Merge tag 'blackfin-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/realm...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85 return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
95 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97 static int
98 intel_dp_max_link_bw(struct intel_dp *intel_dp)
99 {
100 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101 struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103 switch (max_link_bw) {
104 case DP_LINK_BW_1_62:
105 case DP_LINK_BW_2_7:
106 break;
107 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
109 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
110 max_link_bw = DP_LINK_BW_5_4;
111 else
112 max_link_bw = DP_LINK_BW_2_7;
113 break;
114 default:
115 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
116 max_link_bw);
117 max_link_bw = DP_LINK_BW_1_62;
118 break;
119 }
120 return max_link_bw;
121 }
122
123 /*
124 * The units on the numbers in the next two are... bizarre. Examples will
125 * make it clearer; this one parallels an example in the eDP spec.
126 *
127 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
128 *
129 * 270000 * 1 * 8 / 10 == 216000
130 *
131 * The actual data capacity of that configuration is 2.16Gbit/s, so the
132 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
133 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
134 * 119000. At 18bpp that's 2142000 kilobits per second.
135 *
136 * Thus the strange-looking division by 10 in intel_dp_link_required, to
137 * get the result in decakilobits instead of kilobits.
138 */
139
140 static int
141 intel_dp_link_required(int pixel_clock, int bpp)
142 {
143 return (pixel_clock * bpp + 9) / 10;
144 }
145
146 static int
147 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
148 {
149 return (max_link_clock * max_lanes * 8) / 10;
150 }
151
152 static enum drm_mode_status
153 intel_dp_mode_valid(struct drm_connector *connector,
154 struct drm_display_mode *mode)
155 {
156 struct intel_dp *intel_dp = intel_attached_dp(connector);
157 struct intel_connector *intel_connector = to_intel_connector(connector);
158 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
159 int target_clock = mode->clock;
160 int max_rate, mode_rate, max_lanes, max_link_clock;
161
162 if (is_edp(intel_dp) && fixed_mode) {
163 if (mode->hdisplay > fixed_mode->hdisplay)
164 return MODE_PANEL;
165
166 if (mode->vdisplay > fixed_mode->vdisplay)
167 return MODE_PANEL;
168
169 target_clock = fixed_mode->clock;
170 }
171
172 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
173 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
174
175 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
176 mode_rate = intel_dp_link_required(target_clock, 18);
177
178 if (mode_rate > max_rate)
179 return MODE_CLOCK_HIGH;
180
181 if (mode->clock < 10000)
182 return MODE_CLOCK_LOW;
183
184 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
185 return MODE_H_ILLEGAL;
186
187 return MODE_OK;
188 }
189
190 static uint32_t
191 pack_aux(uint8_t *src, int src_bytes)
192 {
193 int i;
194 uint32_t v = 0;
195
196 if (src_bytes > 4)
197 src_bytes = 4;
198 for (i = 0; i < src_bytes; i++)
199 v |= ((uint32_t) src[i]) << ((3-i) * 8);
200 return v;
201 }
202
203 static void
204 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
205 {
206 int i;
207 if (dst_bytes > 4)
208 dst_bytes = 4;
209 for (i = 0; i < dst_bytes; i++)
210 dst[i] = src >> ((3-i) * 8);
211 }
212
213 /* hrawclock is 1/4 the FSB frequency */
214 static int
215 intel_hrawclk(struct drm_device *dev)
216 {
217 struct drm_i915_private *dev_priv = dev->dev_private;
218 uint32_t clkcfg;
219
220 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
221 if (IS_VALLEYVIEW(dev))
222 return 200;
223
224 clkcfg = I915_READ(CLKCFG);
225 switch (clkcfg & CLKCFG_FSB_MASK) {
226 case CLKCFG_FSB_400:
227 return 100;
228 case CLKCFG_FSB_533:
229 return 133;
230 case CLKCFG_FSB_667:
231 return 166;
232 case CLKCFG_FSB_800:
233 return 200;
234 case CLKCFG_FSB_1067:
235 return 266;
236 case CLKCFG_FSB_1333:
237 return 333;
238 /* these two are just a guess; one of them might be right */
239 case CLKCFG_FSB_1600:
240 case CLKCFG_FSB_1600_ALT:
241 return 400;
242 default:
243 return 133;
244 }
245 }
246
247 static void
248 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
249 struct intel_dp *intel_dp,
250 struct edp_power_seq *out);
251 static void
252 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
253 struct intel_dp *intel_dp,
254 struct edp_power_seq *out);
255
256 static enum pipe
257 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
258 {
259 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
260 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
261 struct drm_device *dev = intel_dig_port->base.base.dev;
262 struct drm_i915_private *dev_priv = dev->dev_private;
263 enum port port = intel_dig_port->port;
264 enum pipe pipe;
265
266 /* modeset should have pipe */
267 if (crtc)
268 return to_intel_crtc(crtc)->pipe;
269
270 /* init time, try to find a pipe with this port selected */
271 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
272 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
273 PANEL_PORT_SELECT_MASK;
274 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
275 return pipe;
276 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
277 return pipe;
278 }
279
280 /* shrug */
281 return PIPE_A;
282 }
283
284 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
285 {
286 struct drm_device *dev = intel_dp_to_dev(intel_dp);
287
288 if (HAS_PCH_SPLIT(dev))
289 return PCH_PP_CONTROL;
290 else
291 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
292 }
293
294 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
295 {
296 struct drm_device *dev = intel_dp_to_dev(intel_dp);
297
298 if (HAS_PCH_SPLIT(dev))
299 return PCH_PP_STATUS;
300 else
301 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
302 }
303
304 static bool edp_have_panel_power(struct intel_dp *intel_dp)
305 {
306 struct drm_device *dev = intel_dp_to_dev(intel_dp);
307 struct drm_i915_private *dev_priv = dev->dev_private;
308
309 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
310 }
311
312 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
313 {
314 struct drm_device *dev = intel_dp_to_dev(intel_dp);
315 struct drm_i915_private *dev_priv = dev->dev_private;
316
317 return !dev_priv->pm.suspended &&
318 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
319 }
320
321 static void
322 intel_dp_check_edp(struct intel_dp *intel_dp)
323 {
324 struct drm_device *dev = intel_dp_to_dev(intel_dp);
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 if (!is_edp(intel_dp))
328 return;
329
330 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
331 WARN(1, "eDP powered off while attempting aux channel communication.\n");
332 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
333 I915_READ(_pp_stat_reg(intel_dp)),
334 I915_READ(_pp_ctrl_reg(intel_dp)));
335 }
336 }
337
338 static uint32_t
339 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
340 {
341 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
342 struct drm_device *dev = intel_dig_port->base.base.dev;
343 struct drm_i915_private *dev_priv = dev->dev_private;
344 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
345 uint32_t status;
346 bool done;
347
348 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
349 if (has_aux_irq)
350 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
351 msecs_to_jiffies_timeout(10));
352 else
353 done = wait_for_atomic(C, 10) == 0;
354 if (!done)
355 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
356 has_aux_irq);
357 #undef C
358
359 return status;
360 }
361
362 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
363 {
364 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
365 struct drm_device *dev = intel_dig_port->base.base.dev;
366
367 /*
368 * The clock divider is based off the hrawclk, and would like to run at
369 * 2MHz. So, take the hrawclk value and divide by 2 and use that
370 */
371 return index ? 0 : intel_hrawclk(dev) / 2;
372 }
373
374 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
375 {
376 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
377 struct drm_device *dev = intel_dig_port->base.base.dev;
378
379 if (index)
380 return 0;
381
382 if (intel_dig_port->port == PORT_A) {
383 if (IS_GEN6(dev) || IS_GEN7(dev))
384 return 200; /* SNB & IVB eDP input clock at 400Mhz */
385 else
386 return 225; /* eDP input clock at 450Mhz */
387 } else {
388 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
389 }
390 }
391
392 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
393 {
394 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
395 struct drm_device *dev = intel_dig_port->base.base.dev;
396 struct drm_i915_private *dev_priv = dev->dev_private;
397
398 if (intel_dig_port->port == PORT_A) {
399 if (index)
400 return 0;
401 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
402 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
403 /* Workaround for non-ULT HSW */
404 switch (index) {
405 case 0: return 63;
406 case 1: return 72;
407 default: return 0;
408 }
409 } else {
410 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
411 }
412 }
413
414 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415 {
416 return index ? 0 : 100;
417 }
418
419 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
420 bool has_aux_irq,
421 int send_bytes,
422 uint32_t aux_clock_divider)
423 {
424 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
425 struct drm_device *dev = intel_dig_port->base.base.dev;
426 uint32_t precharge, timeout;
427
428 if (IS_GEN6(dev))
429 precharge = 3;
430 else
431 precharge = 5;
432
433 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
434 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
435 else
436 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
437
438 return DP_AUX_CH_CTL_SEND_BUSY |
439 DP_AUX_CH_CTL_DONE |
440 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
441 DP_AUX_CH_CTL_TIME_OUT_ERROR |
442 timeout |
443 DP_AUX_CH_CTL_RECEIVE_ERROR |
444 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
445 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
446 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
447 }
448
449 static int
450 intel_dp_aux_ch(struct intel_dp *intel_dp,
451 uint8_t *send, int send_bytes,
452 uint8_t *recv, int recv_size)
453 {
454 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
455 struct drm_device *dev = intel_dig_port->base.base.dev;
456 struct drm_i915_private *dev_priv = dev->dev_private;
457 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
458 uint32_t ch_data = ch_ctl + 4;
459 uint32_t aux_clock_divider;
460 int i, ret, recv_bytes;
461 uint32_t status;
462 int try, clock = 0;
463 bool has_aux_irq = HAS_AUX_IRQ(dev);
464 bool vdd;
465
466 vdd = _edp_panel_vdd_on(intel_dp);
467
468 /* dp aux is extremely sensitive to irq latency, hence request the
469 * lowest possible wakeup latency and so prevent the cpu from going into
470 * deep sleep states.
471 */
472 pm_qos_update_request(&dev_priv->pm_qos, 0);
473
474 intel_dp_check_edp(intel_dp);
475
476 intel_aux_display_runtime_get(dev_priv);
477
478 /* Try to wait for any previous AUX channel activity */
479 for (try = 0; try < 3; try++) {
480 status = I915_READ_NOTRACE(ch_ctl);
481 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
482 break;
483 msleep(1);
484 }
485
486 if (try == 3) {
487 WARN(1, "dp_aux_ch not started status 0x%08x\n",
488 I915_READ(ch_ctl));
489 ret = -EBUSY;
490 goto out;
491 }
492
493 /* Only 5 data registers! */
494 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
495 ret = -E2BIG;
496 goto out;
497 }
498
499 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
500 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
501 has_aux_irq,
502 send_bytes,
503 aux_clock_divider);
504
505 /* Must try at least 3 times according to DP spec */
506 for (try = 0; try < 5; try++) {
507 /* Load the send data into the aux channel data registers */
508 for (i = 0; i < send_bytes; i += 4)
509 I915_WRITE(ch_data + i,
510 pack_aux(send + i, send_bytes - i));
511
512 /* Send the command and wait for it to complete */
513 I915_WRITE(ch_ctl, send_ctl);
514
515 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
516
517 /* Clear done status and any errors */
518 I915_WRITE(ch_ctl,
519 status |
520 DP_AUX_CH_CTL_DONE |
521 DP_AUX_CH_CTL_TIME_OUT_ERROR |
522 DP_AUX_CH_CTL_RECEIVE_ERROR);
523
524 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
525 DP_AUX_CH_CTL_RECEIVE_ERROR))
526 continue;
527 if (status & DP_AUX_CH_CTL_DONE)
528 break;
529 }
530 if (status & DP_AUX_CH_CTL_DONE)
531 break;
532 }
533
534 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
535 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
536 ret = -EBUSY;
537 goto out;
538 }
539
540 /* Check for timeout or receive error.
541 * Timeouts occur when the sink is not connected
542 */
543 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
544 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
545 ret = -EIO;
546 goto out;
547 }
548
549 /* Timeouts occur when the device isn't connected, so they're
550 * "normal" -- don't fill the kernel log with these */
551 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
552 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
553 ret = -ETIMEDOUT;
554 goto out;
555 }
556
557 /* Unload any bytes sent back from the other side */
558 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
559 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
560 if (recv_bytes > recv_size)
561 recv_bytes = recv_size;
562
563 for (i = 0; i < recv_bytes; i += 4)
564 unpack_aux(I915_READ(ch_data + i),
565 recv + i, recv_bytes - i);
566
567 ret = recv_bytes;
568 out:
569 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
570 intel_aux_display_runtime_put(dev_priv);
571
572 if (vdd)
573 edp_panel_vdd_off(intel_dp, false);
574
575 return ret;
576 }
577
578 #define HEADER_SIZE 4
579 static ssize_t
580 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
581 {
582 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
583 uint8_t txbuf[20], rxbuf[20];
584 size_t txsize, rxsize;
585 int ret;
586
587 txbuf[0] = msg->request << 4;
588 txbuf[1] = msg->address >> 8;
589 txbuf[2] = msg->address & 0xff;
590 txbuf[3] = msg->size - 1;
591
592 switch (msg->request & ~DP_AUX_I2C_MOT) {
593 case DP_AUX_NATIVE_WRITE:
594 case DP_AUX_I2C_WRITE:
595 txsize = HEADER_SIZE + msg->size;
596 rxsize = 1;
597
598 if (WARN_ON(txsize > 20))
599 return -E2BIG;
600
601 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
602
603 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
604 if (ret > 0) {
605 msg->reply = rxbuf[0] >> 4;
606
607 /* Return payload size. */
608 ret = msg->size;
609 }
610 break;
611
612 case DP_AUX_NATIVE_READ:
613 case DP_AUX_I2C_READ:
614 txsize = HEADER_SIZE;
615 rxsize = msg->size + 1;
616
617 if (WARN_ON(rxsize > 20))
618 return -E2BIG;
619
620 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
621 if (ret > 0) {
622 msg->reply = rxbuf[0] >> 4;
623 /*
624 * Assume happy day, and copy the data. The caller is
625 * expected to check msg->reply before touching it.
