drm/i915: simplify possible_clones computation
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "drm_edid.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39
40 #define DP_LINK_STATUS_SIZE 6
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 /**
44 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
45 * @intel_dp: DP struct
46 *
47 * If a CPU or PCH DP output is attached to an eDP panel, this function
48 * will return true, and false otherwise.
49 */
50 static bool is_edp(struct intel_dp *intel_dp)
51 {
52 return intel_dp->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
80 {
81 return container_of(encoder, struct intel_dp, base.base);
82 }
83
84 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
85 {
86 return container_of(intel_attached_encoder(connector),
87 struct intel_dp, base);
88 }
89
90 /**
91 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
92 * @encoder: DRM encoder
93 *
94 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
95 * by intel_display.c.
96 */
97 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
98 {
99 struct intel_dp *intel_dp;
100
101 if (!encoder)
102 return false;
103
104 intel_dp = enc_to_intel_dp(encoder);
105
106 return is_pch_edp(intel_dp);
107 }
108
109 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
110 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112
113 void
114 intel_edp_link_config(struct intel_encoder *intel_encoder,
115 int *lane_num, int *link_bw)
116 {
117 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
118
119 *lane_num = intel_dp->lane_count;
120 if (intel_dp->link_bw == DP_LINK_BW_1_62)
121 *link_bw = 162000;
122 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
123 *link_bw = 270000;
124 }
125
126 int
127 intel_edp_target_clock(struct intel_encoder *intel_encoder,
128 struct drm_display_mode *mode)
129 {
130 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
131
132 if (intel_dp->panel_fixed_mode)
133 return intel_dp->panel_fixed_mode->clock;
134 else
135 return mode->clock;
136 }
137
138 static int
139 intel_dp_max_lane_count(struct intel_dp *intel_dp)
140 {
141 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
142 switch (max_lane_count) {
143 case 1: case 2: case 4:
144 break;
145 default:
146 max_lane_count = 4;
147 }
148 return max_lane_count;
149 }
150
151 static int
152 intel_dp_max_link_bw(struct intel_dp *intel_dp)
153 {
154 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
155
156 switch (max_link_bw) {
157 case DP_LINK_BW_1_62:
158 case DP_LINK_BW_2_7:
159 break;
160 default:
161 max_link_bw = DP_LINK_BW_1_62;
162 break;
163 }
164 return max_link_bw;
165 }
166
167 static int
168 intel_dp_link_clock(uint8_t link_bw)
169 {
170 if (link_bw == DP_LINK_BW_2_7)
171 return 270000;
172 else
173 return 162000;
174 }
175
176 /*
177 * The units on the numbers in the next two are... bizarre. Examples will
178 * make it clearer; this one parallels an example in the eDP spec.
179 *
180 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
181 *
182 * 270000 * 1 * 8 / 10 == 216000
183 *
184 * The actual data capacity of that configuration is 2.16Gbit/s, so the
185 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
186 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
187 * 119000. At 18bpp that's 2142000 kilobits per second.
188 *
189 * Thus the strange-looking division by 10 in intel_dp_link_required, to
190 * get the result in decakilobits instead of kilobits.
191 */
192
193 static int
194 intel_dp_link_required(int pixel_clock, int bpp)
195 {
196 return (pixel_clock * bpp + 9) / 10;
197 }
198
199 static int
200 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
201 {
202 return (max_link_clock * max_lanes * 8) / 10;
203 }
204
205 static bool
206 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
207 struct drm_display_mode *mode,
208 bool adjust_mode)
209 {
210 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
211 int max_lanes = intel_dp_max_lane_count(intel_dp);
212 int max_rate, mode_rate;
213
214 mode_rate = intel_dp_link_required(mode->clock, 24);
215 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216
217 if (mode_rate > max_rate) {
218 mode_rate = intel_dp_link_required(mode->clock, 18);
219 if (mode_rate > max_rate)
220 return false;
221
222 if (adjust_mode)
223 mode->private_flags
224 |= INTEL_MODE_DP_FORCE_6BPC;
225
226 return true;
227 }
228
229 return true;
230 }
231
232 static int
233 intel_dp_mode_valid(struct drm_connector *connector,
234 struct drm_display_mode *mode)
235 {
236 struct intel_dp *intel_dp = intel_attached_dp(connector);
237
238 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
239 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
240 return MODE_PANEL;
241
242 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
243 return MODE_PANEL;
244 }
245
246 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
247 return MODE_CLOCK_HIGH;
248
249 if (mode->clock < 10000)
250 return MODE_CLOCK_LOW;
251
252 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
253 return MODE_H_ILLEGAL;
254
255 return MODE_OK;
256 }
257
258 static uint32_t
259 pack_aux(uint8_t *src, int src_bytes)
260 {
261 int i;
262 uint32_t v = 0;
263
264 if (src_bytes > 4)
265 src_bytes = 4;
266 for (i = 0; i < src_bytes; i++)
267 v |= ((uint32_t) src[i]) << ((3-i) * 8);
268 return v;
269 }
270
271 static void
272 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
273 {
274 int i;
275 if (dst_bytes > 4)
276 dst_bytes = 4;
277 for (i = 0; i < dst_bytes; i++)
278 dst[i] = src >> ((3-i) * 8);
279 }
280
281 /* hrawclock is 1/4 the FSB frequency */
282 static int
283 intel_hrawclk(struct drm_device *dev)
284 {
285 struct drm_i915_private *dev_priv = dev->dev_private;
286 uint32_t clkcfg;
287
288 clkcfg = I915_READ(CLKCFG);
289 switch (clkcfg & CLKCFG_FSB_MASK) {
290 case CLKCFG_FSB_400:
291 return 100;
292 case CLKCFG_FSB_533:
293 return 133;
294 case CLKCFG_FSB_667:
295 return 166;
296 case CLKCFG_FSB_800:
297 return 200;
298 case CLKCFG_FSB_1067:
299 return 266;
300 case CLKCFG_FSB_1333:
301 return 333;
302 /* these two are just a guess; one of them might be right */
303 case CLKCFG_FSB_1600:
304 case CLKCFG_FSB_1600_ALT:
305 return 400;
306 default:
307 return 133;
308 }
309 }
310
311 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
312 {
313 struct drm_device *dev = intel_dp->base.base.dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
315
316 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
317 }
318
319 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp->base.base.dev;
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
325 }
326
327 static void
328 intel_dp_check_edp(struct intel_dp *intel_dp)
329 {
330 struct drm_device *dev = intel_dp->base.base.dev;
331 struct drm_i915_private *dev_priv = dev->dev_private;
332
333 if (!is_edp(intel_dp))
334 return;
335 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
336 WARN(1, "eDP powered off while attempting aux channel communication.\n");
337 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
338 I915_READ(PCH_PP_STATUS),
339 I915_READ(PCH_PP_CONTROL));
340 }
341 }
342
343 static int
344 intel_dp_aux_ch(struct intel_dp *intel_dp,
345 uint8_t *send, int send_bytes,
346 uint8_t *recv, int recv_size)
347 {
348 uint32_t output_reg = intel_dp->output_reg;
349 struct drm_device *dev = intel_dp->base.base.dev;
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 uint32_t ch_ctl = output_reg + 0x10;
352 uint32_t ch_data = ch_ctl + 4;
353 int i;
354 int recv_bytes;
355 uint32_t status;
356 uint32_t aux_clock_divider;
357 int try, precharge;
358
359 intel_dp_check_edp(intel_dp);
360 /* The clock divider is based off the hrawclk,
361 * and would like to run at 2MHz. So, take the
362 * hrawclk value and divide by 2 and use that
363 *
364 * Note that PCH attached eDP panels should use a 125MHz input
365 * clock divider.
366 */
367 if (is_cpu_edp(intel_dp)) {
368 if (IS_GEN6(dev) || IS_GEN7(dev))
369 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
370 else
371 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
372 } else if (HAS_PCH_SPLIT(dev))
373 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
374 else
375 aux_clock_divider = intel_hrawclk(dev) / 2;
376
377 if (IS_GEN6(dev))
378 precharge = 3;
379 else
380 precharge = 5;
381
382 /* Try to wait for any previous AUX channel activity */
383 for (try = 0; try < 3; try++) {
384 status = I915_READ(ch_ctl);
385 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
386 break;
387 msleep(1);
388 }
389
390 if (try == 3) {
391 WARN(1, "dp_aux_ch not started status 0x%08x\n",
392 I915_READ(ch_ctl));
393 return -EBUSY;
394 }
395
396 /* Must try at least 3 times according to DP spec */
397 for (try = 0; try < 5; try++) {
398 /* Load the send data into the aux channel data registers */
399 for (i = 0; i < send_bytes; i += 4)
400 I915_WRITE(ch_data + i,
401 pack_aux(send + i, send_bytes - i));
402
403 /* Send the command and wait for it to complete */
404 I915_WRITE(ch_ctl,
405 DP_AUX_CH_CTL_SEND_BUSY |
406 DP_AUX_CH_CTL_TIME_OUT_400us |
407 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
408 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
409 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
410 DP_AUX_CH_CTL_DONE |
411 DP_AUX_CH_CTL_TIME_OUT_ERROR |
412 DP_AUX_CH_CTL_RECEIVE_ERROR);
413 for (;;) {
414 status = I915_READ(ch_ctl);
415 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
416 break;
417 udelay(100);
418 }
419
420 /* Clear done status and any errors */
421 I915_WRITE(ch_ctl,
422 status |
423 DP_AUX_CH_CTL_DONE |
424 DP_AUX_CH_CTL_TIME_OUT_ERROR |
425 DP_AUX_CH_CTL_RECEIVE_ERROR);
426
427 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
428 DP_AUX_CH_CTL_RECEIVE_ERROR))
429 continue;
430 if (status & DP_AUX_CH_CTL_DONE)
431 break;
432 }
433
434 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
435 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
436 return -EBUSY;
437 }
438
439 /* Check for timeout or receive error.
