priv = dev->dev_private;
804 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
805 uint32_t ch_data = ch_ctl + 4;
806 uint32_t aux_clock_divider;
807 int i, ret, recv_bytes;
808 uint32_t status;
809 int try, clock = 0;
810 bool has_aux_irq = HAS_AUX_IRQ(dev);
811 bool vdd;
812
813 pps_lock(intel_dp);
814
815 /*
816 * We will be called with VDD already enabled for dpcd/edid/oui reads.
817 * In such cases we want to leave VDD enabled and it's up to upper layers
818 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
819 * ourselves.
820 */
821 vdd = edp_panel_vdd_on(intel_dp);
822
823 /* dp aux is extremely sensitive to irq latency, hence request the
824 * lowest possible wakeup latency and so prevent the cpu from going into
825 * deep sleep states.
826 */
827 pm_qos_update_request(&dev_priv->pm_qos, 0);
828
829 intel_dp_check_edp(intel_dp);
830
831 intel_aux_display_runtime_get(dev_priv);
832
833 /* Try to wait for any previous AUX channel activity */
834 for (try = 0; try < 3; try++) {
835 status = I915_READ_NOTRACE(ch_ctl);
836 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
837 break;
838 msleep(1);
839 }
840
841 if (try == 3) {
842 WARN(1, "dp_aux_ch not started status 0x%08x\n",
843 I915_READ(ch_ctl));
844 ret = -EBUSY;
845 goto out;
846 }
847
848 /* Only 5 data registers! */
849 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
850 ret = -E2BIG;
851 goto out;
852 }
853
854 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
855 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
856 has_aux_irq,
857 send_bytes,
858 aux_clock_divider);
859
860 /* Must try at least 3 times according to DP spec */
861 for (try = 0; try < 5; try++) {
862 /* Load the send data into the aux channel data registers */
863 for (i = 0; i < send_bytes; i += 4)
864 I915_WRITE(ch_data + i,
865 intel_dp_pack_aux(send + i,
866 send_bytes - i));
867
868 /* Send the command and wait for it to complete */
869 I915_WRITE(ch_ctl, send_ctl);
870
871 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
872
873 /* Clear done status and any errors */
874 I915_WRITE(ch_ctl,
875 status |
876 DP_AUX_CH_CTL_DONE |
877 DP_AUX_CH_CTL_TIME_OUT_ERROR |
878 DP_AUX_CH_CTL_RECEIVE_ERROR);
879
880 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
881 DP_AUX_CH_CTL_RECEIVE_ERROR))
882 continue;
883 if (status & DP_AUX_CH_CTL_DONE)
884 break;
885 }
886 if (status & DP_AUX_CH_CTL_DONE)
887 break;
888 }
889
890 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892 ret = -EBUSY;
893 goto out;
894 }
895
896 /* Check for timeout or receive error.
897 * Timeouts occur when the sink is not connected
898 */
899 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
900 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
901 ret = -EIO;
902 goto out;
903 }
904
905 /* Timeouts occur when the device isn't connected, so they're
906 * "normal" -- don't fill the kernel log with these */
907 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
908 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
909 ret = -ETIMEDOUT;
910 goto out;
911 }
912
913 /* Unload any bytes sent back from the other side */
914 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
915 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
916 if (recv_bytes > recv_size)
917 recv_bytes = recv_size;
918
919 for (i = 0; i < recv_bytes; i += 4)
920 intel_dp_unpack_aux(I915_READ(ch_data + i),
921 recv + i, recv_bytes - i);
922
923 ret = recv_bytes;
924 out:
925 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
926 intel_aux_display_runtime_put(dev_priv);
927
928 if (vdd)
929 edp_panel_vdd_off(intel_dp, false);
930
931 pps_unlock(intel_dp);
932
933 return ret;
934 }
935
936 #define BARE_ADDRESS_SIZE 3
937 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
938 static ssize_t
939 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
940 {
941 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
942 uint8_t txbuf[20], rxbuf[20];
943 size_t txsize, rxsize;
944 int ret;
945
946 txbuf[0] = msg->request << 4;
947 txbuf[1] = msg->address >> 8;
948 txbuf[2] = msg->address & 0xff;
949 txbuf[3] = msg->size - 1;
950
951 switch (msg->request & ~DP_AUX_I2C_MOT) {
952 case DP_AUX_NATIVE_WRITE:
953 case DP_AUX_I2C_WRITE:
954 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
955 rxsize = 1;
956
957 if (WARN_ON(txsize > 20))
958 return -E2BIG;
959
960 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
961
962 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
963 if (ret > 0) {
964 msg->reply = rxbuf[0] >> 4;
965
966 /* Return payload size. */
967 ret = msg->size;
968 }
969 break;
970
971 case DP_AUX_NATIVE_READ:
972 case DP_AUX_I2C_READ:
973 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
974 rxsize = msg->size + 1;
975
976 if (WARN_ON(rxsize > 20))
977 return -E2BIG;
978
979 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
980 if (ret > 0) {
981 msg->reply = rxbuf[0] >> 4;
982 /*
983 * Assume happy day, and copy the data. The caller is
984 * expected to check msg->reply before touching it.
985 *
986 * Return payload size.
987 */
988 ret--;
989 memcpy(msg->buffer, rxbuf + 1, ret);
990 }
991 break;
992
993 default:
994 ret = -EINVAL;
995 break;
996 }
997
998 return ret;
999 }
1000
1001 static void
1002 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1003 {
1004 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1005 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1006 enum port port = intel_dig_port->port;
1007 const char *name = NULL;
1008 int ret;
1009
1010 switch (port) {
1011 case PORT_A:
1012 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1013 name = "DPDDC-A";
1014 break;
1015 case PORT_B:
1016 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1017 name = "DPDDC-B";
1018 break;
1019 case PORT_C:
1020 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1021 name = "DPDDC-C";
1022 break;
1023 case PORT_D:
1024 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1025 name = "DPDDC-D";
1026 break;
1027 default:
1028 BUG();
1029 }
1030
1031 /*
1032 * The AUX_CTL register is usually DP_CTL + 0x10.
1033 *
1034 * On Haswell and Broadwell though:
1035 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1036 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1037 *
1038 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1039 */
1040 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1041 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1042
1043 intel_dp->aux.name = name;
1044 intel_dp->aux.dev = dev->dev;
1045 intel_dp->aux.transfer = intel_dp_aux_transfer;
1046
1047 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1048 connector->base.kdev->kobj.name);
1049
1050 ret = drm_dp_aux_register(&intel_dp->aux);
1051 if (ret < 0) {
1052 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1053 name, ret);
1054 return;
1055 }
1056
1057 ret = sysfs_create_link(&connector->base.kdev->kobj,
1058 &intel_dp->aux.ddc.dev.kobj,
1059 intel_dp->aux.ddc.dev.kobj.name);
1060 if (ret < 0) {
1061 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1062 drm_dp_aux_unregister(&intel_dp->aux);
1063 }
1064 }
1065
1066 static void
1067 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1068 {
1069 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1070
1071 if (!intel_connector->mst_port)
1072 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1073 intel_dp->aux.ddc.dev.kobj.name);
1074 intel_connector_unregister(intel_connector);
1075 }
1076
1077 static void
1078 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_bw)
1079 {
1080 u32 ctrl1;
1081
1082 pipe_config->ddi_pll_sel = SKL_DPLL0;
1083 pipe_config->dpll_hw_state.cfgcr1 = 0;
1084 pipe_config->dpll_hw_state.cfgcr2 = 0;
1085
1086 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1087 switch (link_bw) {
1088 case DP_LINK_BW_1_62:
1089 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810,
1090 SKL_DPLL0);
1091 break;
1092 case DP_LINK_BW_2_7:
1093 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350,
1094 SKL_DPLL0);
1095 break;
1096 case DP_LINK_BW_5_4:
1097 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700,
1098 SKL_DPLL0);
1099 break;
1100 }
1101 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1102 }
1103
1104 static void
1105 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1106 {
1107 switch (link_bw) {
1108 case DP_LINK_BW_1_62:
1109 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1110 break;
1111 case DP_LINK_BW_2_7:
1112 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1113 break;
1114 case DP_LINK_BW_5_4:
1115 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1116 break;
1117 }
1118 }
1119
1120 static void
1121 intel_dp_set_clock(struct intel_encoder *encoder,
1122 struct intel_crtc_state *pipe_config, int link_bw)
1123 {
1124 struct drm_device *dev = encoder->base.dev;
1125 const struct dp_link_dpll *divisor = NULL;
1126 int i, count = 0;
1127
1128 if (IS_G4X(dev)) {
1129 divisor = gen4_dpll;
1130 count = ARRAY_SIZE(gen4_dpll);
1131 } else if (HAS_PCH_SPLIT(dev)) {
1132 divisor = pch_dpll;
1133 count = ARRAY_SIZE(pch_dpll);
1134 } else if (IS_CHERRYVIEW(dev)) {
1135 divisor = chv_dpll;
1136 count = ARRAY_SIZE(chv_dpll);
1137 } else if (IS_VALLEYVIEW(dev)) {
1138 divisor = vlv_dpll;
1139 count = ARRAY_SIZE(vlv_dpll);
1140 }
1141
1142 if (divisor && count) {
1143 for (i = 0; i < count; i++) {
1144 if (link_bw == divisor[i].link_bw) {
1145 pipe_config->dpll = divisor[i].dpll;
1146 pipe_config->clock_set = true;
1147 break;
1148 }
1149 }
1150 }
1151 }
1152
1153 bool
1154 intel_dp_compute_config(struct intel_encoder *encoder,
1155 struct intel_crtc_state *pipe_config)
1156 {
1157 struct drm_device *dev = encoder->base.dev;
1158 struct drm_i915_private *dev_priv = dev->dev_private;
1159 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1160 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1161 enum port port = dp_to_dig_port(intel_dp)->port;
1162 struct intel_crtc *intel_crtc = encoder->new_crtc;
1163 struct intel_connector *intel_connector = intel_dp->attached_connector;
1164 int lane_count, clock;
1165 int min_lane_count = 1;
1166 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1167 /* Conveniently, the link BW constants become indices with a shift...*/
1168 int min_clock = 0;
1169 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1170 int bpp, mode_rate;
1171 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1172 int link_avail, link_clock;
1173
1174 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1175 pipe_config->has_pch_encoder = true;
1176
1177 pipe_config->has_dp_encoder = true;
1178 pipe_config->has_drrs = false;
1179 pipe_config->has_audio = intel_dp->has_audio;
1180
1181 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1182 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1183 adjusted_mode);
1184 if (!HAS_PCH_SPLIT(dev))
1185 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1186 intel_connector->panel.fitting_mode);
1187 else
1188 intel_pch_panel_fitting(intel_crtc, pipe_config,
1189 intel_connector->panel.fitting_mode);
1190 }
1191
1192 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1193 return false;
1194
1195 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1196 "max bw %02x pixel clock %iKHz\n",
1197 max_lane_count, bws[max_clock],
1198 adjusted_mode->crtc_clock);
1199
1200 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1201 * bpc in between. */
1202 bpp = pipe_config->pipe_bpp;
1203 if (is_edp(intel_dp)) {
1204 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1205 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1206 dev_priv->vbt.edp_bpp);
1207 bpp = dev_priv->vbt.edp_bpp;
1208 }
1209
1210 /*
1211 * Use the maximum clock and number of lanes the eDP panel
1212 * advertizes being capable of. The panels are generally
1213 * designed to support only a single clock and lane
1214 * configuration, and typically these values correspond to the
1215 * native resolution of the panel.
1216 */
1217 min_lane_count = max_lane_count;
1218 min_clock = max_clock;
1219 }
1220
1221 for (; bpp >= 6*3; bpp -= 2*3) {
1222 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1223 bpp);
1224
1225 for (clock = min_clock; clock <= max_clock; clock++) {
1226 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1227 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1228 link_avail = intel_dp_max_data_rate(link_clock,
1229 lane_count);
1230
1231 if (mode_rate <= link_avail) {
1232 goto found;
1233 }
1234 }
1235 }
1236 }
1237
1238 return false;
1239
1240 found:
1241 if (intel_dp->color_range_auto) {
1242 /*
1243 * See:
1244 * CEA-861-E - 5.1 Default Encoding Parameters
1245 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1246 */
1247 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1248 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1249 else
1250 intel_dp->color_range = 0;
1251 }
1252
1253 if (intel_dp->color_range)
1254 pipe_config->limited_color_range = true;
1255
1256 intel_dp->link_bw = bws[clock];
1257 intel_dp->lane_count = lane_count;
1258 pipe_config->pipe_bpp = bpp;
1259 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1260
1261 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1262 intel_dp->link_bw, intel_dp->lane_count,
1263 pipe_config->port_clock, bpp);
1264 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1265 mode_rate, link_avail);
1266
1267 intel_link_compute_m_n(bpp, lane_count,
1268 adjusted_mode->crtc_clock,
1269 pipe_config->port_clock,
1270 &pipe_config->dp_m_n);
1271
1272 if (intel_connector->panel.downclock_mode != NULL &&
1273 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1274 pipe_config->has_drrs = true;
1275 intel_link_compute_m_n(bpp, lane_count,
1276 intel_connector->panel.downclock_mode->clock,
1277 pipe_config->port_clock,
1278 &pipe_config->dp_m2_n2);
1279 }
1280
1281 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1282 skl_edp_set_pll_config(pipe_config, intel_dp->link_bw);
1283 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1284 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1285 else
1286 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1287
1288 return true;
1289 }
1290
1291 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1292 {
1293 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1294 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1295 struct drm_device *dev = crtc->base.dev;
1296 struct drm_i915_private *dev_priv = dev->dev_private;
1297 u32 dpa_ctl;
1298
1299 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1300 crtc->config->port_clock);
1301 dpa_ctl = I915_READ(DP_A);
1302 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1303
1304 if (crtc->config->port_clock == 162000) {
1305 /* For a long time we've carried around a ILK-DevA w/a for the
1306 * 160MHz clock. If we're really unlucky, it's still required.
1307 */
1308 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1309 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1310 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1311 } else {
1312 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1313 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1314 }
1315
1316 I915_WRITE(DP_A, dpa_ctl);
1317
1318 POSTING_READ(DP_A);
1319 udelay(500);
1320 }
1321
1322 static void intel_dp_prepare(struct intel_encoder *encoder)
1323 {
1324 struct drm_device *dev = encoder->base.dev;
1325 struct drm_i915_private *dev_priv = dev->dev_private;
1326 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1327 enum port port = dp_to_dig_port(intel_dp)->port;
1328 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1329 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1330
1331 /*
1332 * There are four kinds of DP registers:
1333 *
1334 * IBX PCH
1335 * SNB CPU
1336 * IVB CPU
1337 * CPT PCH
1338 *
1339 * IBX PCH and CPU are the same for almost everything,
1340 * except that the CPU DP PLL is configured in this
1341 * register
1342 *
1343 * CPT PCH is quite different, having many bits moved
1344 * to the TRANS_DP_CTL register instead. That
1345 * configuration happens (oddly) in ironlake_pch_enable
1346 */
1347
1348 /* Preserve the BIOS-computed detected bit. This is
1349 * supposed to be read-only.
