drm/i915/chv: Don't use PCS group access reads
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /*
68 * CHV supports eDP 1.4 that have more link rates.
69 * Below only provides the fixed rate but exclude variable rate.
70 */
71 static const struct dp_link_dpll chv_dpll[] = {
72 /*
73 * CHV requires to program fractional division for m2.
74 * m2 is stored in fixed point format using formula below
75 * (m2_int << 22) | m2_fraction
76 */
77 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
78 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
80 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83 };
84
85 /**
86 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87 * @intel_dp: DP struct
88 *
89 * If a CPU or PCH DP output is attached to an eDP panel, this function
90 * will return true, and false otherwise.
91 */
92 static bool is_edp(struct intel_dp *intel_dp)
93 {
94 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 }
98
99 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100 {
101 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103 return intel_dig_port->base.base.dev;
104 }
105
106 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107 {
108 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 }
110
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114
115 static int
116 intel_dp_max_link_bw(struct intel_dp *intel_dp)
117 {
118 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119 struct drm_device *dev = intel_dp->attached_connector->base.dev;
120
121 switch (max_link_bw) {
122 case DP_LINK_BW_1_62:
123 case DP_LINK_BW_2_7:
124 break;
125 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126 if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
127 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
128 max_link_bw = DP_LINK_BW_5_4;
129 else
130 max_link_bw = DP_LINK_BW_2_7;
131 break;
132 default:
133 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
134 max_link_bw);
135 max_link_bw = DP_LINK_BW_1_62;
136 break;
137 }
138 return max_link_bw;
139 }
140
141 /*
142 * The units on the numbers in the next two are... bizarre. Examples will
143 * make it clearer; this one parallels an example in the eDP spec.
144 *
145 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
146 *
147 * 270000 * 1 * 8 / 10 == 216000
148 *
149 * The actual data capacity of that configuration is 2.16Gbit/s, so the
150 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
151 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
152 * 119000. At 18bpp that's 2142000 kilobits per second.
153 *
154 * Thus the strange-looking division by 10 in intel_dp_link_required, to
155 * get the result in decakilobits instead of kilobits.
156 */
157
158 static int
159 intel_dp_link_required(int pixel_clock, int bpp)
160 {
161 return (pixel_clock * bpp + 9) / 10;
162 }
163
164 static int
165 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
166 {
167 return (max_link_clock * max_lanes * 8) / 10;
168 }
169
170 static enum drm_mode_status
171 intel_dp_mode_valid(struct drm_connector *connector,
172 struct drm_display_mode *mode)
173 {
174 struct intel_dp *intel_dp = intel_attached_dp(connector);
175 struct intel_connector *intel_connector = to_intel_connector(connector);
176 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
177 int target_clock = mode->clock;
178 int max_rate, mode_rate, max_lanes, max_link_clock;
179
180 if (is_edp(intel_dp) && fixed_mode) {
181 if (mode->hdisplay > fixed_mode->hdisplay)
182 return MODE_PANEL;
183
184 if (mode->vdisplay > fixed_mode->vdisplay)
185 return MODE_PANEL;
186
187 target_clock = fixed_mode->clock;
188 }
189
190 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
191 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
192
193 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
194 mode_rate = intel_dp_link_required(target_clock, 18);
195
196 if (mode_rate > max_rate)
197 return MODE_CLOCK_HIGH;
198
199 if (mode->clock < 10000)
200 return MODE_CLOCK_LOW;
201
202 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
203 return MODE_H_ILLEGAL;
204
205 return MODE_OK;
206 }
207
208 static uint32_t
209 pack_aux(uint8_t *src, int src_bytes)
210 {
211 int i;
212 uint32_t v = 0;
213
214 if (src_bytes > 4)
215 src_bytes = 4;
216 for (i = 0; i < src_bytes; i++)
217 v |= ((uint32_t) src[i]) << ((3-i) * 8);
218 return v;
219 }
220
221 static void
222 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
223 {
224 int i;
225 if (dst_bytes > 4)
226 dst_bytes = 4;
227 for (i = 0; i < dst_bytes; i++)
228 dst[i] = src >> ((3-i) * 8);
229 }
230
231 /* hrawclock is 1/4 the FSB frequency */
232 static int
233 intel_hrawclk(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 uint32_t clkcfg;
237
238 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
239 if (IS_VALLEYVIEW(dev))
240 return 200;
241
242 clkcfg = I915_READ(CLKCFG);
243 switch (clkcfg & CLKCFG_FSB_MASK) {
244 case CLKCFG_FSB_400:
245 return 100;
246 case CLKCFG_FSB_533:
247 return 133;
248 case CLKCFG_FSB_667:
249 return 166;
250 case CLKCFG_FSB_800:
251 return 200;
252 case CLKCFG_FSB_1067:
253 return 266;
254 case CLKCFG_FSB_1333:
255 return 333;
256 /* these two are just a guess; one of them might be right */
257 case CLKCFG_FSB_1600:
258 case CLKCFG_FSB_1600_ALT:
259 return 400;
260 default:
261 return 133;
262 }
263 }
264
265 static void
266 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
267 struct intel_dp *intel_dp,
268 struct edp_power_seq *out);
269 static void
270 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
271 struct intel_dp *intel_dp,
272 struct edp_power_seq *out);
273
274 static enum pipe
275 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
276 {
277 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
278 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
279 struct drm_device *dev = intel_dig_port->base.base.dev;
280 struct drm_i915_private *dev_priv = dev->dev_private;
281 enum port port = intel_dig_port->port;
282 enum pipe pipe;
283
284 /* modeset should have pipe */
285 if (crtc)
286 return to_intel_crtc(crtc)->pipe;
287
288 /* init time, try to find a pipe with this port selected */
289 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
290 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
291 PANEL_PORT_SELECT_MASK;
292 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
293 return pipe;
294 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
295 return pipe;
296 }
297
298 /* shrug */
299 return PIPE_A;
300 }
301
302 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
303 {
304 struct drm_device *dev = intel_dp_to_dev(intel_dp);
305
306 if (HAS_PCH_SPLIT(dev))
307 return PCH_PP_CONTROL;
308 else
309 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
310 }
311
312 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
313 {
314 struct drm_device *dev = intel_dp_to_dev(intel_dp);
315
316 if (HAS_PCH_SPLIT(dev))
317 return PCH_PP_STATUS;
318 else
319 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
320 }
321
322 static bool edp_have_panel_power(struct intel_dp *intel_dp)
323 {
324 struct drm_device *dev = intel_dp_to_dev(intel_dp);
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
328 }
329
330 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
331 {
332 struct drm_device *dev = intel_dp_to_dev(intel_dp);
333 struct drm_i915_private *dev_priv = dev->dev_private;
334 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
335 struct intel_encoder *intel_encoder = &intel_dig_port->base;
336 enum intel_display_power_domain power_domain;
337
338 power_domain = intel_display_port_power_domain(intel_encoder);
339 return intel_display_power_enabled(dev_priv, power_domain) &&
340 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
341 }
342
343 static void
344 intel_dp_check_edp(struct intel_dp *intel_dp)
345 {
346 struct drm_device *dev = intel_dp_to_dev(intel_dp);
347 struct drm_i915_private *dev_priv = dev->dev_private;
348
349 if (!is_edp(intel_dp))
350 return;
351
352 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
353 WARN(1, "eDP powered off while attempting aux channel communication.\n");
354 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
355 I915_READ(_pp_stat_reg(intel_dp)),
356 I915_READ(_pp_ctrl_reg(intel_dp)));
357 }
358 }
359
360 static uint32_t
361 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
362 {
363 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
364 struct drm_device *dev = intel_dig_port->base.base.dev;
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
367 uint32_t status;
368 bool done;
369
370 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
371 if (has_aux_irq)
372 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
373 msecs_to_jiffies_timeout(10));
374 else
375 done = wait_for_atomic(C, 10) == 0;
376 if (!done)
377 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
378 has_aux_irq);
379 #undef C
380
381 return status;
382 }
383
384 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
385 {
386 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
387 struct drm_device *dev = intel_dig_port->base.base.dev;
388
389 /*
390 * The clock divider is based off the hrawclk, and would like to run at
391 * 2MHz. So, take the hrawclk value and divide by 2 and use that
392 */
393 return index ? 0 : intel_hrawclk(dev) / 2;
394 }
395
396 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
397 {
398 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399 struct drm_device *dev = intel_dig_port->base.base.dev;
400
401 if (index)
402 return 0;
403
404 if (intel_dig_port->port == PORT_A) {
405 if (IS_GEN6(dev) || IS_GEN7(dev))
406 return 200; /* SNB & IVB eDP input clock at 400Mhz */
407 else
408 return 225; /* eDP input clock at 450Mhz */
409 } else {
410 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
411 }
412 }
413
414 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
415 {
416 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
417 struct drm_device *dev = intel_dig_port->base.base.dev;
418 struct drm_i915_private *dev_priv = dev->dev_private;
419
420 if (intel_dig_port->port == PORT_A) {
421 if (index)
422 return 0;
423 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
424 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
425 /* Workaround for non-ULT HSW */
426 switch (index) {
427 case 0: return 63;
428 case 1: return 72;
429 default: return 0;
430 }
431 } else {
432 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
433 }
434 }
435
436 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
437 {
438 return index ? 0 : 100;
439 }
440
441 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
442 bool has_aux_irq,
443 int send_bytes,
444 uint32_t aux_clock_divider)
445 {
446 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447 struct drm_device *dev = intel_dig_port->base.base.dev;
448 uint32_t precharge, timeout;
449
450 if (IS_GEN6(dev))
451 precharge = 3;
452 else
453 precharge = 5;
454
455 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
456 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
457 else
458 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
459
460 return DP_AUX_CH_CTL_SEND_BUSY |
461 DP_AUX_CH_CTL_DONE |
462 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463 DP_AUX_CH_CTL_TIME_OUT_ERROR |
464 timeout |
465 DP_AUX_CH_CTL_RECEIVE_ERROR |
466 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
467 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
468 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
469 }
470
471 static int
472 intel_dp_aux_ch(struct intel_dp *intel_dp,
473 uint8_t *send, int send_bytes,
474 uint8_t *recv, int recv_size)
475 {
476 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
477 struct drm_device *dev = intel_dig_port->base.base.dev;
478 struct drm_i915_private *dev_priv = dev->dev_private;
479 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
480 uint32_t ch_data = ch_ctl + 4;
481 uint32_t aux_clock_divider;
482 int i, ret, recv_bytes;
483 uint32_t status;
484 int try, clock = 0;
485 bool has_aux_irq = HAS_AUX_IRQ(dev);
486 bool vdd;
487
488 vdd = _edp_panel_vdd_on(intel_dp);
489
490 /* dp aux is extremely sensitive to irq latency, hence request the
491 * lowest possible wakeup latency and so prevent the cpu from going into
492 * deep sleep states.
493 */
494 pm_qos_update_request(&dev_priv->pm_qos, 0);
495
496 intel_dp_check_edp(intel_dp);
497
498 intel_aux_display_runtime_get(dev_priv);
499
500 /* Try to wait for any previous AUX channel activity */
501 for (try = 0; try < 3; try++) {
502 status = I915_READ_NOTRACE(ch_ctl);
503 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
504 break;
505 msleep(1);
506 }
507
508 if (try == 3) {
509 WARN(1, "dp_aux_ch not started status 0x%08x\n",
510 I915_READ(ch_ctl));
511 ret = -EBUSY;
512 goto out;
513 }
514
515 /* Only 5 data registers! */
516 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
517 ret = -E2BIG;
518 goto out;
519 }
520
521 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
522 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
523 has_aux_irq,
524 send_bytes,
525 aux_clock_divider);
526
527 /* Must try at least 3 times according to DP spec */
528 for (try = 0; try < 5; try++) {
529 /* Load the send data into the aux channel data registers */
530 for (i = 0; i < send_bytes; i += 4)
531 I915_WRITE(ch_data + i,
532 pack_aux(send + i, send_bytes - i));
533
534 /* Send the command and wait for it to complete */
535 I915_WRITE(ch_ctl, send_ctl);
536
537 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
538
539 /* Clear done status and any errors */
540 I915_WRITE(ch_ctl,
541 status |
542 DP_AUX_CH_CTL_DONE |
543 DP_AUX_CH_CTL_TIME_OUT_ERROR |
544 DP_AUX_CH_CTL_RECEIVE_ERROR);
545
546 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
547 DP_AUX_CH_CTL_RECEIVE_ERROR))
548 continue;
549 if (status & DP_AUX_CH_CTL_DONE)
550 break;
551 }
552 if (status & DP_AUX_CH_CTL_DONE)
553 break;
554 }
555
556 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
557 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
558 ret = -EBUSY;
559 goto out;
560 }
561
562 /* Check for timeout or receive error.
563 * Timeouts occur when the sink is not connected
564 */
565 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
566 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
567 ret = -EIO;
568 goto out;
569 }
570
571 /* Timeouts occur when the device isn't connected, so they're
572 * "normal" -- don't fill the kernel log with these */
573 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
574 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
575 ret = -ETIMEDOUT;
576 goto out;
577 }
578
579 /* Unload any bytes sent back from the other side */
580 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
581 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
582 if (recv_bytes > recv_size)
583 recv_bytes = recv_size;
584
585 for (i = 0; i < recv_bytes; i += 4)
586 unpack_aux(I915_READ(ch_data + i),
587 recv + i, recv_bytes - i);
588
589 ret = recv_bytes;
590 out:
591 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
592 intel_aux_display_runtime_put(dev_priv);
593
594 if (vdd)
595 edp_panel_vdd_off(intel_dp, false);
596
597 return ret;
598 }
599
600 #define BARE_ADDRESS_SIZE 3
601 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
602 static ssize_t
603 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
604 {
605 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
606 uint8_t txbuf[20], rxbuf[20];
607 size_t txsize, rxsize;
608 int ret;
609
610 txbuf[0] = msg->request << 4;
611 txbuf[1] = msg->address >> 8;
612 txbuf[2] = msg->address & 0xff;
613 txbuf[3] = msg->size - 1;
614
615 switch (msg->request & ~DP_AUX_I2C_MOT) {
616 case DP_AUX_NATIVE_WRITE:
617 case DP_AUX_I2C_WRITE:
618 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
619 rxsize = 1;
620
621 if (WARN_ON(txsize > 20))
622 return -E2BIG;
623
624 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
625
626 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
627 if (ret > 0) {
628 msg->reply = rxbuf[0] >> 4;
629
630 /* Return payload size. */
631 ret = msg->size;
632 }
633 break;
634
635 case DP_AUX_NATIVE_READ:
636 case DP_AUX_I2C_READ:
637 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
638 rxsize = msg->size + 1;
639
640 if (WARN_ON(rxsize > 20))
641 return -E2BIG;
642
643 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644 if (ret > 0) {
645 msg->reply = rxbuf[0] >> 4;
646 /*
647 * Assume happy day, and copy the data. The caller is
648 * expected to check msg->reply before touching it.
649 *
650 * Return payload size.