440 * Timeouts occur when the sink is not connected
441 */
442 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
443 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
444 return -EIO;
445 }
446
447 /* Timeouts occur when the device isn't connected, so they're
448 * "normal" -- don't fill the kernel log with these */
449 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
450 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
451 return -ETIMEDOUT;
452 }
453
454 /* Unload any bytes sent back from the other side */
455 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
456 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
457 if (recv_bytes > recv_size)
458 recv_bytes = recv_size;
459
460 for (i = 0; i < recv_bytes; i += 4)
461 unpack_aux(I915_READ(ch_data + i),
462 recv + i, recv_bytes - i);
463
464 return recv_bytes;
465 }
466
467 /* Write data to the aux channel in native mode */
468 static int
469 intel_dp_aux_native_write(struct intel_dp *intel_dp,
470 uint16_t address, uint8_t *send, int send_bytes)
471 {
472 int ret;
473 uint8_t msg[20];
474 int msg_bytes;
475 uint8_t ack;
476
477 intel_dp_check_edp(intel_dp);
478 if (send_bytes > 16)
479 return -1;
480 msg[0] = AUX_NATIVE_WRITE << 4;
481 msg[1] = address >> 8;
482 msg[2] = address & 0xff;
483 msg[3] = send_bytes - 1;
484 memcpy(&msg[4], send, send_bytes);
485 msg_bytes = send_bytes + 4;
486 for (;;) {
487 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
488 if (ret < 0)
489 return ret;
490 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
491 break;
492 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
493 udelay(100);
494 else
495 return -EIO;
496 }
497 return send_bytes;
498 }
499
500 /* Write a single byte to the aux channel in native mode */
501 static int
502 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
503 uint16_t address, uint8_t byte)
504 {
505 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
506 }
507
508 /* read bytes from a native aux channel */
509 static int
510 intel_dp_aux_native_read(struct intel_dp *intel_dp,
511 uint16_t address, uint8_t *recv, int recv_bytes)
512 {
513 uint8_t msg[4];
514 int msg_bytes;
515 uint8_t reply[20];
516 int reply_bytes;
517 uint8_t ack;
518 int ret;
519
520 intel_dp_check_edp(intel_dp);
521 msg[0] = AUX_NATIVE_READ << 4;
522 msg[1] = address >> 8;
523 msg[2] = address & 0xff;
524 msg[3] = recv_bytes - 1;
525
526 msg_bytes = 4;
527 reply_bytes = recv_bytes + 1;
528
529 for (;;) {
530 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
531 reply, reply_bytes);
532 if (ret == 0)
533 return -EPROTO;
534 if (ret < 0)
535 return ret;
536 ack = reply[0];
537 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
538 memcpy(recv, reply + 1, ret - 1);
539 return ret - 1;
540 }
541 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
542 udelay(100);
543 else
544 return -EIO;
545 }
546 }
547
548 static int
549 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
550 uint8_t write_byte, uint8_t *read_byte)
551 {
552 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
553 struct intel_dp *intel_dp = container_of(adapter,
554 struct intel_dp,
555 adapter);
556 uint16_t address = algo_data->address;
557 uint8_t msg[5];
558 uint8_t reply[2];
559 unsigned retry;
560 int msg_bytes;
561 int reply_bytes;
562 int ret;
563
564 intel_dp_check_edp(intel_dp);
565 /* Set up the command byte */
566 if (mode & MODE_I2C_READ)
567 msg[0] = AUX_I2C_READ << 4;
568 else
569 msg[0] = AUX_I2C_WRITE << 4;
570
571 if (!(mode & MODE_I2C_STOP))
572 msg[0] |= AUX_I2C_MOT << 4;
573
574 msg[1] = address >> 8;
575 msg[2] = address;
576
577 switch (mode) {
578 case MODE_I2C_WRITE:
579 msg[3] = 0;
580 msg[4] = write_byte;
581 msg_bytes = 5;
582 reply_bytes = 1;
583 break;
584 case MODE_I2C_READ:
585 msg[3] = 0;
586 msg_bytes = 4;
587 reply_bytes = 2;
588 break;
589 default:
590 msg_bytes = 3;
591 reply_bytes = 1;
592 break;
593 }
594
595 for (retry = 0; retry < 5; retry++) {
596 ret = intel_dp_aux_ch(intel_dp,
597 msg, msg_bytes,
598 reply, reply_bytes);
599 if (ret < 0) {
600 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
601 return ret;
602 }
603
604 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
605 case AUX_NATIVE_REPLY_ACK:
606 /* I2C-over-AUX Reply field is only valid
607 * when paired with AUX ACK.
608 */
609 break;
610 case AUX_NATIVE_REPLY_NACK:
611 DRM_DEBUG_KMS("aux_ch native nack\n");
612 return -EREMOTEIO;
613 case AUX_NATIVE_REPLY_DEFER:
614 udelay(100);
615 continue;
616 default:
617 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
618 reply[0]);
619 return -EREMOTEIO;
620 }
621
622 switch (reply[0] & AUX_I2C_REPLY_MASK) {
623 case AUX_I2C_REPLY_ACK:
624 if (mode == MODE_I2C_READ) {
625 *read_byte = reply[1];
626 }
627 return reply_bytes - 1;
628 case AUX_I2C_REPLY_NACK:
629 DRM_DEBUG_KMS("aux_i2c nack\n");
630 return -EREMOTEIO;
631 case AUX_I2C_REPLY_DEFER:
632 DRM_DEBUG_KMS("aux_i2c defer\n");
633 udelay(100);
634 break;
635 default:
636 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
637 return -EREMOTEIO;
638 }
639 }
640
641 DRM_ERROR("too many retries, giving up\n");
642 return -EREMOTEIO;
643 }
644
645 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
646 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
647
648 static int
649 intel_dp_i2c_init(struct intel_dp *intel_dp,
650 struct intel_connector *intel_connector, const char *name)
651 {
652 int ret;
653
654 DRM_DEBUG_KMS("i2c_init %s\n", name);
655 intel_dp->algo.running = false;
656 intel_dp->algo.address = 0;
657 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
658
659 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
660 intel_dp->adapter.owner = THIS_MODULE;
661 intel_dp->adapter.class = I2C_CLASS_DDC;
662 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
663 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
664 intel_dp->adapter.algo_data = &intel_dp->algo;
665 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
666
667 ironlake_edp_panel_vdd_on(intel_dp);
668 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
669 ironlake_edp_panel_vdd_off(intel_dp, false);
670 return ret;
671 }
672
673 static bool
674 intel_dp_mode_fixup(struct drm_encoder *encoder,
675 const struct drm_display_mode *mode,
676 struct drm_display_mode *adjusted_mode)
677 {
678 struct drm_device *dev = encoder->dev;
679 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
680 int lane_count, clock;
681 int max_lane_count = intel_dp_max_lane_count(intel_dp);
682 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
683 int bpp, mode_rate;
684 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
685
686 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
687 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
688 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
689 mode, adjusted_mode);
690 }
691
692 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
693 return false;
694
695 DRM_DEBUG_KMS("DP link computation with max lane count %i "
696 "max bw %02x pixel clock %iKHz\n",
697 max_lane_count, bws[max_clock], adjusted_mode->clock);
698
699 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
700 return false;
701
702 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
703 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
704
705 for (clock = 0; clock <= max_clock; clock++) {
706 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
707 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
708
709 if (mode_rate <= link_avail) {
710 intel_dp->link_bw = bws[clock];
711 intel_dp->lane_count = lane_count;
712 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
713 DRM_DEBUG_KMS("DP link bw %02x lane "
714 "count %d clock %d bpp %d\n",
715 intel_dp->link_bw, intel_dp->lane_count,
716 adjusted_mode->clock, bpp);
717 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
718 mode_rate, link_avail);
719 return true;
720 }
721 }
722 }
723
724 return false;
725 }
726
727 struct intel_dp_m_n {
728 uint32_t tu;
729 uint32_t gmch_m;
730 uint32_t gmch_n;
731 uint32_t link_m;
732 uint32_t link_n;
733 };
734
735 static void
736 intel_reduce_ratio(uint32_t *num, uint32_t *den)
737 {
738 while (*num > 0xffffff || *den > 0xffffff) {
739 *num >>= 1;
740 *den >>= 1;
741 }
742 }
743
744 static void
745 intel_dp_compute_m_n(int bpp,
746 int nlanes,
747 int pixel_clock,
748 int link_clock,
749 struct intel_dp_m_n *m_n)
750 {
751 m_n->tu = 64;
752 m_n->gmch_m = (pixel_clock * bpp) >> 3;
753 m_n->gmch_n = link_clock * nlanes;
754 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
755 m_n->link_m = pixel_clock;
756 m_n->link_n = link_clock;
757 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
758 }
759
760 void
761 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
762 struct drm_display_mode *adjusted_mode)
763 {
764 struct drm_device *dev = crtc->dev;
765 struct intel_encoder *encoder;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
768 int lane_count = 4;
769 struct intel_dp_m_n m_n;
770 int pipe = intel_crtc->pipe;
771
772 /*
773 * Find the lane count in the intel_encoder private
774 */
775 for_each_encoder_on_crtc(dev, crtc, encoder) {
776 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
777
778 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
779 intel_dp->base.type == INTEL_OUTPUT_EDP)
780 {
781 lane_count = intel_dp->lane_count;
782 break;
783 }
784 }
785
786 /*
787 * Compute the GMCH and Link ratios. The '3' here is
788 * the number of bytes_per_pixel post-LUT, which we always
789 * set up for 8-bits of R/G/B, or 3 bytes total.
