8c3819b02a7f95950f5ca08fa22dda7d49446ab6
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39 #define DP_RECEIVER_CAP_SIZE 0xf
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE 9
44
45 struct intel_dp {
46 struct intel_encoder base;
47 uint32_t output_reg;
48 uint32_t DP;
49 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
50 bool has_audio;
51 int force_audio;
52 uint32_t color_range;
53 int dpms_mode;
54 uint8_t link_bw;
55 uint8_t lane_count;
56 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57 struct i2c_adapter adapter;
58 struct i2c_algo_dp_aux_data algo;
59 bool is_pch_edp;
60 uint8_t train_set[4];
61 int panel_power_up_delay;
62 int panel_power_down_delay;
63 int panel_power_cycle_delay;
64 int backlight_on_delay;
65 int backlight_off_delay;
66 struct drm_display_mode *panel_fixed_mode; /* for eDP */
67 struct delayed_work panel_vdd_work;
68 bool want_panel_vdd;
69 };
70
71 /**
72 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
73 * @intel_dp: DP struct
74 *
75 * If a CPU or PCH DP output is attached to an eDP panel, this function
76 * will return true, and false otherwise.
77 */
78 static bool is_edp(struct intel_dp *intel_dp)
79 {
80 return intel_dp->base.type == INTEL_OUTPUT_EDP;
81 }
82
83 /**
84 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
85 * @intel_dp: DP struct
86 *
87 * Returns true if the given DP struct corresponds to a PCH DP port attached
88 * to an eDP panel, false otherwise. Helpful for determining whether we
89 * may need FDI resources for a given DP output or not.
90 */
91 static bool is_pch_edp(struct intel_dp *intel_dp)
92 {
93 return intel_dp->is_pch_edp;
94 }
95
96 /**
97 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
98 * @intel_dp: DP struct
99 *
100 * Returns true if the given DP struct corresponds to a CPU eDP port.
101 */
102 static bool is_cpu_edp(struct intel_dp *intel_dp)
103 {
104 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
105 }
106
107 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
108 {
109 return container_of(encoder, struct intel_dp, base.base);
110 }
111
112 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
113 {
114 return container_of(intel_attached_encoder(connector),
115 struct intel_dp, base);
116 }
117
118 /**
119 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
120 * @encoder: DRM encoder
121 *
122 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
123 * by intel_display.c.
124 */
125 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
126 {
127 struct intel_dp *intel_dp;
128
129 if (!encoder)
130 return false;
131
132 intel_dp = enc_to_intel_dp(encoder);
133
134 return is_pch_edp(intel_dp);
135 }
136
137 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
138 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_link_down(struct intel_dp *intel_dp);
140
141 void
142 intel_edp_link_config(struct intel_encoder *intel_encoder,
143 int *lane_num, int *link_bw)
144 {
145 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
146
147 *lane_num = intel_dp->lane_count;
148 if (intel_dp->link_bw == DP_LINK_BW_1_62)
149 *link_bw = 162000;
150 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
151 *link_bw = 270000;
152 }
153
154 static int
155 intel_dp_max_lane_count(struct intel_dp *intel_dp)
156 {
157 int max_lane_count = 4;
158
159 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
160 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
161 switch (max_lane_count) {
162 case 1: case 2: case 4:
163 break;
164 default:
165 max_lane_count = 4;
166 }
167 }
168 return max_lane_count;
169 }
170
171 static int
172 intel_dp_max_link_bw(struct intel_dp *intel_dp)
173 {
174 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
175
176 switch (max_link_bw) {
177 case DP_LINK_BW_1_62:
178 case DP_LINK_BW_2_7:
179 break;
180 default:
181 max_link_bw = DP_LINK_BW_1_62;
182 break;
183 }
184 return max_link_bw;
185 }
186
187 static int
188 intel_dp_link_clock(uint8_t link_bw)
189 {
190 if (link_bw == DP_LINK_BW_2_7)
191 return 270000;
192 else
193 return 162000;
194 }
195
196 /*
197 * The units on the numbers in the next two are... bizarre. Examples will
198 * make it clearer; this one parallels an example in the eDP spec.
199 *
200 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
201 *
202 * 270000 * 1 * 8 / 10 == 216000
203 *
204 * The actual data capacity of that configuration is 2.16Gbit/s, so the
205 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
206 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
207 * 119000. At 18bpp that's 2142000 kilobits per second.
208 *
209 * Thus the strange-looking division by 10 in intel_dp_link_required, to
210 * get the result in decakilobits instead of kilobits.
211 */
212
213 static int
214 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
215 {
216 struct drm_crtc *crtc = intel_dp->base.base.crtc;
217 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
218 int bpp = 24;
219
220 if (intel_crtc)
221 bpp = intel_crtc->bpp;
222
223 return (pixel_clock * bpp + 9) / 10;
224 }
225
226 static int
227 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
228 {
229 return (max_link_clock * max_lanes * 8) / 10;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234 struct drm_display_mode *mode)
235 {
236 struct intel_dp *intel_dp = intel_attached_dp(connector);
237 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
238 int max_lanes = intel_dp_max_lane_count(intel_dp);
239
240 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
241 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
242 return MODE_PANEL;
243
244 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
245 return MODE_PANEL;
246 }
247
248 if (intel_dp_link_required(intel_dp, mode->clock)
249 > intel_dp_max_data_rate(max_link_clock, max_lanes))
250 return MODE_CLOCK_HIGH;
251
252 if (mode->clock < 10000)
253 return MODE_CLOCK_LOW;
254
255 return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261 int i;
262 uint32_t v = 0;
263
264 if (src_bytes > 4)
265 src_bytes = 4;
266 for (i = 0; i < src_bytes; i++)
267 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268 return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274 int i;
275 if (dst_bytes > 4)
276 dst_bytes = 4;
277 for (i = 0; i < dst_bytes; i++)
278 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 uint32_t clkcfg;
287
288 clkcfg = I915_READ(CLKCFG);
289 switch (clkcfg & CLKCFG_FSB_MASK) {
290 case CLKCFG_FSB_400:
291 return 100;
292 case CLKCFG_FSB_533:
293 return 133;
294 case CLKCFG_FSB_667:
295 return 166;
296 case CLKCFG_FSB_800:
297 return 200;
298 case CLKCFG_FSB_1067:
299 return 266;
300 case CLKCFG_FSB_1333:
301 return 333;
302 /* these two are just a guess; one of them might be right */
303 case CLKCFG_FSB_1600:
304 case CLKCFG_FSB_1600_ALT:
305 return 400;
306 default:
307 return 133;
308 }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313 struct drm_device *dev = intel_dp->base.base.dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330 struct drm_device *dev = intel_dp->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332
333 if (!is_edp(intel_dp))
334 return;
335 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338 I915_READ(PCH_PP_STATUS),
339 I915_READ(PCH_PP_CONTROL));
340 }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345 uint8_t *send, int send_bytes,
346 uint8_t *recv, int recv_size)
347 {
348 uint32_t output_reg = intel_dp->output_reg;
349 struct drm_device *dev = intel_dp->base.base.dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 uint32_t ch_ctl = output_reg + 0x10;
352 uint32_t ch_data = ch_ctl + 4;
353 int i;
354 int recv_bytes;
355 uint32_t status;
356 uint32_t aux_clock_divider;
357 int try, precharge;
358
359 intel_dp_check_edp(intel_dp);
360 /* The clock divider is based off the hrawclk,
361 * and would like to run at 2MHz. So, take the
362 * hrawclk value and divide by 2 and use that
363 *
364 * Note that PCH attached eDP panels should use a 125MHz input
365 * clock divider.