651 */
652 ret--;
653 memcpy(msg->buffer, rxbuf + 1, ret);
654 }
655 break;
656
657 default:
658 ret = -EINVAL;
659 break;
660 }
661
662 return ret;
663 }
664
665 static void
666 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
667 {
668 struct drm_device *dev = intel_dp_to_dev(intel_dp);
669 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670 enum port port = intel_dig_port->port;
671 const char *name = NULL;
672 int ret;
673
674 switch (port) {
675 case PORT_A:
676 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
677 name = "DPDDC-A";
678 break;
679 case PORT_B:
680 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
681 name = "DPDDC-B";
682 break;
683 case PORT_C:
684 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
685 name = "DPDDC-C";
686 break;
687 case PORT_D:
688 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
689 name = "DPDDC-D";
690 break;
691 default:
692 BUG();
693 }
694
695 if (!HAS_DDI(dev))
696 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
697
698 intel_dp->aux.name = name;
699 intel_dp->aux.dev = dev->dev;
700 intel_dp->aux.transfer = intel_dp_aux_transfer;
701
702 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
703 connector->base.kdev->kobj.name);
704
705 ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
706 if (ret < 0) {
707 DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
708 name, ret);
709 return;
710 }
711
712 ret = sysfs_create_link(&connector->base.kdev->kobj,
713 &intel_dp->aux.ddc.dev.kobj,
714 intel_dp->aux.ddc.dev.kobj.name);
715 if (ret < 0) {
716 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
717 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
718 }
719 }
720
721 static void
722 intel_dp_connector_unregister(struct intel_connector *intel_connector)
723 {
724 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
725
726 sysfs_remove_link(&intel_connector->base.kdev->kobj,
727 intel_dp->aux.ddc.dev.kobj.name);
728 intel_connector_unregister(intel_connector);
729 }
730
731 static void
732 intel_dp_set_clock(struct intel_encoder *encoder,
733 struct intel_crtc_config *pipe_config, int link_bw)
734 {
735 struct drm_device *dev = encoder->base.dev;
736 const struct dp_link_dpll *divisor = NULL;
737 int i, count = 0;
738
739 if (IS_G4X(dev)) {
740 divisor = gen4_dpll;
741 count = ARRAY_SIZE(gen4_dpll);
742 } else if (IS_HASWELL(dev)) {
743 /* Haswell has special-purpose DP DDI clocks. */
744 } else if (HAS_PCH_SPLIT(dev)) {
745 divisor = pch_dpll;
746 count = ARRAY_SIZE(pch_dpll);
747 } else if (IS_CHERRYVIEW(dev)) {
748 divisor = chv_dpll;
749 count = ARRAY_SIZE(chv_dpll);
750 } else if (IS_VALLEYVIEW(dev)) {
751 divisor = vlv_dpll;
752 count = ARRAY_SIZE(vlv_dpll);
753 }
754
755 if (divisor && count) {
756 for (i = 0; i < count; i++) {
757 if (link_bw == divisor[i].link_bw) {
758 pipe_config->dpll = divisor[i].dpll;
759 pipe_config->clock_set = true;
760 break;
761 }
762 }
763 }
764 }
765
766 static void
767 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
768 {
769 struct drm_device *dev = crtc->base.dev;
770 struct drm_i915_private *dev_priv = dev->dev_private;
771 enum transcoder transcoder = crtc->config.cpu_transcoder;
772
773 I915_WRITE(PIPE_DATA_M2(transcoder),
774 TU_SIZE(m_n->tu) | m_n->gmch_m);
775 I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
776 I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
777 I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
778 }
779
780 bool
781 intel_dp_compute_config(struct intel_encoder *encoder,
782 struct intel_crtc_config *pipe_config)
783 {
784 struct drm_device *dev = encoder->base.dev;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
787 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
788 enum port port = dp_to_dig_port(intel_dp)->port;
789 struct intel_crtc *intel_crtc = encoder->new_crtc;
790 struct intel_connector *intel_connector = intel_dp->attached_connector;
791 int lane_count, clock;
792 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
793 /* Conveniently, the link BW constants become indices with a shift...*/
794 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
795 int bpp, mode_rate;
796 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
797 int link_avail, link_clock;
798
799 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
800 pipe_config->has_pch_encoder = true;
801
802 pipe_config->has_dp_encoder = true;
803 pipe_config->has_audio = intel_dp->has_audio;
804
805 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
806 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
807 adjusted_mode);
808 if (!HAS_PCH_SPLIT(dev))
809 intel_gmch_panel_fitting(intel_crtc, pipe_config,
810 intel_connector->panel.fitting_mode);
811 else
812 intel_pch_panel_fitting(intel_crtc, pipe_config,
813 intel_connector->panel.fitting_mode);
814 }
815
816 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
817 return false;
818
819 DRM_DEBUG_KMS("DP link computation with max lane count %i "
820 "max bw %02x pixel clock %iKHz\n",
821 max_lane_count, bws[max_clock],
822 adjusted_mode->crtc_clock);
823
824 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
825 * bpc in between. */
826 bpp = pipe_config->pipe_bpp;
827 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
828 dev_priv->vbt.edp_bpp < bpp) {
829 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
830 dev_priv->vbt.edp_bpp);
831 bpp = dev_priv->vbt.edp_bpp;
832 }
833
834 for (; bpp >= 6*3; bpp -= 2*3) {
835 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
836 bpp);
837
838 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
839 for (clock = 0; clock <= max_clock; clock++) {
840 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
841 link_avail = intel_dp_max_data_rate(link_clock,
842 lane_count);
843
844 if (mode_rate <= link_avail) {
845 goto found;
846 }
847 }
848 }
849 }
850
851 return false;
852
853 found:
854 if (intel_dp->color_range_auto) {
855 /*
856 * See:
857 * CEA-861-E - 5.1 Default Encoding Parameters
858 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
859 */
860 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
861 intel_dp->color_range = DP_COLOR_RANGE_16_235;
862 else
863 intel_dp->color_range = 0;
864 }
865
866 if (intel_dp->color_range)
867 pipe_config->limited_color_range = true;
868
869 intel_dp->link_bw = bws[clock];
870 intel_dp->lane_count = lane_count;
871 pipe_config->pipe_bpp = bpp;
872 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
873
874 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
875 intel_dp->link_bw, intel_dp->lane_count,
876 pipe_config->port_clock, bpp);
877 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
878 mode_rate, link_avail);
879
880 intel_link_compute_m_n(bpp, lane_count,
881 adjusted_mode->crtc_clock,
882 pipe_config->port_clock,
883 &pipe_config->dp_m_n);
884
885 if (intel_connector->panel.downclock_mode != NULL &&
886 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
887 intel_link_compute_m_n(bpp, lane_count,
888 intel_connector->panel.downclock_mode->clock,
889 pipe_config->port_clock,
890 &pipe_config->dp_m2_n2);
891 }
892
893 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
894
895 return true;
896 }
897
898 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
899 {
900 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
901 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
902 struct drm_device *dev = crtc->base.dev;
903 struct drm_i915_private *dev_priv = dev->dev_private;
904 u32 dpa_ctl;
905
906 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
907 dpa_ctl = I915_READ(DP_A);
908 dpa_ctl &= ~DP_PLL_FREQ_MASK;
909
910 if (crtc->config.port_clock == 162000) {
911 /* For a long time we've carried around a ILK-DevA w/a for the
912 * 160MHz clock. If we're really unlucky, it's still required.
913 */
914 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
915 dpa_ctl |= DP_PLL_FREQ_160MHZ;
916 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
917 } else {
918 dpa_ctl |= DP_PLL_FREQ_270MHZ;
919 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
920 }
921
922 I915_WRITE(DP_A, dpa_ctl);
923
924 POSTING_READ(DP_A);
925 udelay(500);
926 }
927
928 static void intel_dp_prepare(struct intel_encoder *encoder)
929 {
930 struct drm_device *dev = encoder->base.dev;
931 struct drm_i915_private *dev_priv = dev->dev_private;
932 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
933 enum port port = dp_to_dig_port(intel_dp)->port;
934 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
935 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
936
937 /*
938 * There are four kinds of DP registers:
939 *
940 * IBX PCH
941 * SNB CPU
942 * IVB CPU
943 * CPT PCH
944 *
945 * IBX PCH and CPU are the same for almost everything,
946 * except that the CPU DP PLL is configured in this
947 * register
948 *
949 * CPT PCH is quite different, having many bits moved
950 * to the TRANS_DP_CTL register instead. That
951 * configuration happens (oddly) in ironlake_pch_enable
952 */
953
954 /* Preserve the BIOS-computed detected bit. This is
955 * supposed to be read-only.
956 */
957 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
958
959 /* Handle DP bits in common between all three register formats */
960 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
961 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
962
963 if (crtc->config.has_audio) {
964 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
965 pipe_name(crtc->pipe));
966 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
967 intel_write_eld(&encoder->base, adjusted_mode);
968 }
969
970 /* Split out the IBX/CPU vs CPT settings */
971
972 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
973 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
974 intel_dp->DP |= DP_SYNC_HS_HIGH;
975 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
976 intel_dp->DP |= DP_SYNC_VS_HIGH;
977 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
978
979 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
980 intel_dp->DP |= DP_ENHANCED_FRAMING;
981
982 intel_dp->DP |= crtc->pipe << 29;
983 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
984 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
985 intel_dp->DP |= intel_dp->color_range;
986
987 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
988 intel_dp->DP |= DP_SYNC_HS_HIGH;
989 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
990 intel_dp->DP |= DP_SYNC_VS_HIGH;
991 intel_dp->DP |= DP_LINK_TRAIN_OFF;
992
993 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
994 intel_dp->DP |= DP_ENHANCED_FRAMING;
995
996 if (!IS_CHERRYVIEW(dev)) {
997 if (crtc->pipe == 1)
998 intel_dp->DP |= DP_PIPEB_SELECT;
999 } else {
1000 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1001 }
1002 } else {
1003 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1004 }
1005 }
1006
1007 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1008 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1009
1010 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1011 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1012
1013 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1014 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1015
1016 static void wait_panel_status(struct intel_dp *intel_dp,
1017 u32 mask,
1018 u32 value)
1019 {
1020 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1021 struct drm_i915_private *dev_priv = dev->dev_private;
1022 u32 pp_stat_reg, pp_ctrl_reg;
1023
1024 pp_stat_reg = _pp_stat_reg(intel_dp);
1025 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1026
1027 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1028 mask, value,
1029 I915_READ(pp_stat_reg),
1030 I915_READ(pp_ctrl_reg));
1031
1032 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1033 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1034 I915_READ(pp_stat_reg),
1035 I915_READ(pp_ctrl_reg));
1036 }
1037
1038 DRM_DEBUG_KMS("Wait complete\n");
1039 }
1040
1041 static void wait_panel_on(struct intel_dp *intel_dp)
1042 {
1043 DRM_DEBUG_KMS("Wait for panel power on\n");
1044 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1045 }
1046
1047 static void wait_panel_off(struct intel_dp *intel_dp)
1048 {
1049 DRM_DEBUG_KMS("Wait for panel power off time\n");
1050 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1051 }
1052
1053 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1054 {
1055 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1056
1057 /* When we disable the VDD override bit last we have to do the manual
1058 * wait. */
1059 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1060 intel_dp->panel_power_cycle_delay);
1061
1062 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1063 }
1064
1065 static void wait_backlight_on(struct intel_dp *intel_dp)
1066 {
1067 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1068 intel_dp->backlight_on_delay);
1069 }
1070
1071 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1072 {
1073 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1074 intel_dp->backlight_off_delay);
1075 }
1076
1077 /* Read the current pp_control value, unlocking the register if it
1078 * is locked
1079 */
1080
1081 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1082 {
1083 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1084 struct drm_i915_private *dev_priv = dev->dev_private;
1085 u32 control;
1086
1087 control = I915_READ(_pp_ctrl_reg(intel_dp));
1088 control &= ~PANEL_UNLOCK_MASK;
1089 control |= PANEL_UNLOCK_REGS;
1090 return control;
1091 }
1092
1093 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1094 {
1095 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1096 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1097 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1098 struct drm_i915_private *dev_priv = dev->dev_private;
1099 enum intel_display_power_domain power_domain;
1100 u32 pp;
1101 u32 pp_stat_reg, pp_ctrl_reg;
1102 bool need_to_disable = !intel_dp->want_panel_vdd;
1103
1104 if (!is_edp(intel_dp))
1105 return false;
1106
1107 intel_dp->want_panel_vdd = true;
1108
1109 if (edp_have_panel_vdd(intel_dp))
1110 return need_to_disable;
1111
1112 power_domain = intel_display_port_power_domain(intel_encoder);
1113 intel_display_power_get(dev_priv, power_domain);
1114
1115 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1116
1117 if (!edp_have_panel_power(intel_dp))
1118 wait_panel_power_cycle(intel_dp);
1119
1120 pp = ironlake_get_pp_control(intel_dp);
1121 pp |= EDP_FORCE_VDD;
1122
1123 pp_stat_reg = _pp_stat_reg(intel_dp);
1124 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1125
1126 I915_WRITE(pp_ctrl_reg, pp);
1127 POSTING_READ(pp_ctrl_reg);
1128 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1129 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1130 /*
1131 * If the panel wasn't on, delay before accessing aux channel
1132 */
1133 if (!edp_have_panel_power(intel_dp)) {
1134 DRM_DEBUG_KMS("eDP was not running\n");
1135 msleep(intel_dp->panel_power_up_delay);
1136 }
1137
1138 return need_to_disable;
1139 }
1140
1141 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1142 {
1143 if (is_edp(intel_dp)) {
1144 bool vdd = _edp_panel_vdd_on(intel_dp);
1145
1146 WARN(!vdd, "eDP VDD already requested on\n");
1147 }
1148 }
1149
1150 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1151 {
1152 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1153 struct drm_i915_private *dev_priv = dev->dev_private;
1154 u32 pp;
1155 u32 pp_stat_reg, pp_ctrl_reg;
1156
1157 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1158
1159 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1160 struct intel_digital_port *intel_dig_port =
1161 dp_to_dig_port(intel_dp);
1162 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1163 enum intel_display_power_domain power_domain;
1164
1165 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1166
1167 pp = ironlake_get_pp_control(intel_dp);
1168 pp &= ~EDP_FORCE_VDD;
1169
1170 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1171 pp_stat_reg = _pp_stat_reg(intel_dp);
1172
1173 I915_WRITE(pp_ctrl_reg, pp);
1174 POSTING_READ(pp_ctrl_reg);
1175
1176 /* Make sure sequencer is idle before allowing subsequent activity */
1177 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1178 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1179
1180 if ((pp & POWER_TARGET_ON) == 0)
1181 intel_dp->last_power_cycle = jiffies;
1182
1183 power_domain = intel_display_port_power_domain(intel_encoder);
1184 intel_display_power_put(dev_priv, power_domain);
1185 }
1186 }
1187
1188 static void edp_panel_vdd_work(struct work_struct *__work)
1189 {
1190 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1191 struct intel_dp, panel_vdd_work);
1192 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1193
1194 mutex_lock(&dev->mode_config.mutex);
1195 edp_panel_vdd_off_sync(intel_dp);
1196 mutex_unlock(&dev->mode_config.mutex);
1197 }
1198
1199 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1200 {
1201 if (!is_edp(intel_dp))
1202 return;
1203
1204 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1205
1206 intel_dp->want_panel_vdd = false;
1207
1208 if (sync) {
1209 edp_panel_vdd_off_sync(intel_dp);
1210 } else {
1211 /*
1212 * Queue the timer to fire a long
1213 * time from now (relative to the power down delay)
1214 * to keep the panel power up across a sequence of operations
1215 */
1216 schedule_delayed_work(&intel_dp->panel_vdd_work,
1217 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1218 }
1219 }
1220
1221 void intel_edp_panel_on(struct intel_dp *intel_dp)
1222 {
1223 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1224 struct drm_i915_private *dev_priv = dev->dev_private;
1225 u32 pp;
1226 u32 pp_ctrl_reg;
1227
1228 if (!is_edp(intel_dp))
1229 return;
1230
1231 DRM_DEBUG_KMS("Turn eDP power on\n");
1232
1233 if (edp_have_panel_power(intel_dp)) {
1234 DRM_DEBUG_KMS("eDP power already on\n");
1235 return;
1236 }
1237
1238 wait_panel_power_cycle(intel_dp);
1239
1240 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1241 pp = ironlake_get_pp_control(intel_dp);
1242 if (IS_GEN5(dev)) {
1243 /* ILK workaround: disable reset around power sequence */
1244 pp &= ~PANEL_POWER_RESET;
1245 I915_WRITE(pp_ctrl_reg, pp);
1246 POSTING_READ(pp_ctrl_reg);
1247 }
1248
1249 pp |= POWER_TARGET_ON;
1250 if (!IS_GEN5(dev))
1251 pp |= PANEL_POWER_RESET;
1252
1253 I915_WRITE(pp_ctrl_reg, pp);
1254 POSTING_READ(pp_ctrl_reg);
1255
1256 wait_panel_on(intel_dp);
1257 intel_dp->last_power_on = jiffies;
1258
1259 if (IS_GEN5(dev)) {
1260 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1261 I915_WRITE(pp_ctrl_reg, pp);
1262 POSTING_READ(pp_ctrl_reg);
1263 }
1264 }
1265
1266 void intel_edp_panel_off(struct intel_dp *intel_dp)
1267 {
1268 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1269 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1270 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1271 struct drm_i915_private *dev_priv = dev->dev_private;
1272 enum intel_display_power_domain power_domain;
1273 u32 pp;
1274 u32 pp_ctrl_reg;
1275
1276 if (!is_edp(intel_dp))
1277 return;
1278
1279 DRM_DEBUG_KMS("Turn eDP power off\n");
1280
1281 edp_wait_backlight_off(intel_dp);
1282
1283 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1284
1285 pp = ironlake_get_pp_control(intel_dp);
1286 /* We need to switch off panel power _and_ force vdd, for otherwise some
1287 * panels get very unhappy and cease to work. */
1288 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1289 EDP_BLC_ENABLE);
1290
1291 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1292
1293 intel_dp->want_panel_vdd = false;
1294
1295 I915_WRITE(pp_ctrl_reg, pp);
1296 POSTING_READ(pp_ctrl_reg);
1297
1298 intel_dp->last_power_cycle = jiffies;
1299 wait_panel_off(intel_dp);
1300
1301 /* We got a reference when we enabled the VDD. */
1302 power_domain = intel_display_port_power_domain(intel_encoder);
1303 intel_display_power_put(dev_priv, power_domain);
1304 }
1305
1306 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1307 {
1308 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1309 struct drm_device *dev = intel_dig_port->base.base.dev;
1310 struct drm_i915_private *dev_priv = dev->dev_private;
1311 u32 pp;
1312 u32 pp_ctrl_reg;
1313
1314 if (!is_edp(intel_dp))
1315 return;
1316
1317 DRM_DEBUG_KMS("\n");
1318 /*
1319 * If we enable the backlight right away following a panel power
1320 * on, we may see slight flicker as the panel syncs with the eDP
1321 * link. So delay a bit to make sure the image is solid before
1322 * allowing it to appear.