790 */
791 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
792 mode->clock, adjusted_mode->clock, &m_n);
793
794 if (HAS_PCH_SPLIT(dev)) {
795 I915_WRITE(TRANSDATA_M1(pipe),
796 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797 m_n.gmch_m);
798 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
799 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
800 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
801 } else {
802 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
803 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
804 m_n.gmch_m);
805 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
806 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
807 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
808 }
809 }
810
811 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
812 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
813
814 static void
815 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
816 struct drm_display_mode *adjusted_mode)
817 {
818 struct drm_device *dev = encoder->dev;
819 struct drm_i915_private *dev_priv = dev->dev_private;
820 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
821 struct drm_crtc *crtc = intel_dp->base.base.crtc;
822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
823
824 /* Turn on the eDP PLL if needed */
825 if (is_edp(intel_dp)) {
826 if (!is_pch_edp(intel_dp))
827 ironlake_edp_pll_on(encoder);
828 else
829 ironlake_edp_pll_off(encoder);
830 }
831
832 /*
833 * There are four kinds of DP registers:
834 *
835 * IBX PCH
836 * SNB CPU
837 * IVB CPU
838 * CPT PCH
839 *
840 * IBX PCH and CPU are the same for almost everything,
841 * except that the CPU DP PLL is configured in this
842 * register
843 *
844 * CPT PCH is quite different, having many bits moved
845 * to the TRANS_DP_CTL register instead. That
846 * configuration happens (oddly) in ironlake_pch_enable
847 */
848
849 /* Preserve the BIOS-computed detected bit. This is
850 * supposed to be read-only.
851 */
852 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
853 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
854
855 /* Handle DP bits in common between all three register formats */
856
857 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
858
859 switch (intel_dp->lane_count) {
860 case 1:
861 intel_dp->DP |= DP_PORT_WIDTH_1;
862 break;
863 case 2:
864 intel_dp->DP |= DP_PORT_WIDTH_2;
865 break;
866 case 4:
867 intel_dp->DP |= DP_PORT_WIDTH_4;
868 break;
869 }
870 if (intel_dp->has_audio) {
871 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
872 pipe_name(intel_crtc->pipe));
873 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
874 intel_write_eld(encoder, adjusted_mode);
875 }
876 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
877 intel_dp->link_configuration[0] = intel_dp->link_bw;
878 intel_dp->link_configuration[1] = intel_dp->lane_count;
879 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
880 /*
881 * Check for DPCD version > 1.1 and enhanced framing support
882 */
883 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
884 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
885 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
886 }
887
888 /* Split out the IBX/CPU vs CPT settings */
889
890 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
891 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
892 intel_dp->DP |= DP_SYNC_HS_HIGH;
893 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
894 intel_dp->DP |= DP_SYNC_VS_HIGH;
895 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
896
897 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
898 intel_dp->DP |= DP_ENHANCED_FRAMING;
899
900 intel_dp->DP |= intel_crtc->pipe << 29;
901
902 /* don't miss out required setting for eDP */
903 intel_dp->DP |= DP_PLL_ENABLE;
904 if (adjusted_mode->clock < 200000)
905 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
906 else
907 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
908 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
909 intel_dp->DP |= intel_dp->color_range;
910
911 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
912 intel_dp->DP |= DP_SYNC_HS_HIGH;
913 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
914 intel_dp->DP |= DP_SYNC_VS_HIGH;
915 intel_dp->DP |= DP_LINK_TRAIN_OFF;
916
917 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
918 intel_dp->DP |= DP_ENHANCED_FRAMING;
919
920 if (intel_crtc->pipe == 1)
921 intel_dp->DP |= DP_PIPEB_SELECT;
922
923 if (is_cpu_edp(intel_dp)) {
924 /* don't miss out required setting for eDP */
925 intel_dp->DP |= DP_PLL_ENABLE;
926 if (adjusted_mode->clock < 200000)
927 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
928 else
929 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
930 }
931 } else {
932 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
933 }
934 }
935
936 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
937 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
938
939 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
940 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
941
942 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
943 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
944
945 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
946 u32 mask,
947 u32 value)
948 {
949 struct drm_device *dev = intel_dp->base.base.dev;
950 struct drm_i915_private *dev_priv = dev->dev_private;
951
952 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
953 mask, value,
954 I915_READ(PCH_PP_STATUS),
955 I915_READ(PCH_PP_CONTROL));
956
957 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
958 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
959 I915_READ(PCH_PP_STATUS),
960 I915_READ(PCH_PP_CONTROL));
961 }
962 }
963
964 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
965 {
966 DRM_DEBUG_KMS("Wait for panel power on\n");
967 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
968 }
969
970 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
971 {
972 DRM_DEBUG_KMS("Wait for panel power off time\n");
973 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
974 }
975
976 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
977 {
978 DRM_DEBUG_KMS("Wait for panel power cycle\n");
979 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
980 }
981
982
983 /* Read the current pp_control value, unlocking the register if it
984 * is locked
985 */
986
987 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
988 {
989 u32 control = I915_READ(PCH_PP_CONTROL);
990
991 control &= ~PANEL_UNLOCK_MASK;
992 control |= PANEL_UNLOCK_REGS;
993 return control;
994 }
995
996 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
997 {
998 struct drm_device *dev = intel_dp->base.base.dev;
999 struct drm_i915_private *dev_priv = dev->dev_private;
1000 u32 pp;
1001
1002 if (!is_edp(intel_dp))
1003 return;
1004 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1005
1006 WARN(intel_dp->want_panel_vdd,
1007 "eDP VDD already requested on\n");
1008
1009 intel_dp->want_panel_vdd = true;
1010
1011 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1012 DRM_DEBUG_KMS("eDP VDD already on\n");
1013 return;
1014 }
1015
1016 if (!ironlake_edp_have_panel_power(intel_dp))
1017 ironlake_wait_panel_power_cycle(intel_dp);
1018
1019 pp = ironlake_get_pp_control(dev_priv);
1020 pp |= EDP_FORCE_VDD;
1021 I915_WRITE(PCH_PP_CONTROL, pp);
1022 POSTING_READ(PCH_PP_CONTROL);
1023 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1024 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1025
1026 /*
1027 * If the panel wasn't on, delay before accessing aux channel
1028 */
1029 if (!ironlake_edp_have_panel_power(intel_dp)) {
1030 DRM_DEBUG_KMS("eDP was not running\n");
1031 msleep(intel_dp->panel_power_up_delay);
1032 }
1033 }
1034
1035 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1036 {
1037 struct drm_device *dev = intel_dp->base.base.dev;
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1039 u32 pp;
1040
1041 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1042 pp = ironlake_get_pp_control(dev_priv);
1043 pp &= ~EDP_FORCE_VDD;
1044 I915_WRITE(PCH_PP_CONTROL, pp);
1045 POSTING_READ(PCH_PP_CONTROL);
1046
1047 /* Make sure sequencer is idle before allowing subsequent activity */