366 */
367 if (is_cpu_edp(intel_dp)) {
368 if (IS_GEN6(dev))
369 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
370 else
371 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372 } else if (HAS_PCH_SPLIT(dev))
373 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
374 else
375 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377 if (IS_GEN6(dev))
378 precharge = 3;
379 else
380 precharge = 5;
381
382 /* Try to wait for any previous AUX channel activity */
383 for (try = 0; try < 3; try++) {
384 status = I915_READ(ch_ctl);
385 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386 break;
387 msleep(1);
388 }
389
390 if (try == 3) {
391 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392 I915_READ(ch_ctl));
393 return -EBUSY;
394 }
395
396 /* Must try at least 3 times according to DP spec */
397 for (try = 0; try < 5; try++) {
398 /* Load the send data into the aux channel data registers */
399 for (i = 0; i < send_bytes; i += 4)
400 I915_WRITE(ch_data + i,
401 pack_aux(send + i, send_bytes - i));
402
403 /* Send the command and wait for it to complete */
404 I915_WRITE(ch_ctl,
405 DP_AUX_CH_CTL_SEND_BUSY |
406 DP_AUX_CH_CTL_TIME_OUT_400us |
407 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410 DP_AUX_CH_CTL_DONE |
411 DP_AUX_CH_CTL_TIME_OUT_ERROR |
412 DP_AUX_CH_CTL_RECEIVE_ERROR);
413 for (;;) {
414 status = I915_READ(ch_ctl);
415 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416 break;
417 udelay(100);
418 }
419
420 /* Clear done status and any errors */
421 I915_WRITE(ch_ctl,
422 status |
423 DP_AUX_CH_CTL_DONE |
424 DP_AUX_CH_CTL_TIME_OUT_ERROR |
425 DP_AUX_CH_CTL_RECEIVE_ERROR);
426 if (status & DP_AUX_CH_CTL_DONE)
427 break;
428 }
429
430 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
431 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
432 return -EBUSY;
433 }
434
435 /* Check for timeout or receive error.
436 * Timeouts occur when the sink is not connected
437 */
438 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
439 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
440 return -EIO;
441 }
442
443 /* Timeouts occur when the device isn't connected, so they're
444 * "normal" -- don't fill the kernel log with these */
445 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
446 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
447 return -ETIMEDOUT;
448 }
449
450 /* Unload any bytes sent back from the other side */
451 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
452 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
453 if (recv_bytes > recv_size)
454 recv_bytes = recv_size;
455
456 for (i = 0; i < recv_bytes; i += 4)
457 unpack_aux(I915_READ(ch_data + i),
458 recv + i, recv_bytes - i);
459
460 return recv_bytes;
461 }
462
463 /* Write data to the aux channel in native mode */
464 static int
465 intel_dp_aux_native_write(struct intel_dp *intel_dp,
466 uint16_t address, uint8_t *send, int send_bytes)
467 {
468 int ret;
469 uint8_t msg[20];
470 int msg_bytes;
471 uint8_t ack;
472
473 intel_dp_check_edp(intel_dp);
474 if (send_bytes > 16)
475 return -1;
476 msg[0] = AUX_NATIVE_WRITE << 4;
477 msg[1] = address >> 8;
478 msg[2] = address & 0xff;
479 msg[3] = send_bytes - 1;
480 memcpy(&msg[4], send, send_bytes);
481 msg_bytes = send_bytes + 4;
482 for (;;) {
483 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
484 if (ret < 0)
485 return ret;
486 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
487 break;
488 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
489 udelay(100);
490 else
491 return -EIO;
492 }
493 return send_bytes;
494 }
495
496 /* Write a single byte to the aux channel in native mode */
497 static int
498 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
499 uint16_t address, uint8_t byte)
500 {
501 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
502 }
503
504 /* read bytes from a native aux channel */
505 static int
506 intel_dp_aux_native_read(struct intel_dp *intel_dp,
507 uint16_t address, uint8_t *recv, int recv_bytes)
508 {
509 uint8_t msg[4];
510 int msg_bytes;
511 uint8_t reply[20];
512 int reply_bytes;
513 uint8_t ack;
514 int ret;
515
516 intel_dp_check_edp(intel_dp);
517 msg[0] = AUX_NATIVE_READ << 4;
518 msg[1] = address >> 8;
519 msg[2] = address & 0xff;
520 msg[3] = recv_bytes - 1;
521
522 msg_bytes = 4;
523 reply_bytes = recv_bytes + 1;
524
525 for (;;) {
526 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
527 reply, reply_bytes);
528 if (ret == 0)
529 return -EPROTO;
530 if (ret < 0)
531 return ret;
532 ack = reply[0];
533 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
534 memcpy(recv, reply + 1, ret - 1);
535 return ret - 1;
536 }
537 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
538 udelay(100);
539 else
540 return -EIO;
541 }
542 }
543
544 static int
545 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
546 uint8_t write_byte, uint8_t *read_byte)
547 {
548 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
549 struct intel_dp *intel_dp = container_of(adapter,
550 struct intel_dp,
551 adapter);
552 uint16_t address = algo_data->address;
553 uint8_t msg[5];
554 uint8_t reply[2];
555 unsigned retry;
556 int msg_bytes;
557 int reply_bytes;
558 int ret;
559
560 intel_dp_check_edp(intel_dp);
561 /* Set up the command byte */
562 if (mode & MODE_I2C_READ)
563 msg[0] = AUX_I2C_READ << 4;
564 else
565 msg[0] = AUX_I2C_WRITE << 4;
566
567 if (!(mode & MODE_I2C_STOP))
568 msg[0] |= AUX_I2C_MOT << 4;
569
570 msg[1] = address >> 8;
571 msg[2] = address;
572
573 switch (mode) {
574 case MODE_I2C_WRITE:
575 msg[3] = 0;
576 msg[4] = write_byte;
577 msg_bytes = 5;
578 reply_bytes = 1;
579 break;
580 case MODE_I2C_READ:
581 msg[3] = 0;
582 msg_bytes = 4;
583 reply_bytes = 2;
584 break;
585 default:
586 msg_bytes = 3;
587 reply_bytes = 1;
588 break;
589 }
590
591 for (retry = 0; retry < 5; retry++) {
592 ret = intel_dp_aux_ch(intel_dp,
593 msg, msg_bytes,
594 reply, reply_bytes);
595 if (ret < 0) {
596 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
597 return ret;
598 }
599
600 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
601 case AUX_NATIVE_REPLY_ACK:
602 /* I2C-over-AUX Reply field is only valid
603 * when paired with AUX ACK.
604 */
605 break;
606 case AUX_NATIVE_REPLY_NACK:
607 DRM_DEBUG_KMS("aux_ch native nack\n");
608 return -EREMOTEIO;
609 case AUX_NATIVE_REPLY_DEFER:
610 udelay(100);
611 continue;
612 default:
613 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
614 reply[0]);
615 return -EREMOTEIO;
616 }
617
618 switch (reply[0] & AUX_I2C_REPLY_MASK) {
619 case AUX_I2C_REPLY_ACK:
620 if (mode == MODE_I2C_READ) {
621 *read_byte = reply[1];
622 }
623 return reply_bytes - 1;
624 case AUX_I2C_REPLY_NACK:
625 DRM_DEBUG_KMS("aux_i2c nack\n");
626 return -EREMOTEIO;
627 case AUX_I2C_REPLY_DEFER:
628 DRM_DEBUG_KMS("aux_i2c defer\n");
629 udelay(100);
630 break;
631 default:
632 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
633 return -EREMOTEIO;
634 }
635 }
636
637 DRM_ERROR("too many retries, giving up\n");
638 return -EREMOTEIO;
639 }
640
641 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
642 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
643
644 static int
645 intel_dp_i2c_init(struct intel_dp *intel_dp,
646 struct intel_connector *intel_connector, const char *name)
647 {
648 int ret;
649
650 DRM_DEBUG_KMS("i2c_init %s\n", name);
651 intel_dp->algo.running = false;
652 intel_dp->algo.address = 0;
653 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
654
655 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
656 intel_dp->adapter.owner = THIS_MODULE;
657 intel_dp->adapter.class = I2C_CLASS_DDC;
658 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
659 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
660 intel_dp->adapter.algo_data = &intel_dp->algo;
661 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
662
663 ironlake_edp_panel_vdd_on(intel_dp);
664 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
665 ironlake_edp_panel_vdd_off(intel_dp, false);
666 return ret;
667 }
668
669 static bool
670 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
671 struct drm_display_mode *adjusted_mode)
672 {
673 struct drm_device *dev = encoder->dev;
674 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
675 int lane_count, clock;
676 int max_lane_count = intel_dp_max_lane_count(intel_dp);
677 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
678 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
679
680 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
681 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
682 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
683 mode, adjusted_mode);
684 /*
685 * the mode->clock is used to calculate the Data&Link M/N
686 * of the pipe. For the eDP the fixed clock should be used.
