drm/i915: drm_connector_property -> drm_object_property
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83 return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
96 * by intel_display.c.
97 */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100 struct intel_dp *intel_dp;
101
102 if (!encoder)
103 return false;
104
105 intel_dp = enc_to_intel_dp(encoder);
106
107 return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 void
113 intel_edp_link_config(struct intel_encoder *intel_encoder,
114 int *lane_num, int *link_bw)
115 {
116 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
117
118 *lane_num = intel_dp->lane_count;
119 *link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
120 }
121
122 int
123 intel_edp_target_clock(struct intel_encoder *intel_encoder,
124 struct drm_display_mode *mode)
125 {
126 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
127 struct intel_connector *intel_connector = intel_dp->attached_connector;
128
129 if (intel_connector->panel.fixed_mode)
130 return intel_connector->panel.fixed_mode->clock;
131 else
132 return mode->clock;
133 }
134
135 static int
136 intel_dp_max_link_bw(struct intel_dp *intel_dp)
137 {
138 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
139
140 switch (max_link_bw) {
141 case DP_LINK_BW_1_62:
142 case DP_LINK_BW_2_7:
143 break;
144 default:
145 max_link_bw = DP_LINK_BW_1_62;
146 break;
147 }
148 return max_link_bw;
149 }
150
151 static int
152 intel_dp_link_clock(uint8_t link_bw)
153 {
154 if (link_bw == DP_LINK_BW_2_7)
155 return 270000;
156 else
157 return 162000;
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static bool
190 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
191 struct drm_display_mode *mode,
192 bool adjust_mode)
193 {
194 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
195 int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
196 int max_rate, mode_rate;
197
198 mode_rate = intel_dp_link_required(mode->clock, 24);
199 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
200
201 if (mode_rate > max_rate) {
202 mode_rate = intel_dp_link_required(mode->clock, 18);
203 if (mode_rate > max_rate)
204 return false;
205
206 if (adjust_mode)
207 mode->private_flags
208 |= INTEL_MODE_DP_FORCE_6BPC;
209
210 return true;
211 }
212
213 return true;
214 }
215
216 static int
217 intel_dp_mode_valid(struct drm_connector *connector,
218 struct drm_display_mode *mode)
219 {
220 struct intel_dp *intel_dp = intel_attached_dp(connector);
221 struct intel_connector *intel_connector = to_intel_connector(connector);
222 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
223
224 if (is_edp(intel_dp) && fixed_mode) {
225 if (mode->hdisplay > fixed_mode->hdisplay)
226 return MODE_PANEL;
227
228 if (mode->vdisplay > fixed_mode->vdisplay)
229 return MODE_PANEL;
230 }
231
232 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
233 return MODE_CLOCK_HIGH;
234
235 if (mode->clock < 10000)
236 return MODE_CLOCK_LOW;
237
238 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
239 return MODE_H_ILLEGAL;
240
241 return MODE_OK;
242 }
243
244 static uint32_t
245 pack_aux(uint8_t *src, int src_bytes)
246 {
247 int i;
248 uint32_t v = 0;
249
250 if (src_bytes > 4)
251 src_bytes = 4;
252 for (i = 0; i < src_bytes; i++)
253 v |= ((uint32_t) src[i]) << ((3-i) * 8);
254 return v;
255 }
256
257 static void
258 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
259 {
260 int i;
261 if (dst_bytes > 4)
262 dst_bytes = 4;
263 for (i = 0; i < dst_bytes; i++)
264 dst[i] = src >> ((3-i) * 8);
265 }
266
267 /* hrawclock is 1/4 the FSB frequency */
268 static int
269 intel_hrawclk(struct drm_device *dev)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 uint32_t clkcfg;
273
274 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
275 if (IS_VALLEYVIEW(dev))
276 return 200;
277
278 clkcfg = I915_READ(CLKCFG);
279 switch (clkcfg & CLKCFG_FSB_MASK) {
280 case CLKCFG_FSB_400:
281 return 100;
282 case CLKCFG_FSB_533:
283 return 133;
284 case CLKCFG_FSB_667:
285 return 166;
286 case CLKCFG_FSB_800:
287 return 200;
288 case CLKCFG_FSB_1067:
289 return 266;
290 case CLKCFG_FSB_1333:
291 return 333;
292 /* these two are just a guess; one of them might be right */
293 case CLKCFG_FSB_1600:
294 case CLKCFG_FSB_1600_ALT:
295 return 400;
296 default:
297 return 133;
298 }
299 }
300
301 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
302 {
303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
304 struct drm_i915_private *dev_priv = dev->dev_private;
305
306 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
307 }
308
309 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
310 {
311 struct drm_device *dev = intel_dp_to_dev(intel_dp);
312 struct drm_i915_private *dev_priv = dev->dev_private;
313
314 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
315 }
316
317 static void
318 intel_dp_check_edp(struct intel_dp *intel_dp)
319 {
320 struct drm_device *dev = intel_dp_to_dev(intel_dp);
321 struct drm_i915_private *dev_priv = dev->dev_private;
322
323 if (!is_edp(intel_dp))
324 return;
325 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
326 WARN(1, "eDP powered off while attempting aux channel communication.\n");
327 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
328 I915_READ(PCH_PP_STATUS),
329 I915_READ(PCH_PP_CONTROL));
330 }
331 }
332
333 static int
334 intel_dp_aux_ch(struct intel_dp *intel_dp,
335 uint8_t *send, int send_bytes,
336 uint8_t *recv, int recv_size)
337 {
338 uint32_t output_reg = intel_dp->output_reg;
339 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
340 struct drm_device *dev = intel_dig_port->base.base.dev;
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 uint32_t ch_ctl = output_reg + 0x10;
343 uint32_t ch_data = ch_ctl + 4;
344 int i;
345 int recv_bytes;
346 uint32_t status;
347 uint32_t aux_clock_divider;
348 int try, precharge;
349
350 if (IS_HASWELL(dev)) {
351 switch (intel_dig_port->port) {
352 case PORT_A:
353 ch_ctl = DPA_AUX_CH_CTL;
354 ch_data = DPA_AUX_CH_DATA1;
355 break;
356 case PORT_B:
357 ch_ctl = PCH_DPB_AUX_CH_CTL;
358 ch_data = PCH_DPB_AUX_CH_DATA1;
359 break;
360 case PORT_C:
361 ch_ctl = PCH_DPC_AUX_CH_CTL;
362 ch_data = PCH_DPC_AUX_CH_DATA1;
363 break;
364 case PORT_D:
365 ch_ctl = PCH_DPD_AUX_CH_CTL;
366 ch_data = PCH_DPD_AUX_CH_DATA1;
367 break;
368 default:
369 BUG();
370 }
371 }
372
373 intel_dp_check_edp(intel_dp);
374 /* The clock divider is based off the hrawclk,
375 * and would like to run at 2MHz. So, take the
376 * hrawclk value and divide by 2 and use that
377 *
378 * Note that PCH attached eDP panels should use a 125MHz input
379 * clock divider.
380 */
381 if (is_cpu_edp(intel_dp)) {
382 if (IS_HASWELL(dev))
383 aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
384 else if (IS_VALLEYVIEW(dev))
385 aux_clock_divider = 100;
386 else if (IS_GEN6(dev) || IS_GEN7(dev))
387 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
388 else
389 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
390 } else if (HAS_PCH_SPLIT(dev))
391 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
392 else
393 aux_clock_divider = intel_hrawclk(dev) / 2;
394
395 if (IS_GEN6(dev))
396 precharge = 3;
397 else
398 precharge = 5;
399
400 /* Try to wait for any previous AUX channel activity */
401 for (try = 0; try < 3; try++) {
402 status = I915_READ(ch_ctl);
403 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
404 break;
405 msleep(1);
406 }
407
408 if (try == 3) {
409 WARN(1, "dp_aux_ch not started status 0x%08x\n",
410 I915_READ(ch_ctl));
411 return -EBUSY;
412 }
413
414 /* Must try at least 3 times according to DP spec */
415 for (try = 0; try < 5; try++) {
416 /* Load the send data into the aux channel data registers */
417 for (i = 0; i < send_bytes; i += 4)
418 I915_WRITE(ch_data + i,
419 pack_aux(send + i, send_bytes - i));
420
421 /* Send the command and wait for it to complete */
422 I915_WRITE(ch_ctl,
423 DP_AUX_CH_CTL_SEND_BUSY |
424 DP_AUX_CH_CTL_TIME_OUT_400us |
425 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
426 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
427 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
428 DP_AUX_CH_CTL_DONE |
429 DP_AUX_CH_CTL_TIME_OUT_ERROR |
430 DP_AUX_CH_CTL_RECEIVE_ERROR);
431 for (;;) {
432 status = I915_READ(ch_ctl);
433 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434 break;
435 udelay(100);
436 }
437
438 /* Clear done status and any errors */
439 I915_WRITE(ch_ctl,
440 status |
441 DP_AUX_CH_CTL_DONE |
442 DP_AUX_CH_CTL_TIME_OUT_ERROR |
443 DP_AUX_CH_CTL_RECEIVE_ERROR);
444
445 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
446 DP_AUX_CH_CTL_RECEIVE_ERROR))
447 continue;
448 if (status & DP_AUX_CH_CTL_DONE)
449 break;
450 }
451
452 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
453 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
454 return -EBUSY;
455 }
456
457 /* Check for timeout or receive error.
