Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include "drmP.h"
32 #include "drm.h"
33 #include "drm_crtc.h"
34 #include "drm_crtc_helper.h"
35 #include "intel_drv.h"
36 #include "i915_drm.h"
37 #include "i915_drv.h"
38 #include "drm_dp_helper.h"
39
40 #define DP_RECEIVER_CAP_SIZE 0xf
41 #define DP_LINK_STATUS_SIZE 6
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE 9
45
46 struct intel_dp {
47 struct intel_encoder base;
48 uint32_t output_reg;
49 uint32_t DP;
50 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
51 bool has_audio;
52 int force_audio;
53 uint32_t color_range;
54 int dpms_mode;
55 uint8_t link_bw;
56 uint8_t lane_count;
57 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58 struct i2c_adapter adapter;
59 struct i2c_algo_dp_aux_data algo;
60 bool is_pch_edp;
61 uint8_t train_set[4];
62 int panel_power_up_delay;
63 int panel_power_down_delay;
64 int panel_power_cycle_delay;
65 int backlight_on_delay;
66 int backlight_off_delay;
67 struct drm_display_mode *panel_fixed_mode; /* for eDP */
68 struct delayed_work panel_vdd_work;
69 bool want_panel_vdd;
70 };
71
72 /**
73 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
74 * @intel_dp: DP struct
75 *
76 * If a CPU or PCH DP output is attached to an eDP panel, this function
77 * will return true, and false otherwise.
78 */
79 static bool is_edp(struct intel_dp *intel_dp)
80 {
81 return intel_dp->base.type == INTEL_OUTPUT_EDP;
82 }
83
84 /**
85 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
86 * @intel_dp: DP struct
87 *
88 * Returns true if the given DP struct corresponds to a PCH DP port attached
89 * to an eDP panel, false otherwise. Helpful for determining whether we
90 * may need FDI resources for a given DP output or not.
91 */
92 static bool is_pch_edp(struct intel_dp *intel_dp)
93 {
94 return intel_dp->is_pch_edp;
95 }
96
97 /**
98 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
99 * @intel_dp: DP struct
100 *
101 * Returns true if the given DP struct corresponds to a CPU eDP port.
102 */
103 static bool is_cpu_edp(struct intel_dp *intel_dp)
104 {
105 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
106 }
107
108 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
109 {
110 return container_of(encoder, struct intel_dp, base.base);
111 }
112
113 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
114 {
115 return container_of(intel_attached_encoder(connector),
116 struct intel_dp, base);
117 }
118
119 /**
120 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
121 * @encoder: DRM encoder
122 *
123 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
124 * by intel_display.c.
125 */
126 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
127 {
128 struct intel_dp *intel_dp;
129
130 if (!encoder)
131 return false;
132
133 intel_dp = enc_to_intel_dp(encoder);
134
135 return is_pch_edp(intel_dp);
136 }
137
138 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
139 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_link_down(struct intel_dp *intel_dp);
141
142 void
143 intel_edp_link_config(struct intel_encoder *intel_encoder,
144 int *lane_num, int *link_bw)
145 {
146 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
147
148 *lane_num = intel_dp->lane_count;
149 if (intel_dp->link_bw == DP_LINK_BW_1_62)
150 *link_bw = 162000;
151 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
152 *link_bw = 270000;
153 }
154
155 static int
156 intel_dp_max_lane_count(struct intel_dp *intel_dp)
157 {
158 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
159 switch (max_lane_count) {
160 case 1: case 2: case 4:
161 break;
162 default:
163 max_lane_count = 4;
164 }
165 return max_lane_count;
166 }
167
168 static int
169 intel_dp_max_link_bw(struct intel_dp *intel_dp)
170 {
171 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
172
173 switch (max_link_bw) {
174 case DP_LINK_BW_1_62:
175 case DP_LINK_BW_2_7:
176 break;
177 default:
178 max_link_bw = DP_LINK_BW_1_62;
179 break;
180 }
181 return max_link_bw;
182 }
183
184 static int
185 intel_dp_link_clock(uint8_t link_bw)
186 {
187 if (link_bw == DP_LINK_BW_2_7)
188 return 270000;
189 else
190 return 162000;
191 }
192
193 /*
194 * The units on the numbers in the next two are... bizarre. Examples will
195 * make it clearer; this one parallels an example in the eDP spec.
196 *
197 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
198 *
199 * 270000 * 1 * 8 / 10 == 216000
200 *
201 * The actual data capacity of that configuration is 2.16Gbit/s, so the
202 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
203 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
204 * 119000. At 18bpp that's 2142000 kilobits per second.
205 *
206 * Thus the strange-looking division by 10 in intel_dp_link_required, to
207 * get the result in decakilobits instead of kilobits.
208 */
209
210 static int
211 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
212 {
213 struct drm_crtc *crtc = intel_dp->base.base.crtc;
214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
215 int bpp = 24;
216
217 if (intel_crtc)
218 bpp = intel_crtc->bpp;
219
220 return (pixel_clock * bpp + 9) / 10;
221 }
222
223 static int
224 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
225 {
226 return (max_link_clock * max_lanes * 8) / 10;
227 }
228
229 static int
230 intel_dp_mode_valid(struct drm_connector *connector,
231 struct drm_display_mode *mode)
232 {
233 struct intel_dp *intel_dp = intel_attached_dp(connector);
234 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
235 int max_lanes = intel_dp_max_lane_count(intel_dp);
236
237 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
238 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
239 return MODE_PANEL;
240
241 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
242 return MODE_PANEL;
243 }
244
245 if (intel_dp_link_required(intel_dp, mode->clock)
246 > intel_dp_max_data_rate(max_link_clock, max_lanes))
247 return MODE_CLOCK_HIGH;
248
249 if (mode->clock < 10000)
250 return MODE_CLOCK_LOW;
251
252 return MODE_OK;
253 }
254
255 static uint32_t
256 pack_aux(uint8_t *src, int src_bytes)
257 {
258 int i;
259 uint32_t v = 0;
260
261 if (src_bytes > 4)
262 src_bytes = 4;
263 for (i = 0; i < src_bytes; i++)
264 v |= ((uint32_t) src[i]) << ((3-i) * 8);
265 return v;
266 }
267
268 static void
269 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
270 {
271 int i;
272 if (dst_bytes > 4)
273 dst_bytes = 4;
274 for (i = 0; i < dst_bytes; i++)
275 dst[i] = src >> ((3-i) * 8);
276 }
277
278 /* hrawclock is 1/4 the FSB frequency */
279 static int
280 intel_hrawclk(struct drm_device *dev)
281 {
282 struct drm_i915_private *dev_priv = dev->dev_private;
283 uint32_t clkcfg;
284
285 clkcfg = I915_READ(CLKCFG);
286 switch (clkcfg & CLKCFG_FSB_MASK) {
287 case CLKCFG_FSB_400:
288 return 100;
289 case CLKCFG_FSB_533:
290 return 133;
291 case CLKCFG_FSB_667:
292 return 166;
293 case CLKCFG_FSB_800:
294 return 200;
295 case CLKCFG_FSB_1067:
296 return 266;
297 case CLKCFG_FSB_1333:
298 return 333;
299 /* these two are just a guess; one of them might be right */
300 case CLKCFG_FSB_1600:
301 case CLKCFG_FSB_1600_ALT:
302 return 400;
303 default:
304 return 133;
305 }
306 }
307
308 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
309 {
310 struct drm_device *dev = intel_dp->base.base.dev;
311 struct drm_i915_private *dev_priv = dev->dev_private;
312
313 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
314 }
315
316 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
317 {
318 struct drm_device *dev = intel_dp->base.base.dev;
319 struct drm_i915_private *dev_priv = dev->dev_private;
320
321 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
322 }
323
324 static void
325 intel_dp_check_edp(struct intel_dp *intel_dp)
326 {
327 struct drm_device *dev = intel_dp->base.base.dev;
328 struct drm_i915_private *dev_priv = dev->dev_private;
329
330 if (!is_edp(intel_dp))
331 return;
332 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
333 WARN(1, "eDP powered off while attempting aux channel communication.\n");
334 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
335 I915_READ(PCH_PP_STATUS),
336 I915_READ(PCH_PP_CONTROL));
337 }
338 }
339
340 static int
341 intel_dp_aux_ch(struct intel_dp *intel_dp,
342 uint8_t *send, int send_bytes,
343 uint8_t *recv, int recv_size)
344 {
345 uint32_t output_reg = intel_dp->output_reg;
346 struct drm_device *dev = intel_dp->base.base.dev;
347 struct drm_i915_private *dev_priv = dev->dev_private;
348 uint32_t ch_ctl = output_reg + 0x10;
349 uint32_t ch_data = ch_ctl + 4;
350 int i;
351 int recv_bytes;
352 uint32_t status;
353 uint32_t aux_clock_divider;
354 int try, precharge;
355
356 intel_dp_check_edp(intel_dp);
357 /* The clock divider is based off the hrawclk,
358 * and would like to run at 2MHz. So, take the
359 * hrawclk value and divide by 2 and use that
360 *
361 * Note that PCH attached eDP panels should use a 125MHz input
362 * clock divider.
