Merge tag 'v3.14-rc6' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85 return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94 static void edp_panel_vdd_on(struct intel_dp *intel_dp);
95 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
96
97 static int
98 intel_dp_max_link_bw(struct intel_dp *intel_dp)
99 {
100 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
101 struct drm_device *dev = intel_dp->attached_connector->base.dev;
102
103 switch (max_link_bw) {
104 case DP_LINK_BW_1_62:
105 case DP_LINK_BW_2_7:
106 break;
107 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
108 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
109 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
110 max_link_bw = DP_LINK_BW_5_4;
111 else
112 max_link_bw = DP_LINK_BW_2_7;
113 break;
114 default:
115 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
116 max_link_bw);
117 max_link_bw = DP_LINK_BW_1_62;
118 break;
119 }
120 return max_link_bw;
121 }
122
123 /*
124 * The units on the numbers in the next two are... bizarre. Examples will
125 * make it clearer; this one parallels an example in the eDP spec.
126 *
127 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
128 *
129 * 270000 * 1 * 8 / 10 == 216000
130 *
131 * The actual data capacity of that configuration is 2.16Gbit/s, so the
132 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
133 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
134 * 119000. At 18bpp that's 2142000 kilobits per second.
135 *
136 * Thus the strange-looking division by 10 in intel_dp_link_required, to
137 * get the result in decakilobits instead of kilobits.
138 */
139
140 static int
141 intel_dp_link_required(int pixel_clock, int bpp)
142 {
143 return (pixel_clock * bpp + 9) / 10;
144 }
145
146 static int
147 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
148 {
149 return (max_link_clock * max_lanes * 8) / 10;
150 }
151
152 static enum drm_mode_status
153 intel_dp_mode_valid(struct drm_connector *connector,
154 struct drm_display_mode *mode)
155 {
156 struct intel_dp *intel_dp = intel_attached_dp(connector);
157 struct intel_connector *intel_connector = to_intel_connector(connector);
158 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
159 int target_clock = mode->clock;
160 int max_rate, mode_rate, max_lanes, max_link_clock;
161
162 if (is_edp(intel_dp) && fixed_mode) {
163 if (mode->hdisplay > fixed_mode->hdisplay)
164 return MODE_PANEL;
165
166 if (mode->vdisplay > fixed_mode->vdisplay)
167 return MODE_PANEL;
168
169 target_clock = fixed_mode->clock;
170 }
171
172 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
173 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
174
175 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
176 mode_rate = intel_dp_link_required(target_clock, 18);
177
178 if (mode_rate > max_rate)
179 return MODE_CLOCK_HIGH;
180
181 if (mode->clock < 10000)
182 return MODE_CLOCK_LOW;
183
184 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
185 return MODE_H_ILLEGAL;
186
187 return MODE_OK;
188 }
189
190 static uint32_t
191 pack_aux(uint8_t *src, int src_bytes)
192 {
193 int i;
194 uint32_t v = 0;
195
196 if (src_bytes > 4)
197 src_bytes = 4;
198 for (i = 0; i < src_bytes; i++)
199 v |= ((uint32_t) src[i]) << ((3-i) * 8);
200 return v;
201 }
202
203 static void
204 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
205 {
206 int i;
207 if (dst_bytes > 4)
208 dst_bytes = 4;
209 for (i = 0; i < dst_bytes; i++)
210 dst[i] = src >> ((3-i) * 8);
211 }
212
213 /* hrawclock is 1/4 the FSB frequency */
214 static int
215 intel_hrawclk(struct drm_device *dev)
216 {
217 struct drm_i915_private *dev_priv = dev->dev_private;
218 uint32_t clkcfg;
219
220 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
221 if (IS_VALLEYVIEW(dev))
222 return 200;
223
224 clkcfg = I915_READ(CLKCFG);
225 switch (clkcfg & CLKCFG_FSB_MASK) {
226 case CLKCFG_FSB_400:
227 return 100;
228 case CLKCFG_FSB_533:
229 return 133;
230 case CLKCFG_FSB_667:
231 return 166;
232 case CLKCFG_FSB_800:
233 return 200;
234 case CLKCFG_FSB_1067:
235 return 266;
236 case CLKCFG_FSB_1333:
237 return 333;
238 /* these two are just a guess; one of them might be right */
239 case CLKCFG_FSB_1600:
240 case CLKCFG_FSB_1600_ALT:
241 return 400;
242 default:
243 return 133;
244 }
245 }
246
247 static void
248 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
249 struct intel_dp *intel_dp,
250 struct edp_power_seq *out);
251 static void
252 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
253 struct intel_dp *intel_dp,
254 struct edp_power_seq *out);
255
256 static enum pipe
257 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
258 {
259 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
260 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
261 struct drm_device *dev = intel_dig_port->base.base.dev;
262 struct drm_i915_private *dev_priv = dev->dev_private;
263 enum port port = intel_dig_port->port;
264 enum pipe pipe;
265
266 /* modeset should have pipe */
267 if (crtc)
268 return to_intel_crtc(crtc)->pipe;
269
270 /* init time, try to find a pipe with this port selected */
271 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
272 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
273 PANEL_PORT_SELECT_MASK;
274 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
275 return pipe;
276 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
277 return pipe;
278 }
279
280 /* shrug */
281 return PIPE_A;
282 }
283
284 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
285 {
286 struct drm_device *dev = intel_dp_to_dev(intel_dp);
287
288 if (HAS_PCH_SPLIT(dev))
289 return PCH_PP_CONTROL;
290 else
291 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
292 }
293
294 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
295 {
296 struct drm_device *dev = intel_dp_to_dev(intel_dp);
297
298 if (HAS_PCH_SPLIT(dev))
299 return PCH_PP_STATUS;
300 else
301 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
302 }
303
304 static bool edp_have_panel_power(struct intel_dp *intel_dp)
305 {
306 struct drm_device *dev = intel_dp_to_dev(intel_dp);
307 struct drm_i915_private *dev_priv = dev->dev_private;
308
309 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
310 }
311
312 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
313 {
314 struct drm_device *dev = intel_dp_to_dev(intel_dp);
315 struct drm_i915_private *dev_priv = dev->dev_private;
316
317 return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
318 }
319
320 static void
321 intel_dp_check_edp(struct intel_dp *intel_dp)
322 {
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324 struct drm_i915_private *dev_priv = dev->dev_private;
325
326 if (!is_edp(intel_dp))
327 return;
328
329 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
330 WARN(1, "eDP powered off while attempting aux channel communication.\n");
331 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
332 I915_READ(_pp_stat_reg(intel_dp)),
333 I915_READ(_pp_ctrl_reg(intel_dp)));
334 }
335 }
336
337 static uint32_t
338 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
339 {
340 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
341 struct drm_device *dev = intel_dig_port->base.base.dev;
342 struct drm_i915_private *dev_priv = dev->dev_private;
343 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
344 uint32_t status;
345 bool done;
346
347 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
348 if (has_aux_irq)
349 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
350 msecs_to_jiffies_timeout(10));
351 else
352 done = wait_for_atomic(C, 10) == 0;
353 if (!done)
354 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
355 has_aux_irq);
356 #undef C
357
358 return status;
359 }
360
361 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
362 {
363 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
364 struct drm_device *dev = intel_dig_port->base.base.dev;
365
366 /*
367 * The clock divider is based off the hrawclk, and would like to run at
368 * 2MHz. So, take the hrawclk value and divide by 2 and use that
369 */
370 return index ? 0 : intel_hrawclk(dev) / 2;
371 }
372
373 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
374 {
375 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
376 struct drm_device *dev = intel_dig_port->base.base.dev;
377
378 if (index)
379 return 0;
380
381 if (intel_dig_port->port == PORT_A) {
382 if (IS_GEN6(dev) || IS_GEN7(dev))
383 return 200; /* SNB & IVB eDP input clock at 400Mhz */
384 else
385 return 225; /* eDP input clock at 450Mhz */
386 } else {
387 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388 }
389 }
390
391 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
392 {
393 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394 struct drm_device *dev = intel_dig_port->base.base.dev;
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 if (intel_dig_port->port == PORT_A) {
398 if (index)
399 return 0;
400 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
401 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
402 /* Workaround for non-ULT HSW */
403 switch (index) {
404 case 0: return 63;
405 case 1: return 72;
406 default: return 0;
407 }
408 } else {
409 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
410 }
411 }
412
413 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
414 {
415 return index ? 0 : 100;
416 }
417
418 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
419 bool has_aux_irq,
420 int send_bytes,
421 uint32_t aux_clock_divider)
422 {
423 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
424 struct drm_device *dev = intel_dig_port->base.base.dev;
425 uint32_t precharge, timeout;
426
427 if (IS_GEN6(dev))
428 precharge = 3;
429 else
430 precharge = 5;
431
432 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
433 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
434 else
435 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
436
437 return DP_AUX_CH_CTL_SEND_BUSY |
438 DP_AUX_CH_CTL_DONE |
439 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
440 DP_AUX_CH_CTL_TIME_OUT_ERROR |
441 timeout |
442 DP_AUX_CH_CTL_RECEIVE_ERROR |
443 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
444 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
445 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
446 }
447
448 static int
449 intel_dp_aux_ch(struct intel_dp *intel_dp,
450 uint8_t *send, int send_bytes,
451 uint8_t *recv, int recv_size)
452 {
453 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
454 struct drm_device *dev = intel_dig_port->base.base.dev;
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
457 uint32_t ch_data = ch_ctl + 4;
458 uint32_t aux_clock_divider;
459 int i, ret, recv_bytes;
460 uint32_t status;
461 int try, clock = 0;
462 bool has_aux_irq = HAS_AUX_IRQ(dev);
463
464 /* dp aux is extremely sensitive to irq latency, hence request the
465 * lowest possible wakeup latency and so prevent the cpu from going into
466 * deep sleep states.
467 */
468 pm_qos_update_request(&dev_priv->pm_qos, 0);
469
470 intel_dp_check_edp(intel_dp);
471
472 intel_aux_display_runtime_get(dev_priv);
473
474 /* Try to wait for any previous AUX channel activity */
475 for (try = 0; try < 3; try++) {
476 status = I915_READ_NOTRACE(ch_ctl);
477 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
478 break;
479 msleep(1);
480 }
481
482 if (try == 3) {
483 WARN(1, "dp_aux_ch not started status 0x%08x\n",
484 I915_READ(ch_ctl));
485 ret = -EBUSY;
486 goto out;
487 }
488
489 /* Only 5 data registers! */
490 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
491 ret = -E2BIG;
492 goto out;
493 }
494
495 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
496 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
497 has_aux_irq,
498 send_bytes,
499 aux_clock_divider);
500
501 /* Must try at least 3 times according to DP spec */
502 for (try = 0; try < 5; try++) {
503 /* Load the send data into the aux channel data registers */
504 for (i = 0; i < send_bytes; i += 4)
505 I915_WRITE(ch_data + i,
506 pack_aux(send + i, send_bytes - i));
507
508 /* Send the command and wait for it to complete */
509 I915_WRITE(ch_ctl, send_ctl);
510
511 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
512
513 /* Clear done status and any errors */
514 I915_WRITE(ch_ctl,
515 status |
516 DP_AUX_CH_CTL_DONE |
517 DP_AUX_CH_CTL_TIME_OUT_ERROR |
518 DP_AUX_CH_CTL_RECEIVE_ERROR);
519
520 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
521 DP_AUX_CH_CTL_RECEIVE_ERROR))
522 continue;
523 if (status & DP_AUX_CH_CTL_DONE)
524 break;
525 }
526 if (status & DP_AUX_CH_CTL_DONE)
527 break;
528 }
529
530 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
531 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
532 ret = -EBUSY;
533 goto out;
534 }
535
536 /* Check for timeout or receive error.