458 * Timeouts occur when the sink is not connected
459 */
460 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
461 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
462 return -EIO;
463 }
464
465 /* Timeouts occur when the device isn't connected, so they're
466 * "normal" -- don't fill the kernel log with these */
467 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
468 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
469 return -ETIMEDOUT;
470 }
471
472 /* Unload any bytes sent back from the other side */
473 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
474 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
475 if (recv_bytes > recv_size)
476 recv_bytes = recv_size;
477
478 for (i = 0; i < recv_bytes; i += 4)
479 unpack_aux(I915_READ(ch_data + i),
480 recv + i, recv_bytes - i);
481
482 return recv_bytes;
483 }
484
485 /* Write data to the aux channel in native mode */
486 static int
487 intel_dp_aux_native_write(struct intel_dp *intel_dp,
488 uint16_t address, uint8_t *send, int send_bytes)
489 {
490 int ret;
491 uint8_t msg[20];
492 int msg_bytes;
493 uint8_t ack;
494
495 intel_dp_check_edp(intel_dp);
496 if (send_bytes > 16)
497 return -1;
498 msg[0] = AUX_NATIVE_WRITE << 4;
499 msg[1] = address >> 8;
500 msg[2] = address & 0xff;
501 msg[3] = send_bytes - 1;
502 memcpy(&msg[4], send, send_bytes);
503 msg_bytes = send_bytes + 4;
504 for (;;) {
505 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
506 if (ret < 0)
507 return ret;
508 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
509 break;
510 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
511 udelay(100);
512 else
513 return -EIO;
514 }
515 return send_bytes;
516 }
517
518 /* Write a single byte to the aux channel in native mode */
519 static int
520 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
521 uint16_t address, uint8_t byte)
522 {
523 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
524 }
525
526 /* read bytes from a native aux channel */
527 static int
528 intel_dp_aux_native_read(struct intel_dp *intel_dp,
529 uint16_t address, uint8_t *recv, int recv_bytes)
530 {
531 uint8_t msg[4];
532 int msg_bytes;
533 uint8_t reply[20];
534 int reply_bytes;
535 uint8_t ack;
536 int ret;
537
538 intel_dp_check_edp(intel_dp);
539 msg[0] = AUX_NATIVE_READ << 4;
540 msg[1] = address >> 8;
541 msg[2] = address & 0xff;
542 msg[3] = recv_bytes - 1;
543
544 msg_bytes = 4;
545 reply_bytes = recv_bytes + 1;
546
547 for (;;) {
548 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
549 reply, reply_bytes);
550 if (ret == 0)
551 return -EPROTO;
552 if (ret < 0)
553 return ret;
554 ack = reply[0];
555 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
556 memcpy(recv, reply + 1, ret - 1);
557 return ret - 1;
558 }
559 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
560 udelay(100);
561 else
562 return -EIO;
563 }
564 }
565
566 static int
567 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
568 uint8_t write_byte, uint8_t *read_byte)
569 {
570 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
571 struct intel_dp *intel_dp = container_of(adapter,
572 struct intel_dp,
573 adapter);
574 uint16_t address = algo_data->address;
575 uint8_t msg[5];
576 uint8_t reply[2];
577 unsigned retry;
578 int msg_bytes;
579 int reply_bytes;
580 int ret;
581
582 intel_dp_check_edp(intel_dp);
583 /* Set up the command byte */
584 if (mode & MODE_I2C_READ)
585 msg[0] = AUX_I2C_READ << 4;
586 else
587 msg[0] = AUX_I2C_WRITE << 4;
588
589 if (!(mode & MODE_I2C_STOP))
590 msg[0] |= AUX_I2C_MOT << 4;
591
592 msg[1] = address >> 8;
593 msg[2] = address;
594
595 switch (mode) {
596 case MODE_I2C_WRITE:
597 msg[3] = 0;
598 msg[4] = write_byte;
599 msg_bytes = 5;
600 reply_bytes = 1;
601 break;
602 case MODE_I2C_READ:
603 msg[3] = 0;
604 msg_bytes = 4;
605 reply_bytes = 2;
606 break;
607 default:
608 msg_bytes = 3;
609 reply_bytes = 1;
610 break;
611 }
612
613 for (retry = 0; retry < 5; retry++) {
614 ret = intel_dp_aux_ch(intel_dp,
615 msg, msg_bytes,
616 reply, reply_bytes);
617 if (ret < 0) {
618 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
619 return ret;
620 }
621
622 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
623 case AUX_NATIVE_REPLY_ACK:
624 /* I2C-over-AUX Reply field is only valid
625 * when paired with AUX ACK.
626 */
627 break;
628 case AUX_NATIVE_REPLY_NACK:
629 DRM_DEBUG_KMS("aux_ch native nack\n");
630 return -EREMOTEIO;
631 case AUX_NATIVE_REPLY_DEFER:
632 udelay(100);
633 continue;
634 default:
635 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
636 reply[0]);
637 return -EREMOTEIO;
638 }
639
640 switch (reply[0] & AUX_I2C_REPLY_MASK) {
641 case AUX_I2C_REPLY_ACK:
642 if (mode == MODE_I2C_READ) {
643 *read_byte = reply[1];
644 }
645 return reply_bytes - 1;
646 case AUX_I2C_REPLY_NACK:
647 DRM_DEBUG_KMS("aux_i2c nack\n");
648 return -EREMOTEIO;
649 case AUX_I2C_REPLY_DEFER:
650 DRM_DEBUG_KMS("aux_i2c defer\n");
651 udelay(100);
652 break;
653 default:
654 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
655 return -EREMOTEIO;
656 }
657 }
658
659 DRM_ERROR("too many retries, giving up\n");
660 return -EREMOTEIO;
661 }
662
663 static int
664 intel_dp_i2c_init(struct intel_dp *intel_dp,
665 struct intel_connector *intel_connector, const char *name)
666 {
667 int ret;
668
669 DRM_DEBUG_KMS("i2c_init %s\n", name);
670 intel_dp->algo.running = false;
671 intel_dp->algo.address = 0;
672 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
673
674 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
675 intel_dp->adapter.owner = THIS_MODULE;
676 intel_dp->adapter.class = I2C_CLASS_DDC;
677 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
678 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
679 intel_dp->adapter.algo_data = &intel_dp->algo;
680 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
681
682 ironlake_edp_panel_vdd_on(intel_dp);
683 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
684 ironlake_edp_panel_vdd_off(intel_dp, false);
685 return ret;
686 }
687
688 bool
689 intel_dp_mode_fixup(struct drm_encoder *encoder,
690 const struct drm_display_mode *mode,
691 struct drm_display_mode *adjusted_mode)
692 {
693 struct drm_device *dev = encoder->dev;
694 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
695 struct intel_connector *intel_connector = intel_dp->attached_connector;
696 int lane_count, clock;
697 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
698 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
699 int bpp, mode_rate;
700 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
701
702 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
703 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
704 adjusted_mode);
705 intel_pch_panel_fitting(dev,
706 intel_connector->panel.fitting_mode,
707 mode, adjusted_mode);
708 }
709
710 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
711 return false;
712
713 DRM_DEBUG_KMS("DP link computation with max lane count %i "
714 "max bw %02x pixel clock %iKHz\n",
715 max_lane_count, bws[max_clock], adjusted_mode->clock);
716
717 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
718 return false;
719
720 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
721 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
722
723 for (clock = 0; clock <= max_clock; clock++) {
724 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
725 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
726
727 if (mode_rate <= link_avail) {
728 intel_dp->link_bw = bws[clock];
729 intel_dp->lane_count = lane_count;
730 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
731 DRM_DEBUG_KMS("DP link bw %02x lane "
732 "count %d clock %d bpp %d\n",
733 intel_dp->link_bw, intel_dp->lane_count,
734 adjusted_mode->clock, bpp);
735 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
736 mode_rate, link_avail);
737 return true;
738 }
739 }
740 }
741
742 return false;
743 }
744
745 struct intel_dp_m_n {
746 uint32_t tu;
747 uint32_t gmch_m;
748 uint32_t gmch_n;
749 uint32_t link_m;
750 uint32_t link_n;
751 };
752
753 static void
754 intel_reduce_ratio(uint32_t *num, uint32_t *den)
755 {
756 while (*num > 0xffffff || *den > 0xffffff) {
757 *num >>= 1;
758 *den >>= 1;
759 }
760 }
761
762 static void
763 intel_dp_compute_m_n(int bpp,
764 int nlanes,
765 int pixel_clock,
766 int link_clock,
767 struct intel_dp_m_n *m_n)
768 {
769 m_n->tu = 64;
770 m_n->gmch_m = (pixel_clock * bpp) >> 3;
771 m_n->gmch_n = link_clock * nlanes;
772 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
773 m_n->link_m = pixel_clock;
774 m_n->link_n = link_clock;
775 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
776 }
777
778 void
779 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
780 struct drm_display_mode *adjusted_mode)
781 {
782 struct drm_device *dev = crtc->dev;
783 struct intel_encoder *intel_encoder;
784 struct intel_dp *intel_dp;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
787 int lane_count = 4;
788 struct intel_dp_m_n m_n;
789 int pipe = intel_crtc->pipe;
790 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
791
792 /*
793 * Find the lane count in the intel_encoder private
794 */
795 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
796 intel_dp = enc_to_intel_dp(&intel_encoder->base);
797
798 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
799 intel_encoder->type == INTEL_OUTPUT_EDP)
800 {
801 lane_count = intel_dp->lane_count;
802 break;
803 }
804 }
805
806 /*
807 * Compute the GMCH and Link ratios. The '3' here is
808 * the number of bytes_per_pixel post-LUT, which we always
809 * set up for 8-bits of R/G/B, or 3 bytes total.
