drm/i915/dp: Tweak auxch clock divider for PCH
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
39
40 #define DP_RECEIVER_CAP_SIZE 0xf
41 #define DP_LINK_STATUS_SIZE 6
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE 9
45
46 struct intel_dp {
47 struct intel_encoder base;
48 uint32_t output_reg;
49 uint32_t DP;
50 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
51 bool has_audio;
52 int force_audio;
53 uint32_t color_range;
54 int dpms_mode;
55 uint8_t link_bw;
56 uint8_t lane_count;
57 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58 struct i2c_adapter adapter;
59 struct i2c_algo_dp_aux_data algo;
60 bool is_pch_edp;
61 uint8_t train_set[4];
62 int panel_power_up_delay;
63 int panel_power_down_delay;
64 int panel_power_cycle_delay;
65 int backlight_on_delay;
66 int backlight_off_delay;
67 struct drm_display_mode *panel_fixed_mode; /* for eDP */
68 struct delayed_work panel_vdd_work;
69 bool want_panel_vdd;
70 };
71
72 /**
73 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74 * @intel_dp: DP struct
75 *
76 * If a CPU or PCH DP output is attached to an eDP panel, this function
77 * will return true, and false otherwise.
78 */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81 return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86 * @intel_dp: DP struct
87 *
88 * Returns true if the given DP struct corresponds to a PCH DP port attached
89 * to an eDP panel, false otherwise. Helpful for determining whether we
90 * may need FDI resources for a given DP output or not.
91 */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94 return intel_dp->is_pch_edp;
95 }
96
97 /**
98 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99 * @intel_dp: DP struct
100 *
101 * Returns true if the given DP struct corresponds to a CPU eDP port.
102 */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110 return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115 return container_of(intel_attached_encoder(connector),
116 struct intel_dp, base);
117 }
118
119 /**
120 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121 * @encoder: DRM encoder
122 *
123 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
124 * by intel_display.c.
125 */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128 struct intel_dp *intel_dp;
129
130 if (!encoder)
131 return false;
132
133 intel_dp = enc_to_intel_dp(encoder);
134
135 return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144 int *lane_num, int *link_bw)
145 {
146 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148 *lane_num = intel_dp->lane_count;
149 if (intel_dp->link_bw == DP_LINK_BW_1_62)
150 *link_bw = 162000;
151 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159 switch (max_lane_count) {
160 case 1: case 2: case 4:
161 break;
162 default:
163 max_lane_count = 4;
164 }
165 return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173 switch (max_link_bw) {
174 case DP_LINK_BW_1_62:
175 case DP_LINK_BW_2_7:
176 break;
177 default:
178 max_link_bw = DP_LINK_BW_1_62;
179 break;
180 }
181 return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187 if (link_bw == DP_LINK_BW_2_7)
188 return 270000;
189 else
190 return 162000;
191 }
192
193 /*
194 * The units on the numbers in the next two are... bizarre. Examples will
195 * make it clearer; this one parallels an example in the eDP spec.
196 *
197 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198 *
199 * 270000 * 1 * 8 / 10 == 216000
200 *
201 * The actual data capacity of that configuration is 2.16Gbit/s, so the
202 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
203 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204 * 119000. At 18bpp that's 2142000 kilobits per second.
205 *
206 * Thus the strange-looking division by 10 in intel_dp_link_required, to
207 * get the result in decakilobits instead of kilobits.
208 */
209
210 static int
211 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock, int check_bpp)
212 {
213 struct drm_crtc *crtc = intel_dp->base.base.crtc;
214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
215 int bpp = 24;
216
217 if (check_bpp)
218 bpp = check_bpp;
219 else if (intel_crtc)
220 bpp = intel_crtc->bpp;
221
222 return (pixel_clock * bpp + 9) / 10;
223 }
224
225 static int
226 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
227 {
228 return (max_link_clock * max_lanes * 8) / 10;
229 }
230
231 static int
232 intel_dp_mode_valid(struct drm_connector *connector,
233 struct drm_display_mode *mode)
234 {
235 struct intel_dp *intel_dp = intel_attached_dp(connector);
236 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
237 int max_lanes = intel_dp_max_lane_count(intel_dp);
238 int max_rate, mode_rate;
239
240 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
241 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
242 return MODE_PANEL;
243
244 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
245 return MODE_PANEL;
246 }
247
248 mode_rate = intel_dp_link_required(intel_dp, mode->clock, 0);
249 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
250
251 if (mode_rate > max_rate) {
252 mode_rate = intel_dp_link_required(intel_dp,
253 mode->clock, 18);
254 if (mode_rate > max_rate)
255 return MODE_CLOCK_HIGH;
256 else
257 mode->private_flags |= INTEL_MODE_DP_FORCE_6BPC;
258 }
259
260 if (mode->clock < 10000)
261 return MODE_CLOCK_LOW;
262
263 return MODE_OK;
264 }
265
266 static uint32_t
267 pack_aux(uint8_t *src, int src_bytes)
268 {
269 int i;
270 uint32_t v = 0;
271
272 if (src_bytes > 4)
273 src_bytes = 4;
274 for (i = 0; i < src_bytes; i++)
275 v |= ((uint32_t) src[i]) << ((3-i) * 8);
276 return v;
277 }
278
279 static void
280 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
281 {
282 int i;
283 if (dst_bytes > 4)
284 dst_bytes = 4;
285 for (i = 0; i < dst_bytes; i++)
286 dst[i] = src >> ((3-i) * 8);
287 }
288
289 /* hrawclock is 1/4 the FSB frequency */
290 static int
291 intel_hrawclk(struct drm_device *dev)
292 {
293 struct drm_i915_private *dev_priv = dev->dev_private;
294 uint32_t clkcfg;
295
296 clkcfg = I915_READ(CLKCFG);
297 switch (clkcfg & CLKCFG_FSB_MASK) {
298 case CLKCFG_FSB_400:
299 return 100;
300 case CLKCFG_FSB_533:
301 return 133;
302 case CLKCFG_FSB_667:
303 return 166;
304 case CLKCFG_FSB_800:
305 return 200;
306 case CLKCFG_FSB_1067:
307 return 266;
308 case CLKCFG_FSB_1333:
309 return 333;
310 /* these two are just a guess; one of them might be right */
311 case CLKCFG_FSB_1600:
312 case CLKCFG_FSB_1600_ALT:
313 return 400;
314 default:
315 return 133;
316 }
317 }
318
319 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
325 }
326
327 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
328 {
329 struct drm_device *dev = intel_dp->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331
332 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
333 }
334
335 static void
336 intel_dp_check_edp(struct intel_dp *intel_dp)
337 {
338 struct drm_device *dev = intel_dp->base.base.dev;
339 struct drm_i915_private *dev_priv = dev->dev_private;
340
341 if (!is_edp(intel_dp))
342 return;
343 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
344 WARN(1, "eDP powered off while attempting aux channel communication.\n");
345 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
346 I915_READ(PCH_PP_STATUS),
347 I915_READ(PCH_PP_CONTROL));
348 }
349 }
350
351 static int
352 intel_dp_aux_ch(struct intel_dp *intel_dp,
353 uint8_t *send, int send_bytes,
354 uint8_t *recv, int recv_size)
355 {
356 uint32_t output_reg = intel_dp->output_reg;
357 struct drm_device *dev = intel_dp->base.base.dev;
358 struct drm_i915_private *dev_priv = dev->dev_private;
359 uint32_t ch_ctl = output_reg + 0x10;
360 uint32_t ch_data = ch_ctl + 4;
361 int i;
362 int recv_bytes;
363 uint32_t status;
364 uint32_t aux_clock_divider;
365 int try, precharge;
366
367 intel_dp_check_edp(intel_dp);
368 /* The clock divider is based off the hrawclk,
369 * and would like to run at 2MHz. So, take the
370 * hrawclk value and divide by 2 and use that
371 *
372 * Note that PCH attached eDP panels should use a 125MHz input
373 * clock divider.