626 *
627 * Return payload size.
628 */
629 ret--;
630 memcpy(msg->buffer, rxbuf + 1, ret);
631 }
632 break;
633
634 default:
635 ret = -EINVAL;
636 break;
637 }
638
639 return ret;
640 }
641
642 static void
643 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
644 {
645 struct drm_device *dev = intel_dp_to_dev(intel_dp);
646 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
647 enum port port = intel_dig_port->port;
648 const char *name = NULL;
649 int ret;
650
651 switch (port) {
652 case PORT_A:
653 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
654 name = "DPDDC-A";
655 break;
656 case PORT_B:
657 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
658 name = "DPDDC-B";
659 break;
660 case PORT_C:
661 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
662 name = "DPDDC-C";
663 break;
664 case PORT_D:
665 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
666 name = "DPDDC-D";
667 break;
668 default:
669 BUG();
670 }
671
672 if (!HAS_DDI(dev))
673 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
674
675 intel_dp->aux.name = name;
676 intel_dp->aux.dev = dev->dev;
677 intel_dp->aux.transfer = intel_dp_aux_transfer;
678
679 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
680 connector->base.kdev->kobj.name);
681
682 ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
683 if (ret < 0) {
684 DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
685 name, ret);
686 return;
687 }
688
689 ret = sysfs_create_link(&connector->base.kdev->kobj,
690 &intel_dp->aux.ddc.dev.kobj,
691 intel_dp->aux.ddc.dev.kobj.name);
692 if (ret < 0) {
693 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
694 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
695 }
696 }
697
698 static void
699 intel_dp_connector_unregister(struct intel_connector *intel_connector)
700 {
701 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
702
703 sysfs_remove_link(&intel_connector->base.kdev->kobj,
704 intel_dp->aux.ddc.dev.kobj.name);
705 intel_connector_unregister(intel_connector);
706 }
707
708 static void
709 intel_dp_set_clock(struct intel_encoder *encoder,
710 struct intel_crtc_config *pipe_config, int link_bw)
711 {
712 struct drm_device *dev = encoder->base.dev;
713 const struct dp_link_dpll *divisor = NULL;
714 int i, count = 0;
715
716 if (IS_G4X(dev)) {
717 divisor = gen4_dpll;
718 count = ARRAY_SIZE(gen4_dpll);
719 } else if (IS_HASWELL(dev)) {
720 /* Haswell has special-purpose DP DDI clocks. */
721 } else if (HAS_PCH_SPLIT(dev)) {
722 divisor = pch_dpll;
723 count = ARRAY_SIZE(pch_dpll);
724 } else if (IS_VALLEYVIEW(dev)) {
725 divisor = vlv_dpll;
726 count = ARRAY_SIZE(vlv_dpll);
727 }
728
729 if (divisor && count) {
730 for (i = 0; i < count; i++) {
731 if (link_bw == divisor[i].link_bw) {
732 pipe_config->dpll = divisor[i].dpll;
733 pipe_config->clock_set = true;
734 break;
735 }
736 }
737 }
738 }
739
740 bool
741 intel_dp_compute_config(struct intel_encoder *encoder,
742 struct intel_crtc_config *pipe_config)
743 {
744 struct drm_device *dev = encoder->base.dev;
745 struct drm_i915_private *dev_priv = dev->dev_private;
746 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
747 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
748 enum port port = dp_to_dig_port(intel_dp)->port;
749 struct intel_crtc *intel_crtc = encoder->new_crtc;
750 struct intel_connector *intel_connector = intel_dp->attached_connector;
751 int lane_count, clock;
752 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
753 /* Conveniently, the link BW constants become indices with a shift...*/
754 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
755 int bpp, mode_rate;
756 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
757 int link_avail, link_clock;
758
759 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
760 pipe_config->has_pch_encoder = true;
761
762 pipe_config->has_dp_encoder = true;
763
764 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
765 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
766 adjusted_mode);
767 if (!HAS_PCH_SPLIT(dev))
768 intel_gmch_panel_fitting(intel_crtc, pipe_config,
769 intel_connector->panel.fitting_mode);
770 else
771 intel_pch_panel_fitting(intel_crtc, pipe_config,
772 intel_connector->panel.fitting_mode);
773 }
774
775 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
776 return false;
777
778 DRM_DEBUG_KMS("DP link computation with max lane count %i "
779 "max bw %02x pixel clock %iKHz\n",
780 max_lane_count, bws[max_clock],
781 adjusted_mode->crtc_clock);
782
783 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
784 * bpc in between. */
785 bpp = pipe_config->pipe_bpp;
786 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
787 dev_priv->vbt.edp_bpp < bpp) {
788 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
789 dev_priv->vbt.edp_bpp);
790 bpp = dev_priv->vbt.edp_bpp;
791 }
792
793 for (; bpp >= 6*3; bpp -= 2*3) {
794 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
795 bpp);
796
797 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
798 for (clock = 0; clock <= max_clock; clock++) {
799 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
800 link_avail = intel_dp_max_data_rate(link_clock,
801 lane_count);
802
803 if (mode_rate <= link_avail) {
804 goto found;
805 }
806 }
807 }
808 }
809
810 return false;
811
812 found:
813 if (intel_dp->color_range_auto) {
814 /*
815 * See:
816 * CEA-861-E - 5.1 Default Encoding Parameters
817 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
818 */
819 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
820 intel_dp->color_range = DP_COLOR_RANGE_16_235;
821 else
822 intel_dp->color_range = 0;
823 }
824
825 if (intel_dp->color_range)
826 pipe_config->limited_color_range = true;
827
828 intel_dp->link_bw = bws[clock];
829 intel_dp->lane_count = lane_count;
830 pipe_config->pipe_bpp = bpp;
831 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
832
833 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
834 intel_dp->link_bw, intel_dp->lane_count,
835 pipe_config->port_clock, bpp);
836 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
837 mode_rate, link_avail);
838
839 intel_link_compute_m_n(bpp, lane_count,
840 adjusted_mode->crtc_clock,
841 pipe_config->port_clock,
842 &pipe_config->dp_m_n);
843
844 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
845
846 return true;
847 }
848
849 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
850 {
851 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
852 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
853 struct drm_device *dev = crtc->base.dev;
854 struct drm_i915_private *dev_priv = dev->dev_private;
855 u32 dpa_ctl;
856
857 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
858 dpa_ctl = I915_READ(DP_A);
859 dpa_ctl &= ~DP_PLL_FREQ_MASK;
860
861 if (crtc->config.port_clock == 162000) {
862 /* For a long time we've carried around a ILK-DevA w/a for the
863 * 160MHz clock. If we're really unlucky, it's still required.
864 */
865 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
866 dpa_ctl |= DP_PLL_FREQ_160MHZ;
867 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
868 } else {
869 dpa_ctl |= DP_PLL_FREQ_270MHZ;
870 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
871 }
872
873 I915_WRITE(DP_A, dpa_ctl);
874
875 POSTING_READ(DP_A);
876 udelay(500);
877 }
878
879 static void intel_dp_mode_set(struct intel_encoder *encoder)
880 {
881 struct drm_device *dev = encoder->base.dev;
882 struct drm_i915_private *dev_priv = dev->dev_private;
883 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
884 enum port port = dp_to_dig_port(intel_dp)->port;
885 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
886 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
887
888 /*
889 * There are four kinds of DP registers:
890 *
891 * IBX PCH
892 * SNB CPU
893 * IVB CPU
894 * CPT PCH
895 *
896 * IBX PCH and CPU are the same for almost everything,
897 * except that the CPU DP PLL is configured in this
898 * register
899 *
900 * CPT PCH is quite different, having many bits moved
901 * to the TRANS_DP_CTL register instead. That
902 * configuration happens (oddly) in ironlake_pch_enable
903 */
904
905 /* Preserve the BIOS-computed detected bit. This is
906 * supposed to be read-only.
907 */
908 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
909
910 /* Handle DP bits in common between all three register formats */
911 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
912 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
913
914 if (intel_dp->has_audio) {
915 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
916 pipe_name(crtc->pipe));
917 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
918 intel_write_eld(&encoder->base, adjusted_mode);
919 }
920
921 /* Split out the IBX/CPU vs CPT settings */
922
923 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
924 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
925 intel_dp->DP |= DP_SYNC_HS_HIGH;
926 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
927 intel_dp->DP |= DP_SYNC_VS_HIGH;
928 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
929
930 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
931 intel_dp->DP |= DP_ENHANCED_FRAMING;
932
933 intel_dp->DP |= crtc->pipe << 29;
934 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
935 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
936 intel_dp->DP |= intel_dp->color_range;
937
938 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
939 intel_dp->DP |= DP_SYNC_HS_HIGH;
940 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
941 intel_dp->DP |= DP_SYNC_VS_HIGH;
942 intel_dp->DP |= DP_LINK_TRAIN_OFF;
943
944 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
945 intel_dp->DP |= DP_ENHANCED_FRAMING;
946
947 if (crtc->pipe == 1)
948 intel_dp->DP |= DP_PIPEB_SELECT;
949 } else {
950 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
951 }
952
953 if (port == PORT_A && !IS_VALLEYVIEW(dev))
954 ironlake_set_pll_cpu_edp(intel_dp);
955 }
956
957 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
958 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
959
960 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
961 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
962
963 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
964 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
965
966 static void wait_panel_status(struct intel_dp *intel_dp,
967 u32 mask,
968 u32 value)
969 {
970 struct drm_device *dev = intel_dp_to_dev(intel_dp);
971 struct drm_i915_private *dev_priv = dev->dev_private;
972 u32 pp_stat_reg, pp_ctrl_reg;
973
974 pp_stat_reg = _pp_stat_reg(intel_dp);
975 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
976
977 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
978 mask, value,
979 I915_READ(pp_stat_reg),
980 I915_READ(pp_ctrl_reg));
981
982 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
983 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
984 I915_READ(pp_stat_reg),
985 I915_READ(pp_ctrl_reg));
986 }
987
988 DRM_DEBUG_KMS("Wait complete\n");
989 }
990
991 static void wait_panel_on(struct intel_dp *intel_dp)
992 {
993 DRM_DEBUG_KMS("Wait for panel power on\n");
994 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
995 }
996
997 static void wait_panel_off(struct intel_dp *intel_dp)
998 {
999 DRM_DEBUG_KMS("Wait for panel power off time\n");
1000 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1001 }
1002
1003 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1004 {
1005 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1006
1007 /* When we disable the VDD override bit last we have to do the manual
1008 * wait. */
1009 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1010 intel_dp->panel_power_cycle_delay);
1011
1012 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1013 }
1014
1015 static void wait_backlight_on(struct intel_dp *intel_dp)
1016 {
1017 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1018 intel_dp->backlight_on_delay);
1019 }
1020
1021 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1022 {
1023 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1024 intel_dp->backlight_off_delay);
1025 }
1026
1027 /* Read the current pp_control value, unlocking the register if it
1028 * is locked
1029 */
1030
1031 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1032 {
1033 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1034 struct drm_i915_private *dev_priv = dev->dev_private;
1035 u32 control;
1036
1037 control = I915_READ(_pp_ctrl_reg(intel_dp));
1038 control &= ~PANEL_UNLOCK_MASK;
1039 control |= PANEL_UNLOCK_REGS;
1040 return control;
1041 }
1042
1043 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1044 {
1045 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 u32 pp;
1048 u32 pp_stat_reg, pp_ctrl_reg;
1049 bool need_to_disable = !intel_dp->want_panel_vdd;
1050
1051 if (!is_edp(intel_dp))
1052 return false;
1053
1054 intel_dp->want_panel_vdd = true;
1055
1056 if (edp_have_panel_vdd(intel_dp))
1057 return need_to_disable;
1058
1059 intel_runtime_pm_get(dev_priv);
1060