1048 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1049 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1050
1051 msleep(intel_dp->panel_power_down_delay);
1052 }
1053 }
1054
1055 static void ironlake_panel_vdd_work(struct work_struct *__work)
1056 {
1057 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1058 struct intel_dp, panel_vdd_work);
1059 struct drm_device *dev = intel_dp->base.base.dev;
1060
1061 mutex_lock(&dev->mode_config.mutex);
1062 ironlake_panel_vdd_off_sync(intel_dp);
1063 mutex_unlock(&dev->mode_config.mutex);
1064 }
1065
1066 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1067 {
1068 if (!is_edp(intel_dp))
1069 return;
1070
1071 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1072 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1073
1074 intel_dp->want_panel_vdd = false;
1075
1076 if (sync) {
1077 ironlake_panel_vdd_off_sync(intel_dp);
1078 } else {
1079 /*
1080 * Queue the timer to fire a long
1081 * time from now (relative to the power down delay)
1082 * to keep the panel power up across a sequence of operations
1083 */
1084 schedule_delayed_work(&intel_dp->panel_vdd_work,
1085 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1086 }
1087 }
1088
1089 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1090 {
1091 struct drm_device *dev = intel_dp->base.base.dev;
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 u32 pp;
1094
1095 if (!is_edp(intel_dp))
1096 return;
1097
1098 DRM_DEBUG_KMS("Turn eDP power on\n");
1099
1100 if (ironlake_edp_have_panel_power(intel_dp)) {
1101 DRM_DEBUG_KMS("eDP power already on\n");
1102 return;
1103 }
1104
1105 ironlake_wait_panel_power_cycle(intel_dp);
1106
1107 pp = ironlake_get_pp_control(dev_priv);
1108 if (IS_GEN5(dev)) {
1109 /* ILK workaround: disable reset around power sequence */
1110 pp &= ~PANEL_POWER_RESET;
1111 I915_WRITE(PCH_PP_CONTROL, pp);
1112 POSTING_READ(PCH_PP_CONTROL);
1113 }
1114
1115 pp |= POWER_TARGET_ON;
1116 if (!IS_GEN5(dev))
1117 pp |= PANEL_POWER_RESET;
1118
1119 I915_WRITE(PCH_PP_CONTROL, pp);
1120 POSTING_READ(PCH_PP_CONTROL);
1121
1122 ironlake_wait_panel_on(intel_dp);
1123
1124 if (IS_GEN5(dev)) {
1125 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1126 I915_WRITE(PCH_PP_CONTROL, pp);
1127 POSTING_READ(PCH_PP_CONTROL);
1128 }
1129 }
1130
1131 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1132 {
1133 struct drm_device *dev = intel_dp->base.base.dev;
1134 struct drm_i915_private *dev_priv = dev->dev_private;
1135 u32 pp;
1136
1137 if (!is_edp(intel_dp))
1138 return;
1139
1140 DRM_DEBUG_KMS("Turn eDP power off\n");
1141
1142 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1143
1144 pp = ironlake_get_pp_control(dev_priv);
1145 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1146 I915_WRITE(PCH_PP_CONTROL, pp);
1147 POSTING_READ(PCH_PP_CONTROL);
1148
1149 ironlake_wait_panel_off(intel_dp);
1150 }
1151
1152 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1153 {
1154 struct drm_device *dev = intel_dp->base.base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 u32 pp;
1157
1158 if (!is_edp(intel_dp))
1159 return;
1160
1161 DRM_DEBUG_KMS("\n");
1162 /*
1163 * If we enable the backlight right away following a panel power
1164 * on, we may see slight flicker as the panel syncs with the eDP
1165 * link. So delay a bit to make sure the image is solid before
1166 * allowing it to appear.
1167 */
1168 msleep(intel_dp->backlight_on_delay);
1169 pp = ironlake_get_pp_control(dev_priv);
1170 pp |= EDP_BLC_ENABLE;
1171 I915_WRITE(PCH_PP_CONTROL, pp);
1172 POSTING_READ(PCH_PP_CONTROL);
1173 }
1174
1175 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1176 {
1177 struct drm_device *dev = intel_dp->base.base.dev;
1178 struct drm_i915_private *dev_priv = dev->dev_private;
1179 u32 pp;
1180
1181 if (!is_edp(intel_dp))
1182 return;
1183
1184 DRM_DEBUG_KMS("\n");
1185 pp = ironlake_get_pp_control(dev_priv);
1186 pp &= ~EDP_BLC_ENABLE;
1187 I915_WRITE(PCH_PP_CONTROL, pp);
1188 POSTING_READ(PCH_PP_CONTROL);
1189 msleep(intel_dp->backlight_off_delay);
1190 }
1191
1192 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1193 {
1194 struct drm_device *dev = encoder->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 u32 dpa_ctl;
1197
1198 DRM_DEBUG_KMS("\n");
1199 dpa_ctl = I915_READ(DP_A);
1200 dpa_ctl |= DP_PLL_ENABLE;
1201 I915_WRITE(DP_A, dpa_ctl);
1202 POSTING_READ(DP_A);
1203 udelay(200);
1204 }
1205
1206 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1207 {
1208 struct drm_device *dev = encoder->dev;
1209 struct drm_i915_private *dev_priv = dev->dev_private;
1210 u32 dpa_ctl;
1211
1212 dpa_ctl = I915_READ(DP_A);
1213 dpa_ctl &= ~DP_PLL_ENABLE;
1214 I915_WRITE(DP_A, dpa_ctl);
1215 POSTING_READ(DP_A);
1216 udelay(200);
1217 }
1218
1219 /* If the sink supports it, try to set the power state appropriately */
1220 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1221 {
1222 int ret, i;
1223
1224 /* Should have a valid DPCD by this point */
1225 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1226 return;
1227
1228 if (mode != DRM_MODE_DPMS_ON) {
1229 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1230 DP_SET_POWER_D3);
1231 if (ret != 1)
1232 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1233 } else {
1234 /*
1235 * When turning on, we need to retry for 1ms to give the sink
1236 * time to wake up.
1237 */
1238 for (i = 0; i < 3; i++) {
1239 ret = intel_dp_aux_native_write_1(intel_dp,
1240 DP_SET_POWER,
1241 DP_SET_POWER_D0);
1242 if (ret == 1)
1243 break;
1244 msleep(1);
1245 }
1246 }
1247 }
1248
1249 static void intel_dp_prepare(struct drm_encoder *encoder)
1250 {
1251 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1252
1253
1254 /* Make sure the panel is off before trying to change the mode. But also
1255 * ensure that we have vdd while we switch off the panel. */
1256 ironlake_edp_panel_vdd_on(intel_dp);
1257 ironlake_edp_backlight_off(intel_dp);
1258 ironlake_edp_panel_off(intel_dp);
1259
1260 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1261 intel_dp_link_down(intel_dp);
1262 ironlake_edp_panel_vdd_off(intel_dp, false);
1263 }
1264
1265 static void intel_dp_commit(struct drm_encoder *encoder)
1266 {
1267 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1268 struct drm_device *dev = encoder->dev;
1269 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1270
1271 ironlake_edp_panel_vdd_on(intel_dp);
1272 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1273 intel_dp_start_link_train(intel_dp);
1274 ironlake_edp_panel_on(intel_dp);
1275 ironlake_edp_panel_vdd_off(intel_dp, true);
1276 intel_dp_complete_link_train(intel_dp);
1277 ironlake_edp_backlight_on(intel_dp);
1278
1279 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1280
1281 if (HAS_PCH_CPT(dev))
1282 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1283 }
1284
1285 static void
1286 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1287 {
1288 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1289 struct drm_device *dev = encoder->dev;
1290 struct drm_i915_private *dev_priv = dev->dev_private;
1291 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1292
1293 if (mode != DRM_MODE_DPMS_ON) {
1294 /* Switching the panel off requires vdd. */
1295 ironlake_edp_panel_vdd_on(intel_dp);
1296 ironlake_edp_backlight_off(intel_dp);
1297 ironlake_edp_panel_off(intel_dp);
1298
1299 intel_dp_sink_dpms(intel_dp, mode);
1300 intel_dp_link_down(intel_dp);
1301 ironlake_edp_panel_vdd_off(intel_dp, false);
1302
1303 if (is_cpu_edp(intel_dp))
1304 ironlake_edp_pll_off(encoder);
1305 } else {
1306 if (is_cpu_edp(intel_dp))
1307 ironlake_edp_pll_on(encoder);
1308
1309 ironlake_edp_panel_vdd_on(intel_dp);
1310 intel_dp_sink_dpms(intel_dp, mode);
1311 if (!(dp_reg & DP_PORT_EN)) {
1312 intel_dp_start_link_train(intel_dp);
1313 ironlake_edp_panel_on(intel_dp);
1314 ironlake_edp_panel_vdd_off(intel_dp, true);
1315 intel_dp_complete_link_train(intel_dp);
1316 } else
1317 ironlake_edp_panel_vdd_off(intel_dp, false);
1318 ironlake_edp_backlight_on(intel_dp);
1319 }
1320 intel_dp->dpms_mode = mode;
1321 }
1322
1323 /*
1324 * Native read with retry for link status and receiver capability reads for
1325 * cases where the sink may still be asleep.