374 */
375 if (is_cpu_edp(intel_dp)) {
376 if (IS_GEN6(dev) || IS_GEN7(dev))
377 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
378 else
379 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
380 } else if (HAS_PCH_SPLIT(dev))
381 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
382 else
383 aux_clock_divider = intel_hrawclk(dev) / 2;
384
385 if (IS_GEN6(dev))
386 precharge = 3;
387 else
388 precharge = 5;
389
390 /* Try to wait for any previous AUX channel activity */
391 for (try = 0; try < 3; try++) {
392 status = I915_READ(ch_ctl);
393 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
394 break;
395 msleep(1);
396 }
397
398 if (try == 3) {
399 WARN(1, "dp_aux_ch not started status 0x%08x\n",
400 I915_READ(ch_ctl));
401 return -EBUSY;
402 }
403
404 /* Must try at least 3 times according to DP spec */
405 for (try = 0; try < 5; try++) {
406 /* Load the send data into the aux channel data registers */
407 for (i = 0; i < send_bytes; i += 4)
408 I915_WRITE(ch_data + i,
409 pack_aux(send + i, send_bytes - i));
410
411 /* Send the command and wait for it to complete */
412 I915_WRITE(ch_ctl,
413 DP_AUX_CH_CTL_SEND_BUSY |
414 DP_AUX_CH_CTL_TIME_OUT_400us |
415 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
416 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
417 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
418 DP_AUX_CH_CTL_DONE |
419 DP_AUX_CH_CTL_TIME_OUT_ERROR |
420 DP_AUX_CH_CTL_RECEIVE_ERROR);
421 for (;;) {
422 status = I915_READ(ch_ctl);
423 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
424 break;
425 udelay(100);
426 }
427
428 /* Clear done status and any errors */
429 I915_WRITE(ch_ctl,
430 status |
431 DP_AUX_CH_CTL_DONE |
432 DP_AUX_CH_CTL_TIME_OUT_ERROR |
433 DP_AUX_CH_CTL_RECEIVE_ERROR);
434 if (status & DP_AUX_CH_CTL_DONE)
435 break;
436 }
437
438 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
439 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
440 return -EBUSY;
441 }
442
443 /* Check for timeout or receive error.
444 * Timeouts occur when the sink is not connected
445 */
446 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
447 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
448 return -EIO;
449 }
450
451 /* Timeouts occur when the device isn't connected, so they're
452 * "normal" -- don't fill the kernel log with these */
453 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
454 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
455 return -ETIMEDOUT;
456 }
457
458 /* Unload any bytes sent back from the other side */
459 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
460 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
461 if (recv_bytes > recv_size)
462 recv_bytes = recv_size;
463
464 for (i = 0; i < recv_bytes; i += 4)
465 unpack_aux(I915_READ(ch_data + i),
466 recv + i, recv_bytes - i);
467
468 return recv_bytes;
469 }
470
471 /* Write data to the aux channel in native mode */
472 static int
473 intel_dp_aux_native_write(struct intel_dp *intel_dp,
474 uint16_t address, uint8_t *send, int send_bytes)
475 {
476 int ret;
477 uint8_t msg[20];
478 int msg_bytes;
479 uint8_t ack;
480
481 intel_dp_check_edp(intel_dp);
482 if (send_bytes > 16)
483 return -1;
484 msg[0] = AUX_NATIVE_WRITE << 4;
485 msg[1] = address >> 8;
486 msg[2] = address & 0xff;
487 msg[3] = send_bytes - 1;
488 memcpy(&msg[4], send, send_bytes);
489 msg_bytes = send_bytes + 4;
490 for (;;) {
491 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
492 if (ret < 0)
493 return ret;
494 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
495 break;
496 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
497 udelay(100);
498 else
499 return -EIO;
500 }
501 return send_bytes;
502 }
503
504 /* Write a single byte to the aux channel in native mode */
505 static int
506 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
507 uint16_t address, uint8_t byte)
508 {
509 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
510 }
511
512 /* read bytes from a native aux channel */
513 static int
514 intel_dp_aux_native_read(struct intel_dp *intel_dp,
515 uint16_t address, uint8_t *recv, int recv_bytes)
516 {
517 uint8_t msg[4];
518 int msg_bytes;
519 uint8_t reply[20];
520 int reply_bytes;
521 uint8_t ack;
522 int ret;
523
524 intel_dp_check_edp(intel_dp);
525 msg[0] = AUX_NATIVE_READ << 4;
526 msg[1] = address >> 8;
527 msg[2] = address & 0xff;
528 msg[3] = recv_bytes - 1;
529
530 msg_bytes = 4;
531 reply_bytes = recv_bytes + 1;
532
533 for (;;) {
534 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
535 reply, reply_bytes);
536 if (ret == 0)
537 return -EPROTO;
538 if (ret < 0)
539 return ret;
540 ack = reply[0];
541 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
542 memcpy(recv, reply + 1, ret - 1);
543 return ret - 1;
544 }
545 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
546 udelay(100);
547 else
548 return -EIO;
549 }
550 }
551
552 static int
553 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
554 uint8_t write_byte, uint8_t *read_byte)
555 {
556 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
557 struct intel_dp *intel_dp = container_of(adapter,
558 struct intel_dp,
559 adapter);
560 uint16_t address = algo_data->address;
561 uint8_t msg[5];
562 uint8_t reply[2];
563 unsigned retry;
564 int msg_bytes;
565 int reply_bytes;
566 int ret;
567
568 intel_dp_check_edp(intel_dp);
569 /* Set up the command byte */
570 if (mode & MODE_I2C_READ)
571 msg[0] = AUX_I2C_READ << 4;
572 else
573 msg[0] = AUX_I2C_WRITE << 4;
574
575 if (!(mode & MODE_I2C_STOP))
576 msg[0] |= AUX_I2C_MOT << 4;
577
578 msg[1] = address >> 8;
579 msg[2] = address;
580
581 switch (mode) {
582 case MODE_I2C_WRITE:
583 msg[3] = 0;
584 msg[4] = write_byte;
585 msg_bytes = 5;
586 reply_bytes = 1;
587 break;
588 case MODE_I2C_READ:
589 msg[3] = 0;
590 msg_bytes = 4;
591 reply_bytes = 2;
592 break;
593 default:
594 msg_bytes = 3;
595 reply_bytes = 1;
596 break;
597 }
598
599 for (retry = 0; retry < 5; retry++) {
600 ret = intel_dp_aux_ch(intel_dp,
601 msg, msg_bytes,
602 reply, reply_bytes);
603 if (ret < 0) {
604 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
605 return ret;
606 }
607
608 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
609 case AUX_NATIVE_REPLY_ACK:
610 /* I2C-over-AUX Reply field is only valid
611 * when paired with AUX ACK.
612 */
613 break;
614 case AUX_NATIVE_REPLY_NACK:
615 DRM_DEBUG_KMS("aux_ch native nack\n");
616 return -EREMOTEIO;
617 case AUX_NATIVE_REPLY_DEFER:
618 udelay(100);
619 continue;
620 default:
621 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
622 reply[0]);
623 return -EREMOTEIO;
624 }
625
626 switch (reply[0] & AUX_I2C_REPLY_MASK) {
627 case AUX_I2C_REPLY_ACK:
628 if (mode == MODE_I2C_READ) {
629 *read_byte = reply[1];
630 }
631 return reply_bytes - 1;
632 case AUX_I2C_REPLY_NACK:
633 DRM_DEBUG_KMS("aux_i2c nack\n");
634 return -EREMOTEIO;
635 case AUX_I2C_REPLY_DEFER:
636 DRM_DEBUG_KMS("aux_i2c defer\n");
637 udelay(100);
638 break;
639 default:
640 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
641 return -EREMOTEIO;
642 }
643 }
644
645 DRM_ERROR("too many retries, giving up\n");
646 return -EREMOTEIO;
647 }
648
649 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
650 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
651
652 static int
653 intel_dp_i2c_init(struct intel_dp *intel_dp,
654 struct intel_connector *intel_connector, const char *name)
655 {
656 int ret;
657
658 DRM_DEBUG_KMS("i2c_init %s\n", name);
659 intel_dp->algo.running = false;
660 intel_dp->algo.address = 0;
661 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
662
663 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
664 intel_dp->adapter.owner = THIS_MODULE;
665 intel_dp->adapter.class = I2C_CLASS_DDC;
666 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
667 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
668 intel_dp->adapter.algo_data = &intel_dp->algo;
669 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
670
671 ironlake_edp_panel_vdd_on(intel_dp);
672 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
673 ironlake_edp_panel_vdd_off(intel_dp, false);
674 return ret;
675 }
676
677 static bool
678 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
679 struct drm_display_mode *adjusted_mode)
680 {
681 struct drm_device *dev = encoder->dev;
682 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
683 int lane_count, clock;
684 int max_lane_count = intel_dp_max_lane_count(intel_dp);
685 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
686 int bpp = mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 0;
687 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
688
689 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
690 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
691 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
692 mode, adjusted_mode);
693 /*
694 * the mode->clock is used to calculate the Data&Link M/N
695 * of the pipe. For the eDP the fixed clock should be used.