1323 */
1324 wait_backlight_on(intel_dp);
1325 pp = ironlake_get_pp_control(intel_dp);
1326 pp |= EDP_BLC_ENABLE;
1327
1328 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1329
1330 I915_WRITE(pp_ctrl_reg, pp);
1331 POSTING_READ(pp_ctrl_reg);
1332
1333 intel_panel_enable_backlight(intel_dp->attached_connector);
1334 }
1335
1336 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1337 {
1338 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1339 struct drm_i915_private *dev_priv = dev->dev_private;
1340 u32 pp;
1341 u32 pp_ctrl_reg;
1342
1343 if (!is_edp(intel_dp))
1344 return;
1345
1346 intel_panel_disable_backlight(intel_dp->attached_connector);
1347
1348 DRM_DEBUG_KMS("\n");
1349 pp = ironlake_get_pp_control(intel_dp);
1350 pp &= ~EDP_BLC_ENABLE;
1351
1352 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1353
1354 I915_WRITE(pp_ctrl_reg, pp);
1355 POSTING_READ(pp_ctrl_reg);
1356 intel_dp->last_backlight_off = jiffies;
1357 }
1358
1359 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1360 {
1361 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1362 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1363 struct drm_device *dev = crtc->dev;
1364 struct drm_i915_private *dev_priv = dev->dev_private;
1365 u32 dpa_ctl;
1366
1367 assert_pipe_disabled(dev_priv,
1368 to_intel_crtc(crtc)->pipe);
1369
1370 DRM_DEBUG_KMS("\n");
1371 dpa_ctl = I915_READ(DP_A);
1372 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1373 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1374
1375 /* We don't adjust intel_dp->DP while tearing down the link, to
1376 * facilitate link retraining (e.g. after hotplug). Hence clear all
1377 * enable bits here to ensure that we don't enable too much. */
1378 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1379 intel_dp->DP |= DP_PLL_ENABLE;
1380 I915_WRITE(DP_A, intel_dp->DP);
1381 POSTING_READ(DP_A);
1382 udelay(200);
1383 }
1384
1385 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1386 {
1387 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1388 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1389 struct drm_device *dev = crtc->dev;
1390 struct drm_i915_private *dev_priv = dev->dev_private;
1391 u32 dpa_ctl;
1392
1393 assert_pipe_disabled(dev_priv,
1394 to_intel_crtc(crtc)->pipe);
1395
1396 dpa_ctl = I915_READ(DP_A);
1397 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1398 "dp pll off, should be on\n");
1399 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1400
1401 /* We can't rely on the value tracked for the DP register in
1402 * intel_dp->DP because link_down must not change that (otherwise link
1403 * re-training will fail. */
1404 dpa_ctl &= ~DP_PLL_ENABLE;
1405 I915_WRITE(DP_A, dpa_ctl);
1406 POSTING_READ(DP_A);
1407 udelay(200);
1408 }
1409
1410 /* If the sink supports it, try to set the power state appropriately */
1411 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1412 {
1413 int ret, i;
1414
1415 /* Should have a valid DPCD by this point */
1416 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1417 return;
1418
1419 if (mode != DRM_MODE_DPMS_ON) {
1420 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1421 DP_SET_POWER_D3);
1422 if (ret != 1)
1423 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1424 } else {
1425 /*
1426 * When turning on, we need to retry for 1ms to give the sink
1427 * time to wake up.
1428 */
1429 for (i = 0; i < 3; i++) {
1430 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1431 DP_SET_POWER_D0);
1432 if (ret == 1)
1433 break;
1434 msleep(1);
1435 }
1436 }
1437 }
1438
1439 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1440 enum pipe *pipe)
1441 {
1442 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1443 enum port port = dp_to_dig_port(intel_dp)->port;
1444 struct drm_device *dev = encoder->base.dev;
1445 struct drm_i915_private *dev_priv = dev->dev_private;
1446 enum intel_display_power_domain power_domain;
1447 u32 tmp;
1448
1449 power_domain = intel_display_port_power_domain(encoder);
1450 if (!intel_display_power_enabled(dev_priv, power_domain))
1451 return false;
1452
1453 tmp = I915_READ(intel_dp->output_reg);
1454
1455 if (!(tmp & DP_PORT_EN))
1456 return false;
1457
1458 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1459 *pipe = PORT_TO_PIPE_CPT(tmp);
1460 } else if (IS_CHERRYVIEW(dev)) {
1461 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1462 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1463 *pipe = PORT_TO_PIPE(tmp);
1464 } else {
1465 u32 trans_sel;
1466 u32 trans_dp;
1467 int i;
1468
1469 switch (intel_dp->output_reg) {
1470 case PCH_DP_B:
1471 trans_sel = TRANS_DP_PORT_SEL_B;
1472 break;
1473 case PCH_DP_C:
1474 trans_sel = TRANS_DP_PORT_SEL_C;
1475 break;
1476 case PCH_DP_D:
1477 trans_sel = TRANS_DP_PORT_SEL_D;
1478 break;
1479 default:
1480 return true;
1481 }
1482
1483 for_each_pipe(i) {
1484 trans_dp = I915_READ(TRANS_DP_CTL(i));
1485 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1486 *pipe = i;
1487 return true;
1488 }
1489 }
1490
1491 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1492 intel_dp->output_reg);
1493 }
1494
1495 return true;
1496 }
1497
1498 static void intel_dp_get_config(struct intel_encoder *encoder,
1499 struct intel_crtc_config *pipe_config)
1500 {
1501 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1502 u32 tmp, flags = 0;
1503 struct drm_device *dev = encoder->base.dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 enum port port = dp_to_dig_port(intel_dp)->port;
1506 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1507 int dotclock;
1508
1509 tmp = I915_READ(intel_dp->output_reg);
1510 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1511 pipe_config->has_audio = true;
1512
1513 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1514 if (tmp & DP_SYNC_HS_HIGH)
1515 flags |= DRM_MODE_FLAG_PHSYNC;
1516 else
1517 flags |= DRM_MODE_FLAG_NHSYNC;
1518
1519 if (tmp & DP_SYNC_VS_HIGH)
1520 flags |= DRM_MODE_FLAG_PVSYNC;
1521 else
1522 flags |= DRM_MODE_FLAG_NVSYNC;
1523 } else {
1524 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1525 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1526 flags |= DRM_MODE_FLAG_PHSYNC;
1527 else
1528 flags |= DRM_MODE_FLAG_NHSYNC;
1529
1530 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1531 flags |= DRM_MODE_FLAG_PVSYNC;
1532 else
1533 flags |= DRM_MODE_FLAG_NVSYNC;
1534 }
1535
1536 pipe_config->adjusted_mode.flags |= flags;
1537
1538 pipe_config->has_dp_encoder = true;
1539
1540 intel_dp_get_m_n(crtc, pipe_config);
1541
1542 if (port == PORT_A) {
1543 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1544 pipe_config->port_clock = 162000;
1545 else
1546 pipe_config->port_clock = 270000;
1547 }
1548
1549 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1550 &pipe_config->dp_m_n);
1551
1552 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1553 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1554
1555 pipe_config->adjusted_mode.crtc_clock = dotclock;
1556
1557 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1558 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1559 /*
1560 * This is a big fat ugly hack.
1561 *
1562 * Some machines in UEFI boot mode provide us a VBT that has 18
1563 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1564 * unknown we fail to light up. Yet the same BIOS boots up with
1565 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1566 * max, not what it tells us to use.
1567 *
1568 * Note: This will still be broken if the eDP panel is not lit
1569 * up by the BIOS, and thus we can't get the mode at module
1570 * load.
