drm/i915: Read sink_count dpcd always
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static unsigned int intel_dp_unused_lane_mask(int lane_count)
135 {
136 return ~((1 << lane_count) - 1) & 0xf;
137 }
138
139 static int
140 intel_dp_max_link_bw(struct intel_dp *intel_dp)
141 {
142 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
143
144 switch (max_link_bw) {
145 case DP_LINK_BW_1_62:
146 case DP_LINK_BW_2_7:
147 case DP_LINK_BW_5_4:
148 break;
149 default:
150 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
151 max_link_bw);
152 max_link_bw = DP_LINK_BW_1_62;
153 break;
154 }
155 return max_link_bw;
156 }
157
158 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
159 {
160 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
161 u8 source_max, sink_max;
162
163 source_max = intel_dig_port->max_lanes;
164 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
165
166 return min(source_max, sink_max);
167 }
168
169 /*
170 * The units on the numbers in the next two are... bizarre. Examples will
171 * make it clearer; this one parallels an example in the eDP spec.
172 *
173 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174 *
175 * 270000 * 1 * 8 / 10 == 216000
176 *
177 * The actual data capacity of that configuration is 2.16Gbit/s, so the
178 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
179 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180 * 119000. At 18bpp that's 2142000 kilobits per second.
181 *
182 * Thus the strange-looking division by 10 in intel_dp_link_required, to
183 * get the result in decakilobits instead of kilobits.
184 */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189 return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static enum drm_mode_status
199 intel_dp_mode_valid(struct drm_connector *connector,
200 struct drm_display_mode *mode)
201 {
202 struct intel_dp *intel_dp = intel_attached_dp(connector);
203 struct intel_connector *intel_connector = to_intel_connector(connector);
204 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
205 int target_clock = mode->clock;
206 int max_rate, mode_rate, max_lanes, max_link_clock;
207 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
208
209 if (is_edp(intel_dp) && fixed_mode) {
210 if (mode->hdisplay > fixed_mode->hdisplay)
211 return MODE_PANEL;
212
213 if (mode->vdisplay > fixed_mode->vdisplay)
214 return MODE_PANEL;
215
216 target_clock = fixed_mode->clock;
217 }
218
219 max_link_clock = intel_dp_max_link_rate(intel_dp);
220 max_lanes = intel_dp_max_lane_count(intel_dp);
221
222 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
223 mode_rate = intel_dp_link_required(target_clock, 18);
224
225 if (mode_rate > max_rate || target_clock > max_dotclk)
226 return MODE_CLOCK_HIGH;
227
228 if (mode->clock < 10000)
229 return MODE_CLOCK_LOW;
230
231 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
232 return MODE_H_ILLEGAL;
233
234 return MODE_OK;
235 }
236
237 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
238 {
239 int i;
240 uint32_t v = 0;
241
242 if (src_bytes > 4)
243 src_bytes = 4;
244 for (i = 0; i < src_bytes; i++)
245 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246 return v;
247 }
248
249 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
250 {
251 int i;
252 if (dst_bytes > 4)
253 dst_bytes = 4;
254 for (i = 0; i < dst_bytes; i++)
255 dst[i] = src >> ((3-i) * 8);
256 }
257
258 static void
259 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
260 struct intel_dp *intel_dp);
261 static void
262 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
263 struct intel_dp *intel_dp);
264
265 static void pps_lock(struct intel_dp *intel_dp)
266 {
267 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
268 struct intel_encoder *encoder = &intel_dig_port->base;
269 struct drm_device *dev = encoder->base.dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 enum intel_display_power_domain power_domain;
272
273 /*
274 * See vlv_power_sequencer_reset() why we need
275 * a power domain reference here.
276 */
277 power_domain = intel_display_port_aux_power_domain(encoder);
278 intel_display_power_get(dev_priv, power_domain);
279
280 mutex_lock(&dev_priv->pps_mutex);
281 }
282
283 static void pps_unlock(struct intel_dp *intel_dp)
284 {
285 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
286 struct intel_encoder *encoder = &intel_dig_port->base;
287 struct drm_device *dev = encoder->base.dev;
288 struct drm_i915_private *dev_priv = dev->dev_private;
289 enum intel_display_power_domain power_domain;
290
291 mutex_unlock(&dev_priv->pps_mutex);
292
293 power_domain = intel_display_port_aux_power_domain(encoder);
294 intel_display_power_put(dev_priv, power_domain);
295 }
296
297 static void
298 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
299 {
300 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
301 struct drm_device *dev = intel_dig_port->base.base.dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 enum pipe pipe = intel_dp->pps_pipe;
304 bool pll_enabled, release_cl_override = false;
305 enum dpio_phy phy = DPIO_PHY(pipe);
306 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
307 uint32_t DP;
308
309 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
310 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
311 pipe_name(pipe), port_name(intel_dig_port->port)))
312 return;
313
314 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
315 pipe_name(pipe), port_name(intel_dig_port->port));
316
317 /* Preserve the BIOS-computed detected bit. This is
318 * supposed to be read-only.
319 */
320 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
321 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
322 DP |= DP_PORT_WIDTH(1);
323 DP |= DP_LINK_TRAIN_PAT_1;
324
325 if (IS_CHERRYVIEW(dev))
326 DP |= DP_PIPE_SELECT_CHV(pipe);
327 else if (pipe == PIPE_B)
328 DP |= DP_PIPEB_SELECT;
329
330 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
331
332 /*
333 * The DPLL for the pipe must be enabled for this to work.
334 * So enable temporarily it if it's not already enabled.
335 */
336 if (!pll_enabled) {
337 release_cl_override = IS_CHERRYVIEW(dev) &&
338 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
339
340 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
341 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
342 DRM_ERROR("Failed to force on pll for pipe %c!\n",
343 pipe_name(pipe));
344 return;
345 }
346 }
347
348 /*
349 * Similar magic as in intel_dp_enable_port().
350 * We _must_ do this port enable + disable trick
351 * to make this power seqeuencer lock onto the port.
352 * Otherwise even VDD force bit won't work.
353 */
354 I915_WRITE(intel_dp->output_reg, DP);
355 POSTING_READ(intel_dp->output_reg);
356
357 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
358 POSTING_READ(intel_dp->output_reg);
359
360 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
361 POSTING_READ(intel_dp->output_reg);
362
363 if (!pll_enabled) {
364 vlv_force_pll_off(dev, pipe);
365
366 if (release_cl_override)
367 chv_phy_powergate_ch(dev_priv, phy, ch, false);
368 }
369 }
370
371 static enum pipe
372 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
373 {
374 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375 struct drm_device *dev = intel_dig_port->base.base.dev;
376 struct drm_i915_private *dev_priv = dev->dev_private;
377 struct intel_encoder *encoder;
378 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
379 enum pipe pipe;
380
381 lockdep_assert_held(&dev_priv->pps_mutex);
382
383 /* We should never land here with regular DP ports */
384 WARN_ON(!is_edp(intel_dp));
385
386 if (intel_dp->pps_pipe != INVALID_PIPE)
387 return intel_dp->pps_pipe;
388
389 /*
390 * We don't have power sequencer currently.
391 * Pick one that's not used by other ports.
392 */
393 for_each_intel_encoder(dev, encoder) {
394 struct intel_dp *tmp;
395
396 if (encoder->type != INTEL_OUTPUT_EDP)
397 continue;
398
399 tmp = enc_to_intel_dp(&encoder->base);
400
401 if (tmp->pps_pipe != INVALID_PIPE)
402 pipes &= ~(1 << tmp->pps_pipe);
403 }
404
405 /*
406 * Didn't find one. This should not happen since there
407 * are two power sequencers and up to two eDP ports.
408 */
409 if (WARN_ON(pipes == 0))
410 pipe = PIPE_A;
411 else
412 pipe = ffs(pipes) - 1;
413
414 vlv_steal_power_sequencer(dev, pipe);
415 intel_dp->pps_pipe = pipe;
416
417 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418 pipe_name(intel_dp->pps_pipe),
419 port_name(intel_dig_port->port));
420
421 /* init power sequencer on this pipe and port */
422 intel_dp_init_panel_power_sequencer(dev, intel_dp);
423 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425 /*
426 * Even vdd force doesn't work until we've made
427 * the power sequencer lock in on the port.
428 */
429 vlv_power_sequencer_kick(intel_dp);
430
431 return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435 enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438 enum pipe pipe)
439 {
440 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444 enum pipe pipe)
445 {
446 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450 enum pipe pipe)
451 {
452 return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457 enum port port,
458 vlv_pipe_check pipe_check)
459 {
460 enum pipe pipe;
461
462 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464 PANEL_PORT_SELECT_MASK;
465
466 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467 continue;
468
469 if (!pipe_check(dev_priv, pipe))
470 continue;
471
472 return pipe;
473 }
474
475 return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482 struct drm_device *dev = intel_dig_port->base.base.dev;
483 struct drm_i915_private *dev_priv = dev->dev_private;
484 enum port port = intel_dig_port->port;
485
486 lockdep_assert_held(&dev_priv->pps_mutex);
487
488 /* try to find a pipe with this port selected */
489 /* first pick one where the panel is on */
490 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491 vlv_pipe_has_pp_on);
492 /* didn't find one? pick one where vdd is on */
493 if (intel_dp->pps_pipe == INVALID_PIPE)
494 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495 vlv_pipe_has_vdd_on);
496 /* didn't find one? pick one with just the correct port */
497 if (intel_dp->pps_pipe == INVALID_PIPE)
498 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499 vlv_pipe_any);
500
501 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502 if (intel_dp->pps_pipe == INVALID_PIPE) {
503 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504 port_name(port));
505 return;
506 }
507
508 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509 port_name(port), pipe_name(intel_dp->pps_pipe));
510
511 intel_dp_init_panel_power_sequencer(dev, intel_dp);
512 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517 struct drm_device *dev = dev_priv->dev;
518 struct intel_encoder *encoder;
519
520 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
521 return;
522
523 /*
524 * We can't grab pps_mutex here due to deadlock with power_domain
525 * mutex when power_domain functions are called while holding pps_mutex.
526 * That also means that in order to use pps_pipe the code needs to
527 * hold both a power domain reference and pps_mutex, and the power domain
528 * reference get/put must be done while _not_ holding pps_mutex.
529 * pps_{lock,unlock}() do these steps in the correct order, so one
530 * should use them always.
531 */
532
533 for_each_intel_encoder(dev, encoder) {
534 struct intel_dp *intel_dp;
535
536 if (encoder->type != INTEL_OUTPUT_EDP)
537 continue;
538
539 intel_dp = enc_to_intel_dp(&encoder->base);
540 intel_dp->pps_pipe = INVALID_PIPE;
541 }
542 }
543
544 static i915_reg_t
545 _pp_ctrl_reg(struct intel_dp *intel_dp)
546 {
547 struct drm_device *dev = intel_dp_to_dev(intel_dp);
548
549 if (IS_BROXTON(dev))
550 return BXT_PP_CONTROL(0);
551 else if (HAS_PCH_SPLIT(dev))
552 return PCH_PP_CONTROL;
553 else
554 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
555 }
556
557 static i915_reg_t
558 _pp_stat_reg(struct intel_dp *intel_dp)
559 {
560 struct drm_device *dev = intel_dp_to_dev(intel_dp);
561
562 if (IS_BROXTON(dev))
563 return BXT_PP_STATUS(0);
564 else if (HAS_PCH_SPLIT(dev))
565 return PCH_PP_STATUS;
566 else
567 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
568 }
569
570 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
571 This function only applicable when panel PM state is not to be tracked */
572 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
573 void *unused)
574 {
575 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
576 edp_notifier);
577 struct drm_device *dev = intel_dp_to_dev(intel_dp);
578 struct drm_i915_private *dev_priv = dev->dev_private;
579
580 if (!is_edp(intel_dp) || code != SYS_RESTART)
581 return 0;
582
583 pps_lock(intel_dp);
584
585 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
586 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
587 i915_reg_t pp_ctrl_reg, pp_div_reg;
588 u32 pp_div;
589
590 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
591 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
592 pp_div = I915_READ(pp_div_reg);
593 pp_div &= PP_REFERENCE_DIVIDER_MASK;
594
595 /* 0x1F write to PP_DIV_REG sets max cycle delay */
596 I915_WRITE(pp_div_reg, pp_div | 0x1F);
597 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
598 msleep(intel_dp->panel_power_cycle_delay);
599 }
600
601 pps_unlock(intel_dp);
602
603 return 0;
604 }
605
606 static bool edp_have_panel_power(struct intel_dp *intel_dp)
607 {
608 struct drm_device *dev = intel_dp_to_dev(intel_dp);
609 struct drm_i915_private *dev_priv = dev->dev_private;
610
611 lockdep_assert_held(&dev_priv->pps_mutex);
612
613 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
614 intel_dp->pps_pipe == INVALID_PIPE)
615 return false;
616
617 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
618 }
619
620 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
621 {
622 struct drm_device *dev = intel_dp_to_dev(intel_dp);
623 struct drm_i915_private *dev_priv = dev->dev_private;
624
625 lockdep_assert_held(&dev_priv->pps_mutex);
626
627 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
628 intel_dp->pps_pipe == INVALID_PIPE)
629 return false;
630
631 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
632 }
633
634 static void
635 intel_dp_check_edp(struct intel_dp *intel_dp)
636 {
637 struct drm_device *dev = intel_dp_to_dev(intel_dp);
638 struct drm_i915_private *dev_priv = dev->dev_private;
639
640 if (!is_edp(intel_dp))
641 return;
642
643 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
644 WARN(1, "eDP powered off while attempting aux channel communication.\n");
645 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
646 I915_READ(_pp_stat_reg(intel_dp)),
647 I915_READ(_pp_ctrl_reg(intel_dp)));
648 }
649 }
650
651 static uint32_t
652 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
653 {
654 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
655 struct drm_device *dev = intel_dig_port->base.base.dev;
656 struct drm_i915_private *dev_priv = dev->dev_private;
657 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
658 uint32_t status;
659 bool done;
660
661 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
662 if (has_aux_irq)
663 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
664 msecs_to_jiffies_timeout(10));
665 else
666 done = wait_for_atomic(C, 10) == 0;
667 if (!done)
668 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
669 has_aux_irq);
670 #undef C
671
672 return status;
673 }
674
675 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
676 {
677 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
678 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
679
680 if (index)
681 return 0;
682
683 /*
684 * The clock divider is based off the hrawclk, and would like to run at
685 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
686 */
687 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
688 }
689
690 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
691 {
692 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
693 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
694
695 if (index)
696 return 0;
697
698 /*
699 * The clock divider is based off the cdclk or PCH rawclk, and would
700 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
701 * divide by 2000 and use that
702 */
703 if (intel_dig_port->port == PORT_A)
704 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
705 else
706 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
707 }
708
709 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
710 {
711 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
712 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
713
714 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
715 /* Workaround for non-ULT HSW */
716 switch (index) {
717 case 0: return 63;
718 case 1: return 72;
719 default: return 0;
720 }
721 }
722
723 return ilk_get_aux_clock_divider(intel_dp, index);
724 }
725
726 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
727 {
728 /*
729 * SKL doesn't need us to program the AUX clock divider (Hardware will
730 * derive the clock from CDCLK automatically). We still implement the
731 * get_aux_clock_divider vfunc to plug-in into the existing code.
732 */
733 return index ? 0 : 1;
734 }
735
736 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
737 bool has_aux_irq,
738 int send_bytes,
739 uint32_t aux_clock_divider)
740 {
741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742 struct drm_device *dev = intel_dig_port->base.base.dev;
743 uint32_t precharge, timeout;
744
745 if (IS_GEN6(dev))
746 precharge = 3;
747 else
748 precharge = 5;
749
750 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
751 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
752 else
753 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
754
755 return DP_AUX_CH_CTL_SEND_BUSY |
756 DP_AUX_CH_CTL_DONE |
757 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
758 DP_AUX_CH_CTL_TIME_OUT_ERROR |
759 timeout |
760 DP_AUX_CH_CTL_RECEIVE_ERROR |
761 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
762 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
763 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
764 }
765
766 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
767 bool has_aux_irq,
768 int send_bytes,
769 uint32_t unused)
770 {
771 return DP_AUX_CH_CTL_SEND_BUSY |
772 DP_AUX_CH_CTL_DONE |
773 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 DP_AUX_CH_CTL_TIME_OUT_1600us |
776 DP_AUX_CH_CTL_RECEIVE_ERROR |
777 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
778 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
779 }
780
781 static int
782 intel_dp_aux_ch(struct intel_dp *intel_dp,
783 const uint8_t *send, int send_bytes,
784 uint8_t *recv, int recv_size)
785 {
786 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
787 struct drm_device *dev = intel_dig_port->base.base.dev;
788 struct drm_i915_private *dev_priv = dev->dev_private;
789 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
790 uint32_t aux_clock_divider;
791 int i, ret, recv_bytes;
792 uint32_t status;
793 int try, clock = 0;
794 bool has_aux_irq = HAS_AUX_IRQ(dev);
795 bool vdd;
796
797 pps_lock(intel_dp);
798
799 /*
800 * We will be called with VDD already enabled for dpcd/edid/oui reads.
801 * In such cases we want to leave VDD enabled and it's up to upper layers
802 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
803 * ourselves.
804 */
805 vdd = edp_panel_vdd_on(intel_dp);
806
807 /* dp aux is extremely sensitive to irq latency, hence request the
808 * lowest possible wakeup latency and so prevent the cpu from going into
809 * deep sleep states.
810 */
811 pm_qos_update_request(&dev_priv->pm_qos, 0);
812
813 intel_dp_check_edp(intel_dp);
814
815 /* Try to wait for any previous AUX channel activity */
816 for (try = 0; try < 3; try++) {
817 status = I915_READ_NOTRACE(ch_ctl);
818 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
819 break;
820 msleep(1);
821 }
822
823 if (try == 3) {
824 static u32 last_status = -1;
825 const u32 status = I915_READ(ch_ctl);
826
827 if (status != last_status) {
828 WARN(1, "dp_aux_ch not started status 0x%08x\n",
829 status);
830 last_status = status;
831 }
832
833 ret = -EBUSY;
834 goto out;
835 }
836
837 /* Only 5 data registers! */
838 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
839 ret = -E2BIG;
840 goto out;
841 }
842
843 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
844 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
845 has_aux_irq,
846 send_bytes,
847 aux_clock_divider);
848
849 /* Must try at least 3 times according to DP spec */
850 for (try = 0; try < 5; try++) {
851 /* Load the send data into the aux channel data registers */
852 for (i = 0; i < send_bytes; i += 4)
853 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
854 intel_dp_pack_aux(send + i,
855 send_bytes - i));
856
857 /* Send the command and wait for it to complete */
858 I915_WRITE(ch_ctl, send_ctl);
859
860 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
861
862 /* Clear done status and any errors */
863 I915_WRITE(ch_ctl,
864 status |
865 DP_AUX_CH_CTL_DONE |
866 DP_AUX_CH_CTL_TIME_OUT_ERROR |
867 DP_AUX_CH_CTL_RECEIVE_ERROR);
868
869 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
870 continue;
871
872 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
873 * 400us delay required for errors and timeouts
874 * Timeout errors from the HW already meet this
875 * requirement so skip to next iteration
876 */
877 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
878 usleep_range(400, 500);
879 continue;
880 }
881 if (status & DP_AUX_CH_CTL_DONE)
882 goto done;
883 }
884 }
885
886 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
887 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
888 ret = -EBUSY;
889 goto out;
890 }
891
892 done:
893 /* Check for timeout or receive error.
894 * Timeouts occur when the sink is not connected
895 */
896 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
897 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
898 ret = -EIO;
899 goto out;
900 }
901
902 /* Timeouts occur when the device isn't connected, so they're
903 * "normal" -- don't fill the kernel log with these */
904 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
905 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
906 ret = -ETIMEDOUT;
907 goto out;
908 }
909
910 /* Unload any bytes sent back from the other side */
911 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
912 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
913
914 /*
915 * By BSpec: "Message sizes of 0 or >20 are not allowed."
916 * We have no idea of what happened so we return -EBUSY so
917 * drm layer takes care for the necessary retries.
918 */
919 if (recv_bytes == 0 || recv_bytes > 20) {
920 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
921 recv_bytes);
922 /*
923 * FIXME: This patch was created on top of a series that
924 * organize the retries at drm level. There EBUSY should
925 * also take care for 1ms wait before retrying.
926 * That aux retries re-org is still needed and after that is
927 * merged we remove this sleep from here.
