ec080e5f3e245f4d9f904ff5333f45fdb4b70fcd
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /*
68 * CHV supports eDP 1.4 that have more link rates.
69 * Below only provides the fixed rate but exclude variable rate.
70 */
71 static const struct dp_link_dpll chv_dpll[] = {
72 /*
73 * CHV requires to program fractional division for m2.
74 * m2 is stored in fixed point format using formula below
75 * (m2_int << 22) | m2_fraction
76 */
77 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
78 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
79 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
80 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
81 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
83 };
84
85 /**
86 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
87 * @intel_dp: DP struct
88 *
89 * If a CPU or PCH DP output is attached to an eDP panel, this function
90 * will return true, and false otherwise.
91 */
92 static bool is_edp(struct intel_dp *intel_dp)
93 {
94 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
95
96 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 }
98
99 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100 {
101 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
102
103 return intel_dig_port->base.base.dev;
104 }
105
106 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
107 {
108 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 }
110
111 static void intel_dp_link_down(struct intel_dp *intel_dp);
112 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114
115 static int
116 intel_dp_max_link_bw(struct intel_dp *intel_dp)
117 {
118 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119 struct drm_device *dev = intel_dp->attached_connector->base.dev;
120
121 switch (max_link_bw) {
122 case DP_LINK_BW_1_62:
123 case DP_LINK_BW_2_7:
124 break;
125 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
127 INTEL_INFO(dev)->gen >= 8) &&
128 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
129 max_link_bw = DP_LINK_BW_5_4;
130 else
131 max_link_bw = DP_LINK_BW_2_7;
132 break;
133 default:
134 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
135 max_link_bw);
136 max_link_bw = DP_LINK_BW_1_62;
137 break;
138 }
139 return max_link_bw;
140 }
141
142 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
143 {
144 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145 struct drm_device *dev = intel_dig_port->base.base.dev;
146 u8 source_max, sink_max;
147
148 source_max = 4;
149 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
150 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
151 source_max = 2;
152
153 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
154
155 return min(source_max, sink_max);
156 }
157
158 /*
159 * The units on the numbers in the next two are... bizarre. Examples will
160 * make it clearer; this one parallels an example in the eDP spec.
161 *
162 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
163 *
164 * 270000 * 1 * 8 / 10 == 216000
165 *
166 * The actual data capacity of that configuration is 2.16Gbit/s, so the
167 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
168 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
169 * 119000. At 18bpp that's 2142000 kilobits per second.
170 *
171 * Thus the strange-looking division by 10 in intel_dp_link_required, to
172 * get the result in decakilobits instead of kilobits.
173 */
174
175 static int
176 intel_dp_link_required(int pixel_clock, int bpp)
177 {
178 return (pixel_clock * bpp + 9) / 10;
179 }
180
181 static int
182 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
183 {
184 return (max_link_clock * max_lanes * 8) / 10;
185 }
186
187 static enum drm_mode_status
188 intel_dp_mode_valid(struct drm_connector *connector,
189 struct drm_display_mode *mode)
190 {
191 struct intel_dp *intel_dp = intel_attached_dp(connector);
192 struct intel_connector *intel_connector = to_intel_connector(connector);
193 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
194 int target_clock = mode->clock;
195 int max_rate, mode_rate, max_lanes, max_link_clock;
196
197 if (is_edp(intel_dp) && fixed_mode) {
198 if (mode->hdisplay > fixed_mode->hdisplay)
199 return MODE_PANEL;
200
201 if (mode->vdisplay > fixed_mode->vdisplay)
202 return MODE_PANEL;
203
204 target_clock = fixed_mode->clock;
205 }
206
207 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
208 max_lanes = intel_dp_max_lane_count(intel_dp);
209
210 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
211 mode_rate = intel_dp_link_required(target_clock, 18);
212
213 if (mode_rate > max_rate)
214 return MODE_CLOCK_HIGH;
215
216 if (mode->clock < 10000)
217 return MODE_CLOCK_LOW;
218
219 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
220 return MODE_H_ILLEGAL;
221
222 return MODE_OK;
223 }
224
225 static uint32_t
226 pack_aux(uint8_t *src, int src_bytes)
227 {
228 int i;
229 uint32_t v = 0;
230
231 if (src_bytes > 4)
232 src_bytes = 4;
233 for (i = 0; i < src_bytes; i++)
234 v |= ((uint32_t) src[i]) << ((3-i) * 8);
235 return v;
236 }
237
238 static void
239 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
240 {
241 int i;
242 if (dst_bytes > 4)
243 dst_bytes = 4;
244 for (i = 0; i < dst_bytes; i++)
245 dst[i] = src >> ((3-i) * 8);
246 }
247
248 /* hrawclock is 1/4 the FSB frequency */
249 static int
250 intel_hrawclk(struct drm_device *dev)
251 {
252 struct drm_i915_private *dev_priv = dev->dev_private;
253 uint32_t clkcfg;
254
255 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
256 if (IS_VALLEYVIEW(dev))
257 return 200;
258
259 clkcfg = I915_READ(CLKCFG);
260 switch (clkcfg & CLKCFG_FSB_MASK) {
261 case CLKCFG_FSB_400:
262 return 100;
263 case CLKCFG_FSB_533:
264 return 133;
265 case CLKCFG_FSB_667:
266 return 166;
267 case CLKCFG_FSB_800:
268 return 200;
269 case CLKCFG_FSB_1067:
270 return 266;
271 case CLKCFG_FSB_1333:
272 return 333;
273 /* these two are just a guess; one of them might be right */
274 case CLKCFG_FSB_1600:
275 case CLKCFG_FSB_1600_ALT:
276 return 400;
277 default:
278 return 133;
279 }
280 }
281
282 static void
283 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
284 struct intel_dp *intel_dp,
285 struct edp_power_seq *out);
286 static void
287 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
288 struct intel_dp *intel_dp,
289 struct edp_power_seq *out);
290
291 static enum pipe
292 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
293 {
294 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
296 struct drm_device *dev = intel_dig_port->base.base.dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 enum port port = intel_dig_port->port;
299 enum pipe pipe;
300
301 /* modeset should have pipe */
302 if (crtc)
303 return to_intel_crtc(crtc)->pipe;
304
305 /* init time, try to find a pipe with this port selected */
306 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
307 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
308 PANEL_PORT_SELECT_MASK;
309 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
310 return pipe;
311 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
312 return pipe;
313 }
314
315 /* shrug */
316 return PIPE_A;
317 }
318
319 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323 if (HAS_PCH_SPLIT(dev))
324 return PCH_PP_CONTROL;
325 else
326 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327 }
328
329 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330 {
331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333 if (HAS_PCH_SPLIT(dev))
334 return PCH_PP_STATUS;
335 else
336 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337 }
338
339 static bool edp_have_panel_power(struct intel_dp *intel_dp)
340 {
341 struct drm_device *dev = intel_dp_to_dev(intel_dp);
342 struct drm_i915_private *dev_priv = dev->dev_private;
343
344 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
345 }
346
347 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
348 {
349 struct drm_device *dev = intel_dp_to_dev(intel_dp);
350 struct drm_i915_private *dev_priv = dev->dev_private;
351 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
352 struct intel_encoder *intel_encoder = &intel_dig_port->base;
353 enum intel_display_power_domain power_domain;
354
355 power_domain = intel_display_port_power_domain(intel_encoder);
356 return intel_display_power_enabled(dev_priv, power_domain) &&
357 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
358 }
359
360 static void
361 intel_dp_check_edp(struct intel_dp *intel_dp)
362 {
363 struct drm_device *dev = intel_dp_to_dev(intel_dp);
364 struct drm_i915_private *dev_priv = dev->dev_private;
365
366 if (!is_edp(intel_dp))
367 return;
368
369 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
370 WARN(1, "eDP powered off while attempting aux channel communication.\n");
371 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
372 I915_READ(_pp_stat_reg(intel_dp)),
373 I915_READ(_pp_ctrl_reg(intel_dp)));
374 }
375 }
376
377 static uint32_t
378 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
379 {
380 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
381 struct drm_device *dev = intel_dig_port->base.base.dev;
382 struct drm_i915_private *dev_priv = dev->dev_private;
383 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
384 uint32_t status;
385 bool done;
386
387 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
388 if (has_aux_irq)
389 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
390 msecs_to_jiffies_timeout(10));
391 else
392 done = wait_for_atomic(C, 10) == 0;
393 if (!done)
394 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
395 has_aux_irq);
396 #undef C
397
398 return status;
399 }
400
401 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
402 {
403 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
404 struct drm_device *dev = intel_dig_port->base.base.dev;
405
406 /*
407 * The clock divider is based off the hrawclk, and would like to run at
408 * 2MHz. So, take the hrawclk value and divide by 2 and use that
409 */
410 return index ? 0 : intel_hrawclk(dev) / 2;
411 }
412
413 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
414 {
415 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
416 struct drm_device *dev = intel_dig_port->base.base.dev;
417
418 if (index)
419 return 0;
420
421 if (intel_dig_port->port == PORT_A) {
422 if (IS_GEN6(dev) || IS_GEN7(dev))
423 return 200; /* SNB & IVB eDP input clock at 400Mhz */
424 else
425 return 225; /* eDP input clock at 450Mhz */
426 } else {
427 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
428 }
429 }
430
431 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
432 {
433 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
434 struct drm_device *dev = intel_dig_port->base.base.dev;
435 struct drm_i915_private *dev_priv = dev->dev_private;
436
437 if (intel_dig_port->port == PORT_A) {
438 if (index)
439 return 0;
440 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
441 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
442 /* Workaround for non-ULT HSW */
443 switch (index) {
444 case 0: return 63;
445 case 1: return 72;
446 default: return 0;
447 }
448 } else {
449 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
450 }
451 }
452
453 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
454 {
455 return index ? 0 : 100;
456 }
457
458 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
459 bool has_aux_irq,
460 int send_bytes,
461 uint32_t aux_clock_divider)
462 {
463 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
464 struct drm_device *dev = intel_dig_port->base.base.dev;
465 uint32_t precharge, timeout;
466
467 if (IS_GEN6(dev))
468 precharge = 3;
469 else
470 precharge = 5;
471
472 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
473 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
474 else
475 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
476
477 return DP_AUX_CH_CTL_SEND_BUSY |
478 DP_AUX_CH_CTL_DONE |
479 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
480 DP_AUX_CH_CTL_TIME_OUT_ERROR |
481 timeout |
482 DP_AUX_CH_CTL_RECEIVE_ERROR |
483 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
484 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
485 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
486 }
487
488 static int
489 intel_dp_aux_ch(struct intel_dp *intel_dp,
490 uint8_t *send, int send_bytes,
491 uint8_t *recv, int recv_size)
492 {
493 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
494 struct drm_device *dev = intel_dig_port->base.base.dev;
495 struct drm_i915_private *dev_priv = dev->dev_private;
496 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
497 uint32_t ch_data = ch_ctl + 4;
498 uint32_t aux_clock_divider;
499 int i, ret, recv_bytes;
500 uint32_t status;
501 int try, clock = 0;
502 bool has_aux_irq = HAS_AUX_IRQ(dev);
503 bool vdd;
504
505 vdd = _edp_panel_vdd_on(intel_dp);
506
507 /* dp aux is extremely sensitive to irq latency, hence request the
508 * lowest possible wakeup latency and so prevent the cpu from going into
509 * deep sleep states.
510 */
511 pm_qos_update_request(&dev_priv->pm_qos, 0);
512
513 intel_dp_check_edp(intel_dp);
514
515 intel_aux_display_runtime_get(dev_priv);
516
517 /* Try to wait for any previous AUX channel activity */
518 for (try = 0; try < 3; try++) {
519 status = I915_READ_NOTRACE(ch_ctl);
520 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
521 break;
522 msleep(1);
523 }
524
525 if (try == 3) {
526 WARN(1, "dp_aux_ch not started status 0x%08x\n",
527 I915_READ(ch_ctl));
528 ret = -EBUSY;
529 goto out;
530 }
531
532 /* Only 5 data registers! */
533 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
534 ret = -E2BIG;
535 goto out;
536 }
537
538 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
539 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
540 has_aux_irq,
541 send_bytes,
542 aux_clock_divider);
543
544 /* Must try at least 3 times according to DP spec */
545 for (try = 0; try < 5; try++) {
546 /* Load the send data into the aux channel data registers */
547 for (i = 0; i < send_bytes; i += 4)
548 I915_WRITE(ch_data + i,
549 pack_aux(send + i, send_bytes - i));
550
551 /* Send the command and wait for it to complete */
552 I915_WRITE(ch_ctl, send_ctl);
553
554 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
555
556 /* Clear done status and any errors */
557 I915_WRITE(ch_ctl,
558 status |
559 DP_AUX_CH_CTL_DONE |
560 DP_AUX_CH_CTL_TIME_OUT_ERROR |
561 DP_AUX_CH_CTL_RECEIVE_ERROR);
562
563 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
564 DP_AUX_CH_CTL_RECEIVE_ERROR))
565 continue;
566 if (status & DP_AUX_CH_CTL_DONE)
567 break;
568 }
569 if (status & DP_AUX_CH_CTL_DONE)
570 break;
571 }
572
573 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
574 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
575 ret = -EBUSY;
576 goto out;
577 }
578
579 /* Check for timeout or receive error.
580 * Timeouts occur when the sink is not connected
581 */
582 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
583 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
584 ret = -EIO;
585 goto out;
586 }
587
588 /* Timeouts occur when the device isn't connected, so they're
589 * "normal" -- don't fill the kernel log with these */
590 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
591 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
592 ret = -ETIMEDOUT;
593 goto out;
594 }
595
596 /* Unload any bytes sent back from the other side */
597 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
598 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
599 if (recv_bytes > recv_size)
600 recv_bytes = recv_size;
601
602 for (i = 0; i < recv_bytes; i += 4)
603 unpack_aux(I915_READ(ch_data + i),
604 recv + i, recv_bytes - i);
605
606 ret = recv_bytes;
607 out:
608 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
609 intel_aux_display_runtime_put(dev_priv);
610
611 if (vdd)
612 edp_panel_vdd_off(intel_dp, false);
613
614 return ret;
615 }
616
617 #define BARE_ADDRESS_SIZE 3
618 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
619 static ssize_t
620 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
621 {
622 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
623 uint8_t txbuf[20], rxbuf[20];
624 size_t txsize, rxsize;
625 int ret;
626
627 txbuf[0] = msg->request << 4;
628 txbuf[1] = msg->address >> 8;
629 txbuf[2] = msg->address & 0xff;
630 txbuf[3] = msg->size - 1;
631
632 switch (msg->request & ~DP_AUX_I2C_MOT) {
633 case DP_AUX_NATIVE_WRITE:
634 case DP_AUX_I2C_WRITE:
635 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
636 rxsize = 1;
637
638 if (WARN_ON(txsize > 20))
639 return -E2BIG;
640
641 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
642
643 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
644 if (ret > 0) {
645 msg->reply = rxbuf[0] >> 4;
646
647 /* Return payload size. */
648 ret = msg->size;
649 }
650 break;
651
652 case DP_AUX_NATIVE_READ:
653 case DP_AUX_I2C_READ:
654 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
655 rxsize = msg->size + 1;
656
657 if (WARN_ON(rxsize > 20))
658 return -E2BIG;
659
660 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
661 if (ret > 0) {
662 msg->reply = rxbuf[0] >> 4;
663 /*
664 * Assume happy day, and copy the data. The caller is
665 * expected to check msg->reply before touching it.
666 *
667 * Return payload size.