537 * Timeouts occur when the sink is not connected
538 */
539 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
540 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
541 ret = -EIO;
542 goto out;
543 }
544
545 /* Timeouts occur when the device isn't connected, so they're
546 * "normal" -- don't fill the kernel log with these */
547 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
548 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
549 ret = -ETIMEDOUT;
550 goto out;
551 }
552
553 /* Unload any bytes sent back from the other side */
554 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
555 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
556 if (recv_bytes > recv_size)
557 recv_bytes = recv_size;
558
559 for (i = 0; i < recv_bytes; i += 4)
560 unpack_aux(I915_READ(ch_data + i),
561 recv + i, recv_bytes - i);
562
563 ret = recv_bytes;
564 out:
565 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
566 intel_aux_display_runtime_put(dev_priv);
567
568 return ret;
569 }
570
571 /* Write data to the aux channel in native mode */
572 static int
573 intel_dp_aux_native_write(struct intel_dp *intel_dp,
574 uint16_t address, uint8_t *send, int send_bytes)
575 {
576 int ret;
577 uint8_t msg[20];
578 int msg_bytes;
579 uint8_t ack;
580 int retry;
581
582 if (WARN_ON(send_bytes > 16))
583 return -E2BIG;
584
585 intel_dp_check_edp(intel_dp);
586 msg[0] = DP_AUX_NATIVE_WRITE << 4;
587 msg[1] = address >> 8;
588 msg[2] = address & 0xff;
589 msg[3] = send_bytes - 1;
590 memcpy(&msg[4], send, send_bytes);
591 msg_bytes = send_bytes + 4;
592 for (retry = 0; retry < 7; retry++) {
593 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
594 if (ret < 0)
595 return ret;
596 ack >>= 4;
597 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
598 return send_bytes;
599 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
600 usleep_range(400, 500);
601 else
602 return -EIO;
603 }
604
605 DRM_ERROR("too many retries, giving up\n");
606 return -EIO;
607 }
608
609 /* Write a single byte to the aux channel in native mode */
610 static int
611 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
612 uint16_t address, uint8_t byte)
613 {
614 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
615 }
616
617 /* read bytes from a native aux channel */
618 static int
619 intel_dp_aux_native_read(struct intel_dp *intel_dp,
620 uint16_t address, uint8_t *recv, int recv_bytes)
621 {
622 uint8_t msg[4];
623 int msg_bytes;
624 uint8_t reply[20];
625 int reply_bytes;
626 uint8_t ack;
627 int ret;
628 int retry;
629
630 if (WARN_ON(recv_bytes > 19))
631 return -E2BIG;
632
633 intel_dp_check_edp(intel_dp);
634 msg[0] = DP_AUX_NATIVE_READ << 4;
635 msg[1] = address >> 8;
636 msg[2] = address & 0xff;
637 msg[3] = recv_bytes - 1;
638
639 msg_bytes = 4;
640 reply_bytes = recv_bytes + 1;
641
642 for (retry = 0; retry < 7; retry++) {
643 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
644 reply, reply_bytes);
645 if (ret == 0)
646 return -EPROTO;
647 if (ret < 0)
648 return ret;
649 ack = reply[0] >> 4;
650 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
651 memcpy(recv, reply + 1, ret - 1);
652 return ret - 1;
653 }
654 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
655 usleep_range(400, 500);
656 else
657 return -EIO;
658 }
659
660 DRM_ERROR("too many retries, giving up\n");
661 return -EIO;
662 }
663
664 static int
665 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
666 uint8_t write_byte, uint8_t *read_byte)
667 {
668 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
669 struct intel_dp *intel_dp = container_of(adapter,
670 struct intel_dp,
671 adapter);
672 uint16_t address = algo_data->address;
673 uint8_t msg[5];
674 uint8_t reply[2];
675 unsigned retry;
676 int msg_bytes;
677 int reply_bytes;
678 int ret;
679
680 edp_panel_vdd_on(intel_dp);
681 intel_dp_check_edp(intel_dp);
682 /* Set up the command byte */
683 if (mode & MODE_I2C_READ)
684 msg[0] = DP_AUX_I2C_READ << 4;
685 else
686 msg[0] = DP_AUX_I2C_WRITE << 4;
687
688 if (!(mode & MODE_I2C_STOP))
689 msg[0] |= DP_AUX_I2C_MOT << 4;
690
691 msg[1] = address >> 8;
692 msg[2] = address;
693
694 switch (mode) {
695 case MODE_I2C_WRITE:
696 msg[3] = 0;
697 msg[4] = write_byte;
698 msg_bytes = 5;
699 reply_bytes = 1;
700 break;
701 case MODE_I2C_READ:
702 msg[3] = 0;
703 msg_bytes = 4;
704 reply_bytes = 2;
705 break;
706 default:
707 msg_bytes = 3;
708 reply_bytes = 1;
709 break;
710 }
711
712 /*
713 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
714 * required to retry at least seven times upon receiving AUX_DEFER
715 * before giving up the AUX transaction.
716 */
717 for (retry = 0; retry < 7; retry++) {
718 ret = intel_dp_aux_ch(intel_dp,
719 msg, msg_bytes,
720 reply, reply_bytes);
721 if (ret < 0) {
722 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
723 goto out;
724 }
725
726 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
727 case DP_AUX_NATIVE_REPLY_ACK:
728 /* I2C-over-AUX Reply field is only valid
729 * when paired with AUX ACK.
730 */
731 break;
732 case DP_AUX_NATIVE_REPLY_NACK:
733 DRM_DEBUG_KMS("aux_ch native nack\n");
734 ret = -EREMOTEIO;
735 goto out;
736 case DP_AUX_NATIVE_REPLY_DEFER:
737 /*
738 * For now, just give more slack to branch devices. We
739 * could check the DPCD for I2C bit rate capabilities,
740 * and if available, adjust the interval. We could also
741 * be more careful with DP-to-Legacy adapters where a
742 * long legacy cable may force very low I2C bit rates.
743 */
744 if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
745 DP_DWN_STRM_PORT_PRESENT)
746 usleep_range(500, 600);
747 else
748 usleep_range(300, 400);
749 continue;
750 default:
751 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
752 reply[0]);
753 ret = -EREMOTEIO;
754 goto out;
755 }
756
757 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
758 case DP_AUX_I2C_REPLY_ACK:
759 if (mode == MODE_I2C_READ) {
760 *read_byte = reply[1];
761 }
762 ret = reply_bytes - 1;
763 goto out;
764 case DP_AUX_I2C_REPLY_NACK:
765 DRM_DEBUG_KMS("aux_i2c nack\n");
766 ret = -EREMOTEIO;
767 goto out;
768 case DP_AUX_I2C_REPLY_DEFER:
769 DRM_DEBUG_KMS("aux_i2c defer\n");
770 udelay(100);
771 break;
772 default:
773 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
774 ret = -EREMOTEIO;
775 goto out;
776 }
777 }
778
779 DRM_ERROR("too many retries, giving up\n");
780 ret = -EREMOTEIO;
781
782 out:
783 edp_panel_vdd_off(intel_dp, false);
784 return ret;
785 }
786
787 static void
788 intel_dp_connector_unregister(struct intel_connector *intel_connector)
789 {
790 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
791
792 sysfs_remove_link(&intel_connector->base.kdev->kobj,
793 intel_dp->adapter.dev.kobj.name);
794 intel_connector_unregister(intel_connector);
795 }
796
797 static int
798 intel_dp_i2c_init(struct intel_dp *intel_dp,
799 struct intel_connector *intel_connector, const char *name)
800 {
801 int ret;
802
803 DRM_DEBUG_KMS("i2c_init %s\n", name);
804 intel_dp->algo.running = false;
805 intel_dp->algo.address = 0;
806 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
807
808 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
809 intel_dp->adapter.owner = THIS_MODULE;
810 intel_dp->adapter.class = I2C_CLASS_DDC;
811 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
812 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
813 intel_dp->adapter.algo_data = &intel_dp->algo;
814 intel_dp->adapter.dev.parent = intel_connector->base.dev->dev;
815
816 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
817 if (ret < 0)
818 return ret;
819
820 ret = sysfs_create_link(&intel_connector->base.kdev->kobj,
821 &intel_dp->adapter.dev.kobj,
822 intel_dp->adapter.dev.kobj.name);
823
824 if (ret < 0)
825 i2c_del_adapter(&intel_dp->adapter);
826
827 return ret;
828 }
829
830 static void
831 intel_dp_set_clock(struct intel_encoder *encoder,
832 struct intel_crtc_config *pipe_config, int link_bw)
833 {
834 struct drm_device *dev = encoder->base.dev;
835 const struct dp_link_dpll *divisor = NULL;
836 int i, count = 0;
837
838 if (IS_G4X(dev)) {
839 divisor = gen4_dpll;
840 count = ARRAY_SIZE(gen4_dpll);
841 } else if (IS_HASWELL(dev)) {
842 /* Haswell has special-purpose DP DDI clocks. */
843 } else if (HAS_PCH_SPLIT(dev)) {
844 divisor = pch_dpll;
845 count = ARRAY_SIZE(pch_dpll);
846 } else if (IS_VALLEYVIEW(dev)) {
847 divisor = vlv_dpll;
848 count = ARRAY_SIZE(vlv_dpll);
849 }
850
851 if (divisor && count) {
852 for (i = 0; i < count; i++) {
853 if (link_bw == divisor[i].link_bw) {
854 pipe_config->dpll = divisor[i].dpll;
855 pipe_config->clock_set = true;
856 break;
857 }
858 }
859 }
860 }
861
862 bool
863 intel_dp_compute_config(struct intel_encoder *encoder,
864 struct intel_crtc_config *pipe_config)
865 {
866 struct drm_device *dev = encoder->base.dev;
867 struct drm_i915_private *dev_priv = dev->dev_private;
868 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
869 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
870 enum port port = dp_to_dig_port(intel_dp)->port;
871 struct intel_crtc *intel_crtc = encoder->new_crtc;
872 struct intel_connector *intel_connector = intel_dp->attached_connector;
873 int lane_count, clock;
874 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
875 /* Conveniently, the link BW constants become indices with a shift...*/
876 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
877 int bpp, mode_rate;
878 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
879 int link_avail, link_clock;
880
881 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
882 pipe_config->has_pch_encoder = true;
883
884 pipe_config->has_dp_encoder = true;
885
886 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
887 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
888 adjusted_mode);
889 if (!HAS_PCH_SPLIT(dev))
890 intel_gmch_panel_fitting(intel_crtc, pipe_config,
891 intel_connector->panel.fitting_mode);
892 else
893 intel_pch_panel_fitting(intel_crtc, pipe_config,
894 intel_connector->panel.fitting_mode);
895 }
896
897 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
898 return false;
899
900 DRM_DEBUG_KMS("DP link computation with max lane count %i "
901 "max bw %02x pixel clock %iKHz\n",
902 max_lane_count, bws[max_clock],
903 adjusted_mode->crtc_clock);
904
905 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
906 * bpc in between. */
907 bpp = pipe_config->pipe_bpp;
908 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
909 dev_priv->vbt.edp_bpp < bpp) {
910 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
911 dev_priv->vbt.edp_bpp);
912 bpp = dev_priv->vbt.edp_bpp;
913 }
914
915 for (; bpp >= 6*3; bpp -= 2*3) {
916 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
917 bpp);
918
919 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
920 for (clock = 0; clock <= max_clock; clock++) {
921 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
922 link_avail = intel_dp_max_data_rate(link_clock,
923 lane_count);
924
925 if (mode_rate <= link_avail) {
926 goto found;
927 }
928 }
929 }
930 }
931
932 return false;
933
934 found:
935 if (intel_dp->color_range_auto) {
936 /*
937 * See:
938 * CEA-861-E - 5.1 Default Encoding Parameters
939 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
940 */
941 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
942 intel_dp->color_range = DP_COLOR_RANGE_16_235;
943 else
944 intel_dp->color_range = 0;
945 }
946
947 if (intel_dp->color_range)
948 pipe_config->limited_color_range = true;
949
950 intel_dp->link_bw = bws[clock];
951 intel_dp->lane_count = lane_count;
952 pipe_config->pipe_bpp = bpp;
953 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
954
955 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
956 intel_dp->link_bw, intel_dp->lane_count,
957 pipe_config->port_clock, bpp);
958 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
959 mode_rate, link_avail);
960
961 intel_link_compute_m_n(bpp, lane_count,
962 adjusted_mode->crtc_clock,
963 pipe_config->port_clock,
964 &pipe_config->dp_m_n);
965
966 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
967
968 return true;
969 }
970
971 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
972 {
973 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
974 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
975 struct drm_device *dev = crtc->base.dev;
976 struct drm_i915_private *dev_priv = dev->dev_private;
977 u32 dpa_ctl;
978
979 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
980 dpa_ctl = I915_READ(DP_A);
981 dpa_ctl &= ~DP_PLL_FREQ_MASK;
982
983 if (crtc->config.port_clock == 162000) {
984 /* For a long time we've carried around a ILK-DevA w/a for the
985 * 160MHz clock. If we're really unlucky, it's still required.
986 */
987 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
988 dpa_ctl |= DP_PLL_FREQ_160MHZ;
989 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
990 } else {
991 dpa_ctl |= DP_PLL_FREQ_270MHZ;
992 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
993 }
994
995 I915_WRITE(DP_A, dpa_ctl);
996
997 POSTING_READ(DP_A);
998 udelay(500);
999 }
1000
1001 static void intel_dp_mode_set(struct intel_encoder *encoder)
1002 {
1003 struct drm_device *dev = encoder->base.dev;
1004 struct drm_i915_private *dev_priv = dev->dev_private;
1005 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1006 enum port port = dp_to_dig_port(intel_dp)->port;
1007 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1008 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1009
1010 /*
1011 * There are four kinds of DP registers:
1012 *
1013 * IBX PCH
1014 * SNB CPU
1015 * IVB CPU
1016 * CPT PCH
1017 *
1018 * IBX PCH and CPU are the same for almost everything,
1019 * except that the CPU DP PLL is configured in this
1020 * register
1021 *
1022 * CPT PCH is quite different, having many bits moved
1023 * to the TRANS_DP_CTL register instead. That
1024 * configuration happens (oddly) in ironlake_pch_enable
1025 */
1026
1027 /* Preserve the BIOS-computed detected bit. This is
1028 * supposed to be read-only.