363 */
364 if (is_cpu_edp(intel_dp)) {
365 if (IS_GEN6(dev))
366 aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
367 else
368 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
369 } else if (HAS_PCH_SPLIT(dev))
370 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
371 else
372 aux_clock_divider = intel_hrawclk(dev) / 2;
373
374 if (IS_GEN6(dev))
375 precharge = 3;
376 else
377 precharge = 5;
378
379 /* Try to wait for any previous AUX channel activity */
380 for (try = 0; try < 3; try++) {
381 status = I915_READ(ch_ctl);
382 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
383 break;
384 msleep(1);
385 }
386
387 if (try == 3) {
388 WARN(1, "dp_aux_ch not started status 0x%08x\n",
389 I915_READ(ch_ctl));
390 return -EBUSY;
391 }
392
393 /* Must try at least 3 times according to DP spec */
394 for (try = 0; try < 5; try++) {
395 /* Load the send data into the aux channel data registers */
396 for (i = 0; i < send_bytes; i += 4)
397 I915_WRITE(ch_data + i,
398 pack_aux(send + i, send_bytes - i));
399
400 /* Send the command and wait for it to complete */
401 I915_WRITE(ch_ctl,
402 DP_AUX_CH_CTL_SEND_BUSY |
403 DP_AUX_CH_CTL_TIME_OUT_400us |
404 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
405 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
406 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
407 DP_AUX_CH_CTL_DONE |
408 DP_AUX_CH_CTL_TIME_OUT_ERROR |
409 DP_AUX_CH_CTL_RECEIVE_ERROR);
410 for (;;) {
411 status = I915_READ(ch_ctl);
412 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
413 break;
414 udelay(100);
415 }
416
417 /* Clear done status and any errors */
418 I915_WRITE(ch_ctl,
419 status |
420 DP_AUX_CH_CTL_DONE |
421 DP_AUX_CH_CTL_TIME_OUT_ERROR |
422 DP_AUX_CH_CTL_RECEIVE_ERROR);
423 if (status & DP_AUX_CH_CTL_DONE)
424 break;
425 }
426
427 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
428 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
429 return -EBUSY;
430 }
431
432 /* Check for timeout or receive error.
433 * Timeouts occur when the sink is not connected
434 */
435 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
436 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
437 return -EIO;
438 }
439
440 /* Timeouts occur when the device isn't connected, so they're
441 * "normal" -- don't fill the kernel log with these */
442 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
443 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
444 return -ETIMEDOUT;
445 }
446
447 /* Unload any bytes sent back from the other side */
448 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
449 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
450 if (recv_bytes > recv_size)
451 recv_bytes = recv_size;
452
453 for (i = 0; i < recv_bytes; i += 4)
454 unpack_aux(I915_READ(ch_data + i),
455 recv + i, recv_bytes - i);
456
457 return recv_bytes;
458 }
459
460 /* Write data to the aux channel in native mode */
461 static int
462 intel_dp_aux_native_write(struct intel_dp *intel_dp,
463 uint16_t address, uint8_t *send, int send_bytes)
464 {
465 int ret;
466 uint8_t msg[20];
467 int msg_bytes;
468 uint8_t ack;
469
470 intel_dp_check_edp(intel_dp);
471 if (send_bytes > 16)
472 return -1;
473 msg[0] = AUX_NATIVE_WRITE << 4;
474 msg[1] = address >> 8;
475 msg[2] = address & 0xff;
476 msg[3] = send_bytes - 1;
477 memcpy(&msg[4], send, send_bytes);
478 msg_bytes = send_bytes + 4;
479 for (;;) {
480 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
481 if (ret < 0)
482 return ret;
483 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
484 break;
485 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
486 udelay(100);
487 else
488 return -EIO;
489 }
490 return send_bytes;
491 }
492
493 /* Write a single byte to the aux channel in native mode */
494 static int
495 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
496 uint16_t address, uint8_t byte)
497 {
498 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
499 }
500
501 /* read bytes from a native aux channel */
502 static int
503 intel_dp_aux_native_read(struct intel_dp *intel_dp,
504 uint16_t address, uint8_t *recv, int recv_bytes)
505 {
506 uint8_t msg[4];
507 int msg_bytes;
508 uint8_t reply[20];
509 int reply_bytes;
510 uint8_t ack;
511 int ret;
512
513 intel_dp_check_edp(intel_dp);
514 msg[0] = AUX_NATIVE_READ << 4;
515 msg[1] = address >> 8;
516 msg[2] = address & 0xff;
517 msg[3] = recv_bytes - 1;
518
519 msg_bytes = 4;
520 reply_bytes = recv_bytes + 1;
521
522 for (;;) {
523 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
524 reply, reply_bytes);
525 if (ret == 0)
526 return -EPROTO;
527 if (ret < 0)
528 return ret;
529 ack = reply[0];
530 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
531 memcpy(recv, reply + 1, ret - 1);
532 return ret - 1;
533 }
534 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
535 udelay(100);
536 else
537 return -EIO;
538 }
539 }
540
541 static int
542 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
543 uint8_t write_byte, uint8_t *read_byte)
544 {
545 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
546 struct intel_dp *intel_dp = container_of(adapter,
547 struct intel_dp,
548 adapter);
549 uint16_t address = algo_data->address;
550 uint8_t msg[5];
551 uint8_t reply[2];
552 unsigned retry;
553 int msg_bytes;
554 int reply_bytes;
555 int ret;
556
557 intel_dp_check_edp(intel_dp);
558 /* Set up the command byte */
559 if (mode & MODE_I2C_READ)
560 msg[0] = AUX_I2C_READ << 4;
561 else
562 msg[0] = AUX_I2C_WRITE << 4;
563
564 if (!(mode & MODE_I2C_STOP))
565 msg[0] |= AUX_I2C_MOT << 4;
566
567 msg[1] = address >> 8;
568 msg[2] = address;
569
570 switch (mode) {
571 case MODE_I2C_WRITE:
572 msg[3] = 0;
573 msg[4] = write_byte;
574 msg_bytes = 5;
575 reply_bytes = 1;
576 break;
577 case MODE_I2C_READ:
578 msg[3] = 0;
579 msg_bytes = 4;
580 reply_bytes = 2;
581 break;
582 default:
583 msg_bytes = 3;
584 reply_bytes = 1;
585 break;
586 }
587
588 for (retry = 0; retry < 5; retry++) {
589 ret = intel_dp_aux_ch(intel_dp,
590 msg, msg_bytes,
591 reply, reply_bytes);
592 if (ret < 0) {
593 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
594 return ret;
595 }
596
597 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
598 case AUX_NATIVE_REPLY_ACK:
599 /* I2C-over-AUX Reply field is only valid
600 * when paired with AUX ACK.
601 */
602 break;
603 case AUX_NATIVE_REPLY_NACK:
604 DRM_DEBUG_KMS("aux_ch native nack\n");
605 return -EREMOTEIO;
606 case AUX_NATIVE_REPLY_DEFER:
607 udelay(100);
608 continue;
609 default:
610 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
611 reply[0]);
612 return -EREMOTEIO;
613 }
614
615 switch (reply[0] & AUX_I2C_REPLY_MASK) {
616 case AUX_I2C_REPLY_ACK:
617 if (mode == MODE_I2C_READ) {
618 *read_byte = reply[1];
619 }
620 return reply_bytes - 1;
621 case AUX_I2C_REPLY_NACK:
622 DRM_DEBUG_KMS("aux_i2c nack\n");
623 return -EREMOTEIO;
624 case AUX_I2C_REPLY_DEFER:
625 DRM_DEBUG_KMS("aux_i2c defer\n");
626 udelay(100);
627 break;
628 default:
629 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
630 return -EREMOTEIO;
631 }
632 }
633
634 DRM_ERROR("too many retries, giving up\n");
635 return -EREMOTEIO;
636 }
637
638 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
639 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
640
641 static int
642 intel_dp_i2c_init(struct intel_dp *intel_dp,
643 struct intel_connector *intel_connector, const char *name)
644 {
645 int ret;
646
647 DRM_DEBUG_KMS("i2c_init %s\n", name);
648 intel_dp->algo.running = false;
649 intel_dp->algo.address = 0;
650 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
651
652 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
653 intel_dp->adapter.owner = THIS_MODULE;
654 intel_dp->adapter.class = I2C_CLASS_DDC;
655 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
656 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
657 intel_dp->adapter.algo_data = &intel_dp->algo;
658 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
659
660 ironlake_edp_panel_vdd_on(intel_dp);
661 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
662 ironlake_edp_panel_vdd_off(intel_dp, false);
663 return ret;
664 }
665
666 static bool
667 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
668 struct drm_display_mode *adjusted_mode)
669 {
670 struct drm_device *dev = encoder->dev;
671 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
672 int lane_count, clock;
673 int max_lane_count = intel_dp_max_lane_count(intel_dp);
674 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
675 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
676
677 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
678 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
679 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
680 mode, adjusted_mode);
681 /*
682 * the mode->clock is used to calculate the Data&Link M/N
683 * of the pipe. For the eDP the fixed clock should be used.