696 */
697 mode->clock = intel_dp->panel_fixed_mode->clock;
698 }
699
700 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
701 for (clock = 0; clock <= max_clock; clock++) {
702 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
703
704 if (intel_dp_link_required(intel_dp, mode->clock, bpp)
705 <= link_avail) {
706 intel_dp->link_bw = bws[clock];
707 intel_dp->lane_count = lane_count;
708 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
709 DRM_DEBUG_KMS("Display port link bw %02x lane "
710 "count %d clock %d\n",
711 intel_dp->link_bw, intel_dp->lane_count,
712 adjusted_mode->clock);
713 return true;
714 }
715 }
716 }
717
718 return false;
719 }
720
721 struct intel_dp_m_n {
722 uint32_t tu;
723 uint32_t gmch_m;
724 uint32_t gmch_n;
725 uint32_t link_m;
726 uint32_t link_n;
727 };
728
729 static void
730 intel_reduce_ratio(uint32_t *num, uint32_t *den)
731 {
732 while (*num > 0xffffff || *den > 0xffffff) {
733 *num >>= 1;
734 *den >>= 1;
735 }
736 }
737
738 static void
739 intel_dp_compute_m_n(int bpp,
740 int nlanes,
741 int pixel_clock,
742 int link_clock,
743 struct intel_dp_m_n *m_n)
744 {
745 m_n->tu = 64;
746 m_n->gmch_m = (pixel_clock * bpp) >> 3;
747 m_n->gmch_n = link_clock * nlanes;
748 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
749 m_n->link_m = pixel_clock;
750 m_n->link_n = link_clock;
751 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
752 }
753
754 void
755 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
756 struct drm_display_mode *adjusted_mode)
757 {
758 struct drm_device *dev = crtc->dev;
759 struct drm_mode_config *mode_config = &dev->mode_config;
760 struct drm_encoder *encoder;
761 struct drm_i915_private *dev_priv = dev->dev_private;
762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
763 int lane_count = 4;
764 struct intel_dp_m_n m_n;
765 int pipe = intel_crtc->pipe;
766
767 /*
768 * Find the lane count in the intel_encoder private
769 */
770 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
771 struct intel_dp *intel_dp;
772
773 if (encoder->crtc != crtc)
774 continue;
775
776 intel_dp = enc_to_intel_dp(encoder);
777 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
778 intel_dp->base.type == INTEL_OUTPUT_EDP)
779 {
780 lane_count = intel_dp->lane_count;
781 break;
782 }
783 }
784
785 /*
786 * Compute the GMCH and Link ratios. The '3' here is
787 * the number of bytes_per_pixel post-LUT, which we always
788 * set up for 8-bits of R/G/B, or 3 bytes total.
789 */
790 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
791 mode->clock, adjusted_mode->clock, &m_n);
792
793 if (HAS_PCH_SPLIT(dev)) {
794 I915_WRITE(TRANSDATA_M1(pipe),
795 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
796 m_n.gmch_m);
797 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
798 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
799 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
800 } else {
801 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
802 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
803 m_n.gmch_m);
804 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
805 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
806 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
807 }
808 }
809
810 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
811 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
812
813 static void
814 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
815 struct drm_display_mode *adjusted_mode)
816 {
817 struct drm_device *dev = encoder->dev;
818 struct drm_i915_private *dev_priv = dev->dev_private;
819 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
820 struct drm_crtc *crtc = intel_dp->base.base.crtc;
821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
822
823 /* Turn on the eDP PLL if needed */
824 if (is_edp(intel_dp)) {
825 if (!is_pch_edp(intel_dp))
826 ironlake_edp_pll_on(encoder);
827 else
828 ironlake_edp_pll_off(encoder);
829 }
830
831 /*
832 * There are four kinds of DP registers:
833 *
834 * IBX PCH
835 * SNB CPU
836 * IVB CPU
837 * CPT PCH
838 *
839 * IBX PCH and CPU are the same for almost everything,
840 * except that the CPU DP PLL is configured in this
841 * register
842 *
843 * CPT PCH is quite different, having many bits moved
844 * to the TRANS_DP_CTL register instead. That
845 * configuration happens (oddly) in ironlake_pch_enable
846 */
847
848 /* Preserve the BIOS-computed detected bit. This is
849 * supposed to be read-only.
850 */
851 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
852 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
853
854 /* Handle DP bits in common between all three register formats */
855
856 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
857
858 switch (intel_dp->lane_count) {
859 case 1:
860 intel_dp->DP |= DP_PORT_WIDTH_1;
861 break;
862 case 2:
863 intel_dp->DP |= DP_PORT_WIDTH_2;
864 break;
865 case 4:
866 intel_dp->DP |= DP_PORT_WIDTH_4;
867 break;
868 }
869 if (intel_dp->has_audio) {
870 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
871 pipe_name(intel_crtc->pipe));
872 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
873 intel_write_eld(encoder, adjusted_mode);
874 }
875 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
876 intel_dp->link_configuration[0] = intel_dp->link_bw;
877 intel_dp->link_configuration[1] = intel_dp->lane_count;
878 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
879 /*
880 * Check for DPCD version > 1.1 and enhanced framing support
881 */
882 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
883 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
884 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
885 }
886
887 /* Split out the IBX/CPU vs CPT settings */
888
889 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
890 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
891 intel_dp->DP |= DP_SYNC_HS_HIGH;
892 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
893 intel_dp->DP |= DP_SYNC_VS_HIGH;
894 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
895
896 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
897 intel_dp->DP |= DP_ENHANCED_FRAMING;
898
899 intel_dp->DP |= intel_crtc->pipe << 29;
900
901 /* don't miss out required setting for eDP */
902 intel_dp->DP |= DP_PLL_ENABLE;
903 if (adjusted_mode->clock < 200000)
904 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
905 else
906 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
907 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
908 intel_dp->DP |= intel_dp->color_range;
909
910 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
911 intel_dp->DP |= DP_SYNC_HS_HIGH;
912 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
913 intel_dp->DP |= DP_SYNC_VS_HIGH;
914 intel_dp->DP |= DP_LINK_TRAIN_OFF;
915
916 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
917 intel_dp->DP |= DP_ENHANCED_FRAMING;
918
919 if (intel_crtc->pipe == 1)
920 intel_dp->DP |= DP_PIPEB_SELECT;
921
922 if (is_cpu_edp(intel_dp)) {
923 /* don't miss out required setting for eDP */
924 intel_dp->DP |= DP_PLL_ENABLE;
925 if (adjusted_mode->clock < 200000)
926 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
927 else
928 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
929 }
930 } else {
931 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
932 }
933 }
934
935 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
936 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
937
938 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
939 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
940
941 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
942 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
943
944 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
945 u32 mask,
946 u32 value)
947 {
948 struct drm_device *dev = intel_dp->base.base.dev;
949 struct drm_i915_private *dev_priv = dev->dev_private;
950
951 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
952 mask, value,
953 I915_READ(PCH_PP_STATUS),
954 I915_READ(PCH_PP_CONTROL));
955
956 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
957 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
958 I915_READ(PCH_PP_STATUS),
959 I915_READ(PCH_PP_CONTROL));
960 }
961 }
962
963 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
964 {
965 DRM_DEBUG_KMS("Wait for panel power on\n");
966 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
967 }
968
969 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
970 {
971 DRM_DEBUG_KMS("Wait for panel power off time\n");
972 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
973 }
974
975 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
976 {
977 DRM_DEBUG_KMS("Wait for panel power cycle\n");
978 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
979 }
980
981
982 /* Read the current pp_control value, unlocking the register if it
983 * is locked
984 */
985
986 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
987 {
988 u32 control = I915_READ(PCH_PP_CONTROL);
989
990 control &= ~PANEL_UNLOCK_MASK;
991 control |= PANEL_UNLOCK_REGS;
992 return control;
993 }
994
995 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
996 {
997 struct drm_device *dev = intel_dp->base.base.dev;
998 struct drm_i915_private *dev_priv = dev->dev_private;
999 u32 pp;
1000
1001 if (!is_edp(intel_dp))
1002 return;
1003 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1004
1005 WARN(intel_dp->want_panel_vdd,
1006 "eDP VDD already requested on\n");