1571 */
1572 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1573 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1574 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1575 }
1576 }
1577
1578 static bool is_edp_psr(struct drm_device *dev)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 return dev_priv->psr.sink_support;
1583 }
1584
1585 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1586 {
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589 if (!HAS_PSR(dev))
1590 return false;
1591
1592 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1593 }
1594
1595 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1596 struct edp_vsc_psr *vsc_psr)
1597 {
1598 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1599 struct drm_device *dev = dig_port->base.base.dev;
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1602 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1603 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1604 uint32_t *data = (uint32_t *) vsc_psr;
1605 unsigned int i;
1606
1607 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1608 the video DIP being updated before program video DIP data buffer
1609 registers for DIP being updated. */
1610 I915_WRITE(ctl_reg, 0);
1611 POSTING_READ(ctl_reg);
1612
1613 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1614 if (i < sizeof(struct edp_vsc_psr))
1615 I915_WRITE(data_reg + i, *data++);
1616 else
1617 I915_WRITE(data_reg + i, 0);
1618 }
1619
1620 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1621 POSTING_READ(ctl_reg);
1622 }
1623
1624 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1625 {
1626 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 struct edp_vsc_psr psr_vsc;
1629
1630 if (intel_dp->psr_setup_done)
1631 return;
1632
1633 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1634 memset(&psr_vsc, 0, sizeof(psr_vsc));
1635 psr_vsc.sdp_header.HB0 = 0;
1636 psr_vsc.sdp_header.HB1 = 0x7;
1637 psr_vsc.sdp_header.HB2 = 0x2;
1638 psr_vsc.sdp_header.HB3 = 0x8;
1639 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1640
1641 /* Avoid continuous PSR exit by masking memup and hpd */
1642 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1643 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1644
1645 intel_dp->psr_setup_done = true;
1646 }
1647
1648 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1649 {
1650 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652 uint32_t aux_clock_divider;
1653 int precharge = 0x3;
1654 int msg_size = 5; /* Header(4) + Message(1) */
1655
1656 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1657
1658 /* Enable PSR in sink */
1659 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1660 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1661 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1662 else
1663 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1664 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1665
1666 /* Setup AUX registers */
1667 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1668 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1669 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1670 DP_AUX_CH_CTL_TIME_OUT_400us |
1671 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1672 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1673 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1674 }
1675
1676 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1677 {
1678 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 uint32_t max_sleep_time = 0x1f;
1681 uint32_t idle_frames = 1;
1682 uint32_t val = 0x0;
1683 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1684
1685 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1686 val |= EDP_PSR_LINK_STANDBY;
1687 val |= EDP_PSR_TP2_TP3_TIME_0us;
1688 val |= EDP_PSR_TP1_TIME_0us;
1689 val |= EDP_PSR_SKIP_AUX_EXIT;
1690 } else
1691 val |= EDP_PSR_LINK_DISABLE;
1692
1693 I915_WRITE(EDP_PSR_CTL(dev), val |
1694 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1695 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1696 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1697 EDP_PSR_ENABLE);
1698 }
1699
1700 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1701 {
1702 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1703 struct drm_device *dev = dig_port->base.base.dev;
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1705 struct drm_crtc *crtc = dig_port->base.base.crtc;
1706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1707 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1708 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1709
1710 dev_priv->psr.source_ok = false;
1711
1712 if (!HAS_PSR(dev)) {
1713 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1714 return false;
1715 }
1716
1717 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1718 (dig_port->port != PORT_A)) {
1719 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1720 return false;
1721 }
1722
1723 if (!i915.enable_psr) {
1724 DRM_DEBUG_KMS("PSR disable by flag\n");
1725 return false;
1726 }
1727
1728 crtc = dig_port->base.base.crtc;
1729 if (crtc == NULL) {
1730 DRM_DEBUG_KMS("crtc not active for PSR\n");
1731 return false;
1732 }
1733
1734 intel_crtc = to_intel_crtc(crtc);
1735 if (!intel_crtc_active(crtc)) {
1736 DRM_DEBUG_KMS("crtc not active for PSR\n");
1737 return false;
1738 }
1739
1740 obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1741 if (obj->tiling_mode != I915_TILING_X ||
1742 obj->fence_reg == I915_FENCE_REG_NONE) {
1743 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1744 return false;
1745 }
1746
1747 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1748 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1749 return false;
1750 }
1751
1752 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1753 S3D_ENABLE) {
1754 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1755 return false;
1756 }
1757
1758 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1759 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1760 return false;
1761 }
1762
1763 dev_priv->psr.source_ok = true;
1764 return true;
1765 }
1766
1767 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1768 {
1769 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1770
1771 if (!intel_edp_psr_match_conditions(intel_dp) ||
1772 intel_edp_is_psr_enabled(dev))
1773 return;
1774
1775 /* Setup PSR once */
1776 intel_edp_psr_setup(intel_dp);
1777
1778 /* Enable PSR on the panel */
1779 intel_edp_psr_enable_sink(intel_dp);
1780
1781 /* Enable PSR on the host */
1782 intel_edp_psr_enable_source(intel_dp);
1783 }
1784
1785 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1786 {
1787 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1788
1789 if (intel_edp_psr_match_conditions(intel_dp) &&
1790 !intel_edp_is_psr_enabled(dev))
1791 intel_edp_psr_do_enable(intel_dp);
1792 }
1793
1794 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1795 {
1796 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1797 struct drm_i915_private *dev_priv = dev->dev_private;
1798
1799 if (!intel_edp_is_psr_enabled(dev))
1800 return;
1801
1802 I915_WRITE(EDP_PSR_CTL(dev),
1803 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1804
1805 /* Wait till PSR is idle */
1806 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1807 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1808 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1809 }
1810
1811 void intel_edp_psr_update(struct drm_device *dev)
1812 {
1813 struct intel_encoder *encoder;
1814 struct intel_dp *intel_dp = NULL;
1815
1816 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1817 if (encoder->type == INTEL_OUTPUT_EDP) {
1818 intel_dp = enc_to_intel_dp(&encoder->base);
1819
1820 if (!is_edp_psr(dev))
1821 return;
1822
1823 if (!intel_edp_psr_match_conditions(intel_dp))
1824 intel_edp_psr_disable(intel_dp);
1825 else
1826 if (!intel_edp_is_psr_enabled(dev))
1827 intel_edp_psr_do_enable(intel_dp);
1828 }
1829 }
1830
1831 static void intel_disable_dp(struct intel_encoder *encoder)
1832 {
1833 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1834 enum port port = dp_to_dig_port(intel_dp)->port;
1835 struct drm_device *dev = encoder->base.dev;
1836
1837 /* Make sure the panel is off before trying to change the mode. But also
1838 * ensure that we have vdd while we switch off the panel. */
1839 intel_edp_panel_vdd_on(intel_dp);
1840 intel_edp_backlight_off(intel_dp);
1841 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1842 intel_edp_panel_off(intel_dp);
1843
1844 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1845 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1846 intel_dp_link_down(intel_dp);
1847 }
1848
1849 static void g4x_post_disable_dp(struct intel_encoder *encoder)
1850 {
1851 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1852 enum port port = dp_to_dig_port(intel_dp)->port;
1853
1854 if (port != PORT_A)
1855 return;
1856
1857 intel_dp_link_down(intel_dp);
1858 ironlake_edp_pll_off(intel_dp);
1859 }
1860
1861 static void vlv_post_disable_dp(struct intel_encoder *encoder)
1862 {
1863 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1864
1865 intel_dp_link_down(intel_dp);
1866 }
1867
1868 static void chv_post_disable_dp(struct intel_encoder *encoder)
1869 {
1870 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1871 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1872 struct drm_device *dev = encoder->base.dev;
1873 struct drm_i915_private *dev_priv = dev->dev_private;
1874 struct intel_crtc *intel_crtc =
1875 to_intel_crtc(encoder->base.crtc);
1876 enum dpio_channel ch = vlv_dport_to_channel(dport);
1877 enum pipe pipe = intel_crtc->pipe;
1878 u32 val;
1879
1880 intel_dp_link_down(intel_dp);
1881
1882 mutex_lock(&dev_priv->dpio_lock);
1883
1884 /* Propagate soft reset to data lane reset */
1885 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1886 val |= CHV_PCS_REQ_SOFTRESET_EN;
1887 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1888
1889 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1890 val |= CHV_PCS_REQ_SOFTRESET_EN;
1891 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1892
1893 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1894 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1895 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1896
1897 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1898 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1899 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1900
1901 mutex_unlock(&dev_priv->dpio_lock);
1902 }
1903
1904 static void intel_enable_dp(struct intel_encoder *encoder)
1905 {
1906 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1907 struct drm_device *dev = encoder->base.dev;
1908 struct drm_i915_private *dev_priv = dev->dev_private;
1909 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1910
1911 if (WARN_ON(dp_reg & DP_PORT_EN))
1912 return;
1913
1914 intel_edp_panel_vdd_on(intel_dp);
1915 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1916 intel_dp_start_link_train(intel_dp);
1917 intel_edp_panel_on(intel_dp);
1918 edp_panel_vdd_off(intel_dp, true);
1919 intel_dp_complete_link_train(intel_dp);
1920 intel_dp_stop_link_train(intel_dp);
1921 }
1922
1923 static void g4x_enable_dp(struct intel_encoder *encoder)
1924 {
1925 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1926
1927 intel_enable_dp(encoder);
1928 intel_edp_backlight_on(intel_dp);
1929 }
1930
1931 static void vlv_enable_dp(struct intel_encoder *encoder)
1932 {
1933 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1934
1935 intel_edp_backlight_on(intel_dp);
1936 }
1937
1938 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1939 {
1940 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1941 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1942
1943 intel_dp_prepare(encoder);
1944
1945 /* Only ilk+ has port A */
1946 if (dport->port == PORT_A) {
1947 ironlake_set_pll_cpu_edp(intel_dp);
1948 ironlake_edp_pll_on(intel_dp);
1949 }
1950 }
1951
1952 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1953 {
1954 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1955 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1956 struct drm_device *dev = encoder->base.dev;
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1959 enum dpio_channel port = vlv_dport_to_channel(dport);
1960 int pipe = intel_crtc->pipe;
1961 struct edp_power_seq power_seq;
1962 u32 val;
1963
1964 mutex_lock(&dev_priv->dpio_lock);
1965
1966 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1967 val = 0;
1968 if (pipe)
1969 val |= (1<<21);
1970 else
1971 val &= ~(1<<21);
1972 val |= 0x001000c4;
1973 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1974 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1975 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1976
1977 mutex_unlock(&dev_priv->dpio_lock);
1978
1979 if (is_edp(intel_dp)) {
1980 /* init power sequencer on this pipe and port */
1981 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1982 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1983 &power_seq);
1984 }
1985
1986 intel_enable_dp(encoder);
1987
1988 vlv_wait_port_ready(dev_priv, dport);
1989 }
1990
1991 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1992 {
1993 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1994 struct drm_device *dev = encoder->base.dev;
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996 struct intel_crtc *intel_crtc =
1997 to_intel_crtc(encoder->base.crtc);
1998 enum dpio_channel port = vlv_dport_to_channel(dport);
1999 int pipe = intel_crtc->pipe;
2000
2001 intel_dp_prepare(encoder);
2002
2003 /* Program Tx lane resets to default */
2004 mutex_lock(&dev_priv->dpio_lock);
2005 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2006 DPIO_PCS_TX_LANE2_RESET |
2007 DPIO_PCS_TX_LANE1_RESET);
2008 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2009 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2010 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2011 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2012 DPIO_PCS_CLK_SOFT_RESET);
2013
2014 /* Fix up inter-pair skew failure */
2015 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2016 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2017 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2018 mutex_unlock(&dev_priv->dpio_lock);
2019 }
2020
2021 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2022 {
2023 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2024 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2025 struct drm_device *dev = encoder->base.dev;
2026 struct drm_i915_private *dev_priv = dev->dev_private;
2027 struct edp_power_seq power_seq;
2028 struct intel_crtc *intel_crtc =
2029 to_intel_crtc(encoder->base.crtc);
2030 enum dpio_channel ch = vlv_dport_to_channel(dport);
2031 int pipe = intel_crtc->pipe;
2032 int data, i;
2033 u32 val;
2034
2035 mutex_lock(&dev_priv->dpio_lock);
2036
2037 /* Deassert soft data lane reset*/
2038 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2039 val |= CHV_PCS_REQ_SOFTRESET_EN;
2040 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2041
2042 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2043 val |= CHV_PCS_REQ_SOFTRESET_EN;
2044 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2045
2046 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2047 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2048 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2049
2050 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2051 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2052 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2053
2054 /* Program Tx lane latency optimal setting*/
2055 for (i = 0; i < 4; i++) {
2056 /* Set the latency optimal bit */
2057 data = (i == 1) ? 0x0 : 0x6;
2058 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2059 data << DPIO_FRC_LATENCY_SHFIT);
2060
2061 /* Set the upar bit */
2062 data = (i == 1) ? 0x0 : 0x1;
2063 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2064 data << DPIO_UPAR_SHIFT);
2065 }
2066
2067 /* Data lane stagger programming */
2068 /* FIXME: Fix up value only after power analysis */
2069
2070 mutex_unlock(&dev_priv->dpio_lock);
2071
2072 if (is_edp(intel_dp)) {
2073 /* init power sequencer on this pipe and port */
2074 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2075 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2076 &power_seq);
2077 }
2078
2079 intel_enable_dp(encoder);
2080
2081 vlv_wait_port_ready(dev_priv, dport);
2082 }
2083
2084 /*
2085 * Native read with retry for link status and receiver capability reads for
2086 * cases where the sink may still be asleep.
2087 *
2088 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2089 * supposed to retry 3 times per the spec.
2090 */
2091 static ssize_t
2092 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2093 void *buffer, size_t size)
2094 {
2095 ssize_t ret;
2096 int i;
2097
2098 for (i = 0; i < 3; i++) {
2099 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2100 if (ret == size)
2101 return ret;
2102 msleep(1);
2103 }
2104
2105 return ret;
2106 }
2107
2108 /*
2109 * Fetch AUX CH registers 0x202 - 0x207 which contain
2110 * link status information
2111 */
2112 static bool
2113 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2114 {
2115 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2116 DP_LANE0_1_STATUS,
2117 link_status,
2118 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2119 }
2120
2121 /*
2122 * These are source-specific values; current Intel hardware supports
2123 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2124 */
2125
2126 static uint8_t
2127 intel_dp_voltage_max(struct intel_dp *intel_dp)
2128 {
2129 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2130 enum port port = dp_to_dig_port(intel_dp)->port;
2131
2132 if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2133 return DP_TRAIN_VOLTAGE_SWING_1200;
2134 else if (IS_GEN7(dev) && port == PORT_A)
2135 return DP_TRAIN_VOLTAGE_SWING_800;
2136 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2137 return DP_TRAIN_VOLTAGE_SWING_1200;
2138 else
2139 return DP_TRAIN_VOLTAGE_SWING_800;
2140 }
2141
2142 static uint8_t
2143 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2144 {
2145 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2146 enum port port = dp_to_dig_port(intel_dp)->port;
2147
2148 if (IS_BROADWELL(dev)) {
2149 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2150 case DP_TRAIN_VOLTAGE_SWING_400:
2151 case DP_TRAIN_VOLTAGE_SWING_600:
2152 return DP_TRAIN_PRE_EMPHASIS_6;
2153 case DP_TRAIN_VOLTAGE_SWING_800:
2154 return DP_TRAIN_PRE_EMPHASIS_3_5;
2155 case DP_TRAIN_VOLTAGE_SWING_1200:
2156 default:
2157 return DP_TRAIN_PRE_EMPHASIS_0;
2158 }
2159 } else if (IS_HASWELL(dev)) {
2160 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2161 case DP_TRAIN_VOLTAGE_SWING_400:
2162 return DP_TRAIN_PRE_EMPHASIS_9_5;
2163 case DP_TRAIN_VOLTAGE_SWING_600:
2164 return DP_TRAIN_PRE_EMPHASIS_6;
2165 case DP_TRAIN_VOLTAGE_SWING_800:
2166 return DP_TRAIN_PRE_EMPHASIS_3_5;
2167 case DP_TRAIN_VOLTAGE_SWING_1200:
2168 default:
2169 return DP_TRAIN_PRE_EMPHASIS_0;
2170 }
2171 } else if (IS_VALLEYVIEW(dev)) {
2172 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2173 case DP_TRAIN_VOLTAGE_SWING_400:
2174 return DP_TRAIN_PRE_EMPHASIS_9_5;
2175 case DP_TRAIN_VOLTAGE_SWING_600:
2176 return DP_TRAIN_PRE_EMPHASIS_6;
2177 case DP_TRAIN_VOLTAGE_SWING_800:
2178 return DP_TRAIN_PRE_EMPHASIS_3_5;
2179 case DP_TRAIN_VOLTAGE_SWING_1200:
2180 default:
2181 return DP_TRAIN_PRE_EMPHASIS_0;
2182 }
2183 } else if (IS_GEN7(dev) && port == PORT_A) {
2184 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2185 case DP_TRAIN_VOLTAGE_SWING_400:
2186 return DP_TRAIN_PRE_EMPHASIS_6;
2187 case DP_TRAIN_VOLTAGE_SWING_600:
2188 case DP_TRAIN_VOLTAGE_SWING_800:
2189 return DP_TRAIN_PRE_EMPHASIS_3_5;
2190 default:
2191 return DP_TRAIN_PRE_EMPHASIS_0;
2192 }
2193 } else {
2194 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2195 case DP_TRAIN_VOLTAGE_SWING_400:
2196 return DP_TRAIN_PRE_EMPHASIS_6;
2197 case DP_TRAIN_VOLTAGE_SWING_600:
2198 return DP_TRAIN_PRE_EMPHASIS_6;
2199 case DP_TRAIN_VOLTAGE_SWING_800:
2200 return DP_TRAIN_PRE_EMPHASIS_3_5;
2201 case DP_TRAIN_VOLTAGE_SWING_1200:
2202 default:
2203 return DP_TRAIN_PRE_EMPHASIS_0;
2204 }
2205 }
2206 }
2207
2208 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2209 {
2210 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2211 struct drm_i915_private *dev_priv = dev->dev_private;
2212 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2213 struct intel_crtc *intel_crtc =
2214 to_intel_crtc(dport->base.base.crtc);
2215 unsigned long demph_reg_value, preemph_reg_value,
