Merge branches 'acpi-pm' and 'pm-genirq'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_crtc.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_edid.h>
37 #include "intel_drv.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40
41 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
42
43 struct dp_link_dpll {
44 int link_bw;
45 struct dpll dpll;
46 };
47
48 static const struct dp_link_dpll gen4_dpll[] = {
49 { DP_LINK_BW_1_62,
50 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
51 { DP_LINK_BW_2_7,
52 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
53 };
54
55 static const struct dp_link_dpll pch_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
60 };
61
62 static const struct dp_link_dpll vlv_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
67 };
68
69 /*
70 * CHV supports eDP 1.4 that have more link rates.
71 * Below only provides the fixed rate but exclude variable rate.
72 */
73 static const struct dp_link_dpll chv_dpll[] = {
74 /*
75 * CHV requires to program fractional division for m2.
76 * m2 is stored in fixed point format using formula below
77 * (m2_int << 22) | m2_fraction
78 */
79 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
80 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
81 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
82 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
83 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
84 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
85 };
86
87 /**
88 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
89 * @intel_dp: DP struct
90 *
91 * If a CPU or PCH DP output is attached to an eDP panel, this function
92 * will return true, and false otherwise.
93 */
94 static bool is_edp(struct intel_dp *intel_dp)
95 {
96 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
97
98 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
99 }
100
101 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
102 {
103 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
104
105 return intel_dig_port->base.base.dev;
106 }
107
108 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
109 {
110 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
111 }
112
113 static void intel_dp_link_down(struct intel_dp *intel_dp);
114 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
115 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
116
117 int
118 intel_dp_max_link_bw(struct intel_dp *intel_dp)
119 {
120 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
121 struct drm_device *dev = intel_dp->attached_connector->base.dev;
122
123 switch (max_link_bw) {
124 case DP_LINK_BW_1_62:
125 case DP_LINK_BW_2_7:
126 break;
127 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
128 if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
129 INTEL_INFO(dev)->gen >= 8) &&
130 intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
131 max_link_bw = DP_LINK_BW_5_4;
132 else
133 max_link_bw = DP_LINK_BW_2_7;
134 break;
135 default:
136 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
137 max_link_bw);
138 max_link_bw = DP_LINK_BW_1_62;
139 break;
140 }
141 return max_link_bw;
142 }
143
144 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
145 {
146 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
147 struct drm_device *dev = intel_dig_port->base.base.dev;
148 u8 source_max, sink_max;
149
150 source_max = 4;
151 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
152 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
153 source_max = 2;
154
155 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
156
157 return min(source_max, sink_max);
158 }
159
160 /*
161 * The units on the numbers in the next two are... bizarre. Examples will
162 * make it clearer; this one parallels an example in the eDP spec.
163 *
164 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
165 *
166 * 270000 * 1 * 8 / 10 == 216000
167 *
168 * The actual data capacity of that configuration is 2.16Gbit/s, so the
169 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
170 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
171 * 119000. At 18bpp that's 2142000 kilobits per second.
172 *
173 * Thus the strange-looking division by 10 in intel_dp_link_required, to
174 * get the result in decakilobits instead of kilobits.
175 */
176
177 static int
178 intel_dp_link_required(int pixel_clock, int bpp)
179 {
180 return (pixel_clock * bpp + 9) / 10;
181 }
182
183 static int
184 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
185 {
186 return (max_link_clock * max_lanes * 8) / 10;
187 }
188
189 static enum drm_mode_status
190 intel_dp_mode_valid(struct drm_connector *connector,
191 struct drm_display_mode *mode)
192 {
193 struct intel_dp *intel_dp = intel_attached_dp(connector);
194 struct intel_connector *intel_connector = to_intel_connector(connector);
195 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
196 int target_clock = mode->clock;
197 int max_rate, mode_rate, max_lanes, max_link_clock;
198
199 if (is_edp(intel_dp) && fixed_mode) {
200 if (mode->hdisplay > fixed_mode->hdisplay)
201 return MODE_PANEL;
202
203 if (mode->vdisplay > fixed_mode->vdisplay)
204 return MODE_PANEL;
205
206 target_clock = fixed_mode->clock;
207 }
208
209 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
210 max_lanes = intel_dp_max_lane_count(intel_dp);
211
212 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
213 mode_rate = intel_dp_link_required(target_clock, 18);
214
215 if (mode_rate > max_rate)
216 return MODE_CLOCK_HIGH;
217
218 if (mode->clock < 10000)
219 return MODE_CLOCK_LOW;
220
221 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
222 return MODE_H_ILLEGAL;
223
224 return MODE_OK;
225 }
226
227 static uint32_t
228 pack_aux(uint8_t *src, int src_bytes)
229 {
230 int i;
231 uint32_t v = 0;
232
233 if (src_bytes > 4)
234 src_bytes = 4;
235 for (i = 0; i < src_bytes; i++)
236 v |= ((uint32_t) src[i]) << ((3-i) * 8);
237 return v;
238 }
239
240 static void
241 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
242 {
243 int i;
244 if (dst_bytes > 4)
245 dst_bytes = 4;
246 for (i = 0; i < dst_bytes; i++)
247 dst[i] = src >> ((3-i) * 8);
248 }
249
250 /* hrawclock is 1/4 the FSB frequency */
251 static int
252 intel_hrawclk(struct drm_device *dev)
253 {
254 struct drm_i915_private *dev_priv = dev->dev_private;
255 uint32_t clkcfg;
256
257 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
258 if (IS_VALLEYVIEW(dev))
259 return 200;
260
261 clkcfg = I915_READ(CLKCFG);
262 switch (clkcfg & CLKCFG_FSB_MASK) {
263 case CLKCFG_FSB_400:
264 return 100;
265 case CLKCFG_FSB_533:
266 return 133;
267 case CLKCFG_FSB_667:
268 return 166;
269 case CLKCFG_FSB_800:
270 return 200;
271 case CLKCFG_FSB_1067:
272 return 266;
273 case CLKCFG_FSB_1333:
274 return 333;
275 /* these two are just a guess; one of them might be right */
276 case CLKCFG_FSB_1600:
277 case CLKCFG_FSB_1600_ALT:
278 return 400;
279 default:
280 return 133;
281 }
282 }
283
284 static void
285 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
286 struct intel_dp *intel_dp,
287 struct edp_power_seq *out);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp,
291 struct edp_power_seq *out);
292
293 static void pps_lock(struct intel_dp *intel_dp)
294 {
295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
296 struct intel_encoder *encoder = &intel_dig_port->base;
297 struct drm_device *dev = encoder->base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 enum intel_display_power_domain power_domain;
300
301 /*
302 * See vlv_power_sequencer_reset() why we need
303 * a power domain reference here.
304 */
305 power_domain = intel_display_port_power_domain(encoder);
306 intel_display_power_get(dev_priv, power_domain);
307
308 mutex_lock(&dev_priv->pps_mutex);
309 }
310
311 static void pps_unlock(struct intel_dp *intel_dp)
312 {
313 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
314 struct intel_encoder *encoder = &intel_dig_port->base;
315 struct drm_device *dev = encoder->base.dev;
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 enum intel_display_power_domain power_domain;
318
319 mutex_unlock(&dev_priv->pps_mutex);
320
321 power_domain = intel_display_port_power_domain(encoder);
322 intel_display_power_put(dev_priv, power_domain);
323 }
324
325 static enum pipe
326 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
327 {
328 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
329 struct drm_device *dev = intel_dig_port->base.base.dev;
330 struct drm_i915_private *dev_priv = dev->dev_private;
331 struct intel_encoder *encoder;
332 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
333 struct edp_power_seq power_seq;
334
335 lockdep_assert_held(&dev_priv->pps_mutex);
336
337 if (intel_dp->pps_pipe != INVALID_PIPE)
338 return intel_dp->pps_pipe;
339
340 /*
341 * We don't have power sequencer currently.
342 * Pick one that's not used by other ports.
343 */
344 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
345 base.head) {
346 struct intel_dp *tmp;
347
348 if (encoder->type != INTEL_OUTPUT_EDP)
349 continue;
350
351 tmp = enc_to_intel_dp(&encoder->base);
352
353 if (tmp->pps_pipe != INVALID_PIPE)
354 pipes &= ~(1 << tmp->pps_pipe);
355 }
356
357 /*
358 * Didn't find one. This should not happen since there
359 * are two power sequencers and up to two eDP ports.
360 */
361 if (WARN_ON(pipes == 0))
362 return PIPE_A;
363
364 intel_dp->pps_pipe = ffs(pipes) - 1;
365
366 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
367 pipe_name(intel_dp->pps_pipe),
368 port_name(intel_dig_port->port));
369
370 /* init power sequencer on this pipe and port */
371 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
372 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
373 &power_seq);
374
375 return intel_dp->pps_pipe;
376 }
377
378 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
379 enum pipe pipe);
380
381 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
382 enum pipe pipe)
383 {
384 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
385 }
386
387 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
388 enum pipe pipe)
389 {
390 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
391 }
392
393 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
394 enum pipe pipe)
395 {
396 return true;
397 }
398
399 static enum pipe
400 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
401 enum port port,
402 vlv_pipe_check pipe_check)
403 {
404 enum pipe pipe;
405
406 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
407 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
408 PANEL_PORT_SELECT_MASK;
409
410 if (port_sel != PANEL_PORT_SELECT_VLV(port))
411 continue;
412
413 if (!pipe_check(dev_priv, pipe))
414 continue;
415
416 return pipe;
417 }
418
419 return INVALID_PIPE;
420 }
421
422 static void
423 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
424 {
425 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
426 struct drm_device *dev = intel_dig_port->base.base.dev;
427 struct drm_i915_private *dev_priv = dev->dev_private;
428 struct edp_power_seq power_seq;
429 enum port port = intel_dig_port->port;
430
431 lockdep_assert_held(&dev_priv->pps_mutex);
432
433 /* try to find a pipe with this port selected */
434 /* first pick one where the panel is on */
435 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
436 vlv_pipe_has_pp_on);
437 /* didn't find one? pick one where vdd is on */
438 if (intel_dp->pps_pipe == INVALID_PIPE)
439 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
440 vlv_pipe_has_vdd_on);
441 /* didn't find one? pick one with just the correct port */
442 if (intel_dp->pps_pipe == INVALID_PIPE)
443 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
444 vlv_pipe_any);
445
446 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
447 if (intel_dp->pps_pipe == INVALID_PIPE) {
448 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
449 port_name(port));
450 return;
451 }
452
453 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
454 port_name(port), pipe_name(intel_dp->pps_pipe));
455
456 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
457 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
458 &power_seq);
459 }
460
461 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
462 {
463 struct drm_device *dev = dev_priv->dev;
464 struct intel_encoder *encoder;
465
466 if (WARN_ON(!IS_VALLEYVIEW(dev)))
467 return;
468
469 /*
470 * We can't grab pps_mutex here due to deadlock with power_domain
471 * mutex when power_domain functions are called while holding pps_mutex.
472 * That also means that in order to use pps_pipe the code needs to
473 * hold both a power domain reference and pps_mutex, and the power domain
474 * reference get/put must be done while _not_ holding pps_mutex.
475 * pps_{lock,unlock}() do these steps in the correct order, so one
476 * should use them always.
477 */
478
479 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
480 struct intel_dp *intel_dp;
481
482 if (encoder->type != INTEL_OUTPUT_EDP)
483 continue;
484
485 intel_dp = enc_to_intel_dp(&encoder->base);
486 intel_dp->pps_pipe = INVALID_PIPE;
487 }
488 }
489
490 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
491 {
492 struct drm_device *dev = intel_dp_to_dev(intel_dp);
493
494 if (HAS_PCH_SPLIT(dev))
495 return PCH_PP_CONTROL;
496 else
497 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
498 }
499
500 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
501 {
502 struct drm_device *dev = intel_dp_to_dev(intel_dp);
503
504 if (HAS_PCH_SPLIT(dev))
505 return PCH_PP_STATUS;
506 else
507 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
508 }
509
510 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
511 This function only applicable when panel PM state is not to be tracked */
512 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
513 void *unused)
514 {
515 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
516 edp_notifier);
517 struct drm_device *dev = intel_dp_to_dev(intel_dp);
518 struct drm_i915_private *dev_priv = dev->dev_private;
519 u32 pp_div;
520 u32 pp_ctrl_reg, pp_div_reg;
521
522 if (!is_edp(intel_dp) || code != SYS_RESTART)
523 return 0;
524
525 pps_lock(intel_dp);
526
527 if (IS_VALLEYVIEW(dev)) {
528 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
529
530 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
531 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
532 pp_div = I915_READ(pp_div_reg);
533 pp_div &= PP_REFERENCE_DIVIDER_MASK;
534
535 /* 0x1F write to PP_DIV_REG sets max cycle delay */
536 I915_WRITE(pp_div_reg, pp_div | 0x1F);
537 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
538 msleep(intel_dp->panel_power_cycle_delay);
539 }
540
541 pps_unlock(intel_dp);
542
543 return 0;
544 }
545
546 static bool edp_have_panel_power(struct intel_dp *intel_dp)
547 {
548 struct drm_device *dev = intel_dp_to_dev(intel_dp);
549 struct drm_i915_private *dev_priv = dev->dev_private;
550
551 lockdep_assert_held(&dev_priv->pps_mutex);
552
553 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
554 }
555
556 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
557 {
558 struct drm_device *dev = intel_dp_to_dev(intel_dp);
559 struct drm_i915_private *dev_priv = dev->dev_private;
560
561 lockdep_assert_held(&dev_priv->pps_mutex);
562
563 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
564 }
565
566 static void
567 intel_dp_check_edp(struct intel_dp *intel_dp)
568 {
569 struct drm_device *dev = intel_dp_to_dev(intel_dp);
570 struct drm_i915_private *dev_priv = dev->dev_private;
571
572 if (!is_edp(intel_dp))
573 return;
574
575 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
576 WARN(1, "eDP powered off while attempting aux channel communication.\n");
577 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
578 I915_READ(_pp_stat_reg(intel_dp)),
579 I915_READ(_pp_ctrl_reg(intel_dp)));
580 }
581 }
582
583 static uint32_t
584 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
585 {
586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
587 struct drm_device *dev = intel_dig_port->base.base.dev;
588 struct drm_i915_private *dev_priv = dev->dev_private;
589 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
590 uint32_t status;
591 bool done;
592
593 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
594 if (has_aux_irq)
595 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
596 msecs_to_jiffies_timeout(10));
597 else
598 done = wait_for_atomic(C, 10) == 0;
599 if (!done)
600 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
601 has_aux_irq);
602 #undef C
603
604 return status;
605 }
606
607 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
608 {
609 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
610 struct drm_device *dev = intel_dig_port->base.base.dev;
611
612 /*
613 * The clock divider is based off the hrawclk, and would like to run at
614 * 2MHz. So, take the hrawclk value and divide by 2 and use that
615 */
616 return index ? 0 : intel_hrawclk(dev) / 2;
617 }
618
619 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
620 {
621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
622 struct drm_device *dev = intel_dig_port->base.base.dev;
623
624 if (index)
625 return 0;
626
627 if (intel_dig_port->port == PORT_A) {
628 if (IS_GEN6(dev) || IS_GEN7(dev))
629 return 200; /* SNB & IVB eDP input clock at 400Mhz */
630 else
631 return 225; /* eDP input clock at 450Mhz */
632 } else {
633 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
634 }
635 }
636
637 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
638 {
639 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
640 struct drm_device *dev = intel_dig_port->base.base.dev;
641 struct drm_i915_private *dev_priv = dev->dev_private;
642
643 if (intel_dig_port->port == PORT_A) {
644 if (index)
645 return 0;
646 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
647 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
648 /* Workaround for non-ULT HSW */
649 switch (index) {
650 case 0: return 63;
651 case 1: return 72;
652 default: return 0;
653 }
654 } else {
655 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
656 }
657 }
658
659 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
660 {
661 return index ? 0 : 100;
662 }
663
664 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
665 bool has_aux_irq,
666 int send_bytes,
667 uint32_t aux_clock_divider)
668 {
669 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
670 struct drm_device *dev = intel_dig_port->base.base.dev;
671 uint32_t precharge, timeout;
672
673 if (IS_GEN6(dev))
674 precharge = 3;
675 else
676 precharge = 5;
677
678 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
679 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
680 else
681 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
682
683 return DP_AUX_CH_CTL_SEND_BUSY |
684 DP_AUX_CH_CTL_DONE |
685 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
686 DP_AUX_CH_CTL_TIME_OUT_ERROR |
687 timeout |
688 DP_AUX_CH_CTL_RECEIVE_ERROR |
689 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
690 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
691 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
692 }
693
694 static int
695 intel_dp_aux_ch(struct intel_dp *intel_dp,
696 uint8_t *send, int send_bytes,
697 uint8_t *recv, int recv_size)
698 {
699 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
700 struct drm_device *dev = intel_dig_port->base.base.dev;
701 struct drm_i915_private *dev_priv = dev->dev_private;
702 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
703 uint32_t ch_data = ch_ctl + 4;
704 uint32_t aux_clock_divider;
705 int i, ret, recv_bytes;
706 uint32_t status;
707 int try, clock = 0;
708 bool has_aux_irq = HAS_AUX_IRQ(dev);
709 bool vdd;
710
711 pps_lock(intel_dp);
712
713 /*
714 * We will be called with VDD already enabled for dpcd/edid/oui reads.
715 * In such cases we want to leave VDD enabled and it's up to upper layers
716 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
717 * ourselves.
718 */
719 vdd = edp_panel_vdd_on(intel_dp);
720
721 /* dp aux is extremely sensitive to irq latency, hence request the
722 * lowest possible wakeup latency and so prevent the cpu from going into
723 * deep sleep states.