1029 */
1030 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1031
1032 /* Handle DP bits in common between all three register formats */
1033 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1034 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1035
1036 if (intel_dp->has_audio) {
1037 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1038 pipe_name(crtc->pipe));
1039 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1040 intel_write_eld(&encoder->base, adjusted_mode);
1041 }
1042
1043 /* Split out the IBX/CPU vs CPT settings */
1044
1045 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1046 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1047 intel_dp->DP |= DP_SYNC_HS_HIGH;
1048 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1049 intel_dp->DP |= DP_SYNC_VS_HIGH;
1050 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1051
1052 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1053 intel_dp->DP |= DP_ENHANCED_FRAMING;
1054
1055 intel_dp->DP |= crtc->pipe << 29;
1056 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1057 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1058 intel_dp->DP |= intel_dp->color_range;
1059
1060 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1061 intel_dp->DP |= DP_SYNC_HS_HIGH;
1062 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1063 intel_dp->DP |= DP_SYNC_VS_HIGH;
1064 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1065
1066 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1067 intel_dp->DP |= DP_ENHANCED_FRAMING;
1068
1069 if (crtc->pipe == 1)
1070 intel_dp->DP |= DP_PIPEB_SELECT;
1071 } else {
1072 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1073 }
1074
1075 if (port == PORT_A && !IS_VALLEYVIEW(dev))
1076 ironlake_set_pll_cpu_edp(intel_dp);
1077 }
1078
1079 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1080 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1081
1082 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1083 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1084
1085 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1086 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1087
1088 static void wait_panel_status(struct intel_dp *intel_dp,
1089 u32 mask,
1090 u32 value)
1091 {
1092 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1093 struct drm_i915_private *dev_priv = dev->dev_private;
1094 u32 pp_stat_reg, pp_ctrl_reg;
1095
1096 pp_stat_reg = _pp_stat_reg(intel_dp);
1097 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1098
1099 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1100 mask, value,
1101 I915_READ(pp_stat_reg),
1102 I915_READ(pp_ctrl_reg));
1103
1104 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1105 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1106 I915_READ(pp_stat_reg),
1107 I915_READ(pp_ctrl_reg));
1108 }
1109
1110 DRM_DEBUG_KMS("Wait complete\n");
1111 }
1112
1113 static void wait_panel_on(struct intel_dp *intel_dp)
1114 {
1115 DRM_DEBUG_KMS("Wait for panel power on\n");
1116 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1117 }
1118
1119 static void wait_panel_off(struct intel_dp *intel_dp)
1120 {
1121 DRM_DEBUG_KMS("Wait for panel power off time\n");
1122 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1123 }
1124
1125 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1126 {
1127 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1128
1129 /* When we disable the VDD override bit last we have to do the manual
1130 * wait. */
1131 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1132 intel_dp->panel_power_cycle_delay);
1133
1134 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1135 }
1136
1137 static void wait_backlight_on(struct intel_dp *intel_dp)
1138 {
1139 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1140 intel_dp->backlight_on_delay);
1141 }
1142
1143 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1144 {
1145 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1146 intel_dp->backlight_off_delay);
1147 }
1148
1149 /* Read the current pp_control value, unlocking the register if it
1150 * is locked
1151 */
1152
1153 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1154 {
1155 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 u32 control;
1158
1159 control = I915_READ(_pp_ctrl_reg(intel_dp));
1160 control &= ~PANEL_UNLOCK_MASK;
1161 control |= PANEL_UNLOCK_REGS;
1162 return control;
1163 }
1164
1165 static void edp_panel_vdd_on(struct intel_dp *intel_dp)
1166 {
1167 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 u32 pp;
1170 u32 pp_stat_reg, pp_ctrl_reg;
1171
1172 if (!is_edp(intel_dp))
1173 return;
1174
1175 WARN(intel_dp->want_panel_vdd,
1176 "eDP VDD already requested on\n");
1177
1178 intel_dp->want_panel_vdd = true;
1179
1180 if (edp_have_panel_vdd(intel_dp))
1181 return;
1182
1183 intel_runtime_pm_get(dev_priv);
1184
1185 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1186
1187 if (!edp_have_panel_power(intel_dp))
1188 wait_panel_power_cycle(intel_dp);
1189
1190 pp = ironlake_get_pp_control(intel_dp);
1191 pp |= EDP_FORCE_VDD;
1192
1193 pp_stat_reg = _pp_stat_reg(intel_dp);
1194 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1195
1196 I915_WRITE(pp_ctrl_reg, pp);
1197 POSTING_READ(pp_ctrl_reg);
1198 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1199 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1200 /*
1201 * If the panel wasn't on, delay before accessing aux channel
1202 */
1203 if (!edp_have_panel_power(intel_dp)) {
1204 DRM_DEBUG_KMS("eDP was not running\n");
1205 msleep(intel_dp->panel_power_up_delay);
1206 }
1207 }
1208
1209 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1210 {
1211 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1213 u32 pp;
1214 u32 pp_stat_reg, pp_ctrl_reg;
1215
1216 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1217
1218 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1219 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1220
1221 pp = ironlake_get_pp_control(intel_dp);
1222 pp &= ~EDP_FORCE_VDD;
1223
1224 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1225 pp_stat_reg = _pp_stat_reg(intel_dp);
1226
1227 I915_WRITE(pp_ctrl_reg, pp);
1228 POSTING_READ(pp_ctrl_reg);
1229
1230 /* Make sure sequencer is idle before allowing subsequent activity */
1231 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1232 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1233
1234 if ((pp & POWER_TARGET_ON) == 0)
1235 intel_dp->last_power_cycle = jiffies;
1236
1237 intel_runtime_pm_put(dev_priv);
1238 }
1239 }
1240
1241 static void edp_panel_vdd_work(struct work_struct *__work)
1242 {
1243 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1244 struct intel_dp, panel_vdd_work);
1245 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1246
1247 mutex_lock(&dev->mode_config.mutex);
1248 edp_panel_vdd_off_sync(intel_dp);
1249 mutex_unlock(&dev->mode_config.mutex);
1250 }
1251
1252 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1253 {
1254 if (!is_edp(intel_dp))
1255 return;
1256
1257 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1258
1259 intel_dp->want_panel_vdd = false;
1260
1261 if (sync) {
1262 edp_panel_vdd_off_sync(intel_dp);
1263 } else {
1264 /*
1265 * Queue the timer to fire a long
1266 * time from now (relative to the power down delay)
1267 * to keep the panel power up across a sequence of operations
1268 */
1269 schedule_delayed_work(&intel_dp->panel_vdd_work,
1270 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1271 }
1272 }
1273
1274 void intel_edp_panel_on(struct intel_dp *intel_dp)
1275 {
1276 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1277 struct drm_i915_private *dev_priv = dev->dev_private;
1278 u32 pp;
1279 u32 pp_ctrl_reg;
1280
1281 if (!is_edp(intel_dp))
1282 return;
1283
1284 DRM_DEBUG_KMS("Turn eDP power on\n");
1285
1286 if (edp_have_panel_power(intel_dp)) {
1287 DRM_DEBUG_KMS("eDP power already on\n");
1288 return;
1289 }
1290
1291 wait_panel_power_cycle(intel_dp);
1292
1293 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1294 pp = ironlake_get_pp_control(intel_dp);
1295 if (IS_GEN5(dev)) {
1296 /* ILK workaround: disable reset around power sequence */
1297 pp &= ~PANEL_POWER_RESET;
1298 I915_WRITE(pp_ctrl_reg, pp);
1299 POSTING_READ(pp_ctrl_reg);
1300 }
1301
1302 pp |= POWER_TARGET_ON;
1303 if (!IS_GEN5(dev))
1304 pp |= PANEL_POWER_RESET;
1305
1306 I915_WRITE(pp_ctrl_reg, pp);
1307 POSTING_READ(pp_ctrl_reg);
1308
1309 wait_panel_on(intel_dp);
1310 intel_dp->last_power_on = jiffies;
1311
1312 if (IS_GEN5(dev)) {
1313 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1314 I915_WRITE(pp_ctrl_reg, pp);
1315 POSTING_READ(pp_ctrl_reg);
1316 }
1317 }
1318
1319 void intel_edp_panel_off(struct intel_dp *intel_dp)
1320 {
1321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 u32 pp;
1324 u32 pp_ctrl_reg;
1325
1326 if (!is_edp(intel_dp))
1327 return;
1328
1329 DRM_DEBUG_KMS("Turn eDP power off\n");
1330
1331 edp_wait_backlight_off(intel_dp);
1332
1333 pp = ironlake_get_pp_control(intel_dp);
1334 /* We need to switch off panel power _and_ force vdd, for otherwise some
1335 * panels get very unhappy and cease to work. */
1336 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1337 EDP_BLC_ENABLE);
1338
1339 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1340
1341 I915_WRITE(pp_ctrl_reg, pp);
1342 POSTING_READ(pp_ctrl_reg);
1343
1344 intel_dp->last_power_cycle = jiffies;
1345 wait_panel_off(intel_dp);
1346 }
1347
1348 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1349 {
1350 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1351 struct drm_device *dev = intel_dig_port->base.base.dev;
1352 struct drm_i915_private *dev_priv = dev->dev_private;
1353 u32 pp;
1354 u32 pp_ctrl_reg;
1355
1356 if (!is_edp(intel_dp))
1357 return;
1358
1359 DRM_DEBUG_KMS("\n");
1360 /*
1361 * If we enable the backlight right away following a panel power
1362 * on, we may see slight flicker as the panel syncs with the eDP
1363 * link. So delay a bit to make sure the image is solid before
1364 * allowing it to appear.
1365 */
1366 wait_backlight_on(intel_dp);
1367 pp = ironlake_get_pp_control(intel_dp);
1368 pp |= EDP_BLC_ENABLE;
1369
1370 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1371
1372 I915_WRITE(pp_ctrl_reg, pp);
1373 POSTING_READ(pp_ctrl_reg);
1374
1375 intel_panel_enable_backlight(intel_dp->attached_connector);
1376 }
1377
1378 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1379 {
1380 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 u32 pp;
1383 u32 pp_ctrl_reg;
1384
1385 if (!is_edp(intel_dp))
1386 return;
1387
1388 intel_panel_disable_backlight(intel_dp->attached_connector);
1389
1390 DRM_DEBUG_KMS("\n");
1391 pp = ironlake_get_pp_control(intel_dp);
1392 pp &= ~EDP_BLC_ENABLE;
1393
1394 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1395
1396 I915_WRITE(pp_ctrl_reg, pp);
1397 POSTING_READ(pp_ctrl_reg);
1398 intel_dp->last_backlight_off = jiffies;
1399 }
1400
1401 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1402 {
1403 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1404 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1405 struct drm_device *dev = crtc->dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
1407 u32 dpa_ctl;
1408
1409 assert_pipe_disabled(dev_priv,
1410 to_intel_crtc(crtc)->pipe);
1411
1412 DRM_DEBUG_KMS("\n");
1413 dpa_ctl = I915_READ(DP_A);
1414 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1415 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1416
1417 /* We don't adjust intel_dp->DP while tearing down the link, to
1418 * facilitate link retraining (e.g. after hotplug). Hence clear all
1419 * enable bits here to ensure that we don't enable too much. */
1420 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1421 intel_dp->DP |= DP_PLL_ENABLE;
1422 I915_WRITE(DP_A, intel_dp->DP);
1423 POSTING_READ(DP_A);
1424 udelay(200);
1425 }
1426
1427 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1428 {
1429 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1430 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1431 struct drm_device *dev = crtc->dev;
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433 u32 dpa_ctl;
1434
1435 assert_pipe_disabled(dev_priv,
1436 to_intel_crtc(crtc)->pipe);
1437
1438 dpa_ctl = I915_READ(DP_A);
1439 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1440 "dp pll off, should be on\n");
1441 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1442
1443 /* We can't rely on the value tracked for the DP register in
1444 * intel_dp->DP because link_down must not change that (otherwise link
1445 * re-training will fail. */
1446 dpa_ctl &= ~DP_PLL_ENABLE;
1447 I915_WRITE(DP_A, dpa_ctl);
1448 POSTING_READ(DP_A);
1449 udelay(200);
1450 }
1451
1452 /* If the sink supports it, try to set the power state appropriately */
1453 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1454 {
1455 int ret, i;
1456
1457 /* Should have a valid DPCD by this point */
1458 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1459 return;
1460
1461 if (mode != DRM_MODE_DPMS_ON) {
1462 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1463 DP_SET_POWER_D3);
1464 if (ret != 1)
1465 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1466 } else {
1467 /*
1468 * When turning on, we need to retry for 1ms to give the sink
1469 * time to wake up.
1470 */
1471 for (i = 0; i < 3; i++) {
1472 ret = intel_dp_aux_native_write_1(intel_dp,
1473 DP_SET_POWER,
1474 DP_SET_POWER_D0);
1475 if (ret == 1)
1476 break;
1477 msleep(1);
1478 }
1479 }
1480 }
1481
1482 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1483 enum pipe *pipe)
1484 {
1485 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1486 enum port port = dp_to_dig_port(intel_dp)->port;
1487 struct drm_device *dev = encoder->base.dev;
1488 struct drm_i915_private *dev_priv = dev->dev_private;
1489 enum intel_display_power_domain power_domain;
1490 u32 tmp;
1491
1492 power_domain = intel_display_port_power_domain(encoder);
1493 if (!intel_display_power_enabled(dev_priv, power_domain))
1494 return false;
1495
1496 tmp = I915_READ(intel_dp->output_reg);
1497
1498 if (!(tmp & DP_PORT_EN))
1499 return false;
1500
1501 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1502 *pipe = PORT_TO_PIPE_CPT(tmp);
1503 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1504 *pipe = PORT_TO_PIPE(tmp);
1505 } else {
1506 u32 trans_sel;
1507 u32 trans_dp;
1508 int i;
1509
1510 switch (intel_dp->output_reg) {
1511 case PCH_DP_B:
1512 trans_sel = TRANS_DP_PORT_SEL_B;
1513 break;
1514 case PCH_DP_C:
1515 trans_sel = TRANS_DP_PORT_SEL_C;
1516 break;
1517 case PCH_DP_D:
1518 trans_sel = TRANS_DP_PORT_SEL_D;
1519 break;
1520 default:
1521 return true;
1522 }
1523
1524 for_each_pipe(i) {
1525 trans_dp = I915_READ(TRANS_DP_CTL(i));
1526 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1527 *pipe = i;
1528 return true;
1529 }
1530 }
1531
1532 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1533 intel_dp->output_reg);
1534 }
1535
1536 return true;
1537 }
1538
1539 static void intel_dp_get_config(struct intel_encoder *encoder,
1540 struct intel_crtc_config *pipe_config)
1541 {
1542 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1543 u32 tmp, flags = 0;
1544 struct drm_device *dev = encoder->base.dev;
1545 struct drm_i915_private *dev_priv = dev->dev_private;
1546 enum port port = dp_to_dig_port(intel_dp)->port;
1547 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1548 int dotclock;
1549
1550 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1551 tmp = I915_READ(intel_dp->output_reg);
1552 if (tmp & DP_SYNC_HS_HIGH)
1553 flags |= DRM_MODE_FLAG_PHSYNC;
1554 else
1555 flags |= DRM_MODE_FLAG_NHSYNC;
1556
1557 if (tmp & DP_SYNC_VS_HIGH)
1558 flags |= DRM_MODE_FLAG_PVSYNC;
1559 else
1560 flags |= DRM_MODE_FLAG_NVSYNC;
1561 } else {
1562 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1563 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1564 flags |= DRM_MODE_FLAG_PHSYNC;
1565 else
1566 flags |= DRM_MODE_FLAG_NHSYNC;
1567
1568 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1569 flags |= DRM_MODE_FLAG_PVSYNC;
1570 else
1571 flags |= DRM_MODE_FLAG_NVSYNC;
1572 }
1573
1574 pipe_config->adjusted_mode.flags |= flags;
1575
1576 pipe_config->has_dp_encoder = true;
1577
1578 intel_dp_get_m_n(crtc, pipe_config);
1579
1580 if (port == PORT_A) {
1581 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1582 pipe_config->port_clock = 162000;
1583 else
1584 pipe_config->port_clock = 270000;
1585 }
1586
1587 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1588 &pipe_config->dp_m_n);
1589
1590 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1591 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1592
1593 pipe_config->adjusted_mode.crtc_clock = dotclock;
1594
1595 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1596 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1597 /*
1598 * This is a big fat ugly hack.
