e0066c03e7f1d4e0b1d1b4815f80ffca1e2ed68b
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static enum pipe
326 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 struct intel_encoder *encoder;
332 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
333 struct edp_power_seq power_seq;
334
335 lockdep_assert_held(&dev_priv->pps_mutex);
336
337 if (intel_dp->pps_pipe != INVALID_PIPE)
338 return intel_dp->pps_pipe;
339
340 /*
341 * We don't have power sequencer currently.
342 * Pick one that's not used by other ports.
343 */
344 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
345 base.head) {
346 struct intel_dp *tmp;
347
348 if (encoder->type != INTEL_OUTPUT_EDP)
349 continue;
350
351 tmp = enc_to_intel_dp(&encoder->base);
352
353 if (tmp->pps_pipe != INVALID_PIPE)
354 pipes &= ~(1 << tmp->pps_pipe);
355 }
356
357 /*
358 * Didn't find one. This should not happen since there
359 * are two power sequencers and up to two eDP ports.
360 */
361 if (WARN_ON(pipes == 0))
362 return PIPE_A;
363
364 intel_dp->pps_pipe = ffs(pipes) - 1;
365
366 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
367 pipe_name(intel_dp->pps_pipe),
368 port_name(intel_dig_port->port));
369
370 /* init power sequencer on this pipe and port */
371 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
372 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
373 &power_seq);
374
375 return intel_dp->pps_pipe;
376 }
377
378 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
379 enum pipe pipe);
380
381 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
382 enum pipe pipe)
383 {
384 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
385 }
386
387 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
388 enum pipe pipe)
389 {
390 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
391 }
392
393 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
394 enum pipe pipe)
395 {
396 return true;
397 }
398
399 static enum pipe
400 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
401 enum port port,
402 vlv_pipe_check pipe_check)
403 {
404 enum pipe pipe;
405
406 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
407 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
408 PANEL_PORT_SELECT_MASK;
409
410 if (port_sel != PANEL_PORT_SELECT_VLV(port))
411 continue;
412
413 if (!pipe_check(dev_priv, pipe))
414 continue;
415
416 return pipe;
417 }
418
419 return INVALID_PIPE;
420 }
421
422 static void
423 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
424 {
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 struct edp_power_seq power_seq;
429 enum port port = intel_dig_port->port;
430
431 lockdep_assert_held(&dev_priv->pps_mutex);
432
433 /* try to find a pipe with this port selected */
434 /* first pick one where the panel is on */
435 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
436 vlv_pipe_has_pp_on);
437 /* didn't find one? pick one where vdd is on */
438 if (intel_dp->pps_pipe == INVALID_PIPE)
439 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
440 vlv_pipe_has_vdd_on);
441 /* didn't find one? pick one with just the correct port */
442 if (intel_dp->pps_pipe == INVALID_PIPE)
443 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
444 vlv_pipe_any);
445
446 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
447 if (intel_dp->pps_pipe == INVALID_PIPE) {
448 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
449 port_name(port));
450 return;
451 }
452
453 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
454 port_name(port), pipe_name(intel_dp->pps_pipe));
455
456 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
457 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
458 &power_seq);
459 }
460
461 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
462 {
463 struct drm_device *dev = dev_priv->dev;
464 struct intel_encoder *encoder;
465
466 if (WARN_ON(!IS_VALLEYVIEW(dev)))
467 return;
468
469 /*
470 * We can't grab pps_mutex here due to deadlock with power_domain
471 * mutex when power_domain functions are called while holding pps_mutex.
472 * That also means that in order to use pps_pipe the code needs to
473 * hold both a power domain reference and pps_mutex, and the power domain
474 * reference get/put must be done while _not_ holding pps_mutex.
475 * pps_{lock,unlock}() do these steps in the correct order, so one
476 * should use them always.
477 */
478
479 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
480 struct intel_dp *intel_dp;
481
482 if (encoder->type != INTEL_OUTPUT_EDP)
483 continue;
484
485 intel_dp = enc_to_intel_dp(&encoder->base);
486 intel_dp->pps_pipe = INVALID_PIPE;
487 }
488 }
489
490 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
491 {
492 struct drm_device *dev = intel_dp_to_dev(intel_dp);
493
494 if (HAS_PCH_SPLIT(dev))
495 return PCH_PP_CONTROL;
496 else
497 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
498 }
499
500 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
501 {
502 struct drm_device *dev = intel_dp_to_dev(intel_dp);
503
504 if (HAS_PCH_SPLIT(dev))
505 return PCH_PP_STATUS;
506 else
507 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
508 }
509
510 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
511 This function only applicable when panel PM state is not to be tracked */
512 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
513 void *unused)
514 {
515 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
516 edp_notifier);
517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 u32 pp_div;
520 u32 pp_ctrl_reg, pp_div_reg;
521
522 if (!is_edp(intel_dp) || code != SYS_RESTART)
523 return 0;
524
525 pps_lock(intel_dp);
526
527 if (IS_VALLEYVIEW(dev)) {
528 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
529
530 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
531 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
532 pp_div = I915_READ(pp_div_reg);
533 pp_div &= PP_REFERENCE_DIVIDER_MASK;
534
535 /* 0x1F write to PP_DIV_REG sets max cycle delay */
536 I915_WRITE(pp_div_reg, pp_div | 0x1F);
537 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
538 msleep(intel_dp->panel_power_cycle_delay);
539 }
540
541 pps_unlock(intel_dp);
542
543 return 0;
544 }
545
546 static bool edp_have_panel_power(struct intel_dp *intel_dp)
547 {
548 struct drm_device *dev = intel_dp_to_dev(intel_dp);
549 struct drm_i915_private *dev_priv = dev->dev_private;
550
551 lockdep_assert_held(&dev_priv->pps_mutex);
552
553 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
554 }
555
556 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559 struct drm_i915_private *dev_priv = dev->dev_private;
560
561 lockdep_assert_held(&dev_priv->pps_mutex);
562
563 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
564 }
565
566 static void
567 intel_dp_check_edp(struct intel_dp *intel_dp)
568 {
569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
570 struct drm_i915_private *dev_priv = dev->dev_private;
571
572 if (!is_edp(intel_dp))
573 return;
574
575 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
576 WARN(1, "eDP powered off while attempting aux channel communication.\n");
577 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
578 I915_READ(_pp_stat_reg(intel_dp)),
579 I915_READ(_pp_ctrl_reg(intel_dp)));
580 }
581 }
582
583 static uint32_t
584 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
585 {
586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
587 struct drm_device *dev = intel_dig_port->base.base.dev;
588 struct drm_i915_private *dev_priv = dev->dev_private;
589 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
590 uint32_t status;
591 bool done;
592
593 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
594 if (has_aux_irq)
595 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
596 msecs_to_jiffies_timeout(10));
597 else
598 done = wait_for_atomic(C, 10) == 0;
599 if (!done)
600 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
601 has_aux_irq);
602 #undef C
603
604 return status;
605 }
606
607 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
608 {
609 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
610 struct drm_device *dev = intel_dig_port->base.base.dev;
611
612 /*
613 * The clock divider is based off the hrawclk, and would like to run at
614 * 2MHz. So, take the hrawclk value and divide by 2 and use that
615 */
616 return index ? 0 : intel_hrawclk(dev) / 2;
617 }
618
619 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
620 {
621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
622 struct drm_device *dev = intel_dig_port->base.base.dev;
623
624 if (index)
625 return 0;
626
627 if (intel_dig_port->port == PORT_A) {
628 if (IS_GEN6(dev) || IS_GEN7(dev))
629 return 200; /* SNB & IVB eDP input clock at 400Mhz */
630 else
631 return 225; /* eDP input clock at 450Mhz */
632 } else {
633 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
634 }
635 }
636
637 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
638 {
639 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
640 struct drm_device *dev = intel_dig_port->base.base.dev;
641 struct drm_i915_private *dev_priv = dev->dev_private;
642
643 if (intel_dig_port->port == PORT_A) {
644 if (index)
645 return 0;
646 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
647 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
648 /* Workaround for non-ULT HSW */
649 switch (index) {
650 case 0: return 63;
651 case 1: return 72;
652 default: return 0;
653 }
654 } else {
655 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
656 }
657 }
658
659 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 return index ? 0 : 100;
662 }
663
664 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
665 bool has_aux_irq,
666 int send_bytes,
667 uint32_t aux_clock_divider)
668 {
669 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670 struct drm_device *dev = intel_dig_port->base.base.dev;
671 uint32_t precharge, timeout;
672
673 if (IS_GEN6(dev))
674 precharge = 3;
675 else
676 precharge = 5;
677
678 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
679 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
680 else
681 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
682
683 return DP_AUX_CH_CTL_SEND_BUSY |
684 DP_AUX_CH_CTL_DONE |
685 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
686 DP_AUX_CH_CTL_TIME_OUT_ERROR |
687 timeout |
688 DP_AUX_CH_CTL_RECEIVE_ERROR |
689 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
690 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
691 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
692 }
693
694 static int
695 intel_dp_aux_ch(struct intel_dp *intel_dp,
696 uint8_t *send, int send_bytes,
697 uint8_t *recv, int recv_size)
698 {
699 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
700 struct drm_device *dev = intel_dig_port->base.base.dev;
701 struct drm_i915_private *dev_priv = dev->dev_private;
702 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
703 uint32_t ch_data = ch_ctl + 4;
704 uint32_t aux_clock_divider;
705 int i, ret, recv_bytes;
706 uint32_t status;
707 int try, clock = 0;
708 bool has_aux_irq = HAS_AUX_IRQ(dev);
709 bool vdd;
710
711 pps_lock(intel_dp);
712
713 /*
714 * We will be called with VDD already enabled for dpcd/edid/oui reads.
715 * In such cases we want to leave VDD enabled and it's up to upper layers
716 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
717 * ourselves.
718 */
719 vdd = edp_panel_vdd_on(intel_dp);
720
721 /* dp aux is extremely sensitive to irq latency, hence request the
722 * lowest possible wakeup latency and so prevent the cpu from going into
723 * deep sleep states.
724 */
725 pm_qos_update_request(&dev_priv->pm_qos, 0);
726
727 intel_dp_check_edp(intel_dp);
728
729 intel_aux_display_runtime_get(dev_priv);
730
731 /* Try to wait for any previous AUX channel activity */
732 for (try = 0; try < 3; try++) {
733 status = I915_READ_NOTRACE(ch_ctl);
734 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
735 break;
736 msleep(1);
737 }
738
739 if (try == 3) {
740 WARN(1, "dp_aux_ch not started status 0x%08x\n",
741 I915_READ(ch_ctl));
742 ret = -EBUSY;
743 goto out;
744 }
745
746 /* Only 5 data registers! */
747 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
748 ret = -E2BIG;
749 goto out;
750 }
751
752 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
753 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
754 has_aux_irq,
755 send_bytes,
756 aux_clock_divider);
757
758 /* Must try at least 3 times according to DP spec */
759 for (try = 0; try < 5; try++) {
760 /* Load the send data into the aux channel data registers */
761 for (i = 0; i < send_bytes; i += 4)
762 I915_WRITE(ch_data + i,
763 pack_aux(send + i, send_bytes - i));
764
765 /* Send the command and wait for it to complete */
766 I915_WRITE(ch_ctl, send_ctl);
767
768 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
769
770 /* Clear done status and any errors */
771 I915_WRITE(ch_ctl,
772 status |
773 DP_AUX_CH_CTL_DONE |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 DP_AUX_CH_CTL_RECEIVE_ERROR);
776
777 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_RECEIVE_ERROR))
779 continue;
780 if (status & DP_AUX_CH_CTL_DONE)
781 break;
782 }
783 if (status & DP_AUX_CH_CTL_DONE)
784 break;
785 }
786
787 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
788 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
789 ret = -EBUSY;
790 goto out;
791 }
792
793 /* Check for timeout or receive error.
794 * Timeouts occur when the sink is not connected
795 */
796 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
797 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
798 ret = -EIO;
799 goto out;
800 }
801
802 /* Timeouts occur when the device isn't connected, so they're
803 * "normal" -- don't fill the kernel log with these */
804 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
805 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
806 ret = -ETIMEDOUT;
807 goto out;
808 }
809
810 /* Unload any bytes sent back from the other side */
811 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
812 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
813 if (recv_bytes > recv_size)
814 recv_bytes = recv_size;
815
816 for (i = 0; i < recv_bytes; i += 4)
817 unpack_aux(I915_READ(ch_data + i),
818 recv + i, recv_bytes - i);
819
820 ret = recv_bytes;
821 out:
822 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
823 intel_aux_display_runtime_put(dev_priv);
824
825 if (vdd)
826 edp_panel_vdd_off(intel_dp, false);
827
828 pps_unlock(intel_dp);
829
830 return ret;
831 }
832
833 #define BARE_ADDRESS_SIZE 3
834 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
835 static ssize_t
836 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
837 {
838 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
839 uint8_t txbuf[20], rxbuf[20];
840 size_t txsize, rxsize;
841 int ret;
842
843 txbuf[0] = msg->request << 4;
844 txbuf[1] = msg->address >> 8;
845 txbuf[2] = msg->address & 0xff;
846 txbuf[3] = msg->size - 1;
847
848 switch (msg->request & ~DP_AUX_I2C_MOT) {
849 case DP_AUX_NATIVE_WRITE:
850 case DP_AUX_I2C_WRITE:
851 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
852 rxsize = 1;
853
854 if (WARN_ON(txsize > 20))
855 return -E2BIG;
856
857 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
858
859 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
860 if (ret > 0) {
861 msg->reply = rxbuf[0] >> 4;
862
863 /* Return payload size. */
864 ret = msg->size;
865 }
866 break;
867
868 case DP_AUX_NATIVE_READ:
869 case DP_AUX_I2C_READ:
870 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
871 rxsize = msg->size + 1;
872
873 if (WARN_ON(rxsize > 20))
874 return -E2BIG;
875
876 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
877 if (ret > 0) {
878 msg->reply = rxbuf[0] >> 4;
879 /*
880 * Assume happy day, and copy the data. The caller is
881 * expected to check msg->reply before touching it.
882 *
883 * Return payload size.
884 */
885 ret--;
886 memcpy(msg->buffer, rxbuf + 1, ret);
887 }
888 break;
889
890 default:
891 ret = -EINVAL;
892 break;
893 }
894
895 return ret;
896 }
897
898 static void
899 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
900 {
901 struct drm_device *dev = intel_dp_to_dev(intel_dp);
902 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
903 enum port port = intel_dig_port->port;
904 const char *name = NULL;
905 int ret;
906
907 switch (port) {
908 case PORT_A:
909 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
910 name = "DPDDC-A";
911 break;
912 case PORT_B:
913 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
914 name = "DPDDC-B";
915 break;
916 case PORT_C:
917 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
918 name = "DPDDC-C";
919 break;
920 case PORT_D:
921 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
922 name = "DPDDC-D";
923 break;
924 default:
925 BUG();
926 }
927
928 if (!HAS_DDI(dev))
929 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
930
931 intel_dp->aux.name = name;
932 intel_dp->aux.dev = dev->dev;
933 intel_dp->aux.transfer = intel_dp_aux_transfer;
934
935 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
936 connector->base.kdev->kobj.name);
937
938 ret = drm_dp_aux_register(&intel_dp->aux);
939 if (ret < 0) {
940 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
941 name, ret);
942 return;
943 }
944
945 ret = sysfs_create_link(&connector->base.kdev->kobj,
946 &intel_dp->aux.ddc.dev.kobj,
947 intel_dp->aux.ddc.dev.kobj.name);
948 if (ret < 0) {
949 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
950 drm_dp_aux_unregister(&intel_dp->aux);
951 }
952 }
953
954 static void
955 intel_dp_connector_unregister(struct intel_connector *intel_connector)
956 {
957 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
958
959 if (!intel_connector->mst_port)
960 sysfs_remove_link(&intel_connector->base.kdev->kobj,
961 intel_dp->aux.ddc.dev.kobj.name);
962 intel_connector_unregister(intel_connector);
963 }
964
965 static void
966 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
967 {
968 switch (link_bw) {
969 case DP_LINK_BW_1_62:
970 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
971 break;
972 case DP_LINK_BW_2_7:
973 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
974 break;
975 case DP_LINK_BW_5_4:
976 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
977 break;
978 }
979 }
980
981 static void
982 intel_dp_set_clock(struct intel_encoder *encoder,
983 struct intel_crtc_config *pipe_config, int link_bw)
984 {
985 struct drm_device *dev = encoder->base.dev;
986 const struct dp_link_dpll *divisor = NULL;
987 int i, count = 0;
988
989 if (IS_G4X(dev)) {
990 divisor = gen4_dpll;
991 count = ARRAY_SIZE(gen4_dpll);
992 } else if (HAS_PCH_SPLIT(dev)) {
993 divisor = pch_dpll;
994 count = ARRAY_SIZE(pch_dpll);
995 } else if (IS_CHERRYVIEW(dev)) {
996 divisor = chv_dpll;
997 count = ARRAY_SIZE(chv_dpll);
998 } else if (IS_VALLEYVIEW(dev)) {
999 divisor = vlv_dpll;
1000 count = ARRAY_SIZE(vlv_dpll);
1001 }
1002
1003 if (divisor && count) {
1004 for (i = 0; i < count; i++) {
1005 if (link_bw == divisor[i].link_bw) {
1006 pipe_config->dpll = divisor[i].dpll;
1007 pipe_config->clock_set = true;
1008 break;
1009 }
1010 }
1011 }
1012 }
1013
1014 bool
1015 intel_dp_compute_config(struct intel_encoder *encoder,
1016 struct intel_crtc_config *pipe_config)
1017 {
1018 struct drm_device *dev = encoder->base.dev;
1019 struct drm_i915_private *dev_priv = dev->dev_private;
1020 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1021 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022 enum port port = dp_to_dig_port(intel_dp)->port;
1023 struct intel_crtc *intel_crtc = encoder->new_crtc;
1024 struct intel_connector *intel_connector = intel_dp->attached_connector;
1025 int lane_count, clock;
1026 int min_lane_count = 1;
1027 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1028 /* Conveniently, the link BW constants become indices with a shift...*/
1029 int min_clock = 0;
1030 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1031 int bpp, mode_rate;
1032 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1033 int link_avail, link_clock;
1034
1035 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1036 pipe_config->has_pch_encoder = true;
1037
1038 pipe_config->has_dp_encoder = true;
1039 pipe_config->has_drrs = false;
1040 pipe_config->has_audio = intel_dp->has_audio;
1041
1042 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1043 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1044 adjusted_mode);
1045 if (!HAS_PCH_SPLIT(dev))
1046 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1047 intel_connector->panel.fitting_mode);
1048 else
1049 intel_pch_panel_fitting(intel_crtc, pipe_config,
1050 intel_connector->panel.fitting_mode);
1051 }
1052
1053 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1054 return false;
1055
1056 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1057 "max bw %02x pixel clock %iKHz\n",
1058 max_lane_count, bws[max_clock],
1059 adjusted_mode->crtc_clock);
1060
1061 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1062 * bpc in between. */
1063 bpp = pipe_config->pipe_bpp;
1064 if (is_edp(intel_dp)) {
1065 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1066 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1067 dev_priv->vbt.edp_bpp);
1068 bpp = dev_priv->vbt.edp_bpp;
1069 }
1070
1071 /*
1072 * Use the maximum clock and number of lanes the eDP panel
1073 * advertizes being capable of. The panels are generally
1074 * designed to support only a single clock and lane
1075 * configuration, and typically these values correspond to the
1076 * native resolution of the panel.