1350 */
1351 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1352
1353 /* Handle DP bits in common between all three register formats */
1354 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1355 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1356
1357 if (crtc->config->has_audio)
1358 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1359
1360 /* Split out the IBX/CPU vs CPT settings */
1361
1362 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1363 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1364 intel_dp->DP |= DP_SYNC_HS_HIGH;
1365 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1366 intel_dp->DP |= DP_SYNC_VS_HIGH;
1367 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1368
1369 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1370 intel_dp->DP |= DP_ENHANCED_FRAMING;
1371
1372 intel_dp->DP |= crtc->pipe << 29;
1373 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1374 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1375 intel_dp->DP |= intel_dp->color_range;
1376
1377 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1378 intel_dp->DP |= DP_SYNC_HS_HIGH;
1379 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1380 intel_dp->DP |= DP_SYNC_VS_HIGH;
1381 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1382
1383 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1384 intel_dp->DP |= DP_ENHANCED_FRAMING;
1385
1386 if (!IS_CHERRYVIEW(dev)) {
1387 if (crtc->pipe == 1)
1388 intel_dp->DP |= DP_PIPEB_SELECT;
1389 } else {
1390 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1391 }
1392 } else {
1393 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1394 }
1395 }
1396
1397 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1398 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1399
1400 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1401 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1402
1403 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1404 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1405
1406 static void wait_panel_status(struct intel_dp *intel_dp,
1407 u32 mask,
1408 u32 value)
1409 {
1410 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1411 struct drm_i915_private *dev_priv = dev->dev_private;
1412 u32 pp_stat_reg, pp_ctrl_reg;
1413
1414 lockdep_assert_held(&dev_priv->pps_mutex);
1415
1416 pp_stat_reg = _pp_stat_reg(intel_dp);
1417 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1418
1419 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1420 mask, value,
1421 I915_READ(pp_stat_reg),
1422 I915_READ(pp_ctrl_reg));
1423
1424 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1425 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1426 I915_READ(pp_stat_reg),
1427 I915_READ(pp_ctrl_reg));
1428 }
1429
1430 DRM_DEBUG_KMS("Wait complete\n");
1431 }
1432
1433 static void wait_panel_on(struct intel_dp *intel_dp)
1434 {
1435 DRM_DEBUG_KMS("Wait for panel power on\n");
1436 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1437 }
1438
1439 static void wait_panel_off(struct intel_dp *intel_dp)
1440 {
1441 DRM_DEBUG_KMS("Wait for panel power off time\n");
1442 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1443 }
1444
1445 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1446 {
1447 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1448
1449 /* When we disable the VDD override bit last we have to do the manual
1450 * wait. */
1451 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1452 intel_dp->panel_power_cycle_delay);
1453
1454 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1455 }
1456
1457 static void wait_backlight_on(struct intel_dp *intel_dp)
1458 {
1459 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1460 intel_dp->backlight_on_delay);
1461 }
1462
1463 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1464 {
1465 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1466 intel_dp->backlight_off_delay);
1467 }
1468
1469 /* Read the current pp_control value, unlocking the register if it
1470 * is locked
1471 */
1472
1473 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1474 {
1475 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 u32 control;
1478
1479 lockdep_assert_held(&dev_priv->pps_mutex);
1480
1481 control = I915_READ(_pp_ctrl_reg(intel_dp));
1482 control &= ~PANEL_UNLOCK_MASK;
1483 control |= PANEL_UNLOCK_REGS;
1484 return control;
1485 }
1486
1487 /*
1488 * Must be paired with edp_panel_vdd_off().
1489 * Must hold pps_mutex around the whole on/off sequence.
1490 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1491 */
1492 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1493 {
1494 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1495 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1496 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 enum intel_display_power_domain power_domain;
1499 u32 pp;
1500 u32 pp_stat_reg, pp_ctrl_reg;
1501 bool need_to_disable = !intel_dp->want_panel_vdd;
1502
1503 lockdep_assert_held(&dev_priv->pps_mutex);
1504
1505 if (!is_edp(intel_dp))
1506 return false;
1507
1508 cancel_delayed_work(&intel_dp->panel_vdd_work);
1509 intel_dp->want_panel_vdd = true;
1510
1511 if (edp_have_panel_vdd(intel_dp))
1512 return need_to_disable;
1513
1514 power_domain = intel_display_port_power_domain(intel_encoder);
1515 intel_display_power_get(dev_priv, power_domain);
1516
1517 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1518 port_name(intel_dig_port->port));
1519
1520 if (!edp_have_panel_power(intel_dp))
1521 wait_panel_power_cycle(intel_dp);
1522
1523 pp = ironlake_get_pp_control(intel_dp);
1524 pp |= EDP_FORCE_VDD;
1525
1526 pp_stat_reg = _pp_stat_reg(intel_dp);
1527 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1528
1529 I915_WRITE(pp_ctrl_reg, pp);
1530 POSTING_READ(pp_ctrl_reg);
1531 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1532 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1533 /*
1534 * If the panel wasn't on, delay before accessing aux channel
1535 */
1536 if (!edp_have_panel_power(intel_dp)) {
1537 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1538 port_name(intel_dig_port->port));
1539 msleep(intel_dp->panel_power_up_delay);
1540 }
1541
1542 return need_to_disable;
1543 }
1544
1545 /*
1546 * Must be paired with intel_edp_panel_vdd_off() or
1547 * intel_edp_panel_off().
1548 * Nested calls to these functions are not allowed since
1549 * we drop the lock. Caller must use some higher level
1550 * locking to prevent nested calls from other threads.
1551 */
1552 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1553 {
1554 bool vdd;
1555
1556 if (!is_edp(intel_dp))
1557 return;
1558
1559 pps_lock(intel_dp);
1560 vdd = edp_panel_vdd_on(intel_dp);
1561 pps_unlock(intel_dp);
1562
1563 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1564 port_name(dp_to_dig_port(intel_dp)->port));
1565 }
1566
1567 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1568 {
1569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1570 struct drm_i915_private *dev_priv = dev->dev_private;
1571 struct intel_digital_port *intel_dig_port =
1572 dp_to_dig_port(intel_dp);
1573 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1574 enum intel_display_power_domain power_domain;
1575 u32 pp;
1576 u32 pp_stat_reg, pp_ctrl_reg;
1577
1578 lockdep_assert_held(&dev_priv->pps_mutex);
1579
1580 WARN_ON(intel_dp->want_panel_vdd);
1581
1582 if (!edp_have_panel_vdd(intel_dp))
1583 return;
1584
1585 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1586 port_name(intel_dig_port->port));
1587
1588 pp = ironlake_get_pp_control(intel_dp);
1589 pp &= ~EDP_FORCE_VDD;
1590
1591 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1592 pp_stat_reg = _pp_stat_reg(intel_dp);
1593
1594 I915_WRITE(pp_ctrl_reg, pp);
1595 POSTING_READ(pp_ctrl_reg);
1596
1597 /* Make sure sequencer is idle before allowing subsequent activity */
1598 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1599 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1600
1601 if ((pp & POWER_TARGET_ON) == 0)
1602 intel_dp->last_power_cycle = jiffies;
1603
1604 power_domain = intel_display_port_power_domain(intel_encoder);
1605 intel_display_power_put(dev_priv, power_domain);
1606 }
1607
1608 static void edp_panel_vdd_work(struct work_struct *__work)
1609 {
1610 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1611 struct intel_dp, panel_vdd_work);
1612
1613 pps_lock(intel_dp);
1614 if (!intel_dp->want_panel_vdd)
1615 edp_panel_vdd_off_sync(intel_dp);
1616 pps_unlock(intel_dp);
1617 }
1618
1619 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1620 {
1621 unsigned long delay;
1622
1623 /*
1624 * Queue the timer to fire a long time from now (relative to the power
1625 * down delay) to keep the panel power up across a sequence of
1626 * operations.
1627 */
1628 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1629 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1630 }
1631
1632 /*
1633 * Must be paired with edp_panel_vdd_on().
1634 * Must hold pps_mutex around the whole on/off sequence.
1635 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1636 */
1637 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1638 {
1639 struct drm_i915_private *dev_priv =
1640 intel_dp_to_dev(intel_dp)->dev_private;
1641
1642 lockdep_assert_held(&dev_priv->pps_mutex);
1643
1644 if (!is_edp(intel_dp))
1645 return;
1646
1647 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1648 port_name(dp_to_dig_port(intel_dp)->port));
1649
1650 intel_dp->want_panel_vdd = false;
1651
1652 if (sync)
1653 edp_panel_vdd_off_sync(intel_dp);
1654 else
1655 edp_panel_vdd_schedule_off(intel_dp);
1656 }
1657
1658 static void edp_panel_on(struct intel_dp *intel_dp)
1659 {
1660 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 u32 pp;
1663 u32 pp_ctrl_reg;
1664
1665 lockdep_assert_held(&dev_priv->pps_mutex);
1666
1667 if (!is_edp(intel_dp))
1668 return;
1669
1670 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1671 port_name(dp_to_dig_port(intel_dp)->port));
1672
1673 if (WARN(edp_have_panel_power(intel_dp),
1674 "eDP port %c panel power already on\n",
1675 port_name(dp_to_dig_port(intel_dp)->port)))
1676 return;
1677
1678 wait_panel_power_cycle(intel_dp);
1679
1680 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1681 pp = ironlake_get_pp_control(intel_dp);
1682 if (IS_GEN5(dev)) {
1683 /* ILK workaround: disable reset around power sequence */
1684 pp &= ~PANEL_POWER_RESET;
1685 I915_WRITE(pp_ctrl_reg, pp);
1686 POSTING_READ(pp_ctrl_reg);
1687 }
1688
1689 pp |= POWER_TARGET_ON;
1690 if (!IS_GEN5(dev))
1691 pp |= PANEL_POWER_RESET;
1692
1693 I915_WRITE(pp_ctrl_reg, pp);
1694 POSTING_READ(pp_ctrl_reg);
1695
1696 wait_panel_on(intel_dp);
1697 intel_dp->last_power_on = jiffies;
1698
1699 if (IS_GEN5(dev)) {
1700 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1701 I915_WRITE(pp_ctrl_reg, pp);
1702 POSTING_READ(pp_ctrl_reg);
1703 }
1704 }
1705
1706 void intel_edp_panel_on(struct intel_dp *intel_dp)
1707 {
1708 if (!is_edp(intel_dp))
1709 return;
1710
1711 pps_lock(intel_dp);
1712 edp_panel_on(intel_dp);
1713 pps_unlock(intel_dp);
1714 }
1715
1716
1717 static void edp_panel_off(struct intel_dp *intel_dp)
1718 {
1719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1720 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1721 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 enum intel_display_power_domain power_domain;
1724 u32 pp;
1725 u32 pp_ctrl_reg;
1726
1727 lockdep_assert_held(&dev_priv->pps_mutex);
1728
1729 if (!is_edp(intel_dp))
1730 return;
1731
1732 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1733 port_name(dp_to_dig_port(intel_dp)->port));
1734
1735 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1736 port_name(dp_to_dig_port(intel_dp)->port));
1737
1738 pp = ironlake_get_pp_control(intel_dp);
1739 /* We need to switch off panel power _and_ force vdd, for otherwise some
1740 * panels get very unhappy and cease to work. */
1741 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1742 EDP_BLC_ENABLE);
1743
1744 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1745
1746 intel_dp->want_panel_vdd = false;
1747
1748 I915_WRITE(pp_ctrl_reg, pp);
1749 POSTING_READ(pp_ctrl_reg);
1750
1751 intel_dp->last_power_cycle = jiffies;
1752 wait_panel_off(intel_dp);
1753
1754 /* We got a reference when we enabled the VDD. */
1755 power_domain = intel_display_port_power_domain(intel_encoder);
1756 intel_display_power_put(dev_priv, power_domain);
1757 }
1758
1759 void intel_edp_panel_off(struct intel_dp *intel_dp)
1760 {
1761 if (!is_edp(intel_dp))
1762 return;
1763
1764 pps_lock(intel_dp);
1765 edp_panel_off(intel_dp);
1766 pps_unlock(intel_dp);
1767 }
1768
1769 /* Enable backlight in the panel power control. */
1770 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1771 {
1772 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1773 struct drm_device *dev = intel_dig_port->base.base.dev;
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 u32 pp;
1776 u32 pp_ctrl_reg;
1777
1778 /*
1779 * If we enable the backlight right away following a panel power
1780 * on, we may see slight flicker as the panel syncs with the eDP
1781 * link. So delay a bit to make sure the image is solid before
1782 * allowing it to appear.
1783 */
1784 wait_backlight_on(intel_dp);
1785
1786 pps_lock(intel_dp);
1787
1788 pp = ironlake_get_pp_control(intel_dp);
1789 pp |= EDP_BLC_ENABLE;
1790
1791 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1792
1793 I915_WRITE(pp_ctrl_reg, pp);
1794 POSTING_READ(pp_ctrl_reg);
1795
1796 pps_unlock(intel_dp);
1797 }
1798
1799 /* Enable backlight PWM and backlight PP control. */
1800 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1801 {
1802 if (!is_edp(intel_dp))
1803 return;
1804
1805 DRM_DEBUG_KMS("\n");
1806
1807 intel_panel_enable_backlight(intel_dp->attached_connector);
1808 _intel_edp_backlight_on(intel_dp);
1809 }
1810
1811 /* Disable backlight in the panel power control. */
1812 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1813 {
1814 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1815 struct drm_i915_private *dev_priv = dev->dev_private;
1816 u32 pp;
1817 u32 pp_ctrl_reg;
1818
1819 if (!is_edp(intel_dp))
1820 return;
1821
1822 pps_lock(intel_dp);
1823
1824 pp = ironlake_get_pp_control(intel_dp);
1825 pp &= ~EDP_BLC_ENABLE;
1826
1827 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1828
1829 I915_WRITE(pp_ctrl_reg, pp);
1830 POSTING_READ(pp_ctrl_reg);
1831
1832 pps_unlock(intel_dp);
1833
1834 intel_dp->last_backlight_off = jiffies;
1835 edp_wait_backlight_off(intel_dp);
1836 }
1837
1838 /* Disable backlight PP control and backlight PWM. */
1839 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1840 {
1841 if (!is_edp(intel_dp))
1842 return;
1843
1844 DRM_DEBUG_KMS("\n");
1845
1846 _intel_edp_backlight_off(intel_dp);
1847 intel_panel_disable_backlight(intel_dp->attached_connector);
1848 }
1849
1850 /*
1851 * Hook for controlling the panel power control backlight through the bl_power
1852 * sysfs attribute. Take care to handle multiple calls.
1853 */
1854 static void intel_edp_backlight_power(struct intel_connector *connector,
1855 bool enable)
1856 {
1857 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1858 bool is_enabled;
1859
1860 pps_lock(intel_dp);
1861 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1862 pps_unlock(intel_dp);
1863
1864 if (is_enabled == enable)
1865 return;
1866
1867 DRM_DEBUG_KMS("panel power control backlight %s\n",
1868 enable ? "enable" : "disable");
1869
1870 if (enable)
1871 _intel_edp_backlight_on(intel_dp);
1872 else
1873 _intel_edp_backlight_off(intel_dp);
1874 }
1875
1876 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1877 {
1878 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1879 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1880 struct drm_device *dev = crtc->dev;
1881 struct drm_i915_private *dev_priv = dev->dev_private;
1882 u32 dpa_ctl;
1883
1884 assert_pipe_disabled(dev_priv,
1885 to_intel_crtc(crtc)->pipe);
1886
1887 DRM_DEBUG_KMS("\n");
1888 dpa_ctl = I915_READ(DP_A);
1889 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1890 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1891
1892 /* We don't adjust intel_dp->DP while tearing down the link, to
1893 * facilitate link retraining (e.g. after hotplug). Hence clear all
1894 * enable bits here to ensure that we don't enable too much. */
1895 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1896 intel_dp->DP |= DP_PLL_ENABLE;
1897 I915_WRITE(DP_A, intel_dp->DP);
1898 POSTING_READ(DP_A);
1899 udelay(200);
1900 }
1901
1902 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1903 {
1904 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1905 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1906 struct drm_device *dev = crtc->dev;
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908 u32 dpa_ctl;
1909
1910 assert_pipe_disabled(dev_priv,
1911 to_intel_crtc(crtc)->pipe);
1912
1913 dpa_ctl = I915_READ(DP_A);
1914 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1915 "dp pll off, should be on\n");
1916 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1917
1918 /* We can't rely on the value tracked for the DP register in
1919 * intel_dp->DP because link_down must not change that (otherwise link
1920 * re-training will fail. */
1921 dpa_ctl &= ~DP_PLL_ENABLE;
1922 I915_WRITE(DP_A, dpa_ctl);
1923 POSTING_READ(DP_A);
1924 udelay(200);
1925 }
1926
1927 /* If the sink supports it, try to set the power state appropriately */
1928 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1929 {
1930 int ret, i;
1931
1932 /* Should have a valid DPCD by this point */
1933 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1934 return;
1935
1936 if (mode != DRM_MODE_DPMS_ON) {
1937 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1938 DP_SET_POWER_D3);
1939 } else {
1940 /*
1941 * When turning on, we need to retry for 1ms to give the sink
1942 * time to wake up.
