drm/i915/dp: debug log whether backlight is being enabled or disabled
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 /* modeset should have pipe */
304 if (crtc)
305 return to_intel_crtc(crtc)->pipe;
306
307 /* init time, try to find a pipe with this port selected */
308 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310 PANEL_PORT_SELECT_MASK;
311 if (port_sel == PANEL_PORT_SELECT_VLV(port))
312 return pipe;
313 }
314
315 /* shrug */
316 return PIPE_A;
317 }
318
319 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
320 {
321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
322
323 if (HAS_PCH_SPLIT(dev))
324 return PCH_PP_CONTROL;
325 else
326 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
327 }
328
329 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
330 {
331 struct drm_device *dev = intel_dp_to_dev(intel_dp);
332
333 if (HAS_PCH_SPLIT(dev))
334 return PCH_PP_STATUS;
335 else
336 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
337 }
338
339 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
340 This function only applicable when panel PM state is not to be tracked */
341 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
342 void *unused)
343 {
344 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
345 edp_notifier);
346 struct drm_device *dev = intel_dp_to_dev(intel_dp);
347 struct drm_i915_private *dev_priv = dev->dev_private;
348 u32 pp_div;
349 u32 pp_ctrl_reg, pp_div_reg;
350 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
351
352 if (!is_edp(intel_dp) || code != SYS_RESTART)
353 return 0;
354
355 if (IS_VALLEYVIEW(dev)) {
356 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
357 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
358 pp_div = I915_READ(pp_div_reg);
359 pp_div &= PP_REFERENCE_DIVIDER_MASK;
360
361 /* 0x1F write to PP_DIV_REG sets max cycle delay */
362 I915_WRITE(pp_div_reg, pp_div | 0x1F);
363 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
364 msleep(intel_dp->panel_power_cycle_delay);
365 }
366
367 return 0;
368 }
369
370 static bool edp_have_panel_power(struct intel_dp *intel_dp)
371 {
372 struct drm_device *dev = intel_dp_to_dev(intel_dp);
373 struct drm_i915_private *dev_priv = dev->dev_private;
374
375 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
376 }
377
378 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
379 {
380 struct drm_device *dev = intel_dp_to_dev(intel_dp);
381 struct drm_i915_private *dev_priv = dev->dev_private;
382 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
383 struct intel_encoder *intel_encoder = &intel_dig_port->base;
384 enum intel_display_power_domain power_domain;
385
386 power_domain = intel_display_port_power_domain(intel_encoder);
387 return intel_display_power_enabled(dev_priv, power_domain) &&
388 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
389 }
390
391 static void
392 intel_dp_check_edp(struct intel_dp *intel_dp)
393 {
394 struct drm_device *dev = intel_dp_to_dev(intel_dp);
395 struct drm_i915_private *dev_priv = dev->dev_private;
396
397 if (!is_edp(intel_dp))
398 return;
399
400 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
401 WARN(1, "eDP powered off while attempting aux channel communication.\n");
402 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
403 I915_READ(_pp_stat_reg(intel_dp)),
404 I915_READ(_pp_ctrl_reg(intel_dp)));
405 }
406 }
407
408 static uint32_t
409 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
410 {
411 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
412 struct drm_device *dev = intel_dig_port->base.base.dev;
413 struct drm_i915_private *dev_priv = dev->dev_private;
414 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
415 uint32_t status;
416 bool done;
417
418 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
419 if (has_aux_irq)
420 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
421 msecs_to_jiffies_timeout(10));
422 else
423 done = wait_for_atomic(C, 10) == 0;
424 if (!done)
425 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
426 has_aux_irq);
427 #undef C
428
429 return status;
430 }
431
432 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
433 {
434 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
435 struct drm_device *dev = intel_dig_port->base.base.dev;
436
437 /*
438 * The clock divider is based off the hrawclk, and would like to run at
439 * 2MHz. So, take the hrawclk value and divide by 2 and use that
440 */
441 return index ? 0 : intel_hrawclk(dev) / 2;
442 }
443
444 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
445 {
446 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
447 struct drm_device *dev = intel_dig_port->base.base.dev;
448
449 if (index)
450 return 0;
451
452 if (intel_dig_port->port == PORT_A) {
453 if (IS_GEN6(dev) || IS_GEN7(dev))
454 return 200; /* SNB & IVB eDP input clock at 400Mhz */
455 else
456 return 225; /* eDP input clock at 450Mhz */
457 } else {
458 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
459 }
460 }
461
462 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
463 {
464 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
465 struct drm_device *dev = intel_dig_port->base.base.dev;
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 if (intel_dig_port->port == PORT_A) {
469 if (index)
470 return 0;
471 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
472 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
473 /* Workaround for non-ULT HSW */
474 switch (index) {
475 case 0: return 63;
476 case 1: return 72;
477 default: return 0;
478 }
479 } else {
480 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
481 }
482 }
483
484 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
485 {
486 return index ? 0 : 100;
487 }
488
489 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
490 bool has_aux_irq,
491 int send_bytes,
492 uint32_t aux_clock_divider)
493 {
494 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
495 struct drm_device *dev = intel_dig_port->base.base.dev;
496 uint32_t precharge, timeout;
497
498 if (IS_GEN6(dev))
499 precharge = 3;
500 else
501 precharge = 5;
502
503 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
504 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
505 else
506 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
507
508 return DP_AUX_CH_CTL_SEND_BUSY |
509 DP_AUX_CH_CTL_DONE |
510 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
511 DP_AUX_CH_CTL_TIME_OUT_ERROR |
512 timeout |
513 DP_AUX_CH_CTL_RECEIVE_ERROR |
514 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
515 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
516 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
517 }
518
519 static int
520 intel_dp_aux_ch(struct intel_dp *intel_dp,
521 uint8_t *send, int send_bytes,
522 uint8_t *recv, int recv_size)
523 {
524 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
525 struct drm_device *dev = intel_dig_port->base.base.dev;
526 struct drm_i915_private *dev_priv = dev->dev_private;
527 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
528 uint32_t ch_data = ch_ctl + 4;
529 uint32_t aux_clock_divider;
530 int i, ret, recv_bytes;
531 uint32_t status;
532 int try, clock = 0;
533 bool has_aux_irq = HAS_AUX_IRQ(dev);
534 bool vdd;
535
536 /*
537 * We will be called with VDD already enabled for dpcd/edid/oui reads.
538 * In such cases we want to leave VDD enabled and it's up to upper layers
539 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
540 * ourselves.
541 */
542 vdd = edp_panel_vdd_on(intel_dp);
543
544 /* dp aux is extremely sensitive to irq latency, hence request the
545 * lowest possible wakeup latency and so prevent the cpu from going into
546 * deep sleep states.
547 */
548 pm_qos_update_request(&dev_priv->pm_qos, 0);
549
550 intel_dp_check_edp(intel_dp);
551
552 intel_aux_display_runtime_get(dev_priv);
553
554 /* Try to wait for any previous AUX channel activity */
555 for (try = 0; try < 3; try++) {
556 status = I915_READ_NOTRACE(ch_ctl);
557 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
558 break;
559 msleep(1);
560 }
561
562 if (try == 3) {
563 WARN(1, "dp_aux_ch not started status 0x%08x\n",
564 I915_READ(ch_ctl));
565 ret = -EBUSY;
566 goto out;
567 }
568
569 /* Only 5 data registers! */
570 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
571 ret = -E2BIG;
572 goto out;
573 }
574
575 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
576 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
577 has_aux_irq,
578 send_bytes,
579 aux_clock_divider);
580
581 /* Must try at least 3 times according to DP spec */
582 for (try = 0; try < 5; try++) {
583 /* Load the send data into the aux channel data registers */
584 for (i = 0; i < send_bytes; i += 4)
585 I915_WRITE(ch_data + i,
586 pack_aux(send + i, send_bytes - i));
587
588 /* Send the command and wait for it to complete */
589 I915_WRITE(ch_ctl, send_ctl);
590
591 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
592
593 /* Clear done status and any errors */
594 I915_WRITE(ch_ctl,
595 status |
596 DP_AUX_CH_CTL_DONE |
597 DP_AUX_CH_CTL_TIME_OUT_ERROR |
598 DP_AUX_CH_CTL_RECEIVE_ERROR);
599
600 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
601 DP_AUX_CH_CTL_RECEIVE_ERROR))
602 continue;
603 if (status & DP_AUX_CH_CTL_DONE)
604 break;
605 }
606 if (status & DP_AUX_CH_CTL_DONE)
607 break;
608 }
609
610 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
611 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
612 ret = -EBUSY;
613 goto out;
614 }
615
616 /* Check for timeout or receive error.
617 * Timeouts occur when the sink is not connected
618 */
619 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
620 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
621 ret = -EIO;
622 goto out;
623 }
624
625 /* Timeouts occur when the device isn't connected, so they're
626 * "normal" -- don't fill the kernel log with these */
627 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
628 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
629 ret = -ETIMEDOUT;
630 goto out;
631 }
632
633 /* Unload any bytes sent back from the other side */
634 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
635 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
636 if (recv_bytes > recv_size)
637 recv_bytes = recv_size;
638
639 for (i = 0; i < recv_bytes; i += 4)
640 unpack_aux(I915_READ(ch_data + i),
641 recv + i, recv_bytes - i);
642
643 ret = recv_bytes;
644 out:
645 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
646 intel_aux_display_runtime_put(dev_priv);
647
648 if (vdd)
649 edp_panel_vdd_off(intel_dp, false);
650
651 return ret;
652 }
653
654 #define BARE_ADDRESS_SIZE 3
655 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
656 static ssize_t
657 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
658 {
659 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
660 uint8_t txbuf[20], rxbuf[20];
661 size_t txsize, rxsize;
662 int ret;
663
664 txbuf[0] = msg->request << 4;
665 txbuf[1] = msg->address >> 8;
666 txbuf[2] = msg->address & 0xff;
667 txbuf[3] = msg->size - 1;
668
669 switch (msg->request & ~DP_AUX_I2C_MOT) {
670 case DP_AUX_NATIVE_WRITE:
671 case DP_AUX_I2C_WRITE:
672 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
673 rxsize = 1;
674
675 if (WARN_ON(txsize > 20))
676 return -E2BIG;
677
678 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
679
680 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
681 if (ret > 0) {
682 msg->reply = rxbuf[0] >> 4;
683
684 /* Return payload size. */
685 ret = msg->size;
686 }
687 break;
688
689 case DP_AUX_NATIVE_READ:
690 case DP_AUX_I2C_READ:
691 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
692 rxsize = msg->size + 1;
693
694 if (WARN_ON(rxsize > 20))
695 return -E2BIG;
696
697 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
698 if (ret > 0) {
699 msg->reply = rxbuf[0] >> 4;
700 /*
701 * Assume happy day, and copy the data. The caller is
702 * expected to check msg->reply before touching it.
703 *
704 * Return payload size.
705 */
706 ret--;
707 memcpy(msg->buffer, rxbuf + 1, ret);
708 }
709 break;
710
711 default:
712 ret = -EINVAL;
713 break;
714 }
715
716 return ret;
717 }
718
719 static void
720 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
721 {
722 struct drm_device *dev = intel_dp_to_dev(intel_dp);
723 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
724 enum port port = intel_dig_port->port;
725 const char *name = NULL;
726 int ret;
727
728 switch (port) {
729 case PORT_A:
730 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
731 name = "DPDDC-A";
732 break;
733 case PORT_B:
734 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
735 name = "DPDDC-B";
736 break;
737 case PORT_C:
738 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
739 name = "DPDDC-C";
740 break;
741 case PORT_D:
742 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
743 name = "DPDDC-D";
744 break;
745 default:
746 BUG();
747 }
748
749 if (!HAS_DDI(dev))
750 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
751
752 intel_dp->aux.name = name;
753 intel_dp->aux.dev = dev->dev;
754 intel_dp->aux.transfer = intel_dp_aux_transfer;
755
756 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
757 connector->base.kdev->kobj.name);
758
759 ret = drm_dp_aux_register(&intel_dp->aux);
760 if (ret < 0) {
761 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
762 name, ret);
763 return;
764 }
765
766 ret = sysfs_create_link(&connector->base.kdev->kobj,
767 &intel_dp->aux.ddc.dev.kobj,
768 intel_dp->aux.ddc.dev.kobj.name);
769 if (ret < 0) {
770 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
771 drm_dp_aux_unregister(&intel_dp->aux);
772 }
773 }
774
775 static void
776 intel_dp_connector_unregister(struct intel_connector *intel_connector)
777 {
778 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
779
780 if (!intel_connector->mst_port)
781 sysfs_remove_link(&intel_connector->base.kdev->kobj,
782 intel_dp->aux.ddc.dev.kobj.name);
783 intel_connector_unregister(intel_connector);
784 }
785
786 static void
787 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
788 {
789 switch (link_bw) {
790 case DP_LINK_BW_1_62:
791 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
792 break;
793 case DP_LINK_BW_2_7:
794 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
795 break;
796 case DP_LINK_BW_5_4:
797 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
798 break;
799 }
800 }
801
802 static void
803 intel_dp_set_clock(struct intel_encoder *encoder,
804 struct intel_crtc_config *pipe_config, int link_bw)
805 {
806 struct drm_device *dev = encoder->base.dev;
807 const struct dp_link_dpll *divisor = NULL;
808 int i, count = 0;
809
810 if (IS_G4X(dev)) {
811 divisor = gen4_dpll;
812 count = ARRAY_SIZE(gen4_dpll);
813 } else if (HAS_PCH_SPLIT(dev)) {
814 divisor = pch_dpll;
815 count = ARRAY_SIZE(pch_dpll);
816 } else if (IS_CHERRYVIEW(dev)) {
817 divisor = chv_dpll;
818 count = ARRAY_SIZE(chv_dpll);
819 } else if (IS_VALLEYVIEW(dev)) {
820 divisor = vlv_dpll;
821 count = ARRAY_SIZE(vlv_dpll);
822 }
823
824 if (divisor && count) {
825 for (i = 0; i < count; i++) {
826 if (link_bw == divisor[i].link_bw) {
827 pipe_config->dpll = divisor[i].dpll;
828 pipe_config->clock_set = true;
829 break;
830 }
831 }
832 }
833 }
834
835 bool
836 intel_dp_compute_config(struct intel_encoder *encoder,
837 struct intel_crtc_config *pipe_config)
838 {
839 struct drm_device *dev = encoder->base.dev;
840 struct drm_i915_private *dev_priv = dev->dev_private;
841 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
842 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
843 enum port port = dp_to_dig_port(intel_dp)->port;
844 struct intel_crtc *intel_crtc = encoder->new_crtc;
845 struct intel_connector *intel_connector = intel_dp->attached_connector;
846 int lane_count, clock;
847 int min_lane_count = 1;
848 int max_lane_count = intel_dp_max_lane_count(intel_dp);
849 /* Conveniently, the link BW constants become indices with a shift...*/
850 int min_clock = 0;
851 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
852 int bpp, mode_rate;
853 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
854 int link_avail, link_clock;
855
856 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
857 pipe_config->has_pch_encoder = true;
858
859 pipe_config->has_dp_encoder = true;
860 pipe_config->has_drrs = false;
861 pipe_config->has_audio = intel_dp->has_audio;
862
863 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
864 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
865 adjusted_mode);
866 if (!HAS_PCH_SPLIT(dev))
867 intel_gmch_panel_fitting(intel_crtc, pipe_config,
868 intel_connector->panel.fitting_mode);
869 else
870 intel_pch_panel_fitting(intel_crtc, pipe_config,
871 intel_connector->panel.fitting_mode);
872 }
873
874 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
875 return false;
876
877 DRM_DEBUG_KMS("DP link computation with max lane count %i "
878 "max bw %02x pixel clock %iKHz\n",
879 max_lane_count, bws[max_clock],
880 adjusted_mode->crtc_clock);
881
882 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
883 * bpc in between. */
884 bpp = pipe_config->pipe_bpp;
885 if (is_edp(intel_dp)) {
886 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
887 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
888 dev_priv->vbt.edp_bpp);
889 bpp = dev_priv->vbt.edp_bpp;
890 }
891
892 if (IS_BROADWELL(dev)) {
893 /* Yes, it's an ugly hack. */
894 min_lane_count = max_lane_count;
895 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
896 min_lane_count);
897 } else if (dev_priv->vbt.edp_lanes) {
898 min_lane_count = min(dev_priv->vbt.edp_lanes,
899 max_lane_count);
900 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
901 min_lane_count);
902 }
903
904 if (dev_priv->vbt.edp_rate) {
905 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
906 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
907 bws[min_clock]);
908 }
909 }
910
911 for (; bpp >= 6*3; bpp -= 2*3) {
912 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
913 bpp);
914
915 for (clock = min_clock; clock <= max_clock; clock++) {
916 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
917 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
918 link_avail = intel_dp_max_data_rate(link_clock,
919 lane_count);
920
921 if (mode_rate <= link_avail) {
922 goto found;
923 }
924 }
925 }
926 }
927
928 return false;
929
930 found:
931 if (intel_dp->color_range_auto) {
932 /*
933 * See:
934 * CEA-861-E - 5.1 Default Encoding Parameters
935 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
936 */
937 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
938 intel_dp->color_range = DP_COLOR_RANGE_16_235;
939 else
940 intel_dp->color_range = 0;
941 }
942
943 if (intel_dp->color_range)
944 pipe_config->limited_color_range = true;
945
946 intel_dp->link_bw = bws[clock];
947 intel_dp->lane_count = lane_count;
948 pipe_config->pipe_bpp = bpp;
949 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
950
951 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
952 intel_dp->link_bw, intel_dp->lane_count,
953 pipe_config->port_clock, bpp);
954 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
955 mode_rate, link_avail);
956
957 intel_link_compute_m_n(bpp, lane_count,
958 adjusted_mode->crtc_clock,
959 pipe_config->port_clock,
960 &pipe_config->dp_m_n);
961
962 if (intel_connector->panel.downclock_mode != NULL &&
963 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
964 pipe_config->has_drrs = true;
965 intel_link_compute_m_n(bpp, lane_count,
966 intel_connector->panel.downclock_mode->clock,
967 pipe_config->port_clock,
968 &pipe_config->dp_m2_n2);
969 }
970
971 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
972 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
973 else
974 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
975
976 return true;
977 }
978
979 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
980 {
981 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
982 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
983 struct drm_device *dev = crtc->base.dev;
984 struct drm_i915_private *dev_priv = dev->dev_private;
985 u32 dpa_ctl;
986
987 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
988 dpa_ctl = I915_READ(DP_A);
989 dpa_ctl &= ~DP_PLL_FREQ_MASK;
990
991 if (crtc->config.port_clock == 162000) {
992 /* For a long time we've carried around a ILK-DevA w/a for the
993 * 160MHz clock. If we're really unlucky, it's still required.
