drm/dp: Add definition for Display Control DPCD Registers capability size
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int clock;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { 162000,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { 270000,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { 162000,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { 270000,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { 162000,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { 270000,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { 270000, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { 540000, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95 324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97 324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102 * @intel_dp: DP struct
103 *
104 * If a CPU or PCH DP output is attached to an eDP panel, this function
105 * will return true, and false otherwise.
106 */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118 return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131 enum pipe pipe);
132 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
133
134 static unsigned int intel_dp_unused_lane_mask(int lane_count)
135 {
136 return ~((1 << lane_count) - 1) & 0xf;
137 }
138
139 static int
140 intel_dp_max_link_bw(struct intel_dp *intel_dp)
141 {
142 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
143
144 switch (max_link_bw) {
145 case DP_LINK_BW_1_62:
146 case DP_LINK_BW_2_7:
147 case DP_LINK_BW_5_4:
148 break;
149 default:
150 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
151 max_link_bw);
152 max_link_bw = DP_LINK_BW_1_62;
153 break;
154 }
155 return max_link_bw;
156 }
157
158 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
159 {
160 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
161 u8 source_max, sink_max;
162
163 source_max = intel_dig_port->max_lanes;
164 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
165
166 return min(source_max, sink_max);
167 }
168
169 /*
170 * The units on the numbers in the next two are... bizarre. Examples will
171 * make it clearer; this one parallels an example in the eDP spec.
172 *
173 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174 *
175 * 270000 * 1 * 8 / 10 == 216000
176 *
177 * The actual data capacity of that configuration is 2.16Gbit/s, so the
178 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
179 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180 * 119000. At 18bpp that's 2142000 kilobits per second.
181 *
182 * Thus the strange-looking division by 10 in intel_dp_link_required, to
183 * get the result in decakilobits instead of kilobits.
184 */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189 return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static enum drm_mode_status
199 intel_dp_mode_valid(struct drm_connector *connector,
200 struct drm_display_mode *mode)
201 {
202 struct intel_dp *intel_dp = intel_attached_dp(connector);
203 struct intel_connector *intel_connector = to_intel_connector(connector);
204 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
205 int target_clock = mode->clock;
206 int max_rate, mode_rate, max_lanes, max_link_clock;
207 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
208
209 if (is_edp(intel_dp) && fixed_mode) {
210 if (mode->hdisplay > fixed_mode->hdisplay)
211 return MODE_PANEL;
212
213 if (mode->vdisplay > fixed_mode->vdisplay)
214 return MODE_PANEL;
215
216 target_clock = fixed_mode->clock;
217 }
218
219 max_link_clock = intel_dp_max_link_rate(intel_dp);
220 max_lanes = intel_dp_max_lane_count(intel_dp);
221
222 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
223 mode_rate = intel_dp_link_required(target_clock, 18);
224
225 if (mode_rate > max_rate || target_clock > max_dotclk)
226 return MODE_CLOCK_HIGH;
227
228 if (mode->clock < 10000)
229 return MODE_CLOCK_LOW;
230
231 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
232 return MODE_H_ILLEGAL;
233
234 return MODE_OK;
235 }
236
237 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
238 {
239 int i;
240 uint32_t v = 0;
241
242 if (src_bytes > 4)
243 src_bytes = 4;
244 for (i = 0; i < src_bytes; i++)
245 v |= ((uint32_t) src[i]) << ((3-i) * 8);
246 return v;
247 }
248
249 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
250 {
251 int i;
252 if (dst_bytes > 4)
253 dst_bytes = 4;
254 for (i = 0; i < dst_bytes; i++)
255 dst[i] = src >> ((3-i) * 8);
256 }
257
258 static void
259 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
260 struct intel_dp *intel_dp);
261 static void
262 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
263 struct intel_dp *intel_dp);
264
265 static void pps_lock(struct intel_dp *intel_dp)
266 {
267 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
268 struct intel_encoder *encoder = &intel_dig_port->base;
269 struct drm_device *dev = encoder->base.dev;
270 struct drm_i915_private *dev_priv = dev->dev_private;
271 enum intel_display_power_domain power_domain;
272
273 /*
274 * See vlv_power_sequencer_reset() why we need
275 * a power domain reference here.
276 */
277 power_domain = intel_display_port_aux_power_domain(encoder);
278 intel_display_power_get(dev_priv, power_domain);
279
280 mutex_lock(&dev_priv->pps_mutex);
281 }
282
283 static void pps_unlock(struct intel_dp *intel_dp)
284 {
285 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
286 struct intel_encoder *encoder = &intel_dig_port->base;
287 struct drm_device *dev = encoder->base.dev;
288 struct drm_i915_private *dev_priv = dev->dev_private;
289 enum intel_display_power_domain power_domain;
290
291 mutex_unlock(&dev_priv->pps_mutex);
292
293 power_domain = intel_display_port_aux_power_domain(encoder);
294 intel_display_power_put(dev_priv, power_domain);
295 }
296
297 static void
298 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
299 {
300 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
301 struct drm_device *dev = intel_dig_port->base.base.dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 enum pipe pipe = intel_dp->pps_pipe;
304 bool pll_enabled, release_cl_override = false;
305 enum dpio_phy phy = DPIO_PHY(pipe);
306 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
307 uint32_t DP;
308
309 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
310 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
311 pipe_name(pipe), port_name(intel_dig_port->port)))
312 return;
313
314 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
315 pipe_name(pipe), port_name(intel_dig_port->port));
316
317 /* Preserve the BIOS-computed detected bit. This is
318 * supposed to be read-only.
319 */
320 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
321 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
322 DP |= DP_PORT_WIDTH(1);
323 DP |= DP_LINK_TRAIN_PAT_1;
324
325 if (IS_CHERRYVIEW(dev))
326 DP |= DP_PIPE_SELECT_CHV(pipe);
327 else if (pipe == PIPE_B)
328 DP |= DP_PIPEB_SELECT;
329
330 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
331
332 /*
333 * The DPLL for the pipe must be enabled for this to work.
334 * So enable temporarily it if it's not already enabled.
335 */
336 if (!pll_enabled) {
337 release_cl_override = IS_CHERRYVIEW(dev) &&
338 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
339
340 if (vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
341 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
342 DRM_ERROR("Failed to force on pll for pipe %c!\n",
343 pipe_name(pipe));
344 return;
345 }
346 }
347
348 /*
349 * Similar magic as in intel_dp_enable_port().
350 * We _must_ do this port enable + disable trick
351 * to make this power seqeuencer lock onto the port.
352 * Otherwise even VDD force bit won't work.
353 */
354 I915_WRITE(intel_dp->output_reg, DP);
355 POSTING_READ(intel_dp->output_reg);
356
357 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
358 POSTING_READ(intel_dp->output_reg);
359
360 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
361 POSTING_READ(intel_dp->output_reg);
362
363 if (!pll_enabled) {
364 vlv_force_pll_off(dev, pipe);
365
366 if (release_cl_override)
367 chv_phy_powergate_ch(dev_priv, phy, ch, false);
368 }
369 }
370
371 static enum pipe
372 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
373 {
374 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
375 struct drm_device *dev = intel_dig_port->base.base.dev;
376 struct drm_i915_private *dev_priv = dev->dev_private;
377 struct intel_encoder *encoder;
378 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
379 enum pipe pipe;
380
381 lockdep_assert_held(&dev_priv->pps_mutex);
382
383 /* We should never land here with regular DP ports */
384 WARN_ON(!is_edp(intel_dp));
385
386 if (intel_dp->pps_pipe != INVALID_PIPE)
387 return intel_dp->pps_pipe;
388
389 /*
390 * We don't have power sequencer currently.
391 * Pick one that's not used by other ports.
392 */
393 for_each_intel_encoder(dev, encoder) {
394 struct intel_dp *tmp;
395
396 if (encoder->type != INTEL_OUTPUT_EDP)
397 continue;
398
399 tmp = enc_to_intel_dp(&encoder->base);
400
401 if (tmp->pps_pipe != INVALID_PIPE)
402 pipes &= ~(1 << tmp->pps_pipe);
403 }
404
405 /*
406 * Didn't find one. This should not happen since there
407 * are two power sequencers and up to two eDP ports.
408 */
409 if (WARN_ON(pipes == 0))
410 pipe = PIPE_A;
411 else
412 pipe = ffs(pipes) - 1;
413
414 vlv_steal_power_sequencer(dev, pipe);
415 intel_dp->pps_pipe = pipe;
416
417 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418 pipe_name(intel_dp->pps_pipe),
419 port_name(intel_dig_port->port));
420
421 /* init power sequencer on this pipe and port */
422 intel_dp_init_panel_power_sequencer(dev, intel_dp);
423 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425 /*
426 * Even vdd force doesn't work until we've made
427 * the power sequencer lock in on the port.
428 */
429 vlv_power_sequencer_kick(intel_dp);
430
431 return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435 enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438 enum pipe pipe)
439 {
440 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444 enum pipe pipe)
445 {
446 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450 enum pipe pipe)
451 {
452 return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457 enum port port,
458 vlv_pipe_check pipe_check)
459 {
460 enum pipe pipe;
461
462 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464 PANEL_PORT_SELECT_MASK;
465
466 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467 continue;
468
469 if (!pipe_check(dev_priv, pipe))
470 continue;
471
472 return pipe;
473 }
474
475 return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482 struct drm_device *dev = intel_dig_port->base.base.dev;
483 struct drm_i915_private *dev_priv = dev->dev_private;
484 enum port port = intel_dig_port->port;
485
486 lockdep_assert_held(&dev_priv->pps_mutex);
487
488 /* try to find a pipe with this port selected */
489 /* first pick one where the panel is on */
490 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491 vlv_pipe_has_pp_on);
492 /* didn't find one? pick one where vdd is on */
493 if (intel_dp->pps_pipe == INVALID_PIPE)
494 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495 vlv_pipe_has_vdd_on);
496 /* didn't find one? pick one with just the correct port */
497 if (intel_dp->pps_pipe == INVALID_PIPE)
498 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499 vlv_pipe_any);
500
501 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502 if (intel_dp->pps_pipe == INVALID_PIPE) {
503 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504 port_name(port));
505 return;
506 }
507
508 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509 port_name(port), pipe_name(intel_dp->pps_pipe));
510
511 intel_dp_init_panel_power_sequencer(dev, intel_dp);
512 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517 struct drm_device *dev = dev_priv->dev;
518 struct intel_encoder *encoder;
519
520 if (WARN_ON(!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)))
521 return;
522
523 /*
524 * We can't grab pps_mutex here due to deadlock with power_domain
525 * mutex when power_domain functions are called while holding pps_mutex.
526 * That also means that in order to use pps_pipe the code needs to
527 * hold both a power domain reference and pps_mutex, and the power domain
528 * reference get/put must be done while _not_ holding pps_mutex.
529 * pps_{lock,unlock}() do these steps in the correct order, so one
530 * should use them always.
531 */
532
533 for_each_intel_encoder(dev, encoder) {
534 struct intel_dp *intel_dp;
535
536 if (encoder->type != INTEL_OUTPUT_EDP)
537 continue;
538
539 intel_dp = enc_to_intel_dp(&encoder->base);
540 intel_dp->pps_pipe = INVALID_PIPE;
541 }
542 }
543
544 static i915_reg_t
545 _pp_ctrl_reg(struct intel_dp *intel_dp)
546 {
547 struct drm_device *dev = intel_dp_to_dev(intel_dp);
548
549 if (IS_BROXTON(dev))
550 return BXT_PP_CONTROL(0);
551 else if (HAS_PCH_SPLIT(dev))
552 return PCH_PP_CONTROL;
553 else
554 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
555 }
556
557 static i915_reg_t
558 _pp_stat_reg(struct intel_dp *intel_dp)
559 {
560 struct drm_device *dev = intel_dp_to_dev(intel_dp);
561
562 if (IS_BROXTON(dev))
563 return BXT_PP_STATUS(0);
564 else if (HAS_PCH_SPLIT(dev))
565 return PCH_PP_STATUS;
566 else
567 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
568 }
569
570 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
571 This function only applicable when panel PM state is not to be tracked */
572 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
573 void *unused)
574 {
575 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
576 edp_notifier);
577 struct drm_device *dev = intel_dp_to_dev(intel_dp);
578 struct drm_i915_private *dev_priv = dev->dev_private;
579
580 if (!is_edp(intel_dp) || code != SYS_RESTART)
581 return 0;
582
583 pps_lock(intel_dp);
584
585 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
586 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
587 i915_reg_t pp_ctrl_reg, pp_div_reg;
588 u32 pp_div;
589
590 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
591 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
592 pp_div = I915_READ(pp_div_reg);
593 pp_div &= PP_REFERENCE_DIVIDER_MASK;
594
595 /* 0x1F write to PP_DIV_REG sets max cycle delay */
596 I915_WRITE(pp_div_reg, pp_div | 0x1F);
597 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
598 msleep(intel_dp->panel_power_cycle_delay);
599 }
600
601 pps_unlock(intel_dp);
602
603 return 0;
604 }
605
606 static bool edp_have_panel_power(struct intel_dp *intel_dp)
607 {
608 struct drm_device *dev = intel_dp_to_dev(intel_dp);
609 struct drm_i915_private *dev_priv = dev->dev_private;
610
611 lockdep_assert_held(&dev_priv->pps_mutex);
612
613 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
614 intel_dp->pps_pipe == INVALID_PIPE)
615 return false;
616
617 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
618 }
619
620 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
621 {
622 struct drm_device *dev = intel_dp_to_dev(intel_dp);
623 struct drm_i915_private *dev_priv = dev->dev_private;
624
625 lockdep_assert_held(&dev_priv->pps_mutex);
626
627 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
628 intel_dp->pps_pipe == INVALID_PIPE)
629 return false;
630
631 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
632 }
633
634 static void
635 intel_dp_check_edp(struct intel_dp *intel_dp)
636 {
637 struct drm_device *dev = intel_dp_to_dev(intel_dp);
638 struct drm_i915_private *dev_priv = dev->dev_private;
639
640 if (!is_edp(intel_dp))
641 return;
642
643 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
644 WARN(1, "eDP powered off while attempting aux channel communication.\n");
645 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
646 I915_READ(_pp_stat_reg(intel_dp)),
647 I915_READ(_pp_ctrl_reg(intel_dp)));
648 }
649 }
650
651 static uint32_t
652 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
653 {
654 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
655 struct drm_device *dev = intel_dig_port->base.base.dev;
656 struct drm_i915_private *dev_priv = dev->dev_private;
657 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
658 uint32_t status;
659 bool done;
660
661 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
662 if (has_aux_irq)
663 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
664 msecs_to_jiffies_timeout(10));
665 else
666 done = wait_for_atomic(C, 10) == 0;
667 if (!done)
668 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
669 has_aux_irq);
670 #undef C
671
672 return status;
673 }
674
675 static uint32_t g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
676 {
677 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
678 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
679
680 if (index)
681 return 0;
682
683 /*
684 * The clock divider is based off the hrawclk, and would like to run at
685 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
686 */
687 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
688 }
689
690 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
691 {
692 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
693 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
694
695 if (index)
696 return 0;
697
698 /*
699 * The clock divider is based off the cdclk or PCH rawclk, and would
700 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
701 * divide by 2000 and use that
702 */
703 if (intel_dig_port->port == PORT_A)
704 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
705 else
706 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
707 }
708
709 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
710 {
711 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
712 struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
713
714 if (intel_dig_port->port != PORT_A && HAS_PCH_LPT_H(dev_priv)) {
715 /* Workaround for non-ULT HSW */
716 switch (index) {
717 case 0: return 63;
718 case 1: return 72;
719 default: return 0;
720 }
721 }
722
723 return ilk_get_aux_clock_divider(intel_dp, index);
724 }
725
726 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
727 {
728 /*
729 * SKL doesn't need us to program the AUX clock divider (Hardware will
730 * derive the clock from CDCLK automatically). We still implement the
731 * get_aux_clock_divider vfunc to plug-in into the existing code.
732 */
733 return index ? 0 : 1;
734 }
735
736 static uint32_t g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
737 bool has_aux_irq,
738 int send_bytes,
739 uint32_t aux_clock_divider)
740 {
741 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
742 struct drm_device *dev = intel_dig_port->base.base.dev;
743 uint32_t precharge, timeout;
744
745 if (IS_GEN6(dev))
746 precharge = 3;
747 else
748 precharge = 5;
749
750 if (IS_BROADWELL(dev) && intel_dig_port->port == PORT_A)
751 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
752 else
753 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
754
755 return DP_AUX_CH_CTL_SEND_BUSY |
756 DP_AUX_CH_CTL_DONE |
757 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
758 DP_AUX_CH_CTL_TIME_OUT_ERROR |
759 timeout |
760 DP_AUX_CH_CTL_RECEIVE_ERROR |
761 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
762 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
763 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
764 }
765
766 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
767 bool has_aux_irq,
768 int send_bytes,
769 uint32_t unused)
770 {
771 return DP_AUX_CH_CTL_SEND_BUSY |
772 DP_AUX_CH_CTL_DONE |
773 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
774 DP_AUX_CH_CTL_TIME_OUT_ERROR |
775 DP_AUX_CH_CTL_TIME_OUT_1600us |
776 DP_AUX_CH_CTL_RECEIVE_ERROR |
777 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
778 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
779 }
780
781 static int
782 intel_dp_aux_ch(struct intel_dp *intel_dp,
783 const uint8_t *send, int send_bytes,
784 uint8_t *recv, int recv_size)
785 {
786 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
787 struct drm_device *dev = intel_dig_port->base.base.dev;
788 struct drm_i915_private *dev_priv = dev->dev_private;
789 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg;
790 uint32_t aux_clock_divider;
791 int i, ret, recv_bytes;
792 uint32_t status;
793 int try, clock = 0;
794 bool has_aux_irq = HAS_AUX_IRQ(dev);
795 bool vdd;
796
797 pps_lock(intel_dp);
798
799 /*
800 * We will be called with VDD already enabled for dpcd/edid/oui reads.
801 * In such cases we want to leave VDD enabled and it's up to upper layers
802 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
803 * ourselves.
804 */
805 vdd = edp_panel_vdd_on(intel_dp);
806
807 /* dp aux is extremely sensitive to irq latency, hence request the
808 * lowest possible wakeup latency and so prevent the cpu from going into
809 * deep sleep states.