724 */
725 pm_qos_update_request(&dev_priv->pm_qos, 0);
726
727 intel_dp_check_edp(intel_dp);
728
729 intel_aux_display_runtime_get(dev_priv);
730
731 /* Try to wait for any previous AUX channel activity */
732 for (try = 0; try < 3; try++) {
733 status = I915_READ_NOTRACE(ch_ctl);
734 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
735 break;
736 msleep(1);
737 }
738
739 if (try == 3) {
740 WARN(1, "dp_aux_ch not started status 0x%08x\n",
741 I915_READ(ch_ctl));
742 ret = -EBUSY;
743 goto out;
744 }
745
746 /* Only 5 data registers! */
747 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
748 ret = -E2BIG;
749 goto out;
750 }
751
752 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
753 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
754 has_aux_irq,
755 send_bytes,
756 aux_clock_divider);
757
758 /* Must try at least 3 times according to DP spec */
759 for (try = 0; try < 5; try++) {
760 /* Load the send data into the aux channel data registers */
761 for (i = 0; i < send_bytes; i += 4)
762 I915_WRITE(ch_data + i,
763 pack_aux(send + i, send_bytes - i));
764
765 /* Send the command and wait for it to complete */
766 I915_WRITE(ch_ctl, send_ctl);
767
768 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
769
770 /* Clear done status and any errors */
771 I915_WRITE(ch_ctl,
772 status |
773 DP_AUX_CH_CTL_DONE |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 DP_AUX_CH_CTL_RECEIVE_ERROR);
776
777 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
778 DP_AUX_CH_CTL_RECEIVE_ERROR))
779 continue;
780 if (status & DP_AUX_CH_CTL_DONE)
781 break;
782 }
783 if (status & DP_AUX_CH_CTL_DONE)
784 break;
785 }
786
787 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
788 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
789 ret = -EBUSY;
790 goto out;
791 }
792
793 /* Check for timeout or receive error.
794 * Timeouts occur when the sink is not connected
795 */
796 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
797 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
798 ret = -EIO;
799 goto out;
800 }
801
802 /* Timeouts occur when the device isn't connected, so they're
803 * "normal" -- don't fill the kernel log with these */
804 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
805 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
806 ret = -ETIMEDOUT;
807 goto out;
808 }
809
810 /* Unload any bytes sent back from the other side */
811 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
812 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
813 if (recv_bytes > recv_size)
814 recv_bytes = recv_size;
815
816 for (i = 0; i < recv_bytes; i += 4)
817 unpack_aux(I915_READ(ch_data + i),
818 recv + i, recv_bytes - i);
819
820 ret = recv_bytes;
821 out:
822 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
823 intel_aux_display_runtime_put(dev_priv);
824
825 if (vdd)
826 edp_panel_vdd_off(intel_dp, false);
827
828 pps_unlock(intel_dp);
829
830 return ret;
831 }
832
833 #define BARE_ADDRESS_SIZE 3
834 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
835 static ssize_t
836 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
837 {
838 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
839 uint8_t txbuf[20], rxbuf[20];
840 size_t txsize, rxsize;
841 int ret;
842
843 txbuf[0] = msg->request << 4;
844 txbuf[1] = msg->address >> 8;
845 txbuf[2] = msg->address & 0xff;
846 txbuf[3] = msg->size - 1;
847
848 switch (msg->request & ~DP_AUX_I2C_MOT) {
849 case DP_AUX_NATIVE_WRITE:
850 case DP_AUX_I2C_WRITE:
851 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
852 rxsize = 1;
853
854 if (WARN_ON(txsize > 20))
855 return -E2BIG;
856
857 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
858
859 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
860 if (ret > 0) {
861 msg->reply = rxbuf[0] >> 4;
862
863 /* Return payload size. */
864 ret = msg->size;
865 }
866 break;
867
868 case DP_AUX_NATIVE_READ:
869 case DP_AUX_I2C_READ:
870 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
871 rxsize = msg->size + 1;
872
873 if (WARN_ON(rxsize > 20))
874 return -E2BIG;
875
876 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
877 if (ret > 0) {
878 msg->reply = rxbuf[0] >> 4;
879 /*
880 * Assume happy day, and copy the data. The caller is
881 * expected to check msg->reply before touching it.
882 *
883 * Return payload size.
884 */
885 ret--;
886 memcpy(msg->buffer, rxbuf + 1, ret);
887 }
888 break;
889
890 default:
891 ret = -EINVAL;
892 break;
893 }
894
895 return ret;
896 }
897
898 static void
899 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
900 {
901 struct drm_device *dev = intel_dp_to_dev(intel_dp);
902 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
903 enum port port = intel_dig_port->port;
904 const char *name = NULL;
905 int ret;
906
907 switch (port) {
908 case PORT_A:
909 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
910 name = "DPDDC-A";
911 break;
912 case PORT_B:
913 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
914 name = "DPDDC-B";
915 break;
916 case PORT_C:
917 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
918 name = "DPDDC-C";
919 break;
920 case PORT_D:
921 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
922 name = "DPDDC-D";
923 break;
924 default:
925 BUG();
926 }
927
928 if (!HAS_DDI(dev))
929 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
930
931 intel_dp->aux.name = name;
932 intel_dp->aux.dev = dev->dev;
933 intel_dp->aux.transfer = intel_dp_aux_transfer;
934
935 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
936 connector->base.kdev->kobj.name);
937
938 ret = drm_dp_aux_register(&intel_dp->aux);
939 if (ret < 0) {
940 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
941 name, ret);
942 return;
943 }
944
945 ret = sysfs_create_link(&connector->base.kdev->kobj,
946 &intel_dp->aux.ddc.dev.kobj,
947 intel_dp->aux.ddc.dev.kobj.name);
948 if (ret < 0) {
949 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
950 drm_dp_aux_unregister(&intel_dp->aux);
951 }
952 }
953
954 static void
955 intel_dp_connector_unregister(struct intel_connector *intel_connector)
956 {
957 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
958
959 if (!intel_connector->mst_port)
960 sysfs_remove_link(&intel_connector->base.kdev->kobj,
961 intel_dp->aux.ddc.dev.kobj.name);
962 intel_connector_unregister(intel_connector);
963 }
964
965 static void
966 hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
967 {
968 switch (link_bw) {
969 case DP_LINK_BW_1_62:
970 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
971 break;
972 case DP_LINK_BW_2_7:
973 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
974 break;
975 case DP_LINK_BW_5_4:
976 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
977 break;
978 }
979 }
980
981 static void
982 intel_dp_set_clock(struct intel_encoder *encoder,
983 struct intel_crtc_config *pipe_config, int link_bw)
984 {
985 struct drm_device *dev = encoder->base.dev;
986 const struct dp_link_dpll *divisor = NULL;
987 int i, count = 0;
988
989 if (IS_G4X(dev)) {
990 divisor = gen4_dpll;
991 count = ARRAY_SIZE(gen4_dpll);
992 } else if (HAS_PCH_SPLIT(dev)) {
993 divisor = pch_dpll;
994 count = ARRAY_SIZE(pch_dpll);
995 } else if (IS_CHERRYVIEW(dev)) {
996 divisor = chv_dpll;
997 count = ARRAY_SIZE(chv_dpll);
998 } else if (IS_VALLEYVIEW(dev)) {
999 divisor = vlv_dpll;
1000 count = ARRAY_SIZE(vlv_dpll);
1001 }
1002
1003 if (divisor && count) {
1004 for (i = 0; i < count; i++) {
1005 if (link_bw == divisor[i].link_bw) {
1006 pipe_config->dpll = divisor[i].dpll;
1007 pipe_config->clock_set = true;
1008 break;
1009 }
1010 }
1011 }
1012 }
1013
1014 bool
1015 intel_dp_compute_config(struct intel_encoder *encoder,
1016 struct intel_crtc_config *pipe_config)
1017 {
1018 struct drm_device *dev = encoder->base.dev;
1019 struct drm_i915_private *dev_priv = dev->dev_private;
1020 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
1021 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1022 enum port port = dp_to_dig_port(intel_dp)->port;
1023 struct intel_crtc *intel_crtc = encoder->new_crtc;
1024 struct intel_connector *intel_connector = intel_dp->attached_connector;
1025 int lane_count, clock;
1026 int min_lane_count = 1;
1027 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1028 /* Conveniently, the link BW constants become indices with a shift...*/
1029 int min_clock = 0;
1030 int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
1031 int bpp, mode_rate;
1032 static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
1033 int link_avail, link_clock;
1034
1035 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1036 pipe_config->has_pch_encoder = true;
1037
1038 pipe_config->has_dp_encoder = true;
1039 pipe_config->has_drrs = false;
1040 pipe_config->has_audio = intel_dp->has_audio;
1041
1042 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1043 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1044 adjusted_mode);
1045 if (!HAS_PCH_SPLIT(dev))
1046 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1047 intel_connector->panel.fitting_mode);
1048 else
1049 intel_pch_panel_fitting(intel_crtc, pipe_config,
1050 intel_connector->panel.fitting_mode);
1051 }
1052
1053 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1054 return false;
1055
1056 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1057 "max bw %02x pixel clock %iKHz\n",
1058 max_lane_count, bws[max_clock],
1059 adjusted_mode->crtc_clock);
1060
1061 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1062 * bpc in between. */
1063 bpp = pipe_config->pipe_bpp;
1064 if (is_edp(intel_dp)) {
1065 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1066 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1067 dev_priv->vbt.edp_bpp);
1068 bpp = dev_priv->vbt.edp_bpp;
1069 }
1070
1071 /*
1072 * Use the maximum clock and number of lanes the eDP panel
1073 * advertizes being capable of. The panels are generally
1074 * designed to support only a single clock and lane
1075 * configuration, and typically these values correspond to the
1076 * native resolution of the panel.
1077 */
1078 min_lane_count = max_lane_count;
1079 min_clock = max_clock;
1080 }
1081
1082 for (; bpp >= 6*3; bpp -= 2*3) {
1083 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1084 bpp);
1085
1086 for (clock = min_clock; clock <= max_clock; clock++) {
1087 for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
1088 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
1089 link_avail = intel_dp_max_data_rate(link_clock,
1090 lane_count);
1091
1092 if (mode_rate <= link_avail) {
1093 goto found;
1094 }
1095 }
1096 }
1097 }
1098
1099 return false;
1100
1101 found:
1102 if (intel_dp->color_range_auto) {
1103 /*
1104 * See:
1105 * CEA-861-E - 5.1 Default Encoding Parameters
1106 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1107 */
1108 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1109 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1110 else
1111 intel_dp->color_range = 0;
1112 }
1113
1114 if (intel_dp->color_range)
1115 pipe_config->limited_color_range = true;
1116
1117 intel_dp->link_bw = bws[clock];
1118 intel_dp->lane_count = lane_count;
1119 pipe_config->pipe_bpp = bpp;
1120 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
1121
1122 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1123 intel_dp->link_bw, intel_dp->lane_count,
1124 pipe_config->port_clock, bpp);
1125 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1126 mode_rate, link_avail);
1127
1128 intel_link_compute_m_n(bpp, lane_count,
1129 adjusted_mode->crtc_clock,
1130 pipe_config->port_clock,
1131 &pipe_config->dp_m_n);
1132
1133 if (intel_connector->panel.downclock_mode != NULL &&
1134 intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
1135 pipe_config->has_drrs = true;
1136 intel_link_compute_m_n(bpp, lane_count,
1137 intel_connector->panel.downclock_mode->clock,
1138 pipe_config->port_clock,
1139 &pipe_config->dp_m2_n2);
1140 }
1141
1142 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1143 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1144 else
1145 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1146
1147 return true;
1148 }
1149
1150 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1151 {
1152 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1153 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1154 struct drm_device *dev = crtc->base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 u32 dpa_ctl;
1157
1158 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
1159 dpa_ctl = I915_READ(DP_A);
1160 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1161
1162 if (crtc->config.port_clock == 162000) {
1163 /* For a long time we've carried around a ILK-DevA w/a for the
1164 * 160MHz clock. If we're really unlucky, it's still required.
1165 */
1166 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1167 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1168 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1169 } else {
1170 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1171 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1172 }
1173
1174 I915_WRITE(DP_A, dpa_ctl);
1175
1176 POSTING_READ(DP_A);
1177 udelay(500);
1178 }
1179
1180 static void intel_dp_prepare(struct intel_encoder *encoder)
1181 {
1182 struct drm_device *dev = encoder->base.dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1185 enum port port = dp_to_dig_port(intel_dp)->port;
1186 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1187 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
1188
1189 /*
1190 * There are four kinds of DP registers:
1191 *
1192 * IBX PCH
1193 * SNB CPU
1194 * IVB CPU
1195 * CPT PCH
1196 *
1197 * IBX PCH and CPU are the same for almost everything,
1198 * except that the CPU DP PLL is configured in this
1199 * register
1200 *
1201 * CPT PCH is quite different, having many bits moved
1202 * to the TRANS_DP_CTL register instead. That
1203 * configuration happens (oddly) in ironlake_pch_enable
1204 */
1205
1206 /* Preserve the BIOS-computed detected bit. This is
1207 * supposed to be read-only.
1208 */
1209 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1210
1211 /* Handle DP bits in common between all three register formats */
1212 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1213 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1214
1215 if (crtc->config.has_audio) {
1216 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1217 pipe_name(crtc->pipe));
1218 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1219 intel_write_eld(&encoder->base, adjusted_mode);
1220 }
1221
1222 /* Split out the IBX/CPU vs CPT settings */
1223
1224 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1225 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1226 intel_dp->DP |= DP_SYNC_HS_HIGH;
1227 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1228 intel_dp->DP |= DP_SYNC_VS_HIGH;
1229 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1230
1231 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1232 intel_dp->DP |= DP_ENHANCED_FRAMING;
1233
1234 intel_dp->DP |= crtc->pipe << 29;
1235 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1236 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1237 intel_dp->DP |= intel_dp->color_range;
1238
1239 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1240 intel_dp->DP |= DP_SYNC_HS_HIGH;
1241 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1242 intel_dp->DP |= DP_SYNC_VS_HIGH;
1243 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1244
1245 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1246 intel_dp->DP |= DP_ENHANCED_FRAMING;
1247
1248 if (!IS_CHERRYVIEW(dev)) {
1249 if (crtc->pipe == 1)
1250 intel_dp->DP |= DP_PIPEB_SELECT;
1251 } else {
1252 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1253 }
1254 } else {
1255 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1256 }
1257 }
1258
1259 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1260 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1261
1262 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1263 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1264
1265 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1266 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1267
1268 static void wait_panel_status(struct intel_dp *intel_dp,
1269 u32 mask,
1270 u32 value)
1271 {
1272 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 u32 pp_stat_reg, pp_ctrl_reg;
1275
1276 lockdep_assert_held(&dev_priv->pps_mutex);
1277
1278 pp_stat_reg = _pp_stat_reg(intel_dp);
1279 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1280
1281 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1282 mask, value,
1283 I915_READ(pp_stat_reg),
1284 I915_READ(pp_ctrl_reg));
1285
1286 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1287 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1288 I915_READ(pp_stat_reg),
1289 I915_READ(pp_ctrl_reg));
1290 }
1291
1292 DRM_DEBUG_KMS("Wait complete\n");
1293 }
1294
1295 static void wait_panel_on(struct intel_dp *intel_dp)
1296 {
1297 DRM_DEBUG_KMS("Wait for panel power on\n");
1298 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1299 }
1300
1301 static void wait_panel_off(struct intel_dp *intel_dp)
1302 {
1303 DRM_DEBUG_KMS("Wait for panel power off time\n");
1304 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1305 }
1306
1307 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1308 {
1309 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1310
1311 /* When we disable the VDD override bit last we have to do the manual
1312 * wait. */
1313 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1314 intel_dp->panel_power_cycle_delay);
1315
1316 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1317 }
1318
1319 static void wait_backlight_on(struct intel_dp *intel_dp)
1320 {
1321 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1322 intel_dp->backlight_on_delay);
1323 }
1324
1325 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1326 {
1327 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1328 intel_dp->backlight_off_delay);
1329 }
1330
1331 /* Read the current pp_control value, unlocking the register if it
1332 * is locked
1333 */
1334
1335 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1336 {
1337 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1338 struct drm_i915_private *dev_priv = dev->dev_private;
1339 u32 control;
1340
1341 lockdep_assert_held(&dev_priv->pps_mutex);
1342
1343 control = I915_READ(_pp_ctrl_reg(intel_dp));
1344 control &= ~PANEL_UNLOCK_MASK;
1345 control |= PANEL_UNLOCK_REGS;
1346 return control;
1347 }
1348
1349 /*
1350 * Must be paired with edp_panel_vdd_off().
1351 * Must hold pps_mutex around the whole on/off sequence.
1352 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1353 */
1354 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1355 {
1356 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 enum intel_display_power_domain power_domain;
1361 u32 pp;
1362 u32 pp_stat_reg, pp_ctrl_reg;
1363 bool need_to_disable = !intel_dp->want_panel_vdd;
1364
1365 lockdep_assert_held(&dev_priv->pps_mutex);
1366
1367 if (!is_edp(intel_dp))
1368 return false;
1369
1370 intel_dp->want_panel_vdd = true;
1371
1372 if (edp_have_panel_vdd(intel_dp))
1373 return need_to_disable;
1374
1375 power_domain = intel_display_port_power_domain(intel_encoder);
1376 intel_display_power_get(dev_priv, power_domain);
1377
1378 DRM_DEBUG_KMS("Turning eDP VDD on\n");
1379
1380 if (!edp_have_panel_power(intel_dp))
1381 wait_panel_power_cycle(intel_dp);
1382
1383 pp = ironlake_get_pp_control(intel_dp);
1384 pp |= EDP_FORCE_VDD;
1385
1386 pp_stat_reg = _pp_stat_reg(intel_dp);
1387 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1388
1389 I915_WRITE(pp_ctrl_reg, pp);
1390 POSTING_READ(pp_ctrl_reg);
1391 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1392 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1393 /*
1394 * If the panel wasn't on, delay before accessing aux channel
1395 */
1396 if (!edp_have_panel_power(intel_dp)) {
1397 DRM_DEBUG_KMS("eDP was not running\n");
1398 msleep(intel_dp->panel_power_up_delay);
1399 }
1400
1401 return need_to_disable;
1402 }
1403
1404 /*
1405 * Must be paired with intel_edp_panel_vdd_off() or
1406 * intel_edp_panel_off().
1407 * Nested calls to these functions are not allowed since
1408 * we drop the lock. Caller must use some higher level
1409 * locking to prevent nested calls from other threads.