810 */
811 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
812 mode->clock, adjusted_mode->clock, &m_n);
813
814 if (IS_HASWELL(dev)) {
815 I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
816 TU_SIZE(m_n.tu) | m_n.gmch_m);
817 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
818 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
819 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
820 } else if (HAS_PCH_SPLIT(dev)) {
821 I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
822 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
823 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
824 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
825 } else if (IS_VALLEYVIEW(dev)) {
826 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
827 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
828 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
829 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
830 } else {
831 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
832 TU_SIZE(m_n.tu) | m_n.gmch_m);
833 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
834 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
835 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
836 }
837 }
838
839 void intel_dp_init_link_config(struct intel_dp *intel_dp)
840 {
841 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
842 intel_dp->link_configuration[0] = intel_dp->link_bw;
843 intel_dp->link_configuration[1] = intel_dp->lane_count;
844 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
845 /*
846 * Check for DPCD version > 1.1 and enhanced framing support
847 */
848 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
849 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
850 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
851 }
852 }
853
854 static void
855 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
856 struct drm_display_mode *adjusted_mode)
857 {
858 struct drm_device *dev = encoder->dev;
859 struct drm_i915_private *dev_priv = dev->dev_private;
860 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
861 struct drm_crtc *crtc = encoder->crtc;
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /*
865 * There are four kinds of DP registers:
866 *
867 * IBX PCH
868 * SNB CPU
869 * IVB CPU
870 * CPT PCH
871 *
872 * IBX PCH and CPU are the same for almost everything,
873 * except that the CPU DP PLL is configured in this
874 * register
875 *
876 * CPT PCH is quite different, having many bits moved
877 * to the TRANS_DP_CTL register instead. That
878 * configuration happens (oddly) in ironlake_pch_enable
879 */
880
881 /* Preserve the BIOS-computed detected bit. This is
882 * supposed to be read-only.
883 */
884 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
885
886 /* Handle DP bits in common between all three register formats */
887 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
888
889 switch (intel_dp->lane_count) {
890 case 1:
891 intel_dp->DP |= DP_PORT_WIDTH_1;
892 break;
893 case 2:
894 intel_dp->DP |= DP_PORT_WIDTH_2;
895 break;
896 case 4:
897 intel_dp->DP |= DP_PORT_WIDTH_4;
898 break;
899 }
900 if (intel_dp->has_audio) {
901 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
902 pipe_name(intel_crtc->pipe));
903 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
904 intel_write_eld(encoder, adjusted_mode);
905 }
906
907 intel_dp_init_link_config(intel_dp);
908
909 /* Split out the IBX/CPU vs CPT settings */
910
911 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
912 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
913 intel_dp->DP |= DP_SYNC_HS_HIGH;
914 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
915 intel_dp->DP |= DP_SYNC_VS_HIGH;
916 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
917
918 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
919 intel_dp->DP |= DP_ENHANCED_FRAMING;
920
921 intel_dp->DP |= intel_crtc->pipe << 29;
922
923 /* don't miss out required setting for eDP */
924 if (adjusted_mode->clock < 200000)
925 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
926 else
927 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
928 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
929 intel_dp->DP |= intel_dp->color_range;
930
931 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
932 intel_dp->DP |= DP_SYNC_HS_HIGH;
933 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
934 intel_dp->DP |= DP_SYNC_VS_HIGH;
935 intel_dp->DP |= DP_LINK_TRAIN_OFF;
936
937 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
938 intel_dp->DP |= DP_ENHANCED_FRAMING;
939
940 if (intel_crtc->pipe == 1)
941 intel_dp->DP |= DP_PIPEB_SELECT;
942
943 if (is_cpu_edp(intel_dp)) {
944 /* don't miss out required setting for eDP */
945 if (adjusted_mode->clock < 200000)
946 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
947 else
948 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
949 }
950 } else {
951 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
952 }
953 }
954
955 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
956 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
957
958 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
959 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
960
961 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
962 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
963
964 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
965 u32 mask,
966 u32 value)
967 {
968 struct drm_device *dev = intel_dp_to_dev(intel_dp);
969 struct drm_i915_private *dev_priv = dev->dev_private;
970
971 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
972 mask, value,
973 I915_READ(PCH_PP_STATUS),
974 I915_READ(PCH_PP_CONTROL));
975
976 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
977 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
978 I915_READ(PCH_PP_STATUS),
979 I915_READ(PCH_PP_CONTROL));
980 }
981 }
982
983 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
984 {
985 DRM_DEBUG_KMS("Wait for panel power on\n");
986 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
987 }
988
989 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
990 {
991 DRM_DEBUG_KMS("Wait for panel power off time\n");
992 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
993 }
994
995 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
996 {
997 DRM_DEBUG_KMS("Wait for panel power cycle\n");
998 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
999 }
1000
1001
1002 /* Read the current pp_control value, unlocking the register if it
1003 * is locked
1004 */
1005
1006 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1007 {
1008 u32 control = I915_READ(PCH_PP_CONTROL);
1009
1010 control &= ~PANEL_UNLOCK_MASK;
1011 control |= PANEL_UNLOCK_REGS;
1012 return control;
1013 }
1014
1015 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1016 {
1017 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1018 struct drm_i915_private *dev_priv = dev->dev_private;
1019 u32 pp;
1020
1021 if (!is_edp(intel_dp))
1022 return;
1023 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1024
1025 WARN(intel_dp->want_panel_vdd,
1026 "eDP VDD already requested on\n");
1027
1028 intel_dp->want_panel_vdd = true;
1029
1030 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1031 DRM_DEBUG_KMS("eDP VDD already on\n");
1032 return;
1033 }
1034
1035 if (!ironlake_edp_have_panel_power(intel_dp))
1036 ironlake_wait_panel_power_cycle(intel_dp);
1037
1038 pp = ironlake_get_pp_control(dev_priv);
1039 pp |= EDP_FORCE_VDD;
1040 I915_WRITE(PCH_PP_CONTROL, pp);
1041 POSTING_READ(PCH_PP_CONTROL);
1042 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1043 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1044
1045 /*
1046 * If the panel wasn't on, delay before accessing aux channel
1047 */
1048 if (!ironlake_edp_have_panel_power(intel_dp)) {
1049 DRM_DEBUG_KMS("eDP was not running\n");
1050 msleep(intel_dp->panel_power_up_delay);
1051 }
1052 }
1053
1054 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1055 {
1056 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1057 struct drm_i915_private *dev_priv = dev->dev_private;
1058 u32 pp;
1059
1060 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1061 pp = ironlake_get_pp_control(dev_priv);
1062 pp &= ~EDP_FORCE_VDD;
1063 I915_WRITE(PCH_PP_CONTROL, pp);
1064 POSTING_READ(PCH_PP_CONTROL);
1065
1066 /* Make sure sequencer is idle before allowing subsequent activity */
1067 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1068 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1069
1070 msleep(intel_dp->panel_power_down_delay);
1071 }
1072 }
1073
1074 static void ironlake_panel_vdd_work(struct work_struct *__work)
1075 {
1076 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1077 struct intel_dp, panel_vdd_work);
1078 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1079
1080 mutex_lock(&dev->mode_config.mutex);
1081 ironlake_panel_vdd_off_sync(intel_dp);
1082 mutex_unlock(&dev->mode_config.mutex);
1083 }
1084
1085 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1086 {
1087 if (!is_edp(intel_dp))
1088 return;
1089
1090 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1091 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1092
1093 intel_dp->want_panel_vdd = false;
1094
1095 if (sync) {
1096 ironlake_panel_vdd_off_sync(intel_dp);
1097 } else {
1098 /*
1099 * Queue the timer to fire a long
1100 * time from now (relative to the power down delay)
1101 * to keep the panel power up across a sequence of operations
1102 */
1103 schedule_delayed_work(&intel_dp->panel_vdd_work,
1104 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1105 }
1106 }
1107
1108 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1109 {
1110 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1111 struct drm_i915_private *dev_priv = dev->dev_private;
1112 u32 pp;
1113
1114 if (!is_edp(intel_dp))
1115 return;
1116
1117 DRM_DEBUG_KMS("Turn eDP power on\n");
1118
1119 if (ironlake_edp_have_panel_power(intel_dp)) {
1120 DRM_DEBUG_KMS("eDP power already on\n");
1121 return;
1122 }
1123
1124 ironlake_wait_panel_power_cycle(intel_dp);
1125
1126 pp = ironlake_get_pp_control(dev_priv);
1127 if (IS_GEN5(dev)) {
1128 /* ILK workaround: disable reset around power sequence */
1129 pp &= ~PANEL_POWER_RESET;
1130 I915_WRITE(PCH_PP_CONTROL, pp);
1131 POSTING_READ(PCH_PP_CONTROL);
1132 }
1133
1134 pp |= POWER_TARGET_ON;
1135 if (!IS_GEN5(dev))
1136 pp |= PANEL_POWER_RESET;
1137
1138 I915_WRITE(PCH_PP_CONTROL, pp);
1139 POSTING_READ(PCH_PP_CONTROL);
1140
1141 ironlake_wait_panel_on(intel_dp);
1142
1143 if (IS_GEN5(dev)) {
1144 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1145 I915_WRITE(PCH_PP_CONTROL, pp);
1146 POSTING_READ(PCH_PP_CONTROL);
1147 }
1148 }
1149
1150 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1151 {
1152 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153 struct drm_i915_private *dev_priv = dev->dev_private;
1154 u32 pp;
1155
1156 if (!is_edp(intel_dp))
1157 return;
1158
1159 DRM_DEBUG_KMS("Turn eDP power off\n");
1160
1161 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1162
1163 pp = ironlake_get_pp_control(dev_priv);
1164 /* We need to switch off panel power _and_ force vdd, for otherwise some
1165 * panels get very unhappy and cease to work. */
1166 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1167 I915_WRITE(PCH_PP_CONTROL, pp);
1168 POSTING_READ(PCH_PP_CONTROL);
1169
1170 intel_dp->want_panel_vdd = false;
1171
1172 ironlake_wait_panel_off(intel_dp);
1173 }
1174
1175 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1176 {
1177 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1178 struct drm_device *dev = intel_dig_port->base.base.dev;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1181 u32 pp;
1182
1183 if (!is_edp(intel_dp))
1184 return;
1185
1186 DRM_DEBUG_KMS("\n");
1187 /*
1188 * If we enable the backlight right away following a panel power
1189 * on, we may see slight flicker as the panel syncs with the eDP
1190 * link. So delay a bit to make sure the image is solid before
1191 * allowing it to appear.