994 */
995 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
996 dpa_ctl |= DP_PLL_FREQ_160MHZ;
997 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
998 } else {
999 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1000 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1001 }
1002
1003 I915_WRITE(DP_A, dpa_ctl);
1004
1005 POSTING_READ(DP_A);
1006 udelay(500);
1007 }
1008
1009 static void intel_dp_prepare(struct intel_encoder *encoder)
1010 {
1011 struct drm_device *dev = encoder->base.dev;
1012 struct drm_i915_private *dev_priv = dev->dev_private;
1013 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1014 enum port port = dp_to_dig_port(intel_dp)->port;
1015 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1016 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1017
1018 /*
1019 * There are four kinds of DP registers:
1020 *
1021 * IBX PCH
1022 * SNB CPU
1023 * IVB CPU
1024 * CPT PCH
1025 *
1026 * IBX PCH and CPU are the same for almost everything,
1027 * except that the CPU DP PLL is configured in this
1028 * register
1029 *
1030 * CPT PCH is quite different, having many bits moved
1031 * to the TRANS_DP_CTL register instead. That
1032 * configuration happens (oddly) in ironlake_pch_enable
1033 */
1034
1035 /* Preserve the BIOS-computed detected bit. This is
1036 * supposed to be read-only.
1037 */
1038 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1039
1040 /* Handle DP bits in common between all three register formats */
1041 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1042 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1043
1044 if (crtc->config.has_audio) {
1045 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1046 pipe_name(crtc->pipe));
1047 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1048 intel_write_eld(&encoder->base, adjusted_mode);
1049 }
1050
1051 /* Split out the IBX/CPU vs CPT settings */
1052
1053 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1054 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1055 intel_dp->DP |= DP_SYNC_HS_HIGH;
1056 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1057 intel_dp->DP |= DP_SYNC_VS_HIGH;
1058 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059
1060 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1061 intel_dp->DP |= DP_ENHANCED_FRAMING;
1062
1063 intel_dp->DP |= crtc->pipe << 29;
1064 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1065 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1066 intel_dp->DP |= intel_dp->color_range;
1067
1068 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1069 intel_dp->DP |= DP_SYNC_HS_HIGH;
1070 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1071 intel_dp->DP |= DP_SYNC_VS_HIGH;
1072 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1073
1074 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1075 intel_dp->DP |= DP_ENHANCED_FRAMING;
1076
1077 if (!IS_CHERRYVIEW(dev)) {
1078 if (crtc->pipe == 1)
1079 intel_dp->DP |= DP_PIPEB_SELECT;
1080 } else {
1081 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1082 }
1083 } else {
1084 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1085 }
1086 }
1087
1088 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1089 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1090
1091 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1092 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1093
1094 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1095 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1096
1097 static void wait_panel_status(struct intel_dp *intel_dp,
1098 u32 mask,
1099 u32 value)
1100 {
1101 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1102 struct drm_i915_private *dev_priv = dev->dev_private;
1103 u32 pp_stat_reg, pp_ctrl_reg;
1104
1105 pp_stat_reg = _pp_stat_reg(intel_dp);
1106 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1107
1108 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1109 mask, value,
1110 I915_READ(pp_stat_reg),
1111 I915_READ(pp_ctrl_reg));
1112
1113 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1114 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1115 I915_READ(pp_stat_reg),
1116 I915_READ(pp_ctrl_reg));
1117 }
1118
1119 DRM_DEBUG_KMS("Wait complete\n");
1120 }
1121
1122 static void wait_panel_on(struct intel_dp *intel_dp)
1123 {
1124 DRM_DEBUG_KMS("Wait for panel power on\n");
1125 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1126 }
1127
1128 static void wait_panel_off(struct intel_dp *intel_dp)
1129 {
1130 DRM_DEBUG_KMS("Wait for panel power off time\n");
1131 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1132 }
1133
1134 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1135 {
1136 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1137
1138 /* When we disable the VDD override bit last we have to do the manual
1139 * wait. */
1140 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1141 intel_dp->panel_power_cycle_delay);
1142
1143 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1144 }
1145
1146 static void wait_backlight_on(struct intel_dp *intel_dp)
1147 {
1148 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1149 intel_dp->backlight_on_delay);
1150 }
1151
1152 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1153 {
1154 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1155 intel_dp->backlight_off_delay);
1156 }
1157
1158 /* Read the current pp_control value, unlocking the register if it
1159 * is locked
1160 */
1161
1162 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1163 {
1164 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 u32 control;
1167
1168 control = I915_READ(_pp_ctrl_reg(intel_dp));
1169 control &= ~PANEL_UNLOCK_MASK;
1170 control |= PANEL_UNLOCK_REGS;
1171 return control;
1172 }
1173
1174 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1175 {
1176 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1177 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1178 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1179 struct drm_i915_private *dev_priv = dev->dev_private;
1180 enum intel_display_power_domain power_domain;
1181 u32 pp;
1182 u32 pp_stat_reg, pp_ctrl_reg;
1183 bool need_to_disable = !intel_dp->want_panel_vdd;
1184
1185 if (!is_edp(intel_dp))
1186 return false;
1187
1188 intel_dp->want_panel_vdd = true;
1189
1190 if (edp_have_panel_vdd(intel_dp))
1191 return need_to_disable;
1192
1193 power_domain = intel_display_port_power_domain(intel_encoder);
1194 intel_display_power_get(dev_priv, power_domain);
1195
1196 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1197
1198 if (!edp_have_panel_power(intel_dp))
1199 wait_panel_power_cycle(intel_dp);
1200
1201 pp = ironlake_get_pp_control(intel_dp);
1202 pp |= EDP_FORCE_VDD;
1203
1204 pp_stat_reg = _pp_stat_reg(intel_dp);
1205 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1206
1207 I915_WRITE(pp_ctrl_reg, pp);
1208 POSTING_READ(pp_ctrl_reg);
1209 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1210 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1211 /*
1212 * If the panel wasn't on, delay before accessing aux channel
1213 */
1214 if (!edp_have_panel_power(intel_dp)) {
1215 DRM_DEBUG_KMS("eDP was not running\n");
1216 msleep(intel_dp->panel_power_up_delay);
1217 }
1218
1219 return need_to_disable;
1220 }
1221
1222 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1223 {
1224 bool vdd;
1225
1226 if (!is_edp(intel_dp))
1227 return;
1228
1229 vdd = edp_panel_vdd_on(intel_dp);
1230
1231 WARN(!vdd, "eDP VDD already requested on\n");
1232 }
1233
1234 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1235 {
1236 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1237 struct drm_i915_private *dev_priv = dev->dev_private;
1238 struct intel_digital_port *intel_dig_port =
1239 dp_to_dig_port(intel_dp);
1240 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1241 enum intel_display_power_domain power_domain;
1242 u32 pp;
1243 u32 pp_stat_reg, pp_ctrl_reg;
1244
1245 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1246
1247 WARN_ON(intel_dp->want_panel_vdd);
1248
1249 if (!edp_have_panel_vdd(intel_dp))
1250 return;
1251
1252 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1253
1254 pp = ironlake_get_pp_control(intel_dp);
1255 pp &= ~EDP_FORCE_VDD;
1256
1257 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1258 pp_stat_reg = _pp_stat_reg(intel_dp);
1259
1260 I915_WRITE(pp_ctrl_reg, pp);
1261 POSTING_READ(pp_ctrl_reg);
1262
1263 /* Make sure sequencer is idle before allowing subsequent activity */
1264 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1265 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1266
1267 if ((pp & POWER_TARGET_ON) == 0)
1268 intel_dp->last_power_cycle = jiffies;
1269
1270 power_domain = intel_display_port_power_domain(intel_encoder);
1271 intel_display_power_put(dev_priv, power_domain);
1272 }
1273
1274 static void edp_panel_vdd_work(struct work_struct *__work)
1275 {
1276 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1277 struct intel_dp, panel_vdd_work);
1278 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279
1280 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1281 if (!intel_dp->want_panel_vdd)
1282 edp_panel_vdd_off_sync(intel_dp);
1283 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1284 }
1285
1286 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1287 {
1288 unsigned long delay;
1289
1290 /*
1291 * Queue the timer to fire a long time from now (relative to the power
1292 * down delay) to keep the panel power up across a sequence of
1293 * operations.
1294 */
1295 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1296 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1297 }
1298
1299 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1300 {
1301 if (!is_edp(intel_dp))
1302 return;
1303
1304 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1305
1306 intel_dp->want_panel_vdd = false;
1307
1308 if (sync)
1309 edp_panel_vdd_off_sync(intel_dp);
1310 else
1311 edp_panel_vdd_schedule_off(intel_dp);
1312 }
1313
1314 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1315 {
1316 edp_panel_vdd_off(intel_dp, sync);
1317 }
1318
1319 void intel_edp_panel_on(struct intel_dp *intel_dp)
1320 {
1321 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 u32 pp;
1324 u32 pp_ctrl_reg;
1325
1326 if (!is_edp(intel_dp))
1327 return;
1328
1329 DRM_DEBUG_KMS("Turn eDP power on\n");
1330
1331 if (edp_have_panel_power(intel_dp)) {
1332 DRM_DEBUG_KMS("eDP power already on\n");
1333 return;
1334 }
1335
1336 wait_panel_power_cycle(intel_dp);
1337
1338 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1339 pp = ironlake_get_pp_control(intel_dp);
1340 if (IS_GEN5(dev)) {
1341 /* ILK workaround: disable reset around power sequence */
1342 pp &= ~PANEL_POWER_RESET;
1343 I915_WRITE(pp_ctrl_reg, pp);
1344 POSTING_READ(pp_ctrl_reg);
1345 }
1346
1347 pp |= POWER_TARGET_ON;
1348 if (!IS_GEN5(dev))
1349 pp |= PANEL_POWER_RESET;
1350
1351 I915_WRITE(pp_ctrl_reg, pp);
1352 POSTING_READ(pp_ctrl_reg);
1353
1354 wait_panel_on(intel_dp);
1355 intel_dp->last_power_on = jiffies;
1356
1357 if (IS_GEN5(dev)) {
1358 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1359 I915_WRITE(pp_ctrl_reg, pp);
1360 POSTING_READ(pp_ctrl_reg);
1361 }
1362 }
1363
1364 void intel_edp_panel_off(struct intel_dp *intel_dp)
1365 {
1366 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1367 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1368 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1369 struct drm_i915_private *dev_priv = dev->dev_private;
1370 enum intel_display_power_domain power_domain;
1371 u32 pp;
1372 u32 pp_ctrl_reg;
1373
1374 if (!is_edp(intel_dp))
1375 return;
1376
1377 DRM_DEBUG_KMS("Turn eDP power off\n");
1378
1379 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1380
1381 pp = ironlake_get_pp_control(intel_dp);
1382 /* We need to switch off panel power _and_ force vdd, for otherwise some
1383 * panels get very unhappy and cease to work. */
1384 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1385 EDP_BLC_ENABLE);
1386
1387 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389 intel_dp->want_panel_vdd = false;
1390
1391 I915_WRITE(pp_ctrl_reg, pp);
1392 POSTING_READ(pp_ctrl_reg);
1393
1394 intel_dp->last_power_cycle = jiffies;
1395 wait_panel_off(intel_dp);
1396
1397 /* We got a reference when we enabled the VDD. */
1398 power_domain = intel_display_port_power_domain(intel_encoder);
1399 intel_display_power_put(dev_priv, power_domain);
1400 }
1401
1402 /* Enable backlight in the panel power control. */
1403 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1404 {
1405 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1406 struct drm_device *dev = intel_dig_port->base.base.dev;
1407 struct drm_i915_private *dev_priv = dev->dev_private;
1408 u32 pp;
1409 u32 pp_ctrl_reg;
1410
1411 /*
1412 * If we enable the backlight right away following a panel power
1413 * on, we may see slight flicker as the panel syncs with the eDP
1414 * link. So delay a bit to make sure the image is solid before
1415 * allowing it to appear.
1416 */
1417 wait_backlight_on(intel_dp);
1418 pp = ironlake_get_pp_control(intel_dp);
1419 pp |= EDP_BLC_ENABLE;
1420
1421 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1422
1423 I915_WRITE(pp_ctrl_reg, pp);
1424 POSTING_READ(pp_ctrl_reg);
1425 }
1426
1427 /* Enable backlight PWM and backlight PP control. */
1428 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1429 {
1430 if (!is_edp(intel_dp))
1431 return;
1432
1433 DRM_DEBUG_KMS("\n");
1434
1435 intel_panel_enable_backlight(intel_dp->attached_connector);
1436 _intel_edp_backlight_on(intel_dp);
1437 }
1438
1439 /* Disable backlight in the panel power control. */
1440 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1441 {
1442 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444 u32 pp;
1445 u32 pp_ctrl_reg;
1446
1447 pp = ironlake_get_pp_control(intel_dp);
1448 pp &= ~EDP_BLC_ENABLE;
1449
1450 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1451
1452 I915_WRITE(pp_ctrl_reg, pp);
1453 POSTING_READ(pp_ctrl_reg);
1454 intel_dp->last_backlight_off = jiffies;
1455
1456 edp_wait_backlight_off(intel_dp);
1457 }
1458
1459 /* Disable backlight PP control and backlight PWM. */
1460 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1461 {
1462 if (!is_edp(intel_dp))
1463 return;
1464
1465 DRM_DEBUG_KMS("\n");
1466
1467 _intel_edp_backlight_off(intel_dp);
1468 intel_panel_disable_backlight(intel_dp->attached_connector);
1469 }
1470
1471 /*
1472 * Hook for controlling the panel power control backlight through the bl_power
1473 * sysfs attribute. Take care to handle multiple calls.