668 */
669 ret--;
670 memcpy(msg->buffer, rxbuf + 1, ret);
671 }
672 break;
673
674 default:
675 ret = -EINVAL;
676 break;
677 }
678
679 return ret;
680 }
681
682 static void
683 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
684 {
685 struct drm_device *dev = intel_dp_to_dev(intel_dp);
686 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
687 enum port port = intel_dig_port->port;
688 const char *name = NULL;
689 int ret;
690
691 switch (port) {
692 case PORT_A:
693 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
694 name = "DPDDC-A";
695 break;
696 case PORT_B:
697 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
698 name = "DPDDC-B";
699 break;
700 case PORT_C:
701 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
702 name = "DPDDC-C";
703 break;
704 case PORT_D:
705 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
706 name = "DPDDC-D";
707 break;
708 default:
709 BUG();
710 }
711
712 if (!HAS_DDI(dev))
713 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
714
715 intel_dp->aux.name = name;
716 intel_dp->aux.dev = dev->dev;
717 intel_dp->aux.transfer = intel_dp_aux_transfer;
718
719 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
720 connector->base.kdev->kobj.name);
721
722 ret = drm_dp_aux_register(&intel_dp->aux);
723 if (ret < 0) {
724 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
725 name, ret);
726 return;
727 }
728
729 ret = sysfs_create_link(&connector->base.kdev->kobj,
730 &intel_dp->aux.ddc.dev.kobj,
731 intel_dp->aux.ddc.dev.kobj.name);
732 if (ret < 0) {
733 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
734 drm_dp_aux_unregister(&intel_dp->aux);
735 }
736 }
737
738 static void
739 intel_dp_connector_unregister(struct intel_connector *intel_connector)
740 {
741 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
742
743 sysfs_remove_link(&intel_connector->base.kdev->kobj,
744 intel_dp->aux.ddc.dev.kobj.name);
745 intel_connector_unregister(intel_connector);
746 }
747
748 static void
749 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
750 {
751 switch (link_bw) {
752 case DP_LINK_BW_1_62:
753 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
754 break;
755 case DP_LINK_BW_2_7:
756 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
757 break;
758 case DP_LINK_BW_5_4:
759 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
760 break;
761 }
762 }
763
764 static void
765 intel_dp_set_clock(struct intel_encoder *encoder,
766 struct intel_crtc_config *pipe_config, int link_bw)
767 {
768 struct drm_device *dev = encoder->base.dev;
769 const struct dp_link_dpll *divisor = NULL;
770 int i, count = 0;
771
772 if (IS_G4X(dev)) {
773 divisor = gen4_dpll;
774 count = ARRAY_SIZE(gen4_dpll);
775 } else if (HAS_PCH_SPLIT(dev)) {
776 divisor = pch_dpll;
777 count = ARRAY_SIZE(pch_dpll);
778 } else if (IS_CHERRYVIEW(dev)) {
779 divisor = chv_dpll;
780 count = ARRAY_SIZE(chv_dpll);
781 } else if (IS_VALLEYVIEW(dev)) {
782 divisor = vlv_dpll;
783 count = ARRAY_SIZE(vlv_dpll);
784 }
785
786 if (divisor && count) {
787 for (i = 0; i < count; i++) {
788 if (link_bw == divisor[i].link_bw) {
789 pipe_config->dpll = divisor[i].dpll;
790 pipe_config->clock_set = true;
791 break;
792 }
793 }
794 }
795 }
796
797 static void
798 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
799 {
800 struct drm_device *dev = crtc->base.dev;
801 struct drm_i915_private *dev_priv = dev->dev_private;
802 enum transcoder transcoder = crtc->config.cpu_transcoder;
803
804 I915_WRITE(PIPE_DATA_M2(transcoder),
805 TU_SIZE(m_n->tu) | m_n->gmch_m);
806 I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
807 I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
808 I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
809 }
810
811 bool
812 intel_dp_compute_config(struct intel_encoder *encoder,
813 struct intel_crtc_config *pipe_config)
814 {
815 struct drm_device *dev = encoder->base.dev;
816 struct drm_i915_private *dev_priv = dev->dev_private;
817 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
818 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
819 enum port port = dp_to_dig_port(intel_dp)->port;
820 struct intel_crtc *intel_crtc = encoder->new_crtc;
821 struct intel_connector *intel_connector = intel_dp->attached_connector;
822 int lane_count, clock;
823 int min_lane_count = 1;
824 int max_lane_count = intel_dp_max_lane_count(intel_dp);
825 /* Conveniently, the link BW constants become indices with a shift...*/
826 int min_clock = 0;
827 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
828 int bpp, mode_rate;
829 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
830 int link_avail, link_clock;
831
832 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
833 pipe_config->has_pch_encoder = true;
834
835 pipe_config->has_dp_encoder = true;
836 pipe_config->has_audio = intel_dp->has_audio;
837
838 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
839 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
840 adjusted_mode);
841 if (!HAS_PCH_SPLIT(dev))
842 intel_gmch_panel_fitting(intel_crtc, pipe_config,
843 intel_connector->panel.fitting_mode);
844 else
845 intel_pch_panel_fitting(intel_crtc, pipe_config,
846 intel_connector->panel.fitting_mode);
847 }
848
849 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
850 return false;
851
852 DRM_DEBUG_KMS("DP link computation with max lane count %i "
853 "max bw %02x pixel clock %iKHz\n",
854 max_lane_count, bws[max_clock],
855 adjusted_mode->crtc_clock);
856
857 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
858 * bpc in between. */
859 bpp = pipe_config->pipe_bpp;
860 if (is_edp(intel_dp)) {
861 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
862 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
863 dev_priv->vbt.edp_bpp);
864 bpp = dev_priv->vbt.edp_bpp;
865 }
866
867 if (IS_BROADWELL(dev)) {
868 /* Yes, it's an ugly hack. */
869 min_lane_count = max_lane_count;
870 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
871 min_lane_count);
872 } else if (dev_priv->vbt.edp_lanes) {
873 min_lane_count = min(dev_priv->vbt.edp_lanes,
874 max_lane_count);
875 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
876 min_lane_count);
877 }
878
879 if (dev_priv->vbt.edp_rate) {
880 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
881 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
882 bws[min_clock]);
883 }
884 }
885
886 for (; bpp >= 6*3; bpp -= 2*3) {
887 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
888 bpp);
889
890 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
891 for (clock = min_clock; clock <= max_clock; clock++) {
892 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
893 link_avail = intel_dp_max_data_rate(link_clock,
894 lane_count);
895
896 if (mode_rate <= link_avail) {
897 goto found;
898 }
899 }
900 }
901 }
902
903 return false;
904
905 found:
906 if (intel_dp->color_range_auto) {
907 /*
908 * See:
909 * CEA-861-E - 5.1 Default Encoding Parameters
910 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
911 */
912 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
913 intel_dp->color_range = DP_COLOR_RANGE_16_235;
914 else
915 intel_dp->color_range = 0;
916 }
917
918 if (intel_dp->color_range)
919 pipe_config->limited_color_range = true;
920
921 intel_dp->link_bw = bws[clock];
922 intel_dp->lane_count = lane_count;
923 pipe_config->pipe_bpp = bpp;
924 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
925
926 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
927 intel_dp->link_bw, intel_dp->lane_count,
928 pipe_config->port_clock, bpp);
929 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
930 mode_rate, link_avail);
931
932 intel_link_compute_m_n(bpp, lane_count,
933 adjusted_mode->crtc_clock,
934 pipe_config->port_clock,
935 &pipe_config->dp_m_n);
936
937 if (intel_connector->panel.downclock_mode != NULL &&
938 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
939 intel_link_compute_m_n(bpp, lane_count,
940 intel_connector->panel.downclock_mode->clock,
941 pipe_config->port_clock,
942 &pipe_config->dp_m2_n2);
943 }
944
945 if (HAS_DDI(dev))
946 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
947 else
948 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
949
950 return true;
951 }
952
953 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
954 {
955 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
956 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
957 struct drm_device *dev = crtc->base.dev;
958 struct drm_i915_private *dev_priv = dev->dev_private;
959 u32 dpa_ctl;
960
961 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
962 dpa_ctl = I915_READ(DP_A);
963 dpa_ctl &= ~DP_PLL_FREQ_MASK;
964
965 if (crtc->config.port_clock == 162000) {
966 /* For a long time we've carried around a ILK-DevA w/a for the
967 * 160MHz clock. If we're really unlucky, it's still required.
968 */
969 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
970 dpa_ctl |= DP_PLL_FREQ_160MHZ;
971 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
972 } else {
973 dpa_ctl |= DP_PLL_FREQ_270MHZ;
974 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
975 }
976
977 I915_WRITE(DP_A, dpa_ctl);
978
979 POSTING_READ(DP_A);
980 udelay(500);
981 }
982
983 static void intel_dp_prepare(struct intel_encoder *encoder)
984 {
985 struct drm_device *dev = encoder->base.dev;
986 struct drm_i915_private *dev_priv = dev->dev_private;
987 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
988 enum port port = dp_to_dig_port(intel_dp)->port;
989 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
990 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
991
992 /*
993 * There are four kinds of DP registers:
994 *
995 * IBX PCH
996 * SNB CPU
997 * IVB CPU
998 * CPT PCH
999 *
1000 * IBX PCH and CPU are the same for almost everything,
1001 * except that the CPU DP PLL is configured in this
1002 * register
1003 *
1004 * CPT PCH is quite different, having many bits moved
1005 * to the TRANS_DP_CTL register instead. That
1006 * configuration happens (oddly) in ironlake_pch_enable
1007 */
1008
1009 /* Preserve the BIOS-computed detected bit. This is
1010 * supposed to be read-only.
1011 */
1012 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1013
1014 /* Handle DP bits in common between all three register formats */
1015 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1016 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1017
1018 if (crtc->config.has_audio) {
1019 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1020 pipe_name(crtc->pipe));
1021 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1022 intel_write_eld(&encoder->base, adjusted_mode);
1023 }
1024
1025 /* Split out the IBX/CPU vs CPT settings */
1026
1027 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1028 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1029 intel_dp->DP |= DP_SYNC_HS_HIGH;
1030 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1031 intel_dp->DP |= DP_SYNC_VS_HIGH;
1032 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1033
1034 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1035 intel_dp->DP |= DP_ENHANCED_FRAMING;
1036
1037 intel_dp->DP |= crtc->pipe << 29;
1038 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1039 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1040 intel_dp->DP |= intel_dp->color_range;
1041
1042 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1043 intel_dp->DP |= DP_SYNC_HS_HIGH;
1044 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1045 intel_dp->DP |= DP_SYNC_VS_HIGH;
1046 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1047
1048 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1049 intel_dp->DP |= DP_ENHANCED_FRAMING;
1050
1051 if (!IS_CHERRYVIEW(dev)) {
1052 if (crtc->pipe == 1)
1053 intel_dp->DP |= DP_PIPEB_SELECT;
1054 } else {
1055 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1056 }
1057 } else {
1058 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059 }
1060 }
1061
1062 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1063 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1064
1065 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1066 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1067
1068 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1069 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1070
1071 static void wait_panel_status(struct intel_dp *intel_dp,
1072 u32 mask,
1073 u32 value)
1074 {
1075 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1076 struct drm_i915_private *dev_priv = dev->dev_private;
1077 u32 pp_stat_reg, pp_ctrl_reg;
1078
1079 pp_stat_reg = _pp_stat_reg(intel_dp);
1080 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1081
1082 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1083 mask, value,
1084 I915_READ(pp_stat_reg),
1085 I915_READ(pp_ctrl_reg));
1086
1087 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1088 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1089 I915_READ(pp_stat_reg),
1090 I915_READ(pp_ctrl_reg));
1091 }
1092
1093 DRM_DEBUG_KMS("Wait complete\n");
1094 }
1095
1096 static void wait_panel_on(struct intel_dp *intel_dp)
1097 {
1098 DRM_DEBUG_KMS("Wait for panel power on\n");
1099 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1100 }
1101
1102 static void wait_panel_off(struct intel_dp *intel_dp)
1103 {
1104 DRM_DEBUG_KMS("Wait for panel power off time\n");
1105 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1106 }
1107
1108 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1109 {
1110 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1111
1112 /* When we disable the VDD override bit last we have to do the manual
1113 * wait. */
1114 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1115 intel_dp->panel_power_cycle_delay);
1116
1117 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1118 }
1119
1120 static void wait_backlight_on(struct intel_dp *intel_dp)
1121 {
1122 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1123 intel_dp->backlight_on_delay);
1124 }
1125
1126 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1127 {
1128 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1129 intel_dp->backlight_off_delay);
1130 }
1131
1132 /* Read the current pp_control value, unlocking the register if it
1133 * is locked
1134 */
1135
1136 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1137 {
1138 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 u32 control;
1141
1142 control = I915_READ(_pp_ctrl_reg(intel_dp));
1143 control &= ~PANEL_UNLOCK_MASK;
1144 control |= PANEL_UNLOCK_REGS;
1145 return control;
1146 }
1147
1148 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1149 {
1150 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1151 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1152 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1153 struct drm_i915_private *dev_priv = dev->dev_private;
1154 enum intel_display_power_domain power_domain;
1155 u32 pp;
1156 u32 pp_stat_reg, pp_ctrl_reg;
1157 bool need_to_disable = !intel_dp->want_panel_vdd;
1158
1159 if (!is_edp(intel_dp))
1160 return false;
1161
1162 intel_dp->want_panel_vdd = true;
1163
1164 if (edp_have_panel_vdd(intel_dp))
1165 return need_to_disable;
1166
1167 power_domain = intel_display_port_power_domain(intel_encoder);
1168 intel_display_power_get(dev_priv, power_domain);
1169
1170 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1171
1172 if (!edp_have_panel_power(intel_dp))
1173 wait_panel_power_cycle(intel_dp);
1174
1175 pp = ironlake_get_pp_control(intel_dp);
1176 pp |= EDP_FORCE_VDD;
1177
1178 pp_stat_reg = _pp_stat_reg(intel_dp);
1179 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1180
1181 I915_WRITE(pp_ctrl_reg, pp);
1182 POSTING_READ(pp_ctrl_reg);
1183 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1184 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1185 /*
1186 * If the panel wasn't on, delay before accessing aux channel
1187 */
1188 if (!edp_have_panel_power(intel_dp)) {
1189 DRM_DEBUG_KMS("eDP was not running\n");
1190 msleep(intel_dp->panel_power_up_delay);
1191 }
1192
1193 return need_to_disable;
1194 }
1195
1196 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1197 {
1198 if (is_edp(intel_dp)) {
1199 bool vdd = _edp_panel_vdd_on(intel_dp);
1200
1201 WARN(!vdd, "eDP VDD already requested on\n");
1202 }
1203 }
1204
1205 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1206 {
1207 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209 u32 pp;
1210 u32 pp_stat_reg, pp_ctrl_reg;
1211
1212 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1213
1214 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1215 struct intel_digital_port *intel_dig_port =
1216 dp_to_dig_port(intel_dp);
1217 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1218 enum intel_display_power_domain power_domain;
1219
1220 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1221
1222 pp = ironlake_get_pp_control(intel_dp);
1223 pp &= ~EDP_FORCE_VDD;
1224
1225 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1226 pp_stat_reg = _pp_stat_reg(intel_dp);
1227
1228 I915_WRITE(pp_ctrl_reg, pp);
1229 POSTING_READ(pp_ctrl_reg);
1230
1231 /* Make sure sequencer is idle before allowing subsequent activity */
1232 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1233 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1234
1235 if ((pp & POWER_TARGET_ON) == 0)
1236 intel_dp->last_power_cycle = jiffies;
1237
1238 power_domain = intel_display_port_power_domain(intel_encoder);
1239 intel_display_power_put(dev_priv, power_domain);
1240 }
1241 }
1242
1243 static void edp_panel_vdd_work(struct work_struct *__work)
1244 {
1245 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1246 struct intel_dp, panel_vdd_work);
1247 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1248
1249 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1250 edp_panel_vdd_off_sync(intel_dp);
1251 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1252 }
1253
1254 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1255 {
1256 if (!is_edp(intel_dp))
1257 return;
1258
1259 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1260
1261 intel_dp->want_panel_vdd = false;
1262
1263 if (sync) {
1264 edp_panel_vdd_off_sync(intel_dp);
1265 } else {
1266 /*
1267 * Queue the timer to fire a long
1268 * time from now (relative to the power down delay)
1269 * to keep the panel power up across a sequence of operations
1270 */
1271 schedule_delayed_work(&intel_dp->panel_vdd_work,
1272 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1273 }
1274 }
1275
1276 void intel_edp_panel_on(struct intel_dp *intel_dp)
1277 {
1278 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279 struct drm_i915_private *dev_priv = dev->dev_private;
1280 u32 pp;
1281 u32 pp_ctrl_reg;
1282
1283 if (!is_edp(intel_dp))
1284 return;
1285
1286 DRM_DEBUG_KMS("Turn eDP power on\n");
1287
1288 if (edp_have_panel_power(intel_dp)) {
1289 DRM_DEBUG_KMS("eDP power already on\n");
1290 return;
1291 }
1292
1293 wait_panel_power_cycle(intel_dp);
1294
1295 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1296 pp = ironlake_get_pp_control(intel_dp);
1297 if (IS_GEN5(dev)) {
1298 /* ILK workaround: disable reset around power sequence */
1299 pp &= ~PANEL_POWER_RESET;
1300 I915_WRITE(pp_ctrl_reg, pp);
1301 POSTING_READ(pp_ctrl_reg);
1302 }
1303
1304 pp |= POWER_TARGET_ON;
1305 if (!IS_GEN5(dev))
1306 pp |= PANEL_POWER_RESET;
1307
1308 I915_WRITE(pp_ctrl_reg, pp);
1309 POSTING_READ(pp_ctrl_reg);
1310
1311 wait_panel_on(intel_dp);
1312 intel_dp->last_power_on = jiffies;
1313
1314 if (IS_GEN5(dev)) {
1315 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1316 I915_WRITE(pp_ctrl_reg, pp);
1317 POSTING_READ(pp_ctrl_reg);
1318 }
1319 }
1320
1321 void intel_edp_panel_off(struct intel_dp *intel_dp)
1322 {
1323 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1324 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1325 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1326 struct drm_i915_private *dev_priv = dev->dev_private;
1327 enum intel_display_power_domain power_domain;
1328 u32 pp;
1329 u32 pp_ctrl_reg;
1330
1331 if (!is_edp(intel_dp))
1332 return;
1333
1334 DRM_DEBUG_KMS("Turn eDP power off\n");
1335
1336 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1337
1338 pp = ironlake_get_pp_control(intel_dp);
1339 /* We need to switch off panel power _and_ force vdd, for otherwise some
1340 * panels get very unhappy and cease to work. */
1341 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1342 EDP_BLC_ENABLE);
1343
1344 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1345
1346 intel_dp->want_panel_vdd = false;
1347
1348 I915_WRITE(pp_ctrl_reg, pp);
1349 POSTING_READ(pp_ctrl_reg);
1350
1351 intel_dp->last_power_cycle = jiffies;
1352 wait_panel_off(intel_dp);
1353
1354 /* We got a reference when we enabled the VDD. */
1355 power_domain = intel_display_port_power_domain(intel_encoder);
1356 intel_display_power_put(dev_priv, power_domain);
1357 }
1358
1359 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1360 {
1361 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1362 struct drm_device *dev = intel_dig_port->base.base.dev;
1363 struct drm_i915_private *dev_priv = dev->dev_private;
1364 u32 pp;
1365 u32 pp_ctrl_reg;
1366
1367 if (!is_edp(intel_dp))
1368 return;
1369
1370 DRM_DEBUG_KMS("\n");
1371
1372 intel_panel_enable_backlight(intel_dp->attached_connector);
1373
1374 /*
1375 * If we enable the backlight right away following a panel power
1376 * on, we may see slight flicker as the panel syncs with the eDP
1377 * link. So delay a bit to make sure the image is solid before
1378 * allowing it to appear.