928 */
929 usleep_range(1000, 1500);
930 ret = -EBUSY;
931 goto out;
932 }
933
934 if (recv_bytes > recv_size)
935 recv_bytes = recv_size;
936
937 for (i = 0; i < recv_bytes; i += 4)
938 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
939 recv + i, recv_bytes - i);
940
941 ret = recv_bytes;
942 out:
943 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
944
945 if (vdd)
946 edp_panel_vdd_off(intel_dp, false);
947
948 pps_unlock(intel_dp);
949
950 return ret;
951 }
952
953 #define BARE_ADDRESS_SIZE 3
954 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
955 static ssize_t
956 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
957 {
958 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
959 uint8_t txbuf[20], rxbuf[20];
960 size_t txsize, rxsize;
961 int ret;
962
963 txbuf[0] = (msg->request << 4) |
964 ((msg->address >> 16) & 0xf);
965 txbuf[1] = (msg->address >> 8) & 0xff;
966 txbuf[2] = msg->address & 0xff;
967 txbuf[3] = msg->size - 1;
968
969 switch (msg->request & ~DP_AUX_I2C_MOT) {
970 case DP_AUX_NATIVE_WRITE:
971 case DP_AUX_I2C_WRITE:
972 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
973 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
974 rxsize = 2; /* 0 or 1 data bytes */
975
976 if (WARN_ON(txsize > 20))
977 return -E2BIG;
978
979 if (msg->buffer)
980 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
981 else
982 WARN_ON(msg->size);
983
984 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
985 if (ret > 0) {
986 msg->reply = rxbuf[0] >> 4;
987
988 if (ret > 1) {
989 /* Number of bytes written in a short write. */
990 ret = clamp_t(int, rxbuf[1], 0, msg->size);
991 } else {
992 /* Return payload size. */
993 ret = msg->size;
994 }
995 }
996 break;
997
998 case DP_AUX_NATIVE_READ:
999 case DP_AUX_I2C_READ:
1000 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1001 rxsize = msg->size + 1;
1002
1003 if (WARN_ON(rxsize > 20))
1004 return -E2BIG;
1005
1006 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1007 if (ret > 0) {
1008 msg->reply = rxbuf[0] >> 4;
1009 /*
1010 * Assume happy day, and copy the data. The caller is
1011 * expected to check msg->reply before touching it.
1012 *
1013 * Return payload size.
1014 */
1015 ret--;
1016 memcpy(msg->buffer, rxbuf + 1, ret);
1017 }
1018 break;
1019
1020 default:
1021 ret = -EINVAL;
1022 break;
1023 }
1024
1025 return ret;
1026 }
1027
1028 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1029 enum port port)
1030 {
1031 switch (port) {
1032 case PORT_B:
1033 case PORT_C:
1034 case PORT_D:
1035 return DP_AUX_CH_CTL(port);
1036 default:
1037 MISSING_CASE(port);
1038 return DP_AUX_CH_CTL(PORT_B);
1039 }
1040 }
1041
1042 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1043 enum port port, int index)
1044 {
1045 switch (port) {
1046 case PORT_B:
1047 case PORT_C:
1048 case PORT_D:
1049 return DP_AUX_CH_DATA(port, index);
1050 default:
1051 MISSING_CASE(port);
1052 return DP_AUX_CH_DATA(PORT_B, index);
1053 }
1054 }
1055
1056 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1057 enum port port)
1058 {
1059 switch (port) {
1060 case PORT_A:
1061 return DP_AUX_CH_CTL(port);
1062 case PORT_B:
1063 case PORT_C:
1064 case PORT_D:
1065 return PCH_DP_AUX_CH_CTL(port);
1066 default:
1067 MISSING_CASE(port);
1068 return DP_AUX_CH_CTL(PORT_A);
1069 }
1070 }
1071
1072 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1073 enum port port, int index)
1074 {
1075 switch (port) {
1076 case PORT_A:
1077 return DP_AUX_CH_DATA(port, index);
1078 case PORT_B:
1079 case PORT_C:
1080 case PORT_D:
1081 return PCH_DP_AUX_CH_DATA(port, index);
1082 default:
1083 MISSING_CASE(port);
1084 return DP_AUX_CH_DATA(PORT_A, index);
1085 }
1086 }
1087
1088 /*
1089 * On SKL we don't have Aux for port E so we rely
1090 * on VBT to set a proper alternate aux channel.
1091 */
1092 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1093 {
1094 const struct ddi_vbt_port_info *info =
1095 &dev_priv->vbt.ddi_port_info[PORT_E];
1096
1097 switch (info->alternate_aux_channel) {
1098 case DP_AUX_A:
1099 return PORT_A;
1100 case DP_AUX_B:
1101 return PORT_B;
1102 case DP_AUX_C:
1103 return PORT_C;
1104 case DP_AUX_D:
1105 return PORT_D;
1106 default:
1107 MISSING_CASE(info->alternate_aux_channel);
1108 return PORT_A;
1109 }
1110 }
1111
1112 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1113 enum port port)
1114 {
1115 if (port == PORT_E)
1116 port = skl_porte_aux_port(dev_priv);
1117
1118 switch (port) {
1119 case PORT_A:
1120 case PORT_B:
1121 case PORT_C:
1122 case PORT_D:
1123 return DP_AUX_CH_CTL(port);
1124 default:
1125 MISSING_CASE(port);
1126 return DP_AUX_CH_CTL(PORT_A);
1127 }
1128 }
1129
1130 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1131 enum port port, int index)
1132 {
1133 if (port == PORT_E)
1134 port = skl_porte_aux_port(dev_priv);
1135
1136 switch (port) {
1137 case PORT_A:
1138 case PORT_B:
1139 case PORT_C:
1140 case PORT_D:
1141 return DP_AUX_CH_DATA(port, index);
1142 default:
1143 MISSING_CASE(port);
1144 return DP_AUX_CH_DATA(PORT_A, index);
1145 }
1146 }
1147
1148 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1149 enum port port)
1150 {
1151 if (INTEL_INFO(dev_priv)->gen >= 9)
1152 return skl_aux_ctl_reg(dev_priv, port);
1153 else if (HAS_PCH_SPLIT(dev_priv))
1154 return ilk_aux_ctl_reg(dev_priv, port);
1155 else
1156 return g4x_aux_ctl_reg(dev_priv, port);
1157 }
1158
1159 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1160 enum port port, int index)
1161 {
1162 if (INTEL_INFO(dev_priv)->gen >= 9)
1163 return skl_aux_data_reg(dev_priv, port, index);
1164 else if (HAS_PCH_SPLIT(dev_priv))
1165 return ilk_aux_data_reg(dev_priv, port, index);
1166 else
1167 return g4x_aux_data_reg(dev_priv, port, index);
1168 }
1169
1170 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1171 {
1172 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1173 enum port port = dp_to_dig_port(intel_dp)->port;
1174 int i;
1175
1176 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1177 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1178 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1179 }
1180
1181 static void
1182 intel_dp_aux_fini(struct intel_dp *intel_dp)
1183 {
1184 drm_dp_aux_unregister(&intel_dp->aux);
1185 kfree(intel_dp->aux.name);
1186 }
1187
1188 static int
1189 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1190 {
1191 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1192 enum port port = intel_dig_port->port;
1193 int ret;
1194
1195 intel_aux_reg_init(intel_dp);
1196
1197 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1198 if (!intel_dp->aux.name)
1199 return -ENOMEM;
1200
1201 intel_dp->aux.dev = connector->base.kdev;
1202 intel_dp->aux.transfer = intel_dp_aux_transfer;
1203
1204 DRM_DEBUG_KMS("registering %s bus for %s\n",
1205 intel_dp->aux.name,
1206 connector->base.kdev->kobj.name);
1207
1208 ret = drm_dp_aux_register(&intel_dp->aux);
1209 if (ret < 0) {
1210 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1211 intel_dp->aux.name, ret);
1212 kfree(intel_dp->aux.name);
1213 return ret;
1214 }
1215
1216 return 0;
1217 }
1218
1219 static void
1220 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1221 {
1222 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1223
1224 intel_dp_aux_fini(intel_dp);
1225 intel_connector_unregister(intel_connector);
1226 }
1227
1228 static int
1229 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1230 {
1231 if (intel_dp->num_sink_rates) {
1232 *sink_rates = intel_dp->sink_rates;
1233 return intel_dp->num_sink_rates;
1234 }
1235
1236 *sink_rates = default_rates;
1237
1238 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1239 }
1240
1241 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1242 {
1243 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1244 struct drm_device *dev = dig_port->base.base.dev;
1245
1246 /* WaDisableHBR2:skl */
1247 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1248 return false;
1249
1250 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1251 (INTEL_INFO(dev)->gen >= 9))
1252 return true;
1253 else
1254 return false;
1255 }
1256
1257 static int
1258 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1259 {
1260 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1261 struct drm_device *dev = dig_port->base.base.dev;
1262 int size;
1263
1264 if (IS_BROXTON(dev)) {
1265 *source_rates = bxt_rates;
1266 size = ARRAY_SIZE(bxt_rates);
1267 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1268 *source_rates = skl_rates;
1269 size = ARRAY_SIZE(skl_rates);
1270 } else {
1271 *source_rates = default_rates;
1272 size = ARRAY_SIZE(default_rates);
1273 }
1274
1275 /* This depends on the fact that 5.4 is last value in the array */
1276 if (!intel_dp_source_supports_hbr2(intel_dp))
1277 size--;
1278
1279 return size;
1280 }
1281
1282 static void
1283 intel_dp_set_clock(struct intel_encoder *encoder,
1284 struct intel_crtc_state *pipe_config)
1285 {
1286 struct drm_device *dev = encoder->base.dev;
1287 const struct dp_link_dpll *divisor = NULL;
1288 int i, count = 0;
1289
1290 if (IS_G4X(dev)) {
1291 divisor = gen4_dpll;
1292 count = ARRAY_SIZE(gen4_dpll);
1293 } else if (HAS_PCH_SPLIT(dev)) {
1294 divisor = pch_dpll;
1295 count = ARRAY_SIZE(pch_dpll);
1296 } else if (IS_CHERRYVIEW(dev)) {
1297 divisor = chv_dpll;
1298 count = ARRAY_SIZE(chv_dpll);
1299 } else if (IS_VALLEYVIEW(dev)) {
1300 divisor = vlv_dpll;
1301 count = ARRAY_SIZE(vlv_dpll);
1302 }
1303
1304 if (divisor && count) {
1305 for (i = 0; i < count; i++) {
1306 if (pipe_config->port_clock == divisor[i].clock) {
1307 pipe_config->dpll = divisor[i].dpll;
1308 pipe_config->clock_set = true;
1309 break;
1310 }
1311 }
1312 }
1313 }
1314
1315 static int intersect_rates(const int *source_rates, int source_len,
1316 const int *sink_rates, int sink_len,
1317 int *common_rates)
1318 {
1319 int i = 0, j = 0, k = 0;
1320
1321 while (i < source_len && j < sink_len) {
1322 if (source_rates[i] == sink_rates[j]) {
1323 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1324 return k;
1325 common_rates[k] = source_rates[i];
1326 ++k;
1327 ++i;
1328 ++j;
1329 } else if (source_rates[i] < sink_rates[j]) {
1330 ++i;
1331 } else {
1332 ++j;
1333 }
1334 }
1335 return k;
1336 }
1337
1338 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1339 int *common_rates)
1340 {
1341 const int *source_rates, *sink_rates;
1342 int source_len, sink_len;
1343
1344 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1345 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1346
1347 return intersect_rates(source_rates, source_len,
1348 sink_rates, sink_len,
1349 common_rates);
1350 }
1351
1352 static void snprintf_int_array(char *str, size_t len,
1353 const int *array, int nelem)
1354 {
1355 int i;
1356
1357 str[0] = '\0';
1358
1359 for (i = 0; i < nelem; i++) {
1360 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1361 if (r >= len)
1362 return;
1363 str += r;
1364 len -= r;
1365 }
1366 }
1367
1368 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1369 {
1370 const int *source_rates, *sink_rates;
1371 int source_len, sink_len, common_len;
1372 int common_rates[DP_MAX_SUPPORTED_RATES];
1373 char str[128]; /* FIXME: too big for stack? */
1374
1375 if ((drm_debug & DRM_UT_KMS) == 0)
1376 return;
1377
1378 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1379 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1380 DRM_DEBUG_KMS("source rates: %s\n", str);
1381
1382 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1384 DRM_DEBUG_KMS("sink rates: %s\n", str);
1385
1386 common_len = intel_dp_common_rates(intel_dp, common_rates);
1387 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1388 DRM_DEBUG_KMS("common rates: %s\n", str);
1389 }
1390
1391 static int rate_to_index(int find, const int *rates)
1392 {
1393 int i = 0;
1394
1395 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1396 if (find == rates[i])
1397 break;
1398
1399 return i;
1400 }
1401
1402 int
1403 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1404 {
1405 int rates[DP_MAX_SUPPORTED_RATES] = {};
1406 int len;
1407
1408 len = intel_dp_common_rates(intel_dp, rates);
1409 if (WARN_ON(len <= 0))
1410 return 162000;
1411
1412 return rates[rate_to_index(0, rates) - 1];
1413 }
1414
1415 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1416 {
1417 return rate_to_index(rate, intel_dp->sink_rates);
1418 }
1419
1420 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1421 uint8_t *link_bw, uint8_t *rate_select)
1422 {
1423 if (intel_dp->num_sink_rates) {
1424 *link_bw = 0;
1425 *rate_select =
1426 intel_dp_rate_select(intel_dp, port_clock);
1427 } else {
1428 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1429 *rate_select = 0;
1430 }
1431 }
1432
1433 bool
1434 intel_dp_compute_config(struct intel_encoder *encoder,
1435 struct intel_crtc_state *pipe_config)
1436 {
1437 struct drm_device *dev = encoder->base.dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1440 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1441 enum port port = dp_to_dig_port(intel_dp)->port;
1442 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1443 struct intel_connector *intel_connector = intel_dp->attached_connector;
1444 int lane_count, clock;
1445 int min_lane_count = 1;
1446 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1447 /* Conveniently, the link BW constants become indices with a shift...*/
1448 int min_clock = 0;
1449 int max_clock;
1450 int bpp, mode_rate;
1451 int link_avail, link_clock;
1452 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1453 int common_len;
1454 uint8_t link_bw, rate_select;
1455
1456 common_len = intel_dp_common_rates(intel_dp, common_rates);
1457
1458 /* No common link rates between source and sink */
1459 WARN_ON(common_len <= 0);
1460
1461 max_clock = common_len - 1;
1462
1463 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1464 pipe_config->has_pch_encoder = true;
1465
1466 pipe_config->has_dp_encoder = true;
1467 pipe_config->has_drrs = false;
1468 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1469
1470 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1471 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1472 adjusted_mode);
1473
1474 if (INTEL_INFO(dev)->gen >= 9) {
1475 int ret;
1476 ret = skl_update_scaler_crtc(pipe_config);
1477 if (ret)
1478 return ret;
1479 }
1480
1481 if (HAS_GMCH_DISPLAY(dev))
1482 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1483 intel_connector->panel.fitting_mode);
1484 else
1485 intel_pch_panel_fitting(intel_crtc, pipe_config,
1486 intel_connector->panel.fitting_mode);
1487 }
1488
1489 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1490 return false;
1491
1492 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1493 "max bw %d pixel clock %iKHz\n",
1494 max_lane_count, common_rates[max_clock],
1495 adjusted_mode->crtc_clock);
1496
1497 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1498 * bpc in between. */
1499 bpp = pipe_config->pipe_bpp;
1500 if (is_edp(intel_dp)) {
1501
1502 /* Get bpp from vbt only for panels that dont have bpp in edid */
1503 if (intel_connector->base.display_info.bpc == 0 &&
1504 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1505 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1506 dev_priv->vbt.edp.bpp);
1507 bpp = dev_priv->vbt.edp.bpp;
1508 }
1509
1510 /*
1511 * Use the maximum clock and number of lanes the eDP panel
1512 * advertizes being capable of. The panels are generally
1513 * designed to support only a single clock and lane
1514 * configuration, and typically these values correspond to the
1515 * native resolution of the panel.
1516 */
1517 min_lane_count = max_lane_count;
1518 min_clock = max_clock;
1519 }
1520
1521 for (; bpp >= 6*3; bpp -= 2*3) {
1522 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1523 bpp);
1524
1525 for (clock = min_clock; clock <= max_clock; clock++) {
1526 for (lane_count = min_lane_count;
1527 lane_count <= max_lane_count;
1528 lane_count <<= 1) {
1529
1530 link_clock = common_rates[clock];
1531 link_avail = intel_dp_max_data_rate(link_clock,
1532 lane_count);
1533
1534 if (mode_rate <= link_avail) {
1535 goto found;
1536 }
1537 }
1538 }
1539 }
1540
1541 return false;
1542
1543 found:
1544 if (intel_dp->color_range_auto) {
1545 /*
1546 * See:
1547 * CEA-861-E - 5.1 Default Encoding Parameters
1548 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1549 */
1550 pipe_config->limited_color_range =
1551 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1552 } else {
1553 pipe_config->limited_color_range =
1554 intel_dp->limited_color_range;
1555 }
1556
1557 pipe_config->lane_count = lane_count;
1558
1559 pipe_config->pipe_bpp = bpp;
1560 pipe_config->port_clock = common_rates[clock];
1561
1562 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1563 &link_bw, &rate_select);
1564
1565 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1566 link_bw, rate_select, pipe_config->lane_count,
1567 pipe_config->port_clock, bpp);
1568 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1569 mode_rate, link_avail);
1570
1571 intel_link_compute_m_n(bpp, lane_count,
1572 adjusted_mode->crtc_clock,
1573 pipe_config->port_clock,
1574 &pipe_config->dp_m_n);
1575
1576 if (intel_connector->panel.downclock_mode != NULL &&
1577 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1578 pipe_config->has_drrs = true;
1579 intel_link_compute_m_n(bpp, lane_count,
1580 intel_connector->panel.downclock_mode->clock,
1581 pipe_config->port_clock,
1582 &pipe_config->dp_m2_n2);
1583 }
1584
1585 if (!HAS_DDI(dev))
1586 intel_dp_set_clock(encoder, pipe_config);
1587
1588 return true;
1589 }
1590
1591 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1592 const struct intel_crtc_state *pipe_config)
1593 {
1594 intel_dp->link_rate = pipe_config->port_clock;
1595 intel_dp->lane_count = pipe_config->lane_count;
1596 }
1597
1598 static void intel_dp_prepare(struct intel_encoder *encoder)
1599 {
1600 struct drm_device *dev = encoder->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1603 enum port port = dp_to_dig_port(intel_dp)->port;
1604 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1605 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1606
1607 intel_dp_set_link_params(intel_dp, crtc->config);
1608
1609 /*
1610 * There are four kinds of DP registers:
1611 *
1612 * IBX PCH
1613 * SNB CPU
1614 * IVB CPU
1615 * CPT PCH
1616 *
1617 * IBX PCH and CPU are the same for almost everything,
1618 * except that the CPU DP PLL is configured in this
1619 * register
1620 *
1621 * CPT PCH is quite different, having many bits moved
1622 * to the TRANS_DP_CTL register instead. That
1623 * configuration happens (oddly) in ironlake_pch_enable
1624 */
1625
1626 /* Preserve the BIOS-computed detected bit. This is
1627 * supposed to be read-only.