684 */
685 mode->clock = intel_dp->panel_fixed_mode->clock;
686 }
687
688 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
689 for (clock = 0; clock <= max_clock; clock++) {
690 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
691
692 if (intel_dp_link_required(intel_dp, mode->clock)
693 <= link_avail) {
694 intel_dp->link_bw = bws[clock];
695 intel_dp->lane_count = lane_count;
696 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
697 DRM_DEBUG_KMS("Display port link bw %02x lane "
698 "count %d clock %d\n",
699 intel_dp->link_bw, intel_dp->lane_count,
700 adjusted_mode->clock);
701 return true;
702 }
703 }
704 }
705
706 return false;
707 }
708
709 struct intel_dp_m_n {
710 uint32_t tu;
711 uint32_t gmch_m;
712 uint32_t gmch_n;
713 uint32_t link_m;
714 uint32_t link_n;
715 };
716
717 static void
718 intel_reduce_ratio(uint32_t *num, uint32_t *den)
719 {
720 while (*num > 0xffffff || *den > 0xffffff) {
721 *num >>= 1;
722 *den >>= 1;
723 }
724 }
725
726 static void
727 intel_dp_compute_m_n(int bpp,
728 int nlanes,
729 int pixel_clock,
730 int link_clock,
731 struct intel_dp_m_n *m_n)
732 {
733 m_n->tu = 64;
734 m_n->gmch_m = (pixel_clock * bpp) >> 3;
735 m_n->gmch_n = link_clock * nlanes;
736 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
737 m_n->link_m = pixel_clock;
738 m_n->link_n = link_clock;
739 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
740 }
741
742 void
743 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
744 struct drm_display_mode *adjusted_mode)
745 {
746 struct drm_device *dev = crtc->dev;
747 struct drm_mode_config *mode_config = &dev->mode_config;
748 struct drm_encoder *encoder;
749 struct drm_i915_private *dev_priv = dev->dev_private;
750 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
751 int lane_count = 4;
752 struct intel_dp_m_n m_n;
753 int pipe = intel_crtc->pipe;
754
755 /*
756 * Find the lane count in the intel_encoder private
757 */
758 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
759 struct intel_dp *intel_dp;
760
761 if (encoder->crtc != crtc)
762 continue;
763
764 intel_dp = enc_to_intel_dp(encoder);
765 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
766 intel_dp->base.type == INTEL_OUTPUT_EDP)
767 {
768 lane_count = intel_dp->lane_count;
769 break;
770 }
771 }
772
773 /*
774 * Compute the GMCH and Link ratios. The '3' here is
775 * the number of bytes_per_pixel post-LUT, which we always
776 * set up for 8-bits of R/G/B, or 3 bytes total.
777 */
778 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
779 mode->clock, adjusted_mode->clock, &m_n);
780
781 if (HAS_PCH_SPLIT(dev)) {
782 I915_WRITE(TRANSDATA_M1(pipe),
783 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
784 m_n.gmch_m);
785 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
786 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
787 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
788 } else {
789 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
790 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
791 m_n.gmch_m);
792 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
793 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
794 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
795 }
796 }
797
798 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
799 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
800
801 static void
802 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
803 struct drm_display_mode *adjusted_mode)
804 {
805 struct drm_device *dev = encoder->dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
808 struct drm_crtc *crtc = intel_dp->base.base.crtc;
809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
810
811 /* Turn on the eDP PLL if needed */
812 if (is_edp(intel_dp)) {
813 if (!is_pch_edp(intel_dp))
814 ironlake_edp_pll_on(encoder);
815 else
816 ironlake_edp_pll_off(encoder);
817 }
818
819 /*
820 * There are three kinds of DP registers:
821 *
822 * IBX PCH
823 * CPU
824 * CPT PCH
825 *
826 * IBX PCH and CPU are the same for almost everything,
827 * except that the CPU DP PLL is configured in this
828 * register
829 *
830 * CPT PCH is quite different, having many bits moved
831 * to the TRANS_DP_CTL register instead. That
832 * configuration happens (oddly) in ironlake_pch_enable
833 */
834
835 /* Preserve the BIOS-computed detected bit. This is
836 * supposed to be read-only.
837 */
838 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
839 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
840
841 /* Handle DP bits in common between all three register formats */
842
843 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
844
845 switch (intel_dp->lane_count) {
846 case 1:
847 intel_dp->DP |= DP_PORT_WIDTH_1;
848 break;
849 case 2:
850 intel_dp->DP |= DP_PORT_WIDTH_2;
851 break;
852 case 4:
853 intel_dp->DP |= DP_PORT_WIDTH_4;
854 break;
855 }
856 if (intel_dp->has_audio) {
857 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
858 pipe_name(intel_crtc->pipe));
859 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
860 intel_write_eld(encoder, adjusted_mode);
861 }
862 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
863 intel_dp->link_configuration[0] = intel_dp->link_bw;
864 intel_dp->link_configuration[1] = intel_dp->lane_count;
865 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
866 /*
867 * Check for DPCD version > 1.1 and enhanced framing support
868 */
869 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
870 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
871 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
872 }
873
874 /* Split out the IBX/CPU vs CPT settings */
875
876 if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
877 intel_dp->DP |= intel_dp->color_range;
878
879 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
880 intel_dp->DP |= DP_SYNC_HS_HIGH;
881 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
882 intel_dp->DP |= DP_SYNC_VS_HIGH;
883 intel_dp->DP |= DP_LINK_TRAIN_OFF;
884
885 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
886 intel_dp->DP |= DP_ENHANCED_FRAMING;
887
888 if (intel_crtc->pipe == 1)
889 intel_dp->DP |= DP_PIPEB_SELECT;
890
891 if (is_cpu_edp(intel_dp)) {
892 /* don't miss out required setting for eDP */
893 intel_dp->DP |= DP_PLL_ENABLE;
894 if (adjusted_mode->clock < 200000)
895 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
896 else
897 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
898 }
899 } else {
900 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
901 }
902 }
903
904 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
905 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
906
907 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
908 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
909
910 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
911 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
912
913 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
914 u32 mask,
915 u32 value)
916 {
917 struct drm_device *dev = intel_dp->base.base.dev;
918 struct drm_i915_private *dev_priv = dev->dev_private;
919
920 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
921 mask, value,
922 I915_READ(PCH_PP_STATUS),
923 I915_READ(PCH_PP_CONTROL));
924
925 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
926 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
927 I915_READ(PCH_PP_STATUS),
928 I915_READ(PCH_PP_CONTROL));
929 }
930 }
931
932 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
933 {
934 DRM_DEBUG_KMS("Wait for panel power on\n");
935 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
936 }
937
938 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