1599 *
1600 * Some machines in UEFI boot mode provide us a VBT that has 18
1601 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1602 * unknown we fail to light up. Yet the same BIOS boots up with
1603 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1604 * max, not what it tells us to use.
1605 *
1606 * Note: This will still be broken if the eDP panel is not lit
1607 * up by the BIOS, and thus we can't get the mode at module
1608 * load.
1609 */
1610 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1611 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1612 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1613 }
1614 }
1615
1616 static bool is_edp_psr(struct drm_device *dev)
1617 {
1618 struct drm_i915_private *dev_priv = dev->dev_private;
1619
1620 return dev_priv->psr.sink_support;
1621 }
1622
1623 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1624 {
1625 struct drm_i915_private *dev_priv = dev->dev_private;
1626
1627 if (!HAS_PSR(dev))
1628 return false;
1629
1630 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1631 }
1632
1633 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1634 struct edp_vsc_psr *vsc_psr)
1635 {
1636 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1637 struct drm_device *dev = dig_port->base.base.dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1640 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1641 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1642 uint32_t *data = (uint32_t *) vsc_psr;
1643 unsigned int i;
1644
1645 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1646 the video DIP being updated before program video DIP data buffer
1647 registers for DIP being updated. */
1648 I915_WRITE(ctl_reg, 0);
1649 POSTING_READ(ctl_reg);
1650
1651 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1652 if (i < sizeof(struct edp_vsc_psr))
1653 I915_WRITE(data_reg + i, *data++);
1654 else
1655 I915_WRITE(data_reg + i, 0);
1656 }
1657
1658 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1659 POSTING_READ(ctl_reg);
1660 }
1661
1662 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1663 {
1664 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666 struct edp_vsc_psr psr_vsc;
1667
1668 if (intel_dp->psr_setup_done)
1669 return;
1670
1671 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1672 memset(&psr_vsc, 0, sizeof(psr_vsc));
1673 psr_vsc.sdp_header.HB0 = 0;
1674 psr_vsc.sdp_header.HB1 = 0x7;
1675 psr_vsc.sdp_header.HB2 = 0x2;
1676 psr_vsc.sdp_header.HB3 = 0x8;
1677 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1678
1679 /* Avoid continuous PSR exit by masking memup and hpd */
1680 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1681 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1682
1683 intel_dp->psr_setup_done = true;
1684 }
1685
1686 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1687 {
1688 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1689 struct drm_i915_private *dev_priv = dev->dev_private;
1690 uint32_t aux_clock_divider;
1691 int precharge = 0x3;
1692 int msg_size = 5; /* Header(4) + Message(1) */
1693
1694 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1695
1696 /* Enable PSR in sink */
1697 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1698 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1699 DP_PSR_ENABLE &
1700 ~DP_PSR_MAIN_LINK_ACTIVE);
1701 else
1702 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1703 DP_PSR_ENABLE |
1704 DP_PSR_MAIN_LINK_ACTIVE);
1705
1706 /* Setup AUX registers */
1707 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1708 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1709 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1710 DP_AUX_CH_CTL_TIME_OUT_400us |
1711 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1712 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1713 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1714 }
1715
1716 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1717 {
1718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720 uint32_t max_sleep_time = 0x1f;
1721 uint32_t idle_frames = 1;
1722 uint32_t val = 0x0;
1723 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1724
1725 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1726 val |= EDP_PSR_LINK_STANDBY;
1727 val |= EDP_PSR_TP2_TP3_TIME_0us;
1728 val |= EDP_PSR_TP1_TIME_0us;
1729 val |= EDP_PSR_SKIP_AUX_EXIT;
1730 } else
1731 val |= EDP_PSR_LINK_DISABLE;
1732
1733 I915_WRITE(EDP_PSR_CTL(dev), val |
1734 IS_BROADWELL(dev) ? 0 : link_entry_time |
1735 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1736 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1737 EDP_PSR_ENABLE);
1738 }
1739
1740 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1741 {
1742 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1743 struct drm_device *dev = dig_port->base.base.dev;
1744 struct drm_i915_private *dev_priv = dev->dev_private;
1745 struct drm_crtc *crtc = dig_port->base.base.crtc;
1746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1747 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1748 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1749
1750 dev_priv->psr.source_ok = false;
1751
1752 if (!HAS_PSR(dev)) {
1753 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1754 return false;
1755 }
1756
1757 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1758 (dig_port->port != PORT_A)) {
1759 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1760 return false;
1761 }
1762
1763 if (!i915.enable_psr) {
1764 DRM_DEBUG_KMS("PSR disable by flag\n");
1765 return false;
1766 }
1767
1768 crtc = dig_port->base.base.crtc;
1769 if (crtc == NULL) {
1770 DRM_DEBUG_KMS("crtc not active for PSR\n");
1771 return false;
1772 }
1773
1774 intel_crtc = to_intel_crtc(crtc);
1775 if (!intel_crtc_active(crtc)) {
1776 DRM_DEBUG_KMS("crtc not active for PSR\n");
1777 return false;
1778 }
1779
1780 obj = to_intel_framebuffer(crtc->fb)->obj;
1781 if (obj->tiling_mode != I915_TILING_X ||
1782 obj->fence_reg == I915_FENCE_REG_NONE) {
1783 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1784 return false;
1785 }
1786
1787 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1788 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1789 return false;
1790 }
1791
1792 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1793 S3D_ENABLE) {
1794 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1795 return false;
1796 }
1797
1798 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1799 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1800 return false;
1801 }
1802
1803 dev_priv->psr.source_ok = true;
1804 return true;
1805 }
1806
1807 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1808 {
1809 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1810
1811 if (!intel_edp_psr_match_conditions(intel_dp) ||
1812 intel_edp_is_psr_enabled(dev))
1813 return;
1814
1815 /* Setup PSR once */
1816 intel_edp_psr_setup(intel_dp);
1817
1818 /* Enable PSR on the panel */
1819 intel_edp_psr_enable_sink(intel_dp);
1820
1821 /* Enable PSR on the host */
1822 intel_edp_psr_enable_source(intel_dp);
1823 }
1824
1825 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1826 {
1827 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1828
1829 if (intel_edp_psr_match_conditions(intel_dp) &&
1830 !intel_edp_is_psr_enabled(dev))
1831 intel_edp_psr_do_enable(intel_dp);
1832 }
1833
1834 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1835 {
1836 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1837 struct drm_i915_private *dev_priv = dev->dev_private;
1838
1839 if (!intel_edp_is_psr_enabled(dev))
1840 return;
1841
1842 I915_WRITE(EDP_PSR_CTL(dev),
1843 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1844
1845 /* Wait till PSR is idle */
1846 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1847 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1848 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1849 }
1850
1851 void intel_edp_psr_update(struct drm_device *dev)
1852 {
1853 struct intel_encoder *encoder;
1854 struct intel_dp *intel_dp = NULL;
1855
1856 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1857 if (encoder->type == INTEL_OUTPUT_EDP) {
1858 intel_dp = enc_to_intel_dp(&encoder->base);
1859
1860 if (!is_edp_psr(dev))
1861 return;
1862
1863 if (!intel_edp_psr_match_conditions(intel_dp))
1864 intel_edp_psr_disable(intel_dp);
1865 else
1866 if (!intel_edp_is_psr_enabled(dev))
1867 intel_edp_psr_do_enable(intel_dp);
1868 }
1869 }
1870
1871 static void intel_disable_dp(struct intel_encoder *encoder)
1872 {
1873 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1874 enum port port = dp_to_dig_port(intel_dp)->port;
1875 struct drm_device *dev = encoder->base.dev;
1876
1877 /* Make sure the panel is off before trying to change the mode. But also
1878 * ensure that we have vdd while we switch off the panel. */
1879 edp_panel_vdd_on(intel_dp);
1880 intel_edp_backlight_off(intel_dp);
1881 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1882 intel_edp_panel_off(intel_dp);
1883 edp_panel_vdd_off(intel_dp, true);
1884
1885 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1886 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1887 intel_dp_link_down(intel_dp);
1888 }
1889
1890 static void intel_post_disable_dp(struct intel_encoder *encoder)
1891 {
1892 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1893 enum port port = dp_to_dig_port(intel_dp)->port;
1894 struct drm_device *dev = encoder->base.dev;
1895
1896 if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1897 intel_dp_link_down(intel_dp);
1898 if (!IS_VALLEYVIEW(dev))
1899 ironlake_edp_pll_off(intel_dp);
1900 }
1901 }
1902
1903 static void intel_enable_dp(struct intel_encoder *encoder)
1904 {
1905 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1906 struct drm_device *dev = encoder->base.dev;
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1909
1910 if (WARN_ON(dp_reg & DP_PORT_EN))
1911 return;
1912
1913 edp_panel_vdd_on(intel_dp);
1914 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1915 intel_dp_start_link_train(intel_dp);
1916 intel_edp_panel_on(intel_dp);
1917 edp_panel_vdd_off(intel_dp, true);
1918 intel_dp_complete_link_train(intel_dp);
1919 intel_dp_stop_link_train(intel_dp);
1920 }
1921
1922 static void g4x_enable_dp(struct intel_encoder *encoder)
1923 {
1924 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1925
1926 intel_enable_dp(encoder);
1927 intel_edp_backlight_on(intel_dp);
1928 }
1929
1930 static void vlv_enable_dp(struct intel_encoder *encoder)
1931 {
1932 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1933
1934 intel_edp_backlight_on(intel_dp);
1935 }
1936
1937 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1938 {
1939 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1940 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1941
1942 if (dport->port == PORT_A)
1943 ironlake_edp_pll_on(intel_dp);
1944 }
1945
1946 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1947 {
1948 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1949 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1950 struct drm_device *dev = encoder->base.dev;
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1953 enum dpio_channel port = vlv_dport_to_channel(dport);
1954 int pipe = intel_crtc->pipe;
1955 struct edp_power_seq power_seq;
1956 u32 val;
1957
1958 mutex_lock(&dev_priv->dpio_lock);
1959
1960 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1961 val = 0;
1962 if (pipe)
1963 val |= (1<<21);
1964 else
1965 val &= ~(1<<21);
1966 val |= 0x001000c4;
1967 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1968 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1969 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1970
1971 mutex_unlock(&dev_priv->dpio_lock);
1972
1973 if (is_edp(intel_dp)) {
1974 /* init power sequencer on this pipe and port */
1975 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1976 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1977 &power_seq);
1978 }
1979
1980 intel_enable_dp(encoder);
1981
1982 vlv_wait_port_ready(dev_priv, dport);
1983 }
1984
1985 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1986 {
1987 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1988 struct drm_device *dev = encoder->base.dev;
1989 struct drm_i915_private *dev_priv = dev->dev_private;
1990 struct intel_crtc *intel_crtc =
1991 to_intel_crtc(encoder->base.crtc);
1992 enum dpio_channel port = vlv_dport_to_channel(dport);
1993 int pipe = intel_crtc->pipe;
1994
1995 /* Program Tx lane resets to default */
1996 mutex_lock(&dev_priv->dpio_lock);
1997 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1998 DPIO_PCS_TX_LANE2_RESET |
1999 DPIO_PCS_TX_LANE1_RESET);
2000 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2001 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2002 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2003 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2004 DPIO_PCS_CLK_SOFT_RESET);
2005
2006 /* Fix up inter-pair skew failure */
2007 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2008 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2009 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2010 mutex_unlock(&dev_priv->dpio_lock);
2011 }
2012
2013 /*
2014 * Native read with retry for link status and receiver capability reads for
2015 * cases where the sink may still be asleep.
2016 */
2017 static bool
2018 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
2019 uint8_t *recv, int recv_bytes)
2020 {
2021 int ret, i;
2022
2023 /*
2024 * Sinks are *supposed* to come up within 1ms from an off state,
2025 * but we're also supposed to retry 3 times per the spec.