1410 */
1411 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1412 {
1413 bool vdd;
1414
1415 if (!is_edp(intel_dp))
1416 return;
1417
1418 pps_lock(intel_dp);
1419 vdd = edp_panel_vdd_on(intel_dp);
1420 pps_unlock(intel_dp);
1421
1422 WARN(!vdd, "eDP VDD already requested on\n");
1423 }
1424
1425 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1426 {
1427 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 struct intel_digital_port *intel_dig_port =
1430 dp_to_dig_port(intel_dp);
1431 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1432 enum intel_display_power_domain power_domain;
1433 u32 pp;
1434 u32 pp_stat_reg, pp_ctrl_reg;
1435
1436 lockdep_assert_held(&dev_priv->pps_mutex);
1437
1438 WARN_ON(intel_dp->want_panel_vdd);
1439
1440 if (!edp_have_panel_vdd(intel_dp))
1441 return;
1442
1443 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1444
1445 pp = ironlake_get_pp_control(intel_dp);
1446 pp &= ~EDP_FORCE_VDD;
1447
1448 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1449 pp_stat_reg = _pp_stat_reg(intel_dp);
1450
1451 I915_WRITE(pp_ctrl_reg, pp);
1452 POSTING_READ(pp_ctrl_reg);
1453
1454 /* Make sure sequencer is idle before allowing subsequent activity */
1455 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1456 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1457
1458 if ((pp & POWER_TARGET_ON) == 0)
1459 intel_dp->last_power_cycle = jiffies;
1460
1461 power_domain = intel_display_port_power_domain(intel_encoder);
1462 intel_display_power_put(dev_priv, power_domain);
1463 }
1464
1465 static void edp_panel_vdd_work(struct work_struct *__work)
1466 {
1467 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1468 struct intel_dp, panel_vdd_work);
1469
1470 pps_lock(intel_dp);
1471 if (!intel_dp->want_panel_vdd)
1472 edp_panel_vdd_off_sync(intel_dp);
1473 pps_unlock(intel_dp);
1474 }
1475
1476 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1477 {
1478 unsigned long delay;
1479
1480 /*
1481 * Queue the timer to fire a long time from now (relative to the power
1482 * down delay) to keep the panel power up across a sequence of
1483 * operations.
1484 */
1485 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1486 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1487 }
1488
1489 /*
1490 * Must be paired with edp_panel_vdd_on().
1491 * Must hold pps_mutex around the whole on/off sequence.
1492 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1493 */
1494 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1495 {
1496 struct drm_i915_private *dev_priv =
1497 intel_dp_to_dev(intel_dp)->dev_private;
1498
1499 lockdep_assert_held(&dev_priv->pps_mutex);
1500
1501 if (!is_edp(intel_dp))
1502 return;
1503
1504 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1505
1506 intel_dp->want_panel_vdd = false;
1507
1508 if (sync)
1509 edp_panel_vdd_off_sync(intel_dp);
1510 else
1511 edp_panel_vdd_schedule_off(intel_dp);
1512 }
1513
1514 /*
1515 * Must be paired with intel_edp_panel_vdd_on().
1516 * Nested calls to these functions are not allowed since
1517 * we drop the lock. Caller must use some higher level
1518 * locking to prevent nested calls from other threads.
1519 */
1520 static void intel_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1521 {
1522 if (!is_edp(intel_dp))
1523 return;
1524
1525 pps_lock(intel_dp);
1526 edp_panel_vdd_off(intel_dp, sync);
1527 pps_unlock(intel_dp);
1528 }
1529
1530 void intel_edp_panel_on(struct intel_dp *intel_dp)
1531 {
1532 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 u32 pp;
1535 u32 pp_ctrl_reg;
1536
1537 if (!is_edp(intel_dp))
1538 return;
1539
1540 DRM_DEBUG_KMS("Turn eDP power on\n");
1541
1542 pps_lock(intel_dp);
1543
1544 if (edp_have_panel_power(intel_dp)) {
1545 DRM_DEBUG_KMS("eDP power already on\n");
1546 goto out;
1547 }
1548
1549 wait_panel_power_cycle(intel_dp);
1550
1551 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1552 pp = ironlake_get_pp_control(intel_dp);
1553 if (IS_GEN5(dev)) {
1554 /* ILK workaround: disable reset around power sequence */
1555 pp &= ~PANEL_POWER_RESET;
1556 I915_WRITE(pp_ctrl_reg, pp);
1557 POSTING_READ(pp_ctrl_reg);
1558 }
1559
1560 pp |= POWER_TARGET_ON;
1561 if (!IS_GEN5(dev))
1562 pp |= PANEL_POWER_RESET;
1563
1564 I915_WRITE(pp_ctrl_reg, pp);
1565 POSTING_READ(pp_ctrl_reg);
1566
1567 wait_panel_on(intel_dp);
1568 intel_dp->last_power_on = jiffies;
1569
1570 if (IS_GEN5(dev)) {
1571 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1572 I915_WRITE(pp_ctrl_reg, pp);
1573 POSTING_READ(pp_ctrl_reg);
1574 }
1575
1576 out:
1577 pps_unlock(intel_dp);
1578 }
1579
1580 void intel_edp_panel_off(struct intel_dp *intel_dp)
1581 {
1582 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1583 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1584 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 enum intel_display_power_domain power_domain;
1587 u32 pp;
1588 u32 pp_ctrl_reg;
1589
1590 if (!is_edp(intel_dp))
1591 return;
1592
1593 DRM_DEBUG_KMS("Turn eDP power off\n");
1594
1595 pps_lock(intel_dp);
1596
1597 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1598
1599 pp = ironlake_get_pp_control(intel_dp);
1600 /* We need to switch off panel power _and_ force vdd, for otherwise some
1601 * panels get very unhappy and cease to work. */
1602 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1603 EDP_BLC_ENABLE);
1604
1605 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1606
1607 intel_dp->want_panel_vdd = false;
1608
1609 I915_WRITE(pp_ctrl_reg, pp);
1610 POSTING_READ(pp_ctrl_reg);
1611
1612 intel_dp->last_power_cycle = jiffies;
1613 wait_panel_off(intel_dp);
1614
1615 /* We got a reference when we enabled the VDD. */
1616 power_domain = intel_display_port_power_domain(intel_encoder);
1617 intel_display_power_put(dev_priv, power_domain);
1618
1619 pps_unlock(intel_dp);
1620 }
1621
1622 /* Enable backlight in the panel power control. */
1623 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1624 {
1625 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1626 struct drm_device *dev = intel_dig_port->base.base.dev;
1627 struct drm_i915_private *dev_priv = dev->dev_private;
1628 u32 pp;
1629 u32 pp_ctrl_reg;
1630
1631 /*
1632 * If we enable the backlight right away following a panel power
1633 * on, we may see slight flicker as the panel syncs with the eDP
1634 * link. So delay a bit to make sure the image is solid before
1635 * allowing it to appear.
1636 */
1637 wait_backlight_on(intel_dp);
1638
1639 pps_lock(intel_dp);
1640
1641 pp = ironlake_get_pp_control(intel_dp);
1642 pp |= EDP_BLC_ENABLE;
1643
1644 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1645
1646 I915_WRITE(pp_ctrl_reg, pp);
1647 POSTING_READ(pp_ctrl_reg);
1648
1649 pps_unlock(intel_dp);
1650 }
1651
1652 /* Enable backlight PWM and backlight PP control. */
1653 void intel_edp_backlight_on(struct intel_dp *intel_dp)
1654 {
1655 if (!is_edp(intel_dp))
1656 return;
1657
1658 DRM_DEBUG_KMS("\n");
1659
1660 intel_panel_enable_backlight(intel_dp->attached_connector);
1661 _intel_edp_backlight_on(intel_dp);
1662 }
1663
1664 /* Disable backlight in the panel power control. */
1665 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
1666 {
1667 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 u32 pp;
1670 u32 pp_ctrl_reg;
1671
1672 if (!is_edp(intel_dp))
1673 return;
1674
1675 pps_lock(intel_dp);
1676
1677 pp = ironlake_get_pp_control(intel_dp);
1678 pp &= ~EDP_BLC_ENABLE;
1679
1680 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1681
1682 I915_WRITE(pp_ctrl_reg, pp);
1683 POSTING_READ(pp_ctrl_reg);
1684
1685 pps_unlock(intel_dp);
1686
1687 intel_dp->last_backlight_off = jiffies;
1688 edp_wait_backlight_off(intel_dp);
1689 }
1690
1691 /* Disable backlight PP control and backlight PWM. */
1692 void intel_edp_backlight_off(struct intel_dp *intel_dp)
1693 {
1694 if (!is_edp(intel_dp))
1695 return;
1696
1697 DRM_DEBUG_KMS("\n");
1698
1699 _intel_edp_backlight_off(intel_dp);
1700 intel_panel_disable_backlight(intel_dp->attached_connector);
1701 }
1702
1703 /*
1704 * Hook for controlling the panel power control backlight through the bl_power
1705 * sysfs attribute. Take care to handle multiple calls.
1706 */
1707 static void intel_edp_backlight_power(struct intel_connector *connector,
1708 bool enable)
1709 {
1710 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
1711 bool is_enabled;
1712
1713 pps_lock(intel_dp);
1714 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
1715 pps_unlock(intel_dp);
1716
1717 if (is_enabled == enable)
1718 return;
1719
1720 DRM_DEBUG_KMS("panel power control backlight %s\n",
1721 enable ? "enable" : "disable");
1722
1723 if (enable)
1724 _intel_edp_backlight_on(intel_dp);
1725 else
1726 _intel_edp_backlight_off(intel_dp);
1727 }
1728
1729 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1730 {
1731 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1732 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1733 struct drm_device *dev = crtc->dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 u32 dpa_ctl;
1736
1737 assert_pipe_disabled(dev_priv,
1738 to_intel_crtc(crtc)->pipe);
1739
1740 DRM_DEBUG_KMS("\n");
1741 dpa_ctl = I915_READ(DP_A);
1742 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1743 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1744
1745 /* We don't adjust intel_dp->DP while tearing down the link, to
1746 * facilitate link retraining (e.g. after hotplug). Hence clear all
1747 * enable bits here to ensure that we don't enable too much. */
1748 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1749 intel_dp->DP |= DP_PLL_ENABLE;
1750 I915_WRITE(DP_A, intel_dp->DP);
1751 POSTING_READ(DP_A);
1752 udelay(200);
1753 }
1754
1755 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1756 {
1757 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1758 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1759 struct drm_device *dev = crtc->dev;
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 u32 dpa_ctl;
1762
1763 assert_pipe_disabled(dev_priv,
1764 to_intel_crtc(crtc)->pipe);
1765
1766 dpa_ctl = I915_READ(DP_A);
1767 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1768 "dp pll off, should be on\n");
1769 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1770
1771 /* We can't rely on the value tracked for the DP register in
1772 * intel_dp->DP because link_down must not change that (otherwise link
1773 * re-training will fail. */
1774 dpa_ctl &= ~DP_PLL_ENABLE;
1775 I915_WRITE(DP_A, dpa_ctl);
1776 POSTING_READ(DP_A);
1777 udelay(200);
1778 }
1779
1780 /* If the sink supports it, try to set the power state appropriately */
1781 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1782 {
1783 int ret, i;
1784
1785 /* Should have a valid DPCD by this point */
1786 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1787 return;
1788
1789 if (mode != DRM_MODE_DPMS_ON) {
1790 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1791 DP_SET_POWER_D3);
1792 } else {
1793 /*
1794 * When turning on, we need to retry for 1ms to give the sink
1795 * time to wake up.
1796 */
1797 for (i = 0; i < 3; i++) {
1798 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
1799 DP_SET_POWER_D0);
1800 if (ret == 1)
1801 break;
1802 msleep(1);
1803 }
1804 }
1805
1806 if (ret != 1)
1807 DRM_DEBUG_KMS("failed to %s sink power state\n",
1808 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
1809 }
1810
1811 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1812 enum pipe *pipe)
1813 {
1814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1815 enum port port = dp_to_dig_port(intel_dp)->port;
1816 struct drm_device *dev = encoder->base.dev;
1817 struct drm_i915_private *dev_priv = dev->dev_private;
1818 enum intel_display_power_domain power_domain;
1819 u32 tmp;
1820
1821 power_domain = intel_display_port_power_domain(encoder);
1822 if (!intel_display_power_enabled(dev_priv, power_domain))
1823 return false;
1824
1825 tmp = I915_READ(intel_dp->output_reg);
1826
1827 if (!(tmp & DP_PORT_EN))
1828 return false;
1829
1830 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1831 *pipe = PORT_TO_PIPE_CPT(tmp);
1832 } else if (IS_CHERRYVIEW(dev)) {
1833 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
1834 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1835 *pipe = PORT_TO_PIPE(tmp);
1836 } else {
1837 u32 trans_sel;
1838 u32 trans_dp;
1839 int i;
1840
1841 switch (intel_dp->output_reg) {
1842 case PCH_DP_B:
1843 trans_sel = TRANS_DP_PORT_SEL_B;
1844 break;
1845 case PCH_DP_C:
1846 trans_sel = TRANS_DP_PORT_SEL_C;
1847 break;
1848 case PCH_DP_D:
1849 trans_sel = TRANS_DP_PORT_SEL_D;
1850 break;
1851 default:
1852 return true;
1853 }
1854
1855 for_each_pipe(dev_priv, i) {
1856 trans_dp = I915_READ(TRANS_DP_CTL(i));
1857 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1858 *pipe = i;
1859 return true;
1860 }
1861 }
1862
1863 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1864 intel_dp->output_reg);
1865 }
1866
1867 return true;
1868 }
1869
1870 static void intel_dp_get_config(struct intel_encoder *encoder,
1871 struct intel_crtc_config *pipe_config)
1872 {
1873 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1874 u32 tmp, flags = 0;
1875 struct drm_device *dev = encoder->base.dev;
1876 struct drm_i915_private *dev_priv = dev->dev_private;
1877 enum port port = dp_to_dig_port(intel_dp)->port;
1878 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1879 int dotclock;
1880
1881 tmp = I915_READ(intel_dp->output_reg);
1882 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
1883 pipe_config->has_audio = true;
1884
1885 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1886 if (tmp & DP_SYNC_HS_HIGH)
1887 flags |= DRM_MODE_FLAG_PHSYNC;
1888 else
1889 flags |= DRM_MODE_FLAG_NHSYNC;
1890
1891 if (tmp & DP_SYNC_VS_HIGH)
1892 flags |= DRM_MODE_FLAG_PVSYNC;
1893 else
1894 flags |= DRM_MODE_FLAG_NVSYNC;
1895 } else {
1896 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1897 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1898 flags |= DRM_MODE_FLAG_PHSYNC;
1899 else
1900 flags |= DRM_MODE_FLAG_NHSYNC;
1901
1902 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1903 flags |= DRM_MODE_FLAG_PVSYNC;
1904 else
1905 flags |= DRM_MODE_FLAG_NVSYNC;
1906 }
1907
1908 pipe_config->adjusted_mode.flags |= flags;
1909
1910 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1911 tmp & DP_COLOR_RANGE_16_235)
1912 pipe_config->limited_color_range = true;
1913
1914 pipe_config->has_dp_encoder = true;
1915
1916 intel_dp_get_m_n(crtc, pipe_config);
1917
1918 if (port == PORT_A) {
1919 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1920 pipe_config->port_clock = 162000;
1921 else
1922 pipe_config->port_clock = 270000;
1923 }
1924
1925 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1926 &pipe_config->dp_m_n);
1927
1928 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1929 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1930
1931 pipe_config->adjusted_mode.crtc_clock = dotclock;
1932
1933 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1934 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1935 /*
1936 * This is a big fat ugly hack.
1937 *
1938 * Some machines in UEFI boot mode provide us a VBT that has 18
1939 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1940 * unknown we fail to light up. Yet the same BIOS boots up with
1941 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1942 * max, not what it tells us to use.
1943 *
1944 * Note: This will still be broken if the eDP panel is not lit
1945 * up by the BIOS, and thus we can't get the mode at module
1946 * load.