939 {
940 DRM_DEBUG_KMS("Wait for panel power off time\n");
941 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
942 }
943
944 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
945 {
946 DRM_DEBUG_KMS("Wait for panel power cycle\n");
947 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
948 }
949
950
951 /* Read the current pp_control value, unlocking the register if it
952 * is locked
953 */
954
955 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
956 {
957 u32 control = I915_READ(PCH_PP_CONTROL);
958
959 control &= ~PANEL_UNLOCK_MASK;
960 control |= PANEL_UNLOCK_REGS;
961 return control;
962 }
963
964 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
965 {
966 struct drm_device *dev = intel_dp->base.base.dev;
967 struct drm_i915_private *dev_priv = dev->dev_private;
968 u32 pp;
969
970 if (!is_edp(intel_dp))
971 return;
972 DRM_DEBUG_KMS("Turn eDP VDD on\n");
973
974 WARN(intel_dp->want_panel_vdd,
975 "eDP VDD already requested on\n");
976
977 intel_dp->want_panel_vdd = true;
978
979 if (ironlake_edp_have_panel_vdd(intel_dp)) {
980 DRM_DEBUG_KMS("eDP VDD already on\n");
981 return;
982 }
983
984 if (!ironlake_edp_have_panel_power(intel_dp))
985 ironlake_wait_panel_power_cycle(intel_dp);
986
987 pp = ironlake_get_pp_control(dev_priv);
988 pp |= EDP_FORCE_VDD;
989 I915_WRITE(PCH_PP_CONTROL, pp);
990 POSTING_READ(PCH_PP_CONTROL);
991 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
992 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
993
994 /*
995 * If the panel wasn't on, delay before accessing aux channel
996 */
997 if (!ironlake_edp_have_panel_power(intel_dp)) {
998 DRM_DEBUG_KMS("eDP was not running\n");
999 msleep(intel_dp->panel_power_up_delay);
1000 }
1001 }
1002
1003 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1004 {
1005 struct drm_device *dev = intel_dp->base.base.dev;
1006 struct drm_i915_private *dev_priv = dev->dev_private;
1007 u32 pp;
1008
1009 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1010 pp = ironlake_get_pp_control(dev_priv);
1011 pp &= ~EDP_FORCE_VDD;
1012 I915_WRITE(PCH_PP_CONTROL, pp);
1013 POSTING_READ(PCH_PP_CONTROL);
1014
1015 /* Make sure sequencer is idle before allowing subsequent activity */
1016 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1017 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1018
1019 msleep(intel_dp->panel_power_down_delay);
1020 }
1021 }
1022
1023 static void ironlake_panel_vdd_work(struct work_struct *__work)
1024 {
1025 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1026 struct intel_dp, panel_vdd_work);
1027 struct drm_device *dev = intel_dp->base.base.dev;
1028
1029 mutex_lock(&dev->mode_config.mutex);
1030 ironlake_panel_vdd_off_sync(intel_dp);
1031 mutex_unlock(&dev->mode_config.mutex);
1032 }
1033
1034 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1035 {
1036 if (!is_edp(intel_dp))
1037 return;
1038
1039 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1040 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1041
1042 intel_dp->want_panel_vdd = false;
1043
1044 if (sync) {
1045 ironlake_panel_vdd_off_sync(intel_dp);
1046 } else {
1047 /*
1048 * Queue the timer to fire a long
1049 * time from now (relative to the power down delay)
1050 * to keep the panel power up across a sequence of operations
1051 */
1052 schedule_delayed_work(&intel_dp->panel_vdd_work,
1053 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1054 }
1055 }
1056
1057 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1058 {
1059 struct drm_device *dev = intel_dp->base.base.dev;
1060 struct drm_i915_private *dev_priv = dev->dev_private;
1061 u32 pp;
1062
1063 if (!is_edp(intel_dp))
1064 return;
1065
1066 DRM_DEBUG_KMS("Turn eDP power on\n");
1067
1068 if (ironlake_edp_have_panel_power(intel_dp)) {
1069 DRM_DEBUG_KMS("eDP power already on\n");
1070 return;
1071 }
1072
1073 ironlake_wait_panel_power_cycle(intel_dp);
1074
1075 pp = ironlake_get_pp_control(dev_priv);
1076 if (IS_GEN5(dev)) {
1077 /* ILK workaround: disable reset around power sequence */
1078 pp &= ~PANEL_POWER_RESET;
1079 I915_WRITE(PCH_PP_CONTROL, pp);
1080 POSTING_READ(PCH_PP_CONTROL);
1081 }
1082
1083 pp |= POWER_TARGET_ON;
1084 if (!IS_GEN5(dev))
1085 pp |= PANEL_POWER_RESET;
1086
1087 I915_WRITE(PCH_PP_CONTROL, pp);
1088 POSTING_READ(PCH_PP_CONTROL);
1089
1090 ironlake_wait_panel_on(intel_dp);
1091
1092 if (IS_GEN5(dev)) {
1093 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1094 I915_WRITE(PCH_PP_CONTROL, pp);
1095 POSTING_READ(PCH_PP_CONTROL);
1096 }
1097 }
1098
1099 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1100 {
1101 struct drm_device *dev = intel_dp->base.base.dev;
1102 struct drm_i915_private *dev_priv = dev->dev_private;
1103 u32 pp;
1104
1105 if (!is_edp(intel_dp))
1106 return;
1107
1108 DRM_DEBUG_KMS("Turn eDP power off\n");
1109
1110 WARN(intel_dp->want_panel_vdd, "Cannot turn power off while VDD is on\n");
1111
1112 pp = ironlake_get_pp_control(dev_priv);
1113 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1114 I915_WRITE(PCH_PP_CONTROL, pp);
1115 POSTING_READ(PCH_PP_CONTROL);
1116
1117 ironlake_wait_panel_off(intel_dp);
1118 }
1119
1120 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1121 {
1122 struct drm_device *dev = intel_dp->base.base.dev;
1123 struct drm_i915_private *dev_priv = dev->dev_private;
1124 u32 pp;
1125
1126 if (!is_edp(intel_dp))
1127 return;
1128
1129 DRM_DEBUG_KMS("\n");
1130 /*
1131 * If we enable the backlight right away following a panel power
1132 * on, we may see slight flicker as the panel syncs with the eDP
1133 * link. So delay a bit to make sure the image is solid before
1134 * allowing it to appear.
1135 */
1136 msleep(intel_dp->backlight_on_delay);
1137 pp = ironlake_get_pp_control(dev_priv);
1138 pp |= EDP_BLC_ENABLE;
1139 I915_WRITE(PCH_PP_CONTROL, pp);
1140 POSTING_READ(PCH_PP_CONTROL);
1141 }
1142
1143 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1144 {
1145 struct drm_device *dev = intel_dp->base.base.dev;
1146 struct drm_i915_private *dev_priv = dev->dev_private;
1147 u32 pp;
1148
1149 if (!is_edp(intel_dp))
1150 return;
1151
1152 DRM_DEBUG_KMS("\n");
1153 pp = ironlake_get_pp_control(dev_priv);
1154 pp &= ~EDP_BLC_ENABLE;
1155 I915_WRITE(PCH_PP_CONTROL, pp);
1156 POSTING_READ(PCH_PP_CONTROL);
1157 msleep(intel_dp->backlight_off_delay);
1158 }
1159
1160 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1161 {
1162 struct drm_device *dev = encoder->dev;
1163 struct drm_i915_private *dev_priv = dev->dev_private;
1164 u32 dpa_ctl;
1165
1166 DRM_DEBUG_KMS("\n");
1167 dpa_ctl = I915_READ(DP_A);
1168 dpa_ctl |= DP_PLL_ENABLE;
1169 I915_WRITE(DP_A, dpa_ctl);
1170 POSTING_READ(DP_A);
1171 udelay(200);
1172 }
1173
1174 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1175 {
1176 struct drm_device *dev = encoder->dev;
1177 struct drm_i915_private *dev_priv = dev->dev_private;
1178 u32 dpa_ctl;
1179
1180 dpa_ctl = I915_READ(DP_A);
1181 dpa_ctl &= ~DP_PLL_ENABLE;
1182 I915_WRITE(DP_A, dpa_ctl);
1183 POSTING_READ(DP_A);
1184 udelay(200);
1185 }
1186
1187 /* If the sink supports it, try to set the power state appropriately */
1188 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1189 {
1190 int ret, i;
1191
1192 /* Should have a valid DPCD by this point */
1193 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1194 return;
1195
1196 if (mode != DRM_MODE_DPMS_ON) {
1197 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1198 DP_SET_POWER_D3);
1199 if (ret != 1)
1200 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1201 } else {
1202 /*
1203 * When turning on, we need to retry for 1ms to give the sink
1204 * time to wake up.