2026 */
2027 for (i = 0; i < 3; i++) {
2028 ret = intel_dp_aux_native_read(intel_dp, address, recv,
2029 recv_bytes);
2030 if (ret == recv_bytes)
2031 return true;
2032 msleep(1);
2033 }
2034
2035 return false;
2036 }
2037
2038 /*
2039 * Fetch AUX CH registers 0x202 - 0x207 which contain
2040 * link status information
2041 */
2042 static bool
2043 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2044 {
2045 return intel_dp_aux_native_read_retry(intel_dp,
2046 DP_LANE0_1_STATUS,
2047 link_status,
2048 DP_LINK_STATUS_SIZE);
2049 }
2050
2051 /*
2052 * These are source-specific values; current Intel hardware supports
2053 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2054 */
2055
2056 static uint8_t
2057 intel_dp_voltage_max(struct intel_dp *intel_dp)
2058 {
2059 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2060 enum port port = dp_to_dig_port(intel_dp)->port;
2061
2062 if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2063 return DP_TRAIN_VOLTAGE_SWING_1200;
2064 else if (IS_GEN7(dev) && port == PORT_A)
2065 return DP_TRAIN_VOLTAGE_SWING_800;
2066 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2067 return DP_TRAIN_VOLTAGE_SWING_1200;
2068 else
2069 return DP_TRAIN_VOLTAGE_SWING_800;
2070 }
2071
2072 static uint8_t
2073 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2074 {
2075 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2076 enum port port = dp_to_dig_port(intel_dp)->port;
2077
2078 if (IS_BROADWELL(dev)) {
2079 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2080 case DP_TRAIN_VOLTAGE_SWING_400:
2081 case DP_TRAIN_VOLTAGE_SWING_600:
2082 return DP_TRAIN_PRE_EMPHASIS_6;
2083 case DP_TRAIN_VOLTAGE_SWING_800:
2084 return DP_TRAIN_PRE_EMPHASIS_3_5;
2085 case DP_TRAIN_VOLTAGE_SWING_1200:
2086 default:
2087 return DP_TRAIN_PRE_EMPHASIS_0;
2088 }
2089 } else if (IS_HASWELL(dev)) {
2090 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2091 case DP_TRAIN_VOLTAGE_SWING_400:
2092 return DP_TRAIN_PRE_EMPHASIS_9_5;
2093 case DP_TRAIN_VOLTAGE_SWING_600:
2094 return DP_TRAIN_PRE_EMPHASIS_6;
2095 case DP_TRAIN_VOLTAGE_SWING_800:
2096 return DP_TRAIN_PRE_EMPHASIS_3_5;
2097 case DP_TRAIN_VOLTAGE_SWING_1200:
2098 default:
2099 return DP_TRAIN_PRE_EMPHASIS_0;
2100 }
2101 } else if (IS_VALLEYVIEW(dev)) {
2102 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2103 case DP_TRAIN_VOLTAGE_SWING_400:
2104 return DP_TRAIN_PRE_EMPHASIS_9_5;
2105 case DP_TRAIN_VOLTAGE_SWING_600:
2106 return DP_TRAIN_PRE_EMPHASIS_6;
2107 case DP_TRAIN_VOLTAGE_SWING_800:
2108 return DP_TRAIN_PRE_EMPHASIS_3_5;
2109 case DP_TRAIN_VOLTAGE_SWING_1200:
2110 default:
2111 return DP_TRAIN_PRE_EMPHASIS_0;
2112 }
2113 } else if (IS_GEN7(dev) && port == PORT_A) {
2114 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2115 case DP_TRAIN_VOLTAGE_SWING_400:
2116 return DP_TRAIN_PRE_EMPHASIS_6;
2117 case DP_TRAIN_VOLTAGE_SWING_600:
2118 case DP_TRAIN_VOLTAGE_SWING_800:
2119 return DP_TRAIN_PRE_EMPHASIS_3_5;
2120 default:
2121 return DP_TRAIN_PRE_EMPHASIS_0;
2122 }
2123 } else {
2124 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2125 case DP_TRAIN_VOLTAGE_SWING_400:
2126 return DP_TRAIN_PRE_EMPHASIS_6;
2127 case DP_TRAIN_VOLTAGE_SWING_600:
2128 return DP_TRAIN_PRE_EMPHASIS_6;
2129 case DP_TRAIN_VOLTAGE_SWING_800:
2130 return DP_TRAIN_PRE_EMPHASIS_3_5;
2131 case DP_TRAIN_VOLTAGE_SWING_1200:
2132 default:
2133 return DP_TRAIN_PRE_EMPHASIS_0;
2134 }
2135 }
2136 }
2137
2138 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2139 {
2140 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2141 struct drm_i915_private *dev_priv = dev->dev_private;
2142 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2143 struct intel_crtc *intel_crtc =
2144 to_intel_crtc(dport->base.base.crtc);
2145 unsigned long demph_reg_value, preemph_reg_value,
2146 uniqtranscale_reg_value;
2147 uint8_t train_set = intel_dp->train_set[0];
2148 enum dpio_channel port = vlv_dport_to_channel(dport);
2149 int pipe = intel_crtc->pipe;
2150
2151 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2152 case DP_TRAIN_PRE_EMPHASIS_0:
2153 preemph_reg_value = 0x0004000;
2154 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2155 case DP_TRAIN_VOLTAGE_SWING_400:
2156 demph_reg_value = 0x2B405555;
2157 uniqtranscale_reg_value = 0x552AB83A;
2158 break;
2159 case DP_TRAIN_VOLTAGE_SWING_600:
2160 demph_reg_value = 0x2B404040;
2161 uniqtranscale_reg_value = 0x5548B83A;
2162 break;
2163 case DP_TRAIN_VOLTAGE_SWING_800:
2164 demph_reg_value = 0x2B245555;
2165 uniqtranscale_reg_value = 0x5560B83A;
2166 break;
2167 case DP_TRAIN_VOLTAGE_SWING_1200:
2168 demph_reg_value = 0x2B405555;
2169 uniqtranscale_reg_value = 0x5598DA3A;
2170 break;
2171 default:
2172 return 0;
2173 }
2174 break;
2175 case DP_TRAIN_PRE_EMPHASIS_3_5:
2176 preemph_reg_value = 0x0002000;
2177 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2178 case DP_TRAIN_VOLTAGE_SWING_400:
2179 demph_reg_value = 0x2B404040;
2180 uniqtranscale_reg_value = 0x5552B83A;
2181 break;
2182 case DP_TRAIN_VOLTAGE_SWING_600:
2183 demph_reg_value = 0x2B404848;
2184 uniqtranscale_reg_value = 0x5580B83A;
2185 break;
2186 case DP_TRAIN_VOLTAGE_SWING_800:
2187 demph_reg_value = 0x2B404040;
2188 uniqtranscale_reg_value = 0x55ADDA3A;
2189 break;
2190 default:
2191 return 0;
2192 }
2193 break;
2194 case DP_TRAIN_PRE_EMPHASIS_6:
2195 preemph_reg_value = 0x0000000;
2196 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2197 case DP_TRAIN_VOLTAGE_SWING_400:
2198 demph_reg_value = 0x2B305555;
2199 uniqtranscale_reg_value = 0x5570B83A;
2200 break;
2201 case DP_TRAIN_VOLTAGE_SWING_600:
2202 demph_reg_value = 0x2B2B4040;
2203 uniqtranscale_reg_value = 0x55ADDA3A;
2204 break;
2205 default:
2206 return 0;
2207 }
2208 break;
2209 case DP_TRAIN_PRE_EMPHASIS_9_5:
2210 preemph_reg_value = 0x0006000;
2211 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2212 case DP_TRAIN_VOLTAGE_SWING_400:
2213 demph_reg_value = 0x1B405555;
2214 uniqtranscale_reg_value = 0x55ADDA3A;
2215 break;
2216 default:
2217 return 0;
2218 }
2219 break;
2220 default:
2221 return 0;
2222 }
2223
2224 mutex_lock(&dev_priv->dpio_lock);
2225 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2226 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2227 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2228 uniqtranscale_reg_value);
2229 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2230 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2231 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2232 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2233 mutex_unlock(&dev_priv->dpio_lock);
2234
2235 return 0;
2236 }
2237
2238 static void
2239 intel_get_adjust_train(struct intel_dp *intel_dp,
2240 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2241 {
2242 uint8_t v = 0;
2243 uint8_t p = 0;
2244 int lane;
2245 uint8_t voltage_max;
2246 uint8_t preemph_max;
2247
2248 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2249 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2250 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2251
2252 if (this_v > v)
2253 v = this_v;
2254 if (this_p > p)
2255 p = this_p;
2256 }
2257
2258 voltage_max = intel_dp_voltage_max(intel_dp);
2259 if (v >= voltage_max)
2260 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2261
2262 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2263 if (p >= preemph_max)
2264 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2265
2266 for (lane = 0; lane < 4; lane++)
2267 intel_dp->train_set[lane] = v | p;
2268 }
2269
2270 static uint32_t
2271 intel_gen4_signal_levels(uint8_t train_set)
2272 {
2273 uint32_t signal_levels = 0;
2274
2275 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2276 case DP_TRAIN_VOLTAGE_SWING_400:
2277 default:
2278 signal_levels |= DP_VOLTAGE_0_4;
2279 break;
2280 case DP_TRAIN_VOLTAGE_SWING_600:
2281 signal_levels |= DP_VOLTAGE_0_6;
2282 break;
2283 case DP_TRAIN_VOLTAGE_SWING_800:
2284 signal_levels |= DP_VOLTAGE_0_8;
2285 break;
2286 case DP_TRAIN_VOLTAGE_SWING_1200:
2287 signal_levels |= DP_VOLTAGE_1_2;
2288 break;
2289 }
2290 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2291 case DP_TRAIN_PRE_EMPHASIS_0:
2292 default:
2293 signal_levels |= DP_PRE_EMPHASIS_0;
2294 break;
2295 case DP_TRAIN_PRE_EMPHASIS_3_5:
2296 signal_levels |= DP_PRE_EMPHASIS_3_5;
2297 break;
2298 case DP_TRAIN_PRE_EMPHASIS_6:
2299 signal_levels |= DP_PRE_EMPHASIS_6;
2300 break;
2301 case DP_TRAIN_PRE_EMPHASIS_9_5:
2302 signal_levels |= DP_PRE_EMPHASIS_9_5;
2303 break;
2304 }
2305 return signal_levels;
2306 }
2307
2308 /* Gen6's DP voltage swing and pre-emphasis control */
2309 static uint32_t
2310 intel_gen6_edp_signal_levels(uint8_t train_set)
2311 {
2312 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2313 DP_TRAIN_PRE_EMPHASIS_MASK);
2314 switch (signal_levels) {
2315 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2316 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2317 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2318 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2319 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2320 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2321 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2322 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2323 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2324 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2325 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2326 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2327 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2328 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2329 default:
2330 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2331 "0x%x\n", signal_levels);
2332 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2333 }
2334 }
2335
2336 /* Gen7's DP voltage swing and pre-emphasis control */
2337 static uint32_t
2338 intel_gen7_edp_signal_levels(uint8_t train_set)
2339 {
2340 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2341 DP_TRAIN_PRE_EMPHASIS_MASK);
2342 switch (signal_levels) {
2343 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2344 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2345 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2346 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2347 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2348 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2349
2350 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2351 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2352 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2353 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2354
2355 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2356 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2357 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2358 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2359
2360 default:
2361 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2362 "0x%x\n", signal_levels);
2363 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2364 }
2365 }
2366
2367 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2368 static uint32_t
2369 intel_hsw_signal_levels(uint8_t train_set)
2370 {
2371 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2372 DP_TRAIN_PRE_EMPHASIS_MASK);
2373 switch (signal_levels) {
2374 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2375 return DDI_BUF_EMP_400MV_0DB_HSW;
2376 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2377 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2378 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2379 return DDI_BUF_EMP_400MV_6DB_HSW;
2380 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2381 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2382
2383 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2384 return DDI_BUF_EMP_600MV_0DB_HSW;
2385 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2386 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2387 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2388 return DDI_BUF_EMP_600MV_6DB_HSW;
2389
2390 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2391 return DDI_BUF_EMP_800MV_0DB_HSW;
2392 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2393 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2394 default:
2395 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2396 "0x%x\n", signal_levels);
2397 return DDI_BUF_EMP_400MV_0DB_HSW;
2398 }
2399 }
2400
2401 static uint32_t
2402 intel_bdw_signal_levels(uint8_t train_set)
2403 {
2404 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2405 DP_TRAIN_PRE_EMPHASIS_MASK);
2406 switch (signal_levels) {
2407 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2408 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2409 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2410 return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
2411 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2412 return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
2413
2414 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2415 return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
2416 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2417 return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
2418 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2419 return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
2420
2421 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2422 return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
2423 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2424 return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
2425
2426 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2427 return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
2428
2429 default:
2430 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2431 "0x%x\n", signal_levels);
2432 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2433 }
2434 }
2435
2436 /* Properly updates "DP" with the correct signal levels. */
2437 static void
2438 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2439 {
2440 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2441 enum port port = intel_dig_port->port;
2442 struct drm_device *dev = intel_dig_port->base.base.dev;
2443 uint32_t signal_levels, mask;
2444 uint8_t train_set = intel_dp->train_set[0];
2445
2446 if (IS_BROADWELL(dev)) {
2447 signal_levels = intel_bdw_signal_levels(train_set);
2448 mask = DDI_BUF_EMP_MASK;
2449 } else if (IS_HASWELL(dev)) {
2450 signal_levels = intel_hsw_signal_levels(train_set);
2451 mask = DDI_BUF_EMP_MASK;
2452 } else if (IS_VALLEYVIEW(dev)) {
2453 signal_levels = intel_vlv_signal_levels(intel_dp);
2454 mask = 0;
2455 } else if (IS_GEN7(dev) && port == PORT_A) {
2456 signal_levels = intel_gen7_edp_signal_levels(train_set);
2457 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2458 } else if (IS_GEN6(dev) && port == PORT_A) {
2459 signal_levels = intel_gen6_edp_signal_levels(train_set);
2460 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2461 } else {
2462 signal_levels = intel_gen4_signal_levels(train_set);
2463 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2464 }
2465
2466 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2467
2468 *DP = (*DP & ~mask) | signal_levels;
2469 }
2470
2471 static bool
2472 intel_dp_set_link_train(struct intel_dp *intel_dp,
2473 uint32_t *DP,
2474 uint8_t dp_train_pat)
2475 {
2476 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2477 struct drm_device *dev = intel_dig_port->base.base.dev;
2478 struct drm_i915_private *dev_priv = dev->dev_private;
2479 enum port port = intel_dig_port->port;
2480 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2481 int ret, len;
2482
2483 if (HAS_DDI(dev)) {
2484 uint32_t temp = I915_READ(DP_TP_CTL(port));
2485
2486 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2487 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2488 else
2489 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2490
2491 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2492 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2493 case DP_TRAINING_PATTERN_DISABLE:
2494 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2495
2496 break;
2497 case DP_TRAINING_PATTERN_1:
2498 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2499 break;
2500 case DP_TRAINING_PATTERN_2:
2501 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2502 break;
2503 case DP_TRAINING_PATTERN_3:
2504 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2505 break;
2506 }
2507 I915_WRITE(DP_TP_CTL(port), temp);
2508
2509 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2510 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2511
2512 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2513 case DP_TRAINING_PATTERN_DISABLE:
2514 *DP |= DP_LINK_TRAIN_OFF_CPT;
2515 break;
2516 case DP_TRAINING_PATTERN_1:
2517 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2518 break;
2519 case DP_TRAINING_PATTERN_2:
2520 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2521 break;
2522 case DP_TRAINING_PATTERN_3:
2523 DRM_ERROR("DP training pattern 3 not supported\n");
2524 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2525 break;
2526 }
2527
2528 } else {
2529 *DP &= ~DP_LINK_TRAIN_MASK;
2530
2531 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2532 case DP_TRAINING_PATTERN_DISABLE:
2533 *DP |= DP_LINK_TRAIN_OFF;
2534 break;
2535 case DP_TRAINING_PATTERN_1:
2536 *DP |= DP_LINK_TRAIN_PAT_1;
2537 break;
2538 case DP_TRAINING_PATTERN_2:
2539 *DP |= DP_LINK_TRAIN_PAT_2;
2540 break;
2541 case DP_TRAINING_PATTERN_3:
2542 DRM_ERROR("DP training pattern 3 not supported\n");
2543 *DP |= DP_LINK_TRAIN_PAT_2;
2544 break;
2545 }
2546 }
2547
2548 I915_WRITE(intel_dp->output_reg, *DP);
2549 POSTING_READ(intel_dp->output_reg);
2550
2551 buf[0] = dp_train_pat;
2552 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2553 DP_TRAINING_PATTERN_DISABLE) {
2554 /* don't write DP_TRAINING_LANEx_SET on disable */
2555 len = 1;
2556 } else {
2557 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2558 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2559 len = intel_dp->lane_count + 1;
2560 }
2561
2562 ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2563 buf, len);
2564
2565 return ret == len;
2566 }
2567
2568 static bool
2569 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2570 uint8_t dp_train_pat)
2571 {
2572 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2573 intel_dp_set_signal_levels(intel_dp, DP);
2574 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2575 }
2576
2577 static bool
2578 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2579 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2580 {
2581 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2582 struct drm_device *dev = intel_dig_port->base.base.dev;
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 int ret;
2585
2586 intel_get_adjust_train(intel_dp, link_status);
2587 intel_dp_set_signal_levels(intel_dp, DP);
2588
2589 I915_WRITE(intel_dp->output_reg, *DP);
2590 POSTING_READ(intel_dp->output_reg);
2591
2592 ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2593 intel_dp->train_set,
2594 intel_dp->lane_count);
2595
2596 return ret == intel_dp->lane_count;
2597 }
2598
2599 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2600 {
2601 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2602 struct drm_device *dev = intel_dig_port->base.base.dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 enum port port = intel_dig_port->port;
2605 uint32_t val;
2606
2607 if (!HAS_DDI(dev))
2608 return;
2609
2610 val = I915_READ(DP_TP_CTL(port));
2611 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2612 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2613 I915_WRITE(DP_TP_CTL(port), val);
2614
2615 /*
2616 * On PORT_A we can have only eDP in SST mode. There the only reason
2617 * we need to set idle transmission mode is to work around a HW issue
2618 * where we enable the pipe while not in idle link-training mode.
