drm/i915: Hold the pps mutex across the whole panel power enable sequence
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
117
118 int
119 intel_dp_max_link_bw(struct intel_dp *intel_dp)
120 {
121 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
122 struct drm_device *dev = intel_dp->attached_connector->base.dev;
123
124 switch (max_link_bw) {
125 case DP_LINK_BW_1_62:
126 case DP_LINK_BW_2_7:
127 break;
128 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
129 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
130 INTEL_INFO(dev)->gen >= 8) &&
131 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
132 max_link_bw = DP_LINK_BW_5_4;
133 else
134 max_link_bw = DP_LINK_BW_2_7;
135 break;
136 default:
137 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
138 max_link_bw);
139 max_link_bw = DP_LINK_BW_1_62;
140 break;
141 }
142 return max_link_bw;
143 }
144
145 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
146 {
147 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
148 struct drm_device *dev = intel_dig_port->base.base.dev;
149 u8 source_max, sink_max;
150
151 source_max = 4;
152 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
153 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
154 source_max = 2;
155
156 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
157
158 return min(source_max, sink_max);
159 }
160
161 /*
162 * The units on the numbers in the next two are... bizarre. Examples will
163 * make it clearer; this one parallels an example in the eDP spec.
164 *
165 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
166 *
167 * 270000 * 1 * 8 / 10 == 216000
168 *
169 * The actual data capacity of that configuration is 2.16Gbit/s, so the
170 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
171 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
172 * 119000. At 18bpp that's 2142000 kilobits per second.
173 *
174 * Thus the strange-looking division by 10 in intel_dp_link_required, to
175 * get the result in decakilobits instead of kilobits.
176 */
177
178 static int
179 intel_dp_link_required(int pixel_clock, int bpp)
180 {
181 return (pixel_clock * bpp + 9) / 10;
182 }
183
184 static int
185 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
186 {
187 return (max_link_clock * max_lanes * 8) / 10;
188 }
189
190 static enum drm_mode_status
191 intel_dp_mode_valid(struct drm_connector *connector,
192 struct drm_display_mode *mode)
193 {
194 struct intel_dp *intel_dp = intel_attached_dp(connector);
195 struct intel_connector *intel_connector = to_intel_connector(connector);
196 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
197 int target_clock = mode->clock;
198 int max_rate, mode_rate, max_lanes, max_link_clock;
199
200 if (is_edp(intel_dp) && fixed_mode) {
201 if (mode->hdisplay > fixed_mode->hdisplay)
202 return MODE_PANEL;
203
204 if (mode->vdisplay > fixed_mode->vdisplay)
205 return MODE_PANEL;
206
207 target_clock = fixed_mode->clock;
208 }
209
210 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
211 max_lanes = intel_dp_max_lane_count(intel_dp);
212
213 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
214 mode_rate = intel_dp_link_required(target_clock, 18);
215
216 if (mode_rate > max_rate)
217 return MODE_CLOCK_HIGH;
218
219 if (mode->clock < 10000)
220 return MODE_CLOCK_LOW;
221
222 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
223 return MODE_H_ILLEGAL;
224
225 return MODE_OK;
226 }
227
228 static uint32_t
229 pack_aux(const uint8_t *src, int src_bytes)
230 {
231 int i;
232 uint32_t v = 0;
233
234 if (src_bytes > 4)
235 src_bytes = 4;
236 for (i = 0; i < src_bytes; i++)
237 v |= ((uint32_t) src[i]) << ((3-i) * 8);
238 return v;
239 }
240
241 static void
242 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244 int i;
245 if (dst_bytes > 4)
246 dst_bytes = 4;
247 for (i = 0; i < dst_bytes; i++)
248 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 uint32_t clkcfg;
257
258 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
259 if (IS_VALLEYVIEW(dev))
260 return 200;
261
262 clkcfg = I915_READ(CLKCFG);
263 switch (clkcfg & CLKCFG_FSB_MASK) {
264 case CLKCFG_FSB_400:
265 return 100;
266 case CLKCFG_FSB_533:
267 return 133;
268 case CLKCFG_FSB_667:
269 return 166;
270 case CLKCFG_FSB_800:
271 return 200;
272 case CLKCFG_FSB_1067:
273 return 266;
274 case CLKCFG_FSB_1333:
275 return 333;
276 /* these two are just a guess; one of them might be right */
277 case CLKCFG_FSB_1600:
278 case CLKCFG_FSB_1600_ALT:
279 return 400;
280 default:
281 return 133;
282 }
283 }
284
285 static void
286 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
287 struct intel_dp *intel_dp);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp);
291
292 static void pps_lock(struct intel_dp *intel_dp)
293 {
294 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295 struct intel_encoder *encoder = &intel_dig_port->base;
296 struct drm_device *dev = encoder->base.dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 enum intel_display_power_domain power_domain;
299
300 /*
301 * See vlv_power_sequencer_reset() why we need
302 * a power domain reference here.
303 */
304 power_domain = intel_display_port_power_domain(encoder);
305 intel_display_power_get(dev_priv, power_domain);
306
307 mutex_lock(&dev_priv->pps_mutex);
308 }
309
310 static void pps_unlock(struct intel_dp *intel_dp)
311 {
312 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
313 struct intel_encoder *encoder = &intel_dig_port->base;
314 struct drm_device *dev = encoder->base.dev;
315 struct drm_i915_private *dev_priv = dev->dev_private;
316 enum intel_display_power_domain power_domain;
317
318 mutex_unlock(&dev_priv->pps_mutex);
319
320 power_domain = intel_display_port_power_domain(encoder);
321 intel_display_power_put(dev_priv, power_domain);
322 }
323
324 static enum pipe
325 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
326 {
327 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
328 struct drm_device *dev = intel_dig_port->base.base.dev;
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 struct intel_encoder *encoder;
331 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
332
333 lockdep_assert_held(&dev_priv->pps_mutex);
334
335 if (intel_dp->pps_pipe != INVALID_PIPE)
336 return intel_dp->pps_pipe;
337
338 /*
339 * We don't have power sequencer currently.
340 * Pick one that's not used by other ports.
341 */
342 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
343 base.head) {
344 struct intel_dp *tmp;
345
346 if (encoder->type != INTEL_OUTPUT_EDP)
347 continue;
348
349 tmp = enc_to_intel_dp(&encoder->base);
350
351 if (tmp->pps_pipe != INVALID_PIPE)
352 pipes &= ~(1 << tmp->pps_pipe);
353 }
354
355 /*
356 * Didn't find one. This should not happen since there
357 * are two power sequencers and up to two eDP ports.
358 */
359 if (WARN_ON(pipes == 0))
360 return PIPE_A;
361
362 intel_dp->pps_pipe = ffs(pipes) - 1;
363
364 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
365 pipe_name(intel_dp->pps_pipe),
366 port_name(intel_dig_port->port));
367
368 /* init power sequencer on this pipe and port */
369 intel_dp_init_panel_power_sequencer(dev, intel_dp);
370 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
371
372 return intel_dp->pps_pipe;
373 }
374
375 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
376 enum pipe pipe);
377
378 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
379 enum pipe pipe)
380 {
381 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
382 }
383
384 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
385 enum pipe pipe)
386 {
387 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
388 }
389
390 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
391 enum pipe pipe)
392 {
393 return true;
394 }
395
396 static enum pipe
397 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
398 enum port port,
399 vlv_pipe_check pipe_check)
400 {
401 enum pipe pipe;
402
403 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
404 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
405 PANEL_PORT_SELECT_MASK;
406
407 if (port_sel != PANEL_PORT_SELECT_VLV(port))
408 continue;
409
410 if (!pipe_check(dev_priv, pipe))
411 continue;
412
413 return pipe;
414 }
415
416 return INVALID_PIPE;
417 }
418
419 static void
420 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
421 {
422 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
423 struct drm_device *dev = intel_dig_port->base.base.dev;
424 struct drm_i915_private *dev_priv = dev->dev_private;
425 enum port port = intel_dig_port->port;
426
427 lockdep_assert_held(&dev_priv->pps_mutex);
428
429 /* try to find a pipe with this port selected */
430 /* first pick one where the panel is on */
431 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
432 vlv_pipe_has_pp_on);
433 /* didn't find one? pick one where vdd is on */
434 if (intel_dp->pps_pipe == INVALID_PIPE)
435 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
436 vlv_pipe_has_vdd_on);
437 /* didn't find one? pick one with just the correct port */
438 if (intel_dp->pps_pipe == INVALID_PIPE)
439 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
440 vlv_pipe_any);
441
442 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
443 if (intel_dp->pps_pipe == INVALID_PIPE) {
444 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
445 port_name(port));
446 return;
447 }
448
449 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
450 port_name(port), pipe_name(intel_dp->pps_pipe));
451
452 intel_dp_init_panel_power_sequencer(dev, intel_dp);
453 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
454 }
455
456 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
457 {
458 struct drm_device *dev = dev_priv->dev;
459 struct intel_encoder *encoder;
460
461 if (WARN_ON(!IS_VALLEYVIEW(dev)))
462 return;
463
464 /*
465 * We can't grab pps_mutex here due to deadlock with power_domain
466 * mutex when power_domain functions are called while holding pps_mutex.
467 * That also means that in order to use pps_pipe the code needs to
468 * hold both a power domain reference and pps_mutex, and the power domain
469 * reference get/put must be done while _not_ holding pps_mutex.
470 * pps_{lock,unlock}() do these steps in the correct order, so one
471 * should use them always.
472 */
473
474 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
475 struct intel_dp *intel_dp;
476
477 if (encoder->type != INTEL_OUTPUT_EDP)
478 continue;
479
480 intel_dp = enc_to_intel_dp(&encoder->base);
481 intel_dp->pps_pipe = INVALID_PIPE;
482 }
483 }
484
485 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
486 {
487 struct drm_device *dev = intel_dp_to_dev(intel_dp);
488
489 if (HAS_PCH_SPLIT(dev))
490 return PCH_PP_CONTROL;
491 else
492 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
493 }
494
495 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
496 {
497 struct drm_device *dev = intel_dp_to_dev(intel_dp);
498
499 if (HAS_PCH_SPLIT(dev))
500 return PCH_PP_STATUS;
501 else
502 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
503 }
504
505 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
506 This function only applicable when panel PM state is not to be tracked */
507 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
508 void *unused)
509 {
510 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
511 edp_notifier);
512 struct drm_device *dev = intel_dp_to_dev(intel_dp);
513 struct drm_i915_private *dev_priv = dev->dev_private;
514 u32 pp_div;
515 u32 pp_ctrl_reg, pp_div_reg;
516
517 if (!is_edp(intel_dp) || code != SYS_RESTART)
518 return 0;
519
520 pps_lock(intel_dp);
521
522 if (IS_VALLEYVIEW(dev)) {
523 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
524
525 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
526 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
527 pp_div = I915_READ(pp_div_reg);
528 pp_div &= PP_REFERENCE_DIVIDER_MASK;
529
530 /* 0x1F write to PP_DIV_REG sets max cycle delay */
531 I915_WRITE(pp_div_reg, pp_div | 0x1F);
532 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
533 msleep(intel_dp->panel_power_cycle_delay);
534 }
535
536 pps_unlock(intel_dp);
537
538 return 0;
539 }
540
541 static bool edp_have_panel_power(struct intel_dp *intel_dp)
542 {
543 struct drm_device *dev = intel_dp_to_dev(intel_dp);
544 struct drm_i915_private *dev_priv = dev->dev_private;
545
546 lockdep_assert_held(&dev_priv->pps_mutex);
547
548 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
549 }
550
551 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
552 {
553 struct drm_device *dev = intel_dp_to_dev(intel_dp);
554 struct drm_i915_private *dev_priv = dev->dev_private;
555
556 lockdep_assert_held(&dev_priv->pps_mutex);
557
558 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
559 }
560
561 static void
562 intel_dp_check_edp(struct intel_dp *intel_dp)
563 {
564 struct drm_device *dev = intel_dp_to_dev(intel_dp);
565 struct drm_i915_private *dev_priv = dev->dev_private;
566
567 if (!is_edp(intel_dp))
568 return;
569
570 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
571 WARN(1, "eDP powered off while attempting aux channel communication.\n");
572 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
573 I915_READ(_pp_stat_reg(intel_dp)),
574 I915_READ(_pp_ctrl_reg(intel_dp)));
575 }
576 }
577
578 static uint32_t
579 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
580 {
581 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
582 struct drm_device *dev = intel_dig_port->base.base.dev;
583 struct drm_i915_private *dev_priv = dev->dev_private;
584 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
585 uint32_t status;
586 bool done;
587
588 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
589 if (has_aux_irq)
590 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
591 msecs_to_jiffies_timeout(10));
592 else
593 done = wait_for_atomic(C, 10) == 0;
594 if (!done)
595 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
596 has_aux_irq);
597 #undef C
598
599 return status;
600 }
601
602 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
603 {
604 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
605 struct drm_device *dev = intel_dig_port->base.base.dev;
606
607 /*
608 * The clock divider is based off the hrawclk, and would like to run at
609 * 2MHz. So, take the hrawclk value and divide by 2 and use that
610 */
611 return index ? 0 : intel_hrawclk(dev) / 2;
612 }
613
614 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
615 {
616 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
617 struct drm_device *dev = intel_dig_port->base.base.dev;
618
619 if (index)
620 return 0;
621
622 if (intel_dig_port->port == PORT_A) {
623 if (IS_GEN6(dev) || IS_GEN7(dev))
624 return 200; /* SNB & IVB eDP input clock at 400Mhz */
625 else
626 return 225; /* eDP input clock at 450Mhz */
627 } else {
628 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
629 }
630 }
631
632 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
633 {
634 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
635 struct drm_device *dev = intel_dig_port->base.base.dev;
636 struct drm_i915_private *dev_priv = dev->dev_private;
637
638 if (intel_dig_port->port == PORT_A) {
639 if (index)
640 return 0;
641 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
642 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
643 /* Workaround for non-ULT HSW */
644 switch (index) {
645 case 0: return 63;
646 case 1: return 72;
647 default: return 0;
648 }
649 } else {
650 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
651 }
652 }
653
654 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
655 {
656 return index ? 0 : 100;
657 }
658
659 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 /*
662 * SKL doesn't need us to program the AUX clock divider (Hardware will
663 * derive the clock from CDCLK automatically). We still implement the
664 * get_aux_clock_divider vfunc to plug-in into the existing code.
665 */
666 return index ? 0 : 1;
667 }
668
669 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
670 bool has_aux_irq,
671 int send_bytes,
672 uint32_t aux_clock_divider)
673 {
674 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
675 struct drm_device *dev = intel_dig_port->base.base.dev;
676 uint32_t precharge, timeout;
677
678 if (IS_GEN6(dev))
679 precharge = 3;
680 else
681 precharge = 5;
682
683 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
684 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
685 else
686 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
687
688 return DP_AUX_CH_CTL_SEND_BUSY |
689 DP_AUX_CH_CTL_DONE |
690 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
691 DP_AUX_CH_CTL_TIME_OUT_ERROR |
692 timeout |
693 DP_AUX_CH_CTL_RECEIVE_ERROR |
694 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
695 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
696 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
697 }
698
699 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
700 bool has_aux_irq,
701 int send_bytes,
702 uint32_t unused)
703 {
704 return DP_AUX_CH_CTL_SEND_BUSY |
705 DP_AUX_CH_CTL_DONE |
706 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
707 DP_AUX_CH_CTL_TIME_OUT_ERROR |
708 DP_AUX_CH_CTL_TIME_OUT_1600us |
709 DP_AUX_CH_CTL_RECEIVE_ERROR |
710 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
711 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
712 }
713
714 static int
715 intel_dp_aux_ch(struct intel_dp *intel_dp,
716 const uint8_t *send, int send_bytes,
717 uint8_t *recv, int recv_size)
718 {
719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720 struct drm_device *dev = intel_dig_port->base.base.dev;
721 struct drm_i915_private *dev_priv = dev->dev_private;
722 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
723 uint32_t ch_data = ch_ctl + 4;
724 uint32_t aux_clock_divider;
725 int i, ret, recv_bytes;
726 uint32_t status;
727 int try, clock = 0;
728 bool has_aux_irq = HAS_AUX_IRQ(dev);
729 bool vdd;
730
731 pps_lock(intel_dp);
732
733 /*
734 * We will be called with VDD already enabled for dpcd/edid/oui reads.
735 * In such cases we want to leave VDD enabled and it's up to upper layers
736 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
737 * ourselves.
738 */
739 vdd = edp_panel_vdd_on(intel_dp);
740
741 /* dp aux is extremely sensitive to irq latency, hence request the
742 * lowest possible wakeup latency and so prevent the cpu from going into
743 * deep sleep states.
744 */
745 pm_qos_update_request(&dev_priv->pm_qos, 0);
746
747 intel_dp_check_edp(intel_dp);
748
749 intel_aux_display_runtime_get(dev_priv);
750
751 /* Try to wait for any previous AUX channel activity */
752 for (try = 0; try < 3; try++) {
753 status = I915_READ_NOTRACE(ch_ctl);
754 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
755 break;
756 msleep(1);
757 }
758
759 if (try == 3) {
760 WARN(1, "dp_aux_ch not started status 0x%08x\n",
761 I915_READ(ch_ctl));
762 ret = -EBUSY;
763 goto out;
764 }
765
766 /* Only 5 data registers! */
767 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
768 ret = -E2BIG;
769 goto out;
770 }
771
772 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
773 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
774 has_aux_irq,
775 send_bytes,
776 aux_clock_divider);
777
778 /* Must try at least 3 times according to DP spec */
779 for (try = 0; try < 5; try++) {
780 /* Load the send data into the aux channel data registers */
781 for (i = 0; i < send_bytes; i += 4)
782 I915_WRITE(ch_data + i,
783 pack_aux(send + i, send_bytes - i));
784
785 /* Send the command and wait for it to complete */
786 I915_WRITE(ch_ctl, send_ctl);
787
788 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
789
790 /* Clear done status and any errors */
791 I915_WRITE(ch_ctl,
792 status |
793 DP_AUX_CH_CTL_DONE |
794 DP_AUX_CH_CTL_TIME_OUT_ERROR |
795 DP_AUX_CH_CTL_RECEIVE_ERROR);
796
797 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
798 DP_AUX_CH_CTL_RECEIVE_ERROR))
799 continue;
800 if (status & DP_AUX_CH_CTL_DONE)
801 break;
802 }
803 if (status & DP_AUX_CH_CTL_DONE)
804 break;
805 }
806
807 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
808 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
809 ret = -EBUSY;
810 goto out;
811 }
812
813 /* Check for timeout or receive error.