1205 */
1206 for (i = 0; i < 3; i++) {
1207 ret = intel_dp_aux_native_write_1(intel_dp,
1208 DP_SET_POWER,
1209 DP_SET_POWER_D0);
1210 if (ret == 1)
1211 break;
1212 msleep(1);
1213 }
1214 }
1215 }
1216
1217 static void intel_dp_prepare(struct drm_encoder *encoder)
1218 {
1219 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1220
1221 ironlake_edp_backlight_off(intel_dp);
1222 ironlake_edp_panel_off(intel_dp);
1223
1224 /* Wake up the sink first */
1225 ironlake_edp_panel_vdd_on(intel_dp);
1226 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1227 intel_dp_link_down(intel_dp);
1228 ironlake_edp_panel_vdd_off(intel_dp, false);
1229
1230 /* Make sure the panel is off before trying to
1231 * change the mode
1232 */
1233 }
1234
1235 static void intel_dp_commit(struct drm_encoder *encoder)
1236 {
1237 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1238 struct drm_device *dev = encoder->dev;
1239 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1240
1241 ironlake_edp_panel_vdd_on(intel_dp);
1242 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1243 intel_dp_start_link_train(intel_dp);
1244 ironlake_edp_panel_on(intel_dp);
1245 ironlake_edp_panel_vdd_off(intel_dp, true);
1246 intel_dp_complete_link_train(intel_dp);
1247 ironlake_edp_backlight_on(intel_dp);
1248
1249 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1250
1251 if (HAS_PCH_CPT(dev))
1252 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1253 }
1254
1255 static void
1256 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1257 {
1258 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1259 struct drm_device *dev = encoder->dev;
1260 struct drm_i915_private *dev_priv = dev->dev_private;
1261 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1262
1263 if (mode != DRM_MODE_DPMS_ON) {
1264 ironlake_edp_backlight_off(intel_dp);
1265 ironlake_edp_panel_off(intel_dp);
1266
1267 ironlake_edp_panel_vdd_on(intel_dp);
1268 intel_dp_sink_dpms(intel_dp, mode);
1269 intel_dp_link_down(intel_dp);
1270 ironlake_edp_panel_vdd_off(intel_dp, false);
1271
1272 if (is_cpu_edp(intel_dp))
1273 ironlake_edp_pll_off(encoder);
1274 } else {
1275 if (is_cpu_edp(intel_dp))
1276 ironlake_edp_pll_on(encoder);
1277
1278 ironlake_edp_panel_vdd_on(intel_dp);
1279 intel_dp_sink_dpms(intel_dp, mode);
1280 if (!(dp_reg & DP_PORT_EN)) {
1281 intel_dp_start_link_train(intel_dp);
1282 ironlake_edp_panel_on(intel_dp);
1283 ironlake_edp_panel_vdd_off(intel_dp, true);
1284 intel_dp_complete_link_train(intel_dp);
1285 } else
1286 ironlake_edp_panel_vdd_off(intel_dp, false);
1287 ironlake_edp_backlight_on(intel_dp);
1288 }
1289 intel_dp->dpms_mode = mode;
1290 }
1291
1292 /*
1293 * Native read with retry for link status and receiver capability reads for
1294 * cases where the sink may still be asleep.
1295 */
1296 static bool
1297 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1298 uint8_t *recv, int recv_bytes)
1299 {
1300 int ret, i;
1301
1302 /*
1303 * Sinks are *supposed* to come up within 1ms from an off state,
1304 * but we're also supposed to retry 3 times per the spec.
1305 */
1306 for (i = 0; i < 3; i++) {
1307 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1308 recv_bytes);
1309 if (ret == recv_bytes)
1310 return true;
1311 msleep(1);
1312 }
1313
1314 return false;
1315 }
1316
1317 /*
1318 * Fetch AUX CH registers 0x202 - 0x207 which contain
1319 * link status information
1320 */
1321 static bool
1322 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1323 {
1324 return intel_dp_aux_native_read_retry(intel_dp,
1325 DP_LANE0_1_STATUS,
1326 link_status,
1327 DP_LINK_STATUS_SIZE);
1328 }
1329
1330 static uint8_t
1331 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1332 int r)
1333 {
1334 return link_status[r - DP_LANE0_1_STATUS];
1335 }
1336
1337 static uint8_t
1338 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1339 int lane)
1340 {
1341 int s = ((lane & 1) ?
1342 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1343 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1344 uint8_t l = adjust_request[lane>>1];
1345
1346 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1347 }
1348
1349 static uint8_t
1350 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1351 int lane)
1352 {
1353 int s = ((lane & 1) ?
1354 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1355 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1356 uint8_t l = adjust_request[lane>>1];
1357
1358 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1359 }
1360
1361
1362 #if 0
1363 static char *voltage_names[] = {
1364 "0.4V", "0.6V", "0.8V", "1.2V"
1365 };
1366 static char *pre_emph_names[] = {
1367 "0dB", "3.5dB", "6dB", "9.5dB"
1368 };
1369 static char *link_train_names[] = {
1370 "pattern 1", "pattern 2", "idle", "off"
1371 };
1372 #endif
1373
1374 /*
1375 * These are source-specific values; current Intel hardware supports
1376 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1377 */
1378 #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
1379 #define I830_DP_VOLTAGE_MAX_CPT DP_TRAIN_VOLTAGE_SWING_1200
1380
1381 static uint8_t
1382 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1383 {
1384 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1385 case DP_TRAIN_VOLTAGE_SWING_400:
1386 return DP_TRAIN_PRE_EMPHASIS_6;
1387 case DP_TRAIN_VOLTAGE_SWING_600:
1388 return DP_TRAIN_PRE_EMPHASIS_6;
1389 case DP_TRAIN_VOLTAGE_SWING_800:
1390 return DP_TRAIN_PRE_EMPHASIS_3_5;
1391 case DP_TRAIN_VOLTAGE_SWING_1200:
1392 default:
1393 return DP_TRAIN_PRE_EMPHASIS_0;
1394 }
1395 }
1396
1397 static void
1398 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1399 {
1400 struct drm_device *dev = intel_dp->base.base.dev;
1401 uint8_t v = 0;
1402 uint8_t p = 0;
1403 int lane;
1404 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1405 int voltage_max;
1406
1407 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1408 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1409 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1410
1411 if (this_v > v)
1412 v = this_v;
1413 if (this_p > p)
1414 p = this_p;
1415 }
1416
1417 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1418 voltage_max = I830_DP_VOLTAGE_MAX_CPT;
1419 else
1420 voltage_max = I830_DP_VOLTAGE_MAX;
1421 if (v >= voltage_max)
1422 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1423
1424 if (p >= intel_dp_pre_emphasis_max(v))
1425 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1426
1427 for (lane = 0; lane < 4; lane++)
1428 intel_dp->train_set[lane] = v | p;
1429 }
1430
1431 static uint32_t
1432 intel_dp_signal_levels(uint8_t train_set)
1433 {
1434 uint32_t signal_levels = 0;
1435
1436 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1437 case DP_TRAIN_VOLTAGE_SWING_400:
1438 default:
1439 signal_levels |= DP_VOLTAGE_0_4;
1440 break;
1441 case DP_TRAIN_VOLTAGE_SWING_600:
1442 signal_levels |= DP_VOLTAGE_0_6;
1443 break;
1444 case DP_TRAIN_VOLTAGE_SWING_800:
1445 signal_levels |= DP_VOLTAGE_0_8;
1446 break;
1447 case DP_TRAIN_VOLTAGE_SWING_1200:
1448 signal_levels |= DP_VOLTAGE_1_2;
1449 break;
1450 }
1451 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1452 case DP_TRAIN_PRE_EMPHASIS_0:
1453 default:
1454 signal_levels |= DP_PRE_EMPHASIS_0;
1455 break;
1456 case DP_TRAIN_PRE_EMPHASIS_3_5:
1457 signal_levels |= DP_PRE_EMPHASIS_3_5;
1458 break;
1459 case DP_TRAIN_PRE_EMPHASIS_6:
1460 signal_levels |= DP_PRE_EMPHASIS_6;
1461 break;
1462 case DP_TRAIN_PRE_EMPHASIS_9_5:
1463 signal_levels |= DP_PRE_EMPHASIS_9_5;
1464 break;
1465 }
1466 return signal_levels;
1467 }
1468
1469 /* Gen6's DP voltage swing and pre-emphasis control */
1470 static uint32_t
1471 intel_gen6_edp_signal_levels(uint8_t train_set)
1472 {
1473 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1474 DP_TRAIN_PRE_EMPHASIS_MASK);
1475 switch (signal_levels) {
1476 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1477 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1478 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1479 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1480 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1481 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1482 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1483 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1484 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1485 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1486 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1487 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1488 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1489 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1490 default:
1491 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1492 "0x%x\n", signal_levels);
1493 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1494 }
1495 }
1496
1497 static uint8_t
1498 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1499 int lane)
1500 {
1501 int s = (lane & 1) * 4;
1502 uint8_t l = link_status[lane>>1];
1503
1504 return (l >> s) & 0xf;
1505 }
1506
1507 /* Check for clock recovery is done on all channels */
1508 static bool
1509 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1510 {
1511 int lane;
1512 uint8_t lane_status;
1513
1514 for (lane = 0; lane < lane_count; lane++) {
1515 lane_status = intel_get_lane_status(link_status, lane);
1516 if ((lane_status & DP_LANE_CR_DONE) == 0)
1517 return false;
1518 }
1519 return true;
1520 }
1521
1522 /* Check to see if channel eq is done on all channels */
1523 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1524 DP_LANE_CHANNEL_EQ_DONE|\
1525 DP_LANE_SYMBOL_LOCKED)
1526 static bool
1527 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1528 {
1529 uint8_t lane_align;
1530 uint8_t lane_status;
1531 int lane;
1532
1533 lane_align = intel_dp_link_status(link_status,
1534 DP_LANE_ALIGN_STATUS_UPDATED);
1535 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1536 return false;
1537 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1538 lane_status = intel_get_lane_status(link_status, lane);
1539 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1540 return false;
1541 }
1542 return true;
1543 }
1544
1545 static bool
1546 intel_dp_set_link_train(struct intel_dp *intel_dp,
1547 uint32_t dp_reg_value,
1548 uint8_t dp_train_pat)
1549 {
1550 struct drm_device *dev = intel_dp->base.base.dev;
1551 struct drm_i915_private *dev_priv = dev->dev_private;
1552 int ret;
1553
1554 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1555 POSTING_READ(intel_dp->output_reg);
1556
1557 intel_dp_aux_native_write_1(intel_dp,
1558 DP_TRAINING_PATTERN_SET,
1559 dp_train_pat);
1560
1561 ret = intel_dp_aux_native_write(intel_dp,
1562 DP_TRAINING_LANE0_SET,
1563 intel_dp->train_set,
1564 intel_dp->lane_count);
1565 if (ret != intel_dp->lane_count)
1566 return false;
1567
1568 return true;
1569 }
1570
1571 /* Enable corresponding port and start training pattern 1 */
1572 static void
1573 intel_dp_start_link_train(struct intel_dp *intel_dp)
1574 {
1575 struct drm_device *dev = intel_dp->base.base.dev;
1576 struct drm_i915_private *dev_priv = dev->dev_private;
1577 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1578 int i;
1579 uint8_t voltage;
1580 bool clock_recovery = false;
1581 int voltage_tries, loop_tries;
1582 u32 reg;
1583 uint32_t DP = intel_dp->DP;
1584
1585 /*
1586 * On CPT we have to enable the port in training pattern 1, which
1587 * will happen below in intel_dp_set_link_train. Otherwise, enable
1588 * the port and wait for it to become active.