1947 */
1948 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1949 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1950 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1951 }
1952 }
1953
1954 static bool is_edp_psr(struct intel_dp *intel_dp)
1955 {
1956 return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1957 }
1958
1959 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1960 {
1961 struct drm_i915_private *dev_priv = dev->dev_private;
1962
1963 if (!HAS_PSR(dev))
1964 return false;
1965
1966 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1967 }
1968
1969 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1970 struct edp_vsc_psr *vsc_psr)
1971 {
1972 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1973 struct drm_device *dev = dig_port->base.base.dev;
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1976 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1977 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1978 uint32_t *data = (uint32_t *) vsc_psr;
1979 unsigned int i;
1980
1981 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1982 the video DIP being updated before program video DIP data buffer
1983 registers for DIP being updated. */
1984 I915_WRITE(ctl_reg, 0);
1985 POSTING_READ(ctl_reg);
1986
1987 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1988 if (i < sizeof(struct edp_vsc_psr))
1989 I915_WRITE(data_reg + i, *data++);
1990 else
1991 I915_WRITE(data_reg + i, 0);
1992 }
1993
1994 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1995 POSTING_READ(ctl_reg);
1996 }
1997
1998 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1999 {
2000 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct edp_vsc_psr psr_vsc;
2003
2004 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
2005 memset(&psr_vsc, 0, sizeof(psr_vsc));
2006 psr_vsc.sdp_header.HB0 = 0;
2007 psr_vsc.sdp_header.HB1 = 0x7;
2008 psr_vsc.sdp_header.HB2 = 0x2;
2009 psr_vsc.sdp_header.HB3 = 0x8;
2010 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
2011
2012 /* Avoid continuous PSR exit by masking memup and hpd */
2013 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
2014 EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
2015 }
2016
2017 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
2018 {
2019 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2020 struct drm_device *dev = dig_port->base.base.dev;
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022 uint32_t aux_clock_divider;
2023 int precharge = 0x3;
2024 int msg_size = 5; /* Header(4) + Message(1) */
2025 bool only_standby = false;
2026
2027 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
2028
2029 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2030 only_standby = true;
2031
2032 /* Enable PSR in sink */
2033 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
2034 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2035 DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
2036 else
2037 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
2038 DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
2039
2040 /* Setup AUX registers */
2041 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
2042 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
2043 I915_WRITE(EDP_PSR_AUX_CTL(dev),
2044 DP_AUX_CH_CTL_TIME_OUT_400us |
2045 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
2046 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
2047 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
2048 }
2049
2050 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
2051 {
2052 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2053 struct drm_device *dev = dig_port->base.base.dev;
2054 struct drm_i915_private *dev_priv = dev->dev_private;
2055 uint32_t max_sleep_time = 0x1f;
2056 uint32_t idle_frames = 1;
2057 uint32_t val = 0x0;
2058 const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
2059 bool only_standby = false;
2060
2061 if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
2062 only_standby = true;
2063
2064 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
2065 val |= EDP_PSR_LINK_STANDBY;
2066 val |= EDP_PSR_TP2_TP3_TIME_0us;
2067 val |= EDP_PSR_TP1_TIME_0us;
2068 val |= EDP_PSR_SKIP_AUX_EXIT;
2069 val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
2070 } else
2071 val |= EDP_PSR_LINK_DISABLE;
2072
2073 I915_WRITE(EDP_PSR_CTL(dev), val |
2074 (IS_BROADWELL(dev) ? 0 : link_entry_time) |
2075 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
2076 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
2077 EDP_PSR_ENABLE);
2078 }
2079
2080 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
2081 {
2082 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2083 struct drm_device *dev = dig_port->base.base.dev;
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 struct drm_crtc *crtc = dig_port->base.base.crtc;
2086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2087
2088 lockdep_assert_held(&dev_priv->psr.lock);
2089 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
2090 WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
2091
2092 dev_priv->psr.source_ok = false;
2093
2094 if (IS_HASWELL(dev) && dig_port->port != PORT_A) {
2095 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
2096 return false;
2097 }
2098
2099 if (!i915.enable_psr) {
2100 DRM_DEBUG_KMS("PSR disable by flag\n");
2101 return false;
2102 }
2103
2104 /* Below limitations aren't valid for Broadwell */
2105 if (IS_BROADWELL(dev))
2106 goto out;
2107
2108 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
2109 S3D_ENABLE) {
2110 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
2111 return false;
2112 }
2113
2114 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
2115 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
2116 return false;
2117 }
2118
2119 out:
2120 dev_priv->psr.source_ok = true;
2121 return true;
2122 }
2123
2124 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
2125 {
2126 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2127 struct drm_device *dev = intel_dig_port->base.base.dev;
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129
2130 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2131 WARN_ON(dev_priv->psr.active);
2132 lockdep_assert_held(&dev_priv->psr.lock);
2133
2134 /* Enable PSR on the panel */
2135 intel_edp_psr_enable_sink(intel_dp);
2136
2137 /* Enable PSR on the host */
2138 intel_edp_psr_enable_source(intel_dp);
2139
2140 dev_priv->psr.active = true;
2141 }
2142
2143 void intel_edp_psr_enable(struct intel_dp *intel_dp)
2144 {
2145 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2146 struct drm_i915_private *dev_priv = dev->dev_private;
2147
2148 if (!HAS_PSR(dev)) {
2149 DRM_DEBUG_KMS("PSR not supported on this platform\n");
2150 return;
2151 }
2152
2153 if (!is_edp_psr(intel_dp)) {
2154 DRM_DEBUG_KMS("PSR not supported by this panel\n");
2155 return;
2156 }
2157
2158 mutex_lock(&dev_priv->psr.lock);
2159 if (dev_priv->psr.enabled) {
2160 DRM_DEBUG_KMS("PSR already in use\n");
2161 mutex_unlock(&dev_priv->psr.lock);
2162 return;
2163 }
2164
2165 dev_priv->psr.busy_frontbuffer_bits = 0;
2166
2167 /* Setup PSR once */
2168 intel_edp_psr_setup(intel_dp);
2169
2170 if (intel_edp_psr_match_conditions(intel_dp))
2171 dev_priv->psr.enabled = intel_dp;
2172 mutex_unlock(&dev_priv->psr.lock);
2173 }
2174
2175 void intel_edp_psr_disable(struct intel_dp *intel_dp)
2176 {
2177 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179
2180 mutex_lock(&dev_priv->psr.lock);
2181 if (!dev_priv->psr.enabled) {
2182 mutex_unlock(&dev_priv->psr.lock);
2183 return;
2184 }
2185
2186 if (dev_priv->psr.active) {
2187 I915_WRITE(EDP_PSR_CTL(dev),
2188 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
2189
2190 /* Wait till PSR is idle */
2191 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
2192 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
2193 DRM_ERROR("Timed out waiting for PSR Idle State\n");
2194
2195 dev_priv->psr.active = false;
2196 } else {
2197 WARN_ON(I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE);
2198 }
2199
2200 dev_priv->psr.enabled = NULL;
2201 mutex_unlock(&dev_priv->psr.lock);
2202
2203 cancel_delayed_work_sync(&dev_priv->psr.work);
2204 }
2205
2206 static void intel_edp_psr_work(struct work_struct *work)
2207 {
2208 struct drm_i915_private *dev_priv =
2209 container_of(work, typeof(*dev_priv), psr.work.work);
2210 struct intel_dp *intel_dp = dev_priv->psr.enabled;
2211
2212 mutex_lock(&dev_priv->psr.lock);
2213 intel_dp = dev_priv->psr.enabled;
2214
2215 if (!intel_dp)
2216 goto unlock;
2217
2218 /*
2219 * The delayed work can race with an invalidate hence we need to
2220 * recheck. Since psr_flush first clears this and then reschedules we
2221 * won't ever miss a flush when bailing out here.
2222 */
2223 if (dev_priv->psr.busy_frontbuffer_bits)
2224 goto unlock;
2225
2226 intel_edp_psr_do_enable(intel_dp);
2227 unlock:
2228 mutex_unlock(&dev_priv->psr.lock);
2229 }
2230
2231 static void intel_edp_psr_do_exit(struct drm_device *dev)
2232 {
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234
2235 if (dev_priv->psr.active) {
2236 u32 val = I915_READ(EDP_PSR_CTL(dev));
2237
2238 WARN_ON(!(val & EDP_PSR_ENABLE));
2239
2240 I915_WRITE(EDP_PSR_CTL(dev), val & ~EDP_PSR_ENABLE);
2241
2242 dev_priv->psr.active = false;
2243 }
2244
2245 }
2246
2247 void intel_edp_psr_invalidate(struct drm_device *dev,
2248 unsigned frontbuffer_bits)
2249 {
2250 struct drm_i915_private *dev_priv = dev->dev_private;
2251 struct drm_crtc *crtc;
2252 enum pipe pipe;
2253
2254 mutex_lock(&dev_priv->psr.lock);
2255 if (!dev_priv->psr.enabled) {
2256 mutex_unlock(&dev_priv->psr.lock);
2257 return;
2258 }
2259
2260 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2261 pipe = to_intel_crtc(crtc)->pipe;
2262
2263 intel_edp_psr_do_exit(dev);
2264
2265 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
2266
2267 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
2268 mutex_unlock(&dev_priv->psr.lock);
2269 }
2270
2271 void intel_edp_psr_flush(struct drm_device *dev,
2272 unsigned frontbuffer_bits)
2273 {
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 struct drm_crtc *crtc;
2276 enum pipe pipe;
2277
2278 mutex_lock(&dev_priv->psr.lock);
2279 if (!dev_priv->psr.enabled) {
2280 mutex_unlock(&dev_priv->psr.lock);
2281 return;
2282 }
2283
2284 crtc = dp_to_dig_port(dev_priv->psr.enabled)->base.base.crtc;
2285 pipe = to_intel_crtc(crtc)->pipe;
2286 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
2287
2288 /*
2289 * On Haswell sprite plane updates don't result in a psr invalidating
2290 * signal in the hardware. Which means we need to manually fake this in
2291 * software for all flushes, not just when we've seen a preceding
2292 * invalidation through frontbuffer rendering.
2293 */
2294 if (IS_HASWELL(dev) &&
2295 (frontbuffer_bits & INTEL_FRONTBUFFER_SPRITE(pipe)))
2296 intel_edp_psr_do_exit(dev);
2297
2298 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
2299 schedule_delayed_work(&dev_priv->psr.work,
2300 msecs_to_jiffies(100));
2301 mutex_unlock(&dev_priv->psr.lock);
2302 }
2303
2304 void intel_edp_psr_init(struct drm_device *dev)
2305 {
2306 struct drm_i915_private *dev_priv = dev->dev_private;
2307
2308 INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
2309 mutex_init(&dev_priv->psr.lock);
2310 }
2311
2312 static void intel_disable_dp(struct intel_encoder *encoder)
2313 {
2314 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2315 struct drm_device *dev = encoder->base.dev;
2316
2317 /* Make sure the panel is off before trying to change the mode. But also
2318 * ensure that we have vdd while we switch off the panel. */
2319 intel_edp_panel_vdd_on(intel_dp);
2320 intel_edp_backlight_off(intel_dp);
2321 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2322 intel_edp_panel_off(intel_dp);
2323
2324 /* disable the port before the pipe on g4x */
2325 if (INTEL_INFO(dev)->gen < 5)
2326 intel_dp_link_down(intel_dp);
2327 }
2328
2329 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2330 {
2331 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2332 enum port port = dp_to_dig_port(intel_dp)->port;
2333
2334 intel_dp_link_down(intel_dp);
2335 if (port == PORT_A)
2336 ironlake_edp_pll_off(intel_dp);
2337 }
2338
2339 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2340 {
2341 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2342
2343 intel_dp_link_down(intel_dp);
2344 }
2345
2346 static void chv_post_disable_dp(struct intel_encoder *encoder)
2347 {
2348 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2349 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2350 struct drm_device *dev = encoder->base.dev;
2351 struct drm_i915_private *dev_priv = dev->dev_private;
2352 struct intel_crtc *intel_crtc =
2353 to_intel_crtc(encoder->base.crtc);
2354 enum dpio_channel ch = vlv_dport_to_channel(dport);
2355 enum pipe pipe = intel_crtc->pipe;
2356 u32 val;
2357
2358 intel_dp_link_down(intel_dp);
2359
2360 mutex_lock(&dev_priv->dpio_lock);
2361
2362 /* Propagate soft reset to data lane reset */
2363 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2364 val |= CHV_PCS_REQ_SOFTRESET_EN;
2365 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2366
2367 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2368 val |= CHV_PCS_REQ_SOFTRESET_EN;
2369 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2370
2371 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2372 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2373 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2374
2375 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2376 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2377 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2378
2379 mutex_unlock(&dev_priv->dpio_lock);
2380 }
2381
2382 static void
2383 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2384 uint32_t *DP,
2385 uint8_t dp_train_pat)
2386 {
2387 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2388 struct drm_device *dev = intel_dig_port->base.base.dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 enum port port = intel_dig_port->port;
2391
2392 if (HAS_DDI(dev)) {
2393 uint32_t temp = I915_READ(DP_TP_CTL(port));
2394
2395 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2396 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2397 else
2398 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2399
2400 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2401 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2402 case DP_TRAINING_PATTERN_DISABLE:
2403 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2404
2405 break;
2406 case DP_TRAINING_PATTERN_1:
2407 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2408 break;
2409 case DP_TRAINING_PATTERN_2:
2410 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2411 break;
2412 case DP_TRAINING_PATTERN_3:
2413 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2414 break;
2415 }
2416 I915_WRITE(DP_TP_CTL(port), temp);
2417
2418 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2419 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2420
2421 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2422 case DP_TRAINING_PATTERN_DISABLE:
2423 *DP |= DP_LINK_TRAIN_OFF_CPT;
2424 break;
2425 case DP_TRAINING_PATTERN_1:
2426 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2427 break;
2428 case DP_TRAINING_PATTERN_2:
2429 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2430 break;
2431 case DP_TRAINING_PATTERN_3:
2432 DRM_ERROR("DP training pattern 3 not supported\n");
2433 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2434 break;
2435 }
2436
2437 } else {
2438 if (IS_CHERRYVIEW(dev))
2439 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2440 else
2441 *DP &= ~DP_LINK_TRAIN_MASK;
2442
2443 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2444 case DP_TRAINING_PATTERN_DISABLE:
2445 *DP |= DP_LINK_TRAIN_OFF;
2446 break;
2447 case DP_TRAINING_PATTERN_1:
2448 *DP |= DP_LINK_TRAIN_PAT_1;
2449 break;
2450 case DP_TRAINING_PATTERN_2:
2451 *DP |= DP_LINK_TRAIN_PAT_2;
2452 break;
2453 case DP_TRAINING_PATTERN_3:
2454 if (IS_CHERRYVIEW(dev)) {
2455 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2456 } else {
2457 DRM_ERROR("DP training pattern 3 not supported\n");
2458 *DP |= DP_LINK_TRAIN_PAT_2;
2459 }
2460 break;
2461 }
2462 }
2463 }
2464
2465 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2466 {
2467 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2468 struct drm_i915_private *dev_priv = dev->dev_private;
2469
2470 intel_dp->DP |= DP_PORT_EN;
2471
2472 /* enable with pattern 1 (as per spec) */
2473 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2474 DP_TRAINING_PATTERN_1);
2475
2476 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2477 POSTING_READ(intel_dp->output_reg);
2478 }
2479
2480 static void intel_enable_dp(struct intel_encoder *encoder)
2481 {
2482 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2483 struct drm_device *dev = encoder->base.dev;
2484 struct drm_i915_private *dev_priv = dev->dev_private;
2485 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2486
2487 if (WARN_ON(dp_reg & DP_PORT_EN))
2488 return;
2489
2490 intel_dp_enable_port(intel_dp);
2491 intel_edp_panel_vdd_on(intel_dp);
2492 intel_edp_panel_on(intel_dp);
2493 intel_edp_panel_vdd_off(intel_dp, true);
2494 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2495 intel_dp_start_link_train(intel_dp);
2496 intel_dp_complete_link_train(intel_dp);
2497 intel_dp_stop_link_train(intel_dp);
2498 }
2499
2500 static void g4x_enable_dp(struct intel_encoder *encoder)
2501 {
2502 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2503
2504 intel_enable_dp(encoder);
2505 intel_edp_backlight_on(intel_dp);
2506 }
2507
2508 static void vlv_enable_dp(struct intel_encoder *encoder)
2509 {
2510 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2511
2512 intel_edp_backlight_on(intel_dp);
2513 }
2514
2515 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2516 {
2517 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2518 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2519
2520 intel_dp_prepare(encoder);
2521
2522 /* Only ilk+ has port A */
2523 if (dport->port == PORT_A) {
2524 ironlake_set_pll_cpu_edp(intel_dp);
2525 ironlake_edp_pll_on(intel_dp);
2526 }
2527 }
2528
2529 static void vlv_steal_power_sequencer(struct drm_device *dev,
2530 enum pipe pipe)
2531 {
2532 struct drm_i915_private *dev_priv = dev->dev_private;
2533 struct intel_encoder *encoder;
2534
2535 lockdep_assert_held(&dev_priv->pps_mutex);
2536
2537 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2538 base.head) {
2539 struct intel_dp *intel_dp;
2540 enum port port;
2541
2542 if (encoder->type != INTEL_OUTPUT_EDP)
2543 continue;
2544
2545 intel_dp = enc_to_intel_dp(&encoder->base);
2546 port = dp_to_dig_port(intel_dp)->port;
2547
2548 if (intel_dp->pps_pipe != pipe)
2549 continue;
2550
2551 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2552 pipe_name(pipe), port_name(port));
2553
2554 /* make sure vdd is off before we steal it */
2555 edp_panel_vdd_off_sync(intel_dp);
2556
2557 intel_dp->pps_pipe = INVALID_PIPE;
2558 }
2559 }
2560
2561 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2562 {
2563 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2564 struct intel_encoder *encoder = &intel_dig_port->base;
2565 struct drm_device *dev = encoder->base.dev;
2566 struct drm_i915_private *dev_priv = dev->dev_private;
2567 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2568 struct edp_power_seq power_seq;
2569
2570 lockdep_assert_held(&dev_priv->pps_mutex);
2571
2572 if (intel_dp->pps_pipe == crtc->pipe)
2573 return;
2574
2575 /*
2576 * If another power sequencer was being used on this
2577 * port previously make sure to turn off vdd there while
2578 * we still have control of it.
2579 */
2580 if (intel_dp->pps_pipe != INVALID_PIPE)
2581 edp_panel_vdd_off_sync(intel_dp);
2582
2583 /*
2584 * We may be stealing the power
2585 * sequencer from another port.