1077 */
1078 min_lane_count = max_lane_count;
1079 min_clock = max_clock;
1080 }
1081
1082 for (; bpp >= 6*3; bpp -= 2*3) {
1083 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1084 bpp);
1085
1086 for (clock = min_clock; clock <= max_clock; clock++) {
1087 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1088 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1089 link_avail = intel_dp_max_data_rate(link_clock,
1090 lane_count);
1091
1092 if (mode_rate <= link_avail) {
1093 goto found;
1094 }
1095 }
1096 }
1097 }
1098
1099 return false;
1100
1101 found:
1102 if (intel_dp->color_range_auto) {
1103 /*
1104 * See:
1105 * CEA-861-E - 5.1 Default Encoding Parameters
1106 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1107 */
1108 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1109 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1110 else
1111 intel_dp->color_range = 0;
1112 }
1113
1114 if (intel_dp->color_range)
1115 pipe_config->limited_color_range = true;
1116
1117 intel_dp->link_bw = bws[clock];
1118 intel_dp->lane_count = lane_count;
1119 pipe_config->pipe_bpp = bpp;
1120 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1121
1122 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1123 intel_dp->link_bw, intel_dp->lane_count,
1124 pipe_config->port_clock, bpp);
1125 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1126 mode_rate, link_avail);
1127
1128 intel_link_compute_m_n(bpp, lane_count,
1129 adjusted_mode->crtc_clock,
1130 pipe_config->port_clock,
1131 &pipe_config->dp_m_n);
1132
1133 if (intel_connector->panel.downclock_mode != NULL &&
1134 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1135 pipe_config->has_drrs = true;
1136 intel_link_compute_m_n(bpp, lane_count,
1137 intel_connector->panel.downclock_mode->clock,
1138 pipe_config->port_clock,
1139 &pipe_config->dp_m2_n2);
1140 }
1141
1142 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1143 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1144 else
1145 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1146
1147 return true;
1148 }
1149
1150 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1151 {
1152 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1153 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1154 struct drm_device *dev = crtc->base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 u32 dpa_ctl;
1157
1158 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1159 dpa_ctl = I915_READ(DP_A);
1160 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1161
1162 if (crtc->config.port_clock == 162000) {
1163 /* For a long time we've carried around a ILK-DevA w/a for the
1164 * 160MHz clock. If we're really unlucky, it's still required.
1165 */
1166 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1167 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1168 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1169 } else {
1170 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1171 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1172 }
1173
1174 I915_WRITE(DP_A, dpa_ctl);
1175
1176 POSTING_READ(DP_A);
1177 udelay(500);
1178 }
1179
1180 static void intel_dp_prepare(struct intel_encoder *encoder)
1181 {
1182 struct drm_device *dev = encoder->base.dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1185 enum port port = dp_to_dig_port(intel_dp)->port;
1186 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1187 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1188
1189 /*
1190 * There are four kinds of DP registers:
1191 *
1192 * IBX PCH
1193 * SNB CPU
1194 * IVB CPU
1195 * CPT PCH
1196 *
1197 * IBX PCH and CPU are the same for almost everything,
1198 * except that the CPU DP PLL is configured in this
1199 * register
1200 *
1201 * CPT PCH is quite different, having many bits moved
1202 * to the TRANS_DP_CTL register instead. That
1203 * configuration happens (oddly) in ironlake_pch_enable
1204 */
1205
1206 /* Preserve the BIOS-computed detected bit. This is
1207 * supposed to be read-only.
1208 */
1209 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1210
1211 /* Handle DP bits in common between all three register formats */
1212 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1213 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1214
1215 if (crtc->config.has_audio) {
1216 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1217 pipe_name(crtc->pipe));
1218 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1219 intel_write_eld(&encoder->base, adjusted_mode);
1220 }
1221
1222 /* Split out the IBX/CPU vs CPT settings */
1223
1224 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1225 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1226 intel_dp->DP |= DP_SYNC_HS_HIGH;
1227 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1228 intel_dp->DP |= DP_SYNC_VS_HIGH;
1229 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1230
1231 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1232 intel_dp->DP |= DP_ENHANCED_FRAMING;
1233
1234 intel_dp->DP |= crtc->pipe << 29;
1235 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1236 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1237 intel_dp->DP |= intel_dp->color_range;
1238
1239 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1240 intel_dp->DP |= DP_SYNC_HS_HIGH;
1241 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1242 intel_dp->DP |= DP_SYNC_VS_HIGH;
1243 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1244
1245 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1246 intel_dp->DP |= DP_ENHANCED_FRAMING;
1247
1248 if (!IS_CHERRYVIEW(dev)) {
1249 if (crtc->pipe == 1)
1250 intel_dp->DP |= DP_PIPEB_SELECT;
1251 } else {
1252 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1253 }
1254 } else {
1255 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1256 }
1257 }
1258
1259 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1260 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1261
1262 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1263 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1264
1265 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1266 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1267
1268 static void wait_panel_status(struct intel_dp *intel_dp,
1269 u32 mask,
1270 u32 value)
1271 {
1272 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 u32 pp_stat_reg, pp_ctrl_reg;
1275
1276 lockdep_assert_held(&dev_priv->pps_mutex);
1277
1278 pp_stat_reg = _pp_stat_reg(intel_dp);
1279 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1280
1281 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1282 mask, value,
1283 I915_READ(pp_stat_reg),
1284 I915_READ(pp_ctrl_reg));
1285
1286 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1287 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1288 I915_READ(pp_stat_reg),
1289 I915_READ(pp_ctrl_reg));
1290 }
1291
1292 DRM_DEBUG_KMS("Wait complete\n");
1293 }
1294
1295 static void wait_panel_on(struct intel_dp *intel_dp)
1296 {
1297 DRM_DEBUG_KMS("Wait for panel power on\n");
1298 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1299 }
1300
1301 static void wait_panel_off(struct intel_dp *intel_dp)
1302 {
1303 DRM_DEBUG_KMS("Wait for panel power off time\n");
1304 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1305 }
1306
1307 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1308 {
1309 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1310
1311 /* When we disable the VDD override bit last we have to do the manual
1312 * wait. */
1313 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1314 intel_dp->panel_power_cycle_delay);
1315
1316 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1317 }
1318
1319 static void wait_backlight_on(struct intel_dp *intel_dp)
1320 {
1321 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1322 intel_dp->backlight_on_delay);
1323 }
1324
1325 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1326 {
1327 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1328 intel_dp->backlight_off_delay);
1329 }
1330
1331 /* Read the current pp_control value, unlocking the register if it
1332 * is locked
1333 */
1334
1335 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1336 {
1337 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 u32 control;
1340
1341 lockdep_assert_held(&dev_priv->pps_mutex);
1342
1343 control = I915_READ(_pp_ctrl_reg(intel_dp));
1344 control &= ~PANEL_UNLOCK_MASK;
1345 control |= PANEL_UNLOCK_REGS;
1346 return control;
1347 }
1348
1349 /*
1350 * Must be paired with edp_panel_vdd_off().
1351 * Must hold pps_mutex around the whole on/off sequence.
1352 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1353 */
1354 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1355 {
1356 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 enum intel_display_power_domain power_domain;
1361 u32 pp;
1362 u32 pp_stat_reg, pp_ctrl_reg;
1363 bool need_to_disable = !intel_dp->want_panel_vdd;
1364
1365 lockdep_assert_held(&dev_priv->pps_mutex);
1366
1367 if (!is_edp(intel_dp))
1368 return false;
1369
1370 intel_dp->want_panel_vdd = true;
1371
1372 if (edp_have_panel_vdd(intel_dp))
1373 return need_to_disable;
1374
1375 power_domain = intel_display_port_power_domain(intel_encoder);
1376 intel_display_power_get(dev_priv, power_domain);
1377
1378 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1379
1380 if (!edp_have_panel_power(intel_dp))
1381 wait_panel_power_cycle(intel_dp);
1382
1383 pp = ironlake_get_pp_control(intel_dp);
1384 pp |= EDP_FORCE_VDD;
1385
1386 pp_stat_reg = _pp_stat_reg(intel_dp);
1387 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389 I915_WRITE(pp_ctrl_reg, pp);
1390 POSTING_READ(pp_ctrl_reg);
1391 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1392 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1393 /*
1394 * If the panel wasn't on, delay before accessing aux channel
1395 */
1396 if (!edp_have_panel_power(intel_dp)) {
1397 DRM_DEBUG_KMS("eDP was not running\n");
1398 msleep(intel_dp->panel_power_up_delay);
1399 }
1400
1401 return need_to_disable;
1402 }
1403
1404 /*
1405 * Must be paired with intel_edp_panel_vdd_off() or
1406 * intel_edp_panel_off().
1407 * Nested calls to these functions are not allowed since
1408 * we drop the lock. Caller must use some higher level
1409 * locking to prevent nested calls from other threads.
1410 */
1411 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1412 {
1413 bool vdd;
1414
1415 if (!is_edp(intel_dp))
1416 return;
1417
1418 pps_lock(intel_dp);
1419 vdd = edp_panel_vdd_on(intel_dp);
1420 pps_unlock(intel_dp);
1421
1422 WARN(!vdd, "eDP VDD already requested on\n");
1423 }
1424
1425 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1426 {
1427 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 struct intel_digital_port *intel_dig_port =
1430 dp_to_dig_port(intel_dp);
1431 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1432 enum intel_display_power_domain power_domain;
1433 u32 pp;
1434 u32 pp_stat_reg, pp_ctrl_reg;
1435
1436 lockdep_assert_held(&dev_priv->pps_mutex);
1437
1438 WARN_ON(intel_dp->want_panel_vdd);
1439
1440 if (!edp_have_panel_vdd(intel_dp))
1441 return;
1442
1443 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1444
1445 pp = ironlake_get_pp_control(intel_dp);
1446 pp &= ~EDP_FORCE_VDD;
1447
1448 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1449 pp_stat_reg = _pp_stat_reg(intel_dp);
1450
1451 I915_WRITE(pp_ctrl_reg, pp);
1452 POSTING_READ(pp_ctrl_reg);
1453
1454 /* Make sure sequencer is idle before allowing subsequent activity */
1455 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1456 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1457
1458 if ((pp & POWER_TARGET_ON) == 0)
1459 intel_dp->last_power_cycle = jiffies;
1460
1461 power_domain = intel_display_port_power_domain(intel_encoder);
1462 intel_display_power_put(dev_priv, power_domain);
1463 }
1464
1465 static void edp_panel_vdd_work(struct work_struct *__work)
1466 {
1467 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1468 struct intel_dp, panel_vdd_work);
1469
1470 pps_lock(intel_dp);
1471 if (!intel_dp->want_panel_vdd)
1472 edp_panel_vdd_off_sync(intel_dp);
1473 pps_unlock(intel_dp);
1474 }
1475
1476 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1477 {
1478 unsigned long delay;
1479
1480 /*
1481 * Queue the timer to fire a long time from now (relative to the power
1482 * down delay) to keep the panel power up across a sequence of
1483 * operations.
1484 */
1485 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1486 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1487 }
1488
1489 /*
1490 * Must be paired with edp_panel_vdd_on().
1491 * Must hold pps_mutex around the whole on/off sequence.
1492 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1493 */
1494 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1495 {
1496 struct drm_i915_private *dev_priv =
1497 intel_dp_to_dev(intel_dp)->dev_private;
1498
1499 lockdep_assert_held(&dev_priv->pps_mutex);
1500
1501 if (!is_edp(intel_dp))
1502 return;
1503
1504 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1505
1506 intel_dp->want_panel_vdd = false;
1507
1508 if (sync)
1509 edp_panel_vdd_off_sync(intel_dp);
1510 else
1511 edp_panel_vdd_schedule_off(intel_dp);
1512 }
1513
1514 /*
1515 * Must be paired with intel_edp_panel_vdd_on().
1516 * Nested calls to these functions are not allowed since
1517 * we drop the lock. Caller must use some higher level
1518 * locking to prevent nested calls from other threads.
1519 */
1520 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1521 {
1522 if (!is_edp(intel_dp))
1523 return;
1524
1525 pps_lock(intel_dp);
1526 edp_panel_vdd_off(intel_dp, sync);
1527 pps_unlock(intel_dp);
1528 }
1529
1530 void intel_edp_panel_on(struct intel_dp *intel_dp)
1531 {
1532 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 u32 pp;
1535 u32 pp_ctrl_reg;
1536
1537 if (!is_edp(intel_dp))
1538 return;
1539
1540 DRM_DEBUG_KMS("Turn eDP power on\n");
1541
1542 pps_lock(intel_dp);
1543
1544 if (edp_have_panel_power(intel_dp)) {
1545 DRM_DEBUG_KMS("eDP power already on\n");
1546 goto out;
1547 }
1548
1549 wait_panel_power_cycle(intel_dp);
1550
1551 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1552 pp = ironlake_get_pp_control(intel_dp);
1553 if (IS_GEN5(dev)) {
1554 /* ILK workaround: disable reset around power sequence */
1555 pp &= ~PANEL_POWER_RESET;
1556 I915_WRITE(pp_ctrl_reg, pp);
1557 POSTING_READ(pp_ctrl_reg);
1558 }
1559
1560 pp |= POWER_TARGET_ON;
1561 if (!IS_GEN5(dev))
1562 pp |= PANEL_POWER_RESET;
1563
1564 I915_WRITE(pp_ctrl_reg, pp);
1565 POSTING_READ(pp_ctrl_reg);
1566
1567 wait_panel_on(intel_dp);
1568 intel_dp->last_power_on = jiffies;
1569
1570 if (IS_GEN5(dev)) {
1571 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1572 I915_WRITE(pp_ctrl_reg, pp);
1573 POSTING_READ(pp_ctrl_reg);
1574 }
1575
1576 out:
1577 pps_unlock(intel_dp);
1578 }
1579
1580 void intel_edp_panel_off(struct intel_dp *intel_dp)
1581 {
1582 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1583 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1584 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 enum intel_display_power_domain power_domain;
1587 u32 pp;
1588 u32 pp_ctrl_reg;
1589
1590 if (!is_edp(intel_dp))
1591 return;
1592
1593 DRM_DEBUG_KMS("Turn eDP power off\n");
1594
1595 pps_lock(intel_dp);
1596
1597 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1598
1599 pp = ironlake_get_pp_control(intel_dp);
1600 /* We need to switch off panel power _and_ force vdd, for otherwise some
1601 * panels get very unhappy and cease to work. */
1602 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1603 EDP_BLC_ENABLE);
1604
1605 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1606
1607 intel_dp->want_panel_vdd = false;
1608
1609 I915_WRITE(pp_ctrl_reg, pp);
1610 POSTING_READ(pp_ctrl_reg);
1611
1612 intel_dp->last_power_cycle = jiffies;
1613 wait_panel_off(intel_dp);
1614
1615 /* We got a reference when we enabled the VDD. */
1616 power_domain = intel_display_port_power_domain(intel_encoder);
1617 intel_display_power_put(dev_priv, power_domain);
1618
1619 pps_unlock(intel_dp);
1620 }
1621
1622 /* Enable backlight in the panel power control. */
1623 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1624 {
1625 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1626 struct drm_device *dev = intel_dig_port->base.base.dev;
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 u32 pp;
1629 u32 pp_ctrl_reg;
1630
1631 /*
1632 * If we enable the backlight right away following a panel power
1633 * on, we may see slight flicker as the panel syncs with the eDP
1634 * link. So delay a bit to make sure the image is solid before
1635 * allowing it to appear.