1474 */
1475 static void intel_edp_backlight_power(struct intel_connector *connector,
1476 bool enable)
1477 {
1478 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1479 bool is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1480
1481 if (is_enabled == enable)
1482 return;
1483
1484 DRM_DEBUG_KMS("panel power control backlight %s\n",
1485 enable ? "enable" : "disable");
1486
1487 if (enable)
1488 _intel_edp_backlight_on(intel_dp);
1489 else
1490 _intel_edp_backlight_off(intel_dp);
1491 }
1492
1493 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1494 {
1495 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1496 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1497 struct drm_device *dev = crtc->dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 u32 dpa_ctl;
1500
1501 assert_pipe_disabled(dev_priv,
1502 to_intel_crtc(crtc)->pipe);
1503
1504 DRM_DEBUG_KMS("\n");
1505 dpa_ctl = I915_READ(DP_A);
1506 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1507 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1508
1509 /* We don't adjust intel_dp->DP while tearing down the link, to
1510 * facilitate link retraining (e.g. after hotplug). Hence clear all
1511 * enable bits here to ensure that we don't enable too much. */
1512 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1513 intel_dp->DP |= DP_PLL_ENABLE;
1514 I915_WRITE(DP_A, intel_dp->DP);
1515 POSTING_READ(DP_A);
1516 udelay(200);
1517 }
1518
1519 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1520 {
1521 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1522 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1523 struct drm_device *dev = crtc->dev;
1524 struct drm_i915_private *dev_priv = dev->dev_private;
1525 u32 dpa_ctl;
1526
1527 assert_pipe_disabled(dev_priv,
1528 to_intel_crtc(crtc)->pipe);
1529
1530 dpa_ctl = I915_READ(DP_A);
1531 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1532 "dp pll off, should be on\n");
1533 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1534
1535 /* We can't rely on the value tracked for the DP register in
1536 * intel_dp->DP because link_down must not change that (otherwise link
1537 * re-training will fail. */
1538 dpa_ctl &= ~DP_PLL_ENABLE;
1539 I915_WRITE(DP_A, dpa_ctl);
1540 POSTING_READ(DP_A);
1541 udelay(200);
1542 }
1543
1544 /* If the sink supports it, try to set the power state appropriately */
1545 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1546 {
1547 int ret, i;
1548
1549 /* Should have a valid DPCD by this point */
1550 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1551 return;
1552
1553 if (mode != DRM_MODE_DPMS_ON) {
1554 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1555 DP_SET_POWER_D3);
1556 if (ret != 1)
1557 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1558 } else {
1559 /*
1560 * When turning on, we need to retry for 1ms to give the sink
1561 * time to wake up.
1562 */
1563 for (i = 0; i < 3; i++) {
1564 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1565 DP_SET_POWER_D0);
1566 if (ret == 1)
1567 break;
1568 msleep(1);
1569 }
1570 }
1571 }
1572
1573 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1574 enum pipe *pipe)
1575 {
1576 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1577 enum port port = dp_to_dig_port(intel_dp)->port;
1578 struct drm_device *dev = encoder->base.dev;
1579 struct drm_i915_private *dev_priv = dev->dev_private;
1580 enum intel_display_power_domain power_domain;
1581 u32 tmp;
1582
1583 power_domain = intel_display_port_power_domain(encoder);
1584 if (!intel_display_power_enabled(dev_priv, power_domain))
1585 return false;
1586
1587 tmp = I915_READ(intel_dp->output_reg);
1588
1589 if (!(tmp & DP_PORT_EN))
1590 return false;
1591
1592 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1593 *pipe = PORT_TO_PIPE_CPT(tmp);
1594 } else if (IS_CHERRYVIEW(dev)) {
1595 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1596 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1597 *pipe = PORT_TO_PIPE(tmp);
1598 } else {
1599 u32 trans_sel;
1600 u32 trans_dp;
1601 int i;
1602
1603 switch (intel_dp->output_reg) {
1604 case PCH_DP_B:
1605 trans_sel = TRANS_DP_PORT_SEL_B;
1606 break;
1607 case PCH_DP_C:
1608 trans_sel = TRANS_DP_PORT_SEL_C;
1609 break;
1610 case PCH_DP_D:
1611 trans_sel = TRANS_DP_PORT_SEL_D;
1612 break;
1613 default:
1614 return true;
1615 }
1616
1617 for_each_pipe(dev_priv, i) {
1618 trans_dp = I915_READ(TRANS_DP_CTL(i));
1619 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1620 *pipe = i;
1621 return true;
1622 }
1623 }
1624
1625 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1626 intel_dp->output_reg);
1627 }
1628
1629 return true;
1630 }
1631
1632 static void intel_dp_get_config(struct intel_encoder *encoder,
1633 struct intel_crtc_config *pipe_config)
1634 {
1635 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1636 u32 tmp, flags = 0;
1637 struct drm_device *dev = encoder->base.dev;
1638 struct drm_i915_private *dev_priv = dev->dev_private;
1639 enum port port = dp_to_dig_port(intel_dp)->port;
1640 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1641 int dotclock;
1642
1643 tmp = I915_READ(intel_dp->output_reg);
1644 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1645 pipe_config->has_audio = true;
1646
1647 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1648 if (tmp & DP_SYNC_HS_HIGH)
1649 flags |= DRM_MODE_FLAG_PHSYNC;
1650 else
1651 flags |= DRM_MODE_FLAG_NHSYNC;
1652
1653 if (tmp & DP_SYNC_VS_HIGH)
1654 flags |= DRM_MODE_FLAG_PVSYNC;
1655 else
1656 flags |= DRM_MODE_FLAG_NVSYNC;
1657 } else {
1658 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1659 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1660 flags |= DRM_MODE_FLAG_PHSYNC;
1661 else
1662 flags |= DRM_MODE_FLAG_NHSYNC;
1663
1664 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1665 flags |= DRM_MODE_FLAG_PVSYNC;
1666 else
1667 flags |= DRM_MODE_FLAG_NVSYNC;
1668 }
1669
1670 pipe_config->adjusted_mode.flags |= flags;
1671
1672 pipe_config->has_dp_encoder = true;
1673
1674 intel_dp_get_m_n(crtc, pipe_config);
1675
1676 if (port == PORT_A) {
1677 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1678 pipe_config->port_clock = 162000;
1679 else
1680 pipe_config->port_clock = 270000;
1681 }
1682
1683 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1684 &pipe_config->dp_m_n);
1685
1686 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1687 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1688
1689 pipe_config->adjusted_mode.crtc_clock = dotclock;
1690
1691 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1692 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1693 /*
1694 * This is a big fat ugly hack.
1695 *
1696 * Some machines in UEFI boot mode provide us a VBT that has 18
1697 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1698 * unknown we fail to light up. Yet the same BIOS boots up with
1699 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1700 * max, not what it tells us to use.
1701 *
1702 * Note: This will still be broken if the eDP panel is not lit
1703 * up by the BIOS, and thus we can't get the mode at module
1704 * load.
1705 */
1706 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1707 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1708 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1709 }
1710 }
1711
1712 static bool is_edp_psr(struct intel_dp *intel_dp)
1713 {
1714 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1715 }
1716
1717 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1718 {
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721 if (!HAS_PSR(dev))
1722 return false;
1723
1724 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1725 }
1726
1727 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1728 struct edp_vsc_psr *vsc_psr)
1729 {
1730 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1731 struct drm_device *dev = dig_port->base.base.dev;
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1734 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1735 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1736 uint32_t *data = (uint32_t *) vsc_psr;
1737 unsigned int i;
1738
1739 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1740 the video DIP being updated before program video DIP data buffer
1741 registers for DIP being updated. */
1742 I915_WRITE(ctl_reg, 0);
1743 POSTING_READ(ctl_reg);
1744
1745 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1746 if (i < sizeof(struct edp_vsc_psr))
1747 I915_WRITE(data_reg + i, *data++);
1748 else
1749 I915_WRITE(data_reg + i, 0);
1750 }
1751
1752 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1753 POSTING_READ(ctl_reg);
1754 }
1755
1756 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1757 {
1758 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1759 struct drm_i915_private *dev_priv = dev->dev_private;
1760 struct edp_vsc_psr psr_vsc;
1761
1762 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1763 memset(&psr_vsc, 0, sizeof(psr_vsc));
1764 psr_vsc.sdp_header.HB0 = 0;
1765 psr_vsc.sdp_header.HB1 = 0x7;
1766 psr_vsc.sdp_header.HB2 = 0x2;
1767 psr_vsc.sdp_header.HB3 = 0x8;
1768 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1769
1770 /* Avoid continuous PSR exit by masking memup and hpd */
1771 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1772 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1773 }
1774
1775 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1776 {
1777 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1778 struct drm_device *dev = dig_port->base.base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 uint32_t aux_clock_divider;
1781 int precharge = 0x3;
1782 int msg_size = 5; /* Header(4) + Message(1) */
1783 bool only_standby = false;
1784
1785 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1786
1787 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1788 only_standby = true;
1789
1790 /* Enable PSR in sink */
1791 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1792 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1793 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1794 else
1795 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1796 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1797
1798 /* Setup AUX registers */
1799 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1800 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1801 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1802 DP_AUX_CH_CTL_TIME_OUT_400us |
1803 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1804 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1805 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1806 }
1807
1808 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1809 {
1810 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1811 struct drm_device *dev = dig_port->base.base.dev;
1812 struct drm_i915_private *dev_priv = dev->dev_private;
1813 uint32_t max_sleep_time = 0x1f;
1814 uint32_t idle_frames = 1;
1815 uint32_t val = 0x0;
1816 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1817 bool only_standby = false;
1818
1819 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
1820 only_standby = true;
1821
1822 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
1823 val |= EDP_PSR_LINK_STANDBY;
1824 val |= EDP_PSR_TP2_TP3_TIME_0us;
1825 val |= EDP_PSR_TP1_TIME_0us;
1826 val |= EDP_PSR_SKIP_AUX_EXIT;
1827 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
1828 } else
1829 val |= EDP_PSR_LINK_DISABLE;
1830
1831 I915_WRITE(EDP_PSR_CTL(dev), val |
1832 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1833 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1834 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1835 EDP_PSR_ENABLE);
1836 }
1837
1838 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1839 {
1840 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1841 struct drm_device *dev = dig_port->base.base.dev;
1842 struct drm_i915_private *dev_priv = dev->dev_private;
1843 struct drm_crtc *crtc = dig_port->base.base.crtc;
1844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1845
1846 lockdep_assert_held(&dev_priv->psr.lock);
1847 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1848 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
1849
1850 dev_priv->psr.source_ok = false;
1851
1852 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
1853 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1854 return false;
1855 }
1856
1857 if (!i915.enable_psr) {
1858 DRM_DEBUG_KMS("PSR disable by flag\n");
1859 return false;
1860 }
1861
1862 /* Below limitations aren't valid for Broadwell */
1863 if (IS_BROADWELL(dev))
1864 goto out;
1865
1866 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1867 S3D_ENABLE) {
1868 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1869 return false;
1870 }
1871
1872 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1873 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1874 return false;
1875 }
1876
1877 out:
1878 dev_priv->psr.source_ok = true;
1879 return true;
1880 }
1881
1882 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1883 {
1884 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1885 struct drm_device *dev = intel_dig_port->base.base.dev;
1886 struct drm_i915_private *dev_priv = dev->dev_private;
1887
1888 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1889 WARN_ON(dev_priv->psr.active);
1890 lockdep_assert_held(&dev_priv->psr.lock);
1891
1892 /* Enable PSR on the panel */
1893 intel_edp_psr_enable_sink(intel_dp);
1894
1895 /* Enable PSR on the host */
1896 intel_edp_psr_enable_source(intel_dp);
1897
1898 dev_priv->psr.active = true;
1899 }
1900
1901 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1902 {
1903 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1904 struct drm_i915_private *dev_priv = dev->dev_private;
1905
1906 if (!HAS_PSR(dev)) {
1907 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1908 return;
1909 }
1910
1911 if (!is_edp_psr(intel_dp)) {
1912 DRM_DEBUG_KMS("PSR not supported by this panel\n");
1913 return;
1914 }
1915
1916 mutex_lock(&dev_priv->psr.lock);
1917 if (dev_priv->psr.enabled) {
1918 DRM_DEBUG_KMS("PSR already in use\n");
1919 mutex_unlock(&dev_priv->psr.lock);
1920 return;
1921 }
1922
1923 dev_priv->psr.busy_frontbuffer_bits = 0;
1924
1925 /* Setup PSR once */
1926 intel_edp_psr_setup(intel_dp);
1927
1928 if (intel_edp_psr_match_conditions(intel_dp))
1929 dev_priv->psr.enabled = intel_dp;
1930 mutex_unlock(&dev_priv->psr.lock);
1931 }
1932
1933 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1934 {
1935 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937
1938 mutex_lock(&dev_priv->psr.lock);
1939 if (!dev_priv->psr.enabled) {
1940 mutex_unlock(&dev_priv->psr.lock);
1941 return;
1942 }
1943
1944 if (dev_priv->psr.active) {
1945 I915_WRITE(EDP_PSR_CTL(dev),
1946 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1947
1948 /* Wait till PSR is idle */
1949 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1950 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1951 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1952
1953 dev_priv->psr.active = false;
1954 } else {
1955 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
1956 }
1957
1958 dev_priv->psr.enabled = NULL;
1959 mutex_unlock(&dev_priv->psr.lock);
1960
1961 cancel_delayed_work_sync(&dev_priv->psr.work);
1962 }
1963
1964 static void intel_edp_psr_work(struct work_struct *work)
1965 {
1966 struct drm_i915_private *dev_priv =
1967 container_of(work, typeof(*dev_priv), psr.work.work);
1968 struct intel_dp *intel_dp = dev_priv->psr.enabled;
1969
1970 mutex_lock(&dev_priv->psr.lock);
1971 intel_dp = dev_priv->psr.enabled;
1972
1973 if (!intel_dp)
1974 goto unlock;
1975
1976 /*
1977 * The delayed work can race with an invalidate hence we need to
1978 * recheck. Since psr_flush first clears this and then reschedules we
1979 * won't ever miss a flush when bailing out here.
1980 */
1981 if (dev_priv->psr.busy_frontbuffer_bits)
1982 goto unlock;
1983
1984 intel_edp_psr_do_enable(intel_dp);
1985 unlock:
1986 mutex_unlock(&dev_priv->psr.lock);
1987 }
1988
1989 static void intel_edp_psr_do_exit(struct drm_device *dev)
1990 {
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992
1993 if (dev_priv->psr.active) {
1994 u32 val = I915_READ(EDP_PSR_CTL(dev));
1995
1996 WARN_ON(!(val & EDP_PSR_ENABLE));
1997
1998 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
1999
2000 dev_priv->psr.active = false;
2001 }
2002
2003 }
2004
2005 void intel_edp_psr_invalidate(struct drm_device *dev,
2006 unsigned frontbuffer_bits)
2007 {
2008 struct drm_i915_private *dev_priv = dev->dev_private;
2009 struct drm_crtc *crtc;
2010 enum pipe pipe;
2011
2012 mutex_lock(&dev_priv->psr.lock);
2013 if (!dev_priv->psr.enabled) {
2014 mutex_unlock(&dev_priv->psr.lock);
2015 return;
2016 }
2017
2018 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2019 pipe = to_intel_crtc(crtc)->pipe;
2020
2021 intel_edp_psr_do_exit(dev);
2022
2023 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2024
2025 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2026 mutex_unlock(&dev_priv->psr.lock);
2027 }
2028
2029 void intel_edp_psr_flush(struct drm_device *dev,
2030 unsigned frontbuffer_bits)
2031 {
2032 struct drm_i915_private *dev_priv = dev->dev_private;
2033 struct drm_crtc *crtc;
2034 enum pipe pipe;
2035
2036 mutex_lock(&dev_priv->psr.lock);
2037 if (!dev_priv->psr.enabled) {
2038 mutex_unlock(&dev_priv->psr.lock);
2039 return;
2040 }
2041
2042 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2043 pipe = to_intel_crtc(crtc)->pipe;
2044 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2045
2046 /*
2047 * On Haswell sprite plane updates don't result in a psr invalidating
2048 * signal in the hardware. Which means we need to manually fake this in
2049 * software for all flushes, not just when we've seen a preceding
2050 * invalidation through frontbuffer rendering.