687 */
688 mode->clock = intel_dp->panel_fixed_mode->clock;
689 }
690
691 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
692 for (clock = 0; clock <= max_clock; clock++) {
693 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
694
695 if (intel_dp_link_required(intel_dp, mode->clock)
696 <= link_avail) {
697 intel_dp->link_bw = bws[clock];
698 intel_dp->lane_count = lane_count;
699 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
700 DRM_DEBUG_KMS("Display port link bw %02x lane "
701 "count %d clock %d\n",
702 intel_dp->link_bw, intel_dp->lane_count,
703 adjusted_mode->clock);
704 return true;
705 }
706 }
707 }
708
709 return false;
710 }
711
712 struct intel_dp_m_n {
713 uint32_t tu;
714 uint32_t gmch_m;
715 uint32_t gmch_n;
716 uint32_t link_m;
717 uint32_t link_n;
718 };
719
720 static void
721 intel_reduce_ratio(uint32_t *num, uint32_t *den)
722 {
723 while (*num > 0xffffff || *den > 0xffffff) {
724 *num >>= 1;
725 *den >>= 1;
726 }
727 }
728
729 static void
730 intel_dp_compute_m_n(int bpp,
731 int nlanes,
732 int pixel_clock,
733 int link_clock,
734 struct intel_dp_m_n *m_n)
735 {
736 m_n->tu = 64;
737 m_n->gmch_m = (pixel_clock * bpp) >> 3;
738 m_n->gmch_n = link_clock * nlanes;
739 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
740 m_n->link_m = pixel_clock;
741 m_n->link_n = link_clock;
742 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
743 }
744
745 void
746 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
747 struct drm_display_mode *adjusted_mode)
748 {
749 struct drm_device *dev = crtc->dev;
750 struct drm_mode_config *mode_config = &dev->mode_config;
751 struct drm_encoder *encoder;
752 struct drm_i915_private *dev_priv = dev->dev_private;
753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
754 int lane_count = 4;
755 struct intel_dp_m_n m_n;
756 int pipe = intel_crtc->pipe;
757
758 /*
759 * Find the lane count in the intel_encoder private
760 */
761 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
762 struct intel_dp *intel_dp;
763
764 if (encoder->crtc != crtc)
765 continue;
766
767 intel_dp = enc_to_intel_dp(encoder);
768 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT || is_pch_edp(intel_dp)) {
769 lane_count = intel_dp->lane_count;
770 break;
771 } else if (is_cpu_edp(intel_dp)) {
772 lane_count = dev_priv->edp.lanes;
773 break;
774 }
775 }
776
777 /*
778 * Compute the GMCH and Link ratios. The '3' here is
779 * the number of bytes_per_pixel post-LUT, which we always
780 * set up for 8-bits of R/G/B, or 3 bytes total.
781 */
782 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
783 mode->clock, adjusted_mode->clock, &m_n);
784
785 if (HAS_PCH_SPLIT(dev)) {
786 I915_WRITE(TRANSDATA_M1(pipe),
787 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
788 m_n.gmch_m);
789 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
790 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
791 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
792 } else {
793 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
794 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
795 m_n.gmch_m);
796 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
797 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
798 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
799 }
800 }
801
802 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
803 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
804
805 static void
806 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
807 struct drm_display_mode *adjusted_mode)
808 {
809 struct drm_device *dev = encoder->dev;
810 struct drm_i915_private *dev_priv = dev->dev_private;
811 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
812 struct drm_crtc *crtc = intel_dp->base.base.crtc;
813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
814
815 /* Turn on the eDP PLL if needed */
816 if (is_edp(intel_dp)) {
817 if (!is_pch_edp(intel_dp))
818 ironlake_edp_pll_on(encoder);
819 else
820 ironlake_edp_pll_off(encoder);
821 }
822
823 /*
824 * There are three kinds of DP registers:
825 *
826 * IBX PCH
827 * CPU
828 * CPT PCH
829 *
830 * IBX PCH and CPU are the same for almost everything,
831 * except that the CPU DP PLL is configured in this
832 * register
833 *
834 * CPT PCH is quite different, having many bits moved
835 * to the TRANS_DP_CTL register instead. That
836 * configuration happens (oddly) in ironlake_pch_enable
837 */
838
839 /* Preserve the BIOS-computed detected bit. This is
840 * supposed to be read-only.
841 */
842 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
843 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844
845 /* Handle DP bits in common between all three register formats */
846
847 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
848
849 switch (intel_dp->lane_count) {
850 case 1:
851 intel_dp->DP |= DP_PORT_WIDTH_1;
852 break;
853 case 2:
854 intel_dp->DP |= DP_PORT_WIDTH_2;
855 break;
856 case 4:
857 intel_dp->DP |= DP_PORT_WIDTH_4;
858 break;
859 }
860 if (intel_dp->has_audio) {
861 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
862 pipe_name(intel_crtc->pipe));
863 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
864 intel_write_eld(encoder, adjusted_mode);
865 }
866 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
867 intel_dp->link_configuration[0] = intel_dp->link_bw;
868 intel_dp->link_configuration[1] = intel_dp->lane_count;
869 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
870 /*
871 * Check for DPCD version > 1.1 and enhanced framing support
872 */
873 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
874 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
875 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
876 }
877
878 /* Split out the IBX/CPU vs CPT settings */
879
880 if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
881 intel_dp->DP |= intel_dp->color_range;
882
883 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
884 intel_dp->DP |= DP_SYNC_HS_HIGH;
885 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
886 intel_dp->DP |= DP_SYNC_VS_HIGH;
887 intel_dp->DP |= DP_LINK_TRAIN_OFF;
888
889 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
890 intel_dp->DP |= DP_ENHANCED_FRAMING;
891
892 if (intel_crtc->pipe == 1)
893 intel_dp->DP |= DP_PIPEB_SELECT;
894
895 if (is_cpu_edp(intel_dp)) {
896 /* don't miss out required setting for eDP */
897 intel_dp->DP |= DP_PLL_ENABLE;
898 if (adjusted_mode->clock < 200000)
899 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
900 else
901 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
902 }
903 } else {
904 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
905 }
906 }
907
908 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
909 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
910
911 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
912 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
913
914 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
915 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
916
917 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
918 u32 mask,
919 u32 value)
920 {
921 struct drm_device *dev = intel_dp->base.base.dev;
922 struct drm_i915_private *dev_priv = dev->dev_private;
923
924 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
925 mask, value,
926 I915_READ(PCH_PP_STATUS),
927 I915_READ(PCH_PP_CONTROL));
928
929 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
930 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
931 I915_READ(PCH_PP_STATUS),
932 I915_READ(PCH_PP_CONTROL));
933 }
934 }
935
936 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
937 {
938 DRM_DEBUG_KMS("Wait for panel power on\n");
939 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
940 }
941
942 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
943 {
944 DRM_DEBUG_KMS("Wait for panel power off time\n");
945 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
946 }
947
948 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
949 {
950 DRM_DEBUG_KMS("Wait for panel power cycle\n");
951 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
952 }
953
954
955 /* Read the current pp_control value, unlocking the register if it
956 * is locked
957 */
958
959 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
960 {
961 u32 control = I915_READ(PCH_PP_CONTROL);
962
963 control &= ~PANEL_UNLOCK_MASK;
964 control |= PANEL_UNLOCK_REGS;
965 return control;
966 }
967
968 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
969 {
970 struct drm_device *dev = intel_dp->base.base.dev;
971 struct drm_i915_private *dev_priv = dev->dev_private;
972 u32 pp;
973
974 if (!is_edp(intel_dp))
975 return;
976 DRM_DEBUG_KMS("Turn eDP VDD on\n");
977
978 WARN(intel_dp->want_panel_vdd,
979 "eDP VDD already requested on\n");
980
981 intel_dp->want_panel_vdd = true;
982
983 if (ironlake_edp_have_panel_vdd(intel_dp)) {
984 DRM_DEBUG_KMS("eDP VDD already on\n");
985 return;
986 }
987
988 if (!ironlake_edp_have_panel_power(intel_dp))
989 ironlake_wait_panel_power_cycle(intel_dp);
990
991 pp = ironlake_get_pp_control(dev_priv);
992 pp |= EDP_FORCE_VDD;