1628 */
1629 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1630
1631 /* Handle DP bits in common between all three register formats */
1632 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1633 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1634
1635 /* Split out the IBX/CPU vs CPT settings */
1636
1637 if (IS_GEN7(dev) && port == PORT_A) {
1638 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1639 intel_dp->DP |= DP_SYNC_HS_HIGH;
1640 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1641 intel_dp->DP |= DP_SYNC_VS_HIGH;
1642 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1643
1644 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1645 intel_dp->DP |= DP_ENHANCED_FRAMING;
1646
1647 intel_dp->DP |= crtc->pipe << 29;
1648 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1649 u32 trans_dp;
1650
1651 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1652
1653 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1654 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1655 trans_dp |= TRANS_DP_ENH_FRAMING;
1656 else
1657 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1658 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1659 } else {
1660 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1661 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1662 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1663
1664 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1665 intel_dp->DP |= DP_SYNC_HS_HIGH;
1666 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1667 intel_dp->DP |= DP_SYNC_VS_HIGH;
1668 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1669
1670 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1671 intel_dp->DP |= DP_ENHANCED_FRAMING;
1672
1673 if (IS_CHERRYVIEW(dev))
1674 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1675 else if (crtc->pipe == PIPE_B)
1676 intel_dp->DP |= DP_PIPEB_SELECT;
1677 }
1678 }
1679
1680 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1681 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1682
1683 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1684 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1685
1686 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1687 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1688
1689 static void wait_panel_status(struct intel_dp *intel_dp,
1690 u32 mask,
1691 u32 value)
1692 {
1693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1696
1697 lockdep_assert_held(&dev_priv->pps_mutex);
1698
1699 pp_stat_reg = _pp_stat_reg(intel_dp);
1700 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1701
1702 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1703 mask, value,
1704 I915_READ(pp_stat_reg),
1705 I915_READ(pp_ctrl_reg));
1706
1707 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
1708 5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
1709 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1710 I915_READ(pp_stat_reg),
1711 I915_READ(pp_ctrl_reg));
1712
1713 DRM_DEBUG_KMS("Wait complete\n");
1714 }
1715
1716 static void wait_panel_on(struct intel_dp *intel_dp)
1717 {
1718 DRM_DEBUG_KMS("Wait for panel power on\n");
1719 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1720 }
1721
1722 static void wait_panel_off(struct intel_dp *intel_dp)
1723 {
1724 DRM_DEBUG_KMS("Wait for panel power off time\n");
1725 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1726 }
1727
1728 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1729 {
1730 ktime_t panel_power_on_time;
1731 s64 panel_power_off_duration;
1732
1733 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1734
1735 /* take the difference of currrent time and panel power off time
1736 * and then make panel wait for t11_t12 if needed. */
1737 panel_power_on_time = ktime_get_boottime();
1738 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1739
1740 /* When we disable the VDD override bit last we have to do the manual
1741 * wait. */
1742 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1743 wait_remaining_ms_from_jiffies(jiffies,
1744 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1745
1746 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1747 }
1748
1749 static void wait_backlight_on(struct intel_dp *intel_dp)
1750 {
1751 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1752 intel_dp->backlight_on_delay);
1753 }
1754
1755 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1756 {
1757 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1758 intel_dp->backlight_off_delay);
1759 }
1760
1761 /* Read the current pp_control value, unlocking the register if it
1762 * is locked
1763 */
1764
1765 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1766 {
1767 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 u32 control;
1770
1771 lockdep_assert_held(&dev_priv->pps_mutex);
1772
1773 control = I915_READ(_pp_ctrl_reg(intel_dp));
1774 if (!IS_BROXTON(dev)) {
1775 control &= ~PANEL_UNLOCK_MASK;
1776 control |= PANEL_UNLOCK_REGS;
1777 }
1778 return control;
1779 }
1780
1781 /*
1782 * Must be paired with edp_panel_vdd_off().
1783 * Must hold pps_mutex around the whole on/off sequence.
1784 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1785 */
1786 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1787 {
1788 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1789 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1790 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1791 struct drm_i915_private *dev_priv = dev->dev_private;
1792 enum intel_display_power_domain power_domain;
1793 u32 pp;
1794 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1795 bool need_to_disable = !intel_dp->want_panel_vdd;
1796
1797 lockdep_assert_held(&dev_priv->pps_mutex);
1798
1799 if (!is_edp(intel_dp))
1800 return false;
1801
1802 cancel_delayed_work(&intel_dp->panel_vdd_work);
1803 intel_dp->want_panel_vdd = true;
1804
1805 if (edp_have_panel_vdd(intel_dp))
1806 return need_to_disable;
1807
1808 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1809 intel_display_power_get(dev_priv, power_domain);
1810
1811 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1812 port_name(intel_dig_port->port));
1813
1814 if (!edp_have_panel_power(intel_dp))
1815 wait_panel_power_cycle(intel_dp);
1816
1817 pp = ironlake_get_pp_control(intel_dp);
1818 pp |= EDP_FORCE_VDD;
1819
1820 pp_stat_reg = _pp_stat_reg(intel_dp);
1821 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1822
1823 I915_WRITE(pp_ctrl_reg, pp);
1824 POSTING_READ(pp_ctrl_reg);
1825 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1826 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1827 /*
1828 * If the panel wasn't on, delay before accessing aux channel
1829 */
1830 if (!edp_have_panel_power(intel_dp)) {
1831 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1832 port_name(intel_dig_port->port));
1833 msleep(intel_dp->panel_power_up_delay);
1834 }
1835
1836 return need_to_disable;
1837 }
1838
1839 /*
1840 * Must be paired with intel_edp_panel_vdd_off() or
1841 * intel_edp_panel_off().
1842 * Nested calls to these functions are not allowed since
1843 * we drop the lock. Caller must use some higher level
1844 * locking to prevent nested calls from other threads.
1845 */
1846 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1847 {
1848 bool vdd;
1849
1850 if (!is_edp(intel_dp))
1851 return;
1852
1853 pps_lock(intel_dp);
1854 vdd = edp_panel_vdd_on(intel_dp);
1855 pps_unlock(intel_dp);
1856
1857 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1858 port_name(dp_to_dig_port(intel_dp)->port));
1859 }
1860
1861 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1862 {
1863 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct intel_digital_port *intel_dig_port =
1866 dp_to_dig_port(intel_dp);
1867 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1868 enum intel_display_power_domain power_domain;
1869 u32 pp;
1870 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1871
1872 lockdep_assert_held(&dev_priv->pps_mutex);
1873
1874 WARN_ON(intel_dp->want_panel_vdd);
1875
1876 if (!edp_have_panel_vdd(intel_dp))
1877 return;
1878
1879 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1880 port_name(intel_dig_port->port));
1881
1882 pp = ironlake_get_pp_control(intel_dp);
1883 pp &= ~EDP_FORCE_VDD;
1884
1885 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1886 pp_stat_reg = _pp_stat_reg(intel_dp);
1887
1888 I915_WRITE(pp_ctrl_reg, pp);
1889 POSTING_READ(pp_ctrl_reg);
1890
1891 /* Make sure sequencer is idle before allowing subsequent activity */
1892 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1893 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1894
1895 if ((pp & POWER_TARGET_ON) == 0)
1896 intel_dp->panel_power_off_time = ktime_get_boottime();
1897
1898 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1899 intel_display_power_put(dev_priv, power_domain);
1900 }
1901
1902 static void edp_panel_vdd_work(struct work_struct *__work)
1903 {
1904 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1905 struct intel_dp, panel_vdd_work);
1906
1907 pps_lock(intel_dp);
1908 if (!intel_dp->want_panel_vdd)
1909 edp_panel_vdd_off_sync(intel_dp);
1910 pps_unlock(intel_dp);
1911 }
1912
1913 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1914 {
1915 unsigned long delay;
1916
1917 /*
1918 * Queue the timer to fire a long time from now (relative to the power
1919 * down delay) to keep the panel power up across a sequence of
1920 * operations.
1921 */
1922 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1923 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1924 }
1925
1926 /*
1927 * Must be paired with edp_panel_vdd_on().
1928 * Must hold pps_mutex around the whole on/off sequence.
1929 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1930 */
1931 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1932 {
1933 struct drm_i915_private *dev_priv =
1934 intel_dp_to_dev(intel_dp)->dev_private;
1935
1936 lockdep_assert_held(&dev_priv->pps_mutex);
1937
1938 if (!is_edp(intel_dp))
1939 return;
1940
1941 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1942 port_name(dp_to_dig_port(intel_dp)->port));
1943
1944 intel_dp->want_panel_vdd = false;
1945
1946 if (sync)
1947 edp_panel_vdd_off_sync(intel_dp);
1948 else
1949 edp_panel_vdd_schedule_off(intel_dp);
1950 }
1951
1952 static void edp_panel_on(struct intel_dp *intel_dp)
1953 {
1954 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 u32 pp;
1957 i915_reg_t pp_ctrl_reg;
1958
1959 lockdep_assert_held(&dev_priv->pps_mutex);
1960
1961 if (!is_edp(intel_dp))
1962 return;
1963
1964 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1965 port_name(dp_to_dig_port(intel_dp)->port));
1966
1967 if (WARN(edp_have_panel_power(intel_dp),
1968 "eDP port %c panel power already on\n",
1969 port_name(dp_to_dig_port(intel_dp)->port)))
1970 return;
1971
1972 wait_panel_power_cycle(intel_dp);
1973
1974 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1975 pp = ironlake_get_pp_control(intel_dp);
1976 if (IS_GEN5(dev)) {
1977 /* ILK workaround: disable reset around power sequence */
1978 pp &= ~PANEL_POWER_RESET;
1979 I915_WRITE(pp_ctrl_reg, pp);
1980 POSTING_READ(pp_ctrl_reg);
1981 }
1982
1983 pp |= POWER_TARGET_ON;
1984 if (!IS_GEN5(dev))
1985 pp |= PANEL_POWER_RESET;
1986
1987 I915_WRITE(pp_ctrl_reg, pp);
1988 POSTING_READ(pp_ctrl_reg);
1989
1990 wait_panel_on(intel_dp);
1991 intel_dp->last_power_on = jiffies;
1992
1993 if (IS_GEN5(dev)) {
1994 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1995 I915_WRITE(pp_ctrl_reg, pp);
1996 POSTING_READ(pp_ctrl_reg);
1997 }
1998 }
1999
2000 void intel_edp_panel_on(struct intel_dp *intel_dp)
2001 {
2002 if (!is_edp(intel_dp))
2003 return;
2004
2005 pps_lock(intel_dp);
2006 edp_panel_on(intel_dp);
2007 pps_unlock(intel_dp);
2008 }
2009
2010
2011 static void edp_panel_off(struct intel_dp *intel_dp)
2012 {
2013 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2014 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2015 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 enum intel_display_power_domain power_domain;
2018 u32 pp;
2019 i915_reg_t pp_ctrl_reg;
2020
2021 lockdep_assert_held(&dev_priv->pps_mutex);
2022
2023 if (!is_edp(intel_dp))
2024 return;
2025
2026 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2027 port_name(dp_to_dig_port(intel_dp)->port));
2028
2029 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2030 port_name(dp_to_dig_port(intel_dp)->port));
2031
2032 pp = ironlake_get_pp_control(intel_dp);
2033 /* We need to switch off panel power _and_ force vdd, for otherwise some
2034 * panels get very unhappy and cease to work. */
2035 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2036 EDP_BLC_ENABLE);
2037
2038 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2039
2040 intel_dp->want_panel_vdd = false;
2041
2042 I915_WRITE(pp_ctrl_reg, pp);
2043 POSTING_READ(pp_ctrl_reg);
2044
2045 intel_dp->panel_power_off_time = ktime_get_boottime();
2046 wait_panel_off(intel_dp);
2047
2048 /* We got a reference when we enabled the VDD. */
2049 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2050 intel_display_power_put(dev_priv, power_domain);
2051 }
2052
2053 void intel_edp_panel_off(struct intel_dp *intel_dp)
2054 {
2055 if (!is_edp(intel_dp))
2056 return;
2057
2058 pps_lock(intel_dp);
2059 edp_panel_off(intel_dp);
2060 pps_unlock(intel_dp);
2061 }
2062
2063 /* Enable backlight in the panel power control. */
2064 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2065 {
2066 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2067 struct drm_device *dev = intel_dig_port->base.base.dev;
2068 struct drm_i915_private *dev_priv = dev->dev_private;
2069 u32 pp;
2070 i915_reg_t pp_ctrl_reg;
2071
2072 /*
2073 * If we enable the backlight right away following a panel power
2074 * on, we may see slight flicker as the panel syncs with the eDP
2075 * link. So delay a bit to make sure the image is solid before
2076 * allowing it to appear.
2077 */
2078 wait_backlight_on(intel_dp);
2079
2080 pps_lock(intel_dp);
2081
2082 pp = ironlake_get_pp_control(intel_dp);
2083 pp |= EDP_BLC_ENABLE;
2084
2085 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2086
2087 I915_WRITE(pp_ctrl_reg, pp);
2088 POSTING_READ(pp_ctrl_reg);
2089
2090 pps_unlock(intel_dp);
2091 }
2092
2093 /* Enable backlight PWM and backlight PP control. */
2094 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2095 {
2096 if (!is_edp(intel_dp))
2097 return;
2098
2099 DRM_DEBUG_KMS("\n");
2100
2101 intel_panel_enable_backlight(intel_dp->attached_connector);
2102 _intel_edp_backlight_on(intel_dp);
2103 }
2104
2105 /* Disable backlight in the panel power control. */
2106 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2107 {
2108 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 u32 pp;
2111 i915_reg_t pp_ctrl_reg;
2112
2113 if (!is_edp(intel_dp))
2114 return;
2115
2116 pps_lock(intel_dp);
2117
2118 pp = ironlake_get_pp_control(intel_dp);
2119 pp &= ~EDP_BLC_ENABLE;
2120
2121 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2122
2123 I915_WRITE(pp_ctrl_reg, pp);
2124 POSTING_READ(pp_ctrl_reg);
2125
2126 pps_unlock(intel_dp);
2127
2128 intel_dp->last_backlight_off = jiffies;
2129 edp_wait_backlight_off(intel_dp);
2130 }
2131
2132 /* Disable backlight PP control and backlight PWM. */
2133 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2134 {
2135 if (!is_edp(intel_dp))
2136 return;
2137
2138 DRM_DEBUG_KMS("\n");
2139
2140 _intel_edp_backlight_off(intel_dp);
2141 intel_panel_disable_backlight(intel_dp->attached_connector);
2142 }
2143
2144 /*
2145 * Hook for controlling the panel power control backlight through the bl_power
2146 * sysfs attribute. Take care to handle multiple calls.
2147 */
2148 static void intel_edp_backlight_power(struct intel_connector *connector,
2149 bool enable)
2150 {
2151 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2152 bool is_enabled;
2153
2154 pps_lock(intel_dp);
2155 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2156 pps_unlock(intel_dp);
2157
2158 if (is_enabled == enable)
2159 return;
2160
2161 DRM_DEBUG_KMS("panel power control backlight %s\n",
2162 enable ? "enable" : "disable");
2163
2164 if (enable)
2165 _intel_edp_backlight_on(intel_dp);
2166 else
2167 _intel_edp_backlight_off(intel_dp);
2168 }
2169
2170 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2171 {
2172 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2173 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2174 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2175
2176 I915_STATE_WARN(cur_state != state,
2177 "DP port %c state assertion failure (expected %s, current %s)\n",
2178 port_name(dig_port->port),
2179 onoff(state), onoff(cur_state));
2180 }
2181 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2182
2183 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2184 {
2185 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2186
2187 I915_STATE_WARN(cur_state != state,
2188 "eDP PLL state assertion failure (expected %s, current %s)\n",
2189 onoff(state), onoff(cur_state));
2190 }
2191 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2192 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2193
2194 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2195 {
2196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2197 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2198 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2199
2200 assert_pipe_disabled(dev_priv, crtc->pipe);
2201 assert_dp_port_disabled(intel_dp);
2202 assert_edp_pll_disabled(dev_priv);
2203
2204 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2205 crtc->config->port_clock);
2206
2207 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2208
2209 if (crtc->config->port_clock == 162000)
2210 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2211 else
2212 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2213
2214 I915_WRITE(DP_A, intel_dp->DP);
2215 POSTING_READ(DP_A);
2216 udelay(500);
2217
2218 intel_dp->DP |= DP_PLL_ENABLE;
2219
2220 I915_WRITE(DP_A, intel_dp->DP);
2221 POSTING_READ(DP_A);
2222 udelay(200);
2223 }
2224
2225 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2226 {
2227 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2228 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2229 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2230
2231 assert_pipe_disabled(dev_priv, crtc->pipe);
2232 assert_dp_port_disabled(intel_dp);
2233 assert_edp_pll_enabled(dev_priv);
2234
2235 DRM_DEBUG_KMS("disabling eDP PLL\n");
2236
2237 intel_dp->DP &= ~DP_PLL_ENABLE;
2238
2239 I915_WRITE(DP_A, intel_dp->DP);
2240 POSTING_READ(DP_A);
2241 udelay(200);
2242 }
2243
2244 /* If the sink supports it, try to set the power state appropriately */
2245 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2246 {
2247 int ret, i;
2248
2249 /* Should have a valid DPCD by this point */
2250 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2251 return;
2252
2253 if (mode != DRM_MODE_DPMS_ON) {
2254 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2255 DP_SET_POWER_D3);
2256 } else {
2257 /*
2258 * When turning on, we need to retry for 1ms to give the sink
2259 * time to wake up.
2260 */
2261 for (i = 0; i < 3; i++) {
2262 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2263 DP_SET_POWER_D0);
2264 if (ret == 1)
2265 break;
2266 msleep(1);
2267 }
2268 }
2269
2270 if (ret != 1)
2271 DRM_DEBUG_KMS("failed to %s sink power state\n",
2272 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2273 }
2274
2275 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2276 enum pipe *pipe)
2277 {
2278 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2279 enum port port = dp_to_dig_port(intel_dp)->port;
2280 struct drm_device *dev = encoder->base.dev;
2281 struct drm_i915_private *dev_priv = dev->dev_private;
2282 enum intel_display_power_domain power_domain;
2283 u32 tmp;
2284 bool ret;
2285
2286 power_domain = intel_display_port_power_domain(encoder);
2287 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2288 return false;
2289
2290 ret = false;
2291
2292 tmp = I915_READ(intel_dp->output_reg);
2293
2294 if (!(tmp & DP_PORT_EN))
2295 goto out;
2296
2297 if (IS_GEN7(dev) && port == PORT_A) {
2298 *pipe = PORT_TO_PIPE_CPT(tmp);
2299 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2300 enum pipe p;
2301
2302 for_each_pipe(dev_priv, p) {
2303 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2304 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2305 *pipe = p;
2306 ret = true;
2307
2308 goto out;
2309 }
2310 }
2311
2312 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2313 i915_mmio_reg_offset(intel_dp->output_reg));
2314 } else if (IS_CHERRYVIEW(dev)) {
2315 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2316 } else {
2317 *pipe = PORT_TO_PIPE(tmp);
2318 }
2319
2320 ret = true;
2321
2322 out:
2323 intel_display_power_put(dev_priv, power_domain);
2324
2325 return ret;
2326 }
2327
2328 static void intel_dp_get_config(struct intel_encoder *encoder,
2329 struct intel_crtc_state *pipe_config)
2330 {
2331 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2332 u32 tmp, flags = 0;
2333 struct drm_device *dev = encoder->base.dev;
2334 struct drm_i915_private *dev_priv = dev->dev_private;
2335 enum port port = dp_to_dig_port(intel_dp)->port;
2336 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2337
2338 tmp = I915_READ(intel_dp->output_reg);
2339
2340 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2341
2342 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2343 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2344
2345 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2346 flags |= DRM_MODE_FLAG_PHSYNC;
2347 else
2348 flags |= DRM_MODE_FLAG_NHSYNC;
2349
2350 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2351 flags |= DRM_MODE_FLAG_PVSYNC;
2352 else
2353 flags |= DRM_MODE_FLAG_NVSYNC;
2354 } else {
2355 if (tmp & DP_SYNC_HS_HIGH)
2356 flags |= DRM_MODE_FLAG_PHSYNC;
2357 else
2358 flags |= DRM_MODE_FLAG_NHSYNC;
2359
2360 if (tmp & DP_SYNC_VS_HIGH)
2361 flags |= DRM_MODE_FLAG_PVSYNC;
2362 else
2363 flags |= DRM_MODE_FLAG_NVSYNC;
2364 }
2365
2366 pipe_config->base.adjusted_mode.flags |= flags;
2367
2368 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2369 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2370 pipe_config->limited_color_range = true;
2371
2372 pipe_config->has_dp_encoder = true;
2373
2374 pipe_config->lane_count =
2375 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2376
2377 intel_dp_get_m_n(crtc, pipe_config);
2378
2379 if (port == PORT_A) {
2380 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2381 pipe_config->port_clock = 162000;
2382 else
2383 pipe_config->port_clock = 270000;
2384 }
2385
2386 pipe_config->base.adjusted_mode.crtc_clock =
2387 intel_dotclock_calculate(pipe_config->port_clock,
2388 &pipe_config->dp_m_n);
2389
2390 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2391 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2392 /*
2393 * This is a big fat ugly hack.
2394 *
2395 * Some machines in UEFI boot mode provide us a VBT that has 18
2396 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2397 * unknown we fail to light up. Yet the same BIOS boots up with
2398 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2399 * max, not what it tells us to use.
2400 *
2401 * Note: This will still be broken if the eDP panel is not lit
2402 * up by the BIOS, and thus we can't get the mode at module
2403 * load.