1061 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1062
1063 if (!edp_have_panel_power(intel_dp))
1064 wait_panel_power_cycle(intel_dp);
1065
1066 pp = ironlake_get_pp_control(intel_dp);
1067 pp |= EDP_FORCE_VDD;
1068
1069 pp_stat_reg = _pp_stat_reg(intel_dp);
1070 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1071
1072 I915_WRITE(pp_ctrl_reg, pp);
1073 POSTING_READ(pp_ctrl_reg);
1074 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1075 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1076 /*
1077 * If the panel wasn't on, delay before accessing aux channel
1078 */
1079 if (!edp_have_panel_power(intel_dp)) {
1080 DRM_DEBUG_KMS("eDP was not running\n");
1081 msleep(intel_dp->panel_power_up_delay);
1082 }
1083
1084 return need_to_disable;
1085 }
1086
1087 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1088 {
1089 if (is_edp(intel_dp)) {
1090 bool vdd = _edp_panel_vdd_on(intel_dp);
1091
1092 WARN(!vdd, "eDP VDD already requested on\n");
1093 }
1094 }
1095
1096 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1097 {
1098 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1099 struct drm_i915_private *dev_priv = dev->dev_private;
1100 u32 pp;
1101 u32 pp_stat_reg, pp_ctrl_reg;
1102
1103 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1104
1105 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1106 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1107
1108 pp = ironlake_get_pp_control(intel_dp);
1109 pp &= ~EDP_FORCE_VDD;
1110
1111 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1112 pp_stat_reg = _pp_stat_reg(intel_dp);
1113
1114 I915_WRITE(pp_ctrl_reg, pp);
1115 POSTING_READ(pp_ctrl_reg);
1116
1117 /* Make sure sequencer is idle before allowing subsequent activity */
1118 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1119 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1120
1121 if ((pp & POWER_TARGET_ON) == 0)
1122 intel_dp->last_power_cycle = jiffies;
1123
1124 intel_runtime_pm_put(dev_priv);
1125 }
1126 }
1127
1128 static void edp_panel_vdd_work(struct work_struct *__work)
1129 {
1130 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1131 struct intel_dp, panel_vdd_work);
1132 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1133
1134 mutex_lock(&dev->mode_config.mutex);
1135 edp_panel_vdd_off_sync(intel_dp);
1136 mutex_unlock(&dev->mode_config.mutex);
1137 }
1138
1139 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1140 {
1141 if (!is_edp(intel_dp))
1142 return;
1143
1144 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1145
1146 intel_dp->want_panel_vdd = false;
1147
1148 if (sync) {
1149 edp_panel_vdd_off_sync(intel_dp);
1150 } else {
1151 /*
1152 * Queue the timer to fire a long
1153 * time from now (relative to the power down delay)
1154 * to keep the panel power up across a sequence of operations
1155 */
1156 schedule_delayed_work(&intel_dp->panel_vdd_work,
1157 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1158 }
1159 }
1160
1161 void intel_edp_panel_on(struct intel_dp *intel_dp)
1162 {
1163 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 u32 pp;
1166 u32 pp_ctrl_reg;
1167
1168 if (!is_edp(intel_dp))
1169 return;
1170
1171 DRM_DEBUG_KMS("Turn eDP power on\n");
1172
1173 if (edp_have_panel_power(intel_dp)) {
1174 DRM_DEBUG_KMS("eDP power already on\n");
1175 return;
1176 }
1177
1178 wait_panel_power_cycle(intel_dp);
1179
1180 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1181 pp = ironlake_get_pp_control(intel_dp);
1182 if (IS_GEN5(dev)) {
1183 /* ILK workaround: disable reset around power sequence */
1184 pp &= ~PANEL_POWER_RESET;
1185 I915_WRITE(pp_ctrl_reg, pp);
1186 POSTING_READ(pp_ctrl_reg);
1187 }
1188
1189 pp |= POWER_TARGET_ON;
1190 if (!IS_GEN5(dev))
1191 pp |= PANEL_POWER_RESET;
1192
1193 I915_WRITE(pp_ctrl_reg, pp);
1194 POSTING_READ(pp_ctrl_reg);
1195
1196 wait_panel_on(intel_dp);
1197 intel_dp->last_power_on = jiffies;
1198
1199 if (IS_GEN5(dev)) {
1200 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1201 I915_WRITE(pp_ctrl_reg, pp);
1202 POSTING_READ(pp_ctrl_reg);
1203 }
1204 }
1205
1206 void intel_edp_panel_off(struct intel_dp *intel_dp)
1207 {
1208 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1209 struct drm_i915_private *dev_priv = dev->dev_private;
1210 u32 pp;
1211 u32 pp_ctrl_reg;
1212
1213 if (!is_edp(intel_dp))
1214 return;
1215
1216 DRM_DEBUG_KMS("Turn eDP power off\n");
1217
1218 edp_wait_backlight_off(intel_dp);
1219
1220 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1221
1222 pp = ironlake_get_pp_control(intel_dp);
1223 /* We need to switch off panel power _and_ force vdd, for otherwise some
1224 * panels get very unhappy and cease to work. */
1225 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1226 EDP_BLC_ENABLE);
1227
1228 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1229
1230 intel_dp->want_panel_vdd = false;
1231
1232 I915_WRITE(pp_ctrl_reg, pp);
1233 POSTING_READ(pp_ctrl_reg);
1234
1235 intel_dp->last_power_cycle = jiffies;
1236 wait_panel_off(intel_dp);
1237
1238 /* We got a reference when we enabled the VDD. */
1239 intel_runtime_pm_put(dev_priv);
1240 }
1241
1242 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1243 {
1244 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1245 struct drm_device *dev = intel_dig_port->base.base.dev;
1246 struct drm_i915_private *dev_priv = dev->dev_private;
1247 u32 pp;
1248 u32 pp_ctrl_reg;
1249
1250 if (!is_edp(intel_dp))
1251 return;
1252
1253 DRM_DEBUG_KMS("\n");
1254 /*
1255 * If we enable the backlight right away following a panel power
1256 * on, we may see slight flicker as the panel syncs with the eDP
1257 * link. So delay a bit to make sure the image is solid before
1258 * allowing it to appear.
1259 */
1260 wait_backlight_on(intel_dp);
1261 pp = ironlake_get_pp_control(intel_dp);
1262 pp |= EDP_BLC_ENABLE;
1263
1264 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1265
1266 I915_WRITE(pp_ctrl_reg, pp);
1267 POSTING_READ(pp_ctrl_reg);
1268
1269 intel_panel_enable_backlight(intel_dp->attached_connector);
1270 }
1271
1272 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1273 {
1274 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1275 struct drm_i915_private *dev_priv = dev->dev_private;
1276 u32 pp;
1277 u32 pp_ctrl_reg;
1278
1279 if (!is_edp(intel_dp))
1280 return;
1281
1282 intel_panel_disable_backlight(intel_dp->attached_connector);
1283
1284 DRM_DEBUG_KMS("\n");
1285 pp = ironlake_get_pp_control(intel_dp);
1286 pp &= ~EDP_BLC_ENABLE;
1287
1288 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1289
1290 I915_WRITE(pp_ctrl_reg, pp);
1291 POSTING_READ(pp_ctrl_reg);
1292 intel_dp->last_backlight_off = jiffies;
1293 }
1294
1295 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1296 {
1297 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1298 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1299 struct drm_device *dev = crtc->dev;
1300 struct drm_i915_private *dev_priv = dev->dev_private;
1301 u32 dpa_ctl;
1302
1303 assert_pipe_disabled(dev_priv,
1304 to_intel_crtc(crtc)->pipe);
1305
1306 DRM_DEBUG_KMS("\n");
1307 dpa_ctl = I915_READ(DP_A);
1308 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1309 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1310
1311 /* We don't adjust intel_dp->DP while tearing down the link, to
1312 * facilitate link retraining (e.g. after hotplug). Hence clear all
1313 * enable bits here to ensure that we don't enable too much. */
1314 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1315 intel_dp->DP |= DP_PLL_ENABLE;
1316 I915_WRITE(DP_A, intel_dp->DP);
1317 POSTING_READ(DP_A);
1318 udelay(200);
1319 }
1320
1321 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1322 {
1323 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1324 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1325 struct drm_device *dev = crtc->dev;
1326 struct drm_i915_private *dev_priv = dev->dev_private;
1327 u32 dpa_ctl;
1328
1329 assert_pipe_disabled(dev_priv,
1330 to_intel_crtc(crtc)->pipe);
1331
1332 dpa_ctl = I915_READ(DP_A);
1333 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1334 "dp pll off, should be on\n");
1335 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1336
1337 /* We can't rely on the value tracked for the DP register in
1338 * intel_dp->DP because link_down must not change that (otherwise link
1339 * re-training will fail. */
1340 dpa_ctl &= ~DP_PLL_ENABLE;
1341 I915_WRITE(DP_A, dpa_ctl);
1342 POSTING_READ(DP_A);
1343 udelay(200);
1344 }
1345
1346 /* If the sink supports it, try to set the power state appropriately */
1347 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1348 {
1349 int ret, i;
1350
1351 /* Should have a valid DPCD by this point */
1352 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1353 return;
1354
1355 if (mode != DRM_MODE_DPMS_ON) {
1356 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1357 DP_SET_POWER_D3);
1358 if (ret != 1)
1359 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1360 } else {
1361 /*
1362 * When turning on, we need to retry for 1ms to give the sink
1363 * time to wake up.
1364 */
1365 for (i = 0; i < 3; i++) {
1366 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1367 DP_SET_POWER_D0);
1368 if (ret == 1)
1369 break;
1370 msleep(1);
1371 }
1372 }
1373 }
1374
1375 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1376 enum pipe *pipe)
1377 {
1378 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1379 enum port port = dp_to_dig_port(intel_dp)->port;
1380 struct drm_device *dev = encoder->base.dev;
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 enum intel_display_power_domain power_domain;
1383 u32 tmp;
1384
1385 power_domain = intel_display_port_power_domain(encoder);
1386 if (!intel_display_power_enabled(dev_priv, power_domain))
1387 return false;
1388
1389 tmp = I915_READ(intel_dp->output_reg);
1390
1391 if (!(tmp & DP_PORT_EN))
1392 return false;
1393
1394 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1395 *pipe = PORT_TO_PIPE_CPT(tmp);
1396 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1397 *pipe = PORT_TO_PIPE(tmp);
1398 } else {
1399 u32 trans_sel;
1400 u32 trans_dp;
1401 int i;
1402
1403 switch (intel_dp->output_reg) {
1404 case PCH_DP_B:
1405 trans_sel = TRANS_DP_PORT_SEL_B;
1406 break;
1407 case PCH_DP_C:
1408 trans_sel = TRANS_DP_PORT_SEL_C;
1409 break;
1410 case PCH_DP_D:
1411 trans_sel = TRANS_DP_PORT_SEL_D;
1412 break;
1413 default:
1414 return true;
1415 }
1416
1417 for_each_pipe(i) {
1418 trans_dp = I915_READ(TRANS_DP_CTL(i));
1419 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1420 *pipe = i;
1421 return true;
1422 }
1423 }
1424
1425 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1426 intel_dp->output_reg);
1427 }
1428
1429 return true;
1430 }
1431
1432 static void intel_dp_get_config(struct intel_encoder *encoder,
1433 struct intel_crtc_config *pipe_config)
1434 {
1435 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1436 u32 tmp, flags = 0;
1437 struct drm_device *dev = encoder->base.dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 enum port port = dp_to_dig_port(intel_dp)->port;
1440 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1441 int dotclock;
1442
1443 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1444 tmp = I915_READ(intel_dp->output_reg);
1445 if (tmp & DP_SYNC_HS_HIGH)
1446 flags |= DRM_MODE_FLAG_PHSYNC;
1447 else
1448 flags |= DRM_MODE_FLAG_NHSYNC;
1449
1450 if (tmp & DP_SYNC_VS_HIGH)
1451 flags |= DRM_MODE_FLAG_PVSYNC;
1452 else
1453 flags |= DRM_MODE_FLAG_NVSYNC;
1454 } else {
1455 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1456 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1457 flags |= DRM_MODE_FLAG_PHSYNC;
1458 else
1459 flags |= DRM_MODE_FLAG_NHSYNC;
1460
1461 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1462 flags |= DRM_MODE_FLAG_PVSYNC;
1463 else
1464 flags |= DRM_MODE_FLAG_NVSYNC;
1465 }
1466
1467 pipe_config->adjusted_mode.flags |= flags;
1468
1469 pipe_config->has_dp_encoder = true;
1470
1471 intel_dp_get_m_n(crtc, pipe_config);
1472
1473 if (port == PORT_A) {
1474 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1475 pipe_config->port_clock = 162000;
1476 else
1477 pipe_config->port_clock = 270000;
1478 }
1479
1480 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1481 &pipe_config->dp_m_n);
1482
1483 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1484 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1485
1486 pipe_config->adjusted_mode.crtc_clock = dotclock;
1487
1488 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1489 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1490 /*
1491 * This is a big fat ugly hack.
1492 *
1493 * Some machines in UEFI boot mode provide us a VBT that has 18
1494 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1495 * unknown we fail to light up. Yet the same BIOS boots up with
1496 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1497 * max, not what it tells us to use.
1498 *
1499 * Note: This will still be broken if the eDP panel is not lit
1500 * up by the BIOS, and thus we can't get the mode at module
1501 * load.