993 I915_WRITE(PCH_PP_CONTROL, pp);
994 POSTING_READ(PCH_PP_CONTROL);
995 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
996 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
997
998 /*
999 * If the panel wasn't on, delay before accessing aux channel
1000 */
1001 if (!ironlake_edp_have_panel_power(intel_dp)) {
1002 DRM_DEBUG_KMS("eDP was not running\n");
1003 msleep(intel_dp->panel_power_up_delay);
1004 }
1005 }
1006
1007 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1008 {
1009 struct drm_device *dev = intel_dp->base.base.dev;
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 pp;
1012
1013 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1014 pp = ironlake_get_pp_control(dev_priv);
1015 pp &= ~EDP_FORCE_VDD;
1016 I915_WRITE(PCH_PP_CONTROL, pp);
1017 POSTING_READ(PCH_PP_CONTROL);
1018
1019 /* Make sure sequencer is idle before allowing subsequent activity */
1020 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1021 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1022
1023 msleep(intel_dp->panel_power_down_delay);
1024 }
1025 }
1026
1027 static void ironlake_panel_vdd_work(struct work_struct *__work)
1028 {
1029 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1030 struct intel_dp, panel_vdd_work);
1031 struct drm_device *dev = intel_dp->base.base.dev;
1032
1033 mutex_lock(&dev->mode_config.mutex);
1034 ironlake_panel_vdd_off_sync(intel_dp);
1035 mutex_unlock(&dev->mode_config.mutex);
1036 }
1037
1038 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1039 {
1040 if (!is_edp(intel_dp))
1041 return;
1042
1043 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1044 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1045
1046 intel_dp->want_panel_vdd = false;
1047
1048 if (sync) {
1049 ironlake_panel_vdd_off_sync(intel_dp);
1050 } else {
1051 /*
1052 * Queue the timer to fire a long
1053 * time from now (relative to the power down delay)
1054 * to keep the panel power up across a sequence of operations
1055 */
1056 schedule_delayed_work(&intel_dp->panel_vdd_work,
1057 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1058 }
1059 }
1060
1061 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1062 {
1063 struct drm_device *dev = intel_dp->base.base.dev;
1064 struct drm_i915_private *dev_priv = dev->dev_private;
1065 u32 pp;
1066
1067 if (!is_edp(intel_dp))
1068 return;
1069
1070 DRM_DEBUG_KMS("Turn eDP power on\n");
1071
1072 if (ironlake_edp_have_panel_power(intel_dp)) {
1073 DRM_DEBUG_KMS("eDP power already on\n");
1074 return;
1075 }
1076
1077 ironlake_wait_panel_power_cycle(intel_dp);
1078
1079 pp = ironlake_get_pp_control(dev_priv);
1080 if (IS_GEN5(dev)) {
1081 /* ILK workaround: disable reset around power sequence */
1082 pp &= ~PANEL_POWER_RESET;
1083 I915_WRITE(PCH_PP_CONTROL, pp);
1084 POSTING_READ(PCH_PP_CONTROL);
1085 }
1086
1087 pp |= POWER_TARGET_ON;
1088 if (!IS_GEN5(dev))
1089 pp |= PANEL_POWER_RESET;
1090
1091 I915_WRITE(PCH_PP_CONTROL, pp);
1092 POSTING_READ(PCH_PP_CONTROL);
1093
1094 ironlake_wait_panel_on(intel_dp);
1095
1096 if (IS_GEN5(dev)) {
1097 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1098 I915_WRITE(PCH_PP_CONTROL, pp);
1099 POSTING_READ(PCH_PP_CONTROL);
1100 }
1101 }
1102
1103 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1104 {
1105 struct drm_device *dev = intel_dp->base.base.dev;
1106 struct drm_i915_private *dev_priv = dev->dev_private;
1107 u32 pp;
1108
1109 if (!is_edp(intel_dp))
1110 return;
1111
1112 DRM_DEBUG_KMS("Turn eDP power off\n");
1113
1114 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1115
1116 pp = ironlake_get_pp_control(dev_priv);
1117 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1118 I915_WRITE(PCH_PP_CONTROL, pp);
1119 POSTING_READ(PCH_PP_CONTROL);
1120
1121 ironlake_wait_panel_off(intel_dp);
1122 }
1123
1124 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1125 {
1126 struct drm_device *dev = intel_dp->base.base.dev;
1127 struct drm_i915_private *dev_priv = dev->dev_private;
1128 u32 pp;
1129
1130 if (!is_edp(intel_dp))
1131 return;
1132
1133 DRM_DEBUG_KMS("\n");
1134 /*
1135 * If we enable the backlight right away following a panel power
1136 * on, we may see slight flicker as the panel syncs with the eDP
1137 * link. So delay a bit to make sure the image is solid before
1138 * allowing it to appear.
1139 */
1140 msleep(intel_dp->backlight_on_delay);
1141 pp = ironlake_get_pp_control(dev_priv);
1142 pp |= EDP_BLC_ENABLE;
1143 I915_WRITE(PCH_PP_CONTROL, pp);
1144 POSTING_READ(PCH_PP_CONTROL);
1145 }
1146
1147 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1148 {
1149 struct drm_device *dev = intel_dp->base.base.dev;
1150 struct drm_i915_private *dev_priv = dev->dev_private;
1151 u32 pp;
1152
1153 if (!is_edp(intel_dp))
1154 return;
1155
1156 DRM_DEBUG_KMS("\n");
1157 pp = ironlake_get_pp_control(dev_priv);
1158 pp &= ~EDP_BLC_ENABLE;
1159 I915_WRITE(PCH_PP_CONTROL, pp);
1160 POSTING_READ(PCH_PP_CONTROL);
1161 msleep(intel_dp->backlight_off_delay);
1162 }
1163
1164 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1165 {
1166 struct drm_device *dev = encoder->dev;
1167 struct drm_i915_private *dev_priv = dev->dev_private;
1168 u32 dpa_ctl;
1169
1170 DRM_DEBUG_KMS("\n");
1171 dpa_ctl = I915_READ(DP_A);
1172 dpa_ctl |= DP_PLL_ENABLE;
1173 I915_WRITE(DP_A, dpa_ctl);
1174 POSTING_READ(DP_A);
1175 udelay(200);
1176 }
1177
1178 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1179 {
1180 struct drm_device *dev = encoder->dev;
1181 struct drm_i915_private *dev_priv = dev->dev_private;
1182 u32 dpa_ctl;
1183
1184 dpa_ctl = I915_READ(DP_A);
1185 dpa_ctl &= ~DP_PLL_ENABLE;
1186 I915_WRITE(DP_A, dpa_ctl);
1187 POSTING_READ(DP_A);
1188 udelay(200);
1189 }
1190
1191 /* If the sink supports it, try to set the power state appropriately */
1192 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1193 {
1194 int ret, i;
1195
1196 /* Should have a valid DPCD by this point */
1197 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1198 return;
1199
1200 if (mode != DRM_MODE_DPMS_ON) {
1201 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1202 DP_SET_POWER_D3);
1203 if (ret != 1)
1204 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1205 } else {
1206 /*
1207 * When turning on, we need to retry for 1ms to give the sink
1208 * time to wake up.
1209 */
1210 for (i = 0; i < 3; i++) {
1211 ret = intel_dp_aux_native_write_1(intel_dp,
1212 DP_SET_POWER,
1213 DP_SET_POWER_D0);
1214 if (ret == 1)
1215 break;
1216 msleep(1);
1217 }
1218 }
1219 }
1220
1221 static void intel_dp_prepare(struct drm_encoder *encoder)
1222 {
1223 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1224
1225 ironlake_edp_backlight_off(intel_dp);
1226 ironlake_edp_panel_off(intel_dp);
1227
1228 /* Wake up the sink first */
1229 ironlake_edp_panel_vdd_on(intel_dp);
1230 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1231 intel_dp_link_down(intel_dp);
1232 ironlake_edp_panel_vdd_off(intel_dp, false);
1233
1234 /* Make sure the panel is off before trying to
1235 * change the mode
1236 */
1237 }
1238
1239 static void intel_dp_commit(struct drm_encoder *encoder)
1240 {
1241 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1242 struct drm_device *dev = encoder->dev;
1243 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1244
1245 ironlake_edp_panel_vdd_on(intel_dp);
1246 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1247 intel_dp_start_link_train(intel_dp);
1248 ironlake_edp_panel_on(intel_dp);
1249 ironlake_edp_panel_vdd_off(intel_dp, true);
1250 intel_dp_complete_link_train(intel_dp);
1251 ironlake_edp_backlight_on(intel_dp);
1252
1253 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1254
1255 if (HAS_PCH_CPT(dev))
1256 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1257 }
1258
1259 static void
1260 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1261 {
1262 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1263 struct drm_device *dev = encoder->dev;
1264 struct drm_i915_private *dev_priv = dev->dev_private;
1265 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1266
1267 if (mode != DRM_MODE_DPMS_ON) {
1268 ironlake_edp_backlight_off(intel_dp);
1269 ironlake_edp_panel_off(intel_dp);
1270
1271 ironlake_edp_panel_vdd_on(intel_dp);
1272 intel_dp_sink_dpms(intel_dp, mode);
1273 intel_dp_link_down(intel_dp);
1274 ironlake_edp_panel_vdd_off(intel_dp, false);
1275
1276 if (is_cpu_edp(intel_dp))
1277 ironlake_edp_pll_off(encoder);
1278 } else {
1279 if (is_cpu_edp(intel_dp))
1280 ironlake_edp_pll_on(encoder);
1281
1282 ironlake_edp_panel_vdd_on(intel_dp);
1283 intel_dp_sink_dpms(intel_dp, mode);
1284 if (!(dp_reg & DP_PORT_EN)) {
1285 intel_dp_start_link_train(intel_dp);
1286 ironlake_edp_panel_on(intel_dp);
1287 ironlake_edp_panel_vdd_off(intel_dp, true);
1288 intel_dp_complete_link_train(intel_dp);
1289 } else
1290 ironlake_edp_panel_vdd_off(intel_dp, false);
1291 ironlake_edp_backlight_on(intel_dp);
1292 }
1293 intel_dp->dpms_mode = mode;
1294 }
1295
1296 /*
1297 * Native read with retry for link status and receiver capability reads for
1298 * cases where the sink may still be asleep.
