Merge tag 'asoc-v3.16-rc5' into asoc-linus
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 static int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static enum pipe
294 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
298 struct drm_device *dev = intel_dig_port->base.base.dev;
299 struct drm_i915_private *dev_priv = dev->dev_private;
300 enum port port = intel_dig_port->port;
301 enum pipe pipe;
302
303 /* modeset should have pipe */
304 if (crtc)
305 return to_intel_crtc(crtc)->pipe;
306
307 /* init time, try to find a pipe with this port selected */
308 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
309 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
310 PANEL_PORT_SELECT_MASK;
311 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
312 return pipe;
313 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
314 return pipe;
315 }
316
317 /* shrug */
318 return PIPE_A;
319 }
320
321 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
322 {
323 struct drm_device *dev = intel_dp_to_dev(intel_dp);
324
325 if (HAS_PCH_SPLIT(dev))
326 return PCH_PP_CONTROL;
327 else
328 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
329 }
330
331 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
332 {
333 struct drm_device *dev = intel_dp_to_dev(intel_dp);
334
335 if (HAS_PCH_SPLIT(dev))
336 return PCH_PP_STATUS;
337 else
338 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
339 }
340
341 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
342 This function only applicable when panel PM state is not to be tracked */
343 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
344 void *unused)
345 {
346 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
347 edp_notifier);
348 struct drm_device *dev = intel_dp_to_dev(intel_dp);
349 struct drm_i915_private *dev_priv = dev->dev_private;
350 u32 pp_div;
351 u32 pp_ctrl_reg, pp_div_reg;
352 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
353
354 if (!is_edp(intel_dp) || code != SYS_RESTART)
355 return 0;
356
357 if (IS_VALLEYVIEW(dev)) {
358 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
359 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
360 pp_div = I915_READ(pp_div_reg);
361 pp_div &= PP_REFERENCE_DIVIDER_MASK;
362
363 /* 0x1F write to PP_DIV_REG sets max cycle delay */
364 I915_WRITE(pp_div_reg, pp_div | 0x1F);
365 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
366 msleep(intel_dp->panel_power_cycle_delay);
367 }
368
369 return 0;
370 }
371
372 static bool edp_have_panel_power(struct intel_dp *intel_dp)
373 {
374 struct drm_device *dev = intel_dp_to_dev(intel_dp);
375 struct drm_i915_private *dev_priv = dev->dev_private;
376
377 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
378 }
379
380 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
381 {
382 struct drm_device *dev = intel_dp_to_dev(intel_dp);
383 struct drm_i915_private *dev_priv = dev->dev_private;
384 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
385 struct intel_encoder *intel_encoder = &intel_dig_port->base;
386 enum intel_display_power_domain power_domain;
387
388 power_domain = intel_display_port_power_domain(intel_encoder);
389 return intel_display_power_enabled(dev_priv, power_domain) &&
390 (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
391 }
392
393 static void
394 intel_dp_check_edp(struct intel_dp *intel_dp)
395 {
396 struct drm_device *dev = intel_dp_to_dev(intel_dp);
397 struct drm_i915_private *dev_priv = dev->dev_private;
398
399 if (!is_edp(intel_dp))
400 return;
401
402 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
403 WARN(1, "eDP powered off while attempting aux channel communication.\n");
404 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
405 I915_READ(_pp_stat_reg(intel_dp)),
406 I915_READ(_pp_ctrl_reg(intel_dp)));
407 }
408 }
409
410 static uint32_t
411 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
412 {
413 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
414 struct drm_device *dev = intel_dig_port->base.base.dev;
415 struct drm_i915_private *dev_priv = dev->dev_private;
416 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
417 uint32_t status;
418 bool done;
419
420 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
421 if (has_aux_irq)
422 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
423 msecs_to_jiffies_timeout(10));
424 else
425 done = wait_for_atomic(C, 10) == 0;
426 if (!done)
427 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
428 has_aux_irq);
429 #undef C
430
431 return status;
432 }
433
434 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
435 {
436 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
437 struct drm_device *dev = intel_dig_port->base.base.dev;
438
439 /*
440 * The clock divider is based off the hrawclk, and would like to run at
441 * 2MHz. So, take the hrawclk value and divide by 2 and use that
442 */
443 return index ? 0 : intel_hrawclk(dev) / 2;
444 }
445
446 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
447 {
448 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
449 struct drm_device *dev = intel_dig_port->base.base.dev;
450
451 if (index)
452 return 0;
453
454 if (intel_dig_port->port == PORT_A) {
455 if (IS_GEN6(dev) || IS_GEN7(dev))
456 return 200; /* SNB & IVB eDP input clock at 400Mhz */
457 else
458 return 225; /* eDP input clock at 450Mhz */
459 } else {
460 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
461 }
462 }
463
464 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
465 {
466 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
467 struct drm_device *dev = intel_dig_port->base.base.dev;
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 if (intel_dig_port->port == PORT_A) {
471 if (index)
472 return 0;
473 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
474 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
475 /* Workaround for non-ULT HSW */
476 switch (index) {
477 case 0: return 63;
478 case 1: return 72;
479 default: return 0;
480 }
481 } else {
482 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
483 }
484 }
485
486 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
487 {
488 return index ? 0 : 100;
489 }
490
491 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
492 bool has_aux_irq,
493 int send_bytes,
494 uint32_t aux_clock_divider)
495 {
496 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
497 struct drm_device *dev = intel_dig_port->base.base.dev;
498 uint32_t precharge, timeout;
499
500 if (IS_GEN6(dev))
501 precharge = 3;
502 else
503 precharge = 5;
504
505 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
506 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
507 else
508 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
509
510 return DP_AUX_CH_CTL_SEND_BUSY |
511 DP_AUX_CH_CTL_DONE |
512 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
513 DP_AUX_CH_CTL_TIME_OUT_ERROR |
514 timeout |
515 DP_AUX_CH_CTL_RECEIVE_ERROR |
516 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
517 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
518 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
519 }
520
521 static int
522 intel_dp_aux_ch(struct intel_dp *intel_dp,
523 uint8_t *send, int send_bytes,
524 uint8_t *recv, int recv_size)
525 {
526 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
527 struct drm_device *dev = intel_dig_port->base.base.dev;
528 struct drm_i915_private *dev_priv = dev->dev_private;
529 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
530 uint32_t ch_data = ch_ctl + 4;
531 uint32_t aux_clock_divider;
532 int i, ret, recv_bytes;
533 uint32_t status;
534 int try, clock = 0;
535 bool has_aux_irq = HAS_AUX_IRQ(dev);
536 bool vdd;
537
538 vdd = _edp_panel_vdd_on(intel_dp);
539
540 /* dp aux is extremely sensitive to irq latency, hence request the
541 * lowest possible wakeup latency and so prevent the cpu from going into
542 * deep sleep states.
543 */
544 pm_qos_update_request(&dev_priv->pm_qos, 0);
545
546 intel_dp_check_edp(intel_dp);
547
548 intel_aux_display_runtime_get(dev_priv);
549
550 /* Try to wait for any previous AUX channel activity */
551 for (try = 0; try < 3; try++) {
552 status = I915_READ_NOTRACE(ch_ctl);
553 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
554 break;
555 msleep(1);
556 }
557
558 if (try == 3) {
559 WARN(1, "dp_aux_ch not started status 0x%08x\n",
560 I915_READ(ch_ctl));
561 ret = -EBUSY;
562 goto out;
563 }
564
565 /* Only 5 data registers! */
566 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
567 ret = -E2BIG;
568 goto out;
569 }
570
571 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
572 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
573 has_aux_irq,
574 send_bytes,
575 aux_clock_divider);
576
577 /* Must try at least 3 times according to DP spec */
578 for (try = 0; try < 5; try++) {
579 /* Load the send data into the aux channel data registers */
580 for (i = 0; i < send_bytes; i += 4)
581 I915_WRITE(ch_data + i,
582 pack_aux(send + i, send_bytes - i));
583
584 /* Send the command and wait for it to complete */
585 I915_WRITE(ch_ctl, send_ctl);
586
587 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
588
589 /* Clear done status and any errors */
590 I915_WRITE(ch_ctl,
591 status |
592 DP_AUX_CH_CTL_DONE |
593 DP_AUX_CH_CTL_TIME_OUT_ERROR |
594 DP_AUX_CH_CTL_RECEIVE_ERROR);
595
596 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
597 DP_AUX_CH_CTL_RECEIVE_ERROR))
598 continue;
599 if (status & DP_AUX_CH_CTL_DONE)
600 break;
601 }
602 if (status & DP_AUX_CH_CTL_DONE)
603 break;
604 }
605
606 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
607 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
608 ret = -EBUSY;
609 goto out;
610 }
611
612 /* Check for timeout or receive error.
613 * Timeouts occur when the sink is not connected
614 */
615 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
616 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
617 ret = -EIO;
618 goto out;
619 }
620
621 /* Timeouts occur when the device isn't connected, so they're
622 * "normal" -- don't fill the kernel log with these */
623 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
624 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
625 ret = -ETIMEDOUT;
626 goto out;
627 }
628
629 /* Unload any bytes sent back from the other side */
630 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
631 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
632 if (recv_bytes > recv_size)
633 recv_bytes = recv_size;
634
635 for (i = 0; i < recv_bytes; i += 4)
636 unpack_aux(I915_READ(ch_data + i),
637 recv + i, recv_bytes - i);
638
639 ret = recv_bytes;
640 out:
641 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
642 intel_aux_display_runtime_put(dev_priv);
643
644 if (vdd)
645 edp_panel_vdd_off(intel_dp, false);
646
647 return ret;
648 }
649
650 #define BARE_ADDRESS_SIZE 3
651 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
652 static ssize_t
653 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
654 {
655 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
656 uint8_t txbuf[20], rxbuf[20];
657 size_t txsize, rxsize;
658 int ret;
659
660 txbuf[0] = msg->request << 4;
661 txbuf[1] = msg->address >> 8;
662 txbuf[2] = msg->address & 0xff;
663 txbuf[3] = msg->size - 1;
664
665 switch (msg->request & ~DP_AUX_I2C_MOT) {
666 case DP_AUX_NATIVE_WRITE:
667 case DP_AUX_I2C_WRITE:
668 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
669 rxsize = 1;
670
671 if (WARN_ON(txsize > 20))
672 return -E2BIG;
673
674 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
675
676 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
677 if (ret > 0) {
678 msg->reply = rxbuf[0] >> 4;
679
680 /* Return payload size. */
681 ret = msg->size;
682 }
683 break;
684
685 case DP_AUX_NATIVE_READ:
686 case DP_AUX_I2C_READ:
687 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
688 rxsize = msg->size + 1;
689
690 if (WARN_ON(rxsize > 20))
691 return -E2BIG;
692
693 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
694 if (ret > 0) {
695 msg->reply = rxbuf[0] >> 4;
696 /*
697 * Assume happy day, and copy the data. The caller is
698 * expected to check msg->reply before touching it.
699 *
700 * Return payload size.