1636 */
1637 wait_backlight_on(intel_dp);
1638
1639 pps_lock(intel_dp);
1640
1641 pp = ironlake_get_pp_control(intel_dp);
1642 pp |= EDP_BLC_ENABLE;
1643
1644 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1645
1646 I915_WRITE(pp_ctrl_reg, pp);
1647 POSTING_READ(pp_ctrl_reg);
1648
1649 pps_unlock(intel_dp);
1650 }
1651
1652 /* Enable backlight PWM and backlight PP control. */
1653 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1654 {
1655 if (!is_edp(intel_dp))
1656 return;
1657
1658 DRM_DEBUG_KMS("\n");
1659
1660 intel_panel_enable_backlight(intel_dp->attached_connector);
1661 _intel_edp_backlight_on(intel_dp);
1662 }
1663
1664 /* Disable backlight in the panel power control. */
1665 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1666 {
1667 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 u32 pp;
1670 u32 pp_ctrl_reg;
1671
1672 if (!is_edp(intel_dp))
1673 return;
1674
1675 pps_lock(intel_dp);
1676
1677 pp = ironlake_get_pp_control(intel_dp);
1678 pp &= ~EDP_BLC_ENABLE;
1679
1680 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1681
1682 I915_WRITE(pp_ctrl_reg, pp);
1683 POSTING_READ(pp_ctrl_reg);
1684
1685 pps_unlock(intel_dp);
1686
1687 intel_dp->last_backlight_off = jiffies;
1688 edp_wait_backlight_off(intel_dp);
1689 }
1690
1691 /* Disable backlight PP control and backlight PWM. */
1692 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1693 {
1694 if (!is_edp(intel_dp))
1695 return;
1696
1697 DRM_DEBUG_KMS("\n");
1698
1699 _intel_edp_backlight_off(intel_dp);
1700 intel_panel_disable_backlight(intel_dp->attached_connector);
1701 }
1702
1703 /*
1704 * Hook for controlling the panel power control backlight through the bl_power
1705 * sysfs attribute. Take care to handle multiple calls.
1706 */
1707 static void intel_edp_backlight_power(struct intel_connector *connector,
1708 bool enable)
1709 {
1710 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1711 bool is_enabled;
1712
1713 pps_lock(intel_dp);
1714 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1715 pps_unlock(intel_dp);
1716
1717 if (is_enabled == enable)
1718 return;
1719
1720 DRM_DEBUG_KMS("panel power control backlight %s\n",
1721 enable ? "enable" : "disable");
1722
1723 if (enable)
1724 _intel_edp_backlight_on(intel_dp);
1725 else
1726 _intel_edp_backlight_off(intel_dp);
1727 }
1728
1729 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1730 {
1731 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1732 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1733 struct drm_device *dev = crtc->dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 u32 dpa_ctl;
1736
1737 assert_pipe_disabled(dev_priv,
1738 to_intel_crtc(crtc)->pipe);
1739
1740 DRM_DEBUG_KMS("\n");
1741 dpa_ctl = I915_READ(DP_A);
1742 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1743 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1744
1745 /* We don't adjust intel_dp->DP while tearing down the link, to
1746 * facilitate link retraining (e.g. after hotplug). Hence clear all
1747 * enable bits here to ensure that we don't enable too much. */
1748 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1749 intel_dp->DP |= DP_PLL_ENABLE;
1750 I915_WRITE(DP_A, intel_dp->DP);
1751 POSTING_READ(DP_A);
1752 udelay(200);
1753 }
1754
1755 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1756 {
1757 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1758 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1759 struct drm_device *dev = crtc->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 u32 dpa_ctl;
1762
1763 assert_pipe_disabled(dev_priv,
1764 to_intel_crtc(crtc)->pipe);
1765
1766 dpa_ctl = I915_READ(DP_A);
1767 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1768 "dp pll off, should be on\n");
1769 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1770
1771 /* We can't rely on the value tracked for the DP register in
1772 * intel_dp->DP because link_down must not change that (otherwise link
1773 * re-training will fail. */
1774 dpa_ctl &= ~DP_PLL_ENABLE;
1775 I915_WRITE(DP_A, dpa_ctl);
1776 POSTING_READ(DP_A);
1777 udelay(200);
1778 }
1779
1780 /* If the sink supports it, try to set the power state appropriately */
1781 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1782 {
1783 int ret, i;
1784
1785 /* Should have a valid DPCD by this point */
1786 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1787 return;
1788
1789 if (mode != DRM_MODE_DPMS_ON) {
1790 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1791 DP_SET_POWER_D3);
1792 } else {
1793 /*
1794 * When turning on, we need to retry for 1ms to give the sink
1795 * time to wake up.
1796 */
1797 for (i = 0; i < 3; i++) {
1798 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1799 DP_SET_POWER_D0);
1800 if (ret == 1)
1801 break;
1802 msleep(1);
1803 }
1804 }
1805
1806 if (ret != 1)
1807 DRM_DEBUG_KMS("failed to %s sink power state\n",
1808 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1809 }
1810
1811 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1812 enum pipe *pipe)
1813 {
1814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1815 enum port port = dp_to_dig_port(intel_dp)->port;
1816 struct drm_device *dev = encoder->base.dev;
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 enum intel_display_power_domain power_domain;
1819 u32 tmp;
1820
1821 power_domain = intel_display_port_power_domain(encoder);
1822 if (!intel_display_power_enabled(dev_priv, power_domain))
1823 return false;
1824
1825 tmp = I915_READ(intel_dp->output_reg);
1826
1827 if (!(tmp & DP_PORT_EN))
1828 return false;
1829
1830 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1831 *pipe = PORT_TO_PIPE_CPT(tmp);
1832 } else if (IS_CHERRYVIEW(dev)) {
1833 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1834 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1835 *pipe = PORT_TO_PIPE(tmp);
1836 } else {
1837 u32 trans_sel;
1838 u32 trans_dp;
1839 int i;
1840
1841 switch (intel_dp->output_reg) {
1842 case PCH_DP_B:
1843 trans_sel = TRANS_DP_PORT_SEL_B;
1844 break;
1845 case PCH_DP_C:
1846 trans_sel = TRANS_DP_PORT_SEL_C;
1847 break;
1848 case PCH_DP_D:
1849 trans_sel = TRANS_DP_PORT_SEL_D;
1850 break;
1851 default:
1852 return true;
1853 }
1854
1855 for_each_pipe(dev_priv, i) {
1856 trans_dp = I915_READ(TRANS_DP_CTL(i));
1857 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1858 *pipe = i;
1859 return true;
1860 }
1861 }
1862
1863 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1864 intel_dp->output_reg);
1865 }
1866
1867 return true;
1868 }
1869
1870 static void intel_dp_get_config(struct intel_encoder *encoder,
1871 struct intel_crtc_config *pipe_config)
1872 {
1873 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1874 u32 tmp, flags = 0;
1875 struct drm_device *dev = encoder->base.dev;
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 enum port port = dp_to_dig_port(intel_dp)->port;
1878 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1879 int dotclock;
1880
1881 tmp = I915_READ(intel_dp->output_reg);
1882 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1883 pipe_config->has_audio = true;
1884
1885 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1886 if (tmp & DP_SYNC_HS_HIGH)
1887 flags |= DRM_MODE_FLAG_PHSYNC;
1888 else
1889 flags |= DRM_MODE_FLAG_NHSYNC;
1890
1891 if (tmp & DP_SYNC_VS_HIGH)
1892 flags |= DRM_MODE_FLAG_PVSYNC;
1893 else
1894 flags |= DRM_MODE_FLAG_NVSYNC;
1895 } else {
1896 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1897 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1898 flags |= DRM_MODE_FLAG_PHSYNC;
1899 else
1900 flags |= DRM_MODE_FLAG_NHSYNC;
1901
1902 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1903 flags |= DRM_MODE_FLAG_PVSYNC;
1904 else
1905 flags |= DRM_MODE_FLAG_NVSYNC;
1906 }
1907
1908 pipe_config->adjusted_mode.flags |= flags;
1909
1910 pipe_config->has_dp_encoder = true;
1911
1912 intel_dp_get_m_n(crtc, pipe_config);
1913
1914 if (port == PORT_A) {
1915 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1916 pipe_config->port_clock = 162000;
1917 else
1918 pipe_config->port_clock = 270000;
1919 }
1920
1921 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1922 &pipe_config->dp_m_n);
1923
1924 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1925 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1926
1927 pipe_config->adjusted_mode.crtc_clock = dotclock;
1928
1929 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1930 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1931 /*
1932 * This is a big fat ugly hack.
1933 *
1934 * Some machines in UEFI boot mode provide us a VBT that has 18
1935 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1936 * unknown we fail to light up. Yet the same BIOS boots up with
1937 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1938 * max, not what it tells us to use.
1939 *
1940 * Note: This will still be broken if the eDP panel is not lit
1941 * up by the BIOS, and thus we can't get the mode at module
1942 * load.
1943 */
1944 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1945 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1946 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1947 }
1948 }
1949
1950 static bool is_edp_psr(struct intel_dp *intel_dp)
1951 {
1952 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1953 }
1954
1955 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1956 {
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958
1959 if (!HAS_PSR(dev))
1960 return false;
1961
1962 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1963 }
1964
1965 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1966 struct edp_vsc_psr *vsc_psr)
1967 {
1968 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1969 struct drm_device *dev = dig_port->base.base.dev;
1970 struct drm_i915_private *dev_priv = dev->dev_private;
1971 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1972 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1973 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1974 uint32_t *data = (uint32_t *) vsc_psr;
1975 unsigned int i;
1976
1977 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1978 the video DIP being updated before program video DIP data buffer
1979 registers for DIP being updated. */
1980 I915_WRITE(ctl_reg, 0);
1981 POSTING_READ(ctl_reg);
1982
1983 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1984 if (i < sizeof(struct edp_vsc_psr))
1985 I915_WRITE(data_reg + i, *data++);
1986 else
1987 I915_WRITE(data_reg + i, 0);
1988 }
1989
1990 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1991 POSTING_READ(ctl_reg);
1992 }
1993
1994 static void intel_edp_psr_setup_vsc(struct intel_dp *intel_dp)
1995 {
1996 struct edp_vsc_psr psr_vsc;
1997
1998 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1999 memset(&psr_vsc, 0, sizeof(psr_vsc));
2000 psr_vsc.sdp_header.HB0 = 0;
2001 psr_vsc.sdp_header.HB1 = 0x7;
2002 psr_vsc.sdp_header.HB2 = 0x2;
2003 psr_vsc.sdp_header.HB3 = 0x8;
2004 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2005 }
2006
2007 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2008 {
2009 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2010 struct drm_device *dev = dig_port->base.base.dev;
2011 struct drm_i915_private *dev_priv = dev->dev_private;
2012 uint32_t aux_clock_divider;
2013 int precharge = 0x3;
2014 int msg_size = 5; /* Header(4) + Message(1) */
2015 bool only_standby = false;
2016
2017 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2018
2019 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2020 only_standby = true;
2021
2022 /* Enable PSR in sink */
2023 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2024 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2025 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2026 else
2027 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2028 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2029
2030 /* Setup AUX registers */
2031 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
2032 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
2033 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2034 DP_AUX_CH_CTL_TIME_OUT_400us |
2035 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2036 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2037 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2038 }
2039
2040 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2041 {
2042 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2043 struct drm_device *dev = dig_port->base.base.dev;
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 uint32_t max_sleep_time = 0x1f;
2046 uint32_t idle_frames = 1;
2047 uint32_t val = 0x0;
2048 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2049 bool only_standby = false;
2050
2051 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2052 only_standby = true;
2053
2054 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2055 val |= EDP_PSR_LINK_STANDBY;
2056 val |= EDP_PSR_TP2_TP3_TIME_0us;
2057 val |= EDP_PSR_TP1_TIME_0us;
2058 val |= EDP_PSR_SKIP_AUX_EXIT;
2059 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2060 } else
2061 val |= EDP_PSR_LINK_DISABLE;
2062
2063 I915_WRITE(EDP_PSR_CTL(dev), val |
2064 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2065 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2066 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2067 EDP_PSR_ENABLE);
2068 }
2069
2070 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2071 {
2072 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2073 struct drm_device *dev = dig_port->base.base.dev;
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075 struct drm_crtc *crtc = dig_port->base.base.crtc;
2076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077
2078 lockdep_assert_held(&dev_priv->psr.lock);
2079 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2080 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2081
2082 dev_priv->psr.source_ok = false;
2083
2084 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2085 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2086 return false;
2087 }
2088
2089 if (!i915.enable_psr) {
2090 DRM_DEBUG_KMS("PSR disable by flag\n");
2091 return false;
2092 }
2093
2094 /* Below limitations aren't valid for Broadwell */
2095 if (IS_BROADWELL(dev))
2096 goto out;
2097
2098 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2099 S3D_ENABLE) {
2100 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2101 return false;
2102 }
2103
2104 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2105 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2106 return false;
2107 }
2108
2109 out:
2110 dev_priv->psr.source_ok = true;
2111 return true;
2112 }
2113
2114 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2115 {
2116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2117 struct drm_device *dev = intel_dig_port->base.base.dev;
2118 struct drm_i915_private *dev_priv = dev->dev_private;
2119
2120 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2121 WARN_ON(dev_priv->psr.active);
2122 lockdep_assert_held(&dev_priv->psr.lock);
2123
2124 /* Enable PSR on the panel */
2125 intel_edp_psr_enable_sink(intel_dp);
2126
2127 /* Enable PSR on the host */
2128 intel_edp_psr_enable_source(intel_dp);
2129
2130 dev_priv->psr.active = true;
2131 }
2132
2133 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2134 {
2135 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2136 struct drm_i915_private *dev_priv = dev->dev_private;
2137
2138 if (!HAS_PSR(dev)) {
2139 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2140 return;
2141 }
2142
2143 if (!is_edp_psr(intel_dp)) {
2144 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2145 return;
2146 }
2147
2148 mutex_lock(&dev_priv->psr.lock);
2149 if (dev_priv->psr.enabled) {
2150 DRM_DEBUG_KMS("PSR already in use\n");
2151 mutex_unlock(&dev_priv->psr.lock);
2152 return;
2153 }
2154
2155 dev_priv->psr.busy_frontbuffer_bits = 0;
2156
2157 intel_edp_psr_setup_vsc(intel_dp);
2158
2159 /* Avoid continuous PSR exit by masking memup and hpd */
2160 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2161 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2162
2163 if (intel_edp_psr_match_conditions(intel_dp))
2164 dev_priv->psr.enabled = intel_dp;
2165 mutex_unlock(&dev_priv->psr.lock);
2166 }
2167
2168 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2169 {
2170 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2171 struct drm_i915_private *dev_priv = dev->dev_private;
2172
2173 mutex_lock(&dev_priv->psr.lock);
2174 if (!dev_priv->psr.enabled) {
2175 mutex_unlock(&dev_priv->psr.lock);
2176 return;
2177 }
2178
2179 if (dev_priv->psr.active) {
2180 I915_WRITE(EDP_PSR_CTL(dev),
2181 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2182
2183 /* Wait till PSR is idle */
2184 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2185 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2186 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2187
2188 dev_priv->psr.active = false;
2189 } else {
2190 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2191 }
2192
2193 dev_priv->psr.enabled = NULL;
2194 mutex_unlock(&dev_priv->psr.lock);
2195
2196 cancel_delayed_work_sync(&dev_priv->psr.work);
2197 }
2198
2199 static void intel_edp_psr_work(struct work_struct *work)
2200 {
2201 struct drm_i915_private *dev_priv =
2202 container_of(work, typeof(*dev_priv), psr.work.work);
2203 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2204
2205 mutex_lock(&dev_priv->psr.lock);
2206 intel_dp = dev_priv->psr.enabled;
2207
2208 if (!intel_dp)
2209 goto unlock;
2210
2211 /*
2212 * The delayed work can race with an invalidate hence we need to
2213 * recheck. Since psr_flush first clears this and then reschedules we
2214 * won't ever miss a flush when bailing out here.