1299 */
1300 static bool
1301 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1302 uint8_t *recv, int recv_bytes)
1303 {
1304 int ret, i;
1305
1306 /*
1307 * Sinks are *supposed* to come up within 1ms from an off state,
1308 * but we're also supposed to retry 3 times per the spec.
1309 */
1310 for (i = 0; i < 3; i++) {
1311 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1312 recv_bytes);
1313 if (ret == recv_bytes)
1314 return true;
1315 msleep(1);
1316 }
1317
1318 return false;
1319 }
1320
1321 /*
1322 * Fetch AUX CH registers 0x202 - 0x207 which contain
1323 * link status information
1324 */
1325 static bool
1326 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1327 {
1328 return intel_dp_aux_native_read_retry(intel_dp,
1329 DP_LANE0_1_STATUS,
1330 link_status,
1331 DP_LINK_STATUS_SIZE);
1332 }
1333
1334 static uint8_t
1335 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1336 int r)
1337 {
1338 return link_status[r - DP_LANE0_1_STATUS];
1339 }
1340
1341 static uint8_t
1342 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1343 int lane)
1344 {
1345 int s = ((lane & 1) ?
1346 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1347 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1348 uint8_t l = adjust_request[lane>>1];
1349
1350 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1351 }
1352
1353 static uint8_t
1354 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1355 int lane)
1356 {
1357 int s = ((lane & 1) ?
1358 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1359 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1360 uint8_t l = adjust_request[lane>>1];
1361
1362 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1363 }
1364
1365
1366 #if 0
1367 static char *voltage_names[] = {
1368 "0.4V", "0.6V", "0.8V", "1.2V"
1369 };
1370 static char *pre_emph_names[] = {
1371 "0dB", "3.5dB", "6dB", "9.5dB"
1372 };
1373 static char *link_train_names[] = {
1374 "pattern 1", "pattern 2", "idle", "off"
1375 };
1376 #endif
1377
1378 /*
1379 * These are source-specific values; current Intel hardware supports
1380 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1381 */
1382 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1383 #define I830_DP_VOLTAGE_MAX_CPT DP_TRAIN_VOLTAGE_SWING_1200
1384
1385 static uint8_t
1386 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1387 {
1388 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1389 case DP_TRAIN_VOLTAGE_SWING_400:
1390 return DP_TRAIN_PRE_EMPHASIS_6;
1391 case DP_TRAIN_VOLTAGE_SWING_600:
1392 return DP_TRAIN_PRE_EMPHASIS_6;
1393 case DP_TRAIN_VOLTAGE_SWING_800:
1394 return DP_TRAIN_PRE_EMPHASIS_3_5;
1395 case DP_TRAIN_VOLTAGE_SWING_1200:
1396 default:
1397 return DP_TRAIN_PRE_EMPHASIS_0;
1398 }
1399 }
1400
1401 static void
1402 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1403 {
1404 struct drm_device *dev = intel_dp->base.base.dev;
1405 uint8_t v = 0;
1406 uint8_t p = 0;
1407 int lane;
1408 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1409 int voltage_max;
1410
1411 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1412 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1413 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1414
1415 if (this_v > v)
1416 v = this_v;
1417 if (this_p > p)
1418 p = this_p;
1419 }
1420
1421 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1422 voltage_max = I830_DP_VOLTAGE_MAX_CPT;
1423 else
1424 voltage_max = I830_DP_VOLTAGE_MAX;
1425 if (v >= voltage_max)
1426 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1427
1428 if (p >= intel_dp_pre_emphasis_max(v))
1429 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1430
1431 for (lane = 0; lane < 4; lane++)
1432 intel_dp->train_set[lane] = v | p;
1433 }
1434
1435 static uint32_t
1436 intel_dp_signal_levels(uint8_t train_set)
1437 {
1438 uint32_t signal_levels = 0;
1439
1440 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1441 case DP_TRAIN_VOLTAGE_SWING_400:
1442 default:
1443 signal_levels |= DP_VOLTAGE_0_4;
1444 break;
1445 case DP_TRAIN_VOLTAGE_SWING_600:
1446 signal_levels |= DP_VOLTAGE_0_6;
1447 break;
1448 case DP_TRAIN_VOLTAGE_SWING_800:
1449 signal_levels |= DP_VOLTAGE_0_8;
1450 break;
1451 case DP_TRAIN_VOLTAGE_SWING_1200:
1452 signal_levels |= DP_VOLTAGE_1_2;
1453 break;
1454 }
1455 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1456 case DP_TRAIN_PRE_EMPHASIS_0:
1457 default:
1458 signal_levels |= DP_PRE_EMPHASIS_0;
1459 break;
1460 case DP_TRAIN_PRE_EMPHASIS_3_5:
1461 signal_levels |= DP_PRE_EMPHASIS_3_5;
1462 break;
1463 case DP_TRAIN_PRE_EMPHASIS_6:
1464 signal_levels |= DP_PRE_EMPHASIS_6;
1465 break;
1466 case DP_TRAIN_PRE_EMPHASIS_9_5:
1467 signal_levels |= DP_PRE_EMPHASIS_9_5;
1468 break;
1469 }
1470 return signal_levels;
1471 }
1472
1473 /* Gen6's DP voltage swing and pre-emphasis control */
1474 static uint32_t
1475 intel_gen6_edp_signal_levels(uint8_t train_set)
1476 {
1477 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1478 DP_TRAIN_PRE_EMPHASIS_MASK);
1479 switch (signal_levels) {
1480 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1481 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1482 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1483 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1484 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1485 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1486 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1487 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1488 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1489 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1490 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1491 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1492 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1493 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1494 default:
1495 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1496 "0x%x\n", signal_levels);
1497 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1498 }
1499 }
1500
1501 static uint8_t
1502 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1503 int lane)
1504 {
1505 int s = (lane & 1) * 4;
1506 uint8_t l = link_status[lane>>1];
1507
1508 return (l >> s) & 0xf;
1509 }
1510
1511 /* Check for clock recovery is done on all channels */
1512 static bool
1513 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1514 {
1515 int lane;
1516 uint8_t lane_status;
1517
1518 for (lane = 0; lane < lane_count; lane++) {
1519 lane_status = intel_get_lane_status(link_status, lane);
1520 if ((lane_status & DP_LANE_CR_DONE) == 0)
1521 return false;
1522 }
1523 return true;
1524 }
1525
1526 /* Check to see if channel eq is done on all channels */
1527 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1528 DP_LANE_CHANNEL_EQ_DONE|\
1529 DP_LANE_SYMBOL_LOCKED)
1530 static bool
1531 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1532 {
1533 uint8_t lane_align;
1534 uint8_t lane_status;
1535 int lane;
1536
1537 lane_align = intel_dp_link_status(link_status,
1538 DP_LANE_ALIGN_STATUS_UPDATED);
1539 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1540 return false;
1541 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1542 lane_status = intel_get_lane_status(link_status, lane);
1543 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1544 return false;
1545 }
1546 return true;
1547 }
1548
1549 static bool
1550 intel_dp_set_link_train(struct intel_dp *intel_dp,
1551 uint32_t dp_reg_value,
1552 uint8_t dp_train_pat)
1553 {
1554 struct drm_device *dev = intel_dp->base.base.dev;
1555 struct drm_i915_private *dev_priv = dev->dev_private;
1556 int ret;
1557
1558 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1559 POSTING_READ(intel_dp->output_reg);
1560
1561 intel_dp_aux_native_write_1(intel_dp,
1562 DP_TRAINING_PATTERN_SET,
1563 dp_train_pat);
1564
1565 ret = intel_dp_aux_native_write(intel_dp,
1566 DP_TRAINING_LANE0_SET,
1567 intel_dp->train_set,
1568 intel_dp->lane_count);
1569 if (ret != intel_dp->lane_count)
1570 return false;
1571
1572 return true;
1573 }
1574
1575 /* Enable corresponding port and start training pattern 1 */
1576 static void
1577 intel_dp_start_link_train(struct intel_dp *intel_dp)
1578 {
1579 struct drm_device *dev = intel_dp->base.base.dev;
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1582 int i;
1583 uint8_t voltage;
1584 bool clock_recovery = false;
1585 int voltage_tries, loop_tries;
1586 u32 reg;
1587 uint32_t DP = intel_dp->DP;
1588
1589 /*
1590 * On CPT we have to enable the port in training pattern 1, which
1591 * will happen below in intel_dp_set_link_train. Otherwise, enable
1592 * the port and wait for it to become active.