1326 */
1327 static bool
1328 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1329 uint8_t *recv, int recv_bytes)
1330 {
1331 int ret, i;
1332
1333 /*
1334 * Sinks are *supposed* to come up within 1ms from an off state,
1335 * but we're also supposed to retry 3 times per the spec.
1336 */
1337 for (i = 0; i < 3; i++) {
1338 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1339 recv_bytes);
1340 if (ret == recv_bytes)
1341 return true;
1342 msleep(1);
1343 }
1344
1345 return false;
1346 }
1347
1348 /*
1349 * Fetch AUX CH registers 0x202 - 0x207 which contain
1350 * link status information
1351 */
1352 static bool
1353 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1354 {
1355 return intel_dp_aux_native_read_retry(intel_dp,
1356 DP_LANE0_1_STATUS,
1357 link_status,
1358 DP_LINK_STATUS_SIZE);
1359 }
1360
1361 static uint8_t
1362 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1363 int r)
1364 {
1365 return link_status[r - DP_LANE0_1_STATUS];
1366 }
1367
1368 static uint8_t
1369 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1370 int lane)
1371 {
1372 int s = ((lane & 1) ?
1373 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1374 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1375 uint8_t l = adjust_request[lane>>1];
1376
1377 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1378 }
1379
1380 static uint8_t
1381 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1382 int lane)
1383 {
1384 int s = ((lane & 1) ?
1385 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1386 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1387 uint8_t l = adjust_request[lane>>1];
1388
1389 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1390 }
1391
1392
1393 #if 0
1394 static char *voltage_names[] = {
1395 "0.4V", "0.6V", "0.8V", "1.2V"
1396 };
1397 static char *pre_emph_names[] = {
1398 "0dB", "3.5dB", "6dB", "9.5dB"
1399 };
1400 static char *link_train_names[] = {
1401 "pattern 1", "pattern 2", "idle", "off"
1402 };
1403 #endif
1404
1405 /*
1406 * These are source-specific values; current Intel hardware supports
1407 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1408 */
1409
1410 static uint8_t
1411 intel_dp_voltage_max(struct intel_dp *intel_dp)
1412 {
1413 struct drm_device *dev = intel_dp->base.base.dev;
1414
1415 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1416 return DP_TRAIN_VOLTAGE_SWING_800;
1417 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1418 return DP_TRAIN_VOLTAGE_SWING_1200;
1419 else
1420 return DP_TRAIN_VOLTAGE_SWING_800;
1421 }
1422
1423 static uint8_t
1424 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1425 {
1426 struct drm_device *dev = intel_dp->base.base.dev;
1427
1428 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1429 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1430 case DP_TRAIN_VOLTAGE_SWING_400:
1431 return DP_TRAIN_PRE_EMPHASIS_6;
1432 case DP_TRAIN_VOLTAGE_SWING_600:
1433 case DP_TRAIN_VOLTAGE_SWING_800:
1434 return DP_TRAIN_PRE_EMPHASIS_3_5;
1435 default:
1436 return DP_TRAIN_PRE_EMPHASIS_0;
1437 }
1438 } else {
1439 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1440 case DP_TRAIN_VOLTAGE_SWING_400:
1441 return DP_TRAIN_PRE_EMPHASIS_6;
1442 case DP_TRAIN_VOLTAGE_SWING_600:
1443 return DP_TRAIN_PRE_EMPHASIS_6;
1444 case DP_TRAIN_VOLTAGE_SWING_800:
1445 return DP_TRAIN_PRE_EMPHASIS_3_5;
1446 case DP_TRAIN_VOLTAGE_SWING_1200:
1447 default:
1448 return DP_TRAIN_PRE_EMPHASIS_0;
1449 }
1450 }
1451 }
1452
1453 static void
1454 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1455 {
1456 uint8_t v = 0;
1457 uint8_t p = 0;
1458 int lane;
1459 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1460 uint8_t voltage_max;
1461 uint8_t preemph_max;
1462
1463 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1464 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1465 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1466
1467 if (this_v > v)
1468 v = this_v;
1469 if (this_p > p)
1470 p = this_p;
1471 }
1472
1473 voltage_max = intel_dp_voltage_max(intel_dp);
1474 if (v >= voltage_max)
1475 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1476
1477 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1478 if (p >= preemph_max)
1479 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1480
1481 for (lane = 0; lane < 4; lane++)
1482 intel_dp->train_set[lane] = v | p;
1483 }
1484
1485 static uint32_t
1486 intel_dp_signal_levels(uint8_t train_set)
1487 {
1488 uint32_t signal_levels = 0;
1489
1490 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1491 case DP_TRAIN_VOLTAGE_SWING_400:
1492 default:
1493 signal_levels |= DP_VOLTAGE_0_4;
1494 break;
1495 case DP_TRAIN_VOLTAGE_SWING_600:
1496 signal_levels |= DP_VOLTAGE_0_6;
1497 break;
1498 case DP_TRAIN_VOLTAGE_SWING_800:
1499 signal_levels |= DP_VOLTAGE_0_8;
1500 break;
1501 case DP_TRAIN_VOLTAGE_SWING_1200:
1502 signal_levels |= DP_VOLTAGE_1_2;
1503 break;
1504 }
1505 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1506 case DP_TRAIN_PRE_EMPHASIS_0:
1507 default:
1508 signal_levels |= DP_PRE_EMPHASIS_0;
1509 break;
1510 case DP_TRAIN_PRE_EMPHASIS_3_5:
1511 signal_levels |= DP_PRE_EMPHASIS_3_5;
1512 break;
1513 case DP_TRAIN_PRE_EMPHASIS_6:
1514 signal_levels |= DP_PRE_EMPHASIS_6;
1515 break;
1516 case DP_TRAIN_PRE_EMPHASIS_9_5:
1517 signal_levels |= DP_PRE_EMPHASIS_9_5;
1518 break;
1519 }
1520 return signal_levels;
1521 }
1522
1523 /* Gen6's DP voltage swing and pre-emphasis control */
1524 static uint32_t
1525 intel_gen6_edp_signal_levels(uint8_t train_set)
1526 {
1527 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1528 DP_TRAIN_PRE_EMPHASIS_MASK);
1529 switch (signal_levels) {
1530 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1531 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1532 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1533 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1534 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1535 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1536 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1537 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1538 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1539 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1540 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1541 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1542 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1543 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1544 default:
1545 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1546 "0x%x\n", signal_levels);
1547 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1548 }
1549 }
1550
1551 /* Gen7's DP voltage swing and pre-emphasis control */
1552 static uint32_t
1553 intel_gen7_edp_signal_levels(uint8_t train_set)
1554 {
1555 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1556 DP_TRAIN_PRE_EMPHASIS_MASK);
1557 switch (signal_levels) {
1558 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1559 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1560 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1561 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1562 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1563 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1564
1565 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1566 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1567 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1568 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1569
1570 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1571 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1572 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1573 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1574
1575 default:
1576 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1577 "0x%x\n", signal_levels);
1578 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1579 }
1580 }
1581
1582 static uint8_t
1583 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1584 int lane)
1585 {
1586 int s = (lane & 1) * 4;
1587 uint8_t l = link_status[lane>>1];
1588
1589 return (l >> s) & 0xf;
1590 }
1591
1592 /* Check for clock recovery is done on all channels */
1593 static bool
1594 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1595 {
1596 int lane;
1597 uint8_t lane_status;
1598
1599 for (lane = 0; lane < lane_count; lane++) {
1600 lane_status = intel_get_lane_status(link_status, lane);
1601 if ((lane_status & DP_LANE_CR_DONE) == 0)
1602 return false;
1603 }
1604 return true;
1605 }
1606
1607 /* Check to see if channel eq is done on all channels */
1608 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1609 DP_LANE_CHANNEL_EQ_DONE|\
1610 DP_LANE_SYMBOL_LOCKED)
1611 static bool
1612 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1613 {
1614 uint8_t lane_align;
1615 uint8_t lane_status;
1616 int lane;
1617
1618 lane_align = intel_dp_link_status(link_status,
1619 DP_LANE_ALIGN_STATUS_UPDATED);
1620 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1621 return false;
1622 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1623 lane_status = intel_get_lane_status(link_status, lane);
1624 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1625 return false;
1626 }
1627 return true;
1628 }
1629
1630 static bool
1631 intel_dp_set_link_train(struct intel_dp *intel_dp,
1632 uint32_t dp_reg_value,
1633 uint8_t dp_train_pat)
1634 {
1635 struct drm_device *dev = intel_dp->base.base.dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 int ret;
1638
1639 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1640 POSTING_READ(intel_dp->output_reg);
1641
1642 intel_dp_aux_native_write_1(intel_dp,
1643 DP_TRAINING_PATTERN_SET,
1644 dp_train_pat);
1645
1646 ret = intel_dp_aux_native_write(intel_dp,
1647 DP_TRAINING_LANE0_SET,
1648 intel_dp->train_set,
1649 intel_dp->lane_count);
1650 if (ret != intel_dp->lane_count)
1651 return false;
1652
1653 return true;
1654 }
1655
1656 /* Enable corresponding port and start training pattern 1 */
1657 static void
1658 intel_dp_start_link_train(struct intel_dp *intel_dp)
1659 {
1660 struct drm_device *dev = intel_dp->base.base.dev;
1661 struct drm_i915_private *dev_priv = dev->dev_private;
1662 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1663 int i;
1664 uint8_t voltage;
1665 bool clock_recovery = false;
1666 int voltage_tries, loop_tries;
1667 u32 reg;
1668 uint32_t DP = intel_dp->DP;
1669
1670 /*
1671 * On CPT we have to enable the port in training pattern 1, which
1672 * will happen below in intel_dp_set_link_train. Otherwise, enable
1673 * the port and wait for it to become active.