1589 */
1590 if (!HAS_PCH_CPT(dev)) {
1591 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1592 POSTING_READ(intel_dp->output_reg);
1593 intel_wait_for_vblank(dev, intel_crtc->pipe);
1594 }
1595
1596 /* Write the link configuration data */
1597 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1598 intel_dp->link_configuration,
1599 DP_LINK_CONFIGURATION_SIZE);
1600
1601 DP |= DP_PORT_EN;
1602 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1603 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1604 else
1605 DP &= ~DP_LINK_TRAIN_MASK;
1606 memset(intel_dp->train_set, 0, 4);
1607 voltage = 0xff;
1608 voltage_tries = 0;
1609 loop_tries = 0;
1610 clock_recovery = false;
1611 for (;;) {
1612 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1613 uint8_t link_status[DP_LINK_STATUS_SIZE];
1614 uint32_t signal_levels;
1615
1616 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1617 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1618 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1619 } else {
1620 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1621 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1622 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1623 }
1624
1625 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1626 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1627 else
1628 reg = DP | DP_LINK_TRAIN_PAT_1;
1629
1630 if (!intel_dp_set_link_train(intel_dp, reg,
1631 DP_TRAINING_PATTERN_1 |
1632 DP_LINK_SCRAMBLING_DISABLE))
1633 break;
1634 /* Set training pattern 1 */
1635
1636 udelay(100);
1637 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1638 DRM_ERROR("failed to get link status\n");
1639 break;
1640 }
1641
1642 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1643 DRM_DEBUG_KMS("clock recovery OK\n");
1644 clock_recovery = true;
1645 break;
1646 }
1647
1648 /* Check to see if we've tried the max voltage */
1649 for (i = 0; i < intel_dp->lane_count; i++)
1650 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1651 break;
1652 if (i == intel_dp->lane_count) {
1653 ++loop_tries;
1654 if (loop_tries == 5) {
1655 DRM_DEBUG_KMS("too many full retries, give up\n");
1656 break;
1657 }
1658 memset(intel_dp->train_set, 0, 4);
1659 voltage_tries = 0;
1660 continue;
1661 }
1662
1663 /* Check to see if we've tried the same voltage 5 times */
1664 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1665 ++voltage_tries;
1666 if (voltage_tries == 5) {
1667 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1668 break;
1669 }
1670 } else
1671 voltage_tries = 0;
1672 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1673
1674 /* Compute new intel_dp->train_set as requested by target */
1675 intel_get_adjust_train(intel_dp, link_status);
1676 }
1677
1678 intel_dp->DP = DP;
1679 }
1680
1681 static void
1682 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1683 {
1684 struct drm_device *dev = intel_dp->base.base.dev;
1685 struct drm_i915_private *dev_priv = dev->dev_private;
1686 bool channel_eq = false;
1687 int tries, cr_tries;
1688 u32 reg;
1689 uint32_t DP = intel_dp->DP;
1690
1691 /* channel equalization */
1692 tries = 0;
1693 cr_tries = 0;
1694 channel_eq = false;
1695 for (;;) {
1696 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1697 uint32_t signal_levels;
1698 uint8_t link_status[DP_LINK_STATUS_SIZE];
1699
1700 if (cr_tries > 5) {
1701 DRM_ERROR("failed to train DP, aborting\n");
1702 intel_dp_link_down(intel_dp);
1703 break;
1704 }
1705
1706 if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1707 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1708 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1709 } else {
1710 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1711 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1712 }
1713
1714 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1715 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1716 else
1717 reg = DP | DP_LINK_TRAIN_PAT_2;
1718
1719 /* channel eq pattern */
1720 if (!intel_dp_set_link_train(intel_dp, reg,
1721 DP_TRAINING_PATTERN_2 |
1722 DP_LINK_SCRAMBLING_DISABLE))
1723 break;
1724
1725 udelay(400);
1726 if (!intel_dp_get_link_status(intel_dp, link_status))
1727 break;
1728
1729 /* Make sure clock is still ok */
1730 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1731 intel_dp_start_link_train(intel_dp);
1732 cr_tries++;
1733 continue;
1734 }
1735
1736 if (intel_channel_eq_ok(intel_dp, link_status)) {
1737 channel_eq = true;
1738 break;
1739 }
1740
1741 /* Try 5 times, then try clock recovery if that fails */
1742 if (tries > 5) {
1743 intel_dp_link_down(intel_dp);
1744 intel_dp_start_link_train(intel_dp);
1745 tries = 0;
1746 cr_tries++;
1747 continue;
1748 }
1749
1750 /* Compute new intel_dp->train_set as requested by target */
1751 intel_get_adjust_train(intel_dp, link_status);
1752 ++tries;
1753 }
1754
1755 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1756 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1757 else
1758 reg = DP | DP_LINK_TRAIN_OFF;
1759
1760 I915_WRITE(intel_dp->output_reg, reg);
1761 POSTING_READ(intel_dp->output_reg);
1762 intel_dp_aux_native_write_1(intel_dp,
1763 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1764 }
1765
1766 static void
1767 intel_dp_link_down(struct intel_dp *intel_dp)
1768 {
1769 struct drm_device *dev = intel_dp->base.base.dev;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 uint32_t DP = intel_dp->DP;
1772
1773 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1774 return;
1775
1776 DRM_DEBUG_KMS("\n");
1777
1778 if (is_edp(intel_dp)) {
1779 DP &= ~DP_PLL_ENABLE;
1780 I915_WRITE(intel_dp->output_reg, DP);
1781 POSTING_READ(intel_dp->output_reg);
1782 udelay(100);
1783 }
1784
1785 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1786 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1787 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1788 } else {
1789 DP &= ~DP_LINK_TRAIN_MASK;
1790 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1791 }
1792 POSTING_READ(intel_dp->output_reg);
1793
1794 msleep(17);
1795
1796 if (is_edp(intel_dp)) {
1797 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1798 DP |= DP_LINK_TRAIN_OFF_CPT;
1799 else
1800 DP |= DP_LINK_TRAIN_OFF;
1801 }
1802
1803 if (!HAS_PCH_CPT(dev) &&
1804 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1805 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1806
1807 /* Hardware workaround: leaving our transcoder select
1808 * set to transcoder B while it's off will prevent the
1809 * corresponding HDMI output on transcoder A.
1810 *
1811 * Combine this with another hardware workaround:
1812 * transcoder select bit can only be cleared while the
1813 * port is enabled.
1814 */
1815 DP &= ~DP_PIPEB_SELECT;
1816 I915_WRITE(intel_dp->output_reg, DP);
1817
1818 /* Changes to enable or select take place the vblank
1819 * after being written.
1820 */
1821 if (crtc == NULL) {
1822 /* We can arrive here never having been attached
1823 * to a CRTC, for instance, due to inheriting
1824 * random state from the BIOS.
1825 *
1826 * If the pipe is not running, play safe and
1827 * wait for the clocks to stabilise before
1828 * continuing.