1192 */
1193 msleep(intel_dp->backlight_on_delay);
1194 pp = ironlake_get_pp_control(dev_priv);
1195 pp |= EDP_BLC_ENABLE;
1196 I915_WRITE(PCH_PP_CONTROL, pp);
1197 POSTING_READ(PCH_PP_CONTROL);
1198
1199 intel_panel_enable_backlight(dev, pipe);
1200 }
1201
1202 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1203 {
1204 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1205 struct drm_i915_private *dev_priv = dev->dev_private;
1206 u32 pp;
1207
1208 if (!is_edp(intel_dp))
1209 return;
1210
1211 intel_panel_disable_backlight(dev);
1212
1213 DRM_DEBUG_KMS("\n");
1214 pp = ironlake_get_pp_control(dev_priv);
1215 pp &= ~EDP_BLC_ENABLE;
1216 I915_WRITE(PCH_PP_CONTROL, pp);
1217 POSTING_READ(PCH_PP_CONTROL);
1218 msleep(intel_dp->backlight_off_delay);
1219 }
1220
1221 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1222 {
1223 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1224 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1225 struct drm_device *dev = crtc->dev;
1226 struct drm_i915_private *dev_priv = dev->dev_private;
1227 u32 dpa_ctl;
1228
1229 assert_pipe_disabled(dev_priv,
1230 to_intel_crtc(crtc)->pipe);
1231
1232 DRM_DEBUG_KMS("\n");
1233 dpa_ctl = I915_READ(DP_A);
1234 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1235 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1236
1237 /* We don't adjust intel_dp->DP while tearing down the link, to
1238 * facilitate link retraining (e.g. after hotplug). Hence clear all
1239 * enable bits here to ensure that we don't enable too much. */
1240 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1241 intel_dp->DP |= DP_PLL_ENABLE;
1242 I915_WRITE(DP_A, intel_dp->DP);
1243 POSTING_READ(DP_A);
1244 udelay(200);
1245 }
1246
1247 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1248 {
1249 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1250 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1251 struct drm_device *dev = crtc->dev;
1252 struct drm_i915_private *dev_priv = dev->dev_private;
1253 u32 dpa_ctl;
1254
1255 assert_pipe_disabled(dev_priv,
1256 to_intel_crtc(crtc)->pipe);
1257
1258 dpa_ctl = I915_READ(DP_A);
1259 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1260 "dp pll off, should be on\n");
1261 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1262
1263 /* We can't rely on the value tracked for the DP register in
1264 * intel_dp->DP because link_down must not change that (otherwise link
1265 * re-training will fail. */
1266 dpa_ctl &= ~DP_PLL_ENABLE;
1267 I915_WRITE(DP_A, dpa_ctl);
1268 POSTING_READ(DP_A);
1269 udelay(200);
1270 }
1271
1272 /* If the sink supports it, try to set the power state appropriately */
1273 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1274 {
1275 int ret, i;
1276
1277 /* Should have a valid DPCD by this point */
1278 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1279 return;
1280
1281 if (mode != DRM_MODE_DPMS_ON) {
1282 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1283 DP_SET_POWER_D3);
1284 if (ret != 1)
1285 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1286 } else {
1287 /*
1288 * When turning on, we need to retry for 1ms to give the sink
1289 * time to wake up.
1290 */
1291 for (i = 0; i < 3; i++) {
1292 ret = intel_dp_aux_native_write_1(intel_dp,
1293 DP_SET_POWER,
1294 DP_SET_POWER_D0);
1295 if (ret == 1)
1296 break;
1297 msleep(1);
1298 }
1299 }
1300 }
1301
1302 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1303 enum pipe *pipe)
1304 {
1305 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1306 struct drm_device *dev = encoder->base.dev;
1307 struct drm_i915_private *dev_priv = dev->dev_private;
1308 u32 tmp = I915_READ(intel_dp->output_reg);
1309
1310 if (!(tmp & DP_PORT_EN))
1311 return false;
1312
1313 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
1314 *pipe = PORT_TO_PIPE_CPT(tmp);
1315 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1316 *pipe = PORT_TO_PIPE(tmp);
1317 } else {
1318 u32 trans_sel;
1319 u32 trans_dp;
1320 int i;
1321
1322 switch (intel_dp->output_reg) {
1323 case PCH_DP_B:
1324 trans_sel = TRANS_DP_PORT_SEL_B;
1325 break;
1326 case PCH_DP_C:
1327 trans_sel = TRANS_DP_PORT_SEL_C;
1328 break;
1329 case PCH_DP_D:
1330 trans_sel = TRANS_DP_PORT_SEL_D;
1331 break;
1332 default:
1333 return true;
1334 }
1335
1336 for_each_pipe(i) {
1337 trans_dp = I915_READ(TRANS_DP_CTL(i));
1338 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1339 *pipe = i;
1340 return true;
1341 }
1342 }
1343
1344 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1345 intel_dp->output_reg);
1346 }
1347
1348 return true;
1349 }
1350
1351 static void intel_disable_dp(struct intel_encoder *encoder)
1352 {
1353 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1354
1355 /* Make sure the panel is off before trying to change the mode. But also
1356 * ensure that we have vdd while we switch off the panel. */
1357 ironlake_edp_panel_vdd_on(intel_dp);
1358 ironlake_edp_backlight_off(intel_dp);
1359 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1360 ironlake_edp_panel_off(intel_dp);
1361
1362 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1363 if (!is_cpu_edp(intel_dp))
1364 intel_dp_link_down(intel_dp);
1365 }
1366
1367 static void intel_post_disable_dp(struct intel_encoder *encoder)
1368 {
1369 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1370
1371 if (is_cpu_edp(intel_dp)) {
1372 intel_dp_link_down(intel_dp);
1373 ironlake_edp_pll_off(intel_dp);
1374 }
1375 }
1376
1377 static void intel_enable_dp(struct intel_encoder *encoder)
1378 {
1379 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1380 struct drm_device *dev = encoder->base.dev;
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1383
1384 if (WARN_ON(dp_reg & DP_PORT_EN))
1385 return;
1386
1387 ironlake_edp_panel_vdd_on(intel_dp);
1388 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1389 intel_dp_start_link_train(intel_dp);
1390 ironlake_edp_panel_on(intel_dp);
1391 ironlake_edp_panel_vdd_off(intel_dp, true);
1392 intel_dp_complete_link_train(intel_dp);
1393 ironlake_edp_backlight_on(intel_dp);
1394 }
1395
1396 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1397 {
1398 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1399
1400 if (is_cpu_edp(intel_dp))
1401 ironlake_edp_pll_on(intel_dp);
1402 }
1403
1404 /*
1405 * Native read with retry for link status and receiver capability reads for
1406 * cases where the sink may still be asleep.
1407 */
1408 static bool
1409 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1410 uint8_t *recv, int recv_bytes)
1411 {
1412 int ret, i;
1413
1414 /*
1415 * Sinks are *supposed* to come up within 1ms from an off state,
1416 * but we're also supposed to retry 3 times per the spec.