1007
1008 intel_dp->want_panel_vdd = true;
1009
1010 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1011 DRM_DEBUG_KMS("eDP VDD already on\n");
1012 return;
1013 }
1014
1015 if (!ironlake_edp_have_panel_power(intel_dp))
1016 ironlake_wait_panel_power_cycle(intel_dp);
1017
1018 pp = ironlake_get_pp_control(dev_priv);
1019 pp |= EDP_FORCE_VDD;
1020 I915_WRITE(PCH_PP_CONTROL, pp);
1021 POSTING_READ(PCH_PP_CONTROL);
1022 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1023 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1024
1025 /*
1026 * If the panel wasn't on, delay before accessing aux channel
1027 */
1028 if (!ironlake_edp_have_panel_power(intel_dp)) {
1029 DRM_DEBUG_KMS("eDP was not running\n");
1030 msleep(intel_dp->panel_power_up_delay);
1031 }
1032 }
1033
1034 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1035 {
1036 struct drm_device *dev = intel_dp->base.base.dev;
1037 struct drm_i915_private *dev_priv = dev->dev_private;
1038 u32 pp;
1039
1040 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1041 pp = ironlake_get_pp_control(dev_priv);
1042 pp &= ~EDP_FORCE_VDD;
1043 I915_WRITE(PCH_PP_CONTROL, pp);
1044 POSTING_READ(PCH_PP_CONTROL);
1045
1046 /* Make sure sequencer is idle before allowing subsequent activity */
1047 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1048 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1049
1050 msleep(intel_dp->panel_power_down_delay);
1051 }
1052 }
1053
1054 static void ironlake_panel_vdd_work(struct work_struct *__work)
1055 {
1056 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1057 struct intel_dp, panel_vdd_work);
1058 struct drm_device *dev = intel_dp->base.base.dev;
1059
1060 mutex_lock(&dev->mode_config.mutex);
1061 ironlake_panel_vdd_off_sync(intel_dp);
1062 mutex_unlock(&dev->mode_config.mutex);
1063 }
1064
1065 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1066 {
1067 if (!is_edp(intel_dp))
1068 return;
1069
1070 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1071 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1072
1073 intel_dp->want_panel_vdd = false;
1074
1075 if (sync) {
1076 ironlake_panel_vdd_off_sync(intel_dp);
1077 } else {
1078 /*
1079 * Queue the timer to fire a long
1080 * time from now (relative to the power down delay)
1081 * to keep the panel power up across a sequence of operations
1082 */
1083 schedule_delayed_work(&intel_dp->panel_vdd_work,
1084 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1085 }
1086 }
1087
1088 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1089 {
1090 struct drm_device *dev = intel_dp->base.base.dev;
1091 struct drm_i915_private *dev_priv = dev->dev_private;
1092 u32 pp;
1093
1094 if (!is_edp(intel_dp))
1095 return;
1096
1097 DRM_DEBUG_KMS("Turn eDP power on\n");
1098
1099 if (ironlake_edp_have_panel_power(intel_dp)) {
1100 DRM_DEBUG_KMS("eDP power already on\n");
1101 return;
1102 }
1103
1104 ironlake_wait_panel_power_cycle(intel_dp);
1105
1106 pp = ironlake_get_pp_control(dev_priv);
1107 if (IS_GEN5(dev)) {
1108 /* ILK workaround: disable reset around power sequence */
1109 pp &= ~PANEL_POWER_RESET;
1110 I915_WRITE(PCH_PP_CONTROL, pp);
1111 POSTING_READ(PCH_PP_CONTROL);
1112 }
1113
1114 pp |= POWER_TARGET_ON;
1115 if (!IS_GEN5(dev))
1116 pp |= PANEL_POWER_RESET;
1117
1118 I915_WRITE(PCH_PP_CONTROL, pp);
1119 POSTING_READ(PCH_PP_CONTROL);
1120
1121 ironlake_wait_panel_on(intel_dp);
1122
1123 if (IS_GEN5(dev)) {
1124 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1125 I915_WRITE(PCH_PP_CONTROL, pp);
1126 POSTING_READ(PCH_PP_CONTROL);
1127 }
1128 }
1129
1130 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1131 {
1132 struct drm_device *dev = intel_dp->base.base.dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 u32 pp;
1135
1136 if (!is_edp(intel_dp))
1137 return;
1138
1139 DRM_DEBUG_KMS("Turn eDP power off\n");
1140
1141 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1142
1143 pp = ironlake_get_pp_control(dev_priv);
1144 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1145 I915_WRITE(PCH_PP_CONTROL, pp);
1146 POSTING_READ(PCH_PP_CONTROL);
1147
1148 ironlake_wait_panel_off(intel_dp);
1149 }
1150
1151 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1152 {
1153 struct drm_device *dev = intel_dp->base.base.dev;
1154 struct drm_i915_private *dev_priv = dev->dev_private;
1155 u32 pp;
1156
1157 if (!is_edp(intel_dp))
1158 return;
1159
1160 DRM_DEBUG_KMS("\n");
1161 /*
1162 * If we enable the backlight right away following a panel power
1163 * on, we may see slight flicker as the panel syncs with the eDP
1164 * link. So delay a bit to make sure the image is solid before
1165 * allowing it to appear.
1166 */
1167 msleep(intel_dp->backlight_on_delay);
1168 pp = ironlake_get_pp_control(dev_priv);
1169 pp |= EDP_BLC_ENABLE;
1170 I915_WRITE(PCH_PP_CONTROL, pp);
1171 POSTING_READ(PCH_PP_CONTROL);
1172 }
1173
1174 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1175 {
1176 struct drm_device *dev = intel_dp->base.base.dev;
1177 struct drm_i915_private *dev_priv = dev->dev_private;
1178 u32 pp;
1179
1180 if (!is_edp(intel_dp))
1181 return;
1182
1183 DRM_DEBUG_KMS("\n");
1184 pp = ironlake_get_pp_control(dev_priv);
1185 pp &= ~EDP_BLC_ENABLE;
1186 I915_WRITE(PCH_PP_CONTROL, pp);
1187 POSTING_READ(PCH_PP_CONTROL);
1188 msleep(intel_dp->backlight_off_delay);
1189 }
1190
1191 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1192 {
1193 struct drm_device *dev = encoder->dev;
1194 struct drm_i915_private *dev_priv = dev->dev_private;
1195 u32 dpa_ctl;
1196
1197 DRM_DEBUG_KMS("\n");
1198 dpa_ctl = I915_READ(DP_A);
1199 dpa_ctl |= DP_PLL_ENABLE;
1200 I915_WRITE(DP_A, dpa_ctl);
1201 POSTING_READ(DP_A);
1202 udelay(200);
1203 }
1204
1205 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1206 {
1207 struct drm_device *dev = encoder->dev;
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209 u32 dpa_ctl;
1210
1211 dpa_ctl = I915_READ(DP_A);
1212 dpa_ctl &= ~DP_PLL_ENABLE;
1213 I915_WRITE(DP_A, dpa_ctl);
1214 POSTING_READ(DP_A);
1215 udelay(200);
1216 }
1217
1218 /* If the sink supports it, try to set the power state appropriately */
1219 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1220 {
1221 int ret, i;
1222
1223 /* Should have a valid DPCD by this point */
1224 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1225 return;
1226
1227 if (mode != DRM_MODE_DPMS_ON) {
1228 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1229 DP_SET_POWER_D3);
1230 if (ret != 1)
1231 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1232 } else {
1233 /*
1234 * When turning on, we need to retry for 1ms to give the sink
1235 * time to wake up.
1236 */
1237 for (i = 0; i < 3; i++) {
1238 ret = intel_dp_aux_native_write_1(intel_dp,
1239 DP_SET_POWER,
1240 DP_SET_POWER_D0);
1241 if (ret == 1)
1242 break;
1243 msleep(1);
1244 }
1245 }
1246 }
1247
1248 static void intel_dp_prepare(struct drm_encoder *encoder)
1249 {
1250 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1251
1252 ironlake_edp_backlight_off(intel_dp);
1253 ironlake_edp_panel_off(intel_dp);
1254
1255 /* Wake up the sink first */
1256 ironlake_edp_panel_vdd_on(intel_dp);
1257 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1258 intel_dp_link_down(intel_dp);
1259 ironlake_edp_panel_vdd_off(intel_dp, false);
1260
1261 /* Make sure the panel is off before trying to
1262 * change the mode
1263 */
1264 }
1265
1266 static void intel_dp_commit(struct drm_encoder *encoder)
1267 {
1268 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1269 struct drm_device *dev = encoder->dev;
1270 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1271
1272 ironlake_edp_panel_vdd_on(intel_dp);
1273 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1274 intel_dp_start_link_train(intel_dp);
1275 ironlake_edp_panel_on(intel_dp);
1276 ironlake_edp_panel_vdd_off(intel_dp, true);
1277 intel_dp_complete_link_train(intel_dp);
1278 ironlake_edp_backlight_on(intel_dp);
1279
1280 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1281
1282 if (HAS_PCH_CPT(dev))
1283 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1284 }
1285
1286 static void
1287 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1288 {
1289 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1290 struct drm_device *dev = encoder->dev;
1291 struct drm_i915_private *dev_priv = dev->dev_private;
1292 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1293
1294 if (mode != DRM_MODE_DPMS_ON) {
1295 ironlake_edp_backlight_off(intel_dp);
1296 ironlake_edp_panel_off(intel_dp);
1297
1298 ironlake_edp_panel_vdd_on(intel_dp);
1299 intel_dp_sink_dpms(intel_dp, mode);
1300 intel_dp_link_down(intel_dp);
1301 ironlake_edp_panel_vdd_off(intel_dp, false);
1302
1303 if (is_cpu_edp(intel_dp))
1304 ironlake_edp_pll_off(encoder);
1305 } else {
1306 if (is_cpu_edp(intel_dp))
1307 ironlake_edp_pll_on(encoder);
1308
1309 ironlake_edp_panel_vdd_on(intel_dp);
1310 intel_dp_sink_dpms(intel_dp, mode);
1311 if (!(dp_reg & DP_PORT_EN)) {
1312 intel_dp_start_link_train(intel_dp);
1313 ironlake_edp_panel_on(intel_dp);
1314 ironlake_edp_panel_vdd_off(intel_dp, true);
1315 intel_dp_complete_link_train(intel_dp);
1316 } else
1317 ironlake_edp_panel_vdd_off(intel_dp, false);
1318 ironlake_edp_backlight_on(intel_dp);
1319 }
1320 intel_dp->dpms_mode = mode;
1321 }
1322
1323 /*
1324 * Native read with retry for link status and receiver capability reads for
1325 * cases where the sink may still be asleep.