2215 */
2216 if (dev_priv->psr.busy_frontbuffer_bits)
2217 goto unlock;
2218
2219 intel_edp_psr_do_enable(intel_dp);
2220 unlock:
2221 mutex_unlock(&dev_priv->psr.lock);
2222 }
2223
2224 static void intel_edp_psr_do_exit(struct drm_device *dev)
2225 {
2226 struct drm_i915_private *dev_priv = dev->dev_private;
2227
2228 if (dev_priv->psr.active) {
2229 u32 val = I915_READ(EDP_PSR_CTL(dev));
2230
2231 WARN_ON(!(val & EDP_PSR_ENABLE));
2232
2233 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2234
2235 dev_priv->psr.active = false;
2236 }
2237
2238 }
2239
2240 void intel_edp_psr_invalidate(struct drm_device *dev,
2241 unsigned frontbuffer_bits)
2242 {
2243 struct drm_i915_private *dev_priv = dev->dev_private;
2244 struct drm_crtc *crtc;
2245 enum pipe pipe;
2246
2247 mutex_lock(&dev_priv->psr.lock);
2248 if (!dev_priv->psr.enabled) {
2249 mutex_unlock(&dev_priv->psr.lock);
2250 return;
2251 }
2252
2253 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2254 pipe = to_intel_crtc(crtc)->pipe;
2255
2256 intel_edp_psr_do_exit(dev);
2257
2258 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2259
2260 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2261 mutex_unlock(&dev_priv->psr.lock);
2262 }
2263
2264 void intel_edp_psr_flush(struct drm_device *dev,
2265 unsigned frontbuffer_bits)
2266 {
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct drm_crtc *crtc;
2269 enum pipe pipe;
2270
2271 mutex_lock(&dev_priv->psr.lock);
2272 if (!dev_priv->psr.enabled) {
2273 mutex_unlock(&dev_priv->psr.lock);
2274 return;
2275 }
2276
2277 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2278 pipe = to_intel_crtc(crtc)->pipe;
2279 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2280
2281 /*
2282 * On Haswell sprite plane updates don't result in a psr invalidating
2283 * signal in the hardware. Which means we need to manually fake this in
2284 * software for all flushes, not just when we've seen a preceding
2285 * invalidation through frontbuffer rendering.
2286 */
2287 if (IS_HASWELL(dev) &&
2288 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2289 intel_edp_psr_do_exit(dev);
2290
2291 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2292 schedule_delayed_work(&dev_priv->psr.work,
2293 msecs_to_jiffies(100));
2294 mutex_unlock(&dev_priv->psr.lock);
2295 }
2296
2297 void intel_edp_psr_init(struct drm_device *dev)
2298 {
2299 struct drm_i915_private *dev_priv = dev->dev_private;
2300
2301 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2302 mutex_init(&dev_priv->psr.lock);
2303 }
2304
2305 static void intel_disable_dp(struct intel_encoder *encoder)
2306 {
2307 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2308 struct drm_device *dev = encoder->base.dev;
2309
2310 /* Make sure the panel is off before trying to change the mode. But also
2311 * ensure that we have vdd while we switch off the panel. */
2312 intel_edp_panel_vdd_on(intel_dp);
2313 intel_edp_backlight_off(intel_dp);
2314 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2315 intel_edp_panel_off(intel_dp);
2316
2317 /* disable the port before the pipe on g4x */
2318 if (INTEL_INFO(dev)->gen < 5)
2319 intel_dp_link_down(intel_dp);
2320 }
2321
2322 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2323 {
2324 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2325 enum port port = dp_to_dig_port(intel_dp)->port;
2326
2327 intel_dp_link_down(intel_dp);
2328 if (port == PORT_A)
2329 ironlake_edp_pll_off(intel_dp);
2330 }
2331
2332 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2333 {
2334 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2335
2336 intel_dp_link_down(intel_dp);
2337 }
2338
2339 static void chv_post_disable_dp(struct intel_encoder *encoder)
2340 {
2341 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2342 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2343 struct drm_device *dev = encoder->base.dev;
2344 struct drm_i915_private *dev_priv = dev->dev_private;
2345 struct intel_crtc *intel_crtc =
2346 to_intel_crtc(encoder->base.crtc);
2347 enum dpio_channel ch = vlv_dport_to_channel(dport);
2348 enum pipe pipe = intel_crtc->pipe;
2349 u32 val;
2350
2351 intel_dp_link_down(intel_dp);
2352
2353 mutex_lock(&dev_priv->dpio_lock);
2354
2355 /* Propagate soft reset to data lane reset */
2356 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2357 val |= CHV_PCS_REQ_SOFTRESET_EN;
2358 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2359
2360 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2361 val |= CHV_PCS_REQ_SOFTRESET_EN;
2362 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2363
2364 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2365 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2366 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2367
2368 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2369 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2370 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2371
2372 mutex_unlock(&dev_priv->dpio_lock);
2373 }
2374
2375 static void
2376 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2377 uint32_t *DP,
2378 uint8_t dp_train_pat)
2379 {
2380 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2381 struct drm_device *dev = intel_dig_port->base.base.dev;
2382 struct drm_i915_private *dev_priv = dev->dev_private;
2383 enum port port = intel_dig_port->port;
2384
2385 if (HAS_DDI(dev)) {
2386 uint32_t temp = I915_READ(DP_TP_CTL(port));
2387
2388 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2389 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2390 else
2391 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2392
2393 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2394 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2395 case DP_TRAINING_PATTERN_DISABLE:
2396 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2397
2398 break;
2399 case DP_TRAINING_PATTERN_1:
2400 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2401 break;
2402 case DP_TRAINING_PATTERN_2:
2403 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2404 break;
2405 case DP_TRAINING_PATTERN_3:
2406 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2407 break;
2408 }
2409 I915_WRITE(DP_TP_CTL(port), temp);
2410
2411 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2412 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2413
2414 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2415 case DP_TRAINING_PATTERN_DISABLE:
2416 *DP |= DP_LINK_TRAIN_OFF_CPT;
2417 break;
2418 case DP_TRAINING_PATTERN_1:
2419 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2420 break;
2421 case DP_TRAINING_PATTERN_2:
2422 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2423 break;
2424 case DP_TRAINING_PATTERN_3:
2425 DRM_ERROR("DP training pattern 3 not supported\n");
2426 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2427 break;
2428 }
2429
2430 } else {
2431 if (IS_CHERRYVIEW(dev))
2432 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2433 else
2434 *DP &= ~DP_LINK_TRAIN_MASK;
2435
2436 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2437 case DP_TRAINING_PATTERN_DISABLE:
2438 *DP |= DP_LINK_TRAIN_OFF;
2439 break;
2440 case DP_TRAINING_PATTERN_1:
2441 *DP |= DP_LINK_TRAIN_PAT_1;
2442 break;
2443 case DP_TRAINING_PATTERN_2:
2444 *DP |= DP_LINK_TRAIN_PAT_2;
2445 break;
2446 case DP_TRAINING_PATTERN_3:
2447 if (IS_CHERRYVIEW(dev)) {
2448 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2449 } else {
2450 DRM_ERROR("DP training pattern 3 not supported\n");
2451 *DP |= DP_LINK_TRAIN_PAT_2;
2452 }
2453 break;
2454 }
2455 }
2456 }
2457
2458 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2459 {
2460 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2461 struct drm_i915_private *dev_priv = dev->dev_private;
2462
2463 intel_dp->DP |= DP_PORT_EN;
2464
2465 /* enable with pattern 1 (as per spec) */
2466 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2467 DP_TRAINING_PATTERN_1);
2468
2469 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2470 POSTING_READ(intel_dp->output_reg);
2471 }
2472
2473 static void intel_enable_dp(struct intel_encoder *encoder)
2474 {
2475 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2476 struct drm_device *dev = encoder->base.dev;
2477 struct drm_i915_private *dev_priv = dev->dev_private;
2478 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2479
2480 if (WARN_ON(dp_reg & DP_PORT_EN))
2481 return;
2482
2483 intel_dp_enable_port(intel_dp);
2484 intel_edp_panel_vdd_on(intel_dp);
2485 intel_edp_panel_on(intel_dp);
2486 intel_edp_panel_vdd_off(intel_dp, true);
2487 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2488 intel_dp_start_link_train(intel_dp);
2489 intel_dp_complete_link_train(intel_dp);
2490 intel_dp_stop_link_train(intel_dp);
2491 }
2492
2493 static void g4x_enable_dp(struct intel_encoder *encoder)
2494 {
2495 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2496
2497 intel_enable_dp(encoder);
2498 intel_edp_backlight_on(intel_dp);
2499 }
2500
2501 static void vlv_enable_dp(struct intel_encoder *encoder)
2502 {
2503 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2504
2505 intel_edp_backlight_on(intel_dp);
2506 }
2507
2508 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2509 {
2510 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2511 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2512
2513 intel_dp_prepare(encoder);
2514
2515 /* Only ilk+ has port A */
2516 if (dport->port == PORT_A) {
2517 ironlake_set_pll_cpu_edp(intel_dp);
2518 ironlake_edp_pll_on(intel_dp);
2519 }
2520 }
2521
2522 static void vlv_steal_power_sequencer(struct drm_device *dev,
2523 enum pipe pipe)
2524 {
2525 struct drm_i915_private *dev_priv = dev->dev_private;
2526 struct intel_encoder *encoder;
2527
2528 lockdep_assert_held(&dev_priv->pps_mutex);
2529
2530 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2531 base.head) {
2532 struct intel_dp *intel_dp;
2533 enum port port;
2534
2535 if (encoder->type != INTEL_OUTPUT_EDP)
2536 continue;
2537
2538 intel_dp = enc_to_intel_dp(&encoder->base);
2539 port = dp_to_dig_port(intel_dp)->port;
2540
2541 if (intel_dp->pps_pipe != pipe)
2542 continue;
2543
2544 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2545 pipe_name(pipe), port_name(port));
2546
2547 /* make sure vdd is off before we steal it */
2548 edp_panel_vdd_off_sync(intel_dp);
2549
2550 intel_dp->pps_pipe = INVALID_PIPE;
2551 }
2552 }
2553
2554 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2555 {
2556 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2557 struct intel_encoder *encoder = &intel_dig_port->base;
2558 struct drm_device *dev = encoder->base.dev;
2559 struct drm_i915_private *dev_priv = dev->dev_private;
2560 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2561 struct edp_power_seq power_seq;
2562
2563 lockdep_assert_held(&dev_priv->pps_mutex);
2564
2565 if (intel_dp->pps_pipe == crtc->pipe)
2566 return;
2567
2568 /*
2569 * If another power sequencer was being used on this
2570 * port previously make sure to turn off vdd there while
2571 * we still have control of it.
2572 */
2573 if (intel_dp->pps_pipe != INVALID_PIPE)
2574 edp_panel_vdd_off_sync(intel_dp);
2575
2576 /*
2577 * We may be stealing the power
2578 * sequencer from another port.
2579 */
2580 vlv_steal_power_sequencer(dev, crtc->pipe);
2581
2582 /* now it's all ours */
2583 intel_dp->pps_pipe = crtc->pipe;
2584
2585 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2586 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2587
2588 /* init power sequencer on this pipe and port */
2589 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2590 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2591 &power_seq);
2592 }
2593
2594 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2595 {
2596 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2597 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2598 struct drm_device *dev = encoder->base.dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2601 enum dpio_channel port = vlv_dport_to_channel(dport);
2602 int pipe = intel_crtc->pipe;
2603 u32 val;
2604
2605 mutex_lock(&dev_priv->dpio_lock);
2606
2607 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2608 val = 0;
2609 if (pipe)
2610 val |= (1<<21);
2611 else
2612 val &= ~(1<<21);
2613 val |= 0x001000c4;
2614 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2615 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2616 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2617
2618 mutex_unlock(&dev_priv->dpio_lock);
2619
2620 if (is_edp(intel_dp)) {
2621 pps_lock(intel_dp);
2622 vlv_init_panel_power_sequencer(intel_dp);
2623 pps_unlock(intel_dp);
2624 }
2625
2626 intel_enable_dp(encoder);
2627
2628 vlv_wait_port_ready(dev_priv, dport);
2629 }
2630
2631 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2632 {
2633 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2634 struct drm_device *dev = encoder->base.dev;
2635 struct drm_i915_private *dev_priv = dev->dev_private;
2636 struct intel_crtc *intel_crtc =
2637 to_intel_crtc(encoder->base.crtc);
2638 enum dpio_channel port = vlv_dport_to_channel(dport);
2639 int pipe = intel_crtc->pipe;
2640
2641 intel_dp_prepare(encoder);
2642
2643 /* Program Tx lane resets to default */
2644 mutex_lock(&dev_priv->dpio_lock);
2645 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2646 DPIO_PCS_TX_LANE2_RESET |
2647 DPIO_PCS_TX_LANE1_RESET);
2648 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2649 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2650 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2651 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2652 DPIO_PCS_CLK_SOFT_RESET);
2653
2654 /* Fix up inter-pair skew failure */
2655 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2656 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2657 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2658 mutex_unlock(&dev_priv->dpio_lock);
2659 }
2660
2661 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2662 {
2663 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2664 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2665 struct drm_device *dev = encoder->base.dev;
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 struct intel_crtc *intel_crtc =
2668 to_intel_crtc(encoder->base.crtc);
2669 enum dpio_channel ch = vlv_dport_to_channel(dport);
2670 int pipe = intel_crtc->pipe;
2671 int data, i;
2672 u32 val;
2673
2674 mutex_lock(&dev_priv->dpio_lock);
2675
2676 /* Deassert soft data lane reset*/
2677 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2678 val |= CHV_PCS_REQ_SOFTRESET_EN;
2679 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2680
2681 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2682 val |= CHV_PCS_REQ_SOFTRESET_EN;
2683 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2684
2685 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2686 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2687 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2688
2689 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2690 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2691 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2692
2693 /* Program Tx lane latency optimal setting*/
2694 for (i = 0; i < 4; i++) {
2695 /* Set the latency optimal bit */
2696 data = (i == 1) ? 0x0 : 0x6;
2697 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2698 data << DPIO_FRC_LATENCY_SHFIT);
2699
2700 /* Set the upar bit */
2701 data = (i == 1) ? 0x0 : 0x1;
2702 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2703 data << DPIO_UPAR_SHIFT);
2704 }
2705
2706 /* Data lane stagger programming */
2707 /* FIXME: Fix up value only after power analysis */
2708
2709 mutex_unlock(&dev_priv->dpio_lock);
2710
2711 if (is_edp(intel_dp)) {
2712 pps_lock(intel_dp);
2713 vlv_init_panel_power_sequencer(intel_dp);
2714 pps_unlock(intel_dp);
2715 }
2716
2717 intel_enable_dp(encoder);
2718
2719 vlv_wait_port_ready(dev_priv, dport);
2720 }
2721
2722 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2723 {
2724 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2725 struct drm_device *dev = encoder->base.dev;
2726 struct drm_i915_private *dev_priv = dev->dev_private;
2727 struct intel_crtc *intel_crtc =
2728 to_intel_crtc(encoder->base.crtc);
2729 enum dpio_channel ch = vlv_dport_to_channel(dport);
2730 enum pipe pipe = intel_crtc->pipe;
2731 u32 val;
2732
2733 intel_dp_prepare(encoder);
2734
2735 mutex_lock(&dev_priv->dpio_lock);
2736
2737 /* program left/right clock distribution */
2738 if (pipe != PIPE_B) {
2739 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2740 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2741 if (ch == DPIO_CH0)
2742 val |= CHV_BUFLEFTENA1_FORCE;
2743 if (ch == DPIO_CH1)
2744 val |= CHV_BUFRIGHTENA1_FORCE;
2745 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2746 } else {
2747 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2748 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2749 if (ch == DPIO_CH0)
2750 val |= CHV_BUFLEFTENA2_FORCE;
2751 if (ch == DPIO_CH1)
2752 val |= CHV_BUFRIGHTENA2_FORCE;
2753 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2754 }
2755
2756 /* program clock channel usage */
2757 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2758 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2759 if (pipe != PIPE_B)
2760 val &= ~CHV_PCS_USEDCLKCHANNEL;
2761 else
2762 val |= CHV_PCS_USEDCLKCHANNEL;
2763 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2764
2765 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2766 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2767 if (pipe != PIPE_B)
2768 val &= ~CHV_PCS_USEDCLKCHANNEL;
2769 else
2770 val |= CHV_PCS_USEDCLKCHANNEL;
2771 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2772
2773 /*
2774 * This a a bit weird since generally CL
2775 * matches the pipe, but here we need to
2776 * pick the CL based on the port.
2777 */
2778 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2779 if (pipe != PIPE_B)
2780 val &= ~CHV_CMN_USEDCLKCHANNEL;
2781 else
2782 val |= CHV_CMN_USEDCLKCHANNEL;
2783 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2784
2785 mutex_unlock(&dev_priv->dpio_lock);
2786 }
2787
2788 /*
2789 * Native read with retry for link status and receiver capability reads for
2790 * cases where the sink may still be asleep.