1417 */
1418 for (i = 0; i < 3; i++) {
1419 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1420 recv_bytes);
1421 if (ret == recv_bytes)
1422 return true;
1423 msleep(1);
1424 }
1425
1426 return false;
1427 }
1428
1429 /*
1430 * Fetch AUX CH registers 0x202 - 0x207 which contain
1431 * link status information
1432 */
1433 static bool
1434 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1435 {
1436 return intel_dp_aux_native_read_retry(intel_dp,
1437 DP_LANE0_1_STATUS,
1438 link_status,
1439 DP_LINK_STATUS_SIZE);
1440 }
1441
1442 #if 0
1443 static char *voltage_names[] = {
1444 "0.4V", "0.6V", "0.8V", "1.2V"
1445 };
1446 static char *pre_emph_names[] = {
1447 "0dB", "3.5dB", "6dB", "9.5dB"
1448 };
1449 static char *link_train_names[] = {
1450 "pattern 1", "pattern 2", "idle", "off"
1451 };
1452 #endif
1453
1454 /*
1455 * These are source-specific values; current Intel hardware supports
1456 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1457 */
1458
1459 static uint8_t
1460 intel_dp_voltage_max(struct intel_dp *intel_dp)
1461 {
1462 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1463
1464 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1465 return DP_TRAIN_VOLTAGE_SWING_800;
1466 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1467 return DP_TRAIN_VOLTAGE_SWING_1200;
1468 else
1469 return DP_TRAIN_VOLTAGE_SWING_800;
1470 }
1471
1472 static uint8_t
1473 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1474 {
1475 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1476
1477 if (IS_HASWELL(dev)) {
1478 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1479 case DP_TRAIN_VOLTAGE_SWING_400:
1480 return DP_TRAIN_PRE_EMPHASIS_9_5;
1481 case DP_TRAIN_VOLTAGE_SWING_600:
1482 return DP_TRAIN_PRE_EMPHASIS_6;
1483 case DP_TRAIN_VOLTAGE_SWING_800:
1484 return DP_TRAIN_PRE_EMPHASIS_3_5;
1485 case DP_TRAIN_VOLTAGE_SWING_1200:
1486 default:
1487 return DP_TRAIN_PRE_EMPHASIS_0;
1488 }
1489 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1490 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1491 case DP_TRAIN_VOLTAGE_SWING_400:
1492 return DP_TRAIN_PRE_EMPHASIS_6;
1493 case DP_TRAIN_VOLTAGE_SWING_600:
1494 case DP_TRAIN_VOLTAGE_SWING_800:
1495 return DP_TRAIN_PRE_EMPHASIS_3_5;
1496 default:
1497 return DP_TRAIN_PRE_EMPHASIS_0;
1498 }
1499 } else {
1500 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1501 case DP_TRAIN_VOLTAGE_SWING_400:
1502 return DP_TRAIN_PRE_EMPHASIS_6;
1503 case DP_TRAIN_VOLTAGE_SWING_600:
1504 return DP_TRAIN_PRE_EMPHASIS_6;
1505 case DP_TRAIN_VOLTAGE_SWING_800:
1506 return DP_TRAIN_PRE_EMPHASIS_3_5;
1507 case DP_TRAIN_VOLTAGE_SWING_1200:
1508 default:
1509 return DP_TRAIN_PRE_EMPHASIS_0;
1510 }
1511 }
1512 }
1513
1514 static void
1515 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1516 {
1517 uint8_t v = 0;
1518 uint8_t p = 0;
1519 int lane;
1520 uint8_t voltage_max;
1521 uint8_t preemph_max;
1522
1523 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1524 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1525 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1526
1527 if (this_v > v)
1528 v = this_v;
1529 if (this_p > p)
1530 p = this_p;
1531 }
1532
1533 voltage_max = intel_dp_voltage_max(intel_dp);
1534 if (v >= voltage_max)
1535 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1536
1537 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1538 if (p >= preemph_max)
1539 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1540
1541 for (lane = 0; lane < 4; lane++)
1542 intel_dp->train_set[lane] = v | p;
1543 }
1544
1545 static uint32_t
1546 intel_dp_signal_levels(uint8_t train_set)
1547 {
1548 uint32_t signal_levels = 0;
1549
1550 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1551 case DP_TRAIN_VOLTAGE_SWING_400:
1552 default:
1553 signal_levels |= DP_VOLTAGE_0_4;
1554 break;
1555 case DP_TRAIN_VOLTAGE_SWING_600:
1556 signal_levels |= DP_VOLTAGE_0_6;
1557 break;
1558 case DP_TRAIN_VOLTAGE_SWING_800:
1559 signal_levels |= DP_VOLTAGE_0_8;
1560 break;
1561 case DP_TRAIN_VOLTAGE_SWING_1200:
1562 signal_levels |= DP_VOLTAGE_1_2;
1563 break;
1564 }
1565 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1566 case DP_TRAIN_PRE_EMPHASIS_0:
1567 default:
1568 signal_levels |= DP_PRE_EMPHASIS_0;
1569 break;
1570 case DP_TRAIN_PRE_EMPHASIS_3_5:
1571 signal_levels |= DP_PRE_EMPHASIS_3_5;
1572 break;
1573 case DP_TRAIN_PRE_EMPHASIS_6:
1574 signal_levels |= DP_PRE_EMPHASIS_6;
1575 break;
1576 case DP_TRAIN_PRE_EMPHASIS_9_5:
1577 signal_levels |= DP_PRE_EMPHASIS_9_5;
1578 break;
1579 }
1580 return signal_levels;
1581 }
1582
1583 /* Gen6's DP voltage swing and pre-emphasis control */
1584 static uint32_t
1585 intel_gen6_edp_signal_levels(uint8_t train_set)
1586 {
1587 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1588 DP_TRAIN_PRE_EMPHASIS_MASK);
1589 switch (signal_levels) {
1590 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1591 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1592 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1593 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1594 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1595 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1596 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1597 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1598 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1600 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1601 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1602 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1603 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1604 default:
1605 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1606 "0x%x\n", signal_levels);
1607 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1608 }
1609 }
1610
1611 /* Gen7's DP voltage swing and pre-emphasis control */
1612 static uint32_t
1613 intel_gen7_edp_signal_levels(uint8_t train_set)
1614 {
1615 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1616 DP_TRAIN_PRE_EMPHASIS_MASK);
1617 switch (signal_levels) {
1618 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1619 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1620 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1621 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1622 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1623 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1624
1625 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1626 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1627 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1628 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1629
1630 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1631 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1632 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1633 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1634
1635 default:
1636 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1637 "0x%x\n", signal_levels);
1638 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1639 }
1640 }
1641
1642 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1643 static uint32_t
1644 intel_dp_signal_levels_hsw(uint8_t train_set)
1645 {
1646 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1647 DP_TRAIN_PRE_EMPHASIS_MASK);
1648 switch (signal_levels) {
1649 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1650 return DDI_BUF_EMP_400MV_0DB_HSW;
1651 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1652 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1653 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1654 return DDI_BUF_EMP_400MV_6DB_HSW;
1655 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1656 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1657
1658 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1659 return DDI_BUF_EMP_600MV_0DB_HSW;
1660 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1661 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1662 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1663 return DDI_BUF_EMP_600MV_6DB_HSW;
1664
1665 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1666 return DDI_BUF_EMP_800MV_0DB_HSW;
1667 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1668 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1669 default:
1670 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1671 "0x%x\n", signal_levels);
1672 return DDI_BUF_EMP_400MV_0DB_HSW;
1673 }
1674 }
1675
1676 static bool
1677 intel_dp_set_link_train(struct intel_dp *intel_dp,
1678 uint32_t dp_reg_value,
1679 uint8_t dp_train_pat)
1680 {
1681 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1682 struct drm_device *dev = intel_dig_port->base.base.dev;
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1684 enum port port = intel_dig_port->port;
1685 int ret;
1686 uint32_t temp;
1687
1688 if (IS_HASWELL(dev)) {
1689 temp = I915_READ(DP_TP_CTL(port));
1690
1691 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1692 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1693 else
1694 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1695
1696 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1697 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1698 case DP_TRAINING_PATTERN_DISABLE:
1699 temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1700 I915_WRITE(DP_TP_CTL(port), temp);
1701
1702 if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1703 DP_TP_STATUS_IDLE_DONE), 1))
1704 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1705
1706 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1707 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1708
1709 break;
1710 case DP_TRAINING_PATTERN_1:
1711 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1712 break;
1713 case DP_TRAINING_PATTERN_2:
1714 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1715 break;
1716 case DP_TRAINING_PATTERN_3:
1717 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1718 break;
1719 }
1720 I915_WRITE(DP_TP_CTL(port), temp);
1721
1722 } else if (HAS_PCH_CPT(dev) &&
1723 (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1724 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1725
1726 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1727 case DP_TRAINING_PATTERN_DISABLE:
1728 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1729 break;
1730 case DP_TRAINING_PATTERN_1:
1731 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1732 break;
1733 case DP_TRAINING_PATTERN_2:
1734 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1735 break;
1736 case DP_TRAINING_PATTERN_3:
1737 DRM_ERROR("DP training pattern 3 not supported\n");
1738 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1739 break;
1740 }
1741
1742 } else {
1743 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1744
1745 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1746 case DP_TRAINING_PATTERN_DISABLE:
1747 dp_reg_value |= DP_LINK_TRAIN_OFF;
1748 break;
1749 case DP_TRAINING_PATTERN_1:
1750 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1751 break;
1752 case DP_TRAINING_PATTERN_2:
1753 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1754 break;
1755 case DP_TRAINING_PATTERN_3:
1756 DRM_ERROR("DP training pattern 3 not supported\n");
1757 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1758 break;
1759 }
1760 }
1761
1762 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1763 POSTING_READ(intel_dp->output_reg);
1764
1765 intel_dp_aux_native_write_1(intel_dp,
1766 DP_TRAINING_PATTERN_SET,
1767 dp_train_pat);
1768
1769 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1770 DP_TRAINING_PATTERN_DISABLE) {
1771 ret = intel_dp_aux_native_write(intel_dp,
1772 DP_TRAINING_LANE0_SET,
1773 intel_dp->train_set,
1774 intel_dp->lane_count);
1775 if (ret != intel_dp->lane_count)
1776 return false;
1777 }
1778
1779 return true;
1780 }
1781
1782 /* Enable corresponding port and start training pattern 1 */
1783 void
1784 intel_dp_start_link_train(struct intel_dp *intel_dp)
1785 {
1786 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1787 struct drm_device *dev = encoder->dev;
1788 int i;
1789 uint8_t voltage;
1790 bool clock_recovery = false;
1791 int voltage_tries, loop_tries;
1792 uint32_t DP = intel_dp->DP;
1793
1794 if (IS_HASWELL(dev))
1795 intel_ddi_prepare_link_retrain(encoder);
1796
1797 /* Write the link configuration data */
1798 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1799 intel_dp->link_configuration,
1800 DP_LINK_CONFIGURATION_SIZE);
1801
1802 DP |= DP_PORT_EN;
1803
1804 memset(intel_dp->train_set, 0, 4);
1805 voltage = 0xff;
1806 voltage_tries = 0;
1807 loop_tries = 0;
1808 clock_recovery = false;
1809 for (;;) {
1810 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1811 uint8_t link_status[DP_LINK_STATUS_SIZE];
1812 uint32_t signal_levels;
1813
1814 if (IS_HASWELL(dev)) {
1815 signal_levels = intel_dp_signal_levels_hsw(
1816 intel_dp->train_set[0]);
1817 DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1818 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1819 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1820 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1821 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1822 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1823 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1824 } else {
1825 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1826 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1827 }
1828 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
1829 signal_levels);
1830
1831 /* Set training pattern 1 */
1832 if (!intel_dp_set_link_train(intel_dp, DP,
1833 DP_TRAINING_PATTERN_1 |
1834 DP_LINK_SCRAMBLING_DISABLE))
1835 break;
1836
1837 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1838 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1839 DRM_ERROR("failed to get link status\n");