1379 */
1380 wait_backlight_on(intel_dp);
1381 pp = ironlake_get_pp_control(intel_dp);
1382 pp |= EDP_BLC_ENABLE;
1383
1384 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1385
1386 I915_WRITE(pp_ctrl_reg, pp);
1387 POSTING_READ(pp_ctrl_reg);
1388 }
1389
1390 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1391 {
1392 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1393 struct drm_i915_private *dev_priv = dev->dev_private;
1394 u32 pp;
1395 u32 pp_ctrl_reg;
1396
1397 if (!is_edp(intel_dp))
1398 return;
1399
1400 DRM_DEBUG_KMS("\n");
1401 pp = ironlake_get_pp_control(intel_dp);
1402 pp &= ~EDP_BLC_ENABLE;
1403
1404 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1405
1406 I915_WRITE(pp_ctrl_reg, pp);
1407 POSTING_READ(pp_ctrl_reg);
1408 intel_dp->last_backlight_off = jiffies;
1409
1410 edp_wait_backlight_off(intel_dp);
1411
1412 intel_panel_disable_backlight(intel_dp->attached_connector);
1413 }
1414
1415 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1416 {
1417 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1418 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1419 struct drm_device *dev = crtc->dev;
1420 struct drm_i915_private *dev_priv = dev->dev_private;
1421 u32 dpa_ctl;
1422
1423 assert_pipe_disabled(dev_priv,
1424 to_intel_crtc(crtc)->pipe);
1425
1426 DRM_DEBUG_KMS("\n");
1427 dpa_ctl = I915_READ(DP_A);
1428 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1429 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1430
1431 /* We don't adjust intel_dp->DP while tearing down the link, to
1432 * facilitate link retraining (e.g. after hotplug). Hence clear all
1433 * enable bits here to ensure that we don't enable too much. */
1434 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1435 intel_dp->DP |= DP_PLL_ENABLE;
1436 I915_WRITE(DP_A, intel_dp->DP);
1437 POSTING_READ(DP_A);
1438 udelay(200);
1439 }
1440
1441 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1442 {
1443 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1444 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1445 struct drm_device *dev = crtc->dev;
1446 struct drm_i915_private *dev_priv = dev->dev_private;
1447 u32 dpa_ctl;
1448
1449 assert_pipe_disabled(dev_priv,
1450 to_intel_crtc(crtc)->pipe);
1451
1452 dpa_ctl = I915_READ(DP_A);
1453 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1454 "dp pll off, should be on\n");
1455 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1456
1457 /* We can't rely on the value tracked for the DP register in
1458 * intel_dp->DP because link_down must not change that (otherwise link
1459 * re-training will fail. */
1460 dpa_ctl &= ~DP_PLL_ENABLE;
1461 I915_WRITE(DP_A, dpa_ctl);
1462 POSTING_READ(DP_A);
1463 udelay(200);
1464 }
1465
1466 /* If the sink supports it, try to set the power state appropriately */
1467 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1468 {
1469 int ret, i;
1470
1471 /* Should have a valid DPCD by this point */
1472 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1473 return;
1474
1475 if (mode != DRM_MODE_DPMS_ON) {
1476 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1477 DP_SET_POWER_D3);
1478 if (ret != 1)
1479 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1480 } else {
1481 /*
1482 * When turning on, we need to retry for 1ms to give the sink
1483 * time to wake up.
1484 */
1485 for (i = 0; i < 3; i++) {
1486 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1487 DP_SET_POWER_D0);
1488 if (ret == 1)
1489 break;
1490 msleep(1);
1491 }
1492 }
1493 }
1494
1495 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1496 enum pipe *pipe)
1497 {
1498 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1499 enum port port = dp_to_dig_port(intel_dp)->port;
1500 struct drm_device *dev = encoder->base.dev;
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502 enum intel_display_power_domain power_domain;
1503 u32 tmp;
1504
1505 power_domain = intel_display_port_power_domain(encoder);
1506 if (!intel_display_power_enabled(dev_priv, power_domain))
1507 return false;
1508
1509 tmp = I915_READ(intel_dp->output_reg);
1510
1511 if (!(tmp & DP_PORT_EN))
1512 return false;
1513
1514 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1515 *pipe = PORT_TO_PIPE_CPT(tmp);
1516 } else if (IS_CHERRYVIEW(dev)) {
1517 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1518 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1519 *pipe = PORT_TO_PIPE(tmp);
1520 } else {
1521 u32 trans_sel;
1522 u32 trans_dp;
1523 int i;
1524
1525 switch (intel_dp->output_reg) {
1526 case PCH_DP_B:
1527 trans_sel = TRANS_DP_PORT_SEL_B;
1528 break;
1529 case PCH_DP_C:
1530 trans_sel = TRANS_DP_PORT_SEL_C;
1531 break;
1532 case PCH_DP_D:
1533 trans_sel = TRANS_DP_PORT_SEL_D;
1534 break;
1535 default:
1536 return true;
1537 }
1538
1539 for_each_pipe(i) {
1540 trans_dp = I915_READ(TRANS_DP_CTL(i));
1541 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1542 *pipe = i;
1543 return true;
1544 }
1545 }
1546
1547 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1548 intel_dp->output_reg);
1549 }
1550
1551 return true;
1552 }
1553
1554 static void intel_dp_get_config(struct intel_encoder *encoder,
1555 struct intel_crtc_config *pipe_config)
1556 {
1557 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1558 u32 tmp, flags = 0;
1559 struct drm_device *dev = encoder->base.dev;
1560 struct drm_i915_private *dev_priv = dev->dev_private;
1561 enum port port = dp_to_dig_port(intel_dp)->port;
1562 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1563 int dotclock;
1564
1565 tmp = I915_READ(intel_dp->output_reg);
1566 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1567 pipe_config->has_audio = true;
1568
1569 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1570 if (tmp & DP_SYNC_HS_HIGH)
1571 flags |= DRM_MODE_FLAG_PHSYNC;
1572 else
1573 flags |= DRM_MODE_FLAG_NHSYNC;
1574
1575 if (tmp & DP_SYNC_VS_HIGH)
1576 flags |= DRM_MODE_FLAG_PVSYNC;
1577 else
1578 flags |= DRM_MODE_FLAG_NVSYNC;
1579 } else {
1580 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1581 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1582 flags |= DRM_MODE_FLAG_PHSYNC;
1583 else
1584 flags |= DRM_MODE_FLAG_NHSYNC;
1585
1586 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1587 flags |= DRM_MODE_FLAG_PVSYNC;
1588 else
1589 flags |= DRM_MODE_FLAG_NVSYNC;
1590 }
1591
1592 pipe_config->adjusted_mode.flags |= flags;
1593
1594 pipe_config->has_dp_encoder = true;
1595
1596 intel_dp_get_m_n(crtc, pipe_config);
1597
1598 if (port == PORT_A) {
1599 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1600 pipe_config->port_clock = 162000;
1601 else
1602 pipe_config->port_clock = 270000;
1603 }
1604
1605 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1606 &pipe_config->dp_m_n);
1607
1608 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1609 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1610
1611 pipe_config->adjusted_mode.crtc_clock = dotclock;
1612
1613 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1614 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1615 /*
1616 * This is a big fat ugly hack.
1617 *
1618 * Some machines in UEFI boot mode provide us a VBT that has 18
1619 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1620 * unknown we fail to light up. Yet the same BIOS boots up with
1621 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1622 * max, not what it tells us to use.
1623 *
1624 * Note: This will still be broken if the eDP panel is not lit
1625 * up by the BIOS, and thus we can't get the mode at module
1626 * load.