1943 */
1944 for (i = 0; i < 3; i++) {
1945 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1946 DP_SET_POWER_D0);
1947 if (ret == 1)
1948 break;
1949 msleep(1);
1950 }
1951 }
1952
1953 if (ret != 1)
1954 DRM_DEBUG_KMS("failed to %s sink power state\n",
1955 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1956 }
1957
1958 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1959 enum pipe *pipe)
1960 {
1961 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1962 enum port port = dp_to_dig_port(intel_dp)->port;
1963 struct drm_device *dev = encoder->base.dev;
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 enum intel_display_power_domain power_domain;
1966 u32 tmp;
1967
1968 power_domain = intel_display_port_power_domain(encoder);
1969 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1970 return false;
1971
1972 tmp = I915_READ(intel_dp->output_reg);
1973
1974 if (!(tmp & DP_PORT_EN))
1975 return false;
1976
1977 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1978 *pipe = PORT_TO_PIPE_CPT(tmp);
1979 } else if (IS_CHERRYVIEW(dev)) {
1980 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1981 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1982 *pipe = PORT_TO_PIPE(tmp);
1983 } else {
1984 u32 trans_sel;
1985 u32 trans_dp;
1986 int i;
1987
1988 switch (intel_dp->output_reg) {
1989 case PCH_DP_B:
1990 trans_sel = TRANS_DP_PORT_SEL_B;
1991 break;
1992 case PCH_DP_C:
1993 trans_sel = TRANS_DP_PORT_SEL_C;
1994 break;
1995 case PCH_DP_D:
1996 trans_sel = TRANS_DP_PORT_SEL_D;
1997 break;
1998 default:
1999 return true;
2000 }
2001
2002 for_each_pipe(dev_priv, i) {
2003 trans_dp = I915_READ(TRANS_DP_CTL(i));
2004 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2005 *pipe = i;
2006 return true;
2007 }
2008 }
2009
2010 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2011 intel_dp->output_reg);
2012 }
2013
2014 return true;
2015 }
2016
2017 static void intel_dp_get_config(struct intel_encoder *encoder,
2018 struct intel_crtc_state *pipe_config)
2019 {
2020 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2021 u32 tmp, flags = 0;
2022 struct drm_device *dev = encoder->base.dev;
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 enum port port = dp_to_dig_port(intel_dp)->port;
2025 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2026 int dotclock;
2027
2028 tmp = I915_READ(intel_dp->output_reg);
2029 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
2030 pipe_config->has_audio = true;
2031
2032 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2033 if (tmp & DP_SYNC_HS_HIGH)
2034 flags |= DRM_MODE_FLAG_PHSYNC;
2035 else
2036 flags |= DRM_MODE_FLAG_NHSYNC;
2037
2038 if (tmp & DP_SYNC_VS_HIGH)
2039 flags |= DRM_MODE_FLAG_PVSYNC;
2040 else
2041 flags |= DRM_MODE_FLAG_NVSYNC;
2042 } else {
2043 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2044 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2045 flags |= DRM_MODE_FLAG_PHSYNC;
2046 else
2047 flags |= DRM_MODE_FLAG_NHSYNC;
2048
2049 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2050 flags |= DRM_MODE_FLAG_PVSYNC;
2051 else
2052 flags |= DRM_MODE_FLAG_NVSYNC;
2053 }
2054
2055 pipe_config->base.adjusted_mode.flags |= flags;
2056
2057 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2058 tmp & DP_COLOR_RANGE_16_235)
2059 pipe_config->limited_color_range = true;
2060
2061 pipe_config->has_dp_encoder = true;
2062
2063 intel_dp_get_m_n(crtc, pipe_config);
2064
2065 if (port == PORT_A) {
2066 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2067 pipe_config->port_clock = 162000;
2068 else
2069 pipe_config->port_clock = 270000;
2070 }
2071
2072 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2073 &pipe_config->dp_m_n);
2074
2075 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2076 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2077
2078 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2079
2080 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2081 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2082 /*
2083 * This is a big fat ugly hack.
2084 *
2085 * Some machines in UEFI boot mode provide us a VBT that has 18
2086 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2087 * unknown we fail to light up. Yet the same BIOS boots up with
2088 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2089 * max, not what it tells us to use.
2090 *
2091 * Note: This will still be broken if the eDP panel is not lit
2092 * up by the BIOS, and thus we can't get the mode at module
2093 * load.
2094 */
2095 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2096 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2097 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2098 }
2099 }
2100
2101 static void intel_disable_dp(struct intel_encoder *encoder)
2102 {
2103 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2104 struct drm_device *dev = encoder->base.dev;
2105 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2106
2107 if (crtc->config->has_audio)
2108 intel_audio_codec_disable(encoder);
2109
2110 if (HAS_PSR(dev) && !HAS_DDI(dev))
2111 intel_psr_disable(intel_dp);
2112
2113 /* Make sure the panel is off before trying to change the mode. But also
2114 * ensure that we have vdd while we switch off the panel. */
2115 intel_edp_panel_vdd_on(intel_dp);
2116 intel_edp_backlight_off(intel_dp);
2117 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2118 intel_edp_panel_off(intel_dp);
2119
2120 /* disable the port before the pipe on g4x */
2121 if (INTEL_INFO(dev)->gen < 5)
2122 intel_dp_link_down(intel_dp);
2123 }
2124
2125 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2126 {
2127 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2128 enum port port = dp_to_dig_port(intel_dp)->port;
2129
2130 intel_dp_link_down(intel_dp);
2131 if (port == PORT_A)
2132 ironlake_edp_pll_off(intel_dp);
2133 }
2134
2135 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2136 {
2137 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2138
2139 intel_dp_link_down(intel_dp);
2140 }
2141
2142 static void chv_post_disable_dp(struct intel_encoder *encoder)
2143 {
2144 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2145 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2146 struct drm_device *dev = encoder->base.dev;
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148 struct intel_crtc *intel_crtc =
2149 to_intel_crtc(encoder->base.crtc);
2150 enum dpio_channel ch = vlv_dport_to_channel(dport);
2151 enum pipe pipe = intel_crtc->pipe;
2152 u32 val;
2153
2154 intel_dp_link_down(intel_dp);
2155
2156 mutex_lock(&dev_priv->dpio_lock);
2157
2158 /* Propagate soft reset to data lane reset */
2159 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2160 val |= CHV_PCS_REQ_SOFTRESET_EN;
2161 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2162
2163 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2164 val |= CHV_PCS_REQ_SOFTRESET_EN;
2165 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2166
2167 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2168 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2169 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2170
2171 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2172 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2173 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2174
2175 mutex_unlock(&dev_priv->dpio_lock);
2176 }
2177
2178 static void
2179 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2180 uint32_t *DP,
2181 uint8_t dp_train_pat)
2182 {
2183 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2184 struct drm_device *dev = intel_dig_port->base.base.dev;
2185 struct drm_i915_private *dev_priv = dev->dev_private;
2186 enum port port = intel_dig_port->port;
2187
2188 if (HAS_DDI(dev)) {
2189 uint32_t temp = I915_READ(DP_TP_CTL(port));
2190
2191 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2192 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2193 else
2194 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2195
2196 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2197 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2198 case DP_TRAINING_PATTERN_DISABLE:
2199 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2200
2201 break;
2202 case DP_TRAINING_PATTERN_1:
2203 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2204 break;
2205 case DP_TRAINING_PATTERN_2:
2206 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2207 break;
2208 case DP_TRAINING_PATTERN_3:
2209 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2210 break;
2211 }
2212 I915_WRITE(DP_TP_CTL(port), temp);
2213
2214 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2215 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2216
2217 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2218 case DP_TRAINING_PATTERN_DISABLE:
2219 *DP |= DP_LINK_TRAIN_OFF_CPT;
2220 break;
2221 case DP_TRAINING_PATTERN_1:
2222 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2223 break;
2224 case DP_TRAINING_PATTERN_2:
2225 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2226 break;
2227 case DP_TRAINING_PATTERN_3:
2228 DRM_ERROR("DP training pattern 3 not supported\n");
2229 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2230 break;
2231 }
2232
2233 } else {
2234 if (IS_CHERRYVIEW(dev))
2235 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2236 else
2237 *DP &= ~DP_LINK_TRAIN_MASK;
2238
2239 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2240 case DP_TRAINING_PATTERN_DISABLE:
2241 *DP |= DP_LINK_TRAIN_OFF;
2242 break;
2243 case DP_TRAINING_PATTERN_1:
2244 *DP |= DP_LINK_TRAIN_PAT_1;
2245 break;
2246 case DP_TRAINING_PATTERN_2:
2247 *DP |= DP_LINK_TRAIN_PAT_2;
2248 break;
2249 case DP_TRAINING_PATTERN_3:
2250 if (IS_CHERRYVIEW(dev)) {
2251 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2252 } else {
2253 DRM_ERROR("DP training pattern 3 not supported\n");
2254 *DP |= DP_LINK_TRAIN_PAT_2;
2255 }
2256 break;
2257 }
2258 }
2259 }
2260
2261 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2262 {
2263 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2265
2266 /* enable with pattern 1 (as per spec) */
2267 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2268 DP_TRAINING_PATTERN_1);
2269
2270 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2271 POSTING_READ(intel_dp->output_reg);
2272
2273 /*
2274 * Magic for VLV/CHV. We _must_ first set up the register
2275 * without actually enabling the port, and then do another
2276 * write to enable the port. Otherwise link training will
2277 * fail when the power sequencer is freshly used for this port.
2278 */
2279 intel_dp->DP |= DP_PORT_EN;
2280
2281 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2282 POSTING_READ(intel_dp->output_reg);
2283 }
2284
2285 static void intel_enable_dp(struct intel_encoder *encoder)
2286 {
2287 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2288 struct drm_device *dev = encoder->base.dev;
2289 struct drm_i915_private *dev_priv = dev->dev_private;
2290 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2291 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2292
2293 if (WARN_ON(dp_reg & DP_PORT_EN))
2294 return;
2295
2296 pps_lock(intel_dp);
2297
2298 if (IS_VALLEYVIEW(dev))
2299 vlv_init_panel_power_sequencer(intel_dp);
2300
2301 intel_dp_enable_port(intel_dp);
2302
2303 edp_panel_vdd_on(intel_dp);
2304 edp_panel_on(intel_dp);
2305 edp_panel_vdd_off(intel_dp, true);
2306
2307 pps_unlock(intel_dp);
2308
2309 if (IS_VALLEYVIEW(dev))
2310 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2311
2312 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2313 intel_dp_start_link_train(intel_dp);
2314 intel_dp_complete_link_train(intel_dp);
2315 intel_dp_stop_link_train(intel_dp);
2316
2317 if (crtc->config->has_audio) {
2318 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2319 pipe_name(crtc->pipe));
2320 intel_audio_codec_enable(encoder);
2321 }
2322 }
2323
2324 static void g4x_enable_dp(struct intel_encoder *encoder)
2325 {
2326 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2327
2328 intel_enable_dp(encoder);
2329 intel_edp_backlight_on(intel_dp);
2330 }
2331
2332 static void vlv_enable_dp(struct intel_encoder *encoder)
2333 {
2334 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2335
2336 intel_edp_backlight_on(intel_dp);
2337 intel_psr_enable(intel_dp);
2338 }
2339
2340 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2341 {
2342 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2343 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2344
2345 intel_dp_prepare(encoder);
2346
2347 /* Only ilk+ has port A */
2348 if (dport->port == PORT_A) {
2349 ironlake_set_pll_cpu_edp(intel_dp);
2350 ironlake_edp_pll_on(intel_dp);
2351 }
2352 }
2353
2354 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2355 {
2356 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2357 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2358 enum pipe pipe = intel_dp->pps_pipe;
2359 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2360
2361 edp_panel_vdd_off_sync(intel_dp);
2362
2363 /*
2364 * VLV seems to get confused when multiple power seqeuencers
2365 * have the same port selected (even if only one has power/vdd
2366 * enabled). The failure manifests as vlv_wait_port_ready() failing
2367 * CHV on the other hand doesn't seem to mind having the same port
2368 * selected in multiple power seqeuencers, but let's clear the
2369 * port select always when logically disconnecting a power sequencer
2370 * from a port.
2371 */
2372 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2373 pipe_name(pipe), port_name(intel_dig_port->port));
2374 I915_WRITE(pp_on_reg, 0);
2375 POSTING_READ(pp_on_reg);
2376
2377 intel_dp->pps_pipe = INVALID_PIPE;
2378 }
2379
2380 static void vlv_steal_power_sequencer(struct drm_device *dev,
2381 enum pipe pipe)
2382 {
2383 struct drm_i915_private *dev_priv = dev->dev_private;
2384 struct intel_encoder *encoder;
2385
2386 lockdep_assert_held(&dev_priv->pps_mutex);
2387
2388 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2389 return;
2390
2391 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2392 base.head) {
2393 struct intel_dp *intel_dp;
2394 enum port port;
2395
2396 if (encoder->type != INTEL_OUTPUT_EDP)
2397 continue;
2398
2399 intel_dp = enc_to_intel_dp(&encoder->base);
2400 port = dp_to_dig_port(intel_dp)->port;
2401
2402 if (intel_dp->pps_pipe != pipe)
2403 continue;
2404
2405 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2406 pipe_name(pipe), port_name(port));
2407
2408 WARN(encoder->connectors_active,
2409 "stealing pipe %c power sequencer from active eDP port %c\n",
2410 pipe_name(pipe), port_name(port));
2411
2412 /* make sure vdd is off before we steal it */
2413 vlv_detach_power_sequencer(intel_dp);
2414 }
2415 }
2416
2417 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2418 {
2419 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2420 struct intel_encoder *encoder = &intel_dig_port->base;
2421 struct drm_device *dev = encoder->base.dev;
2422 struct drm_i915_private *dev_priv = dev->dev_private;
2423 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2424
2425 lockdep_assert_held(&dev_priv->pps_mutex);
2426
2427 if (!is_edp(intel_dp))
2428 return;
2429
2430 if (intel_dp->pps_pipe == crtc->pipe)
2431 return;
2432
2433 /*
2434 * If another power sequencer was being used on this
2435 * port previously make sure to turn off vdd there while
2436 * we still have control of it.
2437 */
2438 if (intel_dp->pps_pipe != INVALID_PIPE)
2439 vlv_detach_power_sequencer(intel_dp);
2440
2441 /*
2442 * We may be stealing the power
2443 * sequencer from another port.