701 */
702 ret--;
703 memcpy(msg->buffer, rxbuf + 1, ret);
704 }
705 break;
706
707 default:
708 ret = -EINVAL;
709 break;
710 }
711
712 return ret;
713 }
714
715 static void
716 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
717 {
718 struct drm_device *dev = intel_dp_to_dev(intel_dp);
719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720 enum port port = intel_dig_port->port;
721 const char *name = NULL;
722 int ret;
723
724 switch (port) {
725 case PORT_A:
726 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
727 name = "DPDDC-A";
728 break;
729 case PORT_B:
730 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
731 name = "DPDDC-B";
732 break;
733 case PORT_C:
734 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
735 name = "DPDDC-C";
736 break;
737 case PORT_D:
738 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
739 name = "DPDDC-D";
740 break;
741 default:
742 BUG();
743 }
744
745 if (!HAS_DDI(dev))
746 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
747
748 intel_dp->aux.name = name;
749 intel_dp->aux.dev = dev->dev;
750 intel_dp->aux.transfer = intel_dp_aux_transfer;
751
752 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
753 connector->base.kdev->kobj.name);
754
755 ret = drm_dp_aux_register(&intel_dp->aux);
756 if (ret < 0) {
757 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
758 name, ret);
759 return;
760 }
761
762 ret = sysfs_create_link(&connector->base.kdev->kobj,
763 &intel_dp->aux.ddc.dev.kobj,
764 intel_dp->aux.ddc.dev.kobj.name);
765 if (ret < 0) {
766 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
767 drm_dp_aux_unregister(&intel_dp->aux);
768 }
769 }
770
771 static void
772 intel_dp_connector_unregister(struct intel_connector *intel_connector)
773 {
774 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
775
776 sysfs_remove_link(&intel_connector->base.kdev->kobj,
777 intel_dp->aux.ddc.dev.kobj.name);
778 intel_connector_unregister(intel_connector);
779 }
780
781 static void
782 intel_dp_set_clock(struct intel_encoder *encoder,
783 struct intel_crtc_config *pipe_config, int link_bw)
784 {
785 struct drm_device *dev = encoder->base.dev;
786 const struct dp_link_dpll *divisor = NULL;
787 int i, count = 0;
788
789 if (IS_G4X(dev)) {
790 divisor = gen4_dpll;
791 count = ARRAY_SIZE(gen4_dpll);
792 } else if (IS_HASWELL(dev)) {
793 /* Haswell has special-purpose DP DDI clocks. */
794 } else if (HAS_PCH_SPLIT(dev)) {
795 divisor = pch_dpll;
796 count = ARRAY_SIZE(pch_dpll);
797 } else if (IS_CHERRYVIEW(dev)) {
798 divisor = chv_dpll;
799 count = ARRAY_SIZE(chv_dpll);
800 } else if (IS_VALLEYVIEW(dev)) {
801 divisor = vlv_dpll;
802 count = ARRAY_SIZE(vlv_dpll);
803 }
804
805 if (divisor && count) {
806 for (i = 0; i < count; i++) {
807 if (link_bw == divisor[i].link_bw) {
808 pipe_config->dpll = divisor[i].dpll;
809 pipe_config->clock_set = true;
810 break;
811 }
812 }
813 }
814 }
815
816 static void
817 intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
818 {
819 struct drm_device *dev = crtc->base.dev;
820 struct drm_i915_private *dev_priv = dev->dev_private;
821 enum transcoder transcoder = crtc->config.cpu_transcoder;
822
823 I915_WRITE(PIPE_DATA_M2(transcoder),
824 TU_SIZE(m_n->tu) | m_n->gmch_m);
825 I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
826 I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
827 I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
828 }
829
830 bool
831 intel_dp_compute_config(struct intel_encoder *encoder,
832 struct intel_crtc_config *pipe_config)
833 {
834 struct drm_device *dev = encoder->base.dev;
835 struct drm_i915_private *dev_priv = dev->dev_private;
836 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
837 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838 enum port port = dp_to_dig_port(intel_dp)->port;
839 struct intel_crtc *intel_crtc = encoder->new_crtc;
840 struct intel_connector *intel_connector = intel_dp->attached_connector;
841 int lane_count, clock;
842 int min_lane_count = 1;
843 int max_lane_count = intel_dp_max_lane_count(intel_dp);
844 /* Conveniently, the link BW constants become indices with a shift...*/
845 int min_clock = 0;
846 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
847 int bpp, mode_rate;
848 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
849 int link_avail, link_clock;
850
851 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
852 pipe_config->has_pch_encoder = true;
853
854 pipe_config->has_dp_encoder = true;
855 pipe_config->has_audio = intel_dp->has_audio;
856
857 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
858 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
859 adjusted_mode);
860 if (!HAS_PCH_SPLIT(dev))
861 intel_gmch_panel_fitting(intel_crtc, pipe_config,
862 intel_connector->panel.fitting_mode);
863 else
864 intel_pch_panel_fitting(intel_crtc, pipe_config,
865 intel_connector->panel.fitting_mode);
866 }
867
868 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
869 return false;
870
871 DRM_DEBUG_KMS("DP link computation with max lane count %i "
872 "max bw %02x pixel clock %iKHz\n",
873 max_lane_count, bws[max_clock],
874 adjusted_mode->crtc_clock);
875
876 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
877 * bpc in between. */
878 bpp = pipe_config->pipe_bpp;
879 if (is_edp(intel_dp)) {
880 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
881 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
882 dev_priv->vbt.edp_bpp);
883 bpp = dev_priv->vbt.edp_bpp;
884 }
885
886 if (IS_BROADWELL(dev)) {
887 /* Yes, it's an ugly hack. */
888 min_lane_count = max_lane_count;
889 DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
890 min_lane_count);
891 } else if (dev_priv->vbt.edp_lanes) {
892 min_lane_count = min(dev_priv->vbt.edp_lanes,
893 max_lane_count);
894 DRM_DEBUG_KMS("using min %u lanes per VBT\n",
895 min_lane_count);
896 }
897
898 if (dev_priv->vbt.edp_rate) {
899 min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
900 DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
901 bws[min_clock]);
902 }
903 }
904
905 for (; bpp >= 6*3; bpp -= 2*3) {
906 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
907 bpp);
908
909 for (clock = min_clock; clock <= max_clock; clock++) {
910 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
911 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
912 link_avail = intel_dp_max_data_rate(link_clock,
913 lane_count);
914
915 if (mode_rate <= link_avail) {
916 goto found;
917 }
918 }
919 }
920 }
921
922 return false;
923
924 found:
925 if (intel_dp->color_range_auto) {
926 /*
927 * See:
928 * CEA-861-E - 5.1 Default Encoding Parameters
929 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
930 */
931 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
932 intel_dp->color_range = DP_COLOR_RANGE_16_235;
933 else
934 intel_dp->color_range = 0;
935 }
936
937 if (intel_dp->color_range)
938 pipe_config->limited_color_range = true;
939
940 intel_dp->link_bw = bws[clock];
941 intel_dp->lane_count = lane_count;
942 pipe_config->pipe_bpp = bpp;
943 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
944
945 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
946 intel_dp->link_bw, intel_dp->lane_count,
947 pipe_config->port_clock, bpp);
948 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
949 mode_rate, link_avail);
950
951 intel_link_compute_m_n(bpp, lane_count,
952 adjusted_mode->crtc_clock,
953 pipe_config->port_clock,
954 &pipe_config->dp_m_n);
955
956 if (intel_connector->panel.downclock_mode != NULL &&
957 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
958 intel_link_compute_m_n(bpp, lane_count,
959 intel_connector->panel.downclock_mode->clock,
960 pipe_config->port_clock,
961 &pipe_config->dp_m2_n2);
962 }
963
964 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
965
966 return true;
967 }
968
969 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
970 {
971 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
972 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
973 struct drm_device *dev = crtc->base.dev;
974 struct drm_i915_private *dev_priv = dev->dev_private;
975 u32 dpa_ctl;
976
977 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
978 dpa_ctl = I915_READ(DP_A);
979 dpa_ctl &= ~DP_PLL_FREQ_MASK;
980
981 if (crtc->config.port_clock == 162000) {
982 /* For a long time we've carried around a ILK-DevA w/a for the
983 * 160MHz clock. If we're really unlucky, it's still required.
984 */
985 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
986 dpa_ctl |= DP_PLL_FREQ_160MHZ;
987 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
988 } else {
989 dpa_ctl |= DP_PLL_FREQ_270MHZ;
990 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
991 }
992
993 I915_WRITE(DP_A, dpa_ctl);
994
995 POSTING_READ(DP_A);
996 udelay(500);
997 }
998
999 static void intel_dp_prepare(struct intel_encoder *encoder)
1000 {
1001 struct drm_device *dev = encoder->base.dev;
1002 struct drm_i915_private *dev_priv = dev->dev_private;
1003 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1004 enum port port = dp_to_dig_port(intel_dp)->port;
1005 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1006 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1007
1008 /*
1009 * There are four kinds of DP registers:
1010 *
1011 * IBX PCH
1012 * SNB CPU
1013 * IVB CPU
1014 * CPT PCH
1015 *
1016 * IBX PCH and CPU are the same for almost everything,
1017 * except that the CPU DP PLL is configured in this
1018 * register
1019 *
1020 * CPT PCH is quite different, having many bits moved
1021 * to the TRANS_DP_CTL register instead. That
1022 * configuration happens (oddly) in ironlake_pch_enable
1023 */
1024
1025 /* Preserve the BIOS-computed detected bit. This is
1026 * supposed to be read-only.
1027 */
1028 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1029
1030 /* Handle DP bits in common between all three register formats */
1031 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1032 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1033
1034 if (crtc->config.has_audio) {
1035 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1036 pipe_name(crtc->pipe));
1037 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1038 intel_write_eld(&encoder->base, adjusted_mode);
1039 }
1040
1041 /* Split out the IBX/CPU vs CPT settings */
1042
1043 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1044 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1045 intel_dp->DP |= DP_SYNC_HS_HIGH;
1046 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1047 intel_dp->DP |= DP_SYNC_VS_HIGH;
1048 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1049
1050 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1051 intel_dp->DP |= DP_ENHANCED_FRAMING;
1052
1053 intel_dp->DP |= crtc->pipe << 29;
1054 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1055 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1056 intel_dp->DP |= intel_dp->color_range;
1057
1058 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1059 intel_dp->DP |= DP_SYNC_HS_HIGH;
1060 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1061 intel_dp->DP |= DP_SYNC_VS_HIGH;
1062 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1063
1064 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1065 intel_dp->DP |= DP_ENHANCED_FRAMING;
1066
1067 if (!IS_CHERRYVIEW(dev)) {
1068 if (crtc->pipe == 1)
1069 intel_dp->DP |= DP_PIPEB_SELECT;
1070 } else {
1071 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1072 }
1073 } else {
1074 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1075 }
1076 }
1077
1078 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1079 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1080
1081 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1082 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1083
1084 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1085 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1086
1087 static void wait_panel_status(struct intel_dp *intel_dp,
1088 u32 mask,
1089 u32 value)
1090 {
1091 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1092 struct drm_i915_private *dev_priv = dev->dev_private;
1093 u32 pp_stat_reg, pp_ctrl_reg;
1094
1095 pp_stat_reg = _pp_stat_reg(intel_dp);
1096 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1097
1098 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1099 mask, value,
1100 I915_READ(pp_stat_reg),
1101 I915_READ(pp_ctrl_reg));
1102
1103 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1104 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1105 I915_READ(pp_stat_reg),
1106 I915_READ(pp_ctrl_reg));
1107 }
1108
1109 DRM_DEBUG_KMS("Wait complete\n");
1110 }
1111
1112 static void wait_panel_on(struct intel_dp *intel_dp)
1113 {
1114 DRM_DEBUG_KMS("Wait for panel power on\n");
1115 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1116 }
1117
1118 static void wait_panel_off(struct intel_dp *intel_dp)
1119 {
1120 DRM_DEBUG_KMS("Wait for panel power off time\n");
1121 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1122 }
1123
1124 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1125 {
1126 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1127
1128 /* When we disable the VDD override bit last we have to do the manual
1129 * wait. */
1130 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1131 intel_dp->panel_power_cycle_delay);
1132
1133 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1134 }
1135
1136 static void wait_backlight_on(struct intel_dp *intel_dp)
1137 {
1138 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1139 intel_dp->backlight_on_delay);
1140 }
1141
1142 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1143 {
1144 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1145 intel_dp->backlight_off_delay);
1146 }
1147
1148 /* Read the current pp_control value, unlocking the register if it
1149 * is locked
1150 */
1151
1152 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1153 {
1154 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 u32 control;
1157
1158 control = I915_READ(_pp_ctrl_reg(intel_dp));
1159 control &= ~PANEL_UNLOCK_MASK;
1160 control |= PANEL_UNLOCK_REGS;
1161 return control;
1162 }
1163
1164 static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1165 {
1166 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1167 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1168 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1169 struct drm_i915_private *dev_priv = dev->dev_private;
1170 enum intel_display_power_domain power_domain;
1171 u32 pp;
1172 u32 pp_stat_reg, pp_ctrl_reg;
1173 bool need_to_disable = !intel_dp->want_panel_vdd;
1174
1175 if (!is_edp(intel_dp))
1176 return false;
1177
1178 intel_dp->want_panel_vdd = true;
1179
1180 if (edp_have_panel_vdd(intel_dp))
1181 return need_to_disable;
1182
1183 power_domain = intel_display_port_power_domain(intel_encoder);
1184 intel_display_power_get(dev_priv, power_domain);
1185
1186 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1187
1188 if (!edp_have_panel_power(intel_dp))
1189 wait_panel_power_cycle(intel_dp);
1190
1191 pp = ironlake_get_pp_control(intel_dp);
1192 pp |= EDP_FORCE_VDD;
1193
1194 pp_stat_reg = _pp_stat_reg(intel_dp);
1195 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1196
1197 I915_WRITE(pp_ctrl_reg, pp);
1198 POSTING_READ(pp_ctrl_reg);
1199 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1200 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1201 /*
1202 * If the panel wasn't on, delay before accessing aux channel
1203 */
1204 if (!edp_have_panel_power(intel_dp)) {
1205 DRM_DEBUG_KMS("eDP was not running\n");
1206 msleep(intel_dp->panel_power_up_delay);
1207 }
1208
1209 return need_to_disable;
1210 }
1211
1212 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1213 {
1214 if (is_edp(intel_dp)) {
1215 bool vdd = _edp_panel_vdd_on(intel_dp);
1216
1217 WARN(!vdd, "eDP VDD already requested on\n");
1218 }
1219 }
1220
1221 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1222 {
1223 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1224 struct drm_i915_private *dev_priv = dev->dev_private;
1225 u32 pp;
1226 u32 pp_stat_reg, pp_ctrl_reg;
1227
1228 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1229
1230 if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1231 struct intel_digital_port *intel_dig_port =
1232 dp_to_dig_port(intel_dp);
1233 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1234 enum intel_display_power_domain power_domain;
1235
1236 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1237
1238 pp = ironlake_get_pp_control(intel_dp);
1239 pp &= ~EDP_FORCE_VDD;
1240
1241 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1242 pp_stat_reg = _pp_stat_reg(intel_dp);
1243
1244 I915_WRITE(pp_ctrl_reg, pp);
1245 POSTING_READ(pp_ctrl_reg);
1246
1247 /* Make sure sequencer is idle before allowing subsequent activity */
1248 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1249 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1250
1251 if ((pp & POWER_TARGET_ON) == 0)
1252 intel_dp->last_power_cycle = jiffies;
1253
1254 power_domain = intel_display_port_power_domain(intel_encoder);
1255 intel_display_power_put(dev_priv, power_domain);
1256 }
1257 }
1258
1259 static void edp_panel_vdd_work(struct work_struct *__work)
1260 {
1261 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1262 struct intel_dp, panel_vdd_work);
1263 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1264
1265 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1266 edp_panel_vdd_off_sync(intel_dp);
1267 drm_modeset_unlock(&dev->mode_config.connection_mutex);
1268 }
1269
1270 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1271 {
1272 if (!is_edp(intel_dp))
1273 return;
1274
1275 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1276
1277 intel_dp->want_panel_vdd = false;
1278
1279 if (sync) {
1280 edp_panel_vdd_off_sync(intel_dp);
1281 } else {
1282 /*
1283 * Queue the timer to fire a long
1284 * time from now (relative to the power down delay)
1285 * to keep the panel power up across a sequence of operations
1286 */
1287 schedule_delayed_work(&intel_dp->panel_vdd_work,
1288 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1289 }
1290 }
1291
1292 void intel_edp_panel_on(struct intel_dp *intel_dp)
1293 {
1294 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1295 struct drm_i915_private *dev_priv = dev->dev_private;
1296 u32 pp;
1297 u32 pp_ctrl_reg;
1298
1299 if (!is_edp(intel_dp))
1300 return;
1301
1302 DRM_DEBUG_KMS("Turn eDP power on\n");
1303
1304 if (edp_have_panel_power(intel_dp)) {
1305 DRM_DEBUG_KMS("eDP power already on\n");
1306 return;
1307 }
1308
1309 wait_panel_power_cycle(intel_dp);
1310
1311 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1312 pp = ironlake_get_pp_control(intel_dp);
1313 if (IS_GEN5(dev)) {
1314 /* ILK workaround: disable reset around power sequence */
1315 pp &= ~PANEL_POWER_RESET;
1316 I915_WRITE(pp_ctrl_reg, pp);
1317 POSTING_READ(pp_ctrl_reg);
1318 }
1319
1320 pp |= POWER_TARGET_ON;
1321 if (!IS_GEN5(dev))
1322 pp |= PANEL_POWER_RESET;
1323
1324 I915_WRITE(pp_ctrl_reg, pp);
1325 POSTING_READ(pp_ctrl_reg);
1326
1327 wait_panel_on(intel_dp);
1328 intel_dp->last_power_on = jiffies;
1329
1330 if (IS_GEN5(dev)) {
1331 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1332 I915_WRITE(pp_ctrl_reg, pp);
1333 POSTING_READ(pp_ctrl_reg);
1334 }
1335 }
1336
1337 void intel_edp_panel_off(struct intel_dp *intel_dp)
1338 {
1339 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1340 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1341 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1342 struct drm_i915_private *dev_priv = dev->dev_private;
1343 enum intel_display_power_domain power_domain;
1344 u32 pp;
1345 u32 pp_ctrl_reg;
1346
1347 if (!is_edp(intel_dp))
1348 return;
1349
1350 DRM_DEBUG_KMS("Turn eDP power off\n");
1351
1352 edp_wait_backlight_off(intel_dp);
1353
1354 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1355
1356 pp = ironlake_get_pp_control(intel_dp);
1357 /* We need to switch off panel power _and_ force vdd, for otherwise some
1358 * panels get very unhappy and cease to work. */
1359 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1360 EDP_BLC_ENABLE);
1361
1362 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1363
1364 intel_dp->want_panel_vdd = false;
1365
1366 I915_WRITE(pp_ctrl_reg, pp);
1367 POSTING_READ(pp_ctrl_reg);
1368
1369 intel_dp->last_power_cycle = jiffies;
1370 wait_panel_off(intel_dp);
1371
1372 /* We got a reference when we enabled the VDD. */
1373 power_domain = intel_display_port_power_domain(intel_encoder);
1374 intel_display_power_put(dev_priv, power_domain);
1375 }
1376
1377 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1378 {
1379 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1380 struct drm_device *dev = intel_dig_port->base.base.dev;
1381 struct drm_i915_private *dev_priv = dev->dev_private;
1382 u32 pp;
1383 u32 pp_ctrl_reg;
1384
1385 if (!is_edp(intel_dp))
1386 return;
1387
1388 DRM_DEBUG_KMS("\n");
1389 /*
1390 * If we enable the backlight right away following a panel power
1391 * on, we may see slight flicker as the panel syncs with the eDP
1392 * link. So delay a bit to make sure the image is solid before
1393 * allowing it to appear.