1593 */
1594 if (!HAS_PCH_CPT(dev)) {
1595 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1596 POSTING_READ(intel_dp->output_reg);
1597 intel_wait_for_vblank(dev, intel_crtc->pipe);
1598 }
1599
1600 /* Write the link configuration data */
1601 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1602 intel_dp->link_configuration,
1603 DP_LINK_CONFIGURATION_SIZE);
1604
1605 DP |= DP_PORT_EN;
1606 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1607 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1608 else
1609 DP &= ~DP_LINK_TRAIN_MASK;
1610 memset(intel_dp->train_set, 0, 4);
1611 voltage = 0xff;
1612 voltage_tries = 0;
1613 loop_tries = 0;
1614 clock_recovery = false;
1615 for (;;) {
1616 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1617 uint8_t link_status[DP_LINK_STATUS_SIZE];
1618 uint32_t signal_levels;
1619
1620 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1621 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1622 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1623 } else {
1624 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1625 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1626 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1627 }
1628
1629 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1630 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1631 else
1632 reg = DP | DP_LINK_TRAIN_PAT_1;
1633
1634 if (!intel_dp_set_link_train(intel_dp, reg,
1635 DP_TRAINING_PATTERN_1 |
1636 DP_LINK_SCRAMBLING_DISABLE))
1637 break;
1638 /* Set training pattern 1 */
1639
1640 udelay(100);
1641 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1642 DRM_ERROR("failed to get link status\n");
1643 break;
1644 }
1645
1646 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1647 DRM_DEBUG_KMS("clock recovery OK\n");
1648 clock_recovery = true;
1649 break;
1650 }
1651
1652 /* Check to see if we've tried the max voltage */
1653 for (i = 0; i < intel_dp->lane_count; i++)
1654 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1655 break;
1656 if (i == intel_dp->lane_count) {
1657 ++loop_tries;
1658 if (loop_tries == 5) {
1659 DRM_DEBUG_KMS("too many full retries, give up\n");
1660 break;
1661 }
1662 memset(intel_dp->train_set, 0, 4);
1663 voltage_tries = 0;
1664 continue;
1665 }
1666
1667 /* Check to see if we've tried the same voltage 5 times */
1668 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1669 ++voltage_tries;
1670 if (voltage_tries == 5) {
1671 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1672 break;
1673 }
1674 } else
1675 voltage_tries = 0;
1676 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1677
1678 /* Compute new intel_dp->train_set as requested by target */
1679 intel_get_adjust_train(intel_dp, link_status);
1680 }
1681
1682 intel_dp->DP = DP;
1683 }
1684
1685 static void
1686 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1687 {
1688 struct drm_device *dev = intel_dp->base.base.dev;
1689 struct drm_i915_private *dev_priv = dev->dev_private;
1690 bool channel_eq = false;
1691 int tries, cr_tries;
1692 u32 reg;
1693 uint32_t DP = intel_dp->DP;
1694
1695 /* channel equalization */
1696 tries = 0;
1697 cr_tries = 0;
1698 channel_eq = false;
1699 for (;;) {
1700 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1701 uint32_t signal_levels;
1702 uint8_t link_status[DP_LINK_STATUS_SIZE];
1703
1704 if (cr_tries > 5) {
1705 DRM_ERROR("failed to train DP, aborting\n");
1706 intel_dp_link_down(intel_dp);
1707 break;
1708 }
1709
1710 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1711 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1712 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1713 } else {
1714 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1715 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1716 }
1717
1718 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1719 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1720 else
1721 reg = DP | DP_LINK_TRAIN_PAT_2;
1722
1723 /* channel eq pattern */
1724 if (!intel_dp_set_link_train(intel_dp, reg,
1725 DP_TRAINING_PATTERN_2 |
1726 DP_LINK_SCRAMBLING_DISABLE))
1727 break;
1728
1729 udelay(400);
1730 if (!intel_dp_get_link_status(intel_dp, link_status))
1731 break;
1732
1733 /* Make sure clock is still ok */
1734 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1735 intel_dp_start_link_train(intel_dp);
1736 cr_tries++;
1737 continue;
1738 }
1739
1740 if (intel_channel_eq_ok(intel_dp, link_status)) {
1741 channel_eq = true;
1742 break;
1743 }
1744
1745 /* Try 5 times, then try clock recovery if that fails */
1746 if (tries > 5) {
1747 intel_dp_link_down(intel_dp);
1748 intel_dp_start_link_train(intel_dp);
1749 tries = 0;
1750 cr_tries++;
1751 continue;
1752 }
1753
1754 /* Compute new intel_dp->train_set as requested by target */
1755 intel_get_adjust_train(intel_dp, link_status);
1756 ++tries;
1757 }
1758
1759 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1760 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1761 else
1762 reg = DP | DP_LINK_TRAIN_OFF;
1763
1764 I915_WRITE(intel_dp->output_reg, reg);
1765 POSTING_READ(intel_dp->output_reg);
1766 intel_dp_aux_native_write_1(intel_dp,
1767 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1768 }
1769
1770 static void
1771 intel_dp_link_down(struct intel_dp *intel_dp)
1772 {
1773 struct drm_device *dev = intel_dp->base.base.dev;
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 uint32_t DP = intel_dp->DP;
1776
1777 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1778 return;
1779
1780 DRM_DEBUG_KMS("\n");
1781
1782 if (is_edp(intel_dp)) {
1783 DP &= ~DP_PLL_ENABLE;
1784 I915_WRITE(intel_dp->output_reg, DP);
1785 POSTING_READ(intel_dp->output_reg);
1786 udelay(100);
1787 }
1788
1789 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1790 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1791 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1792 } else {
1793 DP &= ~DP_LINK_TRAIN_MASK;
1794 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1795 }
1796 POSTING_READ(intel_dp->output_reg);
1797
1798 msleep(17);
1799
1800 if (is_edp(intel_dp)) {
1801 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1802 DP |= DP_LINK_TRAIN_OFF_CPT;
1803 else
1804 DP |= DP_LINK_TRAIN_OFF;
1805 }
1806
1807 if (!HAS_PCH_CPT(dev) &&
1808 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1809 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1810
1811 /* Hardware workaround: leaving our transcoder select
1812 * set to transcoder B while it's off will prevent the
1813 * corresponding HDMI output on transcoder A.
1814 *
1815 * Combine this with another hardware workaround:
1816 * transcoder select bit can only be cleared while the
1817 * port is enabled.
1818 */
1819 DP &= ~DP_PIPEB_SELECT;
1820 I915_WRITE(intel_dp->output_reg, DP);
1821
1822 /* Changes to enable or select take place the vblank
1823 * after being written.
1824 */
1825 if (crtc == NULL) {
1826 /* We can arrive here never having been attached
1827 * to a CRTC, for instance, due to inheriting
1828 * random state from the BIOS.
1829 *
1830 * If the pipe is not running, play safe and
1831 * wait for the clocks to stabilise before
1832 * continuing.