2444 */
2445 vlv_steal_power_sequencer(dev, crtc->pipe);
2446
2447 /* now it's all ours */
2448 intel_dp->pps_pipe = crtc->pipe;
2449
2450 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2451 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2452
2453 /* init power sequencer on this pipe and port */
2454 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2455 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2456 }
2457
2458 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2459 {
2460 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2461 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2462 struct drm_device *dev = encoder->base.dev;
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2465 enum dpio_channel port = vlv_dport_to_channel(dport);
2466 int pipe = intel_crtc->pipe;
2467 u32 val;
2468
2469 mutex_lock(&dev_priv->dpio_lock);
2470
2471 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2472 val = 0;
2473 if (pipe)
2474 val |= (1<<21);
2475 else
2476 val &= ~(1<<21);
2477 val |= 0x001000c4;
2478 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2479 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2480 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2481
2482 mutex_unlock(&dev_priv->dpio_lock);
2483
2484 intel_enable_dp(encoder);
2485 }
2486
2487 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2488 {
2489 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2490 struct drm_device *dev = encoder->base.dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 struct intel_crtc *intel_crtc =
2493 to_intel_crtc(encoder->base.crtc);
2494 enum dpio_channel port = vlv_dport_to_channel(dport);
2495 int pipe = intel_crtc->pipe;
2496
2497 intel_dp_prepare(encoder);
2498
2499 /* Program Tx lane resets to default */
2500 mutex_lock(&dev_priv->dpio_lock);
2501 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2502 DPIO_PCS_TX_LANE2_RESET |
2503 DPIO_PCS_TX_LANE1_RESET);
2504 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2505 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2506 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2507 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2508 DPIO_PCS_CLK_SOFT_RESET);
2509
2510 /* Fix up inter-pair skew failure */
2511 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2512 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2513 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2514 mutex_unlock(&dev_priv->dpio_lock);
2515 }
2516
2517 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2518 {
2519 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2520 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2521 struct drm_device *dev = encoder->base.dev;
2522 struct drm_i915_private *dev_priv = dev->dev_private;
2523 struct intel_crtc *intel_crtc =
2524 to_intel_crtc(encoder->base.crtc);
2525 enum dpio_channel ch = vlv_dport_to_channel(dport);
2526 int pipe = intel_crtc->pipe;
2527 int data, i;
2528 u32 val;
2529
2530 mutex_lock(&dev_priv->dpio_lock);
2531
2532 /* allow hardware to manage TX FIFO reset source */
2533 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2534 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2535 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2536
2537 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2538 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2539 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2540
2541 /* Deassert soft data lane reset*/
2542 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2543 val |= CHV_PCS_REQ_SOFTRESET_EN;
2544 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2545
2546 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2547 val |= CHV_PCS_REQ_SOFTRESET_EN;
2548 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2549
2550 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2551 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2552 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2553
2554 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2555 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2556 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2557
2558 /* Program Tx lane latency optimal setting*/
2559 for (i = 0; i < 4; i++) {
2560 /* Set the latency optimal bit */
2561 data = (i == 1) ? 0x0 : 0x6;
2562 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2563 data << DPIO_FRC_LATENCY_SHFIT);
2564
2565 /* Set the upar bit */
2566 data = (i == 1) ? 0x0 : 0x1;
2567 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2568 data << DPIO_UPAR_SHIFT);
2569 }
2570
2571 /* Data lane stagger programming */
2572 /* FIXME: Fix up value only after power analysis */
2573
2574 mutex_unlock(&dev_priv->dpio_lock);
2575
2576 intel_enable_dp(encoder);
2577 }
2578
2579 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2580 {
2581 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2582 struct drm_device *dev = encoder->base.dev;
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 struct intel_crtc *intel_crtc =
2585 to_intel_crtc(encoder->base.crtc);
2586 enum dpio_channel ch = vlv_dport_to_channel(dport);
2587 enum pipe pipe = intel_crtc->pipe;
2588 u32 val;
2589
2590 intel_dp_prepare(encoder);
2591
2592 mutex_lock(&dev_priv->dpio_lock);
2593
2594 /* program left/right clock distribution */
2595 if (pipe != PIPE_B) {
2596 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2597 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2598 if (ch == DPIO_CH0)
2599 val |= CHV_BUFLEFTENA1_FORCE;
2600 if (ch == DPIO_CH1)
2601 val |= CHV_BUFRIGHTENA1_FORCE;
2602 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2603 } else {
2604 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2605 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2606 if (ch == DPIO_CH0)
2607 val |= CHV_BUFLEFTENA2_FORCE;
2608 if (ch == DPIO_CH1)
2609 val |= CHV_BUFRIGHTENA2_FORCE;
2610 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2611 }
2612
2613 /* program clock channel usage */
2614 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2615 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2616 if (pipe != PIPE_B)
2617 val &= ~CHV_PCS_USEDCLKCHANNEL;
2618 else
2619 val |= CHV_PCS_USEDCLKCHANNEL;
2620 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2621
2622 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2623 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2624 if (pipe != PIPE_B)
2625 val &= ~CHV_PCS_USEDCLKCHANNEL;
2626 else
2627 val |= CHV_PCS_USEDCLKCHANNEL;
2628 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2629
2630 /*
2631 * This a a bit weird since generally CL
2632 * matches the pipe, but here we need to
2633 * pick the CL based on the port.
2634 */
2635 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2636 if (pipe != PIPE_B)
2637 val &= ~CHV_CMN_USEDCLKCHANNEL;
2638 else
2639 val |= CHV_CMN_USEDCLKCHANNEL;
2640 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2641
2642 mutex_unlock(&dev_priv->dpio_lock);
2643 }
2644
2645 /*
2646 * Native read with retry for link status and receiver capability reads for
2647 * cases where the sink may still be asleep.
2648 *
2649 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2650 * supposed to retry 3 times per the spec.
2651 */
2652 static ssize_t
2653 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2654 void *buffer, size_t size)
2655 {
2656 ssize_t ret;
2657 int i;
2658
2659 /*
2660 * Sometime we just get the same incorrect byte repeated
2661 * over the entire buffer. Doing just one throw away read
2662 * initially seems to "solve" it.
2663 */
2664 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2665
2666 for (i = 0; i < 3; i++) {
2667 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2668 if (ret == size)
2669 return ret;
2670 msleep(1);
2671 }
2672
2673 return ret;
2674 }
2675
2676 /*
2677 * Fetch AUX CH registers 0x202 - 0x207 which contain
2678 * link status information
2679 */
2680 static bool
2681 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2682 {
2683 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2684 DP_LANE0_1_STATUS,
2685 link_status,
2686 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2687 }
2688
2689 /* These are source-specific values. */
2690 static uint8_t
2691 intel_dp_voltage_max(struct intel_dp *intel_dp)
2692 {
2693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2694 enum port port = dp_to_dig_port(intel_dp)->port;
2695
2696 if (INTEL_INFO(dev)->gen >= 9)
2697 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2698 else if (IS_VALLEYVIEW(dev))
2699 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2700 else if (IS_GEN7(dev) && port == PORT_A)
2701 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2702 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2703 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2704 else
2705 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2706 }
2707
2708 static uint8_t
2709 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2710 {
2711 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2712 enum port port = dp_to_dig_port(intel_dp)->port;
2713
2714 if (INTEL_INFO(dev)->gen >= 9) {
2715 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2716 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2717 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2718 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2719 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2720 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2721 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2722 default:
2723 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2724 }
2725 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2726 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2727 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2728 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2729 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2730 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2731 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2732 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2733 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2734 default:
2735 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2736 }
2737 } else if (IS_VALLEYVIEW(dev)) {
2738 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2739 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2740 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2741 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2742 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2743 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2744 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2745 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2746 default:
2747 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2748 }
2749 } else if (IS_GEN7(dev) && port == PORT_A) {
2750 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2751 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2752 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2753 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2754 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2755 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2756 default:
2757 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2758 }
2759 } else {
2760 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2761 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2762 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2763 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2764 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2765 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2766 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2767 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2768 default:
2769 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2770 }
2771 }
2772 }
2773
2774 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2775 {
2776 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2777 struct drm_i915_private *dev_priv = dev->dev_private;
2778 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2779 struct intel_crtc *intel_crtc =
2780 to_intel_crtc(dport->base.base.crtc);
2781 unsigned long demph_reg_value, preemph_reg_value,
2782 uniqtranscale_reg_value;
2783 uint8_t train_set = intel_dp->train_set[0];
2784 enum dpio_channel port = vlv_dport_to_channel(dport);
2785 int pipe = intel_crtc->pipe;
2786
2787 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2788 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2789 preemph_reg_value = 0x0004000;
2790 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2791 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2792 demph_reg_value = 0x2B405555;
2793 uniqtranscale_reg_value = 0x552AB83A;
2794 break;
2795 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2796 demph_reg_value = 0x2B404040;
2797 uniqtranscale_reg_value = 0x5548B83A;
2798 break;
2799 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2800 demph_reg_value = 0x2B245555;
2801 uniqtranscale_reg_value = 0x5560B83A;
2802 break;
2803 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2804 demph_reg_value = 0x2B405555;
2805 uniqtranscale_reg_value = 0x5598DA3A;
2806 break;
2807 default:
2808 return 0;
2809 }
2810 break;
2811 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2812 preemph_reg_value = 0x0002000;
2813 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2814 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2815 demph_reg_value = 0x2B404040;
2816 uniqtranscale_reg_value = 0x5552B83A;
2817 break;
2818 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2819 demph_reg_value = 0x2B404848;
2820 uniqtranscale_reg_value = 0x5580B83A;
2821 break;
2822 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2823 demph_reg_value = 0x2B404040;
2824 uniqtranscale_reg_value = 0x55ADDA3A;
2825 break;
2826 default:
2827 return 0;
2828 }
2829 break;
2830 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2831 preemph_reg_value = 0x0000000;
2832 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2833 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2834 demph_reg_value = 0x2B305555;
2835 uniqtranscale_reg_value = 0x5570B83A;
2836 break;
2837 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2838 demph_reg_value = 0x2B2B4040;
2839 uniqtranscale_reg_value = 0x55ADDA3A;
2840 break;
2841 default:
2842 return 0;
2843 }
2844 break;
2845 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2846 preemph_reg_value = 0x0006000;
2847 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2848 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2849 demph_reg_value = 0x1B405555;
2850 uniqtranscale_reg_value = 0x55ADDA3A;
2851 break;
2852 default:
2853 return 0;
2854 }
2855 break;
2856 default:
2857 return 0;
2858 }
2859
2860 mutex_lock(&dev_priv->dpio_lock);
2861 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2862 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2863 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2864 uniqtranscale_reg_value);
2865 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2866 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2867 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2868 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2869 mutex_unlock(&dev_priv->dpio_lock);
2870
2871 return 0;
2872 }
2873
2874 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2875 {
2876 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2877 struct drm_i915_private *dev_priv = dev->dev_private;
2878 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2879 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2880 u32 deemph_reg_value, margin_reg_value, val;
2881 uint8_t train_set = intel_dp->train_set[0];
2882 enum dpio_channel ch = vlv_dport_to_channel(dport);
2883 enum pipe pipe = intel_crtc->pipe;
2884 int i;
2885
2886 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2887 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2888 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2889 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2890 deemph_reg_value = 128;
2891 margin_reg_value = 52;
2892 break;
2893 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2894 deemph_reg_value = 128;
2895 margin_reg_value = 77;
2896 break;
2897 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2898 deemph_reg_value = 128;
2899 margin_reg_value = 102;
2900 break;
2901 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2902 deemph_reg_value = 128;
2903 margin_reg_value = 154;
2904 /* FIXME extra to set for 1200 */
2905 break;
2906 default:
2907 return 0;
2908 }
2909 break;
2910 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2911 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2912 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2913 deemph_reg_value = 85;
2914 margin_reg_value = 78;
2915 break;
2916 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2917 deemph_reg_value = 85;
2918 margin_reg_value = 116;
2919 break;
2920 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2921 deemph_reg_value = 85;
2922 margin_reg_value = 154;
2923 break;
2924 default:
2925 return 0;
2926 }
2927 break;
2928 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2929 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2930 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2931 deemph_reg_value = 64;
2932 margin_reg_value = 104;
2933 break;
2934 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2935 deemph_reg_value = 64;
2936 margin_reg_value = 154;
2937 break;
2938 default:
2939 return 0;
2940 }
2941 break;
2942 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2943 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2944 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2945 deemph_reg_value = 43;
2946 margin_reg_value = 154;
2947 break;
2948 default:
2949 return 0;
2950 }
2951 break;
2952 default:
2953 return 0;
2954 }
2955
2956 mutex_lock(&dev_priv->dpio_lock);
2957
2958 /* Clear calc init */
2959 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2960 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2961 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
2962 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
2963 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2964
2965 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2966 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2967 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
2968 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
2969 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2970
2971 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
2972 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
2973 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
2974 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
2975
2976 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
2977 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
2978 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
2979 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
2980
2981 /* Program swing deemph */
2982 for (i = 0; i < 4; i++) {
2983 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2984 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2985 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2986 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2987 }
2988
2989 /* Program swing margin */
2990 for (i = 0; i < 4; i++) {
2991 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2992 val &= ~DPIO_SWING_MARGIN000_MASK;
2993 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2994 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2995 }
2996
2997 /* Disable unique transition scale */
2998 for (i = 0; i < 4; i++) {
2999 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3000 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3001 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3002 }
3003
3004 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3005 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3006 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3007 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3008
3009 /*
3010 * The document said it needs to set bit 27 for ch0 and bit 26
3011 * for ch1. Might be a typo in the doc.
3012 * For now, for this unique transition scale selection, set bit
3013 * 27 for ch0 and ch1.