1502 */
1503 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1504 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1505 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1506 }
1507 }
1508
1509 static bool is_edp_psr(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 return dev_priv->psr.sink_support;
1514 }
1515
1516 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1517 {
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519
1520 if (!HAS_PSR(dev))
1521 return false;
1522
1523 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1524 }
1525
1526 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1527 struct edp_vsc_psr *vsc_psr)
1528 {
1529 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1530 struct drm_device *dev = dig_port->base.base.dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1533 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1534 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1535 uint32_t *data = (uint32_t *) vsc_psr;
1536 unsigned int i;
1537
1538 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1539 the video DIP being updated before program video DIP data buffer
1540 registers for DIP being updated. */
1541 I915_WRITE(ctl_reg, 0);
1542 POSTING_READ(ctl_reg);
1543
1544 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1545 if (i < sizeof(struct edp_vsc_psr))
1546 I915_WRITE(data_reg + i, *data++);
1547 else
1548 I915_WRITE(data_reg + i, 0);
1549 }
1550
1551 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1552 POSTING_READ(ctl_reg);
1553 }
1554
1555 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1556 {
1557 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 struct edp_vsc_psr psr_vsc;
1560
1561 if (intel_dp->psr_setup_done)
1562 return;
1563
1564 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1565 memset(&psr_vsc, 0, sizeof(psr_vsc));
1566 psr_vsc.sdp_header.HB0 = 0;
1567 psr_vsc.sdp_header.HB1 = 0x7;
1568 psr_vsc.sdp_header.HB2 = 0x2;
1569 psr_vsc.sdp_header.HB3 = 0x8;
1570 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1571
1572 /* Avoid continuous PSR exit by masking memup and hpd */
1573 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1574 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1575
1576 intel_dp->psr_setup_done = true;
1577 }
1578
1579 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1580 {
1581 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 uint32_t aux_clock_divider;
1584 int precharge = 0x3;
1585 int msg_size = 5; /* Header(4) + Message(1) */
1586
1587 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1588
1589 /* Enable PSR in sink */
1590 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1591 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1592 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1593 else
1594 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1595 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1596
1597 /* Setup AUX registers */
1598 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1599 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1600 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1601 DP_AUX_CH_CTL_TIME_OUT_400us |
1602 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1603 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1604 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1605 }
1606
1607 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1608 {
1609 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 uint32_t max_sleep_time = 0x1f;
1612 uint32_t idle_frames = 1;
1613 uint32_t val = 0x0;
1614 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1615
1616 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1617 val |= EDP_PSR_LINK_STANDBY;
1618 val |= EDP_PSR_TP2_TP3_TIME_0us;
1619 val |= EDP_PSR_TP1_TIME_0us;
1620 val |= EDP_PSR_SKIP_AUX_EXIT;
1621 } else
1622 val |= EDP_PSR_LINK_DISABLE;
1623
1624 I915_WRITE(EDP_PSR_CTL(dev), val |
1625 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1626 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1627 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1628 EDP_PSR_ENABLE);
1629 }
1630
1631 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1632 {
1633 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1634 struct drm_device *dev = dig_port->base.base.dev;
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 struct drm_crtc *crtc = dig_port->base.base.crtc;
1637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1638 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1639 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1640
1641 dev_priv->psr.source_ok = false;
1642
1643 if (!HAS_PSR(dev)) {
1644 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1645 return false;
1646 }
1647
1648 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1649 (dig_port->port != PORT_A)) {
1650 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1651 return false;
1652 }
1653
1654 if (!i915.enable_psr) {
1655 DRM_DEBUG_KMS("PSR disable by flag\n");
1656 return false;
1657 }
1658
1659 crtc = dig_port->base.base.crtc;
1660 if (crtc == NULL) {
1661 DRM_DEBUG_KMS("crtc not active for PSR\n");
1662 return false;
1663 }
1664
1665 intel_crtc = to_intel_crtc(crtc);
1666 if (!intel_crtc_active(crtc)) {
1667 DRM_DEBUG_KMS("crtc not active for PSR\n");
1668 return false;
1669 }
1670
1671 obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1672 if (obj->tiling_mode != I915_TILING_X ||
1673 obj->fence_reg == I915_FENCE_REG_NONE) {
1674 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1675 return false;
1676 }
1677
1678 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1679 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1680 return false;
1681 }
1682
1683 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1684 S3D_ENABLE) {
1685 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1686 return false;
1687 }
1688
1689 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1690 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1691 return false;
1692 }
1693
1694 dev_priv->psr.source_ok = true;
1695 return true;
1696 }
1697
1698 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1699 {
1700 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1701
1702 if (!intel_edp_psr_match_conditions(intel_dp) ||
1703 intel_edp_is_psr_enabled(dev))
1704 return;
1705
1706 /* Setup PSR once */
1707 intel_edp_psr_setup(intel_dp);
1708
1709 /* Enable PSR on the panel */
1710 intel_edp_psr_enable_sink(intel_dp);
1711
1712 /* Enable PSR on the host */
1713 intel_edp_psr_enable_source(intel_dp);
1714 }
1715
1716 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1717 {
1718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1719
1720 if (intel_edp_psr_match_conditions(intel_dp) &&
1721 !intel_edp_is_psr_enabled(dev))
1722 intel_edp_psr_do_enable(intel_dp);
1723 }
1724
1725 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1726 {
1727 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729
1730 if (!intel_edp_is_psr_enabled(dev))
1731 return;
1732
1733 I915_WRITE(EDP_PSR_CTL(dev),
1734 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1735
1736 /* Wait till PSR is idle */
1737 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1738 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1739 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1740 }
1741
1742 void intel_edp_psr_update(struct drm_device *dev)
1743 {
1744 struct intel_encoder *encoder;
1745 struct intel_dp *intel_dp = NULL;
1746
1747 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1748 if (encoder->type == INTEL_OUTPUT_EDP) {
1749 intel_dp = enc_to_intel_dp(&encoder->base);
1750
1751 if (!is_edp_psr(dev))
1752 return;
1753
1754 if (!intel_edp_psr_match_conditions(intel_dp))
1755 intel_edp_psr_disable(intel_dp);
1756 else
1757 if (!intel_edp_is_psr_enabled(dev))
1758 intel_edp_psr_do_enable(intel_dp);
1759 }
1760 }
1761
1762 static void intel_disable_dp(struct intel_encoder *encoder)
1763 {
1764 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1765 enum port port = dp_to_dig_port(intel_dp)->port;
1766 struct drm_device *dev = encoder->base.dev;
1767
1768 /* Make sure the panel is off before trying to change the mode. But also
1769 * ensure that we have vdd while we switch off the panel. */
1770 intel_edp_panel_vdd_on(intel_dp);
1771 intel_edp_backlight_off(intel_dp);
1772 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1773 intel_edp_panel_off(intel_dp);
1774
1775 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1776 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1777 intel_dp_link_down(intel_dp);
1778 }
1779
1780 static void intel_post_disable_dp(struct intel_encoder *encoder)
1781 {
1782 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1783 enum port port = dp_to_dig_port(intel_dp)->port;
1784 struct drm_device *dev = encoder->base.dev;
1785
1786 if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1787 intel_dp_link_down(intel_dp);
1788 if (!IS_VALLEYVIEW(dev))
1789 ironlake_edp_pll_off(intel_dp);
1790 }
1791 }
1792
1793 static void intel_enable_dp(struct intel_encoder *encoder)
1794 {
1795 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1796 struct drm_device *dev = encoder->base.dev;
1797 struct drm_i915_private *dev_priv = dev->dev_private;
1798 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1799
1800 if (WARN_ON(dp_reg & DP_PORT_EN))
1801 return;
1802
1803 intel_edp_panel_vdd_on(intel_dp);
1804 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1805 intel_dp_start_link_train(intel_dp);
1806 intel_edp_panel_on(intel_dp);
1807 edp_panel_vdd_off(intel_dp, true);
1808 intel_dp_complete_link_train(intel_dp);
1809 intel_dp_stop_link_train(intel_dp);
1810 }
1811
1812 static void g4x_enable_dp(struct intel_encoder *encoder)
1813 {
1814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1815
1816 intel_enable_dp(encoder);
1817 intel_edp_backlight_on(intel_dp);
1818 }
1819
1820 static void vlv_enable_dp(struct intel_encoder *encoder)
1821 {
1822 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1823
1824 intel_edp_backlight_on(intel_dp);
1825 }
1826
1827 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1828 {
1829 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1830 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1831
1832 if (dport->port == PORT_A)
1833 ironlake_edp_pll_on(intel_dp);
1834 }
1835
1836 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1837 {
1838 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1839 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1840 struct drm_device *dev = encoder->base.dev;
1841 struct drm_i915_private *dev_priv = dev->dev_private;
1842 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1843 enum dpio_channel port = vlv_dport_to_channel(dport);
1844 int pipe = intel_crtc->pipe;
1845 struct edp_power_seq power_seq;
1846 u32 val;
1847
1848 mutex_lock(&dev_priv->dpio_lock);
1849
1850 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1851 val = 0;
1852 if (pipe)
1853 val |= (1<<21);
1854 else
1855 val &= ~(1<<21);
1856 val |= 0x001000c4;
1857 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1858 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1859 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1860
1861 mutex_unlock(&dev_priv->dpio_lock);
1862
1863 if (is_edp(intel_dp)) {
1864 /* init power sequencer on this pipe and port */
1865 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1866 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1867 &power_seq);
1868 }
1869
1870 intel_enable_dp(encoder);
1871
1872 vlv_wait_port_ready(dev_priv, dport);
1873 }
1874
1875 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1876 {
1877 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1878 struct drm_device *dev = encoder->base.dev;
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880 struct intel_crtc *intel_crtc =
1881 to_intel_crtc(encoder->base.crtc);
1882 enum dpio_channel port = vlv_dport_to_channel(dport);
1883 int pipe = intel_crtc->pipe;
1884
1885 /* Program Tx lane resets to default */
1886 mutex_lock(&dev_priv->dpio_lock);
1887 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1888 DPIO_PCS_TX_LANE2_RESET |
1889 DPIO_PCS_TX_LANE1_RESET);
1890 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1891 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1892 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1893 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1894 DPIO_PCS_CLK_SOFT_RESET);
1895
1896 /* Fix up inter-pair skew failure */
1897 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1898 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1899 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1900 mutex_unlock(&dev_priv->dpio_lock);
1901 }
1902
1903 /*
1904 * Native read with retry for link status and receiver capability reads for
1905 * cases where the sink may still be asleep.
1906 *
1907 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
1908 * supposed to retry 3 times per the spec.