1326 */
1327 static bool
1328 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1329 uint8_t *recv, int recv_bytes)
1330 {
1331 int ret, i;
1332
1333 /*
1334 * Sinks are *supposed* to come up within 1ms from an off state,
1335 * but we're also supposed to retry 3 times per the spec.
1336 */
1337 for (i = 0; i < 3; i++) {
1338 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1339 recv_bytes);
1340 if (ret == recv_bytes)
1341 return true;
1342 msleep(1);
1343 }
1344
1345 return false;
1346 }
1347
1348 /*
1349 * Fetch AUX CH registers 0x202 - 0x207 which contain
1350 * link status information
1351 */
1352 static bool
1353 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1354 {
1355 return intel_dp_aux_native_read_retry(intel_dp,
1356 DP_LANE0_1_STATUS,
1357 link_status,
1358 DP_LINK_STATUS_SIZE);
1359 }
1360
1361 static uint8_t
1362 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1363 int r)
1364 {
1365 return link_status[r - DP_LANE0_1_STATUS];
1366 }
1367
1368 static uint8_t
1369 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1370 int lane)
1371 {
1372 int s = ((lane & 1) ?
1373 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1374 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1375 uint8_t l = adjust_request[lane>>1];
1376
1377 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1378 }
1379
1380 static uint8_t
1381 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1382 int lane)
1383 {
1384 int s = ((lane & 1) ?
1385 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1386 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1387 uint8_t l = adjust_request[lane>>1];
1388
1389 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1390 }
1391
1392
1393 #if 0
1394 static char *voltage_names[] = {
1395 "0.4V", "0.6V", "0.8V", "1.2V"
1396 };
1397 static char *pre_emph_names[] = {
1398 "0dB", "3.5dB", "6dB", "9.5dB"
1399 };
1400 static char *link_train_names[] = {
1401 "pattern 1", "pattern 2", "idle", "off"
1402 };
1403 #endif
1404
1405 /*
1406 * These are source-specific values; current Intel hardware supports
1407 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1408 */
1409
1410 static uint8_t
1411 intel_dp_voltage_max(struct intel_dp *intel_dp)
1412 {
1413 struct drm_device *dev = intel_dp->base.base.dev;
1414
1415 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1416 return DP_TRAIN_VOLTAGE_SWING_800;
1417 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1418 return DP_TRAIN_VOLTAGE_SWING_1200;
1419 else
1420 return DP_TRAIN_VOLTAGE_SWING_800;
1421 }
1422
1423 static uint8_t
1424 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1425 {
1426 struct drm_device *dev = intel_dp->base.base.dev;
1427
1428 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1429 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1430 case DP_TRAIN_VOLTAGE_SWING_400:
1431 return DP_TRAIN_PRE_EMPHASIS_6;
1432 case DP_TRAIN_VOLTAGE_SWING_600:
1433 case DP_TRAIN_VOLTAGE_SWING_800:
1434 return DP_TRAIN_PRE_EMPHASIS_3_5;
1435 default:
1436 return DP_TRAIN_PRE_EMPHASIS_0;
1437 }
1438 } else {
1439 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1440 case DP_TRAIN_VOLTAGE_SWING_400:
1441 return DP_TRAIN_PRE_EMPHASIS_6;
1442 case DP_TRAIN_VOLTAGE_SWING_600:
1443 return DP_TRAIN_PRE_EMPHASIS_6;
1444 case DP_TRAIN_VOLTAGE_SWING_800:
1445 return DP_TRAIN_PRE_EMPHASIS_3_5;
1446 case DP_TRAIN_VOLTAGE_SWING_1200:
1447 default:
1448 return DP_TRAIN_PRE_EMPHASIS_0;
1449 }
1450 }
1451 }
1452
1453 static void
1454 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1455 {
1456 uint8_t v = 0;
1457 uint8_t p = 0;
1458 int lane;
1459 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1460 uint8_t voltage_max;
1461 uint8_t preemph_max;
1462
1463 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1464 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1465 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1466
1467 if (this_v > v)
1468 v = this_v;
1469 if (this_p > p)
1470 p = this_p;
1471 }
1472
1473 voltage_max = intel_dp_voltage_max(intel_dp);
1474 if (v >= voltage_max)
1475 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1476
1477 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1478 if (p >= preemph_max)
1479 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1480
1481 for (lane = 0; lane < 4; lane++)
1482 intel_dp->train_set[lane] = v | p;
1483 }
1484
1485 static uint32_t
1486 intel_dp_signal_levels(uint8_t train_set)
1487 {
1488 uint32_t signal_levels = 0;
1489
1490 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1491 case DP_TRAIN_VOLTAGE_SWING_400:
1492 default:
1493 signal_levels |= DP_VOLTAGE_0_4;
1494 break;
1495 case DP_TRAIN_VOLTAGE_SWING_600:
1496 signal_levels |= DP_VOLTAGE_0_6;
1497 break;
1498 case DP_TRAIN_VOLTAGE_SWING_800:
1499 signal_levels |= DP_VOLTAGE_0_8;
1500 break;
1501 case DP_TRAIN_VOLTAGE_SWING_1200:
1502 signal_levels |= DP_VOLTAGE_1_2;
1503 break;
1504 }
1505 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1506 case DP_TRAIN_PRE_EMPHASIS_0:
1507 default:
1508 signal_levels |= DP_PRE_EMPHASIS_0;
1509 break;
1510 case DP_TRAIN_PRE_EMPHASIS_3_5:
1511 signal_levels |= DP_PRE_EMPHASIS_3_5;
1512 break;
1513 case DP_TRAIN_PRE_EMPHASIS_6:
1514 signal_levels |= DP_PRE_EMPHASIS_6;
1515 break;
1516 case DP_TRAIN_PRE_EMPHASIS_9_5:
1517 signal_levels |= DP_PRE_EMPHASIS_9_5;
1518 break;
1519 }
1520 return signal_levels;
1521 }
1522
1523 /* Gen6's DP voltage swing and pre-emphasis control */
1524 static uint32_t
1525 intel_gen6_edp_signal_levels(uint8_t train_set)
1526 {
1527 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1528 DP_TRAIN_PRE_EMPHASIS_MASK);
1529 switch (signal_levels) {
1530 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1531 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1532 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1533 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1534 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1535 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1536 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1537 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1538 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1539 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1540 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1541 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1542 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1543 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1544 default:
1545 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1546 "0x%x\n", signal_levels);
1547 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1548 }
1549 }
1550
1551 /* Gen7's DP voltage swing and pre-emphasis control */
1552 static uint32_t
1553 intel_gen7_edp_signal_levels(uint8_t train_set)
1554 {
1555 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1556 DP_TRAIN_PRE_EMPHASIS_MASK);
1557 switch (signal_levels) {
1558 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1559 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1560 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1561 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1562 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1563 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1564
1565 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1566 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1567 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1569
1570 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1571 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1572 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1573 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1574
1575 default:
1576 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1577 "0x%x\n", signal_levels);
1578 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1579 }
1580 }
1581
1582 static uint8_t
1583 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1584 int lane)
1585 {
1586 int s = (lane & 1) * 4;
1587 uint8_t l = link_status[lane>>1];
1588
1589 return (l >> s) & 0xf;
1590 }
1591
1592 /* Check for clock recovery is done on all channels */
1593 static bool
1594 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1595 {
1596 int lane;
1597 uint8_t lane_status;
1598
1599 for (lane = 0; lane < lane_count; lane++) {
1600 lane_status = intel_get_lane_status(link_status, lane);
1601 if ((lane_status & DP_LANE_CR_DONE) == 0)
1602 return false;
1603 }
1604 return true;
1605 }
1606
1607 /* Check to see if channel eq is done on all channels */
1608 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1609 DP_LANE_CHANNEL_EQ_DONE|\
1610 DP_LANE_SYMBOL_LOCKED)
1611 static bool
1612 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1613 {
1614 uint8_t lane_align;
1615 uint8_t lane_status;
1616 int lane;
1617
1618 lane_align = intel_dp_link_status(link_status,
1619 DP_LANE_ALIGN_STATUS_UPDATED);
1620 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1621 return false;
1622 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1623 lane_status = intel_get_lane_status(link_status, lane);
1624 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1625 return false;
1626 }
1627 return true;
1628 }
1629
1630 static bool
1631 intel_dp_set_link_train(struct intel_dp *intel_dp,
1632 uint32_t dp_reg_value,
1633 uint8_t dp_train_pat)
1634 {
1635 struct drm_device *dev = intel_dp->base.base.dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 int ret;
1638
1639 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1640 POSTING_READ(intel_dp->output_reg);
1641
1642 intel_dp_aux_native_write_1(intel_dp,
1643 DP_TRAINING_PATTERN_SET,
1644 dp_train_pat);
1645
1646 ret = intel_dp_aux_native_write(intel_dp,
1647 DP_TRAINING_LANE0_SET,
1648 intel_dp->train_set,
1649 intel_dp->lane_count);
1650 if (ret != intel_dp->lane_count)
1651 return false;
1652
1653 return true;
1654 }
1655
1656 /* Enable corresponding port and start training pattern 1 */
1657 static void
1658 intel_dp_start_link_train(struct intel_dp *intel_dp)
1659 {
1660 struct drm_device *dev = intel_dp->base.base.dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1663 int i;
1664 uint8_t voltage;
1665 bool clock_recovery = false;
1666 int voltage_tries, loop_tries;
1667 u32 reg;
1668 uint32_t DP = intel_dp->DP;
1669
1670 /*
1671 * On CPT we have to enable the port in training pattern 1, which
1672 * will happen below in intel_dp_set_link_train. Otherwise, enable
1673 * the port and wait for it to become active.