3014 */
3015 for (i = 0; i < 4; i++) {
3016 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3017 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3018 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3019 }
3020
3021 for (i = 0; i < 4; i++) {
3022 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3023 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3024 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3025 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3026 }
3027 }
3028
3029 /* Start swing calculation */
3030 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3031 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3032 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3033
3034 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3035 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3036 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3037
3038 /* LRC Bypass */
3039 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3040 val |= DPIO_LRC_BYPASS;
3041 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3042
3043 mutex_unlock(&dev_priv->dpio_lock);
3044
3045 return 0;
3046 }
3047
3048 static void
3049 intel_get_adjust_train(struct intel_dp *intel_dp,
3050 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3051 {
3052 uint8_t v = 0;
3053 uint8_t p = 0;
3054 int lane;
3055 uint8_t voltage_max;
3056 uint8_t preemph_max;
3057
3058 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3059 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3060 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3061
3062 if (this_v > v)
3063 v = this_v;
3064 if (this_p > p)
3065 p = this_p;
3066 }
3067
3068 voltage_max = intel_dp_voltage_max(intel_dp);
3069 if (v >= voltage_max)
3070 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3071
3072 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3073 if (p >= preemph_max)
3074 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3075
3076 for (lane = 0; lane < 4; lane++)
3077 intel_dp->train_set[lane] = v | p;
3078 }
3079
3080 static uint32_t
3081 intel_gen4_signal_levels(uint8_t train_set)
3082 {
3083 uint32_t signal_levels = 0;
3084
3085 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3086 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3087 default:
3088 signal_levels |= DP_VOLTAGE_0_4;
3089 break;
3090 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3091 signal_levels |= DP_VOLTAGE_0_6;
3092 break;
3093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3094 signal_levels |= DP_VOLTAGE_0_8;
3095 break;
3096 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3097 signal_levels |= DP_VOLTAGE_1_2;
3098 break;
3099 }
3100 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3101 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3102 default:
3103 signal_levels |= DP_PRE_EMPHASIS_0;
3104 break;
3105 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3106 signal_levels |= DP_PRE_EMPHASIS_3_5;
3107 break;
3108 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3109 signal_levels |= DP_PRE_EMPHASIS_6;
3110 break;
3111 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3112 signal_levels |= DP_PRE_EMPHASIS_9_5;
3113 break;
3114 }
3115 return signal_levels;
3116 }
3117
3118 /* Gen6's DP voltage swing and pre-emphasis control */
3119 static uint32_t
3120 intel_gen6_edp_signal_levels(uint8_t train_set)
3121 {
3122 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3123 DP_TRAIN_PRE_EMPHASIS_MASK);
3124 switch (signal_levels) {
3125 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3126 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3127 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3128 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3129 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3131 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3132 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3133 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3134 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3135 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3136 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3137 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3138 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3139 default:
3140 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3141 "0x%x\n", signal_levels);
3142 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3143 }
3144 }
3145
3146 /* Gen7's DP voltage swing and pre-emphasis control */
3147 static uint32_t
3148 intel_gen7_edp_signal_levels(uint8_t train_set)
3149 {
3150 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3151 DP_TRAIN_PRE_EMPHASIS_MASK);
3152 switch (signal_levels) {
3153 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3154 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3155 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3156 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3157 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3158 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3159
3160 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3161 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3162 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3163 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3164
3165 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3166 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3167 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3168 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3169
3170 default:
3171 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3172 "0x%x\n", signal_levels);
3173 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3174 }
3175 }
3176
3177 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3178 static uint32_t
3179 intel_hsw_signal_levels(uint8_t train_set)
3180 {
3181 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3182 DP_TRAIN_PRE_EMPHASIS_MASK);
3183 switch (signal_levels) {
3184 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3185 return DDI_BUF_TRANS_SELECT(0);
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3187 return DDI_BUF_TRANS_SELECT(1);
3188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3189 return DDI_BUF_TRANS_SELECT(2);
3190 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3191 return DDI_BUF_TRANS_SELECT(3);
3192
3193 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3194 return DDI_BUF_TRANS_SELECT(4);
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3196 return DDI_BUF_TRANS_SELECT(5);
3197 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3198 return DDI_BUF_TRANS_SELECT(6);
3199
3200 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3201 return DDI_BUF_TRANS_SELECT(7);
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3203 return DDI_BUF_TRANS_SELECT(8);
3204 default:
3205 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3206 "0x%x\n", signal_levels);
3207 return DDI_BUF_TRANS_SELECT(0);
3208 }
3209 }
3210
3211 /* Properly updates "DP" with the correct signal levels. */
3212 static void
3213 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3214 {
3215 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3216 enum port port = intel_dig_port->port;
3217 struct drm_device *dev = intel_dig_port->base.base.dev;
3218 uint32_t signal_levels, mask;
3219 uint8_t train_set = intel_dp->train_set[0];
3220
3221 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3222 signal_levels = intel_hsw_signal_levels(train_set);
3223 mask = DDI_BUF_EMP_MASK;
3224 } else if (IS_CHERRYVIEW(dev)) {
3225 signal_levels = intel_chv_signal_levels(intel_dp);
3226 mask = 0;
3227 } else if (IS_VALLEYVIEW(dev)) {
3228 signal_levels = intel_vlv_signal_levels(intel_dp);
3229 mask = 0;
3230 } else if (IS_GEN7(dev) && port == PORT_A) {
3231 signal_levels = intel_gen7_edp_signal_levels(train_set);
3232 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3233 } else if (IS_GEN6(dev) && port == PORT_A) {
3234 signal_levels = intel_gen6_edp_signal_levels(train_set);
3235 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3236 } else {
3237 signal_levels = intel_gen4_signal_levels(train_set);
3238 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3239 }
3240
3241 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3242
3243 *DP = (*DP & ~mask) | signal_levels;
3244 }
3245
3246 static bool
3247 intel_dp_set_link_train(struct intel_dp *intel_dp,
3248 uint32_t *DP,
3249 uint8_t dp_train_pat)
3250 {
3251 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3252 struct drm_device *dev = intel_dig_port->base.base.dev;
3253 struct drm_i915_private *dev_priv = dev->dev_private;
3254 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3255 int ret, len;
3256
3257 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3258
3259 I915_WRITE(intel_dp->output_reg, *DP);
3260 POSTING_READ(intel_dp->output_reg);
3261
3262 buf[0] = dp_train_pat;
3263 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3264 DP_TRAINING_PATTERN_DISABLE) {
3265 /* don't write DP_TRAINING_LANEx_SET on disable */
3266 len = 1;
3267 } else {
3268 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3269 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3270 len = intel_dp->lane_count + 1;
3271 }
3272
3273 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3274 buf, len);
3275
3276 return ret == len;
3277 }
3278
3279 static bool
3280 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3281 uint8_t dp_train_pat)
3282 {
3283 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3284 intel_dp_set_signal_levels(intel_dp, DP);
3285 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3286 }
3287
3288 static bool
3289 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3290 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3291 {
3292 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3293 struct drm_device *dev = intel_dig_port->base.base.dev;
3294 struct drm_i915_private *dev_priv = dev->dev_private;
3295 int ret;
3296
3297 intel_get_adjust_train(intel_dp, link_status);
3298 intel_dp_set_signal_levels(intel_dp, DP);
3299
3300 I915_WRITE(intel_dp->output_reg, *DP);
3301 POSTING_READ(intel_dp->output_reg);
3302
3303 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3304 intel_dp->train_set, intel_dp->lane_count);
3305
3306 return ret == intel_dp->lane_count;
3307 }
3308
3309 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3310 {
3311 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3312 struct drm_device *dev = intel_dig_port->base.base.dev;
3313 struct drm_i915_private *dev_priv = dev->dev_private;
3314 enum port port = intel_dig_port->port;
3315 uint32_t val;
3316
3317 if (!HAS_DDI(dev))
3318 return;
3319
3320 val = I915_READ(DP_TP_CTL(port));
3321 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3322 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3323 I915_WRITE(DP_TP_CTL(port), val);
3324
3325 /*
3326 * On PORT_A we can have only eDP in SST mode. There the only reason
3327 * we need to set idle transmission mode is to work around a HW issue
3328 * where we enable the pipe while not in idle link-training mode.
3329 * In this case there is requirement to wait for a minimum number of
3330 * idle patterns to be sent.
3331 */
3332 if (port == PORT_A)
3333 return;
3334
3335 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3336 1))
3337 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3338 }
3339
3340 /* Enable corresponding port and start training pattern 1 */
3341 void
3342 intel_dp_start_link_train(struct intel_dp *intel_dp)
3343 {
3344 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3345 struct drm_device *dev = encoder->dev;
3346 int i;
3347 uint8_t voltage;
3348 int voltage_tries, loop_tries;
3349 uint32_t DP = intel_dp->DP;
3350 uint8_t link_config[2];
3351
3352 if (HAS_DDI(dev))
3353 intel_ddi_prepare_link_retrain(encoder);
3354
3355 /* Write the link configuration data */
3356 link_config[0] = intel_dp->link_bw;
3357 link_config[1] = intel_dp->lane_count;
3358 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3359 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3360 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3361
3362 link_config[0] = 0;
3363 link_config[1] = DP_SET_ANSI_8B10B;
3364 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3365
3366 DP |= DP_PORT_EN;
3367
3368 /* clock recovery */
3369 if (!intel_dp_reset_link_train(intel_dp, &DP,
3370 DP_TRAINING_PATTERN_1 |
3371 DP_LINK_SCRAMBLING_DISABLE)) {
3372 DRM_ERROR("failed to enable link training\n");
3373 return;
3374 }
3375
3376 voltage = 0xff;
3377 voltage_tries = 0;
3378 loop_tries = 0;
3379 for (;;) {
3380 uint8_t link_status[DP_LINK_STATUS_SIZE];
3381
3382 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3383 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3384 DRM_ERROR("failed to get link status\n");
3385 break;
3386 }
3387
3388 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3389 DRM_DEBUG_KMS("clock recovery OK\n");
3390 break;
3391 }
3392
3393 /* Check to see if we've tried the max voltage */
3394 for (i = 0; i < intel_dp->lane_count; i++)
3395 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3396 break;
3397 if (i == intel_dp->lane_count) {
3398 ++loop_tries;
3399 if (loop_tries == 5) {
3400 DRM_ERROR("too many full retries, give up\n");
3401 break;
3402 }
3403 intel_dp_reset_link_train(intel_dp, &DP,
3404 DP_TRAINING_PATTERN_1 |
3405 DP_LINK_SCRAMBLING_DISABLE);
3406 voltage_tries = 0;
3407 continue;
3408 }
3409
3410 /* Check to see if we've tried the same voltage 5 times */
3411 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3412 ++voltage_tries;
3413 if (voltage_tries == 5) {
3414 DRM_ERROR("too many voltage retries, give up\n");
3415 break;
3416 }
3417 } else
3418 voltage_tries = 0;
3419 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3420
3421 /* Update training set as requested by target */
3422 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3423 DRM_ERROR("failed to update link training\n");
3424 break;
3425 }
3426 }
3427
3428 intel_dp->DP = DP;
3429 }
3430
3431 void
3432 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3433 {
3434 bool channel_eq = false;
3435 int tries, cr_tries;
3436 uint32_t DP = intel_dp->DP;
3437 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3438
3439 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3440 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3441 training_pattern = DP_TRAINING_PATTERN_3;
3442
3443 /* channel equalization */
3444 if (!intel_dp_set_link_train(intel_dp, &DP,
3445 training_pattern |
3446 DP_LINK_SCRAMBLING_DISABLE)) {
3447 DRM_ERROR("failed to start channel equalization\n");
3448 return;
3449 }
3450
3451 tries = 0;
3452 cr_tries = 0;
3453 channel_eq = false;
3454 for (;;) {
3455 uint8_t link_status[DP_LINK_STATUS_SIZE];
3456
3457 if (cr_tries > 5) {
3458 DRM_ERROR("failed to train DP, aborting\n");
3459 break;
3460 }
3461
3462 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3463 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3464 DRM_ERROR("failed to get link status\n");
3465 break;
3466 }
3467
3468 /* Make sure clock is still ok */
3469 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3470 intel_dp_start_link_train(intel_dp);
3471 intel_dp_set_link_train(intel_dp, &DP,
3472 training_pattern |
3473 DP_LINK_SCRAMBLING_DISABLE);
3474 cr_tries++;
3475 continue;
3476 }
3477
3478 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3479 channel_eq = true;
3480 break;
3481 }
3482
3483 /* Try 5 times, then try clock recovery if that fails */
3484 if (tries > 5) {
3485 intel_dp_start_link_train(intel_dp);
3486 intel_dp_set_link_train(intel_dp, &DP,
3487 training_pattern |
3488 DP_LINK_SCRAMBLING_DISABLE);
3489 tries = 0;
3490 cr_tries++;
3491 continue;
3492 }
3493
3494 /* Update training set as requested by target */
3495 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3496 DRM_ERROR("failed to update link training\n");
3497 break;
3498 }
3499 ++tries;
3500 }
3501
3502 intel_dp_set_idle_link_train(intel_dp);
3503
3504 intel_dp->DP = DP;
3505
3506 if (channel_eq)
3507 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3508
3509 }
3510
3511 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3512 {
3513 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3514 DP_TRAINING_PATTERN_DISABLE);
3515 }
3516
3517 static void
3518 intel_dp_link_down(struct intel_dp *intel_dp)
3519 {
3520 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3521 enum port port = intel_dig_port->port;
3522 struct drm_device *dev = intel_dig_port->base.base.dev;
3523 struct drm_i915_private *dev_priv = dev->dev_private;
3524 struct intel_crtc *intel_crtc =
3525 to_intel_crtc(intel_dig_port->base.base.crtc);
3526 uint32_t DP = intel_dp->DP;
3527
3528 if (WARN_ON(HAS_DDI(dev)))
3529 return;
3530
3531 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3532 return;
3533
3534 DRM_DEBUG_KMS("\n");
3535
3536 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3537 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3538 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3539 } else {
3540 if (IS_CHERRYVIEW(dev))
3541 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3542 else
3543 DP &= ~DP_LINK_TRAIN_MASK;
3544 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3545 }
3546 POSTING_READ(intel_dp->output_reg);
3547
3548 if (HAS_PCH_IBX(dev) &&
3549 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3550 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3551
3552 /* Hardware workaround: leaving our transcoder select
3553 * set to transcoder B while it's off will prevent the
3554 * corresponding HDMI output on transcoder A.
3555 *
3556 * Combine this with another hardware workaround:
3557 * transcoder select bit can only be cleared while the
3558 * port is enabled.
3559 */
3560 DP &= ~DP_PIPEB_SELECT;
3561 I915_WRITE(intel_dp->output_reg, DP);
3562
3563 /* Changes to enable or select take place the vblank
3564 * after being written.