2216 uniqtranscale_reg_value;
2217 uint8_t train_set = intel_dp->train_set[0];
2218 enum dpio_channel port = vlv_dport_to_channel(dport);
2219 int pipe = intel_crtc->pipe;
2220
2221 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2222 case DP_TRAIN_PRE_EMPHASIS_0:
2223 preemph_reg_value = 0x0004000;
2224 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2225 case DP_TRAIN_VOLTAGE_SWING_400:
2226 demph_reg_value = 0x2B405555;
2227 uniqtranscale_reg_value = 0x552AB83A;
2228 break;
2229 case DP_TRAIN_VOLTAGE_SWING_600:
2230 demph_reg_value = 0x2B404040;
2231 uniqtranscale_reg_value = 0x5548B83A;
2232 break;
2233 case DP_TRAIN_VOLTAGE_SWING_800:
2234 demph_reg_value = 0x2B245555;
2235 uniqtranscale_reg_value = 0x5560B83A;
2236 break;
2237 case DP_TRAIN_VOLTAGE_SWING_1200:
2238 demph_reg_value = 0x2B405555;
2239 uniqtranscale_reg_value = 0x5598DA3A;
2240 break;
2241 default:
2242 return 0;
2243 }
2244 break;
2245 case DP_TRAIN_PRE_EMPHASIS_3_5:
2246 preemph_reg_value = 0x0002000;
2247 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2248 case DP_TRAIN_VOLTAGE_SWING_400:
2249 demph_reg_value = 0x2B404040;
2250 uniqtranscale_reg_value = 0x5552B83A;
2251 break;
2252 case DP_TRAIN_VOLTAGE_SWING_600:
2253 demph_reg_value = 0x2B404848;
2254 uniqtranscale_reg_value = 0x5580B83A;
2255 break;
2256 case DP_TRAIN_VOLTAGE_SWING_800:
2257 demph_reg_value = 0x2B404040;
2258 uniqtranscale_reg_value = 0x55ADDA3A;
2259 break;
2260 default:
2261 return 0;
2262 }
2263 break;
2264 case DP_TRAIN_PRE_EMPHASIS_6:
2265 preemph_reg_value = 0x0000000;
2266 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2267 case DP_TRAIN_VOLTAGE_SWING_400:
2268 demph_reg_value = 0x2B305555;
2269 uniqtranscale_reg_value = 0x5570B83A;
2270 break;
2271 case DP_TRAIN_VOLTAGE_SWING_600:
2272 demph_reg_value = 0x2B2B4040;
2273 uniqtranscale_reg_value = 0x55ADDA3A;
2274 break;
2275 default:
2276 return 0;
2277 }
2278 break;
2279 case DP_TRAIN_PRE_EMPHASIS_9_5:
2280 preemph_reg_value = 0x0006000;
2281 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2282 case DP_TRAIN_VOLTAGE_SWING_400:
2283 demph_reg_value = 0x1B405555;
2284 uniqtranscale_reg_value = 0x55ADDA3A;
2285 break;
2286 default:
2287 return 0;
2288 }
2289 break;
2290 default:
2291 return 0;
2292 }
2293
2294 mutex_lock(&dev_priv->dpio_lock);
2295 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2296 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2297 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2298 uniqtranscale_reg_value);
2299 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2300 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2301 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2302 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2303 mutex_unlock(&dev_priv->dpio_lock);
2304
2305 return 0;
2306 }
2307
2308 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2309 {
2310 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2311 struct drm_i915_private *dev_priv = dev->dev_private;
2312 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2313 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2314 u32 deemph_reg_value, margin_reg_value, val, tx_dw2;
2315 uint8_t train_set = intel_dp->train_set[0];
2316 enum dpio_channel ch = vlv_dport_to_channel(dport);
2317 int pipe = intel_crtc->pipe;
2318
2319 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2320 case DP_TRAIN_PRE_EMPHASIS_0:
2321 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2322 case DP_TRAIN_VOLTAGE_SWING_400:
2323 deemph_reg_value = 128;
2324 margin_reg_value = 52;
2325 break;
2326 case DP_TRAIN_VOLTAGE_SWING_600:
2327 deemph_reg_value = 128;
2328 margin_reg_value = 77;
2329 break;
2330 case DP_TRAIN_VOLTAGE_SWING_800:
2331 deemph_reg_value = 128;
2332 margin_reg_value = 102;
2333 break;
2334 case DP_TRAIN_VOLTAGE_SWING_1200:
2335 deemph_reg_value = 128;
2336 margin_reg_value = 154;
2337 /* FIXME extra to set for 1200 */
2338 break;
2339 default:
2340 return 0;
2341 }
2342 break;
2343 case DP_TRAIN_PRE_EMPHASIS_3_5:
2344 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2345 case DP_TRAIN_VOLTAGE_SWING_400:
2346 deemph_reg_value = 85;
2347 margin_reg_value = 78;
2348 break;
2349 case DP_TRAIN_VOLTAGE_SWING_600:
2350 deemph_reg_value = 85;
2351 margin_reg_value = 116;
2352 break;
2353 case DP_TRAIN_VOLTAGE_SWING_800:
2354 deemph_reg_value = 85;
2355 margin_reg_value = 154;
2356 break;
2357 default:
2358 return 0;
2359 }
2360 break;
2361 case DP_TRAIN_PRE_EMPHASIS_6:
2362 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2363 case DP_TRAIN_VOLTAGE_SWING_400:
2364 deemph_reg_value = 64;
2365 margin_reg_value = 104;
2366 break;
2367 case DP_TRAIN_VOLTAGE_SWING_600:
2368 deemph_reg_value = 64;
2369 margin_reg_value = 154;
2370 break;
2371 default:
2372 return 0;
2373 }
2374 break;
2375 case DP_TRAIN_PRE_EMPHASIS_9_5:
2376 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2377 case DP_TRAIN_VOLTAGE_SWING_400:
2378 deemph_reg_value = 43;
2379 margin_reg_value = 154;
2380 break;
2381 default:
2382 return 0;
2383 }
2384 break;
2385 default:
2386 return 0;
2387 }
2388
2389 mutex_lock(&dev_priv->dpio_lock);
2390
2391 /* Clear calc init */
2392 vlv_dpio_write(dev_priv, pipe, CHV_PCS_DW10(ch), 0);
2393
2394 /* Program swing deemph */
2395 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW4(ch));
2396 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2397 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2398 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(ch), val);
2399
2400 /* Program swing margin */
2401 tx_dw2 = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch));
2402 tx_dw2 &= ~DPIO_SWING_MARGIN_MASK;
2403 tx_dw2 |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2404 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), tx_dw2);
2405
2406 /* Disable unique transition scale */
2407 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
2408 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2409 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
2410
2411 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2412 == DP_TRAIN_PRE_EMPHASIS_0) &&
2413 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2414 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2415
2416 /*
2417 * The document said it needs to set bit 27 for ch0 and bit 26
2418 * for ch1. Might be a typo in the doc.
2419 * For now, for this unique transition scale selection, set bit
2420 * 27 for ch0 and ch1.
2421 */
2422 val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
2423 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2424 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
2425
2426 tx_dw2 |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2427 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch), tx_dw2);
2428 }
2429
2430 /* Start swing calculation */
2431 vlv_dpio_write(dev_priv, pipe, CHV_PCS_DW10(ch),
2432 (DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3));
2433
2434 /* LRC Bypass */
2435 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2436 val |= DPIO_LRC_BYPASS;
2437 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2438
2439 mutex_unlock(&dev_priv->dpio_lock);
2440
2441 return 0;
2442 }
2443
2444 static void
2445 intel_get_adjust_train(struct intel_dp *intel_dp,
2446 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2447 {
2448 uint8_t v = 0;
2449 uint8_t p = 0;
2450 int lane;
2451 uint8_t voltage_max;
2452 uint8_t preemph_max;
2453
2454 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2455 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2456 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2457
2458 if (this_v > v)
2459 v = this_v;
2460 if (this_p > p)
2461 p = this_p;
2462 }
2463
2464 voltage_max = intel_dp_voltage_max(intel_dp);
2465 if (v >= voltage_max)
2466 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2467
2468 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2469 if (p >= preemph_max)
2470 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2471
2472 for (lane = 0; lane < 4; lane++)
2473 intel_dp->train_set[lane] = v | p;
2474 }
2475
2476 static uint32_t
2477 intel_gen4_signal_levels(uint8_t train_set)
2478 {
2479 uint32_t signal_levels = 0;
2480
2481 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2482 case DP_TRAIN_VOLTAGE_SWING_400:
2483 default:
2484 signal_levels |= DP_VOLTAGE_0_4;
2485 break;
2486 case DP_TRAIN_VOLTAGE_SWING_600:
2487 signal_levels |= DP_VOLTAGE_0_6;
2488 break;
2489 case DP_TRAIN_VOLTAGE_SWING_800:
2490 signal_levels |= DP_VOLTAGE_0_8;
2491 break;
2492 case DP_TRAIN_VOLTAGE_SWING_1200:
2493 signal_levels |= DP_VOLTAGE_1_2;
2494 break;
2495 }
2496 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2497 case DP_TRAIN_PRE_EMPHASIS_0:
2498 default:
2499 signal_levels |= DP_PRE_EMPHASIS_0;
2500 break;
2501 case DP_TRAIN_PRE_EMPHASIS_3_5:
2502 signal_levels |= DP_PRE_EMPHASIS_3_5;
2503 break;
2504 case DP_TRAIN_PRE_EMPHASIS_6:
2505 signal_levels |= DP_PRE_EMPHASIS_6;
2506 break;
2507 case DP_TRAIN_PRE_EMPHASIS_9_5:
2508 signal_levels |= DP_PRE_EMPHASIS_9_5;
2509 break;
2510 }
2511 return signal_levels;
2512 }
2513
2514 /* Gen6's DP voltage swing and pre-emphasis control */
2515 static uint32_t
2516 intel_gen6_edp_signal_levels(uint8_t train_set)
2517 {
2518 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2519 DP_TRAIN_PRE_EMPHASIS_MASK);
2520 switch (signal_levels) {
2521 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2522 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2523 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2524 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2525 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2526 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2527 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2528 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2529 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2530 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2531 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2532 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2533 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2534 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2535 default:
2536 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2537 "0x%x\n", signal_levels);
2538 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2539 }
2540 }
2541
2542 /* Gen7's DP voltage swing and pre-emphasis control */
2543 static uint32_t
2544 intel_gen7_edp_signal_levels(uint8_t train_set)
2545 {
2546 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2547 DP_TRAIN_PRE_EMPHASIS_MASK);
2548 switch (signal_levels) {
2549 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2550 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2551 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2552 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2553 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2554 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2555
2556 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2557 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2558 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2559 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2560
2561 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2562 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2563 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2564 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2565
2566 default:
2567 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2568 "0x%x\n", signal_levels);
2569 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2570 }
2571 }
2572
2573 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2574 static uint32_t
2575 intel_hsw_signal_levels(uint8_t train_set)
2576 {
2577 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2578 DP_TRAIN_PRE_EMPHASIS_MASK);
2579 switch (signal_levels) {
2580 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2581 return DDI_BUF_EMP_400MV_0DB_HSW;
2582 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2583 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2584 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2585 return DDI_BUF_EMP_400MV_6DB_HSW;
2586 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2587 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2588
2589 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2590 return DDI_BUF_EMP_600MV_0DB_HSW;
2591 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2592 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2593 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2594 return DDI_BUF_EMP_600MV_6DB_HSW;
2595
2596 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2597 return DDI_BUF_EMP_800MV_0DB_HSW;
2598 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2599 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2600 default:
2601 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2602 "0x%x\n", signal_levels);
2603 return DDI_BUF_EMP_400MV_0DB_HSW;
2604 }
2605 }
2606
2607 static uint32_t
2608 intel_bdw_signal_levels(uint8_t train_set)
2609 {
2610 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2611 DP_TRAIN_PRE_EMPHASIS_MASK);
2612 switch (signal_levels) {
2613 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2614 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2615 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2616 return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
2617 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2618 return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
2619
2620 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2621 return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
2622 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2623 return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
2624 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2625 return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
2626
2627 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2628 return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
2629 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2630 return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
2631
2632 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2633 return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
2634
2635 default:
2636 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2637 "0x%x\n", signal_levels);
2638 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2639 }
2640 }
2641
2642 /* Properly updates "DP" with the correct signal levels. */
2643 static void
2644 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2645 {
2646 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2647 enum port port = intel_dig_port->port;
2648 struct drm_device *dev = intel_dig_port->base.base.dev;
2649 uint32_t signal_levels, mask;
2650 uint8_t train_set = intel_dp->train_set[0];
2651
2652 if (IS_BROADWELL(dev)) {
2653 signal_levels = intel_bdw_signal_levels(train_set);
2654 mask = DDI_BUF_EMP_MASK;
2655 } else if (IS_HASWELL(dev)) {
2656 signal_levels = intel_hsw_signal_levels(train_set);
2657 mask = DDI_BUF_EMP_MASK;
2658 } else if (IS_CHERRYVIEW(dev)) {
2659 signal_levels = intel_chv_signal_levels(intel_dp);
2660 mask = 0;
2661 } else if (IS_VALLEYVIEW(dev)) {
2662 signal_levels = intel_vlv_signal_levels(intel_dp);
2663 mask = 0;
2664 } else if (IS_GEN7(dev) && port == PORT_A) {
2665 signal_levels = intel_gen7_edp_signal_levels(train_set);
2666 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2667 } else if (IS_GEN6(dev) && port == PORT_A) {
2668 signal_levels = intel_gen6_edp_signal_levels(train_set);
2669 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2670 } else {
2671 signal_levels = intel_gen4_signal_levels(train_set);
2672 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2673 }
2674
2675 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2676
2677 *DP = (*DP & ~mask) | signal_levels;
2678 }
2679
2680 static bool
2681 intel_dp_set_link_train(struct intel_dp *intel_dp,
2682 uint32_t *DP,
2683 uint8_t dp_train_pat)
2684 {
2685 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2686 struct drm_device *dev = intel_dig_port->base.base.dev;
2687 struct drm_i915_private *dev_priv = dev->dev_private;
2688 enum port port = intel_dig_port->port;
2689 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2690 int ret, len;
2691
2692 if (HAS_DDI(dev)) {
2693 uint32_t temp = I915_READ(DP_TP_CTL(port));
2694
2695 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2696 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2697 else
2698 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2699
2700 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2701 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2702 case DP_TRAINING_PATTERN_DISABLE:
2703 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2704
2705 break;
2706 case DP_TRAINING_PATTERN_1:
2707 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2708 break;
2709 case DP_TRAINING_PATTERN_2:
2710 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2711 break;
2712 case DP_TRAINING_PATTERN_3:
2713 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2714 break;
2715 }
2716 I915_WRITE(DP_TP_CTL(port), temp);
2717
2718 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2719 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2720
2721 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2722 case DP_TRAINING_PATTERN_DISABLE:
2723 *DP |= DP_LINK_TRAIN_OFF_CPT;
2724 break;
2725 case DP_TRAINING_PATTERN_1:
2726 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2727 break;
2728 case DP_TRAINING_PATTERN_2:
2729 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2730 break;
2731 case DP_TRAINING_PATTERN_3:
2732 DRM_ERROR("DP training pattern 3 not supported\n");
2733 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2734 break;
2735 }
2736
2737 } else {
2738 *DP &= ~DP_LINK_TRAIN_MASK;
2739
2740 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2741 case DP_TRAINING_PATTERN_DISABLE:
2742 *DP |= DP_LINK_TRAIN_OFF;
2743 break;
2744 case DP_TRAINING_PATTERN_1:
2745 *DP |= DP_LINK_TRAIN_PAT_1;
2746 break;
2747 case DP_TRAINING_PATTERN_2:
2748 *DP |= DP_LINK_TRAIN_PAT_2;
2749 break;
2750 case DP_TRAINING_PATTERN_3:
2751 DRM_ERROR("DP training pattern 3 not supported\n");
2752 *DP |= DP_LINK_TRAIN_PAT_2;
2753 break;
2754 }
2755 }
2756
2757 I915_WRITE(intel_dp->output_reg, *DP);
2758 POSTING_READ(intel_dp->output_reg);
2759
2760 buf[0] = dp_train_pat;
2761 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2762 DP_TRAINING_PATTERN_DISABLE) {
2763 /* don't write DP_TRAINING_LANEx_SET on disable */
2764 len = 1;
2765 } else {
2766 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2767 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2768 len = intel_dp->lane_count + 1;
2769 }
2770
2771 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2772 buf, len);
2773
2774 return ret == len;
2775 }
2776
2777 static bool
2778 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2779 uint8_t dp_train_pat)
2780 {
2781 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2782 intel_dp_set_signal_levels(intel_dp, DP);
2783 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2784 }
2785
2786 static bool
2787 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2788 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2789 {
2790 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2791 struct drm_device *dev = intel_dig_port->base.base.dev;
2792 struct drm_i915_private *dev_priv = dev->dev_private;
2793 int ret;
2794
2795 intel_get_adjust_train(intel_dp, link_status);
2796 intel_dp_set_signal_levels(intel_dp, DP);
2797
2798 I915_WRITE(intel_dp->output_reg, *DP);
2799 POSTING_READ(intel_dp->output_reg);
2800
2801 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2802 intel_dp->train_set, intel_dp->lane_count);
2803
2804 return ret == intel_dp->lane_count;
2805 }
2806
2807 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2808 {
2809 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2810 struct drm_device *dev = intel_dig_port->base.base.dev;
2811 struct drm_i915_private *dev_priv = dev->dev_private;
2812 enum port port = intel_dig_port->port;
2813 uint32_t val;
2814
2815 if (!HAS_DDI(dev))
2816 return;
2817
2818 val = I915_READ(DP_TP_CTL(port));
2819 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2820 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2821 I915_WRITE(DP_TP_CTL(port), val);
2822
2823 /*
2824 * On PORT_A we can have only eDP in SST mode. There the only reason
2825 * we need to set idle transmission mode is to work around a HW issue
2826 * where we enable the pipe while not in idle link-training mode.