1627 */
1628 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1629 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1630 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1631 }
1632 }
1633
1634 static bool is_edp_psr(struct intel_dp *intel_dp)
1635 {
1636 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1637 }
1638
1639 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1640 {
1641 struct drm_i915_private *dev_priv = dev->dev_private;
1642
1643 if (!HAS_PSR(dev))
1644 return false;
1645
1646 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1647 }
1648
1649 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1650 struct edp_vsc_psr *vsc_psr)
1651 {
1652 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1653 struct drm_device *dev = dig_port->base.base.dev;
1654 struct drm_i915_private *dev_priv = dev->dev_private;
1655 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1656 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1657 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1658 uint32_t *data = (uint32_t *) vsc_psr;
1659 unsigned int i;
1660
1661 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1662 the video DIP being updated before program video DIP data buffer
1663 registers for DIP being updated. */
1664 I915_WRITE(ctl_reg, 0);
1665 POSTING_READ(ctl_reg);
1666
1667 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1668 if (i < sizeof(struct edp_vsc_psr))
1669 I915_WRITE(data_reg + i, *data++);
1670 else
1671 I915_WRITE(data_reg + i, 0);
1672 }
1673
1674 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1675 POSTING_READ(ctl_reg);
1676 }
1677
1678 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1679 {
1680 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1681 struct drm_i915_private *dev_priv = dev->dev_private;
1682 struct edp_vsc_psr psr_vsc;
1683
1684 if (dev_priv->psr.setup_done)
1685 return;
1686
1687 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1688 memset(&psr_vsc, 0, sizeof(psr_vsc));
1689 psr_vsc.sdp_header.HB0 = 0;
1690 psr_vsc.sdp_header.HB1 = 0x7;
1691 psr_vsc.sdp_header.HB2 = 0x2;
1692 psr_vsc.sdp_header.HB3 = 0x8;
1693 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1694
1695 /* Avoid continuous PSR exit by masking memup and hpd */
1696 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1697 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1698
1699 dev_priv->psr.setup_done = true;
1700 }
1701
1702 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1703 {
1704 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1705 struct drm_device *dev = dig_port->base.base.dev;
1706 struct drm_i915_private *dev_priv = dev->dev_private;
1707 uint32_t aux_clock_divider;
1708 int precharge = 0x3;
1709 int msg_size = 5; /* Header(4) + Message(1) */
1710 bool only_standby = false;
1711
1712 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1713
1714 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1715 only_standby = true;
1716
1717 /* Enable PSR in sink */
1718 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1719 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1720 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1721 else
1722 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1723 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1724
1725 /* Setup AUX registers */
1726 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1727 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1728 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1729 DP_AUX_CH_CTL_TIME_OUT_400us |
1730 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1731 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1732 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1733 }
1734
1735 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1736 {
1737 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1738 struct drm_device *dev = dig_port->base.base.dev;
1739 struct drm_i915_private *dev_priv = dev->dev_private;
1740 uint32_t max_sleep_time = 0x1f;
1741 uint32_t idle_frames = 1;
1742 uint32_t val = 0x0;
1743 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1744 bool only_standby = false;
1745
1746 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1747 only_standby = true;
1748
1749 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1750 val |= EDP_PSR_LINK_STANDBY;
1751 val |= EDP_PSR_TP2_TP3_TIME_0us;
1752 val |= EDP_PSR_TP1_TIME_0us;
1753 val |= EDP_PSR_SKIP_AUX_EXIT;
1754 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1755 } else
1756 val |= EDP_PSR_LINK_DISABLE;
1757
1758 I915_WRITE(EDP_PSR_CTL(dev), val |
1759 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1760 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1761 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1762 EDP_PSR_ENABLE);
1763 }
1764
1765 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1766 {
1767 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1768 struct drm_device *dev = dig_port->base.base.dev;
1769 struct drm_i915_private *dev_priv = dev->dev_private;
1770 struct drm_crtc *crtc = dig_port->base.base.crtc;
1771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1772 struct drm_i915_gem_object *obj = intel_fb_obj(crtc->primary->fb);
1773 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1774
1775 dev_priv->psr.source_ok = false;
1776
1777 if (!HAS_PSR(dev)) {
1778 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1779 return false;
1780 }
1781
1782 if (IS_HASWELL(dev) && (intel_encoder->type != INTEL_OUTPUT_EDP ||
1783 dig_port->port != PORT_A)) {
1784 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1785 return false;
1786 }
1787
1788 if (!i915.enable_psr) {
1789 DRM_DEBUG_KMS("PSR disable by flag\n");
1790 return false;
1791 }
1792
1793 crtc = dig_port->base.base.crtc;
1794 if (crtc == NULL) {
1795 DRM_DEBUG_KMS("crtc not active for PSR\n");
1796 return false;
1797 }
1798
1799 intel_crtc = to_intel_crtc(crtc);
1800 if (!intel_crtc_active(crtc)) {
1801 DRM_DEBUG_KMS("crtc not active for PSR\n");
1802 return false;
1803 }
1804
1805 if (obj->tiling_mode != I915_TILING_X ||
1806 obj->fence_reg == I915_FENCE_REG_NONE) {
1807 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1808 return false;
1809 }
1810
1811 /* Below limitations aren't valid for Broadwell */
1812 if (IS_BROADWELL(dev))
1813 goto out;
1814
1815 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1816 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1817 return false;
1818 }
1819
1820 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1821 S3D_ENABLE) {
1822 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1823 return false;
1824 }
1825
1826 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1827 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1828 return false;
1829 }
1830
1831 out:
1832 dev_priv->psr.source_ok = true;
1833 return true;
1834 }
1835
1836 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1837 {
1838 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1839 struct drm_device *dev = intel_dig_port->base.base.dev;
1840 struct drm_i915_private *dev_priv = dev->dev_private;
1841
1842 if (intel_edp_is_psr_enabled(dev))
1843 return;
1844
1845 /* Enable PSR on the panel */
1846 intel_edp_psr_enable_sink(intel_dp);
1847
1848 /* Enable PSR on the host */
1849 intel_edp_psr_enable_source(intel_dp);
1850
1851 dev_priv->psr.enabled = true;
1852 dev_priv->psr.active = true;
1853 }
1854
1855 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1856 {
1857 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1858
1859 if (!HAS_PSR(dev)) {
1860 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1861 return;
1862 }
1863
1864 if (!is_edp_psr(intel_dp)) {
1865 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1866 return;
1867 }
1868
1869 /* Setup PSR once */
1870 intel_edp_psr_setup(intel_dp);
1871
1872 if (intel_edp_psr_match_conditions(intel_dp))
1873 intel_edp_psr_do_enable(intel_dp);
1874 }
1875
1876 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1877 {
1878 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1879 struct drm_i915_private *dev_priv = dev->dev_private;
1880
1881 if (!dev_priv->psr.enabled)
1882 return;
1883
1884 I915_WRITE(EDP_PSR_CTL(dev),
1885 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1886
1887 /* Wait till PSR is idle */
1888 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1889 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1890 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1891
1892 dev_priv->psr.enabled = false;
1893 }
1894
1895 static void intel_edp_psr_work(struct work_struct *work)
1896 {
1897 struct drm_i915_private *dev_priv =
1898 container_of(work, typeof(*dev_priv), psr.work.work);
1899 struct drm_device *dev = dev_priv->dev;
1900 struct intel_encoder *encoder;
1901 struct intel_dp *intel_dp = NULL;
1902
1903 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1904 if (encoder->type == INTEL_OUTPUT_EDP) {
1905 intel_dp = enc_to_intel_dp(&encoder->base);
1906
1907 if (!intel_edp_psr_match_conditions(intel_dp))
1908 intel_edp_psr_disable(intel_dp);
1909 else
1910 intel_edp_psr_do_enable(intel_dp);
1911 }
1912 }
1913
1914 static void intel_edp_psr_inactivate(struct drm_device *dev)
1915 {
1916 struct drm_i915_private *dev_priv = dev->dev_private;
1917
1918 dev_priv->psr.active = false;
1919
1920 I915_WRITE(EDP_PSR_CTL(dev), I915_READ(EDP_PSR_CTL(dev))
1921 & ~EDP_PSR_ENABLE);
1922 }
1923
1924 void intel_edp_psr_exit(struct drm_device *dev)
1925 {
1926 struct drm_i915_private *dev_priv = dev->dev_private;
1927
1928 if (!HAS_PSR(dev))
1929 return;
1930
1931 if (!dev_priv->psr.setup_done)
1932 return;
1933
1934 cancel_delayed_work_sync(&dev_priv->psr.work);
1935
1936 if (dev_priv->psr.active)
1937 intel_edp_psr_inactivate(dev);
1938
1939 schedule_delayed_work(&dev_priv->psr.work,
1940 msecs_to_jiffies(100));
1941 }
1942
1943 void intel_edp_psr_init(struct drm_device *dev)
1944 {
1945 struct drm_i915_private *dev_priv = dev->dev_private;
1946
1947 if (!HAS_PSR(dev))
1948 return;
1949
1950 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
1951 }
1952
1953 static void intel_disable_dp(struct intel_encoder *encoder)
1954 {
1955 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1956 enum port port = dp_to_dig_port(intel_dp)->port;
1957 struct drm_device *dev = encoder->base.dev;
1958
1959 /* Make sure the panel is off before trying to change the mode. But also
1960 * ensure that we have vdd while we switch off the panel. */
1961 intel_edp_panel_vdd_on(intel_dp);
1962 intel_edp_backlight_off(intel_dp);
1963 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1964 intel_edp_panel_off(intel_dp);
1965
1966 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1967 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1968 intel_dp_link_down(intel_dp);
1969 }
1970
1971 static void g4x_post_disable_dp(struct intel_encoder *encoder)
1972 {
1973 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1974 enum port port = dp_to_dig_port(intel_dp)->port;
1975
1976 if (port != PORT_A)
1977 return;
1978
1979 intel_dp_link_down(intel_dp);
1980 ironlake_edp_pll_off(intel_dp);
1981 }
1982
1983 static void vlv_post_disable_dp(struct intel_encoder *encoder)
1984 {
1985 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1986
1987 intel_dp_link_down(intel_dp);
1988 }
1989
1990 static void chv_post_disable_dp(struct intel_encoder *encoder)
1991 {
1992 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1993 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1994 struct drm_device *dev = encoder->base.dev;
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996 struct intel_crtc *intel_crtc =
1997 to_intel_crtc(encoder->base.crtc);
1998 enum dpio_channel ch = vlv_dport_to_channel(dport);
1999 enum pipe pipe = intel_crtc->pipe;
2000 u32 val;
2001
2002 intel_dp_link_down(intel_dp);
2003
2004 mutex_lock(&dev_priv->dpio_lock);
2005
2006 /* Propagate soft reset to data lane reset */
2007 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2008 val |= CHV_PCS_REQ_SOFTRESET_EN;
2009 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2010
2011 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2012 val |= CHV_PCS_REQ_SOFTRESET_EN;
2013 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2014
2015 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2016 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2017 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2018
2019 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2020 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2021 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2022
2023 mutex_unlock(&dev_priv->dpio_lock);
2024 }
2025
2026 static void intel_enable_dp(struct intel_encoder *encoder)
2027 {
2028 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2029 struct drm_device *dev = encoder->base.dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2032
2033 if (WARN_ON(dp_reg & DP_PORT_EN))
2034 return;
2035
2036 intel_edp_panel_vdd_on(intel_dp);
2037 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2038 intel_dp_start_link_train(intel_dp);
2039 intel_edp_panel_on(intel_dp);
2040 edp_panel_vdd_off(intel_dp, true);
2041 intel_dp_complete_link_train(intel_dp);
2042 intel_dp_stop_link_train(intel_dp);
2043 }
2044
2045 static void g4x_enable_dp(struct intel_encoder *encoder)
2046 {
2047 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2048
2049 intel_enable_dp(encoder);
2050 intel_edp_backlight_on(intel_dp);
2051 }
2052
2053 static void vlv_enable_dp(struct intel_encoder *encoder)
2054 {
2055 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2056
2057 intel_edp_backlight_on(intel_dp);
2058 }
2059
2060 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2061 {
2062 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2063 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2064
2065 intel_dp_prepare(encoder);
2066
2067 /* Only ilk+ has port A */
2068 if (dport->port == PORT_A) {
2069 ironlake_set_pll_cpu_edp(intel_dp);
2070 ironlake_edp_pll_on(intel_dp);
2071 }
2072 }
2073
2074 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2075 {
2076 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2077 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2078 struct drm_device *dev = encoder->base.dev;
2079 struct drm_i915_private *dev_priv = dev->dev_private;
2080 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2081 enum dpio_channel port = vlv_dport_to_channel(dport);
2082 int pipe = intel_crtc->pipe;
2083 struct edp_power_seq power_seq;
2084 u32 val;
2085
2086 mutex_lock(&dev_priv->dpio_lock);
2087
2088 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2089 val = 0;
2090 if (pipe)
2091 val |= (1<<21);
2092 else
2093 val &= ~(1<<21);
2094 val |= 0x001000c4;
2095 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2096 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2097 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2098
2099 mutex_unlock(&dev_priv->dpio_lock);
2100
2101 if (is_edp(intel_dp)) {
2102 /* init power sequencer on this pipe and port */
2103 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2104 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2105 &power_seq);
2106 }
2107
2108 intel_enable_dp(encoder);
2109
2110 vlv_wait_port_ready(dev_priv, dport);
2111 }
2112
2113 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2114 {
2115 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2116 struct drm_device *dev = encoder->base.dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118 struct intel_crtc *intel_crtc =
2119 to_intel_crtc(encoder->base.crtc);
2120 enum dpio_channel port = vlv_dport_to_channel(dport);
2121 int pipe = intel_crtc->pipe;
2122
2123 intel_dp_prepare(encoder);
2124
2125 /* Program Tx lane resets to default */
2126 mutex_lock(&dev_priv->dpio_lock);
2127 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2128 DPIO_PCS_TX_LANE2_RESET |
2129 DPIO_PCS_TX_LANE1_RESET);
2130 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2131 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2132 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2133 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2134 DPIO_PCS_CLK_SOFT_RESET);
2135
2136 /* Fix up inter-pair skew failure */
2137 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2138 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2139 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2140 mutex_unlock(&dev_priv->dpio_lock);
2141 }
2142
2143 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2144 {
2145 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2146 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2147 struct drm_device *dev = encoder->base.dev;
2148 struct drm_i915_private *dev_priv = dev->dev_private;
2149 struct edp_power_seq power_seq;
2150 struct intel_crtc *intel_crtc =
2151 to_intel_crtc(encoder->base.crtc);
2152 enum dpio_channel ch = vlv_dport_to_channel(dport);
2153 int pipe = intel_crtc->pipe;
2154 int data, i;
2155 u32 val;
2156
2157 mutex_lock(&dev_priv->dpio_lock);
2158
2159 /* Deassert soft data lane reset*/
2160 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2161 val |= CHV_PCS_REQ_SOFTRESET_EN;
2162 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2163
2164 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2165 val |= CHV_PCS_REQ_SOFTRESET_EN;
2166 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2167
2168 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2169 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2170 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2171
2172 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2173 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2174 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2175
2176 /* Program Tx lane latency optimal setting*/
2177 for (i = 0; i < 4; i++) {
2178 /* Set the latency optimal bit */
2179 data = (i == 1) ? 0x0 : 0x6;
2180 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2181 data << DPIO_FRC_LATENCY_SHFIT);
2182
2183 /* Set the upar bit */
2184 data = (i == 1) ? 0x0 : 0x1;
2185 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2186 data << DPIO_UPAR_SHIFT);
2187 }
2188
2189 /* Data lane stagger programming */
2190 /* FIXME: Fix up value only after power analysis */
2191
2192 mutex_unlock(&dev_priv->dpio_lock);
2193
2194 if (is_edp(intel_dp)) {
2195 /* init power sequencer on this pipe and port */
2196 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2197 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2198 &power_seq);
2199 }
2200
2201 intel_enable_dp(encoder);
2202
2203 vlv_wait_port_ready(dev_priv, dport);
2204 }
2205
2206 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2207 {
2208 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2209 struct drm_device *dev = encoder->base.dev;
2210 struct drm_i915_private *dev_priv = dev->dev_private;
2211 struct intel_crtc *intel_crtc =
2212 to_intel_crtc(encoder->base.crtc);
2213 enum dpio_channel ch = vlv_dport_to_channel(dport);
2214 enum pipe pipe = intel_crtc->pipe;
2215 u32 val;
2216
2217 mutex_lock(&dev_priv->dpio_lock);
2218
2219 /* program left/right clock distribution */
2220 if (pipe != PIPE_B) {
2221 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2222 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2223 if (ch == DPIO_CH0)
2224 val |= CHV_BUFLEFTENA1_FORCE;
2225 if (ch == DPIO_CH1)
2226 val |= CHV_BUFRIGHTENA1_FORCE;
2227 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2228 } else {
2229 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2230 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2231 if (ch == DPIO_CH0)
2232 val |= CHV_BUFLEFTENA2_FORCE;
2233 if (ch == DPIO_CH1)
2234 val |= CHV_BUFRIGHTENA2_FORCE;
2235 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2236 }
2237
2238 /* program clock channel usage */
2239 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2240 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2241 if (pipe != PIPE_B)
2242 val &= ~CHV_PCS_USEDCLKCHANNEL;
2243 else
2244 val |= CHV_PCS_USEDCLKCHANNEL;
2245 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2246
2247 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2248 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2249 if (pipe != PIPE_B)
2250 val &= ~CHV_PCS_USEDCLKCHANNEL;
2251 else
2252 val |= CHV_PCS_USEDCLKCHANNEL;
2253 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2254
2255 /*
2256 * This a a bit weird since generally CL
2257 * matches the pipe, but here we need to
2258 * pick the CL based on the port.
2259 */
2260 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2261 if (pipe != PIPE_B)
2262 val &= ~CHV_CMN_USEDCLKCHANNEL;
2263 else
2264 val |= CHV_CMN_USEDCLKCHANNEL;
2265 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2266
2267 mutex_unlock(&dev_priv->dpio_lock);
2268 }
2269
2270 /*
2271 * Native read with retry for link status and receiver capability reads for
2272 * cases where the sink may still be asleep.
2273 *
2274 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2275 * supposed to retry 3 times per the spec.