1840 break;
1841 }
1842
1843 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1844 DRM_DEBUG_KMS("clock recovery OK\n");
1845 clock_recovery = true;
1846 break;
1847 }
1848
1849 /* Check to see if we've tried the max voltage */
1850 for (i = 0; i < intel_dp->lane_count; i++)
1851 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1852 break;
1853 if (i == intel_dp->lane_count && voltage_tries == 5) {
1854 ++loop_tries;
1855 if (loop_tries == 5) {
1856 DRM_DEBUG_KMS("too many full retries, give up\n");
1857 break;
1858 }
1859 memset(intel_dp->train_set, 0, 4);
1860 voltage_tries = 0;
1861 continue;
1862 }
1863
1864 /* Check to see if we've tried the same voltage 5 times */
1865 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1866 ++voltage_tries;
1867 if (voltage_tries == 5) {
1868 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1869 break;
1870 }
1871 } else
1872 voltage_tries = 0;
1873 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1874
1875 /* Compute new intel_dp->train_set as requested by target */
1876 intel_get_adjust_train(intel_dp, link_status);
1877 }
1878
1879 intel_dp->DP = DP;
1880 }
1881
1882 void
1883 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1884 {
1885 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1886 bool channel_eq = false;
1887 int tries, cr_tries;
1888 uint32_t DP = intel_dp->DP;
1889
1890 /* channel equalization */
1891 tries = 0;
1892 cr_tries = 0;
1893 channel_eq = false;
1894 for (;;) {
1895 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1896 uint32_t signal_levels;
1897 uint8_t link_status[DP_LINK_STATUS_SIZE];
1898
1899 if (cr_tries > 5) {
1900 DRM_ERROR("failed to train DP, aborting\n");
1901 intel_dp_link_down(intel_dp);
1902 break;
1903 }
1904
1905 if (IS_HASWELL(dev)) {
1906 signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
1907 DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
1908 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1909 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1910 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1911 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1912 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1913 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1914 } else {
1915 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1916 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1917 }
1918
1919 /* channel eq pattern */
1920 if (!intel_dp_set_link_train(intel_dp, DP,
1921 DP_TRAINING_PATTERN_2 |
1922 DP_LINK_SCRAMBLING_DISABLE))
1923 break;
1924
1925 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1926 if (!intel_dp_get_link_status(intel_dp, link_status))
1927 break;
1928
1929 /* Make sure clock is still ok */
1930 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1931 intel_dp_start_link_train(intel_dp);
1932 cr_tries++;
1933 continue;
1934 }
1935
1936 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1937 channel_eq = true;
1938 break;
1939 }
1940
1941 /* Try 5 times, then try clock recovery if that fails */
1942 if (tries > 5) {
1943 intel_dp_link_down(intel_dp);
1944 intel_dp_start_link_train(intel_dp);
1945 tries = 0;
1946 cr_tries++;
1947 continue;
1948 }
1949
1950 /* Compute new intel_dp->train_set as requested by target */
1951 intel_get_adjust_train(intel_dp, link_status);
1952 ++tries;
1953 }
1954
1955 if (channel_eq)
1956 DRM_DEBUG_KMS("Channel EQ done. DP Training successfull\n");
1957
1958 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1959 }
1960
1961 static void
1962 intel_dp_link_down(struct intel_dp *intel_dp)
1963 {
1964 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1965 struct drm_device *dev = intel_dig_port->base.base.dev;
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 uint32_t DP = intel_dp->DP;
1968
1969 /*
1970 * DDI code has a strict mode set sequence and we should try to respect
1971 * it, otherwise we might hang the machine in many different ways. So we
1972 * really should be disabling the port only on a complete crtc_disable
1973 * sequence. This function is just called under two conditions on DDI
1974 * code:
1975 * - Link train failed while doing crtc_enable, and on this case we
1976 * really should respect the mode set sequence and wait for a
1977 * crtc_disable.
1978 * - Someone turned the monitor off and intel_dp_check_link_status
1979 * called us. We don't need to disable the whole port on this case, so
1980 * when someone turns the monitor on again,
1981 * intel_ddi_prepare_link_retrain will take care of redoing the link
1982 * train.
1983 */
1984 if (IS_HASWELL(dev))
1985 return;
1986
1987 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1988 return;
1989
1990 DRM_DEBUG_KMS("\n");
1991
1992 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1993 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1994 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1995 } else {
1996 DP &= ~DP_LINK_TRAIN_MASK;
1997 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1998 }
1999 POSTING_READ(intel_dp->output_reg);
2000
2001 msleep(17);
2002
2003 if (HAS_PCH_IBX(dev) &&
2004 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2005 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2006
2007 /* Hardware workaround: leaving our transcoder select
2008 * set to transcoder B while it's off will prevent the
2009 * corresponding HDMI output on transcoder A.
2010 *
2011 * Combine this with another hardware workaround:
2012 * transcoder select bit can only be cleared while the
2013 * port is enabled.
2014 */
2015 DP &= ~DP_PIPEB_SELECT;
2016 I915_WRITE(intel_dp->output_reg, DP);
2017
2018 /* Changes to enable or select take place the vblank
2019 * after being written.
2020 */
2021 if (crtc == NULL) {
2022 /* We can arrive here never having been attached
2023 * to a CRTC, for instance, due to inheriting
2024 * random state from the BIOS.
2025 *
2026 * If the pipe is not running, play safe and
2027 * wait for the clocks to stabilise before
2028 * continuing.
2029 */
2030 POSTING_READ(intel_dp->output_reg);
2031 msleep(50);
2032 } else
2033 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
2034 }
2035
2036 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2037 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2038 POSTING_READ(intel_dp->output_reg);
2039 msleep(intel_dp->panel_power_down_delay);
2040 }
2041
2042 static bool
2043 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2044 {
2045 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2046 sizeof(intel_dp->dpcd)) == 0)
2047 return false; /* aux transfer failed */
2048
2049 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2050 return false; /* DPCD not present */
2051
2052 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2053 DP_DWN_STRM_PORT_PRESENT))
2054 return true; /* native DP sink */
2055
2056 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2057 return true; /* no per-port downstream info */
2058
2059 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2060 intel_dp->downstream_ports,
2061 DP_MAX_DOWNSTREAM_PORTS) == 0)
2062 return false; /* downstream port status fetch failed */
2063
2064 return true;
2065 }
2066
2067 static void
2068 intel_dp_probe_oui(struct intel_dp *intel_dp)
2069 {
2070 u8 buf[3];
2071
2072 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2073 return;
2074
2075 ironlake_edp_panel_vdd_on(intel_dp);
2076
2077 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2078 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2079 buf[0], buf[1], buf[2]);
2080
2081 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2082 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2083 buf[0], buf[1], buf[2]);
2084
2085 ironlake_edp_panel_vdd_off(intel_dp, false);
2086 }
2087
2088 static bool
2089 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2090 {
2091 int ret;
2092
2093 ret = intel_dp_aux_native_read_retry(intel_dp,
2094 DP_DEVICE_SERVICE_IRQ_VECTOR,
2095 sink_irq_vector, 1);
2096 if (!ret)
2097 return false;
2098
2099 return true;
2100 }
2101
2102 static void
2103 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2104 {
2105 /* NAK by default */
2106 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2107 }
2108
2109 /*
2110 * According to DP spec
2111 * 5.1.2:
2112 * 1. Read DPCD
2113 * 2. Configure link according to Receiver Capabilities
2114 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2115 * 4. Check link status on receipt of hot-plug interrupt
2116 */
2117
2118 void
2119 intel_dp_check_link_status(struct intel_dp *intel_dp)
2120 {
2121 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2122 u8 sink_irq_vector;
2123 u8 link_status[DP_LINK_STATUS_SIZE];
2124
2125 if (!intel_encoder->connectors_active)
2126 return;
2127
2128 if (WARN_ON(!intel_encoder->base.crtc))
2129 return;
2130
2131 /* Try to read receiver status if the link appears to be up */
2132 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2133 intel_dp_link_down(intel_dp);
2134 return;
2135 }
2136
2137 /* Now read the DPCD to see if it's actually running */
2138 if (!intel_dp_get_dpcd(intel_dp)) {
2139 intel_dp_link_down(intel_dp);
2140 return;
2141 }
2142
2143 /* Try to read the source of the interrupt */
2144 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2145 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2146 /* Clear interrupt source */
2147 intel_dp_aux_native_write_1(intel_dp,
2148 DP_DEVICE_SERVICE_IRQ_VECTOR,
2149 sink_irq_vector);
2150
2151 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2152 intel_dp_handle_test_request(intel_dp);
2153 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2154 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2155 }
2156
2157 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2158 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2159 drm_get_encoder_name(&intel_encoder->base));
2160 intel_dp_start_link_train(intel_dp);
2161 intel_dp_complete_link_train(intel_dp);
2162 }
2163 }
2164
2165 /* XXX this is probably wrong for multiple downstream ports */
2166 static enum drm_connector_status
2167 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2168 {
2169 uint8_t *dpcd = intel_dp->dpcd;
2170 bool hpd;
2171 uint8_t type;
2172
2173 if (!intel_dp_get_dpcd(intel_dp))
2174 return connector_status_disconnected;
2175
2176 /* if there's no downstream port, we're done */
2177 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2178 return connector_status_connected;
2179
2180 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2181 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2182 if (hpd) {
2183 uint8_t reg;
2184 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2185 &reg, 1))
2186 return connector_status_unknown;
2187 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2188 : connector_status_disconnected;
2189 }
2190
2191 /* If no HPD, poke DDC gently */
2192 if (drm_probe_ddc(&intel_dp->adapter))
2193 return connector_status_connected;
2194
2195 /* Well we tried, say unknown for unreliable port types */
2196 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2197 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2198 return connector_status_unknown;
2199
2200 /* Anything else is out of spec, warn and ignore */
2201 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2202 return connector_status_disconnected;
2203 }
2204
2205 static enum drm_connector_status
2206 ironlake_dp_detect(struct intel_dp *intel_dp)
2207 {
2208 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2209 enum drm_connector_status status;
2210
2211 /* Can't disconnect eDP, but you can close the lid... */
2212 if (is_edp(intel_dp)) {
2213 status = intel_panel_detect(dev);
2214 if (status == connector_status_unknown)
2215 status = connector_status_connected;
2216 return status;
2217 }
2218
2219 return intel_dp_detect_dpcd(intel_dp);
2220 }
2221
2222 static enum drm_connector_status
2223 g4x_dp_detect(struct intel_dp *intel_dp)
2224 {
2225 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2226 struct drm_i915_private *dev_priv = dev->dev_private;
2227 uint32_t bit;
2228
2229 switch (intel_dp->output_reg) {
2230 case DP_B:
2231 bit = DPB_HOTPLUG_LIVE_STATUS;
2232 break;
2233 case DP_C:
2234 bit = DPC_HOTPLUG_LIVE_STATUS;
2235 break;
2236 case DP_D:
2237 bit = DPD_HOTPLUG_LIVE_STATUS;
2238 break;
2239 default:
2240 return connector_status_unknown;
2241 }
2242
2243 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2244 return connector_status_disconnected;
2245
2246 return intel_dp_detect_dpcd(intel_dp);
2247 }
2248
2249 static struct edid *
2250 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2251 {
2252 struct intel_connector *intel_connector = to_intel_connector(connector);
2253
2254 /* use cached edid if we have one */
2255 if (intel_connector->edid) {
2256 struct edid *edid;
2257 int size;
2258
2259 /* invalid edid */
2260 if (IS_ERR(intel_connector->edid))
2261 return NULL;
2262
2263 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2264 edid = kmalloc(size, GFP_KERNEL);
2265 if (!edid)
2266 return NULL;
2267
2268 memcpy(edid, intel_connector->edid, size);
2269 return edid;
2270 }
2271
2272 return drm_get_edid(connector, adapter);
2273 }
2274
2275 static int
2276 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2277 {
2278 struct intel_connector *intel_connector = to_intel_connector(connector);
2279
2280 /* use cached edid if we have one */
2281 if (intel_connector->edid) {
2282 /* invalid edid */
2283 if (IS_ERR(intel_connector->edid))
2284 return 0;
2285
2286 return intel_connector_update_modes(connector,
2287 intel_connector->edid);
2288 }
2289
2290 return intel_ddc_get_modes(connector, adapter);
2291 }
2292
2293
2294 /**
2295 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2296 *
2297 * \return true if DP port is connected.