2051 */
2052 if (IS_HASWELL(dev) &&
2053 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2054 intel_edp_psr_do_exit(dev);
2055
2056 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2057 schedule_delayed_work(&dev_priv->psr.work,
2058 msecs_to_jiffies(100));
2059 mutex_unlock(&dev_priv->psr.lock);
2060 }
2061
2062 void intel_edp_psr_init(struct drm_device *dev)
2063 {
2064 struct drm_i915_private *dev_priv = dev->dev_private;
2065
2066 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2067 mutex_init(&dev_priv->psr.lock);
2068 }
2069
2070 static void intel_disable_dp(struct intel_encoder *encoder)
2071 {
2072 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2073 enum port port = dp_to_dig_port(intel_dp)->port;
2074 struct drm_device *dev = encoder->base.dev;
2075
2076 /* Make sure the panel is off before trying to change the mode. But also
2077 * ensure that we have vdd while we switch off the panel. */
2078 intel_edp_panel_vdd_on(intel_dp);
2079 intel_edp_backlight_off(intel_dp);
2080 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2081 intel_edp_panel_off(intel_dp);
2082
2083 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
2084 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
2085 intel_dp_link_down(intel_dp);
2086 }
2087
2088 static void g4x_post_disable_dp(struct intel_encoder *encoder)
2089 {
2090 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2091 enum port port = dp_to_dig_port(intel_dp)->port;
2092
2093 if (port != PORT_A)
2094 return;
2095
2096 intel_dp_link_down(intel_dp);
2097 ironlake_edp_pll_off(intel_dp);
2098 }
2099
2100 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2101 {
2102 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2103
2104 intel_dp_link_down(intel_dp);
2105 }
2106
2107 static void chv_post_disable_dp(struct intel_encoder *encoder)
2108 {
2109 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2110 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2111 struct drm_device *dev = encoder->base.dev;
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2113 struct intel_crtc *intel_crtc =
2114 to_intel_crtc(encoder->base.crtc);
2115 enum dpio_channel ch = vlv_dport_to_channel(dport);
2116 enum pipe pipe = intel_crtc->pipe;
2117 u32 val;
2118
2119 intel_dp_link_down(intel_dp);
2120
2121 mutex_lock(&dev_priv->dpio_lock);
2122
2123 /* Propagate soft reset to data lane reset */
2124 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2125 val |= CHV_PCS_REQ_SOFTRESET_EN;
2126 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2127
2128 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2129 val |= CHV_PCS_REQ_SOFTRESET_EN;
2130 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2131
2132 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2133 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2134 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2135
2136 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2137 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2138 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2139
2140 mutex_unlock(&dev_priv->dpio_lock);
2141 }
2142
2143 static void intel_enable_dp(struct intel_encoder *encoder)
2144 {
2145 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2146 struct drm_device *dev = encoder->base.dev;
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2149
2150 if (WARN_ON(dp_reg & DP_PORT_EN))
2151 return;
2152
2153 intel_edp_panel_vdd_on(intel_dp);
2154 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2155 intel_dp_start_link_train(intel_dp);
2156 intel_edp_panel_on(intel_dp);
2157 intel_edp_panel_vdd_off(intel_dp, true);
2158 intel_dp_complete_link_train(intel_dp);
2159 intel_dp_stop_link_train(intel_dp);
2160 }
2161
2162 static void g4x_enable_dp(struct intel_encoder *encoder)
2163 {
2164 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2165
2166 intel_enable_dp(encoder);
2167 intel_edp_backlight_on(intel_dp);
2168 }
2169
2170 static void vlv_enable_dp(struct intel_encoder *encoder)
2171 {
2172 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2173
2174 intel_edp_backlight_on(intel_dp);
2175 }
2176
2177 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2178 {
2179 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2180 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2181
2182 intel_dp_prepare(encoder);
2183
2184 /* Only ilk+ has port A */
2185 if (dport->port == PORT_A) {
2186 ironlake_set_pll_cpu_edp(intel_dp);
2187 ironlake_edp_pll_on(intel_dp);
2188 }
2189 }
2190
2191 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2192 {
2193 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2194 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2195 struct drm_device *dev = encoder->base.dev;
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2198 enum dpio_channel port = vlv_dport_to_channel(dport);
2199 int pipe = intel_crtc->pipe;
2200 struct edp_power_seq power_seq;
2201 u32 val;
2202
2203 mutex_lock(&dev_priv->dpio_lock);
2204
2205 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2206 val = 0;
2207 if (pipe)
2208 val |= (1<<21);
2209 else
2210 val &= ~(1<<21);
2211 val |= 0x001000c4;
2212 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2213 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2214 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2215
2216 mutex_unlock(&dev_priv->dpio_lock);
2217
2218 if (is_edp(intel_dp)) {
2219 /* init power sequencer on this pipe and port */
2220 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2221 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2222 &power_seq);
2223 }
2224
2225 intel_enable_dp(encoder);
2226
2227 vlv_wait_port_ready(dev_priv, dport);
2228 }
2229
2230 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2231 {
2232 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2233 struct drm_device *dev = encoder->base.dev;
2234 struct drm_i915_private *dev_priv = dev->dev_private;
2235 struct intel_crtc *intel_crtc =
2236 to_intel_crtc(encoder->base.crtc);
2237 enum dpio_channel port = vlv_dport_to_channel(dport);
2238 int pipe = intel_crtc->pipe;
2239
2240 intel_dp_prepare(encoder);
2241
2242 /* Program Tx lane resets to default */
2243 mutex_lock(&dev_priv->dpio_lock);
2244 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2245 DPIO_PCS_TX_LANE2_RESET |
2246 DPIO_PCS_TX_LANE1_RESET);
2247 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2248 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2249 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2250 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2251 DPIO_PCS_CLK_SOFT_RESET);
2252
2253 /* Fix up inter-pair skew failure */
2254 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2255 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2256 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2257 mutex_unlock(&dev_priv->dpio_lock);
2258 }
2259
2260 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2261 {
2262 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2263 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2264 struct drm_device *dev = encoder->base.dev;
2265 struct drm_i915_private *dev_priv = dev->dev_private;
2266 struct edp_power_seq power_seq;
2267 struct intel_crtc *intel_crtc =
2268 to_intel_crtc(encoder->base.crtc);
2269 enum dpio_channel ch = vlv_dport_to_channel(dport);
2270 int pipe = intel_crtc->pipe;
2271 int data, i;
2272 u32 val;
2273
2274 mutex_lock(&dev_priv->dpio_lock);
2275
2276 /* Deassert soft data lane reset*/
2277 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2278 val |= CHV_PCS_REQ_SOFTRESET_EN;
2279 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2280
2281 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2282 val |= CHV_PCS_REQ_SOFTRESET_EN;
2283 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2284
2285 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2286 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2287 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2288
2289 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2290 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2291 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2292
2293 /* Program Tx lane latency optimal setting*/
2294 for (i = 0; i < 4; i++) {
2295 /* Set the latency optimal bit */
2296 data = (i == 1) ? 0x0 : 0x6;
2297 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2298 data << DPIO_FRC_LATENCY_SHFIT);
2299
2300 /* Set the upar bit */
2301 data = (i == 1) ? 0x0 : 0x1;
2302 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2303 data << DPIO_UPAR_SHIFT);
2304 }
2305
2306 /* Data lane stagger programming */
2307 /* FIXME: Fix up value only after power analysis */
2308
2309 mutex_unlock(&dev_priv->dpio_lock);
2310
2311 if (is_edp(intel_dp)) {
2312 /* init power sequencer on this pipe and port */
2313 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2314 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2315 &power_seq);
2316 }
2317
2318 intel_enable_dp(encoder);
2319
2320 vlv_wait_port_ready(dev_priv, dport);
2321 }
2322
2323 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2324 {
2325 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2326 struct drm_device *dev = encoder->base.dev;
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328 struct intel_crtc *intel_crtc =
2329 to_intel_crtc(encoder->base.crtc);
2330 enum dpio_channel ch = vlv_dport_to_channel(dport);
2331 enum pipe pipe = intel_crtc->pipe;
2332 u32 val;
2333
2334 intel_dp_prepare(encoder);
2335
2336 mutex_lock(&dev_priv->dpio_lock);
2337
2338 /* program left/right clock distribution */
2339 if (pipe != PIPE_B) {
2340 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2341 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2342 if (ch == DPIO_CH0)
2343 val |= CHV_BUFLEFTENA1_FORCE;
2344 if (ch == DPIO_CH1)
2345 val |= CHV_BUFRIGHTENA1_FORCE;
2346 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2347 } else {
2348 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2349 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2350 if (ch == DPIO_CH0)
2351 val |= CHV_BUFLEFTENA2_FORCE;
2352 if (ch == DPIO_CH1)
2353 val |= CHV_BUFRIGHTENA2_FORCE;
2354 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2355 }
2356
2357 /* program clock channel usage */
2358 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2359 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2360 if (pipe != PIPE_B)
2361 val &= ~CHV_PCS_USEDCLKCHANNEL;
2362 else
2363 val |= CHV_PCS_USEDCLKCHANNEL;
2364 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2365
2366 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2367 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2368 if (pipe != PIPE_B)
2369 val &= ~CHV_PCS_USEDCLKCHANNEL;
2370 else
2371 val |= CHV_PCS_USEDCLKCHANNEL;
2372 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2373
2374 /*
2375 * This a a bit weird since generally CL
2376 * matches the pipe, but here we need to
2377 * pick the CL based on the port.
2378 */
2379 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2380 if (pipe != PIPE_B)
2381 val &= ~CHV_CMN_USEDCLKCHANNEL;
2382 else
2383 val |= CHV_CMN_USEDCLKCHANNEL;
2384 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2385
2386 mutex_unlock(&dev_priv->dpio_lock);
2387 }
2388
2389 /*
2390 * Native read with retry for link status and receiver capability reads for
2391 * cases where the sink may still be asleep.
2392 *
2393 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2394 * supposed to retry 3 times per the spec.
2395 */
2396 static ssize_t
2397 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2398 void *buffer, size_t size)
2399 {
2400 ssize_t ret;
2401 int i;
2402
2403 for (i = 0; i < 3; i++) {
2404 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2405 if (ret == size)
2406 return ret;
2407 msleep(1);
2408 }
2409
2410 return ret;
2411 }
2412
2413 /*
2414 * Fetch AUX CH registers 0x202 - 0x207 which contain
2415 * link status information
2416 */
2417 static bool
2418 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2419 {
2420 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2421 DP_LANE0_1_STATUS,
2422 link_status,
2423 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2424 }
2425
2426 /* These are source-specific values. */
2427 static uint8_t
2428 intel_dp_voltage_max(struct intel_dp *intel_dp)
2429 {
2430 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2431 enum port port = dp_to_dig_port(intel_dp)->port;
2432
2433 if (IS_VALLEYVIEW(dev))
2434 return DP_TRAIN_VOLTAGE_SWING_1200;
2435 else if (IS_GEN7(dev) && port == PORT_A)
2436 return DP_TRAIN_VOLTAGE_SWING_800;
2437 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2438 return DP_TRAIN_VOLTAGE_SWING_1200;
2439 else
2440 return DP_TRAIN_VOLTAGE_SWING_800;
2441 }
2442
2443 static uint8_t
2444 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2445 {
2446 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2447 enum port port = dp_to_dig_port(intel_dp)->port;
2448
2449 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2450 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2451 case DP_TRAIN_VOLTAGE_SWING_400:
2452 return DP_TRAIN_PRE_EMPHASIS_9_5;
2453 case DP_TRAIN_VOLTAGE_SWING_600:
2454 return DP_TRAIN_PRE_EMPHASIS_6;
2455 case DP_TRAIN_VOLTAGE_SWING_800:
2456 return DP_TRAIN_PRE_EMPHASIS_3_5;
2457 case DP_TRAIN_VOLTAGE_SWING_1200:
2458 default:
2459 return DP_TRAIN_PRE_EMPHASIS_0;
2460 }
2461 } else if (IS_VALLEYVIEW(dev)) {
2462 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2463 case DP_TRAIN_VOLTAGE_SWING_400:
2464 return DP_TRAIN_PRE_EMPHASIS_9_5;
2465 case DP_TRAIN_VOLTAGE_SWING_600:
2466 return DP_TRAIN_PRE_EMPHASIS_6;
2467 case DP_TRAIN_VOLTAGE_SWING_800:
2468 return DP_TRAIN_PRE_EMPHASIS_3_5;
2469 case DP_TRAIN_VOLTAGE_SWING_1200:
2470 default:
2471 return DP_TRAIN_PRE_EMPHASIS_0;
2472 }
2473 } else if (IS_GEN7(dev) && port == PORT_A) {
2474 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2475 case DP_TRAIN_VOLTAGE_SWING_400:
2476 return DP_TRAIN_PRE_EMPHASIS_6;
2477 case DP_TRAIN_VOLTAGE_SWING_600:
2478 case DP_TRAIN_VOLTAGE_SWING_800:
2479 return DP_TRAIN_PRE_EMPHASIS_3_5;
2480 default:
2481 return DP_TRAIN_PRE_EMPHASIS_0;
2482 }
2483 } else {
2484 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2485 case DP_TRAIN_VOLTAGE_SWING_400:
2486 return DP_TRAIN_PRE_EMPHASIS_6;
2487 case DP_TRAIN_VOLTAGE_SWING_600:
2488 return DP_TRAIN_PRE_EMPHASIS_6;
2489 case DP_TRAIN_VOLTAGE_SWING_800:
2490 return DP_TRAIN_PRE_EMPHASIS_3_5;
2491 case DP_TRAIN_VOLTAGE_SWING_1200:
2492 default:
2493 return DP_TRAIN_PRE_EMPHASIS_0;
2494 }
2495 }
2496 }
2497
2498 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2499 {
2500 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2501 struct drm_i915_private *dev_priv = dev->dev_private;
2502 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2503 struct intel_crtc *intel_crtc =
2504 to_intel_crtc(dport->base.base.crtc);
2505 unsigned long demph_reg_value, preemph_reg_value,
2506 uniqtranscale_reg_value;
2507 uint8_t train_set = intel_dp->train_set[0];
2508 enum dpio_channel port = vlv_dport_to_channel(dport);
2509 int pipe = intel_crtc->pipe;
2510
2511 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2512 case DP_TRAIN_PRE_EMPHASIS_0:
2513 preemph_reg_value = 0x0004000;
2514 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2515 case DP_TRAIN_VOLTAGE_SWING_400:
2516 demph_reg_value = 0x2B405555;
2517 uniqtranscale_reg_value = 0x552AB83A;
2518 break;
2519 case DP_TRAIN_VOLTAGE_SWING_600:
2520 demph_reg_value = 0x2B404040;
2521 uniqtranscale_reg_value = 0x5548B83A;
2522 break;
2523 case DP_TRAIN_VOLTAGE_SWING_800:
2524 demph_reg_value = 0x2B245555;
2525 uniqtranscale_reg_value = 0x5560B83A;
2526 break;
2527 case DP_TRAIN_VOLTAGE_SWING_1200:
2528 demph_reg_value = 0x2B405555;
2529 uniqtranscale_reg_value = 0x5598DA3A;
2530 break;
2531 default:
2532 return 0;
2533 }
2534 break;
2535 case DP_TRAIN_PRE_EMPHASIS_3_5:
2536 preemph_reg_value = 0x0002000;
2537 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2538 case DP_TRAIN_VOLTAGE_SWING_400:
2539 demph_reg_value = 0x2B404040;
2540 uniqtranscale_reg_value = 0x5552B83A;
2541 break;
2542 case DP_TRAIN_VOLTAGE_SWING_600:
2543 demph_reg_value = 0x2B404848;
2544 uniqtranscale_reg_value = 0x5580B83A;
2545 break;
2546 case DP_TRAIN_VOLTAGE_SWING_800:
2547 demph_reg_value = 0x2B404040;
2548 uniqtranscale_reg_value = 0x55ADDA3A;
2549 break;
2550 default:
2551 return 0;
2552 }
2553 break;
2554 case DP_TRAIN_PRE_EMPHASIS_6:
2555 preemph_reg_value = 0x0000000;
2556 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2557 case DP_TRAIN_VOLTAGE_SWING_400:
2558 demph_reg_value = 0x2B305555;
2559 uniqtranscale_reg_value = 0x5570B83A;
2560 break;
2561 case DP_TRAIN_VOLTAGE_SWING_600:
2562 demph_reg_value = 0x2B2B4040;
2563 uniqtranscale_reg_value = 0x55ADDA3A;
2564 break;
2565 default:
2566 return 0;
2567 }
2568 break;
2569 case DP_TRAIN_PRE_EMPHASIS_9_5:
2570 preemph_reg_value = 0x0006000;
2571 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2572 case DP_TRAIN_VOLTAGE_SWING_400:
2573 demph_reg_value = 0x1B405555;
2574 uniqtranscale_reg_value = 0x55ADDA3A;
2575 break;
2576 default:
2577 return 0;
2578 }
2579 break;
2580 default:
2581 return 0;
2582 }
2583
2584 mutex_lock(&dev_priv->dpio_lock);
2585 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2586 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2587 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2588 uniqtranscale_reg_value);
2589 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2590 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2591 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2592 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2593 mutex_unlock(&dev_priv->dpio_lock);
2594
2595 return 0;
2596 }
2597
2598 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2599 {
2600 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2601 struct drm_i915_private *dev_priv = dev->dev_private;
2602 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2603 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2604 u32 deemph_reg_value, margin_reg_value, val;
2605 uint8_t train_set = intel_dp->train_set[0];
2606 enum dpio_channel ch = vlv_dport_to_channel(dport);
2607 enum pipe pipe = intel_crtc->pipe;
2608 int i;
2609
2610 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2611 case DP_TRAIN_PRE_EMPHASIS_0:
2612 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2613 case DP_TRAIN_VOLTAGE_SWING_400:
2614 deemph_reg_value = 128;
2615 margin_reg_value = 52;
2616 break;
2617 case DP_TRAIN_VOLTAGE_SWING_600:
2618 deemph_reg_value = 128;
2619 margin_reg_value = 77;
2620 break;
2621 case DP_TRAIN_VOLTAGE_SWING_800:
2622 deemph_reg_value = 128;
2623 margin_reg_value = 102;
2624 break;
2625 case DP_TRAIN_VOLTAGE_SWING_1200:
2626 deemph_reg_value = 128;
2627 margin_reg_value = 154;
2628 /* FIXME extra to set for 1200 */
2629 break;
2630 default:
2631 return 0;
2632 }
2633 break;
2634 case DP_TRAIN_PRE_EMPHASIS_3_5:
2635 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2636 case DP_TRAIN_VOLTAGE_SWING_400:
2637 deemph_reg_value = 85;
2638 margin_reg_value = 78;
2639 break;
2640 case DP_TRAIN_VOLTAGE_SWING_600:
2641 deemph_reg_value = 85;
2642 margin_reg_value = 116;
2643 break;
2644 case DP_TRAIN_VOLTAGE_SWING_800:
2645 deemph_reg_value = 85;
2646 margin_reg_value = 154;
2647 break;
2648 default:
2649 return 0;
2650 }
2651 break;
2652 case DP_TRAIN_PRE_EMPHASIS_6:
2653 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2654 case DP_TRAIN_VOLTAGE_SWING_400:
2655 deemph_reg_value = 64;
2656 margin_reg_value = 104;
2657 break;
2658 case DP_TRAIN_VOLTAGE_SWING_600:
2659 deemph_reg_value = 64;
2660 margin_reg_value = 154;
2661 break;
2662 default:
2663 return 0;
2664 }
2665 break;
2666 case DP_TRAIN_PRE_EMPHASIS_9_5:
2667 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2668 case DP_TRAIN_VOLTAGE_SWING_400:
2669 deemph_reg_value = 43;
2670 margin_reg_value = 154;
2671 break;
2672 default:
2673 return 0;
2674 }
2675 break;
2676 default:
2677 return 0;
2678 }
2679
2680 mutex_lock(&dev_priv->dpio_lock);
2681
2682 /* Clear calc init */
2683 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2684 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2685 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2686
2687 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2688 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2689 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2690
2691 /* Program swing deemph */
2692 for (i = 0; i < 4; i++) {
2693 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2694 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2695 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2696 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2697 }
2698
2699 /* Program swing margin */
2700 for (i = 0; i < 4; i++) {
2701 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2702 val &= ~DPIO_SWING_MARGIN000_MASK;
2703 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
2704 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2705 }
2706
2707 /* Disable unique transition scale */
2708 for (i = 0; i < 4; i++) {
2709 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2710 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2711 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2712 }
2713
2714 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2715 == DP_TRAIN_PRE_EMPHASIS_0) &&
2716 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2717 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2718
2719 /*
2720 * The document said it needs to set bit 27 for ch0 and bit 26
2721 * for ch1. Might be a typo in the doc.