810 */
811 pm_qos_update_request(&dev_priv->pm_qos, 0);
812
813 intel_dp_check_edp(intel_dp);
814
815 /* Try to wait for any previous AUX channel activity */
816 for (try = 0; try < 3; try++) {
817 status = I915_READ_NOTRACE(ch_ctl);
818 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
819 break;
820 msleep(1);
821 }
822
823 if (try == 3) {
824 static u32 last_status = -1;
825 const u32 status = I915_READ(ch_ctl);
826
827 if (status != last_status) {
828 WARN(1, "dp_aux_ch not started status 0x%08x\n",
829 status);
830 last_status = status;
831 }
832
833 ret = -EBUSY;
834 goto out;
835 }
836
837 /* Only 5 data registers! */
838 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
839 ret = -E2BIG;
840 goto out;
841 }
842
843 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
844 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
845 has_aux_irq,
846 send_bytes,
847 aux_clock_divider);
848
849 /* Must try at least 3 times according to DP spec */
850 for (try = 0; try < 5; try++) {
851 /* Load the send data into the aux channel data registers */
852 for (i = 0; i < send_bytes; i += 4)
853 I915_WRITE(intel_dp->aux_ch_data_reg[i >> 2],
854 intel_dp_pack_aux(send + i,
855 send_bytes - i));
856
857 /* Send the command and wait for it to complete */
858 I915_WRITE(ch_ctl, send_ctl);
859
860 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
861
862 /* Clear done status and any errors */
863 I915_WRITE(ch_ctl,
864 status |
865 DP_AUX_CH_CTL_DONE |
866 DP_AUX_CH_CTL_TIME_OUT_ERROR |
867 DP_AUX_CH_CTL_RECEIVE_ERROR);
868
869 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
870 continue;
871
872 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
873 * 400us delay required for errors and timeouts
874 * Timeout errors from the HW already meet this
875 * requirement so skip to next iteration
876 */
877 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
878 usleep_range(400, 500);
879 continue;
880 }
881 if (status & DP_AUX_CH_CTL_DONE)
882 goto done;
883 }
884 }
885
886 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
887 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
888 ret = -EBUSY;
889 goto out;
890 }
891
892 done:
893 /* Check for timeout or receive error.
894 * Timeouts occur when the sink is not connected
895 */
896 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
897 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
898 ret = -EIO;
899 goto out;
900 }
901
902 /* Timeouts occur when the device isn't connected, so they're
903 * "normal" -- don't fill the kernel log with these */
904 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
905 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
906 ret = -ETIMEDOUT;
907 goto out;
908 }
909
910 /* Unload any bytes sent back from the other side */
911 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
912 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
913
914 /*
915 * By BSpec: "Message sizes of 0 or >20 are not allowed."
916 * We have no idea of what happened so we return -EBUSY so
917 * drm layer takes care for the necessary retries.
918 */
919 if (recv_bytes == 0 || recv_bytes > 20) {
920 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
921 recv_bytes);
922 /*
923 * FIXME: This patch was created on top of a series that
924 * organize the retries at drm level. There EBUSY should
925 * also take care for 1ms wait before retrying.
926 * That aux retries re-org is still needed and after that is
927 * merged we remove this sleep from here.
928 */
929 usleep_range(1000, 1500);
930 ret = -EBUSY;
931 goto out;
932 }
933
934 if (recv_bytes > recv_size)
935 recv_bytes = recv_size;
936
937 for (i = 0; i < recv_bytes; i += 4)
938 intel_dp_unpack_aux(I915_READ(intel_dp->aux_ch_data_reg[i >> 2]),
939 recv + i, recv_bytes - i);
940
941 ret = recv_bytes;
942 out:
943 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
944
945 if (vdd)
946 edp_panel_vdd_off(intel_dp, false);
947
948 pps_unlock(intel_dp);
949
950 return ret;
951 }
952
953 #define BARE_ADDRESS_SIZE 3
954 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
955 static ssize_t
956 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
957 {
958 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
959 uint8_t txbuf[20], rxbuf[20];
960 size_t txsize, rxsize;
961 int ret;
962
963 txbuf[0] = (msg->request << 4) |
964 ((msg->address >> 16) & 0xf);
965 txbuf[1] = (msg->address >> 8) & 0xff;
966 txbuf[2] = msg->address & 0xff;
967 txbuf[3] = msg->size - 1;
968
969 switch (msg->request & ~DP_AUX_I2C_MOT) {
970 case DP_AUX_NATIVE_WRITE:
971 case DP_AUX_I2C_WRITE:
972 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
973 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
974 rxsize = 2; /* 0 or 1 data bytes */
975
976 if (WARN_ON(txsize > 20))
977 return -E2BIG;
978
979 if (msg->buffer)
980 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
981 else
982 WARN_ON(msg->size);
983
984 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
985 if (ret > 0) {
986 msg->reply = rxbuf[0] >> 4;
987
988 if (ret > 1) {
989 /* Number of bytes written in a short write. */
990 ret = clamp_t(int, rxbuf[1], 0, msg->size);
991 } else {
992 /* Return payload size. */
993 ret = msg->size;
994 }
995 }
996 break;
997
998 case DP_AUX_NATIVE_READ:
999 case DP_AUX_I2C_READ:
1000 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1001 rxsize = msg->size + 1;
1002
1003 if (WARN_ON(rxsize > 20))
1004 return -E2BIG;
1005
1006 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
1007 if (ret > 0) {
1008 msg->reply = rxbuf[0] >> 4;
1009 /*
1010 * Assume happy day, and copy the data. The caller is
1011 * expected to check msg->reply before touching it.
1012 *
1013 * Return payload size.
1014 */
1015 ret--;
1016 memcpy(msg->buffer, rxbuf + 1, ret);
1017 }
1018 break;
1019
1020 default:
1021 ret = -EINVAL;
1022 break;
1023 }
1024
1025 return ret;
1026 }
1027
1028 static i915_reg_t g4x_aux_ctl_reg(struct drm_i915_private *dev_priv,
1029 enum port port)
1030 {
1031 switch (port) {
1032 case PORT_B:
1033 case PORT_C:
1034 case PORT_D:
1035 return DP_AUX_CH_CTL(port);
1036 default:
1037 MISSING_CASE(port);
1038 return DP_AUX_CH_CTL(PORT_B);
1039 }
1040 }
1041
1042 static i915_reg_t g4x_aux_data_reg(struct drm_i915_private *dev_priv,
1043 enum port port, int index)
1044 {
1045 switch (port) {
1046 case PORT_B:
1047 case PORT_C:
1048 case PORT_D:
1049 return DP_AUX_CH_DATA(port, index);
1050 default:
1051 MISSING_CASE(port);
1052 return DP_AUX_CH_DATA(PORT_B, index);
1053 }
1054 }
1055
1056 static i915_reg_t ilk_aux_ctl_reg(struct drm_i915_private *dev_priv,
1057 enum port port)
1058 {
1059 switch (port) {
1060 case PORT_A:
1061 return DP_AUX_CH_CTL(port);
1062 case PORT_B:
1063 case PORT_C:
1064 case PORT_D:
1065 return PCH_DP_AUX_CH_CTL(port);
1066 default:
1067 MISSING_CASE(port);
1068 return DP_AUX_CH_CTL(PORT_A);
1069 }
1070 }
1071
1072 static i915_reg_t ilk_aux_data_reg(struct drm_i915_private *dev_priv,
1073 enum port port, int index)
1074 {
1075 switch (port) {
1076 case PORT_A:
1077 return DP_AUX_CH_DATA(port, index);
1078 case PORT_B:
1079 case PORT_C:
1080 case PORT_D:
1081 return PCH_DP_AUX_CH_DATA(port, index);
1082 default:
1083 MISSING_CASE(port);
1084 return DP_AUX_CH_DATA(PORT_A, index);
1085 }
1086 }
1087
1088 /*
1089 * On SKL we don't have Aux for port E so we rely
1090 * on VBT to set a proper alternate aux channel.
1091 */
1092 static enum port skl_porte_aux_port(struct drm_i915_private *dev_priv)
1093 {
1094 const struct ddi_vbt_port_info *info =
1095 &dev_priv->vbt.ddi_port_info[PORT_E];
1096
1097 switch (info->alternate_aux_channel) {
1098 case DP_AUX_A:
1099 return PORT_A;
1100 case DP_AUX_B:
1101 return PORT_B;
1102 case DP_AUX_C:
1103 return PORT_C;
1104 case DP_AUX_D:
1105 return PORT_D;
1106 default:
1107 MISSING_CASE(info->alternate_aux_channel);
1108 return PORT_A;
1109 }
1110 }
1111
1112 static i915_reg_t skl_aux_ctl_reg(struct drm_i915_private *dev_priv,
1113 enum port port)
1114 {
1115 if (port == PORT_E)
1116 port = skl_porte_aux_port(dev_priv);
1117
1118 switch (port) {
1119 case PORT_A:
1120 case PORT_B:
1121 case PORT_C:
1122 case PORT_D:
1123 return DP_AUX_CH_CTL(port);
1124 default:
1125 MISSING_CASE(port);
1126 return DP_AUX_CH_CTL(PORT_A);
1127 }
1128 }
1129
1130 static i915_reg_t skl_aux_data_reg(struct drm_i915_private *dev_priv,
1131 enum port port, int index)
1132 {
1133 if (port == PORT_E)
1134 port = skl_porte_aux_port(dev_priv);
1135
1136 switch (port) {
1137 case PORT_A:
1138 case PORT_B:
1139 case PORT_C:
1140 case PORT_D:
1141 return DP_AUX_CH_DATA(port, index);
1142 default:
1143 MISSING_CASE(port);
1144 return DP_AUX_CH_DATA(PORT_A, index);
1145 }
1146 }
1147
1148 static i915_reg_t intel_aux_ctl_reg(struct drm_i915_private *dev_priv,
1149 enum port port)
1150 {
1151 if (INTEL_INFO(dev_priv)->gen >= 9)
1152 return skl_aux_ctl_reg(dev_priv, port);
1153 else if (HAS_PCH_SPLIT(dev_priv))
1154 return ilk_aux_ctl_reg(dev_priv, port);
1155 else
1156 return g4x_aux_ctl_reg(dev_priv, port);
1157 }
1158
1159 static i915_reg_t intel_aux_data_reg(struct drm_i915_private *dev_priv,
1160 enum port port, int index)
1161 {
1162 if (INTEL_INFO(dev_priv)->gen >= 9)
1163 return skl_aux_data_reg(dev_priv, port, index);
1164 else if (HAS_PCH_SPLIT(dev_priv))
1165 return ilk_aux_data_reg(dev_priv, port, index);
1166 else
1167 return g4x_aux_data_reg(dev_priv, port, index);
1168 }
1169
1170 static void intel_aux_reg_init(struct intel_dp *intel_dp)
1171 {
1172 struct drm_i915_private *dev_priv = to_i915(intel_dp_to_dev(intel_dp));
1173 enum port port = dp_to_dig_port(intel_dp)->port;
1174 int i;
1175
1176 intel_dp->aux_ch_ctl_reg = intel_aux_ctl_reg(dev_priv, port);
1177 for (i = 0; i < ARRAY_SIZE(intel_dp->aux_ch_data_reg); i++)
1178 intel_dp->aux_ch_data_reg[i] = intel_aux_data_reg(dev_priv, port, i);
1179 }
1180
1181 static void
1182 intel_dp_aux_fini(struct intel_dp *intel_dp)
1183 {
1184 drm_dp_aux_unregister(&intel_dp->aux);
1185 kfree(intel_dp->aux.name);
1186 }
1187
1188 static int
1189 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1190 {
1191 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1192 enum port port = intel_dig_port->port;
1193 int ret;
1194
1195 intel_aux_reg_init(intel_dp);
1196
1197 intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c", port_name(port));
1198 if (!intel_dp->aux.name)
1199 return -ENOMEM;
1200
1201 intel_dp->aux.dev = connector->base.kdev;
1202 intel_dp->aux.transfer = intel_dp_aux_transfer;
1203
1204 DRM_DEBUG_KMS("registering %s bus for %s\n",
1205 intel_dp->aux.name,
1206 connector->base.kdev->kobj.name);
1207
1208 ret = drm_dp_aux_register(&intel_dp->aux);
1209 if (ret < 0) {
1210 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1211 intel_dp->aux.name, ret);
1212 kfree(intel_dp->aux.name);
1213 return ret;
1214 }
1215
1216 return 0;
1217 }
1218
1219 static void
1220 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1221 {
1222 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1223
1224 intel_dp_aux_fini(intel_dp);
1225 intel_connector_unregister(intel_connector);
1226 }
1227
1228 static int
1229 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1230 {
1231 if (intel_dp->num_sink_rates) {
1232 *sink_rates = intel_dp->sink_rates;
1233 return intel_dp->num_sink_rates;
1234 }
1235
1236 *sink_rates = default_rates;
1237
1238 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1239 }
1240
1241 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1242 {
1243 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1244 struct drm_device *dev = dig_port->base.base.dev;
1245
1246 /* WaDisableHBR2:skl */
1247 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0))
1248 return false;
1249
1250 if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1251 (INTEL_INFO(dev)->gen >= 9))
1252 return true;
1253 else
1254 return false;
1255 }
1256
1257 static int
1258 intel_dp_source_rates(struct intel_dp *intel_dp, const int **source_rates)
1259 {
1260 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1261 struct drm_device *dev = dig_port->base.base.dev;
1262 int size;
1263
1264 if (IS_BROXTON(dev)) {
1265 *source_rates = bxt_rates;
1266 size = ARRAY_SIZE(bxt_rates);
1267 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1268 *source_rates = skl_rates;
1269 size = ARRAY_SIZE(skl_rates);
1270 } else {
1271 *source_rates = default_rates;
1272 size = ARRAY_SIZE(default_rates);
1273 }
1274
1275 /* This depends on the fact that 5.4 is last value in the array */
1276 if (!intel_dp_source_supports_hbr2(intel_dp))
1277 size--;
1278
1279 return size;
1280 }
1281
1282 static void
1283 intel_dp_set_clock(struct intel_encoder *encoder,
1284 struct intel_crtc_state *pipe_config)
1285 {
1286 struct drm_device *dev = encoder->base.dev;
1287 const struct dp_link_dpll *divisor = NULL;
1288 int i, count = 0;
1289
1290 if (IS_G4X(dev)) {
1291 divisor = gen4_dpll;
1292 count = ARRAY_SIZE(gen4_dpll);
1293 } else if (HAS_PCH_SPLIT(dev)) {
1294 divisor = pch_dpll;
1295 count = ARRAY_SIZE(pch_dpll);
1296 } else if (IS_CHERRYVIEW(dev)) {
1297 divisor = chv_dpll;
1298 count = ARRAY_SIZE(chv_dpll);
1299 } else if (IS_VALLEYVIEW(dev)) {
1300 divisor = vlv_dpll;
1301 count = ARRAY_SIZE(vlv_dpll);
1302 }
1303
1304 if (divisor && count) {
1305 for (i = 0; i < count; i++) {
1306 if (pipe_config->port_clock == divisor[i].clock) {
1307 pipe_config->dpll = divisor[i].dpll;
1308 pipe_config->clock_set = true;
1309 break;
1310 }
1311 }
1312 }
1313 }
1314
1315 static int intersect_rates(const int *source_rates, int source_len,
1316 const int *sink_rates, int sink_len,
1317 int *common_rates)
1318 {
1319 int i = 0, j = 0, k = 0;
1320
1321 while (i < source_len && j < sink_len) {
1322 if (source_rates[i] == sink_rates[j]) {
1323 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1324 return k;
1325 common_rates[k] = source_rates[i];
1326 ++k;
1327 ++i;
1328 ++j;
1329 } else if (source_rates[i] < sink_rates[j]) {
1330 ++i;
1331 } else {
1332 ++j;
1333 }
1334 }
1335 return k;
1336 }
1337
1338 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1339 int *common_rates)
1340 {
1341 const int *source_rates, *sink_rates;
1342 int source_len, sink_len;
1343
1344 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1345 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1346
1347 return intersect_rates(source_rates, source_len,
1348 sink_rates, sink_len,
1349 common_rates);
1350 }
1351
1352 static void snprintf_int_array(char *str, size_t len,
1353 const int *array, int nelem)
1354 {
1355 int i;
1356
1357 str[0] = '\0';
1358
1359 for (i = 0; i < nelem; i++) {
1360 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1361 if (r >= len)
1362 return;
1363 str += r;
1364 len -= r;
1365 }
1366 }
1367
1368 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1369 {
1370 const int *source_rates, *sink_rates;
1371 int source_len, sink_len, common_len;
1372 int common_rates[DP_MAX_SUPPORTED_RATES];
1373 char str[128]; /* FIXME: too big for stack? */
1374
1375 if ((drm_debug & DRM_UT_KMS) == 0)
1376 return;
1377
1378 source_len = intel_dp_source_rates(intel_dp, &source_rates);
1379 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1380 DRM_DEBUG_KMS("source rates: %s\n", str);
1381
1382 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1383 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1384 DRM_DEBUG_KMS("sink rates: %s\n", str);
1385
1386 common_len = intel_dp_common_rates(intel_dp, common_rates);
1387 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1388 DRM_DEBUG_KMS("common rates: %s\n", str);
1389 }
1390
1391 static int rate_to_index(int find, const int *rates)
1392 {
1393 int i = 0;
1394
1395 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1396 if (find == rates[i])
1397 break;
1398
1399 return i;
1400 }
1401
1402 int
1403 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1404 {
1405 int rates[DP_MAX_SUPPORTED_RATES] = {};
1406 int len;
1407
1408 len = intel_dp_common_rates(intel_dp, rates);
1409 if (WARN_ON(len <= 0))
1410 return 162000;
1411
1412 return rates[rate_to_index(0, rates) - 1];
1413 }
1414
1415 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1416 {
1417 return rate_to_index(rate, intel_dp->sink_rates);
1418 }
1419
1420 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1421 uint8_t *link_bw, uint8_t *rate_select)
1422 {
1423 if (intel_dp->num_sink_rates) {
1424 *link_bw = 0;
1425 *rate_select =
1426 intel_dp_rate_select(intel_dp, port_clock);
1427 } else {
1428 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1429 *rate_select = 0;
1430 }
1431 }
1432
1433 bool
1434 intel_dp_compute_config(struct intel_encoder *encoder,
1435 struct intel_crtc_state *pipe_config)
1436 {
1437 struct drm_device *dev = encoder->base.dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1440 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1441 enum port port = dp_to_dig_port(intel_dp)->port;
1442 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1443 struct intel_connector *intel_connector = intel_dp->attached_connector;
1444 int lane_count, clock;
1445 int min_lane_count = 1;
1446 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1447 /* Conveniently, the link BW constants become indices with a shift...*/
1448 int min_clock = 0;
1449 int max_clock;
1450 int bpp, mode_rate;
1451 int link_avail, link_clock;
1452 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1453 int common_len;
1454 uint8_t link_bw, rate_select;
1455
1456 common_len = intel_dp_common_rates(intel_dp, common_rates);
1457
1458 /* No common link rates between source and sink */
1459 WARN_ON(common_len <= 0);
1460
1461 max_clock = common_len - 1;
1462
1463 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1464 pipe_config->has_pch_encoder = true;
1465
1466 pipe_config->has_dp_encoder = true;
1467 pipe_config->has_drrs = false;
1468 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1469
1470 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1471 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1472 adjusted_mode);
1473
1474 if (INTEL_INFO(dev)->gen >= 9) {
1475 int ret;
1476 ret = skl_update_scaler_crtc(pipe_config);
1477 if (ret)
1478 return ret;
1479 }
1480
1481 if (HAS_GMCH_DISPLAY(dev))
1482 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1483 intel_connector->panel.fitting_mode);
1484 else
1485 intel_pch_panel_fitting(intel_crtc, pipe_config,
1486 intel_connector->panel.fitting_mode);
1487 }
1488
1489 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1490 return false;
1491
1492 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1493 "max bw %d pixel clock %iKHz\n",
1494 max_lane_count, common_rates[max_clock],
1495 adjusted_mode->crtc_clock);
1496
1497 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1498 * bpc in between. */
1499 bpp = pipe_config->pipe_bpp;
1500 if (is_edp(intel_dp)) {
1501
1502 /* Get bpp from vbt only for panels that dont have bpp in edid */
1503 if (intel_connector->base.display_info.bpc == 0 &&
1504 (dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp)) {
1505 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1506 dev_priv->vbt.edp.bpp);
1507 bpp = dev_priv->vbt.edp.bpp;
1508 }
1509
1510 /*
1511 * Use the maximum clock and number of lanes the eDP panel
1512 * advertizes being capable of. The panels are generally
1513 * designed to support only a single clock and lane
1514 * configuration, and typically these values correspond to the
1515 * native resolution of the panel.