1909 */
1910 static ssize_t
1911 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
1912 void *buffer, size_t size)
1913 {
1914 ssize_t ret;
1915 int i;
1916
1917 for (i = 0; i < 3; i++) {
1918 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
1919 if (ret == size)
1920 return ret;
1921 msleep(1);
1922 }
1923
1924 return ret;
1925 }
1926
1927 /*
1928 * Fetch AUX CH registers 0x202 - 0x207 which contain
1929 * link status information
1930 */
1931 static bool
1932 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1933 {
1934 return intel_dp_dpcd_read_wake(&intel_dp->aux,
1935 DP_LANE0_1_STATUS,
1936 link_status,
1937 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
1938 }
1939
1940 /*
1941 * These are source-specific values; current Intel hardware supports
1942 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1943 */
1944
1945 static uint8_t
1946 intel_dp_voltage_max(struct intel_dp *intel_dp)
1947 {
1948 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1949 enum port port = dp_to_dig_port(intel_dp)->port;
1950
1951 if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1952 return DP_TRAIN_VOLTAGE_SWING_1200;
1953 else if (IS_GEN7(dev) && port == PORT_A)
1954 return DP_TRAIN_VOLTAGE_SWING_800;
1955 else if (HAS_PCH_CPT(dev) && port != PORT_A)
1956 return DP_TRAIN_VOLTAGE_SWING_1200;
1957 else
1958 return DP_TRAIN_VOLTAGE_SWING_800;
1959 }
1960
1961 static uint8_t
1962 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1963 {
1964 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1965 enum port port = dp_to_dig_port(intel_dp)->port;
1966
1967 if (IS_BROADWELL(dev)) {
1968 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1969 case DP_TRAIN_VOLTAGE_SWING_400:
1970 case DP_TRAIN_VOLTAGE_SWING_600:
1971 return DP_TRAIN_PRE_EMPHASIS_6;
1972 case DP_TRAIN_VOLTAGE_SWING_800:
1973 return DP_TRAIN_PRE_EMPHASIS_3_5;
1974 case DP_TRAIN_VOLTAGE_SWING_1200:
1975 default:
1976 return DP_TRAIN_PRE_EMPHASIS_0;
1977 }
1978 } else if (IS_HASWELL(dev)) {
1979 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1980 case DP_TRAIN_VOLTAGE_SWING_400:
1981 return DP_TRAIN_PRE_EMPHASIS_9_5;
1982 case DP_TRAIN_VOLTAGE_SWING_600:
1983 return DP_TRAIN_PRE_EMPHASIS_6;
1984 case DP_TRAIN_VOLTAGE_SWING_800:
1985 return DP_TRAIN_PRE_EMPHASIS_3_5;
1986 case DP_TRAIN_VOLTAGE_SWING_1200:
1987 default:
1988 return DP_TRAIN_PRE_EMPHASIS_0;
1989 }
1990 } else if (IS_VALLEYVIEW(dev)) {
1991 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1992 case DP_TRAIN_VOLTAGE_SWING_400:
1993 return DP_TRAIN_PRE_EMPHASIS_9_5;
1994 case DP_TRAIN_VOLTAGE_SWING_600:
1995 return DP_TRAIN_PRE_EMPHASIS_6;
1996 case DP_TRAIN_VOLTAGE_SWING_800:
1997 return DP_TRAIN_PRE_EMPHASIS_3_5;
1998 case DP_TRAIN_VOLTAGE_SWING_1200:
1999 default:
2000 return DP_TRAIN_PRE_EMPHASIS_0;
2001 }
2002 } else if (IS_GEN7(dev) && port == PORT_A) {
2003 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2004 case DP_TRAIN_VOLTAGE_SWING_400:
2005 return DP_TRAIN_PRE_EMPHASIS_6;
2006 case DP_TRAIN_VOLTAGE_SWING_600:
2007 case DP_TRAIN_VOLTAGE_SWING_800:
2008 return DP_TRAIN_PRE_EMPHASIS_3_5;
2009 default:
2010 return DP_TRAIN_PRE_EMPHASIS_0;
2011 }
2012 } else {
2013 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2014 case DP_TRAIN_VOLTAGE_SWING_400:
2015 return DP_TRAIN_PRE_EMPHASIS_6;
2016 case DP_TRAIN_VOLTAGE_SWING_600:
2017 return DP_TRAIN_PRE_EMPHASIS_6;
2018 case DP_TRAIN_VOLTAGE_SWING_800:
2019 return DP_TRAIN_PRE_EMPHASIS_3_5;
2020 case DP_TRAIN_VOLTAGE_SWING_1200:
2021 default:
2022 return DP_TRAIN_PRE_EMPHASIS_0;
2023 }
2024 }
2025 }
2026
2027 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2028 {
2029 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2032 struct intel_crtc *intel_crtc =
2033 to_intel_crtc(dport->base.base.crtc);
2034 unsigned long demph_reg_value, preemph_reg_value,
2035 uniqtranscale_reg_value;
2036 uint8_t train_set = intel_dp->train_set[0];
2037 enum dpio_channel port = vlv_dport_to_channel(dport);
2038 int pipe = intel_crtc->pipe;
2039
2040 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2041 case DP_TRAIN_PRE_EMPHASIS_0:
2042 preemph_reg_value = 0x0004000;
2043 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2044 case DP_TRAIN_VOLTAGE_SWING_400:
2045 demph_reg_value = 0x2B405555;
2046 uniqtranscale_reg_value = 0x552AB83A;
2047 break;
2048 case DP_TRAIN_VOLTAGE_SWING_600:
2049 demph_reg_value = 0x2B404040;
2050 uniqtranscale_reg_value = 0x5548B83A;
2051 break;
2052 case DP_TRAIN_VOLTAGE_SWING_800:
2053 demph_reg_value = 0x2B245555;
2054 uniqtranscale_reg_value = 0x5560B83A;
2055 break;
2056 case DP_TRAIN_VOLTAGE_SWING_1200:
2057 demph_reg_value = 0x2B405555;
2058 uniqtranscale_reg_value = 0x5598DA3A;
2059 break;
2060 default:
2061 return 0;
2062 }
2063 break;
2064 case DP_TRAIN_PRE_EMPHASIS_3_5:
2065 preemph_reg_value = 0x0002000;
2066 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2067 case DP_TRAIN_VOLTAGE_SWING_400:
2068 demph_reg_value = 0x2B404040;
2069 uniqtranscale_reg_value = 0x5552B83A;
2070 break;
2071 case DP_TRAIN_VOLTAGE_SWING_600:
2072 demph_reg_value = 0x2B404848;
2073 uniqtranscale_reg_value = 0x5580B83A;
2074 break;
2075 case DP_TRAIN_VOLTAGE_SWING_800:
2076 demph_reg_value = 0x2B404040;
2077 uniqtranscale_reg_value = 0x55ADDA3A;
2078 break;
2079 default:
2080 return 0;
2081 }
2082 break;
2083 case DP_TRAIN_PRE_EMPHASIS_6:
2084 preemph_reg_value = 0x0000000;
2085 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2086 case DP_TRAIN_VOLTAGE_SWING_400:
2087 demph_reg_value = 0x2B305555;
2088 uniqtranscale_reg_value = 0x5570B83A;
2089 break;
2090 case DP_TRAIN_VOLTAGE_SWING_600:
2091 demph_reg_value = 0x2B2B4040;
2092 uniqtranscale_reg_value = 0x55ADDA3A;
2093 break;
2094 default:
2095 return 0;
2096 }
2097 break;
2098 case DP_TRAIN_PRE_EMPHASIS_9_5:
2099 preemph_reg_value = 0x0006000;
2100 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2101 case DP_TRAIN_VOLTAGE_SWING_400:
2102 demph_reg_value = 0x1B405555;
2103 uniqtranscale_reg_value = 0x55ADDA3A;
2104 break;
2105 default:
2106 return 0;
2107 }
2108 break;
2109 default:
2110 return 0;
2111 }
2112
2113 mutex_lock(&dev_priv->dpio_lock);
2114 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2115 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2116 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2117 uniqtranscale_reg_value);
2118 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2119 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2120 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2121 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2122 mutex_unlock(&dev_priv->dpio_lock);
2123
2124 return 0;
2125 }
2126
2127 static void
2128 intel_get_adjust_train(struct intel_dp *intel_dp,
2129 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2130 {
2131 uint8_t v = 0;
2132 uint8_t p = 0;
2133 int lane;
2134 uint8_t voltage_max;
2135 uint8_t preemph_max;
2136
2137 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2138 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2139 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2140
2141 if (this_v > v)
2142 v = this_v;
2143 if (this_p > p)
2144 p = this_p;
2145 }
2146
2147 voltage_max = intel_dp_voltage_max(intel_dp);
2148 if (v >= voltage_max)
2149 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2150
2151 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2152 if (p >= preemph_max)
2153 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2154
2155 for (lane = 0; lane < 4; lane++)
2156 intel_dp->train_set[lane] = v | p;
2157 }
2158
2159 static uint32_t
2160 intel_gen4_signal_levels(uint8_t train_set)
2161 {
2162 uint32_t signal_levels = 0;
2163
2164 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2165 case DP_TRAIN_VOLTAGE_SWING_400:
2166 default:
2167 signal_levels |= DP_VOLTAGE_0_4;
2168 break;
2169 case DP_TRAIN_VOLTAGE_SWING_600:
2170 signal_levels |= DP_VOLTAGE_0_6;
2171 break;
2172 case DP_TRAIN_VOLTAGE_SWING_800:
2173 signal_levels |= DP_VOLTAGE_0_8;
2174 break;
2175 case DP_TRAIN_VOLTAGE_SWING_1200:
2176 signal_levels |= DP_VOLTAGE_1_2;
2177 break;
2178 }
2179 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2180 case DP_TRAIN_PRE_EMPHASIS_0:
2181 default:
2182 signal_levels |= DP_PRE_EMPHASIS_0;
2183 break;
2184 case DP_TRAIN_PRE_EMPHASIS_3_5:
2185 signal_levels |= DP_PRE_EMPHASIS_3_5;
2186 break;
2187 case DP_TRAIN_PRE_EMPHASIS_6:
2188 signal_levels |= DP_PRE_EMPHASIS_6;
2189 break;
2190 case DP_TRAIN_PRE_EMPHASIS_9_5:
2191 signal_levels |= DP_PRE_EMPHASIS_9_5;
2192 break;
2193 }
2194 return signal_levels;
2195 }
2196
2197 /* Gen6's DP voltage swing and pre-emphasis control */
2198 static uint32_t
2199 intel_gen6_edp_signal_levels(uint8_t train_set)
2200 {
2201 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2202 DP_TRAIN_PRE_EMPHASIS_MASK);
2203 switch (signal_levels) {
2204 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2205 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2206 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2207 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2208 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2209 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2210 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2211 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2212 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2213 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2214 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2215 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2216 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2217 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2218 default:
2219 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2220 "0x%x\n", signal_levels);
2221 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2222 }
2223 }
2224
2225 /* Gen7's DP voltage swing and pre-emphasis control */
2226 static uint32_t
2227 intel_gen7_edp_signal_levels(uint8_t train_set)
2228 {
2229 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2230 DP_TRAIN_PRE_EMPHASIS_MASK);
2231 switch (signal_levels) {
2232 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2233 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2234 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2235 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2236 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2237 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2238
2239 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2240 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2241 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2242 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2243
2244 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2245 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2246 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2247 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2248
2249 default:
2250 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2251 "0x%x\n", signal_levels);
2252 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2253 }
2254 }
2255
2256 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2257 static uint32_t
2258 intel_hsw_signal_levels(uint8_t train_set)
2259 {
2260 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2261 DP_TRAIN_PRE_EMPHASIS_MASK);
2262 switch (signal_levels) {
2263 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2264 return DDI_BUF_EMP_400MV_0DB_HSW;
2265 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2266 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2267 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2268 return DDI_BUF_EMP_400MV_6DB_HSW;
2269 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2270 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2271
2272 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2273 return DDI_BUF_EMP_600MV_0DB_HSW;
2274 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2275 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2276 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2277 return DDI_BUF_EMP_600MV_6DB_HSW;
2278
2279 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2280 return DDI_BUF_EMP_800MV_0DB_HSW;
2281 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2282 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2283 default:
2284 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2285 "0x%x\n", signal_levels);
2286 return DDI_BUF_EMP_400MV_0DB_HSW;
2287 }
2288 }
2289
2290 static uint32_t
2291 intel_bdw_signal_levels(uint8_t train_set)
2292 {
2293 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2294 DP_TRAIN_PRE_EMPHASIS_MASK);
2295 switch (signal_levels) {
2296 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2297 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2298 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2299 return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
2300 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2301 return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
2302
2303 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2304 return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
2305 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2306 return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
2307 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2308 return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
2309
2310 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2311 return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
2312 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2313 return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
2314
2315 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2316 return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
2317
2318 default:
2319 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2320 "0x%x\n", signal_levels);
2321 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2322 }
2323 }
2324
2325 /* Properly updates "DP" with the correct signal levels. */
2326 static void
2327 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2328 {
2329 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2330 enum port port = intel_dig_port->port;
2331 struct drm_device *dev = intel_dig_port->base.base.dev;
2332 uint32_t signal_levels, mask;
2333 uint8_t train_set = intel_dp->train_set[0];
2334
2335 if (IS_BROADWELL(dev)) {
2336 signal_levels = intel_bdw_signal_levels(train_set);
2337 mask = DDI_BUF_EMP_MASK;
2338 } else if (IS_HASWELL(dev)) {
2339 signal_levels = intel_hsw_signal_levels(train_set);
2340 mask = DDI_BUF_EMP_MASK;
2341 } else if (IS_VALLEYVIEW(dev)) {
2342 signal_levels = intel_vlv_signal_levels(intel_dp);
2343 mask = 0;
2344 } else if (IS_GEN7(dev) && port == PORT_A) {
2345 signal_levels = intel_gen7_edp_signal_levels(train_set);
2346 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2347 } else if (IS_GEN6(dev) && port == PORT_A) {
2348 signal_levels = intel_gen6_edp_signal_levels(train_set);
2349 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2350 } else {
2351 signal_levels = intel_gen4_signal_levels(train_set);
2352 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2353 }
2354
2355 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2356
2357 *DP = (*DP & ~mask) | signal_levels;
2358 }
2359
2360 static bool
2361 intel_dp_set_link_train(struct intel_dp *intel_dp,
2362 uint32_t *DP,
2363 uint8_t dp_train_pat)
2364 {
2365 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2366 struct drm_device *dev = intel_dig_port->base.base.dev;
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 enum port port = intel_dig_port->port;
2369 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2370 int ret, len;
2371
2372 if (HAS_DDI(dev)) {
2373 uint32_t temp = I915_READ(DP_TP_CTL(port));
2374
2375 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2376 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2377 else
2378 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2379
2380 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2381 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2382 case DP_TRAINING_PATTERN_DISABLE:
2383 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2384
2385 break;
2386 case DP_TRAINING_PATTERN_1:
2387 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2388 break;
2389 case DP_TRAINING_PATTERN_2:
2390 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2391 break;
2392 case DP_TRAINING_PATTERN_3:
2393 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2394 break;
2395 }
2396 I915_WRITE(DP_TP_CTL(port), temp);
2397
2398 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2399 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2400
2401 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2402 case DP_TRAINING_PATTERN_DISABLE:
2403 *DP |= DP_LINK_TRAIN_OFF_CPT;
2404 break;
2405 case DP_TRAINING_PATTERN_1:
2406 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2407 break;
2408 case DP_TRAINING_PATTERN_2:
2409 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2410 break;
2411 case DP_TRAINING_PATTERN_3:
2412 DRM_ERROR("DP training pattern 3 not supported\n");
2413 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2414 break;
2415 }
2416
2417 } else {
2418 *DP &= ~DP_LINK_TRAIN_MASK;
2419
2420 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2421 case DP_TRAINING_PATTERN_DISABLE:
2422 *DP |= DP_LINK_TRAIN_OFF;
2423 break;
2424 case DP_TRAINING_PATTERN_1:
2425 *DP |= DP_LINK_TRAIN_PAT_1;
2426 break;
2427 case DP_TRAINING_PATTERN_2:
2428 *DP |= DP_LINK_TRAIN_PAT_2;
2429 break;
2430 case DP_TRAINING_PATTERN_3:
2431 DRM_ERROR("DP training pattern 3 not supported\n");
2432 *DP |= DP_LINK_TRAIN_PAT_2;
2433 break;
2434 }
2435 }
2436
2437 I915_WRITE(intel_dp->output_reg, *DP);
2438 POSTING_READ(intel_dp->output_reg);
2439
2440 buf[0] = dp_train_pat;
2441 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2442 DP_TRAINING_PATTERN_DISABLE) {
2443 /* don't write DP_TRAINING_LANEx_SET on disable */
2444 len = 1;
2445 } else {
2446 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2447 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2448 len = intel_dp->lane_count + 1;
2449 }
2450
2451 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2452 buf, len);
2453
2454 return ret == len;
2455 }
2456
2457 static bool
2458 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2459 uint8_t dp_train_pat)
2460 {
2461 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2462 intel_dp_set_signal_levels(intel_dp, DP);
2463 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2464 }
2465
2466 static bool
2467 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2468 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2469 {
2470 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2471 struct drm_device *dev = intel_dig_port->base.base.dev;
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 int ret;
2474
2475 intel_get_adjust_train(intel_dp, link_status);
2476 intel_dp_set_signal_levels(intel_dp, DP);
2477
2478 I915_WRITE(intel_dp->output_reg, *DP);
2479 POSTING_READ(intel_dp->output_reg);
2480
2481 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2482 intel_dp->train_set, intel_dp->lane_count);
2483
2484 return ret == intel_dp->lane_count;
2485 }
2486
2487 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2488 {
2489 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2490 struct drm_device *dev = intel_dig_port->base.base.dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 enum port port = intel_dig_port->port;
2493 uint32_t val;
2494
2495 if (!HAS_DDI(dev))
2496 return;
2497
2498 val = I915_READ(DP_TP_CTL(port));
2499 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2500 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2501 I915_WRITE(DP_TP_CTL(port), val);
2502
2503 /*
2504 * On PORT_A we can have only eDP in SST mode. There the only reason
2505 * we need to set idle transmission mode is to work around a HW issue
2506 * where we enable the pipe while not in idle link-training mode.