1674 */
1675 if (!HAS_PCH_CPT(dev)) {
1676 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1677 POSTING_READ(intel_dp->output_reg);
1678 intel_wait_for_vblank(dev, intel_crtc->pipe);
1679 }
1680
1681 /* Write the link configuration data */
1682 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1683 intel_dp->link_configuration,
1684 DP_LINK_CONFIGURATION_SIZE);
1685
1686 DP |= DP_PORT_EN;
1687
1688 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1689 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1690 else
1691 DP &= ~DP_LINK_TRAIN_MASK;
1692 memset(intel_dp->train_set, 0, 4);
1693 voltage = 0xff;
1694 voltage_tries = 0;
1695 loop_tries = 0;
1696 clock_recovery = false;
1697 for (;;) {
1698 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1699 uint8_t link_status[DP_LINK_STATUS_SIZE];
1700 uint32_t signal_levels;
1701
1702
1703 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1704 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1705 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1706 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1707 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1708 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1709 } else {
1710 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1711 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1712 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1713 }
1714
1715 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1716 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1717 else
1718 reg = DP | DP_LINK_TRAIN_PAT_1;
1719
1720 if (!intel_dp_set_link_train(intel_dp, reg,
1721 DP_TRAINING_PATTERN_1 |
1722 DP_LINK_SCRAMBLING_DISABLE))
1723 break;
1724 /* Set training pattern 1 */
1725
1726 udelay(100);
1727 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1728 DRM_ERROR("failed to get link status\n");
1729 break;
1730 }
1731
1732 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1733 DRM_DEBUG_KMS("clock recovery OK\n");
1734 clock_recovery = true;
1735 break;
1736 }
1737
1738 /* Check to see if we've tried the max voltage */
1739 for (i = 0; i < intel_dp->lane_count; i++)
1740 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1741 break;
1742 if (i == intel_dp->lane_count) {
1743 ++loop_tries;
1744 if (loop_tries == 5) {
1745 DRM_DEBUG_KMS("too many full retries, give up\n");
1746 break;
1747 }
1748 memset(intel_dp->train_set, 0, 4);
1749 voltage_tries = 0;
1750 continue;
1751 }
1752
1753 /* Check to see if we've tried the same voltage 5 times */
1754 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1755 ++voltage_tries;
1756 if (voltage_tries == 5) {
1757 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1758 break;
1759 }
1760 } else
1761 voltage_tries = 0;
1762 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1763
1764 /* Compute new intel_dp->train_set as requested by target */
1765 intel_get_adjust_train(intel_dp, link_status);
1766 }
1767
1768 intel_dp->DP = DP;
1769 }
1770
1771 static void
1772 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1773 {
1774 struct drm_device *dev = intel_dp->base.base.dev;
1775 struct drm_i915_private *dev_priv = dev->dev_private;
1776 bool channel_eq = false;
1777 int tries, cr_tries;
1778 u32 reg;
1779 uint32_t DP = intel_dp->DP;
1780
1781 /* channel equalization */
1782 tries = 0;
1783 cr_tries = 0;
1784 channel_eq = false;
1785 for (;;) {
1786 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1787 uint32_t signal_levels;
1788 uint8_t link_status[DP_LINK_STATUS_SIZE];
1789
1790 if (cr_tries > 5) {
1791 DRM_ERROR("failed to train DP, aborting\n");
1792 intel_dp_link_down(intel_dp);
1793 break;
1794 }
1795
1796 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1797 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1798 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1799 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1800 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1801 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1802 } else {
1803 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1804 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1805 }
1806
1807 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1808 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1809 else
1810 reg = DP | DP_LINK_TRAIN_PAT_2;
1811
1812 /* channel eq pattern */
1813 if (!intel_dp_set_link_train(intel_dp, reg,
1814 DP_TRAINING_PATTERN_2 |
1815 DP_LINK_SCRAMBLING_DISABLE))
1816 break;
1817
1818 udelay(400);
1819 if (!intel_dp_get_link_status(intel_dp, link_status))
1820 break;
1821
1822 /* Make sure clock is still ok */
1823 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1824 intel_dp_start_link_train(intel_dp);
1825 cr_tries++;
1826 continue;
1827 }
1828
1829 if (intel_channel_eq_ok(intel_dp, link_status)) {
1830 channel_eq = true;
1831 break;
1832 }
1833
1834 /* Try 5 times, then try clock recovery if that fails */
1835 if (tries > 5) {
1836 intel_dp_link_down(intel_dp);
1837 intel_dp_start_link_train(intel_dp);
1838 tries = 0;
1839 cr_tries++;
1840 continue;
1841 }
1842
1843 /* Compute new intel_dp->train_set as requested by target */
1844 intel_get_adjust_train(intel_dp, link_status);
1845 ++tries;
1846 }
1847
1848 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1849 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1850 else
1851 reg = DP | DP_LINK_TRAIN_OFF;
1852
1853 I915_WRITE(intel_dp->output_reg, reg);
1854 POSTING_READ(intel_dp->output_reg);
1855 intel_dp_aux_native_write_1(intel_dp,
1856 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1857 }
1858
1859 static void
1860 intel_dp_link_down(struct intel_dp *intel_dp)
1861 {
1862 struct drm_device *dev = intel_dp->base.base.dev;
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 uint32_t DP = intel_dp->DP;
1865
1866 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1867 return;
1868
1869 DRM_DEBUG_KMS("\n");
1870
1871 if (is_edp(intel_dp)) {
1872 DP &= ~DP_PLL_ENABLE;
1873 I915_WRITE(intel_dp->output_reg, DP);
1874 POSTING_READ(intel_dp->output_reg);
1875 udelay(100);
1876 }
1877
1878 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1879 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1880 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1881 } else {
1882 DP &= ~DP_LINK_TRAIN_MASK;
1883 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1884 }
1885 POSTING_READ(intel_dp->output_reg);
1886
1887 msleep(17);
1888
1889 if (is_edp(intel_dp)) {
1890 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1891 DP |= DP_LINK_TRAIN_OFF_CPT;
1892 else
1893 DP |= DP_LINK_TRAIN_OFF;
1894 }
1895
1896 if (!HAS_PCH_CPT(dev) &&
1897 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1898 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1899
1900 /* Hardware workaround: leaving our transcoder select
1901 * set to transcoder B while it's off will prevent the
1902 * corresponding HDMI output on transcoder A.
1903 *
1904 * Combine this with another hardware workaround:
1905 * transcoder select bit can only be cleared while the
1906 * port is enabled.
1907 */
1908 DP &= ~DP_PIPEB_SELECT;
1909 I915_WRITE(intel_dp->output_reg, DP);
1910
1911 /* Changes to enable or select take place the vblank
1912 * after being written.
1913 */
1914 if (crtc == NULL) {
1915 /* We can arrive here never having been attached
1916 * to a CRTC, for instance, due to inheriting
1917 * random state from the BIOS.
1918 *
1919 * If the pipe is not running, play safe and
1920 * wait for the clocks to stabilise before
1921 * continuing.