1516 */
1517 min_lane_count = max_lane_count;
1518 min_clock = max_clock;
1519 }
1520
1521 for (; bpp >= 6*3; bpp -= 2*3) {
1522 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1523 bpp);
1524
1525 for (clock = min_clock; clock <= max_clock; clock++) {
1526 for (lane_count = min_lane_count;
1527 lane_count <= max_lane_count;
1528 lane_count <<= 1) {
1529
1530 link_clock = common_rates[clock];
1531 link_avail = intel_dp_max_data_rate(link_clock,
1532 lane_count);
1533
1534 if (mode_rate <= link_avail) {
1535 goto found;
1536 }
1537 }
1538 }
1539 }
1540
1541 return false;
1542
1543 found:
1544 if (intel_dp->color_range_auto) {
1545 /*
1546 * See:
1547 * CEA-861-E - 5.1 Default Encoding Parameters
1548 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1549 */
1550 pipe_config->limited_color_range =
1551 bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1552 } else {
1553 pipe_config->limited_color_range =
1554 intel_dp->limited_color_range;
1555 }
1556
1557 pipe_config->lane_count = lane_count;
1558
1559 pipe_config->pipe_bpp = bpp;
1560 pipe_config->port_clock = common_rates[clock];
1561
1562 intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1563 &link_bw, &rate_select);
1564
1565 DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1566 link_bw, rate_select, pipe_config->lane_count,
1567 pipe_config->port_clock, bpp);
1568 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1569 mode_rate, link_avail);
1570
1571 intel_link_compute_m_n(bpp, lane_count,
1572 adjusted_mode->crtc_clock,
1573 pipe_config->port_clock,
1574 &pipe_config->dp_m_n);
1575
1576 if (intel_connector->panel.downclock_mode != NULL &&
1577 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1578 pipe_config->has_drrs = true;
1579 intel_link_compute_m_n(bpp, lane_count,
1580 intel_connector->panel.downclock_mode->clock,
1581 pipe_config->port_clock,
1582 &pipe_config->dp_m2_n2);
1583 }
1584
1585 if (!HAS_DDI(dev))
1586 intel_dp_set_clock(encoder, pipe_config);
1587
1588 return true;
1589 }
1590
1591 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1592 const struct intel_crtc_state *pipe_config)
1593 {
1594 intel_dp->link_rate = pipe_config->port_clock;
1595 intel_dp->lane_count = pipe_config->lane_count;
1596 }
1597
1598 static void intel_dp_prepare(struct intel_encoder *encoder)
1599 {
1600 struct drm_device *dev = encoder->base.dev;
1601 struct drm_i915_private *dev_priv = dev->dev_private;
1602 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1603 enum port port = dp_to_dig_port(intel_dp)->port;
1604 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1605 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1606
1607 intel_dp_set_link_params(intel_dp, crtc->config);
1608
1609 /*
1610 * There are four kinds of DP registers:
1611 *
1612 * IBX PCH
1613 * SNB CPU
1614 * IVB CPU
1615 * CPT PCH
1616 *
1617 * IBX PCH and CPU are the same for almost everything,
1618 * except that the CPU DP PLL is configured in this
1619 * register
1620 *
1621 * CPT PCH is quite different, having many bits moved
1622 * to the TRANS_DP_CTL register instead. That
1623 * configuration happens (oddly) in ironlake_pch_enable
1624 */
1625
1626 /* Preserve the BIOS-computed detected bit. This is
1627 * supposed to be read-only.
1628 */
1629 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1630
1631 /* Handle DP bits in common between all three register formats */
1632 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1633 intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1634
1635 /* Split out the IBX/CPU vs CPT settings */
1636
1637 if (IS_GEN7(dev) && port == PORT_A) {
1638 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1639 intel_dp->DP |= DP_SYNC_HS_HIGH;
1640 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1641 intel_dp->DP |= DP_SYNC_VS_HIGH;
1642 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1643
1644 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1645 intel_dp->DP |= DP_ENHANCED_FRAMING;
1646
1647 intel_dp->DP |= crtc->pipe << 29;
1648 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1649 u32 trans_dp;
1650
1651 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1652
1653 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1654 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1655 trans_dp |= TRANS_DP_ENH_FRAMING;
1656 else
1657 trans_dp &= ~TRANS_DP_ENH_FRAMING;
1658 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1659 } else {
1660 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1661 !IS_CHERRYVIEW(dev) && crtc->config->limited_color_range)
1662 intel_dp->DP |= DP_COLOR_RANGE_16_235;
1663
1664 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1665 intel_dp->DP |= DP_SYNC_HS_HIGH;
1666 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1667 intel_dp->DP |= DP_SYNC_VS_HIGH;
1668 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1669
1670 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1671 intel_dp->DP |= DP_ENHANCED_FRAMING;
1672
1673 if (IS_CHERRYVIEW(dev))
1674 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1675 else if (crtc->pipe == PIPE_B)
1676 intel_dp->DP |= DP_PIPEB_SELECT;
1677 }
1678 }
1679
1680 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1681 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1682
1683 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1684 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1685
1686 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1687 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1688
1689 static void wait_panel_status(struct intel_dp *intel_dp,
1690 u32 mask,
1691 u32 value)
1692 {
1693 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1694 struct drm_i915_private *dev_priv = dev->dev_private;
1695 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1696
1697 lockdep_assert_held(&dev_priv->pps_mutex);
1698
1699 pp_stat_reg = _pp_stat_reg(intel_dp);
1700 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1701
1702 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1703 mask, value,
1704 I915_READ(pp_stat_reg),
1705 I915_READ(pp_ctrl_reg));
1706
1707 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value,
1708 5 * USEC_PER_SEC, 10 * USEC_PER_MSEC))
1709 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1710 I915_READ(pp_stat_reg),
1711 I915_READ(pp_ctrl_reg));
1712
1713 DRM_DEBUG_KMS("Wait complete\n");
1714 }
1715
1716 static void wait_panel_on(struct intel_dp *intel_dp)
1717 {
1718 DRM_DEBUG_KMS("Wait for panel power on\n");
1719 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1720 }
1721
1722 static void wait_panel_off(struct intel_dp *intel_dp)
1723 {
1724 DRM_DEBUG_KMS("Wait for panel power off time\n");
1725 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1726 }
1727
1728 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1729 {
1730 ktime_t panel_power_on_time;
1731 s64 panel_power_off_duration;
1732
1733 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1734
1735 /* take the difference of currrent time and panel power off time
1736 * and then make panel wait for t11_t12 if needed. */
1737 panel_power_on_time = ktime_get_boottime();
1738 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
1739
1740 /* When we disable the VDD override bit last we have to do the manual
1741 * wait. */
1742 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
1743 wait_remaining_ms_from_jiffies(jiffies,
1744 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
1745
1746 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1747 }
1748
1749 static void wait_backlight_on(struct intel_dp *intel_dp)
1750 {
1751 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1752 intel_dp->backlight_on_delay);
1753 }
1754
1755 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1756 {
1757 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1758 intel_dp->backlight_off_delay);
1759 }
1760
1761 /* Read the current pp_control value, unlocking the register if it
1762 * is locked
1763 */
1764
1765 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1766 {
1767 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 u32 control;
1770
1771 lockdep_assert_held(&dev_priv->pps_mutex);
1772
1773 control = I915_READ(_pp_ctrl_reg(intel_dp));
1774 if (!IS_BROXTON(dev)) {
1775 control &= ~PANEL_UNLOCK_MASK;
1776 control |= PANEL_UNLOCK_REGS;
1777 }
1778 return control;
1779 }
1780
1781 /*
1782 * Must be paired with edp_panel_vdd_off().
1783 * Must hold pps_mutex around the whole on/off sequence.
1784 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1785 */
1786 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1787 {
1788 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1789 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1790 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1791 struct drm_i915_private *dev_priv = dev->dev_private;
1792 enum intel_display_power_domain power_domain;
1793 u32 pp;
1794 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1795 bool need_to_disable = !intel_dp->want_panel_vdd;
1796
1797 lockdep_assert_held(&dev_priv->pps_mutex);
1798
1799 if (!is_edp(intel_dp))
1800 return false;
1801
1802 cancel_delayed_work(&intel_dp->panel_vdd_work);
1803 intel_dp->want_panel_vdd = true;
1804
1805 if (edp_have_panel_vdd(intel_dp))
1806 return need_to_disable;
1807
1808 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1809 intel_display_power_get(dev_priv, power_domain);
1810
1811 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1812 port_name(intel_dig_port->port));
1813
1814 if (!edp_have_panel_power(intel_dp))
1815 wait_panel_power_cycle(intel_dp);
1816
1817 pp = ironlake_get_pp_control(intel_dp);
1818 pp |= EDP_FORCE_VDD;
1819
1820 pp_stat_reg = _pp_stat_reg(intel_dp);
1821 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1822
1823 I915_WRITE(pp_ctrl_reg, pp);
1824 POSTING_READ(pp_ctrl_reg);
1825 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1826 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1827 /*
1828 * If the panel wasn't on, delay before accessing aux channel
1829 */
1830 if (!edp_have_panel_power(intel_dp)) {
1831 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1832 port_name(intel_dig_port->port));
1833 msleep(intel_dp->panel_power_up_delay);
1834 }
1835
1836 return need_to_disable;
1837 }
1838
1839 /*
1840 * Must be paired with intel_edp_panel_vdd_off() or
1841 * intel_edp_panel_off().
1842 * Nested calls to these functions are not allowed since
1843 * we drop the lock. Caller must use some higher level
1844 * locking to prevent nested calls from other threads.
1845 */
1846 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1847 {
1848 bool vdd;
1849
1850 if (!is_edp(intel_dp))
1851 return;
1852
1853 pps_lock(intel_dp);
1854 vdd = edp_panel_vdd_on(intel_dp);
1855 pps_unlock(intel_dp);
1856
1857 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1858 port_name(dp_to_dig_port(intel_dp)->port));
1859 }
1860
1861 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1862 {
1863 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct intel_digital_port *intel_dig_port =
1866 dp_to_dig_port(intel_dp);
1867 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1868 enum intel_display_power_domain power_domain;
1869 u32 pp;
1870 i915_reg_t pp_stat_reg, pp_ctrl_reg;
1871
1872 lockdep_assert_held(&dev_priv->pps_mutex);
1873
1874 WARN_ON(intel_dp->want_panel_vdd);
1875
1876 if (!edp_have_panel_vdd(intel_dp))
1877 return;
1878
1879 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1880 port_name(intel_dig_port->port));
1881
1882 pp = ironlake_get_pp_control(intel_dp);
1883 pp &= ~EDP_FORCE_VDD;
1884
1885 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1886 pp_stat_reg = _pp_stat_reg(intel_dp);
1887
1888 I915_WRITE(pp_ctrl_reg, pp);
1889 POSTING_READ(pp_ctrl_reg);
1890
1891 /* Make sure sequencer is idle before allowing subsequent activity */
1892 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1893 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1894
1895 if ((pp & POWER_TARGET_ON) == 0)
1896 intel_dp->panel_power_off_time = ktime_get_boottime();
1897
1898 power_domain = intel_display_port_aux_power_domain(intel_encoder);
1899 intel_display_power_put(dev_priv, power_domain);
1900 }
1901
1902 static void edp_panel_vdd_work(struct work_struct *__work)
1903 {
1904 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1905 struct intel_dp, panel_vdd_work);
1906
1907 pps_lock(intel_dp);
1908 if (!intel_dp->want_panel_vdd)
1909 edp_panel_vdd_off_sync(intel_dp);
1910 pps_unlock(intel_dp);
1911 }
1912
1913 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1914 {
1915 unsigned long delay;
1916
1917 /*
1918 * Queue the timer to fire a long time from now (relative to the power
1919 * down delay) to keep the panel power up across a sequence of
1920 * operations.
1921 */
1922 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1923 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1924 }
1925
1926 /*
1927 * Must be paired with edp_panel_vdd_on().
1928 * Must hold pps_mutex around the whole on/off sequence.
1929 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1930 */
1931 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1932 {
1933 struct drm_i915_private *dev_priv =
1934 intel_dp_to_dev(intel_dp)->dev_private;
1935
1936 lockdep_assert_held(&dev_priv->pps_mutex);
1937
1938 if (!is_edp(intel_dp))
1939 return;
1940
1941 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1942 port_name(dp_to_dig_port(intel_dp)->port));
1943
1944 intel_dp->want_panel_vdd = false;
1945
1946 if (sync)
1947 edp_panel_vdd_off_sync(intel_dp);
1948 else
1949 edp_panel_vdd_schedule_off(intel_dp);
1950 }
1951
1952 static void edp_panel_on(struct intel_dp *intel_dp)
1953 {
1954 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1955 struct drm_i915_private *dev_priv = dev->dev_private;
1956 u32 pp;
1957 i915_reg_t pp_ctrl_reg;
1958
1959 lockdep_assert_held(&dev_priv->pps_mutex);
1960
1961 if (!is_edp(intel_dp))
1962 return;
1963
1964 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1965 port_name(dp_to_dig_port(intel_dp)->port));
1966
1967 if (WARN(edp_have_panel_power(intel_dp),
1968 "eDP port %c panel power already on\n",
1969 port_name(dp_to_dig_port(intel_dp)->port)))
1970 return;
1971
1972 wait_panel_power_cycle(intel_dp);
1973
1974 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1975 pp = ironlake_get_pp_control(intel_dp);
1976 if (IS_GEN5(dev)) {
1977 /* ILK workaround: disable reset around power sequence */
1978 pp &= ~PANEL_POWER_RESET;
1979 I915_WRITE(pp_ctrl_reg, pp);
1980 POSTING_READ(pp_ctrl_reg);
1981 }
1982
1983 pp |= POWER_TARGET_ON;
1984 if (!IS_GEN5(dev))
1985 pp |= PANEL_POWER_RESET;
1986
1987 I915_WRITE(pp_ctrl_reg, pp);
1988 POSTING_READ(pp_ctrl_reg);
1989
1990 wait_panel_on(intel_dp);
1991 intel_dp->last_power_on = jiffies;
1992
1993 if (IS_GEN5(dev)) {
1994 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1995 I915_WRITE(pp_ctrl_reg, pp);
1996 POSTING_READ(pp_ctrl_reg);
1997 }
1998 }
1999
2000 void intel_edp_panel_on(struct intel_dp *intel_dp)
2001 {
2002 if (!is_edp(intel_dp))
2003 return;
2004
2005 pps_lock(intel_dp);
2006 edp_panel_on(intel_dp);
2007 pps_unlock(intel_dp);
2008 }
2009
2010
2011 static void edp_panel_off(struct intel_dp *intel_dp)
2012 {
2013 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2014 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2015 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 enum intel_display_power_domain power_domain;
2018 u32 pp;
2019 i915_reg_t pp_ctrl_reg;
2020
2021 lockdep_assert_held(&dev_priv->pps_mutex);
2022
2023 if (!is_edp(intel_dp))
2024 return;
2025
2026 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2027 port_name(dp_to_dig_port(intel_dp)->port));
2028
2029 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2030 port_name(dp_to_dig_port(intel_dp)->port));
2031
2032 pp = ironlake_get_pp_control(intel_dp);
2033 /* We need to switch off panel power _and_ force vdd, for otherwise some
2034 * panels get very unhappy and cease to work. */
2035 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2036 EDP_BLC_ENABLE);
2037
2038 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2039
2040 intel_dp->want_panel_vdd = false;
2041
2042 I915_WRITE(pp_ctrl_reg, pp);
2043 POSTING_READ(pp_ctrl_reg);
2044
2045 intel_dp->panel_power_off_time = ktime_get_boottime();
2046 wait_panel_off(intel_dp);
2047
2048 /* We got a reference when we enabled the VDD. */
2049 power_domain = intel_display_port_aux_power_domain(intel_encoder);
2050 intel_display_power_put(dev_priv, power_domain);
2051 }
2052
2053 void intel_edp_panel_off(struct intel_dp *intel_dp)
2054 {
2055 if (!is_edp(intel_dp))
2056 return;
2057
2058 pps_lock(intel_dp);
2059 edp_panel_off(intel_dp);
2060 pps_unlock(intel_dp);
2061 }
2062
2063 /* Enable backlight in the panel power control. */
2064 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2065 {
2066 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2067 struct drm_device *dev = intel_dig_port->base.base.dev;
2068 struct drm_i915_private *dev_priv = dev->dev_private;
2069 u32 pp;
2070 i915_reg_t pp_ctrl_reg;
2071
2072 /*
2073 * If we enable the backlight right away following a panel power
2074 * on, we may see slight flicker as the panel syncs with the eDP
2075 * link. So delay a bit to make sure the image is solid before
2076 * allowing it to appear.