1829 */
1830 POSTING_READ(intel_dp->output_reg);
1831 msleep(50);
1832 } else
1833 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1834 }
1835
1836 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1837 POSTING_READ(intel_dp->output_reg);
1838 msleep(intel_dp->panel_power_down_delay);
1839 }
1840
1841 static bool
1842 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1843 {
1844 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1845 sizeof(intel_dp->dpcd)) &&
1846 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1847 return true;
1848 }
1849
1850 return false;
1851 }
1852
1853 static bool
1854 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1855 {
1856 int ret;
1857
1858 ret = intel_dp_aux_native_read_retry(intel_dp,
1859 DP_DEVICE_SERVICE_IRQ_VECTOR,
1860 sink_irq_vector, 1);
1861 if (!ret)
1862 return false;
1863
1864 return true;
1865 }
1866
1867 static void
1868 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1869 {
1870 /* NAK by default */
1871 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1872 }
1873
1874 /*
1875 * According to DP spec
1876 * 5.1.2:
1877 * 1. Read DPCD
1878 * 2. Configure link according to Receiver Capabilities
1879 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
1880 * 4. Check link status on receipt of hot-plug interrupt
1881 */
1882
1883 static void
1884 intel_dp_check_link_status(struct intel_dp *intel_dp)
1885 {
1886 u8 sink_irq_vector;
1887 u8 link_status[DP_LINK_STATUS_SIZE];
1888
1889 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1890 return;
1891
1892 if (!intel_dp->base.base.crtc)
1893 return;
1894
1895 /* Try to read receiver status if the link appears to be up */
1896 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1897 intel_dp_link_down(intel_dp);
1898 return;
1899 }
1900
1901 /* Now read the DPCD to see if it's actually running */
1902 if (!intel_dp_get_dpcd(intel_dp)) {
1903 intel_dp_link_down(intel_dp);
1904 return;
1905 }
1906
1907 /* Try to read the source of the interrupt */
1908 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1909 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1910 /* Clear interrupt source */
1911 intel_dp_aux_native_write_1(intel_dp,
1912 DP_DEVICE_SERVICE_IRQ_VECTOR,
1913 sink_irq_vector);
1914
1915 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1916 intel_dp_handle_test_request(intel_dp);
1917 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1918 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1919 }
1920
1921 if (!intel_channel_eq_ok(intel_dp, link_status)) {
1922 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1923 drm_get_encoder_name(&intel_dp->base.base));
1924 intel_dp_start_link_train(intel_dp);
1925 intel_dp_complete_link_train(intel_dp);
1926 }
1927 }
1928
1929 static enum drm_connector_status
1930 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1931 {
1932 if (intel_dp_get_dpcd(intel_dp))
1933 return connector_status_connected;
1934 return connector_status_disconnected;
1935 }
1936
1937 static enum drm_connector_status
1938 ironlake_dp_detect(struct intel_dp *intel_dp)
1939 {
1940 enum drm_connector_status status;
1941
1942 /* Can't disconnect eDP, but you can close the lid... */
1943 if (is_edp(intel_dp)) {
1944 status = intel_panel_detect(intel_dp->base.base.dev);
1945 if (status == connector_status_unknown)
1946 status = connector_status_connected;
1947 return status;
1948 }
1949
1950 return intel_dp_detect_dpcd(intel_dp);
1951 }
1952
1953 static enum drm_connector_status
1954 g4x_dp_detect(struct intel_dp *intel_dp)
1955 {
1956 struct drm_device *dev = intel_dp->base.base.dev;
1957 struct drm_i915_private *dev_priv = dev->dev_private;
1958 uint32_t temp, bit;
1959
1960 switch (intel_dp->output_reg) {
1961 case DP_B:
1962 bit = DPB_HOTPLUG_INT_STATUS;
1963 break;
1964 case DP_C:
1965 bit = DPC_HOTPLUG_INT_STATUS;
1966 break;
1967 case DP_D:
1968 bit = DPD_HOTPLUG_INT_STATUS;
1969 break;
1970 default:
1971 return connector_status_unknown;
1972 }
1973
1974 temp = I915_READ(PORT_HOTPLUG_STAT);
1975
1976 if ((temp & bit) == 0)
1977 return connector_status_disconnected;
1978
1979 return intel_dp_detect_dpcd(intel_dp);
1980 }
1981
1982 static struct edid *
1983 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1984 {
1985 struct intel_dp *intel_dp = intel_attached_dp(connector);
1986 struct edid *edid;
1987
1988 ironlake_edp_panel_vdd_on(intel_dp);
1989 edid = drm_get_edid(connector, adapter);
1990 ironlake_edp_panel_vdd_off(intel_dp, false);
1991 return edid;
1992 }
1993
1994 static int
1995 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1996 {
1997 struct intel_dp *intel_dp = intel_attached_dp(connector);
1998 int ret;
1999
2000 ironlake_edp_panel_vdd_on(intel_dp);
2001 ret = intel_ddc_get_modes(connector, adapter);
2002 ironlake_edp_panel_vdd_off(intel_dp, false);
2003 return ret;
2004 }
2005
2006
2007 /**
2008 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2009 *
2010 * \return true if DP port is connected.
2011 * \return false if DP port is disconnected.
2012 */
2013 static enum drm_connector_status
2014 intel_dp_detect(struct drm_connector *connector, bool force)
2015 {
2016 struct intel_dp *intel_dp = intel_attached_dp(connector);
2017 struct drm_device *dev = intel_dp->base.base.dev;
2018 enum drm_connector_status status;
2019 struct edid *edid = NULL;
2020
2021 intel_dp->has_audio = false;
2022
2023 if (HAS_PCH_SPLIT(dev))
2024 status = ironlake_dp_detect(intel_dp);
2025 else
2026 status = g4x_dp_detect(intel_dp);
2027
2028 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2029 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2030 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2031 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2032
2033 if (status != connector_status_connected)
2034 return status;
2035
2036 if (intel_dp->force_audio) {
2037 intel_dp->has_audio = intel_dp->force_audio > 0;
2038 } else {
2039 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2040 if (edid) {
2041 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2042 connector->display_info.raw_edid = NULL;
2043 kfree(edid);
2044 }
2045 }
2046
2047 return connector_status_connected;
2048 }
2049
2050 static int intel_dp_get_modes(struct drm_connector *connector)
2051 {
2052 struct intel_dp *intel_dp = intel_attached_dp(connector);
2053 struct drm_device *dev = intel_dp->base.base.dev;
2054 struct drm_i915_private *dev_priv = dev->dev_private;
2055 int ret;
2056
2057 /* We should parse the EDID data and find out if it has an audio sink
2058 */
2059
2060 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2061 if (ret) {
2062 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2063 struct drm_display_mode *newmode;
2064 list_for_each_entry(newmode, &connector->probed_modes,
2065 head) {
2066 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2067 intel_dp->panel_fixed_mode =
2068 drm_mode_duplicate(dev, newmode);
2069 break;
2070 }
2071 }
2072 }
2073 return ret;
2074 }
2075
2076 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2077 if (is_edp(intel_dp)) {
2078 /* initialize panel mode from VBT if available for eDP */
2079 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2080 intel_dp->panel_fixed_mode =
2081 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2082 if (intel_dp->panel_fixed_mode) {
2083 intel_dp->panel_fixed_mode->type |=
2084 DRM_MODE_TYPE_PREFERRED;
2085 }
2086 }
2087 if (intel_dp->panel_fixed_mode) {
2088 struct drm_display_mode *mode;
2089 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2090 drm_mode_probed_add(connector, mode);
2091 return 1;
2092 }
2093 }
2094 return 0;
2095 }
2096
2097 static bool
2098 intel_dp_detect_audio(struct drm_connector *connector)
2099 {
2100 struct intel_dp *intel_dp = intel_attached_dp(connector);
2101 struct edid *edid;
2102 bool has_audio = false;
2103
2104 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2105 if (edid) {
2106 has_audio = drm_detect_monitor_audio(edid);
2107
2108 connector->display_info.raw_edid = NULL;
2109 kfree(edid);
2110 }
2111
2112 return has_audio;
2113 }
2114
2115 static int
2116 intel_dp_set_property(struct drm_connector *connector,
2117 struct drm_property *property,
2118 uint64_t val)
2119 {
2120 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2121 struct intel_dp *intel_dp = intel_attached_dp(connector);
2122 int ret;
2123
2124 ret = drm_connector_property_set_value(connector, property, val);
2125 if (ret)
2126 return ret;
2127
2128 if (property == dev_priv->force_audio_property) {
2129 int i = val;
2130 bool has_audio;
2131
2132 if (i == intel_dp->force_audio)
2133 return 0;
2134
2135 intel_dp->force_audio = i;
2136
2137 if (i == 0)
2138 has_audio = intel_dp_detect_audio(connector);
2139 else
2140 has_audio = i > 0;
2141
2142 if (has_audio == intel_dp->has_audio)
2143 return 0;
2144
2145 intel_dp->has_audio = has_audio;
2146 goto done;
2147 }
2148
2149 if (property == dev_priv->broadcast_rgb_property) {
2150 if (val == !!intel_dp->color_range)
2151 return 0;
2152
2153 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2154 goto done;
2155 }
2156
2157 return -EINVAL;
2158
2159 done:
2160 if (intel_dp->base.base.crtc) {