2276 */
2277 static ssize_t
2278 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2279 void *buffer, size_t size)
2280 {
2281 ssize_t ret;
2282 int i;
2283
2284 for (i = 0; i < 3; i++) {
2285 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2286 if (ret == size)
2287 return ret;
2288 msleep(1);
2289 }
2290
2291 return ret;
2292 }
2293
2294 /*
2295 * Fetch AUX CH registers 0x202 - 0x207 which contain
2296 * link status information
2297 */
2298 static bool
2299 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2300 {
2301 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2302 DP_LANE0_1_STATUS,
2303 link_status,
2304 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2305 }
2306
2307 /* These are source-specific values. */
2308 static uint8_t
2309 intel_dp_voltage_max(struct intel_dp *intel_dp)
2310 {
2311 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2312 enum port port = dp_to_dig_port(intel_dp)->port;
2313
2314 if (IS_VALLEYVIEW(dev))
2315 return DP_TRAIN_VOLTAGE_SWING_1200;
2316 else if (IS_GEN7(dev) && port == PORT_A)
2317 return DP_TRAIN_VOLTAGE_SWING_800;
2318 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2319 return DP_TRAIN_VOLTAGE_SWING_1200;
2320 else
2321 return DP_TRAIN_VOLTAGE_SWING_800;
2322 }
2323
2324 static uint8_t
2325 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2326 {
2327 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2328 enum port port = dp_to_dig_port(intel_dp)->port;
2329
2330 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2331 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2332 case DP_TRAIN_VOLTAGE_SWING_400:
2333 return DP_TRAIN_PRE_EMPHASIS_9_5;
2334 case DP_TRAIN_VOLTAGE_SWING_600:
2335 return DP_TRAIN_PRE_EMPHASIS_6;
2336 case DP_TRAIN_VOLTAGE_SWING_800:
2337 return DP_TRAIN_PRE_EMPHASIS_3_5;
2338 case DP_TRAIN_VOLTAGE_SWING_1200:
2339 default:
2340 return DP_TRAIN_PRE_EMPHASIS_0;
2341 }
2342 } else if (IS_VALLEYVIEW(dev)) {
2343 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2344 case DP_TRAIN_VOLTAGE_SWING_400:
2345 return DP_TRAIN_PRE_EMPHASIS_9_5;
2346 case DP_TRAIN_VOLTAGE_SWING_600:
2347 return DP_TRAIN_PRE_EMPHASIS_6;
2348 case DP_TRAIN_VOLTAGE_SWING_800:
2349 return DP_TRAIN_PRE_EMPHASIS_3_5;
2350 case DP_TRAIN_VOLTAGE_SWING_1200:
2351 default:
2352 return DP_TRAIN_PRE_EMPHASIS_0;
2353 }
2354 } else if (IS_GEN7(dev) && port == PORT_A) {
2355 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2356 case DP_TRAIN_VOLTAGE_SWING_400:
2357 return DP_TRAIN_PRE_EMPHASIS_6;
2358 case DP_TRAIN_VOLTAGE_SWING_600:
2359 case DP_TRAIN_VOLTAGE_SWING_800:
2360 return DP_TRAIN_PRE_EMPHASIS_3_5;
2361 default:
2362 return DP_TRAIN_PRE_EMPHASIS_0;
2363 }
2364 } else {
2365 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2366 case DP_TRAIN_VOLTAGE_SWING_400:
2367 return DP_TRAIN_PRE_EMPHASIS_6;
2368 case DP_TRAIN_VOLTAGE_SWING_600:
2369 return DP_TRAIN_PRE_EMPHASIS_6;
2370 case DP_TRAIN_VOLTAGE_SWING_800:
2371 return DP_TRAIN_PRE_EMPHASIS_3_5;
2372 case DP_TRAIN_VOLTAGE_SWING_1200:
2373 default:
2374 return DP_TRAIN_PRE_EMPHASIS_0;
2375 }
2376 }
2377 }
2378
2379 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2380 {
2381 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2382 struct drm_i915_private *dev_priv = dev->dev_private;
2383 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2384 struct intel_crtc *intel_crtc =
2385 to_intel_crtc(dport->base.base.crtc);
2386 unsigned long demph_reg_value, preemph_reg_value,
2387 uniqtranscale_reg_value;
2388 uint8_t train_set = intel_dp->train_set[0];
2389 enum dpio_channel port = vlv_dport_to_channel(dport);
2390 int pipe = intel_crtc->pipe;
2391
2392 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2393 case DP_TRAIN_PRE_EMPHASIS_0:
2394 preemph_reg_value = 0x0004000;
2395 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2396 case DP_TRAIN_VOLTAGE_SWING_400:
2397 demph_reg_value = 0x2B405555;
2398 uniqtranscale_reg_value = 0x552AB83A;
2399 break;
2400 case DP_TRAIN_VOLTAGE_SWING_600:
2401 demph_reg_value = 0x2B404040;
2402 uniqtranscale_reg_value = 0x5548B83A;
2403 break;
2404 case DP_TRAIN_VOLTAGE_SWING_800:
2405 demph_reg_value = 0x2B245555;
2406 uniqtranscale_reg_value = 0x5560B83A;
2407 break;
2408 case DP_TRAIN_VOLTAGE_SWING_1200:
2409 demph_reg_value = 0x2B405555;
2410 uniqtranscale_reg_value = 0x5598DA3A;
2411 break;
2412 default:
2413 return 0;
2414 }
2415 break;
2416 case DP_TRAIN_PRE_EMPHASIS_3_5:
2417 preemph_reg_value = 0x0002000;
2418 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2419 case DP_TRAIN_VOLTAGE_SWING_400:
2420 demph_reg_value = 0x2B404040;
2421 uniqtranscale_reg_value = 0x5552B83A;
2422 break;
2423 case DP_TRAIN_VOLTAGE_SWING_600:
2424 demph_reg_value = 0x2B404848;
2425 uniqtranscale_reg_value = 0x5580B83A;
2426 break;
2427 case DP_TRAIN_VOLTAGE_SWING_800:
2428 demph_reg_value = 0x2B404040;
2429 uniqtranscale_reg_value = 0x55ADDA3A;
2430 break;
2431 default:
2432 return 0;
2433 }
2434 break;
2435 case DP_TRAIN_PRE_EMPHASIS_6:
2436 preemph_reg_value = 0x0000000;
2437 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2438 case DP_TRAIN_VOLTAGE_SWING_400:
2439 demph_reg_value = 0x2B305555;
2440 uniqtranscale_reg_value = 0x5570B83A;
2441 break;
2442 case DP_TRAIN_VOLTAGE_SWING_600:
2443 demph_reg_value = 0x2B2B4040;
2444 uniqtranscale_reg_value = 0x55ADDA3A;
2445 break;
2446 default:
2447 return 0;
2448 }
2449 break;
2450 case DP_TRAIN_PRE_EMPHASIS_9_5:
2451 preemph_reg_value = 0x0006000;
2452 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2453 case DP_TRAIN_VOLTAGE_SWING_400:
2454 demph_reg_value = 0x1B405555;
2455 uniqtranscale_reg_value = 0x55ADDA3A;
2456 break;
2457 default:
2458 return 0;
2459 }
2460 break;
2461 default:
2462 return 0;
2463 }
2464
2465 mutex_lock(&dev_priv->dpio_lock);
2466 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2467 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2468 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2469 uniqtranscale_reg_value);
2470 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2471 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2472 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2473 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2474 mutex_unlock(&dev_priv->dpio_lock);
2475
2476 return 0;
2477 }
2478
2479 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2480 {
2481 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2482 struct drm_i915_private *dev_priv = dev->dev_private;
2483 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2484 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2485 u32 deemph_reg_value, margin_reg_value, val;
2486 uint8_t train_set = intel_dp->train_set[0];
2487 enum dpio_channel ch = vlv_dport_to_channel(dport);
2488 enum pipe pipe = intel_crtc->pipe;
2489 int i;
2490
2491 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2492 case DP_TRAIN_PRE_EMPHASIS_0:
2493 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2494 case DP_TRAIN_VOLTAGE_SWING_400:
2495 deemph_reg_value = 128;
2496 margin_reg_value = 52;
2497 break;
2498 case DP_TRAIN_VOLTAGE_SWING_600:
2499 deemph_reg_value = 128;
2500 margin_reg_value = 77;
2501 break;
2502 case DP_TRAIN_VOLTAGE_SWING_800:
2503 deemph_reg_value = 128;
2504 margin_reg_value = 102;
2505 break;
2506 case DP_TRAIN_VOLTAGE_SWING_1200:
2507 deemph_reg_value = 128;
2508 margin_reg_value = 154;
2509 /* FIXME extra to set for 1200 */
2510 break;
2511 default:
2512 return 0;
2513 }
2514 break;
2515 case DP_TRAIN_PRE_EMPHASIS_3_5:
2516 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2517 case DP_TRAIN_VOLTAGE_SWING_400:
2518 deemph_reg_value = 85;
2519 margin_reg_value = 78;
2520 break;
2521 case DP_TRAIN_VOLTAGE_SWING_600:
2522 deemph_reg_value = 85;
2523 margin_reg_value = 116;
2524 break;
2525 case DP_TRAIN_VOLTAGE_SWING_800:
2526 deemph_reg_value = 85;
2527 margin_reg_value = 154;
2528 break;
2529 default:
2530 return 0;
2531 }
2532 break;
2533 case DP_TRAIN_PRE_EMPHASIS_6:
2534 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2535 case DP_TRAIN_VOLTAGE_SWING_400:
2536 deemph_reg_value = 64;
2537 margin_reg_value = 104;
2538 break;
2539 case DP_TRAIN_VOLTAGE_SWING_600:
2540 deemph_reg_value = 64;
2541 margin_reg_value = 154;
2542 break;
2543 default:
2544 return 0;
2545 }
2546 break;
2547 case DP_TRAIN_PRE_EMPHASIS_9_5:
2548 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2549 case DP_TRAIN_VOLTAGE_SWING_400:
2550 deemph_reg_value = 43;
2551 margin_reg_value = 154;
2552 break;
2553 default:
2554 return 0;
2555 }
2556 break;
2557 default:
2558 return 0;
2559 }
2560
2561 mutex_lock(&dev_priv->dpio_lock);
2562
2563 /* Clear calc init */
2564 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2565 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2566 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2567
2568 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2569 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2570 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2571
2572 /* Program swing deemph */
2573 for (i = 0; i < 4; i++) {
2574 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2575 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2576 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2577 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2578 }
2579
2580 /* Program swing margin */
2581 for (i = 0; i < 4; i++) {
2582 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2583 val &= ~DPIO_SWING_MARGIN_MASK;
2584 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2585 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2586 }
2587
2588 /* Disable unique transition scale */
2589 for (i = 0; i < 4; i++) {
2590 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2591 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2592 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2593 }
2594
2595 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2596 == DP_TRAIN_PRE_EMPHASIS_0) &&
2597 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2598 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2599
2600 /*
2601 * The document said it needs to set bit 27 for ch0 and bit 26
2602 * for ch1. Might be a typo in the doc.
2603 * For now, for this unique transition scale selection, set bit
2604 * 27 for ch0 and ch1.
2605 */
2606 for (i = 0; i < 4; i++) {
2607 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2608 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2609 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2610 }
2611
2612 for (i = 0; i < 4; i++) {
2613 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2614 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2615 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2616 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2617 }
2618 }
2619
2620 /* Start swing calculation */
2621 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2622 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2623 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2624
2625 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2626 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2627 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2628
2629 /* LRC Bypass */
2630 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2631 val |= DPIO_LRC_BYPASS;
2632 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2633
2634 mutex_unlock(&dev_priv->dpio_lock);
2635
2636 return 0;
2637 }
2638
2639 static void
2640 intel_get_adjust_train(struct intel_dp *intel_dp,
2641 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2642 {
2643 uint8_t v = 0;
2644 uint8_t p = 0;
2645 int lane;
2646 uint8_t voltage_max;
2647 uint8_t preemph_max;
2648
2649 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2650 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2651 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2652
2653 if (this_v > v)
2654 v = this_v;
2655 if (this_p > p)
2656 p = this_p;
2657 }
2658
2659 voltage_max = intel_dp_voltage_max(intel_dp);
2660 if (v >= voltage_max)
2661 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2662
2663 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2664 if (p >= preemph_max)
2665 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2666
2667 for (lane = 0; lane < 4; lane++)
2668 intel_dp->train_set[lane] = v | p;
2669 }
2670
2671 static uint32_t
2672 intel_gen4_signal_levels(uint8_t train_set)
2673 {
2674 uint32_t signal_levels = 0;
2675
2676 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2677 case DP_TRAIN_VOLTAGE_SWING_400:
2678 default:
2679 signal_levels |= DP_VOLTAGE_0_4;
2680 break;
2681 case DP_TRAIN_VOLTAGE_SWING_600:
2682 signal_levels |= DP_VOLTAGE_0_6;
2683 break;
2684 case DP_TRAIN_VOLTAGE_SWING_800:
2685 signal_levels |= DP_VOLTAGE_0_8;
2686 break;
2687 case DP_TRAIN_VOLTAGE_SWING_1200:
2688 signal_levels |= DP_VOLTAGE_1_2;
2689 break;
2690 }
2691 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2692 case DP_TRAIN_PRE_EMPHASIS_0:
2693 default:
2694 signal_levels |= DP_PRE_EMPHASIS_0;
2695 break;
2696 case DP_TRAIN_PRE_EMPHASIS_3_5:
2697 signal_levels |= DP_PRE_EMPHASIS_3_5;
2698 break;
2699 case DP_TRAIN_PRE_EMPHASIS_6:
2700 signal_levels |= DP_PRE_EMPHASIS_6;
2701 break;
2702 case DP_TRAIN_PRE_EMPHASIS_9_5:
2703 signal_levels |= DP_PRE_EMPHASIS_9_5;
2704 break;
2705 }
2706 return signal_levels;
2707 }
2708
2709 /* Gen6's DP voltage swing and pre-emphasis control */
2710 static uint32_t
2711 intel_gen6_edp_signal_levels(uint8_t train_set)
2712 {
2713 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2714 DP_TRAIN_PRE_EMPHASIS_MASK);
2715 switch (signal_levels) {
2716 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2717 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2718 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2719 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2720 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2721 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2722 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2723 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2724 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2725 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2726 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2727 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2728 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2729 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2730 default:
2731 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2732 "0x%x\n", signal_levels);
2733 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2734 }
2735 }
2736
2737 /* Gen7's DP voltage swing and pre-emphasis control */
2738 static uint32_t
2739 intel_gen7_edp_signal_levels(uint8_t train_set)
2740 {
2741 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2742 DP_TRAIN_PRE_EMPHASIS_MASK);
2743 switch (signal_levels) {
2744 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2745 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2746 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2747 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2748 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2749 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2750
2751 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2752 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2753 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2754 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2755
2756 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2757 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2758 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2759 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2760
2761 default:
2762 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2763 "0x%x\n", signal_levels);
2764 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2765 }
2766 }
2767
2768 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2769 static uint32_t
2770 intel_hsw_signal_levels(uint8_t train_set)
2771 {
2772 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2773 DP_TRAIN_PRE_EMPHASIS_MASK);
2774 switch (signal_levels) {
2775 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2776 return DDI_BUF_EMP_400MV_0DB_HSW;
2777 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2778 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2779 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2780 return DDI_BUF_EMP_400MV_6DB_HSW;
2781 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2782 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2783
2784 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2785 return DDI_BUF_EMP_600MV_0DB_HSW;
2786 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2787 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2788 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2789 return DDI_BUF_EMP_600MV_6DB_HSW;
2790
2791 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2792 return DDI_BUF_EMP_800MV_0DB_HSW;
2793 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2794 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2795 default:
2796 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2797 "0x%x\n", signal_levels);
2798 return DDI_BUF_EMP_400MV_0DB_HSW;
2799 }
2800 }
2801
2802 /* Properly updates "DP" with the correct signal levels. */
2803 static void
2804 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2805 {
2806 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2807 enum port port = intel_dig_port->port;
2808 struct drm_device *dev = intel_dig_port->base.base.dev;
2809 uint32_t signal_levels, mask;
2810 uint8_t train_set = intel_dp->train_set[0];
2811
2812 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2813 signal_levels = intel_hsw_signal_levels(train_set);
2814 mask = DDI_BUF_EMP_MASK;
2815 } else if (IS_CHERRYVIEW(dev)) {
2816 signal_levels = intel_chv_signal_levels(intel_dp);
2817 mask = 0;
2818 } else if (IS_VALLEYVIEW(dev)) {
2819 signal_levels = intel_vlv_signal_levels(intel_dp);
2820 mask = 0;
2821 } else if (IS_GEN7(dev) && port == PORT_A) {
2822 signal_levels = intel_gen7_edp_signal_levels(train_set);
2823 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2824 } else if (IS_GEN6(dev) && port == PORT_A) {
2825 signal_levels = intel_gen6_edp_signal_levels(train_set);
2826 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2827 } else {
2828 signal_levels = intel_gen4_signal_levels(train_set);
2829 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2830 }
2831
2832 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2833
2834 *DP = (*DP & ~mask) | signal_levels;
2835 }
2836
2837 static bool
2838 intel_dp_set_link_train(struct intel_dp *intel_dp,
2839 uint32_t *DP,
2840 uint8_t dp_train_pat)
2841 {
2842 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2843 struct drm_device *dev = intel_dig_port->base.base.dev;
2844 struct drm_i915_private *dev_priv = dev->dev_private;
2845 enum port port = intel_dig_port->port;
2846 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2847 int ret, len;
2848
2849 if (HAS_DDI(dev)) {
2850 uint32_t temp = I915_READ(DP_TP_CTL(port));
2851
2852 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2853 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2854 else
2855 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2856
2857 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2858 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2859 case DP_TRAINING_PATTERN_DISABLE:
2860 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2861
2862 break;
2863 case DP_TRAINING_PATTERN_1:
2864 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2865 break;
2866 case DP_TRAINING_PATTERN_2:
2867 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2868 break;
2869 case DP_TRAINING_PATTERN_3:
2870 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2871 break;
2872 }
2873 I915_WRITE(DP_TP_CTL(port), temp);
2874
2875 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2876 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2877
2878 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2879 case DP_TRAINING_PATTERN_DISABLE:
2880 *DP |= DP_LINK_TRAIN_OFF_CPT;
2881 break;
2882 case DP_TRAINING_PATTERN_1:
2883 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2884 break;
2885 case DP_TRAINING_PATTERN_2:
2886 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2887 break;
2888 case DP_TRAINING_PATTERN_3:
2889 DRM_ERROR("DP training pattern 3 not supported\n");
2890 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2891 break;
2892 }
2893
2894 } else {
2895 *DP &= ~DP_LINK_TRAIN_MASK;
2896
2897 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2898 case DP_TRAINING_PATTERN_DISABLE:
2899 *DP |= DP_LINK_TRAIN_OFF;
2900 break;
2901 case DP_TRAINING_PATTERN_1:
2902 *DP |= DP_LINK_TRAIN_PAT_1;
2903 break;
2904 case DP_TRAINING_PATTERN_2:
2905 *DP |= DP_LINK_TRAIN_PAT_2;
2906 break;
2907 case DP_TRAINING_PATTERN_3:
2908 DRM_ERROR("DP training pattern 3 not supported\n");
2909 *DP |= DP_LINK_TRAIN_PAT_2;
2910 break;
2911 }
2912 }
2913
2914 I915_WRITE(intel_dp->output_reg, *DP);
2915 POSTING_READ(intel_dp->output_reg);
2916
2917 buf[0] = dp_train_pat;
2918 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2919 DP_TRAINING_PATTERN_DISABLE) {
2920 /* don't write DP_TRAINING_LANEx_SET on disable */
2921 len = 1;
2922 } else {
2923 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2924 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2925 len = intel_dp->lane_count + 1;
2926 }
2927
2928 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2929 buf, len);
2930
2931 return ret == len;
2932 }
2933
2934 static bool
2935 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2936 uint8_t dp_train_pat)
2937 {
2938 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2939 intel_dp_set_signal_levels(intel_dp, DP);
2940 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2941 }
2942
2943 static bool
2944 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2945 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2946 {
2947 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2948 struct drm_device *dev = intel_dig_port->base.base.dev;
2949 struct drm_i915_private *dev_priv = dev->dev_private;
2950 int ret;
2951
2952 intel_get_adjust_train(intel_dp, link_status);
2953 intel_dp_set_signal_levels(intel_dp, DP);
2954
2955 I915_WRITE(intel_dp->output_reg, *DP);
2956 POSTING_READ(intel_dp->output_reg);
2957
2958 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2959 intel_dp->train_set, intel_dp->lane_count);
2960
2961 return ret == intel_dp->lane_count;
2962 }
2963
2964 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2965 {
2966 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2967 struct drm_device *dev = intel_dig_port->base.base.dev;
2968 struct drm_i915_private *dev_priv = dev->dev_private;
2969 enum port port = intel_dig_port->port;
2970 uint32_t val;
2971
2972 if (!HAS_DDI(dev))
2973 return;
2974
2975 val = I915_READ(DP_TP_CTL(port));
2976 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2977 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2978 I915_WRITE(DP_TP_CTL(port), val);
2979
2980 /*
2981 * On PORT_A we can have only eDP in SST mode. There the only reason
2982 * we need to set idle transmission mode is to work around a HW issue
2983 * where we enable the pipe while not in idle link-training mode.