2077 */
2078 wait_backlight_on(intel_dp);
2079
2080 pps_lock(intel_dp);
2081
2082 pp = ironlake_get_pp_control(intel_dp);
2083 pp |= EDP_BLC_ENABLE;
2084
2085 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2086
2087 I915_WRITE(pp_ctrl_reg, pp);
2088 POSTING_READ(pp_ctrl_reg);
2089
2090 pps_unlock(intel_dp);
2091 }
2092
2093 /* Enable backlight PWM and backlight PP control. */
2094 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2095 {
2096 if (!is_edp(intel_dp))
2097 return;
2098
2099 DRM_DEBUG_KMS("\n");
2100
2101 intel_panel_enable_backlight(intel_dp->attached_connector);
2102 _intel_edp_backlight_on(intel_dp);
2103 }
2104
2105 /* Disable backlight in the panel power control. */
2106 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2107 {
2108 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 u32 pp;
2111 i915_reg_t pp_ctrl_reg;
2112
2113 if (!is_edp(intel_dp))
2114 return;
2115
2116 pps_lock(intel_dp);
2117
2118 pp = ironlake_get_pp_control(intel_dp);
2119 pp &= ~EDP_BLC_ENABLE;
2120
2121 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2122
2123 I915_WRITE(pp_ctrl_reg, pp);
2124 POSTING_READ(pp_ctrl_reg);
2125
2126 pps_unlock(intel_dp);
2127
2128 intel_dp->last_backlight_off = jiffies;
2129 edp_wait_backlight_off(intel_dp);
2130 }
2131
2132 /* Disable backlight PP control and backlight PWM. */
2133 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2134 {
2135 if (!is_edp(intel_dp))
2136 return;
2137
2138 DRM_DEBUG_KMS("\n");
2139
2140 _intel_edp_backlight_off(intel_dp);
2141 intel_panel_disable_backlight(intel_dp->attached_connector);
2142 }
2143
2144 /*
2145 * Hook for controlling the panel power control backlight through the bl_power
2146 * sysfs attribute. Take care to handle multiple calls.
2147 */
2148 static void intel_edp_backlight_power(struct intel_connector *connector,
2149 bool enable)
2150 {
2151 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2152 bool is_enabled;
2153
2154 pps_lock(intel_dp);
2155 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2156 pps_unlock(intel_dp);
2157
2158 if (is_enabled == enable)
2159 return;
2160
2161 DRM_DEBUG_KMS("panel power control backlight %s\n",
2162 enable ? "enable" : "disable");
2163
2164 if (enable)
2165 _intel_edp_backlight_on(intel_dp);
2166 else
2167 _intel_edp_backlight_off(intel_dp);
2168 }
2169
2170 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2171 {
2172 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2173 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2174 bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2175
2176 I915_STATE_WARN(cur_state != state,
2177 "DP port %c state assertion failure (expected %s, current %s)\n",
2178 port_name(dig_port->port),
2179 onoff(state), onoff(cur_state));
2180 }
2181 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2182
2183 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2184 {
2185 bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2186
2187 I915_STATE_WARN(cur_state != state,
2188 "eDP PLL state assertion failure (expected %s, current %s)\n",
2189 onoff(state), onoff(cur_state));
2190 }
2191 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2192 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2193
2194 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2195 {
2196 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2197 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2198 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2199
2200 assert_pipe_disabled(dev_priv, crtc->pipe);
2201 assert_dp_port_disabled(intel_dp);
2202 assert_edp_pll_disabled(dev_priv);
2203
2204 DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2205 crtc->config->port_clock);
2206
2207 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2208
2209 if (crtc->config->port_clock == 162000)
2210 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2211 else
2212 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2213
2214 I915_WRITE(DP_A, intel_dp->DP);
2215 POSTING_READ(DP_A);
2216 udelay(500);
2217
2218 /*
2219 * [DevILK] Work around required when enabling DP PLL
2220 * while a pipe is enabled going to FDI:
2221 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2222 * 2. Program DP PLL enable
2223 */
2224 if (IS_GEN5(dev_priv))
2225 intel_wait_for_vblank_if_active(dev_priv->dev, !crtc->pipe);
2226
2227 intel_dp->DP |= DP_PLL_ENABLE;
2228
2229 I915_WRITE(DP_A, intel_dp->DP);
2230 POSTING_READ(DP_A);
2231 udelay(200);
2232 }
2233
2234 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2235 {
2236 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2237 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
2238 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2239
2240 assert_pipe_disabled(dev_priv, crtc->pipe);
2241 assert_dp_port_disabled(intel_dp);
2242 assert_edp_pll_enabled(dev_priv);
2243
2244 DRM_DEBUG_KMS("disabling eDP PLL\n");
2245
2246 intel_dp->DP &= ~DP_PLL_ENABLE;
2247
2248 I915_WRITE(DP_A, intel_dp->DP);
2249 POSTING_READ(DP_A);
2250 udelay(200);
2251 }
2252
2253 /* If the sink supports it, try to set the power state appropriately */
2254 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2255 {
2256 int ret, i;
2257
2258 /* Should have a valid DPCD by this point */
2259 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2260 return;
2261
2262 if (mode != DRM_MODE_DPMS_ON) {
2263 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2264 DP_SET_POWER_D3);
2265 } else {
2266 /*
2267 * When turning on, we need to retry for 1ms to give the sink
2268 * time to wake up.
2269 */
2270 for (i = 0; i < 3; i++) {
2271 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2272 DP_SET_POWER_D0);
2273 if (ret == 1)
2274 break;
2275 msleep(1);
2276 }
2277 }
2278
2279 if (ret != 1)
2280 DRM_DEBUG_KMS("failed to %s sink power state\n",
2281 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2282 }
2283
2284 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2285 enum pipe *pipe)
2286 {
2287 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2288 enum port port = dp_to_dig_port(intel_dp)->port;
2289 struct drm_device *dev = encoder->base.dev;
2290 struct drm_i915_private *dev_priv = dev->dev_private;
2291 enum intel_display_power_domain power_domain;
2292 u32 tmp;
2293 bool ret;
2294
2295 power_domain = intel_display_port_power_domain(encoder);
2296 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
2297 return false;
2298
2299 ret = false;
2300
2301 tmp = I915_READ(intel_dp->output_reg);
2302
2303 if (!(tmp & DP_PORT_EN))
2304 goto out;
2305
2306 if (IS_GEN7(dev) && port == PORT_A) {
2307 *pipe = PORT_TO_PIPE_CPT(tmp);
2308 } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2309 enum pipe p;
2310
2311 for_each_pipe(dev_priv, p) {
2312 u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2313 if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2314 *pipe = p;
2315 ret = true;
2316
2317 goto out;
2318 }
2319 }
2320
2321 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2322 i915_mmio_reg_offset(intel_dp->output_reg));
2323 } else if (IS_CHERRYVIEW(dev)) {
2324 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2325 } else {
2326 *pipe = PORT_TO_PIPE(tmp);
2327 }
2328
2329 ret = true;
2330
2331 out:
2332 intel_display_power_put(dev_priv, power_domain);
2333
2334 return ret;
2335 }
2336
2337 static void intel_dp_get_config(struct intel_encoder *encoder,
2338 struct intel_crtc_state *pipe_config)
2339 {
2340 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2341 u32 tmp, flags = 0;
2342 struct drm_device *dev = encoder->base.dev;
2343 struct drm_i915_private *dev_priv = dev->dev_private;
2344 enum port port = dp_to_dig_port(intel_dp)->port;
2345 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2346
2347 tmp = I915_READ(intel_dp->output_reg);
2348
2349 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2350
2351 if (HAS_PCH_CPT(dev) && port != PORT_A) {
2352 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2353
2354 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2355 flags |= DRM_MODE_FLAG_PHSYNC;
2356 else
2357 flags |= DRM_MODE_FLAG_NHSYNC;
2358
2359 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2360 flags |= DRM_MODE_FLAG_PVSYNC;
2361 else
2362 flags |= DRM_MODE_FLAG_NVSYNC;
2363 } else {
2364 if (tmp & DP_SYNC_HS_HIGH)
2365 flags |= DRM_MODE_FLAG_PHSYNC;
2366 else
2367 flags |= DRM_MODE_FLAG_NHSYNC;
2368
2369 if (tmp & DP_SYNC_VS_HIGH)
2370 flags |= DRM_MODE_FLAG_PVSYNC;
2371 else
2372 flags |= DRM_MODE_FLAG_NVSYNC;
2373 }
2374
2375 pipe_config->base.adjusted_mode.flags |= flags;
2376
2377 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2378 !IS_CHERRYVIEW(dev) && tmp & DP_COLOR_RANGE_16_235)
2379 pipe_config->limited_color_range = true;
2380
2381 pipe_config->has_dp_encoder = true;
2382
2383 pipe_config->lane_count =
2384 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2385
2386 intel_dp_get_m_n(crtc, pipe_config);
2387
2388 if (port == PORT_A) {
2389 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
2390 pipe_config->port_clock = 162000;
2391 else
2392 pipe_config->port_clock = 270000;
2393 }
2394
2395 pipe_config->base.adjusted_mode.crtc_clock =
2396 intel_dotclock_calculate(pipe_config->port_clock,
2397 &pipe_config->dp_m_n);
2398
2399 if (is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
2400 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
2401 /*
2402 * This is a big fat ugly hack.
2403 *
2404 * Some machines in UEFI boot mode provide us a VBT that has 18
2405 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2406 * unknown we fail to light up. Yet the same BIOS boots up with
2407 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2408 * max, not what it tells us to use.
2409 *
2410 * Note: This will still be broken if the eDP panel is not lit
2411 * up by the BIOS, and thus we can't get the mode at module
2412 * load.
2413 */
2414 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2415 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
2416 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
2417 }
2418 }
2419
2420 static void intel_disable_dp(struct intel_encoder *encoder)
2421 {
2422 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2423 struct drm_device *dev = encoder->base.dev;
2424 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2425
2426 if (crtc->config->has_audio)
2427 intel_audio_codec_disable(encoder);
2428
2429 if (HAS_PSR(dev) && !HAS_DDI(dev))
2430 intel_psr_disable(intel_dp);
2431
2432 /* Make sure the panel is off before trying to change the mode. But also
2433 * ensure that we have vdd while we switch off the panel. */
2434 intel_edp_panel_vdd_on(intel_dp);
2435 intel_edp_backlight_off(intel_dp);
2436 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2437 intel_edp_panel_off(intel_dp);
2438
2439 /* disable the port before the pipe on g4x */
2440 if (INTEL_INFO(dev)->gen < 5)
2441 intel_dp_link_down(intel_dp);
2442 }
2443
2444 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2445 {
2446 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2447 enum port port = dp_to_dig_port(intel_dp)->port;
2448
2449 intel_dp_link_down(intel_dp);
2450
2451 /* Only ilk+ has port A */
2452 if (port == PORT_A)
2453 ironlake_edp_pll_off(intel_dp);
2454 }
2455
2456 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2457 {
2458 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2459
2460 intel_dp_link_down(intel_dp);
2461 }
2462
2463 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2464 bool reset)
2465 {
2466 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2467 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2468 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2469 enum pipe pipe = crtc->pipe;
2470 uint32_t val;
2471
2472 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2473 if (reset)
2474 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2475 else
2476 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2477 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2478
2479 if (crtc->config->lane_count > 2) {
2480 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2481 if (reset)
2482 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2483 else
2484 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2485 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2486 }
2487
2488 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2489 val |= CHV_PCS_REQ_SOFTRESET_EN;
2490 if (reset)
2491 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2492 else
2493 val |= DPIO_PCS_CLK_SOFT_RESET;
2494 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2495
2496 if (crtc->config->lane_count > 2) {
2497 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2498 val |= CHV_PCS_REQ_SOFTRESET_EN;
2499 if (reset)
2500 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2501 else
2502 val |= DPIO_PCS_CLK_SOFT_RESET;
2503 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2504 }
2505 }
2506
2507 static void chv_post_disable_dp(struct intel_encoder *encoder)
2508 {
2509 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2510 struct drm_device *dev = encoder->base.dev;
2511 struct drm_i915_private *dev_priv = dev->dev_private;
2512
2513 intel_dp_link_down(intel_dp);
2514
2515 mutex_lock(&dev_priv->sb_lock);
2516
2517 /* Assert data lane reset */
2518 chv_data_lane_soft_reset(encoder, true);
2519
2520 mutex_unlock(&dev_priv->sb_lock);
2521 }
2522
2523 static void
2524 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2525 uint32_t *DP,
2526 uint8_t dp_train_pat)
2527 {
2528 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2529 struct drm_device *dev = intel_dig_port->base.base.dev;
2530 struct drm_i915_private *dev_priv = dev->dev_private;
2531 enum port port = intel_dig_port->port;
2532
2533 if (HAS_DDI(dev)) {
2534 uint32_t temp = I915_READ(DP_TP_CTL(port));
2535
2536 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2537 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2538 else
2539 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2540
2541 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2542 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2543 case DP_TRAINING_PATTERN_DISABLE:
2544 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2545
2546 break;
2547 case DP_TRAINING_PATTERN_1:
2548 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2549 break;
2550 case DP_TRAINING_PATTERN_2:
2551 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2552 break;
2553 case DP_TRAINING_PATTERN_3:
2554 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2555 break;
2556 }
2557 I915_WRITE(DP_TP_CTL(port), temp);
2558
2559 } else if ((IS_GEN7(dev) && port == PORT_A) ||
2560 (HAS_PCH_CPT(dev) && port != PORT_A)) {
2561 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2562
2563 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2564 case DP_TRAINING_PATTERN_DISABLE:
2565 *DP |= DP_LINK_TRAIN_OFF_CPT;
2566 break;
2567 case DP_TRAINING_PATTERN_1:
2568 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2569 break;
2570 case DP_TRAINING_PATTERN_2:
2571 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2572 break;
2573 case DP_TRAINING_PATTERN_3:
2574 DRM_ERROR("DP training pattern 3 not supported\n");
2575 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2576 break;
2577 }
2578
2579 } else {
2580 if (IS_CHERRYVIEW(dev))
2581 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2582 else
2583 *DP &= ~DP_LINK_TRAIN_MASK;
2584
2585 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2586 case DP_TRAINING_PATTERN_DISABLE:
2587 *DP |= DP_LINK_TRAIN_OFF;
2588 break;
2589 case DP_TRAINING_PATTERN_1:
2590 *DP |= DP_LINK_TRAIN_PAT_1;
2591 break;
2592 case DP_TRAINING_PATTERN_2:
2593 *DP |= DP_LINK_TRAIN_PAT_2;
2594 break;
2595 case DP_TRAINING_PATTERN_3:
2596 if (IS_CHERRYVIEW(dev)) {
2597 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2598 } else {
2599 DRM_ERROR("DP training pattern 3 not supported\n");
2600 *DP |= DP_LINK_TRAIN_PAT_2;
2601 }
2602 break;
2603 }
2604 }
2605 }
2606
2607 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2608 {
2609 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2610 struct drm_i915_private *dev_priv = dev->dev_private;
2611 struct intel_crtc *crtc =
2612 to_intel_crtc(dp_to_dig_port(intel_dp)->base.base.crtc);
2613
2614 /* enable with pattern 1 (as per spec) */
2615 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2616 DP_TRAINING_PATTERN_1);
2617
2618 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2619 POSTING_READ(intel_dp->output_reg);
2620
2621 /*
2622 * Magic for VLV/CHV. We _must_ first set up the register
2623 * without actually enabling the port, and then do another
2624 * write to enable the port. Otherwise link training will
2625 * fail when the power sequencer is freshly used for this port.
2626 */
2627 intel_dp->DP |= DP_PORT_EN;
2628 if (crtc->config->has_audio)
2629 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
2630
2631 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2632 POSTING_READ(intel_dp->output_reg);
2633 }
2634
2635 static void intel_enable_dp(struct intel_encoder *encoder)
2636 {
2637 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2638 struct drm_device *dev = encoder->base.dev;
2639 struct drm_i915_private *dev_priv = dev->dev_private;
2640 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2641 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2642 enum pipe pipe = crtc->pipe;
2643
2644 if (WARN_ON(dp_reg & DP_PORT_EN))
2645 return;
2646
2647 pps_lock(intel_dp);
2648
2649 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2650 vlv_init_panel_power_sequencer(intel_dp);
2651
2652 intel_dp_enable_port(intel_dp);
2653
2654 edp_panel_vdd_on(intel_dp);
2655 edp_panel_on(intel_dp);
2656 edp_panel_vdd_off(intel_dp, true);
2657
2658 pps_unlock(intel_dp);
2659
2660 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
2661 unsigned int lane_mask = 0x0;
2662
2663 if (IS_CHERRYVIEW(dev))
2664 lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2665
2666 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2667 lane_mask);
2668 }
2669
2670 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2671 intel_dp_start_link_train(intel_dp);
2672 intel_dp_stop_link_train(intel_dp);
2673
2674 if (crtc->config->has_audio) {
2675 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2676 pipe_name(pipe));
2677 intel_audio_codec_enable(encoder);
2678 }
2679 }
2680
2681 static void g4x_enable_dp(struct intel_encoder *encoder)
2682 {
2683 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2684
2685 intel_enable_dp(encoder);
2686 intel_edp_backlight_on(intel_dp);
2687 }
2688
2689 static void vlv_enable_dp(struct intel_encoder *encoder)
2690 {
2691 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2692
2693 intel_edp_backlight_on(intel_dp);
2694 intel_psr_enable(intel_dp);
2695 }
2696
2697 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2698 {
2699 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2700 enum port port = dp_to_dig_port(intel_dp)->port;
2701
2702 intel_dp_prepare(encoder);
2703
2704 /* Only ilk+ has port A */
2705 if (port == PORT_A)
2706 ironlake_edp_pll_on(intel_dp);
2707 }
2708
2709 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2710 {
2711 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2712 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2713 enum pipe pipe = intel_dp->pps_pipe;
2714 i915_reg_t pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2715
2716 edp_panel_vdd_off_sync(intel_dp);
2717
2718 /*
2719 * VLV seems to get confused when multiple power seqeuencers
2720 * have the same port selected (even if only one has power/vdd
2721 * enabled). The failure manifests as vlv_wait_port_ready() failing
2722 * CHV on the other hand doesn't seem to mind having the same port
2723 * selected in multiple power seqeuencers, but let's clear the
2724 * port select always when logically disconnecting a power sequencer
2725 * from a port.