1394 */
1395 wait_backlight_on(intel_dp);
1396 pp = ironlake_get_pp_control(intel_dp);
1397 pp |= EDP_BLC_ENABLE;
1398
1399 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1400
1401 I915_WRITE(pp_ctrl_reg, pp);
1402 POSTING_READ(pp_ctrl_reg);
1403
1404 intel_panel_enable_backlight(intel_dp->attached_connector);
1405 }
1406
1407 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1408 {
1409 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1410 struct drm_i915_private *dev_priv = dev->dev_private;
1411 u32 pp;
1412 u32 pp_ctrl_reg;
1413
1414 if (!is_edp(intel_dp))
1415 return;
1416
1417 intel_panel_disable_backlight(intel_dp->attached_connector);
1418
1419 DRM_DEBUG_KMS("\n");
1420 pp = ironlake_get_pp_control(intel_dp);
1421 pp &= ~EDP_BLC_ENABLE;
1422
1423 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1424
1425 I915_WRITE(pp_ctrl_reg, pp);
1426 POSTING_READ(pp_ctrl_reg);
1427 intel_dp->last_backlight_off = jiffies;
1428 }
1429
1430 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1431 {
1432 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1433 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1434 struct drm_device *dev = crtc->dev;
1435 struct drm_i915_private *dev_priv = dev->dev_private;
1436 u32 dpa_ctl;
1437
1438 assert_pipe_disabled(dev_priv,
1439 to_intel_crtc(crtc)->pipe);
1440
1441 DRM_DEBUG_KMS("\n");
1442 dpa_ctl = I915_READ(DP_A);
1443 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1444 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1445
1446 /* We don't adjust intel_dp->DP while tearing down the link, to
1447 * facilitate link retraining (e.g. after hotplug). Hence clear all
1448 * enable bits here to ensure that we don't enable too much. */
1449 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1450 intel_dp->DP |= DP_PLL_ENABLE;
1451 I915_WRITE(DP_A, intel_dp->DP);
1452 POSTING_READ(DP_A);
1453 udelay(200);
1454 }
1455
1456 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1457 {
1458 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1459 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1460 struct drm_device *dev = crtc->dev;
1461 struct drm_i915_private *dev_priv = dev->dev_private;
1462 u32 dpa_ctl;
1463
1464 assert_pipe_disabled(dev_priv,
1465 to_intel_crtc(crtc)->pipe);
1466
1467 dpa_ctl = I915_READ(DP_A);
1468 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1469 "dp pll off, should be on\n");
1470 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1471
1472 /* We can't rely on the value tracked for the DP register in
1473 * intel_dp->DP because link_down must not change that (otherwise link
1474 * re-training will fail. */
1475 dpa_ctl &= ~DP_PLL_ENABLE;
1476 I915_WRITE(DP_A, dpa_ctl);
1477 POSTING_READ(DP_A);
1478 udelay(200);
1479 }
1480
1481 /* If the sink supports it, try to set the power state appropriately */
1482 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1483 {
1484 int ret, i;
1485
1486 /* Should have a valid DPCD by this point */
1487 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1488 return;
1489
1490 if (mode != DRM_MODE_DPMS_ON) {
1491 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1492 DP_SET_POWER_D3);
1493 if (ret != 1)
1494 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1495 } else {
1496 /*
1497 * When turning on, we need to retry for 1ms to give the sink
1498 * time to wake up.
1499 */
1500 for (i = 0; i < 3; i++) {
1501 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1502 DP_SET_POWER_D0);
1503 if (ret == 1)
1504 break;
1505 msleep(1);
1506 }
1507 }
1508 }
1509
1510 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1511 enum pipe *pipe)
1512 {
1513 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1514 enum port port = dp_to_dig_port(intel_dp)->port;
1515 struct drm_device *dev = encoder->base.dev;
1516 struct drm_i915_private *dev_priv = dev->dev_private;
1517 enum intel_display_power_domain power_domain;
1518 u32 tmp;
1519
1520 power_domain = intel_display_port_power_domain(encoder);
1521 if (!intel_display_power_enabled(dev_priv, power_domain))
1522 return false;
1523
1524 tmp = I915_READ(intel_dp->output_reg);
1525
1526 if (!(tmp & DP_PORT_EN))
1527 return false;
1528
1529 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1530 *pipe = PORT_TO_PIPE_CPT(tmp);
1531 } else if (IS_CHERRYVIEW(dev)) {
1532 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1533 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1534 *pipe = PORT_TO_PIPE(tmp);
1535 } else {
1536 u32 trans_sel;
1537 u32 trans_dp;
1538 int i;
1539
1540 switch (intel_dp->output_reg) {
1541 case PCH_DP_B:
1542 trans_sel = TRANS_DP_PORT_SEL_B;
1543 break;
1544 case PCH_DP_C:
1545 trans_sel = TRANS_DP_PORT_SEL_C;
1546 break;
1547 case PCH_DP_D:
1548 trans_sel = TRANS_DP_PORT_SEL_D;
1549 break;
1550 default:
1551 return true;
1552 }
1553
1554 for_each_pipe(i) {
1555 trans_dp = I915_READ(TRANS_DP_CTL(i));
1556 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1557 *pipe = i;
1558 return true;
1559 }
1560 }
1561
1562 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1563 intel_dp->output_reg);
1564 }
1565
1566 return true;
1567 }
1568
1569 static void intel_dp_get_config(struct intel_encoder *encoder,
1570 struct intel_crtc_config *pipe_config)
1571 {
1572 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1573 u32 tmp, flags = 0;
1574 struct drm_device *dev = encoder->base.dev;
1575 struct drm_i915_private *dev_priv = dev->dev_private;
1576 enum port port = dp_to_dig_port(intel_dp)->port;
1577 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1578 int dotclock;
1579
1580 tmp = I915_READ(intel_dp->output_reg);
1581 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1582 pipe_config->has_audio = true;
1583
1584 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1585 if (tmp & DP_SYNC_HS_HIGH)
1586 flags |= DRM_MODE_FLAG_PHSYNC;
1587 else
1588 flags |= DRM_MODE_FLAG_NHSYNC;
1589
1590 if (tmp & DP_SYNC_VS_HIGH)
1591 flags |= DRM_MODE_FLAG_PVSYNC;
1592 else
1593 flags |= DRM_MODE_FLAG_NVSYNC;
1594 } else {
1595 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1596 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1597 flags |= DRM_MODE_FLAG_PHSYNC;
1598 else
1599 flags |= DRM_MODE_FLAG_NHSYNC;
1600
1601 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1602 flags |= DRM_MODE_FLAG_PVSYNC;
1603 else
1604 flags |= DRM_MODE_FLAG_NVSYNC;
1605 }
1606
1607 pipe_config->adjusted_mode.flags |= flags;
1608
1609 pipe_config->has_dp_encoder = true;
1610
1611 intel_dp_get_m_n(crtc, pipe_config);
1612
1613 if (port == PORT_A) {
1614 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1615 pipe_config->port_clock = 162000;
1616 else
1617 pipe_config->port_clock = 270000;
1618 }
1619
1620 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1621 &pipe_config->dp_m_n);
1622
1623 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1624 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1625
1626 pipe_config->adjusted_mode.crtc_clock = dotclock;
1627
1628 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1629 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1630 /*
1631 * This is a big fat ugly hack.
1632 *
1633 * Some machines in UEFI boot mode provide us a VBT that has 18
1634 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1635 * unknown we fail to light up. Yet the same BIOS boots up with
1636 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1637 * max, not what it tells us to use.
1638 *
1639 * Note: This will still be broken if the eDP panel is not lit
1640 * up by the BIOS, and thus we can't get the mode at module
1641 * load.
1642 */
1643 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1644 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1645 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1646 }
1647 }
1648
1649 static bool is_edp_psr(struct drm_device *dev)
1650 {
1651 struct drm_i915_private *dev_priv = dev->dev_private;
1652
1653 return dev_priv->psr.sink_support;
1654 }
1655
1656 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1657 {
1658 struct drm_i915_private *dev_priv = dev->dev_private;
1659
1660 if (!HAS_PSR(dev))
1661 return false;
1662
1663 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1664 }
1665
1666 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1667 struct edp_vsc_psr *vsc_psr)
1668 {
1669 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1670 struct drm_device *dev = dig_port->base.base.dev;
1671 struct drm_i915_private *dev_priv = dev->dev_private;
1672 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1673 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1674 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1675 uint32_t *data = (uint32_t *) vsc_psr;
1676 unsigned int i;
1677
1678 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1679 the video DIP being updated before program video DIP data buffer
1680 registers for DIP being updated. */
1681 I915_WRITE(ctl_reg, 0);
1682 POSTING_READ(ctl_reg);
1683
1684 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1685 if (i < sizeof(struct edp_vsc_psr))
1686 I915_WRITE(data_reg + i, *data++);
1687 else
1688 I915_WRITE(data_reg + i, 0);
1689 }
1690
1691 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1692 POSTING_READ(ctl_reg);
1693 }
1694
1695 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1696 {
1697 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 struct edp_vsc_psr psr_vsc;
1700
1701 if (intel_dp->psr_setup_done)
1702 return;
1703
1704 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1705 memset(&psr_vsc, 0, sizeof(psr_vsc));
1706 psr_vsc.sdp_header.HB0 = 0;
1707 psr_vsc.sdp_header.HB1 = 0x7;
1708 psr_vsc.sdp_header.HB2 = 0x2;
1709 psr_vsc.sdp_header.HB3 = 0x8;
1710 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1711
1712 /* Avoid continuous PSR exit by masking memup and hpd */
1713 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1714 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1715
1716 intel_dp->psr_setup_done = true;
1717 }
1718
1719 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1720 {
1721 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 uint32_t aux_clock_divider;
1724 int precharge = 0x3;
1725 int msg_size = 5; /* Header(4) + Message(1) */
1726
1727 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
1728
1729 /* Enable PSR in sink */
1730 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1731 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1732 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
1733 else
1734 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
1735 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
1736
1737 /* Setup AUX registers */
1738 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1739 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1740 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1741 DP_AUX_CH_CTL_TIME_OUT_400us |
1742 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1743 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1744 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1745 }
1746
1747 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1748 {
1749 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1750 struct drm_i915_private *dev_priv = dev->dev_private;
1751 uint32_t max_sleep_time = 0x1f;
1752 uint32_t idle_frames = 1;
1753 uint32_t val = 0x0;
1754 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1755
1756 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1757 val |= EDP_PSR_LINK_STANDBY;
1758 val |= EDP_PSR_TP2_TP3_TIME_0us;
1759 val |= EDP_PSR_TP1_TIME_0us;
1760 val |= EDP_PSR_SKIP_AUX_EXIT;
1761 } else
1762 val |= EDP_PSR_LINK_DISABLE;
1763
1764 I915_WRITE(EDP_PSR_CTL(dev), val |
1765 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
1766 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1767 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1768 EDP_PSR_ENABLE);
1769 }
1770
1771 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1772 {
1773 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1774 struct drm_device *dev = dig_port->base.base.dev;
1775 struct drm_i915_private *dev_priv = dev->dev_private;
1776 struct drm_crtc *crtc = dig_port->base.base.crtc;
1777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1778 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1779 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1780
1781 dev_priv->psr.source_ok = false;
1782
1783 if (!HAS_PSR(dev)) {
1784 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1785 return false;
1786 }
1787
1788 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1789 (dig_port->port != PORT_A)) {
1790 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1791 return false;
1792 }
1793
1794 if (!i915.enable_psr) {
1795 DRM_DEBUG_KMS("PSR disable by flag\n");
1796 return false;
1797 }
1798
1799 crtc = dig_port->base.base.crtc;
1800 if (crtc == NULL) {
1801 DRM_DEBUG_KMS("crtc not active for PSR\n");
1802 return false;
1803 }
1804
1805 intel_crtc = to_intel_crtc(crtc);
1806 if (!intel_crtc_active(crtc)) {
1807 DRM_DEBUG_KMS("crtc not active for PSR\n");
1808 return false;
1809 }
1810
1811 obj = to_intel_framebuffer(crtc->primary->fb)->obj;
1812 if (obj->tiling_mode != I915_TILING_X ||
1813 obj->fence_reg == I915_FENCE_REG_NONE) {
1814 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1815 return false;
1816 }
1817
1818 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1819 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1820 return false;
1821 }
1822
1823 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1824 S3D_ENABLE) {
1825 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1826 return false;
1827 }
1828
1829 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1830 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1831 return false;
1832 }
1833
1834 dev_priv->psr.source_ok = true;
1835 return true;
1836 }
1837
1838 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1839 {
1840 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1841
1842 if (!intel_edp_psr_match_conditions(intel_dp) ||
1843 intel_edp_is_psr_enabled(dev))
1844 return;
1845
1846 /* Setup PSR once */
1847 intel_edp_psr_setup(intel_dp);
1848
1849 /* Enable PSR on the panel */
1850 intel_edp_psr_enable_sink(intel_dp);
1851
1852 /* Enable PSR on the host */
1853 intel_edp_psr_enable_source(intel_dp);
1854 }
1855
1856 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1857 {
1858 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1859
1860 if (intel_edp_psr_match_conditions(intel_dp) &&
1861 !intel_edp_is_psr_enabled(dev))
1862 intel_edp_psr_do_enable(intel_dp);
1863 }
1864
1865 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1866 {
1867 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1868 struct drm_i915_private *dev_priv = dev->dev_private;
1869
1870 if (!intel_edp_is_psr_enabled(dev))
1871 return;
1872
1873 I915_WRITE(EDP_PSR_CTL(dev),
1874 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1875
1876 /* Wait till PSR is idle */
1877 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1878 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1879 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1880 }
1881
1882 void intel_edp_psr_update(struct drm_device *dev)
1883 {
1884 struct intel_encoder *encoder;
1885 struct intel_dp *intel_dp = NULL;
1886
1887 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1888 if (encoder->type == INTEL_OUTPUT_EDP) {
1889 intel_dp = enc_to_intel_dp(&encoder->base);
1890
1891 if (!is_edp_psr(dev))
1892 return;
1893
1894 if (!intel_edp_psr_match_conditions(intel_dp))
1895 intel_edp_psr_disable(intel_dp);
1896 else
1897 if (!intel_edp_is_psr_enabled(dev))
1898 intel_edp_psr_do_enable(intel_dp);
1899 }
1900 }
1901
1902 static void intel_disable_dp(struct intel_encoder *encoder)
1903 {
1904 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1905 enum port port = dp_to_dig_port(intel_dp)->port;
1906 struct drm_device *dev = encoder->base.dev;
1907
1908 /* Make sure the panel is off before trying to change the mode. But also
1909 * ensure that we have vdd while we switch off the panel. */
1910 intel_edp_panel_vdd_on(intel_dp);
1911 intel_edp_backlight_off(intel_dp);
1912 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1913 intel_edp_panel_off(intel_dp);
1914
1915 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1916 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1917 intel_dp_link_down(intel_dp);
1918 }
1919
1920 static void g4x_post_disable_dp(struct intel_encoder *encoder)
1921 {
1922 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1923 enum port port = dp_to_dig_port(intel_dp)->port;
1924
1925 if (port != PORT_A)
1926 return;
1927