2722 * For now, for this unique transition scale selection, set bit
2723 * 27 for ch0 and ch1.
2724 */
2725 for (i = 0; i < 4; i++) {
2726 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2727 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2728 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2729 }
2730
2731 for (i = 0; i < 4; i++) {
2732 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2733 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2734 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2735 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2736 }
2737 }
2738
2739 /* Start swing calculation */
2740 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2741 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2742 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2743
2744 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2745 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2746 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2747
2748 /* LRC Bypass */
2749 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2750 val |= DPIO_LRC_BYPASS;
2751 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2752
2753 mutex_unlock(&dev_priv->dpio_lock);
2754
2755 return 0;
2756 }
2757
2758 static void
2759 intel_get_adjust_train(struct intel_dp *intel_dp,
2760 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2761 {
2762 uint8_t v = 0;
2763 uint8_t p = 0;
2764 int lane;
2765 uint8_t voltage_max;
2766 uint8_t preemph_max;
2767
2768 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2769 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2770 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2771
2772 if (this_v > v)
2773 v = this_v;
2774 if (this_p > p)
2775 p = this_p;
2776 }
2777
2778 voltage_max = intel_dp_voltage_max(intel_dp);
2779 if (v >= voltage_max)
2780 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2781
2782 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2783 if (p >= preemph_max)
2784 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2785
2786 for (lane = 0; lane < 4; lane++)
2787 intel_dp->train_set[lane] = v | p;
2788 }
2789
2790 static uint32_t
2791 intel_gen4_signal_levels(uint8_t train_set)
2792 {
2793 uint32_t signal_levels = 0;
2794
2795 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2796 case DP_TRAIN_VOLTAGE_SWING_400:
2797 default:
2798 signal_levels |= DP_VOLTAGE_0_4;
2799 break;
2800 case DP_TRAIN_VOLTAGE_SWING_600:
2801 signal_levels |= DP_VOLTAGE_0_6;
2802 break;
2803 case DP_TRAIN_VOLTAGE_SWING_800:
2804 signal_levels |= DP_VOLTAGE_0_8;
2805 break;
2806 case DP_TRAIN_VOLTAGE_SWING_1200:
2807 signal_levels |= DP_VOLTAGE_1_2;
2808 break;
2809 }
2810 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2811 case DP_TRAIN_PRE_EMPHASIS_0:
2812 default:
2813 signal_levels |= DP_PRE_EMPHASIS_0;
2814 break;
2815 case DP_TRAIN_PRE_EMPHASIS_3_5:
2816 signal_levels |= DP_PRE_EMPHASIS_3_5;
2817 break;
2818 case DP_TRAIN_PRE_EMPHASIS_6:
2819 signal_levels |= DP_PRE_EMPHASIS_6;
2820 break;
2821 case DP_TRAIN_PRE_EMPHASIS_9_5:
2822 signal_levels |= DP_PRE_EMPHASIS_9_5;
2823 break;
2824 }
2825 return signal_levels;
2826 }
2827
2828 /* Gen6's DP voltage swing and pre-emphasis control */
2829 static uint32_t
2830 intel_gen6_edp_signal_levels(uint8_t train_set)
2831 {
2832 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2833 DP_TRAIN_PRE_EMPHASIS_MASK);
2834 switch (signal_levels) {
2835 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2836 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2837 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2838 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2839 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2840 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2841 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2842 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2843 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2844 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2845 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2846 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2847 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2848 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2849 default:
2850 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2851 "0x%x\n", signal_levels);
2852 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2853 }
2854 }
2855
2856 /* Gen7's DP voltage swing and pre-emphasis control */
2857 static uint32_t
2858 intel_gen7_edp_signal_levels(uint8_t train_set)
2859 {
2860 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2861 DP_TRAIN_PRE_EMPHASIS_MASK);
2862 switch (signal_levels) {
2863 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2864 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2865 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2866 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2867 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2868 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2869
2870 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2871 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2872 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2873 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2874
2875 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2876 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2877 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2878 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2879
2880 default:
2881 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2882 "0x%x\n", signal_levels);
2883 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2884 }
2885 }
2886
2887 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2888 static uint32_t
2889 intel_hsw_signal_levels(uint8_t train_set)
2890 {
2891 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2892 DP_TRAIN_PRE_EMPHASIS_MASK);
2893 switch (signal_levels) {
2894 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2895 return DDI_BUF_EMP_400MV_0DB_HSW;
2896 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2897 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2898 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2899 return DDI_BUF_EMP_400MV_6DB_HSW;
2900 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2901 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2902
2903 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2904 return DDI_BUF_EMP_600MV_0DB_HSW;
2905 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2906 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2907 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2908 return DDI_BUF_EMP_600MV_6DB_HSW;
2909
2910 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2911 return DDI_BUF_EMP_800MV_0DB_HSW;
2912 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2913 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2914 default:
2915 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2916 "0x%x\n", signal_levels);
2917 return DDI_BUF_EMP_400MV_0DB_HSW;
2918 }
2919 }
2920
2921 /* Properly updates "DP" with the correct signal levels. */
2922 static void
2923 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2924 {
2925 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2926 enum port port = intel_dig_port->port;
2927 struct drm_device *dev = intel_dig_port->base.base.dev;
2928 uint32_t signal_levels, mask;
2929 uint8_t train_set = intel_dp->train_set[0];
2930
2931 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2932 signal_levels = intel_hsw_signal_levels(train_set);
2933 mask = DDI_BUF_EMP_MASK;
2934 } else if (IS_CHERRYVIEW(dev)) {
2935 signal_levels = intel_chv_signal_levels(intel_dp);
2936 mask = 0;
2937 } else if (IS_VALLEYVIEW(dev)) {
2938 signal_levels = intel_vlv_signal_levels(intel_dp);
2939 mask = 0;
2940 } else if (IS_GEN7(dev) && port == PORT_A) {
2941 signal_levels = intel_gen7_edp_signal_levels(train_set);
2942 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2943 } else if (IS_GEN6(dev) && port == PORT_A) {
2944 signal_levels = intel_gen6_edp_signal_levels(train_set);
2945 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2946 } else {
2947 signal_levels = intel_gen4_signal_levels(train_set);
2948 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2949 }
2950
2951 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2952
2953 *DP = (*DP & ~mask) | signal_levels;
2954 }
2955
2956 static bool
2957 intel_dp_set_link_train(struct intel_dp *intel_dp,
2958 uint32_t *DP,
2959 uint8_t dp_train_pat)
2960 {
2961 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2962 struct drm_device *dev = intel_dig_port->base.base.dev;
2963 struct drm_i915_private *dev_priv = dev->dev_private;
2964 enum port port = intel_dig_port->port;
2965 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2966 int ret, len;
2967
2968 if (HAS_DDI(dev)) {
2969 uint32_t temp = I915_READ(DP_TP_CTL(port));
2970
2971 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2972 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2973 else
2974 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2975
2976 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2977 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2978 case DP_TRAINING_PATTERN_DISABLE:
2979 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2980
2981 break;
2982 case DP_TRAINING_PATTERN_1:
2983 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2984 break;
2985 case DP_TRAINING_PATTERN_2:
2986 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2987 break;
2988 case DP_TRAINING_PATTERN_3:
2989 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2990 break;
2991 }
2992 I915_WRITE(DP_TP_CTL(port), temp);
2993
2994 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2995 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2996
2997 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2998 case DP_TRAINING_PATTERN_DISABLE:
2999 *DP |= DP_LINK_TRAIN_OFF_CPT;
3000 break;
3001 case DP_TRAINING_PATTERN_1:
3002 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3003 break;
3004 case DP_TRAINING_PATTERN_2:
3005 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3006 break;
3007 case DP_TRAINING_PATTERN_3:
3008 DRM_ERROR("DP training pattern 3 not supported\n");
3009 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3010 break;
3011 }
3012
3013 } else {
3014 if (IS_CHERRYVIEW(dev))
3015 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
3016 else
3017 *DP &= ~DP_LINK_TRAIN_MASK;
3018
3019 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3020 case DP_TRAINING_PATTERN_DISABLE:
3021 *DP |= DP_LINK_TRAIN_OFF;
3022 break;
3023 case DP_TRAINING_PATTERN_1:
3024 *DP |= DP_LINK_TRAIN_PAT_1;
3025 break;
3026 case DP_TRAINING_PATTERN_2:
3027 *DP |= DP_LINK_TRAIN_PAT_2;
3028 break;
3029 case DP_TRAINING_PATTERN_3:
3030 if (IS_CHERRYVIEW(dev)) {
3031 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
3032 } else {
3033 DRM_ERROR("DP training pattern 3 not supported\n");
3034 *DP |= DP_LINK_TRAIN_PAT_2;
3035 }
3036 break;
3037 }
3038 }
3039
3040 I915_WRITE(intel_dp->output_reg, *DP);
3041 POSTING_READ(intel_dp->output_reg);
3042
3043 buf[0] = dp_train_pat;
3044 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3045 DP_TRAINING_PATTERN_DISABLE) {
3046 /* don't write DP_TRAINING_LANEx_SET on disable */
3047 len = 1;
3048 } else {
3049 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3050 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3051 len = intel_dp->lane_count + 1;
3052 }
3053
3054 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3055 buf, len);
3056
3057 return ret == len;
3058 }
3059
3060 static bool
3061 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3062 uint8_t dp_train_pat)
3063 {
3064 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3065 intel_dp_set_signal_levels(intel_dp, DP);
3066 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3067 }
3068
3069 static bool
3070 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3071 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3072 {
3073 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3074 struct drm_device *dev = intel_dig_port->base.base.dev;
3075 struct drm_i915_private *dev_priv = dev->dev_private;
3076 int ret;
3077
3078 intel_get_adjust_train(intel_dp, link_status);
3079 intel_dp_set_signal_levels(intel_dp, DP);
3080
3081 I915_WRITE(intel_dp->output_reg, *DP);
3082 POSTING_READ(intel_dp->output_reg);
3083
3084 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3085 intel_dp->train_set, intel_dp->lane_count);
3086
3087 return ret == intel_dp->lane_count;
3088 }
3089
3090 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3091 {
3092 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3093 struct drm_device *dev = intel_dig_port->base.base.dev;
3094 struct drm_i915_private *dev_priv = dev->dev_private;
3095 enum port port = intel_dig_port->port;
3096 uint32_t val;
3097
3098 if (!HAS_DDI(dev))
3099 return;
3100
3101 val = I915_READ(DP_TP_CTL(port));
3102 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3103 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3104 I915_WRITE(DP_TP_CTL(port), val);
3105
3106 /*
3107 * On PORT_A we can have only eDP in SST mode. There the only reason
3108 * we need to set idle transmission mode is to work around a HW issue
3109 * where we enable the pipe while not in idle link-training mode.
3110 * In this case there is requirement to wait for a minimum number of
3111 * idle patterns to be sent.