814 * Timeouts occur when the sink is not connected
815 */
816 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
817 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
818 ret = -EIO;
819 goto out;
820 }
821
822 /* Timeouts occur when the device isn't connected, so they're
823 * "normal" -- don't fill the kernel log with these */
824 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
825 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
826 ret = -ETIMEDOUT;
827 goto out;
828 }
829
830 /* Unload any bytes sent back from the other side */
831 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
832 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
833 if (recv_bytes > recv_size)
834 recv_bytes = recv_size;
835
836 for (i = 0; i < recv_bytes; i += 4)
837 unpack_aux(I915_READ(ch_data + i),
838 recv + i, recv_bytes - i);
839
840 ret = recv_bytes;
841 out:
842 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
843 intel_aux_display_runtime_put(dev_priv);
844
845 if (vdd)
846 edp_panel_vdd_off(intel_dp, false);
847
848 pps_unlock(intel_dp);
849
850 return ret;
851 }
852
853 #define BARE_ADDRESS_SIZE 3
854 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
855 static ssize_t
856 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
857 {
858 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
859 uint8_t txbuf[20], rxbuf[20];
860 size_t txsize, rxsize;
861 int ret;
862
863 txbuf[0] = msg->request << 4;
864 txbuf[1] = msg->address >> 8;
865 txbuf[2] = msg->address & 0xff;
866 txbuf[3] = msg->size - 1;
867
868 switch (msg->request & ~DP_AUX_I2C_MOT) {
869 case DP_AUX_NATIVE_WRITE:
870 case DP_AUX_I2C_WRITE:
871 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
872 rxsize = 1;
873
874 if (WARN_ON(txsize > 20))
875 return -E2BIG;
876
877 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
878
879 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
880 if (ret > 0) {
881 msg->reply = rxbuf[0] >> 4;
882
883 /* Return payload size. */
884 ret = msg->size;
885 }
886 break;
887
888 case DP_AUX_NATIVE_READ:
889 case DP_AUX_I2C_READ:
890 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
891 rxsize = msg->size + 1;
892
893 if (WARN_ON(rxsize > 20))
894 return -E2BIG;
895
896 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
897 if (ret > 0) {
898 msg->reply = rxbuf[0] >> 4;
899 /*
900 * Assume happy day, and copy the data. The caller is
901 * expected to check msg->reply before touching it.
902 *
903 * Return payload size.
904 */
905 ret--;
906 memcpy(msg->buffer, rxbuf + 1, ret);
907 }
908 break;
909
910 default:
911 ret = -EINVAL;
912 break;
913 }
914
915 return ret;
916 }
917
918 static void
919 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
920 {
921 struct drm_device *dev = intel_dp_to_dev(intel_dp);
922 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
923 enum port port = intel_dig_port->port;
924 const char *name = NULL;
925 int ret;
926
927 switch (port) {
928 case PORT_A:
929 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
930 name = "DPDDC-A";
931 break;
932 case PORT_B:
933 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
934 name = "DPDDC-B";
935 break;
936 case PORT_C:
937 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
938 name = "DPDDC-C";
939 break;
940 case PORT_D:
941 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
942 name = "DPDDC-D";
943 break;
944 default:
945 BUG();
946 }
947
948 /*
949 * The AUX_CTL register is usually DP_CTL + 0x10.
950 *
951 * On Haswell and Broadwell though:
952 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
953 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
954 *
955 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
956 */
957 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
958 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
959
960 intel_dp->aux.name = name;
961 intel_dp->aux.dev = dev->dev;
962 intel_dp->aux.transfer = intel_dp_aux_transfer;
963
964 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
965 connector->base.kdev->kobj.name);
966
967 ret = drm_dp_aux_register(&intel_dp->aux);
968 if (ret < 0) {
969 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
970 name, ret);
971 return;
972 }
973
974 ret = sysfs_create_link(&connector->base.kdev->kobj,
975 &intel_dp->aux.ddc.dev.kobj,
976 intel_dp->aux.ddc.dev.kobj.name);
977 if (ret < 0) {
978 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
979 drm_dp_aux_unregister(&intel_dp->aux);
980 }
981 }
982
983 static void
984 intel_dp_connector_unregister(struct intel_connector *intel_connector)
985 {
986 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
987
988 if (!intel_connector->mst_port)
989 sysfs_remove_link(&intel_connector->base.kdev->kobj,
990 intel_dp->aux.ddc.dev.kobj.name);
991 intel_connector_unregister(intel_connector);
992 }
993
994 static void
995 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
996 {
997 switch (link_bw) {
998 case DP_LINK_BW_1_62:
999 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1000 break;
1001 case DP_LINK_BW_2_7:
1002 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1003 break;
1004 case DP_LINK_BW_5_4:
1005 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1006 break;
1007 }
1008 }
1009
1010 static void
1011 intel_dp_set_clock(struct intel_encoder *encoder,
1012 struct intel_crtc_config *pipe_config, int link_bw)
1013 {
1014 struct drm_device *dev = encoder->base.dev;
1015 const struct dp_link_dpll *divisor = NULL;
1016 int i, count = 0;
1017
1018 if (IS_G4X(dev)) {
1019 divisor = gen4_dpll;
1020 count = ARRAY_SIZE(gen4_dpll);
1021 } else if (HAS_PCH_SPLIT(dev)) {
1022 divisor = pch_dpll;
1023 count = ARRAY_SIZE(pch_dpll);
1024 } else if (IS_CHERRYVIEW(dev)) {
1025 divisor = chv_dpll;
1026 count = ARRAY_SIZE(chv_dpll);
1027 } else if (IS_VALLEYVIEW(dev)) {
1028 divisor = vlv_dpll;
1029 count = ARRAY_SIZE(vlv_dpll);
1030 }
1031
1032 if (divisor && count) {
1033 for (i = 0; i < count; i++) {
1034 if (link_bw == divisor[i].link_bw) {
1035 pipe_config->dpll = divisor[i].dpll;
1036 pipe_config->clock_set = true;
1037 break;
1038 }
1039 }
1040 }
1041 }
1042
1043 bool
1044 intel_dp_compute_config(struct intel_encoder *encoder,
1045 struct intel_crtc_config *pipe_config)
1046 {
1047 struct drm_device *dev = encoder->base.dev;
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1050 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1051 enum port port = dp_to_dig_port(intel_dp)->port;
1052 struct intel_crtc *intel_crtc = encoder->new_crtc;
1053 struct intel_connector *intel_connector = intel_dp->attached_connector;
1054 int lane_count, clock;
1055 int min_lane_count = 1;
1056 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1057 /* Conveniently, the link BW constants become indices with a shift...*/
1058 int min_clock = 0;
1059 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1060 int bpp, mode_rate;
1061 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1062 int link_avail, link_clock;
1063
1064 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1065 pipe_config->has_pch_encoder = true;
1066
1067 pipe_config->has_dp_encoder = true;
1068 pipe_config->has_drrs = false;
1069 pipe_config->has_audio = intel_dp->has_audio;
1070
1071 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1072 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1073 adjusted_mode);
1074 if (!HAS_PCH_SPLIT(dev))
1075 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1076 intel_connector->panel.fitting_mode);
1077 else
1078 intel_pch_panel_fitting(intel_crtc, pipe_config,
1079 intel_connector->panel.fitting_mode);
1080 }
1081
1082 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1083 return false;
1084
1085 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1086 "max bw %02x pixel clock %iKHz\n",
1087 max_lane_count, bws[max_clock],
1088 adjusted_mode->crtc_clock);
1089
1090 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1091 * bpc in between. */
1092 bpp = pipe_config->pipe_bpp;
1093 if (is_edp(intel_dp)) {
1094 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1095 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1096 dev_priv->vbt.edp_bpp);
1097 bpp = dev_priv->vbt.edp_bpp;
1098 }
1099
1100 /*
1101 * Use the maximum clock and number of lanes the eDP panel
1102 * advertizes being capable of. The panels are generally
1103 * designed to support only a single clock and lane
1104 * configuration, and typically these values correspond to the
1105 * native resolution of the panel.
1106 */
1107 min_lane_count = max_lane_count;
1108 min_clock = max_clock;
1109 }
1110
1111 for (; bpp >= 6*3; bpp -= 2*3) {
1112 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1113 bpp);
1114
1115 for (clock = min_clock; clock <= max_clock; clock++) {
1116 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1117 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1118 link_avail = intel_dp_max_data_rate(link_clock,
1119 lane_count);
1120
1121 if (mode_rate <= link_avail) {
1122 goto found;
1123 }
1124 }
1125 }
1126 }
1127
1128 return false;
1129
1130 found:
1131 if (intel_dp->color_range_auto) {
1132 /*
1133 * See:
1134 * CEA-861-E - 5.1 Default Encoding Parameters
1135 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1136 */
1137 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1138 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1139 else
1140 intel_dp->color_range = 0;
1141 }
1142
1143 if (intel_dp->color_range)
1144 pipe_config->limited_color_range = true;
1145
1146 intel_dp->link_bw = bws[clock];
1147 intel_dp->lane_count = lane_count;
1148 pipe_config->pipe_bpp = bpp;
1149 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1150
1151 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1152 intel_dp->link_bw, intel_dp->lane_count,
1153 pipe_config->port_clock, bpp);
1154 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1155 mode_rate, link_avail);
1156
1157 intel_link_compute_m_n(bpp, lane_count,
1158 adjusted_mode->crtc_clock,
1159 pipe_config->port_clock,
1160 &pipe_config->dp_m_n);
1161
1162 if (intel_connector->panel.downclock_mode != NULL &&
1163 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1164 pipe_config->has_drrs = true;
1165 intel_link_compute_m_n(bpp, lane_count,
1166 intel_connector->panel.downclock_mode->clock,
1167 pipe_config->port_clock,
1168 &pipe_config->dp_m2_n2);
1169 }
1170
1171 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1172 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1173 else
1174 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1175
1176 return true;
1177 }
1178
1179 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1180 {
1181 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1182 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1183 struct drm_device *dev = crtc->base.dev;
1184 struct drm_i915_private *dev_priv = dev->dev_private;
1185 u32 dpa_ctl;
1186
1187 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1188 dpa_ctl = I915_READ(DP_A);
1189 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1190
1191 if (crtc->config.port_clock == 162000) {
1192 /* For a long time we've carried around a ILK-DevA w/a for the
1193 * 160MHz clock. If we're really unlucky, it's still required.
1194 */
1195 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1196 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1197 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1198 } else {
1199 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1200 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1201 }
1202
1203 I915_WRITE(DP_A, dpa_ctl);
1204
1205 POSTING_READ(DP_A);
1206 udelay(500);
1207 }
1208
1209 static void intel_dp_prepare(struct intel_encoder *encoder)
1210 {
1211 struct drm_device *dev = encoder->base.dev;
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1213 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1214 enum port port = dp_to_dig_port(intel_dp)->port;
1215 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1216 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1217
1218 /*
1219 * There are four kinds of DP registers:
1220 *
1221 * IBX PCH
1222 * SNB CPU
1223 * IVB CPU
1224 * CPT PCH
1225 *
1226 * IBX PCH and CPU are the same for almost everything,
1227 * except that the CPU DP PLL is configured in this
1228 * register
1229 *
1230 * CPT PCH is quite different, having many bits moved
1231 * to the TRANS_DP_CTL register instead. That
1232 * configuration happens (oddly) in ironlake_pch_enable
1233 */
1234
1235 /* Preserve the BIOS-computed detected bit. This is
1236 * supposed to be read-only.
1237 */
1238 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1239
1240 /* Handle DP bits in common between all three register formats */
1241 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1242 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1243
1244 if (crtc->config.has_audio) {
1245 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1246 pipe_name(crtc->pipe));
1247 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1248 intel_write_eld(encoder);
1249 }
1250
1251 /* Split out the IBX/CPU vs CPT settings */
1252
1253 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1254 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1255 intel_dp->DP |= DP_SYNC_HS_HIGH;
1256 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1257 intel_dp->DP |= DP_SYNC_VS_HIGH;
1258 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1259
1260 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1261 intel_dp->DP |= DP_ENHANCED_FRAMING;
1262
1263 intel_dp->DP |= crtc->pipe << 29;
1264 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1265 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1266 intel_dp->DP |= intel_dp->color_range;
1267
1268 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1269 intel_dp->DP |= DP_SYNC_HS_HIGH;
1270 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1271 intel_dp->DP |= DP_SYNC_VS_HIGH;
1272 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1273
1274 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1275 intel_dp->DP |= DP_ENHANCED_FRAMING;
1276
1277 if (!IS_CHERRYVIEW(dev)) {
1278 if (crtc->pipe == 1)
1279 intel_dp->DP |= DP_PIPEB_SELECT;
1280 } else {
1281 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1282 }
1283 } else {
1284 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1285 }
1286 }
1287
1288 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1289 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1290
1291 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1292 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1293
1294 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1295 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1296
1297 static void wait_panel_status(struct intel_dp *intel_dp,
1298 u32 mask,
1299 u32 value)
1300 {
1301 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1302 struct drm_i915_private *dev_priv = dev->dev_private;
1303 u32 pp_stat_reg, pp_ctrl_reg;
1304
1305 lockdep_assert_held(&dev_priv->pps_mutex);
1306
1307 pp_stat_reg = _pp_stat_reg(intel_dp);
1308 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1309
1310 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1311 mask, value,
1312 I915_READ(pp_stat_reg),
1313 I915_READ(pp_ctrl_reg));
1314
1315 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1316 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1317 I915_READ(pp_stat_reg),
1318 I915_READ(pp_ctrl_reg));
1319 }
1320
1321 DRM_DEBUG_KMS("Wait complete\n");
1322 }
1323
1324 static void wait_panel_on(struct intel_dp *intel_dp)
1325 {
1326 DRM_DEBUG_KMS("Wait for panel power on\n");
1327 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1328 }
1329
1330 static void wait_panel_off(struct intel_dp *intel_dp)
1331 {
1332 DRM_DEBUG_KMS("Wait for panel power off time\n");
1333 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1334 }
1335
1336 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1337 {
1338 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1339
1340 /* When we disable the VDD override bit last we have to do the manual
1341 * wait. */
1342 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1343 intel_dp->panel_power_cycle_delay);
1344
1345 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1346 }
1347
1348 static void wait_backlight_on(struct intel_dp *intel_dp)
1349 {
1350 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1351 intel_dp->backlight_on_delay);
1352 }
1353
1354 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1355 {
1356 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1357 intel_dp->backlight_off_delay);
1358 }
1359
1360 /* Read the current pp_control value, unlocking the register if it
1361 * is locked
1362 */
1363
1364 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1365 {
1366 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1367 struct drm_i915_private *dev_priv = dev->dev_private;
1368 u32 control;
1369
1370 lockdep_assert_held(&dev_priv->pps_mutex);
1371
1372 control = I915_READ(_pp_ctrl_reg(intel_dp));
1373 control &= ~PANEL_UNLOCK_MASK;
1374 control |= PANEL_UNLOCK_REGS;
1375 return control;
1376 }
1377
1378 /*
1379 * Must be paired with edp_panel_vdd_off().
1380 * Must hold pps_mutex around the whole on/off sequence.
1381 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1382 */
1383 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1384 {
1385 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1386 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1387 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1388 struct drm_i915_private *dev_priv = dev->dev_private;
1389 enum intel_display_power_domain power_domain;
1390 u32 pp;
1391 u32 pp_stat_reg, pp_ctrl_reg;
1392 bool need_to_disable = !intel_dp->want_panel_vdd;
1393
1394 lockdep_assert_held(&dev_priv->pps_mutex);
1395
1396 if (!is_edp(intel_dp))
1397 return false;
1398
1399 intel_dp->want_panel_vdd = true;
1400
1401 if (edp_have_panel_vdd(intel_dp))
1402 return need_to_disable;
1403
1404 power_domain = intel_display_port_power_domain(intel_encoder);
1405 intel_display_power_get(dev_priv, power_domain);
1406
1407 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1408
1409 if (!edp_have_panel_power(intel_dp))
1410 wait_panel_power_cycle(intel_dp);
1411
1412 pp = ironlake_get_pp_control(intel_dp);
1413 pp |= EDP_FORCE_VDD;
1414
1415 pp_stat_reg = _pp_stat_reg(intel_dp);
1416 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1417
1418 I915_WRITE(pp_ctrl_reg, pp);
1419 POSTING_READ(pp_ctrl_reg);
1420 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1421 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1422 /*
1423 * If the panel wasn't on, delay before accessing aux channel
1424 */
1425 if (!edp_have_panel_power(intel_dp)) {
1426 DRM_DEBUG_KMS("eDP was not running\n");
1427 msleep(intel_dp->panel_power_up_delay);
1428 }
1429
1430 return need_to_disable;
1431 }
1432
1433 /*
1434 * Must be paired with intel_edp_panel_vdd_off() or
1435 * intel_edp_panel_off().
1436 * Nested calls to these functions are not allowed since
1437 * we drop the lock. Caller must use some higher level
1438 * locking to prevent nested calls from other threads.