1833 */
1834 POSTING_READ(intel_dp->output_reg);
1835 msleep(50);
1836 } else
1837 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1838 }
1839
1840 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1841 POSTING_READ(intel_dp->output_reg);
1842 msleep(intel_dp->panel_power_down_delay);
1843 }
1844
1845 static bool
1846 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1847 {
1848 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1849 sizeof(intel_dp->dpcd)) &&
1850 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1851 return true;
1852 }
1853
1854 return false;
1855 }
1856
1857 static bool
1858 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1859 {
1860 int ret;
1861
1862 ret = intel_dp_aux_native_read_retry(intel_dp,
1863 DP_DEVICE_SERVICE_IRQ_VECTOR,
1864 sink_irq_vector, 1);
1865 if (!ret)
1866 return false;
1867
1868 return true;
1869 }
1870
1871 static void
1872 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1873 {
1874 /* NAK by default */
1875 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1876 }
1877
1878 /*
1879 * According to DP spec
1880 * 5.1.2:
1881 * 1. Read DPCD
1882 * 2. Configure link according to Receiver Capabilities
1883 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1884 * 4. Check link status on receipt of hot-plug interrupt
1885 */
1886
1887 static void
1888 intel_dp_check_link_status(struct intel_dp *intel_dp)
1889 {
1890 u8 sink_irq_vector;
1891 u8 link_status[DP_LINK_STATUS_SIZE];
1892
1893 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1894 return;
1895
1896 if (!intel_dp->base.base.crtc)
1897 return;
1898
1899 /* Try to read receiver status if the link appears to be up */
1900 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1901 intel_dp_link_down(intel_dp);
1902 return;
1903 }
1904
1905 /* Now read the DPCD to see if it's actually running */
1906 if (!intel_dp_get_dpcd(intel_dp)) {
1907 intel_dp_link_down(intel_dp);
1908 return;
1909 }
1910
1911 /* Try to read the source of the interrupt */
1912 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1913 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1914 /* Clear interrupt source */
1915 intel_dp_aux_native_write_1(intel_dp,
1916 DP_DEVICE_SERVICE_IRQ_VECTOR,
1917 sink_irq_vector);
1918
1919 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1920 intel_dp_handle_test_request(intel_dp);
1921 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1922 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1923 }
1924
1925 if (!intel_channel_eq_ok(intel_dp, link_status)) {
1926 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1927 drm_get_encoder_name(&intel_dp->base.base));
1928 intel_dp_start_link_train(intel_dp);
1929 intel_dp_complete_link_train(intel_dp);
1930 }
1931 }
1932
1933 static enum drm_connector_status
1934 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1935 {
1936 if (intel_dp_get_dpcd(intel_dp))
1937 return connector_status_connected;
1938 return connector_status_disconnected;
1939 }
1940
1941 static enum drm_connector_status
1942 ironlake_dp_detect(struct intel_dp *intel_dp)
1943 {
1944 enum drm_connector_status status;
1945
1946 /* Can't disconnect eDP, but you can close the lid... */
1947 if (is_edp(intel_dp)) {
1948 status = intel_panel_detect(intel_dp->base.base.dev);
1949 if (status == connector_status_unknown)
1950 status = connector_status_connected;
1951 return status;
1952 }
1953
1954 return intel_dp_detect_dpcd(intel_dp);
1955 }
1956
1957 static enum drm_connector_status
1958 g4x_dp_detect(struct intel_dp *intel_dp)
1959 {
1960 struct drm_device *dev = intel_dp->base.base.dev;
1961 struct drm_i915_private *dev_priv = dev->dev_private;
1962 uint32_t temp, bit;
1963
1964 switch (intel_dp->output_reg) {
1965 case DP_B:
1966 bit = DPB_HOTPLUG_INT_STATUS;
1967 break;
1968 case DP_C:
1969 bit = DPC_HOTPLUG_INT_STATUS;
1970 break;
1971 case DP_D:
1972 bit = DPD_HOTPLUG_INT_STATUS;
1973 break;
1974 default:
1975 return connector_status_unknown;
1976 }
1977
1978 temp = I915_READ(PORT_HOTPLUG_STAT);
1979
1980 if ((temp & bit) == 0)
1981 return connector_status_disconnected;
1982
1983 return intel_dp_detect_dpcd(intel_dp);
1984 }
1985
1986 static struct edid *
1987 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1988 {
1989 struct intel_dp *intel_dp = intel_attached_dp(connector);
1990 struct edid *edid;
1991
1992 ironlake_edp_panel_vdd_on(intel_dp);
1993 edid = drm_get_edid(connector, adapter);
1994 ironlake_edp_panel_vdd_off(intel_dp, false);
1995 return edid;
1996 }
1997
1998 static int
1999 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2000 {
2001 struct intel_dp *intel_dp = intel_attached_dp(connector);
2002 int ret;
2003
2004 ironlake_edp_panel_vdd_on(intel_dp);
2005 ret = intel_ddc_get_modes(connector, adapter);
2006 ironlake_edp_panel_vdd_off(intel_dp, false);
2007 return ret;
2008 }
2009
2010
2011 /**
2012 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2013 *
2014 * \return true if DP port is connected.
2015 * \return false if DP port is disconnected.
2016 */
2017 static enum drm_connector_status
2018 intel_dp_detect(struct drm_connector *connector, bool force)
2019 {
2020 struct intel_dp *intel_dp = intel_attached_dp(connector);
2021 struct drm_device *dev = intel_dp->base.base.dev;
2022 enum drm_connector_status status;
2023 struct edid *edid = NULL;
2024
2025 intel_dp->has_audio = false;
2026
2027 if (HAS_PCH_SPLIT(dev))
2028 status = ironlake_dp_detect(intel_dp);
2029 else
2030 status = g4x_dp_detect(intel_dp);
2031
2032 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2033 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2034 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2035 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2036
2037 if (status != connector_status_connected)
2038 return status;
2039
2040 if (intel_dp->force_audio) {
2041 intel_dp->has_audio = intel_dp->force_audio > 0;
2042 } else {
2043 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2044 if (edid) {
2045 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2046 connector->display_info.raw_edid = NULL;
2047 kfree(edid);
2048 }
2049 }
2050
2051 return connector_status_connected;
2052 }
2053
2054 static int intel_dp_get_modes(struct drm_connector *connector)
2055 {
2056 struct intel_dp *intel_dp = intel_attached_dp(connector);
2057 struct drm_device *dev = intel_dp->base.base.dev;
2058 struct drm_i915_private *dev_priv = dev->dev_private;
2059 int ret;
2060
2061 /* We should parse the EDID data and find out if it has an audio sink
2062 */
2063
2064 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2065 if (ret) {
2066 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2067 struct drm_display_mode *newmode;
2068 list_for_each_entry(newmode, &connector->probed_modes,
2069 head) {
2070 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2071 intel_dp->panel_fixed_mode =
2072 drm_mode_duplicate(dev, newmode);
2073 break;
2074 }
2075 }
2076 }
2077 return ret;
2078 }
2079
2080 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2081 if (is_edp(intel_dp)) {
2082 /* initialize panel mode from VBT if available for eDP */
2083 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2084 intel_dp->panel_fixed_mode =
2085 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2086 if (intel_dp->panel_fixed_mode) {
2087 intel_dp->panel_fixed_mode->type |=
2088 DRM_MODE_TYPE_PREFERRED;
2089 }
2090 }
2091 if (intel_dp->panel_fixed_mode) {
2092 struct drm_display_mode *mode;
2093 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2094 drm_mode_probed_add(connector, mode);
2095 return 1;
2096 }
2097 }
2098 return 0;
2099 }
2100
2101 static bool
2102 intel_dp_detect_audio(struct drm_connector *connector)
2103 {
2104 struct intel_dp *intel_dp = intel_attached_dp(connector);
2105 struct edid *edid;
2106 bool has_audio = false;
2107
2108 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2109 if (edid) {
2110 has_audio = drm_detect_monitor_audio(edid);
2111
2112 connector->display_info.raw_edid = NULL;
2113 kfree(edid);
2114 }
2115
2116 return has_audio;
2117 }
2118
2119 static int
2120 intel_dp_set_property(struct drm_connector *connector,
2121 struct drm_property *property,
2122 uint64_t val)
2123 {
2124 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2125 struct intel_dp *intel_dp = intel_attached_dp(connector);
2126 int ret;
2127
2128 ret = drm_connector_property_set_value(connector, property, val);
2129 if (ret)
2130 return ret;
2131
2132 if (property == dev_priv->force_audio_property) {
2133 int i = val;
2134 bool has_audio;
2135
2136 if (i == intel_dp->force_audio)
2137 return 0;
2138
2139 intel_dp->force_audio = i;
2140
2141 if (i == 0)
2142 has_audio = intel_dp_detect_audio(connector);
2143 else
2144 has_audio = i > 0;
2145
2146 if (has_audio == intel_dp->has_audio)
2147 return 0;
2148
2149 intel_dp->has_audio = has_audio;
2150 goto done;
2151 }
2152
2153 if (property == dev_priv->broadcast_rgb_property) {
2154 if (val == !!intel_dp->color_range)
2155 return 0;
2156
2157 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2158 goto done;
2159 }
2160
2161 return -EINVAL;
2162
2163 done:
2164 if (intel_dp->base.base.crtc) {