2726 */
2727 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2728 pipe_name(pipe), port_name(intel_dig_port->port));
2729 I915_WRITE(pp_on_reg, 0);
2730 POSTING_READ(pp_on_reg);
2731
2732 intel_dp->pps_pipe = INVALID_PIPE;
2733 }
2734
2735 static void vlv_steal_power_sequencer(struct drm_device *dev,
2736 enum pipe pipe)
2737 {
2738 struct drm_i915_private *dev_priv = dev->dev_private;
2739 struct intel_encoder *encoder;
2740
2741 lockdep_assert_held(&dev_priv->pps_mutex);
2742
2743 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2744 return;
2745
2746 for_each_intel_encoder(dev, encoder) {
2747 struct intel_dp *intel_dp;
2748 enum port port;
2749
2750 if (encoder->type != INTEL_OUTPUT_EDP)
2751 continue;
2752
2753 intel_dp = enc_to_intel_dp(&encoder->base);
2754 port = dp_to_dig_port(intel_dp)->port;
2755
2756 if (intel_dp->pps_pipe != pipe)
2757 continue;
2758
2759 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2760 pipe_name(pipe), port_name(port));
2761
2762 WARN(encoder->base.crtc,
2763 "stealing pipe %c power sequencer from active eDP port %c\n",
2764 pipe_name(pipe), port_name(port));
2765
2766 /* make sure vdd is off before we steal it */
2767 vlv_detach_power_sequencer(intel_dp);
2768 }
2769 }
2770
2771 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2772 {
2773 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2774 struct intel_encoder *encoder = &intel_dig_port->base;
2775 struct drm_device *dev = encoder->base.dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2778
2779 lockdep_assert_held(&dev_priv->pps_mutex);
2780
2781 if (!is_edp(intel_dp))
2782 return;
2783
2784 if (intel_dp->pps_pipe == crtc->pipe)
2785 return;
2786
2787 /*
2788 * If another power sequencer was being used on this
2789 * port previously make sure to turn off vdd there while
2790 * we still have control of it.
2791 */
2792 if (intel_dp->pps_pipe != INVALID_PIPE)
2793 vlv_detach_power_sequencer(intel_dp);
2794
2795 /*
2796 * We may be stealing the power
2797 * sequencer from another port.
2798 */
2799 vlv_steal_power_sequencer(dev, crtc->pipe);
2800
2801 /* now it's all ours */
2802 intel_dp->pps_pipe = crtc->pipe;
2803
2804 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2805 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2806
2807 /* init power sequencer on this pipe and port */
2808 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2809 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2810 }
2811
2812 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2813 {
2814 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2815 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2816 struct drm_device *dev = encoder->base.dev;
2817 struct drm_i915_private *dev_priv = dev->dev_private;
2818 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2819 enum dpio_channel port = vlv_dport_to_channel(dport);
2820 int pipe = intel_crtc->pipe;
2821 u32 val;
2822
2823 mutex_lock(&dev_priv->sb_lock);
2824
2825 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2826 val = 0;
2827 if (pipe)
2828 val |= (1<<21);
2829 else
2830 val &= ~(1<<21);
2831 val |= 0x001000c4;
2832 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2833 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2834 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2835
2836 mutex_unlock(&dev_priv->sb_lock);
2837
2838 intel_enable_dp(encoder);
2839 }
2840
2841 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2842 {
2843 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2844 struct drm_device *dev = encoder->base.dev;
2845 struct drm_i915_private *dev_priv = dev->dev_private;
2846 struct intel_crtc *intel_crtc =
2847 to_intel_crtc(encoder->base.crtc);
2848 enum dpio_channel port = vlv_dport_to_channel(dport);
2849 int pipe = intel_crtc->pipe;
2850
2851 intel_dp_prepare(encoder);
2852
2853 /* Program Tx lane resets to default */
2854 mutex_lock(&dev_priv->sb_lock);
2855 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2856 DPIO_PCS_TX_LANE2_RESET |
2857 DPIO_PCS_TX_LANE1_RESET);
2858 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2859 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2860 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2861 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2862 DPIO_PCS_CLK_SOFT_RESET);
2863
2864 /* Fix up inter-pair skew failure */
2865 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2866 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2867 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2868 mutex_unlock(&dev_priv->sb_lock);
2869 }
2870
2871 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2872 {
2873 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2874 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2875 struct drm_device *dev = encoder->base.dev;
2876 struct drm_i915_private *dev_priv = dev->dev_private;
2877 struct intel_crtc *intel_crtc =
2878 to_intel_crtc(encoder->base.crtc);
2879 enum dpio_channel ch = vlv_dport_to_channel(dport);
2880 int pipe = intel_crtc->pipe;
2881 int data, i, stagger;
2882 u32 val;
2883
2884 mutex_lock(&dev_priv->sb_lock);
2885
2886 /* allow hardware to manage TX FIFO reset source */
2887 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2888 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2889 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2890
2891 if (intel_crtc->config->lane_count > 2) {
2892 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2893 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2894 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2895 }
2896
2897 /* Program Tx lane latency optimal setting*/
2898 for (i = 0; i < intel_crtc->config->lane_count; i++) {
2899 /* Set the upar bit */
2900 if (intel_crtc->config->lane_count == 1)
2901 data = 0x0;
2902 else
2903 data = (i == 1) ? 0x0 : 0x1;
2904 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2905 data << DPIO_UPAR_SHIFT);
2906 }
2907
2908 /* Data lane stagger programming */
2909 if (intel_crtc->config->port_clock > 270000)
2910 stagger = 0x18;
2911 else if (intel_crtc->config->port_clock > 135000)
2912 stagger = 0xd;
2913 else if (intel_crtc->config->port_clock > 67500)
2914 stagger = 0x7;
2915 else if (intel_crtc->config->port_clock > 33750)
2916 stagger = 0x4;
2917 else
2918 stagger = 0x2;
2919
2920 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2921 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2922 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2923
2924 if (intel_crtc->config->lane_count > 2) {
2925 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2926 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2927 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2928 }
2929
2930 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2931 DPIO_LANESTAGGER_STRAP(stagger) |
2932 DPIO_LANESTAGGER_STRAP_OVRD |
2933 DPIO_TX1_STAGGER_MASK(0x1f) |
2934 DPIO_TX1_STAGGER_MULT(6) |
2935 DPIO_TX2_STAGGER_MULT(0));
2936
2937 if (intel_crtc->config->lane_count > 2) {
2938 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2939 DPIO_LANESTAGGER_STRAP(stagger) |
2940 DPIO_LANESTAGGER_STRAP_OVRD |
2941 DPIO_TX1_STAGGER_MASK(0x1f) |
2942 DPIO_TX1_STAGGER_MULT(7) |
2943 DPIO_TX2_STAGGER_MULT(5));
2944 }
2945
2946 /* Deassert data lane reset */
2947 chv_data_lane_soft_reset(encoder, false);
2948
2949 mutex_unlock(&dev_priv->sb_lock);
2950
2951 intel_enable_dp(encoder);
2952
2953 /* Second common lane will stay alive on its own now */
2954 if (dport->release_cl2_override) {
2955 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2956 dport->release_cl2_override = false;
2957 }
2958 }
2959
2960 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2961 {
2962 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2963 struct drm_device *dev = encoder->base.dev;
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 struct intel_crtc *intel_crtc =
2966 to_intel_crtc(encoder->base.crtc);
2967 enum dpio_channel ch = vlv_dport_to_channel(dport);
2968 enum pipe pipe = intel_crtc->pipe;
2969 unsigned int lane_mask =
2970 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2971 u32 val;
2972
2973 intel_dp_prepare(encoder);
2974
2975 /*
2976 * Must trick the second common lane into life.
2977 * Otherwise we can't even access the PLL.
2978 */
2979 if (ch == DPIO_CH0 && pipe == PIPE_B)
2980 dport->release_cl2_override =
2981 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2982
2983 chv_phy_powergate_lanes(encoder, true, lane_mask);
2984
2985 mutex_lock(&dev_priv->sb_lock);
2986
2987 /* Assert data lane reset */
2988 chv_data_lane_soft_reset(encoder, true);
2989
2990 /* program left/right clock distribution */
2991 if (pipe != PIPE_B) {
2992 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2993 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2994 if (ch == DPIO_CH0)
2995 val |= CHV_BUFLEFTENA1_FORCE;
2996 if (ch == DPIO_CH1)
2997 val |= CHV_BUFRIGHTENA1_FORCE;
2998 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2999 } else {
3000 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3001 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3002 if (ch == DPIO_CH0)
3003 val |= CHV_BUFLEFTENA2_FORCE;
3004 if (ch == DPIO_CH1)
3005 val |= CHV_BUFRIGHTENA2_FORCE;
3006 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3007 }
3008
3009 /* program clock channel usage */
3010 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
3011 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3012 if (pipe != PIPE_B)
3013 val &= ~CHV_PCS_USEDCLKCHANNEL;
3014 else
3015 val |= CHV_PCS_USEDCLKCHANNEL;
3016 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
3017
3018 if (intel_crtc->config->lane_count > 2) {
3019 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
3020 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
3021 if (pipe != PIPE_B)
3022 val &= ~CHV_PCS_USEDCLKCHANNEL;
3023 else
3024 val |= CHV_PCS_USEDCLKCHANNEL;
3025 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
3026 }
3027
3028 /*
3029 * This a a bit weird since generally CL
3030 * matches the pipe, but here we need to
3031 * pick the CL based on the port.
3032 */
3033 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
3034 if (pipe != PIPE_B)
3035 val &= ~CHV_CMN_USEDCLKCHANNEL;
3036 else
3037 val |= CHV_CMN_USEDCLKCHANNEL;
3038 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
3039
3040 mutex_unlock(&dev_priv->sb_lock);
3041 }
3042
3043 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
3044 {
3045 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3046 enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
3047 u32 val;
3048
3049 mutex_lock(&dev_priv->sb_lock);
3050
3051 /* disable left/right clock distribution */
3052 if (pipe != PIPE_B) {
3053 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
3054 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
3055 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
3056 } else {
3057 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
3058 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
3059 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
3060 }
3061
3062 mutex_unlock(&dev_priv->sb_lock);
3063
3064 /*
3065 * Leave the power down bit cleared for at least one
3066 * lane so that chv_powergate_phy_ch() will power
3067 * on something when the channel is otherwise unused.
3068 * When the port is off and the override is removed
3069 * the lanes power down anyway, so otherwise it doesn't
3070 * really matter what the state of power down bits is
3071 * after this.
3072 */
3073 chv_phy_powergate_lanes(encoder, false, 0x0);
3074 }
3075
3076 /*
3077 * Native read with retry for link status and receiver capability reads for
3078 * cases where the sink may still be asleep.
3079 *
3080 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3081 * supposed to retry 3 times per the spec.
3082 */
3083 static ssize_t
3084 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3085 void *buffer, size_t size)
3086 {
3087 ssize_t ret;
3088 int i;
3089
3090 /*
3091 * Sometime we just get the same incorrect byte repeated
3092 * over the entire buffer. Doing just one throw away read
3093 * initially seems to "solve" it.
3094 */
3095 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3096
3097 for (i = 0; i < 3; i++) {
3098 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3099 if (ret == size)
3100 return ret;
3101 msleep(1);
3102 }
3103
3104 return ret;
3105 }
3106
3107 /*
3108 * Fetch AUX CH registers 0x202 - 0x207 which contain
3109 * link status information
3110 */
3111 bool
3112 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3113 {
3114 return intel_dp_dpcd_read_wake(&intel_dp->aux,
3115 DP_LANE0_1_STATUS,
3116 link_status,
3117 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3118 }
3119
3120 /* These are source-specific values. */
3121 uint8_t
3122 intel_dp_voltage_max(struct intel_dp *intel_dp)
3123 {
3124 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3125 struct drm_i915_private *dev_priv = dev->dev_private;
3126 enum port port = dp_to_dig_port(intel_dp)->port;
3127
3128 if (IS_BROXTON(dev))
3129 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3130 else if (INTEL_INFO(dev)->gen >= 9) {
3131 if (dev_priv->vbt.edp.low_vswing && port == PORT_A)
3132 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3133 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3134 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3135 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3136 else if (IS_GEN7(dev) && port == PORT_A)
3137 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3138 else if (HAS_PCH_CPT(dev) && port != PORT_A)
3139 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3140 else
3141 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3142 }
3143
3144 uint8_t
3145 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3146 {
3147 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3148 enum port port = dp_to_dig_port(intel_dp)->port;
3149
3150 if (INTEL_INFO(dev)->gen >= 9) {
3151 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3152 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3153 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3154 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3155 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3156 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3157 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3158 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3159 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3160 default:
3161 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3162 }
3163 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3164 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3165 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3166 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3167 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3168 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3169 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3170 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3171 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3172 default:
3173 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3174 }
3175 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3176 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3177 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3178 return DP_TRAIN_PRE_EMPH_LEVEL_3;
3179 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3180 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3181 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3182 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3183 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3184 default:
3185 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3186 }
3187 } else if (IS_GEN7(dev) && port == PORT_A) {
3188 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3189 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3190 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3191 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3192 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3193 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3194 default:
3195 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3196 }
3197 } else {
3198 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3199 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3200 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3201 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3202 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3203 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3204 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3205 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3206 default:
3207 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3208 }
3209 }
3210 }
3211
3212 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3213 {
3214 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3215 struct drm_i915_private *dev_priv = dev->dev_private;
3216 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3217 struct intel_crtc *intel_crtc =
3218 to_intel_crtc(dport->base.base.crtc);
3219 unsigned long demph_reg_value, preemph_reg_value,
3220 uniqtranscale_reg_value;
3221 uint8_t train_set = intel_dp->train_set[0];
3222 enum dpio_channel port = vlv_dport_to_channel(dport);
3223 int pipe = intel_crtc->pipe;
3224
3225 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3226 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3227 preemph_reg_value = 0x0004000;
3228 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3229 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3230 demph_reg_value = 0x2B405555;
3231 uniqtranscale_reg_value = 0x552AB83A;
3232 break;
3233 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3234 demph_reg_value = 0x2B404040;
3235 uniqtranscale_reg_value = 0x5548B83A;
3236 break;
3237 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3238 demph_reg_value = 0x2B245555;
3239 uniqtranscale_reg_value = 0x5560B83A;
3240 break;
3241 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3242 demph_reg_value = 0x2B405555;
3243 uniqtranscale_reg_value = 0x5598DA3A;
3244 break;
3245 default:
3246 return 0;
3247 }
3248 break;
3249 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3250 preemph_reg_value = 0x0002000;
3251 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3252 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3253 demph_reg_value = 0x2B404040;
3254 uniqtranscale_reg_value = 0x5552B83A;
3255 break;
3256 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3257 demph_reg_value = 0x2B404848;
3258 uniqtranscale_reg_value = 0x5580B83A;
3259 break;
3260 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3261 demph_reg_value = 0x2B404040;
3262 uniqtranscale_reg_value = 0x55ADDA3A;
3263 break;
3264 default:
3265 return 0;
3266 }
3267 break;
3268 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3269 preemph_reg_value = 0x0000000;
3270 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3271 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3272 demph_reg_value = 0x2B305555;
3273 uniqtranscale_reg_value = 0x5570B83A;
3274 break;
3275 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3276 demph_reg_value = 0x2B2B4040;
3277 uniqtranscale_reg_value = 0x55ADDA3A;
3278 break;
3279 default:
3280 return 0;
3281 }
3282 break;
3283 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3284 preemph_reg_value = 0x0006000;
3285 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3286 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3287 demph_reg_value = 0x1B405555;
3288 uniqtranscale_reg_value = 0x55ADDA3A;
3289 break;
3290 default:
3291 return 0;
3292 }
3293 break;
3294 default:
3295 return 0;
3296 }
3297
3298 mutex_lock(&dev_priv->sb_lock);
3299 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3300 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3301 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3302 uniqtranscale_reg_value);
3303 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3304 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3305 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3306 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3307 mutex_unlock(&dev_priv->sb_lock);
3308
3309 return 0;
3310 }
3311
3312 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3313 {
3314 return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3315 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3316 }
3317
3318 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3319 {
3320 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3321 struct drm_i915_private *dev_priv = dev->dev_private;
3322 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3323 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3324 u32 deemph_reg_value, margin_reg_value, val;
3325 uint8_t train_set = intel_dp->train_set[0];
3326 enum dpio_channel ch = vlv_dport_to_channel(dport);
3327 enum pipe pipe = intel_crtc->pipe;
3328 int i;
3329
3330 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3331 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3332 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3334 deemph_reg_value = 128;
3335 margin_reg_value = 52;
3336 break;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3338 deemph_reg_value = 128;
3339 margin_reg_value = 77;
3340 break;
3341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3342 deemph_reg_value = 128;
3343 margin_reg_value = 102;
3344 break;
3345 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3346 deemph_reg_value = 128;
3347 margin_reg_value = 154;
3348 /* FIXME extra to set for 1200 */
3349 break;
3350 default:
3351 return 0;
3352 }
3353 break;
3354 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3355 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3356 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3357 deemph_reg_value = 85;
3358 margin_reg_value = 78;
3359 break;
3360 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3361 deemph_reg_value = 85;
3362 margin_reg_value = 116;
3363 break;
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3365 deemph_reg_value = 85;
3366 margin_reg_value = 154;
3367 break;
3368 default:
3369 return 0;
3370 }
3371 break;
3372 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3373 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3375 deemph_reg_value = 64;
3376 margin_reg_value = 104;
3377 break;
3378 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3379 deemph_reg_value = 64;
3380 margin_reg_value = 154;
3381 break;
3382 default:
3383 return 0;
3384 }
3385 break;
3386 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3387 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3388 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3389 deemph_reg_value = 43;
3390 margin_reg_value = 154;
3391 break;
3392 default:
3393 return 0;
3394 }
3395 break;
3396 default:
3397 return 0;
3398 }
3399
3400 mutex_lock(&dev_priv->sb_lock);
3401
3402 /* Clear calc init */
3403 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3404 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3405 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3406 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3407 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3408
3409 if (intel_crtc->config->lane_count > 2) {
3410 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3411 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3412 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3413 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3414 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3415 }
3416
3417 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3418 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3419 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3420 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3421
3422 if (intel_crtc->config->lane_count > 2) {
3423 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3424 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3425 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3426 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3427 }
3428
3429 /* Program swing deemph */
3430 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3431 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3432 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3433 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3434 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3435 }
3436
3437 /* Program swing margin */
3438 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3439 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3440
3441 val &= ~DPIO_SWING_MARGIN000_MASK;
3442 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3443
3444 /*
3445 * Supposedly this value shouldn't matter when unique transition
3446 * scale is disabled, but in fact it does matter. Let's just
3447 * always program the same value and hope it's OK.