3112 */
3113 if (port == PORT_A)
3114 return;
3115
3116 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3117 1))
3118 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3119 }
3120
3121 /* Enable corresponding port and start training pattern 1 */
3122 void
3123 intel_dp_start_link_train(struct intel_dp *intel_dp)
3124 {
3125 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3126 struct drm_device *dev = encoder->dev;
3127 int i;
3128 uint8_t voltage;
3129 int voltage_tries, loop_tries;
3130 uint32_t DP = intel_dp->DP;
3131 uint8_t link_config[2];
3132
3133 if (HAS_DDI(dev))
3134 intel_ddi_prepare_link_retrain(encoder);
3135
3136 /* Write the link configuration data */
3137 link_config[0] = intel_dp->link_bw;
3138 link_config[1] = intel_dp->lane_count;
3139 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3140 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3141 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3142
3143 link_config[0] = 0;
3144 link_config[1] = DP_SET_ANSI_8B10B;
3145 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3146
3147 DP |= DP_PORT_EN;
3148
3149 /* clock recovery */
3150 if (!intel_dp_reset_link_train(intel_dp, &DP,
3151 DP_TRAINING_PATTERN_1 |
3152 DP_LINK_SCRAMBLING_DISABLE)) {
3153 DRM_ERROR("failed to enable link training\n");
3154 return;
3155 }
3156
3157 voltage = 0xff;
3158 voltage_tries = 0;
3159 loop_tries = 0;
3160 for (;;) {
3161 uint8_t link_status[DP_LINK_STATUS_SIZE];
3162
3163 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3164 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3165 DRM_ERROR("failed to get link status\n");
3166 break;
3167 }
3168
3169 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3170 DRM_DEBUG_KMS("clock recovery OK\n");
3171 break;
3172 }
3173
3174 /* Check to see if we've tried the max voltage */
3175 for (i = 0; i < intel_dp->lane_count; i++)
3176 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3177 break;
3178 if (i == intel_dp->lane_count) {
3179 ++loop_tries;
3180 if (loop_tries == 5) {
3181 DRM_ERROR("too many full retries, give up\n");
3182 break;
3183 }
3184 intel_dp_reset_link_train(intel_dp, &DP,
3185 DP_TRAINING_PATTERN_1 |
3186 DP_LINK_SCRAMBLING_DISABLE);
3187 voltage_tries = 0;
3188 continue;
3189 }
3190
3191 /* Check to see if we've tried the same voltage 5 times */
3192 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3193 ++voltage_tries;
3194 if (voltage_tries == 5) {
3195 DRM_ERROR("too many voltage retries, give up\n");
3196 break;
3197 }
3198 } else
3199 voltage_tries = 0;
3200 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3201
3202 /* Update training set as requested by target */
3203 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3204 DRM_ERROR("failed to update link training\n");
3205 break;
3206 }
3207 }
3208
3209 intel_dp->DP = DP;
3210 }
3211
3212 void
3213 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3214 {
3215 bool channel_eq = false;
3216 int tries, cr_tries;
3217 uint32_t DP = intel_dp->DP;
3218 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3219
3220 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3221 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3222 training_pattern = DP_TRAINING_PATTERN_3;
3223
3224 /* channel equalization */
3225 if (!intel_dp_set_link_train(intel_dp, &DP,
3226 training_pattern |
3227 DP_LINK_SCRAMBLING_DISABLE)) {
3228 DRM_ERROR("failed to start channel equalization\n");
3229 return;
3230 }
3231
3232 tries = 0;
3233 cr_tries = 0;
3234 channel_eq = false;
3235 for (;;) {
3236 uint8_t link_status[DP_LINK_STATUS_SIZE];
3237
3238 if (cr_tries > 5) {
3239 DRM_ERROR("failed to train DP, aborting\n");
3240 break;
3241 }
3242
3243 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3244 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3245 DRM_ERROR("failed to get link status\n");
3246 break;
3247 }
3248
3249 /* Make sure clock is still ok */
3250 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3251 intel_dp_start_link_train(intel_dp);
3252 intel_dp_set_link_train(intel_dp, &DP,
3253 training_pattern |
3254 DP_LINK_SCRAMBLING_DISABLE);
3255 cr_tries++;
3256 continue;
3257 }
3258
3259 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3260 channel_eq = true;
3261 break;
3262 }
3263
3264 /* Try 5 times, then try clock recovery if that fails */
3265 if (tries > 5) {
3266 intel_dp_link_down(intel_dp);
3267 intel_dp_start_link_train(intel_dp);
3268 intel_dp_set_link_train(intel_dp, &DP,
3269 training_pattern |
3270 DP_LINK_SCRAMBLING_DISABLE);
3271 tries = 0;
3272 cr_tries++;
3273 continue;
3274 }
3275
3276 /* Update training set as requested by target */
3277 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3278 DRM_ERROR("failed to update link training\n");
3279 break;
3280 }
3281 ++tries;
3282 }
3283
3284 intel_dp_set_idle_link_train(intel_dp);
3285
3286 intel_dp->DP = DP;
3287
3288 if (channel_eq)
3289 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3290
3291 }
3292
3293 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3294 {
3295 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3296 DP_TRAINING_PATTERN_DISABLE);
3297 }
3298
3299 static void
3300 intel_dp_link_down(struct intel_dp *intel_dp)
3301 {
3302 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3303 enum port port = intel_dig_port->port;
3304 struct drm_device *dev = intel_dig_port->base.base.dev;
3305 struct drm_i915_private *dev_priv = dev->dev_private;
3306 struct intel_crtc *intel_crtc =
3307 to_intel_crtc(intel_dig_port->base.base.crtc);
3308 uint32_t DP = intel_dp->DP;
3309
3310 if (WARN_ON(HAS_DDI(dev)))
3311 return;
3312
3313 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3314 return;
3315
3316 DRM_DEBUG_KMS("\n");
3317
3318 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3319 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3320 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3321 } else {
3322 if (IS_CHERRYVIEW(dev))
3323 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3324 else
3325 DP &= ~DP_LINK_TRAIN_MASK;
3326 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3327 }
3328 POSTING_READ(intel_dp->output_reg);
3329
3330 if (HAS_PCH_IBX(dev) &&
3331 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3332 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3333
3334 /* Hardware workaround: leaving our transcoder select
3335 * set to transcoder B while it's off will prevent the
3336 * corresponding HDMI output on transcoder A.
3337 *
3338 * Combine this with another hardware workaround:
3339 * transcoder select bit can only be cleared while the
3340 * port is enabled.
3341 */
3342 DP &= ~DP_PIPEB_SELECT;
3343 I915_WRITE(intel_dp->output_reg, DP);
3344
3345 /* Changes to enable or select take place the vblank
3346 * after being written.
3347 */
3348 if (WARN_ON(crtc == NULL)) {
3349 /* We should never try to disable a port without a crtc
3350 * attached. For paranoia keep the code around for a
3351 * bit. */
3352 POSTING_READ(intel_dp->output_reg);
3353 msleep(50);
3354 } else
3355 intel_wait_for_vblank(dev, intel_crtc->pipe);
3356 }
3357
3358 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3359 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3360 POSTING_READ(intel_dp->output_reg);
3361 msleep(intel_dp->panel_power_down_delay);
3362 }
3363
3364 static bool
3365 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3366 {
3367 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3368 struct drm_device *dev = dig_port->base.base.dev;
3369 struct drm_i915_private *dev_priv = dev->dev_private;
3370
3371 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3372
3373 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3374 sizeof(intel_dp->dpcd)) < 0)
3375 return false; /* aux transfer failed */
3376
3377 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3378 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3379 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3380
3381 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3382 return false; /* DPCD not present */
3383
3384 /* Check if the panel supports PSR */
3385 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3386 if (is_edp(intel_dp)) {
3387 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3388 intel_dp->psr_dpcd,
3389 sizeof(intel_dp->psr_dpcd));
3390 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3391 dev_priv->psr.sink_support = true;
3392 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3393 }
3394 }
3395
3396 /* Training Pattern 3 support */
3397 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3398 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3399 intel_dp->use_tps3 = true;
3400 DRM_DEBUG_KMS("Displayport TPS3 supported");
3401 } else
3402 intel_dp->use_tps3 = false;
3403
3404 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3405 DP_DWN_STRM_PORT_PRESENT))
3406 return true; /* native DP sink */
3407
3408 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3409 return true; /* no per-port downstream info */
3410
3411 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3412 intel_dp->downstream_ports,
3413 DP_MAX_DOWNSTREAM_PORTS) < 0)
3414 return false; /* downstream port status fetch failed */
3415
3416 return true;
3417 }
3418
3419 static void
3420 intel_dp_probe_oui(struct intel_dp *intel_dp)
3421 {
3422 u8 buf[3];
3423
3424 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3425 return;
3426
3427 intel_edp_panel_vdd_on(intel_dp);
3428
3429 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3430 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3431 buf[0], buf[1], buf[2]);
3432
3433 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3434 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3435 buf[0], buf[1], buf[2]);
3436
3437 intel_edp_panel_vdd_off(intel_dp, false);
3438 }
3439
3440 static bool
3441 intel_dp_probe_mst(struct intel_dp *intel_dp)
3442 {
3443 u8 buf[1];
3444
3445 if (!intel_dp->can_mst)
3446 return false;
3447
3448 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3449 return false;
3450
3451 intel_edp_panel_vdd_on(intel_dp);
3452 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3453 if (buf[0] & DP_MST_CAP) {
3454 DRM_DEBUG_KMS("Sink is MST capable\n");
3455 intel_dp->is_mst = true;
3456 } else {
3457 DRM_DEBUG_KMS("Sink is not MST capable\n");
3458 intel_dp->is_mst = false;
3459 }
3460 }
3461 intel_edp_panel_vdd_off(intel_dp, false);
3462
3463 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3464 return intel_dp->is_mst;
3465 }
3466
3467 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3468 {
3469 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3470 struct drm_device *dev = intel_dig_port->base.base.dev;
3471 struct intel_crtc *intel_crtc =
3472 to_intel_crtc(intel_dig_port->base.base.crtc);
3473 u8 buf[1];
3474
3475 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3476 return -EAGAIN;
3477
3478 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3479 return -ENOTTY;
3480
3481 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3482 DP_TEST_SINK_START) < 0)
3483 return -EAGAIN;
3484
3485 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3486 intel_wait_for_vblank(dev, intel_crtc->pipe);
3487 intel_wait_for_vblank(dev, intel_crtc->pipe);
3488
3489 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3490 return -EAGAIN;
3491
3492 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3493 return 0;
3494 }
3495
3496 static bool
3497 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3498 {
3499 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3500 DP_DEVICE_SERVICE_IRQ_VECTOR,
3501 sink_irq_vector, 1) == 1;
3502 }
3503
3504 static bool
3505 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3506 {
3507 int ret;
3508
3509 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3510 DP_SINK_COUNT_ESI,
3511 sink_irq_vector, 14);
3512 if (ret != 14)
3513 return false;
3514
3515 return true;
3516 }
3517
3518 static void
3519 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3520 {
3521 /* NAK by default */
3522 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3523 }
3524
3525 static int
3526 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3527 {
3528 bool bret;
3529
3530 if (intel_dp->is_mst) {
3531 u8 esi[16] = { 0 };
3532 int ret = 0;
3533 int retry;
3534 bool handled;
3535 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3536 go_again:
3537 if (bret == true) {
3538
3539 /* check link status - esi[10] = 0x200c */
3540 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3541 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3542 intel_dp_start_link_train(intel_dp);
3543 intel_dp_complete_link_train(intel_dp);
3544 intel_dp_stop_link_train(intel_dp);
3545 }
3546
3547 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3548 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3549
3550 if (handled) {
3551 for (retry = 0; retry < 3; retry++) {
3552 int wret;
3553 wret = drm_dp_dpcd_write(&intel_dp->aux,
3554 DP_SINK_COUNT_ESI+1,
3555 &esi[1], 3);
3556 if (wret == 3) {
3557 break;
3558 }
3559 }
3560
3561 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3562 if (bret == true) {
3563 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3564 goto go_again;
3565 }
3566 } else
3567 ret = 0;
3568
3569 return ret;
3570 } else {
3571 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3572 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3573 intel_dp->is_mst = false;
3574 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3575 /* send a hotplug event */
3576 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3577 }
3578 }
3579 return -EINVAL;
3580 }
3581
3582 /*
3583 * According to DP spec
3584 * 5.1.2:
3585 * 1. Read DPCD
3586 * 2. Configure link according to Receiver Capabilities
3587 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3588 * 4. Check link status on receipt of hot-plug interrupt
3589 */
3590 void
3591 intel_dp_check_link_status(struct intel_dp *intel_dp)
3592 {
3593 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3594 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3595 u8 sink_irq_vector;
3596 u8 link_status[DP_LINK_STATUS_SIZE];
3597
3598 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3599
3600 if (!intel_encoder->connectors_active)
3601 return;
3602
3603 if (WARN_ON(!intel_encoder->base.crtc))
3604 return;
3605
3606 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3607 return;
3608
3609 /* Try to read receiver status if the link appears to be up */
3610 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3611 return;
3612 }
3613
3614 /* Now read the DPCD to see if it's actually running */
3615 if (!intel_dp_get_dpcd(intel_dp)) {
3616 return;
3617 }
3618
3619 /* Try to read the source of the interrupt */
3620 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3621 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3622 /* Clear interrupt source */
3623 drm_dp_dpcd_writeb(&intel_dp->aux,
3624 DP_DEVICE_SERVICE_IRQ_VECTOR,
3625 sink_irq_vector);
3626
3627 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3628 intel_dp_handle_test_request(intel_dp);
3629 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3630 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3631 }
3632
3633 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3634 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3635 intel_encoder->base.name);
3636 intel_dp_start_link_train(intel_dp);
3637 intel_dp_complete_link_train(intel_dp);
3638 intel_dp_stop_link_train(intel_dp);
3639 }
3640 }
3641
3642 /* XXX this is probably wrong for multiple downstream ports */
3643 static enum drm_connector_status
3644 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3645 {
3646 uint8_t *dpcd = intel_dp->dpcd;
3647 uint8_t type;
3648
3649 if (!intel_dp_get_dpcd(intel_dp))
3650 return connector_status_disconnected;
3651
3652 /* if there's no downstream port, we're done */
3653 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3654 return connector_status_connected;
3655
3656 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3657 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3658 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3659 uint8_t reg;
3660
3661 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3662 &reg, 1) < 0)
3663 return connector_status_unknown;
3664
3665 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3666 : connector_status_disconnected;
3667 }
3668
3669 /* If no HPD, poke DDC gently */
3670 if (drm_probe_ddc(&intel_dp->aux.ddc))
3671 return connector_status_connected;
3672
3673 /* Well we tried, say unknown for unreliable port types */
3674 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3675 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3676 if (type == DP_DS_PORT_TYPE_VGA ||
3677 type == DP_DS_PORT_TYPE_NON_EDID)
3678 return connector_status_unknown;
3679 } else {
3680 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3681 DP_DWN_STRM_PORT_TYPE_MASK;
3682 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3683 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3684 return connector_status_unknown;
3685 }
3686
3687 /* Anything else is out of spec, warn and ignore */
3688 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3689 return connector_status_disconnected;
3690 }
3691
3692 static enum drm_connector_status
3693 ironlake_dp_detect(struct intel_dp *intel_dp)
3694 {
3695 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3696 struct drm_i915_private *dev_priv = dev->dev_private;
3697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3698 enum drm_connector_status status;
3699
3700 /* Can't disconnect eDP, but you can close the lid... */
3701 if (is_edp(intel_dp)) {
3702 status = intel_panel_detect(dev);
3703 if (status == connector_status_unknown)
3704 status = connector_status_connected;
3705 return status;
3706 }
3707
3708 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3709 return connector_status_disconnected;
3710
3711 return intel_dp_detect_dpcd(intel_dp);
3712 }
3713
3714 static enum drm_connector_status
3715 g4x_dp_detect(struct intel_dp *intel_dp)
3716 {
3717 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3718 struct drm_i915_private *dev_priv = dev->dev_private;
3719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3720 uint32_t bit;
3721
3722 /* Can't disconnect eDP, but you can close the lid... */
3723 if (is_edp(intel_dp)) {
3724 enum drm_connector_status status;
3725
3726 status = intel_panel_detect(dev);
3727 if (status == connector_status_unknown)
3728 status = connector_status_connected;
3729 return status;
3730 }
3731
3732 if (IS_VALLEYVIEW(dev)) {
3733 switch (intel_dig_port->port) {
3734 case PORT_B:
3735 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3736 break;
3737 case PORT_C:
3738 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3739 break;
3740 case PORT_D:
3741 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3742 break;
3743 default:
3744 return connector_status_unknown;
3745 }
3746 } else {
3747 switch (intel_dig_port->port) {
3748 case PORT_B:
3749 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3750 break;
3751 case PORT_C:
3752 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3753 break;
3754 case PORT_D:
3755 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3756 break;
3757 default:
3758 return connector_status_unknown;
3759 }
3760 }
3761
3762 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3763 return connector_status_disconnected;
3764
3765 return intel_dp_detect_dpcd(intel_dp);
3766 }
3767
3768 static struct edid *
3769 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3770 {
3771 struct intel_connector *intel_connector = to_intel_connector(connector);
3772
3773 /* use cached edid if we have one */
3774 if (intel_connector->edid) {
3775 /* invalid edid */
3776 if (IS_ERR(intel_connector->edid))
3777 return NULL;
3778
3779 return drm_edid_duplicate(intel_connector->edid);
3780 }
3781
3782 return drm_get_edid(connector, adapter);
3783 }
3784
3785 static int
3786 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3787 {
3788 struct intel_connector *intel_connector = to_intel_connector(connector);
3789
3790 /* use cached edid if we have one */
3791 if (intel_connector->edid) {
3792 /* invalid edid */
3793 if (IS_ERR(intel_connector->edid))
3794 return 0;
3795
3796 return intel_connector_update_modes(connector,
3797 intel_connector->edid);
3798 }
3799
3800 return intel_ddc_get_modes(connector, adapter);
3801 }
3802
3803 static enum drm_connector_status
3804 intel_dp_detect(struct drm_connector *connector, bool force)
3805 {
3806 struct intel_dp *intel_dp = intel_attached_dp(connector);
3807 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3808 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3809 struct drm_device *dev = connector->dev;
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 enum drm_connector_status status;
3812 enum intel_display_power_domain power_domain;
3813 struct edid *edid = NULL;
3814 bool ret;
3815
3816 power_domain = intel_display_port_power_domain(intel_encoder);
3817 intel_display_power_get(dev_priv, power_domain);
3818
3819 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3820 connector->base.id, connector->name);
3821
3822 if (intel_dp->is_mst) {
3823 /* MST devices are disconnected from a monitor POV */
3824 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3825 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3826 status = connector_status_disconnected;
3827 goto out;
3828 }
3829
3830 intel_dp->has_audio = false;
3831
3832 if (HAS_PCH_SPLIT(dev))
3833 status = ironlake_dp_detect(intel_dp);
3834 else
3835 status = g4x_dp_detect(intel_dp);
3836
3837 if (status != connector_status_connected)
3838 goto out;
3839
3840 intel_dp_probe_oui(intel_dp);
3841
3842 ret = intel_dp_probe_mst(intel_dp);
3843 if (ret) {
3844 /* if we are in MST mode then this connector
3845 won't appear connected or have anything with EDID on it */
3846 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3847 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3848 status = connector_status_disconnected;
3849 goto out;
3850 }
3851
3852 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3853 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3854 } else {
3855 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3856 if (edid) {
3857 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3858 kfree(edid);
3859 }
3860 }
3861
3862 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3863 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3864 status = connector_status_connected;
3865
3866 out:
3867 intel_display_power_put(dev_priv, power_domain);
3868 return status;
3869 }
3870
3871 static int intel_dp_get_modes(struct drm_connector *connector)
3872 {
3873 struct intel_dp *intel_dp = intel_attached_dp(connector);
3874 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3875 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3876 struct intel_connector *intel_connector = to_intel_connector(connector);
3877 struct drm_device *dev = connector->dev;
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879 enum intel_display_power_domain power_domain;
3880 int ret;
3881
3882 /* We should parse the EDID data and find out if it has an audio sink
3883 */
3884
3885 power_domain = intel_display_port_power_domain(intel_encoder);
3886 intel_display_power_get(dev_priv, power_domain);
3887
3888 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3889 intel_display_power_put(dev_priv, power_domain);
3890 if (ret)
3891 return ret;
3892
3893 /* if eDP has no EDID, fall back to fixed mode */
3894 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3895 struct drm_display_mode *mode;
3896 mode = drm_mode_duplicate(dev,
3897 intel_connector->panel.fixed_mode);
3898 if (mode) {
3899 drm_mode_probed_add(connector, mode);
3900 return 1;
3901 }
3902 }
3903 return 0;
3904 }
3905
3906 static bool
3907 intel_dp_detect_audio(struct drm_connector *connector)
3908 {
3909 struct intel_dp *intel_dp = intel_attached_dp(connector);
3910 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3911 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3912 struct drm_device *dev = connector->dev;
3913 struct drm_i915_private *dev_priv = dev->dev_private;
3914 enum intel_display_power_domain power_domain;
3915 struct edid *edid;
3916 bool has_audio = false;
3917
3918 power_domain = intel_display_port_power_domain(intel_encoder);
3919 intel_display_power_get(dev_priv, power_domain);
3920
3921 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3922 if (edid) {
3923 has_audio = drm_detect_monitor_audio(edid);
3924 kfree(edid);
3925 }
3926
3927 intel_display_power_put(dev_priv, power_domain);
3928
3929 return has_audio;
3930 }
3931
3932 static int
3933 intel_dp_set_property(struct drm_connector *connector,
3934 struct drm_property *property,
3935 uint64_t val)
3936 {
3937 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3938 struct intel_connector *intel_connector = to_intel_connector(connector);
3939 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3940 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3941 int ret;
3942
3943 ret = drm_object_property_set_value(&connector->base, property, val);
3944 if (ret)
3945 return ret;
3946
3947 if (property == dev_priv->force_audio_property) {
3948 int i = val;
3949 bool has_audio;
3950
3951 if (i == intel_dp->force_audio)
3952 return 0;
3953
3954 intel_dp->force_audio = i;
3955
3956 if (i == HDMI_AUDIO_AUTO)
3957 has_audio = intel_dp_detect_audio(connector);
3958 else
3959 has_audio = (i == HDMI_AUDIO_ON);
3960
3961 if (has_audio == intel_dp->has_audio)
3962 return 0;
3963
3964 intel_dp->has_audio = has_audio;
3965 goto done;
3966 }
3967
3968 if (property == dev_priv->broadcast_rgb_property) {
3969 bool old_auto = intel_dp->color_range_auto;
3970 uint32_t old_range = intel_dp->color_range;
3971
3972 switch (val) {
3973 case INTEL_BROADCAST_RGB_AUTO:
3974 intel_dp->color_range_auto = true;
3975 break;
3976 case INTEL_BROADCAST_RGB_FULL:
3977 intel_dp->color_range_auto = false;
3978 intel_dp->color_range = 0;
3979 break;
3980 case INTEL_BROADCAST_RGB_LIMITED:
3981 intel_dp->color_range_auto = false;
3982 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3983 break;
3984 default:
3985 return -EINVAL;
3986 }
3987
3988 if (old_auto == intel_dp->color_range_auto &&
3989 old_range == intel_dp->color_range)
3990 return 0;
3991
3992 goto done;
3993 }
3994
3995 if (is_edp(intel_dp) &&
3996 property == connector->dev->mode_config.scaling_mode_property) {
3997 if (val == DRM_MODE_SCALE_NONE) {
3998 DRM_DEBUG_KMS("no scaling not supported\n");
3999 return -EINVAL;
4000 }
4001
4002 if (intel_connector->panel.fitting_mode == val) {
4003 /* the eDP scaling property is not changed */
4004 return 0;
4005 }
4006 intel_connector->panel.fitting_mode = val;
4007
4008 goto done;
4009 }
4010
4011 return -EINVAL;
4012
4013 done:
4014 if (intel_encoder->base.crtc)
4015 intel_crtc_restore_mode(intel_encoder->base.crtc);
4016
4017 return 0;
4018 }
4019
4020 static void
4021 intel_dp_connector_destroy(struct drm_connector *connector)
4022 {
4023 struct intel_connector *intel_connector = to_intel_connector(connector);
4024
4025 if (!IS_ERR_OR_NULL(intel_connector->edid))
4026 kfree(intel_connector->edid);
4027
4028 /* Can't call is_edp() since the encoder may have been destroyed
4029 * already. */
4030 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4031 intel_panel_fini(&intel_connector->panel);
4032
4033 drm_connector_cleanup(connector);
4034 kfree(connector);
4035 }
4036
4037 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4038 {
4039 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4040 struct intel_dp *intel_dp = &intel_dig_port->dp;
4041 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4042
4043 drm_dp_aux_unregister(&intel_dp->aux);
4044 intel_dp_mst_encoder_cleanup(intel_dig_port);
4045 drm_encoder_cleanup(encoder);
4046 if (is_edp(intel_dp)) {
4047 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4048 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4049 edp_panel_vdd_off_sync(intel_dp);
4050 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4051 if (intel_dp->edp_notifier.notifier_call) {
4052 unregister_reboot_notifier(&intel_dp->edp_notifier);
4053 intel_dp->edp_notifier.notifier_call = NULL;
4054 }
4055 }
4056 kfree(intel_dig_port);
4057 }
4058
4059 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4060 {
4061 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4062
4063 if (!is_edp(intel_dp))
4064 return;
4065
4066 edp_panel_vdd_off_sync(intel_dp);
4067 }
4068
4069 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4070 {
4071 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4072 }
4073
4074 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4075 .dpms = intel_connector_dpms,
4076 .detect = intel_dp_detect,
4077 .fill_modes = drm_helper_probe_single_connector_modes,
4078 .set_property = intel_dp_set_property,
4079 .destroy = intel_dp_connector_destroy,
4080 };
4081
4082 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4083 .get_modes = intel_dp_get_modes,
4084 .mode_valid = intel_dp_mode_valid,
4085 .best_encoder = intel_best_encoder,
4086 };
4087
4088 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4089 .reset = intel_dp_encoder_reset,
4090 .destroy = intel_dp_encoder_destroy,
4091 };
4092
4093 void
4094 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4095 {
4096 return;
4097 }
4098
4099 bool
4100 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4101 {
4102 struct intel_dp *intel_dp = &intel_dig_port->dp;
4103 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4104 struct drm_device *dev = intel_dig_port->base.base.dev;
4105 struct drm_i915_private *dev_priv = dev->dev_private;
4106 enum intel_display_power_domain power_domain;
4107 bool ret = true;
4108
4109 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4110 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4111
4112 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4113 port_name(intel_dig_port->port),
4114 long_hpd ? "long" : "short");
4115
4116 power_domain = intel_display_port_power_domain(intel_encoder);
4117 intel_display_power_get(dev_priv, power_domain);
4118
4119 if (long_hpd) {
4120 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4121 goto mst_fail;
4122
4123 if (!intel_dp_get_dpcd(intel_dp)) {
4124 goto mst_fail;
4125 }
4126
4127 intel_dp_probe_oui(intel_dp);
4128
4129 if (!intel_dp_probe_mst(intel_dp))
4130 goto mst_fail;
4131
4132 } else {
4133 if (intel_dp->is_mst) {
4134 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4135 goto mst_fail;
4136 }
4137
4138 if (!intel_dp->is_mst) {
4139 /*
4140 * we'll check the link status via the normal hot plug path later -
4141 * but for short hpds we should check it now
4142 */
4143 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4144 intel_dp_check_link_status(intel_dp);
4145 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4146 }
4147 }
4148 ret = false;
4149 goto put_power;
4150 mst_fail:
4151 /* if we were in MST mode, and device is not there get out of MST mode */
4152 if (intel_dp->is_mst) {
4153 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4154 intel_dp->is_mst = false;
4155 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4156 }
4157 put_power:
4158 intel_display_power_put(dev_priv, power_domain);
4159
4160 return ret;
4161 }
4162
4163 /* Return which DP Port should be selected for Transcoder DP control */
4164 int
4165 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4166 {
4167 struct drm_device *dev = crtc->dev;
4168 struct intel_encoder *intel_encoder;
4169 struct intel_dp *intel_dp;
4170
4171 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4172 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4173
4174 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4175 intel_encoder->type == INTEL_OUTPUT_EDP)
4176 return intel_dp->output_reg;
4177 }
4178
4179 return -1;
4180 }
4181
4182 /* check the VBT to see whether the eDP is on DP-D port */
4183 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4184 {
4185 struct drm_i915_private *dev_priv = dev->dev_private;
4186 union child_device_config *p_child;
4187 int i;
4188 static const short port_mapping[] = {
4189 [PORT_B] = PORT_IDPB,
4190 [PORT_C] = PORT_IDPC,
4191 [PORT_D] = PORT_IDPD,
4192 };
4193
4194 if (port == PORT_A)
4195 return true;
4196
4197 if (!dev_priv->vbt.child_dev_num)
4198 return false;
4199
4200 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4201 p_child = dev_priv->vbt.child_dev + i;
4202
4203 if (p_child->common.dvo_port == port_mapping[port] &&
4204 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4205 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4206 return true;
4207 }
4208 return false;
4209 }
4210
4211 void
4212 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4213 {
4214 struct intel_connector *intel_connector = to_intel_connector(connector);
4215
4216 intel_attach_force_audio_property(connector);
4217 intel_attach_broadcast_rgb_property(connector);
4218 intel_dp->color_range_auto = true;
4219
4220 if (is_edp(intel_dp)) {
4221 drm_mode_create_scaling_mode_property(connector->dev);
4222 drm_object_attach_property(
4223 &connector->base,
4224 connector->dev->mode_config.scaling_mode_property,
4225 DRM_MODE_SCALE_ASPECT);
4226 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4227 }
4228 }
4229
4230 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4231 {
4232 intel_dp->last_power_cycle = jiffies;
4233 intel_dp->last_power_on = jiffies;
4234 intel_dp->last_backlight_off = jiffies;
4235 }
4236
4237 static void
4238 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4239 struct intel_dp *intel_dp,
4240 struct edp_power_seq *out)
4241 {
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243 struct edp_power_seq cur, vbt, spec, final;
4244 u32 pp_on, pp_off, pp_div, pp;
4245 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4246
4247 if (HAS_PCH_SPLIT(dev)) {
4248 pp_ctrl_reg = PCH_PP_CONTROL;
4249 pp_on_reg = PCH_PP_ON_DELAYS;
4250 pp_off_reg = PCH_PP_OFF_DELAYS;
4251 pp_div_reg = PCH_PP_DIVISOR;
4252 } else {
4253 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4254
4255 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4256 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4257 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4258 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4259 }
4260
4261 /* Workaround: Need to write PP_CONTROL with the unlock key as
4262 * the very first thing. */
4263 pp = ironlake_get_pp_control(intel_dp);
4264 I915_WRITE(pp_ctrl_reg, pp);
4265
4266 pp_on = I915_READ(pp_on_reg);
4267 pp_off = I915_READ(pp_off_reg);
4268 pp_div = I915_READ(pp_div_reg);
4269
4270 /* Pull timing values out of registers */
4271 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4272 PANEL_POWER_UP_DELAY_SHIFT;
4273
4274 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4275 PANEL_LIGHT_ON_DELAY_SHIFT;
4276
4277 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4278 PANEL_LIGHT_OFF_DELAY_SHIFT;
4279
4280 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4281 PANEL_POWER_DOWN_DELAY_SHIFT;
4282
4283 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4284 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4285
4286 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4287 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4288
4289 vbt = dev_priv->vbt.edp_pps;
4290
4291 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4292 * our hw here, which are all in 100usec. */
4293 spec.t1_t3 = 210 * 10;
4294 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4295 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4296 spec.t10 = 500 * 10;
4297 /* This one is special and actually in units of 100ms, but zero
4298 * based in the hw (so we need to add 100 ms). But the sw vbt
4299 * table multiplies it with 1000 to make it in units of 100usec,
4300 * too. */
4301 spec.t11_t12 = (510 + 100) * 10;
4302
4303 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4304 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4305
4306 /* Use the max of the register settings and vbt. If both are
4307 * unset, fall back to the spec limits. */
4308 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4309 spec.field : \
4310 max(cur.field, vbt.field))
4311 assign_final(t1_t3);
4312 assign_final(t8);
4313 assign_final(t9);
4314 assign_final(t10);
4315 assign_final(t11_t12);
4316 #undef assign_final
4317
4318 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4319 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4320 intel_dp->backlight_on_delay = get_delay(t8);
4321 intel_dp->backlight_off_delay = get_delay(t9);
4322 intel_dp->panel_power_down_delay = get_delay(t10);
4323 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4324 #undef get_delay
4325
4326 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4327 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4328 intel_dp->panel_power_cycle_delay);
4329
4330 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4331 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4332
4333 if (out)
4334 *out = final;
4335 }
4336
4337 static void
4338 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4339 struct intel_dp *intel_dp,
4340 struct edp_power_seq *seq)
4341 {
4342 struct drm_i915_private *dev_priv = dev->dev_private;
4343 u32 pp_on, pp_off, pp_div, port_sel = 0;
4344 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4345 int pp_on_reg, pp_off_reg, pp_div_reg;
4346 enum port port = dp_to_dig_port(intel_dp)->port;
4347
4348 if (HAS_PCH_SPLIT(dev)) {
4349 pp_on_reg = PCH_PP_ON_DELAYS;
4350 pp_off_reg = PCH_PP_OFF_DELAYS;
4351 pp_div_reg = PCH_PP_DIVISOR;
4352 } else {
4353 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4354
4355 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4356 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4357 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4358 }
4359
4360 /*
4361 * And finally store the new values in the power sequencer. The
4362 * backlight delays are set to 1 because we do manual waits on them. For
4363 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4364 * we'll end up waiting for the backlight off delay twice: once when we
4365 * do the manual sleep, and once when we disable the panel and wait for
4366 * the PP_STATUS bit to become zero.