2827 * In this case there is requirement to wait for a minimum number of
2828 * idle patterns to be sent.
2829 */
2830 if (port == PORT_A)
2831 return;
2832
2833 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2834 1))
2835 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2836 }
2837
2838 /* Enable corresponding port and start training pattern 1 */
2839 void
2840 intel_dp_start_link_train(struct intel_dp *intel_dp)
2841 {
2842 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2843 struct drm_device *dev = encoder->dev;
2844 int i;
2845 uint8_t voltage;
2846 int voltage_tries, loop_tries;
2847 uint32_t DP = intel_dp->DP;
2848 uint8_t link_config[2];
2849
2850 if (HAS_DDI(dev))
2851 intel_ddi_prepare_link_retrain(encoder);
2852
2853 /* Write the link configuration data */
2854 link_config[0] = intel_dp->link_bw;
2855 link_config[1] = intel_dp->lane_count;
2856 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2857 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2858 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2859
2860 link_config[0] = 0;
2861 link_config[1] = DP_SET_ANSI_8B10B;
2862 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2863
2864 DP |= DP_PORT_EN;
2865
2866 /* clock recovery */
2867 if (!intel_dp_reset_link_train(intel_dp, &DP,
2868 DP_TRAINING_PATTERN_1 |
2869 DP_LINK_SCRAMBLING_DISABLE)) {
2870 DRM_ERROR("failed to enable link training\n");
2871 return;
2872 }
2873
2874 voltage = 0xff;
2875 voltage_tries = 0;
2876 loop_tries = 0;
2877 for (;;) {
2878 uint8_t link_status[DP_LINK_STATUS_SIZE];
2879
2880 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2881 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2882 DRM_ERROR("failed to get link status\n");
2883 break;
2884 }
2885
2886 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2887 DRM_DEBUG_KMS("clock recovery OK\n");
2888 break;
2889 }
2890
2891 /* Check to see if we've tried the max voltage */
2892 for (i = 0; i < intel_dp->lane_count; i++)
2893 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2894 break;
2895 if (i == intel_dp->lane_count) {
2896 ++loop_tries;
2897 if (loop_tries == 5) {
2898 DRM_ERROR("too many full retries, give up\n");
2899 break;
2900 }
2901 intel_dp_reset_link_train(intel_dp, &DP,
2902 DP_TRAINING_PATTERN_1 |
2903 DP_LINK_SCRAMBLING_DISABLE);
2904 voltage_tries = 0;
2905 continue;
2906 }
2907
2908 /* Check to see if we've tried the same voltage 5 times */
2909 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2910 ++voltage_tries;
2911 if (voltage_tries == 5) {
2912 DRM_ERROR("too many voltage retries, give up\n");
2913 break;
2914 }
2915 } else
2916 voltage_tries = 0;
2917 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2918
2919 /* Update training set as requested by target */
2920 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2921 DRM_ERROR("failed to update link training\n");
2922 break;
2923 }
2924 }
2925
2926 intel_dp->DP = DP;
2927 }
2928
2929 void
2930 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2931 {
2932 bool channel_eq = false;
2933 int tries, cr_tries;
2934 uint32_t DP = intel_dp->DP;
2935 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
2936
2937 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
2938 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
2939 training_pattern = DP_TRAINING_PATTERN_3;
2940
2941 /* channel equalization */
2942 if (!intel_dp_set_link_train(intel_dp, &DP,
2943 training_pattern |
2944 DP_LINK_SCRAMBLING_DISABLE)) {
2945 DRM_ERROR("failed to start channel equalization\n");
2946 return;
2947 }
2948
2949 tries = 0;
2950 cr_tries = 0;
2951 channel_eq = false;
2952 for (;;) {
2953 uint8_t link_status[DP_LINK_STATUS_SIZE];
2954
2955 if (cr_tries > 5) {
2956 DRM_ERROR("failed to train DP, aborting\n");
2957 break;
2958 }
2959
2960 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2961 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2962 DRM_ERROR("failed to get link status\n");
2963 break;
2964 }
2965
2966 /* Make sure clock is still ok */
2967 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2968 intel_dp_start_link_train(intel_dp);
2969 intel_dp_set_link_train(intel_dp, &DP,
2970 training_pattern |
2971 DP_LINK_SCRAMBLING_DISABLE);
2972 cr_tries++;
2973 continue;
2974 }
2975
2976 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2977 channel_eq = true;
2978 break;
2979 }
2980
2981 /* Try 5 times, then try clock recovery if that fails */
2982 if (tries > 5) {
2983 intel_dp_link_down(intel_dp);
2984 intel_dp_start_link_train(intel_dp);
2985 intel_dp_set_link_train(intel_dp, &DP,
2986 training_pattern |
2987 DP_LINK_SCRAMBLING_DISABLE);
2988 tries = 0;
2989 cr_tries++;
2990 continue;
2991 }
2992
2993 /* Update training set as requested by target */
2994 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2995 DRM_ERROR("failed to update link training\n");
2996 break;
2997 }
2998 ++tries;
2999 }
3000
3001 intel_dp_set_idle_link_train(intel_dp);
3002
3003 intel_dp->DP = DP;
3004
3005 if (channel_eq)
3006 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3007
3008 }
3009
3010 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3011 {
3012 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3013 DP_TRAINING_PATTERN_DISABLE);
3014 }
3015
3016 static void
3017 intel_dp_link_down(struct intel_dp *intel_dp)
3018 {
3019 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3020 enum port port = intel_dig_port->port;
3021 struct drm_device *dev = intel_dig_port->base.base.dev;
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 struct intel_crtc *intel_crtc =
3024 to_intel_crtc(intel_dig_port->base.base.crtc);
3025 uint32_t DP = intel_dp->DP;
3026
3027 /*
3028 * DDI code has a strict mode set sequence and we should try to respect
3029 * it, otherwise we might hang the machine in many different ways. So we
3030 * really should be disabling the port only on a complete crtc_disable
3031 * sequence. This function is just called under two conditions on DDI
3032 * code:
3033 * - Link train failed while doing crtc_enable, and on this case we
3034 * really should respect the mode set sequence and wait for a
3035 * crtc_disable.
3036 * - Someone turned the monitor off and intel_dp_check_link_status
3037 * called us. We don't need to disable the whole port on this case, so
3038 * when someone turns the monitor on again,
3039 * intel_ddi_prepare_link_retrain will take care of redoing the link
3040 * train.
3041 */
3042 if (HAS_DDI(dev))
3043 return;
3044
3045 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3046 return;
3047
3048 DRM_DEBUG_KMS("\n");
3049
3050 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3051 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3052 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3053 } else {
3054 DP &= ~DP_LINK_TRAIN_MASK;
3055 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3056 }
3057 POSTING_READ(intel_dp->output_reg);
3058
3059 if (HAS_PCH_IBX(dev) &&
3060 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3061 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3062
3063 /* Hardware workaround: leaving our transcoder select
3064 * set to transcoder B while it's off will prevent the
3065 * corresponding HDMI output on transcoder A.
3066 *
3067 * Combine this with another hardware workaround:
3068 * transcoder select bit can only be cleared while the
3069 * port is enabled.
3070 */
3071 DP &= ~DP_PIPEB_SELECT;
3072 I915_WRITE(intel_dp->output_reg, DP);
3073
3074 /* Changes to enable or select take place the vblank
3075 * after being written.
3076 */
3077 if (WARN_ON(crtc == NULL)) {
3078 /* We should never try to disable a port without a crtc
3079 * attached. For paranoia keep the code around for a
3080 * bit. */
3081 POSTING_READ(intel_dp->output_reg);
3082 msleep(50);
3083 } else
3084 intel_wait_for_vblank(dev, intel_crtc->pipe);
3085 }
3086
3087 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3088 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3089 POSTING_READ(intel_dp->output_reg);
3090 msleep(intel_dp->panel_power_down_delay);
3091 }
3092
3093 static bool
3094 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3095 {
3096 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3097 struct drm_device *dev = dig_port->base.base.dev;
3098 struct drm_i915_private *dev_priv = dev->dev_private;
3099
3100 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3101
3102 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3103 sizeof(intel_dp->dpcd)) < 0)
3104 return false; /* aux transfer failed */
3105
3106 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3107 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3108 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3109
3110 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3111 return false; /* DPCD not present */
3112
3113 /* Check if the panel supports PSR */
3114 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3115 if (is_edp(intel_dp)) {
3116 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3117 intel_dp->psr_dpcd,
3118 sizeof(intel_dp->psr_dpcd));
3119 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3120 dev_priv->psr.sink_support = true;
3121 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3122 }
3123 }
3124
3125 /* Training Pattern 3 support */
3126 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3127 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3128 intel_dp->use_tps3 = true;
3129 DRM_DEBUG_KMS("Displayport TPS3 supported");
3130 } else
3131 intel_dp->use_tps3 = false;
3132
3133 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3134 DP_DWN_STRM_PORT_PRESENT))
3135 return true; /* native DP sink */
3136
3137 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3138 return true; /* no per-port downstream info */
3139
3140 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3141 intel_dp->downstream_ports,
3142 DP_MAX_DOWNSTREAM_PORTS) < 0)
3143 return false; /* downstream port status fetch failed */
3144
3145 return true;
3146 }
3147
3148 static void
3149 intel_dp_probe_oui(struct intel_dp *intel_dp)
3150 {
3151 u8 buf[3];
3152
3153 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3154 return;
3155
3156 intel_edp_panel_vdd_on(intel_dp);
3157
3158 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3159 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3160 buf[0], buf[1], buf[2]);
3161
3162 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3163 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3164 buf[0], buf[1], buf[2]);
3165
3166 edp_panel_vdd_off(intel_dp, false);
3167 }
3168
3169 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3170 {
3171 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3172 struct drm_device *dev = intel_dig_port->base.base.dev;
3173 struct intel_crtc *intel_crtc =
3174 to_intel_crtc(intel_dig_port->base.base.crtc);
3175 u8 buf[1];
3176
3177 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3178 return -EAGAIN;
3179
3180 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3181 return -ENOTTY;
3182
3183 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3184 DP_TEST_SINK_START) < 0)
3185 return -EAGAIN;
3186
3187 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3188 intel_wait_for_vblank(dev, intel_crtc->pipe);
3189 intel_wait_for_vblank(dev, intel_crtc->pipe);
3190
3191 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3192 return -EAGAIN;
3193
3194 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3195 return 0;
3196 }
3197
3198 static bool
3199 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3200 {
3201 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3202 DP_DEVICE_SERVICE_IRQ_VECTOR,
3203 sink_irq_vector, 1) == 1;
3204 }
3205
3206 static void
3207 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3208 {
3209 /* NAK by default */
3210 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3211 }
3212
3213 /*
3214 * According to DP spec
3215 * 5.1.2:
3216 * 1. Read DPCD
3217 * 2. Configure link according to Receiver Capabilities
3218 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3219 * 4. Check link status on receipt of hot-plug interrupt
3220 */
3221
3222 void
3223 intel_dp_check_link_status(struct intel_dp *intel_dp)
3224 {
3225 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3226 u8 sink_irq_vector;
3227 u8 link_status[DP_LINK_STATUS_SIZE];
3228
3229 if (!intel_encoder->connectors_active)
3230 return;
3231
3232 if (WARN_ON(!intel_encoder->base.crtc))
3233 return;
3234
3235 /* Try to read receiver status if the link appears to be up */
3236 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3237 return;
3238 }
3239
3240 /* Now read the DPCD to see if it's actually running */
3241 if (!intel_dp_get_dpcd(intel_dp)) {
3242 return;
3243 }
3244
3245 /* Try to read the source of the interrupt */
3246 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3247 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3248 /* Clear interrupt source */
3249 drm_dp_dpcd_writeb(&intel_dp->aux,
3250 DP_DEVICE_SERVICE_IRQ_VECTOR,
3251 sink_irq_vector);
3252
3253 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3254 intel_dp_handle_test_request(intel_dp);
3255 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3256 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3257 }
3258
3259 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3260 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3261 drm_get_encoder_name(&intel_encoder->base));
3262 intel_dp_start_link_train(intel_dp);
3263 intel_dp_complete_link_train(intel_dp);
3264 intel_dp_stop_link_train(intel_dp);
3265 }
3266 }
3267
3268 /* XXX this is probably wrong for multiple downstream ports */
3269 static enum drm_connector_status
3270 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3271 {
3272 uint8_t *dpcd = intel_dp->dpcd;
3273 uint8_t type;
3274
3275 if (!intel_dp_get_dpcd(intel_dp))
3276 return connector_status_disconnected;
3277
3278 /* if there's no downstream port, we're done */
3279 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3280 return connector_status_connected;
3281
3282 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3283 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3284 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3285 uint8_t reg;
3286
3287 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3288 &reg, 1) < 0)
3289 return connector_status_unknown;
3290
3291 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3292 : connector_status_disconnected;
3293 }
3294
3295 /* If no HPD, poke DDC gently */
3296 if (drm_probe_ddc(&intel_dp->aux.ddc))
3297 return connector_status_connected;
3298
3299 /* Well we tried, say unknown for unreliable port types */
3300 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3301 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3302 if (type == DP_DS_PORT_TYPE_VGA ||
3303 type == DP_DS_PORT_TYPE_NON_EDID)
3304 return connector_status_unknown;
3305 } else {
3306 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3307 DP_DWN_STRM_PORT_TYPE_MASK;
3308 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3309 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3310 return connector_status_unknown;
3311 }
3312
3313 /* Anything else is out of spec, warn and ignore */
3314 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3315 return connector_status_disconnected;
3316 }
3317
3318 static enum drm_connector_status
3319 ironlake_dp_detect(struct intel_dp *intel_dp)
3320 {
3321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3322 struct drm_i915_private *dev_priv = dev->dev_private;
3323 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3324 enum drm_connector_status status;
3325
3326 /* Can't disconnect eDP, but you can close the lid... */
3327 if (is_edp(intel_dp)) {
3328 status = intel_panel_detect(dev);
3329 if (status == connector_status_unknown)
3330 status = connector_status_connected;
3331 return status;
3332 }
3333
3334 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3335 return connector_status_disconnected;
3336
3337 return intel_dp_detect_dpcd(intel_dp);
3338 }
3339
3340 static enum drm_connector_status
3341 g4x_dp_detect(struct intel_dp *intel_dp)
3342 {
3343 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3346 uint32_t bit;
3347
3348 /* Can't disconnect eDP, but you can close the lid... */
3349 if (is_edp(intel_dp)) {
3350 enum drm_connector_status status;
3351
3352 status = intel_panel_detect(dev);
3353 if (status == connector_status_unknown)
3354 status = connector_status_connected;
3355 return status;
3356 }
3357
3358 if (IS_VALLEYVIEW(dev)) {
3359 switch (intel_dig_port->port) {
3360 case PORT_B:
3361 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3362 break;