2507 * In this case there is requirement to wait for a minimum number of
2508 * idle patterns to be sent.
2509 */
2510 if (port == PORT_A)
2511 return;
2512
2513 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2514 1))
2515 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2516 }
2517
2518 /* Enable corresponding port and start training pattern 1 */
2519 void
2520 intel_dp_start_link_train(struct intel_dp *intel_dp)
2521 {
2522 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2523 struct drm_device *dev = encoder->dev;
2524 int i;
2525 uint8_t voltage;
2526 int voltage_tries, loop_tries;
2527 uint32_t DP = intel_dp->DP;
2528 uint8_t link_config[2];
2529
2530 if (HAS_DDI(dev))
2531 intel_ddi_prepare_link_retrain(encoder);
2532
2533 /* Write the link configuration data */
2534 link_config[0] = intel_dp->link_bw;
2535 link_config[1] = intel_dp->lane_count;
2536 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2537 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2538 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2539
2540 link_config[0] = 0;
2541 link_config[1] = DP_SET_ANSI_8B10B;
2542 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2543
2544 DP |= DP_PORT_EN;
2545
2546 /* clock recovery */
2547 if (!intel_dp_reset_link_train(intel_dp, &DP,
2548 DP_TRAINING_PATTERN_1 |
2549 DP_LINK_SCRAMBLING_DISABLE)) {
2550 DRM_ERROR("failed to enable link training\n");
2551 return;
2552 }
2553
2554 voltage = 0xff;
2555 voltage_tries = 0;
2556 loop_tries = 0;
2557 for (;;) {
2558 uint8_t link_status[DP_LINK_STATUS_SIZE];
2559
2560 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2561 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2562 DRM_ERROR("failed to get link status\n");
2563 break;
2564 }
2565
2566 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2567 DRM_DEBUG_KMS("clock recovery OK\n");
2568 break;
2569 }
2570
2571 /* Check to see if we've tried the max voltage */
2572 for (i = 0; i < intel_dp->lane_count; i++)
2573 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2574 break;
2575 if (i == intel_dp->lane_count) {
2576 ++loop_tries;
2577 if (loop_tries == 5) {
2578 DRM_ERROR("too many full retries, give up\n");
2579 break;
2580 }
2581 intel_dp_reset_link_train(intel_dp, &DP,
2582 DP_TRAINING_PATTERN_1 |
2583 DP_LINK_SCRAMBLING_DISABLE);
2584 voltage_tries = 0;
2585 continue;
2586 }
2587
2588 /* Check to see if we've tried the same voltage 5 times */
2589 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2590 ++voltage_tries;
2591 if (voltage_tries == 5) {
2592 DRM_ERROR("too many voltage retries, give up\n");
2593 break;
2594 }
2595 } else
2596 voltage_tries = 0;
2597 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2598
2599 /* Update training set as requested by target */
2600 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2601 DRM_ERROR("failed to update link training\n");
2602 break;
2603 }
2604 }
2605
2606 intel_dp->DP = DP;
2607 }
2608
2609 void
2610 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2611 {
2612 bool channel_eq = false;
2613 int tries, cr_tries;
2614 uint32_t DP = intel_dp->DP;
2615 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2616
2617 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2618 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2619 training_pattern = DP_TRAINING_PATTERN_3;
2620
2621 /* channel equalization */
2622 if (!intel_dp_set_link_train(intel_dp, &DP,
2623 training_pattern |
2624 DP_LINK_SCRAMBLING_DISABLE)) {
2625 DRM_ERROR("failed to start channel equalization\n");
2626 return;
2627 }
2628
2629 tries = 0;
2630 cr_tries = 0;
2631 channel_eq = false;
2632 for (;;) {
2633 uint8_t link_status[DP_LINK_STATUS_SIZE];
2634
2635 if (cr_tries > 5) {
2636 DRM_ERROR("failed to train DP, aborting\n");
2637 break;
2638 }
2639
2640 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2641 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2642 DRM_ERROR("failed to get link status\n");
2643 break;
2644 }
2645
2646 /* Make sure clock is still ok */
2647 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2648 intel_dp_start_link_train(intel_dp);
2649 intel_dp_set_link_train(intel_dp, &DP,
2650 training_pattern |
2651 DP_LINK_SCRAMBLING_DISABLE);
2652 cr_tries++;
2653 continue;
2654 }
2655
2656 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2657 channel_eq = true;
2658 break;
2659 }
2660
2661 /* Try 5 times, then try clock recovery if that fails */
2662 if (tries > 5) {
2663 intel_dp_link_down(intel_dp);
2664 intel_dp_start_link_train(intel_dp);
2665 intel_dp_set_link_train(intel_dp, &DP,
2666 training_pattern |
2667 DP_LINK_SCRAMBLING_DISABLE);
2668 tries = 0;
2669 cr_tries++;
2670 continue;
2671 }
2672
2673 /* Update training set as requested by target */
2674 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2675 DRM_ERROR("failed to update link training\n");
2676 break;
2677 }
2678 ++tries;
2679 }
2680
2681 intel_dp_set_idle_link_train(intel_dp);
2682
2683 intel_dp->DP = DP;
2684
2685 if (channel_eq)
2686 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2687
2688 }
2689
2690 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2691 {
2692 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2693 DP_TRAINING_PATTERN_DISABLE);
2694 }
2695
2696 static void
2697 intel_dp_link_down(struct intel_dp *intel_dp)
2698 {
2699 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2700 enum port port = intel_dig_port->port;
2701 struct drm_device *dev = intel_dig_port->base.base.dev;
2702 struct drm_i915_private *dev_priv = dev->dev_private;
2703 struct intel_crtc *intel_crtc =
2704 to_intel_crtc(intel_dig_port->base.base.crtc);
2705 uint32_t DP = intel_dp->DP;
2706
2707 /*
2708 * DDI code has a strict mode set sequence and we should try to respect
2709 * it, otherwise we might hang the machine in many different ways. So we
2710 * really should be disabling the port only on a complete crtc_disable
2711 * sequence. This function is just called under two conditions on DDI
2712 * code:
2713 * - Link train failed while doing crtc_enable, and on this case we
2714 * really should respect the mode set sequence and wait for a
2715 * crtc_disable.
2716 * - Someone turned the monitor off and intel_dp_check_link_status
2717 * called us. We don't need to disable the whole port on this case, so
2718 * when someone turns the monitor on again,
2719 * intel_ddi_prepare_link_retrain will take care of redoing the link
2720 * train.
2721 */
2722 if (HAS_DDI(dev))
2723 return;
2724
2725 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2726 return;
2727
2728 DRM_DEBUG_KMS("\n");
2729
2730 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2731 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2732 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2733 } else {
2734 DP &= ~DP_LINK_TRAIN_MASK;
2735 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2736 }
2737 POSTING_READ(intel_dp->output_reg);
2738
2739 /* We don't really know why we're doing this */
2740 intel_wait_for_vblank(dev, intel_crtc->pipe);
2741
2742 if (HAS_PCH_IBX(dev) &&
2743 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2744 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2745
2746 /* Hardware workaround: leaving our transcoder select
2747 * set to transcoder B while it's off will prevent the
2748 * corresponding HDMI output on transcoder A.
2749 *
2750 * Combine this with another hardware workaround:
2751 * transcoder select bit can only be cleared while the
2752 * port is enabled.
2753 */
2754 DP &= ~DP_PIPEB_SELECT;
2755 I915_WRITE(intel_dp->output_reg, DP);
2756
2757 /* Changes to enable or select take place the vblank
2758 * after being written.
2759 */
2760 if (WARN_ON(crtc == NULL)) {
2761 /* We should never try to disable a port without a crtc
2762 * attached. For paranoia keep the code around for a
2763 * bit. */
2764 POSTING_READ(intel_dp->output_reg);
2765 msleep(50);
2766 } else
2767 intel_wait_for_vblank(dev, intel_crtc->pipe);
2768 }
2769
2770 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2771 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2772 POSTING_READ(intel_dp->output_reg);
2773 msleep(intel_dp->panel_power_down_delay);
2774 }
2775
2776 static bool
2777 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2778 {
2779 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2780 struct drm_device *dev = dig_port->base.base.dev;
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782
2783 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2784
2785 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
2786 sizeof(intel_dp->dpcd)) < 0)
2787 return false; /* aux transfer failed */
2788
2789 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2790 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2791 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2792
2793 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2794 return false; /* DPCD not present */
2795
2796 /* Check if the panel supports PSR */
2797 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2798 if (is_edp(intel_dp)) {
2799 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
2800 intel_dp->psr_dpcd,
2801 sizeof(intel_dp->psr_dpcd));
2802 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2803 dev_priv->psr.sink_support = true;
2804 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2805 }
2806 }
2807
2808 /* Training Pattern 3 support */
2809 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2810 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2811 intel_dp->use_tps3 = true;
2812 DRM_DEBUG_KMS("Displayport TPS3 supported");
2813 } else
2814 intel_dp->use_tps3 = false;
2815
2816 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2817 DP_DWN_STRM_PORT_PRESENT))
2818 return true; /* native DP sink */
2819
2820 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2821 return true; /* no per-port downstream info */
2822
2823 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
2824 intel_dp->downstream_ports,
2825 DP_MAX_DOWNSTREAM_PORTS) < 0)
2826 return false; /* downstream port status fetch failed */
2827
2828 return true;
2829 }
2830
2831 static void
2832 intel_dp_probe_oui(struct intel_dp *intel_dp)
2833 {
2834 u8 buf[3];
2835
2836 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2837 return;
2838
2839 intel_edp_panel_vdd_on(intel_dp);
2840
2841 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
2842 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2843 buf[0], buf[1], buf[2]);
2844
2845 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
2846 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2847 buf[0], buf[1], buf[2]);
2848
2849 edp_panel_vdd_off(intel_dp, false);
2850 }
2851
2852 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2853 {
2854 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2855 struct drm_device *dev = intel_dig_port->base.base.dev;
2856 struct intel_crtc *intel_crtc =
2857 to_intel_crtc(intel_dig_port->base.base.crtc);
2858 u8 buf[1];
2859
2860 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
2861 return -EAGAIN;
2862
2863 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2864 return -ENOTTY;
2865
2866 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
2867 DP_TEST_SINK_START) < 0)
2868 return -EAGAIN;
2869
2870 /* Wait 2 vblanks to be sure we will have the correct CRC value */
2871 intel_wait_for_vblank(dev, intel_crtc->pipe);
2872 intel_wait_for_vblank(dev, intel_crtc->pipe);
2873
2874 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
2875 return -EAGAIN;
2876
2877 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
2878 return 0;
2879 }
2880
2881 static bool
2882 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2883 {
2884 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2885 DP_DEVICE_SERVICE_IRQ_VECTOR,
2886 sink_irq_vector, 1) == 1;
2887 }
2888
2889 static void
2890 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2891 {
2892 /* NAK by default */
2893 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
2894 }
2895
2896 /*
2897 * According to DP spec
2898 * 5.1.2:
2899 * 1. Read DPCD
2900 * 2. Configure link according to Receiver Capabilities
2901 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2902 * 4. Check link status on receipt of hot-plug interrupt
2903 */
2904
2905 void
2906 intel_dp_check_link_status(struct intel_dp *intel_dp)
2907 {
2908 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2909 u8 sink_irq_vector;
2910 u8 link_status[DP_LINK_STATUS_SIZE];
2911
2912 if (!intel_encoder->connectors_active)
2913 return;
2914
2915 if (WARN_ON(!intel_encoder->base.crtc))
2916 return;
2917
2918 /* Try to read receiver status if the link appears to be up */
2919 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2920 return;
2921 }
2922
2923 /* Now read the DPCD to see if it's actually running */
2924 if (!intel_dp_get_dpcd(intel_dp)) {
2925 return;
2926 }
2927
2928 /* Try to read the source of the interrupt */
2929 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2930 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2931 /* Clear interrupt source */
2932 drm_dp_dpcd_writeb(&intel_dp->aux,
2933 DP_DEVICE_SERVICE_IRQ_VECTOR,
2934 sink_irq_vector);
2935
2936 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2937 intel_dp_handle_test_request(intel_dp);
2938 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2939 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2940 }
2941
2942 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2943 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2944 drm_get_encoder_name(&intel_encoder->base));
2945 intel_dp_start_link_train(intel_dp);
2946 intel_dp_complete_link_train(intel_dp);
2947 intel_dp_stop_link_train(intel_dp);
2948 }
2949 }
2950
2951 /* XXX this is probably wrong for multiple downstream ports */
2952 static enum drm_connector_status
2953 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2954 {
2955 uint8_t *dpcd = intel_dp->dpcd;
2956 uint8_t type;
2957
2958 if (!intel_dp_get_dpcd(intel_dp))
2959 return connector_status_disconnected;
2960
2961 /* if there's no downstream port, we're done */
2962 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2963 return connector_status_connected;
2964
2965 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2966 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2967 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2968 uint8_t reg;