1674 */
1675 if (!HAS_PCH_CPT(dev)) {
1676 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1677 POSTING_READ(intel_dp->output_reg);
1678 intel_wait_for_vblank(dev, intel_crtc->pipe);
1679 }
1680
1681 /* Write the link configuration data */
1682 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1683 intel_dp->link_configuration,
1684 DP_LINK_CONFIGURATION_SIZE);
1685
1686 DP |= DP_PORT_EN;
1687
1688 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1689 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1690 else
1691 DP &= ~DP_LINK_TRAIN_MASK;
1692 memset(intel_dp->train_set, 0, 4);
1693 voltage = 0xff;
1694 voltage_tries = 0;
1695 loop_tries = 0;
1696 clock_recovery = false;
1697 for (;;) {
1698 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1699 uint8_t link_status[DP_LINK_STATUS_SIZE];
1700 uint32_t signal_levels;
1701
1702
1703 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1704 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1705 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1706 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1707 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1708 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1709 } else {
1710 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1711 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1712 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1713 }
1714
1715 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1716 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1717 else
1718 reg = DP | DP_LINK_TRAIN_PAT_1;
1719
1720 if (!intel_dp_set_link_train(intel_dp, reg,
1721 DP_TRAINING_PATTERN_1 |
1722 DP_LINK_SCRAMBLING_DISABLE))
1723 break;
1724 /* Set training pattern 1 */
1725
1726 udelay(100);
1727 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1728 DRM_ERROR("failed to get link status\n");
1729 break;
1730 }
1731
1732 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1733 DRM_DEBUG_KMS("clock recovery OK\n");
1734 clock_recovery = true;
1735 break;
1736 }
1737
1738 /* Check to see if we've tried the max voltage */
1739 for (i = 0; i < intel_dp->lane_count; i++)
1740 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1741 break;
1742 if (i == intel_dp->lane_count && voltage_tries == 5) {
1743 ++loop_tries;
1744 if (loop_tries == 5) {
1745 DRM_DEBUG_KMS("too many full retries, give up\n");
1746 break;
1747 }
1748 memset(intel_dp->train_set, 0, 4);
1749 voltage_tries = 0;
1750 continue;
1751 }
1752
1753 /* Check to see if we've tried the same voltage 5 times */
1754 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1755 ++voltage_tries;
1756 if (voltage_tries == 5) {
1757 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1758 break;
1759 }
1760 } else
1761 voltage_tries = 0;
1762 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1763
1764 /* Compute new intel_dp->train_set as requested by target */
1765 intel_get_adjust_train(intel_dp, link_status);
1766 }
1767
1768 intel_dp->DP = DP;
1769 }
1770
1771 static void
1772 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1773 {
1774 struct drm_device *dev = intel_dp->base.base.dev;
1775 struct drm_i915_private *dev_priv = dev->dev_private;
1776 bool channel_eq = false;
1777 int tries, cr_tries;
1778 u32 reg;
1779 uint32_t DP = intel_dp->DP;
1780
1781 /* channel equalization */
1782 tries = 0;
1783 cr_tries = 0;
1784 channel_eq = false;
1785 for (;;) {
1786 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1787 uint32_t signal_levels;
1788 uint8_t link_status[DP_LINK_STATUS_SIZE];
1789
1790 if (cr_tries > 5) {
1791 DRM_ERROR("failed to train DP, aborting\n");
1792 intel_dp_link_down(intel_dp);
1793 break;
1794 }
1795
1796 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1797 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1798 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1799 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1800 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1801 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1802 } else {
1803 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1804 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1805 }
1806
1807 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1808 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1809 else
1810 reg = DP | DP_LINK_TRAIN_PAT_2;
1811
1812 /* channel eq pattern */
1813 if (!intel_dp_set_link_train(intel_dp, reg,
1814 DP_TRAINING_PATTERN_2 |
1815 DP_LINK_SCRAMBLING_DISABLE))
1816 break;
1817
1818 udelay(400);
1819 if (!intel_dp_get_link_status(intel_dp, link_status))
1820 break;
1821
1822 /* Make sure clock is still ok */
1823 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1824 intel_dp_start_link_train(intel_dp);
1825 cr_tries++;
1826 continue;
1827 }
1828
1829 if (intel_channel_eq_ok(intel_dp, link_status)) {
1830 channel_eq = true;
1831 break;
1832 }
1833
1834 /* Try 5 times, then try clock recovery if that fails */
1835 if (tries > 5) {
1836 intel_dp_link_down(intel_dp);
1837 intel_dp_start_link_train(intel_dp);
1838 tries = 0;
1839 cr_tries++;
1840 continue;
1841 }
1842
1843 /* Compute new intel_dp->train_set as requested by target */
1844 intel_get_adjust_train(intel_dp, link_status);
1845 ++tries;
1846 }
1847
1848 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1849 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1850 else
1851 reg = DP | DP_LINK_TRAIN_OFF;
1852
1853 I915_WRITE(intel_dp->output_reg, reg);
1854 POSTING_READ(intel_dp->output_reg);
1855 intel_dp_aux_native_write_1(intel_dp,
1856 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1857 }
1858
1859 static void
1860 intel_dp_link_down(struct intel_dp *intel_dp)
1861 {
1862 struct drm_device *dev = intel_dp->base.base.dev;
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 uint32_t DP = intel_dp->DP;
1865
1866 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1867 return;
1868
1869 DRM_DEBUG_KMS("\n");
1870
1871 if (is_edp(intel_dp)) {
1872 DP &= ~DP_PLL_ENABLE;
1873 I915_WRITE(intel_dp->output_reg, DP);
1874 POSTING_READ(intel_dp->output_reg);
1875 udelay(100);
1876 }
1877
1878 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1879 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1880 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1881 } else {
1882 DP &= ~DP_LINK_TRAIN_MASK;
1883 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1884 }
1885 POSTING_READ(intel_dp->output_reg);
1886
1887 msleep(17);
1888
1889 if (is_edp(intel_dp)) {
1890 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1891 DP |= DP_LINK_TRAIN_OFF_CPT;
1892 else
1893 DP |= DP_LINK_TRAIN_OFF;
1894 }
1895
1896 if (HAS_PCH_IBX(dev) &&
1897 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1898 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1899
1900 /* Hardware workaround: leaving our transcoder select
1901 * set to transcoder B while it's off will prevent the
1902 * corresponding HDMI output on transcoder A.
1903 *
1904 * Combine this with another hardware workaround:
1905 * transcoder select bit can only be cleared while the
1906 * port is enabled.
1907 */
1908 DP &= ~DP_PIPEB_SELECT;
1909 I915_WRITE(intel_dp->output_reg, DP);
1910
1911 /* Changes to enable or select take place the vblank
1912 * after being written.
1913 */
1914 if (crtc == NULL) {
1915 /* We can arrive here never having been attached
1916 * to a CRTC, for instance, due to inheriting
1917 * random state from the BIOS.
1918 *
1919 * If the pipe is not running, play safe and
1920 * wait for the clocks to stabilise before
1921 * continuing.