2791 *
2792 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2793 * supposed to retry 3 times per the spec.
2794 */
2795 static ssize_t
2796 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2797 void *buffer, size_t size)
2798 {
2799 ssize_t ret;
2800 int i;
2801
2802 for (i = 0; i < 3; i++) {
2803 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2804 if (ret == size)
2805 return ret;
2806 msleep(1);
2807 }
2808
2809 return ret;
2810 }
2811
2812 /*
2813 * Fetch AUX CH registers 0x202 - 0x207 which contain
2814 * link status information
2815 */
2816 static bool
2817 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2818 {
2819 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2820 DP_LANE0_1_STATUS,
2821 link_status,
2822 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2823 }
2824
2825 /* These are source-specific values. */
2826 static uint8_t
2827 intel_dp_voltage_max(struct intel_dp *intel_dp)
2828 {
2829 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2830 enum port port = dp_to_dig_port(intel_dp)->port;
2831
2832 if (IS_VALLEYVIEW(dev))
2833 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2834 else if (IS_GEN7(dev) && port == PORT_A)
2835 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2836 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2837 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2838 else
2839 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2840 }
2841
2842 static uint8_t
2843 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2844 {
2845 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2846 enum port port = dp_to_dig_port(intel_dp)->port;
2847
2848 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2849 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2850 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2851 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2852 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2853 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2854 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2855 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2856 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2857 default:
2858 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2859 }
2860 } else if (IS_VALLEYVIEW(dev)) {
2861 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2862 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2863 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2864 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2865 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2866 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2867 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2868 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2869 default:
2870 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2871 }
2872 } else if (IS_GEN7(dev) && port == PORT_A) {
2873 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2874 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2875 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2876 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2877 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2878 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2879 default:
2880 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2881 }
2882 } else {
2883 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2884 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2885 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2886 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2887 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2888 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2889 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2890 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2891 default:
2892 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2893 }
2894 }
2895 }
2896
2897 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2898 {
2899 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2900 struct drm_i915_private *dev_priv = dev->dev_private;
2901 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2902 struct intel_crtc *intel_crtc =
2903 to_intel_crtc(dport->base.base.crtc);
2904 unsigned long demph_reg_value, preemph_reg_value,
2905 uniqtranscale_reg_value;
2906 uint8_t train_set = intel_dp->train_set[0];
2907 enum dpio_channel port = vlv_dport_to_channel(dport);
2908 int pipe = intel_crtc->pipe;
2909
2910 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2911 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2912 preemph_reg_value = 0x0004000;
2913 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2914 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2915 demph_reg_value = 0x2B405555;
2916 uniqtranscale_reg_value = 0x552AB83A;
2917 break;
2918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2919 demph_reg_value = 0x2B404040;
2920 uniqtranscale_reg_value = 0x5548B83A;
2921 break;
2922 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2923 demph_reg_value = 0x2B245555;
2924 uniqtranscale_reg_value = 0x5560B83A;
2925 break;
2926 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2927 demph_reg_value = 0x2B405555;
2928 uniqtranscale_reg_value = 0x5598DA3A;
2929 break;
2930 default:
2931 return 0;
2932 }
2933 break;
2934 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2935 preemph_reg_value = 0x0002000;
2936 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2938 demph_reg_value = 0x2B404040;
2939 uniqtranscale_reg_value = 0x5552B83A;
2940 break;
2941 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2942 demph_reg_value = 0x2B404848;
2943 uniqtranscale_reg_value = 0x5580B83A;
2944 break;
2945 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2946 demph_reg_value = 0x2B404040;
2947 uniqtranscale_reg_value = 0x55ADDA3A;
2948 break;
2949 default:
2950 return 0;
2951 }
2952 break;
2953 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2954 preemph_reg_value = 0x0000000;
2955 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2956 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2957 demph_reg_value = 0x2B305555;
2958 uniqtranscale_reg_value = 0x5570B83A;
2959 break;
2960 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2961 demph_reg_value = 0x2B2B4040;
2962 uniqtranscale_reg_value = 0x55ADDA3A;
2963 break;
2964 default:
2965 return 0;
2966 }
2967 break;
2968 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2969 preemph_reg_value = 0x0006000;
2970 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2972 demph_reg_value = 0x1B405555;
2973 uniqtranscale_reg_value = 0x55ADDA3A;
2974 break;
2975 default:
2976 return 0;
2977 }
2978 break;
2979 default:
2980 return 0;
2981 }
2982
2983 mutex_lock(&dev_priv->dpio_lock);
2984 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2985 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2986 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2987 uniqtranscale_reg_value);
2988 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2989 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2990 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2991 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2992 mutex_unlock(&dev_priv->dpio_lock);
2993
2994 return 0;
2995 }
2996
2997 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2998 {
2999 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3002 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3003 u32 deemph_reg_value, margin_reg_value, val;
3004 uint8_t train_set = intel_dp->train_set[0];
3005 enum dpio_channel ch = vlv_dport_to_channel(dport);
3006 enum pipe pipe = intel_crtc->pipe;
3007 int i;
3008
3009 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3010 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3011 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3012 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3013 deemph_reg_value = 128;
3014 margin_reg_value = 52;
3015 break;
3016 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3017 deemph_reg_value = 128;
3018 margin_reg_value = 77;
3019 break;
3020 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3021 deemph_reg_value = 128;
3022 margin_reg_value = 102;
3023 break;
3024 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3025 deemph_reg_value = 128;
3026 margin_reg_value = 154;
3027 /* FIXME extra to set for 1200 */
3028 break;
3029 default:
3030 return 0;
3031 }
3032 break;
3033 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3034 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3035 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3036 deemph_reg_value = 85;
3037 margin_reg_value = 78;
3038 break;
3039 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3040 deemph_reg_value = 85;
3041 margin_reg_value = 116;
3042 break;
3043 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3044 deemph_reg_value = 85;
3045 margin_reg_value = 154;
3046 break;
3047 default:
3048 return 0;
3049 }
3050 break;
3051 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3052 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3053 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3054 deemph_reg_value = 64;
3055 margin_reg_value = 104;
3056 break;
3057 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3058 deemph_reg_value = 64;
3059 margin_reg_value = 154;
3060 break;
3061 default:
3062 return 0;
3063 }
3064 break;
3065 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3066 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3067 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3068 deemph_reg_value = 43;
3069 margin_reg_value = 154;
3070 break;
3071 default:
3072 return 0;
3073 }
3074 break;
3075 default:
3076 return 0;
3077 }
3078
3079 mutex_lock(&dev_priv->dpio_lock);
3080
3081 /* Clear calc init */
3082 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3083 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3084 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3085
3086 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3087 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3088 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3089
3090 /* Program swing deemph */
3091 for (i = 0; i < 4; i++) {
3092 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3093 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3094 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3095 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3096 }
3097
3098 /* Program swing margin */
3099 for (i = 0; i < 4; i++) {
3100 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3101 val &= ~DPIO_SWING_MARGIN000_MASK;
3102 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3103 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3104 }
3105
3106 /* Disable unique transition scale */
3107 for (i = 0; i < 4; i++) {
3108 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3109 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3110 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3111 }
3112
3113 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3114 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3115 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3116 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3117
3118 /*
3119 * The document said it needs to set bit 27 for ch0 and bit 26
3120 * for ch1. Might be a typo in the doc.
3121 * For now, for this unique transition scale selection, set bit
3122 * 27 for ch0 and ch1.
3123 */
3124 for (i = 0; i < 4; i++) {
3125 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3126 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3127 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3128 }
3129
3130 for (i = 0; i < 4; i++) {
3131 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3132 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3133 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3134 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3135 }
3136 }
3137
3138 /* Start swing calculation */
3139 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3140 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3141 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3142
3143 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3144 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3145 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3146
3147 /* LRC Bypass */
3148 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3149 val |= DPIO_LRC_BYPASS;
3150 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3151
3152 mutex_unlock(&dev_priv->dpio_lock);
3153
3154 return 0;
3155 }
3156
3157 static void
3158 intel_get_adjust_train(struct intel_dp *intel_dp,
3159 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3160 {
3161 uint8_t v = 0;
3162 uint8_t p = 0;
3163 int lane;
3164 uint8_t voltage_max;
3165 uint8_t preemph_max;
3166
3167 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3168 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3169 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3170
3171 if (this_v > v)
3172 v = this_v;
3173 if (this_p > p)
3174 p = this_p;
3175 }
3176
3177 voltage_max = intel_dp_voltage_max(intel_dp);
3178 if (v >= voltage_max)
3179 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3180
3181 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3182 if (p >= preemph_max)
3183 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3184
3185 for (lane = 0; lane < 4; lane++)
3186 intel_dp->train_set[lane] = v | p;
3187 }
3188
3189 static uint32_t
3190 intel_gen4_signal_levels(uint8_t train_set)
3191 {
3192 uint32_t signal_levels = 0;
3193
3194 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3196 default:
3197 signal_levels |= DP_VOLTAGE_0_4;
3198 break;
3199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3200 signal_levels |= DP_VOLTAGE_0_6;
3201 break;
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3203 signal_levels |= DP_VOLTAGE_0_8;
3204 break;
3205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3206 signal_levels |= DP_VOLTAGE_1_2;
3207 break;
3208 }
3209 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3210 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3211 default:
3212 signal_levels |= DP_PRE_EMPHASIS_0;
3213 break;
3214 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3215 signal_levels |= DP_PRE_EMPHASIS_3_5;
3216 break;
3217 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3218 signal_levels |= DP_PRE_EMPHASIS_6;
3219 break;
3220 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3221 signal_levels |= DP_PRE_EMPHASIS_9_5;
3222 break;
3223 }
3224 return signal_levels;
3225 }
3226
3227 /* Gen6's DP voltage swing and pre-emphasis control */
3228 static uint32_t
3229 intel_gen6_edp_signal_levels(uint8_t train_set)
3230 {
3231 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3232 DP_TRAIN_PRE_EMPHASIS_MASK);
3233 switch (signal_levels) {
3234 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3235 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3236 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3237 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3238 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3239 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3240 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3241 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3242 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3243 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3244 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3245 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3246 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3247 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3248 default:
3249 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3250 "0x%x\n", signal_levels);
3251 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3252 }
3253 }
3254
3255 /* Gen7's DP voltage swing and pre-emphasis control */
3256 static uint32_t
3257 intel_gen7_edp_signal_levels(uint8_t train_set)
3258 {
3259 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3260 DP_TRAIN_PRE_EMPHASIS_MASK);
3261 switch (signal_levels) {
3262 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3263 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3264 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3265 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3266 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3267 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3268
3269 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3270 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3272 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3273
3274 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3275 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3276 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3277 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3278
3279 default:
3280 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3281 "0x%x\n", signal_levels);
3282 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3283 }
3284 }
3285
3286 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3287 static uint32_t
3288 intel_hsw_signal_levels(uint8_t train_set)
3289 {
3290 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3291 DP_TRAIN_PRE_EMPHASIS_MASK);
3292 switch (signal_levels) {
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3294 return DDI_BUF_TRANS_SELECT(0);
3295 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3296 return DDI_BUF_TRANS_SELECT(1);
3297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3298 return DDI_BUF_TRANS_SELECT(2);
3299 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3300 return DDI_BUF_TRANS_SELECT(3);
3301
3302 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3303 return DDI_BUF_TRANS_SELECT(4);
3304 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3305 return DDI_BUF_TRANS_SELECT(5);
3306 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3307 return DDI_BUF_TRANS_SELECT(6);
3308
3309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3310 return DDI_BUF_TRANS_SELECT(7);
3311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3312 return DDI_BUF_TRANS_SELECT(8);
3313 default:
3314 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3315 "0x%x\n", signal_levels);
3316 return DDI_BUF_TRANS_SELECT(0);
3317 }
3318 }
3319
3320 /* Properly updates "DP" with the correct signal levels. */
3321 static void
3322 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3323 {
3324 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3325 enum port port = intel_dig_port->port;
3326 struct drm_device *dev = intel_dig_port->base.base.dev;
3327 uint32_t signal_levels, mask;
3328 uint8_t train_set = intel_dp->train_set[0];
3329
3330 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3331 signal_levels = intel_hsw_signal_levels(train_set);
3332 mask = DDI_BUF_EMP_MASK;
3333 } else if (IS_CHERRYVIEW(dev)) {
3334 signal_levels = intel_chv_signal_levels(intel_dp);
3335 mask = 0;
3336 } else if (IS_VALLEYVIEW(dev)) {
3337 signal_levels = intel_vlv_signal_levels(intel_dp);
3338 mask = 0;
3339 } else if (IS_GEN7(dev) && port == PORT_A) {
3340 signal_levels = intel_gen7_edp_signal_levels(train_set);
3341 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3342 } else if (IS_GEN6(dev) && port == PORT_A) {
3343 signal_levels = intel_gen6_edp_signal_levels(train_set);
3344 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3345 } else {
3346 signal_levels = intel_gen4_signal_levels(train_set);
3347 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3348 }
3349
3350 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3351
3352 *DP = (*DP & ~mask) | signal_levels;
3353 }
3354
3355 static bool
3356 intel_dp_set_link_train(struct intel_dp *intel_dp,
3357 uint32_t *DP,
3358 uint8_t dp_train_pat)
3359 {
3360 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3361 struct drm_device *dev = intel_dig_port->base.base.dev;
3362 struct drm_i915_private *dev_priv = dev->dev_private;
3363 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3364 int ret, len;
3365
3366 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3367
3368 I915_WRITE(intel_dp->output_reg, *DP);
3369 POSTING_READ(intel_dp->output_reg);
3370
3371 buf[0] = dp_train_pat;
3372 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3373 DP_TRAINING_PATTERN_DISABLE) {
3374 /* don't write DP_TRAINING_LANEx_SET on disable */
3375 len = 1;
3376 } else {
3377 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3378 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3379 len = intel_dp->lane_count + 1;
3380 }
3381
3382 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3383 buf, len);
3384
3385 return ret == len;
3386 }
3387
3388 static bool
3389 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3390 uint8_t dp_train_pat)
3391 {
3392 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3393 intel_dp_set_signal_levels(intel_dp, DP);
3394 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3395 }
3396
3397 static bool
3398 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3399 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3400 {
3401 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3402 struct drm_device *dev = intel_dig_port->base.base.dev;
3403 struct drm_i915_private *dev_priv = dev->dev_private;
3404 int ret;
3405
3406 intel_get_adjust_train(intel_dp, link_status);
3407 intel_dp_set_signal_levels(intel_dp, DP);
3408
3409 I915_WRITE(intel_dp->output_reg, *DP);
3410 POSTING_READ(intel_dp->output_reg);
3411
3412 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3413 intel_dp->train_set, intel_dp->lane_count);
3414
3415 return ret == intel_dp->lane_count;
3416 }
3417
3418 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3419 {
3420 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3421 struct drm_device *dev = intel_dig_port->base.base.dev;
3422 struct drm_i915_private *dev_priv = dev->dev_private;
3423 enum port port = intel_dig_port->port;
3424 uint32_t val;
3425
3426 if (!HAS_DDI(dev))
3427 return;
3428
3429 val = I915_READ(DP_TP_CTL(port));
3430 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3431 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3432 I915_WRITE(DP_TP_CTL(port), val);
3433
3434 /*
3435 * On PORT_A we can have only eDP in SST mode. There the only reason
3436 * we need to set idle transmission mode is to work around a HW issue
3437 * where we enable the pipe while not in idle link-training mode.
3438 * In this case there is requirement to wait for a minimum number of
3439 * idle patterns to be sent.