2404 */
2405 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2406 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2407 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2408 }
2409 }
2410
2411 static void intel_disable_dp(struct intel_encoder *encoder)
2412 {
2413 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2414 struct drm_device *dev = encoder->base.dev;
2415 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2416
2417 if (crtc->config->has_audio)
2418 intel_audio_codec_disable(encoder);
2419
2420 if (HAS_PSR(dev) && !HAS_DDI(dev))
2421 intel_psr_disable(intel_dp);
2422
2423 /* Make sure the panel is off before trying to change the mode. But also
2424 * ensure that we have vdd while we switch off the panel. */
2425 intel_edp_panel_vdd_on(intel_dp);
2426 intel_edp_backlight_off(intel_dp);
2427 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2428 intel_edp_panel_off(intel_dp);
2429
2430 /* disable the port before the pipe on g4x */
2431 if (INTEL_INFO(dev)->gen < 5)
2432 intel_dp_link_down(intel_dp);
2433 }
2434
2435 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2436 {
2437 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2438 enum port port = dp_to_dig_port(intel_dp)->port;
2439
2440 intel_dp_link_down(intel_dp);
2441
2442 /* Only ilk+ has port A */
2443 if (port == PORT_A)
2444 ironlake_edp_pll_off(intel_dp);
2445 }
2446
2447 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2448 {
2449 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2450
2451 intel_dp_link_down(intel_dp);
2452 }
2453
2454 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2455 bool reset)
2456 {
2457 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2458 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2459 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2460 enum pipe pipe = crtc->pipe;
2461 uint32_t val;
2462
2463 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2464 if (reset)
2465 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2466 else
2467 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2468 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2469
2470 if (crtc->config->lane_count > 2) {
2471 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2472 if (reset)
2473 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2474 else
2475 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2476 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2477 }
2478
2479 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2480 val |= CHV_PCS_REQ_SOFTRESET_EN;
2481 if (reset)
2482 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2483 else
2484 val |= DPIO_PCS_CLK_SOFT_RESET;
2485 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2486
2487 if (crtc->config->lane_count > 2) {
2488 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2489 val |= CHV_PCS_REQ_SOFTRESET_EN;
2490 if (reset)
2491 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2492 else
2493 val |= DPIO_PCS_CLK_SOFT_RESET;
2494 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2495 }
2496 }
2497
2498 static void chv_post_disable_dp(struct intel_encoder *encoder)
2499 {
2500 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2501 struct drm_device *dev = encoder->base.dev;
2502 struct drm_i915_private *dev_priv = dev->dev_private;
2503
2504 intel_dp_link_down(intel_dp);
2505
2506 mutex_lock(&dev_priv->sb_lock);
2507
2508 /* Assert data lane reset */
2509 chv_data_lane_soft_reset(encoder, true);
2510
2511 mutex_unlock(&dev_priv->sb_lock);
2512 }
2513
2514 static void
2515 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2516 uint32_t *DP,
2517 uint8_t dp_train_pat)
2518 {
2519 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2520 struct drm_device *dev = intel_dig_port->base.base.dev;
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522 enum port port = intel_dig_port->port;
2523
2524 if (HAS_DDI(dev)) {
2525 uint32_t temp = I915_READ(DP_TP_CTL(port));
2526
2527 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2528 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2529 else
2530 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2531
2532 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2533 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2534 case DP_TRAINING_PATTERN_DISABLE:
2535 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2536
2537 break;
2538 case DP_TRAINING_PATTERN_1:
2539 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2540 break;
2541 case DP_TRAINING_PATTERN_2:
2542 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2543 break;
2544 case DP_TRAINING_PATTERN_3:
2545 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2546 break;
2547 }
2548 I915_WRITE(DP_TP_CTL(port), temp);
2549
2550 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2551 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2552 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2553
2554 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2555 case DP_TRAINING_PATTERN_DISABLE:
2556 *DP |= DP_LINK_TRAIN_OFF_CPT;
2557 break;
2558 case DP_TRAINING_PATTERN_1:
2559 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2560 break;
2561 case DP_TRAINING_PATTERN_2:
2562 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2563 break;
2564 case DP_TRAINING_PATTERN_3:
2565 DRM_ERROR("DP training pattern 3 not supported\n");
2566 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2567 break;
2568 }
2569
2570 } else {
2571 if (IS_CHERRYVIEW(dev))
2572 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2573 else
2574 *DP &= ~DP_LINK_TRAIN_MASK;
2575
2576 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2577 case DP_TRAINING_PATTERN_DISABLE:
2578 *DP |= DP_LINK_TRAIN_OFF;
2579 break;
2580 case DP_TRAINING_PATTERN_1:
2581 *DP |= DP_LINK_TRAIN_PAT_1;
2582 break;
2583 case DP_TRAINING_PATTERN_2:
2584 *DP |= DP_LINK_TRAIN_PAT_2;
2585 break;
2586 case DP_TRAINING_PATTERN_3:
2587 if (IS_CHERRYVIEW(dev)) {
2588 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2589 } else {
2590 DRM_ERROR("DP training pattern 3 not supported\n");
2591 *DP |= DP_LINK_TRAIN_PAT_2;
2592 }
2593 break;
2594 }
2595 }
2596 }
2597
2598 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2599 {
2600 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2601 struct drm_i915_private *dev_priv = dev->dev_private;
2602 struct intel_crtc *crtc =
2603 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2604
2605 /* enable with pattern 1 (as per spec) */
2606 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2607 DP_TRAINING_PATTERN_1);
2608
2609 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2610 POSTING_READ(intel_dp->output_reg);
2611
2612 /*
2613 * Magic for VLV/CHV. We _must_ first set up the register
2614 * without actually enabling the port, and then do another
2615 * write to enable the port. Otherwise link training will
2616 * fail when the power sequencer is freshly used for this port.
2617 */
2618 intel_dp->DP |= DP_PORT_EN;
2619 if (crtc->config->has_audio)
2620 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2621
2622 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2623 POSTING_READ(intel_dp->output_reg);
2624 }
2625
2626 static void intel_enable_dp(struct intel_encoder *encoder)
2627 {
2628 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2629 struct drm_device *dev = encoder->base.dev;
2630 struct drm_i915_private *dev_priv = dev->dev_private;
2631 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2632 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2633 enum port port = dp_to_dig_port(intel_dp)->port;
2634 enum pipe pipe = crtc->pipe;
2635
2636 if (WARN_ON(dp_reg & DP_PORT_EN))
2637 return;
2638
2639 pps_lock(intel_dp);
2640
2641 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2642 vlv_init_panel_power_sequencer(intel_dp);
2643
2644 /*
2645 * We get an occasional spurious underrun between the port
2646 * enable and vdd enable, when enabling port A eDP.
2647 *
2648 * FIXME: Not sure if this applies to (PCH) port D eDP as well
2649 */
2650 if (port == PORT_A)
2651 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
2652
2653 intel_dp_enable_port(intel_dp);
2654
2655 if (port == PORT_A && IS_GEN5(dev_priv)) {
2656 /*
2657 * Underrun reporting for the other pipe was disabled in
2658 * g4x_pre_enable_dp(). The eDP PLL and port have now been
2659 * enabled, so it's now safe to re-enable underrun reporting.
2660 */
2661 intel_wait_for_vblank_if_active(dev_priv->dev, !pipe);
2662 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, true);
2663 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, true);
2664 }
2665
2666 edp_panel_vdd_on(intel_dp);
2667 edp_panel_on(intel_dp);
2668 edp_panel_vdd_off(intel_dp, true);
2669
2670 if (port == PORT_A)
2671 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
2672
2673 pps_unlock(intel_dp);
2674
2675 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2676 unsigned int lane_mask = 0x0;
2677
2678 if (IS_CHERRYVIEW(dev))
2679 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2680
2681 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2682 lane_mask);
2683 }
2684
2685 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2686 intel_dp_start_link_train(intel_dp);
2687 intel_dp_stop_link_train(intel_dp);
2688
2689 if (crtc->config->has_audio) {
2690 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2691 pipe_name(pipe));
2692 intel_audio_codec_enable(encoder);
2693 }
2694 }
2695
2696 static void g4x_enable_dp(struct intel_encoder *encoder)
2697 {
2698 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2699
2700 intel_enable_dp(encoder);
2701 intel_edp_backlight_on(intel_dp);
2702 }
2703
2704 static void vlv_enable_dp(struct intel_encoder *encoder)
2705 {
2706 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2707
2708 intel_edp_backlight_on(intel_dp);
2709 intel_psr_enable(intel_dp);
2710 }
2711
2712 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2713 {
2714 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2715 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2716 enum port port = dp_to_dig_port(intel_dp)->port;
2717 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2718
2719 intel_dp_prepare(encoder);
2720
2721 if (port == PORT_A && IS_GEN5(dev_priv)) {
2722 /*
2723 * We get FIFO underruns on the other pipe when
2724 * enabling the CPU eDP PLL, and when enabling CPU
2725 * eDP port. We could potentially avoid the PLL
2726 * underrun with a vblank wait just prior to enabling
2727 * the PLL, but that doesn't appear to help the port
2728 * enable case. Just sweep it all under the rug.
2729 */
2730 intel_set_cpu_fifo_underrun_reporting(dev_priv, !pipe, false);
2731 intel_set_pch_fifo_underrun_reporting(dev_priv, !pipe, false);
2732 }
2733
2734 /* Only ilk+ has port A */
2735 if (port == PORT_A)
2736 ironlake_edp_pll_on(intel_dp);
2737 }
2738
2739 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2740 {
2741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2742 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2743 enum pipe pipe = intel_dp->pps_pipe;
2744 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2745
2746 edp_panel_vdd_off_sync(intel_dp);
2747
2748 /*
2749 * VLV seems to get confused when multiple power seqeuencers
2750 * have the same port selected (even if only one has power/vdd
2751 * enabled). The failure manifests as vlv_wait_port_ready() failing
2752 * CHV on the other hand doesn't seem to mind having the same port
2753 * selected in multiple power seqeuencers, but let's clear the
2754 * port select always when logically disconnecting a power sequencer
2755 * from a port.
2756 */
2757 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2758 pipe_name(pipe), port_name(intel_dig_port->port));
2759 I915_WRITE(pp_on_reg, 0);
2760 POSTING_READ(pp_on_reg);
2761
2762 intel_dp->pps_pipe = INVALID_PIPE;
2763 }
2764
2765 static void vlv_steal_power_sequencer(struct drm_device *dev,
2766 enum pipe pipe)
2767 {
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_encoder *encoder;
2770
2771 lockdep_assert_held(&dev_priv->pps_mutex);
2772
2773 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2774 return;
2775
2776 for_each_intel_encoder(dev, encoder) {
2777 struct intel_dp *intel_dp;
2778 enum port port;
2779
2780 if (encoder->type != INTEL_OUTPUT_EDP)
2781 continue;
2782
2783 intel_dp = enc_to_intel_dp(&encoder->base);
2784 port = dp_to_dig_port(intel_dp)->port;
2785
2786 if (intel_dp->pps_pipe != pipe)
2787 continue;
2788
2789 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2790 pipe_name(pipe), port_name(port));
2791
2792 WARN(encoder->base.crtc,
2793 "stealing pipe %c power sequencer from active eDP port %c\n",
2794 pipe_name(pipe), port_name(port));
2795
2796 /* make sure vdd is off before we steal it */
2797 vlv_detach_power_sequencer(intel_dp);
2798 }
2799 }
2800
2801 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2802 {
2803 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2804 struct intel_encoder *encoder = &intel_dig_port->base;
2805 struct drm_device *dev = encoder->base.dev;
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2808
2809 lockdep_assert_held(&dev_priv->pps_mutex);
2810
2811 if (!is_edp(intel_dp))
2812 return;
2813
2814 if (intel_dp->pps_pipe == crtc->pipe)
2815 return;
2816
2817 /*
2818 * If another power sequencer was being used on this
2819 * port previously make sure to turn off vdd there while
2820 * we still have control of it.
2821 */
2822 if (intel_dp->pps_pipe != INVALID_PIPE)
2823 vlv_detach_power_sequencer(intel_dp);
2824
2825 /*
2826 * We may be stealing the power
2827 * sequencer from another port.
2828 */
2829 vlv_steal_power_sequencer(dev, crtc->pipe);
2830
2831 /* now it's all ours */
2832 intel_dp->pps_pipe = crtc->pipe;
2833
2834 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2835 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2836
2837 /* init power sequencer on this pipe and port */
2838 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2839 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2840 }
2841
2842 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2843 {
2844 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2845 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2846 struct drm_device *dev = encoder->base.dev;
2847 struct drm_i915_private *dev_priv = dev->dev_private;
2848 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2849 enum dpio_channel port = vlv_dport_to_channel(dport);
2850 int pipe = intel_crtc->pipe;
2851 u32 val;
2852
2853 mutex_lock(&dev_priv->sb_lock);
2854
2855 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2856 val = 0;
2857 if (pipe)
2858 val |= (1<<21);
2859 else
2860 val &= ~(1<<21);
2861 val |= 0x001000c4;
2862 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2863 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2864 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2865
2866 mutex_unlock(&dev_priv->sb_lock);
2867
2868 intel_enable_dp(encoder);
2869 }
2870
2871 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2872 {
2873 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2874 struct drm_device *dev = encoder->base.dev;
2875 struct drm_i915_private *dev_priv = dev->dev_private;
2876 struct intel_crtc *intel_crtc =
2877 to_intel_crtc(encoder->base.crtc);
2878 enum dpio_channel port = vlv_dport_to_channel(dport);
2879 int pipe = intel_crtc->pipe;
2880
2881 intel_dp_prepare(encoder);
2882
2883 /* Program Tx lane resets to default */
2884 mutex_lock(&dev_priv->sb_lock);
2885 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2886 DPIO_PCS_TX_LANE2_RESET |
2887 DPIO_PCS_TX_LANE1_RESET);
2888 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2889 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2890 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2891 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2892 DPIO_PCS_CLK_SOFT_RESET);
2893
2894 /* Fix up inter-pair skew failure */
2895 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2896 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2897 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2898 mutex_unlock(&dev_priv->sb_lock);
2899 }
2900
2901 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2902 {
2903 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2904 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2905 struct drm_device *dev = encoder->base.dev;
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 struct intel_crtc *intel_crtc =
2908 to_intel_crtc(encoder->base.crtc);
2909 enum dpio_channel ch = vlv_dport_to_channel(dport);
2910 int pipe = intel_crtc->pipe;
2911 int data, i, stagger;
2912 u32 val;
2913
2914 mutex_lock(&dev_priv->sb_lock);
2915
2916 /* allow hardware to manage TX FIFO reset source */
2917 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2918 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2919 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2920
2921 if (intel_crtc->config->lane_count > 2) {
2922 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2923 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2924 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2925 }
2926
2927 /* Program Tx lane latency optimal setting*/
2928 for (i = 0; i < intel_crtc->config->lane_count; i++) {
2929 /* Set the upar bit */
2930 if (intel_crtc->config->lane_count == 1)
2931 data = 0x0;
2932 else
2933 data = (i == 1) ? 0x0 : 0x1;
2934 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2935 data << DPIO_UPAR_SHIFT);
2936 }
2937
2938 /* Data lane stagger programming */
2939 if (intel_crtc->config->port_clock > 270000)
2940 stagger = 0x18;
2941 else if (intel_crtc->config->port_clock > 135000)
2942 stagger = 0xd;
2943 else if (intel_crtc->config->port_clock > 67500)
2944 stagger = 0x7;
2945 else if (intel_crtc->config->port_clock > 33750)
2946 stagger = 0x4;
2947 else
2948 stagger = 0x2;
2949
2950 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2951 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2952 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2953
2954 if (intel_crtc->config->lane_count > 2) {
2955 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2956 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2957 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2958 }
2959
2960 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2961 DPIO_LANESTAGGER_STRAP(stagger) |
2962 DPIO_LANESTAGGER_STRAP_OVRD |
2963 DPIO_TX1_STAGGER_MASK(0x1f) |
2964 DPIO_TX1_STAGGER_MULT(6) |
2965 DPIO_TX2_STAGGER_MULT(0));
2966
2967 if (intel_crtc->config->lane_count > 2) {
2968 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2969 DPIO_LANESTAGGER_STRAP(stagger) |
2970 DPIO_LANESTAGGER_STRAP_OVRD |
2971 DPIO_TX1_STAGGER_MASK(0x1f) |
2972 DPIO_TX1_STAGGER_MULT(7) |
2973 DPIO_TX2_STAGGER_MULT(5));
2974 }
2975
2976 /* Deassert data lane reset */
2977 chv_data_lane_soft_reset(encoder, false);
2978
2979 mutex_unlock(&dev_priv->sb_lock);
2980
2981 intel_enable_dp(encoder);
2982
2983 /* Second common lane will stay alive on its own now */
2984 if (dport->release_cl2_override) {
2985 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2986 dport->release_cl2_override = false;
2987 }
2988 }
2989
2990 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2991 {
2992 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2993 struct drm_device *dev = encoder->base.dev;
2994 struct drm_i915_private *dev_priv = dev->dev_private;
2995 struct intel_crtc *intel_crtc =
2996 to_intel_crtc(encoder->base.crtc);
2997 enum dpio_channel ch = vlv_dport_to_channel(dport);
2998 enum pipe pipe = intel_crtc->pipe;
2999 unsigned int lane_mask =
3000 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
3001 u32 val;
3002
3003 intel_dp_prepare(encoder);
3004
3005 /*
3006 * Must trick the second common lane into life.
3007 * Otherwise we can't even access the PLL.
3008 */
3009 if (ch == DPIO_CH0 && pipe == PIPE_B)
3010 dport->release_cl2_override =
3011 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
3012
3013 chv_phy_powergate_lanes(encoder, true, lane_mask);
3014
3015 mutex_lock(&dev_priv->sb_lock);
3016
3017 /* Assert data lane reset */
3018 chv_data_lane_soft_reset(encoder, true);
3019
3020 /* program left/right clock distribution */
3021 if (pipe != PIPE_B) {
3022 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3023 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3024 if (ch == DPIO_CH0)
3025 val |= CHV_BUFLEFTENA1_FORCE;
3026 if (ch == DPIO_CH1)
3027 val |= CHV_BUFRIGHTENA1_FORCE;
3028 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3029 } else {
3030 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3031 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3032 if (ch == DPIO_CH0)
3033 val |= CHV_BUFLEFTENA2_FORCE;
3034 if (ch == DPIO_CH1)
3035 val |= CHV_BUFRIGHTENA2_FORCE;
3036 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3037 }
3038
3039 /* program clock channel usage */
3040 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3041 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3042 if (pipe != PIPE_B)
3043 val &= ~CHV_PCS_USEDCLKCHANNEL;
3044 else
3045 val |= CHV_PCS_USEDCLKCHANNEL;
3046 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3047
3048 if (intel_crtc->config->lane_count > 2) {
3049 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3050 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3051 if (pipe != PIPE_B)
3052 val &= ~CHV_PCS_USEDCLKCHANNEL;
3053 else
3054 val |= CHV_PCS_USEDCLKCHANNEL;
3055 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3056 }
3057
3058 /*
3059 * This a a bit weird since generally CL
3060 * matches the pipe, but here we need to
3061 * pick the CL based on the port.
3062 */
3063 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3064 if (pipe != PIPE_B)
3065 val &= ~CHV_CMN_USEDCLKCHANNEL;
3066 else
3067 val |= CHV_CMN_USEDCLKCHANNEL;
3068 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3069
3070 mutex_unlock(&dev_priv->sb_lock);
3071 }
3072
3073 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3074 {
3075 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3076 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3077 u32 val;
3078
3079 mutex_lock(&dev_priv->sb_lock);
3080
3081 /* disable left/right clock distribution */
3082 if (pipe != PIPE_B) {
3083 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3084 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3085 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3086 } else {
3087 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3088 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3089 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3090 }
3091
3092 mutex_unlock(&dev_priv->sb_lock);
3093
3094 /*
3095 * Leave the power down bit cleared for at least one
3096 * lane so that chv_powergate_phy_ch() will power
3097 * on something when the channel is otherwise unused.
3098 * When the port is off and the override is removed
3099 * the lanes power down anyway, so otherwise it doesn't
3100 * really matter what the state of power down bits is
3101 * after this.
3102 */
3103 chv_phy_powergate_lanes(encoder, false, 0x0);
3104 }
3105
3106 /*
3107 * Native read with retry for link status and receiver capability reads for
3108 * cases where the sink may still be asleep.