2298 * \return false if DP port is disconnected.
2299 */
2300 static enum drm_connector_status
2301 intel_dp_detect(struct drm_connector *connector, bool force)
2302 {
2303 struct intel_dp *intel_dp = intel_attached_dp(connector);
2304 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2305 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2306 struct drm_device *dev = connector->dev;
2307 enum drm_connector_status status;
2308 struct edid *edid = NULL;
2309 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2310
2311 intel_dp->has_audio = false;
2312
2313 if (HAS_PCH_SPLIT(dev))
2314 status = ironlake_dp_detect(intel_dp);
2315 else
2316 status = g4x_dp_detect(intel_dp);
2317
2318 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2319 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2320 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2321
2322 if (status != connector_status_connected)
2323 return status;
2324
2325 intel_dp_probe_oui(intel_dp);
2326
2327 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2328 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2329 } else {
2330 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2331 if (edid) {
2332 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2333 kfree(edid);
2334 }
2335 }
2336
2337 if (intel_encoder->type != INTEL_OUTPUT_EDP)
2338 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2339 return connector_status_connected;
2340 }
2341
2342 static int intel_dp_get_modes(struct drm_connector *connector)
2343 {
2344 struct intel_dp *intel_dp = intel_attached_dp(connector);
2345 struct intel_connector *intel_connector = to_intel_connector(connector);
2346 struct drm_device *dev = connector->dev;
2347 int ret;
2348
2349 /* We should parse the EDID data and find out if it has an audio sink
2350 */
2351
2352 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2353 if (ret)
2354 return ret;
2355
2356 /* if eDP has no EDID, fall back to fixed mode */
2357 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2358 struct drm_display_mode *mode;
2359 mode = drm_mode_duplicate(dev,
2360 intel_connector->panel.fixed_mode);
2361 if (mode) {
2362 drm_mode_probed_add(connector, mode);
2363 return 1;
2364 }
2365 }
2366 return 0;
2367 }
2368
2369 static bool
2370 intel_dp_detect_audio(struct drm_connector *connector)
2371 {
2372 struct intel_dp *intel_dp = intel_attached_dp(connector);
2373 struct edid *edid;
2374 bool has_audio = false;
2375
2376 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2377 if (edid) {
2378 has_audio = drm_detect_monitor_audio(edid);
2379 kfree(edid);
2380 }
2381
2382 return has_audio;
2383 }
2384
2385 static int
2386 intel_dp_set_property(struct drm_connector *connector,
2387 struct drm_property *property,
2388 uint64_t val)
2389 {
2390 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2391 struct intel_connector *intel_connector = to_intel_connector(connector);
2392 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2393 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2394 int ret;
2395
2396 ret = drm_object_property_set_value(&connector->base, property, val);
2397 if (ret)
2398 return ret;
2399
2400 if (property == dev_priv->force_audio_property) {
2401 int i = val;
2402 bool has_audio;
2403
2404 if (i == intel_dp->force_audio)
2405 return 0;
2406
2407 intel_dp->force_audio = i;
2408
2409 if (i == HDMI_AUDIO_AUTO)
2410 has_audio = intel_dp_detect_audio(connector);
2411 else
2412 has_audio = (i == HDMI_AUDIO_ON);
2413
2414 if (has_audio == intel_dp->has_audio)
2415 return 0;
2416
2417 intel_dp->has_audio = has_audio;
2418 goto done;
2419 }
2420
2421 if (property == dev_priv->broadcast_rgb_property) {
2422 if (val == !!intel_dp->color_range)
2423 return 0;
2424
2425 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2426 goto done;
2427 }
2428
2429 if (is_edp(intel_dp) &&
2430 property == connector->dev->mode_config.scaling_mode_property) {
2431 if (val == DRM_MODE_SCALE_NONE) {
2432 DRM_DEBUG_KMS("no scaling not supported\n");
2433 return -EINVAL;
2434 }
2435
2436 if (intel_connector->panel.fitting_mode == val) {
2437 /* the eDP scaling property is not changed */
2438 return 0;
2439 }
2440 intel_connector->panel.fitting_mode = val;
2441
2442 goto done;
2443 }
2444
2445 return -EINVAL;
2446
2447 done:
2448 if (intel_encoder->base.crtc) {
2449 struct drm_crtc *crtc = intel_encoder->base.crtc;
2450 intel_set_mode(crtc, &crtc->mode,
2451 crtc->x, crtc->y, crtc->fb);
2452 }
2453
2454 return 0;
2455 }
2456
2457 static void
2458 intel_dp_destroy(struct drm_connector *connector)
2459 {
2460 struct drm_device *dev = connector->dev;
2461 struct intel_dp *intel_dp = intel_attached_dp(connector);
2462 struct intel_connector *intel_connector = to_intel_connector(connector);
2463
2464 if (!IS_ERR_OR_NULL(intel_connector->edid))
2465 kfree(intel_connector->edid);
2466
2467 if (is_edp(intel_dp)) {
2468 intel_panel_destroy_backlight(dev);
2469 intel_panel_fini(&intel_connector->panel);
2470 }
2471
2472 drm_sysfs_connector_remove(connector);
2473 drm_connector_cleanup(connector);
2474 kfree(connector);
2475 }
2476
2477 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2478 {
2479 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2480 struct intel_dp *intel_dp = &intel_dig_port->dp;
2481
2482 i2c_del_adapter(&intel_dp->adapter);
2483 drm_encoder_cleanup(encoder);
2484 if (is_edp(intel_dp)) {
2485 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2486 ironlake_panel_vdd_off_sync(intel_dp);
2487 }
2488 kfree(intel_dig_port);
2489 }
2490
2491 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2492 .mode_fixup = intel_dp_mode_fixup,
2493 .mode_set = intel_dp_mode_set,
2494 .disable = intel_encoder_noop,
2495 };
2496
2497 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2498 .dpms = intel_connector_dpms,
2499 .detect = intel_dp_detect,
2500 .fill_modes = drm_helper_probe_single_connector_modes,
2501 .set_property = intel_dp_set_property,
2502 .destroy = intel_dp_destroy,
2503 };
2504
2505 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2506 .get_modes = intel_dp_get_modes,
2507 .mode_valid = intel_dp_mode_valid,
2508 .best_encoder = intel_best_encoder,
2509 };
2510
2511 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2512 .destroy = intel_dp_encoder_destroy,
2513 };
2514
2515 static void
2516 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2517 {
2518 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2519
2520 intel_dp_check_link_status(intel_dp);
2521 }
2522
2523 /* Return which DP Port should be selected for Transcoder DP control */
2524 int
2525 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2526 {
2527 struct drm_device *dev = crtc->dev;
2528 struct intel_encoder *intel_encoder;
2529 struct intel_dp *intel_dp;
2530
2531 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2532 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2533
2534 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2535 intel_encoder->type == INTEL_OUTPUT_EDP)
2536 return intel_dp->output_reg;
2537 }
2538
2539 return -1;
2540 }
2541
2542 /* check the VBT to see whether the eDP is on DP-D port */
2543 bool intel_dpd_is_edp(struct drm_device *dev)
2544 {
2545 struct drm_i915_private *dev_priv = dev->dev_private;
2546 struct child_device_config *p_child;
2547 int i;
2548
2549 if (!dev_priv->child_dev_num)
2550 return false;
2551
2552 for (i = 0; i < dev_priv->child_dev_num; i++) {
2553 p_child = dev_priv->child_dev + i;
2554
2555 if (p_child->dvo_port == PORT_IDPD &&
2556 p_child->device_type == DEVICE_TYPE_eDP)
2557 return true;
2558 }
2559 return false;
2560 }
2561
2562 static void
2563 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2564 {
2565 struct intel_connector *intel_connector = to_intel_connector(connector);
2566
2567 intel_attach_force_audio_property(connector);
2568 intel_attach_broadcast_rgb_property(connector);
2569
2570 if (is_edp(intel_dp)) {
2571 drm_mode_create_scaling_mode_property(connector->dev);
2572 drm_connector_attach_property(
2573 connector,
2574 connector->dev->mode_config.scaling_mode_property,
2575 DRM_MODE_SCALE_ASPECT);
2576 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2577 }
2578 }
2579
2580 static void
2581 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2582 struct intel_dp *intel_dp)
2583 {
2584 struct drm_i915_private *dev_priv = dev->dev_private;
2585 struct edp_power_seq cur, vbt, spec, final;
2586 u32 pp_on, pp_off, pp_div, pp;
2587
2588 /* Workaround: Need to write PP_CONTROL with the unlock key as
2589 * the very first thing. */
2590 pp = ironlake_get_pp_control(dev_priv);
2591 I915_WRITE(PCH_PP_CONTROL, pp);
2592
2593 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2594 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2595 pp_div = I915_READ(PCH_PP_DIVISOR);
2596
2597 /* Pull timing values out of registers */
2598 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2599 PANEL_POWER_UP_DELAY_SHIFT;
2600
2601 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2602 PANEL_LIGHT_ON_DELAY_SHIFT;
2603
2604 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2605 PANEL_LIGHT_OFF_DELAY_SHIFT;
2606
2607 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2608 PANEL_POWER_DOWN_DELAY_SHIFT;
2609
2610 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2611 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2612
2613 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2614 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2615
2616 vbt = dev_priv->edp.pps;