2586 */
2587 vlv_steal_power_sequencer(dev, crtc->pipe);
2588
2589 /* now it's all ours */
2590 intel_dp->pps_pipe = crtc->pipe;
2591
2592 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2593 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2594
2595 /* init power sequencer on this pipe and port */
2596 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2597 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2598 &power_seq);
2599 }
2600
2601 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2602 {
2603 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2604 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2605 struct drm_device *dev = encoder->base.dev;
2606 struct drm_i915_private *dev_priv = dev->dev_private;
2607 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2608 enum dpio_channel port = vlv_dport_to_channel(dport);
2609 int pipe = intel_crtc->pipe;
2610 u32 val;
2611
2612 mutex_lock(&dev_priv->dpio_lock);
2613
2614 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2615 val = 0;
2616 if (pipe)
2617 val |= (1<<21);
2618 else
2619 val &= ~(1<<21);
2620 val |= 0x001000c4;
2621 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2622 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2623 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2624
2625 mutex_unlock(&dev_priv->dpio_lock);
2626
2627 if (is_edp(intel_dp)) {
2628 pps_lock(intel_dp);
2629 vlv_init_panel_power_sequencer(intel_dp);
2630 pps_unlock(intel_dp);
2631 }
2632
2633 intel_enable_dp(encoder);
2634
2635 vlv_wait_port_ready(dev_priv, dport);
2636 }
2637
2638 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2639 {
2640 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2641 struct drm_device *dev = encoder->base.dev;
2642 struct drm_i915_private *dev_priv = dev->dev_private;
2643 struct intel_crtc *intel_crtc =
2644 to_intel_crtc(encoder->base.crtc);
2645 enum dpio_channel port = vlv_dport_to_channel(dport);
2646 int pipe = intel_crtc->pipe;
2647
2648 intel_dp_prepare(encoder);
2649
2650 /* Program Tx lane resets to default */
2651 mutex_lock(&dev_priv->dpio_lock);
2652 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2653 DPIO_PCS_TX_LANE2_RESET |
2654 DPIO_PCS_TX_LANE1_RESET);
2655 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2656 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2657 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2658 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2659 DPIO_PCS_CLK_SOFT_RESET);
2660
2661 /* Fix up inter-pair skew failure */
2662 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2663 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2664 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2665 mutex_unlock(&dev_priv->dpio_lock);
2666 }
2667
2668 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2669 {
2670 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2671 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2672 struct drm_device *dev = encoder->base.dev;
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 struct intel_crtc *intel_crtc =
2675 to_intel_crtc(encoder->base.crtc);
2676 enum dpio_channel ch = vlv_dport_to_channel(dport);
2677 int pipe = intel_crtc->pipe;
2678 int data, i;
2679 u32 val;
2680
2681 mutex_lock(&dev_priv->dpio_lock);
2682
2683 /* Deassert soft data lane reset*/
2684 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2685 val |= CHV_PCS_REQ_SOFTRESET_EN;
2686 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2687
2688 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2689 val |= CHV_PCS_REQ_SOFTRESET_EN;
2690 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2691
2692 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2693 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2694 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2695
2696 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2697 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2698 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2699
2700 /* Program Tx lane latency optimal setting*/
2701 for (i = 0; i < 4; i++) {
2702 /* Set the latency optimal bit */
2703 data = (i == 1) ? 0x0 : 0x6;
2704 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
2705 data << DPIO_FRC_LATENCY_SHFIT);
2706
2707 /* Set the upar bit */
2708 data = (i == 1) ? 0x0 : 0x1;
2709 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2710 data << DPIO_UPAR_SHIFT);
2711 }
2712
2713 /* Data lane stagger programming */
2714 /* FIXME: Fix up value only after power analysis */
2715
2716 mutex_unlock(&dev_priv->dpio_lock);
2717
2718 if (is_edp(intel_dp)) {
2719 pps_lock(intel_dp);
2720 vlv_init_panel_power_sequencer(intel_dp);
2721 pps_unlock(intel_dp);
2722 }
2723
2724 intel_enable_dp(encoder);
2725
2726 vlv_wait_port_ready(dev_priv, dport);
2727 }
2728
2729 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2730 {
2731 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2732 struct drm_device *dev = encoder->base.dev;
2733 struct drm_i915_private *dev_priv = dev->dev_private;
2734 struct intel_crtc *intel_crtc =
2735 to_intel_crtc(encoder->base.crtc);
2736 enum dpio_channel ch = vlv_dport_to_channel(dport);
2737 enum pipe pipe = intel_crtc->pipe;
2738 u32 val;
2739
2740 intel_dp_prepare(encoder);
2741
2742 mutex_lock(&dev_priv->dpio_lock);
2743
2744 /* program left/right clock distribution */
2745 if (pipe != PIPE_B) {
2746 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2747 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2748 if (ch == DPIO_CH0)
2749 val |= CHV_BUFLEFTENA1_FORCE;
2750 if (ch == DPIO_CH1)
2751 val |= CHV_BUFRIGHTENA1_FORCE;
2752 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2753 } else {
2754 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2755 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2756 if (ch == DPIO_CH0)
2757 val |= CHV_BUFLEFTENA2_FORCE;
2758 if (ch == DPIO_CH1)
2759 val |= CHV_BUFRIGHTENA2_FORCE;
2760 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2761 }
2762
2763 /* program clock channel usage */
2764 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2765 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2766 if (pipe != PIPE_B)
2767 val &= ~CHV_PCS_USEDCLKCHANNEL;
2768 else
2769 val |= CHV_PCS_USEDCLKCHANNEL;
2770 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2771
2772 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2773 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2774 if (pipe != PIPE_B)
2775 val &= ~CHV_PCS_USEDCLKCHANNEL;
2776 else
2777 val |= CHV_PCS_USEDCLKCHANNEL;
2778 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2779
2780 /*
2781 * This a a bit weird since generally CL
2782 * matches the pipe, but here we need to
2783 * pick the CL based on the port.
2784 */
2785 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2786 if (pipe != PIPE_B)
2787 val &= ~CHV_CMN_USEDCLKCHANNEL;
2788 else
2789 val |= CHV_CMN_USEDCLKCHANNEL;
2790 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2791
2792 mutex_unlock(&dev_priv->dpio_lock);
2793 }
2794
2795 /*
2796 * Native read with retry for link status and receiver capability reads for
2797 * cases where the sink may still be asleep.
2798 *
2799 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2800 * supposed to retry 3 times per the spec.
2801 */
2802 static ssize_t
2803 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2804 void *buffer, size_t size)
2805 {
2806 ssize_t ret;
2807 int i;
2808
2809 for (i = 0; i < 3; i++) {
2810 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2811 if (ret == size)
2812 return ret;
2813 msleep(1);
2814 }
2815
2816 return ret;
2817 }
2818
2819 /*
2820 * Fetch AUX CH registers 0x202 - 0x207 which contain
2821 * link status information
2822 */
2823 static bool
2824 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2825 {
2826 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2827 DP_LANE0_1_STATUS,
2828 link_status,
2829 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2830 }
2831
2832 /* These are source-specific values. */
2833 static uint8_t
2834 intel_dp_voltage_max(struct intel_dp *intel_dp)
2835 {
2836 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2837 enum port port = dp_to_dig_port(intel_dp)->port;
2838
2839 if (IS_VALLEYVIEW(dev))
2840 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2841 else if (IS_GEN7(dev) && port == PORT_A)
2842 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2843 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2844 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2845 else
2846 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2847 }
2848
2849 static uint8_t
2850 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2851 {
2852 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2853 enum port port = dp_to_dig_port(intel_dp)->port;
2854
2855 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2856 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2857 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2858 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2859 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2860 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2861 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2862 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2863 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2864 default:
2865 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2866 }
2867 } else if (IS_VALLEYVIEW(dev)) {
2868 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2869 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2870 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2871 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2872 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2873 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2874 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2875 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2876 default:
2877 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2878 }
2879 } else if (IS_GEN7(dev) && port == PORT_A) {
2880 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2881 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2882 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2883 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2884 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2885 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2886 default:
2887 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2888 }
2889 } else {
2890 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2891 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2892 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2893 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2894 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2895 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2896 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2897 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2898 default:
2899 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2900 }
2901 }
2902 }
2903
2904 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2905 {
2906 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2907 struct drm_i915_private *dev_priv = dev->dev_private;
2908 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2909 struct intel_crtc *intel_crtc =
2910 to_intel_crtc(dport->base.base.crtc);
2911 unsigned long demph_reg_value, preemph_reg_value,
2912 uniqtranscale_reg_value;
2913 uint8_t train_set = intel_dp->train_set[0];
2914 enum dpio_channel port = vlv_dport_to_channel(dport);
2915 int pipe = intel_crtc->pipe;
2916
2917 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2918 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2919 preemph_reg_value = 0x0004000;
2920 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2921 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2922 demph_reg_value = 0x2B405555;
2923 uniqtranscale_reg_value = 0x552AB83A;
2924 break;
2925 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2926 demph_reg_value = 0x2B404040;
2927 uniqtranscale_reg_value = 0x5548B83A;
2928 break;
2929 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2930 demph_reg_value = 0x2B245555;
2931 uniqtranscale_reg_value = 0x5560B83A;
2932 break;
2933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2934 demph_reg_value = 0x2B405555;
2935 uniqtranscale_reg_value = 0x5598DA3A;
2936 break;
2937 default:
2938 return 0;
2939 }
2940 break;
2941 case DP_TRAIN_PRE_EMPH_LEVEL_1:
2942 preemph_reg_value = 0x0002000;
2943 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2944 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2945 demph_reg_value = 0x2B404040;
2946 uniqtranscale_reg_value = 0x5552B83A;
2947 break;
2948 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2949 demph_reg_value = 0x2B404848;
2950 uniqtranscale_reg_value = 0x5580B83A;
2951 break;
2952 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2953 demph_reg_value = 0x2B404040;
2954 uniqtranscale_reg_value = 0x55ADDA3A;
2955 break;
2956 default:
2957 return 0;
2958 }
2959 break;
2960 case DP_TRAIN_PRE_EMPH_LEVEL_2:
2961 preemph_reg_value = 0x0000000;
2962 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2963 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2964 demph_reg_value = 0x2B305555;
2965 uniqtranscale_reg_value = 0x5570B83A;
2966 break;
2967 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2968 demph_reg_value = 0x2B2B4040;
2969 uniqtranscale_reg_value = 0x55ADDA3A;
2970 break;
2971 default:
2972 return 0;
2973 }
2974 break;
2975 case DP_TRAIN_PRE_EMPH_LEVEL_3:
2976 preemph_reg_value = 0x0006000;
2977 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2978 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2979 demph_reg_value = 0x1B405555;
2980 uniqtranscale_reg_value = 0x55ADDA3A;
2981 break;
2982 default:
2983 return 0;
2984 }
2985 break;
2986 default:
2987 return 0;
2988 }
2989
2990 mutex_lock(&dev_priv->dpio_lock);
2991 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2992 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2993 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2994 uniqtranscale_reg_value);
2995 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2996 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2997 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2998 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2999 mutex_unlock(&dev_priv->dpio_lock);
3000
3001 return 0;
3002 }
3003
3004 static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
3005 {
3006 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3007 struct drm_i915_private *dev_priv = dev->dev_private;
3008 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3009 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3010 u32 deemph_reg_value, margin_reg_value, val;
3011 uint8_t train_set = intel_dp->train_set[0];
3012 enum dpio_channel ch = vlv_dport_to_channel(dport);
3013 enum pipe pipe = intel_crtc->pipe;
3014 int i;
3015
3016 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3017 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3018 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3019 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3020 deemph_reg_value = 128;
3021 margin_reg_value = 52;
3022 break;
3023 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3024 deemph_reg_value = 128;
3025 margin_reg_value = 77;
3026 break;
3027 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3028 deemph_reg_value = 128;
3029 margin_reg_value = 102;
3030 break;
3031 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3032 deemph_reg_value = 128;
3033 margin_reg_value = 154;
3034 /* FIXME extra to set for 1200 */
3035 break;
3036 default:
3037 return 0;
3038 }
3039 break;
3040 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3041 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3043 deemph_reg_value = 85;
3044 margin_reg_value = 78;
3045 break;
3046 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3047 deemph_reg_value = 85;
3048 margin_reg_value = 116;
3049 break;
3050 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3051 deemph_reg_value = 85;
3052 margin_reg_value = 154;
3053 break;
3054 default:
3055 return 0;
3056 }
3057 break;
3058 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3059 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3060 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3061 deemph_reg_value = 64;
3062 margin_reg_value = 104;
3063 break;
3064 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3065 deemph_reg_value = 64;
3066 margin_reg_value = 154;
3067 break;
3068 default:
3069 return 0;
3070 }
3071 break;
3072 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3073 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3074 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3075 deemph_reg_value = 43;
3076 margin_reg_value = 154;
3077 break;
3078 default:
3079 return 0;
3080 }
3081 break;
3082 default:
3083 return 0;
3084 }
3085
3086 mutex_lock(&dev_priv->dpio_lock);
3087
3088 /* Clear calc init */
3089 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3090 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3091 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3092
3093 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3094 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3095 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3096
3097 /* Program swing deemph */
3098 for (i = 0; i < 4; i++) {
3099 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3100 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3101 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3102 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3103 }
3104
3105 /* Program swing margin */
3106 for (i = 0; i < 4; i++) {
3107 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3108 val &= ~DPIO_SWING_MARGIN000_MASK;
3109 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3110 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3111 }
3112
3113 /* Disable unique transition scale */
3114 for (i = 0; i < 4; i++) {
3115 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3116 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3117 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3118 }
3119
3120 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3121 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3122 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3123 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3124
3125 /*
3126 * The document said it needs to set bit 27 for ch0 and bit 26
3127 * for ch1. Might be a typo in the doc.
3128 * For now, for this unique transition scale selection, set bit
3129 * 27 for ch0 and ch1.
3130 */
3131 for (i = 0; i < 4; i++) {
3132 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3133 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3134 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3135 }
3136
3137 for (i = 0; i < 4; i++) {
3138 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3139 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3140 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3141 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3142 }
3143 }
3144
3145 /* Start swing calculation */
3146 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3147 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3148 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3149
3150 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3151 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3152 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3153
3154 /* LRC Bypass */
3155 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3156 val |= DPIO_LRC_BYPASS;
3157 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3158
3159 mutex_unlock(&dev_priv->dpio_lock);
3160
3161 return 0;
3162 }
3163
3164 static void
3165 intel_get_adjust_train(struct intel_dp *intel_dp,
3166 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3167 {
3168 uint8_t v = 0;
3169 uint8_t p = 0;
3170 int lane;
3171 uint8_t voltage_max;
3172 uint8_t preemph_max;
3173
3174 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3175 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3176 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3177
3178 if (this_v > v)
3179 v = this_v;
3180 if (this_p > p)
3181 p = this_p;
3182 }
3183
3184 voltage_max = intel_dp_voltage_max(intel_dp);
3185 if (v >= voltage_max)
3186 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3187
3188 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3189 if (p >= preemph_max)
3190 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3191
3192 for (lane = 0; lane < 4; lane++)
3193 intel_dp->train_set[lane] = v | p;
3194 }
3195
3196 static uint32_t
3197 intel_gen4_signal_levels(uint8_t train_set)
3198 {
3199 uint32_t signal_levels = 0;
3200
3201 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3203 default:
3204 signal_levels |= DP_VOLTAGE_0_4;
3205 break;
3206 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3207 signal_levels |= DP_VOLTAGE_0_6;
3208 break;
3209 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3210 signal_levels |= DP_VOLTAGE_0_8;
3211 break;
3212 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3213 signal_levels |= DP_VOLTAGE_1_2;
3214 break;
3215 }
3216 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3217 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3218 default:
3219 signal_levels |= DP_PRE_EMPHASIS_0;
3220 break;
3221 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3222 signal_levels |= DP_PRE_EMPHASIS_3_5;
3223 break;
3224 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3225 signal_levels |= DP_PRE_EMPHASIS_6;
3226 break;
3227 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3228 signal_levels |= DP_PRE_EMPHASIS_9_5;
3229 break;
3230 }
3231 return signal_levels;
3232 }
3233
3234 /* Gen6's DP voltage swing and pre-emphasis control */
3235 static uint32_t
3236 intel_gen6_edp_signal_levels(uint8_t train_set)
3237 {
3238 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3239 DP_TRAIN_PRE_EMPHASIS_MASK);
3240 switch (signal_levels) {
3241 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3242 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3243 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3244 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3245 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3246 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3247 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3248 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3249 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3250 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3251 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3252 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3253 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3254 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3255 default:
3256 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3257 "0x%x\n", signal_levels);
3258 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3259 }
3260 }
3261
3262 /* Gen7's DP voltage swing and pre-emphasis control */
3263 static uint32_t
3264 intel_gen7_edp_signal_levels(uint8_t train_set)
3265 {
3266 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3267 DP_TRAIN_PRE_EMPHASIS_MASK);
3268 switch (signal_levels) {
3269 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3270 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3272 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3273 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3274 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3275
3276 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3277 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3278 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3279 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3280
3281 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3282 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3283 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3284 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3285
3286 default:
3287 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3288 "0x%x\n", signal_levels);
3289 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3290 }
3291 }
3292
3293 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3294 static uint32_t
3295 intel_hsw_signal_levels(uint8_t train_set)
3296 {
3297 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3298 DP_TRAIN_PRE_EMPHASIS_MASK);
3299 switch (signal_levels) {
3300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3301 return DDI_BUF_TRANS_SELECT(0);
3302 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3303 return DDI_BUF_TRANS_SELECT(1);
3304 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3305 return DDI_BUF_TRANS_SELECT(2);
3306 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3307 return DDI_BUF_TRANS_SELECT(3);
3308
3309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3310 return DDI_BUF_TRANS_SELECT(4);
3311 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3312 return DDI_BUF_TRANS_SELECT(5);
3313 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3314 return DDI_BUF_TRANS_SELECT(6);
3315
3316 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3317 return DDI_BUF_TRANS_SELECT(7);
3318 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3319 return DDI_BUF_TRANS_SELECT(8);
3320 default:
3321 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3322 "0x%x\n", signal_levels);
3323 return DDI_BUF_TRANS_SELECT(0);
3324 }
3325 }
3326
3327 /* Properly updates "DP" with the correct signal levels. */
3328 static void
3329 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3330 {
3331 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3332 enum port port = intel_dig_port->port;
3333 struct drm_device *dev = intel_dig_port->base.base.dev;
3334 uint32_t signal_levels, mask;
3335 uint8_t train_set = intel_dp->train_set[0];
3336
3337 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3338 signal_levels = intel_hsw_signal_levels(train_set);
3339 mask = DDI_BUF_EMP_MASK;
3340 } else if (IS_CHERRYVIEW(dev)) {
3341 signal_levels = intel_chv_signal_levels(intel_dp);
3342 mask = 0;
3343 } else if (IS_VALLEYVIEW(dev)) {
3344 signal_levels = intel_vlv_signal_levels(intel_dp);
3345 mask = 0;
3346 } else if (IS_GEN7(dev) && port == PORT_A) {
3347 signal_levels = intel_gen7_edp_signal_levels(train_set);
3348 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3349 } else if (IS_GEN6(dev) && port == PORT_A) {
3350 signal_levels = intel_gen6_edp_signal_levels(train_set);
3351 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3352 } else {
3353 signal_levels = intel_gen4_signal_levels(train_set);
3354 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3355 }
3356
3357 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3358
3359 *DP = (*DP & ~mask) | signal_levels;
3360 }
3361
3362 static bool
3363 intel_dp_set_link_train(struct intel_dp *intel_dp,
3364 uint32_t *DP,
3365 uint8_t dp_train_pat)
3366 {
3367 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3368 struct drm_device *dev = intel_dig_port->base.base.dev;
3369 struct drm_i915_private *dev_priv = dev->dev_private;
3370 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3371 int ret, len;
3372
3373 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3374
3375 I915_WRITE(intel_dp->output_reg, *DP);
3376 POSTING_READ(intel_dp->output_reg);
3377
3378 buf[0] = dp_train_pat;
3379 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3380 DP_TRAINING_PATTERN_DISABLE) {
3381 /* don't write DP_TRAINING_LANEx_SET on disable */
3382 len = 1;
3383 } else {
3384 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3385 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3386 len = intel_dp->lane_count + 1;
3387 }
3388
3389 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3390 buf, len);
3391
3392 return ret == len;
3393 }
3394
3395 static bool
3396 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3397 uint8_t dp_train_pat)
3398 {
3399 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3400 intel_dp_set_signal_levels(intel_dp, DP);
3401 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3402 }
3403
3404 static bool
3405 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3406 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3407 {
3408 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3409 struct drm_device *dev = intel_dig_port->base.base.dev;
3410 struct drm_i915_private *dev_priv = dev->dev_private;
3411 int ret;
3412
3413 intel_get_adjust_train(intel_dp, link_status);
3414 intel_dp_set_signal_levels(intel_dp, DP);
3415
3416 I915_WRITE(intel_dp->output_reg, *DP);
3417 POSTING_READ(intel_dp->output_reg);
3418
3419 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3420 intel_dp->train_set, intel_dp->lane_count);
3421
3422 return ret == intel_dp->lane_count;
3423 }
3424
3425 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3426 {
3427 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3428 struct drm_device *dev = intel_dig_port->base.base.dev;
3429 struct drm_i915_private *dev_priv = dev->dev_private;
3430 enum port port = intel_dig_port->port;
3431 uint32_t val;
3432
3433 if (!HAS_DDI(dev))
3434 return;
3435
3436 val = I915_READ(DP_TP_CTL(port));
3437 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3438 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3439 I915_WRITE(DP_TP_CTL(port), val);
3440
3441 /*
3442 * On PORT_A we can have only eDP in SST mode. There the only reason
3443 * we need to set idle transmission mode is to work around a HW issue
3444 * where we enable the pipe while not in idle link-training mode.