1928 intel_dp_link_down(intel_dp);
1929 ironlake_edp_pll_off(intel_dp);
1930 }
1931
1932 static void vlv_post_disable_dp(struct intel_encoder *encoder)
1933 {
1934 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1935
1936 intel_dp_link_down(intel_dp);
1937 }
1938
1939 static void chv_post_disable_dp(struct intel_encoder *encoder)
1940 {
1941 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1942 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1943 struct drm_device *dev = encoder->base.dev;
1944 struct drm_i915_private *dev_priv = dev->dev_private;
1945 struct intel_crtc *intel_crtc =
1946 to_intel_crtc(encoder->base.crtc);
1947 enum dpio_channel ch = vlv_dport_to_channel(dport);
1948 enum pipe pipe = intel_crtc->pipe;
1949 u32 val;
1950
1951 intel_dp_link_down(intel_dp);
1952
1953 mutex_lock(&dev_priv->dpio_lock);
1954
1955 /* Propagate soft reset to data lane reset */
1956 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
1957 val |= CHV_PCS_REQ_SOFTRESET_EN;
1958 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
1959
1960 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
1961 val |= CHV_PCS_REQ_SOFTRESET_EN;
1962 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
1963
1964 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
1965 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1966 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
1967
1968 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
1969 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
1970 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
1971
1972 mutex_unlock(&dev_priv->dpio_lock);
1973 }
1974
1975 static void intel_enable_dp(struct intel_encoder *encoder)
1976 {
1977 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1978 struct drm_device *dev = encoder->base.dev;
1979 struct drm_i915_private *dev_priv = dev->dev_private;
1980 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1981
1982 if (WARN_ON(dp_reg & DP_PORT_EN))
1983 return;
1984
1985 intel_edp_panel_vdd_on(intel_dp);
1986 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1987 intel_dp_start_link_train(intel_dp);
1988 intel_edp_panel_on(intel_dp);
1989 edp_panel_vdd_off(intel_dp, true);
1990 intel_dp_complete_link_train(intel_dp);
1991 intel_dp_stop_link_train(intel_dp);
1992 }
1993
1994 static void g4x_enable_dp(struct intel_encoder *encoder)
1995 {
1996 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1997
1998 intel_enable_dp(encoder);
1999 intel_edp_backlight_on(intel_dp);
2000 }
2001
2002 static void vlv_enable_dp(struct intel_encoder *encoder)
2003 {
2004 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2005
2006 intel_edp_backlight_on(intel_dp);
2007 }
2008
2009 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2010 {
2011 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2012 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2013
2014 intel_dp_prepare(encoder);
2015
2016 /* Only ilk+ has port A */
2017 if (dport->port == PORT_A) {
2018 ironlake_set_pll_cpu_edp(intel_dp);
2019 ironlake_edp_pll_on(intel_dp);
2020 }
2021 }
2022
2023 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2024 {
2025 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2026 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2027 struct drm_device *dev = encoder->base.dev;
2028 struct drm_i915_private *dev_priv = dev->dev_private;
2029 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2030 enum dpio_channel port = vlv_dport_to_channel(dport);
2031 int pipe = intel_crtc->pipe;
2032 struct edp_power_seq power_seq;
2033 u32 val;
2034
2035 mutex_lock(&dev_priv->dpio_lock);
2036
2037 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2038 val = 0;
2039 if (pipe)
2040 val |= (1<<21);
2041 else
2042 val &= ~(1<<21);
2043 val |= 0x001000c4;
2044 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2045 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2046 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2047
2048 mutex_unlock(&dev_priv->dpio_lock);
2049
2050 if (is_edp(intel_dp)) {
2051 /* init power sequencer on this pipe and port */
2052 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2053 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2054 &power_seq);
2055 }
2056
2057 intel_enable_dp(encoder);
2058
2059 vlv_wait_port_ready(dev_priv, dport);
2060 }
2061
2062 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2063 {
2064 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2065 struct drm_device *dev = encoder->base.dev;
2066 struct drm_i915_private *dev_priv = dev->dev_private;
2067 struct intel_crtc *intel_crtc =
2068 to_intel_crtc(encoder->base.crtc);
2069 enum dpio_channel port = vlv_dport_to_channel(dport);
2070 int pipe = intel_crtc->pipe;
2071
2072 intel_dp_prepare(encoder);
2073
2074 /* Program Tx lane resets to default */
2075 mutex_lock(&dev_priv->dpio_lock);
2076 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2077 DPIO_PCS_TX_LANE2_RESET |
2078 DPIO_PCS_TX_LANE1_RESET);
2079 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2080 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2081 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2082 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2083 DPIO_PCS_CLK_SOFT_RESET);
2084
2085 /* Fix up inter-pair skew failure */
2086 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2087 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2088 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2089 mutex_unlock(&dev_priv->dpio_lock);
2090 }
2091
2092 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2093 {
2094 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2095 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2096 struct drm_device *dev = encoder->base.dev;
2097 struct drm_i915_private *dev_priv = dev->dev_private;
2098 struct edp_power_seq power_seq;
2099 struct intel_crtc *intel_crtc =
2100 to_intel_crtc(encoder->base.crtc);
2101 enum dpio_channel ch = vlv_dport_to_channel(dport);
2102 int pipe = intel_crtc->pipe;
2103 int data, i;
2104 u32 val;
2105
2106 mutex_lock(&dev_priv->dpio_lock);
2107
2108 /* Deassert soft data lane reset*/
2109 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2110 val |= CHV_PCS_REQ_SOFTRESET_EN;
2111 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2112
2113 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2114 val |= CHV_PCS_REQ_SOFTRESET_EN;
2115 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2116
2117 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2118 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2119 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2120
2121 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2122 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2123 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2124
2125 /* Program Tx lane latency optimal setting*/
2126 for (i = 0; i < 4; i++) {
2127 /* Set the latency optimal bit */
2128 data = (i == 1) ? 0x0 : 0x6;
2129 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2130 data << DPIO_FRC_LATENCY_SHFIT);
2131
2132 /* Set the upar bit */
2133 data = (i == 1) ? 0x0 : 0x1;
2134 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2135 data << DPIO_UPAR_SHIFT);
2136 }
2137
2138 /* Data lane stagger programming */
2139 /* FIXME: Fix up value only after power analysis */
2140
2141 mutex_unlock(&dev_priv->dpio_lock);
2142
2143 if (is_edp(intel_dp)) {
2144 /* init power sequencer on this pipe and port */
2145 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2146 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2147 &power_seq);
2148 }
2149
2150 intel_enable_dp(encoder);
2151
2152 vlv_wait_port_ready(dev_priv, dport);
2153 }
2154
2155 /*
2156 * Native read with retry for link status and receiver capability reads for
2157 * cases where the sink may still be asleep.
2158 *
2159 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2160 * supposed to retry 3 times per the spec.
2161 */
2162 static ssize_t
2163 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2164 void *buffer, size_t size)
2165 {
2166 ssize_t ret;
2167 int i;
2168
2169 for (i = 0; i < 3; i++) {
2170 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2171 if (ret == size)
2172 return ret;
2173 msleep(1);
2174 }
2175
2176 return ret;
2177 }
2178
2179 /*
2180 * Fetch AUX CH registers 0x202 - 0x207 which contain
2181 * link status information
2182 */
2183 static bool
2184 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2185 {
2186 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2187 DP_LANE0_1_STATUS,
2188 link_status,
2189 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2190 }
2191
2192 /*
2193 * These are source-specific values; current Intel hardware supports
2194 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
2195 */
2196
2197 static uint8_t
2198 intel_dp_voltage_max(struct intel_dp *intel_dp)
2199 {
2200 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2201 enum port port = dp_to_dig_port(intel_dp)->port;
2202
2203 if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
2204 return DP_TRAIN_VOLTAGE_SWING_1200;
2205 else if (IS_GEN7(dev) && port == PORT_A)
2206 return DP_TRAIN_VOLTAGE_SWING_800;
2207 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2208 return DP_TRAIN_VOLTAGE_SWING_1200;
2209 else
2210 return DP_TRAIN_VOLTAGE_SWING_800;
2211 }
2212
2213 static uint8_t
2214 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2215 {
2216 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2217 enum port port = dp_to_dig_port(intel_dp)->port;
2218
2219 if (IS_BROADWELL(dev)) {
2220 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2221 case DP_TRAIN_VOLTAGE_SWING_400:
2222 case DP_TRAIN_VOLTAGE_SWING_600:
2223 return DP_TRAIN_PRE_EMPHASIS_6;
2224 case DP_TRAIN_VOLTAGE_SWING_800:
2225 return DP_TRAIN_PRE_EMPHASIS_3_5;
2226 case DP_TRAIN_VOLTAGE_SWING_1200:
2227 default:
2228 return DP_TRAIN_PRE_EMPHASIS_0;
2229 }
2230 } else if (IS_HASWELL(dev)) {
2231 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2232 case DP_TRAIN_VOLTAGE_SWING_400:
2233 return DP_TRAIN_PRE_EMPHASIS_9_5;
2234 case DP_TRAIN_VOLTAGE_SWING_600:
2235 return DP_TRAIN_PRE_EMPHASIS_6;
2236 case DP_TRAIN_VOLTAGE_SWING_800:
2237 return DP_TRAIN_PRE_EMPHASIS_3_5;
2238 case DP_TRAIN_VOLTAGE_SWING_1200:
2239 default:
2240 return DP_TRAIN_PRE_EMPHASIS_0;
2241 }
2242 } else if (IS_VALLEYVIEW(dev)) {
2243 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2244 case DP_TRAIN_VOLTAGE_SWING_400:
2245 return DP_TRAIN_PRE_EMPHASIS_9_5;
2246 case DP_TRAIN_VOLTAGE_SWING_600:
2247 return DP_TRAIN_PRE_EMPHASIS_6;
2248 case DP_TRAIN_VOLTAGE_SWING_800:
2249 return DP_TRAIN_PRE_EMPHASIS_3_5;
2250 case DP_TRAIN_VOLTAGE_SWING_1200:
2251 default:
2252 return DP_TRAIN_PRE_EMPHASIS_0;
2253 }
2254 } else if (IS_GEN7(dev) && port == PORT_A) {
2255 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2256 case DP_TRAIN_VOLTAGE_SWING_400:
2257 return DP_TRAIN_PRE_EMPHASIS_6;
2258 case DP_TRAIN_VOLTAGE_SWING_600:
2259 case DP_TRAIN_VOLTAGE_SWING_800:
2260 return DP_TRAIN_PRE_EMPHASIS_3_5;
2261 default:
2262 return DP_TRAIN_PRE_EMPHASIS_0;
2263 }
2264 } else {
2265 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2266 case DP_TRAIN_VOLTAGE_SWING_400:
2267 return DP_TRAIN_PRE_EMPHASIS_6;
2268 case DP_TRAIN_VOLTAGE_SWING_600:
2269 return DP_TRAIN_PRE_EMPHASIS_6;
2270 case DP_TRAIN_VOLTAGE_SWING_800:
2271 return DP_TRAIN_PRE_EMPHASIS_3_5;
2272 case DP_TRAIN_VOLTAGE_SWING_1200:
2273 default:
2274 return DP_TRAIN_PRE_EMPHASIS_0;
2275 }
2276 }
2277 }
2278
2279 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2280 {
2281 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2282 struct drm_i915_private *dev_priv = dev->dev_private;
2283 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2284 struct intel_crtc *intel_crtc =
2285 to_intel_crtc(dport->base.base.crtc);
2286 unsigned long demph_reg_value, preemph_reg_value,
2287 uniqtranscale_reg_value;
2288 uint8_t train_set = intel_dp->train_set[0];
2289 enum dpio_channel port = vlv_dport_to_channel(dport);
2290 int pipe = intel_crtc->pipe;
2291
2292 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2293 case DP_TRAIN_PRE_EMPHASIS_0:
2294 preemph_reg_value = 0x0004000;
2295 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2296 case DP_TRAIN_VOLTAGE_SWING_400:
2297 demph_reg_value = 0x2B405555;
2298 uniqtranscale_reg_value = 0x552AB83A;
2299 break;
2300 case DP_TRAIN_VOLTAGE_SWING_600:
2301 demph_reg_value = 0x2B404040;
2302 uniqtranscale_reg_value = 0x5548B83A;
2303 break;
2304 case DP_TRAIN_VOLTAGE_SWING_800:
2305 demph_reg_value = 0x2B245555;
2306 uniqtranscale_reg_value = 0x5560B83A;
2307 break;
2308 case DP_TRAIN_VOLTAGE_SWING_1200:
2309 demph_reg_value = 0x2B405555;
2310 uniqtranscale_reg_value = 0x5598DA3A;
2311 break;
2312 default:
2313 return 0;
2314 }
2315 break;
2316 case DP_TRAIN_PRE_EMPHASIS_3_5:
2317 preemph_reg_value = 0x0002000;
2318 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2319 case DP_TRAIN_VOLTAGE_SWING_400:
2320 demph_reg_value = 0x2B404040;
2321 uniqtranscale_reg_value = 0x5552B83A;
2322 break;
2323 case DP_TRAIN_VOLTAGE_SWING_600:
2324 demph_reg_value = 0x2B404848;
2325 uniqtranscale_reg_value = 0x5580B83A;
2326 break;
2327 case DP_TRAIN_VOLTAGE_SWING_800:
2328 demph_reg_value = 0x2B404040;
2329 uniqtranscale_reg_value = 0x55ADDA3A;
2330 break;
2331 default:
2332 return 0;
2333 }
2334 break;
2335 case DP_TRAIN_PRE_EMPHASIS_6:
2336 preemph_reg_value = 0x0000000;
2337 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2338 case DP_TRAIN_VOLTAGE_SWING_400:
2339 demph_reg_value = 0x2B305555;
2340 uniqtranscale_reg_value = 0x5570B83A;
2341 break;
2342 case DP_TRAIN_VOLTAGE_SWING_600:
2343 demph_reg_value = 0x2B2B4040;
2344 uniqtranscale_reg_value = 0x55ADDA3A;
2345 break;
2346 default:
2347 return 0;
2348 }
2349 break;
2350 case DP_TRAIN_PRE_EMPHASIS_9_5:
2351 preemph_reg_value = 0x0006000;
2352 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2353 case DP_TRAIN_VOLTAGE_SWING_400:
2354 demph_reg_value = 0x1B405555;
2355 uniqtranscale_reg_value = 0x55ADDA3A;
2356 break;
2357 default:
2358 return 0;
2359 }
2360 break;
2361 default:
2362 return 0;
2363 }
2364
2365 mutex_lock(&dev_priv->dpio_lock);
2366 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2367 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2368 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2369 uniqtranscale_reg_value);
2370 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2371 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2372 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2373 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2374 mutex_unlock(&dev_priv->dpio_lock);
2375
2376 return 0;
2377 }
2378
2379 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
2380 {
2381 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2382 struct drm_i915_private *dev_priv = dev->dev_private;
2383 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2384 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2385 u32 deemph_reg_value, margin_reg_value, val;
2386 uint8_t train_set = intel_dp->train_set[0];
2387 enum dpio_channel ch = vlv_dport_to_channel(dport);
2388 enum pipe pipe = intel_crtc->pipe;
2389 int i;
2390
2391 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2392 case DP_TRAIN_PRE_EMPHASIS_0:
2393 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2394 case DP_TRAIN_VOLTAGE_SWING_400:
2395 deemph_reg_value = 128;
2396 margin_reg_value = 52;
2397 break;
2398 case DP_TRAIN_VOLTAGE_SWING_600:
2399 deemph_reg_value = 128;
2400 margin_reg_value = 77;
2401 break;
2402 case DP_TRAIN_VOLTAGE_SWING_800:
2403 deemph_reg_value = 128;
2404 margin_reg_value = 102;
2405 break;
2406 case DP_TRAIN_VOLTAGE_SWING_1200:
2407 deemph_reg_value = 128;
2408 margin_reg_value = 154;
2409 /* FIXME extra to set for 1200 */
2410 break;
2411 default:
2412 return 0;
2413 }
2414 break;
2415 case DP_TRAIN_PRE_EMPHASIS_3_5:
2416 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2417 case DP_TRAIN_VOLTAGE_SWING_400:
2418 deemph_reg_value = 85;
2419 margin_reg_value = 78;
2420 break;
2421 case DP_TRAIN_VOLTAGE_SWING_600:
2422 deemph_reg_value = 85;
2423 margin_reg_value = 116;
2424 break;
2425 case DP_TRAIN_VOLTAGE_SWING_800:
2426 deemph_reg_value = 85;
2427 margin_reg_value = 154;
2428 break;
2429 default:
2430 return 0;
2431 }
2432 break;
2433 case DP_TRAIN_PRE_EMPHASIS_6:
2434 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2435 case DP_TRAIN_VOLTAGE_SWING_400:
2436 deemph_reg_value = 64;
2437 margin_reg_value = 104;
2438 break;
2439 case DP_TRAIN_VOLTAGE_SWING_600:
2440 deemph_reg_value = 64;
2441 margin_reg_value = 154;
2442 break;
2443 default:
2444 return 0;