3109 *
3110 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3111 * supposed to retry 3 times per the spec.
3112 */
3113 static ssize_t
3114 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3115 void *buffer, size_t size)
3116 {
3117 ssize_t ret;
3118 int i;
3119
3120 /*
3121 * Sometime we just get the same incorrect byte repeated
3122 * over the entire buffer. Doing just one throw away read
3123 * initially seems to "solve" it.
3124 */
3125 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3126
3127 for (i = 0; i < 3; i++) {
3128 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3129 if (ret == size)
3130 return ret;
3131 msleep(1);
3132 }
3133
3134 return ret;
3135 }
3136
3137 /*
3138 * Fetch AUX CH registers 0x202 - 0x207 which contain
3139 * link status information
3140 */
3141 bool
3142 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3143 {
3144 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3145 DP_LANE0_1_STATUS,
3146 link_status,
3147 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3148 }
3149
3150 /* These are source-specific values. */
3151 uint8_t
3152 intel_dp_voltage_max(struct intel_dp *intel_dp)
3153 {
3154 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3155 struct drm_i915_private *dev_priv = dev->dev_private;
3156 enum port port = dp_to_dig_port(intel_dp)->port;
3157
3158 if (IS_BROXTON(dev))
3159 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3160 else if (INTEL_INFO(dev)->gen >= 9) {
3161 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
3162 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3163 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3164 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3165 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3166 else if (IS_GEN7(dev) && port == PORT_A)
3167 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3168 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3169 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3170 else
3171 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3172 }
3173
3174 uint8_t
3175 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3176 {
3177 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3178 enum port port = dp_to_dig_port(intel_dp)->port;
3179
3180 if (INTEL_INFO(dev)->gen >= 9) {
3181 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3182 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3183 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3184 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3185 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3186 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3187 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3188 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3189 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3190 default:
3191 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3192 }
3193 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3194 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3195 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3196 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3197 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3198 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3200 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3201 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3202 default:
3203 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3204 }
3205 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3206 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3207 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3208 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3209 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3210 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3211 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3212 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3213 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3214 default:
3215 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3216 }
3217 } else if (IS_GEN7(dev) && port == PORT_A) {
3218 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3219 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3220 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3221 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3222 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3223 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3224 default:
3225 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3226 }
3227 } else {
3228 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3229 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3230 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3231 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3232 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3234 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3235 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3236 default:
3237 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3238 }
3239 }
3240 }
3241
3242 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3243 {
3244 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3245 struct drm_i915_private *dev_priv = dev->dev_private;
3246 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3247 struct intel_crtc *intel_crtc =
3248 to_intel_crtc(dport->base.base.crtc);
3249 unsigned long demph_reg_value, preemph_reg_value,
3250 uniqtranscale_reg_value;
3251 uint8_t train_set = intel_dp->train_set[0];
3252 enum dpio_channel port = vlv_dport_to_channel(dport);
3253 int pipe = intel_crtc->pipe;
3254
3255 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3256 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3257 preemph_reg_value = 0x0004000;
3258 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3259 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3260 demph_reg_value = 0x2B405555;
3261 uniqtranscale_reg_value = 0x552AB83A;
3262 break;
3263 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3264 demph_reg_value = 0x2B404040;
3265 uniqtranscale_reg_value = 0x5548B83A;
3266 break;
3267 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3268 demph_reg_value = 0x2B245555;
3269 uniqtranscale_reg_value = 0x5560B83A;
3270 break;
3271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3272 demph_reg_value = 0x2B405555;
3273 uniqtranscale_reg_value = 0x5598DA3A;
3274 break;
3275 default:
3276 return 0;
3277 }
3278 break;
3279 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3280 preemph_reg_value = 0x0002000;
3281 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3282 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3283 demph_reg_value = 0x2B404040;
3284 uniqtranscale_reg_value = 0x5552B83A;
3285 break;
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3287 demph_reg_value = 0x2B404848;
3288 uniqtranscale_reg_value = 0x5580B83A;
3289 break;
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3291 demph_reg_value = 0x2B404040;
3292 uniqtranscale_reg_value = 0x55ADDA3A;
3293 break;
3294 default:
3295 return 0;
3296 }
3297 break;
3298 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3299 preemph_reg_value = 0x0000000;
3300 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3301 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3302 demph_reg_value = 0x2B305555;
3303 uniqtranscale_reg_value = 0x5570B83A;
3304 break;
3305 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3306 demph_reg_value = 0x2B2B4040;
3307 uniqtranscale_reg_value = 0x55ADDA3A;
3308 break;
3309 default:
3310 return 0;
3311 }
3312 break;
3313 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3314 preemph_reg_value = 0x0006000;
3315 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3316 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3317 demph_reg_value = 0x1B405555;
3318 uniqtranscale_reg_value = 0x55ADDA3A;
3319 break;
3320 default:
3321 return 0;
3322 }
3323 break;
3324 default:
3325 return 0;
3326 }
3327
3328 mutex_lock(&dev_priv->sb_lock);
3329 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3330 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3331 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3332 uniqtranscale_reg_value);
3333 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3334 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3335 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3336 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3337 mutex_unlock(&dev_priv->sb_lock);
3338
3339 return 0;
3340 }
3341
3342 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3343 {
3344 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3345 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3346 }
3347
3348 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3349 {
3350 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3351 struct drm_i915_private *dev_priv = dev->dev_private;
3352 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3353 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3354 u32 deemph_reg_value, margin_reg_value, val;
3355 uint8_t train_set = intel_dp->train_set[0];
3356 enum dpio_channel ch = vlv_dport_to_channel(dport);
3357 enum pipe pipe = intel_crtc->pipe;
3358 int i;
3359
3360 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3361 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3362 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3363 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3364 deemph_reg_value = 128;
3365 margin_reg_value = 52;
3366 break;
3367 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3368 deemph_reg_value = 128;
3369 margin_reg_value = 77;
3370 break;
3371 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3372 deemph_reg_value = 128;
3373 margin_reg_value = 102;
3374 break;
3375 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3376 deemph_reg_value = 128;
3377 margin_reg_value = 154;
3378 /* FIXME extra to set for 1200 */
3379 break;
3380 default:
3381 return 0;
3382 }
3383 break;
3384 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3385 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3386 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3387 deemph_reg_value = 85;
3388 margin_reg_value = 78;
3389 break;
3390 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3391 deemph_reg_value = 85;
3392 margin_reg_value = 116;
3393 break;
3394 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3395 deemph_reg_value = 85;
3396 margin_reg_value = 154;
3397 break;
3398 default:
3399 return 0;
3400 }
3401 break;
3402 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3403 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3405 deemph_reg_value = 64;
3406 margin_reg_value = 104;
3407 break;
3408 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3409 deemph_reg_value = 64;
3410 margin_reg_value = 154;
3411 break;
3412 default:
3413 return 0;
3414 }
3415 break;
3416 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3417 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3418 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3419 deemph_reg_value = 43;
3420 margin_reg_value = 154;
3421 break;
3422 default:
3423 return 0;
3424 }
3425 break;
3426 default:
3427 return 0;
3428 }
3429
3430 mutex_lock(&dev_priv->sb_lock);
3431
3432 /* Clear calc init */
3433 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3434 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3435 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3436 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3437 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3438
3439 if (intel_crtc->config->lane_count > 2) {
3440 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3441 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3442 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3443 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3444 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3445 }
3446
3447 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3448 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3449 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3450 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3451
3452 if (intel_crtc->config->lane_count > 2) {
3453 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3454 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3455 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3456 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3457 }
3458
3459 /* Program swing deemph */
3460 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3461 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3462 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3463 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3464 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3465 }
3466
3467 /* Program swing margin */
3468 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3469 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3470
3471 val &= ~DPIO_SWING_MARGIN000_MASK;
3472 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3473
3474 /*
3475 * Supposedly this value shouldn't matter when unique transition
3476 * scale is disabled, but in fact it does matter. Let's just
3477 * always program the same value and hope it's OK.
3478 */
3479 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3480 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3481
3482 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3483 }
3484
3485 /*
3486 * The document said it needs to set bit 27 for ch0 and bit 26
3487 * for ch1. Might be a typo in the doc.
3488 * For now, for this unique transition scale selection, set bit
3489 * 27 for ch0 and ch1.
3490 */
3491 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3492 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3493 if (chv_need_uniq_trans_scale(train_set))
3494 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3495 else
3496 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3497 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3498 }
3499
3500 /* Start swing calculation */
3501 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3502 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3503 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3504
3505 if (intel_crtc->config->lane_count > 2) {
3506 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3507 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3508 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3509 }
3510
3511 mutex_unlock(&dev_priv->sb_lock);
3512
3513 return 0;
3514 }
3515
3516 static uint32_t
3517 gen4_signal_levels(uint8_t train_set)
3518 {
3519 uint32_t signal_levels = 0;
3520
3521 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3522 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3523 default:
3524 signal_levels |= DP_VOLTAGE_0_4;
3525 break;
3526 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3527 signal_levels |= DP_VOLTAGE_0_6;
3528 break;
3529 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3530 signal_levels |= DP_VOLTAGE_0_8;
3531 break;
3532 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3533 signal_levels |= DP_VOLTAGE_1_2;
3534 break;
3535 }
3536 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3537 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3538 default:
3539 signal_levels |= DP_PRE_EMPHASIS_0;
3540 break;
3541 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3542 signal_levels |= DP_PRE_EMPHASIS_3_5;
3543 break;
3544 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3545 signal_levels |= DP_PRE_EMPHASIS_6;
3546 break;
3547 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3548 signal_levels |= DP_PRE_EMPHASIS_9_5;
3549 break;
3550 }
3551 return signal_levels;
3552 }
3553
3554 /* Gen6's DP voltage swing and pre-emphasis control */
3555 static uint32_t
3556 gen6_edp_signal_levels(uint8_t train_set)
3557 {
3558 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3559 DP_TRAIN_PRE_EMPHASIS_MASK);
3560 switch (signal_levels) {
3561 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3562 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3563 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3564 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3565 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3566 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3567 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3568 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3569 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3570 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3571 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3572 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3573 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3574 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3575 default:
3576 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3577 "0x%x\n", signal_levels);
3578 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3579 }
3580 }
3581
3582 /* Gen7's DP voltage swing and pre-emphasis control */
3583 static uint32_t
3584 gen7_edp_signal_levels(uint8_t train_set)
3585 {
3586 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3587 DP_TRAIN_PRE_EMPHASIS_MASK);
3588 switch (signal_levels) {
3589 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3590 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3591 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3592 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3593 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3594 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3595
3596 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3597 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3598 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3599 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3600
3601 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3602 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3603 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3604 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3605
3606 default:
3607 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3608 "0x%x\n", signal_levels);
3609 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3610 }
3611 }
3612
3613 void
3614 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3615 {
3616 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3617 enum port port = intel_dig_port->port;
3618 struct drm_device *dev = intel_dig_port->base.base.dev;
3619 struct drm_i915_private *dev_priv = to_i915(dev);
3620 uint32_t signal_levels, mask = 0;
3621 uint8_t train_set = intel_dp->train_set[0];
3622
3623 if (HAS_DDI(dev)) {
3624 signal_levels = ddi_signal_levels(intel_dp);
3625
3626 if (IS_BROXTON(dev))
3627 signal_levels = 0;
3628 else
3629 mask = DDI_BUF_EMP_MASK;
3630 } else if (IS_CHERRYVIEW(dev)) {
3631 signal_levels = chv_signal_levels(intel_dp);
3632 } else if (IS_VALLEYVIEW(dev)) {
3633 signal_levels = vlv_signal_levels(intel_dp);
3634 } else if (IS_GEN7(dev) && port == PORT_A) {
3635 signal_levels = gen7_edp_signal_levels(train_set);
3636 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3637 } else if (IS_GEN6(dev) && port == PORT_A) {
3638 signal_levels = gen6_edp_signal_levels(train_set);
3639 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3640 } else {
3641 signal_levels = gen4_signal_levels(train_set);
3642 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3643 }
3644
3645 if (mask)
3646 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3647
3648 DRM_DEBUG_KMS("Using vswing level %d\n",
3649 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3650 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3651 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3652 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3653
3654 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3655
3656 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3657 POSTING_READ(intel_dp->output_reg);
3658 }
3659
3660 void
3661 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3662 uint8_t dp_train_pat)
3663 {
3664 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3665 struct drm_i915_private *dev_priv =
3666 to_i915(intel_dig_port->base.base.dev);
3667
3668 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3669
3670 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3671 POSTING_READ(intel_dp->output_reg);
3672 }
3673
3674 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3675 {
3676 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3677 struct drm_device *dev = intel_dig_port->base.base.dev;
3678 struct drm_i915_private *dev_priv = dev->dev_private;
3679 enum port port = intel_dig_port->port;
3680 uint32_t val;
3681
3682 if (!HAS_DDI(dev))
3683 return;
3684
3685 val = I915_READ(DP_TP_CTL(port));
3686 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3687 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3688 I915_WRITE(DP_TP_CTL(port), val);
3689
3690 /*
3691 * On PORT_A we can have only eDP in SST mode. There the only reason
3692 * we need to set idle transmission mode is to work around a HW issue
3693 * where we enable the pipe while not in idle link-training mode.
3694 * In this case there is requirement to wait for a minimum number of
3695 * idle patterns to be sent.
3696 */
3697 if (port == PORT_A)
3698 return;
3699
3700 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3701 1))
3702 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3703 }
3704
3705 static void
3706 intel_dp_link_down(struct intel_dp *intel_dp)
3707 {
3708 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3709 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3710 enum port port = intel_dig_port->port;
3711 struct drm_device *dev = intel_dig_port->base.base.dev;
3712 struct drm_i915_private *dev_priv = dev->dev_private;
3713 uint32_t DP = intel_dp->DP;
3714
3715 if (WARN_ON(HAS_DDI(dev)))
3716 return;
3717
3718 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3719 return;
3720
3721 DRM_DEBUG_KMS("\n");
3722
3723 if ((IS_GEN7(dev) && port == PORT_A) ||
3724 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3725 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3726 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3727 } else {
3728 if (IS_CHERRYVIEW(dev))
3729 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3730 else
3731 DP &= ~DP_LINK_TRAIN_MASK;
3732 DP |= DP_LINK_TRAIN_PAT_IDLE;
3733 }
3734 I915_WRITE(intel_dp->output_reg, DP);
3735 POSTING_READ(intel_dp->output_reg);
3736
3737 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3738 I915_WRITE(intel_dp->output_reg, DP);
3739 POSTING_READ(intel_dp->output_reg);
3740
3741 /*
3742 * HW workaround for IBX, we need to move the port
3743 * to transcoder A after disabling it to allow the
3744 * matching HDMI port to be enabled on transcoder A.
3745 */
3746 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3747 /*
3748 * We get CPU/PCH FIFO underruns on the other pipe when
3749 * doing the workaround. Sweep them under the rug.
3750 */
3751 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3752 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3753
3754 /* always enable with pattern 1 (as per spec) */
3755 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3756 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3757 I915_WRITE(intel_dp->output_reg, DP);
3758 POSTING_READ(intel_dp->output_reg);
3759
3760 DP &= ~DP_PORT_EN;
3761 I915_WRITE(intel_dp->output_reg, DP);
3762 POSTING_READ(intel_dp->output_reg);
3763
3764 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3765 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3766 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3767 }
3768
3769 msleep(intel_dp->panel_power_down_delay);
3770
3771 intel_dp->DP = DP;
3772 }
3773
3774 static bool
3775 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3776 {
3777 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3778 struct drm_device *dev = dig_port->base.base.dev;
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780 uint8_t rev;
3781
3782 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3783 sizeof(intel_dp->dpcd)) < 0)
3784 return false; /* aux transfer failed */
3785
3786 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3787
3788 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3789 return false; /* DPCD not present */
3790
3791 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3792 &intel_dp->sink_count, 1) < 0)
3793 return false;
3794
3795 /*
3796 * Sink count can change between short pulse hpd hence
3797 * a member variable in intel_dp will track any changes
3798 * between short pulse interrupts.
3799 */
3800 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3801
3802 /*
3803 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3804 * a dongle is present but no display. Unless we require to know
3805 * if a dongle is present or not, we don't need to update
3806 * downstream port information. So, an early return here saves
3807 * time from performing other operations which are not required.