3440 */
3441 if (port == PORT_A)
3442 return;
3443
3444 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3445 1))
3446 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3447 }
3448
3449 /* Enable corresponding port and start training pattern 1 */
3450 void
3451 intel_dp_start_link_train(struct intel_dp *intel_dp)
3452 {
3453 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3454 struct drm_device *dev = encoder->dev;
3455 int i;
3456 uint8_t voltage;
3457 int voltage_tries, loop_tries;
3458 uint32_t DP = intel_dp->DP;
3459 uint8_t link_config[2];
3460
3461 if (HAS_DDI(dev))
3462 intel_ddi_prepare_link_retrain(encoder);
3463
3464 /* Write the link configuration data */
3465 link_config[0] = intel_dp->link_bw;
3466 link_config[1] = intel_dp->lane_count;
3467 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3468 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3469 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3470
3471 link_config[0] = 0;
3472 link_config[1] = DP_SET_ANSI_8B10B;
3473 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3474
3475 DP |= DP_PORT_EN;
3476
3477 /* clock recovery */
3478 if (!intel_dp_reset_link_train(intel_dp, &DP,
3479 DP_TRAINING_PATTERN_1 |
3480 DP_LINK_SCRAMBLING_DISABLE)) {
3481 DRM_ERROR("failed to enable link training\n");
3482 return;
3483 }
3484
3485 voltage = 0xff;
3486 voltage_tries = 0;
3487 loop_tries = 0;
3488 for (;;) {
3489 uint8_t link_status[DP_LINK_STATUS_SIZE];
3490
3491 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3492 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3493 DRM_ERROR("failed to get link status\n");
3494 break;
3495 }
3496
3497 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3498 DRM_DEBUG_KMS("clock recovery OK\n");
3499 break;
3500 }
3501
3502 /* Check to see if we've tried the max voltage */
3503 for (i = 0; i < intel_dp->lane_count; i++)
3504 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3505 break;
3506 if (i == intel_dp->lane_count) {
3507 ++loop_tries;
3508 if (loop_tries == 5) {
3509 DRM_ERROR("too many full retries, give up\n");
3510 break;
3511 }
3512 intel_dp_reset_link_train(intel_dp, &DP,
3513 DP_TRAINING_PATTERN_1 |
3514 DP_LINK_SCRAMBLING_DISABLE);
3515 voltage_tries = 0;
3516 continue;
3517 }
3518
3519 /* Check to see if we've tried the same voltage 5 times */
3520 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3521 ++voltage_tries;
3522 if (voltage_tries == 5) {
3523 DRM_ERROR("too many voltage retries, give up\n");
3524 break;
3525 }
3526 } else
3527 voltage_tries = 0;
3528 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3529
3530 /* Update training set as requested by target */
3531 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3532 DRM_ERROR("failed to update link training\n");
3533 break;
3534 }
3535 }
3536
3537 intel_dp->DP = DP;
3538 }
3539
3540 void
3541 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3542 {
3543 bool channel_eq = false;
3544 int tries, cr_tries;
3545 uint32_t DP = intel_dp->DP;
3546 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3547
3548 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3549 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3550 training_pattern = DP_TRAINING_PATTERN_3;
3551
3552 /* channel equalization */
3553 if (!intel_dp_set_link_train(intel_dp, &DP,
3554 training_pattern |
3555 DP_LINK_SCRAMBLING_DISABLE)) {
3556 DRM_ERROR("failed to start channel equalization\n");
3557 return;
3558 }
3559
3560 tries = 0;
3561 cr_tries = 0;
3562 channel_eq = false;
3563 for (;;) {
3564 uint8_t link_status[DP_LINK_STATUS_SIZE];
3565
3566 if (cr_tries > 5) {
3567 DRM_ERROR("failed to train DP, aborting\n");
3568 break;
3569 }
3570
3571 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3572 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3573 DRM_ERROR("failed to get link status\n");
3574 break;
3575 }
3576
3577 /* Make sure clock is still ok */
3578 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3579 intel_dp_start_link_train(intel_dp);
3580 intel_dp_set_link_train(intel_dp, &DP,
3581 training_pattern |
3582 DP_LINK_SCRAMBLING_DISABLE);
3583 cr_tries++;
3584 continue;
3585 }
3586
3587 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3588 channel_eq = true;
3589 break;
3590 }
3591
3592 /* Try 5 times, then try clock recovery if that fails */
3593 if (tries > 5) {
3594 intel_dp_link_down(intel_dp);
3595 intel_dp_start_link_train(intel_dp);
3596 intel_dp_set_link_train(intel_dp, &DP,
3597 training_pattern |
3598 DP_LINK_SCRAMBLING_DISABLE);
3599 tries = 0;
3600 cr_tries++;
3601 continue;
3602 }
3603
3604 /* Update training set as requested by target */
3605 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3606 DRM_ERROR("failed to update link training\n");
3607 break;
3608 }
3609 ++tries;
3610 }
3611
3612 intel_dp_set_idle_link_train(intel_dp);
3613
3614 intel_dp->DP = DP;
3615
3616 if (channel_eq)
3617 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3618
3619 }
3620
3621 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3622 {
3623 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3624 DP_TRAINING_PATTERN_DISABLE);
3625 }
3626
3627 static void
3628 intel_dp_link_down(struct intel_dp *intel_dp)
3629 {
3630 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3631 enum port port = intel_dig_port->port;
3632 struct drm_device *dev = intel_dig_port->base.base.dev;
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 struct intel_crtc *intel_crtc =
3635 to_intel_crtc(intel_dig_port->base.base.crtc);
3636 uint32_t DP = intel_dp->DP;
3637
3638 if (WARN_ON(HAS_DDI(dev)))
3639 return;
3640
3641 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3642 return;
3643
3644 DRM_DEBUG_KMS("\n");
3645
3646 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3647 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3648 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3649 } else {
3650 if (IS_CHERRYVIEW(dev))
3651 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3652 else
3653 DP &= ~DP_LINK_TRAIN_MASK;
3654 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3655 }
3656 POSTING_READ(intel_dp->output_reg);
3657
3658 if (HAS_PCH_IBX(dev) &&
3659 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3660 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3661
3662 /* Hardware workaround: leaving our transcoder select
3663 * set to transcoder B while it's off will prevent the
3664 * corresponding HDMI output on transcoder A.
3665 *
3666 * Combine this with another hardware workaround:
3667 * transcoder select bit can only be cleared while the
3668 * port is enabled.
3669 */
3670 DP &= ~DP_PIPEB_SELECT;
3671 I915_WRITE(intel_dp->output_reg, DP);
3672
3673 /* Changes to enable or select take place the vblank
3674 * after being written.
3675 */
3676 if (WARN_ON(crtc == NULL)) {
3677 /* We should never try to disable a port without a crtc
3678 * attached. For paranoia keep the code around for a
3679 * bit. */
3680 POSTING_READ(intel_dp->output_reg);
3681 msleep(50);
3682 } else
3683 intel_wait_for_vblank(dev, intel_crtc->pipe);
3684 }
3685
3686 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3687 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3688 POSTING_READ(intel_dp->output_reg);
3689 msleep(intel_dp->panel_power_down_delay);
3690 }
3691
3692 static bool
3693 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3694 {
3695 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3696 struct drm_device *dev = dig_port->base.base.dev;
3697 struct drm_i915_private *dev_priv = dev->dev_private;
3698
3699 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3700 sizeof(intel_dp->dpcd)) < 0)
3701 return false; /* aux transfer failed */
3702
3703 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3704
3705 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3706 return false; /* DPCD not present */
3707
3708 /* Check if the panel supports PSR */
3709 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3710 if (is_edp(intel_dp)) {
3711 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3712 intel_dp->psr_dpcd,
3713 sizeof(intel_dp->psr_dpcd));
3714 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3715 dev_priv->psr.sink_support = true;
3716 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3717 }
3718 }
3719
3720 /* Training Pattern 3 support */
3721 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3722 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3723 intel_dp->use_tps3 = true;
3724 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3725 } else
3726 intel_dp->use_tps3 = false;
3727
3728 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3729 DP_DWN_STRM_PORT_PRESENT))
3730 return true; /* native DP sink */
3731
3732 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3733 return true; /* no per-port downstream info */
3734
3735 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3736 intel_dp->downstream_ports,
3737 DP_MAX_DOWNSTREAM_PORTS) < 0)
3738 return false; /* downstream port status fetch failed */
3739
3740 return true;
3741 }
3742
3743 static void
3744 intel_dp_probe_oui(struct intel_dp *intel_dp)
3745 {
3746 u8 buf[3];
3747
3748 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3749 return;
3750
3751 intel_edp_panel_vdd_on(intel_dp);
3752
3753 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3754 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3755 buf[0], buf[1], buf[2]);
3756
3757 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3758 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3759 buf[0], buf[1], buf[2]);
3760
3761 intel_edp_panel_vdd_off(intel_dp, false);
3762 }
3763
3764 static bool
3765 intel_dp_probe_mst(struct intel_dp *intel_dp)
3766 {
3767 u8 buf[1];
3768
3769 if (!intel_dp->can_mst)
3770 return false;
3771
3772 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3773 return false;
3774
3775 intel_edp_panel_vdd_on(intel_dp);
3776 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3777 if (buf[0] & DP_MST_CAP) {
3778 DRM_DEBUG_KMS("Sink is MST capable\n");
3779 intel_dp->is_mst = true;
3780 } else {
3781 DRM_DEBUG_KMS("Sink is not MST capable\n");
3782 intel_dp->is_mst = false;
3783 }
3784 }
3785 intel_edp_panel_vdd_off(intel_dp, false);
3786
3787 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3788 return intel_dp->is_mst;
3789 }
3790
3791 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3792 {
3793 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3794 struct drm_device *dev = intel_dig_port->base.base.dev;
3795 struct intel_crtc *intel_crtc =
3796 to_intel_crtc(intel_dig_port->base.base.crtc);
3797 u8 buf[1];
3798
3799 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3800 return -EIO;
3801
3802 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3803 return -ENOTTY;
3804
3805 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3806 DP_TEST_SINK_START) < 0)
3807 return -EIO;
3808
3809 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3810 intel_wait_for_vblank(dev, intel_crtc->pipe);
3811 intel_wait_for_vblank(dev, intel_crtc->pipe);
3812
3813 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3814 return -EIO;
3815
3816 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3817 return 0;
3818 }
3819
3820 static bool
3821 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3822 {
3823 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3824 DP_DEVICE_SERVICE_IRQ_VECTOR,
3825 sink_irq_vector, 1) == 1;
3826 }
3827
3828 static bool
3829 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3830 {
3831 int ret;
3832
3833 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3834 DP_SINK_COUNT_ESI,
3835 sink_irq_vector, 14);
3836 if (ret != 14)
3837 return false;
3838
3839 return true;
3840 }
3841
3842 static void
3843 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3844 {
3845 /* NAK by default */
3846 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3847 }
3848
3849 static int
3850 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3851 {
3852 bool bret;
3853
3854 if (intel_dp->is_mst) {
3855 u8 esi[16] = { 0 };
3856 int ret = 0;
3857 int retry;
3858 bool handled;
3859 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3860 go_again:
3861 if (bret == true) {
3862
3863 /* check link status - esi[10] = 0x200c */
3864 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3865 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3866 intel_dp_start_link_train(intel_dp);
3867 intel_dp_complete_link_train(intel_dp);
3868 intel_dp_stop_link_train(intel_dp);
3869 }
3870
3871 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3872 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3873
3874 if (handled) {
3875 for (retry = 0; retry < 3; retry++) {
3876 int wret;
3877 wret = drm_dp_dpcd_write(&intel_dp->aux,
3878 DP_SINK_COUNT_ESI+1,
3879 &esi[1], 3);
3880 if (wret == 3) {
3881 break;
3882 }
3883 }
3884
3885 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3886 if (bret == true) {
3887 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3888 goto go_again;
3889 }
3890 } else
3891 ret = 0;
3892
3893 return ret;
3894 } else {
3895 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3896 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3897 intel_dp->is_mst = false;
3898 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3899 /* send a hotplug event */
3900 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3901 }
3902 }
3903 return -EINVAL;
3904 }
3905
3906 /*
3907 * According to DP spec
3908 * 5.1.2:
3909 * 1. Read DPCD
3910 * 2. Configure link according to Receiver Capabilities
3911 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3912 * 4. Check link status on receipt of hot-plug interrupt
3913 */
3914 void
3915 intel_dp_check_link_status(struct intel_dp *intel_dp)
3916 {
3917 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3918 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3919 u8 sink_irq_vector;
3920 u8 link_status[DP_LINK_STATUS_SIZE];
3921
3922 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3923
3924 if (!intel_encoder->connectors_active)
3925 return;
3926
3927 if (WARN_ON(!intel_encoder->base.crtc))
3928 return;
3929
3930 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3931 return;
3932
3933 /* Try to read receiver status if the link appears to be up */
3934 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3935 return;
3936 }
3937
3938 /* Now read the DPCD to see if it's actually running */
3939 if (!intel_dp_get_dpcd(intel_dp)) {
3940 return;
3941 }
3942
3943 /* Try to read the source of the interrupt */
3944 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3945 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3946 /* Clear interrupt source */
3947 drm_dp_dpcd_writeb(&intel_dp->aux,
3948 DP_DEVICE_SERVICE_IRQ_VECTOR,
3949 sink_irq_vector);
3950
3951 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3952 intel_dp_handle_test_request(intel_dp);
3953 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3954 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3955 }
3956
3957 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3958 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3959 intel_encoder->base.name);
3960 intel_dp_start_link_train(intel_dp);
3961 intel_dp_complete_link_train(intel_dp);
3962 intel_dp_stop_link_train(intel_dp);
3963 }
3964 }
3965
3966 /* XXX this is probably wrong for multiple downstream ports */
3967 static enum drm_connector_status
3968 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3969 {
3970 uint8_t *dpcd = intel_dp->dpcd;
3971 uint8_t type;
3972
3973 if (!intel_dp_get_dpcd(intel_dp))
3974 return connector_status_disconnected;
3975
3976 /* if there's no downstream port, we're done */
3977 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3978 return connector_status_connected;
3979
3980 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3981 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3982 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3983 uint8_t reg;
3984
3985 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3986 &reg, 1) < 0)
3987 return connector_status_unknown;
3988
3989 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3990 : connector_status_disconnected;
3991 }
3992
3993 /* If no HPD, poke DDC gently */
3994 if (drm_probe_ddc(&intel_dp->aux.ddc))
3995 return connector_status_connected;
3996
3997 /* Well we tried, say unknown for unreliable port types */
3998 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3999 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4000 if (type == DP_DS_PORT_TYPE_VGA ||
4001 type == DP_DS_PORT_TYPE_NON_EDID)
4002 return connector_status_unknown;
4003 } else {
4004 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4005 DP_DWN_STRM_PORT_TYPE_MASK;
4006 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4007 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4008 return connector_status_unknown;
4009 }
4010
4011 /* Anything else is out of spec, warn and ignore */
4012 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4013 return connector_status_disconnected;
4014 }
4015
4016 static enum drm_connector_status
4017 edp_detect(struct intel_dp *intel_dp)
4018 {
4019 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4020 enum drm_connector_status status;
4021
4022 status = intel_panel_detect(dev);
4023 if (status == connector_status_unknown)
4024 status = connector_status_connected;
4025
4026 return status;
4027 }
4028
4029 static enum drm_connector_status
4030 ironlake_dp_detect(struct intel_dp *intel_dp)
4031 {
4032 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4033 struct drm_i915_private *dev_priv = dev->dev_private;
4034 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4035
4036 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4037 return connector_status_disconnected;
4038
4039 return intel_dp_detect_dpcd(intel_dp);
4040 }
4041
4042 static int g4x_digital_port_connected(struct drm_device *dev,
4043 struct intel_digital_port *intel_dig_port)
4044 {
4045 struct drm_i915_private *dev_priv = dev->dev_private;
4046 uint32_t bit;
4047
4048 if (IS_VALLEYVIEW(dev)) {
4049 switch (intel_dig_port->port) {
4050 case PORT_B:
4051 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4052 break;
4053 case PORT_C:
4054 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4055 break;
4056 case PORT_D:
4057 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4058 break;
4059 default:
4060 return -EINVAL;
4061 }
4062 } else {
4063 switch (intel_dig_port->port) {
4064 case PORT_B:
4065 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4066 break;
4067 case PORT_C:
4068 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4069 break;
4070 case PORT_D:
4071 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4072 break;
4073 default:
4074 return -EINVAL;
4075 }
4076 }
4077
4078 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4079 return 0;
4080 return 1;
4081 }
4082
4083 static enum drm_connector_status
4084 g4x_dp_detect(struct intel_dp *intel_dp)
4085 {
4086 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4087 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4088 int ret;
4089
4090 /* Can't disconnect eDP, but you can close the lid... */
4091 if (is_edp(intel_dp)) {
4092 enum drm_connector_status status;
4093
4094 status = intel_panel_detect(dev);
4095 if (status == connector_status_unknown)
4096 status = connector_status_connected;
4097 return status;
4098 }
4099
4100 ret = g4x_digital_port_connected(dev, intel_dig_port);
4101 if (ret == -EINVAL)
4102 return connector_status_unknown;
4103 else if (ret == 0)
4104 return connector_status_disconnected;
4105
4106 return intel_dp_detect_dpcd(intel_dp);
4107 }
4108
4109 static struct edid *