1439 */
1440 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1441 {
1442 bool vdd;
1443
1444 if (!is_edp(intel_dp))
1445 return;
1446
1447 pps_lock(intel_dp);
1448 vdd = edp_panel_vdd_on(intel_dp);
1449 pps_unlock(intel_dp);
1450
1451 WARN(!vdd, "eDP VDD already requested on\n");
1452 }
1453
1454 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1455 {
1456 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1457 struct drm_i915_private *dev_priv = dev->dev_private;
1458 struct intel_digital_port *intel_dig_port =
1459 dp_to_dig_port(intel_dp);
1460 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1461 enum intel_display_power_domain power_domain;
1462 u32 pp;
1463 u32 pp_stat_reg, pp_ctrl_reg;
1464
1465 lockdep_assert_held(&dev_priv->pps_mutex);
1466
1467 WARN_ON(intel_dp->want_panel_vdd);
1468
1469 if (!edp_have_panel_vdd(intel_dp))
1470 return;
1471
1472 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1473
1474 pp = ironlake_get_pp_control(intel_dp);
1475 pp &= ~EDP_FORCE_VDD;
1476
1477 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1478 pp_stat_reg = _pp_stat_reg(intel_dp);
1479
1480 I915_WRITE(pp_ctrl_reg, pp);
1481 POSTING_READ(pp_ctrl_reg);
1482
1483 /* Make sure sequencer is idle before allowing subsequent activity */
1484 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1485 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1486
1487 if ((pp & POWER_TARGET_ON) == 0)
1488 intel_dp->last_power_cycle = jiffies;
1489
1490 power_domain = intel_display_port_power_domain(intel_encoder);
1491 intel_display_power_put(dev_priv, power_domain);
1492 }
1493
1494 static void edp_panel_vdd_work(struct work_struct *__work)
1495 {
1496 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1497 struct intel_dp, panel_vdd_work);
1498
1499 pps_lock(intel_dp);
1500 if (!intel_dp->want_panel_vdd)
1501 edp_panel_vdd_off_sync(intel_dp);
1502 pps_unlock(intel_dp);
1503 }
1504
1505 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1506 {
1507 unsigned long delay;
1508
1509 /*
1510 * Queue the timer to fire a long time from now (relative to the power
1511 * down delay) to keep the panel power up across a sequence of
1512 * operations.
1513 */
1514 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1515 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1516 }
1517
1518 /*
1519 * Must be paired with edp_panel_vdd_on().
1520 * Must hold pps_mutex around the whole on/off sequence.
1521 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1522 */
1523 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1524 {
1525 struct drm_i915_private *dev_priv =
1526 intel_dp_to_dev(intel_dp)->dev_private;
1527
1528 lockdep_assert_held(&dev_priv->pps_mutex);
1529
1530 if (!is_edp(intel_dp))
1531 return;
1532
1533 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1534
1535 intel_dp->want_panel_vdd = false;
1536
1537 if (sync)
1538 edp_panel_vdd_off_sync(intel_dp);
1539 else
1540 edp_panel_vdd_schedule_off(intel_dp);
1541 }
1542
1543 static void edp_panel_on(struct intel_dp *intel_dp)
1544 {
1545 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547 u32 pp;
1548 u32 pp_ctrl_reg;
1549
1550 lockdep_assert_held(&dev_priv->pps_mutex);
1551
1552 if (!is_edp(intel_dp))
1553 return;
1554
1555 DRM_DEBUG_KMS("Turn eDP power on\n");
1556
1557 if (edp_have_panel_power(intel_dp)) {
1558 DRM_DEBUG_KMS("eDP power already on\n");
1559 return;
1560 }
1561
1562 wait_panel_power_cycle(intel_dp);
1563
1564 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1565 pp = ironlake_get_pp_control(intel_dp);
1566 if (IS_GEN5(dev)) {
1567 /* ILK workaround: disable reset around power sequence */
1568 pp &= ~PANEL_POWER_RESET;
1569 I915_WRITE(pp_ctrl_reg, pp);
1570 POSTING_READ(pp_ctrl_reg);
1571 }
1572
1573 pp |= POWER_TARGET_ON;
1574 if (!IS_GEN5(dev))
1575 pp |= PANEL_POWER_RESET;
1576
1577 I915_WRITE(pp_ctrl_reg, pp);
1578 POSTING_READ(pp_ctrl_reg);
1579
1580 wait_panel_on(intel_dp);
1581 intel_dp->last_power_on = jiffies;
1582
1583 if (IS_GEN5(dev)) {
1584 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1585 I915_WRITE(pp_ctrl_reg, pp);
1586 POSTING_READ(pp_ctrl_reg);
1587 }
1588 }
1589
1590 void intel_edp_panel_on(struct intel_dp *intel_dp)
1591 {
1592 if (!is_edp(intel_dp))
1593 return;
1594
1595 pps_lock(intel_dp);
1596 edp_panel_on(intel_dp);
1597 pps_unlock(intel_dp);
1598 }
1599
1600
1601 static void edp_panel_off(struct intel_dp *intel_dp)
1602 {
1603 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1604 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1605 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1606 struct drm_i915_private *dev_priv = dev->dev_private;
1607 enum intel_display_power_domain power_domain;
1608 u32 pp;
1609 u32 pp_ctrl_reg;
1610
1611 lockdep_assert_held(&dev_priv->pps_mutex);
1612
1613 if (!is_edp(intel_dp))
1614 return;
1615
1616 DRM_DEBUG_KMS("Turn eDP power off\n");
1617
1618 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1619
1620 pp = ironlake_get_pp_control(intel_dp);
1621 /* We need to switch off panel power _and_ force vdd, for otherwise some
1622 * panels get very unhappy and cease to work. */
1623 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1624 EDP_BLC_ENABLE);
1625
1626 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1627
1628 intel_dp->want_panel_vdd = false;
1629
1630 I915_WRITE(pp_ctrl_reg, pp);
1631 POSTING_READ(pp_ctrl_reg);
1632
1633 intel_dp->last_power_cycle = jiffies;
1634 wait_panel_off(intel_dp);
1635
1636 /* We got a reference when we enabled the VDD. */
1637 power_domain = intel_display_port_power_domain(intel_encoder);
1638 intel_display_power_put(dev_priv, power_domain);
1639 }
1640
1641 void intel_edp_panel_off(struct intel_dp *intel_dp)
1642 {
1643 if (!is_edp(intel_dp))
1644 return;
1645
1646 pps_lock(intel_dp);
1647 edp_panel_off(intel_dp);
1648 pps_unlock(intel_dp);
1649 }
1650
1651 /* Enable backlight in the panel power control. */
1652 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1653 {
1654 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1655 struct drm_device *dev = intel_dig_port->base.base.dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 u32 pp;
1658 u32 pp_ctrl_reg;
1659
1660 /*
1661 * If we enable the backlight right away following a panel power
1662 * on, we may see slight flicker as the panel syncs with the eDP
1663 * link. So delay a bit to make sure the image is solid before
1664 * allowing it to appear.
1665 */
1666 wait_backlight_on(intel_dp);
1667
1668 pps_lock(intel_dp);
1669
1670 pp = ironlake_get_pp_control(intel_dp);
1671 pp |= EDP_BLC_ENABLE;
1672
1673 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1674
1675 I915_WRITE(pp_ctrl_reg, pp);
1676 POSTING_READ(pp_ctrl_reg);
1677
1678 pps_unlock(intel_dp);
1679 }
1680
1681 /* Enable backlight PWM and backlight PP control. */
1682 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1683 {
1684 if (!is_edp(intel_dp))
1685 return;
1686
1687 DRM_DEBUG_KMS("\n");
1688
1689 intel_panel_enable_backlight(intel_dp->attached_connector);
1690 _intel_edp_backlight_on(intel_dp);
1691 }
1692
1693 /* Disable backlight in the panel power control. */
1694 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1695 {
1696 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1697 struct drm_i915_private *dev_priv = dev->dev_private;
1698 u32 pp;
1699 u32 pp_ctrl_reg;
1700
1701 if (!is_edp(intel_dp))
1702 return;
1703
1704 pps_lock(intel_dp);
1705
1706 pp = ironlake_get_pp_control(intel_dp);
1707 pp &= ~EDP_BLC_ENABLE;
1708
1709 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1710
1711 I915_WRITE(pp_ctrl_reg, pp);
1712 POSTING_READ(pp_ctrl_reg);
1713
1714 pps_unlock(intel_dp);
1715
1716 intel_dp->last_backlight_off = jiffies;
1717 edp_wait_backlight_off(intel_dp);
1718 }
1719
1720 /* Disable backlight PP control and backlight PWM. */
1721 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1722 {
1723 if (!is_edp(intel_dp))
1724 return;
1725
1726 DRM_DEBUG_KMS("\n");
1727
1728 _intel_edp_backlight_off(intel_dp);
1729 intel_panel_disable_backlight(intel_dp->attached_connector);
1730 }
1731
1732 /*
1733 * Hook for controlling the panel power control backlight through the bl_power
1734 * sysfs attribute. Take care to handle multiple calls.
1735 */
1736 static void intel_edp_backlight_power(struct intel_connector *connector,
1737 bool enable)
1738 {
1739 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1740 bool is_enabled;
1741
1742 pps_lock(intel_dp);
1743 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1744 pps_unlock(intel_dp);
1745
1746 if (is_enabled == enable)
1747 return;
1748
1749 DRM_DEBUG_KMS("panel power control backlight %s\n",
1750 enable ? "enable" : "disable");
1751
1752 if (enable)
1753 _intel_edp_backlight_on(intel_dp);
1754 else
1755 _intel_edp_backlight_off(intel_dp);
1756 }
1757
1758 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1759 {
1760 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1761 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1762 struct drm_device *dev = crtc->dev;
1763 struct drm_i915_private *dev_priv = dev->dev_private;
1764 u32 dpa_ctl;
1765
1766 assert_pipe_disabled(dev_priv,
1767 to_intel_crtc(crtc)->pipe);
1768
1769 DRM_DEBUG_KMS("\n");
1770 dpa_ctl = I915_READ(DP_A);
1771 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1772 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1773
1774 /* We don't adjust intel_dp->DP while tearing down the link, to
1775 * facilitate link retraining (e.g. after hotplug). Hence clear all
1776 * enable bits here to ensure that we don't enable too much. */
1777 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1778 intel_dp->DP |= DP_PLL_ENABLE;
1779 I915_WRITE(DP_A, intel_dp->DP);
1780 POSTING_READ(DP_A);
1781 udelay(200);
1782 }
1783
1784 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1785 {
1786 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1787 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1788 struct drm_device *dev = crtc->dev;
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 u32 dpa_ctl;
1791
1792 assert_pipe_disabled(dev_priv,
1793 to_intel_crtc(crtc)->pipe);
1794
1795 dpa_ctl = I915_READ(DP_A);
1796 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1797 "dp pll off, should be on\n");
1798 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1799
1800 /* We can't rely on the value tracked for the DP register in
1801 * intel_dp->DP because link_down must not change that (otherwise link
1802 * re-training will fail. */
1803 dpa_ctl &= ~DP_PLL_ENABLE;
1804 I915_WRITE(DP_A, dpa_ctl);
1805 POSTING_READ(DP_A);
1806 udelay(200);
1807 }
1808
1809 /* If the sink supports it, try to set the power state appropriately */
1810 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1811 {
1812 int ret, i;
1813
1814 /* Should have a valid DPCD by this point */
1815 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1816 return;
1817
1818 if (mode != DRM_MODE_DPMS_ON) {
1819 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1820 DP_SET_POWER_D3);
1821 } else {
1822 /*
1823 * When turning on, we need to retry for 1ms to give the sink
1824 * time to wake up.
1825 */
1826 for (i = 0; i < 3; i++) {
1827 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1828 DP_SET_POWER_D0);
1829 if (ret == 1)
1830 break;
1831 msleep(1);
1832 }
1833 }
1834
1835 if (ret != 1)
1836 DRM_DEBUG_KMS("failed to %s sink power state\n",
1837 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1838 }
1839
1840 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1841 enum pipe *pipe)
1842 {
1843 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1844 enum port port = dp_to_dig_port(intel_dp)->port;
1845 struct drm_device *dev = encoder->base.dev;
1846 struct drm_i915_private *dev_priv = dev->dev_private;
1847 enum intel_display_power_domain power_domain;
1848 u32 tmp;
1849
1850 power_domain = intel_display_port_power_domain(encoder);
1851 if (!intel_display_power_is_enabled(dev_priv, power_domain))
1852 return false;
1853
1854 tmp = I915_READ(intel_dp->output_reg);
1855
1856 if (!(tmp & DP_PORT_EN))
1857 return false;
1858
1859 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1860 *pipe = PORT_TO_PIPE_CPT(tmp);
1861 } else if (IS_CHERRYVIEW(dev)) {
1862 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1863 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1864 *pipe = PORT_TO_PIPE(tmp);
1865 } else {
1866 u32 trans_sel;
1867 u32 trans_dp;
1868 int i;
1869
1870 switch (intel_dp->output_reg) {
1871 case PCH_DP_B:
1872 trans_sel = TRANS_DP_PORT_SEL_B;
1873 break;
1874 case PCH_DP_C:
1875 trans_sel = TRANS_DP_PORT_SEL_C;
1876 break;
1877 case PCH_DP_D:
1878 trans_sel = TRANS_DP_PORT_SEL_D;
1879 break;
1880 default:
1881 return true;
1882 }
1883
1884 for_each_pipe(dev_priv, i) {
1885 trans_dp = I915_READ(TRANS_DP_CTL(i));
1886 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1887 *pipe = i;
1888 return true;
1889 }
1890 }
1891
1892 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1893 intel_dp->output_reg);
1894 }
1895
1896 return true;
1897 }
1898
1899 static void intel_dp_get_config(struct intel_encoder *encoder,
1900 struct intel_crtc_config *pipe_config)
1901 {
1902 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1903 u32 tmp, flags = 0;
1904 struct drm_device *dev = encoder->base.dev;
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 enum port port = dp_to_dig_port(intel_dp)->port;
1907 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1908 int dotclock;
1909
1910 tmp = I915_READ(intel_dp->output_reg);
1911 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1912 pipe_config->has_audio = true;
1913
1914 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1915 if (tmp & DP_SYNC_HS_HIGH)
1916 flags |= DRM_MODE_FLAG_PHSYNC;
1917 else
1918 flags |= DRM_MODE_FLAG_NHSYNC;
1919
1920 if (tmp & DP_SYNC_VS_HIGH)
1921 flags |= DRM_MODE_FLAG_PVSYNC;
1922 else
1923 flags |= DRM_MODE_FLAG_NVSYNC;
1924 } else {
1925 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1926 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1927 flags |= DRM_MODE_FLAG_PHSYNC;
1928 else
1929 flags |= DRM_MODE_FLAG_NHSYNC;
1930
1931 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1932 flags |= DRM_MODE_FLAG_PVSYNC;
1933 else
1934 flags |= DRM_MODE_FLAG_NVSYNC;
1935 }
1936
1937 pipe_config->adjusted_mode.flags |= flags;
1938
1939 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1940 tmp & DP_COLOR_RANGE_16_235)
1941 pipe_config->limited_color_range = true;
1942
1943 pipe_config->has_dp_encoder = true;
1944
1945 intel_dp_get_m_n(crtc, pipe_config);
1946
1947 if (port == PORT_A) {
1948 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1949 pipe_config->port_clock = 162000;
1950 else
1951 pipe_config->port_clock = 270000;
1952 }
1953
1954 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1955 &pipe_config->dp_m_n);
1956
1957 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1958 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1959
1960 pipe_config->adjusted_mode.crtc_clock = dotclock;
1961
1962 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1963 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1964 /*
1965 * This is a big fat ugly hack.
1966 *
1967 * Some machines in UEFI boot mode provide us a VBT that has 18
1968 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1969 * unknown we fail to light up. Yet the same BIOS boots up with
1970 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1971 * max, not what it tells us to use.
1972 *
1973 * Note: This will still be broken if the eDP panel is not lit
1974 * up by the BIOS, and thus we can't get the mode at module
1975 * load.