3363 case PORT_C:
3364 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3365 break;
3366 case PORT_D:
3367 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3368 break;
3369 default:
3370 return connector_status_unknown;
3371 }
3372 } else {
3373 switch (intel_dig_port->port) {
3374 case PORT_B:
3375 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3376 break;
3377 case PORT_C:
3378 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3379 break;
3380 case PORT_D:
3381 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3382 break;
3383 default:
3384 return connector_status_unknown;
3385 }
3386 }
3387
3388 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3389 return connector_status_disconnected;
3390
3391 return intel_dp_detect_dpcd(intel_dp);
3392 }
3393
3394 static struct edid *
3395 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3396 {
3397 struct intel_connector *intel_connector = to_intel_connector(connector);
3398
3399 /* use cached edid if we have one */
3400 if (intel_connector->edid) {
3401 /* invalid edid */
3402 if (IS_ERR(intel_connector->edid))
3403 return NULL;
3404
3405 return drm_edid_duplicate(intel_connector->edid);
3406 }
3407
3408 return drm_get_edid(connector, adapter);
3409 }
3410
3411 static int
3412 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3413 {
3414 struct intel_connector *intel_connector = to_intel_connector(connector);
3415
3416 /* use cached edid if we have one */
3417 if (intel_connector->edid) {
3418 /* invalid edid */
3419 if (IS_ERR(intel_connector->edid))
3420 return 0;
3421
3422 return intel_connector_update_modes(connector,
3423 intel_connector->edid);
3424 }
3425
3426 return intel_ddc_get_modes(connector, adapter);
3427 }
3428
3429 static enum drm_connector_status
3430 intel_dp_detect(struct drm_connector *connector, bool force)
3431 {
3432 struct intel_dp *intel_dp = intel_attached_dp(connector);
3433 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3434 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3435 struct drm_device *dev = connector->dev;
3436 struct drm_i915_private *dev_priv = dev->dev_private;
3437 enum drm_connector_status status;
3438 enum intel_display_power_domain power_domain;
3439 struct edid *edid = NULL;
3440
3441 intel_runtime_pm_get(dev_priv);
3442
3443 power_domain = intel_display_port_power_domain(intel_encoder);
3444 intel_display_power_get(dev_priv, power_domain);
3445
3446 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3447 connector->base.id, drm_get_connector_name(connector));
3448
3449 intel_dp->has_audio = false;
3450
3451 if (HAS_PCH_SPLIT(dev))
3452 status = ironlake_dp_detect(intel_dp);
3453 else
3454 status = g4x_dp_detect(intel_dp);
3455
3456 if (status != connector_status_connected)
3457 goto out;
3458
3459 intel_dp_probe_oui(intel_dp);
3460
3461 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3462 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3463 } else {
3464 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3465 if (edid) {
3466 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3467 kfree(edid);
3468 }
3469 }
3470
3471 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3472 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3473 status = connector_status_connected;
3474
3475 out:
3476 intel_display_power_put(dev_priv, power_domain);
3477
3478 intel_runtime_pm_put(dev_priv);
3479
3480 return status;
3481 }
3482
3483 static int intel_dp_get_modes(struct drm_connector *connector)
3484 {
3485 struct intel_dp *intel_dp = intel_attached_dp(connector);
3486 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3487 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3488 struct intel_connector *intel_connector = to_intel_connector(connector);
3489 struct drm_device *dev = connector->dev;
3490 struct drm_i915_private *dev_priv = dev->dev_private;
3491 enum intel_display_power_domain power_domain;
3492 int ret;
3493
3494 /* We should parse the EDID data and find out if it has an audio sink
3495 */
3496
3497 power_domain = intel_display_port_power_domain(intel_encoder);
3498 intel_display_power_get(dev_priv, power_domain);
3499
3500 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3501 intel_display_power_put(dev_priv, power_domain);
3502 if (ret)
3503 return ret;
3504
3505 /* if eDP has no EDID, fall back to fixed mode */
3506 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3507 struct drm_display_mode *mode;
3508 mode = drm_mode_duplicate(dev,
3509 intel_connector->panel.fixed_mode);
3510 if (mode) {
3511 drm_mode_probed_add(connector, mode);
3512 return 1;
3513 }
3514 }
3515 return 0;
3516 }
3517
3518 static bool
3519 intel_dp_detect_audio(struct drm_connector *connector)
3520 {
3521 struct intel_dp *intel_dp = intel_attached_dp(connector);
3522 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3523 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3524 struct drm_device *dev = connector->dev;
3525 struct drm_i915_private *dev_priv = dev->dev_private;
3526 enum intel_display_power_domain power_domain;
3527 struct edid *edid;
3528 bool has_audio = false;
3529
3530 power_domain = intel_display_port_power_domain(intel_encoder);
3531 intel_display_power_get(dev_priv, power_domain);
3532
3533 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3534 if (edid) {
3535 has_audio = drm_detect_monitor_audio(edid);
3536 kfree(edid);
3537 }
3538
3539 intel_display_power_put(dev_priv, power_domain);
3540
3541 return has_audio;
3542 }
3543
3544 static int
3545 intel_dp_set_property(struct drm_connector *connector,
3546 struct drm_property *property,
3547 uint64_t val)
3548 {
3549 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3550 struct intel_connector *intel_connector = to_intel_connector(connector);
3551 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3552 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3553 int ret;
3554
3555 ret = drm_object_property_set_value(&connector->base, property, val);
3556 if (ret)
3557 return ret;
3558
3559 if (property == dev_priv->force_audio_property) {
3560 int i = val;
3561 bool has_audio;
3562
3563 if (i == intel_dp->force_audio)
3564 return 0;
3565
3566 intel_dp->force_audio = i;
3567
3568 if (i == HDMI_AUDIO_AUTO)
3569 has_audio = intel_dp_detect_audio(connector);
3570 else
3571 has_audio = (i == HDMI_AUDIO_ON);
3572
3573 if (has_audio == intel_dp->has_audio)
3574 return 0;
3575
3576 intel_dp->has_audio = has_audio;
3577 goto done;
3578 }
3579
3580 if (property == dev_priv->broadcast_rgb_property) {
3581 bool old_auto = intel_dp->color_range_auto;
3582 uint32_t old_range = intel_dp->color_range;
3583
3584 switch (val) {
3585 case INTEL_BROADCAST_RGB_AUTO:
3586 intel_dp->color_range_auto = true;
3587 break;
3588 case INTEL_BROADCAST_RGB_FULL:
3589 intel_dp->color_range_auto = false;
3590 intel_dp->color_range = 0;
3591 break;
3592 case INTEL_BROADCAST_RGB_LIMITED:
3593 intel_dp->color_range_auto = false;
3594 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3595 break;
3596 default:
3597 return -EINVAL;
3598 }
3599
3600 if (old_auto == intel_dp->color_range_auto &&
3601 old_range == intel_dp->color_range)
3602 return 0;
3603
3604 goto done;
3605 }
3606
3607 if (is_edp(intel_dp) &&
3608 property == connector->dev->mode_config.scaling_mode_property) {
3609 if (val == DRM_MODE_SCALE_NONE) {
3610 DRM_DEBUG_KMS("no scaling not supported\n");
3611 return -EINVAL;
3612 }
3613
3614 if (intel_connector->panel.fitting_mode == val) {
3615 /* the eDP scaling property is not changed */
3616 return 0;
3617 }
3618 intel_connector->panel.fitting_mode = val;
3619
3620 goto done;
3621 }
3622
3623 return -EINVAL;
3624
3625 done:
3626 if (intel_encoder->base.crtc)
3627 intel_crtc_restore_mode(intel_encoder->base.crtc);
3628
3629 return 0;
3630 }
3631
3632 static void
3633 intel_dp_connector_destroy(struct drm_connector *connector)
3634 {
3635 struct intel_connector *intel_connector = to_intel_connector(connector);
3636
3637 if (!IS_ERR_OR_NULL(intel_connector->edid))
3638 kfree(intel_connector->edid);
3639
3640 /* Can't call is_edp() since the encoder may have been destroyed
3641 * already. */
3642 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3643 intel_panel_fini(&intel_connector->panel);
3644
3645 drm_connector_cleanup(connector);
3646 kfree(connector);
3647 }
3648
3649 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3650 {
3651 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3652 struct intel_dp *intel_dp = &intel_dig_port->dp;
3653 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3654
3655 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
3656 drm_encoder_cleanup(encoder);
3657 if (is_edp(intel_dp)) {
3658 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3659 mutex_lock(&dev->mode_config.mutex);
3660 edp_panel_vdd_off_sync(intel_dp);
3661 mutex_unlock(&dev->mode_config.mutex);
3662 }
3663 kfree(intel_dig_port);
3664 }
3665
3666 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3667 .dpms = intel_connector_dpms,
3668 .detect = intel_dp_detect,
3669 .fill_modes = drm_helper_probe_single_connector_modes,
3670 .set_property = intel_dp_set_property,
3671 .destroy = intel_dp_connector_destroy,
3672 };
3673
3674 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3675 .get_modes = intel_dp_get_modes,
3676 .mode_valid = intel_dp_mode_valid,
3677 .best_encoder = intel_best_encoder,
3678 };
3679
3680 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3681 .destroy = intel_dp_encoder_destroy,
3682 };
3683
3684 static void
3685 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3686 {
3687 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3688
3689 intel_dp_check_link_status(intel_dp);
3690 }
3691
3692 /* Return which DP Port should be selected for Transcoder DP control */
3693 int
3694 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3695 {
3696 struct drm_device *dev = crtc->dev;
3697 struct intel_encoder *intel_encoder;
3698 struct intel_dp *intel_dp;
3699
3700 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3701 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3702
3703 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3704 intel_encoder->type == INTEL_OUTPUT_EDP)
3705 return intel_dp->output_reg;
3706 }
3707
3708 return -1;
3709 }
3710
3711 /* check the VBT to see whether the eDP is on DP-D port */
3712 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3713 {
3714 struct drm_i915_private *dev_priv = dev->dev_private;
3715 union child_device_config *p_child;
3716 int i;
3717 static const short port_mapping[] = {
3718 [PORT_B] = PORT_IDPB,
3719 [PORT_C] = PORT_IDPC,
3720 [PORT_D] = PORT_IDPD,
3721 };
3722
3723 if (port == PORT_A)
3724 return true;
3725
3726 if (!dev_priv->vbt.child_dev_num)
3727 return false;
3728
3729 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3730 p_child = dev_priv->vbt.child_dev + i;
3731
3732 if (p_child->common.dvo_port == port_mapping[port] &&
3733 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3734 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3735 return true;
3736 }
3737 return false;
3738 }
3739
3740 static void
3741 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3742 {
3743 struct intel_connector *intel_connector = to_intel_connector(connector);
3744
3745 intel_attach_force_audio_property(connector);
3746 intel_attach_broadcast_rgb_property(connector);
3747 intel_dp->color_range_auto = true;
3748
3749 if (is_edp(intel_dp)) {
3750 drm_mode_create_scaling_mode_property(connector->dev);
3751 drm_object_attach_property(
3752 &connector->base,
3753 connector->dev->mode_config.scaling_mode_property,
3754 DRM_MODE_SCALE_ASPECT);
3755 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3756 }
3757 }
3758
3759 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3760 {
3761 intel_dp->last_power_cycle = jiffies;
3762 intel_dp->last_power_on = jiffies;
3763 intel_dp->last_backlight_off = jiffies;
3764 }
3765
3766 static void
3767 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3768 struct intel_dp *intel_dp,
3769 struct edp_power_seq *out)
3770 {
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772 struct edp_power_seq cur, vbt, spec, final;
3773 u32 pp_on, pp_off, pp_div, pp;
3774 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3775
3776 if (HAS_PCH_SPLIT(dev)) {
3777 pp_ctrl_reg = PCH_PP_CONTROL;
3778 pp_on_reg = PCH_PP_ON_DELAYS;
3779 pp_off_reg = PCH_PP_OFF_DELAYS;
3780 pp_div_reg = PCH_PP_DIVISOR;
3781 } else {
3782 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3783
3784 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3785 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3786 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3787 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3788 }
3789
3790 /* Workaround: Need to write PP_CONTROL with the unlock key as
3791 * the very first thing. */
3792 pp = ironlake_get_pp_control(intel_dp);
3793 I915_WRITE(pp_ctrl_reg, pp);
3794
3795 pp_on = I915_READ(pp_on_reg);
3796 pp_off = I915_READ(pp_off_reg);
3797 pp_div = I915_READ(pp_div_reg);
3798
3799 /* Pull timing values out of registers */
3800 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3801 PANEL_POWER_UP_DELAY_SHIFT;
3802
3803 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3804 PANEL_LIGHT_ON_DELAY_SHIFT;
3805
3806 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3807 PANEL_LIGHT_OFF_DELAY_SHIFT;
3808
3809 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3810 PANEL_POWER_DOWN_DELAY_SHIFT;
3811
3812 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3813 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3814
3815 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3816 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3817
3818 vbt = dev_priv->vbt.edp_pps;
3819
3820 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3821 * our hw here, which are all in 100usec. */
3822 spec.t1_t3 = 210 * 10;
3823 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3824 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3825 spec.t10 = 500 * 10;
3826 /* This one is special and actually in units of 100ms, but zero
3827 * based in the hw (so we need to add 100 ms). But the sw vbt
3828 * table multiplies it with 1000 to make it in units of 100usec,
3829 * too. */
3830 spec.t11_t12 = (510 + 100) * 10;
3831
3832 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3833 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3834
3835 /* Use the max of the register settings and vbt. If both are
3836 * unset, fall back to the spec limits. */
3837 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3838 spec.field : \
3839 max(cur.field, vbt.field))
3840 assign_final(t1_t3);
3841 assign_final(t8);
3842 assign_final(t9);
3843 assign_final(t10);
3844 assign_final(t11_t12);
3845 #undef assign_final
3846
3847 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3848 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3849 intel_dp->backlight_on_delay = get_delay(t8);
3850 intel_dp->backlight_off_delay = get_delay(t9);
3851 intel_dp->panel_power_down_delay = get_delay(t10);
3852 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3853 #undef get_delay
3854
3855 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3856 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3857 intel_dp->panel_power_cycle_delay);
3858
3859 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3860 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3861
3862 if (out)
3863 *out = final;
3864 }
3865
3866 static void
3867 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3868 struct intel_dp *intel_dp,
3869 struct edp_power_seq *seq)
3870 {
3871 struct drm_i915_private *dev_priv = dev->dev_private;
3872 u32 pp_on, pp_off, pp_div, port_sel = 0;
3873 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3874 int pp_on_reg, pp_off_reg, pp_div_reg;
3875
3876 if (HAS_PCH_SPLIT(dev)) {
3877 pp_on_reg = PCH_PP_ON_DELAYS;
3878 pp_off_reg = PCH_PP_OFF_DELAYS;
3879 pp_div_reg = PCH_PP_DIVISOR;
3880 } else {
3881 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3882
3883 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3884 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3885 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3886 }
3887
3888 /*
3889 * And finally store the new values in the power sequencer. The
3890 * backlight delays are set to 1 because we do manual waits on them. For
3891 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3892 * we'll end up waiting for the backlight off delay twice: once when we
3893 * do the manual sleep, and once when we disable the panel and wait for
3894 * the PP_STATUS bit to become zero.