2619 * In this case there is requirement to wait for a minimum number of
2620 * idle patterns to be sent.
2621 */
2622 if (port == PORT_A)
2623 return;
2624
2625 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2626 1))
2627 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2628 }
2629
2630 /* Enable corresponding port and start training pattern 1 */
2631 void
2632 intel_dp_start_link_train(struct intel_dp *intel_dp)
2633 {
2634 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2635 struct drm_device *dev = encoder->dev;
2636 int i;
2637 uint8_t voltage;
2638 int voltage_tries, loop_tries;
2639 uint32_t DP = intel_dp->DP;
2640 uint8_t link_config[2];
2641
2642 if (HAS_DDI(dev))
2643 intel_ddi_prepare_link_retrain(encoder);
2644
2645 /* Write the link configuration data */
2646 link_config[0] = intel_dp->link_bw;
2647 link_config[1] = intel_dp->lane_count;
2648 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2649 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2650 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2651
2652 link_config[0] = 0;
2653 link_config[1] = DP_SET_ANSI_8B10B;
2654 intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2655
2656 DP |= DP_PORT_EN;
2657
2658 /* clock recovery */
2659 if (!intel_dp_reset_link_train(intel_dp, &DP,
2660 DP_TRAINING_PATTERN_1 |
2661 DP_LINK_SCRAMBLING_DISABLE)) {
2662 DRM_ERROR("failed to enable link training\n");
2663 return;
2664 }
2665
2666 voltage = 0xff;
2667 voltage_tries = 0;
2668 loop_tries = 0;
2669 for (;;) {
2670 uint8_t link_status[DP_LINK_STATUS_SIZE];
2671
2672 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2673 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2674 DRM_ERROR("failed to get link status\n");
2675 break;
2676 }
2677
2678 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2679 DRM_DEBUG_KMS("clock recovery OK\n");
2680 break;
2681 }
2682
2683 /* Check to see if we've tried the max voltage */
2684 for (i = 0; i < intel_dp->lane_count; i++)
2685 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2686 break;
2687 if (i == intel_dp->lane_count) {
2688 ++loop_tries;
2689 if (loop_tries == 5) {
2690 DRM_ERROR("too many full retries, give up\n");
2691 break;
2692 }
2693 intel_dp_reset_link_train(intel_dp, &DP,
2694 DP_TRAINING_PATTERN_1 |
2695 DP_LINK_SCRAMBLING_DISABLE);
2696 voltage_tries = 0;
2697 continue;
2698 }
2699
2700 /* Check to see if we've tried the same voltage 5 times */
2701 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2702 ++voltage_tries;
2703 if (voltage_tries == 5) {
2704 DRM_ERROR("too many voltage retries, give up\n");
2705 break;
2706 }
2707 } else
2708 voltage_tries = 0;
2709 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2710
2711 /* Update training set as requested by target */
2712 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2713 DRM_ERROR("failed to update link training\n");
2714 break;
2715 }
2716 }
2717
2718 intel_dp->DP = DP;
2719 }
2720
2721 void
2722 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2723 {
2724 bool channel_eq = false;
2725 int tries, cr_tries;
2726 uint32_t DP = intel_dp->DP;
2727 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2728
2729 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2730 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2731 training_pattern = DP_TRAINING_PATTERN_3;
2732
2733 /* channel equalization */
2734 if (!intel_dp_set_link_train(intel_dp, &DP,
2735 training_pattern |
2736 DP_LINK_SCRAMBLING_DISABLE)) {
2737 DRM_ERROR("failed to start channel equalization\n");
2738 return;
2739 }
2740
2741 tries = 0;
2742 cr_tries = 0;
2743 channel_eq = false;
2744 for (;;) {
2745 uint8_t link_status[DP_LINK_STATUS_SIZE];
2746
2747 if (cr_tries > 5) {
2748 DRM_ERROR("failed to train DP, aborting\n");
2749 break;
2750 }
2751
2752 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2753 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2754 DRM_ERROR("failed to get link status\n");
2755 break;
2756 }
2757
2758 /* Make sure clock is still ok */
2759 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2760 intel_dp_start_link_train(intel_dp);
2761 intel_dp_set_link_train(intel_dp, &DP,
2762 training_pattern |
2763 DP_LINK_SCRAMBLING_DISABLE);
2764 cr_tries++;
2765 continue;
2766 }
2767
2768 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2769 channel_eq = true;
2770 break;
2771 }
2772
2773 /* Try 5 times, then try clock recovery if that fails */
2774 if (tries > 5) {
2775 intel_dp_link_down(intel_dp);
2776 intel_dp_start_link_train(intel_dp);
2777 intel_dp_set_link_train(intel_dp, &DP,
2778 training_pattern |
2779 DP_LINK_SCRAMBLING_DISABLE);
2780 tries = 0;
2781 cr_tries++;
2782 continue;
2783 }
2784
2785 /* Update training set as requested by target */
2786 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2787 DRM_ERROR("failed to update link training\n");
2788 break;
2789 }
2790 ++tries;
2791 }
2792
2793 intel_dp_set_idle_link_train(intel_dp);
2794
2795 intel_dp->DP = DP;
2796
2797 if (channel_eq)
2798 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2799
2800 }
2801
2802 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2803 {
2804 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2805 DP_TRAINING_PATTERN_DISABLE);
2806 }
2807
2808 static void
2809 intel_dp_link_down(struct intel_dp *intel_dp)
2810 {
2811 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2812 enum port port = intel_dig_port->port;
2813 struct drm_device *dev = intel_dig_port->base.base.dev;
2814 struct drm_i915_private *dev_priv = dev->dev_private;
2815 struct intel_crtc *intel_crtc =
2816 to_intel_crtc(intel_dig_port->base.base.crtc);
2817 uint32_t DP = intel_dp->DP;
2818
2819 /*
2820 * DDI code has a strict mode set sequence and we should try to respect
2821 * it, otherwise we might hang the machine in many different ways. So we
2822 * really should be disabling the port only on a complete crtc_disable
2823 * sequence. This function is just called under two conditions on DDI
2824 * code:
2825 * - Link train failed while doing crtc_enable, and on this case we
2826 * really should respect the mode set sequence and wait for a
2827 * crtc_disable.
2828 * - Someone turned the monitor off and intel_dp_check_link_status
2829 * called us. We don't need to disable the whole port on this case, so
2830 * when someone turns the monitor on again,
2831 * intel_ddi_prepare_link_retrain will take care of redoing the link
2832 * train.
2833 */
2834 if (HAS_DDI(dev))
2835 return;
2836
2837 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2838 return;
2839
2840 DRM_DEBUG_KMS("\n");
2841
2842 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2843 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2844 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2845 } else {
2846 DP &= ~DP_LINK_TRAIN_MASK;
2847 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2848 }
2849 POSTING_READ(intel_dp->output_reg);
2850
2851 /* We don't really know why we're doing this */
2852 intel_wait_for_vblank(dev, intel_crtc->pipe);
2853
2854 if (HAS_PCH_IBX(dev) &&
2855 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2856 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2857
2858 /* Hardware workaround: leaving our transcoder select
2859 * set to transcoder B while it's off will prevent the
2860 * corresponding HDMI output on transcoder A.
2861 *
2862 * Combine this with another hardware workaround:
2863 * transcoder select bit can only be cleared while the
2864 * port is enabled.
2865 */
2866 DP &= ~DP_PIPEB_SELECT;
2867 I915_WRITE(intel_dp->output_reg, DP);
2868
2869 /* Changes to enable or select take place the vblank
2870 * after being written.