1976 */
1977 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1978 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1979 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1980 }
1981 }
1982
1983 static bool is_edp_psr(struct intel_dp *intel_dp)
1984 {
1985 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1986 }
1987
1988 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1989 {
1990 struct drm_i915_private *dev_priv = dev->dev_private;
1991
1992 if (!HAS_PSR(dev))
1993 return false;
1994
1995 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1996 }
1997
1998 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1999 struct edp_vsc_psr *vsc_psr)
2000 {
2001 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2002 struct drm_device *dev = dig_port->base.base.dev;
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
2005 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
2006 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
2007 uint32_t *data = (uint32_t *) vsc_psr;
2008 unsigned int i;
2009
2010 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
2011 the video DIP being updated before program video DIP data buffer
2012 registers for DIP being updated. */
2013 I915_WRITE(ctl_reg, 0);
2014 POSTING_READ(ctl_reg);
2015
2016 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
2017 if (i < sizeof(struct edp_vsc_psr))
2018 I915_WRITE(data_reg + i, *data++);
2019 else
2020 I915_WRITE(data_reg + i, 0);
2021 }
2022
2023 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
2024 POSTING_READ(ctl_reg);
2025 }
2026
2027 static void intel_edp_psr_setup_vsc(struct intel_dp *intel_dp)
2028 {
2029 struct edp_vsc_psr psr_vsc;
2030
2031 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2032 memset(&psr_vsc, 0, sizeof(psr_vsc));
2033 psr_vsc.sdp_header.HB0 = 0;
2034 psr_vsc.sdp_header.HB1 = 0x7;
2035 psr_vsc.sdp_header.HB2 = 0x2;
2036 psr_vsc.sdp_header.HB3 = 0x8;
2037 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2038 }
2039
2040 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2041 {
2042 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2043 struct drm_device *dev = dig_port->base.base.dev;
2044 struct drm_i915_private *dev_priv = dev->dev_private;
2045 uint32_t aux_clock_divider;
2046 int precharge = 0x3;
2047 bool only_standby = false;
2048 static const uint8_t aux_msg[] = {
2049 [0] = DP_AUX_NATIVE_WRITE << 4,
2050 [1] = DP_SET_POWER >> 8,
2051 [2] = DP_SET_POWER & 0xff,
2052 [3] = 1 - 1,
2053 [4] = DP_SET_POWER_D0,
2054 };
2055 int i;
2056
2057 BUILD_BUG_ON(sizeof(aux_msg) > 20);
2058
2059 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2060
2061 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2062 only_standby = true;
2063
2064 /* Enable PSR in sink */
2065 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2066 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2067 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2068 else
2069 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2070 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2071
2072 /* Setup AUX registers */
2073 for (i = 0; i < sizeof(aux_msg); i += 4)
2074 I915_WRITE(EDP_PSR_AUX_DATA1(dev) + i,
2075 pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
2076
2077 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2078 DP_AUX_CH_CTL_TIME_OUT_400us |
2079 (sizeof(aux_msg) << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2080 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2081 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2082 }
2083
2084 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2085 {
2086 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2087 struct drm_device *dev = dig_port->base.base.dev;
2088 struct drm_i915_private *dev_priv = dev->dev_private;
2089 uint32_t max_sleep_time = 0x1f;
2090 uint32_t idle_frames = 1;
2091 uint32_t val = 0x0;
2092 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2093 bool only_standby = false;
2094
2095 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2096 only_standby = true;
2097
2098 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2099 val |= EDP_PSR_LINK_STANDBY;
2100 val |= EDP_PSR_TP2_TP3_TIME_0us;
2101 val |= EDP_PSR_TP1_TIME_0us;
2102 val |= EDP_PSR_SKIP_AUX_EXIT;
2103 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2104 } else
2105 val |= EDP_PSR_LINK_DISABLE;
2106
2107 I915_WRITE(EDP_PSR_CTL(dev), val |
2108 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2109 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2110 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2111 EDP_PSR_ENABLE);
2112 }
2113
2114 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2115 {
2116 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2117 struct drm_device *dev = dig_port->base.base.dev;
2118 struct drm_i915_private *dev_priv = dev->dev_private;
2119 struct drm_crtc *crtc = dig_port->base.base.crtc;
2120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2121
2122 lockdep_assert_held(&dev_priv->psr.lock);
2123 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2124 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2125
2126 dev_priv->psr.source_ok = false;
2127
2128 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2129 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2130 return false;
2131 }
2132
2133 if (!i915.enable_psr) {
2134 DRM_DEBUG_KMS("PSR disable by flag\n");
2135 return false;
2136 }
2137
2138 /* Below limitations aren't valid for Broadwell */
2139 if (IS_BROADWELL(dev))
2140 goto out;
2141
2142 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2143 S3D_ENABLE) {
2144 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2145 return false;
2146 }
2147
2148 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2149 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2150 return false;
2151 }
2152
2153 out:
2154 dev_priv->psr.source_ok = true;
2155 return true;
2156 }
2157
2158 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2159 {
2160 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2161 struct drm_device *dev = intel_dig_port->base.base.dev;
2162 struct drm_i915_private *dev_priv = dev->dev_private;
2163
2164 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2165 WARN_ON(dev_priv->psr.active);
2166 lockdep_assert_held(&dev_priv->psr.lock);
2167
2168 /* Enable/Re-enable PSR on the host */
2169 intel_edp_psr_enable_source(intel_dp);
2170
2171 dev_priv->psr.active = true;
2172 }
2173
2174 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2175 {
2176 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2177 struct drm_i915_private *dev_priv = dev->dev_private;
2178
2179 if (!HAS_PSR(dev)) {
2180 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2181 return;
2182 }
2183
2184 if (!is_edp_psr(intel_dp)) {
2185 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2186 return;
2187 }
2188
2189 mutex_lock(&dev_priv->psr.lock);
2190 if (dev_priv->psr.enabled) {
2191 DRM_DEBUG_KMS("PSR already in use\n");
2192 goto unlock;
2193 }
2194
2195 if (!intel_edp_psr_match_conditions(intel_dp))
2196 goto unlock;
2197
2198 dev_priv->psr.busy_frontbuffer_bits = 0;
2199
2200 intel_edp_psr_setup_vsc(intel_dp);
2201
2202 /* Avoid continuous PSR exit by masking memup and hpd */
2203 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2204 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2205
2206 /* Enable PSR on the panel */
2207 intel_edp_psr_enable_sink(intel_dp);
2208
2209 dev_priv->psr.enabled = intel_dp;
2210 unlock:
2211 mutex_unlock(&dev_priv->psr.lock);
2212 }
2213
2214 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2215 {
2216 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2217 struct drm_i915_private *dev_priv = dev->dev_private;
2218
2219 mutex_lock(&dev_priv->psr.lock);
2220 if (!dev_priv->psr.enabled) {
2221 mutex_unlock(&dev_priv->psr.lock);
2222 return;
2223 }
2224
2225 if (dev_priv->psr.active) {
2226 I915_WRITE(EDP_PSR_CTL(dev),
2227 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2228
2229 /* Wait till PSR is idle */
2230 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2231 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2232 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2233
2234 dev_priv->psr.active = false;
2235 } else {
2236 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2237 }
2238
2239 dev_priv->psr.enabled = NULL;
2240 mutex_unlock(&dev_priv->psr.lock);
2241
2242 cancel_delayed_work_sync(&dev_priv->psr.work);
2243 }
2244
2245 static void intel_edp_psr_work(struct work_struct *work)
2246 {
2247 struct drm_i915_private *dev_priv =
2248 container_of(work, typeof(*dev_priv), psr.work.work);
2249 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2250
2251 /* We have to make sure PSR is ready for re-enable
2252 * otherwise it keeps disabled until next full enable/disable cycle.
2253 * PSR might take some time to get fully disabled
2254 * and be ready for re-enable.
2255 */
2256 if (wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev_priv->dev)) &
2257 EDP_PSR_STATUS_STATE_MASK) == 0, 50)) {
2258 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
2259 return;
2260 }
2261
2262 mutex_lock(&dev_priv->psr.lock);
2263 intel_dp = dev_priv->psr.enabled;
2264
2265 if (!intel_dp)
2266 goto unlock;
2267
2268 /*
2269 * The delayed work can race with an invalidate hence we need to
2270 * recheck. Since psr_flush first clears this and then reschedules we
2271 * won't ever miss a flush when bailing out here.
2272 */
2273 if (dev_priv->psr.busy_frontbuffer_bits)
2274 goto unlock;
2275
2276 intel_edp_psr_do_enable(intel_dp);
2277 unlock:
2278 mutex_unlock(&dev_priv->psr.lock);
2279 }
2280
2281 static void intel_edp_psr_do_exit(struct drm_device *dev)
2282 {
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284
2285 if (dev_priv->psr.active) {
2286 u32 val = I915_READ(EDP_PSR_CTL(dev));
2287
2288 WARN_ON(!(val & EDP_PSR_ENABLE));
2289
2290 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2291
2292 dev_priv->psr.active = false;
2293 }
2294
2295 }
2296
2297 void intel_edp_psr_invalidate(struct drm_device *dev,
2298 unsigned frontbuffer_bits)
2299 {
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2301 struct drm_crtc *crtc;
2302 enum pipe pipe;
2303
2304 mutex_lock(&dev_priv->psr.lock);
2305 if (!dev_priv->psr.enabled) {
2306 mutex_unlock(&dev_priv->psr.lock);
2307 return;
2308 }
2309
2310 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2311 pipe = to_intel_crtc(crtc)->pipe;
2312
2313 intel_edp_psr_do_exit(dev);
2314
2315 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2316
2317 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2318 mutex_unlock(&dev_priv->psr.lock);
2319 }
2320
2321 void intel_edp_psr_flush(struct drm_device *dev,
2322 unsigned frontbuffer_bits)
2323 {
2324 struct drm_i915_private *dev_priv = dev->dev_private;
2325 struct drm_crtc *crtc;
2326 enum pipe pipe;
2327
2328 mutex_lock(&dev_priv->psr.lock);
2329 if (!dev_priv->psr.enabled) {
2330 mutex_unlock(&dev_priv->psr.lock);
2331 return;
2332 }
2333
2334 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2335 pipe = to_intel_crtc(crtc)->pipe;
2336 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2337
2338 /*
2339 * On Haswell sprite plane updates don't result in a psr invalidating
2340 * signal in the hardware. Which means we need to manually fake this in
2341 * software for all flushes, not just when we've seen a preceding
2342 * invalidation through frontbuffer rendering.
2343 */
2344 if (IS_HASWELL(dev) &&
2345 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2346 intel_edp_psr_do_exit(dev);
2347
2348 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2349 schedule_delayed_work(&dev_priv->psr.work,
2350 msecs_to_jiffies(100));
2351 mutex_unlock(&dev_priv->psr.lock);
2352 }
2353
2354 void intel_edp_psr_init(struct drm_device *dev)
2355 {
2356 struct drm_i915_private *dev_priv = dev->dev_private;
2357
2358 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2359 mutex_init(&dev_priv->psr.lock);
2360 }
2361
2362 static void intel_disable_dp(struct intel_encoder *encoder)
2363 {
2364 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2365 struct drm_device *dev = encoder->base.dev;
2366
2367 /* Make sure the panel is off before trying to change the mode. But also
2368 * ensure that we have vdd while we switch off the panel. */
2369 intel_edp_panel_vdd_on(intel_dp);
2370 intel_edp_backlight_off(intel_dp);
2371 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2372 intel_edp_panel_off(intel_dp);
2373
2374 /* disable the port before the pipe on g4x */
2375 if (INTEL_INFO(dev)->gen < 5)
2376 intel_dp_link_down(intel_dp);
2377 }
2378
2379 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2380 {
2381 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2382 enum port port = dp_to_dig_port(intel_dp)->port;
2383
2384 intel_dp_link_down(intel_dp);
2385 if (port == PORT_A)
2386 ironlake_edp_pll_off(intel_dp);
2387 }
2388
2389 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2390 {
2391 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2392
2393 intel_dp_link_down(intel_dp);
2394 }
2395
2396 static void chv_post_disable_dp(struct intel_encoder *encoder)
2397 {
2398 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2399 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2400 struct drm_device *dev = encoder->base.dev;
2401 struct drm_i915_private *dev_priv = dev->dev_private;
2402 struct intel_crtc *intel_crtc =
2403 to_intel_crtc(encoder->base.crtc);
2404 enum dpio_channel ch = vlv_dport_to_channel(dport);
2405 enum pipe pipe = intel_crtc->pipe;
2406 u32 val;
2407
2408 intel_dp_link_down(intel_dp);
2409
2410 mutex_lock(&dev_priv->dpio_lock);
2411
2412 /* Propagate soft reset to data lane reset */
2413 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2414 val |= CHV_PCS_REQ_SOFTRESET_EN;
2415 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2416
2417 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2418 val |= CHV_PCS_REQ_SOFTRESET_EN;
2419 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2420
2421 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2422 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2423 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2424
2425 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2426 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2427 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2428
2429 mutex_unlock(&dev_priv->dpio_lock);
2430 }
2431
2432 static void
2433 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2434 uint32_t *DP,
2435 uint8_t dp_train_pat)
2436 {
2437 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2438 struct drm_device *dev = intel_dig_port->base.base.dev;
2439 struct drm_i915_private *dev_priv = dev->dev_private;
2440 enum port port = intel_dig_port->port;
2441
2442 if (HAS_DDI(dev)) {
2443 uint32_t temp = I915_READ(DP_TP_CTL(port));
2444
2445 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2446 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2447 else
2448 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2449
2450 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2451 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2452 case DP_TRAINING_PATTERN_DISABLE:
2453 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2454
2455 break;
2456 case DP_TRAINING_PATTERN_1:
2457 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2458 break;
2459 case DP_TRAINING_PATTERN_2:
2460 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2461 break;
2462 case DP_TRAINING_PATTERN_3:
2463 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2464 break;
2465 }
2466 I915_WRITE(DP_TP_CTL(port), temp);
2467
2468 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2469 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2470
2471 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2472 case DP_TRAINING_PATTERN_DISABLE:
2473 *DP |= DP_LINK_TRAIN_OFF_CPT;
2474 break;
2475 case DP_TRAINING_PATTERN_1:
2476 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2477 break;
2478 case DP_TRAINING_PATTERN_2:
2479 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2480 break;
2481 case DP_TRAINING_PATTERN_3:
2482 DRM_ERROR("DP training pattern 3 not supported\n");
2483 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2484 break;
2485 }
2486
2487 } else {
2488 if (IS_CHERRYVIEW(dev))
2489 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2490 else
2491 *DP &= ~DP_LINK_TRAIN_MASK;
2492
2493 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2494 case DP_TRAINING_PATTERN_DISABLE:
2495 *DP |= DP_LINK_TRAIN_OFF;
2496 break;
2497 case DP_TRAINING_PATTERN_1:
2498 *DP |= DP_LINK_TRAIN_PAT_1;
2499 break;
2500 case DP_TRAINING_PATTERN_2:
2501 *DP |= DP_LINK_TRAIN_PAT_2;
2502 break;
2503 case DP_TRAINING_PATTERN_3:
2504 if (IS_CHERRYVIEW(dev)) {
2505 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2506 } else {
2507 DRM_ERROR("DP training pattern 3 not supported\n");
2508 *DP |= DP_LINK_TRAIN_PAT_2;
2509 }
2510 break;
2511 }
2512 }
2513 }
2514
2515 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2516 {
2517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2518 struct drm_i915_private *dev_priv = dev->dev_private;
2519
2520 intel_dp->DP |= DP_PORT_EN;
2521
2522 /* enable with pattern 1 (as per spec) */
2523 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2524 DP_TRAINING_PATTERN_1);
2525
2526 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2527 POSTING_READ(intel_dp->output_reg);
2528 }
2529
2530 static void intel_enable_dp(struct intel_encoder *encoder)
2531 {
2532 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2533 struct drm_device *dev = encoder->base.dev;
2534 struct drm_i915_private *dev_priv = dev->dev_private;
2535 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2536
2537 if (WARN_ON(dp_reg & DP_PORT_EN))
2538 return;
2539
2540 pps_lock(intel_dp);
2541
2542 if (IS_VALLEYVIEW(dev))
2543 vlv_init_panel_power_sequencer(intel_dp);
2544
2545 intel_dp_enable_port(intel_dp);
2546
2547 edp_panel_vdd_on(intel_dp);
2548 edp_panel_on(intel_dp);
2549 edp_panel_vdd_off(intel_dp, true);
2550
2551 pps_unlock(intel_dp);
2552
2553 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2554 intel_dp_start_link_train(intel_dp);
2555 intel_dp_complete_link_train(intel_dp);
2556 intel_dp_stop_link_train(intel_dp);
2557 }
2558
2559 static void g4x_enable_dp(struct intel_encoder *encoder)
2560 {
2561 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2562
2563 intel_enable_dp(encoder);
2564 intel_edp_backlight_on(intel_dp);
2565 }
2566
2567 static void vlv_enable_dp(struct intel_encoder *encoder)
2568 {
2569 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2570
2571 intel_edp_backlight_on(intel_dp);
2572 }
2573
2574 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2575 {
2576 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2577 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2578
2579 intel_dp_prepare(encoder);
2580
2581 /* Only ilk+ has port A */
2582 if (dport->port == PORT_A) {
2583 ironlake_set_pll_cpu_edp(intel_dp);
2584 ironlake_edp_pll_on(intel_dp);
2585 }
2586 }
2587
2588 static void vlv_steal_power_sequencer(struct drm_device *dev,
2589 enum pipe pipe)
2590 {
2591 struct drm_i915_private *dev_priv = dev->dev_private;
2592 struct intel_encoder *encoder;
2593
2594 lockdep_assert_held(&dev_priv->pps_mutex);
2595
2596 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2597 base.head) {
2598 struct intel_dp *intel_dp;
2599 enum port port;
2600
2601 if (encoder->type != INTEL_OUTPUT_EDP)
2602 continue;
2603
2604 intel_dp = enc_to_intel_dp(&encoder->base);
2605 port = dp_to_dig_port(intel_dp)->port;
2606
2607 if (intel_dp->pps_pipe != pipe)
2608 continue;
2609
2610 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2611 pipe_name(pipe), port_name(port));
2612
2613 /* make sure vdd is off before we steal it */
2614 edp_panel_vdd_off_sync(intel_dp);
2615
2616 intel_dp->pps_pipe = INVALID_PIPE;
2617 }
2618 }
2619
2620 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2621 {
2622 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2623 struct intel_encoder *encoder = &intel_dig_port->base;
2624 struct drm_device *dev = encoder->base.dev;
2625 struct drm_i915_private *dev_priv = dev->dev_private;
2626 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2627
2628 lockdep_assert_held(&dev_priv->pps_mutex);
2629
2630 if (!is_edp(intel_dp))
2631 return;
2632
2633 if (intel_dp->pps_pipe == crtc->pipe)
2634 return;
2635
2636 /*
2637 * If another power sequencer was being used on this
2638 * port previously make sure to turn off vdd there while
2639 * we still have control of it.
2640 */
2641 if (intel_dp->pps_pipe != INVALID_PIPE)
2642 edp_panel_vdd_off_sync(intel_dp);
2643
2644 /*
2645 * We may be stealing the power
2646 * sequencer from another port.