2617
2618 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2619 * our hw here, which are all in 100usec. */
2620 spec.t1_t3 = 210 * 10;
2621 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2622 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2623 spec.t10 = 500 * 10;
2624 /* This one is special and actually in units of 100ms, but zero
2625 * based in the hw (so we need to add 100 ms). But the sw vbt
2626 * table multiplies it with 1000 to make it in units of 100usec,
2627 * too. */
2628 spec.t11_t12 = (510 + 100) * 10;
2629
2630 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2631 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2632
2633 /* Use the max of the register settings and vbt. If both are
2634 * unset, fall back to the spec limits. */
2635 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
2636 spec.field : \
2637 max(cur.field, vbt.field))
2638 assign_final(t1_t3);
2639 assign_final(t8);
2640 assign_final(t9);
2641 assign_final(t10);
2642 assign_final(t11_t12);
2643 #undef assign_final
2644
2645 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
2646 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2647 intel_dp->backlight_on_delay = get_delay(t8);
2648 intel_dp->backlight_off_delay = get_delay(t9);
2649 intel_dp->panel_power_down_delay = get_delay(t10);
2650 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2651 #undef get_delay
2652
2653 /* And finally store the new values in the power sequencer. */
2654 pp_on = (final.t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2655 (final.t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2656 pp_off = (final.t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2657 (final.t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2658 /* Compute the divisor for the pp clock, simply match the Bspec
2659 * formula. */
2660 pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
2661 << PP_REFERENCE_DIVIDER_SHIFT;
2662 pp_div |= (DIV_ROUND_UP(final.t11_t12, 1000)
2663 << PANEL_POWER_CYCLE_DELAY_SHIFT);
2664
2665 /* Haswell doesn't have any port selection bits for the panel
2666 * power sequencer any more. */
2667 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2668 if (is_cpu_edp(intel_dp))
2669 pp_on |= PANEL_POWER_PORT_DP_A;
2670 else
2671 pp_on |= PANEL_POWER_PORT_DP_D;
2672 }
2673
2674 I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
2675 I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
2676 I915_WRITE(PCH_PP_DIVISOR, pp_div);
2677
2678
2679 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2680 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2681 intel_dp->panel_power_cycle_delay);
2682
2683 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2684 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2685
2686 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2687 I915_READ(PCH_PP_ON_DELAYS),
2688 I915_READ(PCH_PP_OFF_DELAYS),
2689 I915_READ(PCH_PP_DIVISOR));
2690 }
2691
2692 void
2693 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2694 struct intel_connector *intel_connector)
2695 {
2696 struct drm_connector *connector = &intel_connector->base;
2697 struct intel_dp *intel_dp = &intel_dig_port->dp;
2698 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2699 struct drm_device *dev = intel_encoder->base.dev;
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 struct drm_display_mode *fixed_mode = NULL;
2702 enum port port = intel_dig_port->port;
2703 const char *name = NULL;
2704 int type;
2705
2706 /* Preserve the current hw state. */
2707 intel_dp->DP = I915_READ(intel_dp->output_reg);
2708 intel_dp->attached_connector = intel_connector;
2709
2710 if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2711 if (intel_dpd_is_edp(dev))
2712 intel_dp->is_pch_edp = true;
2713
2714 /*
2715 * FIXME : We need to initialize built-in panels before external panels.
2716 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2717 */
2718 if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2719 type = DRM_MODE_CONNECTOR_eDP;
2720 intel_encoder->type = INTEL_OUTPUT_EDP;
2721 } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2722 type = DRM_MODE_CONNECTOR_eDP;
2723 intel_encoder->type = INTEL_OUTPUT_EDP;
2724 } else {
2725 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2726 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2727 * rewrite it.
2728 */
2729 type = DRM_MODE_CONNECTOR_DisplayPort;
2730 }
2731
2732 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2733 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2734
2735 connector->polled = DRM_CONNECTOR_POLL_HPD;
2736 connector->interlace_allowed = true;
2737 connector->doublescan_allowed = 0;
2738
2739 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2740 ironlake_panel_vdd_work);
2741
2742 intel_connector_attach_encoder(intel_connector, intel_encoder);
2743 drm_sysfs_connector_add(connector);
2744
2745 if (IS_HASWELL(dev))
2746 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2747 else
2748 intel_connector->get_hw_state = intel_connector_get_hw_state;
2749
2750
2751 /* Set up the DDC bus. */
2752 switch (port) {
2753 case PORT_A:
2754 name = "DPDDC-A";
2755 break;
2756 case PORT_B:
2757 dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
2758 name = "DPDDC-B";
2759 break;
2760 case PORT_C:
2761 dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
2762 name = "DPDDC-C";
2763 break;
2764 case PORT_D:
2765 dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
2766 name = "DPDDC-D";
2767 break;
2768 default:
2769 WARN(1, "Invalid port %c\n", port_name(port));
2770 break;
2771 }
2772
2773 if (is_edp(intel_dp))
2774 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2775
2776 intel_dp_i2c_init(intel_dp, intel_connector, name);
2777
2778 /* Cache DPCD and EDID for edp. */
2779 if (is_edp(intel_dp)) {
2780 bool ret;
2781 struct drm_display_mode *scan;
2782 struct edid *edid;
2783
2784 ironlake_edp_panel_vdd_on(intel_dp);
2785 ret = intel_dp_get_dpcd(intel_dp);
2786 ironlake_edp_panel_vdd_off(intel_dp, false);
2787
2788 if (ret) {
2789 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2790 dev_priv->no_aux_handshake =
2791 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2792 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2793 } else {
2794 /* if this fails, presume the device is a ghost */
2795 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2796 intel_dp_encoder_destroy(&intel_encoder->base);
2797 intel_dp_destroy(connector);
2798 return;
2799 }
2800
2801 ironlake_edp_panel_vdd_on(intel_dp);
2802 edid = drm_get_edid(connector, &intel_dp->adapter);
2803 if (edid) {
2804 if (drm_add_edid_modes(connector, edid)) {
2805 drm_mode_connector_update_edid_property(connector, edid);
2806 drm_edid_to_eld(connector, edid);
2807 } else {
2808 kfree(edid);
2809 edid = ERR_PTR(-EINVAL);
2810 }
2811 } else {
2812 edid = ERR_PTR(-ENOENT);
2813 }
2814 intel_connector->edid = edid;
2815
2816 /* prefer fixed mode from EDID if available */
2817 list_for_each_entry(scan, &connector->probed_modes, head) {
2818 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2819 fixed_mode = drm_mode_duplicate(dev, scan);
2820 break;
2821 }
2822 }
2823
2824 /* fallback to VBT if available for eDP */
2825 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2826 fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2827 if (fixed_mode)
2828 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2829 }
2830
2831 ironlake_edp_panel_vdd_off(intel_dp, false);
2832 }
2833
2834 if (is_edp(intel_dp)) {
2835 intel_panel_init(&intel_connector->panel, fixed_mode);
2836 intel_panel_setup_backlight(connector);
2837 }
2838
2839 intel_dp_add_properties(intel_dp, connector);
2840
2841 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2842 * 0xd. Failure to do so will result in spurious interrupts being
2843 * generated on the port when a cable is not attached.
2844 */
2845 if (IS_G4X(dev) && !IS_GM45(dev)) {
2846 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2847 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2848 }
2849 }
2850
2851 void
2852 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2853 {
2854 struct intel_digital_port *intel_dig_port;
2855 struct intel_encoder *intel_encoder;
2856 struct drm_encoder *encoder;
2857 struct intel_connector *intel_connector;
2858
2859 intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2860 if (!intel_dig_port)
2861 return;
2862
2863 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2864 if (!intel_connector) {
2865 kfree(intel_dig_port);
2866 return;
2867 }
2868
2869 intel_encoder = &intel_dig_port->base;
2870 encoder = &intel_encoder->base;
2871
2872 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2873 DRM_MODE_ENCODER_TMDS);
2874 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2875
2876 intel_encoder->enable = intel_enable_dp;
2877 intel_encoder->pre_enable = intel_pre_enable_dp;
2878 intel_encoder->disable = intel_disable_dp;
2879 intel_encoder->post_disable = intel_post_disable_dp;
2880 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2881
2882 intel_dig_port->port = port;
2883 intel_dig_port->dp.output_reg = output_reg;
2884
2885 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2886 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2887 intel_encoder->cloneable = false;
2888 intel_encoder->hot_plug = intel_dp_hot_plug;
2889
2890 intel_dp_init_connector(intel_dig_port, intel_connector);
2891 }
This page took 0.152031 seconds and 5 git commands to generate.