1922 */
1923 POSTING_READ(intel_dp->output_reg);
1924 msleep(50);
1925 } else
1926 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1927 }
1928
1929 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1930 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1931 POSTING_READ(intel_dp->output_reg);
1932 msleep(intel_dp->panel_power_down_delay);
1933 }
1934
1935 static bool
1936 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1937 {
1938 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1939 sizeof(intel_dp->dpcd)) &&
1940 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1941 return true;
1942 }
1943
1944 return false;
1945 }
1946
1947 static void
1948 intel_dp_probe_oui(struct intel_dp *intel_dp)
1949 {
1950 u8 buf[3];
1951
1952 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1953 return;
1954
1955 ironlake_edp_panel_vdd_on(intel_dp);
1956
1957 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1958 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1959 buf[0], buf[1], buf[2]);
1960
1961 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1962 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1963 buf[0], buf[1], buf[2]);
1964
1965 ironlake_edp_panel_vdd_off(intel_dp, false);
1966 }
1967
1968 static bool
1969 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1970 {
1971 int ret;
1972
1973 ret = intel_dp_aux_native_read_retry(intel_dp,
1974 DP_DEVICE_SERVICE_IRQ_VECTOR,
1975 sink_irq_vector, 1);
1976 if (!ret)
1977 return false;
1978
1979 return true;
1980 }
1981
1982 static void
1983 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1984 {
1985 /* NAK by default */
1986 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1987 }
1988
1989 /*
1990 * According to DP spec
1991 * 5.1.2:
1992 * 1. Read DPCD
1993 * 2. Configure link according to Receiver Capabilities
1994 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1995 * 4. Check link status on receipt of hot-plug interrupt
1996 */
1997
1998 static void
1999 intel_dp_check_link_status(struct intel_dp *intel_dp)
2000 {
2001 u8 sink_irq_vector;
2002 u8 link_status[DP_LINK_STATUS_SIZE];
2003
2004 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2005 return;
2006
2007 if (!intel_dp->base.base.crtc)
2008 return;
2009
2010 /* Try to read receiver status if the link appears to be up */
2011 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2012 intel_dp_link_down(intel_dp);
2013 return;
2014 }
2015
2016 /* Now read the DPCD to see if it's actually running */
2017 if (!intel_dp_get_dpcd(intel_dp)) {
2018 intel_dp_link_down(intel_dp);
2019 return;
2020 }
2021
2022 /* Try to read the source of the interrupt */
2023 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2024 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2025 /* Clear interrupt source */
2026 intel_dp_aux_native_write_1(intel_dp,
2027 DP_DEVICE_SERVICE_IRQ_VECTOR,
2028 sink_irq_vector);
2029
2030 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2031 intel_dp_handle_test_request(intel_dp);
2032 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2033 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2034 }
2035
2036 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2037 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2038 drm_get_encoder_name(&intel_dp->base.base));
2039 intel_dp_start_link_train(intel_dp);
2040 intel_dp_complete_link_train(intel_dp);
2041 }
2042 }
2043
2044 static enum drm_connector_status
2045 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2046 {
2047 if (intel_dp_get_dpcd(intel_dp))
2048 return connector_status_connected;
2049 return connector_status_disconnected;
2050 }
2051
2052 static enum drm_connector_status
2053 ironlake_dp_detect(struct intel_dp *intel_dp)
2054 {
2055 enum drm_connector_status status;
2056
2057 /* Can't disconnect eDP, but you can close the lid... */
2058 if (is_edp(intel_dp)) {
2059 status = intel_panel_detect(intel_dp->base.base.dev);
2060 if (status == connector_status_unknown)
2061 status = connector_status_connected;
2062 return status;
2063 }
2064
2065 return intel_dp_detect_dpcd(intel_dp);
2066 }
2067
2068 static enum drm_connector_status
2069 g4x_dp_detect(struct intel_dp *intel_dp)
2070 {
2071 struct drm_device *dev = intel_dp->base.base.dev;
2072 struct drm_i915_private *dev_priv = dev->dev_private;
2073 uint32_t bit;
2074
2075 switch (intel_dp->output_reg) {
2076 case DP_B:
2077 bit = DPB_HOTPLUG_LIVE_STATUS;
2078 break;
2079 case DP_C:
2080 bit = DPC_HOTPLUG_LIVE_STATUS;
2081 break;
2082 case DP_D:
2083 bit = DPD_HOTPLUG_LIVE_STATUS;
2084 break;
2085 default:
2086 return connector_status_unknown;
2087 }
2088
2089 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2090 return connector_status_disconnected;
2091
2092 return intel_dp_detect_dpcd(intel_dp);
2093 }
2094
2095 static struct edid *
2096 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2097 {
2098 struct intel_dp *intel_dp = intel_attached_dp(connector);
2099 struct edid *edid;
2100 int size;
2101
2102 if (is_edp(intel_dp)) {
2103 if (!intel_dp->edid)
2104 return NULL;
2105
2106 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2107 edid = kmalloc(size, GFP_KERNEL);
2108 if (!edid)
2109 return NULL;
2110
2111 memcpy(edid, intel_dp->edid, size);
2112 return edid;
2113 }
2114
2115 edid = drm_get_edid(connector, adapter);
2116 return edid;
2117 }
2118
2119 static int
2120 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2121 {
2122 struct intel_dp *intel_dp = intel_attached_dp(connector);
2123 int ret;
2124
2125 if (is_edp(intel_dp)) {
2126 drm_mode_connector_update_edid_property(connector,
2127 intel_dp->edid);
2128 ret = drm_add_edid_modes(connector, intel_dp->edid);
2129 drm_edid_to_eld(connector,
2130 intel_dp->edid);
2131 connector->display_info.raw_edid = NULL;
2132 return intel_dp->edid_mode_count;
2133 }
2134
2135 ret = intel_ddc_get_modes(connector, adapter);
2136 return ret;
2137 }
2138
2139
2140 /**
2141 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2142 *
2143 * \return true if DP port is connected.
2144 * \return false if DP port is disconnected.
2145 */
2146 static enum drm_connector_status
2147 intel_dp_detect(struct drm_connector *connector, bool force)
2148 {
2149 struct intel_dp *intel_dp = intel_attached_dp(connector);
2150 struct drm_device *dev = intel_dp->base.base.dev;
2151 enum drm_connector_status status;
2152 struct edid *edid = NULL;
2153
2154 intel_dp->has_audio = false;
2155
2156 if (HAS_PCH_SPLIT(dev))
2157 status = ironlake_dp_detect(intel_dp);
2158 else
2159 status = g4x_dp_detect(intel_dp);
2160
2161 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2162 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2163 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2164 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2165
2166 if (status != connector_status_connected)
2167 return status;
2168
2169 intel_dp_probe_oui(intel_dp);
2170
2171 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2172 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2173 } else {
2174 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2175 if (edid) {
2176 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2177 connector->display_info.raw_edid = NULL;
2178 kfree(edid);
2179 }
2180 }
2181
2182 return connector_status_connected;
2183 }
2184
2185 static int intel_dp_get_modes(struct drm_connector *connector)
2186 {
2187 struct intel_dp *intel_dp = intel_attached_dp(connector);
2188 struct drm_device *dev = intel_dp->base.base.dev;
2189 struct drm_i915_private *dev_priv = dev->dev_private;
2190 int ret;
2191
2192 /* We should parse the EDID data and find out if it has an audio sink
2193 */
2194
2195 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2196 if (ret) {
2197 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2198 struct drm_display_mode *newmode;
2199 list_for_each_entry(newmode, &connector->probed_modes,
2200 head) {
2201 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2202 intel_dp->panel_fixed_mode =
2203 drm_mode_duplicate(dev, newmode);
2204 break;
2205 }
2206 }
2207 }
2208 return ret;
2209 }
2210
2211 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2212 if (is_edp(intel_dp)) {
2213 /* initialize panel mode from VBT if available for eDP */
2214 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2215 intel_dp->panel_fixed_mode =
2216 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2217 if (intel_dp->panel_fixed_mode) {
2218 intel_dp->panel_fixed_mode->type |=
2219 DRM_MODE_TYPE_PREFERRED;
2220 }
2221 }
2222 if (intel_dp->panel_fixed_mode) {
2223 struct drm_display_mode *mode;
2224 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2225 drm_mode_probed_add(connector, mode);
2226 return 1;
2227 }
2228 }
2229 return 0;
2230 }
2231
2232 static bool
2233 intel_dp_detect_audio(struct drm_connector *connector)
2234 {
2235 struct intel_dp *intel_dp = intel_attached_dp(connector);
2236 struct edid *edid;
2237 bool has_audio = false;
2238
2239 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2240 if (edid) {
2241 has_audio = drm_detect_monitor_audio(edid);
2242
2243 connector->display_info.raw_edid = NULL;
2244 kfree(edid);
2245 }
2246
2247 return has_audio;
2248 }
2249
2250 static int
2251 intel_dp_set_property(struct drm_connector *connector,
2252 struct drm_property *property,
2253 uint64_t val)
2254 {
2255 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2256 struct intel_dp *intel_dp = intel_attached_dp(connector);
2257 int ret;
2258
2259 ret = drm_connector_property_set_value(connector, property, val);
2260 if (ret)
2261 return ret;
2262
2263 if (property == dev_priv->force_audio_property) {
2264 int i = val;
2265 bool has_audio;
2266
2267 if (i == intel_dp->force_audio)
2268 return 0;
2269
2270 intel_dp->force_audio = i;
2271
2272 if (i == HDMI_AUDIO_AUTO)
2273 has_audio = intel_dp_detect_audio(connector);