2647 */
2648 vlv_steal_power_sequencer(dev, crtc->pipe);
2649
2650 /* now it's all ours */
2651 intel_dp->pps_pipe = crtc->pipe;
2652
2653 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2654 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2655
2656 /* init power sequencer on this pipe and port */
2657 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2658 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2659 }
2660
2661 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2662 {
2663 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2664 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2665 struct drm_device *dev = encoder->base.dev;
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2668 enum dpio_channel port = vlv_dport_to_channel(dport);
2669 int pipe = intel_crtc->pipe;
2670 u32 val;
2671
2672 mutex_lock(&dev_priv->dpio_lock);
2673
2674 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2675 val = 0;
2676 if (pipe)
2677 val |= (1<<21);
2678 else
2679 val &= ~(1<<21);
2680 val |= 0x001000c4;
2681 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2682 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2683 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2684
2685 mutex_unlock(&dev_priv->dpio_lock);
2686
2687 intel_enable_dp(encoder);
2688
2689 vlv_wait_port_ready(dev_priv, dport);
2690 }
2691
2692 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2693 {
2694 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2695 struct drm_device *dev = encoder->base.dev;
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 struct intel_crtc *intel_crtc =
2698 to_intel_crtc(encoder->base.crtc);
2699 enum dpio_channel port = vlv_dport_to_channel(dport);
2700 int pipe = intel_crtc->pipe;
2701
2702 intel_dp_prepare(encoder);
2703
2704 /* Program Tx lane resets to default */
2705 mutex_lock(&dev_priv->dpio_lock);
2706 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2707 DPIO_PCS_TX_LANE2_RESET |
2708 DPIO_PCS_TX_LANE1_RESET);
2709 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2710 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2711 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2712 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2713 DPIO_PCS_CLK_SOFT_RESET);
2714
2715 /* Fix up inter-pair skew failure */
2716 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2717 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2718 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2719 mutex_unlock(&dev_priv->dpio_lock);
2720 }
2721
2722 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2723 {
2724 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2725 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2726 struct drm_device *dev = encoder->base.dev;
2727 struct drm_i915_private *dev_priv = dev->dev_private;
2728 struct intel_crtc *intel_crtc =
2729 to_intel_crtc(encoder->base.crtc);
2730 enum dpio_channel ch = vlv_dport_to_channel(dport);
2731 int pipe = intel_crtc->pipe;
2732 int data, i;
2733 u32 val;
2734
2735 mutex_lock(&dev_priv->dpio_lock);
2736
2737 /* allow hardware to manage TX FIFO reset source */
2738 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2739 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2740 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2741
2742 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2743 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2744 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2745
2746 /* Deassert soft data lane reset*/
2747 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2748 val |= CHV_PCS_REQ_SOFTRESET_EN;
2749 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2750
2751 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2752 val |= CHV_PCS_REQ_SOFTRESET_EN;
2753 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2754
2755 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2756 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2757 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2758
2759 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2760 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2761 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2762
2763 /* Program Tx lane latency optimal setting*/
2764 for (i = 0; i < 4; i++) {
2765 /* Set the latency optimal bit */
2766 data = (i == 1) ? 0x0 : 0x6;
2767 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2768 data << DPIO_FRC_LATENCY_SHFIT);
2769
2770 /* Set the upar bit */
2771 data = (i == 1) ? 0x0 : 0x1;
2772 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2773 data << DPIO_UPAR_SHIFT);
2774 }
2775
2776 /* Data lane stagger programming */
2777 /* FIXME: Fix up value only after power analysis */
2778
2779 mutex_unlock(&dev_priv->dpio_lock);
2780
2781 intel_enable_dp(encoder);
2782
2783 vlv_wait_port_ready(dev_priv, dport);
2784 }
2785
2786 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2787 {
2788 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2789 struct drm_device *dev = encoder->base.dev;
2790 struct drm_i915_private *dev_priv = dev->dev_private;
2791 struct intel_crtc *intel_crtc =
2792 to_intel_crtc(encoder->base.crtc);
2793 enum dpio_channel ch = vlv_dport_to_channel(dport);
2794 enum pipe pipe = intel_crtc->pipe;
2795 u32 val;
2796
2797 intel_dp_prepare(encoder);
2798
2799 mutex_lock(&dev_priv->dpio_lock);
2800
2801 /* program left/right clock distribution */
2802 if (pipe != PIPE_B) {
2803 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2804 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2805 if (ch == DPIO_CH0)
2806 val |= CHV_BUFLEFTENA1_FORCE;
2807 if (ch == DPIO_CH1)
2808 val |= CHV_BUFRIGHTENA1_FORCE;
2809 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2810 } else {
2811 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2812 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2813 if (ch == DPIO_CH0)
2814 val |= CHV_BUFLEFTENA2_FORCE;
2815 if (ch == DPIO_CH1)
2816 val |= CHV_BUFRIGHTENA2_FORCE;
2817 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2818 }
2819
2820 /* program clock channel usage */
2821 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2822 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2823 if (pipe != PIPE_B)
2824 val &= ~CHV_PCS_USEDCLKCHANNEL;
2825 else
2826 val |= CHV_PCS_USEDCLKCHANNEL;
2827 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2828
2829 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2830 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2831 if (pipe != PIPE_B)
2832 val &= ~CHV_PCS_USEDCLKCHANNEL;
2833 else
2834 val |= CHV_PCS_USEDCLKCHANNEL;
2835 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2836
2837 /*
2838 * This a a bit weird since generally CL
2839 * matches the pipe, but here we need to
2840 * pick the CL based on the port.
2841 */
2842 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2843 if (pipe != PIPE_B)
2844 val &= ~CHV_CMN_USEDCLKCHANNEL;
2845 else
2846 val |= CHV_CMN_USEDCLKCHANNEL;
2847 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2848
2849 mutex_unlock(&dev_priv->dpio_lock);
2850 }
2851
2852 /*
2853 * Native read with retry for link status and receiver capability reads for
2854 * cases where the sink may still be asleep.
2855 *
2856 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2857 * supposed to retry 3 times per the spec.
2858 */
2859 static ssize_t
2860 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2861 void *buffer, size_t size)
2862 {
2863 ssize_t ret;
2864 int i;
2865
2866 for (i = 0; i < 3; i++) {
2867 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2868 if (ret == size)
2869 return ret;
2870 msleep(1);
2871 }
2872
2873 return ret;
2874 }
2875
2876 /*
2877 * Fetch AUX CH registers 0x202 - 0x207 which contain
2878 * link status information
2879 */
2880 static bool
2881 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2882 {
2883 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2884 DP_LANE0_1_STATUS,
2885 link_status,
2886 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2887 }
2888
2889 /* These are source-specific values. */
2890 static uint8_t
2891 intel_dp_voltage_max(struct intel_dp *intel_dp)
2892 {
2893 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2894 enum port port = dp_to_dig_port(intel_dp)->port;
2895
2896 if (INTEL_INFO(dev)->gen >= 9)
2897 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2898 else if (IS_VALLEYVIEW(dev))
2899 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2900 else if (IS_GEN7(dev) && port == PORT_A)
2901 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2902 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2903 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2904 else
2905 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2906 }
2907
2908 static uint8_t
2909 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2910 {
2911 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2912 enum port port = dp_to_dig_port(intel_dp)->port;
2913
2914 if (INTEL_INFO(dev)->gen >= 9) {
2915 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2916 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2917 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2919 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2920 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2921 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2922 default:
2923 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2924 }
2925 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2926 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2927 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2928 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2929 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2930 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2931 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2932 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2934 default:
2935 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2936 }
2937 } else if (IS_VALLEYVIEW(dev)) {
2938 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2939 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2940 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2941 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2942 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2944 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2945 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2946 default:
2947 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2948 }
2949 } else if (IS_GEN7(dev) && port == PORT_A) {
2950 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2951 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2952 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2953 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2954 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2955 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2956 default:
2957 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2958 }
2959 } else {
2960 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2961 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2962 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2963 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2964 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2965 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2966 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2967 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2968 default:
2969 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2970 }
2971 }
2972 }
2973
2974 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2975 {
2976 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2977 struct drm_i915_private *dev_priv = dev->dev_private;
2978 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2979 struct intel_crtc *intel_crtc =
2980 to_intel_crtc(dport->base.base.crtc);
2981 unsigned long demph_reg_value, preemph_reg_value,
2982 uniqtranscale_reg_value;
2983 uint8_t train_set = intel_dp->train_set[0];
2984 enum dpio_channel port = vlv_dport_to_channel(dport);
2985 int pipe = intel_crtc->pipe;
2986
2987 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2988 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2989 preemph_reg_value = 0x0004000;
2990 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2991 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2992 demph_reg_value = 0x2B405555;
2993 uniqtranscale_reg_value = 0x552AB83A;
2994 break;
2995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2996 demph_reg_value = 0x2B404040;
2997 uniqtranscale_reg_value = 0x5548B83A;
2998 break;
2999 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3000 demph_reg_value = 0x2B245555;
3001 uniqtranscale_reg_value = 0x5560B83A;
3002 break;
3003 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3004 demph_reg_value = 0x2B405555;
3005 uniqtranscale_reg_value = 0x5598DA3A;
3006 break;
3007 default:
3008 return 0;
3009 }
3010 break;
3011 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3012 preemph_reg_value = 0x0002000;
3013 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3014 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3015 demph_reg_value = 0x2B404040;
3016 uniqtranscale_reg_value = 0x5552B83A;
3017 break;
3018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3019 demph_reg_value = 0x2B404848;
3020 uniqtranscale_reg_value = 0x5580B83A;
3021 break;
3022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3023 demph_reg_value = 0x2B404040;
3024 uniqtranscale_reg_value = 0x55ADDA3A;
3025 break;
3026 default:
3027 return 0;
3028 }
3029 break;
3030 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3031 preemph_reg_value = 0x0000000;
3032 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3033 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3034 demph_reg_value = 0x2B305555;
3035 uniqtranscale_reg_value = 0x5570B83A;
3036 break;
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3038 demph_reg_value = 0x2B2B4040;
3039 uniqtranscale_reg_value = 0x55ADDA3A;
3040 break;
3041 default:
3042 return 0;
3043 }
3044 break;
3045 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3046 preemph_reg_value = 0x0006000;
3047 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3048 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3049 demph_reg_value = 0x1B405555;
3050 uniqtranscale_reg_value = 0x55ADDA3A;
3051 break;
3052 default:
3053 return 0;
3054 }
3055 break;
3056 default:
3057 return 0;
3058 }
3059
3060 mutex_lock(&dev_priv->dpio_lock);
3061 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3062 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3063 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3064 uniqtranscale_reg_value);
3065 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3066 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3067 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3068 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3069 mutex_unlock(&dev_priv->dpio_lock);
3070
3071 return 0;
3072 }
3073
3074 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3075 {
3076 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3077 struct drm_i915_private *dev_priv = dev->dev_private;
3078 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3079 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3080 u32 deemph_reg_value, margin_reg_value, val;
3081 uint8_t train_set = intel_dp->train_set[0];
3082 enum dpio_channel ch = vlv_dport_to_channel(dport);
3083 enum pipe pipe = intel_crtc->pipe;
3084 int i;
3085
3086 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3087 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3088 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3089 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3090 deemph_reg_value = 128;
3091 margin_reg_value = 52;
3092 break;
3093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3094 deemph_reg_value = 128;
3095 margin_reg_value = 77;
3096 break;
3097 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3098 deemph_reg_value = 128;
3099 margin_reg_value = 102;
3100 break;
3101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3102 deemph_reg_value = 128;
3103 margin_reg_value = 154;
3104 /* FIXME extra to set for 1200 */
3105 break;
3106 default:
3107 return 0;
3108 }
3109 break;
3110 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3111 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3112 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3113 deemph_reg_value = 85;
3114 margin_reg_value = 78;
3115 break;
3116 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3117 deemph_reg_value = 85;
3118 margin_reg_value = 116;
3119 break;
3120 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3121 deemph_reg_value = 85;
3122 margin_reg_value = 154;
3123 break;
3124 default:
3125 return 0;
3126 }
3127 break;
3128 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3129 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3130 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3131 deemph_reg_value = 64;
3132 margin_reg_value = 104;
3133 break;
3134 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3135 deemph_reg_value = 64;
3136 margin_reg_value = 154;
3137 break;
3138 default:
3139 return 0;
3140 }
3141 break;
3142 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3143 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3144 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3145 deemph_reg_value = 43;
3146 margin_reg_value = 154;
3147 break;
3148 default:
3149 return 0;
3150 }
3151 break;
3152 default:
3153 return 0;
3154 }
3155
3156 mutex_lock(&dev_priv->dpio_lock);
3157
3158 /* Clear calc init */
3159 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3160 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3161 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3162 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3163 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3164
3165 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3166 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3167 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3168 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3169 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3170
3171 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3172 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3173 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3174 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3175
3176 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3177 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3178 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3179 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3180
3181 /* Program swing deemph */
3182 for (i = 0; i < 4; i++) {
3183 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3184 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3185 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3186 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3187 }
3188
3189 /* Program swing margin */
3190 for (i = 0; i < 4; i++) {
3191 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3192 val &= ~DPIO_SWING_MARGIN000_MASK;
3193 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3194 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3195 }
3196
3197 /* Disable unique transition scale */
3198 for (i = 0; i < 4; i++) {
3199 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3200 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3201 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3202 }
3203
3204 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3205 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3206 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3207 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3208
3209 /*
3210 * The document said it needs to set bit 27 for ch0 and bit 26
3211 * for ch1. Might be a typo in the doc.
3212 * For now, for this unique transition scale selection, set bit
3213 * 27 for ch0 and ch1.
3214 */
3215 for (i = 0; i < 4; i++) {
3216 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3217 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3218 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3219 }
3220
3221 for (i = 0; i < 4; i++) {
3222 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3223 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3224 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3225 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3226 }
3227 }
3228
3229 /* Start swing calculation */
3230 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3231 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3232 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3233
3234 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3235 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3236 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3237
3238 /* LRC Bypass */
3239 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3240 val |= DPIO_LRC_BYPASS;
3241 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3242
3243 mutex_unlock(&dev_priv->dpio_lock);
3244
3245 return 0;
3246 }
3247
3248 static void
3249 intel_get_adjust_train(struct intel_dp *intel_dp,
3250 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3251 {
3252 uint8_t v = 0;
3253 uint8_t p = 0;
3254 int lane;
3255 uint8_t voltage_max;
3256 uint8_t preemph_max;
3257
3258 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3259 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3260 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3261
3262 if (this_v > v)
3263 v = this_v;
3264 if (this_p > p)
3265 p = this_p;
3266 }
3267
3268 voltage_max = intel_dp_voltage_max(intel_dp);
3269 if (v >= voltage_max)
3270 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3271
3272 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3273 if (p >= preemph_max)
3274 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3275
3276 for (lane = 0; lane < 4; lane++)
3277 intel_dp->train_set[lane] = v | p;
3278 }
3279
3280 static uint32_t
3281 intel_gen4_signal_levels(uint8_t train_set)
3282 {
3283 uint32_t signal_levels = 0;
3284
3285 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3287 default:
3288 signal_levels |= DP_VOLTAGE_0_4;
3289 break;
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3291 signal_levels |= DP_VOLTAGE_0_6;
3292 break;
3293 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3294 signal_levels |= DP_VOLTAGE_0_8;
3295 break;
3296 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3297 signal_levels |= DP_VOLTAGE_1_2;
3298 break;
3299 }
3300 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3301 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3302 default:
3303 signal_levels |= DP_PRE_EMPHASIS_0;
3304 break;
3305 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3306 signal_levels |= DP_PRE_EMPHASIS_3_5;
3307 break;
3308 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3309 signal_levels |= DP_PRE_EMPHASIS_6;
3310 break;
3311 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3312 signal_levels |= DP_PRE_EMPHASIS_9_5;
3313 break;
3314 }
3315 return signal_levels;
3316 }
3317
3318 /* Gen6's DP voltage swing and pre-emphasis control */
3319 static uint32_t
3320 intel_gen6_edp_signal_levels(uint8_t train_set)
3321 {
3322 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3323 DP_TRAIN_PRE_EMPHASIS_MASK);
3324 switch (signal_levels) {
3325 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3326 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3327 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3328 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3329 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3331 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3332 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3335 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3336 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3338 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3339 default:
3340 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3341 "0x%x\n", signal_levels);
3342 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3343 }
3344 }
3345
3346 /* Gen7's DP voltage swing and pre-emphasis control */
3347 static uint32_t
3348 intel_gen7_edp_signal_levels(uint8_t train_set)
3349 {
3350 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3351 DP_TRAIN_PRE_EMPHASIS_MASK);
3352 switch (signal_levels) {
3353 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3354 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3355 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3356 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3357 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3358 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3359
3360 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3361 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3362 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3363 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3364
3365 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3366 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3367 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3368 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3369
3370 default:
3371 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3372 "0x%x\n", signal_levels);
3373 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3374 }
3375 }
3376
3377 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3378 static uint32_t
3379 intel_hsw_signal_levels(uint8_t train_set)
3380 {
3381 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3382 DP_TRAIN_PRE_EMPHASIS_MASK);
3383 switch (signal_levels) {
3384 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3385 return DDI_BUF_TRANS_SELECT(0);
3386 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3387 return DDI_BUF_TRANS_SELECT(1);
3388 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3389 return DDI_BUF_TRANS_SELECT(2);
3390 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3391 return DDI_BUF_TRANS_SELECT(3);
3392
3393 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3394 return DDI_BUF_TRANS_SELECT(4);
3395 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3396 return DDI_BUF_TRANS_SELECT(5);
3397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3398 return DDI_BUF_TRANS_SELECT(6);
3399
3400 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3401 return DDI_BUF_TRANS_SELECT(7);
3402 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3403 return DDI_BUF_TRANS_SELECT(8);
3404 default:
3405 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3406 "0x%x\n", signal_levels);
3407 return DDI_BUF_TRANS_SELECT(0);
3408 }
3409 }
3410
3411 /* Properly updates "DP" with the correct signal levels. */
3412 static void
3413 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3414 {
3415 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3416 enum port port = intel_dig_port->port;
3417 struct drm_device *dev = intel_dig_port->base.base.dev;
3418 uint32_t signal_levels, mask;
3419 uint8_t train_set = intel_dp->train_set[0];
3420
3421 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
3422 signal_levels = intel_hsw_signal_levels(train_set);
3423 mask = DDI_BUF_EMP_MASK;
3424 } else if (IS_CHERRYVIEW(dev)) {
3425 signal_levels = intel_chv_signal_levels(intel_dp);
3426 mask = 0;
3427 } else if (IS_VALLEYVIEW(dev)) {
3428 signal_levels = intel_vlv_signal_levels(intel_dp);
3429 mask = 0;
3430 } else if (IS_GEN7(dev) && port == PORT_A) {
3431 signal_levels = intel_gen7_edp_signal_levels(train_set);
3432 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3433 } else if (IS_GEN6(dev) && port == PORT_A) {
3434 signal_levels = intel_gen6_edp_signal_levels(train_set);
3435 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3436 } else {
3437 signal_levels = intel_gen4_signal_levels(train_set);
3438 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3439 }
3440
3441 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3442
3443 *DP = (*DP & ~mask) | signal_levels;
3444 }
3445
3446 static bool
3447 intel_dp_set_link_train(struct intel_dp *intel_dp,
3448 uint32_t *DP,
3449 uint8_t dp_train_pat)
3450 {
3451 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3452 struct drm_device *dev = intel_dig_port->base.base.dev;
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3455 int ret, len;
3456
3457 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3458
3459 I915_WRITE(intel_dp->output_reg, *DP);
3460 POSTING_READ(intel_dp->output_reg);
3461
3462 buf[0] = dp_train_pat;
3463 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3464 DP_TRAINING_PATTERN_DISABLE) {
3465 /* don't write DP_TRAINING_LANEx_SET on disable */
3466 len = 1;
3467 } else {
3468 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3469 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3470 len = intel_dp->lane_count + 1;
3471 }
3472
3473 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3474 buf, len);
3475
3476 return ret == len;
3477 }
3478
3479 static bool
3480 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3481 uint8_t dp_train_pat)
3482 {
3483 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3484 intel_dp_set_signal_levels(intel_dp, DP);
3485 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3486 }
3487
3488 static bool
3489 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3490 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3491 {
3492 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3493 struct drm_device *dev = intel_dig_port->base.base.dev;
3494 struct drm_i915_private *dev_priv = dev->dev_private;
3495 int ret;
3496
3497 intel_get_adjust_train(intel_dp, link_status);
3498 intel_dp_set_signal_levels(intel_dp, DP);
3499
3500 I915_WRITE(intel_dp->output_reg, *DP);
3501 POSTING_READ(intel_dp->output_reg);
3502
3503 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3504 intel_dp->train_set, intel_dp->lane_count);
3505
3506 return ret == intel_dp->lane_count;
3507 }
3508
3509 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3510 {
3511 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3512 struct drm_device *dev = intel_dig_port->base.base.dev;
3513 struct drm_i915_private *dev_priv = dev->dev_private;
3514 enum port port = intel_dig_port->port;
3515 uint32_t val;
3516
3517 if (!HAS_DDI(dev))
3518 return;
3519
3520 val = I915_READ(DP_TP_CTL(port));
3521 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3522 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3523 I915_WRITE(DP_TP_CTL(port), val);
3524
3525 /*
3526 * On PORT_A we can have only eDP in SST mode. There the only reason
3527 * we need to set idle transmission mode is to work around a HW issue
3528 * where we enable the pipe while not in idle link-training mode.