2984 * In this case there is requirement to wait for a minimum number of
2985 * idle patterns to be sent.
2986 */
2987 if (port == PORT_A)
2988 return;
2989
2990 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2991 1))
2992 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2993 }
2994
2995 /* Enable corresponding port and start training pattern 1 */
2996 void
2997 intel_dp_start_link_train(struct intel_dp *intel_dp)
2998 {
2999 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3000 struct drm_device *dev = encoder->dev;
3001 int i;
3002 uint8_t voltage;
3003 int voltage_tries, loop_tries;
3004 uint32_t DP = intel_dp->DP;
3005 uint8_t link_config[2];
3006
3007 if (HAS_DDI(dev))
3008 intel_ddi_prepare_link_retrain(encoder);
3009
3010 /* Write the link configuration data */
3011 link_config[0] = intel_dp->link_bw;
3012 link_config[1] = intel_dp->lane_count;
3013 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3014 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3015 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3016
3017 link_config[0] = 0;
3018 link_config[1] = DP_SET_ANSI_8B10B;
3019 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3020
3021 DP |= DP_PORT_EN;
3022
3023 /* clock recovery */
3024 if (!intel_dp_reset_link_train(intel_dp, &DP,
3025 DP_TRAINING_PATTERN_1 |
3026 DP_LINK_SCRAMBLING_DISABLE)) {
3027 DRM_ERROR("failed to enable link training\n");
3028 return;
3029 }
3030
3031 voltage = 0xff;
3032 voltage_tries = 0;
3033 loop_tries = 0;
3034 for (;;) {
3035 uint8_t link_status[DP_LINK_STATUS_SIZE];
3036
3037 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3038 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3039 DRM_ERROR("failed to get link status\n");
3040 break;
3041 }
3042
3043 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3044 DRM_DEBUG_KMS("clock recovery OK\n");
3045 break;
3046 }
3047
3048 /* Check to see if we've tried the max voltage */
3049 for (i = 0; i < intel_dp->lane_count; i++)
3050 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3051 break;
3052 if (i == intel_dp->lane_count) {
3053 ++loop_tries;
3054 if (loop_tries == 5) {
3055 DRM_ERROR("too many full retries, give up\n");
3056 break;
3057 }
3058 intel_dp_reset_link_train(intel_dp, &DP,
3059 DP_TRAINING_PATTERN_1 |
3060 DP_LINK_SCRAMBLING_DISABLE);
3061 voltage_tries = 0;
3062 continue;
3063 }
3064
3065 /* Check to see if we've tried the same voltage 5 times */
3066 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3067 ++voltage_tries;
3068 if (voltage_tries == 5) {
3069 DRM_ERROR("too many voltage retries, give up\n");
3070 break;
3071 }
3072 } else
3073 voltage_tries = 0;
3074 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3075
3076 /* Update training set as requested by target */
3077 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3078 DRM_ERROR("failed to update link training\n");
3079 break;
3080 }
3081 }
3082
3083 intel_dp->DP = DP;
3084 }
3085
3086 void
3087 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3088 {
3089 bool channel_eq = false;
3090 int tries, cr_tries;
3091 uint32_t DP = intel_dp->DP;
3092 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3093
3094 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3095 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3096 training_pattern = DP_TRAINING_PATTERN_3;
3097
3098 /* channel equalization */
3099 if (!intel_dp_set_link_train(intel_dp, &DP,
3100 training_pattern |
3101 DP_LINK_SCRAMBLING_DISABLE)) {
3102 DRM_ERROR("failed to start channel equalization\n");
3103 return;
3104 }
3105
3106 tries = 0;
3107 cr_tries = 0;
3108 channel_eq = false;
3109 for (;;) {
3110 uint8_t link_status[DP_LINK_STATUS_SIZE];
3111
3112 if (cr_tries > 5) {
3113 DRM_ERROR("failed to train DP, aborting\n");
3114 break;
3115 }
3116
3117 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3118 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3119 DRM_ERROR("failed to get link status\n");
3120 break;
3121 }
3122
3123 /* Make sure clock is still ok */
3124 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3125 intel_dp_start_link_train(intel_dp);
3126 intel_dp_set_link_train(intel_dp, &DP,
3127 training_pattern |
3128 DP_LINK_SCRAMBLING_DISABLE);
3129 cr_tries++;
3130 continue;
3131 }
3132
3133 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3134 channel_eq = true;
3135 break;
3136 }
3137
3138 /* Try 5 times, then try clock recovery if that fails */
3139 if (tries > 5) {
3140 intel_dp_link_down(intel_dp);
3141 intel_dp_start_link_train(intel_dp);
3142 intel_dp_set_link_train(intel_dp, &DP,
3143 training_pattern |
3144 DP_LINK_SCRAMBLING_DISABLE);
3145 tries = 0;
3146 cr_tries++;
3147 continue;
3148 }
3149
3150 /* Update training set as requested by target */
3151 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3152 DRM_ERROR("failed to update link training\n");
3153 break;
3154 }
3155 ++tries;
3156 }
3157
3158 intel_dp_set_idle_link_train(intel_dp);
3159
3160 intel_dp->DP = DP;
3161
3162 if (channel_eq)
3163 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3164
3165 }
3166
3167 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3168 {
3169 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3170 DP_TRAINING_PATTERN_DISABLE);
3171 }
3172
3173 static void
3174 intel_dp_link_down(struct intel_dp *intel_dp)
3175 {
3176 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3177 enum port port = intel_dig_port->port;
3178 struct drm_device *dev = intel_dig_port->base.base.dev;
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180 struct intel_crtc *intel_crtc =
3181 to_intel_crtc(intel_dig_port->base.base.crtc);
3182 uint32_t DP = intel_dp->DP;
3183
3184 if (WARN_ON(HAS_DDI(dev)))
3185 return;
3186
3187 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3188 return;
3189
3190 DRM_DEBUG_KMS("\n");
3191
3192 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3193 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3194 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3195 } else {
3196 DP &= ~DP_LINK_TRAIN_MASK;
3197 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3198 }
3199 POSTING_READ(intel_dp->output_reg);
3200
3201 if (HAS_PCH_IBX(dev) &&
3202 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3203 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3204
3205 /* Hardware workaround: leaving our transcoder select
3206 * set to transcoder B while it's off will prevent the
3207 * corresponding HDMI output on transcoder A.
3208 *
3209 * Combine this with another hardware workaround:
3210 * transcoder select bit can only be cleared while the
3211 * port is enabled.
3212 */
3213 DP &= ~DP_PIPEB_SELECT;
3214 I915_WRITE(intel_dp->output_reg, DP);
3215
3216 /* Changes to enable or select take place the vblank
3217 * after being written.
3218 */
3219 if (WARN_ON(crtc == NULL)) {
3220 /* We should never try to disable a port without a crtc
3221 * attached. For paranoia keep the code around for a
3222 * bit. */
3223 POSTING_READ(intel_dp->output_reg);
3224 msleep(50);
3225 } else
3226 intel_wait_for_vblank(dev, intel_crtc->pipe);
3227 }
3228
3229 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3230 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3231 POSTING_READ(intel_dp->output_reg);
3232 msleep(intel_dp->panel_power_down_delay);
3233 }
3234
3235 static bool
3236 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3237 {
3238 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3239 struct drm_device *dev = dig_port->base.base.dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241
3242 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3243
3244 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3245 sizeof(intel_dp->dpcd)) < 0)
3246 return false; /* aux transfer failed */
3247
3248 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3249 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3250 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3251
3252 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3253 return false; /* DPCD not present */
3254
3255 /* Check if the panel supports PSR */
3256 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3257 if (is_edp(intel_dp)) {
3258 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3259 intel_dp->psr_dpcd,
3260 sizeof(intel_dp->psr_dpcd));
3261 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3262 dev_priv->psr.sink_support = true;
3263 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3264 }
3265 }
3266
3267 /* Training Pattern 3 support */
3268 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3269 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3270 intel_dp->use_tps3 = true;
3271 DRM_DEBUG_KMS("Displayport TPS3 supported");
3272 } else
3273 intel_dp->use_tps3 = false;
3274
3275 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3276 DP_DWN_STRM_PORT_PRESENT))
3277 return true; /* native DP sink */
3278
3279 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3280 return true; /* no per-port downstream info */
3281
3282 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3283 intel_dp->downstream_ports,
3284 DP_MAX_DOWNSTREAM_PORTS) < 0)
3285 return false; /* downstream port status fetch failed */
3286
3287 return true;
3288 }
3289
3290 static void
3291 intel_dp_probe_oui(struct intel_dp *intel_dp)
3292 {
3293 u8 buf[3];
3294
3295 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3296 return;
3297
3298 intel_edp_panel_vdd_on(intel_dp);
3299
3300 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3301 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3302 buf[0], buf[1], buf[2]);
3303
3304 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3305 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3306 buf[0], buf[1], buf[2]);
3307
3308 edp_panel_vdd_off(intel_dp, false);
3309 }
3310
3311 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3312 {
3313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3314 struct drm_device *dev = intel_dig_port->base.base.dev;
3315 struct intel_crtc *intel_crtc =
3316 to_intel_crtc(intel_dig_port->base.base.crtc);
3317 u8 buf[1];
3318
3319 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3320 return -EAGAIN;
3321
3322 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3323 return -ENOTTY;
3324
3325 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3326 DP_TEST_SINK_START) < 0)
3327 return -EAGAIN;
3328
3329 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3330 intel_wait_for_vblank(dev, intel_crtc->pipe);
3331 intel_wait_for_vblank(dev, intel_crtc->pipe);
3332
3333 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3334 return -EAGAIN;
3335
3336 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3337 return 0;
3338 }
3339
3340 static bool
3341 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3342 {
3343 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3344 DP_DEVICE_SERVICE_IRQ_VECTOR,
3345 sink_irq_vector, 1) == 1;
3346 }
3347
3348 static void
3349 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3350 {
3351 /* NAK by default */
3352 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3353 }
3354
3355 /*
3356 * According to DP spec
3357 * 5.1.2:
3358 * 1. Read DPCD
3359 * 2. Configure link according to Receiver Capabilities
3360 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3361 * 4. Check link status on receipt of hot-plug interrupt
3362 */
3363
3364 void
3365 intel_dp_check_link_status(struct intel_dp *intel_dp)
3366 {
3367 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3368 u8 sink_irq_vector;
3369 u8 link_status[DP_LINK_STATUS_SIZE];
3370
3371 /* FIXME: This access isn't protected by any locks. */
3372 if (!intel_encoder->connectors_active)
3373 return;
3374
3375 if (WARN_ON(!intel_encoder->base.crtc))
3376 return;
3377
3378 /* Try to read receiver status if the link appears to be up */
3379 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3380 return;
3381 }
3382
3383 /* Now read the DPCD to see if it's actually running */
3384 if (!intel_dp_get_dpcd(intel_dp)) {
3385 return;
3386 }
3387
3388 /* Try to read the source of the interrupt */
3389 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3390 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3391 /* Clear interrupt source */
3392 drm_dp_dpcd_writeb(&intel_dp->aux,
3393 DP_DEVICE_SERVICE_IRQ_VECTOR,
3394 sink_irq_vector);
3395
3396 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3397 intel_dp_handle_test_request(intel_dp);
3398 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3399 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3400 }
3401
3402 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3403 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3404 intel_encoder->base.name);
3405 intel_dp_start_link_train(intel_dp);
3406 intel_dp_complete_link_train(intel_dp);
3407 intel_dp_stop_link_train(intel_dp);
3408 }
3409 }
3410
3411 /* XXX this is probably wrong for multiple downstream ports */
3412 static enum drm_connector_status
3413 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3414 {
3415 uint8_t *dpcd = intel_dp->dpcd;
3416 uint8_t type;
3417
3418 if (!intel_dp_get_dpcd(intel_dp))
3419 return connector_status_disconnected;
3420
3421 /* if there's no downstream port, we're done */
3422 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3423 return connector_status_connected;
3424
3425 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3426 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3427 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3428 uint8_t reg;
3429
3430 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3431 &reg, 1) < 0)
3432 return connector_status_unknown;
3433
3434 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3435 : connector_status_disconnected;
3436 }
3437
3438 /* If no HPD, poke DDC gently */
3439 if (drm_probe_ddc(&intel_dp->aux.ddc))
3440 return connector_status_connected;
3441
3442 /* Well we tried, say unknown for unreliable port types */
3443 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3444 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3445 if (type == DP_DS_PORT_TYPE_VGA ||
3446 type == DP_DS_PORT_TYPE_NON_EDID)
3447 return connector_status_unknown;
3448 } else {
3449 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3450 DP_DWN_STRM_PORT_TYPE_MASK;
3451 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3452 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3453 return connector_status_unknown;
3454 }
3455
3456 /* Anything else is out of spec, warn and ignore */
3457 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3458 return connector_status_disconnected;
3459 }
3460
3461 static enum drm_connector_status
3462 ironlake_dp_detect(struct intel_dp *intel_dp)
3463 {
3464 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3465 struct drm_i915_private *dev_priv = dev->dev_private;
3466 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3467 enum drm_connector_status status;
3468
3469 /* Can't disconnect eDP, but you can close the lid... */
3470 if (is_edp(intel_dp)) {
3471 status = intel_panel_detect(dev);
3472 if (status == connector_status_unknown)
3473 status = connector_status_connected;
3474 return status;
3475 }
3476
3477 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3478 return connector_status_disconnected;
3479
3480 return intel_dp_detect_dpcd(intel_dp);
3481 }
3482
3483 static enum drm_connector_status
3484 g4x_dp_detect(struct intel_dp *intel_dp)
3485 {
3486 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3487 struct drm_i915_private *dev_priv = dev->dev_private;
3488 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3489 uint32_t bit;
3490
3491 /* Can't disconnect eDP, but you can close the lid... */
3492 if (is_edp(intel_dp)) {
3493 enum drm_connector_status status;
3494
3495 status = intel_panel_detect(dev);
3496 if (status == connector_status_unknown)
3497 status = connector_status_connected;
3498 return status;
3499 }
3500
3501 if (IS_VALLEYVIEW(dev)) {
3502 switch (intel_dig_port->port) {
3503 case PORT_B:
3504 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3505 break;
3506 case PORT_C:
3507 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3508 break;
3509 case PORT_D:
3510 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3511 break;
3512 default:
3513 return connector_status_unknown;
3514 }
3515 } else {
3516 switch (intel_dig_port->port) {
3517 case PORT_B:
3518 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3519 break;
3520 case PORT_C:
3521 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3522 break;
3523 case PORT_D:
3524 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3525 break;
3526 default:
3527 return connector_status_unknown;
3528 }
3529 }
3530
3531 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3532 return connector_status_disconnected;
3533
3534 return intel_dp_detect_dpcd(intel_dp);
3535 }
3536
3537 static struct edid *
3538 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3539 {
3540 struct intel_connector *intel_connector = to_intel_connector(connector);
3541
3542 /* use cached edid if we have one */
3543 if (intel_connector->edid) {
3544 /* invalid edid */
3545 if (IS_ERR(intel_connector->edid))
3546 return NULL;
3547
3548 return drm_edid_duplicate(intel_connector->edid);
3549 }
3550
3551 return drm_get_edid(connector, adapter);
3552 }
3553
3554 static int
3555 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3556 {
3557 struct intel_connector *intel_connector = to_intel_connector(connector);
3558
3559 /* use cached edid if we have one */
3560 if (intel_connector->edid) {
3561 /* invalid edid */
3562 if (IS_ERR(intel_connector->edid))
3563 return 0;
3564
3565 return intel_connector_update_modes(connector,
3566 intel_connector->edid);
3567 }
3568
3569 return intel_ddc_get_modes(connector, adapter);
3570 }
3571
3572 static enum drm_connector_status
3573 intel_dp_detect(struct drm_connector *connector, bool force)
3574 {
3575 struct intel_dp *intel_dp = intel_attached_dp(connector);
3576 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3577 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3578 struct drm_device *dev = connector->dev;
3579 struct drm_i915_private *dev_priv = dev->dev_private;
3580 enum drm_connector_status status;
3581 enum intel_display_power_domain power_domain;
3582 struct edid *edid = NULL;
3583
3584 intel_runtime_pm_get(dev_priv);
3585
3586 power_domain = intel_display_port_power_domain(intel_encoder);
3587 intel_display_power_get(dev_priv, power_domain);
3588
3589 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3590 connector->base.id, connector->name);
3591
3592 intel_dp->has_audio = false;
3593
3594 if (HAS_PCH_SPLIT(dev))
3595 status = ironlake_dp_detect(intel_dp);
3596 else
3597 status = g4x_dp_detect(intel_dp);
3598
3599 if (status != connector_status_connected)
3600 goto out;
3601
3602 intel_dp_probe_oui(intel_dp);
3603
3604 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3605 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3606 } else {
3607 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3608 if (edid) {
3609 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3610 kfree(edid);
3611 }
3612 }
3613
3614 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3615 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3616 status = connector_status_connected;
3617
3618 out:
3619 intel_display_power_put(dev_priv, power_domain);
3620
3621 intel_runtime_pm_put(dev_priv);
3622
3623 return status;
3624 }
3625
3626 static int intel_dp_get_modes(struct drm_connector *connector)
3627 {
3628 struct intel_dp *intel_dp = intel_attached_dp(connector);
3629 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3630 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3631 struct intel_connector *intel_connector = to_intel_connector(connector);
3632 struct drm_device *dev = connector->dev;
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 enum intel_display_power_domain power_domain;
3635 int ret;
3636
3637 /* We should parse the EDID data and find out if it has an audio sink
3638 */
3639
3640 power_domain = intel_display_port_power_domain(intel_encoder);
3641 intel_display_power_get(dev_priv, power_domain);
3642
3643 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3644 intel_display_power_put(dev_priv, power_domain);
3645 if (ret)
3646 return ret;
3647
3648 /* if eDP has no EDID, fall back to fixed mode */
3649 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3650 struct drm_display_mode *mode;
3651 mode = drm_mode_duplicate(dev,
3652 intel_connector->panel.fixed_mode);
3653 if (mode) {
3654 drm_mode_probed_add(connector, mode);
3655 return 1;
3656 }
3657 }
3658 return 0;
3659 }
3660
3661 static bool
3662 intel_dp_detect_audio(struct drm_connector *connector)
3663 {
3664 struct intel_dp *intel_dp = intel_attached_dp(connector);
3665 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3666 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3667 struct drm_device *dev = connector->dev;
3668 struct drm_i915_private *dev_priv = dev->dev_private;
3669 enum intel_display_power_domain power_domain;
3670 struct edid *edid;
3671 bool has_audio = false;
3672
3673 power_domain = intel_display_port_power_domain(intel_encoder);
3674 intel_display_power_get(dev_priv, power_domain);
3675
3676 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3677 if (edid) {
3678 has_audio = drm_detect_monitor_audio(edid);
3679 kfree(edid);
3680 }
3681
3682 intel_display_power_put(dev_priv, power_domain);
3683
3684 return has_audio;
3685 }
3686
3687 static int
3688 intel_dp_set_property(struct drm_connector *connector,
3689 struct drm_property *property,
3690 uint64_t val)
3691 {
3692 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3693 struct intel_connector *intel_connector = to_intel_connector(connector);
3694 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3695 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3696 int ret;
3697
3698 ret = drm_object_property_set_value(&connector->base, property, val);
3699 if (ret)
3700 return ret;
3701
3702 if (property == dev_priv->force_audio_property) {
3703 int i = val;
3704 bool has_audio;
3705
3706 if (i == intel_dp->force_audio)
3707 return 0;
3708
3709 intel_dp->force_audio = i;
3710
3711 if (i == HDMI_AUDIO_AUTO)
3712 has_audio = intel_dp_detect_audio(connector);
3713 else
3714 has_audio = (i == HDMI_AUDIO_ON);
3715
3716 if (has_audio == intel_dp->has_audio)
3717 return 0;
3718
3719 intel_dp->has_audio = has_audio;
3720 goto done;
3721 }
3722
3723 if (property == dev_priv->broadcast_rgb_property) {
3724 bool old_auto = intel_dp->color_range_auto;
3725 uint32_t old_range = intel_dp->color_range;
3726
3727 switch (val) {
3728 case INTEL_BROADCAST_RGB_AUTO:
3729 intel_dp->color_range_auto = true;
3730 break;
3731 case INTEL_BROADCAST_RGB_FULL:
3732 intel_dp->color_range_auto = false;
3733 intel_dp->color_range = 0;
3734 break;
3735 case INTEL_BROADCAST_RGB_LIMITED:
3736 intel_dp->color_range_auto = false;
3737 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3738 break;
3739 default:
3740 return -EINVAL;
3741 }
3742
3743 if (old_auto == intel_dp->color_range_auto &&
3744 old_range == intel_dp->color_range)
3745 return 0;
3746
3747 goto done;
3748 }
3749
3750 if (is_edp(intel_dp) &&
3751 property == connector->dev->mode_config.scaling_mode_property) {
3752 if (val == DRM_MODE_SCALE_NONE) {
3753 DRM_DEBUG_KMS("no scaling not supported\n");
3754 return -EINVAL;
3755 }
3756
3757 if (intel_connector->panel.fitting_mode == val) {
3758 /* the eDP scaling property is not changed */
3759 return 0;
3760 }
3761 intel_connector->panel.fitting_mode = val;
3762
3763 goto done;
3764 }
3765
3766 return -EINVAL;
3767
3768 done:
3769 if (intel_encoder->base.crtc)
3770 intel_crtc_restore_mode(intel_encoder->base.crtc);
3771
3772 return 0;
3773 }
3774
3775 static void
3776 intel_dp_connector_destroy(struct drm_connector *connector)
3777 {
3778 struct intel_connector *intel_connector = to_intel_connector(connector);
3779
3780 if (!IS_ERR_OR_NULL(intel_connector->edid))
3781 kfree(intel_connector->edid);
3782
3783 /* Can't call is_edp() since the encoder may have been destroyed
3784 * already. */
3785 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3786 intel_panel_fini(&intel_connector->panel);
3787
3788 drm_connector_cleanup(connector);
3789 kfree(connector);
3790 }
3791
3792 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3793 {
3794 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3795 struct intel_dp *intel_dp = &intel_dig_port->dp;
3796 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3797
3798 drm_dp_aux_unregister(&intel_dp->aux);
3799 drm_encoder_cleanup(encoder);
3800 if (is_edp(intel_dp)) {
3801 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3802 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3803 edp_panel_vdd_off_sync(intel_dp);
3804 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3805 }
3806 kfree(intel_dig_port);
3807 }
3808
3809 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3810 .dpms = intel_connector_dpms,
3811 .detect = intel_dp_detect,
3812 .fill_modes = drm_helper_probe_single_connector_modes,
3813 .set_property = intel_dp_set_property,
3814 .destroy = intel_dp_connector_destroy,
3815 };
3816
3817 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3818 .get_modes = intel_dp_get_modes,
3819 .mode_valid = intel_dp_mode_valid,
3820 .best_encoder = intel_best_encoder,
3821 };
3822
3823 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3824 .destroy = intel_dp_encoder_destroy,
3825 };
3826
3827 static void
3828 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3829 {
3830 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3831
3832 intel_dp_check_link_status(intel_dp);
3833 }
3834
3835 bool
3836 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
3837 {
3838 struct intel_dp *intel_dp = &intel_dig_port->dp;
3839
3840 if (long_hpd)
3841 return true;
3842
3843 /*
3844 * we'll check the link status via the normal hot plug path later -
3845 * but for short hpds we should check it now
3846 */
3847 intel_dp_check_link_status(intel_dp);
3848 return false;
3849 }
3850
3851 /* Return which DP Port should be selected for Transcoder DP control */
3852 int
3853 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3854 {
3855 struct drm_device *dev = crtc->dev;
3856 struct intel_encoder *intel_encoder;
3857 struct intel_dp *intel_dp;
3858
3859 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3860 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3861
3862 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3863 intel_encoder->type == INTEL_OUTPUT_EDP)
3864 return intel_dp->output_reg;
3865 }
3866
3867 return -1;
3868 }
3869
3870 /* check the VBT to see whether the eDP is on DP-D port */
3871 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3872 {
3873 struct drm_i915_private *dev_priv = dev->dev_private;
3874 union child_device_config *p_child;
3875 int i;
3876 static const short port_mapping[] = {
3877 [PORT_B] = PORT_IDPB,
3878 [PORT_C] = PORT_IDPC,
3879 [PORT_D] = PORT_IDPD,
3880 };
3881
3882 if (port == PORT_A)
3883 return true;
3884
3885 if (!dev_priv->vbt.child_dev_num)
3886 return false;
3887
3888 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3889 p_child = dev_priv->vbt.child_dev + i;
3890
3891 if (p_child->common.dvo_port == port_mapping[port] &&
3892 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3893 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3894 return true;
3895 }
3896 return false;
3897 }
3898
3899 static void
3900 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3901 {
3902 struct intel_connector *intel_connector = to_intel_connector(connector);
3903
3904 intel_attach_force_audio_property(connector);
3905 intel_attach_broadcast_rgb_property(connector);
3906 intel_dp->color_range_auto = true;
3907
3908 if (is_edp(intel_dp)) {
3909 drm_mode_create_scaling_mode_property(connector->dev);
3910 drm_object_attach_property(
3911 &connector->base,
3912 connector->dev->mode_config.scaling_mode_property,
3913 DRM_MODE_SCALE_ASPECT);
3914 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3915 }
3916 }
3917
3918 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3919 {
3920 intel_dp->last_power_cycle = jiffies;
3921 intel_dp->last_power_on = jiffies;
3922 intel_dp->last_backlight_off = jiffies;
3923 }
3924
3925 static void
3926 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3927 struct intel_dp *intel_dp,
3928 struct edp_power_seq *out)
3929 {
3930 struct drm_i915_private *dev_priv = dev->dev_private;
3931 struct edp_power_seq cur, vbt, spec, final;
3932 u32 pp_on, pp_off, pp_div, pp;
3933 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3934
3935 if (HAS_PCH_SPLIT(dev)) {
3936 pp_ctrl_reg = PCH_PP_CONTROL;
3937 pp_on_reg = PCH_PP_ON_DELAYS;
3938 pp_off_reg = PCH_PP_OFF_DELAYS;
3939 pp_div_reg = PCH_PP_DIVISOR;
3940 } else {
3941 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3942
3943 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3944 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3945 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3946 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3947 }
3948
3949 /* Workaround: Need to write PP_CONTROL with the unlock key as
3950 * the very first thing. */
3951 pp = ironlake_get_pp_control(intel_dp);
3952 I915_WRITE(pp_ctrl_reg, pp);
3953
3954 pp_on = I915_READ(pp_on_reg);
3955 pp_off = I915_READ(pp_off_reg);
3956 pp_div = I915_READ(pp_div_reg);
3957
3958 /* Pull timing values out of registers */
3959 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3960 PANEL_POWER_UP_DELAY_SHIFT;
3961
3962 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3963 PANEL_LIGHT_ON_DELAY_SHIFT;
3964
3965 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3966 PANEL_LIGHT_OFF_DELAY_SHIFT;
3967
3968 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3969 PANEL_POWER_DOWN_DELAY_SHIFT;
3970
3971 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3972 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3973
3974 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3975 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3976
3977 vbt = dev_priv->vbt.edp_pps;
3978
3979 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3980 * our hw here, which are all in 100usec. */
3981 spec.t1_t3 = 210 * 10;
3982 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3983 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3984 spec.t10 = 500 * 10;
3985 /* This one is special and actually in units of 100ms, but zero
3986 * based in the hw (so we need to add 100 ms). But the sw vbt
3987 * table multiplies it with 1000 to make it in units of 100usec,
3988 * too. */
3989 spec.t11_t12 = (510 + 100) * 10;
3990
3991 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3992 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3993
3994 /* Use the max of the register settings and vbt. If both are
3995 * unset, fall back to the spec limits. */
3996 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3997 spec.field : \
3998 max(cur.field, vbt.field))
3999 assign_final(t1_t3);
4000 assign_final(t8);
4001 assign_final(t9);
4002 assign_final(t10);
4003 assign_final(t11_t12);
4004 #undef assign_final
4005
4006 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4007 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4008 intel_dp->backlight_on_delay = get_delay(t8);
4009 intel_dp->backlight_off_delay = get_delay(t9);
4010 intel_dp->panel_power_down_delay = get_delay(t10);
4011 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4012 #undef get_delay
4013
4014 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4015 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4016 intel_dp->panel_power_cycle_delay);
4017
4018 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4019 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4020
4021 if (out)
4022 *out = final;
4023 }
4024
4025 static void
4026 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4027 struct intel_dp *intel_dp,
4028 struct edp_power_seq *seq)
4029 {
4030 struct drm_i915_private *dev_priv = dev->dev_private;
4031 u32 pp_on, pp_off, pp_div, port_sel = 0;
4032 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4033 int pp_on_reg, pp_off_reg, pp_div_reg;
4034
4035 if (HAS_PCH_SPLIT(dev)) {
4036 pp_on_reg = PCH_PP_ON_DELAYS;
4037 pp_off_reg = PCH_PP_OFF_DELAYS;
4038 pp_div_reg = PCH_PP_DIVISOR;
4039 } else {
4040 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4041
4042 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4043 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4044 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4045 }
4046
4047 /*
4048 * And finally store the new values in the power sequencer. The
4049 * backlight delays are set to 1 because we do manual waits on them. For
4050 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4051 * we'll end up waiting for the backlight off delay twice: once when we
4052 * do the manual sleep, and once when we disable the panel and wait for
4053 * the PP_STATUS bit to become zero.