3808 */
3809 if (!intel_dp->sink_count)
3810 return false;
3811
3812 /* Check if the panel supports PSR */
3813 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3814 if (is_edp(intel_dp)) {
3815 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3816 intel_dp->psr_dpcd,
3817 sizeof(intel_dp->psr_dpcd));
3818 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3819 dev_priv->psr.sink_support = true;
3820 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3821 }
3822
3823 if (INTEL_INFO(dev)->gen >= 9 &&
3824 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3825 uint8_t frame_sync_cap;
3826
3827 dev_priv->psr.sink_support = true;
3828 intel_dp_dpcd_read_wake(&intel_dp->aux,
3829 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3830 &frame_sync_cap, 1);
3831 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3832 /* PSR2 needs frame sync as well */
3833 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3834 DRM_DEBUG_KMS("PSR2 %s on sink",
3835 dev_priv->psr.psr2_support ? "supported" : "not supported");
3836 }
3837 }
3838
3839 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3840 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3841 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3842
3843 /* Intermediate frequency support */
3844 if (is_edp(intel_dp) &&
3845 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3846 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3847 (rev >= 0x03)) { /* eDp v1.4 or higher */
3848 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3849 int i;
3850
3851 intel_dp_dpcd_read_wake(&intel_dp->aux,
3852 DP_SUPPORTED_LINK_RATES,
3853 sink_rates,
3854 sizeof(sink_rates));
3855
3856 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3857 int val = le16_to_cpu(sink_rates[i]);
3858
3859 if (val == 0)
3860 break;
3861
3862 /* Value read is in kHz while drm clock is saved in deca-kHz */
3863 intel_dp->sink_rates[i] = (val * 200) / 10;
3864 }
3865 intel_dp->num_sink_rates = i;
3866 }
3867
3868 intel_dp_print_rates(intel_dp);
3869
3870 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3871 DP_DWN_STRM_PORT_PRESENT))
3872 return true; /* native DP sink */
3873
3874 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3875 return true; /* no per-port downstream info */
3876
3877 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3878 intel_dp->downstream_ports,
3879 DP_MAX_DOWNSTREAM_PORTS) < 0)
3880 return false; /* downstream port status fetch failed */
3881
3882 return true;
3883 }
3884
3885 static void
3886 intel_dp_probe_oui(struct intel_dp *intel_dp)
3887 {
3888 u8 buf[3];
3889
3890 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3891 return;
3892
3893 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3894 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3895 buf[0], buf[1], buf[2]);
3896
3897 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3898 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3899 buf[0], buf[1], buf[2]);
3900 }
3901
3902 static bool
3903 intel_dp_probe_mst(struct intel_dp *intel_dp)
3904 {
3905 u8 buf[1];
3906
3907 if (!i915.enable_dp_mst)
3908 return false;
3909
3910 if (!intel_dp->can_mst)
3911 return false;
3912
3913 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3914 return false;
3915
3916 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3917 if (buf[0] & DP_MST_CAP) {
3918 DRM_DEBUG_KMS("Sink is MST capable\n");
3919 intel_dp->is_mst = true;
3920 } else {
3921 DRM_DEBUG_KMS("Sink is not MST capable\n");
3922 intel_dp->is_mst = false;
3923 }
3924 }
3925
3926 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3927 return intel_dp->is_mst;
3928 }
3929
3930 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3931 {
3932 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3933 struct drm_device *dev = dig_port->base.base.dev;
3934 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3935 u8 buf;
3936 int ret = 0;
3937 int count = 0;
3938 int attempts = 10;
3939
3940 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3941 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3942 ret = -EIO;
3943 goto out;
3944 }
3945
3946 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3947 buf & ~DP_TEST_SINK_START) < 0) {
3948 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3949 ret = -EIO;
3950 goto out;
3951 }
3952
3953 do {
3954 intel_wait_for_vblank(dev, intel_crtc->pipe);
3955
3956 if (drm_dp_dpcd_readb(&intel_dp->aux,
3957 DP_TEST_SINK_MISC, &buf) < 0) {
3958 ret = -EIO;
3959 goto out;
3960 }
3961 count = buf & DP_TEST_COUNT_MASK;
3962 } while (--attempts && count);
3963
3964 if (attempts == 0) {
3965 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3966 ret = -ETIMEDOUT;
3967 }
3968
3969 out:
3970 hsw_enable_ips(intel_crtc);
3971 return ret;
3972 }
3973
3974 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3975 {
3976 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3977 struct drm_device *dev = dig_port->base.base.dev;
3978 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3979 u8 buf;
3980 int ret;
3981
3982 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3983 return -EIO;
3984
3985 if (!(buf & DP_TEST_CRC_SUPPORTED))
3986 return -ENOTTY;
3987
3988 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3989 return -EIO;
3990
3991 if (buf & DP_TEST_SINK_START) {
3992 ret = intel_dp_sink_crc_stop(intel_dp);
3993 if (ret)
3994 return ret;
3995 }
3996
3997 hsw_disable_ips(intel_crtc);
3998
3999 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4000 buf | DP_TEST_SINK_START) < 0) {
4001 hsw_enable_ips(intel_crtc);
4002 return -EIO;
4003 }
4004
4005 intel_wait_for_vblank(dev, intel_crtc->pipe);
4006 return 0;
4007 }
4008
4009 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4010 {
4011 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4012 struct drm_device *dev = dig_port->base.base.dev;
4013 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4014 u8 buf;
4015 int count, ret;
4016 int attempts = 6;
4017
4018 ret = intel_dp_sink_crc_start(intel_dp);
4019 if (ret)
4020 return ret;
4021
4022 do {
4023 intel_wait_for_vblank(dev, intel_crtc->pipe);
4024
4025 if (drm_dp_dpcd_readb(&intel_dp->aux,
4026 DP_TEST_SINK_MISC, &buf) < 0) {
4027 ret = -EIO;
4028 goto stop;
4029 }
4030 count = buf & DP_TEST_COUNT_MASK;
4031
4032 } while (--attempts && count == 0);
4033
4034 if (attempts == 0) {
4035 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4036 ret = -ETIMEDOUT;
4037 goto stop;
4038 }
4039
4040 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4041 ret = -EIO;
4042 goto stop;
4043 }
4044
4045 stop:
4046 intel_dp_sink_crc_stop(intel_dp);
4047 return ret;
4048 }
4049
4050 static bool
4051 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4052 {
4053 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4054 DP_DEVICE_SERVICE_IRQ_VECTOR,
4055 sink_irq_vector, 1) == 1;
4056 }
4057
4058 static bool
4059 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4060 {
4061 int ret;
4062
4063 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4064 DP_SINK_COUNT_ESI,
4065 sink_irq_vector, 14);
4066 if (ret != 14)
4067 return false;
4068
4069 return true;
4070 }
4071
4072 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4073 {
4074 uint8_t test_result = DP_TEST_ACK;
4075 return test_result;
4076 }
4077
4078 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4079 {
4080 uint8_t test_result = DP_TEST_NAK;
4081 return test_result;
4082 }
4083
4084 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4085 {
4086 uint8_t test_result = DP_TEST_NAK;
4087 struct intel_connector *intel_connector = intel_dp->attached_connector;
4088 struct drm_connector *connector = &intel_connector->base;
4089
4090 if (intel_connector->detect_edid == NULL ||
4091 connector->edid_corrupt ||
4092 intel_dp->aux.i2c_defer_count > 6) {
4093 /* Check EDID read for NACKs, DEFERs and corruption
4094 * (DP CTS 1.2 Core r1.1)
4095 * 4.2.2.4 : Failed EDID read, I2C_NAK
4096 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4097 * 4.2.2.6 : EDID corruption detected
4098 * Use failsafe mode for all cases
4099 */
4100 if (intel_dp->aux.i2c_nack_count > 0 ||
4101 intel_dp->aux.i2c_defer_count > 0)
4102 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4103 intel_dp->aux.i2c_nack_count,
4104 intel_dp->aux.i2c_defer_count);
4105 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4106 } else {
4107 struct edid *block = intel_connector->detect_edid;
4108
4109 /* We have to write the checksum
4110 * of the last block read
4111 */
4112 block += intel_connector->detect_edid->extensions;
4113
4114 if (!drm_dp_dpcd_write(&intel_dp->aux,
4115 DP_TEST_EDID_CHECKSUM,
4116 &block->checksum,
4117 1))
4118 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4119
4120 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4121 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4122 }
4123
4124 /* Set test active flag here so userspace doesn't interrupt things */
4125 intel_dp->compliance_test_active = 1;
4126
4127 return test_result;
4128 }
4129
4130 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4131 {
4132 uint8_t test_result = DP_TEST_NAK;
4133 return test_result;
4134 }
4135
4136 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4137 {
4138 uint8_t response = DP_TEST_NAK;
4139 uint8_t rxdata = 0;
4140 int status = 0;
4141
4142 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4143 if (status <= 0) {
4144 DRM_DEBUG_KMS("Could not read test request from sink\n");
4145 goto update_status;
4146 }
4147
4148 switch (rxdata) {
4149 case DP_TEST_LINK_TRAINING:
4150 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4151 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4152 response = intel_dp_autotest_link_training(intel_dp);
4153 break;
4154 case DP_TEST_LINK_VIDEO_PATTERN:
4155 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4156 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4157 response = intel_dp_autotest_video_pattern(intel_dp);
4158 break;
4159 case DP_TEST_LINK_EDID_READ:
4160 DRM_DEBUG_KMS("EDID test requested\n");
4161 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4162 response = intel_dp_autotest_edid(intel_dp);
4163 break;
4164 case DP_TEST_LINK_PHY_TEST_PATTERN:
4165 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4166 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4167 response = intel_dp_autotest_phy_pattern(intel_dp);
4168 break;
4169 default:
4170 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4171 break;
4172 }
4173
4174 update_status:
4175 status = drm_dp_dpcd_write(&intel_dp->aux,
4176 DP_TEST_RESPONSE,
4177 &response, 1);
4178 if (status <= 0)
4179 DRM_DEBUG_KMS("Could not write test response to sink\n");
4180 }
4181
4182 static int
4183 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4184 {
4185 bool bret;
4186
4187 if (intel_dp->is_mst) {
4188 u8 esi[16] = { 0 };
4189 int ret = 0;
4190 int retry;
4191 bool handled;
4192 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4193 go_again:
4194 if (bret == true) {
4195
4196 /* check link status - esi[10] = 0x200c */
4197 if (intel_dp->active_mst_links &&
4198 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4199 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4200 intel_dp_start_link_train(intel_dp);
4201 intel_dp_stop_link_train(intel_dp);
4202 }
4203
4204 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4205 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4206
4207 if (handled) {
4208 for (retry = 0; retry < 3; retry++) {
4209 int wret;
4210 wret = drm_dp_dpcd_write(&intel_dp->aux,
4211 DP_SINK_COUNT_ESI+1,
4212 &esi[1], 3);
4213 if (wret == 3) {
4214 break;
4215 }
4216 }
4217
4218 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4219 if (bret == true) {
4220 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4221 goto go_again;
4222 }
4223 } else
4224 ret = 0;
4225
4226 return ret;
4227 } else {
4228 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4229 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4230 intel_dp->is_mst = false;
4231 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4232 /* send a hotplug event */
4233 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4234 }
4235 }
4236 return -EINVAL;
4237 }
4238
4239 static void
4240 intel_dp_check_link_status(struct intel_dp *intel_dp)
4241 {
4242 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4243 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4244 u8 link_status[DP_LINK_STATUS_SIZE];
4245
4246 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4247
4248 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4249 DRM_ERROR("Failed to get link status\n");
4250 return;
4251 }
4252
4253 if (!intel_encoder->base.crtc)
4254 return;
4255
4256 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4257 return;
4258
4259 /* if link training is requested we should perform it always */
4260 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4261 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4262 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4263 intel_encoder->base.name);
4264 intel_dp_start_link_train(intel_dp);
4265 intel_dp_stop_link_train(intel_dp);
4266 }
4267 }
4268
4269 /*
4270 * According to DP spec
4271 * 5.1.2:
4272 * 1. Read DPCD
4273 * 2. Configure link according to Receiver Capabilities
4274 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4275 * 4. Check link status on receipt of hot-plug interrupt
4276 */
4277 static void
4278 intel_dp_short_pulse(struct intel_dp *intel_dp)
4279 {
4280 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4281 u8 sink_irq_vector;
4282
4283 /*
4284 * Clearing compliance test variables to allow capturing
4285 * of values for next automated test request.
4286 */
4287 intel_dp->compliance_test_active = 0;
4288 intel_dp->compliance_test_type = 0;
4289 intel_dp->compliance_test_data = 0;
4290
4291 /* Now read the DPCD to see if it's actually running */
4292 if (!intel_dp_get_dpcd(intel_dp)) {
4293 return;
4294 }
4295
4296 /* Try to read the source of the interrupt */
4297 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4298 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4299 /* Clear interrupt source */
4300 drm_dp_dpcd_writeb(&intel_dp->aux,
4301 DP_DEVICE_SERVICE_IRQ_VECTOR,
4302 sink_irq_vector);
4303
4304 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4305 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4306 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4307 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4308 }
4309
4310 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4311 intel_dp_check_link_status(intel_dp);
4312 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4313 }
4314
4315 /* XXX this is probably wrong for multiple downstream ports */
4316 static enum drm_connector_status
4317 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4318 {
4319 uint8_t *dpcd = intel_dp->dpcd;
4320 uint8_t type;
4321
4322 if (!intel_dp_get_dpcd(intel_dp))
4323 return connector_status_disconnected;
4324
4325 /* if there's no downstream port, we're done */
4326 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4327 return connector_status_connected;
4328
4329 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4330 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4331 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4332
4333 return intel_dp->sink_count ?
4334 connector_status_connected : connector_status_disconnected;
4335 }
4336
4337 /* If no HPD, poke DDC gently */
4338 if (drm_probe_ddc(&intel_dp->aux.ddc))
4339 return connector_status_connected;
4340
4341 /* Well we tried, say unknown for unreliable port types */
4342 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4343 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4344 if (type == DP_DS_PORT_TYPE_VGA ||
4345 type == DP_DS_PORT_TYPE_NON_EDID)
4346 return connector_status_unknown;
4347 } else {
4348 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4349 DP_DWN_STRM_PORT_TYPE_MASK;
4350 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4351 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4352 return connector_status_unknown;
4353 }
4354
4355 /* Anything else is out of spec, warn and ignore */
4356 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4357 return connector_status_disconnected;
4358 }
4359
4360 static enum drm_connector_status
4361 edp_detect(struct intel_dp *intel_dp)
4362 {
4363 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4364 enum drm_connector_status status;
4365
4366 status = intel_panel_detect(dev);
4367 if (status == connector_status_unknown)
4368 status = connector_status_connected;
4369
4370 return status;
4371 }
4372
4373 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4374 struct intel_digital_port *port)
4375 {
4376 u32 bit;
4377
4378 switch (port->port) {
4379 case PORT_A:
4380 return true;
4381 case PORT_B:
4382 bit = SDE_PORTB_HOTPLUG;
4383 break;
4384 case PORT_C:
4385 bit = SDE_PORTC_HOTPLUG;
4386 break;
4387 case PORT_D:
4388 bit = SDE_PORTD_HOTPLUG;
4389 break;
4390 default:
4391 MISSING_CASE(port->port);
4392 return false;
4393 }
4394
4395 return I915_READ(SDEISR) & bit;
4396 }
4397
4398 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4399 struct intel_digital_port *port)
4400 {
4401 u32 bit;
4402
4403 switch (port->port) {
4404 case PORT_A:
4405 return true;
4406 case PORT_B:
4407 bit = SDE_PORTB_HOTPLUG_CPT;
4408 break;
4409 case PORT_C:
4410 bit = SDE_PORTC_HOTPLUG_CPT;
4411 break;
4412 case PORT_D:
4413 bit = SDE_PORTD_HOTPLUG_CPT;
4414 break;
4415 case PORT_E:
4416 bit = SDE_PORTE_HOTPLUG_SPT;
4417 break;
4418 default:
4419 MISSING_CASE(port->port);
4420 return false;
4421 }
4422
4423 return I915_READ(SDEISR) & bit;
4424 }
4425
4426 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4427 struct intel_digital_port *port)
4428 {
4429 u32 bit;
4430
4431 switch (port->port) {
4432 case PORT_B:
4433 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4434 break;
4435 case PORT_C:
4436 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4437 break;
4438 case PORT_D:
4439 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4440 break;
4441 default:
4442 MISSING_CASE(port->port);
4443 return false;
4444 }
4445
4446 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4447 }
4448
4449 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4450 struct intel_digital_port *port)
4451 {
4452 u32 bit;
4453
4454 switch (port->port) {
4455 case PORT_B:
4456 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4457 break;
4458 case PORT_C:
4459 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4460 break;
4461 case PORT_D:
4462 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4463 break;
4464 default:
4465 MISSING_CASE(port->port);
4466 return false;
4467 }
4468
4469 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4470 }
4471
4472 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4473 struct intel_digital_port *intel_dig_port)
4474 {
4475 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4476 enum port port;
4477 u32 bit;
4478
4479 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4480 switch (port) {
4481 case PORT_A:
4482 bit = BXT_DE_PORT_HP_DDIA;
4483 break;
4484 case PORT_B:
4485 bit = BXT_DE_PORT_HP_DDIB;
4486 break;
4487 case PORT_C:
4488 bit = BXT_DE_PORT_HP_DDIC;
4489 break;
4490 default:
4491 MISSING_CASE(port);
4492 return false;
4493 }
4494
4495 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4496 }
4497
4498 /*
4499 * intel_digital_port_connected - is the specified port connected?
4500 * @dev_priv: i915 private structure
4501 * @port: the port to test
4502 *
4503 * Return %true if @port is connected, %false otherwise.
4504 */
4505 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4506 struct intel_digital_port *port)
4507 {
4508 if (HAS_PCH_IBX(dev_priv))
4509 return ibx_digital_port_connected(dev_priv, port);
4510 else if (HAS_PCH_SPLIT(dev_priv))
4511 return cpt_digital_port_connected(dev_priv, port);
4512 else if (IS_BROXTON(dev_priv))
4513 return bxt_digital_port_connected(dev_priv, port);
4514 else if (IS_GM45(dev_priv))
4515 return gm45_digital_port_connected(dev_priv, port);
4516 else
4517 return g4x_digital_port_connected(dev_priv, port);
4518 }
4519
4520 static struct edid *
4521 intel_dp_get_edid(struct intel_dp *intel_dp)
4522 {
4523 struct intel_connector *intel_connector = intel_dp->attached_connector;
4524
4525 /* use cached edid if we have one */
4526 if (intel_connector->edid) {
4527 /* invalid edid */
4528 if (IS_ERR(intel_connector->edid))
4529 return NULL;
4530
4531 return drm_edid_duplicate(intel_connector->edid);
4532 } else
4533 return drm_get_edid(&intel_connector->base,
4534 &intel_dp->aux.ddc);
4535 }
4536
4537 static void
4538 intel_dp_set_edid(struct intel_dp *intel_dp)
4539 {
4540 struct intel_connector *intel_connector = intel_dp->attached_connector;
4541 struct edid *edid;
4542
4543 intel_dp_unset_edid(intel_dp);
4544 edid = intel_dp_get_edid(intel_dp);
4545 intel_connector->detect_edid = edid;
4546
4547 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4548 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4549 else
4550 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4551 }
4552
4553 static void
4554 intel_dp_unset_edid(struct intel_dp *intel_dp)
4555 {
4556 struct intel_connector *intel_connector = intel_dp->attached_connector;
4557
4558 kfree(intel_connector->detect_edid);
4559 intel_connector->detect_edid = NULL;
4560
4561 intel_dp->has_audio = false;
4562 }
4563
4564 static void
4565 intel_dp_long_pulse(struct intel_connector *intel_connector)
4566 {
4567 struct drm_connector *connector = &intel_connector->base;
4568 struct intel_dp *intel_dp = intel_attached_dp(connector);
4569 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4570 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4571 struct drm_device *dev = connector->dev;
4572 enum drm_connector_status status;
4573 enum intel_display_power_domain power_domain;
4574 bool ret;
4575 u8 sink_irq_vector;
4576
4577 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4578 intel_display_power_get(to_i915(dev), power_domain);
4579
4580 /* Can't disconnect eDP, but you can close the lid... */
4581 if (is_edp(intel_dp))
4582 status = edp_detect(intel_dp);
4583 else if (intel_digital_port_connected(to_i915(dev),
4584 dp_to_dig_port(intel_dp)))
4585 status = intel_dp_detect_dpcd(intel_dp);
4586 else
4587 status = connector_status_disconnected;
4588
4589 if (status != connector_status_connected) {
4590 intel_dp->compliance_test_active = 0;
4591 intel_dp->compliance_test_type = 0;
4592 intel_dp->compliance_test_data = 0;
4593
4594 goto out;
4595 }
4596
4597 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4598 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4599
4600 intel_dp_probe_oui(intel_dp);
4601
4602 ret = intel_dp_probe_mst(intel_dp);
4603 if (ret) {
4604 /*
4605 * If we are in MST mode then this connector
4606 * won't appear connected or have anything
4607 * with EDID on it
4608 */
4609 status = connector_status_disconnected;
4610 goto out;
4611 } else if (connector->status == connector_status_connected) {
4612 /*
4613 * If display was connected already and is still connected
4614 * check links status, there has been known issues of
4615 * link loss triggerring long pulse!!!!