4367 */
4368 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4369 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4370 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4371 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4372 /* Compute the divisor for the pp clock, simply match the Bspec
4373 * formula. */
4374 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4375 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4376 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4377
4378 /* Haswell doesn't have any port selection bits for the panel
4379 * power sequencer any more. */
4380 if (IS_VALLEYVIEW(dev)) {
4381 port_sel = PANEL_PORT_SELECT_VLV(port);
4382 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4383 if (port == PORT_A)
4384 port_sel = PANEL_PORT_SELECT_DPA;
4385 else
4386 port_sel = PANEL_PORT_SELECT_DPD;
4387 }
4388
4389 pp_on |= port_sel;
4390
4391 I915_WRITE(pp_on_reg, pp_on);
4392 I915_WRITE(pp_off_reg, pp_off);
4393 I915_WRITE(pp_div_reg, pp_div);
4394
4395 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4396 I915_READ(pp_on_reg),
4397 I915_READ(pp_off_reg),
4398 I915_READ(pp_div_reg));
4399 }
4400
4401 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4402 {
4403 struct drm_i915_private *dev_priv = dev->dev_private;
4404 struct intel_encoder *encoder;
4405 struct intel_dp *intel_dp = NULL;
4406 struct intel_crtc_config *config = NULL;
4407 struct intel_crtc *intel_crtc = NULL;
4408 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4409 u32 reg, val;
4410 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4411
4412 if (refresh_rate <= 0) {
4413 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4414 return;
4415 }
4416
4417 if (intel_connector == NULL) {
4418 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4419 return;
4420 }
4421
4422 /*
4423 * FIXME: This needs proper synchronization with psr state. But really
4424 * hard to tell without seeing the user of this function of this code.
4425 * Check locking and ordering once that lands.
4426 */
4427 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4428 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4429 return;
4430 }
4431
4432 encoder = intel_attached_encoder(&intel_connector->base);
4433 intel_dp = enc_to_intel_dp(&encoder->base);
4434 intel_crtc = encoder->new_crtc;
4435
4436 if (!intel_crtc) {
4437 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4438 return;
4439 }
4440
4441 config = &intel_crtc->config;
4442
4443 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4444 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4445 return;
4446 }
4447
4448 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4449 index = DRRS_LOW_RR;
4450
4451 if (index == intel_dp->drrs_state.refresh_rate_type) {
4452 DRM_DEBUG_KMS(
4453 "DRRS requested for previously set RR...ignoring\n");
4454 return;
4455 }
4456
4457 if (!intel_crtc->active) {
4458 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4459 return;
4460 }
4461
4462 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4463 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4464 val = I915_READ(reg);
4465 if (index > DRRS_HIGH_RR) {
4466 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4467 intel_dp_set_m_n(intel_crtc);
4468 } else {
4469 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4470 }
4471 I915_WRITE(reg, val);
4472 }
4473
4474 /*
4475 * mutex taken to ensure that there is no race between differnt
4476 * drrs calls trying to update refresh rate. This scenario may occur
4477 * in future when idleness detection based DRRS in kernel and
4478 * possible calls from user space to set differnt RR are made.
4479 */
4480
4481 mutex_lock(&intel_dp->drrs_state.mutex);
4482
4483 intel_dp->drrs_state.refresh_rate_type = index;
4484
4485 mutex_unlock(&intel_dp->drrs_state.mutex);
4486
4487 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4488 }
4489
4490 static struct drm_display_mode *
4491 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4492 struct intel_connector *intel_connector,
4493 struct drm_display_mode *fixed_mode)
4494 {
4495 struct drm_connector *connector = &intel_connector->base;
4496 struct intel_dp *intel_dp = &intel_dig_port->dp;
4497 struct drm_device *dev = intel_dig_port->base.base.dev;
4498 struct drm_i915_private *dev_priv = dev->dev_private;
4499 struct drm_display_mode *downclock_mode = NULL;
4500
4501 if (INTEL_INFO(dev)->gen <= 6) {
4502 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4503 return NULL;
4504 }
4505
4506 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4507 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4508 return NULL;
4509 }
4510
4511 downclock_mode = intel_find_panel_downclock
4512 (dev, fixed_mode, connector);
4513
4514 if (!downclock_mode) {
4515 DRM_DEBUG_KMS("DRRS not supported\n");
4516 return NULL;
4517 }
4518
4519 dev_priv->drrs.connector = intel_connector;
4520
4521 mutex_init(&intel_dp->drrs_state.mutex);
4522
4523 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4524
4525 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4526 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4527 return downclock_mode;
4528 }
4529
4530 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4531 {
4532 struct drm_device *dev = intel_encoder->base.dev;
4533 struct drm_i915_private *dev_priv = dev->dev_private;
4534 struct intel_dp *intel_dp;
4535 enum intel_display_power_domain power_domain;
4536
4537 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4538 return;
4539
4540 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4541 if (!edp_have_panel_vdd(intel_dp))
4542 return;
4543 /*
4544 * The VDD bit needs a power domain reference, so if the bit is
4545 * already enabled when we boot or resume, grab this reference and
4546 * schedule a vdd off, so we don't hold on to the reference
4547 * indefinitely.
4548 */
4549 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4550 power_domain = intel_display_port_power_domain(intel_encoder);
4551 intel_display_power_get(dev_priv, power_domain);
4552
4553 edp_panel_vdd_schedule_off(intel_dp);
4554 }
4555
4556 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4557 struct intel_connector *intel_connector,
4558 struct edp_power_seq *power_seq)
4559 {
4560 struct drm_connector *connector = &intel_connector->base;
4561 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4562 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4563 struct drm_device *dev = intel_encoder->base.dev;
4564 struct drm_i915_private *dev_priv = dev->dev_private;
4565 struct drm_display_mode *fixed_mode = NULL;
4566 struct drm_display_mode *downclock_mode = NULL;
4567 bool has_dpcd;
4568 struct drm_display_mode *scan;
4569 struct edid *edid;
4570
4571 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4572
4573 if (!is_edp(intel_dp))
4574 return true;
4575
4576 intel_edp_panel_vdd_sanitize(intel_encoder);
4577
4578 /* Cache DPCD and EDID for edp. */
4579 intel_edp_panel_vdd_on(intel_dp);
4580 has_dpcd = intel_dp_get_dpcd(intel_dp);
4581 intel_edp_panel_vdd_off(intel_dp, false);
4582
4583 if (has_dpcd) {
4584 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4585 dev_priv->no_aux_handshake =
4586 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4587 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4588 } else {
4589 /* if this fails, presume the device is a ghost */
4590 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4591 return false;
4592 }
4593
4594 /* We now know it's not a ghost, init power sequence regs. */
4595 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4596
4597 mutex_lock(&dev->mode_config.mutex);
4598 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4599 if (edid) {
4600 if (drm_add_edid_modes(connector, edid)) {
4601 drm_mode_connector_update_edid_property(connector,
4602 edid);
4603 drm_edid_to_eld(connector, edid);
4604 } else {
4605 kfree(edid);
4606 edid = ERR_PTR(-EINVAL);
4607 }
4608 } else {
4609 edid = ERR_PTR(-ENOENT);
4610 }
4611 intel_connector->edid = edid;
4612
4613 /* prefer fixed mode from EDID if available */
4614 list_for_each_entry(scan, &connector->probed_modes, head) {
4615 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4616 fixed_mode = drm_mode_duplicate(dev, scan);
4617 downclock_mode = intel_dp_drrs_init(
4618 intel_dig_port,
4619 intel_connector, fixed_mode);
4620 break;
4621 }
4622 }
4623
4624 /* fallback to VBT if available for eDP */
4625 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4626 fixed_mode = drm_mode_duplicate(dev,
4627 dev_priv->vbt.lfp_lvds_vbt_mode);
4628 if (fixed_mode)
4629 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4630 }
4631 mutex_unlock(&dev->mode_config.mutex);
4632
4633 if (IS_VALLEYVIEW(dev)) {
4634 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4635 register_reboot_notifier(&intel_dp->edp_notifier);
4636 }
4637
4638 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4639 intel_connector->panel.backlight_power = intel_edp_backlight_power;
4640 intel_panel_setup_backlight(connector);
4641
4642 return true;
4643 }
4644
4645 bool
4646 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4647 struct intel_connector *intel_connector)
4648 {
4649 struct drm_connector *connector = &intel_connector->base;
4650 struct intel_dp *intel_dp = &intel_dig_port->dp;
4651 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4652 struct drm_device *dev = intel_encoder->base.dev;
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654 enum port port = intel_dig_port->port;
4655 struct edp_power_seq power_seq = { 0 };
4656 int type;
4657
4658 /* intel_dp vfuncs */
4659 if (IS_VALLEYVIEW(dev))
4660 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4661 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4662 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4663 else if (HAS_PCH_SPLIT(dev))
4664 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4665 else
4666 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4667
4668 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4669
4670 /* Preserve the current hw state. */
4671 intel_dp->DP = I915_READ(intel_dp->output_reg);
4672 intel_dp->attached_connector = intel_connector;
4673
4674 if (intel_dp_is_edp(dev, port))
4675 type = DRM_MODE_CONNECTOR_eDP;
4676 else
4677 type = DRM_MODE_CONNECTOR_DisplayPort;
4678
4679 /*
4680 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4681 * for DP the encoder type can be set by the caller to
4682 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4683 */
4684 if (type == DRM_MODE_CONNECTOR_eDP)
4685 intel_encoder->type = INTEL_OUTPUT_EDP;
4686
4687 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4688 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4689 port_name(port));
4690
4691 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4692 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4693
4694 connector->interlace_allowed = true;
4695 connector->doublescan_allowed = 0;
4696
4697 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4698 edp_panel_vdd_work);
4699
4700 intel_connector_attach_encoder(intel_connector, intel_encoder);
4701 drm_connector_register(connector);
4702
4703 if (HAS_DDI(dev))
4704 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4705 else
4706 intel_connector->get_hw_state = intel_connector_get_hw_state;
4707 intel_connector->unregister = intel_dp_connector_unregister;
4708
4709 /* Set up the hotplug pin. */
4710 switch (port) {
4711 case PORT_A:
4712 intel_encoder->hpd_pin = HPD_PORT_A;
4713 break;
4714 case PORT_B:
4715 intel_encoder->hpd_pin = HPD_PORT_B;
4716 break;
4717 case PORT_C:
4718 intel_encoder->hpd_pin = HPD_PORT_C;
4719 break;
4720 case PORT_D:
4721 intel_encoder->hpd_pin = HPD_PORT_D;
4722 break;
4723 default:
4724 BUG();
4725 }
4726
4727 if (is_edp(intel_dp)) {
4728 intel_dp_init_panel_power_timestamps(intel_dp);
4729 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4730 }
4731
4732 intel_dp_aux_init(intel_dp, intel_connector);
4733
4734 /* init MST on ports that can support it */
4735 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4736 if (port == PORT_B || port == PORT_C || port == PORT_D) {
4737 intel_dp_mst_encoder_init(intel_dig_port, intel_connector->base.base.id);
4738 }
4739 }
4740
4741 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4742 drm_dp_aux_unregister(&intel_dp->aux);
4743 if (is_edp(intel_dp)) {
4744 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4745 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4746 edp_panel_vdd_off_sync(intel_dp);
4747 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4748 }
4749 drm_connector_unregister(connector);
4750 drm_connector_cleanup(connector);
4751 return false;
4752 }
4753
4754 intel_dp_add_properties(intel_dp, connector);
4755
4756 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4757 * 0xd. Failure to do so will result in spurious interrupts being
4758 * generated on the port when a cable is not attached.
4759 */
4760 if (IS_G4X(dev) && !IS_GM45(dev)) {
4761 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4762 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4763 }
4764
4765 return true;
4766 }
4767
4768 void
4769 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4770 {
4771 struct drm_i915_private *dev_priv = dev->dev_private;
4772 struct intel_digital_port *intel_dig_port;
4773 struct intel_encoder *intel_encoder;
4774 struct drm_encoder *encoder;
4775 struct intel_connector *intel_connector;
4776
4777 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4778 if (!intel_dig_port)
4779 return;
4780
4781 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4782 if (!intel_connector) {
4783 kfree(intel_dig_port);
4784 return;
4785 }
4786
4787 intel_encoder = &intel_dig_port->base;
4788 encoder = &intel_encoder->base;
4789
4790 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4791 DRM_MODE_ENCODER_TMDS);
4792
4793 intel_encoder->compute_config = intel_dp_compute_config;
4794 intel_encoder->disable = intel_disable_dp;
4795 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4796 intel_encoder->get_config = intel_dp_get_config;
4797 intel_encoder->suspend = intel_dp_encoder_suspend;
4798 if (IS_CHERRYVIEW(dev)) {
4799 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4800 intel_encoder->pre_enable = chv_pre_enable_dp;
4801 intel_encoder->enable = vlv_enable_dp;
4802 intel_encoder->post_disable = chv_post_disable_dp;
4803 } else if (IS_VALLEYVIEW(dev)) {
4804 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4805 intel_encoder->pre_enable = vlv_pre_enable_dp;
4806 intel_encoder->enable = vlv_enable_dp;
4807 intel_encoder->post_disable = vlv_post_disable_dp;
4808 } else {
4809 intel_encoder->pre_enable = g4x_pre_enable_dp;
4810 intel_encoder->enable = g4x_enable_dp;
4811 intel_encoder->post_disable = g4x_post_disable_dp;
4812 }
4813
4814 intel_dig_port->port = port;
4815 intel_dig_port->dp.output_reg = output_reg;
4816
4817 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4818 if (IS_CHERRYVIEW(dev)) {
4819 if (port == PORT_D)
4820 intel_encoder->crtc_mask = 1 << 2;
4821 else
4822 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4823 } else {
4824 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4825 }
4826 intel_encoder->cloneable = 0;
4827 intel_encoder->hot_plug = intel_dp_hot_plug;
4828
4829 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
4830 dev_priv->hpd_irq_port[port] = intel_dig_port;
4831
4832 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4833 drm_encoder_cleanup(encoder);
4834 kfree(intel_dig_port);
4835 kfree(intel_connector);
4836 }
4837 }
4838
4839 void intel_dp_mst_suspend(struct drm_device *dev)
4840 {
4841 struct drm_i915_private *dev_priv = dev->dev_private;
4842 int i;
4843
4844 /* disable MST */
4845 for (i = 0; i < I915_MAX_PORTS; i++) {
4846 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4847 if (!intel_dig_port)
4848 continue;
4849
4850 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4851 if (!intel_dig_port->dp.can_mst)
4852 continue;
4853 if (intel_dig_port->dp.is_mst)
4854 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
4855 }
4856 }
4857 }
4858
4859 void intel_dp_mst_resume(struct drm_device *dev)
4860 {
4861 struct drm_i915_private *dev_priv = dev->dev_private;
4862 int i;
4863
4864 for (i = 0; i < I915_MAX_PORTS; i++) {
4865 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
4866 if (!intel_dig_port)
4867 continue;
4868 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
4869 int ret;
4870
4871 if (!intel_dig_port->dp.can_mst)
4872 continue;
4873
4874 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
4875 if (ret != 0) {
4876 intel_dp_check_mst_status(&intel_dig_port->dp);
4877 }
4878 }
4879 }
4880 }
This page took 0.136231 seconds and 6 git commands to generate.