3895 */
3896 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3897 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3898 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3899 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3900 /* Compute the divisor for the pp clock, simply match the Bspec
3901 * formula. */
3902 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3903 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3904 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3905
3906 /* Haswell doesn't have any port selection bits for the panel
3907 * power sequencer any more. */
3908 if (IS_VALLEYVIEW(dev)) {
3909 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3910 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3911 else
3912 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3913 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3914 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3915 port_sel = PANEL_PORT_SELECT_DPA;
3916 else
3917 port_sel = PANEL_PORT_SELECT_DPD;
3918 }
3919
3920 pp_on |= port_sel;
3921
3922 I915_WRITE(pp_on_reg, pp_on);
3923 I915_WRITE(pp_off_reg, pp_off);
3924 I915_WRITE(pp_div_reg, pp_div);
3925
3926 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3927 I915_READ(pp_on_reg),
3928 I915_READ(pp_off_reg),
3929 I915_READ(pp_div_reg));
3930 }
3931
3932 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
3933 {
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935 struct intel_encoder *encoder;
3936 struct intel_dp *intel_dp = NULL;
3937 struct intel_crtc_config *config = NULL;
3938 struct intel_crtc *intel_crtc = NULL;
3939 struct intel_connector *intel_connector = dev_priv->drrs.connector;
3940 u32 reg, val;
3941 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
3942
3943 if (refresh_rate <= 0) {
3944 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
3945 return;
3946 }
3947
3948 if (intel_connector == NULL) {
3949 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
3950 return;
3951 }
3952
3953 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
3954 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
3955 return;
3956 }
3957
3958 encoder = intel_attached_encoder(&intel_connector->base);
3959 intel_dp = enc_to_intel_dp(&encoder->base);
3960 intel_crtc = encoder->new_crtc;
3961
3962 if (!intel_crtc) {
3963 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
3964 return;
3965 }
3966
3967 config = &intel_crtc->config;
3968
3969 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
3970 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
3971 return;
3972 }
3973
3974 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
3975 index = DRRS_LOW_RR;
3976
3977 if (index == intel_dp->drrs_state.refresh_rate_type) {
3978 DRM_DEBUG_KMS(
3979 "DRRS requested for previously set RR...ignoring\n");
3980 return;
3981 }
3982
3983 if (!intel_crtc->active) {
3984 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
3985 return;
3986 }
3987
3988 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
3989 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
3990 val = I915_READ(reg);
3991 if (index > DRRS_HIGH_RR) {
3992 val |= PIPECONF_EDP_RR_MODE_SWITCH;
3993 intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
3994 } else {
3995 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
3996 }
3997 I915_WRITE(reg, val);
3998 }
3999
4000 /*
4001 * mutex taken to ensure that there is no race between differnt
4002 * drrs calls trying to update refresh rate. This scenario may occur
4003 * in future when idleness detection based DRRS in kernel and
4004 * possible calls from user space to set differnt RR are made.
4005 */
4006
4007 mutex_lock(&intel_dp->drrs_state.mutex);
4008
4009 intel_dp->drrs_state.refresh_rate_type = index;
4010
4011 mutex_unlock(&intel_dp->drrs_state.mutex);
4012
4013 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4014 }
4015
4016 static struct drm_display_mode *
4017 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4018 struct intel_connector *intel_connector,
4019 struct drm_display_mode *fixed_mode)
4020 {
4021 struct drm_connector *connector = &intel_connector->base;
4022 struct intel_dp *intel_dp = &intel_dig_port->dp;
4023 struct drm_device *dev = intel_dig_port->base.base.dev;
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025 struct drm_display_mode *downclock_mode = NULL;
4026
4027 if (INTEL_INFO(dev)->gen <= 6) {
4028 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4029 return NULL;
4030 }
4031
4032 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4033 DRM_INFO("VBT doesn't support DRRS\n");
4034 return NULL;
4035 }
4036
4037 downclock_mode = intel_find_panel_downclock
4038 (dev, fixed_mode, connector);
4039
4040 if (!downclock_mode) {
4041 DRM_INFO("DRRS not supported\n");
4042 return NULL;
4043 }
4044
4045 dev_priv->drrs.connector = intel_connector;
4046
4047 mutex_init(&intel_dp->drrs_state.mutex);
4048
4049 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4050
4051 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4052 DRM_INFO("seamless DRRS supported for eDP panel.\n");
4053 return downclock_mode;
4054 }
4055
4056 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4057 struct intel_connector *intel_connector,
4058 struct edp_power_seq *power_seq)
4059 {
4060 struct drm_connector *connector = &intel_connector->base;
4061 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4062 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4063 struct drm_device *dev = intel_encoder->base.dev;
4064 struct drm_i915_private *dev_priv = dev->dev_private;
4065 struct drm_display_mode *fixed_mode = NULL;
4066 struct drm_display_mode *downclock_mode = NULL;
4067 bool has_dpcd;
4068 struct drm_display_mode *scan;
4069 struct edid *edid;
4070
4071 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4072
4073 if (!is_edp(intel_dp))
4074 return true;
4075
4076 /* The VDD bit needs a power domain reference, so if the bit is already
4077 * enabled when we boot, grab this reference. */
4078 if (edp_have_panel_vdd(intel_dp)) {
4079 enum intel_display_power_domain power_domain;
4080 power_domain = intel_display_port_power_domain(intel_encoder);
4081 intel_display_power_get(dev_priv, power_domain);
4082 }
4083
4084 /* Cache DPCD and EDID for edp. */
4085 intel_edp_panel_vdd_on(intel_dp);
4086 has_dpcd = intel_dp_get_dpcd(intel_dp);
4087 edp_panel_vdd_off(intel_dp, false);
4088
4089 if (has_dpcd) {
4090 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4091 dev_priv->no_aux_handshake =
4092 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4093 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4094 } else {
4095 /* if this fails, presume the device is a ghost */
4096 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4097 return false;
4098 }
4099
4100 /* We now know it's not a ghost, init power sequence regs. */
4101 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4102
4103 mutex_lock(&dev->mode_config.mutex);
4104 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4105 if (edid) {
4106 if (drm_add_edid_modes(connector, edid)) {
4107 drm_mode_connector_update_edid_property(connector,
4108 edid);
4109 drm_edid_to_eld(connector, edid);
4110 } else {
4111 kfree(edid);
4112 edid = ERR_PTR(-EINVAL);
4113 }
4114 } else {
4115 edid = ERR_PTR(-ENOENT);
4116 }
4117 intel_connector->edid = edid;
4118
4119 /* prefer fixed mode from EDID if available */
4120 list_for_each_entry(scan, &connector->probed_modes, head) {
4121 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4122 fixed_mode = drm_mode_duplicate(dev, scan);
4123 downclock_mode = intel_dp_drrs_init(
4124 intel_dig_port,
4125 intel_connector, fixed_mode);
4126 break;
4127 }
4128 }
4129
4130 /* fallback to VBT if available for eDP */
4131 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4132 fixed_mode = drm_mode_duplicate(dev,
4133 dev_priv->vbt.lfp_lvds_vbt_mode);
4134 if (fixed_mode)
4135 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4136 }
4137 mutex_unlock(&dev->mode_config.mutex);
4138
4139 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4140 intel_panel_setup_backlight(connector);
4141
4142 return true;
4143 }
4144
4145 bool
4146 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4147 struct intel_connector *intel_connector)
4148 {
4149 struct drm_connector *connector = &intel_connector->base;
4150 struct intel_dp *intel_dp = &intel_dig_port->dp;
4151 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4152 struct drm_device *dev = intel_encoder->base.dev;
4153 struct drm_i915_private *dev_priv = dev->dev_private;
4154 enum port port = intel_dig_port->port;
4155 struct edp_power_seq power_seq = { 0 };
4156 int type;
4157
4158 /* intel_dp vfuncs */
4159 if (IS_VALLEYVIEW(dev))
4160 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4161 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4162 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4163 else if (HAS_PCH_SPLIT(dev))
4164 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4165 else
4166 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4167
4168 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4169
4170 /* Preserve the current hw state. */
4171 intel_dp->DP = I915_READ(intel_dp->output_reg);
4172 intel_dp->attached_connector = intel_connector;
4173
4174 if (intel_dp_is_edp(dev, port))
4175 type = DRM_MODE_CONNECTOR_eDP;
4176 else
4177 type = DRM_MODE_CONNECTOR_DisplayPort;
4178
4179 /*
4180 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4181 * for DP the encoder type can be set by the caller to
4182 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4183 */
4184 if (type == DRM_MODE_CONNECTOR_eDP)
4185 intel_encoder->type = INTEL_OUTPUT_EDP;
4186
4187 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4188 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4189 port_name(port));
4190
4191 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4192 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4193
4194 connector->interlace_allowed = true;
4195 connector->doublescan_allowed = 0;
4196
4197 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4198 edp_panel_vdd_work);
4199
4200 intel_connector_attach_encoder(intel_connector, intel_encoder);
4201 drm_sysfs_connector_add(connector);
4202
4203 if (HAS_DDI(dev))
4204 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4205 else
4206 intel_connector->get_hw_state = intel_connector_get_hw_state;
4207 intel_connector->unregister = intel_dp_connector_unregister;
4208
4209 /* Set up the hotplug pin. */
4210 switch (port) {
4211 case PORT_A:
4212 intel_encoder->hpd_pin = HPD_PORT_A;
4213 break;
4214 case PORT_B:
4215 intel_encoder->hpd_pin = HPD_PORT_B;
4216 break;
4217 case PORT_C:
4218 intel_encoder->hpd_pin = HPD_PORT_C;
4219 break;
4220 case PORT_D:
4221 intel_encoder->hpd_pin = HPD_PORT_D;
4222 break;
4223 default:
4224 BUG();
4225 }
4226
4227 if (is_edp(intel_dp)) {
4228 intel_dp_init_panel_power_timestamps(intel_dp);
4229 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4230 }
4231
4232 intel_dp_aux_init(intel_dp, intel_connector);
4233
4234 intel_dp->psr_setup_done = false;
4235
4236 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4237 drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
4238 if (is_edp(intel_dp)) {
4239 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4240 mutex_lock(&dev->mode_config.mutex);
4241 edp_panel_vdd_off_sync(intel_dp);
4242 mutex_unlock(&dev->mode_config.mutex);
4243 }
4244 drm_sysfs_connector_remove(connector);
4245 drm_connector_cleanup(connector);
4246 return false;
4247 }
4248
4249 intel_dp_add_properties(intel_dp, connector);
4250
4251 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4252 * 0xd. Failure to do so will result in spurious interrupts being
4253 * generated on the port when a cable is not attached.
4254 */
4255 if (IS_G4X(dev) && !IS_GM45(dev)) {
4256 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4257 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4258 }
4259
4260 return true;
4261 }
4262
4263 void
4264 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4265 {
4266 struct intel_digital_port *intel_dig_port;
4267 struct intel_encoder *intel_encoder;
4268 struct drm_encoder *encoder;
4269 struct intel_connector *intel_connector;
4270
4271 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4272 if (!intel_dig_port)
4273 return;
4274
4275 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4276 if (!intel_connector) {
4277 kfree(intel_dig_port);
4278 return;
4279 }
4280
4281 intel_encoder = &intel_dig_port->base;
4282 encoder = &intel_encoder->base;
4283
4284 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4285 DRM_MODE_ENCODER_TMDS);
4286
4287 intel_encoder->compute_config = intel_dp_compute_config;
4288 intel_encoder->disable = intel_disable_dp;
4289 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4290 intel_encoder->get_config = intel_dp_get_config;
4291 if (IS_CHERRYVIEW(dev)) {
4292 intel_encoder->pre_enable = chv_pre_enable_dp;
4293 intel_encoder->enable = vlv_enable_dp;
4294 intel_encoder->post_disable = chv_post_disable_dp;
4295 } else if (IS_VALLEYVIEW(dev)) {
4296 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4297 intel_encoder->pre_enable = vlv_pre_enable_dp;
4298 intel_encoder->enable = vlv_enable_dp;
4299 intel_encoder->post_disable = vlv_post_disable_dp;
4300 } else {
4301 intel_encoder->pre_enable = g4x_pre_enable_dp;
4302 intel_encoder->enable = g4x_enable_dp;
4303 intel_encoder->post_disable = g4x_post_disable_dp;
4304 }
4305
4306 intel_dig_port->port = port;
4307 intel_dig_port->dp.output_reg = output_reg;
4308
4309 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4310 if (IS_CHERRYVIEW(dev)) {
4311 if (port == PORT_D)
4312 intel_encoder->crtc_mask = 1 << 2;
4313 else
4314 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4315 } else {
4316 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4317 }
4318 intel_encoder->cloneable = 0;
4319 intel_encoder->hot_plug = intel_dp_hot_plug;
4320
4321 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4322 drm_encoder_cleanup(encoder);
4323 kfree(intel_dig_port);
4324 kfree(intel_connector);
4325 }
4326 }
This page took 0.314143 seconds and 5 git commands to generate.