3529 * In this case there is requirement to wait for a minimum number of
3530 * idle patterns to be sent.
3531 */
3532 if (port == PORT_A)
3533 return;
3534
3535 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3536 1))
3537 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3538 }
3539
3540 /* Enable corresponding port and start training pattern 1 */
3541 void
3542 intel_dp_start_link_train(struct intel_dp *intel_dp)
3543 {
3544 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3545 struct drm_device *dev = encoder->dev;
3546 int i;
3547 uint8_t voltage;
3548 int voltage_tries, loop_tries;
3549 uint32_t DP = intel_dp->DP;
3550 uint8_t link_config[2];
3551
3552 if (HAS_DDI(dev))
3553 intel_ddi_prepare_link_retrain(encoder);
3554
3555 /* Write the link configuration data */
3556 link_config[0] = intel_dp->link_bw;
3557 link_config[1] = intel_dp->lane_count;
3558 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3559 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3560 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3561
3562 link_config[0] = 0;
3563 link_config[1] = DP_SET_ANSI_8B10B;
3564 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3565
3566 DP |= DP_PORT_EN;
3567
3568 /* clock recovery */
3569 if (!intel_dp_reset_link_train(intel_dp, &DP,
3570 DP_TRAINING_PATTERN_1 |
3571 DP_LINK_SCRAMBLING_DISABLE)) {
3572 DRM_ERROR("failed to enable link training\n");
3573 return;
3574 }
3575
3576 voltage = 0xff;
3577 voltage_tries = 0;
3578 loop_tries = 0;
3579 for (;;) {
3580 uint8_t link_status[DP_LINK_STATUS_SIZE];
3581
3582 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3583 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3584 DRM_ERROR("failed to get link status\n");
3585 break;
3586 }
3587
3588 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3589 DRM_DEBUG_KMS("clock recovery OK\n");
3590 break;
3591 }
3592
3593 /* Check to see if we've tried the max voltage */
3594 for (i = 0; i < intel_dp->lane_count; i++)
3595 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3596 break;
3597 if (i == intel_dp->lane_count) {
3598 ++loop_tries;
3599 if (loop_tries == 5) {
3600 DRM_ERROR("too many full retries, give up\n");
3601 break;
3602 }
3603 intel_dp_reset_link_train(intel_dp, &DP,
3604 DP_TRAINING_PATTERN_1 |
3605 DP_LINK_SCRAMBLING_DISABLE);
3606 voltage_tries = 0;
3607 continue;
3608 }
3609
3610 /* Check to see if we've tried the same voltage 5 times */
3611 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3612 ++voltage_tries;
3613 if (voltage_tries == 5) {
3614 DRM_ERROR("too many voltage retries, give up\n");
3615 break;
3616 }
3617 } else
3618 voltage_tries = 0;
3619 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3620
3621 /* Update training set as requested by target */
3622 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3623 DRM_ERROR("failed to update link training\n");
3624 break;
3625 }
3626 }
3627
3628 intel_dp->DP = DP;
3629 }
3630
3631 void
3632 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3633 {
3634 bool channel_eq = false;
3635 int tries, cr_tries;
3636 uint32_t DP = intel_dp->DP;
3637 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3638
3639 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3640 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3641 training_pattern = DP_TRAINING_PATTERN_3;
3642
3643 /* channel equalization */
3644 if (!intel_dp_set_link_train(intel_dp, &DP,
3645 training_pattern |
3646 DP_LINK_SCRAMBLING_DISABLE)) {
3647 DRM_ERROR("failed to start channel equalization\n");
3648 return;
3649 }
3650
3651 tries = 0;
3652 cr_tries = 0;
3653 channel_eq = false;
3654 for (;;) {
3655 uint8_t link_status[DP_LINK_STATUS_SIZE];
3656
3657 if (cr_tries > 5) {
3658 DRM_ERROR("failed to train DP, aborting\n");
3659 break;
3660 }
3661
3662 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3663 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3664 DRM_ERROR("failed to get link status\n");
3665 break;
3666 }
3667
3668 /* Make sure clock is still ok */
3669 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3670 intel_dp_start_link_train(intel_dp);
3671 intel_dp_set_link_train(intel_dp, &DP,
3672 training_pattern |
3673 DP_LINK_SCRAMBLING_DISABLE);
3674 cr_tries++;
3675 continue;
3676 }
3677
3678 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3679 channel_eq = true;
3680 break;
3681 }
3682
3683 /* Try 5 times, then try clock recovery if that fails */
3684 if (tries > 5) {
3685 intel_dp_link_down(intel_dp);
3686 intel_dp_start_link_train(intel_dp);
3687 intel_dp_set_link_train(intel_dp, &DP,
3688 training_pattern |
3689 DP_LINK_SCRAMBLING_DISABLE);
3690 tries = 0;
3691 cr_tries++;
3692 continue;
3693 }
3694
3695 /* Update training set as requested by target */
3696 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3697 DRM_ERROR("failed to update link training\n");
3698 break;
3699 }
3700 ++tries;
3701 }
3702
3703 intel_dp_set_idle_link_train(intel_dp);
3704
3705 intel_dp->DP = DP;
3706
3707 if (channel_eq)
3708 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3709
3710 }
3711
3712 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3713 {
3714 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3715 DP_TRAINING_PATTERN_DISABLE);
3716 }
3717
3718 static void
3719 intel_dp_link_down(struct intel_dp *intel_dp)
3720 {
3721 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3722 enum port port = intel_dig_port->port;
3723 struct drm_device *dev = intel_dig_port->base.base.dev;
3724 struct drm_i915_private *dev_priv = dev->dev_private;
3725 struct intel_crtc *intel_crtc =
3726 to_intel_crtc(intel_dig_port->base.base.crtc);
3727 uint32_t DP = intel_dp->DP;
3728
3729 if (WARN_ON(HAS_DDI(dev)))
3730 return;
3731
3732 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3733 return;
3734
3735 DRM_DEBUG_KMS("\n");
3736
3737 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3738 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3739 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3740 } else {
3741 if (IS_CHERRYVIEW(dev))
3742 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3743 else
3744 DP &= ~DP_LINK_TRAIN_MASK;
3745 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3746 }
3747 POSTING_READ(intel_dp->output_reg);
3748
3749 if (HAS_PCH_IBX(dev) &&
3750 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3751 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3752
3753 /* Hardware workaround: leaving our transcoder select
3754 * set to transcoder B while it's off will prevent the
3755 * corresponding HDMI output on transcoder A.
3756 *
3757 * Combine this with another hardware workaround:
3758 * transcoder select bit can only be cleared while the
3759 * port is enabled.
3760 */
3761 DP &= ~DP_PIPEB_SELECT;
3762 I915_WRITE(intel_dp->output_reg, DP);
3763
3764 /* Changes to enable or select take place the vblank
3765 * after being written.
3766 */
3767 if (WARN_ON(crtc == NULL)) {
3768 /* We should never try to disable a port without a crtc
3769 * attached. For paranoia keep the code around for a
3770 * bit. */
3771 POSTING_READ(intel_dp->output_reg);
3772 msleep(50);
3773 } else
3774 intel_wait_for_vblank(dev, intel_crtc->pipe);
3775 }
3776
3777 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3778 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3779 POSTING_READ(intel_dp->output_reg);
3780 msleep(intel_dp->panel_power_down_delay);
3781 }
3782
3783 static bool
3784 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3785 {
3786 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3787 struct drm_device *dev = dig_port->base.base.dev;
3788 struct drm_i915_private *dev_priv = dev->dev_private;
3789
3790 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3791 sizeof(intel_dp->dpcd)) < 0)
3792 return false; /* aux transfer failed */
3793
3794 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3795
3796 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3797 return false; /* DPCD not present */
3798
3799 /* Check if the panel supports PSR */
3800 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3801 if (is_edp(intel_dp)) {
3802 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3803 intel_dp->psr_dpcd,
3804 sizeof(intel_dp->psr_dpcd));
3805 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3806 dev_priv->psr.sink_support = true;
3807 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3808 }
3809 }
3810
3811 /* Training Pattern 3 support */
3812 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3813 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3814 intel_dp->use_tps3 = true;
3815 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3816 } else
3817 intel_dp->use_tps3 = false;
3818
3819 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3820 DP_DWN_STRM_PORT_PRESENT))
3821 return true; /* native DP sink */
3822
3823 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3824 return true; /* no per-port downstream info */
3825
3826 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3827 intel_dp->downstream_ports,
3828 DP_MAX_DOWNSTREAM_PORTS) < 0)
3829 return false; /* downstream port status fetch failed */
3830
3831 return true;
3832 }
3833
3834 static void
3835 intel_dp_probe_oui(struct intel_dp *intel_dp)
3836 {
3837 u8 buf[3];
3838
3839 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3840 return;
3841
3842 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3843 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3844 buf[0], buf[1], buf[2]);
3845
3846 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3847 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3848 buf[0], buf[1], buf[2]);
3849 }
3850
3851 static bool
3852 intel_dp_probe_mst(struct intel_dp *intel_dp)
3853 {
3854 u8 buf[1];
3855
3856 if (!intel_dp->can_mst)
3857 return false;
3858
3859 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3860 return false;
3861
3862 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3863 if (buf[0] & DP_MST_CAP) {
3864 DRM_DEBUG_KMS("Sink is MST capable\n");
3865 intel_dp->is_mst = true;
3866 } else {
3867 DRM_DEBUG_KMS("Sink is not MST capable\n");
3868 intel_dp->is_mst = false;
3869 }
3870 }
3871
3872 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3873 return intel_dp->is_mst;
3874 }
3875
3876 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3877 {
3878 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3879 struct drm_device *dev = intel_dig_port->base.base.dev;
3880 struct intel_crtc *intel_crtc =
3881 to_intel_crtc(intel_dig_port->base.base.crtc);
3882 u8 buf;
3883 int test_crc_count;
3884 int attempts = 6;
3885
3886 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3887 return -EIO;
3888
3889 if (!(buf & DP_TEST_CRC_SUPPORTED))
3890 return -ENOTTY;
3891
3892 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3893 return -EIO;
3894
3895 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3896 buf | DP_TEST_SINK_START) < 0)
3897 return -EIO;
3898
3899 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3900 return -EIO;
3901 test_crc_count = buf & DP_TEST_COUNT_MASK;
3902
3903 do {
3904 if (drm_dp_dpcd_readb(&intel_dp->aux,
3905 DP_TEST_SINK_MISC, &buf) < 0)
3906 return -EIO;
3907 intel_wait_for_vblank(dev, intel_crtc->pipe);
3908 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
3909
3910 if (attempts == 0) {
3911 DRM_ERROR("Panel is unable to calculate CRC after 6 vblanks\n");
3912 return -EIO;
3913 }
3914
3915 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3916 return -EIO;
3917
3918 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3919 return -EIO;
3920 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3921 buf & ~DP_TEST_SINK_START) < 0)
3922 return -EIO;
3923
3924 return 0;
3925 }
3926
3927 static bool
3928 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3929 {
3930 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3931 DP_DEVICE_SERVICE_IRQ_VECTOR,
3932 sink_irq_vector, 1) == 1;
3933 }
3934
3935 static bool
3936 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3937 {
3938 int ret;
3939
3940 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3941 DP_SINK_COUNT_ESI,
3942 sink_irq_vector, 14);
3943 if (ret != 14)
3944 return false;
3945
3946 return true;
3947 }
3948
3949 static void
3950 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3951 {
3952 /* NAK by default */
3953 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3954 }
3955
3956 static int
3957 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3958 {
3959 bool bret;
3960
3961 if (intel_dp->is_mst) {
3962 u8 esi[16] = { 0 };
3963 int ret = 0;
3964 int retry;
3965 bool handled;
3966 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3967 go_again:
3968 if (bret == true) {
3969
3970 /* check link status - esi[10] = 0x200c */
3971 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3972 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3973 intel_dp_start_link_train(intel_dp);
3974 intel_dp_complete_link_train(intel_dp);
3975 intel_dp_stop_link_train(intel_dp);
3976 }
3977
3978 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3979 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3980
3981 if (handled) {
3982 for (retry = 0; retry < 3; retry++) {
3983 int wret;
3984 wret = drm_dp_dpcd_write(&intel_dp->aux,
3985 DP_SINK_COUNT_ESI+1,
3986 &esi[1], 3);
3987 if (wret == 3) {
3988 break;
3989 }
3990 }
3991
3992 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3993 if (bret == true) {
3994 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3995 goto go_again;
3996 }
3997 } else
3998 ret = 0;
3999
4000 return ret;
4001 } else {
4002 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4003 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4004 intel_dp->is_mst = false;
4005 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4006 /* send a hotplug event */
4007 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4008 }
4009 }
4010 return -EINVAL;
4011 }
4012
4013 /*
4014 * According to DP spec
4015 * 5.1.2:
4016 * 1. Read DPCD
4017 * 2. Configure link according to Receiver Capabilities
4018 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4019 * 4. Check link status on receipt of hot-plug interrupt
4020 */
4021 void
4022 intel_dp_check_link_status(struct intel_dp *intel_dp)
4023 {
4024 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4025 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4026 u8 sink_irq_vector;
4027 u8 link_status[DP_LINK_STATUS_SIZE];
4028
4029 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4030
4031 if (!intel_encoder->connectors_active)
4032 return;
4033
4034 if (WARN_ON(!intel_encoder->base.crtc))
4035 return;
4036
4037 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4038 return;
4039
4040 /* Try to read receiver status if the link appears to be up */
4041 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4042 return;
4043 }
4044
4045 /* Now read the DPCD to see if it's actually running */
4046 if (!intel_dp_get_dpcd(intel_dp)) {
4047 return;
4048 }
4049
4050 /* Try to read the source of the interrupt */
4051 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4052 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4053 /* Clear interrupt source */
4054 drm_dp_dpcd_writeb(&intel_dp->aux,
4055 DP_DEVICE_SERVICE_IRQ_VECTOR,
4056 sink_irq_vector);
4057
4058 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4059 intel_dp_handle_test_request(intel_dp);
4060 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4061 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4062 }
4063
4064 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4065 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4066 intel_encoder->base.name);
4067 intel_dp_start_link_train(intel_dp);
4068 intel_dp_complete_link_train(intel_dp);
4069 intel_dp_stop_link_train(intel_dp);
4070 }
4071 }
4072
4073 /* XXX this is probably wrong for multiple downstream ports */
4074 static enum drm_connector_status
4075 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4076 {
4077 uint8_t *dpcd = intel_dp->dpcd;
4078 uint8_t type;
4079
4080 if (!intel_dp_get_dpcd(intel_dp))
4081 return connector_status_disconnected;
4082
4083 /* if there's no downstream port, we're done */
4084 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4085 return connector_status_connected;
4086
4087 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4088 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4089 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4090 uint8_t reg;
4091
4092 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4093 &reg, 1) < 0)
4094 return connector_status_unknown;
4095
4096 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4097 : connector_status_disconnected;
4098 }
4099
4100 /* If no HPD, poke DDC gently */
4101 if (drm_probe_ddc(&intel_dp->aux.ddc))
4102 return connector_status_connected;
4103
4104 /* Well we tried, say unknown for unreliable port types */
4105 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4106 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4107 if (type == DP_DS_PORT_TYPE_VGA ||
4108 type == DP_DS_PORT_TYPE_NON_EDID)
4109 return connector_status_unknown;
4110 } else {
4111 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4112 DP_DWN_STRM_PORT_TYPE_MASK;
4113 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4114 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4115 return connector_status_unknown;
4116 }
4117
4118 /* Anything else is out of spec, warn and ignore */
4119 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4120 return connector_status_disconnected;
4121 }
4122
4123 static enum drm_connector_status
4124 edp_detect(struct intel_dp *intel_dp)
4125 {
4126 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4127 enum drm_connector_status status;
4128
4129 status = intel_panel_detect(dev);
4130 if (status == connector_status_unknown)
4131 status = connector_status_connected;
4132
4133 return status;
4134 }
4135
4136 static enum drm_connector_status
4137 ironlake_dp_detect(struct intel_dp *intel_dp)
4138 {
4139 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4140 struct drm_i915_private *dev_priv = dev->dev_private;
4141 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4142
4143 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4144 return connector_status_disconnected;
4145
4146 return intel_dp_detect_dpcd(intel_dp);
4147 }
4148
4149 static int g4x_digital_port_connected(struct drm_device *dev,
4150 struct intel_digital_port *intel_dig_port)
4151 {
4152 struct drm_i915_private *dev_priv = dev->dev_private;
4153 uint32_t bit;
4154
4155 if (IS_VALLEYVIEW(dev)) {
4156 switch (intel_dig_port->port) {
4157 case PORT_B:
4158 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4159 break;
4160 case PORT_C:
4161 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4162 break;
4163 case PORT_D:
4164 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4165 break;
4166 default:
4167 return -EINVAL;
4168 }
4169 } else {
4170 switch (intel_dig_port->port) {
4171 case PORT_B:
4172 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4173 break;
4174 case PORT_C:
4175 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4176 break;
4177 case PORT_D:
4178 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4179 break;
4180 default:
4181 return -EINVAL;
4182 }
4183 }
4184
4185 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4186 return 0;
4187 return 1;
4188 }
4189
4190 static enum drm_connector_status
4191 g4x_dp_detect(struct intel_dp *intel_dp)
4192 {
4193 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4194 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4195 int ret;
4196
4197 /* Can't disconnect eDP, but you can close the lid... */
4198 if (is_edp(intel_dp)) {
4199 enum drm_connector_status status;
4200
4201 status = intel_panel_detect(dev);
4202 if (status == connector_status_unknown)
4203 status = connector_status_connected;
4204 return status;
4205 }
4206
4207 ret = g4x_digital_port_connected(dev, intel_dig_port);