4616 */
4617 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4618 intel_dp_check_link_status(intel_dp);
4619 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4620 goto out;
4621 }
4622
4623 /*
4624 * Clearing NACK and defer counts to get their exact values
4625 * while reading EDID which are required by Compliance tests
4626 * 4.2.2.4 and 4.2.2.5
4627 */
4628 intel_dp->aux.i2c_nack_count = 0;
4629 intel_dp->aux.i2c_defer_count = 0;
4630
4631 intel_dp_set_edid(intel_dp);
4632
4633 status = connector_status_connected;
4634 intel_dp->detect_done = true;
4635
4636 /* Try to read the source of the interrupt */
4637 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4638 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4639 /* Clear interrupt source */
4640 drm_dp_dpcd_writeb(&intel_dp->aux,
4641 DP_DEVICE_SERVICE_IRQ_VECTOR,
4642 sink_irq_vector);
4643
4644 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4645 intel_dp_handle_test_request(intel_dp);
4646 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4647 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4648 }
4649
4650 out:
4651 if (status != connector_status_connected) {
4652 intel_dp_unset_edid(intel_dp);
4653 /*
4654 * If we were in MST mode, and device is not there,
4655 * get out of MST mode
4656 */
4657 if (intel_dp->is_mst) {
4658 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4659 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4660 intel_dp->is_mst = false;
4661 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4662 intel_dp->is_mst);
4663 }
4664 }
4665
4666 intel_display_power_put(to_i915(dev), power_domain);
4667 return;
4668 }
4669
4670 static enum drm_connector_status
4671 intel_dp_detect(struct drm_connector *connector, bool force)
4672 {
4673 struct intel_dp *intel_dp = intel_attached_dp(connector);
4674 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4675 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4676 struct intel_connector *intel_connector = to_intel_connector(connector);
4677
4678 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4679 connector->base.id, connector->name);
4680
4681 if (intel_dp->is_mst) {
4682 /* MST devices are disconnected from a monitor POV */
4683 intel_dp_unset_edid(intel_dp);
4684 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4685 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4686 return connector_status_disconnected;
4687 }
4688
4689 /* If full detect is not performed yet, do a full detect */
4690 if (!intel_dp->detect_done)
4691 intel_dp_long_pulse(intel_dp->attached_connector);
4692
4693 intel_dp->detect_done = false;
4694
4695 if (intel_connector->detect_edid)
4696 return connector_status_connected;
4697 else
4698 return connector_status_disconnected;
4699 }
4700
4701 static void
4702 intel_dp_force(struct drm_connector *connector)
4703 {
4704 struct intel_dp *intel_dp = intel_attached_dp(connector);
4705 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4706 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4707 enum intel_display_power_domain power_domain;
4708
4709 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4710 connector->base.id, connector->name);
4711 intel_dp_unset_edid(intel_dp);
4712
4713 if (connector->status != connector_status_connected)
4714 return;
4715
4716 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4717 intel_display_power_get(dev_priv, power_domain);
4718
4719 intel_dp_set_edid(intel_dp);
4720
4721 intel_display_power_put(dev_priv, power_domain);
4722
4723 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4724 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4725 }
4726
4727 static int intel_dp_get_modes(struct drm_connector *connector)
4728 {
4729 struct intel_connector *intel_connector = to_intel_connector(connector);
4730 struct edid *edid;
4731
4732 edid = intel_connector->detect_edid;
4733 if (edid) {
4734 int ret = intel_connector_update_modes(connector, edid);
4735 if (ret)
4736 return ret;
4737 }
4738
4739 /* if eDP has no EDID, fall back to fixed mode */
4740 if (is_edp(intel_attached_dp(connector)) &&
4741 intel_connector->panel.fixed_mode) {
4742 struct drm_display_mode *mode;
4743
4744 mode = drm_mode_duplicate(connector->dev,
4745 intel_connector->panel.fixed_mode);
4746 if (mode) {
4747 drm_mode_probed_add(connector, mode);
4748 return 1;
4749 }
4750 }
4751
4752 return 0;
4753 }
4754
4755 static bool
4756 intel_dp_detect_audio(struct drm_connector *connector)
4757 {
4758 bool has_audio = false;
4759 struct edid *edid;
4760
4761 edid = to_intel_connector(connector)->detect_edid;
4762 if (edid)
4763 has_audio = drm_detect_monitor_audio(edid);
4764
4765 return has_audio;
4766 }
4767
4768 static int
4769 intel_dp_set_property(struct drm_connector *connector,
4770 struct drm_property *property,
4771 uint64_t val)
4772 {
4773 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4774 struct intel_connector *intel_connector = to_intel_connector(connector);
4775 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4776 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4777 int ret;
4778
4779 ret = drm_object_property_set_value(&connector->base, property, val);
4780 if (ret)
4781 return ret;
4782
4783 if (property == dev_priv->force_audio_property) {
4784 int i = val;
4785 bool has_audio;
4786
4787 if (i == intel_dp->force_audio)
4788 return 0;
4789
4790 intel_dp->force_audio = i;
4791
4792 if (i == HDMI_AUDIO_AUTO)
4793 has_audio = intel_dp_detect_audio(connector);
4794 else
4795 has_audio = (i == HDMI_AUDIO_ON);
4796
4797 if (has_audio == intel_dp->has_audio)
4798 return 0;
4799
4800 intel_dp->has_audio = has_audio;
4801 goto done;
4802 }
4803
4804 if (property == dev_priv->broadcast_rgb_property) {
4805 bool old_auto = intel_dp->color_range_auto;
4806 bool old_range = intel_dp->limited_color_range;
4807
4808 switch (val) {
4809 case INTEL_BROADCAST_RGB_AUTO:
4810 intel_dp->color_range_auto = true;
4811 break;
4812 case INTEL_BROADCAST_RGB_FULL:
4813 intel_dp->color_range_auto = false;
4814 intel_dp->limited_color_range = false;
4815 break;
4816 case INTEL_BROADCAST_RGB_LIMITED:
4817 intel_dp->color_range_auto = false;
4818 intel_dp->limited_color_range = true;
4819 break;
4820 default:
4821 return -EINVAL;
4822 }
4823
4824 if (old_auto == intel_dp->color_range_auto &&
4825 old_range == intel_dp->limited_color_range)
4826 return 0;
4827
4828 goto done;
4829 }
4830
4831 if (is_edp(intel_dp) &&
4832 property == connector->dev->mode_config.scaling_mode_property) {
4833 if (val == DRM_MODE_SCALE_NONE) {
4834 DRM_DEBUG_KMS("no scaling not supported\n");
4835 return -EINVAL;
4836 }
4837
4838 if (intel_connector->panel.fitting_mode == val) {
4839 /* the eDP scaling property is not changed */
4840 return 0;
4841 }
4842 intel_connector->panel.fitting_mode = val;
4843
4844 goto done;
4845 }
4846
4847 return -EINVAL;
4848
4849 done:
4850 if (intel_encoder->base.crtc)
4851 intel_crtc_restore_mode(intel_encoder->base.crtc);
4852
4853 return 0;
4854 }
4855
4856 static void
4857 intel_dp_connector_destroy(struct drm_connector *connector)
4858 {
4859 struct intel_connector *intel_connector = to_intel_connector(connector);
4860
4861 kfree(intel_connector->detect_edid);
4862
4863 if (!IS_ERR_OR_NULL(intel_connector->edid))
4864 kfree(intel_connector->edid);
4865
4866 /* Can't call is_edp() since the encoder may have been destroyed
4867 * already. */
4868 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4869 intel_panel_fini(&intel_connector->panel);
4870
4871 drm_connector_cleanup(connector);
4872 kfree(connector);
4873 }
4874
4875 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4876 {
4877 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4878 struct intel_dp *intel_dp = &intel_dig_port->dp;
4879
4880 intel_dp_mst_encoder_cleanup(intel_dig_port);
4881 if (is_edp(intel_dp)) {
4882 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4883 /*
4884 * vdd might still be enabled do to the delayed vdd off.
4885 * Make sure vdd is actually turned off here.
4886 */
4887 pps_lock(intel_dp);
4888 edp_panel_vdd_off_sync(intel_dp);
4889 pps_unlock(intel_dp);
4890
4891 if (intel_dp->edp_notifier.notifier_call) {
4892 unregister_reboot_notifier(&intel_dp->edp_notifier);
4893 intel_dp->edp_notifier.notifier_call = NULL;
4894 }
4895 }
4896 drm_encoder_cleanup(encoder);
4897 kfree(intel_dig_port);
4898 }
4899
4900 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4901 {
4902 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4903
4904 if (!is_edp(intel_dp))
4905 return;
4906
4907 /*
4908 * vdd might still be enabled do to the delayed vdd off.
4909 * Make sure vdd is actually turned off here.
4910 */
4911 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4912 pps_lock(intel_dp);
4913 edp_panel_vdd_off_sync(intel_dp);
4914 pps_unlock(intel_dp);
4915 }
4916
4917 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4918 {
4919 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4920 struct drm_device *dev = intel_dig_port->base.base.dev;
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 enum intel_display_power_domain power_domain;
4923
4924 lockdep_assert_held(&dev_priv->pps_mutex);
4925
4926 if (!edp_have_panel_vdd(intel_dp))
4927 return;
4928
4929 /*
4930 * The VDD bit needs a power domain reference, so if the bit is
4931 * already enabled when we boot or resume, grab this reference and
4932 * schedule a vdd off, so we don't hold on to the reference
4933 * indefinitely.
4934 */
4935 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4936 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4937 intel_display_power_get(dev_priv, power_domain);
4938
4939 edp_panel_vdd_schedule_off(intel_dp);
4940 }
4941
4942 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4943 {
4944 struct intel_dp *intel_dp;
4945
4946 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4947 return;
4948
4949 intel_dp = enc_to_intel_dp(encoder);
4950
4951 pps_lock(intel_dp);
4952
4953 /*
4954 * Read out the current power sequencer assignment,
4955 * in case the BIOS did something with it.
4956 */
4957 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4958 vlv_initial_power_sequencer_setup(intel_dp);
4959
4960 intel_edp_panel_vdd_sanitize(intel_dp);
4961
4962 pps_unlock(intel_dp);
4963 }
4964
4965 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4966 .dpms = drm_atomic_helper_connector_dpms,
4967 .detect = intel_dp_detect,
4968 .force = intel_dp_force,
4969 .fill_modes = drm_helper_probe_single_connector_modes,
4970 .set_property = intel_dp_set_property,
4971 .atomic_get_property = intel_connector_atomic_get_property,
4972 .destroy = intel_dp_connector_destroy,
4973 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4974 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4975 };
4976
4977 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4978 .get_modes = intel_dp_get_modes,
4979 .mode_valid = intel_dp_mode_valid,
4980 .best_encoder = intel_best_encoder,
4981 };
4982
4983 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4984 .reset = intel_dp_encoder_reset,
4985 .destroy = intel_dp_encoder_destroy,
4986 };
4987
4988 enum irqreturn
4989 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4990 {
4991 struct intel_dp *intel_dp = &intel_dig_port->dp;
4992 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4993 struct drm_device *dev = intel_dig_port->base.base.dev;
4994 struct drm_i915_private *dev_priv = dev->dev_private;
4995 enum intel_display_power_domain power_domain;
4996 enum irqreturn ret = IRQ_NONE;
4997
4998 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4999 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
5000 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
5001
5002 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5003 /*
5004 * vdd off can generate a long pulse on eDP which
5005 * would require vdd on to handle it, and thus we
5006 * would end up in an endless cycle of
5007 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5008 */
5009 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5010 port_name(intel_dig_port->port));
5011 return IRQ_HANDLED;
5012 }
5013
5014 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5015 port_name(intel_dig_port->port),
5016 long_hpd ? "long" : "short");
5017
5018 power_domain = intel_display_port_aux_power_domain(intel_encoder);
5019 intel_display_power_get(dev_priv, power_domain);
5020
5021 if (long_hpd) {
5022 /* indicate that we need to restart link training */
5023 intel_dp->train_set_valid = false;
5024
5025 intel_dp_long_pulse(intel_dp->attached_connector);
5026 if (intel_dp->is_mst)
5027 ret = IRQ_HANDLED;
5028 goto put_power;
5029
5030 } else {
5031 if (intel_dp->is_mst) {
5032 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5033 /*
5034 * If we were in MST mode, and device is not
5035 * there, get out of MST mode
5036 */
5037 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5038 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5039 intel_dp->is_mst = false;
5040 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5041 intel_dp->is_mst);
5042 goto put_power;
5043 }
5044 }
5045
5046 if (!intel_dp->is_mst)
5047 intel_dp_short_pulse(intel_dp);
5048 }
5049
5050 ret = IRQ_HANDLED;
5051
5052 put_power:
5053 intel_display_power_put(dev_priv, power_domain);
5054
5055 return ret;
5056 }
5057
5058 /* check the VBT to see whether the eDP is on another port */
5059 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5060 {
5061 struct drm_i915_private *dev_priv = dev->dev_private;
5062
5063 /*
5064 * eDP not supported on g4x. so bail out early just
5065 * for a bit extra safety in case the VBT is bonkers.
5066 */
5067 if (INTEL_INFO(dev)->gen < 5)
5068 return false;
5069
5070 if (port == PORT_A)
5071 return true;
5072
5073 return intel_bios_is_port_edp(dev_priv, port);
5074 }
5075
5076 void
5077 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5078 {
5079 struct intel_connector *intel_connector = to_intel_connector(connector);
5080
5081 intel_attach_force_audio_property(connector);
5082 intel_attach_broadcast_rgb_property(connector);
5083 intel_dp->color_range_auto = true;
5084
5085 if (is_edp(intel_dp)) {
5086 drm_mode_create_scaling_mode_property(connector->dev);
5087 drm_object_attach_property(
5088 &connector->base,
5089 connector->dev->mode_config.scaling_mode_property,
5090 DRM_MODE_SCALE_ASPECT);
5091 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5092 }
5093 }
5094
5095 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5096 {
5097 intel_dp->panel_power_off_time = ktime_get_boottime();
5098 intel_dp->last_power_on = jiffies;
5099 intel_dp->last_backlight_off = jiffies;
5100 }
5101
5102 static void
5103 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5104 struct intel_dp *intel_dp)
5105 {
5106 struct drm_i915_private *dev_priv = dev->dev_private;
5107 struct edp_power_seq cur, vbt, spec,
5108 *final = &intel_dp->pps_delays;
5109 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5110 i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5111
5112 lockdep_assert_held(&dev_priv->pps_mutex);
5113
5114 /* already initialized? */
5115 if (final->t11_t12 != 0)
5116 return;
5117
5118 if (IS_BROXTON(dev)) {
5119 /*
5120 * TODO: BXT has 2 sets of PPS registers.
5121 * Correct Register for Broxton need to be identified
5122 * using VBT. hardcoding for now
5123 */
5124 pp_ctrl_reg = BXT_PP_CONTROL(0);
5125 pp_on_reg = BXT_PP_ON_DELAYS(0);
5126 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5127 } else if (HAS_PCH_SPLIT(dev)) {
5128 pp_ctrl_reg = PCH_PP_CONTROL;
5129 pp_on_reg = PCH_PP_ON_DELAYS;
5130 pp_off_reg = PCH_PP_OFF_DELAYS;
5131 pp_div_reg = PCH_PP_DIVISOR;
5132 } else {
5133 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5134
5135 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5136 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5137 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5138 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5139 }
5140
5141 /* Workaround: Need to write PP_CONTROL with the unlock key as
5142 * the very first thing. */
5143 pp_ctl = ironlake_get_pp_control(intel_dp);
5144
5145 pp_on = I915_READ(pp_on_reg);
5146 pp_off = I915_READ(pp_off_reg);
5147 if (!IS_BROXTON(dev)) {
5148 I915_WRITE(pp_ctrl_reg, pp_ctl);
5149 pp_div = I915_READ(pp_div_reg);
5150 }
5151
5152 /* Pull timing values out of registers */
5153 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5154 PANEL_POWER_UP_DELAY_SHIFT;
5155
5156 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5157 PANEL_LIGHT_ON_DELAY_SHIFT;
5158
5159 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5160 PANEL_LIGHT_OFF_DELAY_SHIFT;
5161
5162 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5163 PANEL_POWER_DOWN_DELAY_SHIFT;
5164
5165 if (IS_BROXTON(dev)) {
5166 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5167 BXT_POWER_CYCLE_DELAY_SHIFT;
5168 if (tmp > 0)
5169 cur.t11_t12 = (tmp - 1) * 1000;
5170 else
5171 cur.t11_t12 = 0;
5172 } else {
5173 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5174 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5175 }
5176
5177 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5178 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5179
5180 vbt = dev_priv->vbt.edp.pps;
5181
5182 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5183 * our hw here, which are all in 100usec. */
5184 spec.t1_t3 = 210 * 10;
5185 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5186 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5187 spec.t10 = 500 * 10;
5188 /* This one is special and actually in units of 100ms, but zero
5189 * based in the hw (so we need to add 100 ms). But the sw vbt
5190 * table multiplies it with 1000 to make it in units of 100usec,
5191 * too. */
5192 spec.t11_t12 = (510 + 100) * 10;
5193
5194 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5195 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5196
5197 /* Use the max of the register settings and vbt. If both are
5198 * unset, fall back to the spec limits. */
5199 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5200 spec.field : \
5201 max(cur.field, vbt.field))
5202 assign_final(t1_t3);
5203 assign_final(t8);
5204 assign_final(t9);
5205 assign_final(t10);
5206 assign_final(t11_t12);
5207 #undef assign_final
5208
5209 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5210 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5211 intel_dp->backlight_on_delay = get_delay(t8);
5212 intel_dp->backlight_off_delay = get_delay(t9);
5213 intel_dp->panel_power_down_delay = get_delay(t10);
5214 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5215 #undef get_delay
5216
5217 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5218 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5219 intel_dp->panel_power_cycle_delay);
5220
5221 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5222 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5223 }
5224
5225 static void
5226 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5227 struct intel_dp *intel_dp)
5228 {
5229 struct drm_i915_private *dev_priv = dev->dev_private;
5230 u32 pp_on, pp_off, pp_div, port_sel = 0;
5231 int div = dev_priv->rawclk_freq / 1000;
5232 i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5233 enum port port = dp_to_dig_port(intel_dp)->port;
5234 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5235
5236 lockdep_assert_held(&dev_priv->pps_mutex);
5237
5238 if (IS_BROXTON(dev)) {
5239 /*
5240 * TODO: BXT has 2 sets of PPS registers.
5241 * Correct Register for Broxton need to be identified
5242 * using VBT. hardcoding for now
5243 */
5244 pp_ctrl_reg = BXT_PP_CONTROL(0);
5245 pp_on_reg = BXT_PP_ON_DELAYS(0);
5246 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5247
5248 } else if (HAS_PCH_SPLIT(dev)) {
5249 pp_on_reg = PCH_PP_ON_DELAYS;
5250 pp_off_reg = PCH_PP_OFF_DELAYS;
5251 pp_div_reg = PCH_PP_DIVISOR;
5252 } else {
5253 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5254
5255 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5256 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5257 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5258 }
5259
5260 /*
5261 * And finally store the new values in the power sequencer. The
5262 * backlight delays are set to 1 because we do manual waits on them. For
5263 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5264 * we'll end up waiting for the backlight off delay twice: once when we
5265 * do the manual sleep, and once when we disable the panel and wait for
5266 * the PP_STATUS bit to become zero.
5267 */
5268 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5269 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5270 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5271 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5272 /* Compute the divisor for the pp clock, simply match the Bspec
5273 * formula. */
5274 if (IS_BROXTON(dev)) {
5275 pp_div = I915_READ(pp_ctrl_reg);
5276 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5277 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5278 << BXT_POWER_CYCLE_DELAY_SHIFT);
5279 } else {
5280 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5281 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5282 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5283 }
5284
5285 /* Haswell doesn't have any port selection bits for the panel
5286 * power sequencer any more. */
5287 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5288 port_sel = PANEL_PORT_SELECT_VLV(port);
5289 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5290 if (port == PORT_A)
5291 port_sel = PANEL_PORT_SELECT_DPA;
5292 else
5293 port_sel = PANEL_PORT_SELECT_DPD;
5294 }
5295
5296 pp_on |= port_sel;
5297
5298 I915_WRITE(pp_on_reg, pp_on);
5299 I915_WRITE(pp_off_reg, pp_off);
5300 if (IS_BROXTON(dev))
5301 I915_WRITE(pp_ctrl_reg, pp_div);
5302 else
5303 I915_WRITE(pp_div_reg, pp_div);
5304
5305 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5306 I915_READ(pp_on_reg),
5307 I915_READ(pp_off_reg),
5308 IS_BROXTON(dev) ?
5309 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5310 I915_READ(pp_div_reg));
5311 }
5312
5313 /**
5314 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5315 * @dev: DRM device
5316 * @refresh_rate: RR to be programmed
5317 *
5318 * This function gets called when refresh rate (RR) has to be changed from
5319 * one frequency to another. Switches can be between high and low RR
5320 * supported by the panel or to any other RR based on media playback (in
5321 * this case, RR value needs to be passed from user space).
5322 *
5323 * The caller of this function needs to take a lock on dev_priv->drrs.
5324 */
5325 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5326 {
5327 struct drm_i915_private *dev_priv = dev->dev_private;
5328 struct intel_encoder *encoder;
5329 struct intel_digital_port *dig_port = NULL;
5330 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5331 struct intel_crtc_state *config = NULL;
5332 struct intel_crtc *intel_crtc = NULL;
5333 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5334
5335 if (refresh_rate <= 0) {
5336 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5337 return;
5338 }
5339
5340 if (intel_dp == NULL) {
5341 DRM_DEBUG_KMS("DRRS not supported.\n");
5342 return;
5343 }
5344
5345 /*
5346 * FIXME: This needs proper synchronization with psr state for some
5347 * platforms that cannot have PSR and DRRS enabled at the same time.
5348 */
5349
5350 dig_port = dp_to_dig_port(intel_dp);
5351 encoder = &dig_port->base;
5352 intel_crtc = to_intel_crtc(encoder->base.crtc);
5353
5354 if (!intel_crtc) {
5355 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5356 return;
5357 }
5358
5359 config = intel_crtc->config;
5360
5361 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5362 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5363 return;
5364 }
5365
5366 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5367 refresh_rate)
5368 index = DRRS_LOW_RR;
5369
5370 if (index == dev_priv->drrs.refresh_rate_type) {
5371 DRM_DEBUG_KMS(
5372 "DRRS requested for previously set RR...ignoring\n");
5373 return;
5374 }
5375
5376 if (!intel_crtc->active) {
5377 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5378 return;
5379 }
5380
5381 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5382 switch (index) {
5383 case DRRS_HIGH_RR:
5384 intel_dp_set_m_n(intel_crtc, M1_N1);
5385 break;
5386 case DRRS_LOW_RR:
5387 intel_dp_set_m_n(intel_crtc, M2_N2);
5388 break;
5389 case DRRS_MAX_RR:
5390 default:
5391 DRM_ERROR("Unsupported refreshrate type\n");
5392 }
5393 } else if (INTEL_INFO(dev)->gen > 6) {
5394 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5395 u32 val;
5396
5397 val = I915_READ(reg);
5398 if (index > DRRS_HIGH_RR) {
5399 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5400 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5401 else
5402 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5403 } else {
5404 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5405 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5406 else
5407 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5408 }
5409 I915_WRITE(reg, val);
5410 }
5411
5412 dev_priv->drrs.refresh_rate_type = index;
5413
5414 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5415 }
5416
5417 /**
5418 * intel_edp_drrs_enable - init drrs struct if supported
5419 * @intel_dp: DP struct
5420 *
5421 * Initializes frontbuffer_bits and drrs.dp
5422 */
5423 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5424 {
5425 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5426 struct drm_i915_private *dev_priv = dev->dev_private;
5427 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5428 struct drm_crtc *crtc = dig_port->base.base.crtc;
5429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5430
5431 if (!intel_crtc->config->has_drrs) {
5432 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5433 return;
5434 }
5435
5436 mutex_lock(&dev_priv->drrs.mutex);
5437 if (WARN_ON(dev_priv->drrs.dp)) {
5438 DRM_ERROR("DRRS already enabled\n");
5439 goto unlock;
5440 }
5441
5442 dev_priv->drrs.busy_frontbuffer_bits = 0;
5443
5444 dev_priv->drrs.dp = intel_dp;
5445
5446 unlock:
5447 mutex_unlock(&dev_priv->drrs.mutex);
5448 }
5449
5450 /**
5451 * intel_edp_drrs_disable - Disable DRRS
5452 * @intel_dp: DP struct
5453 *
5454 */
5455 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5456 {
5457 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5458 struct drm_i915_private *dev_priv = dev->dev_private;
5459 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5460 struct drm_crtc *crtc = dig_port->base.base.crtc;
5461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5462
5463 if (!intel_crtc->config->has_drrs)
5464 return;
5465
5466 mutex_lock(&dev_priv->drrs.mutex);
5467 if (!dev_priv->drrs.dp) {
5468 mutex_unlock(&dev_priv->drrs.mutex);
5469 return;
5470 }
5471
5472 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5473 intel_dp_set_drrs_state(dev_priv->dev,
5474 intel_dp->attached_connector->panel.