3565 */
3566 if (WARN_ON(crtc == NULL)) {
3567 /* We should never try to disable a port without a crtc
3568 * attached. For paranoia keep the code around for a
3569 * bit. */
3570 POSTING_READ(intel_dp->output_reg);
3571 msleep(50);
3572 } else
3573 intel_wait_for_vblank(dev, intel_crtc->pipe);
3574 }
3575
3576 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3577 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3578 POSTING_READ(intel_dp->output_reg);
3579 msleep(intel_dp->panel_power_down_delay);
3580 }
3581
3582 static bool
3583 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3584 {
3585 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3586 struct drm_device *dev = dig_port->base.base.dev;
3587 struct drm_i915_private *dev_priv = dev->dev_private;
3588
3589 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3590 sizeof(intel_dp->dpcd)) < 0)
3591 return false; /* aux transfer failed */
3592
3593 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3594
3595 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3596 return false; /* DPCD not present */
3597
3598 /* Check if the panel supports PSR */
3599 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3600 if (is_edp(intel_dp)) {
3601 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3602 intel_dp->psr_dpcd,
3603 sizeof(intel_dp->psr_dpcd));
3604 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3605 dev_priv->psr.sink_support = true;
3606 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3607 }
3608 }
3609
3610 /* Training Pattern 3 support, both source and sink */
3611 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3612 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3613 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3614 intel_dp->use_tps3 = true;
3615 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3616 } else
3617 intel_dp->use_tps3 = false;
3618
3619 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3620 DP_DWN_STRM_PORT_PRESENT))
3621 return true; /* native DP sink */
3622
3623 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3624 return true; /* no per-port downstream info */
3625
3626 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3627 intel_dp->downstream_ports,
3628 DP_MAX_DOWNSTREAM_PORTS) < 0)
3629 return false; /* downstream port status fetch failed */
3630
3631 return true;
3632 }
3633
3634 static void
3635 intel_dp_probe_oui(struct intel_dp *intel_dp)
3636 {
3637 u8 buf[3];
3638
3639 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3640 return;
3641
3642 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3643 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3644 buf[0], buf[1], buf[2]);
3645
3646 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3647 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3648 buf[0], buf[1], buf[2]);
3649 }
3650
3651 static bool
3652 intel_dp_probe_mst(struct intel_dp *intel_dp)
3653 {
3654 u8 buf[1];
3655
3656 if (!intel_dp->can_mst)
3657 return false;
3658
3659 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3660 return false;
3661
3662 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3663 if (buf[0] & DP_MST_CAP) {
3664 DRM_DEBUG_KMS("Sink is MST capable\n");
3665 intel_dp->is_mst = true;
3666 } else {
3667 DRM_DEBUG_KMS("Sink is not MST capable\n");
3668 intel_dp->is_mst = false;
3669 }
3670 }
3671
3672 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3673 return intel_dp->is_mst;
3674 }
3675
3676 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3677 {
3678 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3679 struct drm_device *dev = intel_dig_port->base.base.dev;
3680 struct intel_crtc *intel_crtc =
3681 to_intel_crtc(intel_dig_port->base.base.crtc);
3682 u8 buf;
3683 int test_crc_count;
3684 int attempts = 6;
3685
3686 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3687 return -EIO;
3688
3689 if (!(buf & DP_TEST_CRC_SUPPORTED))
3690 return -ENOTTY;
3691
3692 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3693 return -EIO;
3694
3695 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3696 buf | DP_TEST_SINK_START) < 0)
3697 return -EIO;
3698
3699 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3700 return -EIO;
3701 test_crc_count = buf & DP_TEST_COUNT_MASK;
3702
3703 do {
3704 if (drm_dp_dpcd_readb(&intel_dp->aux,
3705 DP_TEST_SINK_MISC, &buf) < 0)
3706 return -EIO;
3707 intel_wait_for_vblank(dev, intel_crtc->pipe);
3708 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3709
3710 if (attempts == 0) {
3711 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
3712 return -ETIMEDOUT;
3713 }
3714
3715 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3716 return -EIO;
3717
3718 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3719 return -EIO;
3720 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3721 buf & ~DP_TEST_SINK_START) < 0)
3722 return -EIO;
3723
3724 return 0;
3725 }
3726
3727 static bool
3728 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3729 {
3730 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3731 DP_DEVICE_SERVICE_IRQ_VECTOR,
3732 sink_irq_vector, 1) == 1;
3733 }
3734
3735 static bool
3736 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3737 {
3738 int ret;
3739
3740 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3741 DP_SINK_COUNT_ESI,
3742 sink_irq_vector, 14);
3743 if (ret != 14)
3744 return false;
3745
3746 return true;
3747 }
3748
3749 static void
3750 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3751 {
3752 /* NAK by default */
3753 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3754 }
3755
3756 static int
3757 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3758 {
3759 bool bret;
3760
3761 if (intel_dp->is_mst) {
3762 u8 esi[16] = { 0 };
3763 int ret = 0;
3764 int retry;
3765 bool handled;
3766 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3767 go_again:
3768 if (bret == true) {
3769
3770 /* check link status - esi[10] = 0x200c */
3771 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3772 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3773 intel_dp_start_link_train(intel_dp);
3774 intel_dp_complete_link_train(intel_dp);
3775 intel_dp_stop_link_train(intel_dp);
3776 }
3777
3778 DRM_DEBUG_KMS("got esi %3ph\n", esi);
3779 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3780
3781 if (handled) {
3782 for (retry = 0; retry < 3; retry++) {
3783 int wret;
3784 wret = drm_dp_dpcd_write(&intel_dp->aux,
3785 DP_SINK_COUNT_ESI+1,
3786 &esi[1], 3);
3787 if (wret == 3) {
3788 break;
3789 }
3790 }
3791
3792 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3793 if (bret == true) {
3794 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
3795 goto go_again;
3796 }
3797 } else
3798 ret = 0;
3799
3800 return ret;
3801 } else {
3802 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3803 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3804 intel_dp->is_mst = false;
3805 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3806 /* send a hotplug event */
3807 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3808 }
3809 }
3810 return -EINVAL;
3811 }
3812
3813 /*
3814 * According to DP spec
3815 * 5.1.2:
3816 * 1. Read DPCD
3817 * 2. Configure link according to Receiver Capabilities
3818 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3819 * 4. Check link status on receipt of hot-plug interrupt
3820 */
3821 void
3822 intel_dp_check_link_status(struct intel_dp *intel_dp)
3823 {
3824 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3825 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3826 u8 sink_irq_vector;
3827 u8 link_status[DP_LINK_STATUS_SIZE];
3828
3829 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3830
3831 if (!intel_encoder->connectors_active)
3832 return;
3833
3834 if (WARN_ON(!intel_encoder->base.crtc))
3835 return;
3836
3837 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3838 return;
3839
3840 /* Try to read receiver status if the link appears to be up */
3841 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3842 return;
3843 }
3844
3845 /* Now read the DPCD to see if it's actually running */
3846 if (!intel_dp_get_dpcd(intel_dp)) {
3847 return;
3848 }
3849
3850 /* Try to read the source of the interrupt */
3851 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3852 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3853 /* Clear interrupt source */
3854 drm_dp_dpcd_writeb(&intel_dp->aux,
3855 DP_DEVICE_SERVICE_IRQ_VECTOR,
3856 sink_irq_vector);
3857
3858 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3859 intel_dp_handle_test_request(intel_dp);
3860 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3861 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3862 }
3863
3864 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3865 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3866 intel_encoder->base.name);
3867 intel_dp_start_link_train(intel_dp);
3868 intel_dp_complete_link_train(intel_dp);
3869 intel_dp_stop_link_train(intel_dp);
3870 }
3871 }
3872
3873 /* XXX this is probably wrong for multiple downstream ports */
3874 static enum drm_connector_status
3875 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3876 {
3877 uint8_t *dpcd = intel_dp->dpcd;
3878 uint8_t type;
3879
3880 if (!intel_dp_get_dpcd(intel_dp))
3881 return connector_status_disconnected;
3882
3883 /* if there's no downstream port, we're done */
3884 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3885 return connector_status_connected;
3886
3887 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3888 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3889 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3890 uint8_t reg;
3891
3892 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3893 &reg, 1) < 0)
3894 return connector_status_unknown;
3895
3896 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3897 : connector_status_disconnected;
3898 }
3899
3900 /* If no HPD, poke DDC gently */
3901 if (drm_probe_ddc(&intel_dp->aux.ddc))
3902 return connector_status_connected;
3903
3904 /* Well we tried, say unknown for unreliable port types */
3905 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3906 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3907 if (type == DP_DS_PORT_TYPE_VGA ||
3908 type == DP_DS_PORT_TYPE_NON_EDID)
3909 return connector_status_unknown;
3910 } else {
3911 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3912 DP_DWN_STRM_PORT_TYPE_MASK;
3913 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3914 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3915 return connector_status_unknown;
3916 }
3917
3918 /* Anything else is out of spec, warn and ignore */
3919 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3920 return connector_status_disconnected;
3921 }
3922
3923 static enum drm_connector_status
3924 edp_detect(struct intel_dp *intel_dp)
3925 {
3926 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3927 enum drm_connector_status status;
3928
3929 status = intel_panel_detect(dev);
3930 if (status == connector_status_unknown)
3931 status = connector_status_connected;
3932
3933 return status;
3934 }
3935
3936 static enum drm_connector_status
3937 ironlake_dp_detect(struct intel_dp *intel_dp)
3938 {
3939 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3940 struct drm_i915_private *dev_priv = dev->dev_private;
3941 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3942
3943 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3944 return connector_status_disconnected;
3945
3946 return intel_dp_detect_dpcd(intel_dp);
3947 }
3948
3949 static int g4x_digital_port_connected(struct drm_device *dev,
3950 struct intel_digital_port *intel_dig_port)
3951 {
3952 struct drm_i915_private *dev_priv = dev->dev_private;
3953 uint32_t bit;
3954
3955 if (IS_VALLEYVIEW(dev)) {
3956 switch (intel_dig_port->port) {
3957 case PORT_B:
3958 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3959 break;
3960 case PORT_C:
3961 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3962 break;
3963 case PORT_D:
3964 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3965 break;
3966 default:
3967 return -EINVAL;
3968 }
3969 } else {
3970 switch (intel_dig_port->port) {
3971 case PORT_B:
3972 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3973 break;
3974 case PORT_C:
3975 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3976 break;
3977 case PORT_D:
3978 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3979 break;
3980 default:
3981 return -EINVAL;
3982 }
3983 }
3984
3985 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3986 return 0;
3987 return 1;
3988 }
3989
3990 static enum drm_connector_status
3991 g4x_dp_detect(struct intel_dp *intel_dp)
3992 {
3993 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3994 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3995 int ret;
3996
3997 /* Can't disconnect eDP, but you can close the lid... */
3998 if (is_edp(intel_dp)) {
3999 enum drm_connector_status status;
4000
4001 status = intel_panel_detect(dev);
4002 if (status == connector_status_unknown)
4003 status = connector_status_connected;
4004 return status;
4005 }
4006
4007 ret = g4x_digital_port_connected(dev, intel_dig_port);
4008 if (ret == -EINVAL)
4009 return connector_status_unknown;
4010 else if (ret == 0)
4011 return connector_status_disconnected;
4012
4013 return intel_dp_detect_dpcd(intel_dp);
4014 }
4015
4016 static struct edid *
4017 intel_dp_get_edid(struct intel_dp *intel_dp)
4018 {
4019 struct intel_connector *intel_connector = intel_dp->attached_connector;
4020
4021 /* use cached edid if we have one */
4022 if (intel_connector->edid) {
4023 /* invalid edid */
4024 if (IS_ERR(intel_connector->edid))
4025 return NULL;
4026
4027 return drm_edid_duplicate(intel_connector->edid);
4028 } else
4029 return drm_get_edid(&intel_connector->base,
4030 &intel_dp->aux.ddc);
4031 }
4032
4033 static void
4034 intel_dp_set_edid(struct intel_dp *intel_dp)
4035 {
4036 struct intel_connector *intel_connector = intel_dp->attached_connector;
4037 struct edid *edid;
4038
4039 edid = intel_dp_get_edid(intel_dp);
4040 intel_connector->detect_edid = edid;
4041
4042 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4043 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4044 else
4045 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4046 }
4047
4048 static void
4049 intel_dp_unset_edid(struct intel_dp *intel_dp)
4050 {
4051 struct intel_connector *intel_connector = intel_dp->attached_connector;
4052
4053 kfree(intel_connector->detect_edid);
4054 intel_connector->detect_edid = NULL;
4055
4056 intel_dp->has_audio = false;
4057 }
4058
4059 static enum intel_display_power_domain
4060 intel_dp_power_get(struct intel_dp *dp)
4061 {
4062 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4063 enum intel_display_power_domain power_domain;
4064
4065 power_domain = intel_display_port_power_domain(encoder);
4066 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4067
4068 return power_domain;
4069 }
4070
4071 static void
4072 intel_dp_power_put(struct intel_dp *dp,
4073 enum intel_display_power_domain power_domain)
4074 {
4075 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4076 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4077 }
4078
4079 static enum drm_connector_status
4080 intel_dp_detect(struct drm_connector *connector, bool force)
4081 {
4082 struct intel_dp *intel_dp = intel_attached_dp(connector);
4083 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4084 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4085 struct drm_device *dev = connector->dev;
4086 enum drm_connector_status status;
4087 enum intel_display_power_domain power_domain;
4088 bool ret;
4089
4090 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4091 connector->base.id, connector->name);
4092 intel_dp_unset_edid(intel_dp);
4093
4094 if (intel_dp->is_mst) {
4095 /* MST devices are disconnected from a monitor POV */
4096 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4097 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4098 return connector_status_disconnected;
4099 }
4100
4101 power_domain = intel_dp_power_get(intel_dp);
4102
4103 /* Can't disconnect eDP, but you can close the lid... */
4104 if (is_edp(intel_dp))
4105 status = edp_detect(intel_dp);
4106 else if (HAS_PCH_SPLIT(dev))
4107 status = ironlake_dp_detect(intel_dp);
4108 else
4109 status = g4x_dp_detect(intel_dp);
4110 if (status != connector_status_connected)
4111 goto out;
4112
4113 intel_dp_probe_oui(intel_dp);
4114
4115 ret = intel_dp_probe_mst(intel_dp);
4116 if (ret) {
4117 /* if we are in MST mode then this connector
4118 won't appear connected or have anything with EDID on it */
4119 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4120 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4121 status = connector_status_disconnected;
4122 goto out;
4123 }
4124
4125 intel_dp_set_edid(intel_dp);
4126
4127 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4128 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4129 status = connector_status_connected;
4130
4131 out:
4132 intel_dp_power_put(intel_dp, power_domain);
4133 return status;
4134 }
4135
4136 static void
4137 intel_dp_force(struct drm_connector *connector)
4138 {
4139 struct intel_dp *intel_dp = intel_attached_dp(connector);
4140 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4141 enum intel_display_power_domain power_domain;
4142
4143 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4144 connector->base.id, connector->name);
4145 intel_dp_unset_edid(intel_dp);
4146
4147 if (connector->status != connector_status_connected)
4148 return;
4149
4150 power_domain = intel_dp_power_get(intel_dp);
4151
4152 intel_dp_set_edid(intel_dp);
4153
4154 intel_dp_power_put(intel_dp, power_domain);
4155
4156 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4157 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4158 }
4159
4160 static int intel_dp_get_modes(struct drm_connector *connector)
4161 {
4162 struct intel_connector *intel_connector = to_intel_connector(connector);
4163 struct edid *edid;
4164
4165 edid = intel_connector->detect_edid;
4166 if (edid) {
4167 int ret = intel_connector_update_modes(connector, edid);
4168 if (ret)
4169 return ret;
4170 }
4171
4172 /* if eDP has no EDID, fall back to fixed mode */
4173 if (is_edp(intel_attached_dp(connector)) &&
4174 intel_connector->panel.fixed_mode) {
4175 struct drm_display_mode *mode;
4176
4177 mode = drm_mode_duplicate(connector->dev,
4178 intel_connector->panel.fixed_mode);
4179 if (mode) {
4180 drm_mode_probed_add(connector, mode);
4181 return 1;
4182 }
4183 }
4184
4185 return 0;
4186 }
4187
4188 static bool
4189 intel_dp_detect_audio(struct drm_connector *connector)
4190 {
4191 bool has_audio = false;
4192 struct edid *edid;
4193
4194 edid = to_intel_connector(connector)->detect_edid;
4195 if (edid)
4196 has_audio = drm_detect_monitor_audio(edid);
4197
4198 return has_audio;
4199 }
4200
4201 static int
4202 intel_dp_set_property(struct drm_connector *connector,
4203 struct drm_property *property,
4204 uint64_t val)
4205 {
4206 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4207 struct intel_connector *intel_connector = to_intel_connector(connector);
4208 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4209 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4210 int ret;
4211
4212 ret = drm_object_property_set_value(&connector->base, property, val);
4213 if (ret)
4214 return ret;
4215
4216 if (property == dev_priv->force_audio_property) {
4217 int i = val;
4218 bool has_audio;
4219
4220 if (i == intel_dp->force_audio)
4221 return 0;
4222
4223 intel_dp->force_audio = i;
4224
4225 if (i == HDMI_AUDIO_AUTO)
4226 has_audio = intel_dp_detect_audio(connector);
4227 else
4228 has_audio = (i == HDMI_AUDIO_ON);
4229
4230 if (has_audio == intel_dp->has_audio)
4231 return 0;
4232
4233 intel_dp->has_audio = has_audio;
4234 goto done;
4235 }
4236
4237 if (property == dev_priv->broadcast_rgb_property) {
4238 bool old_auto = intel_dp->color_range_auto;
4239 uint32_t old_range = intel_dp->color_range;
4240
4241 switch (val) {
4242 case INTEL_BROADCAST_RGB_AUTO:
4243 intel_dp->color_range_auto = true;
4244 break;
4245 case INTEL_BROADCAST_RGB_FULL:
4246 intel_dp->color_range_auto = false;
4247 intel_dp->color_range = 0;
4248 break;
4249 case INTEL_BROADCAST_RGB_LIMITED:
4250 intel_dp->color_range_auto = false;
4251 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4252 break;
4253 default:
4254 return -EINVAL;
4255 }
4256
4257 if (old_auto == intel_dp->color_range_auto &&
4258 old_range == intel_dp->color_range)
4259 return 0;
4260
4261 goto done;
4262 }
4263
4264 if (is_edp(intel_dp) &&
4265 property == connector->dev->mode_config.scaling_mode_property) {
4266 if (val == DRM_MODE_SCALE_NONE) {
4267 DRM_DEBUG_KMS("no scaling not supported\n");
4268 return -EINVAL;
4269 }
4270
4271 if (intel_connector->panel.fitting_mode == val) {
4272 /* the eDP scaling property is not changed */
4273 return 0;
4274 }
4275 intel_connector->panel.fitting_mode = val;
4276
4277 goto done;
4278 }
4279
4280 return -EINVAL;
4281
4282 done:
4283 if (intel_encoder->base.crtc)
4284 intel_crtc_restore_mode(intel_encoder->base.crtc);
4285
4286 return 0;
4287 }
4288
4289 static void
4290 intel_dp_connector_destroy(struct drm_connector *connector)
4291 {
4292 struct intel_connector *intel_connector = to_intel_connector(connector);
4293
4294 kfree(intel_connector->detect_edid);
4295
4296 if (!IS_ERR_OR_NULL(intel_connector->edid))
4297 kfree(intel_connector->edid);
4298
4299 /* Can't call is_edp() since the encoder may have been destroyed
4300 * already. */
4301 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4302 intel_panel_fini(&intel_connector->panel);
4303
4304 drm_connector_cleanup(connector);
4305 kfree(connector);
4306 }
4307
4308 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4309 {
4310 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4311 struct intel_dp *intel_dp = &intel_dig_port->dp;
4312
4313 drm_dp_aux_unregister(&intel_dp->aux);
4314 intel_dp_mst_encoder_cleanup(intel_dig_port);
4315 if (is_edp(intel_dp)) {
4316 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4317 /*
4318 * vdd might still be enabled do to the delayed vdd off.