3445 * In this case there is requirement to wait for a minimum number of
3446 * idle patterns to be sent.
3447 */
3448 if (port == PORT_A)
3449 return;
3450
3451 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3452 1))
3453 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3454 }
3455
3456 /* Enable corresponding port and start training pattern 1 */
3457 void
3458 intel_dp_start_link_train(struct intel_dp *intel_dp)
3459 {
3460 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3461 struct drm_device *dev = encoder->dev;
3462 int i;
3463 uint8_t voltage;
3464 int voltage_tries, loop_tries;
3465 uint32_t DP = intel_dp->DP;
3466 uint8_t link_config[2];
3467
3468 if (HAS_DDI(dev))
3469 intel_ddi_prepare_link_retrain(encoder);
3470
3471 /* Write the link configuration data */
3472 link_config[0] = intel_dp->link_bw;
3473 link_config[1] = intel_dp->lane_count;
3474 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3475 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3476 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3477
3478 link_config[0] = 0;
3479 link_config[1] = DP_SET_ANSI_8B10B;
3480 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3481
3482 DP |= DP_PORT_EN;
3483
3484 /* clock recovery */
3485 if (!intel_dp_reset_link_train(intel_dp, &DP,
3486 DP_TRAINING_PATTERN_1 |
3487 DP_LINK_SCRAMBLING_DISABLE)) {
3488 DRM_ERROR("failed to enable link training\n");
3489 return;
3490 }
3491
3492 voltage = 0xff;
3493 voltage_tries = 0;
3494 loop_tries = 0;
3495 for (;;) {
3496 uint8_t link_status[DP_LINK_STATUS_SIZE];
3497
3498 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3499 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3500 DRM_ERROR("failed to get link status\n");
3501 break;
3502 }
3503
3504 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3505 DRM_DEBUG_KMS("clock recovery OK\n");
3506 break;
3507 }
3508
3509 /* Check to see if we've tried the max voltage */
3510 for (i = 0; i < intel_dp->lane_count; i++)
3511 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3512 break;
3513 if (i == intel_dp->lane_count) {
3514 ++loop_tries;
3515 if (loop_tries == 5) {
3516 DRM_ERROR("too many full retries, give up\n");
3517 break;
3518 }
3519 intel_dp_reset_link_train(intel_dp, &DP,
3520 DP_TRAINING_PATTERN_1 |
3521 DP_LINK_SCRAMBLING_DISABLE);
3522 voltage_tries = 0;
3523 continue;
3524 }
3525
3526 /* Check to see if we've tried the same voltage 5 times */
3527 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3528 ++voltage_tries;
3529 if (voltage_tries == 5) {
3530 DRM_ERROR("too many voltage retries, give up\n");
3531 break;
3532 }
3533 } else
3534 voltage_tries = 0;
3535 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3536
3537 /* Update training set as requested by target */
3538 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3539 DRM_ERROR("failed to update link training\n");
3540 break;
3541 }
3542 }
3543
3544 intel_dp->DP = DP;
3545 }
3546
3547 void
3548 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3549 {
3550 bool channel_eq = false;
3551 int tries, cr_tries;
3552 uint32_t DP = intel_dp->DP;
3553 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3554
3555 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3556 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3557 training_pattern = DP_TRAINING_PATTERN_3;
3558
3559 /* channel equalization */
3560 if (!intel_dp_set_link_train(intel_dp, &DP,
3561 training_pattern |
3562 DP_LINK_SCRAMBLING_DISABLE)) {
3563 DRM_ERROR("failed to start channel equalization\n");
3564 return;
3565 }
3566
3567 tries = 0;
3568 cr_tries = 0;
3569 channel_eq = false;
3570 for (;;) {
3571 uint8_t link_status[DP_LINK_STATUS_SIZE];
3572
3573 if (cr_tries > 5) {
3574 DRM_ERROR("failed to train DP, aborting\n");
3575 break;
3576 }
3577
3578 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3579 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3580 DRM_ERROR("failed to get link status\n");
3581 break;
3582 }
3583
3584 /* Make sure clock is still ok */
3585 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3586 intel_dp_start_link_train(intel_dp);
3587 intel_dp_set_link_train(intel_dp, &DP,
3588 training_pattern |
3589 DP_LINK_SCRAMBLING_DISABLE);
3590 cr_tries++;
3591 continue;
3592 }
3593
3594 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3595 channel_eq = true;
3596 break;
3597 }
3598
3599 /* Try 5 times, then try clock recovery if that fails */
3600 if (tries > 5) {
3601 intel_dp_link_down(intel_dp);
3602 intel_dp_start_link_train(intel_dp);
3603 intel_dp_set_link_train(intel_dp, &DP,
3604 training_pattern |
3605 DP_LINK_SCRAMBLING_DISABLE);
3606 tries = 0;
3607 cr_tries++;
3608 continue;
3609 }
3610
3611 /* Update training set as requested by target */
3612 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3613 DRM_ERROR("failed to update link training\n");
3614 break;
3615 }
3616 ++tries;
3617 }
3618
3619 intel_dp_set_idle_link_train(intel_dp);
3620
3621 intel_dp->DP = DP;
3622
3623 if (channel_eq)
3624 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3625
3626 }
3627
3628 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3629 {
3630 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3631 DP_TRAINING_PATTERN_DISABLE);
3632 }
3633
3634 static void
3635 intel_dp_link_down(struct intel_dp *intel_dp)
3636 {
3637 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3638 enum port port = intel_dig_port->port;
3639 struct drm_device *dev = intel_dig_port->base.base.dev;
3640 struct drm_i915_private *dev_priv = dev->dev_private;
3641 struct intel_crtc *intel_crtc =
3642 to_intel_crtc(intel_dig_port->base.base.crtc);
3643 uint32_t DP = intel_dp->DP;
3644
3645 if (WARN_ON(HAS_DDI(dev)))
3646 return;
3647
3648 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3649 return;
3650
3651 DRM_DEBUG_KMS("\n");
3652
3653 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3654 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3655 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3656 } else {
3657 if (IS_CHERRYVIEW(dev))
3658 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3659 else
3660 DP &= ~DP_LINK_TRAIN_MASK;
3661 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3662 }
3663 POSTING_READ(intel_dp->output_reg);
3664
3665 if (HAS_PCH_IBX(dev) &&
3666 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3667 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3668
3669 /* Hardware workaround: leaving our transcoder select
3670 * set to transcoder B while it's off will prevent the
3671 * corresponding HDMI output on transcoder A.
3672 *
3673 * Combine this with another hardware workaround:
3674 * transcoder select bit can only be cleared while the
3675 * port is enabled.
3676 */
3677 DP &= ~DP_PIPEB_SELECT;
3678 I915_WRITE(intel_dp->output_reg, DP);
3679
3680 /* Changes to enable or select take place the vblank
3681 * after being written.
3682 */
3683 if (WARN_ON(crtc == NULL)) {
3684 /* We should never try to disable a port without a crtc
3685 * attached. For paranoia keep the code around for a
3686 * bit. */
3687 POSTING_READ(intel_dp->output_reg);
3688 msleep(50);
3689 } else
3690 intel_wait_for_vblank(dev, intel_crtc->pipe);
3691 }
3692
3693 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3694 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3695 POSTING_READ(intel_dp->output_reg);
3696 msleep(intel_dp->panel_power_down_delay);
3697 }
3698
3699 static bool
3700 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3701 {
3702 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3703 struct drm_device *dev = dig_port->base.base.dev;
3704 struct drm_i915_private *dev_priv = dev->dev_private;
3705
3706 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3707 sizeof(intel_dp->dpcd)) < 0)
3708 return false; /* aux transfer failed */
3709
3710 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3711
3712 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3713 return false; /* DPCD not present */
3714
3715 /* Check if the panel supports PSR */
3716 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3717 if (is_edp(intel_dp)) {
3718 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3719 intel_dp->psr_dpcd,
3720 sizeof(intel_dp->psr_dpcd));
3721 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3722 dev_priv->psr.sink_support = true;
3723 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3724 }
3725 }
3726
3727 /* Training Pattern 3 support */
3728 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3729 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
3730 intel_dp->use_tps3 = true;
3731 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3732 } else
3733 intel_dp->use_tps3 = false;
3734
3735 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3736 DP_DWN_STRM_PORT_PRESENT))
3737 return true; /* native DP sink */
3738
3739 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3740 return true; /* no per-port downstream info */
3741
3742 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3743 intel_dp->downstream_ports,
3744 DP_MAX_DOWNSTREAM_PORTS) < 0)
3745 return false; /* downstream port status fetch failed */
3746
3747 return true;
3748 }
3749
3750 static void
3751 intel_dp_probe_oui(struct intel_dp *intel_dp)
3752 {
3753 u8 buf[3];
3754
3755 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3756 return;
3757
3758 intel_edp_panel_vdd_on(intel_dp);
3759
3760 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3761 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3762 buf[0], buf[1], buf[2]);
3763
3764 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3765 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3766 buf[0], buf[1], buf[2]);
3767
3768 intel_edp_panel_vdd_off(intel_dp, false);
3769 }
3770
3771 static bool
3772 intel_dp_probe_mst(struct intel_dp *intel_dp)
3773 {
3774 u8 buf[1];
3775
3776 if (!intel_dp->can_mst)
3777 return false;
3778
3779 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3780 return false;
3781
3782 intel_edp_panel_vdd_on(intel_dp);
3783 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3784 if (buf[0] & DP_MST_CAP) {
3785 DRM_DEBUG_KMS("Sink is MST capable\n");
3786 intel_dp->is_mst = true;
3787 } else {
3788 DRM_DEBUG_KMS("Sink is not MST capable\n");
3789 intel_dp->is_mst = false;
3790 }
3791 }
3792 intel_edp_panel_vdd_off(intel_dp, false);
3793
3794 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3795 return intel_dp->is_mst;
3796 }
3797
3798 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3799 {
3800 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3801 struct drm_device *dev = intel_dig_port->base.base.dev;
3802 struct intel_crtc *intel_crtc =
3803 to_intel_crtc(intel_dig_port->base.base.crtc);
3804 u8 buf[1];
3805
3806 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3807 return -EIO;
3808
3809 if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
3810 return -ENOTTY;
3811
3812 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3813 DP_TEST_SINK_START) < 0)
3814 return -EIO;
3815
3816 /* Wait 2 vblanks to be sure we will have the correct CRC value */
3817 intel_wait_for_vblank(dev, intel_crtc->pipe);
3818 intel_wait_for_vblank(dev, intel_crtc->pipe);
3819
3820 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3821 return -EIO;
3822
3823 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3824 return 0;
3825 }
3826
3827 static bool
3828 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3829 {
3830 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3831 DP_DEVICE_SERVICE_IRQ_VECTOR,
3832 sink_irq_vector, 1) == 1;
3833 }
3834
3835 static bool
3836 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
3837 {
3838 int ret;
3839
3840 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
3841 DP_SINK_COUNT_ESI,
3842 sink_irq_vector, 14);
3843 if (ret != 14)
3844 return false;
3845
3846 return true;
3847 }
3848
3849 static void
3850 intel_dp_handle_test_request(struct intel_dp *intel_dp)
3851 {
3852 /* NAK by default */
3853 drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3854 }
3855
3856 static int
3857 intel_dp_check_mst_status(struct intel_dp *intel_dp)
3858 {
3859 bool bret;
3860
3861 if (intel_dp->is_mst) {
3862 u8 esi[16] = { 0 };
3863 int ret = 0;
3864 int retry;
3865 bool handled;
3866 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3867 go_again:
3868 if (bret == true) {
3869
3870 /* check link status - esi[10] = 0x200c */
3871 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
3872 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
3873 intel_dp_start_link_train(intel_dp);
3874 intel_dp_complete_link_train(intel_dp);
3875 intel_dp_stop_link_train(intel_dp);
3876 }
3877
3878 DRM_DEBUG_KMS("got esi %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3879 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
3880
3881 if (handled) {
3882 for (retry = 0; retry < 3; retry++) {
3883 int wret;
3884 wret = drm_dp_dpcd_write(&intel_dp->aux,
3885 DP_SINK_COUNT_ESI+1,
3886 &esi[1], 3);
3887 if (wret == 3) {
3888 break;
3889 }
3890 }
3891
3892 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
3893 if (bret == true) {
3894 DRM_DEBUG_KMS("got esi2 %02x %02x %02x\n", esi[0], esi[1], esi[2]);
3895 goto go_again;
3896 }
3897 } else
3898 ret = 0;
3899
3900 return ret;
3901 } else {
3902 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3903 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
3904 intel_dp->is_mst = false;
3905 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3906 /* send a hotplug event */
3907 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
3908 }
3909 }
3910 return -EINVAL;
3911 }
3912
3913 /*
3914 * According to DP spec
3915 * 5.1.2:
3916 * 1. Read DPCD
3917 * 2. Configure link according to Receiver Capabilities
3918 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
3919 * 4. Check link status on receipt of hot-plug interrupt
3920 */
3921 void
3922 intel_dp_check_link_status(struct intel_dp *intel_dp)
3923 {
3924 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3925 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3926 u8 sink_irq_vector;
3927 u8 link_status[DP_LINK_STATUS_SIZE];
3928
3929 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3930
3931 if (!intel_encoder->connectors_active)
3932 return;
3933
3934 if (WARN_ON(!intel_encoder->base.crtc))
3935 return;
3936
3937 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
3938 return;
3939
3940 /* Try to read receiver status if the link appears to be up */
3941 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3942 return;
3943 }
3944
3945 /* Now read the DPCD to see if it's actually running */
3946 if (!intel_dp_get_dpcd(intel_dp)) {
3947 return;
3948 }
3949
3950 /* Try to read the source of the interrupt */
3951 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3952 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
3953 /* Clear interrupt source */
3954 drm_dp_dpcd_writeb(&intel_dp->aux,
3955 DP_DEVICE_SERVICE_IRQ_VECTOR,
3956 sink_irq_vector);
3957
3958 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
3959 intel_dp_handle_test_request(intel_dp);
3960 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
3961 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
3962 }
3963
3964 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3965 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3966 intel_encoder->base.name);
3967 intel_dp_start_link_train(intel_dp);
3968 intel_dp_complete_link_train(intel_dp);
3969 intel_dp_stop_link_train(intel_dp);
3970 }
3971 }
3972
3973 /* XXX this is probably wrong for multiple downstream ports */
3974 static enum drm_connector_status
3975 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3976 {
3977 uint8_t *dpcd = intel_dp->dpcd;
3978 uint8_t type;
3979
3980 if (!intel_dp_get_dpcd(intel_dp))
3981 return connector_status_disconnected;
3982
3983 /* if there's no downstream port, we're done */
3984 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3985 return connector_status_connected;
3986
3987 /* If we're HPD-aware, SINK_COUNT changes dynamically */
3988 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
3989 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3990 uint8_t reg;
3991
3992 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3993 &reg, 1) < 0)
3994 return connector_status_unknown;
3995
3996 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
3997 : connector_status_disconnected;
3998 }
3999
4000 /* If no HPD, poke DDC gently */
4001 if (drm_probe_ddc(&intel_dp->aux.ddc))
4002 return connector_status_connected;
4003
4004 /* Well we tried, say unknown for unreliable port types */
4005 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4006 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4007 if (type == DP_DS_PORT_TYPE_VGA ||
4008 type == DP_DS_PORT_TYPE_NON_EDID)
4009 return connector_status_unknown;
4010 } else {
4011 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4012 DP_DWN_STRM_PORT_TYPE_MASK;
4013 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4014 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4015 return connector_status_unknown;
4016 }
4017
4018 /* Anything else is out of spec, warn and ignore */
4019 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4020 return connector_status_disconnected;
4021 }
4022
4023 static enum drm_connector_status
4024 edp_detect(struct intel_dp *intel_dp)
4025 {
4026 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4027 enum drm_connector_status status;
4028
4029 status = intel_panel_detect(dev);
4030 if (status == connector_status_unknown)
4031 status = connector_status_connected;
4032
4033 return status;
4034 }
4035
4036 static enum drm_connector_status
4037 ironlake_dp_detect(struct intel_dp *intel_dp)
4038 {
4039 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4040 struct drm_i915_private *dev_priv = dev->dev_private;
4041 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4042
4043 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4044 return connector_status_disconnected;
4045
4046 return intel_dp_detect_dpcd(intel_dp);
4047 }
4048
4049 static int g4x_digital_port_connected(struct drm_device *dev,
4050 struct intel_digital_port *intel_dig_port)
4051 {
4052 struct drm_i915_private *dev_priv = dev->dev_private;
4053 uint32_t bit;
4054
4055 if (IS_VALLEYVIEW(dev)) {
4056 switch (intel_dig_port->port) {
4057 case PORT_B:
4058 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4059 break;
4060 case PORT_C:
4061 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4062 break;
4063 case PORT_D:
4064 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4065 break;
4066 default:
4067 return -EINVAL;
4068 }
4069 } else {
4070 switch (intel_dig_port->port) {
4071 case PORT_B:
4072 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4073 break;
4074 case PORT_C:
4075 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4076 break;
4077 case PORT_D:
4078 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4079 break;
4080 default:
4081 return -EINVAL;
4082 }
4083 }
4084
4085 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4086 return 0;
4087 return 1;
4088 }
4089
4090 static enum drm_connector_status
4091 g4x_dp_detect(struct intel_dp *intel_dp)
4092 {
4093 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4094 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4095 int ret;
4096
4097 /* Can't disconnect eDP, but you can close the lid... */
4098 if (is_edp(intel_dp)) {
4099 enum drm_connector_status status;
4100
4101 status = intel_panel_detect(dev);
4102 if (status == connector_status_unknown)
4103 status = connector_status_connected;
4104 return status;
4105 }
4106
4107 ret = g4x_digital_port_connected(dev, intel_dig_port);
4108 if (ret == -EINVAL)
4109 return connector_status_unknown;
4110 else if (ret == 0)
4111 return connector_status_disconnected;
4112