2161 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2162 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2163 crtc->x, crtc->y,
2164 crtc->fb);
2165 }
2166
2167 return 0;
2168 }
2169
2170 static void
2171 intel_dp_destroy(struct drm_connector *connector)
2172 {
2173 struct drm_device *dev = connector->dev;
2174
2175 if (intel_dpd_is_edp(dev))
2176 intel_panel_destroy_backlight(dev);
2177
2178 drm_sysfs_connector_remove(connector);
2179 drm_connector_cleanup(connector);
2180 kfree(connector);
2181 }
2182
2183 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2184 {
2185 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2186
2187 i2c_del_adapter(&intel_dp->adapter);
2188 drm_encoder_cleanup(encoder);
2189 if (is_edp(intel_dp)) {
2190 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2191 ironlake_panel_vdd_off_sync(intel_dp);
2192 }
2193 kfree(intel_dp);
2194 }
2195
2196 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2197 .dpms = intel_dp_dpms,
2198 .mode_fixup = intel_dp_mode_fixup,
2199 .prepare = intel_dp_prepare,
2200 .mode_set = intel_dp_mode_set,
2201 .commit = intel_dp_commit,
2202 };
2203
2204 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2205 .dpms = drm_helper_connector_dpms,
2206 .detect = intel_dp_detect,
2207 .fill_modes = drm_helper_probe_single_connector_modes,
2208 .set_property = intel_dp_set_property,
2209 .destroy = intel_dp_destroy,
2210 };
2211
2212 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2213 .get_modes = intel_dp_get_modes,
2214 .mode_valid = intel_dp_mode_valid,
2215 .best_encoder = intel_best_encoder,
2216 };
2217
2218 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2219 .destroy = intel_dp_encoder_destroy,
2220 };
2221
2222 static void
2223 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2224 {
2225 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2226
2227 intel_dp_check_link_status(intel_dp);
2228 }
2229
2230 /* Return which DP Port should be selected for Transcoder DP control */
2231 int
2232 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2233 {
2234 struct drm_device *dev = crtc->dev;
2235 struct drm_mode_config *mode_config = &dev->mode_config;
2236 struct drm_encoder *encoder;
2237
2238 list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2239 struct intel_dp *intel_dp;
2240
2241 if (encoder->crtc != crtc)
2242 continue;
2243
2244 intel_dp = enc_to_intel_dp(encoder);
2245 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2246 intel_dp->base.type == INTEL_OUTPUT_EDP)
2247 return intel_dp->output_reg;
2248 }
2249
2250 return -1;
2251 }
2252
2253 /* check the VBT to see whether the eDP is on DP-D port */
2254 bool intel_dpd_is_edp(struct drm_device *dev)
2255 {
2256 struct drm_i915_private *dev_priv = dev->dev_private;
2257 struct child_device_config *p_child;
2258 int i;
2259
2260 if (!dev_priv->child_dev_num)
2261 return false;
2262
2263 for (i = 0; i < dev_priv->child_dev_num; i++) {
2264 p_child = dev_priv->child_dev + i;
2265
2266 if (p_child->dvo_port == PORT_IDPD &&
2267 p_child->device_type == DEVICE_TYPE_eDP)
2268 return true;
2269 }
2270 return false;
2271 }
2272
2273 static void
2274 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2275 {
2276 intel_attach_force_audio_property(connector);
2277 intel_attach_broadcast_rgb_property(connector);
2278 }
2279
2280 void
2281 intel_dp_init(struct drm_device *dev, int output_reg)
2282 {
2283 struct drm_i915_private *dev_priv = dev->dev_private;
2284 struct drm_connector *connector;
2285 struct intel_dp *intel_dp;
2286 struct intel_encoder *intel_encoder;
2287 struct intel_connector *intel_connector;
2288 const char *name = NULL;
2289 int type;
2290
2291 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2292 if (!intel_dp)
2293 return;
2294
2295 intel_dp->output_reg = output_reg;
2296 intel_dp->dpms_mode = -1;
2297
2298 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2299 if (!intel_connector) {
2300 kfree(intel_dp);
2301 return;
2302 }
2303 intel_encoder = &intel_dp->base;
2304
2305 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2306 if (intel_dpd_is_edp(dev))
2307 intel_dp->is_pch_edp = true;
2308
2309 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2310 type = DRM_MODE_CONNECTOR_eDP;
2311 intel_encoder->type = INTEL_OUTPUT_EDP;
2312 } else {
2313 type = DRM_MODE_CONNECTOR_DisplayPort;
2314 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2315 }
2316
2317 connector = &intel_connector->base;
2318 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2319 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2320
2321 connector->polled = DRM_CONNECTOR_POLL_HPD;
2322
2323 if (output_reg == DP_B || output_reg == PCH_DP_B)
2324 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2325 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2326 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2327 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2328 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2329
2330 if (is_edp(intel_dp)) {
2331 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2332 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2333 ironlake_panel_vdd_work);
2334 }
2335
2336 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2337 connector->interlace_allowed = true;
2338 connector->doublescan_allowed = 0;
2339
2340 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2341 DRM_MODE_ENCODER_TMDS);
2342 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2343
2344 intel_connector_attach_encoder(intel_connector, intel_encoder);
2345 drm_sysfs_connector_add(connector);
2346
2347 /* Set up the DDC bus. */
2348 switch (output_reg) {
2349 case DP_A:
2350 name = "DPDDC-A";
2351 break;
2352 case DP_B:
2353 case PCH_DP_B:
2354 dev_priv->hotplug_supported_mask |=
2355 HDMIB_HOTPLUG_INT_STATUS;
2356 name = "DPDDC-B";
2357 break;
2358 case DP_C:
2359 case PCH_DP_C:
2360 dev_priv->hotplug_supported_mask |=
2361 HDMIC_HOTPLUG_INT_STATUS;
2362 name = "DPDDC-C";
2363 break;
2364 case DP_D:
2365 case PCH_DP_D:
2366 dev_priv->hotplug_supported_mask |=
2367 HDMID_HOTPLUG_INT_STATUS;
2368 name = "DPDDC-D";
2369 break;
2370 }
2371
2372 /* Cache some DPCD data in the eDP case */
2373 if (is_edp(intel_dp)) {
2374 bool ret;
2375 struct edp_power_seq cur, vbt;
2376 u32 pp_on, pp_off, pp_div;
2377
2378 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2379 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2380 pp_div = I915_READ(PCH_PP_DIVISOR);
2381
2382 /* Pull timing values out of registers */
2383 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2384 PANEL_POWER_UP_DELAY_SHIFT;
2385
2386 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2387 PANEL_LIGHT_ON_DELAY_SHIFT;
2388
2389 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2390 PANEL_LIGHT_OFF_DELAY_SHIFT;
2391
2392 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2393 PANEL_POWER_DOWN_DELAY_SHIFT;
2394
2395 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2396 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2397
2398 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2399 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2400
2401 vbt = dev_priv->edp.pps;
2402
2403 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2404 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2405
2406 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2407
2408 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2409 intel_dp->backlight_on_delay = get_delay(t8);
2410 intel_dp->backlight_off_delay = get_delay(t9);
2411 intel_dp->panel_power_down_delay = get_delay(t10);
2412 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2413
2414 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2415 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2416 intel_dp->panel_power_cycle_delay);
2417
2418 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2419 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2420
2421 ironlake_edp_panel_vdd_on(intel_dp);
2422 ret = intel_dp_get_dpcd(intel_dp);
2423 ironlake_edp_panel_vdd_off(intel_dp, false);
2424
2425 if (ret) {
2426 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2427 dev_priv->no_aux_handshake =
2428 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2429 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2430 } else {
2431 /* if this fails, presume the device is a ghost */
2432 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2433 intel_dp_encoder_destroy(&intel_dp->base.base);
2434 intel_dp_destroy(&intel_connector->base);
2435 return;
2436 }
2437 }
2438
2439 intel_dp_i2c_init(intel_dp, intel_connector, name);
2440
2441 intel_encoder->hot_plug = intel_dp_hot_plug;
2442
2443 if (is_edp(intel_dp)) {
2444 dev_priv->int_edp_connector = connector;
2445 intel_panel_setup_backlight(dev);
2446 }
2447
2448 intel_dp_add_properties(intel_dp, connector);
2449
2450 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2451 * 0xd. Failure to do so will result in spurious interrupts being
2452 * generated on the port when a cable is not attached.
2453 */
2454 if (IS_G4X(dev) && !IS_GM45(dev)) {
2455 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2456 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2457 }
2458 }
This page took 0.083183 seconds and 6 git commands to generate.