4319 * Make sure vdd is actually turned off here.
4320 */
4321 pps_lock(intel_dp);
4322 edp_panel_vdd_off_sync(intel_dp);
4323 pps_unlock(intel_dp);
4324
4325 if (intel_dp->edp_notifier.notifier_call) {
4326 unregister_reboot_notifier(&intel_dp->edp_notifier);
4327 intel_dp->edp_notifier.notifier_call = NULL;
4328 }
4329 }
4330 drm_encoder_cleanup(encoder);
4331 kfree(intel_dig_port);
4332 }
4333
4334 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4335 {
4336 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4337
4338 if (!is_edp(intel_dp))
4339 return;
4340
4341 /*
4342 * vdd might still be enabled do to the delayed vdd off.
4343 * Make sure vdd is actually turned off here.
4344 */
4345 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4346 pps_lock(intel_dp);
4347 edp_panel_vdd_off_sync(intel_dp);
4348 pps_unlock(intel_dp);
4349 }
4350
4351 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4352 {
4353 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4354 struct drm_device *dev = intel_dig_port->base.base.dev;
4355 struct drm_i915_private *dev_priv = dev->dev_private;
4356 enum intel_display_power_domain power_domain;
4357
4358 lockdep_assert_held(&dev_priv->pps_mutex);
4359
4360 if (!edp_have_panel_vdd(intel_dp))
4361 return;
4362
4363 /*
4364 * The VDD bit needs a power domain reference, so if the bit is
4365 * already enabled when we boot or resume, grab this reference and
4366 * schedule a vdd off, so we don't hold on to the reference
4367 * indefinitely.
4368 */
4369 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4370 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4371 intel_display_power_get(dev_priv, power_domain);
4372
4373 edp_panel_vdd_schedule_off(intel_dp);
4374 }
4375
4376 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4377 {
4378 struct intel_dp *intel_dp;
4379
4380 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4381 return;
4382
4383 intel_dp = enc_to_intel_dp(encoder);
4384
4385 pps_lock(intel_dp);
4386
4387 /*
4388 * Read out the current power sequencer assignment,
4389 * in case the BIOS did something with it.
4390 */
4391 if (IS_VALLEYVIEW(encoder->dev))
4392 vlv_initial_power_sequencer_setup(intel_dp);
4393
4394 intel_edp_panel_vdd_sanitize(intel_dp);
4395
4396 pps_unlock(intel_dp);
4397 }
4398
4399 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4400 .dpms = intel_connector_dpms,
4401 .detect = intel_dp_detect,
4402 .force = intel_dp_force,
4403 .fill_modes = drm_helper_probe_single_connector_modes,
4404 .set_property = intel_dp_set_property,
4405 .destroy = intel_dp_connector_destroy,
4406 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4407 };
4408
4409 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4410 .get_modes = intel_dp_get_modes,
4411 .mode_valid = intel_dp_mode_valid,
4412 .best_encoder = intel_best_encoder,
4413 };
4414
4415 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4416 .reset = intel_dp_encoder_reset,
4417 .destroy = intel_dp_encoder_destroy,
4418 };
4419
4420 void
4421 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4422 {
4423 return;
4424 }
4425
4426 enum irqreturn
4427 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4428 {
4429 struct intel_dp *intel_dp = &intel_dig_port->dp;
4430 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4431 struct drm_device *dev = intel_dig_port->base.base.dev;
4432 struct drm_i915_private *dev_priv = dev->dev_private;
4433 enum intel_display_power_domain power_domain;
4434 enum irqreturn ret = IRQ_NONE;
4435
4436 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4437 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4438
4439 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4440 /*
4441 * vdd off can generate a long pulse on eDP which
4442 * would require vdd on to handle it, and thus we
4443 * would end up in an endless cycle of
4444 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4445 */
4446 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4447 port_name(intel_dig_port->port));
4448 return false;
4449 }
4450
4451 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4452 port_name(intel_dig_port->port),
4453 long_hpd ? "long" : "short");
4454
4455 power_domain = intel_display_port_power_domain(intel_encoder);
4456 intel_display_power_get(dev_priv, power_domain);
4457
4458 if (long_hpd) {
4459
4460 if (HAS_PCH_SPLIT(dev)) {
4461 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4462 goto mst_fail;
4463 } else {
4464 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4465 goto mst_fail;
4466 }
4467
4468 if (!intel_dp_get_dpcd(intel_dp)) {
4469 goto mst_fail;
4470 }
4471
4472 intel_dp_probe_oui(intel_dp);
4473
4474 if (!intel_dp_probe_mst(intel_dp))
4475 goto mst_fail;
4476
4477 } else {
4478 if (intel_dp->is_mst) {
4479 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4480 goto mst_fail;
4481 }
4482
4483 if (!intel_dp->is_mst) {
4484 /*
4485 * we'll check the link status via the normal hot plug path later -
4486 * but for short hpds we should check it now
4487 */
4488 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4489 intel_dp_check_link_status(intel_dp);
4490 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4491 }
4492 }
4493
4494 ret = IRQ_HANDLED;
4495
4496 goto put_power;
4497 mst_fail:
4498 /* if we were in MST mode, and device is not there get out of MST mode */
4499 if (intel_dp->is_mst) {
4500 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4501 intel_dp->is_mst = false;
4502 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4503 }
4504 put_power:
4505 intel_display_power_put(dev_priv, power_domain);
4506
4507 return ret;
4508 }
4509
4510 /* Return which DP Port should be selected for Transcoder DP control */
4511 int
4512 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4513 {
4514 struct drm_device *dev = crtc->dev;
4515 struct intel_encoder *intel_encoder;
4516 struct intel_dp *intel_dp;
4517
4518 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4519 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4520
4521 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4522 intel_encoder->type == INTEL_OUTPUT_EDP)
4523 return intel_dp->output_reg;
4524 }
4525
4526 return -1;
4527 }
4528
4529 /* check the VBT to see whether the eDP is on DP-D port */
4530 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4531 {
4532 struct drm_i915_private *dev_priv = dev->dev_private;
4533 union child_device_config *p_child;
4534 int i;
4535 static const short port_mapping[] = {
4536 [PORT_B] = PORT_IDPB,
4537 [PORT_C] = PORT_IDPC,
4538 [PORT_D] = PORT_IDPD,
4539 };
4540
4541 if (port == PORT_A)
4542 return true;
4543
4544 if (!dev_priv->vbt.child_dev_num)
4545 return false;
4546
4547 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4548 p_child = dev_priv->vbt.child_dev + i;
4549
4550 if (p_child->common.dvo_port == port_mapping[port] &&
4551 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4552 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4553 return true;
4554 }
4555 return false;
4556 }
4557
4558 void
4559 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4560 {
4561 struct intel_connector *intel_connector = to_intel_connector(connector);
4562
4563 intel_attach_force_audio_property(connector);
4564 intel_attach_broadcast_rgb_property(connector);
4565 intel_dp->color_range_auto = true;
4566
4567 if (is_edp(intel_dp)) {
4568 drm_mode_create_scaling_mode_property(connector->dev);
4569 drm_object_attach_property(
4570 &connector->base,
4571 connector->dev->mode_config.scaling_mode_property,
4572 DRM_MODE_SCALE_ASPECT);
4573 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4574 }
4575 }
4576
4577 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4578 {
4579 intel_dp->last_power_cycle = jiffies;
4580 intel_dp->last_power_on = jiffies;
4581 intel_dp->last_backlight_off = jiffies;
4582 }
4583
4584 static void
4585 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4586 struct intel_dp *intel_dp)
4587 {
4588 struct drm_i915_private *dev_priv = dev->dev_private;
4589 struct edp_power_seq cur, vbt, spec,
4590 *final = &intel_dp->pps_delays;
4591 u32 pp_on, pp_off, pp_div, pp;
4592 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4593
4594 lockdep_assert_held(&dev_priv->pps_mutex);
4595
4596 /* already initialized? */
4597 if (final->t11_t12 != 0)
4598 return;
4599
4600 if (HAS_PCH_SPLIT(dev)) {
4601 pp_ctrl_reg = PCH_PP_CONTROL;
4602 pp_on_reg = PCH_PP_ON_DELAYS;
4603 pp_off_reg = PCH_PP_OFF_DELAYS;
4604 pp_div_reg = PCH_PP_DIVISOR;
4605 } else {
4606 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4607
4608 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4609 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4610 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4611 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4612 }
4613
4614 /* Workaround: Need to write PP_CONTROL with the unlock key as
4615 * the very first thing. */
4616 pp = ironlake_get_pp_control(intel_dp);
4617 I915_WRITE(pp_ctrl_reg, pp);
4618
4619 pp_on = I915_READ(pp_on_reg);
4620 pp_off = I915_READ(pp_off_reg);
4621 pp_div = I915_READ(pp_div_reg);
4622
4623 /* Pull timing values out of registers */
4624 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4625 PANEL_POWER_UP_DELAY_SHIFT;
4626
4627 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4628 PANEL_LIGHT_ON_DELAY_SHIFT;
4629
4630 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4631 PANEL_LIGHT_OFF_DELAY_SHIFT;
4632
4633 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4634 PANEL_POWER_DOWN_DELAY_SHIFT;
4635
4636 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4637 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4638
4639 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4640 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4641
4642 vbt = dev_priv->vbt.edp_pps;
4643
4644 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4645 * our hw here, which are all in 100usec. */
4646 spec.t1_t3 = 210 * 10;
4647 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4648 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4649 spec.t10 = 500 * 10;
4650 /* This one is special and actually in units of 100ms, but zero
4651 * based in the hw (so we need to add 100 ms). But the sw vbt
4652 * table multiplies it with 1000 to make it in units of 100usec,
4653 * too. */
4654 spec.t11_t12 = (510 + 100) * 10;
4655
4656 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4657 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4658
4659 /* Use the max of the register settings and vbt. If both are
4660 * unset, fall back to the spec limits. */
4661 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4662 spec.field : \
4663 max(cur.field, vbt.field))
4664 assign_final(t1_t3);
4665 assign_final(t8);
4666 assign_final(t9);
4667 assign_final(t10);
4668 assign_final(t11_t12);
4669 #undef assign_final
4670
4671 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4672 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4673 intel_dp->backlight_on_delay = get_delay(t8);
4674 intel_dp->backlight_off_delay = get_delay(t9);
4675 intel_dp->panel_power_down_delay = get_delay(t10);
4676 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4677 #undef get_delay
4678
4679 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4680 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4681 intel_dp->panel_power_cycle_delay);
4682
4683 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4684 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4685 }
4686
4687 static void
4688 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4689 struct intel_dp *intel_dp)
4690 {
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4692 u32 pp_on, pp_off, pp_div, port_sel = 0;
4693 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4694 int pp_on_reg, pp_off_reg, pp_div_reg;
4695 enum port port = dp_to_dig_port(intel_dp)->port;
4696 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4697
4698 lockdep_assert_held(&dev_priv->pps_mutex);
4699
4700 if (HAS_PCH_SPLIT(dev)) {
4701 pp_on_reg = PCH_PP_ON_DELAYS;
4702 pp_off_reg = PCH_PP_OFF_DELAYS;
4703 pp_div_reg = PCH_PP_DIVISOR;
4704 } else {
4705 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4706
4707 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4708 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4709 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4710 }
4711
4712 /*
4713 * And finally store the new values in the power sequencer. The
4714 * backlight delays are set to 1 because we do manual waits on them. For
4715 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4716 * we'll end up waiting for the backlight off delay twice: once when we
4717 * do the manual sleep, and once when we disable the panel and wait for
4718 * the PP_STATUS bit to become zero.
4719 */
4720 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4721 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4722 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4723 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4724 /* Compute the divisor for the pp clock, simply match the Bspec
4725 * formula. */
4726 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4727 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4728 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4729
4730 /* Haswell doesn't have any port selection bits for the panel
4731 * power sequencer any more. */
4732 if (IS_VALLEYVIEW(dev)) {
4733 port_sel = PANEL_PORT_SELECT_VLV(port);
4734 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4735 if (port == PORT_A)
4736 port_sel = PANEL_PORT_SELECT_DPA;
4737 else
4738 port_sel = PANEL_PORT_SELECT_DPD;
4739 }
4740
4741 pp_on |= port_sel;
4742
4743 I915_WRITE(pp_on_reg, pp_on);
4744 I915_WRITE(pp_off_reg, pp_off);
4745 I915_WRITE(pp_div_reg, pp_div);
4746
4747 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4748 I915_READ(pp_on_reg),
4749 I915_READ(pp_off_reg),
4750 I915_READ(pp_div_reg));
4751 }
4752
4753 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4754 {
4755 struct drm_i915_private *dev_priv = dev->dev_private;
4756 struct intel_encoder *encoder;
4757 struct intel_digital_port *dig_port = NULL;
4758 struct intel_dp *intel_dp = dev_priv->drrs.dp;
4759 struct intel_crtc_state *config = NULL;
4760 struct intel_crtc *intel_crtc = NULL;
4761 u32 reg, val;
4762 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
4763
4764 if (refresh_rate <= 0) {
4765 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4766 return;
4767 }
4768
4769 if (intel_dp == NULL) {
4770 DRM_DEBUG_KMS("DRRS not supported.\n");
4771 return;
4772 }
4773
4774 /*
4775 * FIXME: This needs proper synchronization with psr state for some
4776 * platforms that cannot have PSR and DRRS enabled at the same time.
4777 */
4778
4779 dig_port = dp_to_dig_port(intel_dp);
4780 encoder = &dig_port->base;
4781 intel_crtc = encoder->new_crtc;
4782
4783 if (!intel_crtc) {
4784 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4785 return;
4786 }
4787
4788 config = intel_crtc->config;
4789
4790 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
4791 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4792 return;
4793 }
4794
4795 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
4796 refresh_rate)
4797 index = DRRS_LOW_RR;
4798
4799 if (index == dev_priv->drrs.refresh_rate_type) {
4800 DRM_DEBUG_KMS(
4801 "DRRS requested for previously set RR...ignoring\n");
4802 return;
4803 }
4804
4805 if (!intel_crtc->active) {
4806 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4807 return;
4808 }
4809
4810 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4811 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
4812 val = I915_READ(reg);
4813 if (index > DRRS_HIGH_RR) {
4814 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4815 intel_dp_set_m_n(intel_crtc);
4816 } else {
4817 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4818 }
4819 I915_WRITE(reg, val);
4820 }
4821
4822 dev_priv->drrs.refresh_rate_type = index;
4823
4824 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4825 }
4826
4827 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
4828 {
4829 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4830 struct drm_i915_private *dev_priv = dev->dev_private;
4831 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4832 struct drm_crtc *crtc = dig_port->base.base.crtc;
4833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834
4835 if (!intel_crtc->config->has_drrs) {
4836 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
4837 return;
4838 }
4839
4840 mutex_lock(&dev_priv->drrs.mutex);
4841 if (WARN_ON(dev_priv->drrs.dp)) {
4842 DRM_ERROR("DRRS already enabled\n");
4843 goto unlock;
4844 }
4845
4846 dev_priv->drrs.busy_frontbuffer_bits = 0;
4847
4848 dev_priv->drrs.dp = intel_dp;
4849
4850 unlock:
4851 mutex_unlock(&dev_priv->drrs.mutex);
4852 }
4853
4854 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
4855 {
4856 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4857 struct drm_i915_private *dev_priv = dev->dev_private;
4858 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4859 struct drm_crtc *crtc = dig_port->base.base.crtc;
4860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4861
4862 if (!intel_crtc->config->has_drrs)
4863 return;
4864
4865 mutex_lock(&dev_priv->drrs.mutex);
4866 if (!dev_priv->drrs.dp) {
4867 mutex_unlock(&dev_priv->drrs.mutex);
4868 return;
4869 }
4870
4871 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
4872 intel_dp_set_drrs_state(dev_priv->dev,
4873 intel_dp->attached_connector->panel.