2274 else
2275 has_audio = (i == HDMI_AUDIO_ON);
2276
2277 if (has_audio == intel_dp->has_audio)
2278 return 0;
2279
2280 intel_dp->has_audio = has_audio;
2281 goto done;
2282 }
2283
2284 if (property == dev_priv->broadcast_rgb_property) {
2285 if (val == !!intel_dp->color_range)
2286 return 0;
2287
2288 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2289 goto done;
2290 }
2291
2292 return -EINVAL;
2293
2294 done:
2295 if (intel_dp->base.base.crtc) {
2296 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2297 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2298 crtc->x, crtc->y,
2299 crtc->fb);
2300 }
2301
2302 return 0;
2303 }
2304
2305 static void
2306 intel_dp_destroy(struct drm_connector *connector)
2307 {
2308 struct drm_device *dev = connector->dev;
2309
2310 if (intel_dpd_is_edp(dev))
2311 intel_panel_destroy_backlight(dev);
2312
2313 drm_sysfs_connector_remove(connector);
2314 drm_connector_cleanup(connector);
2315 kfree(connector);
2316 }
2317
2318 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2319 {
2320 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2321
2322 i2c_del_adapter(&intel_dp->adapter);
2323 drm_encoder_cleanup(encoder);
2324 if (is_edp(intel_dp)) {
2325 kfree(intel_dp->edid);
2326 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2327 ironlake_panel_vdd_off_sync(intel_dp);
2328 }
2329 kfree(intel_dp);
2330 }
2331
2332 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2333 .dpms = intel_dp_dpms,
2334 .mode_fixup = intel_dp_mode_fixup,
2335 .prepare = intel_dp_prepare,
2336 .mode_set = intel_dp_mode_set,
2337 .commit = intel_dp_commit,
2338 };
2339
2340 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2341 .dpms = drm_helper_connector_dpms,
2342 .detect = intel_dp_detect,
2343 .fill_modes = drm_helper_probe_single_connector_modes,
2344 .set_property = intel_dp_set_property,
2345 .destroy = intel_dp_destroy,
2346 };
2347
2348 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2349 .get_modes = intel_dp_get_modes,
2350 .mode_valid = intel_dp_mode_valid,
2351 .best_encoder = intel_best_encoder,
2352 };
2353
2354 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2355 .destroy = intel_dp_encoder_destroy,
2356 };
2357
2358 static void
2359 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2360 {
2361 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2362
2363 intel_dp_check_link_status(intel_dp);
2364 }
2365
2366 /* Return which DP Port should be selected for Transcoder DP control */
2367 int
2368 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2369 {
2370 struct drm_device *dev = crtc->dev;
2371 struct intel_encoder *encoder;
2372
2373 for_each_encoder_on_crtc(dev, crtc, encoder) {
2374 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2375
2376 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2377 intel_dp->base.type == INTEL_OUTPUT_EDP)
2378 return intel_dp->output_reg;
2379 }
2380
2381 return -1;
2382 }
2383
2384 /* check the VBT to see whether the eDP is on DP-D port */
2385 bool intel_dpd_is_edp(struct drm_device *dev)
2386 {
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 struct child_device_config *p_child;
2389 int i;
2390
2391 if (!dev_priv->child_dev_num)
2392 return false;
2393
2394 for (i = 0; i < dev_priv->child_dev_num; i++) {
2395 p_child = dev_priv->child_dev + i;
2396
2397 if (p_child->dvo_port == PORT_IDPD &&
2398 p_child->device_type == DEVICE_TYPE_eDP)
2399 return true;
2400 }
2401 return false;
2402 }
2403
2404 static void
2405 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2406 {
2407 intel_attach_force_audio_property(connector);
2408 intel_attach_broadcast_rgb_property(connector);
2409 }
2410
2411 void
2412 intel_dp_init(struct drm_device *dev, int output_reg)
2413 {
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 struct drm_connector *connector;
2416 struct intel_dp *intel_dp;
2417 struct intel_encoder *intel_encoder;
2418 struct intel_connector *intel_connector;
2419 const char *name = NULL;
2420 int type;
2421
2422 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2423 if (!intel_dp)
2424 return;
2425
2426 intel_dp->output_reg = output_reg;
2427 intel_dp->dpms_mode = -1;
2428
2429 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2430 if (!intel_connector) {
2431 kfree(intel_dp);
2432 return;
2433 }
2434 intel_encoder = &intel_dp->base;
2435
2436 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2437 if (intel_dpd_is_edp(dev))
2438 intel_dp->is_pch_edp = true;
2439
2440 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2441 type = DRM_MODE_CONNECTOR_eDP;
2442 intel_encoder->type = INTEL_OUTPUT_EDP;
2443 } else {
2444 type = DRM_MODE_CONNECTOR_DisplayPort;
2445 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2446 }
2447
2448 connector = &intel_connector->base;
2449 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2450 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2451
2452 connector->polled = DRM_CONNECTOR_POLL_HPD;
2453
2454 intel_encoder->cloneable = false;
2455
2456 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2457 ironlake_panel_vdd_work);
2458
2459 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2460
2461 connector->interlace_allowed = true;
2462 connector->doublescan_allowed = 0;
2463
2464 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2465 DRM_MODE_ENCODER_TMDS);
2466 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2467
2468 intel_connector_attach_encoder(intel_connector, intel_encoder);
2469 drm_sysfs_connector_add(connector);
2470
2471 /* Set up the DDC bus. */
2472 switch (output_reg) {
2473 case DP_A:
2474 name = "DPDDC-A";
2475 break;
2476 case DP_B:
2477 case PCH_DP_B:
2478 dev_priv->hotplug_supported_mask |=
2479 DPB_HOTPLUG_INT_STATUS;
2480 name = "DPDDC-B";
2481 break;
2482 case DP_C:
2483 case PCH_DP_C:
2484 dev_priv->hotplug_supported_mask |=
2485 DPC_HOTPLUG_INT_STATUS;
2486 name = "DPDDC-C";
2487 break;
2488 case DP_D:
2489 case PCH_DP_D:
2490 dev_priv->hotplug_supported_mask |=
2491 DPD_HOTPLUG_INT_STATUS;
2492 name = "DPDDC-D";
2493 break;
2494 }
2495
2496 intel_dp_i2c_init(intel_dp, intel_connector, name);
2497
2498 /* Cache some DPCD data in the eDP case */
2499 if (is_edp(intel_dp)) {
2500 bool ret;
2501 struct edp_power_seq cur, vbt;
2502 u32 pp_on, pp_off, pp_div;
2503 struct edid *edid;
2504
2505 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2506 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2507 pp_div = I915_READ(PCH_PP_DIVISOR);
2508
2509 if (!pp_on || !pp_off || !pp_div) {
2510 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2511 intel_dp_encoder_destroy(&intel_dp->base.base);
2512 intel_dp_destroy(&intel_connector->base);
2513 return;
2514 }
2515
2516 /* Pull timing values out of registers */
2517 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2518 PANEL_POWER_UP_DELAY_SHIFT;
2519
2520 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2521 PANEL_LIGHT_ON_DELAY_SHIFT;
2522
2523 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2524 PANEL_LIGHT_OFF_DELAY_SHIFT;
2525
2526 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2527 PANEL_POWER_DOWN_DELAY_SHIFT;
2528
2529 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2530 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2531
2532 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2533 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2534
2535 vbt = dev_priv->edp.pps;
2536
2537 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2538 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2539
2540 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2541
2542 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2543 intel_dp->backlight_on_delay = get_delay(t8);
2544 intel_dp->backlight_off_delay = get_delay(t9);
2545 intel_dp->panel_power_down_delay = get_delay(t10);
2546 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2547
2548 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2549 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2550 intel_dp->panel_power_cycle_delay);
2551
2552 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2553 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2554
2555 ironlake_edp_panel_vdd_on(intel_dp);
2556 ret = intel_dp_get_dpcd(intel_dp);
2557 ironlake_edp_panel_vdd_off(intel_dp, false);
2558
2559 if (ret) {
2560 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2561 dev_priv->no_aux_handshake =
2562 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2563 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2564 } else {
2565 /* if this fails, presume the device is a ghost */
2566 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2567 intel_dp_encoder_destroy(&intel_dp->base.base);
2568 intel_dp_destroy(&intel_connector->base);
2569 return;
2570 }
2571
2572 ironlake_edp_panel_vdd_on(intel_dp);
2573 edid = drm_get_edid(connector, &intel_dp->adapter);
2574 if (edid) {
2575 drm_mode_connector_update_edid_property(connector,
2576 edid);
2577 intel_dp->edid_mode_count =
2578 drm_add_edid_modes(connector, edid);
2579 drm_edid_to_eld(connector, edid);
2580 intel_dp->edid = edid;
2581 }
2582 ironlake_edp_panel_vdd_off(intel_dp, false);
2583 }
2584
2585 intel_encoder->hot_plug = intel_dp_hot_plug;
2586
2587 if (is_edp(intel_dp)) {
2588 dev_priv->int_edp_connector = connector;
2589 intel_panel_setup_backlight(dev);
2590 }
2591
2592 intel_dp_add_properties(intel_dp, connector);
2593
2594 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2595 * 0xd. Failure to do so will result in spurious interrupts being
2596 * generated on the port when a cable is not attached.
2597 */
2598 if (IS_G4X(dev) && !IS_GM45(dev)) {
2599 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2600 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2601 }
2602 }
This page took 0.084258 seconds and 5 git commands to generate.