4110 intel_dp_get_edid(struct intel_dp *intel_dp)
4111 {
4112 struct intel_connector *intel_connector = intel_dp->attached_connector;
4113
4114 /* use cached edid if we have one */
4115 if (intel_connector->edid) {
4116 /* invalid edid */
4117 if (IS_ERR(intel_connector->edid))
4118 return NULL;
4119
4120 return drm_edid_duplicate(intel_connector->edid);
4121 } else
4122 return drm_get_edid(&intel_connector->base,
4123 &intel_dp->aux.ddc);
4124 }
4125
4126 static void
4127 intel_dp_set_edid(struct intel_dp *intel_dp)
4128 {
4129 struct intel_connector *intel_connector = intel_dp->attached_connector;
4130 struct edid *edid;
4131
4132 edid = intel_dp_get_edid(intel_dp);
4133 intel_connector->detect_edid = edid;
4134
4135 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4136 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4137 else
4138 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4139 }
4140
4141 static void
4142 intel_dp_unset_edid(struct intel_dp *intel_dp)
4143 {
4144 struct intel_connector *intel_connector = intel_dp->attached_connector;
4145
4146 kfree(intel_connector->detect_edid);
4147 intel_connector->detect_edid = NULL;
4148
4149 intel_dp->has_audio = false;
4150 }
4151
4152 static enum intel_display_power_domain
4153 intel_dp_power_get(struct intel_dp *dp)
4154 {
4155 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4156 enum intel_display_power_domain power_domain;
4157
4158 power_domain = intel_display_port_power_domain(encoder);
4159 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4160
4161 return power_domain;
4162 }
4163
4164 static void
4165 intel_dp_power_put(struct intel_dp *dp,
4166 enum intel_display_power_domain power_domain)
4167 {
4168 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4169 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4170 }
4171
4172 static enum drm_connector_status
4173 intel_dp_detect(struct drm_connector *connector, bool force)
4174 {
4175 struct intel_dp *intel_dp = intel_attached_dp(connector);
4176 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4177 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4178 struct drm_device *dev = connector->dev;
4179 enum drm_connector_status status;
4180 enum intel_display_power_domain power_domain;
4181 bool ret;
4182
4183 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4184 connector->base.id, connector->name);
4185 intel_dp_unset_edid(intel_dp);
4186
4187 if (intel_dp->is_mst) {
4188 /* MST devices are disconnected from a monitor POV */
4189 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4190 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4191 return connector_status_disconnected;
4192 }
4193
4194 power_domain = intel_dp_power_get(intel_dp);
4195
4196 /* Can't disconnect eDP, but you can close the lid... */
4197 if (is_edp(intel_dp))
4198 status = edp_detect(intel_dp);
4199 else if (HAS_PCH_SPLIT(dev))
4200 status = ironlake_dp_detect(intel_dp);
4201 else
4202 status = g4x_dp_detect(intel_dp);
4203 if (status != connector_status_connected)
4204 goto out;
4205
4206 intel_dp_probe_oui(intel_dp);
4207
4208 ret = intel_dp_probe_mst(intel_dp);
4209 if (ret) {
4210 /* if we are in MST mode then this connector
4211 won't appear connected or have anything with EDID on it */
4212 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4213 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4214 status = connector_status_disconnected;
4215 goto out;
4216 }
4217
4218 intel_dp_set_edid(intel_dp);
4219
4220 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4221 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4222 status = connector_status_connected;
4223
4224 out:
4225 intel_dp_power_put(intel_dp, power_domain);
4226 return status;
4227 }
4228
4229 static void
4230 intel_dp_force(struct drm_connector *connector)
4231 {
4232 struct intel_dp *intel_dp = intel_attached_dp(connector);
4233 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4234 enum intel_display_power_domain power_domain;
4235
4236 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4237 connector->base.id, connector->name);
4238 intel_dp_unset_edid(intel_dp);
4239
4240 if (connector->status != connector_status_connected)
4241 return;
4242
4243 power_domain = intel_dp_power_get(intel_dp);
4244
4245 intel_dp_set_edid(intel_dp);
4246
4247 intel_dp_power_put(intel_dp, power_domain);
4248
4249 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4250 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4251 }
4252
4253 static int intel_dp_get_modes(struct drm_connector *connector)
4254 {
4255 struct intel_connector *intel_connector = to_intel_connector(connector);
4256 struct edid *edid;
4257
4258 edid = intel_connector->detect_edid;
4259 if (edid) {
4260 int ret = intel_connector_update_modes(connector, edid);
4261 if (ret)
4262 return ret;
4263 }
4264
4265 /* if eDP has no EDID, fall back to fixed mode */
4266 if (is_edp(intel_attached_dp(connector)) &&
4267 intel_connector->panel.fixed_mode) {
4268 struct drm_display_mode *mode;
4269
4270 mode = drm_mode_duplicate(connector->dev,
4271 intel_connector->panel.fixed_mode);
4272 if (mode) {
4273 drm_mode_probed_add(connector, mode);
4274 return 1;
4275 }
4276 }
4277
4278 return 0;
4279 }
4280
4281 static bool
4282 intel_dp_detect_audio(struct drm_connector *connector)
4283 {
4284 bool has_audio = false;
4285 struct edid *edid;
4286
4287 edid = to_intel_connector(connector)->detect_edid;
4288 if (edid)
4289 has_audio = drm_detect_monitor_audio(edid);
4290
4291 return has_audio;
4292 }
4293
4294 static int
4295 intel_dp_set_property(struct drm_connector *connector,
4296 struct drm_property *property,
4297 uint64_t val)
4298 {
4299 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4300 struct intel_connector *intel_connector = to_intel_connector(connector);
4301 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4302 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4303 int ret;
4304
4305 ret = drm_object_property_set_value(&connector->base, property, val);
4306 if (ret)
4307 return ret;
4308
4309 if (property == dev_priv->force_audio_property) {
4310 int i = val;
4311 bool has_audio;
4312
4313 if (i == intel_dp->force_audio)
4314 return 0;
4315
4316 intel_dp->force_audio = i;
4317
4318 if (i == HDMI_AUDIO_AUTO)
4319 has_audio = intel_dp_detect_audio(connector);
4320 else
4321 has_audio = (i == HDMI_AUDIO_ON);
4322
4323 if (has_audio == intel_dp->has_audio)
4324 return 0;
4325
4326 intel_dp->has_audio = has_audio;
4327 goto done;
4328 }
4329
4330 if (property == dev_priv->broadcast_rgb_property) {
4331 bool old_auto = intel_dp->color_range_auto;
4332 uint32_t old_range = intel_dp->color_range;
4333
4334 switch (val) {
4335 case INTEL_BROADCAST_RGB_AUTO:
4336 intel_dp->color_range_auto = true;
4337 break;
4338 case INTEL_BROADCAST_RGB_FULL:
4339 intel_dp->color_range_auto = false;
4340 intel_dp->color_range = 0;
4341 break;
4342 case INTEL_BROADCAST_RGB_LIMITED:
4343 intel_dp->color_range_auto = false;
4344 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4345 break;
4346 default:
4347 return -EINVAL;
4348 }
4349
4350 if (old_auto == intel_dp->color_range_auto &&
4351 old_range == intel_dp->color_range)
4352 return 0;
4353
4354 goto done;
4355 }
4356
4357 if (is_edp(intel_dp) &&
4358 property == connector->dev->mode_config.scaling_mode_property) {
4359 if (val == DRM_MODE_SCALE_NONE) {
4360 DRM_DEBUG_KMS("no scaling not supported\n");
4361 return -EINVAL;
4362 }
4363
4364 if (intel_connector->panel.fitting_mode == val) {
4365 /* the eDP scaling property is not changed */
4366 return 0;
4367 }
4368 intel_connector->panel.fitting_mode = val;
4369
4370 goto done;
4371 }
4372
4373 return -EINVAL;
4374
4375 done:
4376 if (intel_encoder->base.crtc)
4377 intel_crtc_restore_mode(intel_encoder->base.crtc);
4378
4379 return 0;
4380 }
4381
4382 static void
4383 intel_dp_connector_destroy(struct drm_connector *connector)
4384 {
4385 struct intel_connector *intel_connector = to_intel_connector(connector);
4386
4387 kfree(intel_connector->detect_edid);
4388
4389 if (!IS_ERR_OR_NULL(intel_connector->edid))
4390 kfree(intel_connector->edid);
4391
4392 /* Can't call is_edp() since the encoder may have been destroyed
4393 * already. */
4394 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4395 intel_panel_fini(&intel_connector->panel);
4396
4397 drm_connector_cleanup(connector);
4398 kfree(connector);
4399 }
4400
4401 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4402 {
4403 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4404 struct intel_dp *intel_dp = &intel_dig_port->dp;
4405
4406 drm_dp_aux_unregister(&intel_dp->aux);
4407 intel_dp_mst_encoder_cleanup(intel_dig_port);
4408 drm_encoder_cleanup(encoder);
4409 if (is_edp(intel_dp)) {
4410 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4411 /*
4412 * vdd might still be enabled do to the delayed vdd off.
4413 * Make sure vdd is actually turned off here.
4414 */
4415 pps_lock(intel_dp);
4416 edp_panel_vdd_off_sync(intel_dp);
4417 pps_unlock(intel_dp);
4418
4419 if (intel_dp->edp_notifier.notifier_call) {
4420 unregister_reboot_notifier(&intel_dp->edp_notifier);
4421 intel_dp->edp_notifier.notifier_call = NULL;
4422 }
4423 }
4424 kfree(intel_dig_port);
4425 }
4426
4427 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4428 {
4429 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4430
4431 if (!is_edp(intel_dp))
4432 return;
4433
4434 /*
4435 * vdd might still be enabled do to the delayed vdd off.
4436 * Make sure vdd is actually turned off here.
4437 */
4438 pps_lock(intel_dp);
4439 edp_panel_vdd_off_sync(intel_dp);
4440 pps_unlock(intel_dp);
4441 }
4442
4443 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4444 {
4445 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4446 }
4447
4448 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4449 .dpms = intel_connector_dpms,
4450 .detect = intel_dp_detect,
4451 .force = intel_dp_force,
4452 .fill_modes = drm_helper_probe_single_connector_modes,
4453 .set_property = intel_dp_set_property,
4454 .destroy = intel_dp_connector_destroy,
4455 };
4456
4457 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4458 .get_modes = intel_dp_get_modes,
4459 .mode_valid = intel_dp_mode_valid,
4460 .best_encoder = intel_best_encoder,
4461 };
4462
4463 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4464 .reset = intel_dp_encoder_reset,
4465 .destroy = intel_dp_encoder_destroy,
4466 };
4467
4468 void
4469 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4470 {
4471 return;
4472 }
4473
4474 bool
4475 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4476 {
4477 struct intel_dp *intel_dp = &intel_dig_port->dp;
4478 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4479 struct drm_device *dev = intel_dig_port->base.base.dev;
4480 struct drm_i915_private *dev_priv = dev->dev_private;
4481 enum intel_display_power_domain power_domain;
4482 bool ret = true;
4483
4484 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4485 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4486
4487 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4488 port_name(intel_dig_port->port),
4489 long_hpd ? "long" : "short");
4490
4491 power_domain = intel_display_port_power_domain(intel_encoder);
4492 intel_display_power_get(dev_priv, power_domain);
4493
4494 if (long_hpd) {
4495
4496 if (HAS_PCH_SPLIT(dev)) {
4497 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4498 goto mst_fail;
4499 } else {
4500 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4501 goto mst_fail;
4502 }
4503
4504 if (!intel_dp_get_dpcd(intel_dp)) {
4505 goto mst_fail;
4506 }
4507
4508 intel_dp_probe_oui(intel_dp);
4509
4510 if (!intel_dp_probe_mst(intel_dp))
4511 goto mst_fail;
4512
4513 } else {
4514 if (intel_dp->is_mst) {
4515 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4516 goto mst_fail;
4517 }
4518
4519 if (!intel_dp->is_mst) {
4520 /*
4521 * we'll check the link status via the normal hot plug path later -
4522 * but for short hpds we should check it now
4523 */
4524 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4525 intel_dp_check_link_status(intel_dp);
4526 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4527 }
4528 }
4529 ret = false;
4530 goto put_power;
4531 mst_fail:
4532 /* if we were in MST mode, and device is not there get out of MST mode */
4533 if (intel_dp->is_mst) {
4534 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4535 intel_dp->is_mst = false;
4536 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4537 }
4538 put_power:
4539 intel_display_power_put(dev_priv, power_domain);
4540
4541 return ret;
4542 }
4543
4544 /* Return which DP Port should be selected for Transcoder DP control */
4545 int
4546 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4547 {
4548 struct drm_device *dev = crtc->dev;
4549 struct intel_encoder *intel_encoder;
4550 struct intel_dp *intel_dp;
4551
4552 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4553 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4554
4555 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4556 intel_encoder->type == INTEL_OUTPUT_EDP)
4557 return intel_dp->output_reg;
4558 }
4559
4560 return -1;
4561 }
4562
4563 /* check the VBT to see whether the eDP is on DP-D port */
4564 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4565 {
4566 struct drm_i915_private *dev_priv = dev->dev_private;
4567 union child_device_config *p_child;
4568 int i;
4569 static const short port_mapping[] = {
4570 [PORT_B] = PORT_IDPB,
4571 [PORT_C] = PORT_IDPC,
4572 [PORT_D] = PORT_IDPD,
4573 };
4574
4575 if (port == PORT_A)
4576 return true;
4577
4578 if (!dev_priv->vbt.child_dev_num)
4579 return false;
4580
4581 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4582 p_child = dev_priv->vbt.child_dev + i;
4583
4584 if (p_child->common.dvo_port == port_mapping[port] &&
4585 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4586 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4587 return true;
4588 }
4589 return false;
4590 }
4591
4592 void
4593 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4594 {
4595 struct intel_connector *intel_connector = to_intel_connector(connector);
4596
4597 intel_attach_force_audio_property(connector);
4598 intel_attach_broadcast_rgb_property(connector);
4599 intel_dp->color_range_auto = true;
4600
4601 if (is_edp(intel_dp)) {
4602 drm_mode_create_scaling_mode_property(connector->dev);
4603 drm_object_attach_property(
4604 &connector->base,
4605 connector->dev->mode_config.scaling_mode_property,
4606 DRM_MODE_SCALE_ASPECT);
4607 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4608 }
4609 }
4610
4611 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4612 {
4613 intel_dp->last_power_cycle = jiffies;
4614 intel_dp->last_power_on = jiffies;
4615 intel_dp->last_backlight_off = jiffies;
4616 }
4617
4618 static void
4619 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4620 struct intel_dp *intel_dp,
4621 struct edp_power_seq *out)
4622 {
4623 struct drm_i915_private *dev_priv = dev->dev_private;
4624 struct edp_power_seq cur, vbt, spec, final;
4625 u32 pp_on, pp_off, pp_div, pp;
4626 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4627
4628 lockdep_assert_held(&dev_priv->pps_mutex);
4629
4630 if (HAS_PCH_SPLIT(dev)) {
4631 pp_ctrl_reg = PCH_PP_CONTROL;
4632 pp_on_reg = PCH_PP_ON_DELAYS;
4633 pp_off_reg = PCH_PP_OFF_DELAYS;
4634 pp_div_reg = PCH_PP_DIVISOR;
4635 } else {
4636 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4637
4638 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4639 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4640 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4641 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4642 }
4643
4644 /* Workaround: Need to write PP_CONTROL with the unlock key as
4645 * the very first thing. */
4646 pp = ironlake_get_pp_control(intel_dp);
4647 I915_WRITE(pp_ctrl_reg, pp);
4648
4649 pp_on = I915_READ(pp_on_reg);
4650 pp_off = I915_READ(pp_off_reg);
4651 pp_div = I915_READ(pp_div_reg);
4652
4653 /* Pull timing values out of registers */
4654 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4655 PANEL_POWER_UP_DELAY_SHIFT;
4656
4657 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4658 PANEL_LIGHT_ON_DELAY_SHIFT;
4659
4660 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4661 PANEL_LIGHT_OFF_DELAY_SHIFT;
4662
4663 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4664 PANEL_POWER_DOWN_DELAY_SHIFT;
4665
4666 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4667 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4668
4669 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4670 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4671
4672 vbt = dev_priv->vbt.edp_pps;
4673
4674 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4675 * our hw here, which are all in 100usec. */
4676 spec.t1_t3 = 210 * 10;
4677 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4678 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4679 spec.t10 = 500 * 10;
4680 /* This one is special and actually in units of 100ms, but zero
4681 * based in the hw (so we need to add 100 ms). But the sw vbt
4682 * table multiplies it with 1000 to make it in units of 100usec,
4683 * too. */
4684 spec.t11_t12 = (510 + 100) * 10;
4685
4686 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4687 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4688
4689 /* Use the max of the register settings and vbt. If both are
4690 * unset, fall back to the spec limits. */
4691 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4692 spec.field : \
4693 max(cur.field, vbt.field))
4694 assign_final(t1_t3);
4695 assign_final(t8);
4696 assign_final(t9);
4697 assign_final(t10);
4698 assign_final(t11_t12);
4699 #undef assign_final
4700
4701 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4702 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4703 intel_dp->backlight_on_delay = get_delay(t8);
4704 intel_dp->backlight_off_delay = get_delay(t9);
4705 intel_dp->panel_power_down_delay = get_delay(t10);
4706 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4707 #undef get_delay
4708
4709 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4710 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4711 intel_dp->panel_power_cycle_delay);
4712
4713 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4714 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4715
4716 if (out)
4717 *out = final;
4718 }
4719
4720 static void
4721 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4722 struct intel_dp *intel_dp,
4723 struct edp_power_seq *seq)
4724 {
4725 struct drm_i915_private *dev_priv = dev->dev_private;
4726 u32 pp_on, pp_off, pp_div, port_sel = 0;
4727 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4728 int pp_on_reg, pp_off_reg, pp_div_reg;
4729 enum port port = dp_to_dig_port(intel_dp)->port;
4730
4731 lockdep_assert_held(&dev_priv->pps_mutex);
4732
4733 if (HAS_PCH_SPLIT(dev)) {
4734 pp_on_reg = PCH_PP_ON_DELAYS;
4735 pp_off_reg = PCH_PP_OFF_DELAYS;
4736 pp_div_reg = PCH_PP_DIVISOR;
4737 } else {
4738 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4739
4740 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4741 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4742 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4743 }
4744
4745 /*
4746 * And finally store the new values in the power sequencer. The
4747 * backlight delays are set to 1 because we do manual waits on them. For
4748 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4749 * we'll end up waiting for the backlight off delay twice: once when we
4750 * do the manual sleep, and once when we disable the panel and wait for
4751 * the PP_STATUS bit to become zero.