3448 */
3449 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3450 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3451
3452 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3453 }
3454
3455 /*
3456 * The document said it needs to set bit 27 for ch0 and bit 26
3457 * for ch1. Might be a typo in the doc.
3458 * For now, for this unique transition scale selection, set bit
3459 * 27 for ch0 and ch1.
3460 */
3461 for (i = 0; i < intel_crtc->config->lane_count; i++) {
3462 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3463 if (chv_need_uniq_trans_scale(train_set))
3464 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3465 else
3466 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3467 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3468 }
3469
3470 /* Start swing calculation */
3471 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3472 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3473 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3474
3475 if (intel_crtc->config->lane_count > 2) {
3476 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3477 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3478 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3479 }
3480
3481 mutex_unlock(&dev_priv->sb_lock);
3482
3483 return 0;
3484 }
3485
3486 static uint32_t
3487 gen4_signal_levels(uint8_t train_set)
3488 {
3489 uint32_t signal_levels = 0;
3490
3491 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3492 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3493 default:
3494 signal_levels |= DP_VOLTAGE_0_4;
3495 break;
3496 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3497 signal_levels |= DP_VOLTAGE_0_6;
3498 break;
3499 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3500 signal_levels |= DP_VOLTAGE_0_8;
3501 break;
3502 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3503 signal_levels |= DP_VOLTAGE_1_2;
3504 break;
3505 }
3506 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3507 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3508 default:
3509 signal_levels |= DP_PRE_EMPHASIS_0;
3510 break;
3511 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3512 signal_levels |= DP_PRE_EMPHASIS_3_5;
3513 break;
3514 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3515 signal_levels |= DP_PRE_EMPHASIS_6;
3516 break;
3517 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3518 signal_levels |= DP_PRE_EMPHASIS_9_5;
3519 break;
3520 }
3521 return signal_levels;
3522 }
3523
3524 /* Gen6's DP voltage swing and pre-emphasis control */
3525 static uint32_t
3526 gen6_edp_signal_levels(uint8_t train_set)
3527 {
3528 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3529 DP_TRAIN_PRE_EMPHASIS_MASK);
3530 switch (signal_levels) {
3531 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3532 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3533 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3534 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3535 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3536 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3537 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3538 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3539 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3540 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3541 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3542 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3543 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3544 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3545 default:
3546 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3547 "0x%x\n", signal_levels);
3548 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3549 }
3550 }
3551
3552 /* Gen7's DP voltage swing and pre-emphasis control */
3553 static uint32_t
3554 gen7_edp_signal_levels(uint8_t train_set)
3555 {
3556 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3557 DP_TRAIN_PRE_EMPHASIS_MASK);
3558 switch (signal_levels) {
3559 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3560 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3561 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3562 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3563 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3564 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3565
3566 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3567 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3568 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3569 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3570
3571 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3572 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3573 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3574 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3575
3576 default:
3577 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3578 "0x%x\n", signal_levels);
3579 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3580 }
3581 }
3582
3583 void
3584 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3585 {
3586 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3587 enum port port = intel_dig_port->port;
3588 struct drm_device *dev = intel_dig_port->base.base.dev;
3589 struct drm_i915_private *dev_priv = to_i915(dev);
3590 uint32_t signal_levels, mask = 0;
3591 uint8_t train_set = intel_dp->train_set[0];
3592
3593 if (HAS_DDI(dev)) {
3594 signal_levels = ddi_signal_levels(intel_dp);
3595
3596 if (IS_BROXTON(dev))
3597 signal_levels = 0;
3598 else
3599 mask = DDI_BUF_EMP_MASK;
3600 } else if (IS_CHERRYVIEW(dev)) {
3601 signal_levels = chv_signal_levels(intel_dp);
3602 } else if (IS_VALLEYVIEW(dev)) {
3603 signal_levels = vlv_signal_levels(intel_dp);
3604 } else if (IS_GEN7(dev) && port == PORT_A) {
3605 signal_levels = gen7_edp_signal_levels(train_set);
3606 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3607 } else if (IS_GEN6(dev) && port == PORT_A) {
3608 signal_levels = gen6_edp_signal_levels(train_set);
3609 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3610 } else {
3611 signal_levels = gen4_signal_levels(train_set);
3612 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3613 }
3614
3615 if (mask)
3616 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3617
3618 DRM_DEBUG_KMS("Using vswing level %d\n",
3619 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3620 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3621 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3622 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3623
3624 intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3625
3626 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3627 POSTING_READ(intel_dp->output_reg);
3628 }
3629
3630 void
3631 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3632 uint8_t dp_train_pat)
3633 {
3634 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3635 struct drm_i915_private *dev_priv =
3636 to_i915(intel_dig_port->base.base.dev);
3637
3638 _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3639
3640 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3641 POSTING_READ(intel_dp->output_reg);
3642 }
3643
3644 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3645 {
3646 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3647 struct drm_device *dev = intel_dig_port->base.base.dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 enum port port = intel_dig_port->port;
3650 uint32_t val;
3651
3652 if (!HAS_DDI(dev))
3653 return;
3654
3655 val = I915_READ(DP_TP_CTL(port));
3656 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3657 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3658 I915_WRITE(DP_TP_CTL(port), val);
3659
3660 /*
3661 * On PORT_A we can have only eDP in SST mode. There the only reason
3662 * we need to set idle transmission mode is to work around a HW issue
3663 * where we enable the pipe while not in idle link-training mode.
3664 * In this case there is requirement to wait for a minimum number of
3665 * idle patterns to be sent.
3666 */
3667 if (port == PORT_A)
3668 return;
3669
3670 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3671 1))
3672 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3673 }
3674
3675 static void
3676 intel_dp_link_down(struct intel_dp *intel_dp)
3677 {
3678 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3679 struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3680 enum port port = intel_dig_port->port;
3681 struct drm_device *dev = intel_dig_port->base.base.dev;
3682 struct drm_i915_private *dev_priv = dev->dev_private;
3683 uint32_t DP = intel_dp->DP;
3684
3685 if (WARN_ON(HAS_DDI(dev)))
3686 return;
3687
3688 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3689 return;
3690
3691 DRM_DEBUG_KMS("\n");
3692
3693 if ((IS_GEN7(dev) && port == PORT_A) ||
3694 (HAS_PCH_CPT(dev) && port != PORT_A)) {
3695 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3696 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3697 } else {
3698 if (IS_CHERRYVIEW(dev))
3699 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3700 else
3701 DP &= ~DP_LINK_TRAIN_MASK;
3702 DP |= DP_LINK_TRAIN_PAT_IDLE;
3703 }
3704 I915_WRITE(intel_dp->output_reg, DP);
3705 POSTING_READ(intel_dp->output_reg);
3706
3707 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3708 I915_WRITE(intel_dp->output_reg, DP);
3709 POSTING_READ(intel_dp->output_reg);
3710
3711 /*
3712 * HW workaround for IBX, we need to move the port
3713 * to transcoder A after disabling it to allow the
3714 * matching HDMI port to be enabled on transcoder A.
3715 */
3716 if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3717 /*
3718 * We get CPU/PCH FIFO underruns on the other pipe when
3719 * doing the workaround. Sweep them under the rug.
3720 */
3721 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3722 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
3723
3724 /* always enable with pattern 1 (as per spec) */
3725 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3726 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3727 I915_WRITE(intel_dp->output_reg, DP);
3728 POSTING_READ(intel_dp->output_reg);
3729
3730 DP &= ~DP_PORT_EN;
3731 I915_WRITE(intel_dp->output_reg, DP);
3732 POSTING_READ(intel_dp->output_reg);
3733
3734 intel_wait_for_vblank_if_active(dev_priv->dev, PIPE_A);
3735 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3736 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
3737 }
3738
3739 msleep(intel_dp->panel_power_down_delay);
3740
3741 intel_dp->DP = DP;
3742 }
3743
3744 static bool
3745 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3746 {
3747 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3748 struct drm_device *dev = dig_port->base.base.dev;
3749 struct drm_i915_private *dev_priv = dev->dev_private;
3750 uint8_t rev;
3751
3752 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3753 sizeof(intel_dp->dpcd)) < 0)
3754 return false; /* aux transfer failed */
3755
3756 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3757
3758 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3759 return false; /* DPCD not present */
3760
3761 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
3762 &intel_dp->sink_count, 1) < 0)
3763 return false;
3764
3765 /*
3766 * Sink count can change between short pulse hpd hence
3767 * a member variable in intel_dp will track any changes
3768 * between short pulse interrupts.
3769 */
3770 intel_dp->sink_count = DP_GET_SINK_COUNT(intel_dp->sink_count);
3771
3772 /*
3773 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
3774 * a dongle is present but no display. Unless we require to know
3775 * if a dongle is present or not, we don't need to update
3776 * downstream port information. So, an early return here saves
3777 * time from performing other operations which are not required.
3778 */
3779 if (!is_edp(intel_dp) && !intel_dp->sink_count)
3780 return false;
3781
3782 /* Check if the panel supports PSR */
3783 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3784 if (is_edp(intel_dp)) {
3785 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3786 intel_dp->psr_dpcd,
3787 sizeof(intel_dp->psr_dpcd));
3788 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3789 dev_priv->psr.sink_support = true;
3790 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3791 }
3792
3793 if (INTEL_INFO(dev)->gen >= 9 &&
3794 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3795 uint8_t frame_sync_cap;
3796
3797 dev_priv->psr.sink_support = true;
3798 intel_dp_dpcd_read_wake(&intel_dp->aux,
3799 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3800 &frame_sync_cap, 1);
3801 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3802 /* PSR2 needs frame sync as well */
3803 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3804 DRM_DEBUG_KMS("PSR2 %s on sink",
3805 dev_priv->psr.psr2_support ? "supported" : "not supported");
3806 }
3807 }
3808
3809 DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3810 yesno(intel_dp_source_supports_hbr2(intel_dp)),
3811 yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3812
3813 /* Intermediate frequency support */
3814 if (is_edp(intel_dp) &&
3815 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3816 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3817 (rev >= 0x03)) { /* eDp v1.4 or higher */
3818 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3819 int i;
3820
3821 intel_dp_dpcd_read_wake(&intel_dp->aux,
3822 DP_SUPPORTED_LINK_RATES,
3823 sink_rates,
3824 sizeof(sink_rates));
3825
3826 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3827 int val = le16_to_cpu(sink_rates[i]);
3828
3829 if (val == 0)
3830 break;
3831
3832 /* Value read is in kHz while drm clock is saved in deca-kHz */
3833 intel_dp->sink_rates[i] = (val * 200) / 10;
3834 }
3835 intel_dp->num_sink_rates = i;
3836 }
3837
3838 intel_dp_print_rates(intel_dp);
3839
3840 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3841 DP_DWN_STRM_PORT_PRESENT))
3842 return true; /* native DP sink */
3843
3844 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3845 return true; /* no per-port downstream info */
3846
3847 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3848 intel_dp->downstream_ports,
3849 DP_MAX_DOWNSTREAM_PORTS) < 0)
3850 return false; /* downstream port status fetch failed */
3851
3852 return true;
3853 }
3854
3855 static void
3856 intel_dp_probe_oui(struct intel_dp *intel_dp)
3857 {
3858 u8 buf[3];
3859
3860 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3861 return;
3862
3863 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3864 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3865 buf[0], buf[1], buf[2]);
3866
3867 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3868 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3869 buf[0], buf[1], buf[2]);
3870 }
3871
3872 static bool
3873 intel_dp_probe_mst(struct intel_dp *intel_dp)
3874 {
3875 u8 buf[1];
3876
3877 if (!i915.enable_dp_mst)
3878 return false;
3879
3880 if (!intel_dp->can_mst)
3881 return false;
3882
3883 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3884 return false;
3885
3886 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3887 if (buf[0] & DP_MST_CAP) {
3888 DRM_DEBUG_KMS("Sink is MST capable\n");
3889 intel_dp->is_mst = true;
3890 } else {
3891 DRM_DEBUG_KMS("Sink is not MST capable\n");
3892 intel_dp->is_mst = false;
3893 }
3894 }
3895
3896 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3897 return intel_dp->is_mst;
3898 }
3899
3900 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
3901 {
3902 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3903 struct drm_device *dev = dig_port->base.base.dev;
3904 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3905 u8 buf;
3906 int ret = 0;
3907 int count = 0;
3908 int attempts = 10;
3909
3910 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
3911 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3912 ret = -EIO;
3913 goto out;
3914 }
3915
3916 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3917 buf & ~DP_TEST_SINK_START) < 0) {
3918 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
3919 ret = -EIO;
3920 goto out;
3921 }
3922
3923 do {
3924 intel_wait_for_vblank(dev, intel_crtc->pipe);
3925
3926 if (drm_dp_dpcd_readb(&intel_dp->aux,
3927 DP_TEST_SINK_MISC, &buf) < 0) {
3928 ret = -EIO;
3929 goto out;
3930 }
3931 count = buf & DP_TEST_COUNT_MASK;
3932 } while (--attempts && count);
3933
3934 if (attempts == 0) {
3935 DRM_DEBUG_KMS("TIMEOUT: Sink CRC counter is not zeroed after calculation is stopped\n");
3936 ret = -ETIMEDOUT;
3937 }
3938
3939 out:
3940 hsw_enable_ips(intel_crtc);
3941 return ret;
3942 }
3943
3944 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
3945 {
3946 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3947 struct drm_device *dev = dig_port->base.base.dev;
3948 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3949 u8 buf;
3950 int ret;
3951
3952 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3953 return -EIO;
3954
3955 if (!(buf & DP_TEST_CRC_SUPPORTED))
3956 return -ENOTTY;
3957
3958 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3959 return -EIO;
3960
3961 if (buf & DP_TEST_SINK_START) {
3962 ret = intel_dp_sink_crc_stop(intel_dp);
3963 if (ret)
3964 return ret;
3965 }
3966
3967 hsw_disable_ips(intel_crtc);
3968
3969 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3970 buf | DP_TEST_SINK_START) < 0) {
3971 hsw_enable_ips(intel_crtc);
3972 return -EIO;
3973 }
3974
3975 intel_wait_for_vblank(dev, intel_crtc->pipe);
3976 return 0;
3977 }
3978
3979 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3980 {
3981 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3982 struct drm_device *dev = dig_port->base.base.dev;
3983 struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
3984 u8 buf;
3985 int count, ret;
3986 int attempts = 6;
3987
3988 ret = intel_dp_sink_crc_start(intel_dp);
3989 if (ret)
3990 return ret;
3991
3992 do {
3993 intel_wait_for_vblank(dev, intel_crtc->pipe);
3994
3995 if (drm_dp_dpcd_readb(&intel_dp->aux,
3996 DP_TEST_SINK_MISC, &buf) < 0) {
3997 ret = -EIO;
3998 goto stop;
3999 }
4000 count = buf & DP_TEST_COUNT_MASK;
4001
4002 } while (--attempts && count == 0);
4003
4004 if (attempts == 0) {
4005 DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4006 ret = -ETIMEDOUT;
4007 goto stop;
4008 }
4009
4010 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4011 ret = -EIO;
4012 goto stop;
4013 }
4014
4015 stop:
4016 intel_dp_sink_crc_stop(intel_dp);
4017 return ret;
4018 }
4019
4020 static bool
4021 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4022 {
4023 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4024 DP_DEVICE_SERVICE_IRQ_VECTOR,
4025 sink_irq_vector, 1) == 1;
4026 }
4027
4028 static bool
4029 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4030 {
4031 int ret;
4032
4033 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4034 DP_SINK_COUNT_ESI,
4035 sink_irq_vector, 14);
4036 if (ret != 14)
4037 return false;
4038
4039 return true;
4040 }
4041
4042 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4043 {
4044 uint8_t test_result = DP_TEST_ACK;
4045 return test_result;
4046 }
4047
4048 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4049 {
4050 uint8_t test_result = DP_TEST_NAK;
4051 return test_result;
4052 }
4053
4054 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4055 {
4056 uint8_t test_result = DP_TEST_NAK;
4057 struct intel_connector *intel_connector = intel_dp->attached_connector;
4058 struct drm_connector *connector = &intel_connector->base;
4059
4060 if (intel_connector->detect_edid == NULL ||
4061 connector->edid_corrupt ||
4062 intel_dp->aux.i2c_defer_count > 6) {
4063 /* Check EDID read for NACKs, DEFERs and corruption
4064 * (DP CTS 1.2 Core r1.1)
4065 * 4.2.2.4 : Failed EDID read, I2C_NAK
4066 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4067 * 4.2.2.6 : EDID corruption detected
4068 * Use failsafe mode for all cases
4069 */
4070 if (intel_dp->aux.i2c_nack_count > 0 ||
4071 intel_dp->aux.i2c_defer_count > 0)
4072 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4073 intel_dp->aux.i2c_nack_count,
4074 intel_dp->aux.i2c_defer_count);
4075 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4076 } else {
4077 struct edid *block = intel_connector->detect_edid;
4078
4079 /* We have to write the checksum
4080 * of the last block read
4081 */
4082 block += intel_connector->detect_edid->extensions;
4083
4084 if (!drm_dp_dpcd_write(&intel_dp->aux,
4085 DP_TEST_EDID_CHECKSUM,
4086 &block->checksum,
4087 1))
4088 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4089
4090 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4091 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4092 }
4093
4094 /* Set test active flag here so userspace doesn't interrupt things */
4095 intel_dp->compliance_test_active = 1;
4096
4097 return test_result;
4098 }
4099
4100 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4101 {
4102 uint8_t test_result = DP_TEST_NAK;
4103 return test_result;
4104 }
4105
4106 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4107 {
4108 uint8_t response = DP_TEST_NAK;
4109 uint8_t rxdata = 0;
4110 int status = 0;
4111
4112 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4113 if (status <= 0) {
4114 DRM_DEBUG_KMS("Could not read test request from sink\n");
4115 goto update_status;
4116 }
4117
4118 switch (rxdata) {
4119 case DP_TEST_LINK_TRAINING:
4120 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4121 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4122 response = intel_dp_autotest_link_training(intel_dp);
4123 break;
4124 case DP_TEST_LINK_VIDEO_PATTERN:
4125 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4126 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4127 response = intel_dp_autotest_video_pattern(intel_dp);
4128 break;
4129 case DP_TEST_LINK_EDID_READ:
4130 DRM_DEBUG_KMS("EDID test requested\n");
4131 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4132 response = intel_dp_autotest_edid(intel_dp);
4133 break;
4134 case DP_TEST_LINK_PHY_TEST_PATTERN:
4135 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4136 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4137 response = intel_dp_autotest_phy_pattern(intel_dp);
4138 break;
4139 default:
4140 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4141 break;
4142 }
4143
4144 update_status:
4145 status = drm_dp_dpcd_write(&intel_dp->aux,
4146 DP_TEST_RESPONSE,
4147 &response, 1);
4148 if (status <= 0)
4149 DRM_DEBUG_KMS("Could not write test response to sink\n");
4150 }
4151
4152 static int
4153 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4154 {
4155 bool bret;
4156
4157 if (intel_dp->is_mst) {
4158 u8 esi[16] = { 0 };
4159 int ret = 0;
4160 int retry;
4161 bool handled;
4162 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4163 go_again:
4164 if (bret == true) {
4165
4166 /* check link status - esi[10] = 0x200c */
4167 if (intel_dp->active_mst_links &&
4168 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4169 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4170 intel_dp_start_link_train(intel_dp);
4171 intel_dp_stop_link_train(intel_dp);
4172 }
4173
4174 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4175 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4176
4177 if (handled) {
4178 for (retry = 0; retry < 3; retry++) {
4179 int wret;
4180 wret = drm_dp_dpcd_write(&intel_dp->aux,
4181 DP_SINK_COUNT_ESI+1,
4182 &esi[1], 3);
4183 if (wret == 3) {
4184 break;
4185 }
4186 }
4187
4188 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4189 if (bret == true) {
4190 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4191 goto go_again;
4192 }
4193 } else
4194 ret = 0;
4195
4196 return ret;
4197 } else {
4198 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4199 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4200 intel_dp->is_mst = false;
4201 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4202 /* send a hotplug event */
4203 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4204 }
4205 }
4206 return -EINVAL;
4207 }
4208
4209 static void
4210 intel_dp_check_link_status(struct intel_dp *intel_dp)
4211 {
4212 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4213 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4214 u8 link_status[DP_LINK_STATUS_SIZE];
4215
4216 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4217
4218 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4219 DRM_ERROR("Failed to get link status\n");
4220 return;
4221 }
4222
4223 if (!intel_encoder->base.crtc)
4224 return;
4225
4226 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4227 return;
4228
4229 /* if link training is requested we should perform it always */
4230 if ((intel_dp->compliance_test_type == DP_TEST_LINK_TRAINING) ||
4231 (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count))) {
4232 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4233 intel_encoder->base.name);
4234 intel_dp_start_link_train(intel_dp);
4235 intel_dp_stop_link_train(intel_dp);
4236 }
4237 }
4238
4239 /*
4240 * According to DP spec
4241 * 5.1.2:
4242 * 1. Read DPCD
4243 * 2. Configure link according to Receiver Capabilities
4244 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4245 * 4. Check link status on receipt of hot-plug interrupt
4246 *
4247 * intel_dp_short_pulse - handles short pulse interrupts
4248 * when full detection is not required.