1922 */
1923 POSTING_READ(intel_dp->output_reg);
1924 msleep(50);
1925 } else
1926 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1927 }
1928
1929 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1930 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1931 POSTING_READ(intel_dp->output_reg);
1932 msleep(intel_dp->panel_power_down_delay);
1933 }
1934
1935 static bool
1936 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1937 {
1938 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1939 sizeof(intel_dp->dpcd)) &&
1940 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1941 return true;
1942 }
1943
1944 return false;
1945 }
1946
1947 static bool
1948 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1949 {
1950 int ret;
1951
1952 ret = intel_dp_aux_native_read_retry(intel_dp,
1953 DP_DEVICE_SERVICE_IRQ_VECTOR,
1954 sink_irq_vector, 1);
1955 if (!ret)
1956 return false;
1957
1958 return true;
1959 }
1960
1961 static void
1962 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1963 {
1964 /* NAK by default */
1965 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1966 }
1967
1968 /*
1969 * According to DP spec
1970 * 5.1.2:
1971 * 1. Read DPCD
1972 * 2. Configure link according to Receiver Capabilities
1973 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1974 * 4. Check link status on receipt of hot-plug interrupt
1975 */
1976
1977 static void
1978 intel_dp_check_link_status(struct intel_dp *intel_dp)
1979 {
1980 u8 sink_irq_vector;
1981 u8 link_status[DP_LINK_STATUS_SIZE];
1982
1983 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1984 return;
1985
1986 if (!intel_dp->base.base.crtc)
1987 return;
1988
1989 /* Try to read receiver status if the link appears to be up */
1990 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1991 intel_dp_link_down(intel_dp);
1992 return;
1993 }
1994
1995 /* Now read the DPCD to see if it's actually running */
1996 if (!intel_dp_get_dpcd(intel_dp)) {
1997 intel_dp_link_down(intel_dp);
1998 return;
1999 }
2000
2001 /* Try to read the source of the interrupt */
2002 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2003 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2004 /* Clear interrupt source */
2005 intel_dp_aux_native_write_1(intel_dp,
2006 DP_DEVICE_SERVICE_IRQ_VECTOR,
2007 sink_irq_vector);
2008
2009 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2010 intel_dp_handle_test_request(intel_dp);
2011 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2012 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2013 }
2014
2015 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2016 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2017 drm_get_encoder_name(&intel_dp->base.base));
2018 intel_dp_start_link_train(intel_dp);
2019 intel_dp_complete_link_train(intel_dp);
2020 }
2021 }
2022
2023 static enum drm_connector_status
2024 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2025 {
2026 if (intel_dp_get_dpcd(intel_dp))
2027 return connector_status_connected;
2028 return connector_status_disconnected;
2029 }
2030
2031 static enum drm_connector_status
2032 ironlake_dp_detect(struct intel_dp *intel_dp)
2033 {
2034 enum drm_connector_status status;
2035
2036 /* Can't disconnect eDP, but you can close the lid... */
2037 if (is_edp(intel_dp)) {
2038 status = intel_panel_detect(intel_dp->base.base.dev);
2039 if (status == connector_status_unknown)
2040 status = connector_status_connected;
2041 return status;
2042 }
2043
2044 return intel_dp_detect_dpcd(intel_dp);
2045 }
2046
2047 static enum drm_connector_status
2048 g4x_dp_detect(struct intel_dp *intel_dp)
2049 {
2050 struct drm_device *dev = intel_dp->base.base.dev;
2051 struct drm_i915_private *dev_priv = dev->dev_private;
2052 uint32_t temp, bit;
2053
2054 switch (intel_dp->output_reg) {
2055 case DP_B:
2056 bit = DPB_HOTPLUG_INT_STATUS;
2057 break;
2058 case DP_C:
2059 bit = DPC_HOTPLUG_INT_STATUS;
2060 break;
2061 case DP_D:
2062 bit = DPD_HOTPLUG_INT_STATUS;
2063 break;
2064 default:
2065 return connector_status_unknown;
2066 }
2067
2068 temp = I915_READ(PORT_HOTPLUG_STAT);
2069
2070 if ((temp & bit) == 0)
2071 return connector_status_disconnected;
2072
2073 return intel_dp_detect_dpcd(intel_dp);
2074 }
2075
2076 static struct edid *
2077 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2078 {
2079 struct intel_dp *intel_dp = intel_attached_dp(connector);
2080 struct edid *edid;
2081
2082 ironlake_edp_panel_vdd_on(intel_dp);
2083 edid = drm_get_edid(connector, adapter);
2084 ironlake_edp_panel_vdd_off(intel_dp, false);
2085 return edid;
2086 }
2087
2088 static int
2089 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2090 {
2091 struct intel_dp *intel_dp = intel_attached_dp(connector);
2092 int ret;
2093
2094 ironlake_edp_panel_vdd_on(intel_dp);
2095 ret = intel_ddc_get_modes(connector, adapter);
2096 ironlake_edp_panel_vdd_off(intel_dp, false);
2097 return ret;
2098 }
2099
2100
2101 /**
2102 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2103 *
2104 * \return true if DP port is connected.
2105 * \return false if DP port is disconnected.
2106 */
2107 static enum drm_connector_status
2108 intel_dp_detect(struct drm_connector *connector, bool force)
2109 {
2110 struct intel_dp *intel_dp = intel_attached_dp(connector);
2111 struct drm_device *dev = intel_dp->base.base.dev;
2112 enum drm_connector_status status;
2113 struct edid *edid = NULL;
2114
2115 intel_dp->has_audio = false;
2116
2117 if (HAS_PCH_SPLIT(dev))
2118 status = ironlake_dp_detect(intel_dp);
2119 else
2120 status = g4x_dp_detect(intel_dp);
2121
2122 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2123 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2124 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2125 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2126
2127 if (status != connector_status_connected)
2128 return status;
2129
2130 if (intel_dp->force_audio) {
2131 intel_dp->has_audio = intel_dp->force_audio > 0;
2132 } else {
2133 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2134 if (edid) {
2135 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2136 connector->display_info.raw_edid = NULL;
2137 kfree(edid);
2138 }
2139 }
2140
2141 return connector_status_connected;
2142 }
2143
2144 static int intel_dp_get_modes(struct drm_connector *connector)
2145 {
2146 struct intel_dp *intel_dp = intel_attached_dp(connector);
2147 struct drm_device *dev = intel_dp->base.base.dev;
2148 struct drm_i915_private *dev_priv = dev->dev_private;
2149 int ret;
2150
2151 /* We should parse the EDID data and find out if it has an audio sink
2152 */
2153
2154 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2155 if (ret) {
2156 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2157 struct drm_display_mode *newmode;
2158 list_for_each_entry(newmode, &connector->probed_modes,
2159 head) {
2160 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2161 intel_dp->panel_fixed_mode =
2162 drm_mode_duplicate(dev, newmode);
2163 break;
2164 }
2165 }
2166 }
2167 return ret;
2168 }
2169
2170 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2171 if (is_edp(intel_dp)) {
2172 /* initialize panel mode from VBT if available for eDP */
2173 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2174 intel_dp->panel_fixed_mode =
2175 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2176 if (intel_dp->panel_fixed_mode) {
2177 intel_dp->panel_fixed_mode->type |=
2178 DRM_MODE_TYPE_PREFERRED;
2179 }
2180 }
2181 if (intel_dp->panel_fixed_mode) {
2182 struct drm_display_mode *mode;
2183 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2184 drm_mode_probed_add(connector, mode);
2185 return 1;
2186 }
2187 }
2188 return 0;
2189 }
2190
2191 static bool
2192 intel_dp_detect_audio(struct drm_connector *connector)
2193 {
2194 struct intel_dp *intel_dp = intel_attached_dp(connector);
2195 struct edid *edid;
2196 bool has_audio = false;
2197
2198 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2199 if (edid) {
2200 has_audio = drm_detect_monitor_audio(edid);
2201
2202 connector->display_info.raw_edid = NULL;
2203 kfree(edid);
2204 }
2205
2206 return has_audio;
2207 }
2208
2209 static int
2210 intel_dp_set_property(struct drm_connector *connector,
2211 struct drm_property *property,
2212 uint64_t val)
2213 {
2214 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2215 struct intel_dp *intel_dp = intel_attached_dp(connector);
2216 int ret;
2217
2218 ret = drm_connector_property_set_value(connector, property, val);
2219 if (ret)
2220 return ret;
2221
2222 if (property == dev_priv->force_audio_property) {
2223 int i = val;
2224 bool has_audio;
2225
2226 if (i == intel_dp->force_audio)
2227 return 0;
2228
2229 intel_dp->force_audio = i;
2230
2231 if (i == 0)
2232 has_audio = intel_dp_detect_audio(connector);
2233 else
2234 has_audio = i > 0;
2235
2236 if (has_audio == intel_dp->has_audio)
2237 return 0;
2238
2239 intel_dp->has_audio = has_audio;
2240 goto done;
2241 }
2242
2243 if (property == dev_priv->broadcast_rgb_property) {
2244 if (val == !!intel_dp->color_range)
2245 return 0;
2246
2247 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2248 goto done;
2249 }
2250
2251 return -EINVAL;
2252
2253 done:
2254 if (intel_dp->base.base.crtc) {