2969
2970 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
2971 &reg, 1) < 0)
2972 return connector_status_unknown;
2973
2974 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2975 : connector_status_disconnected;
2976 }
2977
2978 /* If no HPD, poke DDC gently */
2979 if (drm_probe_ddc(&intel_dp->aux.ddc))
2980 return connector_status_connected;
2981
2982 /* Well we tried, say unknown for unreliable port types */
2983 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2984 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2985 if (type == DP_DS_PORT_TYPE_VGA ||
2986 type == DP_DS_PORT_TYPE_NON_EDID)
2987 return connector_status_unknown;
2988 } else {
2989 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2990 DP_DWN_STRM_PORT_TYPE_MASK;
2991 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2992 type == DP_DWN_STRM_PORT_TYPE_OTHER)
2993 return connector_status_unknown;
2994 }
2995
2996 /* Anything else is out of spec, warn and ignore */
2997 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2998 return connector_status_disconnected;
2999 }
3000
3001 static enum drm_connector_status
3002 ironlake_dp_detect(struct intel_dp *intel_dp)
3003 {
3004 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3005 struct drm_i915_private *dev_priv = dev->dev_private;
3006 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3007 enum drm_connector_status status;
3008
3009 /* Can't disconnect eDP, but you can close the lid... */
3010 if (is_edp(intel_dp)) {
3011 status = intel_panel_detect(dev);
3012 if (status == connector_status_unknown)
3013 status = connector_status_connected;
3014 return status;
3015 }
3016
3017 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3018 return connector_status_disconnected;
3019
3020 return intel_dp_detect_dpcd(intel_dp);
3021 }
3022
3023 static enum drm_connector_status
3024 g4x_dp_detect(struct intel_dp *intel_dp)
3025 {
3026 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3027 struct drm_i915_private *dev_priv = dev->dev_private;
3028 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3029 uint32_t bit;
3030
3031 /* Can't disconnect eDP, but you can close the lid... */
3032 if (is_edp(intel_dp)) {
3033 enum drm_connector_status status;
3034
3035 status = intel_panel_detect(dev);
3036 if (status == connector_status_unknown)
3037 status = connector_status_connected;
3038 return status;
3039 }
3040
3041 if (IS_VALLEYVIEW(dev)) {
3042 switch (intel_dig_port->port) {
3043 case PORT_B:
3044 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3045 break;
3046 case PORT_C:
3047 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3048 break;
3049 case PORT_D:
3050 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3051 break;
3052 default:
3053 return connector_status_unknown;
3054 }
3055 } else {
3056 switch (intel_dig_port->port) {
3057 case PORT_B:
3058 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3059 break;
3060 case PORT_C:
3061 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3062 break;
3063 case PORT_D:
3064 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3065 break;
3066 default:
3067 return connector_status_unknown;
3068 }
3069 }
3070
3071 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3072 return connector_status_disconnected;
3073
3074 return intel_dp_detect_dpcd(intel_dp);
3075 }
3076
3077 static struct edid *
3078 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3079 {
3080 struct intel_connector *intel_connector = to_intel_connector(connector);
3081
3082 /* use cached edid if we have one */
3083 if (intel_connector->edid) {
3084 /* invalid edid */
3085 if (IS_ERR(intel_connector->edid))
3086 return NULL;
3087
3088 return drm_edid_duplicate(intel_connector->edid);
3089 }
3090
3091 return drm_get_edid(connector, adapter);
3092 }
3093
3094 static int
3095 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3096 {
3097 struct intel_connector *intel_connector = to_intel_connector(connector);
3098
3099 /* use cached edid if we have one */
3100 if (intel_connector->edid) {
3101 /* invalid edid */
3102 if (IS_ERR(intel_connector->edid))
3103 return 0;
3104
3105 return intel_connector_update_modes(connector,
3106 intel_connector->edid);
3107 }
3108
3109 return intel_ddc_get_modes(connector, adapter);
3110 }
3111
3112 static enum drm_connector_status
3113 intel_dp_detect(struct drm_connector *connector, bool force)
3114 {
3115 struct intel_dp *intel_dp = intel_attached_dp(connector);
3116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3117 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3118 struct drm_device *dev = connector->dev;
3119 struct drm_i915_private *dev_priv = dev->dev_private;
3120 enum drm_connector_status status;
3121 enum intel_display_power_domain power_domain;
3122 struct edid *edid = NULL;
3123
3124 intel_runtime_pm_get(dev_priv);
3125
3126 power_domain = intel_display_port_power_domain(intel_encoder);
3127 intel_display_power_get(dev_priv, power_domain);
3128
3129 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3130 connector->base.id, drm_get_connector_name(connector));
3131
3132 intel_dp->has_audio = false;
3133
3134 if (HAS_PCH_SPLIT(dev))
3135 status = ironlake_dp_detect(intel_dp);
3136 else
3137 status = g4x_dp_detect(intel_dp);
3138
3139 if (status != connector_status_connected)
3140 goto out;
3141
3142 intel_dp_probe_oui(intel_dp);
3143
3144 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3145 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3146 } else {
3147 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3148 if (edid) {
3149 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3150 kfree(edid);
3151 }
3152 }
3153
3154 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3155 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3156 status = connector_status_connected;
3157
3158 out:
3159 intel_display_power_put(dev_priv, power_domain);
3160
3161 intel_runtime_pm_put(dev_priv);
3162
3163 return status;
3164 }
3165
3166 static int intel_dp_get_modes(struct drm_connector *connector)
3167 {
3168 struct intel_dp *intel_dp = intel_attached_dp(connector);
3169 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3170 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3171 struct intel_connector *intel_connector = to_intel_connector(connector);
3172 struct drm_device *dev = connector->dev;
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 enum intel_display_power_domain power_domain;
3175 int ret;
3176
3177 /* We should parse the EDID data and find out if it has an audio sink
3178 */
3179
3180 power_domain = intel_display_port_power_domain(intel_encoder);
3181 intel_display_power_get(dev_priv, power_domain);
3182
3183 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3184 intel_display_power_put(dev_priv, power_domain);
3185 if (ret)
3186 return ret;
3187
3188 /* if eDP has no EDID, fall back to fixed mode */
3189 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3190 struct drm_display_mode *mode;
3191 mode = drm_mode_duplicate(dev,
3192 intel_connector->panel.fixed_mode);
3193 if (mode) {
3194 drm_mode_probed_add(connector, mode);
3195 return 1;
3196 }
3197 }
3198 return 0;
3199 }
3200
3201 static bool
3202 intel_dp_detect_audio(struct drm_connector *connector)
3203 {
3204 struct intel_dp *intel_dp = intel_attached_dp(connector);
3205 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3206 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3207 struct drm_device *dev = connector->dev;
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 enum intel_display_power_domain power_domain;
3210 struct edid *edid;
3211 bool has_audio = false;
3212
3213 power_domain = intel_display_port_power_domain(intel_encoder);
3214 intel_display_power_get(dev_priv, power_domain);
3215
3216 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3217 if (edid) {
3218 has_audio = drm_detect_monitor_audio(edid);
3219 kfree(edid);
3220 }
3221
3222 intel_display_power_put(dev_priv, power_domain);
3223
3224 return has_audio;
3225 }
3226
3227 static int
3228 intel_dp_set_property(struct drm_connector *connector,
3229 struct drm_property *property,
3230 uint64_t val)
3231 {
3232 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3233 struct intel_connector *intel_connector = to_intel_connector(connector);
3234 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3235 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3236 int ret;
3237
3238 ret = drm_object_property_set_value(&connector->base, property, val);
3239 if (ret)
3240 return ret;
3241
3242 if (property == dev_priv->force_audio_property) {
3243 int i = val;
3244 bool has_audio;
3245
3246 if (i == intel_dp->force_audio)
3247 return 0;
3248
3249 intel_dp->force_audio = i;
3250
3251 if (i == HDMI_AUDIO_AUTO)
3252 has_audio = intel_dp_detect_audio(connector);
3253 else
3254 has_audio = (i == HDMI_AUDIO_ON);
3255
3256 if (has_audio == intel_dp->has_audio)
3257 return 0;
3258
3259 intel_dp->has_audio = has_audio;
3260 goto done;
3261 }
3262
3263 if (property == dev_priv->broadcast_rgb_property) {
3264 bool old_auto = intel_dp->color_range_auto;
3265 uint32_t old_range = intel_dp->color_range;
3266
3267 switch (val) {
3268 case INTEL_BROADCAST_RGB_AUTO:
3269 intel_dp->color_range_auto = true;
3270 break;
3271 case INTEL_BROADCAST_RGB_FULL:
3272 intel_dp->color_range_auto = false;
3273 intel_dp->color_range = 0;
3274 break;
3275 case INTEL_BROADCAST_RGB_LIMITED:
3276 intel_dp->color_range_auto = false;
3277 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3278 break;
3279 default:
3280 return -EINVAL;
3281 }
3282
3283 if (old_auto == intel_dp->color_range_auto &&
3284 old_range == intel_dp->color_range)
3285 return 0;
3286
3287 goto done;
3288 }
3289
3290 if (is_edp(intel_dp) &&
3291 property == connector->dev->mode_config.scaling_mode_property) {
3292 if (val == DRM_MODE_SCALE_NONE) {
3293 DRM_DEBUG_KMS("no scaling not supported\n");
3294 return -EINVAL;
3295 }
3296
3297 if (intel_connector->panel.fitting_mode == val) {
3298 /* the eDP scaling property is not changed */
3299 return 0;
3300 }
3301 intel_connector->panel.fitting_mode = val;
3302
3303 goto done;
3304 }
3305
3306 return -EINVAL;
3307
3308 done:
3309 if (intel_encoder->base.crtc)
3310 intel_crtc_restore_mode(intel_encoder->base.crtc);
3311
3312 return 0;
3313 }
3314
3315 static void
3316 intel_dp_connector_destroy(struct drm_connector *connector)
3317 {
3318 struct intel_connector *intel_connector = to_intel_connector(connector);
3319
3320 if (!IS_ERR_OR_NULL(intel_connector->edid))
3321 kfree(intel_connector->edid);
3322
3323 /* Can't call is_edp() since the encoder may have been destroyed
3324 * already. */
3325 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3326 intel_panel_fini(&intel_connector->panel);
3327
3328 drm_connector_cleanup(connector);
3329 kfree(connector);
3330 }
3331
3332 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3333 {
3334 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3335 struct intel_dp *intel_dp = &intel_dig_port->dp;
3336 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3337
3338 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3339 drm_encoder_cleanup(encoder);
3340 if (is_edp(intel_dp)) {
3341 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3342 mutex_lock(&dev->mode_config.mutex);
3343 edp_panel_vdd_off_sync(intel_dp);
3344 mutex_unlock(&dev->mode_config.mutex);
3345 }
3346 kfree(intel_dig_port);
3347 }
3348
3349 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3350 .dpms = intel_connector_dpms,
3351 .detect = intel_dp_detect,
3352 .fill_modes = drm_helper_probe_single_connector_modes,
3353 .set_property = intel_dp_set_property,
3354 .destroy = intel_dp_connector_destroy,
3355 };
3356
3357 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3358 .get_modes = intel_dp_get_modes,
3359 .mode_valid = intel_dp_mode_valid,
3360 .best_encoder = intel_best_encoder,
3361 };
3362
3363 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3364 .destroy = intel_dp_encoder_destroy,
3365 };
3366
3367 static void
3368 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3369 {
3370 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3371
3372 intel_dp_check_link_status(intel_dp);
3373 }
3374
3375 /* Return which DP Port should be selected for Transcoder DP control */
3376 int
3377 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3378 {
3379 struct drm_device *dev = crtc->dev;
3380 struct intel_encoder *intel_encoder;
3381 struct intel_dp *intel_dp;
3382
3383 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3384 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3385
3386 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3387 intel_encoder->type == INTEL_OUTPUT_EDP)
3388 return intel_dp->output_reg;
3389 }
3390
3391 return -1;
3392 }
3393
3394 /* check the VBT to see whether the eDP is on DP-D port */
3395 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3396 {
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 union child_device_config *p_child;
3399 int i;
3400 static const short port_mapping[] = {
3401 [PORT_B] = PORT_IDPB,
3402 [PORT_C] = PORT_IDPC,
3403 [PORT_D] = PORT_IDPD,
3404 };
3405
3406 if (port == PORT_A)
3407 return true;
3408
3409 if (!dev_priv->vbt.child_dev_num)
3410 return false;
3411
3412 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3413 p_child = dev_priv->vbt.child_dev + i;
3414
3415 if (p_child->common.dvo_port == port_mapping[port] &&
3416 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3417 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3418 return true;
3419 }
3420 return false;
3421 }
3422
3423 static void
3424 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3425 {
3426 struct intel_connector *intel_connector = to_intel_connector(connector);
3427
3428 intel_attach_force_audio_property(connector);
3429 intel_attach_broadcast_rgb_property(connector);
3430 intel_dp->color_range_auto = true;
3431
3432 if (is_edp(intel_dp)) {
3433 drm_mode_create_scaling_mode_property(connector->dev);
3434 drm_object_attach_property(
3435 &connector->base,
3436 connector->dev->mode_config.scaling_mode_property,
3437 DRM_MODE_SCALE_ASPECT);
3438 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3439 }
3440 }
3441
3442 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3443 {