4249 * Returns %true if short pulse is handled and full detection
4250 * is NOT required and %false otherwise.
4251 */
4252 static bool
4253 intel_dp_short_pulse(struct intel_dp *intel_dp)
4254 {
4255 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4256 u8 sink_irq_vector;
4257 u8 old_sink_count = intel_dp->sink_count;
4258 bool ret;
4259
4260 /*
4261 * Clearing compliance test variables to allow capturing
4262 * of values for next automated test request.
4263 */
4264 intel_dp->compliance_test_active = 0;
4265 intel_dp->compliance_test_type = 0;
4266 intel_dp->compliance_test_data = 0;
4267
4268 /*
4269 * Now read the DPCD to see if it's actually running
4270 * If the current value of sink count doesn't match with
4271 * the value that was stored earlier or dpcd read failed
4272 * we need to do full detection
4273 */
4274 ret = intel_dp_get_dpcd(intel_dp);
4275
4276 if ((old_sink_count != intel_dp->sink_count) || !ret) {
4277 /* No need to proceed if we are going to do full detect */
4278 return false;
4279 }
4280
4281 /* Try to read the source of the interrupt */
4282 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4283 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4284 /* Clear interrupt source */
4285 drm_dp_dpcd_writeb(&intel_dp->aux,
4286 DP_DEVICE_SERVICE_IRQ_VECTOR,
4287 sink_irq_vector);
4288
4289 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4290 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4291 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4292 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4293 }
4294
4295 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4296 intel_dp_check_link_status(intel_dp);
4297 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4298
4299 return true;
4300 }
4301
4302 /* XXX this is probably wrong for multiple downstream ports */
4303 static enum drm_connector_status
4304 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4305 {
4306 uint8_t *dpcd = intel_dp->dpcd;
4307 uint8_t type;
4308
4309 if (!intel_dp_get_dpcd(intel_dp))
4310 return connector_status_disconnected;
4311
4312 if (is_edp(intel_dp))
4313 return connector_status_connected;
4314
4315 /* if there's no downstream port, we're done */
4316 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4317 return connector_status_connected;
4318
4319 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4320 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4321 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4322
4323 return intel_dp->sink_count ?
4324 connector_status_connected : connector_status_disconnected;
4325 }
4326
4327 /* If no HPD, poke DDC gently */
4328 if (drm_probe_ddc(&intel_dp->aux.ddc))
4329 return connector_status_connected;
4330
4331 /* Well we tried, say unknown for unreliable port types */
4332 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4333 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4334 if (type == DP_DS_PORT_TYPE_VGA ||
4335 type == DP_DS_PORT_TYPE_NON_EDID)
4336 return connector_status_unknown;
4337 } else {
4338 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4339 DP_DWN_STRM_PORT_TYPE_MASK;
4340 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4341 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4342 return connector_status_unknown;
4343 }
4344
4345 /* Anything else is out of spec, warn and ignore */
4346 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4347 return connector_status_disconnected;
4348 }
4349
4350 static enum drm_connector_status
4351 edp_detect(struct intel_dp *intel_dp)
4352 {
4353 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4354 enum drm_connector_status status;
4355
4356 status = intel_panel_detect(dev);
4357 if (status == connector_status_unknown)
4358 status = connector_status_connected;
4359
4360 return status;
4361 }
4362
4363 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4364 struct intel_digital_port *port)
4365 {
4366 u32 bit;
4367
4368 switch (port->port) {
4369 case PORT_A:
4370 return true;
4371 case PORT_B:
4372 bit = SDE_PORTB_HOTPLUG;
4373 break;
4374 case PORT_C:
4375 bit = SDE_PORTC_HOTPLUG;
4376 break;
4377 case PORT_D:
4378 bit = SDE_PORTD_HOTPLUG;
4379 break;
4380 default:
4381 MISSING_CASE(port->port);
4382 return false;
4383 }
4384
4385 return I915_READ(SDEISR) & bit;
4386 }
4387
4388 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4389 struct intel_digital_port *port)
4390 {
4391 u32 bit;
4392
4393 switch (port->port) {
4394 case PORT_A:
4395 return true;
4396 case PORT_B:
4397 bit = SDE_PORTB_HOTPLUG_CPT;
4398 break;
4399 case PORT_C:
4400 bit = SDE_PORTC_HOTPLUG_CPT;
4401 break;
4402 case PORT_D:
4403 bit = SDE_PORTD_HOTPLUG_CPT;
4404 break;
4405 case PORT_E:
4406 bit = SDE_PORTE_HOTPLUG_SPT;
4407 break;
4408 default:
4409 MISSING_CASE(port->port);
4410 return false;
4411 }
4412
4413 return I915_READ(SDEISR) & bit;
4414 }
4415
4416 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4417 struct intel_digital_port *port)
4418 {
4419 u32 bit;
4420
4421 switch (port->port) {
4422 case PORT_B:
4423 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4424 break;
4425 case PORT_C:
4426 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4427 break;
4428 case PORT_D:
4429 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4430 break;
4431 default:
4432 MISSING_CASE(port->port);
4433 return false;
4434 }
4435
4436 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4437 }
4438
4439 static bool gm45_digital_port_connected(struct drm_i915_private *dev_priv,
4440 struct intel_digital_port *port)
4441 {
4442 u32 bit;
4443
4444 switch (port->port) {
4445 case PORT_B:
4446 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
4447 break;
4448 case PORT_C:
4449 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
4450 break;
4451 case PORT_D:
4452 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
4453 break;
4454 default:
4455 MISSING_CASE(port->port);
4456 return false;
4457 }
4458
4459 return I915_READ(PORT_HOTPLUG_STAT) & bit;
4460 }
4461
4462 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4463 struct intel_digital_port *intel_dig_port)
4464 {
4465 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4466 enum port port;
4467 u32 bit;
4468
4469 intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4470 switch (port) {
4471 case PORT_A:
4472 bit = BXT_DE_PORT_HP_DDIA;
4473 break;
4474 case PORT_B:
4475 bit = BXT_DE_PORT_HP_DDIB;
4476 break;
4477 case PORT_C:
4478 bit = BXT_DE_PORT_HP_DDIC;
4479 break;
4480 default:
4481 MISSING_CASE(port);
4482 return false;
4483 }
4484
4485 return I915_READ(GEN8_DE_PORT_ISR) & bit;
4486 }
4487
4488 /*
4489 * intel_digital_port_connected - is the specified port connected?
4490 * @dev_priv: i915 private structure
4491 * @port: the port to test
4492 *
4493 * Return %true if @port is connected, %false otherwise.
4494 */
4495 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4496 struct intel_digital_port *port)
4497 {
4498 if (HAS_PCH_IBX(dev_priv))
4499 return ibx_digital_port_connected(dev_priv, port);
4500 else if (HAS_PCH_SPLIT(dev_priv))
4501 return cpt_digital_port_connected(dev_priv, port);
4502 else if (IS_BROXTON(dev_priv))
4503 return bxt_digital_port_connected(dev_priv, port);
4504 else if (IS_GM45(dev_priv))
4505 return gm45_digital_port_connected(dev_priv, port);
4506 else
4507 return g4x_digital_port_connected(dev_priv, port);
4508 }
4509
4510 static struct edid *
4511 intel_dp_get_edid(struct intel_dp *intel_dp)
4512 {
4513 struct intel_connector *intel_connector = intel_dp->attached_connector;
4514
4515 /* use cached edid if we have one */
4516 if (intel_connector->edid) {
4517 /* invalid edid */
4518 if (IS_ERR(intel_connector->edid))
4519 return NULL;
4520
4521 return drm_edid_duplicate(intel_connector->edid);
4522 } else
4523 return drm_get_edid(&intel_connector->base,
4524 &intel_dp->aux.ddc);
4525 }
4526
4527 static void
4528 intel_dp_set_edid(struct intel_dp *intel_dp)
4529 {
4530 struct intel_connector *intel_connector = intel_dp->attached_connector;
4531 struct edid *edid;
4532
4533 intel_dp_unset_edid(intel_dp);
4534 edid = intel_dp_get_edid(intel_dp);
4535 intel_connector->detect_edid = edid;
4536
4537 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4538 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4539 else
4540 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4541 }
4542
4543 static void
4544 intel_dp_unset_edid(struct intel_dp *intel_dp)
4545 {
4546 struct intel_connector *intel_connector = intel_dp->attached_connector;
4547
4548 kfree(intel_connector->detect_edid);
4549 intel_connector->detect_edid = NULL;
4550
4551 intel_dp->has_audio = false;
4552 }
4553
4554 static void
4555 intel_dp_long_pulse(struct intel_connector *intel_connector)
4556 {
4557 struct drm_connector *connector = &intel_connector->base;
4558 struct intel_dp *intel_dp = intel_attached_dp(connector);
4559 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4560 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4561 struct drm_device *dev = connector->dev;
4562 enum drm_connector_status status;
4563 enum intel_display_power_domain power_domain;
4564 bool ret;
4565 u8 sink_irq_vector;
4566
4567 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4568 intel_display_power_get(to_i915(dev), power_domain);
4569
4570 /* Can't disconnect eDP, but you can close the lid... */
4571 if (is_edp(intel_dp))
4572 status = edp_detect(intel_dp);
4573 else if (intel_digital_port_connected(to_i915(dev),
4574 dp_to_dig_port(intel_dp)))
4575 status = intel_dp_detect_dpcd(intel_dp);
4576 else
4577 status = connector_status_disconnected;
4578
4579 if (status != connector_status_connected) {
4580 intel_dp->compliance_test_active = 0;
4581 intel_dp->compliance_test_type = 0;
4582 intel_dp->compliance_test_data = 0;
4583
4584 if (intel_dp->is_mst) {
4585 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
4586 intel_dp->is_mst,
4587 intel_dp->mst_mgr.mst_state);
4588 intel_dp->is_mst = false;
4589 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4590 intel_dp->is_mst);
4591 }
4592
4593 goto out;
4594 }
4595
4596 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4597 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4598
4599 intel_dp_probe_oui(intel_dp);
4600
4601 ret = intel_dp_probe_mst(intel_dp);
4602 if (ret) {
4603 /*
4604 * If we are in MST mode then this connector
4605 * won't appear connected or have anything
4606 * with EDID on it
4607 */
4608 status = connector_status_disconnected;
4609 goto out;
4610 } else if (connector->status == connector_status_connected) {
4611 /*
4612 * If display was connected already and is still connected
4613 * check links status, there has been known issues of
4614 * link loss triggerring long pulse!!!!
4615 */
4616 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4617 intel_dp_check_link_status(intel_dp);
4618 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4619 goto out;
4620 }
4621
4622 /*
4623 * Clearing NACK and defer counts to get their exact values
4624 * while reading EDID which are required by Compliance tests
4625 * 4.2.2.4 and 4.2.2.5
4626 */
4627 intel_dp->aux.i2c_nack_count = 0;
4628 intel_dp->aux.i2c_defer_count = 0;
4629
4630 intel_dp_set_edid(intel_dp);
4631
4632 status = connector_status_connected;
4633 intel_dp->detect_done = true;
4634
4635 /* Try to read the source of the interrupt */
4636 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4637 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4638 /* Clear interrupt source */
4639 drm_dp_dpcd_writeb(&intel_dp->aux,
4640 DP_DEVICE_SERVICE_IRQ_VECTOR,
4641 sink_irq_vector);
4642
4643 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4644 intel_dp_handle_test_request(intel_dp);
4645 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4646 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4647 }
4648
4649 out:
4650 if ((status != connector_status_connected) &&
4651 (intel_dp->is_mst == false))
4652 intel_dp_unset_edid(intel_dp);
4653
4654 intel_display_power_put(to_i915(dev), power_domain);
4655 return;
4656 }
4657
4658 static enum drm_connector_status
4659 intel_dp_detect(struct drm_connector *connector, bool force)
4660 {
4661 struct intel_dp *intel_dp = intel_attached_dp(connector);
4662 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4663 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4664 struct intel_connector *intel_connector = to_intel_connector(connector);
4665
4666 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4667 connector->base.id, connector->name);
4668
4669 if (intel_dp->is_mst) {
4670 /* MST devices are disconnected from a monitor POV */
4671 intel_dp_unset_edid(intel_dp);
4672 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4673 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4674 return connector_status_disconnected;
4675 }
4676
4677 /* If full detect is not performed yet, do a full detect */
4678 if (!intel_dp->detect_done)
4679 intel_dp_long_pulse(intel_dp->attached_connector);
4680
4681 intel_dp->detect_done = false;
4682
4683 if (intel_connector->detect_edid)
4684 return connector_status_connected;
4685 else
4686 return connector_status_disconnected;
4687 }
4688
4689 static void
4690 intel_dp_force(struct drm_connector *connector)
4691 {
4692 struct intel_dp *intel_dp = intel_attached_dp(connector);
4693 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4694 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4695 enum intel_display_power_domain power_domain;
4696
4697 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4698 connector->base.id, connector->name);
4699 intel_dp_unset_edid(intel_dp);
4700
4701 if (connector->status != connector_status_connected)
4702 return;
4703
4704 power_domain = intel_display_port_aux_power_domain(intel_encoder);
4705 intel_display_power_get(dev_priv, power_domain);
4706
4707 intel_dp_set_edid(intel_dp);
4708
4709 intel_display_power_put(dev_priv, power_domain);
4710
4711 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4712 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4713 }
4714
4715 static int intel_dp_get_modes(struct drm_connector *connector)
4716 {
4717 struct intel_connector *intel_connector = to_intel_connector(connector);
4718 struct edid *edid;
4719
4720 edid = intel_connector->detect_edid;
4721 if (edid) {
4722 int ret = intel_connector_update_modes(connector, edid);
4723 if (ret)
4724 return ret;
4725 }
4726
4727 /* if eDP has no EDID, fall back to fixed mode */
4728 if (is_edp(intel_attached_dp(connector)) &&
4729 intel_connector->panel.fixed_mode) {
4730 struct drm_display_mode *mode;
4731
4732 mode = drm_mode_duplicate(connector->dev,
4733 intel_connector->panel.fixed_mode);
4734 if (mode) {
4735 drm_mode_probed_add(connector, mode);
4736 return 1;
4737 }
4738 }
4739
4740 return 0;
4741 }
4742
4743 static bool
4744 intel_dp_detect_audio(struct drm_connector *connector)
4745 {
4746 bool has_audio = false;
4747 struct edid *edid;
4748
4749 edid = to_intel_connector(connector)->detect_edid;
4750 if (edid)
4751 has_audio = drm_detect_monitor_audio(edid);
4752
4753 return has_audio;
4754 }
4755
4756 static int
4757 intel_dp_set_property(struct drm_connector *connector,
4758 struct drm_property *property,
4759 uint64_t val)
4760 {
4761 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4762 struct intel_connector *intel_connector = to_intel_connector(connector);
4763 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4764 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4765 int ret;
4766
4767 ret = drm_object_property_set_value(&connector->base, property, val);
4768 if (ret)
4769 return ret;
4770
4771 if (property == dev_priv->force_audio_property) {
4772 int i = val;
4773 bool has_audio;
4774
4775 if (i == intel_dp->force_audio)
4776 return 0;
4777
4778 intel_dp->force_audio = i;
4779
4780 if (i == HDMI_AUDIO_AUTO)
4781 has_audio = intel_dp_detect_audio(connector);
4782 else
4783 has_audio = (i == HDMI_AUDIO_ON);
4784
4785 if (has_audio == intel_dp->has_audio)
4786 return 0;
4787
4788 intel_dp->has_audio = has_audio;
4789 goto done;
4790 }
4791
4792 if (property == dev_priv->broadcast_rgb_property) {
4793 bool old_auto = intel_dp->color_range_auto;
4794 bool old_range = intel_dp->limited_color_range;
4795
4796 switch (val) {
4797 case INTEL_BROADCAST_RGB_AUTO:
4798 intel_dp->color_range_auto = true;
4799 break;
4800 case INTEL_BROADCAST_RGB_FULL:
4801 intel_dp->color_range_auto = false;
4802 intel_dp->limited_color_range = false;
4803 break;
4804 case INTEL_BROADCAST_RGB_LIMITED:
4805 intel_dp->color_range_auto = false;
4806 intel_dp->limited_color_range = true;
4807 break;
4808 default:
4809 return -EINVAL;
4810 }
4811
4812 if (old_auto == intel_dp->color_range_auto &&
4813 old_range == intel_dp->limited_color_range)
4814 return 0;
4815
4816 goto done;
4817 }
4818
4819 if (is_edp(intel_dp) &&
4820 property == connector->dev->mode_config.scaling_mode_property) {
4821 if (val == DRM_MODE_SCALE_NONE) {
4822 DRM_DEBUG_KMS("no scaling not supported\n");
4823 return -EINVAL;
4824 }
4825 if (HAS_GMCH_DISPLAY(dev_priv) &&
4826 val == DRM_MODE_SCALE_CENTER) {
4827 DRM_DEBUG_KMS("centering not supported\n");
4828 return -EINVAL;
4829 }
4830
4831 if (intel_connector->panel.fitting_mode == val) {
4832 /* the eDP scaling property is not changed */
4833 return 0;
4834 }
4835 intel_connector->panel.fitting_mode = val;
4836
4837 goto done;
4838 }
4839
4840 return -EINVAL;
4841
4842 done:
4843 if (intel_encoder->base.crtc)
4844 intel_crtc_restore_mode(intel_encoder->base.crtc);
4845
4846 return 0;
4847 }
4848
4849 static void
4850 intel_dp_connector_destroy(struct drm_connector *connector)
4851 {
4852 struct intel_connector *intel_connector = to_intel_connector(connector);
4853
4854 kfree(intel_connector->detect_edid);
4855
4856 if (!IS_ERR_OR_NULL(intel_connector->edid))
4857 kfree(intel_connector->edid);
4858
4859 /* Can't call is_edp() since the encoder may have been destroyed
4860 * already. */
4861 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4862 intel_panel_fini(&intel_connector->panel);
4863
4864 drm_connector_cleanup(connector);
4865 kfree(connector);
4866 }
4867
4868 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4869 {
4870 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4871 struct intel_dp *intel_dp = &intel_dig_port->dp;
4872
4873 intel_dp_mst_encoder_cleanup(intel_dig_port);
4874 if (is_edp(intel_dp)) {
4875 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4876 /*
4877 * vdd might still be enabled do to the delayed vdd off.