2255 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2256 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2257 crtc->x, crtc->y,
2258 crtc->fb);
2259 }
2260
2261 return 0;
2262 }
2263
2264 static void
2265 intel_dp_destroy(struct drm_connector *connector)
2266 {
2267 struct drm_device *dev = connector->dev;
2268
2269 if (intel_dpd_is_edp(dev))
2270 intel_panel_destroy_backlight(dev);
2271
2272 drm_sysfs_connector_remove(connector);
2273 drm_connector_cleanup(connector);
2274 kfree(connector);
2275 }
2276
2277 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2278 {
2279 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2280
2281 i2c_del_adapter(&intel_dp->adapter);
2282 drm_encoder_cleanup(encoder);
2283 if (is_edp(intel_dp)) {
2284 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2285 ironlake_panel_vdd_off_sync(intel_dp);
2286 }
2287 kfree(intel_dp);
2288 }
2289
2290 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2291 .dpms = intel_dp_dpms,
2292 .mode_fixup = intel_dp_mode_fixup,
2293 .prepare = intel_dp_prepare,
2294 .mode_set = intel_dp_mode_set,
2295 .commit = intel_dp_commit,
2296 };
2297
2298 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2299 .dpms = drm_helper_connector_dpms,
2300 .detect = intel_dp_detect,
2301 .fill_modes = drm_helper_probe_single_connector_modes,
2302 .set_property = intel_dp_set_property,
2303 .destroy = intel_dp_destroy,
2304 };
2305
2306 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2307 .get_modes = intel_dp_get_modes,
2308 .mode_valid = intel_dp_mode_valid,
2309 .best_encoder = intel_best_encoder,
2310 };
2311
2312 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2313 .destroy = intel_dp_encoder_destroy,
2314 };
2315
2316 static void
2317 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2318 {
2319 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2320
2321 intel_dp_check_link_status(intel_dp);
2322 }
2323
2324 /* Return which DP Port should be selected for Transcoder DP control */
2325 int
2326 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2327 {
2328 struct drm_device *dev = crtc->dev;
2329 struct drm_mode_config *mode_config = &dev->mode_config;
2330 struct drm_encoder *encoder;
2331
2332 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2333 struct intel_dp *intel_dp;
2334
2335 if (encoder->crtc != crtc)
2336 continue;
2337
2338 intel_dp = enc_to_intel_dp(encoder);
2339 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2340 intel_dp->base.type == INTEL_OUTPUT_EDP)
2341 return intel_dp->output_reg;
2342 }
2343
2344 return -1;
2345 }
2346
2347 /* check the VBT to see whether the eDP is on DP-D port */
2348 bool intel_dpd_is_edp(struct drm_device *dev)
2349 {
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351 struct child_device_config *p_child;
2352 int i;
2353
2354 if (!dev_priv->child_dev_num)
2355 return false;
2356
2357 for (i = 0; i < dev_priv->child_dev_num; i++) {
2358 p_child = dev_priv->child_dev + i;
2359
2360 if (p_child->dvo_port == PORT_IDPD &&
2361 p_child->device_type == DEVICE_TYPE_eDP)
2362 return true;
2363 }
2364 return false;
2365 }
2366
2367 static void
2368 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2369 {
2370 intel_attach_force_audio_property(connector);
2371 intel_attach_broadcast_rgb_property(connector);
2372 }
2373
2374 void
2375 intel_dp_init(struct drm_device *dev, int output_reg)
2376 {
2377 struct drm_i915_private *dev_priv = dev->dev_private;
2378 struct drm_connector *connector;
2379 struct intel_dp *intel_dp;
2380 struct intel_encoder *intel_encoder;
2381 struct intel_connector *intel_connector;
2382 const char *name = NULL;
2383 int type;
2384
2385 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2386 if (!intel_dp)
2387 return;
2388
2389 intel_dp->output_reg = output_reg;
2390 intel_dp->dpms_mode = -1;
2391
2392 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2393 if (!intel_connector) {
2394 kfree(intel_dp);
2395 return;
2396 }
2397 intel_encoder = &intel_dp->base;
2398
2399 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2400 if (intel_dpd_is_edp(dev))
2401 intel_dp->is_pch_edp = true;
2402
2403 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2404 type = DRM_MODE_CONNECTOR_eDP;
2405 intel_encoder->type = INTEL_OUTPUT_EDP;
2406 } else {
2407 type = DRM_MODE_CONNECTOR_DisplayPort;
2408 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2409 }
2410
2411 connector = &intel_connector->base;
2412 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2413 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2414
2415 connector->polled = DRM_CONNECTOR_POLL_HPD;
2416
2417 if (output_reg == DP_B || output_reg == PCH_DP_B)
2418 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2419 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2420 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2421 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2422 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2423
2424 if (is_edp(intel_dp)) {
2425 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2426 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2427 ironlake_panel_vdd_work);
2428 }
2429
2430 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2431 connector->interlace_allowed = true;
2432 connector->doublescan_allowed = 0;
2433
2434 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2435 DRM_MODE_ENCODER_TMDS);
2436 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2437
2438 intel_connector_attach_encoder(intel_connector, intel_encoder);
2439 drm_sysfs_connector_add(connector);
2440
2441 /* Set up the DDC bus. */
2442 switch (output_reg) {
2443 case DP_A:
2444 name = "DPDDC-A";
2445 break;
2446 case DP_B:
2447 case PCH_DP_B:
2448 dev_priv->hotplug_supported_mask |=
2449 HDMIB_HOTPLUG_INT_STATUS;
2450 name = "DPDDC-B";
2451 break;
2452 case DP_C:
2453 case PCH_DP_C:
2454 dev_priv->hotplug_supported_mask |=
2455 HDMIC_HOTPLUG_INT_STATUS;
2456 name = "DPDDC-C";
2457 break;
2458 case DP_D:
2459 case PCH_DP_D:
2460 dev_priv->hotplug_supported_mask |=
2461 HDMID_HOTPLUG_INT_STATUS;
2462 name = "DPDDC-D";
2463 break;
2464 }
2465
2466 /* Cache some DPCD data in the eDP case */
2467 if (is_edp(intel_dp)) {
2468 bool ret;
2469 struct edp_power_seq cur, vbt;
2470 u32 pp_on, pp_off, pp_div;
2471
2472 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2473 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2474 pp_div = I915_READ(PCH_PP_DIVISOR);
2475
2476 /* Pull timing values out of registers */
2477 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2478 PANEL_POWER_UP_DELAY_SHIFT;
2479
2480 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2481 PANEL_LIGHT_ON_DELAY_SHIFT;
2482
2483 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2484 PANEL_LIGHT_OFF_DELAY_SHIFT;
2485
2486 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2487 PANEL_POWER_DOWN_DELAY_SHIFT;
2488
2489 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2490 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2491
2492 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2493 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2494
2495 vbt = dev_priv->edp.pps;
2496
2497 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2498 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2499
2500 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2501
2502 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2503 intel_dp->backlight_on_delay = get_delay(t8);
2504 intel_dp->backlight_off_delay = get_delay(t9);
2505 intel_dp->panel_power_down_delay = get_delay(t10);
2506 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2507
2508 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2509 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2510 intel_dp->panel_power_cycle_delay);
2511
2512 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2513 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2514
2515 ironlake_edp_panel_vdd_on(intel_dp);
2516 ret = intel_dp_get_dpcd(intel_dp);
2517 ironlake_edp_panel_vdd_off(intel_dp, false);
2518
2519 if (ret) {
2520 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2521 dev_priv->no_aux_handshake =
2522 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2523 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2524 } else {
2525 /* if this fails, presume the device is a ghost */
2526 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2527 intel_dp_encoder_destroy(&intel_dp->base.base);
2528 intel_dp_destroy(&intel_connector->base);
2529 return;
2530 }
2531 }
2532
2533 intel_dp_i2c_init(intel_dp, intel_connector, name);
2534
2535 intel_encoder->hot_plug = intel_dp_hot_plug;
2536
2537 if (is_edp(intel_dp)) {
2538 dev_priv->int_edp_connector = connector;
2539 intel_panel_setup_backlight(dev);
2540 }
2541
2542 intel_dp_add_properties(intel_dp, connector);
2543
2544 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2545 * 0xd. Failure to do so will result in spurious interrupts being
2546 * generated on the port when a cable is not attached.
2547 */
2548 if (IS_G4X(dev) && !IS_GM45(dev)) {
2549 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2550 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2551 }
2552 }
This page took 0.098106 seconds and 5 git commands to generate.