4874 fixed_mode->vrefresh);
4875
4876 dev_priv->drrs.dp = NULL;
4877 mutex_unlock(&dev_priv->drrs.mutex);
4878
4879 cancel_delayed_work_sync(&dev_priv->drrs.work);
4880 }
4881
4882 static void intel_edp_drrs_downclock_work(struct work_struct *work)
4883 {
4884 struct drm_i915_private *dev_priv =
4885 container_of(work, typeof(*dev_priv), drrs.work.work);
4886 struct intel_dp *intel_dp;
4887
4888 mutex_lock(&dev_priv->drrs.mutex);
4889
4890 intel_dp = dev_priv->drrs.dp;
4891
4892 if (!intel_dp)
4893 goto unlock;
4894
4895 /*
4896 * The delayed work can race with an invalidate hence we need to
4897 * recheck.
4898 */
4899
4900 if (dev_priv->drrs.busy_frontbuffer_bits)
4901 goto unlock;
4902
4903 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
4904 intel_dp_set_drrs_state(dev_priv->dev,
4905 intel_dp->attached_connector->panel.
4906 downclock_mode->vrefresh);
4907
4908 unlock:
4909
4910 mutex_unlock(&dev_priv->drrs.mutex);
4911 }
4912
4913 void intel_edp_drrs_invalidate(struct drm_device *dev,
4914 unsigned frontbuffer_bits)
4915 {
4916 struct drm_i915_private *dev_priv = dev->dev_private;
4917 struct drm_crtc *crtc;
4918 enum pipe pipe;
4919
4920 if (!dev_priv->drrs.dp)
4921 return;
4922
4923 mutex_lock(&dev_priv->drrs.mutex);
4924 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
4925 pipe = to_intel_crtc(crtc)->pipe;
4926
4927 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
4928 cancel_delayed_work_sync(&dev_priv->drrs.work);
4929 intel_dp_set_drrs_state(dev_priv->dev,
4930 dev_priv->drrs.dp->attached_connector->panel.
4931 fixed_mode->vrefresh);
4932 }
4933
4934 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
4935
4936 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
4937 mutex_unlock(&dev_priv->drrs.mutex);
4938 }
4939
4940 void intel_edp_drrs_flush(struct drm_device *dev,
4941 unsigned frontbuffer_bits)
4942 {
4943 struct drm_i915_private *dev_priv = dev->dev_private;
4944 struct drm_crtc *crtc;
4945 enum pipe pipe;
4946
4947 if (!dev_priv->drrs.dp)
4948 return;
4949
4950 mutex_lock(&dev_priv->drrs.mutex);
4951 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
4952 pipe = to_intel_crtc(crtc)->pipe;
4953 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
4954
4955 cancel_delayed_work_sync(&dev_priv->drrs.work);
4956
4957 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
4958 !dev_priv->drrs.busy_frontbuffer_bits)
4959 schedule_delayed_work(&dev_priv->drrs.work,
4960 msecs_to_jiffies(1000));
4961 mutex_unlock(&dev_priv->drrs.mutex);
4962 }
4963
4964 static struct drm_display_mode *
4965 intel_dp_drrs_init(struct intel_connector *intel_connector,
4966 struct drm_display_mode *fixed_mode)
4967 {
4968 struct drm_connector *connector = &intel_connector->base;
4969 struct drm_device *dev = connector->dev;
4970 struct drm_i915_private *dev_priv = dev->dev_private;
4971 struct drm_display_mode *downclock_mode = NULL;
4972
4973 if (INTEL_INFO(dev)->gen <= 6) {
4974 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4975 return NULL;
4976 }
4977
4978 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4979 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4980 return NULL;
4981 }
4982
4983 downclock_mode = intel_find_panel_downclock
4984 (dev, fixed_mode, connector);
4985
4986 if (!downclock_mode) {
4987 DRM_DEBUG_KMS("DRRS not supported\n");
4988 return NULL;
4989 }
4990
4991 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
4992
4993 mutex_init(&dev_priv->drrs.mutex);
4994
4995 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
4996
4997 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
4998 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4999 return downclock_mode;
5000 }
5001
5002 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5003 struct intel_connector *intel_connector)
5004 {
5005 struct drm_connector *connector = &intel_connector->base;
5006 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5007 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5008 struct drm_device *dev = intel_encoder->base.dev;
5009 struct drm_i915_private *dev_priv = dev->dev_private;
5010 struct drm_display_mode *fixed_mode = NULL;
5011 struct drm_display_mode *downclock_mode = NULL;
5012 bool has_dpcd;
5013 struct drm_display_mode *scan;
5014 struct edid *edid;
5015 enum pipe pipe = INVALID_PIPE;
5016
5017 dev_priv->drrs.type = DRRS_NOT_SUPPORTED;
5018
5019 if (!is_edp(intel_dp))
5020 return true;
5021
5022 pps_lock(intel_dp);
5023 intel_edp_panel_vdd_sanitize(intel_dp);
5024 pps_unlock(intel_dp);
5025
5026 /* Cache DPCD and EDID for edp. */
5027 has_dpcd = intel_dp_get_dpcd(intel_dp);
5028
5029 if (has_dpcd) {
5030 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5031 dev_priv->no_aux_handshake =
5032 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5033 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5034 } else {
5035 /* if this fails, presume the device is a ghost */
5036 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5037 return false;
5038 }
5039
5040 /* We now know it's not a ghost, init power sequence regs. */
5041 pps_lock(intel_dp);
5042 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5043 pps_unlock(intel_dp);
5044
5045 mutex_lock(&dev->mode_config.mutex);
5046 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5047 if (edid) {
5048 if (drm_add_edid_modes(connector, edid)) {
5049 drm_mode_connector_update_edid_property(connector,
5050 edid);
5051 drm_edid_to_eld(connector, edid);
5052 } else {
5053 kfree(edid);
5054 edid = ERR_PTR(-EINVAL);
5055 }
5056 } else {
5057 edid = ERR_PTR(-ENOENT);
5058 }
5059 intel_connector->edid = edid;
5060
5061 /* prefer fixed mode from EDID if available */
5062 list_for_each_entry(scan, &connector->probed_modes, head) {
5063 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5064 fixed_mode = drm_mode_duplicate(dev, scan);
5065 downclock_mode = intel_dp_drrs_init(
5066 intel_connector, fixed_mode);
5067 break;
5068 }
5069 }
5070
5071 /* fallback to VBT if available for eDP */
5072 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5073 fixed_mode = drm_mode_duplicate(dev,
5074 dev_priv->vbt.lfp_lvds_vbt_mode);
5075 if (fixed_mode)
5076 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5077 }
5078 mutex_unlock(&dev->mode_config.mutex);
5079
5080 if (IS_VALLEYVIEW(dev)) {
5081 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5082 register_reboot_notifier(&intel_dp->edp_notifier);
5083
5084 /*
5085 * Figure out the current pipe for the initial backlight setup.
5086 * If the current pipe isn't valid, try the PPS pipe, and if that
5087 * fails just assume pipe A.
5088 */
5089 if (IS_CHERRYVIEW(dev))
5090 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5091 else
5092 pipe = PORT_TO_PIPE(intel_dp->DP);
5093
5094 if (pipe != PIPE_A && pipe != PIPE_B)
5095 pipe = intel_dp->pps_pipe;
5096
5097 if (pipe != PIPE_A && pipe != PIPE_B)
5098 pipe = PIPE_A;
5099
5100 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5101 pipe_name(pipe));
5102 }
5103
5104 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5105 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5106 intel_panel_setup_backlight(connector, pipe);
5107
5108 return true;
5109 }
5110
5111 bool
5112 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5113 struct intel_connector *intel_connector)
5114 {
5115 struct drm_connector *connector = &intel_connector->base;
5116 struct intel_dp *intel_dp = &intel_dig_port->dp;
5117 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5118 struct drm_device *dev = intel_encoder->base.dev;
5119 struct drm_i915_private *dev_priv = dev->dev_private;
5120 enum port port = intel_dig_port->port;
5121 int type;
5122
5123 intel_dp->pps_pipe = INVALID_PIPE;
5124
5125 /* intel_dp vfuncs */
5126 if (INTEL_INFO(dev)->gen >= 9)
5127 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5128 else if (IS_VALLEYVIEW(dev))
5129 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5130 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5131 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5132 else if (HAS_PCH_SPLIT(dev))
5133 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5134 else
5135 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5136
5137 if (INTEL_INFO(dev)->gen >= 9)
5138 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5139 else
5140 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5141
5142 /* Preserve the current hw state. */
5143 intel_dp->DP = I915_READ(intel_dp->output_reg);
5144 intel_dp->attached_connector = intel_connector;
5145
5146 if (intel_dp_is_edp(dev, port))
5147 type = DRM_MODE_CONNECTOR_eDP;
5148 else
5149 type = DRM_MODE_CONNECTOR_DisplayPort;
5150
5151 /*
5152 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5153 * for DP the encoder type can be set by the caller to
5154 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5155 */
5156 if (type == DRM_MODE_CONNECTOR_eDP)
5157 intel_encoder->type = INTEL_OUTPUT_EDP;
5158
5159 /* eDP only on port B and/or C on vlv/chv */
5160 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5161 port != PORT_B && port != PORT_C))
5162 return false;
5163
5164 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5165 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5166 port_name(port));
5167
5168 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5169 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5170
5171 connector->interlace_allowed = true;
5172 connector->doublescan_allowed = 0;
5173
5174 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5175 edp_panel_vdd_work);
5176
5177 intel_connector_attach_encoder(intel_connector, intel_encoder);
5178 drm_connector_register(connector);
5179
5180 if (HAS_DDI(dev))
5181 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5182 else
5183 intel_connector->get_hw_state = intel_connector_get_hw_state;
5184 intel_connector->unregister = intel_dp_connector_unregister;
5185
5186 /* Set up the hotplug pin. */
5187 switch (port) {
5188 case PORT_A:
5189 intel_encoder->hpd_pin = HPD_PORT_A;
5190 break;
5191 case PORT_B:
5192 intel_encoder->hpd_pin = HPD_PORT_B;
5193 break;
5194 case PORT_C:
5195 intel_encoder->hpd_pin = HPD_PORT_C;
5196 break;
5197 case PORT_D:
5198 intel_encoder->hpd_pin = HPD_PORT_D;
5199 break;
5200 default:
5201 BUG();
5202 }
5203
5204 if (is_edp(intel_dp)) {
5205 pps_lock(intel_dp);
5206 intel_dp_init_panel_power_timestamps(intel_dp);
5207 if (IS_VALLEYVIEW(dev))
5208 vlv_initial_power_sequencer_setup(intel_dp);
5209 else
5210 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5211 pps_unlock(intel_dp);
5212 }
5213
5214 intel_dp_aux_init(intel_dp, intel_connector);
5215
5216 /* init MST on ports that can support it */
5217 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5218 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5219 intel_dp_mst_encoder_init(intel_dig_port,
5220 intel_connector->base.base.id);
5221 }
5222 }
5223
5224 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5225 drm_dp_aux_unregister(&intel_dp->aux);
5226 if (is_edp(intel_dp)) {
5227 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5228 /*
5229 * vdd might still be enabled do to the delayed vdd off.
5230 * Make sure vdd is actually turned off here.
5231 */
5232 pps_lock(intel_dp);
5233 edp_panel_vdd_off_sync(intel_dp);
5234 pps_unlock(intel_dp);
5235 }
5236 drm_connector_unregister(connector);
5237 drm_connector_cleanup(connector);
5238 return false;
5239 }
5240
5241 intel_dp_add_properties(intel_dp, connector);
5242
5243 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5244 * 0xd. Failure to do so will result in spurious interrupts being
5245 * generated on the port when a cable is not attached.
5246 */
5247 if (IS_G4X(dev) && !IS_GM45(dev)) {
5248 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5249 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5250 }
5251
5252 return true;
5253 }
5254
5255 void
5256 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5257 {
5258 struct drm_i915_private *dev_priv = dev->dev_private;
5259 struct intel_digital_port *intel_dig_port;
5260 struct intel_encoder *intel_encoder;
5261 struct drm_encoder *encoder;
5262 struct intel_connector *intel_connector;
5263
5264 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5265 if (!intel_dig_port)
5266 return;
5267
5268 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5269 if (!intel_connector) {
5270 kfree(intel_dig_port);
5271 return;
5272 }
5273
5274 intel_encoder = &intel_dig_port->base;
5275 encoder = &intel_encoder->base;
5276
5277 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5278 DRM_MODE_ENCODER_TMDS);
5279
5280 intel_encoder->compute_config = intel_dp_compute_config;
5281 intel_encoder->disable = intel_disable_dp;
5282 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5283 intel_encoder->get_config = intel_dp_get_config;
5284 intel_encoder->suspend = intel_dp_encoder_suspend;
5285 if (IS_CHERRYVIEW(dev)) {
5286 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5287 intel_encoder->pre_enable = chv_pre_enable_dp;
5288 intel_encoder->enable = vlv_enable_dp;
5289 intel_encoder->post_disable = chv_post_disable_dp;
5290 } else if (IS_VALLEYVIEW(dev)) {
5291 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5292 intel_encoder->pre_enable = vlv_pre_enable_dp;
5293 intel_encoder->enable = vlv_enable_dp;
5294 intel_encoder->post_disable = vlv_post_disable_dp;
5295 } else {
5296 intel_encoder->pre_enable = g4x_pre_enable_dp;
5297 intel_encoder->enable = g4x_enable_dp;
5298 if (INTEL_INFO(dev)->gen >= 5)
5299 intel_encoder->post_disable = ilk_post_disable_dp;
5300 }
5301
5302 intel_dig_port->port = port;
5303 intel_dig_port->dp.output_reg = output_reg;
5304
5305 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5306 if (IS_CHERRYVIEW(dev)) {
5307 if (port == PORT_D)
5308 intel_encoder->crtc_mask = 1 << 2;
5309 else
5310 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5311 } else {
5312 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5313 }
5314 intel_encoder->cloneable = 0;
5315 intel_encoder->hot_plug = intel_dp_hot_plug;
5316
5317 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5318 dev_priv->hpd_irq_port[port] = intel_dig_port;
5319
5320 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5321 drm_encoder_cleanup(encoder);
5322 kfree(intel_dig_port);
5323 kfree(intel_connector);
5324 }
5325 }
5326
5327 void intel_dp_mst_suspend(struct drm_device *dev)
5328 {
5329 struct drm_i915_private *dev_priv = dev->dev_private;
5330 int i;
5331
5332 /* disable MST */
5333 for (i = 0; i < I915_MAX_PORTS; i++) {
5334 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5335 if (!intel_dig_port)
5336 continue;
5337
5338 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5339 if (!intel_dig_port->dp.can_mst)
5340 continue;
5341 if (intel_dig_port->dp.is_mst)
5342 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5343 }
5344 }
5345 }
5346
5347 void intel_dp_mst_resume(struct drm_device *dev)
5348 {
5349 struct drm_i915_private *dev_priv = dev->dev_private;
5350 int i;
5351
5352 for (i = 0; i < I915_MAX_PORTS; i++) {
5353 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5354 if (!intel_dig_port)
5355 continue;
5356 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5357 int ret;
5358
5359 if (!intel_dig_port->dp.can_mst)
5360 continue;
5361
5362 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5363 if (ret != 0) {
5364 intel_dp_check_mst_status(&intel_dig_port->dp);
5365 }
5366 }
5367 }
5368 }
This page took 0.224269 seconds and 5 git commands to generate.