2445 }
2446 break;
2447 case DP_TRAIN_PRE_EMPHASIS_9_5:
2448 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2449 case DP_TRAIN_VOLTAGE_SWING_400:
2450 deemph_reg_value = 43;
2451 margin_reg_value = 154;
2452 break;
2453 default:
2454 return 0;
2455 }
2456 break;
2457 default:
2458 return 0;
2459 }
2460
2461 mutex_lock(&dev_priv->dpio_lock);
2462
2463 /* Clear calc init */
2464 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2465 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2466 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2467
2468 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2469 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
2470 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2471
2472 /* Program swing deemph */
2473 for (i = 0; i < 4; i++) {
2474 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
2475 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
2476 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
2477 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
2478 }
2479
2480 /* Program swing margin */
2481 for (i = 0; i < 4; i++) {
2482 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2483 val &= ~DPIO_SWING_MARGIN_MASK;
2484 val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
2485 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2486 }
2487
2488 /* Disable unique transition scale */
2489 for (i = 0; i < 4; i++) {
2490 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2491 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
2492 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2493 }
2494
2495 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
2496 == DP_TRAIN_PRE_EMPHASIS_0) &&
2497 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
2498 == DP_TRAIN_VOLTAGE_SWING_1200)) {
2499
2500 /*
2501 * The document said it needs to set bit 27 for ch0 and bit 26
2502 * for ch1. Might be a typo in the doc.
2503 * For now, for this unique transition scale selection, set bit
2504 * 27 for ch0 and ch1.
2505 */
2506 for (i = 0; i < 4; i++) {
2507 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
2508 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
2509 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
2510 }
2511
2512 for (i = 0; i < 4; i++) {
2513 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
2514 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2515 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
2516 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
2517 }
2518 }
2519
2520 /* Start swing calculation */
2521 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
2522 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2523 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
2524
2525 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
2526 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
2527 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2528
2529 /* LRC Bypass */
2530 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
2531 val |= DPIO_LRC_BYPASS;
2532 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
2533
2534 mutex_unlock(&dev_priv->dpio_lock);
2535
2536 return 0;
2537 }
2538
2539 static void
2540 intel_get_adjust_train(struct intel_dp *intel_dp,
2541 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2542 {
2543 uint8_t v = 0;
2544 uint8_t p = 0;
2545 int lane;
2546 uint8_t voltage_max;
2547 uint8_t preemph_max;
2548
2549 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2550 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2551 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2552
2553 if (this_v > v)
2554 v = this_v;
2555 if (this_p > p)
2556 p = this_p;
2557 }
2558
2559 voltage_max = intel_dp_voltage_max(intel_dp);
2560 if (v >= voltage_max)
2561 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2562
2563 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2564 if (p >= preemph_max)
2565 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2566
2567 for (lane = 0; lane < 4; lane++)
2568 intel_dp->train_set[lane] = v | p;
2569 }
2570
2571 static uint32_t
2572 intel_gen4_signal_levels(uint8_t train_set)
2573 {
2574 uint32_t signal_levels = 0;
2575
2576 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2577 case DP_TRAIN_VOLTAGE_SWING_400:
2578 default:
2579 signal_levels |= DP_VOLTAGE_0_4;
2580 break;
2581 case DP_TRAIN_VOLTAGE_SWING_600:
2582 signal_levels |= DP_VOLTAGE_0_6;
2583 break;
2584 case DP_TRAIN_VOLTAGE_SWING_800:
2585 signal_levels |= DP_VOLTAGE_0_8;
2586 break;
2587 case DP_TRAIN_VOLTAGE_SWING_1200:
2588 signal_levels |= DP_VOLTAGE_1_2;
2589 break;
2590 }
2591 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2592 case DP_TRAIN_PRE_EMPHASIS_0:
2593 default:
2594 signal_levels |= DP_PRE_EMPHASIS_0;
2595 break;
2596 case DP_TRAIN_PRE_EMPHASIS_3_5:
2597 signal_levels |= DP_PRE_EMPHASIS_3_5;
2598 break;
2599 case DP_TRAIN_PRE_EMPHASIS_6:
2600 signal_levels |= DP_PRE_EMPHASIS_6;
2601 break;
2602 case DP_TRAIN_PRE_EMPHASIS_9_5:
2603 signal_levels |= DP_PRE_EMPHASIS_9_5;
2604 break;
2605 }
2606 return signal_levels;
2607 }
2608
2609 /* Gen6's DP voltage swing and pre-emphasis control */
2610 static uint32_t
2611 intel_gen6_edp_signal_levels(uint8_t train_set)
2612 {
2613 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2614 DP_TRAIN_PRE_EMPHASIS_MASK);
2615 switch (signal_levels) {
2616 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2617 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2618 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2619 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2620 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2621 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2622 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2623 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2624 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2625 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2626 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2627 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2628 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2629 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2630 default:
2631 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2632 "0x%x\n", signal_levels);
2633 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2634 }
2635 }
2636
2637 /* Gen7's DP voltage swing and pre-emphasis control */
2638 static uint32_t
2639 intel_gen7_edp_signal_levels(uint8_t train_set)
2640 {
2641 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2642 DP_TRAIN_PRE_EMPHASIS_MASK);
2643 switch (signal_levels) {
2644 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2645 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2646 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2647 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2648 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2649 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2650
2651 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2652 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2653 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2654 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2655
2656 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2657 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2658 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2659 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2660
2661 default:
2662 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2663 "0x%x\n", signal_levels);
2664 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2665 }
2666 }
2667
2668 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2669 static uint32_t
2670 intel_hsw_signal_levels(uint8_t train_set)
2671 {
2672 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2673 DP_TRAIN_PRE_EMPHASIS_MASK);
2674 switch (signal_levels) {
2675 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2676 return DDI_BUF_EMP_400MV_0DB_HSW;
2677 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2678 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2679 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2680 return DDI_BUF_EMP_400MV_6DB_HSW;
2681 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2682 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2683
2684 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2685 return DDI_BUF_EMP_600MV_0DB_HSW;
2686 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2687 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2688 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2689 return DDI_BUF_EMP_600MV_6DB_HSW;
2690
2691 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2692 return DDI_BUF_EMP_800MV_0DB_HSW;
2693 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2694 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2695 default:
2696 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2697 "0x%x\n", signal_levels);
2698 return DDI_BUF_EMP_400MV_0DB_HSW;
2699 }
2700 }
2701
2702 static uint32_t
2703 intel_bdw_signal_levels(uint8_t train_set)
2704 {
2705 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2706 DP_TRAIN_PRE_EMPHASIS_MASK);
2707 switch (signal_levels) {
2708 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2709 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2710 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2711 return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
2712 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2713 return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
2714
2715 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2716 return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
2717 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2718 return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
2719 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2720 return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
2721
2722 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2723 return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
2724 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2725 return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
2726
2727 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2728 return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
2729
2730 default:
2731 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2732 "0x%x\n", signal_levels);
2733 return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
2734 }
2735 }
2736
2737 /* Properly updates "DP" with the correct signal levels. */
2738 static void
2739 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2740 {
2741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2742 enum port port = intel_dig_port->port;
2743 struct drm_device *dev = intel_dig_port->base.base.dev;
2744 uint32_t signal_levels, mask;
2745 uint8_t train_set = intel_dp->train_set[0];
2746
2747 if (IS_BROADWELL(dev)) {
2748 signal_levels = intel_bdw_signal_levels(train_set);
2749 mask = DDI_BUF_EMP_MASK;
2750 } else if (IS_HASWELL(dev)) {
2751 signal_levels = intel_hsw_signal_levels(train_set);
2752 mask = DDI_BUF_EMP_MASK;
2753 } else if (IS_CHERRYVIEW(dev)) {
2754 signal_levels = intel_chv_signal_levels(intel_dp);
2755 mask = 0;
2756 } else if (IS_VALLEYVIEW(dev)) {
2757 signal_levels = intel_vlv_signal_levels(intel_dp);
2758 mask = 0;
2759 } else if (IS_GEN7(dev) && port == PORT_A) {
2760 signal_levels = intel_gen7_edp_signal_levels(train_set);
2761 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2762 } else if (IS_GEN6(dev) && port == PORT_A) {
2763 signal_levels = intel_gen6_edp_signal_levels(train_set);
2764 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2765 } else {
2766 signal_levels = intel_gen4_signal_levels(train_set);
2767 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2768 }
2769
2770 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2771
2772 *DP = (*DP & ~mask) | signal_levels;
2773 }
2774
2775 static bool
2776 intel_dp_set_link_train(struct intel_dp *intel_dp,
2777 uint32_t *DP,
2778 uint8_t dp_train_pat)
2779 {
2780 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2781 struct drm_device *dev = intel_dig_port->base.base.dev;
2782 struct drm_i915_private *dev_priv = dev->dev_private;
2783 enum port port = intel_dig_port->port;
2784 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2785 int ret, len;
2786
2787 if (HAS_DDI(dev)) {
2788 uint32_t temp = I915_READ(DP_TP_CTL(port));
2789
2790 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2791 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2792 else
2793 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2794
2795 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2796 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2797 case DP_TRAINING_PATTERN_DISABLE:
2798 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2799
2800 break;
2801 case DP_TRAINING_PATTERN_1:
2802 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2803 break;
2804 case DP_TRAINING_PATTERN_2:
2805 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2806 break;
2807 case DP_TRAINING_PATTERN_3:
2808 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2809 break;
2810 }
2811 I915_WRITE(DP_TP_CTL(port), temp);
2812
2813 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2814 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2815
2816 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2817 case DP_TRAINING_PATTERN_DISABLE:
2818 *DP |= DP_LINK_TRAIN_OFF_CPT;
2819 break;
2820 case DP_TRAINING_PATTERN_1:
2821 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2822 break;
2823 case DP_TRAINING_PATTERN_2:
2824 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2825 break;
2826 case DP_TRAINING_PATTERN_3:
2827 DRM_ERROR("DP training pattern 3 not supported\n");
2828 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2829 break;
2830 }
2831
2832 } else {
2833 *DP &= ~DP_LINK_TRAIN_MASK;
2834
2835 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2836 case DP_TRAINING_PATTERN_DISABLE:
2837 *DP |= DP_LINK_TRAIN_OFF;
2838 break;
2839 case DP_TRAINING_PATTERN_1:
2840 *DP |= DP_LINK_TRAIN_PAT_1;
2841 break;
2842 case DP_TRAINING_PATTERN_2:
2843 *DP |= DP_LINK_TRAIN_PAT_2;
2844 break;
2845 case DP_TRAINING_PATTERN_3:
2846 DRM_ERROR("DP training pattern 3 not supported\n");
2847 *DP |= DP_LINK_TRAIN_PAT_2;
2848 break;
2849 }
2850 }
2851
2852 I915_WRITE(intel_dp->output_reg, *DP);
2853 POSTING_READ(intel_dp->output_reg);
2854
2855 buf[0] = dp_train_pat;
2856 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2857 DP_TRAINING_PATTERN_DISABLE) {
2858 /* don't write DP_TRAINING_LANEx_SET on disable */
2859 len = 1;
2860 } else {
2861 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2862 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2863 len = intel_dp->lane_count + 1;
2864 }
2865
2866 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
2867 buf, len);
2868
2869 return ret == len;
2870 }
2871
2872 static bool
2873 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2874 uint8_t dp_train_pat)
2875 {
2876 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2877 intel_dp_set_signal_levels(intel_dp, DP);
2878 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2879 }
2880
2881 static bool
2882 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2883 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2884 {
2885 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2886 struct drm_device *dev = intel_dig_port->base.base.dev;
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 int ret;
2889
2890 intel_get_adjust_train(intel_dp, link_status);
2891 intel_dp_set_signal_levels(intel_dp, DP);
2892
2893 I915_WRITE(intel_dp->output_reg, *DP);
2894 POSTING_READ(intel_dp->output_reg);
2895
2896 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
2897 intel_dp->train_set, intel_dp->lane_count);
2898
2899 return ret == intel_dp->lane_count;
2900 }
2901
2902 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2903 {
2904 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2905 struct drm_device *dev = intel_dig_port->base.base.dev;
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 enum port port = intel_dig_port->port;
2908 uint32_t val;
2909
2910 if (!HAS_DDI(dev))
2911 return;
2912
2913 val = I915_READ(DP_TP_CTL(port));
2914 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2915 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2916 I915_WRITE(DP_TP_CTL(port), val);
2917
2918 /*
2919 * On PORT_A we can have only eDP in SST mode. There the only reason
2920 * we need to set idle transmission mode is to work around a HW issue
2921 * where we enable the pipe while not in idle link-training mode.