4113 return intel_dp_detect_dpcd(intel_dp);
4114 }
4115
4116 static struct edid *
4117 intel_dp_get_edid(struct intel_dp *intel_dp)
4118 {
4119 struct intel_connector *intel_connector = intel_dp->attached_connector;
4120
4121 /* use cached edid if we have one */
4122 if (intel_connector->edid) {
4123 /* invalid edid */
4124 if (IS_ERR(intel_connector->edid))
4125 return NULL;
4126
4127 return drm_edid_duplicate(intel_connector->edid);
4128 } else
4129 return drm_get_edid(&intel_connector->base,
4130 &intel_dp->aux.ddc);
4131 }
4132
4133 static void
4134 intel_dp_set_edid(struct intel_dp *intel_dp)
4135 {
4136 struct intel_connector *intel_connector = intel_dp->attached_connector;
4137 struct edid *edid;
4138
4139 edid = intel_dp_get_edid(intel_dp);
4140 intel_connector->detect_edid = edid;
4141
4142 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4143 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4144 else
4145 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4146 }
4147
4148 static void
4149 intel_dp_unset_edid(struct intel_dp *intel_dp)
4150 {
4151 struct intel_connector *intel_connector = intel_dp->attached_connector;
4152
4153 kfree(intel_connector->detect_edid);
4154 intel_connector->detect_edid = NULL;
4155
4156 intel_dp->has_audio = false;
4157 }
4158
4159 static enum intel_display_power_domain
4160 intel_dp_power_get(struct intel_dp *dp)
4161 {
4162 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4163 enum intel_display_power_domain power_domain;
4164
4165 power_domain = intel_display_port_power_domain(encoder);
4166 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4167
4168 return power_domain;
4169 }
4170
4171 static void
4172 intel_dp_power_put(struct intel_dp *dp,
4173 enum intel_display_power_domain power_domain)
4174 {
4175 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4176 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4177 }
4178
4179 static enum drm_connector_status
4180 intel_dp_detect(struct drm_connector *connector, bool force)
4181 {
4182 struct intel_dp *intel_dp = intel_attached_dp(connector);
4183 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4184 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4185 struct drm_device *dev = connector->dev;
4186 enum drm_connector_status status;
4187 enum intel_display_power_domain power_domain;
4188 bool ret;
4189
4190 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4191 connector->base.id, connector->name);
4192 intel_dp_unset_edid(intel_dp);
4193
4194 if (intel_dp->is_mst) {
4195 /* MST devices are disconnected from a monitor POV */
4196 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4197 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4198 return connector_status_disconnected;
4199 }
4200
4201 power_domain = intel_dp_power_get(intel_dp);
4202
4203 /* Can't disconnect eDP, but you can close the lid... */
4204 if (is_edp(intel_dp))
4205 status = edp_detect(intel_dp);
4206 else if (HAS_PCH_SPLIT(dev))
4207 status = ironlake_dp_detect(intel_dp);
4208 else
4209 status = g4x_dp_detect(intel_dp);
4210 if (status != connector_status_connected)
4211 goto out;
4212
4213 intel_dp_probe_oui(intel_dp);
4214
4215 ret = intel_dp_probe_mst(intel_dp);
4216 if (ret) {
4217 /* if we are in MST mode then this connector
4218 won't appear connected or have anything with EDID on it */
4219 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4220 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4221 status = connector_status_disconnected;
4222 goto out;
4223 }
4224
4225 intel_dp_set_edid(intel_dp);
4226
4227 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4228 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4229 status = connector_status_connected;
4230
4231 out:
4232 intel_dp_power_put(intel_dp, power_domain);
4233 return status;
4234 }
4235
4236 static void
4237 intel_dp_force(struct drm_connector *connector)
4238 {
4239 struct intel_dp *intel_dp = intel_attached_dp(connector);
4240 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4241 enum intel_display_power_domain power_domain;
4242
4243 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4244 connector->base.id, connector->name);
4245 intel_dp_unset_edid(intel_dp);
4246
4247 if (connector->status != connector_status_connected)
4248 return;
4249
4250 power_domain = intel_dp_power_get(intel_dp);
4251
4252 intel_dp_set_edid(intel_dp);
4253
4254 intel_dp_power_put(intel_dp, power_domain);
4255
4256 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4257 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4258 }
4259
4260 static int intel_dp_get_modes(struct drm_connector *connector)
4261 {
4262 struct intel_connector *intel_connector = to_intel_connector(connector);
4263 struct edid *edid;
4264
4265 edid = intel_connector->detect_edid;
4266 if (edid) {
4267 int ret = intel_connector_update_modes(connector, edid);
4268 if (ret)
4269 return ret;
4270 }
4271
4272 /* if eDP has no EDID, fall back to fixed mode */
4273 if (is_edp(intel_attached_dp(connector)) &&
4274 intel_connector->panel.fixed_mode) {
4275 struct drm_display_mode *mode;
4276
4277 mode = drm_mode_duplicate(connector->dev,
4278 intel_connector->panel.fixed_mode);
4279 if (mode) {
4280 drm_mode_probed_add(connector, mode);
4281 return 1;
4282 }
4283 }
4284
4285 return 0;
4286 }
4287
4288 static bool
4289 intel_dp_detect_audio(struct drm_connector *connector)
4290 {
4291 bool has_audio = false;
4292 struct edid *edid;
4293
4294 edid = to_intel_connector(connector)->detect_edid;
4295 if (edid)
4296 has_audio = drm_detect_monitor_audio(edid);
4297
4298 return has_audio;
4299 }
4300
4301 static int
4302 intel_dp_set_property(struct drm_connector *connector,
4303 struct drm_property *property,
4304 uint64_t val)
4305 {
4306 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4307 struct intel_connector *intel_connector = to_intel_connector(connector);
4308 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4309 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4310 int ret;
4311
4312 ret = drm_object_property_set_value(&connector->base, property, val);
4313 if (ret)
4314 return ret;
4315
4316 if (property == dev_priv->force_audio_property) {
4317 int i = val;
4318 bool has_audio;
4319
4320 if (i == intel_dp->force_audio)
4321 return 0;
4322
4323 intel_dp->force_audio = i;
4324
4325 if (i == HDMI_AUDIO_AUTO)
4326 has_audio = intel_dp_detect_audio(connector);
4327 else
4328 has_audio = (i == HDMI_AUDIO_ON);
4329
4330 if (has_audio == intel_dp->has_audio)
4331 return 0;
4332
4333 intel_dp->has_audio = has_audio;
4334 goto done;
4335 }
4336
4337 if (property == dev_priv->broadcast_rgb_property) {
4338 bool old_auto = intel_dp->color_range_auto;
4339 uint32_t old_range = intel_dp->color_range;
4340
4341 switch (val) {
4342 case INTEL_BROADCAST_RGB_AUTO:
4343 intel_dp->color_range_auto = true;
4344 break;
4345 case INTEL_BROADCAST_RGB_FULL:
4346 intel_dp->color_range_auto = false;
4347 intel_dp->color_range = 0;
4348 break;
4349 case INTEL_BROADCAST_RGB_LIMITED:
4350 intel_dp->color_range_auto = false;
4351 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4352 break;
4353 default:
4354 return -EINVAL;
4355 }
4356
4357 if (old_auto == intel_dp->color_range_auto &&
4358 old_range == intel_dp->color_range)
4359 return 0;
4360
4361 goto done;
4362 }
4363
4364 if (is_edp(intel_dp) &&
4365 property == connector->dev->mode_config.scaling_mode_property) {
4366 if (val == DRM_MODE_SCALE_NONE) {
4367 DRM_DEBUG_KMS("no scaling not supported\n");
4368 return -EINVAL;
4369 }
4370
4371 if (intel_connector->panel.fitting_mode == val) {
4372 /* the eDP scaling property is not changed */
4373 return 0;
4374 }
4375 intel_connector->panel.fitting_mode = val;
4376
4377 goto done;
4378 }
4379
4380 return -EINVAL;
4381
4382 done:
4383 if (intel_encoder->base.crtc)
4384 intel_crtc_restore_mode(intel_encoder->base.crtc);
4385
4386 return 0;
4387 }
4388
4389 static void
4390 intel_dp_connector_destroy(struct drm_connector *connector)
4391 {
4392 struct intel_connector *intel_connector = to_intel_connector(connector);
4393
4394 kfree(intel_connector->detect_edid);
4395
4396 if (!IS_ERR_OR_NULL(intel_connector->edid))
4397 kfree(intel_connector->edid);
4398
4399 /* Can't call is_edp() since the encoder may have been destroyed
4400 * already. */
4401 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4402 intel_panel_fini(&intel_connector->panel);
4403
4404 drm_connector_cleanup(connector);
4405 kfree(connector);
4406 }
4407
4408 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4409 {
4410 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4411 struct intel_dp *intel_dp = &intel_dig_port->dp;
4412
4413 drm_dp_aux_unregister(&intel_dp->aux);
4414 intel_dp_mst_encoder_cleanup(intel_dig_port);
4415 drm_encoder_cleanup(encoder);
4416 if (is_edp(intel_dp)) {
4417 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4418 /*
4419 * vdd might still be enabled do to the delayed vdd off.
4420 * Make sure vdd is actually turned off here.
4421 */
4422 pps_lock(intel_dp);
4423 edp_panel_vdd_off_sync(intel_dp);
4424 pps_unlock(intel_dp);
4425
4426 if (intel_dp->edp_notifier.notifier_call) {
4427 unregister_reboot_notifier(&intel_dp->edp_notifier);
4428 intel_dp->edp_notifier.notifier_call = NULL;
4429 }
4430 }
4431 kfree(intel_dig_port);
4432 }
4433
4434 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4435 {
4436 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4437
4438 if (!is_edp(intel_dp))
4439 return;
4440
4441 /*
4442 * vdd might still be enabled do to the delayed vdd off.
4443 * Make sure vdd is actually turned off here.
4444 */
4445 pps_lock(intel_dp);
4446 edp_panel_vdd_off_sync(intel_dp);
4447 pps_unlock(intel_dp);
4448 }
4449
4450 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4451 {
4452 intel_edp_panel_vdd_sanitize(to_intel_encoder(encoder));
4453 }
4454
4455 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4456 .dpms = intel_connector_dpms,
4457 .detect = intel_dp_detect,
4458 .force = intel_dp_force,
4459 .fill_modes = drm_helper_probe_single_connector_modes,
4460 .set_property = intel_dp_set_property,
4461 .destroy = intel_dp_connector_destroy,
4462 };
4463
4464 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4465 .get_modes = intel_dp_get_modes,
4466 .mode_valid = intel_dp_mode_valid,
4467 .best_encoder = intel_best_encoder,
4468 };
4469
4470 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4471 .reset = intel_dp_encoder_reset,
4472 .destroy = intel_dp_encoder_destroy,
4473 };
4474
4475 void
4476 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4477 {
4478 return;
4479 }
4480
4481 bool
4482 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4483 {
4484 struct intel_dp *intel_dp = &intel_dig_port->dp;
4485 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4486 struct drm_device *dev = intel_dig_port->base.base.dev;
4487 struct drm_i915_private *dev_priv = dev->dev_private;
4488 enum intel_display_power_domain power_domain;
4489 bool ret = true;
4490
4491 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4492 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4493
4494 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4495 port_name(intel_dig_port->port),
4496 long_hpd ? "long" : "short");
4497
4498 power_domain = intel_display_port_power_domain(intel_encoder);
4499 intel_display_power_get(dev_priv, power_domain);
4500
4501 if (long_hpd) {
4502
4503 if (HAS_PCH_SPLIT(dev)) {
4504 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4505 goto mst_fail;
4506 } else {
4507 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4508 goto mst_fail;
4509 }
4510
4511 if (!intel_dp_get_dpcd(intel_dp)) {
4512 goto mst_fail;
4513 }
4514
4515 intel_dp_probe_oui(intel_dp);
4516
4517 if (!intel_dp_probe_mst(intel_dp))
4518 goto mst_fail;
4519
4520 } else {
4521 if (intel_dp->is_mst) {
4522 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4523 goto mst_fail;
4524 }
4525
4526 if (!intel_dp->is_mst) {
4527 /*
4528 * we'll check the link status via the normal hot plug path later -
4529 * but for short hpds we should check it now
4530 */
4531 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4532 intel_dp_check_link_status(intel_dp);
4533 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4534 }
4535 }
4536 ret = false;
4537 goto put_power;
4538 mst_fail:
4539 /* if we were in MST mode, and device is not there get out of MST mode */
4540 if (intel_dp->is_mst) {
4541 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4542 intel_dp->is_mst = false;
4543 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4544 }
4545 put_power:
4546 intel_display_power_put(dev_priv, power_domain);
4547
4548 return ret;
4549 }
4550
4551 /* Return which DP Port should be selected for Transcoder DP control */
4552 int
4553 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4554 {
4555 struct drm_device *dev = crtc->dev;
4556 struct intel_encoder *intel_encoder;
4557 struct intel_dp *intel_dp;
4558
4559 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4560 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4561
4562 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4563 intel_encoder->type == INTEL_OUTPUT_EDP)
4564 return intel_dp->output_reg;
4565 }
4566
4567 return -1;
4568 }
4569
4570 /* check the VBT to see whether the eDP is on DP-D port */
4571 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4572 {
4573 struct drm_i915_private *dev_priv = dev->dev_private;
4574 union child_device_config *p_child;
4575 int i;
4576 static const short port_mapping[] = {
4577 [PORT_B] = PORT_IDPB,
4578 [PORT_C] = PORT_IDPC,
4579 [PORT_D] = PORT_IDPD,
4580 };
4581
4582 if (port == PORT_A)
4583 return true;
4584
4585 if (!dev_priv->vbt.child_dev_num)
4586 return false;
4587
4588 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4589 p_child = dev_priv->vbt.child_dev + i;
4590
4591 if (p_child->common.dvo_port == port_mapping[port] &&
4592 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4593 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4594 return true;
4595 }
4596 return false;
4597 }
4598
4599 void
4600 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4601 {
4602 struct intel_connector *intel_connector = to_intel_connector(connector);
4603
4604 intel_attach_force_audio_property(connector);
4605 intel_attach_broadcast_rgb_property(connector);
4606 intel_dp->color_range_auto = true;
4607
4608 if (is_edp(intel_dp)) {
4609 drm_mode_create_scaling_mode_property(connector->dev);
4610 drm_object_attach_property(
4611 &connector->base,
4612 connector->dev->mode_config.scaling_mode_property,
4613 DRM_MODE_SCALE_ASPECT);
4614 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4615 }
4616 }
4617
4618 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4619 {
4620 intel_dp->last_power_cycle = jiffies;
4621 intel_dp->last_power_on = jiffies;
4622 intel_dp->last_backlight_off = jiffies;
4623 }
4624
4625 static void
4626 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4627 struct intel_dp *intel_dp,
4628 struct edp_power_seq *out)
4629 {
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 struct edp_power_seq cur, vbt, spec, final;
4632 u32 pp_on, pp_off, pp_div, pp;
4633 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4634
4635 lockdep_assert_held(&dev_priv->pps_mutex);
4636
4637 if (HAS_PCH_SPLIT(dev)) {
4638 pp_ctrl_reg = PCH_PP_CONTROL;
4639 pp_on_reg = PCH_PP_ON_DELAYS;
4640 pp_off_reg = PCH_PP_OFF_DELAYS;
4641 pp_div_reg = PCH_PP_DIVISOR;
4642 } else {
4643 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4644
4645 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4646 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4647 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4648 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4649 }
4650
4651 /* Workaround: Need to write PP_CONTROL with the unlock key as
4652 * the very first thing. */
4653 pp = ironlake_get_pp_control(intel_dp);
4654 I915_WRITE(pp_ctrl_reg, pp);
4655
4656 pp_on = I915_READ(pp_on_reg);
4657 pp_off = I915_READ(pp_off_reg);
4658 pp_div = I915_READ(pp_div_reg);
4659
4660 /* Pull timing values out of registers */
4661 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4662 PANEL_POWER_UP_DELAY_SHIFT;
4663
4664 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4665 PANEL_LIGHT_ON_DELAY_SHIFT;
4666
4667 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4668 PANEL_LIGHT_OFF_DELAY_SHIFT;
4669
4670 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
4671 PANEL_POWER_DOWN_DELAY_SHIFT;
4672
4673 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
4674 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
4675
4676 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4677 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
4678
4679 vbt = dev_priv->vbt.edp_pps;
4680
4681 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
4682 * our hw here, which are all in 100usec. */
4683 spec.t1_t3 = 210 * 10;
4684 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
4685 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
4686 spec.t10 = 500 * 10;
4687 /* This one is special and actually in units of 100ms, but zero
4688 * based in the hw (so we need to add 100 ms). But the sw vbt
4689 * table multiplies it with 1000 to make it in units of 100usec,
4690 * too. */
4691 spec.t11_t12 = (510 + 100) * 10;
4692
4693 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
4694 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
4695
4696 /* Use the max of the register settings and vbt. If both are
4697 * unset, fall back to the spec limits. */
4698 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
4699 spec.field : \
4700 max(cur.field, vbt.field))
4701 assign_final(t1_t3);
4702 assign_final(t8);
4703 assign_final(t9);
4704 assign_final(t10);
4705 assign_final(t11_t12);
4706 #undef assign_final
4707
4708 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
4709 intel_dp->panel_power_up_delay = get_delay(t1_t3);
4710 intel_dp->backlight_on_delay = get_delay(t8);
4711 intel_dp->backlight_off_delay = get_delay(t9);
4712 intel_dp->panel_power_down_delay = get_delay(t10);
4713 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
4714 #undef get_delay
4715
4716 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
4717 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
4718 intel_dp->panel_power_cycle_delay);
4719
4720 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
4721 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
4722
4723 if (out)
4724 *out = final;
4725 }
4726
4727 static void
4728 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
4729 struct intel_dp *intel_dp,
4730 struct edp_power_seq *seq)
4731 {
4732 struct drm_i915_private *dev_priv = dev->dev_private;
4733 u32 pp_on, pp_off, pp_div, port_sel = 0;
4734 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
4735 int pp_on_reg, pp_off_reg, pp_div_reg;
4736 enum port port = dp_to_dig_port(intel_dp)->port;
4737
4738 lockdep_assert_held(&dev_priv->pps_mutex);
4739
4740 if (HAS_PCH_SPLIT(dev)) {
4741 pp_on_reg = PCH_PP_ON_DELAYS;
4742 pp_off_reg = PCH_PP_OFF_DELAYS;
4743 pp_div_reg = PCH_PP_DIVISOR;
4744 } else {
4745 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4746
4747 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4748 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4749 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4750 }
4751
4752 /*
4753 * And finally store the new values in the power sequencer. The
4754 * backlight delays are set to 1 because we do manual waits on them. For
4755 * T8, even BSpec recommends doing it. For T9, if we don't do this,
4756 * we'll end up waiting for the backlight off delay twice: once when we
4757 * do the manual sleep, and once when we disable the panel and wait for
4758 * the PP_STATUS bit to become zero.