2871 */
2872 if (WARN_ON(crtc == NULL)) {
2873 /* We should never try to disable a port without a crtc
2874 * attached. For paranoia keep the code around for a
2875 * bit. */
2876 POSTING_READ(intel_dp->output_reg);
2877 msleep(50);
2878 } else
2879 intel_wait_for_vblank(dev, intel_crtc->pipe);
2880 }
2881
2882 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2883 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2884 POSTING_READ(intel_dp->output_reg);
2885 msleep(intel_dp->panel_power_down_delay);
2886 }
2887
2888 static bool
2889 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2890 {
2891 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2892 struct drm_device *dev = dig_port->base.base.dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894
2895 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2896
2897 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2898 sizeof(intel_dp->dpcd)) == 0)
2899 return false; /* aux transfer failed */
2900
2901 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2902 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2903 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2904
2905 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2906 return false; /* DPCD not present */
2907
2908 /* Check if the panel supports PSR */
2909 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2910 if (is_edp(intel_dp)) {
2911 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2912 intel_dp->psr_dpcd,
2913 sizeof(intel_dp->psr_dpcd));
2914 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2915 dev_priv->psr.sink_support = true;
2916 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2917 }
2918 }
2919
2920 /* Training Pattern 3 support */
2921 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
2922 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
2923 intel_dp->use_tps3 = true;
2924 DRM_DEBUG_KMS("Displayport TPS3 supported");
2925 } else
2926 intel_dp->use_tps3 = false;
2927
2928 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2929 DP_DWN_STRM_PORT_PRESENT))
2930 return true; /* native DP sink */
2931
2932 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2933 return true; /* no per-port downstream info */
2934
2935 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2936 intel_dp->downstream_ports,
2937 DP_MAX_DOWNSTREAM_PORTS) == 0)
2938 return false; /* downstream port status fetch failed */
2939
2940 return true;
2941 }
2942
2943 static void
2944 intel_dp_probe_oui(struct intel_dp *intel_dp)
2945 {
2946 u8 buf[3];
2947
2948 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2949 return;
2950
2951 edp_panel_vdd_on(intel_dp);
2952
2953 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2954 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2955 buf[0], buf[1], buf[2]);
2956
2957 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2958 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2959 buf[0], buf[1], buf[2]);
2960
2961 edp_panel_vdd_off(intel_dp, false);
2962 }
2963
2964 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
2965 {
2966 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2967 struct drm_device *dev = intel_dig_port->base.base.dev;
2968 struct intel_crtc *intel_crtc =
2969 to_intel_crtc(intel_dig_port->base.base.crtc);
2970 u8 buf[1];
2971
2972 if (!intel_dp_aux_native_read(intel_dp, DP_TEST_SINK_MISC, buf, 1))
2973 return -EAGAIN;
2974
2975 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
2976 return -ENOTTY;
2977
2978 if (!intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK,
2979 DP_TEST_SINK_START))
2980 return -EAGAIN;
2981
2982 /* Wait 2 vblanks to be sure we will have the correct CRC value */
2983 intel_wait_for_vblank(dev, intel_crtc->pipe);
2984 intel_wait_for_vblank(dev, intel_crtc->pipe);
2985
2986 if (!intel_dp_aux_native_read(intel_dp, DP_TEST_CRC_R_CR, crc, 6))
2987 return -EAGAIN;
2988
2989 intel_dp_aux_native_write_1(intel_dp, DP_TEST_SINK, 0);
2990 return 0;
2991 }
2992
2993 static bool
2994 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2995 {
2996 int ret;
2997
2998 ret = intel_dp_aux_native_read_retry(intel_dp,
2999 DP_DEVICE_SERVICE_IRQ_VECTOR,
3000 sink_irq_vector, 1);
3001 if (!ret)
3002 return false;
3003
3004 return true;
3005 }
3006
3007 static void
3008 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3009 {
3010 /* NAK by default */
3011 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
3012 }
3013
3014 /*
3015 * According to DP spec
3016 * 5.1.2:
3017 * 1. Read DPCD
3018 * 2. Configure link according to Receiver Capabilities
3019 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3020 * 4. Check link status on receipt of hot-plug interrupt
3021 */
3022
3023 void
3024 intel_dp_check_link_status(struct intel_dp *intel_dp)
3025 {
3026 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3027 u8 sink_irq_vector;
3028 u8 link_status[DP_LINK_STATUS_SIZE];
3029
3030 if (!intel_encoder->connectors_active)
3031 return;
3032
3033 if (WARN_ON(!intel_encoder->base.crtc))
3034 return;
3035
3036 /* Try to read receiver status if the link appears to be up */
3037 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3038 return;
3039 }
3040
3041 /* Now read the DPCD to see if it's actually running */
3042 if (!intel_dp_get_dpcd(intel_dp)) {
3043 return;
3044 }
3045
3046 /* Try to read the source of the interrupt */
3047 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3048 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3049 /* Clear interrupt source */
3050 intel_dp_aux_native_write_1(intel_dp,
3051 DP_DEVICE_SERVICE_IRQ_VECTOR,
3052 sink_irq_vector);
3053
3054 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3055 intel_dp_handle_test_request(intel_dp);
3056 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3057 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3058 }
3059
3060 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3061 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3062 drm_get_encoder_name(&intel_encoder->base));
3063 intel_dp_start_link_train(intel_dp);
3064 intel_dp_complete_link_train(intel_dp);
3065 intel_dp_stop_link_train(intel_dp);
3066 }
3067 }
3068
3069 /* XXX this is probably wrong for multiple downstream ports */
3070 static enum drm_connector_status
3071 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3072 {
3073 uint8_t *dpcd = intel_dp->dpcd;
3074 uint8_t type;
3075
3076 if (!intel_dp_get_dpcd(intel_dp))
3077 return connector_status_disconnected;
3078
3079 /* if there's no downstream port, we're done */
3080 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3081 return connector_status_connected;
3082
3083 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3084 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3085 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3086 uint8_t reg;
3087 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
3088 &reg, 1))
3089 return connector_status_unknown;
3090 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3091 : connector_status_disconnected;
3092 }
3093
3094 /* If no HPD, poke DDC gently */
3095 if (drm_probe_ddc(&intel_dp->adapter))
3096 return connector_status_connected;
3097
3098 /* Well we tried, say unknown for unreliable port types */
3099 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3100 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3101 if (type == DP_DS_PORT_TYPE_VGA ||
3102 type == DP_DS_PORT_TYPE_NON_EDID)
3103 return connector_status_unknown;
3104 } else {
3105 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3106 DP_DWN_STRM_PORT_TYPE_MASK;
3107 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3108 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3109 return connector_status_unknown;
3110 }
3111
3112 /* Anything else is out of spec, warn and ignore */
3113 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3114 return connector_status_disconnected;
3115 }
3116
3117 static enum drm_connector_status
3118 ironlake_dp_detect(struct intel_dp *intel_dp)
3119 {
3120 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3123 enum drm_connector_status status;
3124
3125 /* Can't disconnect eDP, but you can close the lid... */
3126 if (is_edp(intel_dp)) {
3127 status = intel_panel_detect(dev);
3128 if (status == connector_status_unknown)
3129 status = connector_status_connected;
3130 return status;
3131 }
3132
3133 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3134 return connector_status_disconnected;
3135
3136 return intel_dp_detect_dpcd(intel_dp);
3137 }
3138
3139 static enum drm_connector_status
3140 g4x_dp_detect(struct intel_dp *intel_dp)
3141 {
3142 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3143 struct drm_i915_private *dev_priv = dev->dev_private;
3144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3145 uint32_t bit;
3146
3147 /* Can't disconnect eDP, but you can close the lid... */
3148 if (is_edp(intel_dp)) {
3149 enum drm_connector_status status;
3150
3151 status = intel_panel_detect(dev);
3152 if (status == connector_status_unknown)
3153 status = connector_status_connected;
3154 return status;
3155 }
3156
3157 if (IS_VALLEYVIEW(dev)) {
3158 switch (intel_dig_port->port) {
3159 case PORT_B:
3160 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3161 break;
3162 case PORT_C:
3163 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3164 break;
3165 case PORT_D:
3166 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3167 break;
3168 default:
3169 return connector_status_unknown;
3170 }
3171 } else {
3172 switch (intel_dig_port->port) {
3173 case PORT_B:
3174 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3175 break;
3176 case PORT_C:
3177 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3178 break;
3179 case PORT_D:
3180 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3181 break;
3182 default:
3183 return connector_status_unknown;
3184 }
3185 }
3186
3187 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3188 return connector_status_disconnected;
3189
3190 return intel_dp_detect_dpcd(intel_dp);
3191 }
3192
3193 static struct edid *
3194 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3195 {
3196 struct intel_connector *intel_connector = to_intel_connector(connector);
3197
3198 /* use cached edid if we have one */
3199 if (intel_connector->edid) {
3200 /* invalid edid */
3201 if (IS_ERR(intel_connector->edid))
3202 return NULL;
3203
3204 return drm_edid_duplicate(intel_connector->edid);
3205 }
3206
3207 return drm_get_edid(connector, adapter);
3208 }
3209
3210 static int
3211 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3212 {
3213 struct intel_connector *intel_connector = to_intel_connector(connector);
3214
3215 /* use cached edid if we have one */
3216 if (intel_connector->edid) {
3217 /* invalid edid */
3218 if (IS_ERR(intel_connector->edid))
3219 return 0;
3220
3221 return intel_connector_update_modes(connector,
3222 intel_connector->edid);
3223 }
3224
3225 return intel_ddc_get_modes(connector, adapter);
3226 }
3227
3228 static enum drm_connector_status
3229 intel_dp_detect(struct drm_connector *connector, bool force)
3230 {
3231 struct intel_dp *intel_dp = intel_attached_dp(connector);
3232 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3233 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3234 struct drm_device *dev = connector->dev;
3235 struct drm_i915_private *dev_priv = dev->dev_private;
3236 enum drm_connector_status status;
3237 enum intel_display_power_domain power_domain;
3238 struct edid *edid = NULL;
3239
3240 intel_runtime_pm_get(dev_priv);
3241
3242 power_domain = intel_display_port_power_domain(intel_encoder);
3243 intel_display_power_get(dev_priv, power_domain);
3244
3245 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3246 connector->base.id, drm_get_connector_name(connector));
3247
3248 intel_dp->has_audio = false;
3249
3250 if (HAS_PCH_SPLIT(dev))
3251 status = ironlake_dp_detect(intel_dp);
3252 else
3253 status = g4x_dp_detect(intel_dp);
3254
3255 if (status != connector_status_connected)
3256 goto out;
3257
3258 intel_dp_probe_oui(intel_dp);
3259
3260 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3261 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3262 } else {
3263 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3264 if (edid) {
3265 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3266 kfree(edid);
3267 }
3268 }
3269
3270 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3271 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3272 status = connector_status_connected;
3273
3274 out:
3275 intel_display_power_put(dev_priv, power_domain);
3276
3277 intel_runtime_pm_put(dev_priv);
3278
3279 return status;
3280 }
3281
3282 static int intel_dp_get_modes(struct drm_connector *connector)
3283 {
3284 struct intel_dp *intel_dp = intel_attached_dp(connector);
3285 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3286 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3287 struct intel_connector *intel_connector = to_intel_connector(connector);
3288 struct drm_device *dev = connector->dev;
3289 struct drm_i915_private *dev_priv = dev->dev_private;
3290 enum intel_display_power_domain power_domain;
3291 int ret;
3292
3293 /* We should parse the EDID data and find out if it has an audio sink
3294 */
3295
3296 power_domain = intel_display_port_power_domain(intel_encoder);
3297 intel_display_power_get(dev_priv, power_domain);
3298
3299 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3300 intel_display_power_put(dev_priv, power_domain);
3301 if (ret)
3302 return ret;
3303
3304 /* if eDP has no EDID, fall back to fixed mode */
3305 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3306 struct drm_display_mode *mode;
3307 mode = drm_mode_duplicate(dev,
3308 intel_connector->panel.fixed_mode);
3309 if (mode) {
3310 drm_mode_probed_add(connector, mode);
3311 return 1;
3312 }
3313 }
3314 return 0;
3315 }
3316
3317 static bool
3318 intel_dp_detect_audio(struct drm_connector *connector)
3319 {
3320 struct intel_dp *intel_dp = intel_attached_dp(connector);
3321 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3322 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3323 struct drm_device *dev = connector->dev;
3324 struct drm_i915_private *dev_priv = dev->dev_private;
3325 enum intel_display_power_domain power_domain;
3326 struct edid *edid;
3327 bool has_audio = false;
3328
3329 power_domain = intel_display_port_power_domain(intel_encoder);
3330 intel_display_power_get(dev_priv, power_domain);
3331
3332 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3333 if (edid) {
3334 has_audio = drm_detect_monitor_audio(edid);
3335 kfree(edid);
3336 }
3337
3338 intel_display_power_put(dev_priv, power_domain);
3339
3340 return has_audio;
3341 }
3342
3343 static int
3344 intel_dp_set_property(struct drm_connector *connector,
3345 struct drm_property *property,
3346 uint64_t val)
3347 {
3348 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3349 struct intel_connector *intel_connector = to_intel_connector(connector);
3350 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3351 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3352 int ret;
3353
3354 ret = drm_object_property_set_value(&connector->base, property, val);
3355 if (ret)
3356 return ret;
3357
3358 if (property == dev_priv->force_audio_property) {
3359 int i = val;
3360 bool has_audio;
3361
3362 if (i == intel_dp->force_audio)
3363 return 0;
3364
3365 intel_dp->force_audio = i;
3366
3367 if (i == HDMI_AUDIO_AUTO)
3368 has_audio = intel_dp_detect_audio(connector);
3369 else
3370 has_audio = (i == HDMI_AUDIO_ON);
3371
3372 if (has_audio == intel_dp->has_audio)
3373 return 0;
3374
3375 intel_dp->has_audio = has_audio;
3376 goto done;
3377 }
3378
3379 if (property == dev_priv->broadcast_rgb_property) {
3380 bool old_auto = intel_dp->color_range_auto;
3381 uint32_t old_range = intel_dp->color_range;
3382
3383 switch (val) {
3384 case INTEL_BROADCAST_RGB_AUTO:
3385 intel_dp->color_range_auto = true;
3386 break;
3387 case INTEL_BROADCAST_RGB_FULL:
3388 intel_dp->color_range_auto = false;
3389 intel_dp->color_range = 0;
3390 break;
3391 case INTEL_BROADCAST_RGB_LIMITED:
3392 intel_dp->color_range_auto = false;
3393 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3394 break;
3395 default:
3396 return -EINVAL;
3397 }
3398
3399 if (old_auto == intel_dp->color_range_auto &&
3400 old_range == intel_dp->color_range)
3401 return 0;
3402
3403 goto done;
3404 }
3405
3406 if (is_edp(intel_dp) &&
3407 property == connector->dev->mode_config.scaling_mode_property) {
3408 if (val == DRM_MODE_SCALE_NONE) {
3409 DRM_DEBUG_KMS("no scaling not supported\n");
3410 return -EINVAL;
3411 }
3412
3413 if (intel_connector->panel.fitting_mode == val) {
3414 /* the eDP scaling property is not changed */
3415 return 0;
3416 }
3417 intel_connector->panel.fitting_mode = val;
3418
3419 goto done;
3420 }
3421
3422 return -EINVAL;
3423
3424 done:
3425 if (intel_encoder->base.crtc)
3426 intel_crtc_restore_mode(intel_encoder->base.crtc);
3427
3428 return 0;
3429 }
3430
3431 static void
3432 intel_dp_connector_destroy(struct drm_connector *connector)
3433 {
3434 struct intel_connector *intel_connector = to_intel_connector(connector);
3435
3436 if (!IS_ERR_OR_NULL(intel_connector->edid))
3437 kfree(intel_connector->edid);
3438
3439 /* Can't call is_edp() since the encoder may have been destroyed
3440 * already. */
3441 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3442 intel_panel_fini(&intel_connector->panel);
3443
3444 drm_connector_cleanup(connector);
3445 kfree(connector);
3446 }
3447
3448 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3449 {
3450 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3451 struct intel_dp *intel_dp = &intel_dig_port->dp;
3452 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3453
3454 i2c_del_adapter(&intel_dp->adapter);
3455 drm_encoder_cleanup(encoder);
3456 if (is_edp(intel_dp)) {
3457 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3458 mutex_lock(&dev->mode_config.mutex);