2165 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2166 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2167 crtc->x, crtc->y,
2168 crtc->fb);
2169 }
2170
2171 return 0;
2172 }
2173
2174 static void
2175 intel_dp_destroy(struct drm_connector *connector)
2176 {
2177 struct drm_device *dev = connector->dev;
2178
2179 if (intel_dpd_is_edp(dev))
2180 intel_panel_destroy_backlight(dev);
2181
2182 drm_sysfs_connector_remove(connector);
2183 drm_connector_cleanup(connector);
2184 kfree(connector);
2185 }
2186
2187 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2188 {
2189 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2190
2191 i2c_del_adapter(&intel_dp->adapter);
2192 drm_encoder_cleanup(encoder);
2193 if (is_edp(intel_dp)) {
2194 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2195 ironlake_panel_vdd_off_sync(intel_dp);
2196 }
2197 kfree(intel_dp);
2198 }
2199
2200 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2201 .dpms = intel_dp_dpms,
2202 .mode_fixup = intel_dp_mode_fixup,
2203 .prepare = intel_dp_prepare,
2204 .mode_set = intel_dp_mode_set,
2205 .commit = intel_dp_commit,
2206 };
2207
2208 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2209 .dpms = drm_helper_connector_dpms,
2210 .detect = intel_dp_detect,
2211 .fill_modes = drm_helper_probe_single_connector_modes,
2212 .set_property = intel_dp_set_property,
2213 .destroy = intel_dp_destroy,
2214 };
2215
2216 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2217 .get_modes = intel_dp_get_modes,
2218 .mode_valid = intel_dp_mode_valid,
2219 .best_encoder = intel_best_encoder,
2220 };
2221
2222 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2223 .destroy = intel_dp_encoder_destroy,
2224 };
2225
2226 static void
2227 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2228 {
2229 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2230
2231 intel_dp_check_link_status(intel_dp);
2232 }
2233
2234 /* Return which DP Port should be selected for Transcoder DP control */
2235 int
2236 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2237 {
2238 struct drm_device *dev = crtc->dev;
2239 struct drm_mode_config *mode_config = &dev->mode_config;
2240 struct drm_encoder *encoder;
2241
2242 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2243 struct intel_dp *intel_dp;
2244
2245 if (encoder->crtc != crtc)
2246 continue;
2247
2248 intel_dp = enc_to_intel_dp(encoder);
2249 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2250 intel_dp->base.type == INTEL_OUTPUT_EDP)
2251 return intel_dp->output_reg;
2252 }
2253
2254 return -1;
2255 }
2256
2257 /* check the VBT to see whether the eDP is on DP-D port */
2258 bool intel_dpd_is_edp(struct drm_device *dev)
2259 {
2260 struct drm_i915_private *dev_priv = dev->dev_private;
2261 struct child_device_config *p_child;
2262 int i;
2263
2264 if (!dev_priv->child_dev_num)
2265 return false;
2266
2267 for (i = 0; i < dev_priv->child_dev_num; i++) {
2268 p_child = dev_priv->child_dev + i;
2269
2270 if (p_child->dvo_port == PORT_IDPD &&
2271 p_child->device_type == DEVICE_TYPE_eDP)
2272 return true;
2273 }
2274 return false;
2275 }
2276
2277 static void
2278 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2279 {
2280 intel_attach_force_audio_property(connector);
2281 intel_attach_broadcast_rgb_property(connector);
2282 }
2283
2284 void
2285 intel_dp_init(struct drm_device *dev, int output_reg)
2286 {
2287 struct drm_i915_private *dev_priv = dev->dev_private;
2288 struct drm_connector *connector;
2289 struct intel_dp *intel_dp;
2290 struct intel_encoder *intel_encoder;
2291 struct intel_connector *intel_connector;
2292 const char *name = NULL;
2293 int type;
2294
2295 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2296 if (!intel_dp)
2297 return;
2298
2299 intel_dp->output_reg = output_reg;
2300 intel_dp->dpms_mode = -1;
2301
2302 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2303 if (!intel_connector) {
2304 kfree(intel_dp);
2305 return;
2306 }
2307 intel_encoder = &intel_dp->base;
2308
2309 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2310 if (intel_dpd_is_edp(dev))
2311 intel_dp->is_pch_edp = true;
2312
2313 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2314 type = DRM_MODE_CONNECTOR_eDP;
2315 intel_encoder->type = INTEL_OUTPUT_EDP;
2316 } else {
2317 type = DRM_MODE_CONNECTOR_DisplayPort;
2318 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2319 }
2320
2321 connector = &intel_connector->base;
2322 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2323 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2324
2325 connector->polled = DRM_CONNECTOR_POLL_HPD;
2326
2327 if (output_reg == DP_B || output_reg == PCH_DP_B)
2328 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2329 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2330 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2331 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2332 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2333
2334 if (is_edp(intel_dp)) {
2335 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2336 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2337 ironlake_panel_vdd_work);
2338 }
2339
2340 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2341 connector->interlace_allowed = true;
2342 connector->doublescan_allowed = 0;
2343
2344 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2345 DRM_MODE_ENCODER_TMDS);
2346 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2347
2348 intel_connector_attach_encoder(intel_connector, intel_encoder);
2349 drm_sysfs_connector_add(connector);
2350
2351 /* Set up the DDC bus. */
2352 switch (output_reg) {
2353 case DP_A:
2354 name = "DPDDC-A";
2355 break;
2356 case DP_B:
2357 case PCH_DP_B:
2358 dev_priv->hotplug_supported_mask |=
2359 HDMIB_HOTPLUG_INT_STATUS;
2360 name = "DPDDC-B";
2361 break;
2362 case DP_C:
2363 case PCH_DP_C:
2364 dev_priv->hotplug_supported_mask |=
2365 HDMIC_HOTPLUG_INT_STATUS;
2366 name = "DPDDC-C";
2367 break;
2368 case DP_D:
2369 case PCH_DP_D:
2370 dev_priv->hotplug_supported_mask |=
2371 HDMID_HOTPLUG_INT_STATUS;
2372 name = "DPDDC-D";
2373 break;
2374 }
2375
2376 /* Cache some DPCD data in the eDP case */
2377 if (is_edp(intel_dp)) {
2378 bool ret;
2379 struct edp_power_seq cur, vbt;
2380 u32 pp_on, pp_off, pp_div;
2381
2382 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2383 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2384 pp_div = I915_READ(PCH_PP_DIVISOR);
2385
2386 /* Pull timing values out of registers */
2387 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2388 PANEL_POWER_UP_DELAY_SHIFT;
2389
2390 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2391 PANEL_LIGHT_ON_DELAY_SHIFT;
2392
2393 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2394 PANEL_LIGHT_OFF_DELAY_SHIFT;
2395
2396 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2397 PANEL_POWER_DOWN_DELAY_SHIFT;
2398
2399 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2400 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2401
2402 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2403 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2404
2405 vbt = dev_priv->edp.pps;
2406
2407 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2408 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2409
2410 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2411
2412 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2413 intel_dp->backlight_on_delay = get_delay(t8);
2414 intel_dp->backlight_off_delay = get_delay(t9);
2415 intel_dp->panel_power_down_delay = get_delay(t10);
2416 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2417
2418 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2419 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2420 intel_dp->panel_power_cycle_delay);
2421
2422 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2423 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2424
2425 ironlake_edp_panel_vdd_on(intel_dp);
2426 ret = intel_dp_get_dpcd(intel_dp);
2427 ironlake_edp_panel_vdd_off(intel_dp, false);
2428
2429 if (ret) {
2430 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2431 dev_priv->no_aux_handshake =
2432 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2433 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2434 } else {
2435 /* if this fails, presume the device is a ghost */
2436 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2437 intel_dp_encoder_destroy(&intel_dp->base.base);
2438 intel_dp_destroy(&intel_connector->base);
2439 return;
2440 }
2441 }
2442
2443 intel_dp_i2c_init(intel_dp, intel_connector, name);
2444
2445 intel_encoder->hot_plug = intel_dp_hot_plug;
2446
2447 if (is_edp(intel_dp)) {
2448 dev_priv->int_edp_connector = connector;
2449 intel_panel_setup_backlight(dev);
2450 }
2451
2452 intel_dp_add_properties(intel_dp, connector);
2453
2454 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2455 * 0xd. Failure to do so will result in spurious interrupts being
2456 * generated on the port when a cable is not attached.
2457 */
2458 if (IS_G4X(dev) && !IS_GM45(dev)) {
2459 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2460 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2461 }
2462 }
This page took 0.080554 seconds and 4 git commands to generate.