5475 fixed_mode->vrefresh);
5476
5477 dev_priv->drrs.dp = NULL;
5478 mutex_unlock(&dev_priv->drrs.mutex);
5479
5480 cancel_delayed_work_sync(&dev_priv->drrs.work);
5481 }
5482
5483 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5484 {
5485 struct drm_i915_private *dev_priv =
5486 container_of(work, typeof(*dev_priv), drrs.work.work);
5487 struct intel_dp *intel_dp;
5488
5489 mutex_lock(&dev_priv->drrs.mutex);
5490
5491 intel_dp = dev_priv->drrs.dp;
5492
5493 if (!intel_dp)
5494 goto unlock;
5495
5496 /*
5497 * The delayed work can race with an invalidate hence we need to
5498 * recheck.
5499 */
5500
5501 if (dev_priv->drrs.busy_frontbuffer_bits)
5502 goto unlock;
5503
5504 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5505 intel_dp_set_drrs_state(dev_priv->dev,
5506 intel_dp->attached_connector->panel.
5507 downclock_mode->vrefresh);
5508
5509 unlock:
5510 mutex_unlock(&dev_priv->drrs.mutex);
5511 }
5512
5513 /**
5514 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5515 * @dev: DRM device
5516 * @frontbuffer_bits: frontbuffer plane tracking bits
5517 *
5518 * This function gets called everytime rendering on the given planes start.
5519 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5520 *
5521 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5522 */
5523 void intel_edp_drrs_invalidate(struct drm_device *dev,
5524 unsigned frontbuffer_bits)
5525 {
5526 struct drm_i915_private *dev_priv = dev->dev_private;
5527 struct drm_crtc *crtc;
5528 enum pipe pipe;
5529
5530 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5531 return;
5532
5533 cancel_delayed_work(&dev_priv->drrs.work);
5534
5535 mutex_lock(&dev_priv->drrs.mutex);
5536 if (!dev_priv->drrs.dp) {
5537 mutex_unlock(&dev_priv->drrs.mutex);
5538 return;
5539 }
5540
5541 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5542 pipe = to_intel_crtc(crtc)->pipe;
5543
5544 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5545 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5546
5547 /* invalidate means busy screen hence upclock */
5548 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5549 intel_dp_set_drrs_state(dev_priv->dev,
5550 dev_priv->drrs.dp->attached_connector->panel.
5551 fixed_mode->vrefresh);
5552
5553 mutex_unlock(&dev_priv->drrs.mutex);
5554 }
5555
5556 /**
5557 * intel_edp_drrs_flush - Restart Idleness DRRS
5558 * @dev: DRM device
5559 * @frontbuffer_bits: frontbuffer plane tracking bits
5560 *
5561 * This function gets called every time rendering on the given planes has
5562 * completed or flip on a crtc is completed. So DRRS should be upclocked
5563 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5564 * if no other planes are dirty.
5565 *
5566 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5567 */
5568 void intel_edp_drrs_flush(struct drm_device *dev,
5569 unsigned frontbuffer_bits)
5570 {
5571 struct drm_i915_private *dev_priv = dev->dev_private;
5572 struct drm_crtc *crtc;
5573 enum pipe pipe;
5574
5575 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5576 return;
5577
5578 cancel_delayed_work(&dev_priv->drrs.work);
5579
5580 mutex_lock(&dev_priv->drrs.mutex);
5581 if (!dev_priv->drrs.dp) {
5582 mutex_unlock(&dev_priv->drrs.mutex);
5583 return;
5584 }
5585
5586 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5587 pipe = to_intel_crtc(crtc)->pipe;
5588
5589 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5590 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5591
5592 /* flush means busy screen hence upclock */
5593 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5594 intel_dp_set_drrs_state(dev_priv->dev,
5595 dev_priv->drrs.dp->attached_connector->panel.
5596 fixed_mode->vrefresh);
5597
5598 /*
5599 * flush also means no more activity hence schedule downclock, if all
5600 * other fbs are quiescent too
5601 */
5602 if (!dev_priv->drrs.busy_frontbuffer_bits)
5603 schedule_delayed_work(&dev_priv->drrs.work,
5604 msecs_to_jiffies(1000));
5605 mutex_unlock(&dev_priv->drrs.mutex);
5606 }
5607
5608 /**
5609 * DOC: Display Refresh Rate Switching (DRRS)
5610 *
5611 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5612 * which enables swtching between low and high refresh rates,
5613 * dynamically, based on the usage scenario. This feature is applicable
5614 * for internal panels.
5615 *
5616 * Indication that the panel supports DRRS is given by the panel EDID, which
5617 * would list multiple refresh rates for one resolution.
5618 *
5619 * DRRS is of 2 types - static and seamless.
5620 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5621 * (may appear as a blink on screen) and is used in dock-undock scenario.
5622 * Seamless DRRS involves changing RR without any visual effect to the user
5623 * and can be used during normal system usage. This is done by programming
5624 * certain registers.
5625 *
5626 * Support for static/seamless DRRS may be indicated in the VBT based on
5627 * inputs from the panel spec.
5628 *
5629 * DRRS saves power by switching to low RR based on usage scenarios.
5630 *
5631 * eDP DRRS:-
5632 * The implementation is based on frontbuffer tracking implementation.
5633 * When there is a disturbance on the screen triggered by user activity or a
5634 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5635 * When there is no movement on screen, after a timeout of 1 second, a switch
5636 * to low RR is made.
5637 * For integration with frontbuffer tracking code,
5638 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5639 *
5640 * DRRS can be further extended to support other internal panels and also
5641 * the scenario of video playback wherein RR is set based on the rate
5642 * requested by userspace.
5643 */
5644
5645 /**
5646 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5647 * @intel_connector: eDP connector
5648 * @fixed_mode: preferred mode of panel
5649 *
5650 * This function is called only once at driver load to initialize basic
5651 * DRRS stuff.
5652 *
5653 * Returns:
5654 * Downclock mode if panel supports it, else return NULL.
5655 * DRRS support is determined by the presence of downclock mode (apart
5656 * from VBT setting).
5657 */
5658 static struct drm_display_mode *
5659 intel_dp_drrs_init(struct intel_connector *intel_connector,
5660 struct drm_display_mode *fixed_mode)
5661 {
5662 struct drm_connector *connector = &intel_connector->base;
5663 struct drm_device *dev = connector->dev;
5664 struct drm_i915_private *dev_priv = dev->dev_private;
5665 struct drm_display_mode *downclock_mode = NULL;
5666
5667 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5668 mutex_init(&dev_priv->drrs.mutex);
5669
5670 if (INTEL_INFO(dev)->gen <= 6) {
5671 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5672 return NULL;
5673 }
5674
5675 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5676 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5677 return NULL;
5678 }
5679
5680 downclock_mode = intel_find_panel_downclock
5681 (dev, fixed_mode, connector);
5682
5683 if (!downclock_mode) {
5684 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5685 return NULL;
5686 }
5687
5688 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5689
5690 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5691 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5692 return downclock_mode;
5693 }
5694
5695 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5696 struct intel_connector *intel_connector)
5697 {
5698 struct drm_connector *connector = &intel_connector->base;
5699 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5700 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5701 struct drm_device *dev = intel_encoder->base.dev;
5702 struct drm_i915_private *dev_priv = dev->dev_private;
5703 struct drm_display_mode *fixed_mode = NULL;
5704 struct drm_display_mode *downclock_mode = NULL;
5705 bool has_dpcd;
5706 struct drm_display_mode *scan;
5707 struct edid *edid;
5708 enum pipe pipe = INVALID_PIPE;
5709
5710 if (!is_edp(intel_dp))
5711 return true;
5712
5713 pps_lock(intel_dp);
5714 intel_edp_panel_vdd_sanitize(intel_dp);
5715 pps_unlock(intel_dp);
5716
5717 /* Cache DPCD and EDID for edp. */
5718 has_dpcd = intel_dp_get_dpcd(intel_dp);
5719
5720 if (has_dpcd) {
5721 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5722 dev_priv->no_aux_handshake =
5723 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5724 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5725 } else {
5726 /* if this fails, presume the device is a ghost */
5727 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5728 return false;
5729 }
5730
5731 /* We now know it's not a ghost, init power sequence regs. */
5732 pps_lock(intel_dp);
5733 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5734 pps_unlock(intel_dp);
5735
5736 mutex_lock(&dev->mode_config.mutex);
5737 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5738 if (edid) {
5739 if (drm_add_edid_modes(connector, edid)) {
5740 drm_mode_connector_update_edid_property(connector,
5741 edid);
5742 drm_edid_to_eld(connector, edid);
5743 } else {
5744 kfree(edid);
5745 edid = ERR_PTR(-EINVAL);
5746 }
5747 } else {
5748 edid = ERR_PTR(-ENOENT);
5749 }
5750 intel_connector->edid = edid;
5751
5752 /* prefer fixed mode from EDID if available */
5753 list_for_each_entry(scan, &connector->probed_modes, head) {
5754 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5755 fixed_mode = drm_mode_duplicate(dev, scan);
5756 downclock_mode = intel_dp_drrs_init(
5757 intel_connector, fixed_mode);
5758 break;
5759 }
5760 }
5761
5762 /* fallback to VBT if available for eDP */
5763 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5764 fixed_mode = drm_mode_duplicate(dev,
5765 dev_priv->vbt.lfp_lvds_vbt_mode);
5766 if (fixed_mode)
5767 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5768 }
5769 mutex_unlock(&dev->mode_config.mutex);
5770
5771 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5772 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5773 register_reboot_notifier(&intel_dp->edp_notifier);
5774
5775 /*
5776 * Figure out the current pipe for the initial backlight setup.
5777 * If the current pipe isn't valid, try the PPS pipe, and if that
5778 * fails just assume pipe A.
5779 */
5780 if (IS_CHERRYVIEW(dev))
5781 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5782 else
5783 pipe = PORT_TO_PIPE(intel_dp->DP);
5784
5785 if (pipe != PIPE_A && pipe != PIPE_B)
5786 pipe = intel_dp->pps_pipe;
5787
5788 if (pipe != PIPE_A && pipe != PIPE_B)
5789 pipe = PIPE_A;
5790
5791 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5792 pipe_name(pipe));
5793 }
5794
5795 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5796 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5797 intel_panel_setup_backlight(connector, pipe);
5798
5799 return true;
5800 }
5801
5802 bool
5803 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5804 struct intel_connector *intel_connector)
5805 {
5806 struct drm_connector *connector = &intel_connector->base;
5807 struct intel_dp *intel_dp = &intel_dig_port->dp;
5808 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5809 struct drm_device *dev = intel_encoder->base.dev;
5810 struct drm_i915_private *dev_priv = dev->dev_private;
5811 enum port port = intel_dig_port->port;
5812 int type, ret;
5813
5814 if (WARN(intel_dig_port->max_lanes < 1,
5815 "Not enough lanes (%d) for DP on port %c\n",
5816 intel_dig_port->max_lanes, port_name(port)))
5817 return false;
5818
5819 intel_dp->pps_pipe = INVALID_PIPE;
5820
5821 /* intel_dp vfuncs */
5822 if (INTEL_INFO(dev)->gen >= 9)
5823 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5824 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5825 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5826 else if (HAS_PCH_SPLIT(dev))
5827 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5828 else
5829 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5830
5831 if (INTEL_INFO(dev)->gen >= 9)
5832 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5833 else
5834 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5835
5836 if (HAS_DDI(dev))
5837 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5838
5839 /* Preserve the current hw state. */
5840 intel_dp->DP = I915_READ(intel_dp->output_reg);
5841 intel_dp->attached_connector = intel_connector;
5842
5843 if (intel_dp_is_edp(dev, port))
5844 type = DRM_MODE_CONNECTOR_eDP;
5845 else
5846 type = DRM_MODE_CONNECTOR_DisplayPort;
5847
5848 /*
5849 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5850 * for DP the encoder type can be set by the caller to
5851 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5852 */
5853 if (type == DRM_MODE_CONNECTOR_eDP)
5854 intel_encoder->type = INTEL_OUTPUT_EDP;
5855
5856 /* eDP only on port B and/or C on vlv/chv */
5857 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5858 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5859 return false;
5860
5861 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5862 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5863 port_name(port));
5864
5865 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5866 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5867
5868 connector->interlace_allowed = true;
5869 connector->doublescan_allowed = 0;
5870
5871 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5872 edp_panel_vdd_work);
5873
5874 intel_connector_attach_encoder(intel_connector, intel_encoder);
5875 drm_connector_register(connector);
5876
5877 if (HAS_DDI(dev))
5878 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5879 else
5880 intel_connector->get_hw_state = intel_connector_get_hw_state;
5881 intel_connector->unregister = intel_dp_connector_unregister;
5882
5883 /* Set up the hotplug pin. */
5884 switch (port) {
5885 case PORT_A:
5886 intel_encoder->hpd_pin = HPD_PORT_A;
5887 break;
5888 case PORT_B:
5889 intel_encoder->hpd_pin = HPD_PORT_B;
5890 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5891 intel_encoder->hpd_pin = HPD_PORT_A;
5892 break;
5893 case PORT_C:
5894 intel_encoder->hpd_pin = HPD_PORT_C;
5895 break;
5896 case PORT_D:
5897 intel_encoder->hpd_pin = HPD_PORT_D;
5898 break;
5899 case PORT_E:
5900 intel_encoder->hpd_pin = HPD_PORT_E;
5901 break;
5902 default:
5903 BUG();
5904 }
5905
5906 if (is_edp(intel_dp)) {
5907 pps_lock(intel_dp);
5908 intel_dp_init_panel_power_timestamps(intel_dp);
5909 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5910 vlv_initial_power_sequencer_setup(intel_dp);
5911 else
5912 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5913 pps_unlock(intel_dp);
5914 }
5915
5916 ret = intel_dp_aux_init(intel_dp, intel_connector);
5917 if (ret)
5918 goto fail;
5919
5920 /* init MST on ports that can support it */
5921 if (HAS_DP_MST(dev) &&
5922 (port == PORT_B || port == PORT_C || port == PORT_D))
5923 intel_dp_mst_encoder_init(intel_dig_port,
5924 intel_connector->base.base.id);
5925
5926 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5927 intel_dp_aux_fini(intel_dp);
5928 intel_dp_mst_encoder_cleanup(intel_dig_port);
5929 goto fail;
5930 }
5931
5932 intel_dp_add_properties(intel_dp, connector);
5933
5934 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5935 * 0xd. Failure to do so will result in spurious interrupts being
5936 * generated on the port when a cable is not attached.
5937 */
5938 if (IS_G4X(dev) && !IS_GM45(dev)) {
5939 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5940 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5941 }
5942
5943 i915_debugfs_connector_add(connector);
5944
5945 return true;
5946
5947 fail:
5948 if (is_edp(intel_dp)) {
5949 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5950 /*
5951 * vdd might still be enabled do to the delayed vdd off.
5952 * Make sure vdd is actually turned off here.
5953 */
5954 pps_lock(intel_dp);
5955 edp_panel_vdd_off_sync(intel_dp);
5956 pps_unlock(intel_dp);
5957 }
5958 drm_connector_unregister(connector);
5959 drm_connector_cleanup(connector);
5960
5961 return false;
5962 }
5963
5964 void
5965 intel_dp_init(struct drm_device *dev,
5966 i915_reg_t output_reg, enum port port)
5967 {
5968 struct drm_i915_private *dev_priv = dev->dev_private;
5969 struct intel_digital_port *intel_dig_port;
5970 struct intel_encoder *intel_encoder;
5971 struct drm_encoder *encoder;
5972 struct intel_connector *intel_connector;
5973
5974 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5975 if (!intel_dig_port)
5976 return;
5977
5978 intel_connector = intel_connector_alloc();
5979 if (!intel_connector)
5980 goto err_connector_alloc;
5981
5982 intel_encoder = &intel_dig_port->base;
5983 encoder = &intel_encoder->base;
5984
5985 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5986 DRM_MODE_ENCODER_TMDS, NULL))
5987 goto err_encoder_init;
5988
5989 intel_encoder->compute_config = intel_dp_compute_config;
5990 intel_encoder->disable = intel_disable_dp;
5991 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5992 intel_encoder->get_config = intel_dp_get_config;
5993 intel_encoder->suspend = intel_dp_encoder_suspend;
5994 if (IS_CHERRYVIEW(dev)) {
5995 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5996 intel_encoder->pre_enable = chv_pre_enable_dp;
5997 intel_encoder->enable = vlv_enable_dp;
5998 intel_encoder->post_disable = chv_post_disable_dp;
5999 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6000 } else if (IS_VALLEYVIEW(dev)) {
6001 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6002 intel_encoder->pre_enable = vlv_pre_enable_dp;
6003 intel_encoder->enable = vlv_enable_dp;
6004 intel_encoder->post_disable = vlv_post_disable_dp;
6005 } else {
6006 intel_encoder->pre_enable = g4x_pre_enable_dp;
6007 intel_encoder->enable = g4x_enable_dp;
6008 if (INTEL_INFO(dev)->gen >= 5)
6009 intel_encoder->post_disable = ilk_post_disable_dp;
6010 }
6011
6012 intel_dig_port->port = port;
6013 intel_dig_port->dp.output_reg = output_reg;
6014 intel_dig_port->max_lanes = 4;
6015
6016 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6017 if (IS_CHERRYVIEW(dev)) {
6018 if (port == PORT_D)
6019 intel_encoder->crtc_mask = 1 << 2;
6020 else
6021 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6022 } else {
6023 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6024 }
6025 intel_encoder->cloneable = 0;
6026
6027 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6028 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6029
6030 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6031 goto err_init_connector;
6032
6033 return;
6034
6035 err_init_connector:
6036 drm_encoder_cleanup(encoder);
6037 err_encoder_init:
6038 kfree(intel_connector);
6039 err_connector_alloc:
6040 kfree(intel_dig_port);
6041
6042 return;
6043 }
6044
6045 void intel_dp_mst_suspend(struct drm_device *dev)
6046 {
6047 struct drm_i915_private *dev_priv = dev->dev_private;
6048 int i;
6049
6050 /* disable MST */
6051 for (i = 0; i < I915_MAX_PORTS; i++) {
6052 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6053 if (!intel_dig_port)
6054 continue;
6055
6056 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6057 if (!intel_dig_port->dp.can_mst)
6058 continue;
6059 if (intel_dig_port->dp.is_mst)
6060 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6061 }
6062 }
6063 }
6064
6065 void intel_dp_mst_resume(struct drm_device *dev)
6066 {
6067 struct drm_i915_private *dev_priv = dev->dev_private;
6068 int i;
6069
6070 for (i = 0; i < I915_MAX_PORTS; i++) {
6071 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6072 if (!intel_dig_port)
6073 continue;
6074 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6075 int ret;
6076
6077 if (!intel_dig_port->dp.can_mst)
6078 continue;
6079
6080 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6081 if (ret != 0) {
6082 intel_dp_check_mst_status(&intel_dig_port->dp);
6083 }
6084 }
6085 }
6086 }
This page took 0.311791 seconds and 6 git commands to generate.