4054 */
4055 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4056 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4057 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4058 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4059 /* Compute the divisor for the pp clock, simply match the Bspec
4060 * formula. */
4061 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4062 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4063 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4064
4065 /* Haswell doesn't have any port selection bits for the panel
4066 * power sequencer any more. */
4067 if (IS_VALLEYVIEW(dev)) {
4068 if (dp_to_dig_port(intel_dp)->port == PORT_B)
4069 port_sel = PANEL_PORT_SELECT_DPB_VLV;
4070 else
4071 port_sel = PANEL_PORT_SELECT_DPC_VLV;
4072 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4073 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4074 port_sel = PANEL_PORT_SELECT_DPA;
4075 else
4076 port_sel = PANEL_PORT_SELECT_DPD;
4077 }
4078
4079 pp_on |= port_sel;
4080
4081 I915_WRITE(pp_on_reg, pp_on);
4082 I915_WRITE(pp_off_reg, pp_off);
4083 I915_WRITE(pp_div_reg, pp_div);
4084
4085 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4086 I915_READ(pp_on_reg),
4087 I915_READ(pp_off_reg),
4088 I915_READ(pp_div_reg));
4089 }
4090
4091 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4092 {
4093 struct drm_i915_private *dev_priv = dev->dev_private;
4094 struct intel_encoder *encoder;
4095 struct intel_dp *intel_dp = NULL;
4096 struct intel_crtc_config *config = NULL;
4097 struct intel_crtc *intel_crtc = NULL;
4098 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4099 u32 reg, val;
4100 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4101
4102 if (refresh_rate <= 0) {
4103 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4104 return;
4105 }
4106
4107 if (intel_connector == NULL) {
4108 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4109 return;
4110 }
4111
4112 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4113 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4114 return;
4115 }
4116
4117 encoder = intel_attached_encoder(&intel_connector->base);
4118 intel_dp = enc_to_intel_dp(&encoder->base);
4119 intel_crtc = encoder->new_crtc;
4120
4121 if (!intel_crtc) {
4122 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4123 return;
4124 }
4125
4126 config = &intel_crtc->config;
4127
4128 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4129 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4130 return;
4131 }
4132
4133 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4134 index = DRRS_LOW_RR;
4135
4136 if (index == intel_dp->drrs_state.refresh_rate_type) {
4137 DRM_DEBUG_KMS(
4138 "DRRS requested for previously set RR...ignoring\n");
4139 return;
4140 }
4141
4142 if (!intel_crtc->active) {
4143 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4144 return;
4145 }
4146
4147 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4148 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4149 val = I915_READ(reg);
4150 if (index > DRRS_HIGH_RR) {
4151 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4152 intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4153 } else {
4154 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4155 }
4156 I915_WRITE(reg, val);
4157 }
4158
4159 /*
4160 * mutex taken to ensure that there is no race between differnt
4161 * drrs calls trying to update refresh rate. This scenario may occur
4162 * in future when idleness detection based DRRS in kernel and
4163 * possible calls from user space to set differnt RR are made.
4164 */
4165
4166 mutex_lock(&intel_dp->drrs_state.mutex);
4167
4168 intel_dp->drrs_state.refresh_rate_type = index;
4169
4170 mutex_unlock(&intel_dp->drrs_state.mutex);
4171
4172 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4173 }
4174
4175 static struct drm_display_mode *
4176 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4177 struct intel_connector *intel_connector,
4178 struct drm_display_mode *fixed_mode)
4179 {
4180 struct drm_connector *connector = &intel_connector->base;
4181 struct intel_dp *intel_dp = &intel_dig_port->dp;
4182 struct drm_device *dev = intel_dig_port->base.base.dev;
4183 struct drm_i915_private *dev_priv = dev->dev_private;
4184 struct drm_display_mode *downclock_mode = NULL;
4185
4186 if (INTEL_INFO(dev)->gen <= 6) {
4187 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4188 return NULL;
4189 }
4190
4191 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4192 DRM_INFO("VBT doesn't support DRRS\n");
4193 return NULL;
4194 }
4195
4196 downclock_mode = intel_find_panel_downclock
4197 (dev, fixed_mode, connector);
4198
4199 if (!downclock_mode) {
4200 DRM_INFO("DRRS not supported\n");
4201 return NULL;
4202 }
4203
4204 dev_priv->drrs.connector = intel_connector;
4205
4206 mutex_init(&intel_dp->drrs_state.mutex);
4207
4208 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4209
4210 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4211 DRM_INFO("seamless DRRS supported for eDP panel.\n");
4212 return downclock_mode;
4213 }
4214
4215 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4216 struct intel_connector *intel_connector,
4217 struct edp_power_seq *power_seq)
4218 {
4219 struct drm_connector *connector = &intel_connector->base;
4220 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4221 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4222 struct drm_device *dev = intel_encoder->base.dev;
4223 struct drm_i915_private *dev_priv = dev->dev_private;
4224 struct drm_display_mode *fixed_mode = NULL;
4225 struct drm_display_mode *downclock_mode = NULL;
4226 bool has_dpcd;
4227 struct drm_display_mode *scan;
4228 struct edid *edid;
4229
4230 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4231
4232 if (!is_edp(intel_dp))
4233 return true;
4234
4235 /* The VDD bit needs a power domain reference, so if the bit is already
4236 * enabled when we boot, grab this reference. */
4237 if (edp_have_panel_vdd(intel_dp)) {
4238 enum intel_display_power_domain power_domain;
4239 power_domain = intel_display_port_power_domain(intel_encoder);
4240 intel_display_power_get(dev_priv, power_domain);
4241 }
4242
4243 /* Cache DPCD and EDID for edp. */
4244 intel_edp_panel_vdd_on(intel_dp);
4245 has_dpcd = intel_dp_get_dpcd(intel_dp);
4246 edp_panel_vdd_off(intel_dp, false);
4247
4248 if (has_dpcd) {
4249 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4250 dev_priv->no_aux_handshake =
4251 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4252 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4253 } else {
4254 /* if this fails, presume the device is a ghost */
4255 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4256 return false;
4257 }
4258
4259 /* We now know it's not a ghost, init power sequence regs. */
4260 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4261
4262 mutex_lock(&dev->mode_config.mutex);
4263 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4264 if (edid) {
4265 if (drm_add_edid_modes(connector, edid)) {
4266 drm_mode_connector_update_edid_property(connector,
4267 edid);
4268 drm_edid_to_eld(connector, edid);
4269 } else {
4270 kfree(edid);
4271 edid = ERR_PTR(-EINVAL);
4272 }
4273 } else {
4274 edid = ERR_PTR(-ENOENT);
4275 }
4276 intel_connector->edid = edid;
4277
4278 /* prefer fixed mode from EDID if available */
4279 list_for_each_entry(scan, &connector->probed_modes, head) {
4280 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4281 fixed_mode = drm_mode_duplicate(dev, scan);
4282 downclock_mode = intel_dp_drrs_init(
4283 intel_dig_port,
4284 intel_connector, fixed_mode);
4285 break;
4286 }
4287 }
4288
4289 /* fallback to VBT if available for eDP */
4290 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4291 fixed_mode = drm_mode_duplicate(dev,
4292 dev_priv->vbt.lfp_lvds_vbt_mode);
4293 if (fixed_mode)
4294 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4295 }
4296 mutex_unlock(&dev->mode_config.mutex);
4297
4298 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4299 intel_panel_setup_backlight(connector);
4300
4301 return true;
4302 }
4303
4304 bool
4305 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4306 struct intel_connector *intel_connector)
4307 {
4308 struct drm_connector *connector = &intel_connector->base;
4309 struct intel_dp *intel_dp = &intel_dig_port->dp;
4310 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4311 struct drm_device *dev = intel_encoder->base.dev;
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 enum port port = intel_dig_port->port;
4314 struct edp_power_seq power_seq = { 0 };
4315 int type;
4316
4317 /* intel_dp vfuncs */
4318 if (IS_VALLEYVIEW(dev))
4319 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4320 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4321 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4322 else if (HAS_PCH_SPLIT(dev))
4323 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4324 else
4325 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4326
4327 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4328
4329 /* Preserve the current hw state. */
4330 intel_dp->DP = I915_READ(intel_dp->output_reg);
4331 intel_dp->attached_connector = intel_connector;
4332
4333 if (intel_dp_is_edp(dev, port))
4334 type = DRM_MODE_CONNECTOR_eDP;
4335 else
4336 type = DRM_MODE_CONNECTOR_DisplayPort;
4337
4338 /*
4339 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4340 * for DP the encoder type can be set by the caller to
4341 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4342 */
4343 if (type == DRM_MODE_CONNECTOR_eDP)
4344 intel_encoder->type = INTEL_OUTPUT_EDP;
4345
4346 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4347 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4348 port_name(port));
4349
4350 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4351 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4352
4353 connector->interlace_allowed = true;
4354 connector->doublescan_allowed = 0;
4355
4356 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4357 edp_panel_vdd_work);
4358
4359 intel_connector_attach_encoder(intel_connector, intel_encoder);
4360 drm_sysfs_connector_add(connector);
4361
4362 if (HAS_DDI(dev))
4363 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4364 else
4365 intel_connector->get_hw_state = intel_connector_get_hw_state;
4366 intel_connector->unregister = intel_dp_connector_unregister;
4367
4368 /* Set up the hotplug pin. */
4369 switch (port) {
4370 case PORT_A:
4371 intel_encoder->hpd_pin = HPD_PORT_A;
4372 break;
4373 case PORT_B:
4374 intel_encoder->hpd_pin = HPD_PORT_B;
4375 break;
4376 case PORT_C:
4377 intel_encoder->hpd_pin = HPD_PORT_C;
4378 break;
4379 case PORT_D:
4380 intel_encoder->hpd_pin = HPD_PORT_D;
4381 break;
4382 default:
4383 BUG();
4384 }
4385
4386 if (is_edp(intel_dp)) {
4387 intel_dp_init_panel_power_timestamps(intel_dp);
4388 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4389 }
4390
4391 intel_dp_aux_init(intel_dp, intel_connector);
4392
4393 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4394 drm_dp_aux_unregister(&intel_dp->aux);
4395 if (is_edp(intel_dp)) {
4396 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4397 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4398 edp_panel_vdd_off_sync(intel_dp);
4399 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4400 }
4401 drm_sysfs_connector_remove(connector);
4402 drm_connector_cleanup(connector);
4403 return false;
4404 }
4405
4406 intel_dp_add_properties(intel_dp, connector);
4407
4408 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4409 * 0xd. Failure to do so will result in spurious interrupts being
4410 * generated on the port when a cable is not attached.
4411 */
4412 if (IS_G4X(dev) && !IS_GM45(dev)) {
4413 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4414 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4415 }
4416
4417 return true;
4418 }
4419
4420 void
4421 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4422 {
4423 struct drm_i915_private *dev_priv = dev->dev_private;
4424 struct intel_digital_port *intel_dig_port;
4425 struct intel_encoder *intel_encoder;
4426 struct drm_encoder *encoder;
4427 struct intel_connector *intel_connector;
4428
4429 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4430 if (!intel_dig_port)
4431 return;
4432
4433 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4434 if (!intel_connector) {
4435 kfree(intel_dig_port);
4436 return;
4437 }
4438
4439 intel_encoder = &intel_dig_port->base;
4440 encoder = &intel_encoder->base;
4441
4442 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4443 DRM_MODE_ENCODER_TMDS);
4444
4445 intel_encoder->compute_config = intel_dp_compute_config;
4446 intel_encoder->disable = intel_disable_dp;
4447 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4448 intel_encoder->get_config = intel_dp_get_config;
4449 if (IS_CHERRYVIEW(dev)) {
4450 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4451 intel_encoder->pre_enable = chv_pre_enable_dp;
4452 intel_encoder->enable = vlv_enable_dp;
4453 intel_encoder->post_disable = chv_post_disable_dp;
4454 } else if (IS_VALLEYVIEW(dev)) {
4455 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4456 intel_encoder->pre_enable = vlv_pre_enable_dp;
4457 intel_encoder->enable = vlv_enable_dp;
4458 intel_encoder->post_disable = vlv_post_disable_dp;
4459 } else {
4460 intel_encoder->pre_enable = g4x_pre_enable_dp;
4461 intel_encoder->enable = g4x_enable_dp;
4462 intel_encoder->post_disable = g4x_post_disable_dp;
4463 }
4464
4465 intel_dig_port->port = port;
4466 intel_dig_port->dp.output_reg = output_reg;
4467
4468 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4469 if (IS_CHERRYVIEW(dev)) {
4470 if (port == PORT_D)
4471 intel_encoder->crtc_mask = 1 << 2;
4472 else
4473 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4474 } else {
4475 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4476 }
4477 intel_encoder->cloneable = 0;
4478 intel_encoder->hot_plug = intel_dp_hot_plug;
4479
4480 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4481 dev_priv->hpd_irq_port[port] = intel_dig_port;
4482
4483 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4484 drm_encoder_cleanup(encoder);
4485 kfree(intel_dig_port);
4486 kfree(intel_connector);
4487 }
4488 }
This page took 0.167446 seconds and 4 git commands to generate.