2922 * In this case there is requirement to wait for a minimum number of
2923 * idle patterns to be sent.
2924 */
2925 if (port == PORT_A)
2926 return;
2927
2928 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2929 1))
2930 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2931 }
2932
2933 /* Enable corresponding port and start training pattern 1 */
2934 void
2935 intel_dp_start_link_train(struct intel_dp *intel_dp)
2936 {
2937 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2938 struct drm_device *dev = encoder->dev;
2939 int i;
2940 uint8_t voltage;
2941 int voltage_tries, loop_tries;
2942 uint32_t DP = intel_dp->DP;
2943 uint8_t link_config[2];
2944
2945 if (HAS_DDI(dev))
2946 intel_ddi_prepare_link_retrain(encoder);
2947
2948 /* Write the link configuration data */
2949 link_config[0] = intel_dp->link_bw;
2950 link_config[1] = intel_dp->lane_count;
2951 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2952 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2953 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
2954
2955 link_config[0] = 0;
2956 link_config[1] = DP_SET_ANSI_8B10B;
2957 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
2958
2959 DP |= DP_PORT_EN;
2960
2961 /* clock recovery */
2962 if (!intel_dp_reset_link_train(intel_dp, &DP,
2963 DP_TRAINING_PATTERN_1 |
2964 DP_LINK_SCRAMBLING_DISABLE)) {
2965 DRM_ERROR("failed to enable link training\n");
2966 return;
2967 }
2968
2969 voltage = 0xff;
2970 voltage_tries = 0;
2971 loop_tries = 0;
2972 for (;;) {
2973 uint8_t link_status[DP_LINK_STATUS_SIZE];
2974
2975 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2976 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2977 DRM_ERROR("failed to get link status\n");
2978 break;
2979 }
2980
2981 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2982 DRM_DEBUG_KMS("clock recovery OK\n");
2983 break;
2984 }
2985
2986 /* Check to see if we've tried the max voltage */
2987 for (i = 0; i < intel_dp->lane_count; i++)
2988 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2989 break;
2990 if (i == intel_dp->lane_count) {
2991 ++loop_tries;
2992 if (loop_tries == 5) {
2993 DRM_ERROR("too many full retries, give up\n");
2994 break;
2995 }
2996 intel_dp_reset_link_train(intel_dp, &DP,
2997 DP_TRAINING_PATTERN_1 |
2998 DP_LINK_SCRAMBLING_DISABLE);
2999 voltage_tries = 0;
3000 continue;
3001 }
3002
3003 /* Check to see if we've tried the same voltage 5 times */
3004 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3005 ++voltage_tries;
3006 if (voltage_tries == 5) {
3007 DRM_ERROR("too many voltage retries, give up\n");
3008 break;
3009 }
3010 } else
3011 voltage_tries = 0;
3012 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3013
3014 /* Update training set as requested by target */
3015 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3016 DRM_ERROR("failed to update link training\n");
3017 break;
3018 }
3019 }
3020
3021 intel_dp->DP = DP;
3022 }
3023
3024 void
3025 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3026 {
3027 bool channel_eq = false;
3028 int tries, cr_tries;
3029 uint32_t DP = intel_dp->DP;
3030 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3031
3032 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3033 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3034 training_pattern = DP_TRAINING_PATTERN_3;
3035
3036 /* channel equalization */
3037 if (!intel_dp_set_link_train(intel_dp, &DP,
3038 training_pattern |
3039 DP_LINK_SCRAMBLING_DISABLE)) {
3040 DRM_ERROR("failed to start channel equalization\n");
3041 return;
3042 }
3043
3044 tries = 0;
3045 cr_tries = 0;
3046 channel_eq = false;
3047 for (;;) {
3048 uint8_t link_status[DP_LINK_STATUS_SIZE];
3049
3050 if (cr_tries > 5) {
3051 DRM_ERROR("failed to train DP, aborting\n");
3052 break;
3053 }
3054
3055 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3056 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3057 DRM_ERROR("failed to get link status\n");
3058 break;
3059 }
3060
3061 /* Make sure clock is still ok */
3062 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3063 intel_dp_start_link_train(intel_dp);
3064 intel_dp_set_link_train(intel_dp, &DP,
3065 training_pattern |
3066 DP_LINK_SCRAMBLING_DISABLE);
3067 cr_tries++;
3068 continue;
3069 }
3070
3071 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3072 channel_eq = true;
3073 break;
3074 }
3075
3076 /* Try 5 times, then try clock recovery if that fails */
3077 if (tries > 5) {
3078 intel_dp_link_down(intel_dp);
3079 intel_dp_start_link_train(intel_dp);
3080 intel_dp_set_link_train(intel_dp, &DP,
3081 training_pattern |
3082 DP_LINK_SCRAMBLING_DISABLE);
3083 tries = 0;
3084 cr_tries++;
3085 continue;
3086 }
3087
3088 /* Update training set as requested by target */
3089 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3090 DRM_ERROR("failed to update link training\n");
3091 break;
3092 }
3093 ++tries;
3094 }
3095
3096 intel_dp_set_idle_link_train(intel_dp);
3097
3098 intel_dp->DP = DP;
3099
3100 if (channel_eq)
3101 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3102
3103 }
3104
3105 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3106 {
3107 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3108 DP_TRAINING_PATTERN_DISABLE);
3109 }
3110
3111 static void
3112 intel_dp_link_down(struct intel_dp *intel_dp)
3113 {
3114 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3115 enum port port = intel_dig_port->port;
3116 struct drm_device *dev = intel_dig_port->base.base.dev;
3117 struct drm_i915_private *dev_priv = dev->dev_private;
3118 struct intel_crtc *intel_crtc =
3119 to_intel_crtc(intel_dig_port->base.base.crtc);
3120 uint32_t DP = intel_dp->DP;
3121
3122 if (WARN_ON(HAS_DDI(dev)))
3123 return;
3124
3125 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3126 return;
3127
3128 DRM_DEBUG_KMS("\n");
3129
3130 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3131 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3132 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3133 } else {
3134 DP &= ~DP_LINK_TRAIN_MASK;
3135 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3136 }
3137 POSTING_READ(intel_dp->output_reg);
3138
3139 if (HAS_PCH_IBX(dev) &&
3140 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3141 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3142
3143 /* Hardware workaround: leaving our transcoder select
3144 * set to transcoder B while it's off will prevent the
3145 * corresponding HDMI output on transcoder A.
3146 *
3147 * Combine this with another hardware workaround:
3148 * transcoder select bit can only be cleared while the
3149 * port is enabled.
3150 */
3151 DP &= ~DP_PIPEB_SELECT;
3152 I915_WRITE(intel_dp->output_reg, DP);
3153
3154 /* Changes to enable or select take place the vblank
3155 * after being written.
3156 */
3157 if (WARN_ON(crtc == NULL)) {
3158 /* We should never try to disable a port without a crtc
3159 * attached. For paranoia keep the code around for a
3160 * bit. */
3161 POSTING_READ(intel_dp->output_reg);
3162 msleep(50);
3163 } else
3164 intel_wait_for_vblank(dev, intel_crtc->pipe);
3165 }
3166
3167 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3168 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3169 POSTING_READ(intel_dp->output_reg);
3170 msleep(intel_dp->panel_power_down_delay);
3171 }
3172
3173 static bool
3174 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3175 {
3176 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3177 struct drm_device *dev = dig_port->base.base.dev;
3178 struct drm_i915_private *dev_priv = dev->dev_private;
3179
3180 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
3181
3182 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3183 sizeof(intel_dp->dpcd)) < 0)
3184 return false; /* aux transfer failed */
3185
3186 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
3187 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
3188 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
3189
3190 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3191 return false; /* DPCD not present */
3192
3193 /* Check if the panel supports PSR */
3194 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3195 if (is_edp(intel_dp)) {
3196 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3197 intel_dp->psr_dpcd,
3198 sizeof(intel_dp->psr_dpcd));
3199 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3200 dev_priv->psr.sink_support = true;
3201 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3202 }
3203 }
3204
3205 /* Training Pattern 3 support */
3206 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3207 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3208 intel_dp->use_tps3 = true;
3209 DRM_DEBUG_KMS("Displayport TPS3 supported");
3210 } else
3211 intel_dp->use_tps3 = false;
3212
3213 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3214 DP_DWN_STRM_PORT_PRESENT))
3215 return true; /* native DP sink */
3216
3217 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3218 return true; /* no per-port downstream info */
3219
3220 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3221 intel_dp->downstream_ports,
3222 DP_MAX_DOWNSTREAM_PORTS) < 0)
3223 return false; /* downstream port status fetch failed */
3224
3225 return true;
3226 }
3227
3228 static void
3229 intel_dp_probe_oui(struct intel_dp *intel_dp)
3230 {
3231 u8 buf[3];
3232
3233 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3234 return;
3235
3236 intel_edp_panel_vdd_on(intel_dp);
3237
3238 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3239 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3240 buf[0], buf[1], buf[2]);
3241
3242 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3243 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3244 buf[0], buf[1], buf[2]);
3245
3246 edp_panel_vdd_off(intel_dp, false);
3247 }
3248
3249 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3250 {
3251 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3252 struct drm_device *dev = intel_dig_port->base.base.dev;
3253 struct intel_crtc *intel_crtc =
3254 to_intel_crtc(intel_dig_port->base.base.crtc);
3255 u8 buf[1];
3256
3257 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3258 return -EAGAIN;
3259
3260 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3261 return -ENOTTY;
3262
3263 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3264 DP_TEST_SINK_START) < 0)
3265 return -EAGAIN;
3266
3267 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3268 intel_wait_for_vblank(dev, intel_crtc->pipe);
3269 intel_wait_for_vblank(dev, intel_crtc->pipe);
3270
3271 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3272 return -EAGAIN;
3273
3274 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3275 return 0;
3276 }
3277
3278 static bool
3279 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3280 {
3281 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3282 DP_DEVICE_SERVICE_IRQ_VECTOR,
3283 sink_irq_vector, 1) == 1;
3284 }
3285
3286 static void
3287 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3288 {
3289 /* NAK by default */
3290 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3291 }
3292
3293 /*
3294 * According to DP spec
3295 * 5.1.2:
3296 * 1. Read DPCD
3297 * 2. Configure link according to Receiver Capabilities
3298 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3299 * 4. Check link status on receipt of hot-plug interrupt
3300 */
3301
3302 void
3303 intel_dp_check_link_status(struct intel_dp *intel_dp)
3304 {
3305 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3306 u8 sink_irq_vector;
3307 u8 link_status[DP_LINK_STATUS_SIZE];
3308
3309 /* FIXME: This access isn't protected by any locks. */
3310 if (!intel_encoder->connectors_active)
3311 return;
3312
3313 if (WARN_ON(!intel_encoder->base.crtc))
3314 return;
3315
3316 /* Try to read receiver status if the link appears to be up */
3317 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3318 return;
3319 }
3320
3321 /* Now read the DPCD to see if it's actually running */
3322 if (!intel_dp_get_dpcd(intel_dp)) {
3323 return;
3324 }
3325
3326 /* Try to read the source of the interrupt */
3327 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3328 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3329 /* Clear interrupt source */
3330 drm_dp_dpcd_writeb(&intel_dp->aux,
3331 DP_DEVICE_SERVICE_IRQ_VECTOR,
3332 sink_irq_vector);
3333
3334 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3335 intel_dp_handle_test_request(intel_dp);
3336 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3337 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3338 }
3339
3340 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3341 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3342 intel_encoder->base.name);
3343 intel_dp_start_link_train(intel_dp);
3344 intel_dp_complete_link_train(intel_dp);
3345 intel_dp_stop_link_train(intel_dp);
3346 }
3347 }
3348
3349 /* XXX this is probably wrong for multiple downstream ports */
3350 static enum drm_connector_status
3351 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3352 {
3353 uint8_t *dpcd = intel_dp->dpcd;
3354 uint8_t type;
3355
3356 if (!intel_dp_get_dpcd(intel_dp))
3357 return connector_status_disconnected;
3358
3359 /* if there's no downstream port, we're done */
3360 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3361 return connector_status_connected;
3362
3363 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3364 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3365 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3366 uint8_t reg;
3367
3368 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3369 &reg, 1) < 0)
3370 return connector_status_unknown;
3371
3372 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3373 : connector_status_disconnected;
3374 }
3375
3376 /* If no HPD, poke DDC gently */
3377 if (drm_probe_ddc(&intel_dp->aux.ddc))
3378 return connector_status_connected;
3379
3380 /* Well we tried, say unknown for unreliable port types */
3381 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
3382 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
3383 if (type == DP_DS_PORT_TYPE_VGA ||
3384 type == DP_DS_PORT_TYPE_NON_EDID)
3385 return connector_status_unknown;
3386 } else {
3387 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3388 DP_DWN_STRM_PORT_TYPE_MASK;
3389 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
3390 type == DP_DWN_STRM_PORT_TYPE_OTHER)
3391 return connector_status_unknown;
3392 }
3393
3394 /* Anything else is out of spec, warn and ignore */
3395 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3396 return connector_status_disconnected;
3397 }
3398
3399 static enum drm_connector_status
3400 ironlake_dp_detect(struct intel_dp *intel_dp)
3401 {
3402 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3403 struct drm_i915_private *dev_priv = dev->dev_private;
3404 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3405 enum drm_connector_status status;
3406
3407 /* Can't disconnect eDP, but you can close the lid... */
3408 if (is_edp(intel_dp)) {
3409 status = intel_panel_detect(dev);
3410 if (status == connector_status_unknown)
3411 status = connector_status_connected;
3412 return status;
3413 }
3414
3415 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
3416 return connector_status_disconnected;
3417
3418 return intel_dp_detect_dpcd(intel_dp);
3419 }
3420
3421 static enum drm_connector_status
3422 g4x_dp_detect(struct intel_dp *intel_dp)
3423 {
3424 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3425 struct drm_i915_private *dev_priv = dev->dev_private;
3426 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3427 uint32_t bit;
3428
3429 /* Can't disconnect eDP, but you can close the lid... */
3430 if (is_edp(intel_dp)) {
3431 enum drm_connector_status status;
3432
3433 status = intel_panel_detect(dev);
3434 if (status == connector_status_unknown)
3435 status = connector_status_connected;
3436 return status;
3437 }
3438
3439 if (IS_VALLEYVIEW(dev)) {
3440 switch (intel_dig_port->port) {
3441 case PORT_B:
3442 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3443 break;
3444 case PORT_C:
3445 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3446 break;
3447 case PORT_D:
3448 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3449 break;
3450 default:
3451 return connector_status_unknown;
3452 }
3453 } else {
3454 switch (intel_dig_port->port) {
3455 case PORT_B:
3456 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3457 break;