4752 */
4753 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4754 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4755 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4756 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4757 /* Compute the divisor for the pp clock, simply match the Bspec
4758 * formula. */
4759 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4760 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4761 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4762
4763 /* Haswell doesn't have any port selection bits for the panel
4764 * power sequencer any more. */
4765 if (IS_VALLEYVIEW(dev)) {
4766 port_sel = PANEL_PORT_SELECT_VLV(port);
4767 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4768 if (port == PORT_A)
4769 port_sel = PANEL_PORT_SELECT_DPA;
4770 else
4771 port_sel = PANEL_PORT_SELECT_DPD;
4772 }
4773
4774 pp_on |= port_sel;
4775
4776 I915_WRITE(pp_on_reg, pp_on);
4777 I915_WRITE(pp_off_reg, pp_off);
4778 I915_WRITE(pp_div_reg, pp_div);
4779
4780 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4781 I915_READ(pp_on_reg),
4782 I915_READ(pp_off_reg),
4783 I915_READ(pp_div_reg));
4784 }
4785
4786 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4787 {
4788 struct drm_i915_private *dev_priv = dev->dev_private;
4789 struct intel_encoder *encoder;
4790 struct intel_dp *intel_dp = NULL;
4791 struct intel_crtc_config *config = NULL;
4792 struct intel_crtc *intel_crtc = NULL;
4793 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4794 u32 reg, val;
4795 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4796
4797 if (refresh_rate <= 0) {
4798 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4799 return;
4800 }
4801
4802 if (intel_connector == NULL) {
4803 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4804 return;
4805 }
4806
4807 /*
4808 * FIXME: This needs proper synchronization with psr state. But really
4809 * hard to tell without seeing the user of this function of this code.
4810 * Check locking and ordering once that lands.
4811 */
4812 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4813 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4814 return;
4815 }
4816
4817 encoder = intel_attached_encoder(&intel_connector->base);
4818 intel_dp = enc_to_intel_dp(&encoder->base);
4819 intel_crtc = encoder->new_crtc;
4820
4821 if (!intel_crtc) {
4822 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4823 return;
4824 }
4825
4826 config = &intel_crtc->config;
4827
4828 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4829 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4830 return;
4831 }
4832
4833 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4834 index = DRRS_LOW_RR;
4835
4836 if (index == intel_dp->drrs_state.refresh_rate_type) {
4837 DRM_DEBUG_KMS(
4838 "DRRS requested for previously set RR...ignoring\n");
4839 return;
4840 }
4841
4842 if (!intel_crtc->active) {
4843 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4844 return;
4845 }
4846
4847 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4848 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4849 val = I915_READ(reg);
4850 if (index > DRRS_HIGH_RR) {
4851 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4852 intel_dp_set_m_n(intel_crtc);
4853 } else {
4854 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4855 }
4856 I915_WRITE(reg, val);
4857 }
4858
4859 /*
4860 * mutex taken to ensure that there is no race between differnt
4861 * drrs calls trying to update refresh rate. This scenario may occur
4862 * in future when idleness detection based DRRS in kernel and
4863 * possible calls from user space to set differnt RR are made.
4864 */
4865
4866 mutex_lock(&intel_dp->drrs_state.mutex);
4867
4868 intel_dp->drrs_state.refresh_rate_type = index;
4869
4870 mutex_unlock(&intel_dp->drrs_state.mutex);
4871
4872 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4873 }
4874
4875 static struct drm_display_mode *
4876 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4877 struct intel_connector *intel_connector,
4878 struct drm_display_mode *fixed_mode)
4879 {
4880 struct drm_connector *connector = &intel_connector->base;
4881 struct intel_dp *intel_dp = &intel_dig_port->dp;
4882 struct drm_device *dev = intel_dig_port->base.base.dev;
4883 struct drm_i915_private *dev_priv = dev->dev_private;
4884 struct drm_display_mode *downclock_mode = NULL;
4885
4886 if (INTEL_INFO(dev)->gen <= 6) {
4887 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4888 return NULL;
4889 }
4890
4891 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4892 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4893 return NULL;
4894 }
4895
4896 downclock_mode = intel_find_panel_downclock
4897 (dev, fixed_mode, connector);
4898
4899 if (!downclock_mode) {
4900 DRM_DEBUG_KMS("DRRS not supported\n");
4901 return NULL;
4902 }
4903
4904 dev_priv->drrs.connector = intel_connector;
4905
4906 mutex_init(&intel_dp->drrs_state.mutex);
4907
4908 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4909
4910 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4911 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4912 return downclock_mode;
4913 }
4914
4915 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4916 {
4917 struct drm_device *dev = intel_encoder->base.dev;
4918 struct drm_i915_private *dev_priv = dev->dev_private;
4919 struct intel_dp *intel_dp;
4920 enum intel_display_power_domain power_domain;
4921
4922 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4923 return;
4924
4925 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4926
4927 pps_lock(intel_dp);
4928
4929 if (!edp_have_panel_vdd(intel_dp))
4930 goto out;
4931 /*
4932 * The VDD bit needs a power domain reference, so if the bit is
4933 * already enabled when we boot or resume, grab this reference and
4934 * schedule a vdd off, so we don't hold on to the reference
4935 * indefinitely.
4936 */
4937 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4938 power_domain = intel_display_port_power_domain(intel_encoder);
4939 intel_display_power_get(dev_priv, power_domain);
4940
4941 edp_panel_vdd_schedule_off(intel_dp);
4942 out:
4943 pps_unlock(intel_dp);
4944 }
4945
4946 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4947 struct intel_connector *intel_connector,
4948 struct edp_power_seq *power_seq)
4949 {
4950 struct drm_connector *connector = &intel_connector->base;
4951 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4952 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4953 struct drm_device *dev = intel_encoder->base.dev;
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955 struct drm_display_mode *fixed_mode = NULL;
4956 struct drm_display_mode *downclock_mode = NULL;
4957 bool has_dpcd;
4958 struct drm_display_mode *scan;
4959 struct edid *edid;
4960
4961 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4962
4963 if (!is_edp(intel_dp))
4964 return true;
4965
4966 intel_edp_panel_vdd_sanitize(intel_encoder);
4967
4968 /* Cache DPCD and EDID for edp. */
4969 intel_edp_panel_vdd_on(intel_dp);
4970 has_dpcd = intel_dp_get_dpcd(intel_dp);
4971 intel_edp_panel_vdd_off(intel_dp, false);
4972
4973 if (has_dpcd) {
4974 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4975 dev_priv->no_aux_handshake =
4976 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4977 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4978 } else {
4979 /* if this fails, presume the device is a ghost */
4980 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4981 return false;
4982 }
4983
4984 /* We now know it's not a ghost, init power sequence regs. */
4985 pps_lock(intel_dp);
4986 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4987 pps_unlock(intel_dp);
4988
4989 mutex_lock(&dev->mode_config.mutex);
4990 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4991 if (edid) {
4992 if (drm_add_edid_modes(connector, edid)) {
4993 drm_mode_connector_update_edid_property(connector,
4994 edid);
4995 drm_edid_to_eld(connector, edid);
4996 } else {
4997 kfree(edid);
4998 edid = ERR_PTR(-EINVAL);
4999 }
5000 } else {
5001 edid = ERR_PTR(-ENOENT);
5002 }
5003 intel_connector->edid = edid;
5004
5005 /* prefer fixed mode from EDID if available */
5006 list_for_each_entry(scan, &connector->probed_modes, head) {
5007 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5008 fixed_mode = drm_mode_duplicate(dev, scan);
5009 downclock_mode = intel_dp_drrs_init(
5010 intel_dig_port,
5011 intel_connector, fixed_mode);
5012 break;
5013 }
5014 }
5015
5016 /* fallback to VBT if available for eDP */
5017 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5018 fixed_mode = drm_mode_duplicate(dev,
5019 dev_priv->vbt.lfp_lvds_vbt_mode);
5020 if (fixed_mode)
5021 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5022 }
5023 mutex_unlock(&dev->mode_config.mutex);
5024
5025 if (IS_VALLEYVIEW(dev)) {
5026 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5027 register_reboot_notifier(&intel_dp->edp_notifier);
5028 }
5029
5030 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5031 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5032 intel_panel_setup_backlight(connector);
5033
5034 return true;
5035 }
5036
5037 bool
5038 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5039 struct intel_connector *intel_connector)
5040 {
5041 struct drm_connector *connector = &intel_connector->base;
5042 struct intel_dp *intel_dp = &intel_dig_port->dp;
5043 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5044 struct drm_device *dev = intel_encoder->base.dev;
5045 struct drm_i915_private *dev_priv = dev->dev_private;
5046 enum port port = intel_dig_port->port;
5047 struct edp_power_seq power_seq = { 0 };
5048 int type;
5049
5050 intel_dp->pps_pipe = INVALID_PIPE;
5051
5052 /* intel_dp vfuncs */
5053 if (IS_VALLEYVIEW(dev))
5054 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5055 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5056 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5057 else if (HAS_PCH_SPLIT(dev))
5058 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5059 else
5060 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5061
5062 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5063
5064 /* Preserve the current hw state. */
5065 intel_dp->DP = I915_READ(intel_dp->output_reg);
5066 intel_dp->attached_connector = intel_connector;
5067
5068 if (intel_dp_is_edp(dev, port))
5069 type = DRM_MODE_CONNECTOR_eDP;
5070 else
5071 type = DRM_MODE_CONNECTOR_DisplayPort;
5072
5073 /*
5074 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5075 * for DP the encoder type can be set by the caller to
5076 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5077 */
5078 if (type == DRM_MODE_CONNECTOR_eDP)
5079 intel_encoder->type = INTEL_OUTPUT_EDP;
5080
5081 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5082 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5083 port_name(port));
5084
5085 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5086 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5087
5088 connector->interlace_allowed = true;
5089 connector->doublescan_allowed = 0;
5090
5091 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5092 edp_panel_vdd_work);
5093
5094 intel_connector_attach_encoder(intel_connector, intel_encoder);
5095 drm_connector_register(connector);
5096
5097 if (HAS_DDI(dev))
5098 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5099 else
5100 intel_connector->get_hw_state = intel_connector_get_hw_state;
5101 intel_connector->unregister = intel_dp_connector_unregister;
5102
5103 /* Set up the hotplug pin. */
5104 switch (port) {
5105 case PORT_A:
5106 intel_encoder->hpd_pin = HPD_PORT_A;
5107 break;
5108 case PORT_B:
5109 intel_encoder->hpd_pin = HPD_PORT_B;
5110 break;
5111 case PORT_C:
5112 intel_encoder->hpd_pin = HPD_PORT_C;
5113 break;
5114 case PORT_D:
5115 intel_encoder->hpd_pin = HPD_PORT_D;
5116 break;
5117 default:
5118 BUG();
5119 }
5120
5121 if (is_edp(intel_dp)) {
5122 pps_lock(intel_dp);
5123 if (IS_VALLEYVIEW(dev)) {
5124 vlv_initial_power_sequencer_setup(intel_dp);
5125 } else {
5126 intel_dp_init_panel_power_timestamps(intel_dp);
5127 intel_dp_init_panel_power_sequencer(dev, intel_dp,
5128 &power_seq);
5129 }
5130 pps_unlock(intel_dp);
5131 }
5132
5133 intel_dp_aux_init(intel_dp, intel_connector);
5134
5135 /* init MST on ports that can support it */
5136 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5137 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5138 intel_dp_mst_encoder_init(intel_dig_port,
5139 intel_connector->base.base.id);
5140 }
5141 }
5142
5143 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
5144 drm_dp_aux_unregister(&intel_dp->aux);
5145 if (is_edp(intel_dp)) {
5146 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5147 /*
5148 * vdd might still be enabled do to the delayed vdd off.
5149 * Make sure vdd is actually turned off here.
5150 */
5151 pps_lock(intel_dp);
5152 edp_panel_vdd_off_sync(intel_dp);
5153 pps_unlock(intel_dp);
5154 }
5155 drm_connector_unregister(connector);
5156 drm_connector_cleanup(connector);
5157 return false;
5158 }
5159
5160 intel_dp_add_properties(intel_dp, connector);
5161
5162 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5163 * 0xd. Failure to do so will result in spurious interrupts being
5164 * generated on the port when a cable is not attached.
5165 */
5166 if (IS_G4X(dev) && !IS_GM45(dev)) {
5167 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5168 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5169 }
5170
5171 return true;
5172 }
5173
5174 void
5175 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5176 {
5177 struct drm_i915_private *dev_priv = dev->dev_private;
5178 struct intel_digital_port *intel_dig_port;
5179 struct intel_encoder *intel_encoder;
5180 struct drm_encoder *encoder;
5181 struct intel_connector *intel_connector;
5182
5183 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5184 if (!intel_dig_port)
5185 return;
5186
5187 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5188 if (!intel_connector) {
5189 kfree(intel_dig_port);
5190 return;
5191 }
5192
5193 intel_encoder = &intel_dig_port->base;
5194 encoder = &intel_encoder->base;
5195
5196 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5197 DRM_MODE_ENCODER_TMDS);
5198
5199 intel_encoder->compute_config = intel_dp_compute_config;
5200 intel_encoder->disable = intel_disable_dp;
5201 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5202 intel_encoder->get_config = intel_dp_get_config;
5203 intel_encoder->suspend = intel_dp_encoder_suspend;
5204 if (IS_CHERRYVIEW(dev)) {
5205 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5206 intel_encoder->pre_enable = chv_pre_enable_dp;
5207 intel_encoder->enable = vlv_enable_dp;
5208 intel_encoder->post_disable = chv_post_disable_dp;
5209 } else if (IS_VALLEYVIEW(dev)) {
5210 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5211 intel_encoder->pre_enable = vlv_pre_enable_dp;
5212 intel_encoder->enable = vlv_enable_dp;
5213 intel_encoder->post_disable = vlv_post_disable_dp;
5214 } else {
5215 intel_encoder->pre_enable = g4x_pre_enable_dp;
5216 intel_encoder->enable = g4x_enable_dp;
5217 if (INTEL_INFO(dev)->gen >= 5)
5218 intel_encoder->post_disable = ilk_post_disable_dp;
5219 }
5220
5221 intel_dig_port->port = port;
5222 intel_dig_port->dp.output_reg = output_reg;
5223
5224 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5225 if (IS_CHERRYVIEW(dev)) {
5226 if (port == PORT_D)
5227 intel_encoder->crtc_mask = 1 << 2;
5228 else
5229 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5230 } else {
5231 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5232 }
5233 intel_encoder->cloneable = 0;
5234 intel_encoder->hot_plug = intel_dp_hot_plug;
5235
5236 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5237 dev_priv->hpd_irq_port[port] = intel_dig_port;
5238
5239 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5240 drm_encoder_cleanup(encoder);
5241 kfree(intel_dig_port);
5242 kfree(intel_connector);
5243 }
5244 }
5245
5246 void intel_dp_mst_suspend(struct drm_device *dev)
5247 {
5248 struct drm_i915_private *dev_priv = dev->dev_private;
5249 int i;
5250
5251 /* disable MST */
5252 for (i = 0; i < I915_MAX_PORTS; i++) {
5253 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5254 if (!intel_dig_port)
5255 continue;
5256
5257 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5258 if (!intel_dig_port->dp.can_mst)
5259 continue;
5260 if (intel_dig_port->dp.is_mst)
5261 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5262 }
5263 }
5264 }
5265
5266 void intel_dp_mst_resume(struct drm_device *dev)
5267 {
5268 struct drm_i915_private *dev_priv = dev->dev_private;
5269 int i;
5270
5271 for (i = 0; i < I915_MAX_PORTS; i++) {
5272 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5273 if (!intel_dig_port)
5274 continue;
5275 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5276 int ret;
5277
5278 if (!intel_dig_port->dp.can_mst)
5279 continue;
5280
5281 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5282 if (ret != 0) {
5283 intel_dp_check_mst_status(&intel_dig_port->dp);
5284 }
5285 }
5286 }
5287 }
This page took 0.153949 seconds and 4 git commands to generate.