3444 intel_dp->last_power_cycle = jiffies;
3445 intel_dp->last_power_on = jiffies;
3446 intel_dp->last_backlight_off = jiffies;
3447 }
3448
3449 static void
3450 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3451 struct intel_dp *intel_dp,
3452 struct edp_power_seq *out)
3453 {
3454 struct drm_i915_private *dev_priv = dev->dev_private;
3455 struct edp_power_seq cur, vbt, spec, final;
3456 u32 pp_on, pp_off, pp_div, pp;
3457 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3458
3459 if (HAS_PCH_SPLIT(dev)) {
3460 pp_ctrl_reg = PCH_PP_CONTROL;
3461 pp_on_reg = PCH_PP_ON_DELAYS;
3462 pp_off_reg = PCH_PP_OFF_DELAYS;
3463 pp_div_reg = PCH_PP_DIVISOR;
3464 } else {
3465 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3466
3467 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3468 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3469 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3470 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3471 }
3472
3473 /* Workaround: Need to write PP_CONTROL with the unlock key as
3474 * the very first thing. */
3475 pp = ironlake_get_pp_control(intel_dp);
3476 I915_WRITE(pp_ctrl_reg, pp);
3477
3478 pp_on = I915_READ(pp_on_reg);
3479 pp_off = I915_READ(pp_off_reg);
3480 pp_div = I915_READ(pp_div_reg);
3481
3482 /* Pull timing values out of registers */
3483 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3484 PANEL_POWER_UP_DELAY_SHIFT;
3485
3486 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3487 PANEL_LIGHT_ON_DELAY_SHIFT;
3488
3489 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3490 PANEL_LIGHT_OFF_DELAY_SHIFT;
3491
3492 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3493 PANEL_POWER_DOWN_DELAY_SHIFT;
3494
3495 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3496 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3497
3498 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3499 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3500
3501 vbt = dev_priv->vbt.edp_pps;
3502
3503 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3504 * our hw here, which are all in 100usec. */
3505 spec.t1_t3 = 210 * 10;
3506 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3507 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3508 spec.t10 = 500 * 10;
3509 /* This one is special and actually in units of 100ms, but zero
3510 * based in the hw (so we need to add 100 ms). But the sw vbt
3511 * table multiplies it with 1000 to make it in units of 100usec,
3512 * too. */
3513 spec.t11_t12 = (510 + 100) * 10;
3514
3515 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3516 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3517
3518 /* Use the max of the register settings and vbt. If both are
3519 * unset, fall back to the spec limits. */
3520 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3521 spec.field : \
3522 max(cur.field, vbt.field))
3523 assign_final(t1_t3);
3524 assign_final(t8);
3525 assign_final(t9);
3526 assign_final(t10);
3527 assign_final(t11_t12);
3528 #undef assign_final
3529
3530 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3531 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3532 intel_dp->backlight_on_delay = get_delay(t8);
3533 intel_dp->backlight_off_delay = get_delay(t9);
3534 intel_dp->panel_power_down_delay = get_delay(t10);
3535 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3536 #undef get_delay
3537
3538 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3539 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3540 intel_dp->panel_power_cycle_delay);
3541
3542 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3543 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3544
3545 if (out)
3546 *out = final;
3547 }
3548
3549 static void
3550 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3551 struct intel_dp *intel_dp,
3552 struct edp_power_seq *seq)
3553 {
3554 struct drm_i915_private *dev_priv = dev->dev_private;
3555 u32 pp_on, pp_off, pp_div, port_sel = 0;
3556 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3557 int pp_on_reg, pp_off_reg, pp_div_reg;
3558
3559 if (HAS_PCH_SPLIT(dev)) {
3560 pp_on_reg = PCH_PP_ON_DELAYS;
3561 pp_off_reg = PCH_PP_OFF_DELAYS;
3562 pp_div_reg = PCH_PP_DIVISOR;
3563 } else {
3564 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3565
3566 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3567 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3568 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3569 }
3570
3571 /*
3572 * And finally store the new values in the power sequencer. The
3573 * backlight delays are set to 1 because we do manual waits on them. For
3574 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3575 * we'll end up waiting for the backlight off delay twice: once when we
3576 * do the manual sleep, and once when we disable the panel and wait for
3577 * the PP_STATUS bit to become zero.
3578 */
3579 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3580 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3581 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3582 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3583 /* Compute the divisor for the pp clock, simply match the Bspec
3584 * formula. */
3585 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3586 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3587 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3588
3589 /* Haswell doesn't have any port selection bits for the panel
3590 * power sequencer any more. */
3591 if (IS_VALLEYVIEW(dev)) {
3592 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3593 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3594 else
3595 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3596 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3597 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3598 port_sel = PANEL_PORT_SELECT_DPA;
3599 else
3600 port_sel = PANEL_PORT_SELECT_DPD;
3601 }
3602
3603 pp_on |= port_sel;
3604
3605 I915_WRITE(pp_on_reg, pp_on);
3606 I915_WRITE(pp_off_reg, pp_off);
3607 I915_WRITE(pp_div_reg, pp_div);
3608
3609 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3610 I915_READ(pp_on_reg),
3611 I915_READ(pp_off_reg),
3612 I915_READ(pp_div_reg));
3613 }
3614
3615 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3616 struct intel_connector *intel_connector,
3617 struct edp_power_seq *power_seq)
3618 {
3619 struct drm_connector *connector = &intel_connector->base;
3620 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3621 struct drm_device *dev = intel_dig_port->base.base.dev;
3622 struct drm_i915_private *dev_priv = dev->dev_private;
3623 struct drm_display_mode *fixed_mode = NULL;
3624 bool has_dpcd;
3625 struct drm_display_mode *scan;
3626 struct edid *edid;
3627
3628 if (!is_edp(intel_dp))
3629 return true;
3630
3631 /* Cache DPCD and EDID for edp. */
3632 intel_edp_panel_vdd_on(intel_dp);
3633 has_dpcd = intel_dp_get_dpcd(intel_dp);
3634 edp_panel_vdd_off(intel_dp, false);
3635
3636 if (has_dpcd) {
3637 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3638 dev_priv->no_aux_handshake =
3639 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3640 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3641 } else {
3642 /* if this fails, presume the device is a ghost */
3643 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3644 return false;
3645 }
3646
3647 /* We now know it's not a ghost, init power sequence regs. */
3648 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3649
3650 mutex_lock(&dev->mode_config.mutex);
3651 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
3652 if (edid) {
3653 if (drm_add_edid_modes(connector, edid)) {
3654 drm_mode_connector_update_edid_property(connector,
3655 edid);
3656 drm_edid_to_eld(connector, edid);
3657 } else {
3658 kfree(edid);
3659 edid = ERR_PTR(-EINVAL);
3660 }
3661 } else {
3662 edid = ERR_PTR(-ENOENT);
3663 }
3664 intel_connector->edid = edid;
3665
3666 /* prefer fixed mode from EDID if available */
3667 list_for_each_entry(scan, &connector->probed_modes, head) {
3668 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3669 fixed_mode = drm_mode_duplicate(dev, scan);
3670 break;
3671 }
3672 }
3673
3674 /* fallback to VBT if available for eDP */
3675 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3676 fixed_mode = drm_mode_duplicate(dev,
3677 dev_priv->vbt.lfp_lvds_vbt_mode);
3678 if (fixed_mode)
3679 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3680 }
3681 mutex_unlock(&dev->mode_config.mutex);
3682
3683 intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3684 intel_panel_setup_backlight(connector);
3685
3686 return true;
3687 }
3688
3689 bool
3690 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3691 struct intel_connector *intel_connector)
3692 {
3693 struct drm_connector *connector = &intel_connector->base;
3694 struct intel_dp *intel_dp = &intel_dig_port->dp;
3695 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3696 struct drm_device *dev = intel_encoder->base.dev;
3697 struct drm_i915_private *dev_priv = dev->dev_private;
3698 enum port port = intel_dig_port->port;
3699 struct edp_power_seq power_seq = { 0 };
3700 int type;
3701
3702 /* intel_dp vfuncs */
3703 if (IS_VALLEYVIEW(dev))
3704 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3705 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3706 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3707 else if (HAS_PCH_SPLIT(dev))
3708 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3709 else
3710 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3711
3712 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3713
3714 /* Preserve the current hw state. */
3715 intel_dp->DP = I915_READ(intel_dp->output_reg);
3716 intel_dp->attached_connector = intel_connector;
3717
3718 if (intel_dp_is_edp(dev, port))
3719 type = DRM_MODE_CONNECTOR_eDP;
3720 else
3721 type = DRM_MODE_CONNECTOR_DisplayPort;
3722
3723 /*
3724 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3725 * for DP the encoder type can be set by the caller to
3726 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3727 */
3728 if (type == DRM_MODE_CONNECTOR_eDP)
3729 intel_encoder->type = INTEL_OUTPUT_EDP;
3730
3731 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3732 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3733 port_name(port));
3734
3735 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3736 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3737
3738 connector->interlace_allowed = true;
3739 connector->doublescan_allowed = 0;
3740
3741 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3742 edp_panel_vdd_work);
3743
3744 intel_connector_attach_encoder(intel_connector, intel_encoder);
3745 drm_sysfs_connector_add(connector);
3746
3747 if (HAS_DDI(dev))
3748 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3749 else
3750 intel_connector->get_hw_state = intel_connector_get_hw_state;
3751 intel_connector->unregister = intel_dp_connector_unregister;
3752
3753 /* Set up the hotplug pin. */
3754 switch (port) {
3755 case PORT_A:
3756 intel_encoder->hpd_pin = HPD_PORT_A;
3757 break;
3758 case PORT_B:
3759 intel_encoder->hpd_pin = HPD_PORT_B;
3760 break;
3761 case PORT_C:
3762 intel_encoder->hpd_pin = HPD_PORT_C;
3763 break;
3764 case PORT_D:
3765 intel_encoder->hpd_pin = HPD_PORT_D;
3766 break;
3767 default:
3768 BUG();
3769 }
3770
3771 if (is_edp(intel_dp)) {
3772 intel_dp_init_panel_power_timestamps(intel_dp);
3773 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3774 }
3775
3776 intel_dp_aux_init(intel_dp, intel_connector);
3777
3778 intel_dp->psr_setup_done = false;
3779
3780 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3781 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3782 if (is_edp(intel_dp)) {
3783 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3784 mutex_lock(&dev->mode_config.mutex);
3785 edp_panel_vdd_off_sync(intel_dp);
3786 mutex_unlock(&dev->mode_config.mutex);
3787 }
3788 drm_sysfs_connector_remove(connector);
3789 drm_connector_cleanup(connector);
3790 return false;
3791 }
3792
3793 intel_dp_add_properties(intel_dp, connector);
3794
3795 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3796 * 0xd. Failure to do so will result in spurious interrupts being
3797 * generated on the port when a cable is not attached.
3798 */
3799 if (IS_G4X(dev) && !IS_GM45(dev)) {
3800 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3801 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3802 }
3803
3804 return true;
3805 }
3806
3807 void
3808 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3809 {
3810 struct intel_digital_port *intel_dig_port;
3811 struct intel_encoder *intel_encoder;
3812 struct drm_encoder *encoder;
3813 struct intel_connector *intel_connector;
3814
3815 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3816 if (!intel_dig_port)
3817 return;
3818
3819 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3820 if (!intel_connector) {
3821 kfree(intel_dig_port);
3822 return;
3823 }
3824
3825 intel_encoder = &intel_dig_port->base;
3826 encoder = &intel_encoder->base;
3827
3828 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3829 DRM_MODE_ENCODER_TMDS);
3830
3831 intel_encoder->compute_config = intel_dp_compute_config;
3832 intel_encoder->mode_set = intel_dp_mode_set;
3833 intel_encoder->disable = intel_disable_dp;
3834 intel_encoder->post_disable = intel_post_disable_dp;
3835 intel_encoder->get_hw_state = intel_dp_get_hw_state;
3836 intel_encoder->get_config = intel_dp_get_config;
3837 if (IS_VALLEYVIEW(dev)) {
3838 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3839 intel_encoder->pre_enable = vlv_pre_enable_dp;
3840 intel_encoder->enable = vlv_enable_dp;
3841 } else {
3842 intel_encoder->pre_enable = g4x_pre_enable_dp;
3843 intel_encoder->enable = g4x_enable_dp;
3844 }
3845
3846 intel_dig_port->port = port;
3847 intel_dig_port->dp.output_reg = output_reg;
3848
3849 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3850 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3851 intel_encoder->cloneable = 0;
3852 intel_encoder->hot_plug = intel_dp_hot_plug;
3853
3854 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3855 drm_encoder_cleanup(encoder);
3856 kfree(intel_dig_port);
3857 kfree(intel_connector);
3858 }
3859 }
This page took 0.164452 seconds and 5 git commands to generate.