3458 case PORT_C:
3459 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3460 break;
3461 case PORT_D:
3462 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3463 break;
3464 default:
3465 return connector_status_unknown;
3466 }
3467 }
3468
3469 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3470 return connector_status_disconnected;
3471
3472 return intel_dp_detect_dpcd(intel_dp);
3473 }
3474
3475 static struct edid *
3476 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3477 {
3478 struct intel_connector *intel_connector = to_intel_connector(connector);
3479
3480 /* use cached edid if we have one */
3481 if (intel_connector->edid) {
3482 /* invalid edid */
3483 if (IS_ERR(intel_connector->edid))
3484 return NULL;
3485
3486 return drm_edid_duplicate(intel_connector->edid);
3487 }
3488
3489 return drm_get_edid(connector, adapter);
3490 }
3491
3492 static int
3493 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3494 {
3495 struct intel_connector *intel_connector = to_intel_connector(connector);
3496
3497 /* use cached edid if we have one */
3498 if (intel_connector->edid) {
3499 /* invalid edid */
3500 if (IS_ERR(intel_connector->edid))
3501 return 0;
3502
3503 return intel_connector_update_modes(connector,
3504 intel_connector->edid);
3505 }
3506
3507 return intel_ddc_get_modes(connector, adapter);
3508 }
3509
3510 static enum drm_connector_status
3511 intel_dp_detect(struct drm_connector *connector, bool force)
3512 {
3513 struct intel_dp *intel_dp = intel_attached_dp(connector);
3514 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3515 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3516 struct drm_device *dev = connector->dev;
3517 struct drm_i915_private *dev_priv = dev->dev_private;
3518 enum drm_connector_status status;
3519 enum intel_display_power_domain power_domain;
3520 struct edid *edid = NULL;
3521
3522 intel_runtime_pm_get(dev_priv);
3523
3524 power_domain = intel_display_port_power_domain(intel_encoder);
3525 intel_display_power_get(dev_priv, power_domain);
3526
3527 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3528 connector->base.id, connector->name);
3529
3530 intel_dp->has_audio = false;
3531
3532 if (HAS_PCH_SPLIT(dev))
3533 status = ironlake_dp_detect(intel_dp);
3534 else
3535 status = g4x_dp_detect(intel_dp);
3536
3537 if (status != connector_status_connected)
3538 goto out;
3539
3540 intel_dp_probe_oui(intel_dp);
3541
3542 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3543 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3544 } else {
3545 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3546 if (edid) {
3547 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3548 kfree(edid);
3549 }
3550 }
3551
3552 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3553 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3554 status = connector_status_connected;
3555
3556 out:
3557 intel_display_power_put(dev_priv, power_domain);
3558
3559 intel_runtime_pm_put(dev_priv);
3560
3561 return status;
3562 }
3563
3564 static int intel_dp_get_modes(struct drm_connector *connector)
3565 {
3566 struct intel_dp *intel_dp = intel_attached_dp(connector);
3567 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3568 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3569 struct intel_connector *intel_connector = to_intel_connector(connector);
3570 struct drm_device *dev = connector->dev;
3571 struct drm_i915_private *dev_priv = dev->dev_private;
3572 enum intel_display_power_domain power_domain;
3573 int ret;
3574
3575 /* We should parse the EDID data and find out if it has an audio sink
3576 */
3577
3578 power_domain = intel_display_port_power_domain(intel_encoder);
3579 intel_display_power_get(dev_priv, power_domain);
3580
3581 ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3582 intel_display_power_put(dev_priv, power_domain);
3583 if (ret)
3584 return ret;
3585
3586 /* if eDP has no EDID, fall back to fixed mode */
3587 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3588 struct drm_display_mode *mode;
3589 mode = drm_mode_duplicate(dev,
3590 intel_connector->panel.fixed_mode);
3591 if (mode) {
3592 drm_mode_probed_add(connector, mode);
3593 return 1;
3594 }
3595 }
3596 return 0;
3597 }
3598
3599 static bool
3600 intel_dp_detect_audio(struct drm_connector *connector)
3601 {
3602 struct intel_dp *intel_dp = intel_attached_dp(connector);
3603 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3604 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3605 struct drm_device *dev = connector->dev;
3606 struct drm_i915_private *dev_priv = dev->dev_private;
3607 enum intel_display_power_domain power_domain;
3608 struct edid *edid;
3609 bool has_audio = false;
3610
3611 power_domain = intel_display_port_power_domain(intel_encoder);
3612 intel_display_power_get(dev_priv, power_domain);
3613
3614 edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3615 if (edid) {
3616 has_audio = drm_detect_monitor_audio(edid);
3617 kfree(edid);
3618 }
3619
3620 intel_display_power_put(dev_priv, power_domain);
3621
3622 return has_audio;
3623 }
3624
3625 static int
3626 intel_dp_set_property(struct drm_connector *connector,
3627 struct drm_property *property,
3628 uint64_t val)
3629 {
3630 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3631 struct intel_connector *intel_connector = to_intel_connector(connector);
3632 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3633 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3634 int ret;
3635
3636 ret = drm_object_property_set_value(&connector->base, property, val);
3637 if (ret)
3638 return ret;
3639
3640 if (property == dev_priv->force_audio_property) {
3641 int i = val;
3642 bool has_audio;
3643
3644 if (i == intel_dp->force_audio)
3645 return 0;
3646
3647 intel_dp->force_audio = i;
3648
3649 if (i == HDMI_AUDIO_AUTO)
3650 has_audio = intel_dp_detect_audio(connector);
3651 else
3652 has_audio = (i == HDMI_AUDIO_ON);
3653
3654 if (has_audio == intel_dp->has_audio)
3655 return 0;
3656
3657 intel_dp->has_audio = has_audio;
3658 goto done;
3659 }
3660
3661 if (property == dev_priv->broadcast_rgb_property) {
3662 bool old_auto = intel_dp->color_range_auto;
3663 uint32_t old_range = intel_dp->color_range;
3664
3665 switch (val) {
3666 case INTEL_BROADCAST_RGB_AUTO:
3667 intel_dp->color_range_auto = true;
3668 break;
3669 case INTEL_BROADCAST_RGB_FULL:
3670 intel_dp->color_range_auto = false;
3671 intel_dp->color_range = 0;
3672 break;
3673 case INTEL_BROADCAST_RGB_LIMITED:
3674 intel_dp->color_range_auto = false;
3675 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3676 break;
3677 default:
3678 return -EINVAL;
3679 }
3680
3681 if (old_auto == intel_dp->color_range_auto &&
3682 old_range == intel_dp->color_range)
3683 return 0;
3684
3685 goto done;
3686 }
3687
3688 if (is_edp(intel_dp) &&
3689 property == connector->dev->mode_config.scaling_mode_property) {
3690 if (val == DRM_MODE_SCALE_NONE) {
3691 DRM_DEBUG_KMS("no scaling not supported\n");
3692 return -EINVAL;
3693 }
3694
3695 if (intel_connector->panel.fitting_mode == val) {
3696 /* the eDP scaling property is not changed */
3697 return 0;
3698 }
3699 intel_connector->panel.fitting_mode = val;
3700
3701 goto done;
3702 }
3703
3704 return -EINVAL;
3705
3706 done:
3707 if (intel_encoder->base.crtc)
3708 intel_crtc_restore_mode(intel_encoder->base.crtc);
3709
3710 return 0;
3711 }
3712
3713 static void
3714 intel_dp_connector_destroy(struct drm_connector *connector)
3715 {
3716 struct intel_connector *intel_connector = to_intel_connector(connector);
3717
3718 if (!IS_ERR_OR_NULL(intel_connector->edid))
3719 kfree(intel_connector->edid);
3720
3721 /* Can't call is_edp() since the encoder may have been destroyed
3722 * already. */
3723 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3724 intel_panel_fini(&intel_connector->panel);
3725
3726 drm_connector_cleanup(connector);
3727 kfree(connector);
3728 }
3729
3730 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3731 {
3732 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3733 struct intel_dp *intel_dp = &intel_dig_port->dp;
3734 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3735
3736 drm_dp_aux_unregister(&intel_dp->aux);
3737 drm_encoder_cleanup(encoder);
3738 if (is_edp(intel_dp)) {
3739 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3740 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3741 edp_panel_vdd_off_sync(intel_dp);
3742 drm_modeset_unlock(&dev->mode_config.connection_mutex);
3743 if (intel_dp->edp_notifier.notifier_call) {
3744 unregister_reboot_notifier(&intel_dp->edp_notifier);
3745 intel_dp->edp_notifier.notifier_call = NULL;
3746 }
3747 }
3748 kfree(intel_dig_port);
3749 }
3750
3751 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3752 .dpms = intel_connector_dpms,
3753 .detect = intel_dp_detect,
3754 .fill_modes = drm_helper_probe_single_connector_modes,
3755 .set_property = intel_dp_set_property,
3756 .destroy = intel_dp_connector_destroy,
3757 };
3758
3759 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3760 .get_modes = intel_dp_get_modes,
3761 .mode_valid = intel_dp_mode_valid,
3762 .best_encoder = intel_best_encoder,
3763 };
3764
3765 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3766 .destroy = intel_dp_encoder_destroy,
3767 };
3768
3769 static void
3770 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3771 {
3772 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3773
3774 intel_dp_check_link_status(intel_dp);
3775 }
3776
3777 /* Return which DP Port should be selected for Transcoder DP control */
3778 int
3779 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3780 {
3781 struct drm_device *dev = crtc->dev;
3782 struct intel_encoder *intel_encoder;
3783 struct intel_dp *intel_dp;
3784
3785 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3786 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3787
3788 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3789 intel_encoder->type == INTEL_OUTPUT_EDP)
3790 return intel_dp->output_reg;
3791 }
3792
3793 return -1;
3794 }
3795
3796 /* check the VBT to see whether the eDP is on DP-D port */
3797 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3798 {
3799 struct drm_i915_private *dev_priv = dev->dev_private;
3800 union child_device_config *p_child;
3801 int i;
3802 static const short port_mapping[] = {
3803 [PORT_B] = PORT_IDPB,
3804 [PORT_C] = PORT_IDPC,
3805 [PORT_D] = PORT_IDPD,
3806 };
3807
3808 if (port == PORT_A)
3809 return true;
3810
3811 if (!dev_priv->vbt.child_dev_num)
3812 return false;
3813
3814 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3815 p_child = dev_priv->vbt.child_dev + i;
3816
3817 if (p_child->common.dvo_port == port_mapping[port] &&
3818 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3819 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3820 return true;
3821 }
3822 return false;
3823 }
3824
3825 static void
3826 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3827 {
3828 struct intel_connector *intel_connector = to_intel_connector(connector);
3829
3830 intel_attach_force_audio_property(connector);
3831 intel_attach_broadcast_rgb_property(connector);
3832 intel_dp->color_range_auto = true;
3833
3834 if (is_edp(intel_dp)) {
3835 drm_mode_create_scaling_mode_property(connector->dev);
3836 drm_object_attach_property(
3837 &connector->base,
3838 connector->dev->mode_config.scaling_mode_property,
3839 DRM_MODE_SCALE_ASPECT);
3840 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3841 }
3842 }
3843
3844 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
3845 {
3846 intel_dp->last_power_cycle = jiffies;
3847 intel_dp->last_power_on = jiffies;
3848 intel_dp->last_backlight_off = jiffies;
3849 }
3850
3851 static void
3852 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3853 struct intel_dp *intel_dp,
3854 struct edp_power_seq *out)
3855 {
3856 struct drm_i915_private *dev_priv = dev->dev_private;
3857 struct edp_power_seq cur, vbt, spec, final;
3858 u32 pp_on, pp_off, pp_div, pp;
3859 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3860
3861 if (HAS_PCH_SPLIT(dev)) {
3862 pp_ctrl_reg = PCH_PP_CONTROL;
3863 pp_on_reg = PCH_PP_ON_DELAYS;
3864 pp_off_reg = PCH_PP_OFF_DELAYS;
3865 pp_div_reg = PCH_PP_DIVISOR;
3866 } else {
3867 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3868
3869 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3870 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3871 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3872 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3873 }
3874
3875 /* Workaround: Need to write PP_CONTROL with the unlock key as
3876 * the very first thing. */
3877 pp = ironlake_get_pp_control(intel_dp);
3878 I915_WRITE(pp_ctrl_reg, pp);
3879
3880 pp_on = I915_READ(pp_on_reg);
3881 pp_off = I915_READ(pp_off_reg);
3882 pp_div = I915_READ(pp_div_reg);
3883
3884 /* Pull timing values out of registers */
3885 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3886 PANEL_POWER_UP_DELAY_SHIFT;
3887
3888 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3889 PANEL_LIGHT_ON_DELAY_SHIFT;
3890
3891 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3892 PANEL_LIGHT_OFF_DELAY_SHIFT;
3893
3894 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3895 PANEL_POWER_DOWN_DELAY_SHIFT;
3896
3897 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3898 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3899
3900 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3901 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3902
3903 vbt = dev_priv->vbt.edp_pps;
3904
3905 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3906 * our hw here, which are all in 100usec. */
3907 spec.t1_t3 = 210 * 10;
3908 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3909 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3910 spec.t10 = 500 * 10;
3911 /* This one is special and actually in units of 100ms, but zero
3912 * based in the hw (so we need to add 100 ms). But the sw vbt
3913 * table multiplies it with 1000 to make it in units of 100usec,
3914 * too. */
3915 spec.t11_t12 = (510 + 100) * 10;
3916
3917 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3918 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3919
3920 /* Use the max of the register settings and vbt. If both are
3921 * unset, fall back to the spec limits. */
3922 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3923 spec.field : \
3924 max(cur.field, vbt.field))
3925 assign_final(t1_t3);
3926 assign_final(t8);
3927 assign_final(t9);
3928 assign_final(t10);
3929 assign_final(t11_t12);
3930 #undef assign_final
3931
3932 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3933 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3934 intel_dp->backlight_on_delay = get_delay(t8);
3935 intel_dp->backlight_off_delay = get_delay(t9);
3936 intel_dp->panel_power_down_delay = get_delay(t10);
3937 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3938 #undef get_delay
3939
3940 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3941 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3942 intel_dp->panel_power_cycle_delay);
3943
3944 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3945 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3946
3947 if (out)
3948 *out = final;
3949 }
3950
3951 static void
3952 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3953 struct intel_dp *intel_dp,
3954 struct edp_power_seq *seq)
3955 {
3956 struct drm_i915_private *dev_priv = dev->dev_private;
3957 u32 pp_on, pp_off, pp_div, port_sel = 0;
3958 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3959 int pp_on_reg, pp_off_reg, pp_div_reg;
3960
3961 if (HAS_PCH_SPLIT(dev)) {
3962 pp_on_reg = PCH_PP_ON_DELAYS;
3963 pp_off_reg = PCH_PP_OFF_DELAYS;
3964 pp_div_reg = PCH_PP_DIVISOR;
3965 } else {
3966 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3967
3968 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3969 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3970 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3971 }
3972
3973 /*
3974 * And finally store the new values in the power sequencer. The
3975 * backlight delays are set to 1 because we do manual waits on them. For
3976 * T8, even BSpec recommends doing it. For T9, if we don't do this,
3977 * we'll end up waiting for the backlight off delay twice: once when we
3978 * do the manual sleep, and once when we disable the panel and wait for
3979 * the PP_STATUS bit to become zero.