4208 if (ret == -EINVAL)
4209 return connector_status_unknown;
4210 else if (ret == 0)
4211 return connector_status_disconnected;
4212
4213 return intel_dp_detect_dpcd(intel_dp);
4214 }
4215
4216 static struct edid *
4217 intel_dp_get_edid(struct intel_dp *intel_dp)
4218 {
4219 struct intel_connector *intel_connector = intel_dp->attached_connector;
4220
4221 /* use cached edid if we have one */
4222 if (intel_connector->edid) {
4223 /* invalid edid */
4224 if (IS_ERR(intel_connector->edid))
4225 return NULL;
4226
4227 return drm_edid_duplicate(intel_connector->edid);
4228 } else
4229 return drm_get_edid(&intel_connector->base,
4230 &intel_dp->aux.ddc);
4231 }
4232
4233 static void
4234 intel_dp_set_edid(struct intel_dp *intel_dp)
4235 {
4236 struct intel_connector *intel_connector = intel_dp->attached_connector;
4237 struct edid *edid;
4238
4239 edid = intel_dp_get_edid(intel_dp);
4240 intel_connector->detect_edid = edid;
4241
4242 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4243 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4244 else
4245 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4246 }
4247
4248 static void
4249 intel_dp_unset_edid(struct intel_dp *intel_dp)
4250 {
4251 struct intel_connector *intel_connector = intel_dp->attached_connector;
4252
4253 kfree(intel_connector->detect_edid);
4254 intel_connector->detect_edid = NULL;
4255
4256 intel_dp->has_audio = false;
4257 }
4258
4259 static enum intel_display_power_domain
4260 intel_dp_power_get(struct intel_dp *dp)
4261 {
4262 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4263 enum intel_display_power_domain power_domain;
4264
4265 power_domain = intel_display_port_power_domain(encoder);
4266 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4267
4268 return power_domain;
4269 }
4270
4271 static void
4272 intel_dp_power_put(struct intel_dp *dp,
4273 enum intel_display_power_domain power_domain)
4274 {
4275 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4276 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4277 }
4278
4279 static enum drm_connector_status
4280 intel_dp_detect(struct drm_connector *connector, bool force)
4281 {
4282 struct intel_dp *intel_dp = intel_attached_dp(connector);
4283 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4284 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4285 struct drm_device *dev = connector->dev;
4286 enum drm_connector_status status;
4287 enum intel_display_power_domain power_domain;
4288 bool ret;
4289
4290 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4291 connector->base.id, connector->name);
4292 intel_dp_unset_edid(intel_dp);
4293
4294 if (intel_dp->is_mst) {
4295 /* MST devices are disconnected from a monitor POV */
4296 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4297 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4298 return connector_status_disconnected;
4299 }
4300
4301 power_domain = intel_dp_power_get(intel_dp);
4302
4303 /* Can't disconnect eDP, but you can close the lid... */
4304 if (is_edp(intel_dp))
4305 status = edp_detect(intel_dp);
4306 else if (HAS_PCH_SPLIT(dev))
4307 status = ironlake_dp_detect(intel_dp);
4308 else
4309 status = g4x_dp_detect(intel_dp);
4310 if (status != connector_status_connected)
4311 goto out;
4312
4313 intel_dp_probe_oui(intel_dp);
4314
4315 ret = intel_dp_probe_mst(intel_dp);
4316 if (ret) {
4317 /* if we are in MST mode then this connector
4318 won't appear connected or have anything with EDID on it */
4319 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4320 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4321 status = connector_status_disconnected;
4322 goto out;
4323 }
4324
4325 intel_dp_set_edid(intel_dp);
4326
4327 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4328 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4329 status = connector_status_connected;
4330
4331 out:
4332 intel_dp_power_put(intel_dp, power_domain);
4333 return status;
4334 }
4335
4336 static void
4337 intel_dp_force(struct drm_connector *connector)
4338 {
4339 struct intel_dp *intel_dp = intel_attached_dp(connector);
4340 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4341 enum intel_display_power_domain power_domain;
4342
4343 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4344 connector->base.id, connector->name);
4345 intel_dp_unset_edid(intel_dp);
4346
4347 if (connector->status != connector_status_connected)
4348 return;
4349
4350 power_domain = intel_dp_power_get(intel_dp);
4351
4352 intel_dp_set_edid(intel_dp);
4353
4354 intel_dp_power_put(intel_dp, power_domain);
4355
4356 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4357 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4358 }
4359
4360 static int intel_dp_get_modes(struct drm_connector *connector)
4361 {
4362 struct intel_connector *intel_connector = to_intel_connector(connector);
4363 struct edid *edid;
4364
4365 edid = intel_connector->detect_edid;
4366 if (edid) {
4367 int ret = intel_connector_update_modes(connector, edid);
4368 if (ret)
4369 return ret;
4370 }
4371
4372 /* if eDP has no EDID, fall back to fixed mode */
4373 if (is_edp(intel_attached_dp(connector)) &&
4374 intel_connector->panel.fixed_mode) {
4375 struct drm_display_mode *mode;
4376
4377 mode = drm_mode_duplicate(connector->dev,
4378 intel_connector->panel.fixed_mode);
4379 if (mode) {
4380 drm_mode_probed_add(connector, mode);
4381 return 1;
4382 }
4383 }
4384
4385 return 0;
4386 }
4387
4388 static bool
4389 intel_dp_detect_audio(struct drm_connector *connector)
4390 {
4391 bool has_audio = false;
4392 struct edid *edid;
4393
4394 edid = to_intel_connector(connector)->detect_edid;
4395 if (edid)
4396 has_audio = drm_detect_monitor_audio(edid);
4397
4398 return has_audio;
4399 }
4400
4401 static int
4402 intel_dp_set_property(struct drm_connector *connector,
4403 struct drm_property *property,
4404 uint64_t val)
4405 {
4406 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4407 struct intel_connector *intel_connector = to_intel_connector(connector);
4408 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4409 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4410 int ret;
4411
4412 ret = drm_object_property_set_value(&connector->base, property, val);
4413 if (ret)
4414 return ret;
4415
4416 if (property == dev_priv->force_audio_property) {
4417 int i = val;
4418 bool has_audio;
4419
4420 if (i == intel_dp->force_audio)
4421 return 0;
4422
4423 intel_dp->force_audio = i;
4424
4425 if (i == HDMI_AUDIO_AUTO)
4426 has_audio = intel_dp_detect_audio(connector);
4427 else
4428 has_audio = (i == HDMI_AUDIO_ON);
4429
4430 if (has_audio == intel_dp->has_audio)
4431 return 0;
4432
4433 intel_dp->has_audio = has_audio;
4434 goto done;
4435 }
4436
4437 if (property == dev_priv->broadcast_rgb_property) {
4438 bool old_auto = intel_dp->color_range_auto;
4439 uint32_t old_range = intel_dp->color_range;
4440
4441 switch (val) {
4442 case INTEL_BROADCAST_RGB_AUTO:
4443 intel_dp->color_range_auto = true;
4444 break;
4445 case INTEL_BROADCAST_RGB_FULL:
4446 intel_dp->color_range_auto = false;
4447 intel_dp->color_range = 0;
4448 break;
4449 case INTEL_BROADCAST_RGB_LIMITED:
4450 intel_dp->color_range_auto = false;
4451 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4452 break;
4453 default:
4454 return -EINVAL;
4455 }
4456
4457 if (old_auto == intel_dp->color_range_auto &&
4458 old_range == intel_dp->color_range)
4459 return 0;
4460
4461 goto done;
4462 }
4463
4464 if (is_edp(intel_dp) &&
4465 property == connector->dev->mode_config.scaling_mode_property) {
4466 if (val == DRM_MODE_SCALE_NONE) {
4467 DRM_DEBUG_KMS("no scaling not supported\n");
4468 return -EINVAL;
4469 }
4470
4471 if (intel_connector->panel.fitting_mode == val) {
4472 /* the eDP scaling property is not changed */
4473 return 0;
4474 }
4475 intel_connector->panel.fitting_mode = val;
4476
4477 goto done;
4478 }
4479
4480 return -EINVAL;
4481
4482 done:
4483 if (intel_encoder->base.crtc)
4484 intel_crtc_restore_mode(intel_encoder->base.crtc);
4485
4486 return 0;
4487 }
4488
4489 static void
4490 intel_dp_connector_destroy(struct drm_connector *connector)
4491 {
4492 struct intel_connector *intel_connector = to_intel_connector(connector);
4493
4494 kfree(intel_connector->detect_edid);
4495
4496 if (!IS_ERR_OR_NULL(intel_connector->edid))
4497 kfree(intel_connector->edid);
4498
4499 /* Can't call is_edp() since the encoder may have been destroyed
4500 * already. */
4501 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4502 intel_panel_fini(&intel_connector->panel);
4503
4504 drm_connector_cleanup(connector);
4505 kfree(connector);
4506 }
4507
4508 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4509 {
4510 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4511 struct intel_dp *intel_dp = &intel_dig_port->dp;
4512
4513 drm_dp_aux_unregister(&intel_dp->aux);
4514 intel_dp_mst_encoder_cleanup(intel_dig_port);
4515 drm_encoder_cleanup(encoder);
4516 if (is_edp(intel_dp)) {
4517 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4518 /*
4519 * vdd might still be enabled do to the delayed vdd off.
4520 * Make sure vdd is actually turned off here.
4521 */
4522 pps_lock(intel_dp);
4523 edp_panel_vdd_off_sync(intel_dp);
4524 pps_unlock(intel_dp);
4525
4526 if (intel_dp->edp_notifier.notifier_call) {
4527 unregister_reboot_notifier(&intel_dp->edp_notifier);
4528 intel_dp->edp_notifier.notifier_call = NULL;
4529 }
4530 }
4531 kfree(intel_dig_port);
4532 }
4533
4534 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4535 {
4536 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4537
4538 if (!is_edp(intel_dp))
4539 return;
4540
4541 /*
4542 * vdd might still be enabled do to the delayed vdd off.
4543 * Make sure vdd is actually turned off here.
4544 */
4545 pps_lock(intel_dp);
4546 edp_panel_vdd_off_sync(intel_dp);
4547 pps_unlock(intel_dp);
4548 }
4549
4550 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4551 {
4552 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4553 }
4554
4555 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4556 .dpms = intel_connector_dpms,
4557 .detect = intel_dp_detect,
4558 .force = intel_dp_force,
4559 .fill_modes = drm_helper_probe_single_connector_modes,
4560 .set_property = intel_dp_set_property,
4561 .destroy = intel_dp_connector_destroy,
4562 };
4563
4564 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4565 .get_modes = intel_dp_get_modes,
4566 .mode_valid = intel_dp_mode_valid,
4567 .best_encoder = intel_best_encoder,
4568 };
4569
4570 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4571 .reset = intel_dp_encoder_reset,
4572 .destroy = intel_dp_encoder_destroy,
4573 };
4574
4575 void
4576 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4577 {
4578 return;
4579 }
4580
4581 bool
4582 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4583 {
4584 struct intel_dp *intel_dp = &intel_dig_port->dp;
4585 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4586 struct drm_device *dev = intel_dig_port->base.base.dev;
4587 struct drm_i915_private *dev_priv = dev->dev_private;
4588 enum intel_display_power_domain power_domain;
4589 bool ret = true;
4590
4591 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4592 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4593
4594 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4595 port_name(intel_dig_port->port),
4596 long_hpd ? "long" : "short");
4597
4598 power_domain = intel_display_port_power_domain(intel_encoder);
4599 intel_display_power_get(dev_priv, power_domain);
4600
4601 if (long_hpd) {
4602
4603 if (HAS_PCH_SPLIT(dev)) {
4604 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4605 goto mst_fail;
4606 } else {
4607 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4608 goto mst_fail;
4609 }
4610
4611 if (!intel_dp_get_dpcd(intel_dp)) {
4612 goto mst_fail;
4613 }
4614
4615 intel_dp_probe_oui(intel_dp);
4616
4617 if (!intel_dp_probe_mst(intel_dp))
4618 goto mst_fail;
4619
4620 } else {
4621 if (intel_dp->is_mst) {
4622 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4623 goto mst_fail;
4624 }
4625
4626 if (!intel_dp->is_mst) {
4627 /*
4628 * we'll check the link status via the normal hot plug path later -
4629 * but for short hpds we should check it now
4630 */
4631 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4632 intel_dp_check_link_status(intel_dp);
4633 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4634 }
4635 }
4636 ret = false;
4637 goto put_power;
4638 mst_fail:
4639 /* if we were in MST mode, and device is not there get out of MST mode */
4640 if (intel_dp->is_mst) {
4641 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4642 intel_dp->is_mst = false;
4643 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4644 }
4645 put_power:
4646 intel_display_power_put(dev_priv, power_domain);
4647
4648 return ret;
4649 }
4650
4651 /* Return which DP Port should be selected for Transcoder DP control */
4652 int
4653 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4654 {
4655 struct drm_device *dev = crtc->dev;
4656 struct intel_encoder *intel_encoder;
4657 struct intel_dp *intel_dp;
4658
4659 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4660 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4661
4662 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4663 intel_encoder->type == INTEL_OUTPUT_EDP)
4664 return intel_dp->output_reg;
4665 }
4666
4667 return -1;
4668 }
4669
4670 /* check the VBT to see whether the eDP is on DP-D port */
4671 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4672 {
4673 struct drm_i915_private *dev_priv = dev->dev_private;
4674 union child_device_config *p_child;
4675 int i;
4676 static const short port_mapping[] = {
4677 [PORT_B] = PORT_IDPB,
4678 [PORT_C] = PORT_IDPC,
4679 [PORT_D] = PORT_IDPD,
4680 };
4681
4682 if (port == PORT_A)
4683 return true;
4684
4685 if (!dev_priv->vbt.child_dev_num)
4686 return false;
4687
4688 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4689 p_child = dev_priv->vbt.child_dev + i;
4690
4691 if (p_child->common.dvo_port == port_mapping[port] &&
4692 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4693 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4694 return true;
4695 }
4696 return false;
4697 }
4698
4699 void
4700 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4701 {
4702 struct intel_connector *intel_connector = to_intel_connector(connector);
4703
4704 intel_attach_force_audio_property(connector);
4705 intel_attach_broadcast_rgb_property(connector);
4706 intel_dp->color_range_auto = true;
4707
4708 if (is_edp(intel_dp)) {
4709 drm_mode_create_scaling_mode_property(connector->dev);
4710 drm_object_attach_property(
4711 &connector->base,
4712 connector->dev->mode_config.scaling_mode_property,
4713 DRM_MODE_SCALE_ASPECT);
4714 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4715 }
4716 }
4717
4718 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4719 {
4720 intel_dp->last_power_cycle = jiffies;
4721 intel_dp->last_power_on = jiffies;
4722 intel_dp->last_backlight_off = jiffies;
4723 }
4724
4725 static void
4726 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4727 struct intel_dp *intel_dp)
4728 {
4729 struct drm_i915_private *dev_priv = dev->dev_private;
4730 struct edp_power_seq cur, vbt, spec,
4731 *final = &intel_dp->pps_delays;
4732 u32 pp_on, pp_off, pp_div, pp;
4733 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4734
4735 lockdep_assert_held(&dev_priv->pps_mutex);
4736
4737 /* already initialized? */
4738 if (final->t11_t12 != 0)
4739 return;
4740
4741 if (HAS_PCH_SPLIT(dev)) {
4742 pp_ctrl_reg = PCH_PP_CONTROL;
4743 pp_on_reg = PCH_PP_ON_DELAYS;
4744 pp_off_reg = PCH_PP_OFF_DELAYS;
4745 pp_div_reg = PCH_PP_DIVISOR;
4746 } else {
4747 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4748
4749 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4750 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4751 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4752 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4753 }
4754
4755 /* Workaround: Need to write PP_CONTROL with the unlock key as
4756 * the very first thing. */
4757 pp = ironlake_get_pp_control(intel_dp);
4758 I915_WRITE(pp_ctrl_reg, pp);
4759
4760 pp_on = I915_READ(pp_on_reg);
4761 pp_off = I915_READ(pp_off_reg);
4762 pp_div = I915_READ(pp_div_reg);
4763
4764 /* Pull timing values out of registers */
4765 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4766 PANEL_POWER_UP_DELAY_SHIFT;
4767
4768 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4769 PANEL_LIGHT_ON_DELAY_SHIFT;
4770
4771 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4772 PANEL_LIGHT_OFF_DELAY_SHIFT;
4773
4774 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4775 PANEL_POWER_DOWN_DELAY_SHIFT;
4776
4777 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4778 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4779
4780 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4781 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4782
4783 vbt = dev_priv->vbt.edp_pps;
4784
4785 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4786 * our hw here, which are all in 100usec. */
4787 spec.t1_t3 = 210 * 10;
4788 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4789 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4790 spec.t10 = 500 * 10;
4791 /* This one is special and actually in units of 100ms, but zero
4792 * based in the hw (so we need to add 100 ms). But the sw vbt
4793 * table multiplies it with 1000 to make it in units of 100usec,
4794 * too. */
4795 spec.t11_t12 = (510 + 100) * 10;
4796
4797 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4798 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4799
4800 /* Use the max of the register settings and vbt. If both are
4801 * unset, fall back to the spec limits. */
4802 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
4803 spec.field : \
4804 max(cur.field, vbt.field))
4805 assign_final(t1_t3);
4806 assign_final(t8);
4807 assign_final(t9);
4808 assign_final(t10);
4809 assign_final(t11_t12);
4810 #undef assign_final
4811
4812 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
4813 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4814 intel_dp->backlight_on_delay = get_delay(t8);
4815 intel_dp->backlight_off_delay = get_delay(t9);
4816 intel_dp->panel_power_down_delay = get_delay(t10);
4817 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4818 #undef get_delay
4819
4820 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4821 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4822 intel_dp->panel_power_cycle_delay);
4823
4824 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4825 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4826 }
4827
4828 static void
4829 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4830 struct intel_dp *intel_dp)
4831 {
4832 struct drm_i915_private *dev_priv = dev->dev_private;
4833 u32 pp_on, pp_off, pp_div, port_sel = 0;
4834 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4835 int pp_on_reg, pp_off_reg, pp_div_reg;
4836 enum port port = dp_to_dig_port(intel_dp)->port;
4837 const struct edp_power_seq *seq = &intel_dp->pps_delays;
4838
4839 lockdep_assert_held(&dev_priv->pps_mutex);
4840
4841 if (HAS_PCH_SPLIT(dev)) {
4842 pp_on_reg = PCH_PP_ON_DELAYS;
4843 pp_off_reg = PCH_PP_OFF_DELAYS;
4844 pp_div_reg = PCH_PP_DIVISOR;
4845 } else {
4846 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4847
4848 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4849 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4850 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4851 }
4852
4853 /*
4854 * And finally store the new values in the power sequencer. The
4855 * backlight delays are set to 1 because we do manual waits on them. For
4856 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4857 * we'll end up waiting for the backlight off delay twice: once when we
4858 * do the manual sleep, and once when we disable the panel and wait for
4859 * the PP_STATUS bit to become zero.