4759 */
4760 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4761 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
4762 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4763 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4764 /* Compute the divisor for the pp clock, simply match the Bspec
4765 * formula. */
4766 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4767 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4768 << PANEL_POWER_CYCLE_DELAY_SHIFT);
4769
4770 /* Haswell doesn't have any port selection bits for the panel
4771 * power sequencer any more. */
4772 if (IS_VALLEYVIEW(dev)) {
4773 port_sel = PANEL_PORT_SELECT_VLV(port);
4774 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
4775 if (port == PORT_A)
4776 port_sel = PANEL_PORT_SELECT_DPA;
4777 else
4778 port_sel = PANEL_PORT_SELECT_DPD;
4779 }
4780
4781 pp_on |= port_sel;
4782
4783 I915_WRITE(pp_on_reg, pp_on);
4784 I915_WRITE(pp_off_reg, pp_off);
4785 I915_WRITE(pp_div_reg, pp_div);
4786
4787 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4788 I915_READ(pp_on_reg),
4789 I915_READ(pp_off_reg),
4790 I915_READ(pp_div_reg));
4791 }
4792
4793 void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
4794 {
4795 struct drm_i915_private *dev_priv = dev->dev_private;
4796 struct intel_encoder *encoder;
4797 struct intel_dp *intel_dp = NULL;
4798 struct intel_crtc_config *config = NULL;
4799 struct intel_crtc *intel_crtc = NULL;
4800 struct intel_connector *intel_connector = dev_priv->drrs.connector;
4801 u32 reg, val;
4802 enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
4803
4804 if (refresh_rate <= 0) {
4805 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
4806 return;
4807 }
4808
4809 if (intel_connector == NULL) {
4810 DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
4811 return;
4812 }
4813
4814 /*
4815 * FIXME: This needs proper synchronization with psr state. But really
4816 * hard to tell without seeing the user of this function of this code.
4817 * Check locking and ordering once that lands.
4818 */
4819 if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
4820 DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
4821 return;
4822 }
4823
4824 encoder = intel_attached_encoder(&intel_connector->base);
4825 intel_dp = enc_to_intel_dp(&encoder->base);
4826 intel_crtc = encoder->new_crtc;
4827
4828 if (!intel_crtc) {
4829 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
4830 return;
4831 }
4832
4833 config = &intel_crtc->config;
4834
4835 if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
4836 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
4837 return;
4838 }
4839
4840 if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
4841 index = DRRS_LOW_RR;
4842
4843 if (index == intel_dp->drrs_state.refresh_rate_type) {
4844 DRM_DEBUG_KMS(
4845 "DRRS requested for previously set RR...ignoring\n");
4846 return;
4847 }
4848
4849 if (!intel_crtc->active) {
4850 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
4851 return;
4852 }
4853
4854 if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
4855 reg = PIPECONF(intel_crtc->config.cpu_transcoder);
4856 val = I915_READ(reg);
4857 if (index > DRRS_HIGH_RR) {
4858 val |= PIPECONF_EDP_RR_MODE_SWITCH;
4859 intel_dp_set_m_n(intel_crtc);
4860 } else {
4861 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
4862 }
4863 I915_WRITE(reg, val);
4864 }
4865
4866 /*
4867 * mutex taken to ensure that there is no race between differnt
4868 * drrs calls trying to update refresh rate. This scenario may occur
4869 * in future when idleness detection based DRRS in kernel and
4870 * possible calls from user space to set differnt RR are made.
4871 */
4872
4873 mutex_lock(&intel_dp->drrs_state.mutex);
4874
4875 intel_dp->drrs_state.refresh_rate_type = index;
4876
4877 mutex_unlock(&intel_dp->drrs_state.mutex);
4878
4879 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
4880 }
4881
4882 static struct drm_display_mode *
4883 intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
4884 struct intel_connector *intel_connector,
4885 struct drm_display_mode *fixed_mode)
4886 {
4887 struct drm_connector *connector = &intel_connector->base;
4888 struct intel_dp *intel_dp = &intel_dig_port->dp;
4889 struct drm_device *dev = intel_dig_port->base.base.dev;
4890 struct drm_i915_private *dev_priv = dev->dev_private;
4891 struct drm_display_mode *downclock_mode = NULL;
4892
4893 if (INTEL_INFO(dev)->gen <= 6) {
4894 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
4895 return NULL;
4896 }
4897
4898 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
4899 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
4900 return NULL;
4901 }
4902
4903 downclock_mode = intel_find_panel_downclock
4904 (dev, fixed_mode, connector);
4905
4906 if (!downclock_mode) {
4907 DRM_DEBUG_KMS("DRRS not supported\n");
4908 return NULL;
4909 }
4910
4911 dev_priv->drrs.connector = intel_connector;
4912
4913 mutex_init(&intel_dp->drrs_state.mutex);
4914
4915 intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
4916
4917 intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
4918 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
4919 return downclock_mode;
4920 }
4921
4922 void intel_edp_panel_vdd_sanitize(struct intel_encoder *intel_encoder)
4923 {
4924 struct drm_device *dev = intel_encoder->base.dev;
4925 struct drm_i915_private *dev_priv = dev->dev_private;
4926 struct intel_dp *intel_dp;
4927 enum intel_display_power_domain power_domain;
4928
4929 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4930 return;
4931
4932 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4933
4934 pps_lock(intel_dp);
4935
4936 if (!edp_have_panel_vdd(intel_dp))
4937 goto out;
4938 /*
4939 * The VDD bit needs a power domain reference, so if the bit is
4940 * already enabled when we boot or resume, grab this reference and
4941 * schedule a vdd off, so we don't hold on to the reference
4942 * indefinitely.
4943 */
4944 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4945 power_domain = intel_display_port_power_domain(intel_encoder);
4946 intel_display_power_get(dev_priv, power_domain);
4947
4948 edp_panel_vdd_schedule_off(intel_dp);
4949 out:
4950 pps_unlock(intel_dp);
4951 }
4952
4953 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4954 struct intel_connector *intel_connector,
4955 struct edp_power_seq *power_seq)
4956 {
4957 struct drm_connector *connector = &intel_connector->base;
4958 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4959 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4960 struct drm_device *dev = intel_encoder->base.dev;
4961 struct drm_i915_private *dev_priv = dev->dev_private;
4962 struct drm_display_mode *fixed_mode = NULL;
4963 struct drm_display_mode *downclock_mode = NULL;
4964 bool has_dpcd;
4965 struct drm_display_mode *scan;
4966 struct edid *edid;
4967
4968 intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
4969
4970 if (!is_edp(intel_dp))
4971 return true;
4972
4973 intel_edp_panel_vdd_sanitize(intel_encoder);
4974
4975 /* Cache DPCD and EDID for edp. */
4976 intel_edp_panel_vdd_on(intel_dp);
4977 has_dpcd = intel_dp_get_dpcd(intel_dp);
4978 intel_edp_panel_vdd_off(intel_dp, false);
4979
4980 if (has_dpcd) {
4981 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4982 dev_priv->no_aux_handshake =
4983 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4984 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4985 } else {
4986 /* if this fails, presume the device is a ghost */
4987 DRM_INFO("failed to retrieve link info, disabling eDP\n");
4988 return false;
4989 }
4990
4991 /* We now know it's not a ghost, init power sequence regs. */
4992 pps_lock(intel_dp);
4993 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4994 pps_unlock(intel_dp);
4995
4996 mutex_lock(&dev->mode_config.mutex);
4997 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4998 if (edid) {
4999 if (drm_add_edid_modes(connector, edid)) {
5000 drm_mode_connector_update_edid_property(connector,
5001 edid);
5002 drm_edid_to_eld(connector, edid);
5003 } else {
5004 kfree(edid);
5005 edid = ERR_PTR(-EINVAL);
5006 }
5007 } else {
5008 edid = ERR_PTR(-ENOENT);
5009 }
5010 intel_connector->edid = edid;
5011
5012 /* prefer fixed mode from EDID if available */
5013 list_for_each_entry(scan, &connector->probed_modes, head) {
5014 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5015 fixed_mode = drm_mode_duplicate(dev, scan);
5016 downclock_mode = intel_dp_drrs_init(
5017 intel_dig_port,
5018 intel_connector, fixed_mode);
5019 break;
5020 }
5021 }
5022
5023 /* fallback to VBT if available for eDP */
5024 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5025 fixed_mode = drm_mode_duplicate(dev,
5026 dev_priv->vbt.lfp_lvds_vbt_mode);
5027 if (fixed_mode)
5028 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5029 }
5030 mutex_unlock(&dev->mode_config.mutex);
5031
5032 if (IS_VALLEYVIEW(dev)) {
5033 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5034 register_reboot_notifier(&intel_dp->edp_notifier);
5035 }
5036
5037 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5038 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5039 intel_panel_setup_backlight(connector);
5040
5041 return true;
5042 }
5043
5044 bool
5045 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5046 struct intel_connector *intel_connector)
5047 {
5048 struct drm_connector *connector = &intel_connector->base;
5049 struct intel_dp *intel_dp = &intel_dig_port->dp;
5050 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5051 struct drm_device *dev = intel_encoder->base.dev;
5052 struct drm_i915_private *dev_priv = dev->dev_private;
5053 enum port port = intel_dig_port->port;
5054 struct edp_power_seq power_seq = { 0 };
5055 int type;
5056
5057 intel_dp->pps_pipe = INVALID_PIPE;
5058
5059 /* intel_dp vfuncs */
5060 if (IS_VALLEYVIEW(dev))
5061 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5062 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5063 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5064 else if (HAS_PCH_SPLIT(dev))
5065 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5066 else
5067 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5068
5069 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5070
5071 /* Preserve the current hw state. */
5072 intel_dp->DP = I915_READ(intel_dp->output_reg);
5073 intel_dp->attached_connector = intel_connector;
5074
5075 if (intel_dp_is_edp(dev, port))
5076 type = DRM_MODE_CONNECTOR_eDP;
5077 else
5078 type = DRM_MODE_CONNECTOR_DisplayPort;
5079
5080 /*
5081 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5082 * for DP the encoder type can be set by the caller to
5083 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5084 */
5085 if (type == DRM_MODE_CONNECTOR_eDP)
5086 intel_encoder->type = INTEL_OUTPUT_EDP;
5087
5088 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5089 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5090 port_name(port));
5091
5092 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5093 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5094
5095 connector->interlace_allowed = true;
5096 connector->doublescan_allowed = 0;
5097
5098 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5099 edp_panel_vdd_work);
5100
5101 intel_connector_attach_encoder(intel_connector, intel_encoder);
5102 drm_connector_register(connector);
5103
5104 if (HAS_DDI(dev))
5105 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5106 else
5107 intel_connector->get_hw_state = intel_connector_get_hw_state;
5108 intel_connector->unregister = intel_dp_connector_unregister;
5109
5110 /* Set up the hotplug pin. */
5111 switch (port) {
5112 case PORT_A:
5113 intel_encoder->hpd_pin = HPD_PORT_A;
5114 break;
5115 case PORT_B:
5116 intel_encoder->hpd_pin = HPD_PORT_B;
5117 break;
5118 case PORT_C:
5119 intel_encoder->hpd_pin = HPD_PORT_C;
5120 break;
5121 case PORT_D:
5122 intel_encoder->hpd_pin = HPD_PORT_D;
5123 break;
5124 default:
5125 BUG();
5126 }
5127
5128 if (is_edp(intel_dp)) {
5129 pps_lock(intel_dp);
5130 if (IS_VALLEYVIEW(dev)) {
5131 vlv_initial_power_sequencer_setup(intel_dp);
5132 } else {
5133 intel_dp_init_panel_power_timestamps(intel_dp);
5134 intel_dp_init_panel_power_sequencer(dev, intel_dp,
5135 &power_seq);
5136 }
5137 pps_unlock(intel_dp);
5138 }
5139
5140 intel_dp_aux_init(intel_dp, intel_connector);
5141
5142 /* init MST on ports that can support it */
5143 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5144 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5145 intel_dp_mst_encoder_init(intel_dig_port,
5146 intel_connector->base.base.id);
5147 }
5148 }
5149
5150 if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
5151 drm_dp_aux_unregister(&intel_dp->aux);
5152 if (is_edp(intel_dp)) {
5153 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5154 /*
5155 * vdd might still be enabled do to the delayed vdd off.
5156 * Make sure vdd is actually turned off here.
5157 */
5158 pps_lock(intel_dp);
5159 edp_panel_vdd_off_sync(intel_dp);
5160 pps_unlock(intel_dp);
5161 }
5162 drm_connector_unregister(connector);
5163 drm_connector_cleanup(connector);
5164 return false;
5165 }
5166
5167 intel_dp_add_properties(intel_dp, connector);
5168
5169 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5170 * 0xd. Failure to do so will result in spurious interrupts being
5171 * generated on the port when a cable is not attached.
5172 */
5173 if (IS_G4X(dev) && !IS_GM45(dev)) {
5174 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5175 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5176 }
5177
5178 return true;
5179 }
5180
5181 void
5182 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5183 {
5184 struct drm_i915_private *dev_priv = dev->dev_private;
5185 struct intel_digital_port *intel_dig_port;
5186 struct intel_encoder *intel_encoder;
5187 struct drm_encoder *encoder;
5188 struct intel_connector *intel_connector;
5189
5190 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5191 if (!intel_dig_port)
5192 return;
5193
5194 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
5195 if (!intel_connector) {
5196 kfree(intel_dig_port);
5197 return;
5198 }
5199
5200 intel_encoder = &intel_dig_port->base;
5201 encoder = &intel_encoder->base;
5202
5203 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5204 DRM_MODE_ENCODER_TMDS);
5205
5206 intel_encoder->compute_config = intel_dp_compute_config;
5207 intel_encoder->disable = intel_disable_dp;
5208 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5209 intel_encoder->get_config = intel_dp_get_config;
5210 intel_encoder->suspend = intel_dp_encoder_suspend;
5211 if (IS_CHERRYVIEW(dev)) {
5212 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5213 intel_encoder->pre_enable = chv_pre_enable_dp;
5214 intel_encoder->enable = vlv_enable_dp;
5215 intel_encoder->post_disable = chv_post_disable_dp;
5216 } else if (IS_VALLEYVIEW(dev)) {
5217 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5218 intel_encoder->pre_enable = vlv_pre_enable_dp;
5219 intel_encoder->enable = vlv_enable_dp;
5220 intel_encoder->post_disable = vlv_post_disable_dp;
5221 } else {
5222 intel_encoder->pre_enable = g4x_pre_enable_dp;
5223 intel_encoder->enable = g4x_enable_dp;
5224 if (INTEL_INFO(dev)->gen >= 5)
5225 intel_encoder->post_disable = ilk_post_disable_dp;
5226 }
5227
5228 intel_dig_port->port = port;
5229 intel_dig_port->dp.output_reg = output_reg;
5230
5231 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5232 if (IS_CHERRYVIEW(dev)) {
5233 if (port == PORT_D)
5234 intel_encoder->crtc_mask = 1 << 2;
5235 else
5236 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5237 } else {
5238 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5239 }
5240 intel_encoder->cloneable = 0;
5241 intel_encoder->hot_plug = intel_dp_hot_plug;
5242
5243 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5244 dev_priv->hpd_irq_port[port] = intel_dig_port;
5245
5246 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5247 drm_encoder_cleanup(encoder);
5248 kfree(intel_dig_port);
5249 kfree(intel_connector);
5250 }
5251 }
5252
5253 void intel_dp_mst_suspend(struct drm_device *dev)
5254 {
5255 struct drm_i915_private *dev_priv = dev->dev_private;
5256 int i;
5257
5258 /* disable MST */
5259 for (i = 0; i < I915_MAX_PORTS; i++) {
5260 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5261 if (!intel_dig_port)
5262 continue;
5263
5264 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5265 if (!intel_dig_port->dp.can_mst)
5266 continue;
5267 if (intel_dig_port->dp.is_mst)
5268 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5269 }
5270 }
5271 }
5272
5273 void intel_dp_mst_resume(struct drm_device *dev)
5274 {
5275 struct drm_i915_private *dev_priv = dev->dev_private;
5276 int i;
5277
5278 for (i = 0; i < I915_MAX_PORTS; i++) {
5279 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5280 if (!intel_dig_port)
5281 continue;
5282 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5283 int ret;
5284
5285 if (!intel_dig_port->dp.can_mst)
5286 continue;
5287
5288 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5289 if (ret != 0) {
5290 intel_dp_check_mst_status(&intel_dig_port->dp);
5291 }
5292 }
5293 }
5294 }
This page took 0.135155 seconds and 6 git commands to generate.