3980 */
3981 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3982 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
3983 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3984 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3985 /* Compute the divisor for the pp clock, simply match the Bspec
3986 * formula. */
3987 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3988 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3989 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3990
3991 /* Haswell doesn't have any port selection bits for the panel
3992 * power sequencer any more. */
3993 if (IS_VALLEYVIEW(dev)) {
3994 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3995 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3996 else
3997 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3998 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3999 if (dp_to_dig_port(intel_dp)->port == PORT_A)
4000 port_sel = PANEL_PORT_SELECT_DPA;
4001 else
4002 port_sel = PANEL_PORT_SELECT_DPD;
4003 }
4004
4005 pp_on |= port_sel;
4006
4007 I915_WRITE(pp_on_reg, pp_on);
4008 I915_WRITE(pp_off_reg, pp_off);
4009 I915_WRITE(pp_div_reg, pp_div);
4010
4011 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4012 I915_READ(pp_on_reg),
4013 I915_READ(pp_off_reg),
4014 I915_READ(pp_div_reg));
4015 }
4016
4017 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4018 {
4019 struct drm_i915_private *dev_priv = dev->dev_private;
4020 struct intel_encoder *encoder;
4021 struct intel_dp *intel_dp = NULL;
4022 struct intel_crtc_config *config = NULL;
4023 struct intel_crtc *intel_crtc = NULL;
4024 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4025 u32 reg, val;
4026 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4027
4028 if (refresh_rate <= 0) {
4029 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4030 return;
4031 }
4032
4033 if (intel_connector == NULL) {
4034 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4035 return;
4036 }
4037
4038 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4039 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4040 return;
4041 }
4042
4043 encoder = intel_attached_encoder(&intel_connector->base);
4044 intel_dp = enc_to_intel_dp(&encoder->base);
4045 intel_crtc = encoder->new_crtc;
4046
4047 if (!intel_crtc) {
4048 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4049 return;
4050 }
4051
4052 config = &intel_crtc->config;
4053
4054 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4055 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4056 return;
4057 }
4058
4059 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4060 index = DRRS_LOW_RR;
4061
4062 if (index == intel_dp->drrs_state.refresh_rate_type) {
4063 DRM_DEBUG_KMS(
4064 "DRRS requested for previously set RR...ignoring\n");
4065 return;
4066 }
4067
4068 if (!intel_crtc->active) {
4069 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4070 return;
4071 }
4072
4073 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4074 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4075 val = I915_READ(reg);
4076 if (index > DRRS_HIGH_RR) {
4077 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4078 intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
4079 } else {
4080 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4081 }
4082 I915_WRITE(reg, val);
4083 }
4084
4085 /*
4086 * mutex taken to ensure that there is no race between differnt
4087 * drrs calls trying to update refresh rate. This scenario may occur
4088 * in future when idleness detection based DRRS in kernel and
4089 * possible calls from user space to set differnt RR are made.
4090 */
4091
4092 mutex_lock(&intel_dp->drrs_state.mutex);
4093
4094 intel_dp->drrs_state.refresh_rate_type = index;
4095
4096 mutex_unlock(&intel_dp->drrs_state.mutex);
4097
4098 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4099 }
4100
4101 static struct drm_display_mode *
4102 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4103 struct intel_connector *intel_connector,
4104 struct drm_display_mode *fixed_mode)
4105 {
4106 struct drm_connector *connector = &intel_connector->base;
4107 struct intel_dp *intel_dp = &intel_dig_port->dp;
4108 struct drm_device *dev = intel_dig_port->base.base.dev;
4109 struct drm_i915_private *dev_priv = dev->dev_private;
4110 struct drm_display_mode *downclock_mode = NULL;
4111
4112 if (INTEL_INFO(dev)->gen <= 6) {
4113 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4114 return NULL;
4115 }
4116
4117 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4118 DRM_INFO("VBT doesn't support DRRS\n");
4119 return NULL;
4120 }
4121
4122 downclock_mode = intel_find_panel_downclock
4123 (dev, fixed_mode, connector);
4124
4125 if (!downclock_mode) {
4126 DRM_INFO("DRRS not supported\n");
4127 return NULL;
4128 }
4129
4130 dev_priv->drrs.connector = intel_connector;
4131
4132 mutex_init(&intel_dp->drrs_state.mutex);
4133
4134 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4135
4136 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4137 DRM_INFO("seamless DRRS supported for eDP panel.\n");
4138 return downclock_mode;
4139 }
4140
4141 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4142 struct intel_connector *intel_connector,
4143 struct edp_power_seq *power_seq)
4144 {
4145 struct drm_connector *connector = &intel_connector->base;
4146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4147 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4148 struct drm_device *dev = intel_encoder->base.dev;
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 struct drm_display_mode *fixed_mode = NULL;
4151 struct drm_display_mode *downclock_mode = NULL;
4152 bool has_dpcd;
4153 struct drm_display_mode *scan;
4154 struct edid *edid;
4155
4156 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4157
4158 if (!is_edp(intel_dp))
4159 return true;
4160
4161 /* The VDD bit needs a power domain reference, so if the bit is already
4162 * enabled when we boot, grab this reference. */
4163 if (edp_have_panel_vdd(intel_dp)) {
4164 enum intel_display_power_domain power_domain;
4165 power_domain = intel_display_port_power_domain(intel_encoder);
4166 intel_display_power_get(dev_priv, power_domain);
4167 }
4168
4169 /* Cache DPCD and EDID for edp. */
4170 intel_edp_panel_vdd_on(intel_dp);
4171 has_dpcd = intel_dp_get_dpcd(intel_dp);
4172 edp_panel_vdd_off(intel_dp, false);
4173
4174 if (has_dpcd) {
4175 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4176 dev_priv->no_aux_handshake =
4177 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4178 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4179 } else {
4180 /* if this fails, presume the device is a ghost */
4181 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4182 return false;
4183 }
4184
4185 /* We now know it's not a ghost, init power sequence regs. */
4186 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4187
4188 mutex_lock(&dev->mode_config.mutex);
4189 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4190 if (edid) {
4191 if (drm_add_edid_modes(connector, edid)) {
4192 drm_mode_connector_update_edid_property(connector,
4193 edid);
4194 drm_edid_to_eld(connector, edid);
4195 } else {
4196 kfree(edid);
4197 edid = ERR_PTR(-EINVAL);
4198 }
4199 } else {
4200 edid = ERR_PTR(-ENOENT);
4201 }
4202 intel_connector->edid = edid;
4203
4204 /* prefer fixed mode from EDID if available */
4205 list_for_each_entry(scan, &connector->probed_modes, head) {
4206 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
4207 fixed_mode = drm_mode_duplicate(dev, scan);
4208 downclock_mode = intel_dp_drrs_init(
4209 intel_dig_port,
4210 intel_connector, fixed_mode);
4211 break;
4212 }
4213 }
4214
4215 /* fallback to VBT if available for eDP */
4216 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
4217 fixed_mode = drm_mode_duplicate(dev,
4218 dev_priv->vbt.lfp_lvds_vbt_mode);
4219 if (fixed_mode)
4220 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
4221 }
4222 mutex_unlock(&dev->mode_config.mutex);
4223
4224 if (IS_VALLEYVIEW(dev)) {
4225 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
4226 register_reboot_notifier(&intel_dp->edp_notifier);
4227 }
4228
4229 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4230 intel_panel_setup_backlight(connector);
4231
4232 return true;
4233 }
4234
4235 bool
4236 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
4237 struct intel_connector *intel_connector)
4238 {
4239 struct drm_connector *connector = &intel_connector->base;
4240 struct intel_dp *intel_dp = &intel_dig_port->dp;
4241 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4242 struct drm_device *dev = intel_encoder->base.dev;
4243 struct drm_i915_private *dev_priv = dev->dev_private;
4244 enum port port = intel_dig_port->port;
4245 struct edp_power_seq power_seq = { 0 };
4246 int type;
4247
4248 /* intel_dp vfuncs */
4249 if (IS_VALLEYVIEW(dev))
4250 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
4251 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4252 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
4253 else if (HAS_PCH_SPLIT(dev))
4254 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
4255 else
4256 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
4257
4258 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
4259
4260 /* Preserve the current hw state. */
4261 intel_dp->DP = I915_READ(intel_dp->output_reg);
4262 intel_dp->attached_connector = intel_connector;
4263
4264 if (intel_dp_is_edp(dev, port))
4265 type = DRM_MODE_CONNECTOR_eDP;
4266 else
4267 type = DRM_MODE_CONNECTOR_DisplayPort;
4268
4269 /*
4270 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
4271 * for DP the encoder type can be set by the caller to
4272 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
4273 */
4274 if (type == DRM_MODE_CONNECTOR_eDP)
4275 intel_encoder->type = INTEL_OUTPUT_EDP;
4276
4277 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
4278 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
4279 port_name(port));
4280
4281 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4282 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
4283
4284 connector->interlace_allowed = true;
4285 connector->doublescan_allowed = 0;
4286
4287 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4288 edp_panel_vdd_work);
4289
4290 intel_connector_attach_encoder(intel_connector, intel_encoder);
4291 drm_sysfs_connector_add(connector);
4292
4293 if (HAS_DDI(dev))
4294 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
4295 else
4296 intel_connector->get_hw_state = intel_connector_get_hw_state;
4297 intel_connector->unregister = intel_dp_connector_unregister;
4298
4299 /* Set up the hotplug pin. */
4300 switch (port) {
4301 case PORT_A:
4302 intel_encoder->hpd_pin = HPD_PORT_A;
4303 break;
4304 case PORT_B:
4305 intel_encoder->hpd_pin = HPD_PORT_B;
4306 break;
4307 case PORT_C:
4308 intel_encoder->hpd_pin = HPD_PORT_C;
4309 break;
4310 case PORT_D:
4311 intel_encoder->hpd_pin = HPD_PORT_D;
4312 break;
4313 default:
4314 BUG();
4315 }
4316
4317 if (is_edp(intel_dp)) {
4318 intel_dp_init_panel_power_timestamps(intel_dp);
4319 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4320 }
4321
4322 intel_dp_aux_init(intel_dp, intel_connector);
4323
4324 intel_dp->psr_setup_done = false;
4325
4326 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4327 drm_dp_aux_unregister(&intel_dp->aux);
4328 if (is_edp(intel_dp)) {
4329 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4330 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4331 edp_panel_vdd_off_sync(intel_dp);
4332 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4333 }
4334 drm_sysfs_connector_remove(connector);
4335 drm_connector_cleanup(connector);
4336 return false;
4337 }
4338
4339 intel_dp_add_properties(intel_dp, connector);
4340
4341 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
4342 * 0xd. Failure to do so will result in spurious interrupts being
4343 * generated on the port when a cable is not attached.
4344 */
4345 if (IS_G4X(dev) && !IS_GM45(dev)) {
4346 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
4347 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
4348 }
4349
4350 return true;
4351 }
4352
4353 void
4354 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
4355 {
4356 struct intel_digital_port *intel_dig_port;
4357 struct intel_encoder *intel_encoder;
4358 struct drm_encoder *encoder;
4359 struct intel_connector *intel_connector;
4360
4361 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4362 if (!intel_dig_port)
4363 return;
4364
4365 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4366 if (!intel_connector) {
4367 kfree(intel_dig_port);
4368 return;
4369 }
4370
4371 intel_encoder = &intel_dig_port->base;
4372 encoder = &intel_encoder->base;
4373
4374 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
4375 DRM_MODE_ENCODER_TMDS);
4376
4377 intel_encoder->compute_config = intel_dp_compute_config;
4378 intel_encoder->disable = intel_disable_dp;
4379 intel_encoder->get_hw_state = intel_dp_get_hw_state;
4380 intel_encoder->get_config = intel_dp_get_config;
4381 if (IS_CHERRYVIEW(dev)) {
4382 intel_encoder->pre_enable = chv_pre_enable_dp;
4383 intel_encoder->enable = vlv_enable_dp;
4384 intel_encoder->post_disable = chv_post_disable_dp;
4385 } else if (IS_VALLEYVIEW(dev)) {
4386 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4387 intel_encoder->pre_enable = vlv_pre_enable_dp;
4388 intel_encoder->enable = vlv_enable_dp;
4389 intel_encoder->post_disable = vlv_post_disable_dp;
4390 } else {
4391 intel_encoder->pre_enable = g4x_pre_enable_dp;
4392 intel_encoder->enable = g4x_enable_dp;
4393 intel_encoder->post_disable = g4x_post_disable_dp;
4394 }
4395
4396 intel_dig_port->port = port;
4397 intel_dig_port->dp.output_reg = output_reg;
4398
4399 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4400 if (IS_CHERRYVIEW(dev)) {
4401 if (port == PORT_D)
4402 intel_encoder->crtc_mask = 1 << 2;
4403 else
4404 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
4405 } else {
4406 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
4407 }
4408 intel_encoder->cloneable = 0;
4409 intel_encoder->hot_plug = intel_dp_hot_plug;
4410
4411 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
4412 drm_encoder_cleanup(encoder);
4413 kfree(intel_dig_port);
4414 kfree(intel_connector);
4415 }
4416 }
This page took 0.143216 seconds and 6 git commands to generate.