4860 */
4861 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4862 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4863 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4864 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4865 /* Compute the divisor for the pp clock, simply match the Bspec
4866 * formula. */
4867 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4868 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4869 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4870
4871 /* Haswell doesn't have any port selection bits for the panel
4872 * power sequencer any more. */
4873 if (IS_VALLEYVIEW(dev)) {
4874 port_sel = PANEL_PORT_SELECT_VLV(port);
4875 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4876 if (port == PORT_A)
4877 port_sel = PANEL_PORT_SELECT_DPA;
4878 else
4879 port_sel = PANEL_PORT_SELECT_DPD;
4880 }
4881
4882 pp_on |= port_sel;
4883
4884 I915_WRITE(pp_on_reg, pp_on);
4885 I915_WRITE(pp_off_reg, pp_off);
4886 I915_WRITE(pp_div_reg, pp_div);
4887
4888 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4889 I915_READ(pp_on_reg),
4890 I915_READ(pp_off_reg),
4891 I915_READ(pp_div_reg));
4892 }
4893
4894 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4895 {
4896 struct drm_i915_private *dev_priv = dev->dev_private;
4897 struct intel_encoder *encoder;
4898 struct intel_dp *intel_dp = NULL;
4899 struct intel_crtc_config *config = NULL;
4900 struct intel_crtc *intel_crtc = NULL;
4901 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4902 u32 reg, val;
4903 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4904
4905 if (refresh_rate <= 0) {
4906 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4907 return;
4908 }
4909
4910 if (intel_connector == NULL) {
4911 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4912 return;
4913 }
4914
4915 /*
4916 * FIXME: This needs proper synchronization with psr state. But really
4917 * hard to tell without seeing the user of this function of this code.
4918 * Check locking and ordering once that lands.
4919 */
4920 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4921 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4922 return;
4923 }
4924
4925 encoder = intel_attached_encoder(&intel_connector->base);
4926 intel_dp = enc_to_intel_dp(&encoder->base);
4927 intel_crtc = encoder->new_crtc;
4928
4929 if (!intel_crtc) {
4930 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4931 return;
4932 }
4933
4934 config = &intel_crtc->config;
4935
4936 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4937 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4938 return;
4939 }
4940
4941 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4942 index = DRRS_LOW_RR;
4943
4944 if (index == intel_dp->drrs_state.refresh_rate_type) {
4945 DRM_DEBUG_KMS(
4946 "DRRS requested for previously set RR...ignoring\n");
4947 return;
4948 }
4949
4950 if (!intel_crtc->active) {
4951 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4952 return;
4953 }
4954
4955 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4956 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4957 val = I915_READ(reg);
4958 if (index > DRRS_HIGH_RR) {
4959 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4960 intel_dp_set_m_n(intel_crtc);
4961 } else {
4962 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4963 }
4964 I915_WRITE(reg, val);
4965 }
4966
4967 /*
4968 * mutex taken to ensure that there is no race between differnt
4969 * drrs calls trying to update refresh rate. This scenario may occur
4970 * in future when idleness detection based DRRS in kernel and
4971 * possible calls from user space to set differnt RR are made.
4972 */
4973
4974 mutex_lock(&intel_dp->drrs_state.mutex);
4975
4976 intel_dp->drrs_state.refresh_rate_type = index;
4977
4978 mutex_unlock(&intel_dp->drrs_state.mutex);
4979
4980 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4981 }
4982
4983 static struct drm_display_mode *
4984 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4985 struct intel_connector *intel_connector,
4986 struct drm_display_mode *fixed_mode)
4987 {
4988 struct drm_connector *connector = &intel_connector->base;
4989 struct intel_dp *intel_dp = &intel_dig_port->dp;
4990 struct drm_device *dev = intel_dig_port->base.base.dev;
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992 struct drm_display_mode *downclock_mode = NULL;
4993
4994 if (INTEL_INFO(dev)->gen <= 6) {
4995 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4996 return NULL;
4997 }
4998
4999 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5000 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5001 return NULL;
5002 }
5003
5004 downclock_mode = intel_find_panel_downclock
5005 (dev, fixed_mode, connector);
5006
5007 if (!downclock_mode) {
5008 DRM_DEBUG_KMS("DRRS not supported\n");
5009 return NULL;
5010 }
5011
5012 dev_priv->drrs.connector = intel_connector;
5013
5014 mutex_init(&intel_dp->drrs_state.mutex);
5015
5016 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
5017
5018 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
5019 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5020 return downclock_mode;
5021 }
5022
5023 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
5024 {
5025 struct drm_device *dev = intel_encoder->base.dev;
5026 struct drm_i915_private *dev_priv = dev->dev_private;
5027 struct intel_dp *intel_dp;
5028 enum intel_display_power_domain power_domain;
5029
5030 if (intel_encoder->type != INTEL_OUTPUT_EDP)
5031 return;
5032
5033 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5034
5035 pps_lock(intel_dp);
5036
5037 if (!edp_have_panel_vdd(intel_dp))
5038 goto out;
5039 /*
5040 * The VDD bit needs a power domain reference, so if the bit is
5041 * already enabled when we boot or resume, grab this reference and
5042 * schedule a vdd off, so we don't hold on to the reference
5043 * indefinitely.
5044 */
5045 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5046 power_domain = intel_display_port_power_domain(intel_encoder);
5047 intel_display_power_get(dev_priv, power_domain);
5048
5049 edp_panel_vdd_schedule_off(intel_dp);
5050 out:
5051 pps_unlock(intel_dp);
5052 }
5053
5054 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5055 struct intel_connector *intel_connector)
5056 {
5057 struct drm_connector *connector = &intel_connector->base;
5058 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5059 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5060 struct drm_device *dev = intel_encoder->base.dev;
5061 struct drm_i915_private *dev_priv = dev->dev_private;
5062 struct drm_display_mode *fixed_mode = NULL;
5063 struct drm_display_mode *downclock_mode = NULL;
5064 bool has_dpcd;
5065 struct drm_display_mode *scan;
5066 struct edid *edid;
5067
5068 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
5069
5070 if (!is_edp(intel_dp))
5071 return true;
5072
5073 intel_edp_panel_vdd_sanitize(intel_encoder);
5074
5075 /* Cache DPCD and EDID for edp. */
5076 has_dpcd = intel_dp_get_dpcd(intel_dp);
5077
5078 if (has_dpcd) {
5079 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5080 dev_priv->no_aux_handshake =
5081 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5082 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5083 } else {
5084 /* if this fails, presume the device is a ghost */
5085 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5086 return false;
5087 }
5088
5089 /* We now know it's not a ghost, init power sequence regs. */
5090 pps_lock(intel_dp);
5091 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5092 pps_unlock(intel_dp);
5093
5094 mutex_lock(&dev->mode_config.mutex);
5095 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5096 if (edid) {
5097 if (drm_add_edid_modes(connector, edid)) {
5098 drm_mode_connector_update_edid_property(connector,
5099 edid);
5100 drm_edid_to_eld(connector, edid);
5101 } else {
5102 kfree(edid);
5103 edid = ERR_PTR(-EINVAL);
5104 }
5105 } else {
5106 edid = ERR_PTR(-ENOENT);
5107 }
5108 intel_connector->edid = edid;
5109
5110 /* prefer fixed mode from EDID if available */
5111 list_for_each_entry(scan, &connector->probed_modes, head) {
5112 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5113 fixed_mode = drm_mode_duplicate(dev, scan);
5114 downclock_mode = intel_dp_drrs_init(
5115 intel_dig_port,
5116 intel_connector, fixed_mode);
5117 break;
5118 }
5119 }
5120
5121 /* fallback to VBT if available for eDP */
5122 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5123 fixed_mode = drm_mode_duplicate(dev,
5124 dev_priv->vbt.lfp_lvds_vbt_mode);
5125 if (fixed_mode)
5126 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5127 }
5128 mutex_unlock(&dev->mode_config.mutex);
5129
5130 if (IS_VALLEYVIEW(dev)) {
5131 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5132 register_reboot_notifier(&intel_dp->edp_notifier);
5133 }
5134
5135 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5136 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5137 intel_panel_setup_backlight(connector);
5138
5139 return true;
5140 }
5141
5142 bool
5143 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5144 struct intel_connector *intel_connector)
5145 {
5146 struct drm_connector *connector = &intel_connector->base;
5147 struct intel_dp *intel_dp = &intel_dig_port->dp;
5148 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5149 struct drm_device *dev = intel_encoder->base.dev;
5150 struct drm_i915_private *dev_priv = dev->dev_private;
5151 enum port port = intel_dig_port->port;
5152 int type;
5153
5154 intel_dp->pps_pipe = INVALID_PIPE;
5155
5156 /* intel_dp vfuncs */
5157 if (INTEL_INFO(dev)->gen >= 9)
5158 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5159 else if (IS_VALLEYVIEW(dev))
5160 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5161 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5162 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5163 else if (HAS_PCH_SPLIT(dev))
5164 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5165 else
5166 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5167
5168 if (INTEL_INFO(dev)->gen >= 9)
5169 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5170 else
5171 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5172
5173 /* Preserve the current hw state. */
5174 intel_dp->DP = I915_READ(intel_dp->output_reg);
5175 intel_dp->attached_connector = intel_connector;
5176
5177 if (intel_dp_is_edp(dev, port))
5178 type = DRM_MODE_CONNECTOR_eDP;
5179 else
5180 type = DRM_MODE_CONNECTOR_DisplayPort;
5181
5182 /*
5183 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5184 * for DP the encoder type can be set by the caller to
5185 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5186 */
5187 if (type == DRM_MODE_CONNECTOR_eDP)
5188 intel_encoder->type = INTEL_OUTPUT_EDP;
5189
5190 /* eDP only on port B and/or C on vlv/chv */
5191 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5192 port != PORT_B && port != PORT_C))
5193 return false;
5194
5195 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5196 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5197 port_name(port));
5198
5199 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5200 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5201
5202 connector->interlace_allowed = true;
5203 connector->doublescan_allowed = 0;
5204
5205 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5206 edp_panel_vdd_work);
5207
5208 intel_connector_attach_encoder(intel_connector, intel_encoder);
5209 drm_connector_register(connector);
5210
5211 if (HAS_DDI(dev))
5212 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5213 else
5214 intel_connector->get_hw_state = intel_connector_get_hw_state;
5215 intel_connector->unregister = intel_dp_connector_unregister;
5216
5217 /* Set up the hotplug pin. */
5218 switch (port) {
5219 case PORT_A:
5220 intel_encoder->hpd_pin = HPD_PORT_A;
5221 break;
5222 case PORT_B:
5223 intel_encoder->hpd_pin = HPD_PORT_B;
5224 break;
5225 case PORT_C:
5226 intel_encoder->hpd_pin = HPD_PORT_C;
5227 break;
5228 case PORT_D:
5229 intel_encoder->hpd_pin = HPD_PORT_D;
5230 break;
5231 default:
5232 BUG();
5233 }
5234
5235 if (is_edp(intel_dp)) {
5236 pps_lock(intel_dp);
5237 if (IS_VALLEYVIEW(dev)) {
5238 vlv_initial_power_sequencer_setup(intel_dp);
5239 } else {
5240 intel_dp_init_panel_power_timestamps(intel_dp);
5241 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5242 }
5243 pps_unlock(intel_dp);
5244 }
5245
5246 intel_dp_aux_init(intel_dp, intel_connector);
5247
5248 /* init MST on ports that can support it */
5249 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5250 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5251 intel_dp_mst_encoder_init(intel_dig_port,
5252 intel_connector->base.base.id);
5253 }
5254 }
5255
5256 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5257 drm_dp_aux_unregister(&intel_dp->aux);
5258 if (is_edp(intel_dp)) {
5259 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5260 /*
5261 * vdd might still be enabled do to the delayed vdd off.
5262 * Make sure vdd is actually turned off here.
5263 */
5264 pps_lock(intel_dp);
5265 edp_panel_vdd_off_sync(intel_dp);
5266 pps_unlock(intel_dp);
5267 }
5268 drm_connector_unregister(connector);
5269 drm_connector_cleanup(connector);
5270 return false;
5271 }
5272
5273 intel_dp_add_properties(intel_dp, connector);
5274
5275 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5276 * 0xd. Failure to do so will result in spurious interrupts being
5277 * generated on the port when a cable is not attached.
5278 */
5279 if (IS_G4X(dev) && !IS_GM45(dev)) {
5280 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5281 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5282 }
5283
5284 return true;
5285 }
5286
5287 void
5288 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5289 {
5290 struct drm_i915_private *dev_priv = dev->dev_private;
5291 struct intel_digital_port *intel_dig_port;
5292 struct intel_encoder *intel_encoder;
5293 struct drm_encoder *encoder;
5294 struct intel_connector *intel_connector;
5295
5296 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5297 if (!intel_dig_port)
5298 return;
5299
5300 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5301 if (!intel_connector) {
5302 kfree(intel_dig_port);
5303 return;
5304 }
5305
5306 intel_encoder = &intel_dig_port->base;
5307 encoder = &intel_encoder->base;
5308
5309 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5310 DRM_MODE_ENCODER_TMDS);
5311
5312 intel_encoder->compute_config = intel_dp_compute_config;
5313 intel_encoder->disable = intel_disable_dp;
5314 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5315 intel_encoder->get_config = intel_dp_get_config;
5316 intel_encoder->suspend = intel_dp_encoder_suspend;
5317 if (IS_CHERRYVIEW(dev)) {
5318 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5319 intel_encoder->pre_enable = chv_pre_enable_dp;
5320 intel_encoder->enable = vlv_enable_dp;
5321 intel_encoder->post_disable = chv_post_disable_dp;
5322 } else if (IS_VALLEYVIEW(dev)) {
5323 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5324 intel_encoder->pre_enable = vlv_pre_enable_dp;
5325 intel_encoder->enable = vlv_enable_dp;
5326 intel_encoder->post_disable = vlv_post_disable_dp;
5327 } else {
5328 intel_encoder->pre_enable = g4x_pre_enable_dp;
5329 intel_encoder->enable = g4x_enable_dp;
5330 if (INTEL_INFO(dev)->gen >= 5)
5331 intel_encoder->post_disable = ilk_post_disable_dp;
5332 }
5333
5334 intel_dig_port->port = port;
5335 intel_dig_port->dp.output_reg = output_reg;
5336
5337 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5338 if (IS_CHERRYVIEW(dev)) {
5339 if (port == PORT_D)
5340 intel_encoder->crtc_mask = 1 << 2;
5341 else
5342 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5343 } else {
5344 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5345 }
5346 intel_encoder->cloneable = 0;
5347 intel_encoder->hot_plug = intel_dp_hot_plug;
5348
5349 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5350 dev_priv->hpd_irq_port[port] = intel_dig_port;
5351
5352 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5353 drm_encoder_cleanup(encoder);
5354 kfree(intel_dig_port);
5355 kfree(intel_connector);
5356 }
5357 }
5358
5359 void intel_dp_mst_suspend(struct drm_device *dev)
5360 {
5361 struct drm_i915_private *dev_priv = dev->dev_private;
5362 int i;
5363
5364 /* disable MST */
5365 for (i = 0; i < I915_MAX_PORTS; i++) {
5366 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5367 if (!intel_dig_port)
5368 continue;
5369
5370 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5371 if (!intel_dig_port->dp.can_mst)
5372 continue;
5373 if (intel_dig_port->dp.is_mst)
5374 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5375 }
5376 }
5377 }
5378
5379 void intel_dp_mst_resume(struct drm_device *dev)
5380 {
5381 struct drm_i915_private *dev_priv = dev->dev_private;
5382 int i;
5383
5384 for (i = 0; i < I915_MAX_PORTS; i++) {
5385 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5386 if (!intel_dig_port)
5387 continue;
5388 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5389 int ret;
5390
5391 if (!intel_dig_port->dp.can_mst)
5392 continue;
5393
5394 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5395 if (ret != 0) {
5396 intel_dp_check_mst_status(&intel_dig_port->dp);
5397 }
5398 }
5399 }
5400 }
This page took 0.13797 seconds and 6 git commands to generate.