3459 edp_panel_vdd_off_sync(intel_dp);
3460 mutex_unlock(&dev->mode_config.mutex);
3461 }
3462 kfree(intel_dig_port);
3463 }
3464
3465 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3466 .dpms = intel_connector_dpms,
3467 .detect = intel_dp_detect,
3468 .fill_modes = drm_helper_probe_single_connector_modes,
3469 .set_property = intel_dp_set_property,
3470 .destroy = intel_dp_connector_destroy,
3471 };
3472
3473 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3474 .get_modes = intel_dp_get_modes,
3475 .mode_valid = intel_dp_mode_valid,
3476 .best_encoder = intel_best_encoder,
3477 };
3478
3479 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3480 .destroy = intel_dp_encoder_destroy,
3481 };
3482
3483 static void
3484 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3485 {
3486 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3487
3488 intel_dp_check_link_status(intel_dp);
3489 }
3490
3491 /* Return which DP Port should be selected for Transcoder DP control */
3492 int
3493 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3494 {
3495 struct drm_device *dev = crtc->dev;
3496 struct intel_encoder *intel_encoder;
3497 struct intel_dp *intel_dp;
3498
3499 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3500 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3501
3502 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3503 intel_encoder->type == INTEL_OUTPUT_EDP)
3504 return intel_dp->output_reg;
3505 }
3506
3507 return -1;
3508 }
3509
3510 /* check the VBT to see whether the eDP is on DP-D port */
3511 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3512 {
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 union child_device_config *p_child;
3515 int i;
3516 static const short port_mapping[] = {
3517 [PORT_B] = PORT_IDPB,
3518 [PORT_C] = PORT_IDPC,
3519 [PORT_D] = PORT_IDPD,
3520 };
3521
3522 if (port == PORT_A)
3523 return true;
3524
3525 if (!dev_priv->vbt.child_dev_num)
3526 return false;
3527
3528 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3529 p_child = dev_priv->vbt.child_dev + i;
3530
3531 if (p_child->common.dvo_port == port_mapping[port] &&
3532 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3533 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3534 return true;
3535 }
3536 return false;
3537 }
3538
3539 static void
3540 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3541 {
3542 struct intel_connector *intel_connector = to_intel_connector(connector);
3543
3544 intel_attach_force_audio_property(connector);
3545 intel_attach_broadcast_rgb_property(connector);
3546 intel_dp->color_range_auto = true;
3547
3548 if (is_edp(intel_dp)) {
3549 drm_mode_create_scaling_mode_property(connector->dev);
3550 drm_object_attach_property(
3551 &connector->base,
3552 connector->dev->mode_config.scaling_mode_property,
3553 DRM_MODE_SCALE_ASPECT);
3554 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3555 }
3556 }
3557
3558 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3559 {
3560 intel_dp->last_power_cycle = jiffies;
3561 intel_dp->last_power_on = jiffies;
3562 intel_dp->last_backlight_off = jiffies;
3563 }
3564
3565 static void
3566 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3567 struct intel_dp *intel_dp,
3568 struct edp_power_seq *out)
3569 {
3570 struct drm_i915_private *dev_priv = dev->dev_private;
3571 struct edp_power_seq cur, vbt, spec, final;
3572 u32 pp_on, pp_off, pp_div, pp;
3573 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3574
3575 if (HAS_PCH_SPLIT(dev)) {
3576 pp_ctrl_reg = PCH_PP_CONTROL;
3577 pp_on_reg = PCH_PP_ON_DELAYS;
3578 pp_off_reg = PCH_PP_OFF_DELAYS;
3579 pp_div_reg = PCH_PP_DIVISOR;
3580 } else {
3581 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3582
3583 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3584 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3585 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3586 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3587 }
3588
3589 /* Workaround: Need to write PP_CONTROL with the unlock key as
3590 * the very first thing. */
3591 pp = ironlake_get_pp_control(intel_dp);
3592 I915_WRITE(pp_ctrl_reg, pp);
3593
3594 pp_on = I915_READ(pp_on_reg);
3595 pp_off = I915_READ(pp_off_reg);
3596 pp_div = I915_READ(pp_div_reg);
3597
3598 /* Pull timing values out of registers */
3599 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3600 PANEL_POWER_UP_DELAY_SHIFT;
3601
3602 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3603 PANEL_LIGHT_ON_DELAY_SHIFT;
3604
3605 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3606 PANEL_LIGHT_OFF_DELAY_SHIFT;
3607
3608 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3609 PANEL_POWER_DOWN_DELAY_SHIFT;
3610
3611 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3612 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3613
3614 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3615 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3616
3617 vbt = dev_priv->vbt.edp_pps;
3618
3619 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3620 * our hw here, which are all in 100usec. */
3621 spec.t1_t3 = 210 * 10;
3622 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3623 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3624 spec.t10 = 500 * 10;
3625 /* This one is special and actually in units of 100ms, but zero
3626 * based in the hw (so we need to add 100 ms). But the sw vbt
3627 * table multiplies it with 1000 to make it in units of 100usec,
3628 * too. */
3629 spec.t11_t12 = (510 + 100) * 10;
3630
3631 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3632 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3633
3634 /* Use the max of the register settings and vbt. If both are
3635 * unset, fall back to the spec limits. */
3636 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3637 spec.field : \
3638 max(cur.field, vbt.field))
3639 assign_final(t1_t3);
3640 assign_final(t8);
3641 assign_final(t9);
3642 assign_final(t10);
3643 assign_final(t11_t12);
3644 #undef assign_final
3645
3646 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3647 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3648 intel_dp->backlight_on_delay = get_delay(t8);
3649 intel_dp->backlight_off_delay = get_delay(t9);
3650 intel_dp->panel_power_down_delay = get_delay(t10);
3651 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3652 #undef get_delay
3653
3654 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3655 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3656 intel_dp->panel_power_cycle_delay);
3657
3658 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3659 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3660
3661 if (out)
3662 *out = final;
3663 }
3664
3665 static void
3666 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3667 struct intel_dp *intel_dp,
3668 struct edp_power_seq *seq)
3669 {
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 u32 pp_on, pp_off, pp_div, port_sel = 0;
3672 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3673 int pp_on_reg, pp_off_reg, pp_div_reg;
3674
3675 if (HAS_PCH_SPLIT(dev)) {
3676 pp_on_reg = PCH_PP_ON_DELAYS;
3677 pp_off_reg = PCH_PP_OFF_DELAYS;
3678 pp_div_reg = PCH_PP_DIVISOR;
3679 } else {
3680 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3681
3682 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3683 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3684 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3685 }
3686
3687 /*
3688 * And finally store the new values in the power sequencer. The
3689 * backlight delays are set to 1 because we do manual waits on them. For
3690 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3691 * we'll end up waiting for the backlight off delay twice: once when we
3692 * do the manual sleep, and once when we disable the panel and wait for
3693 * the PP_STATUS bit to become zero.
3694 */
3695 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3696 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3697 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3698 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3699 /* Compute the divisor for the pp clock, simply match the Bspec
3700 * formula. */
3701 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3702 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3703 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3704
3705 /* Haswell doesn't have any port selection bits for the panel
3706 * power sequencer any more. */
3707 if (IS_VALLEYVIEW(dev)) {
3708 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3709 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3710 else
3711 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3712 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3713 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3714 port_sel = PANEL_PORT_SELECT_DPA;
3715 else
3716 port_sel = PANEL_PORT_SELECT_DPD;
3717 }
3718
3719 pp_on |= port_sel;
3720
3721 I915_WRITE(pp_on_reg, pp_on);
3722 I915_WRITE(pp_off_reg, pp_off);
3723 I915_WRITE(pp_div_reg, pp_div);
3724
3725 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3726 I915_READ(pp_on_reg),
3727 I915_READ(pp_off_reg),
3728 I915_READ(pp_div_reg));
3729 }
3730
3731 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3732 struct intel_connector *intel_connector,
3733 struct edp_power_seq *power_seq)
3734 {
3735 struct drm_connector *connector = &intel_connector->base;
3736 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3737 struct drm_device *dev = intel_dig_port->base.base.dev;
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3739 struct drm_display_mode *fixed_mode = NULL;
3740 bool has_dpcd;
3741 struct drm_display_mode *scan;
3742 struct edid *edid;
3743
3744 if (!is_edp(intel_dp))
3745 return true;
3746
3747 /* Cache DPCD and EDID for edp. */
3748 edp_panel_vdd_on(intel_dp);
3749 has_dpcd = intel_dp_get_dpcd(intel_dp);
3750 edp_panel_vdd_off(intel_dp, false);
3751
3752 if (has_dpcd) {
3753 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3754 dev_priv->no_aux_handshake =
3755 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3756 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3757 } else {
3758 /* if this fails, presume the device is a ghost */
3759 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3760 return false;
3761 }
3762
3763 /* We now know it's not a ghost, init power sequence regs. */
3764 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
3765
3766 edid = drm_get_edid(connector, &intel_dp->adapter);
3767 if (edid) {
3768 if (drm_add_edid_modes(connector, edid)) {
3769 drm_mode_connector_update_edid_property(connector,
3770 edid);
3771 drm_edid_to_eld(connector, edid);
3772 } else {
3773 kfree(edid);
3774 edid = ERR_PTR(-EINVAL);
3775 }
3776 } else {
3777 edid = ERR_PTR(-ENOENT);
3778 }
3779 intel_connector->edid = edid;
3780
3781 /* prefer fixed mode from EDID if available */
3782 list_for_each_entry(scan, &connector->probed_modes, head) {
3783 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3784 fixed_mode = drm_mode_duplicate(dev, scan);
3785 break;
3786 }
3787 }
3788
3789 /* fallback to VBT if available for eDP */
3790 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3791 fixed_mode = drm_mode_duplicate(dev,
3792 dev_priv->vbt.lfp_lvds_vbt_mode);
3793 if (fixed_mode)
3794 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3795 }
3796
3797 intel_panel_init(&intel_connector->panel, fixed_mode, NULL);
3798 intel_panel_setup_backlight(connector);
3799
3800 return true;
3801 }
3802
3803 bool
3804 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3805 struct intel_connector *intel_connector)
3806 {
3807 struct drm_connector *connector = &intel_connector->base;
3808 struct intel_dp *intel_dp = &intel_dig_port->dp;
3809 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3810 struct drm_device *dev = intel_encoder->base.dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 enum port port = intel_dig_port->port;
3813 struct edp_power_seq power_seq = { 0 };
3814 const char *name = NULL;
3815 int type, error;
3816
3817 /* intel_dp vfuncs */
3818 if (IS_VALLEYVIEW(dev))
3819 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
3820 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3821 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
3822 else if (HAS_PCH_SPLIT(dev))
3823 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
3824 else
3825 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
3826
3827 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
3828
3829 /* Preserve the current hw state. */
3830 intel_dp->DP = I915_READ(intel_dp->output_reg);
3831 intel_dp->attached_connector = intel_connector;
3832
3833 if (intel_dp_is_edp(dev, port))
3834 type = DRM_MODE_CONNECTOR_eDP;
3835 else
3836 type = DRM_MODE_CONNECTOR_DisplayPort;
3837
3838 /*
3839 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3840 * for DP the encoder type can be set by the caller to
3841 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3842 */
3843 if (type == DRM_MODE_CONNECTOR_eDP)
3844 intel_encoder->type = INTEL_OUTPUT_EDP;
3845
3846 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3847 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3848 port_name(port));
3849
3850 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3851 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3852
3853 connector->interlace_allowed = true;
3854 connector->doublescan_allowed = 0;
3855
3856 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3857 edp_panel_vdd_work);
3858
3859 intel_connector_attach_encoder(intel_connector, intel_encoder);
3860 drm_sysfs_connector_add(connector);
3861
3862 if (HAS_DDI(dev))
3863 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3864 else
3865 intel_connector->get_hw_state = intel_connector_get_hw_state;
3866 intel_connector->unregister = intel_dp_connector_unregister;
3867
3868 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3869 if (HAS_DDI(dev)) {
3870 switch (intel_dig_port->port) {
3871 case PORT_A:
3872 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3873 break;
3874 case PORT_B:
3875 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3876 break;
3877 case PORT_C:
3878 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3879 break;
3880 case PORT_D:
3881 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3882 break;
3883 default:
3884 BUG();
3885 }
3886 }
3887
3888 /* Set up the DDC bus. */
3889 switch (port) {
3890 case PORT_A:
3891 intel_encoder->hpd_pin = HPD_PORT_A;
3892 name = "DPDDC-A";
3893 break;
3894 case PORT_B:
3895 intel_encoder->hpd_pin = HPD_PORT_B;
3896 name = "DPDDC-B";
3897 break;
3898 case PORT_C:
3899 intel_encoder->hpd_pin = HPD_PORT_C;
3900 name = "DPDDC-C";
3901 break;
3902 case PORT_D:
3903 intel_encoder->hpd_pin = HPD_PORT_D;
3904 name = "DPDDC-D";
3905 break;
3906 default:
3907 BUG();
3908 }
3909
3910 if (is_edp(intel_dp)) {
3911 intel_dp_init_panel_power_timestamps(intel_dp);
3912 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3913 }
3914
3915 error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3916 WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3917 error, port_name(port));
3918
3919 intel_dp->psr_setup_done = false;
3920
3921 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
3922 i2c_del_adapter(&intel_dp->adapter);
3923 if (is_edp(intel_dp)) {
3924 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3925 mutex_lock(&dev->mode_config.mutex);
3926 edp_panel_vdd_off_sync(intel_dp);
3927 mutex_unlock(&dev->mode_config.mutex);
3928 }
3929 drm_sysfs_connector_remove(connector);
3930 drm_connector_cleanup(connector);
3931 return false;
3932 }
3933
3934 intel_dp_add_properties(intel_dp, connector);
3935
3936 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3937 * 0xd. Failure to do so will result in spurious interrupts being
3938 * generated on the port when a cable is not attached.
3939 */
3940 if (IS_G4X(dev) && !IS_GM45(dev)) {
3941 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3942 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3943 }
3944
3945 return true;
3946 }
3947
3948 void
3949 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3950 {
3951 struct intel_digital_port *intel_dig_port;
3952 struct intel_encoder *intel_encoder;
3953 struct drm_encoder *encoder;
3954 struct intel_connector *intel_connector;
3955
3956 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3957 if (!intel_dig_port)
3958 return;
3959
3960 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3961 if (!intel_connector) {
3962 kfree(intel_dig_port);
3963 return;
3964 }
3965
3966 intel_encoder = &intel_dig_port->base;
3967 encoder = &intel_encoder->base;
3968
3969 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3970 DRM_MODE_ENCODER_TMDS);
3971
3972 intel_encoder->compute_config = intel_dp_compute_config;
3973 intel_encoder->mode_set = intel_dp_mode_set;
3974 intel_encoder->disable = intel_disable_dp;
3975 intel_encoder->post_disable = intel_post_disable_dp;
3976 intel_encoder->get_hw_state = intel_dp_get_hw_state;
3977 intel_encoder->get_config = intel_dp_get_config;
3978 if (IS_VALLEYVIEW(dev)) {
3979 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3980 intel_encoder->pre_enable = vlv_pre_enable_dp;
3981 intel_encoder->enable = vlv_enable_dp;
3982 } else {
3983 intel_encoder->pre_enable = g4x_pre_enable_dp;
3984 intel_encoder->enable = g4x_enable_dp;
3985 }
3986
3987 intel_dig_port->port = port;
3988 intel_dig_port->dp.output_reg = output_reg;
3989
3990 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3991 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3992 intel_encoder->cloneable = 0;
3993 intel_encoder->hot_plug = intel_dp_hot_plug;
3994
3995 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3996 drm_encoder_cleanup(encoder);
3997 kfree(intel_dig_port);
3998 kfree(intel_connector);
3999 }
4000 }
This page took 0.130565 seconds and 5 git commands to generate.