4878 * Make sure vdd is actually turned off here.
4879 */
4880 pps_lock(intel_dp);
4881 edp_panel_vdd_off_sync(intel_dp);
4882 pps_unlock(intel_dp);
4883
4884 if (intel_dp->edp_notifier.notifier_call) {
4885 unregister_reboot_notifier(&intel_dp->edp_notifier);
4886 intel_dp->edp_notifier.notifier_call = NULL;
4887 }
4888 }
4889 drm_encoder_cleanup(encoder);
4890 kfree(intel_dig_port);
4891 }
4892
4893 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4894 {
4895 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4896
4897 if (!is_edp(intel_dp))
4898 return;
4899
4900 /*
4901 * vdd might still be enabled do to the delayed vdd off.
4902 * Make sure vdd is actually turned off here.
4903 */
4904 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4905 pps_lock(intel_dp);
4906 edp_panel_vdd_off_sync(intel_dp);
4907 pps_unlock(intel_dp);
4908 }
4909
4910 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4911 {
4912 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4913 struct drm_device *dev = intel_dig_port->base.base.dev;
4914 struct drm_i915_private *dev_priv = dev->dev_private;
4915 enum intel_display_power_domain power_domain;
4916
4917 lockdep_assert_held(&dev_priv->pps_mutex);
4918
4919 if (!edp_have_panel_vdd(intel_dp))
4920 return;
4921
4922 /*
4923 * The VDD bit needs a power domain reference, so if the bit is
4924 * already enabled when we boot or resume, grab this reference and
4925 * schedule a vdd off, so we don't hold on to the reference
4926 * indefinitely.
4927 */
4928 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4929 power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
4930 intel_display_power_get(dev_priv, power_domain);
4931
4932 edp_panel_vdd_schedule_off(intel_dp);
4933 }
4934
4935 void intel_dp_encoder_reset(struct drm_encoder *encoder)
4936 {
4937 struct intel_dp *intel_dp;
4938
4939 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4940 return;
4941
4942 intel_dp = enc_to_intel_dp(encoder);
4943
4944 pps_lock(intel_dp);
4945
4946 /*
4947 * Read out the current power sequencer assignment,
4948 * in case the BIOS did something with it.
4949 */
4950 if (IS_VALLEYVIEW(encoder->dev) || IS_CHERRYVIEW(encoder->dev))
4951 vlv_initial_power_sequencer_setup(intel_dp);
4952
4953 intel_edp_panel_vdd_sanitize(intel_dp);
4954
4955 pps_unlock(intel_dp);
4956 }
4957
4958 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4959 .dpms = drm_atomic_helper_connector_dpms,
4960 .detect = intel_dp_detect,
4961 .force = intel_dp_force,
4962 .fill_modes = drm_helper_probe_single_connector_modes,
4963 .set_property = intel_dp_set_property,
4964 .atomic_get_property = intel_connector_atomic_get_property,
4965 .destroy = intel_dp_connector_destroy,
4966 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4967 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4968 };
4969
4970 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4971 .get_modes = intel_dp_get_modes,
4972 .mode_valid = intel_dp_mode_valid,
4973 .best_encoder = intel_best_encoder,
4974 };
4975
4976 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4977 .reset = intel_dp_encoder_reset,
4978 .destroy = intel_dp_encoder_destroy,
4979 };
4980
4981 enum irqreturn
4982 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4983 {
4984 struct intel_dp *intel_dp = &intel_dig_port->dp;
4985 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4986 struct drm_device *dev = intel_dig_port->base.base.dev;
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988 enum intel_display_power_domain power_domain;
4989 enum irqreturn ret = IRQ_NONE;
4990
4991 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
4992 intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
4993 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4994
4995 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4996 /*
4997 * vdd off can generate a long pulse on eDP which
4998 * would require vdd on to handle it, and thus we
4999 * would end up in an endless cycle of
5000 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5001 */
5002 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5003 port_name(intel_dig_port->port));
5004 return IRQ_HANDLED;
5005 }
5006
5007 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5008 port_name(intel_dig_port->port),
5009 long_hpd ? "long" : "short");
5010
5011 power_domain = intel_display_port_aux_power_domain(intel_encoder);
5012 intel_display_power_get(dev_priv, power_domain);
5013
5014 if (long_hpd) {
5015 /* indicate that we need to restart link training */
5016 intel_dp->train_set_valid = false;
5017
5018 intel_dp_long_pulse(intel_dp->attached_connector);
5019 if (intel_dp->is_mst)
5020 ret = IRQ_HANDLED;
5021 goto put_power;
5022
5023 } else {
5024 if (intel_dp->is_mst) {
5025 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
5026 /*
5027 * If we were in MST mode, and device is not
5028 * there, get out of MST mode
5029 */
5030 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5031 intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5032 intel_dp->is_mst = false;
5033 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5034 intel_dp->is_mst);
5035 goto put_power;
5036 }
5037 }
5038
5039 if (!intel_dp->is_mst) {
5040 if (!intel_dp_short_pulse(intel_dp)) {
5041 intel_dp_long_pulse(intel_dp->attached_connector);
5042 goto put_power;
5043 }
5044 }
5045 }
5046
5047 ret = IRQ_HANDLED;
5048
5049 put_power:
5050 intel_display_power_put(dev_priv, power_domain);
5051
5052 return ret;
5053 }
5054
5055 /* check the VBT to see whether the eDP is on another port */
5056 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5057 {
5058 struct drm_i915_private *dev_priv = dev->dev_private;
5059
5060 /*
5061 * eDP not supported on g4x. so bail out early just
5062 * for a bit extra safety in case the VBT is bonkers.
5063 */
5064 if (INTEL_INFO(dev)->gen < 5)
5065 return false;
5066
5067 if (port == PORT_A)
5068 return true;
5069
5070 return intel_bios_is_port_edp(dev_priv, port);
5071 }
5072
5073 void
5074 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5075 {
5076 struct intel_connector *intel_connector = to_intel_connector(connector);
5077
5078 intel_attach_force_audio_property(connector);
5079 intel_attach_broadcast_rgb_property(connector);
5080 intel_dp->color_range_auto = true;
5081
5082 if (is_edp(intel_dp)) {
5083 drm_mode_create_scaling_mode_property(connector->dev);
5084 drm_object_attach_property(
5085 &connector->base,
5086 connector->dev->mode_config.scaling_mode_property,
5087 DRM_MODE_SCALE_ASPECT);
5088 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5089 }
5090 }
5091
5092 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5093 {
5094 intel_dp->panel_power_off_time = ktime_get_boottime();
5095 intel_dp->last_power_on = jiffies;
5096 intel_dp->last_backlight_off = jiffies;
5097 }
5098
5099 static void
5100 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5101 struct intel_dp *intel_dp)
5102 {
5103 struct drm_i915_private *dev_priv = dev->dev_private;
5104 struct edp_power_seq cur, vbt, spec,
5105 *final = &intel_dp->pps_delays;
5106 u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5107 i915_reg_t pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5108
5109 lockdep_assert_held(&dev_priv->pps_mutex);
5110
5111 /* already initialized? */
5112 if (final->t11_t12 != 0)
5113 return;
5114
5115 if (IS_BROXTON(dev)) {
5116 /*
5117 * TODO: BXT has 2 sets of PPS registers.
5118 * Correct Register for Broxton need to be identified
5119 * using VBT. hardcoding for now
5120 */
5121 pp_ctrl_reg = BXT_PP_CONTROL(0);
5122 pp_on_reg = BXT_PP_ON_DELAYS(0);
5123 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5124 } else if (HAS_PCH_SPLIT(dev)) {
5125 pp_ctrl_reg = PCH_PP_CONTROL;
5126 pp_on_reg = PCH_PP_ON_DELAYS;
5127 pp_off_reg = PCH_PP_OFF_DELAYS;
5128 pp_div_reg = PCH_PP_DIVISOR;
5129 } else {
5130 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5131
5132 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5133 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5134 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5135 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5136 }
5137
5138 /* Workaround: Need to write PP_CONTROL with the unlock key as
5139 * the very first thing. */
5140 pp_ctl = ironlake_get_pp_control(intel_dp);
5141
5142 pp_on = I915_READ(pp_on_reg);
5143 pp_off = I915_READ(pp_off_reg);
5144 if (!IS_BROXTON(dev)) {
5145 I915_WRITE(pp_ctrl_reg, pp_ctl);
5146 pp_div = I915_READ(pp_div_reg);
5147 }
5148
5149 /* Pull timing values out of registers */
5150 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5151 PANEL_POWER_UP_DELAY_SHIFT;
5152
5153 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5154 PANEL_LIGHT_ON_DELAY_SHIFT;
5155
5156 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5157 PANEL_LIGHT_OFF_DELAY_SHIFT;
5158
5159 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5160 PANEL_POWER_DOWN_DELAY_SHIFT;
5161
5162 if (IS_BROXTON(dev)) {
5163 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5164 BXT_POWER_CYCLE_DELAY_SHIFT;
5165 if (tmp > 0)
5166 cur.t11_t12 = (tmp - 1) * 1000;
5167 else
5168 cur.t11_t12 = 0;
5169 } else {
5170 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5171 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5172 }
5173
5174 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5175 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5176
5177 vbt = dev_priv->vbt.edp.pps;
5178
5179 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5180 * our hw here, which are all in 100usec. */
5181 spec.t1_t3 = 210 * 10;
5182 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5183 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5184 spec.t10 = 500 * 10;
5185 /* This one is special and actually in units of 100ms, but zero
5186 * based in the hw (so we need to add 100 ms). But the sw vbt
5187 * table multiplies it with 1000 to make it in units of 100usec,
5188 * too. */
5189 spec.t11_t12 = (510 + 100) * 10;
5190
5191 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5192 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5193
5194 /* Use the max of the register settings and vbt. If both are
5195 * unset, fall back to the spec limits. */
5196 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5197 spec.field : \
5198 max(cur.field, vbt.field))
5199 assign_final(t1_t3);
5200 assign_final(t8);
5201 assign_final(t9);
5202 assign_final(t10);
5203 assign_final(t11_t12);
5204 #undef assign_final
5205
5206 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5207 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5208 intel_dp->backlight_on_delay = get_delay(t8);
5209 intel_dp->backlight_off_delay = get_delay(t9);
5210 intel_dp->panel_power_down_delay = get_delay(t10);
5211 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5212 #undef get_delay
5213
5214 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5215 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5216 intel_dp->panel_power_cycle_delay);
5217
5218 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5219 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5220 }
5221
5222 static void
5223 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5224 struct intel_dp *intel_dp)
5225 {
5226 struct drm_i915_private *dev_priv = dev->dev_private;
5227 u32 pp_on, pp_off, pp_div, port_sel = 0;
5228 int div = dev_priv->rawclk_freq / 1000;
5229 i915_reg_t pp_on_reg, pp_off_reg, pp_div_reg, pp_ctrl_reg;
5230 enum port port = dp_to_dig_port(intel_dp)->port;
5231 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5232
5233 lockdep_assert_held(&dev_priv->pps_mutex);
5234
5235 if (IS_BROXTON(dev)) {
5236 /*
5237 * TODO: BXT has 2 sets of PPS registers.
5238 * Correct Register for Broxton need to be identified
5239 * using VBT. hardcoding for now
5240 */
5241 pp_ctrl_reg = BXT_PP_CONTROL(0);
5242 pp_on_reg = BXT_PP_ON_DELAYS(0);
5243 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5244
5245 } else if (HAS_PCH_SPLIT(dev)) {
5246 pp_on_reg = PCH_PP_ON_DELAYS;
5247 pp_off_reg = PCH_PP_OFF_DELAYS;
5248 pp_div_reg = PCH_PP_DIVISOR;
5249 } else {
5250 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5251
5252 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5253 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5254 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5255 }
5256
5257 /*
5258 * And finally store the new values in the power sequencer. The
5259 * backlight delays are set to 1 because we do manual waits on them. For
5260 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5261 * we'll end up waiting for the backlight off delay twice: once when we
5262 * do the manual sleep, and once when we disable the panel and wait for
5263 * the PP_STATUS bit to become zero.
5264 */
5265 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5266 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5267 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5268 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5269 /* Compute the divisor for the pp clock, simply match the Bspec
5270 * formula. */
5271 if (IS_BROXTON(dev)) {
5272 pp_div = I915_READ(pp_ctrl_reg);
5273 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5274 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5275 << BXT_POWER_CYCLE_DELAY_SHIFT);
5276 } else {
5277 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5278 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5279 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5280 }
5281
5282 /* Haswell doesn't have any port selection bits for the panel
5283 * power sequencer any more. */
5284 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5285 port_sel = PANEL_PORT_SELECT_VLV(port);
5286 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5287 if (port == PORT_A)
5288 port_sel = PANEL_PORT_SELECT_DPA;
5289 else
5290 port_sel = PANEL_PORT_SELECT_DPD;
5291 }
5292
5293 pp_on |= port_sel;
5294
5295 I915_WRITE(pp_on_reg, pp_on);
5296 I915_WRITE(pp_off_reg, pp_off);
5297 if (IS_BROXTON(dev))
5298 I915_WRITE(pp_ctrl_reg, pp_div);
5299 else
5300 I915_WRITE(pp_div_reg, pp_div);
5301
5302 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5303 I915_READ(pp_on_reg),
5304 I915_READ(pp_off_reg),
5305 IS_BROXTON(dev) ?
5306 (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5307 I915_READ(pp_div_reg));
5308 }
5309
5310 /**
5311 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5312 * @dev: DRM device
5313 * @refresh_rate: RR to be programmed
5314 *
5315 * This function gets called when refresh rate (RR) has to be changed from
5316 * one frequency to another. Switches can be between high and low RR
5317 * supported by the panel or to any other RR based on media playback (in
5318 * this case, RR value needs to be passed from user space).
5319 *
5320 * The caller of this function needs to take a lock on dev_priv->drrs.
5321 */
5322 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5323 {
5324 struct drm_i915_private *dev_priv = dev->dev_private;
5325 struct intel_encoder *encoder;
5326 struct intel_digital_port *dig_port = NULL;
5327 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5328 struct intel_crtc_state *config = NULL;
5329 struct intel_crtc *intel_crtc = NULL;
5330 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5331
5332 if (refresh_rate <= 0) {
5333 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5334 return;
5335 }
5336
5337 if (intel_dp == NULL) {
5338 DRM_DEBUG_KMS("DRRS not supported.\n");
5339 return;
5340 }
5341
5342 /*
5343 * FIXME: This needs proper synchronization with psr state for some
5344 * platforms that cannot have PSR and DRRS enabled at the same time.
5345 */
5346
5347 dig_port = dp_to_dig_port(intel_dp);
5348 encoder = &dig_port->base;
5349 intel_crtc = to_intel_crtc(encoder->base.crtc);
5350
5351 if (!intel_crtc) {
5352 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5353 return;
5354 }
5355
5356 config = intel_crtc->config;
5357
5358 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5359 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5360 return;
5361 }
5362
5363 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5364 refresh_rate)
5365 index = DRRS_LOW_RR;
5366
5367 if (index == dev_priv->drrs.refresh_rate_type) {
5368 DRM_DEBUG_KMS(
5369 "DRRS requested for previously set RR...ignoring\n");
5370 return;
5371 }
5372
5373 if (!intel_crtc->active) {
5374 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5375 return;
5376 }
5377
5378 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5379 switch (index) {
5380 case DRRS_HIGH_RR:
5381 intel_dp_set_m_n(intel_crtc, M1_N1);
5382 break;
5383 case DRRS_LOW_RR:
5384 intel_dp_set_m_n(intel_crtc, M2_N2);
5385 break;
5386 case DRRS_MAX_RR:
5387 default:
5388 DRM_ERROR("Unsupported refreshrate type\n");
5389 }
5390 } else if (INTEL_INFO(dev)->gen > 6) {
5391 i915_reg_t reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5392 u32 val;
5393
5394 val = I915_READ(reg);
5395 if (index > DRRS_HIGH_RR) {
5396 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5397 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5398 else
5399 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5400 } else {
5401 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5402 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5403 else
5404 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5405 }
5406 I915_WRITE(reg, val);
5407 }
5408
5409 dev_priv->drrs.refresh_rate_type = index;
5410
5411 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5412 }
5413
5414 /**
5415 * intel_edp_drrs_enable - init drrs struct if supported
5416 * @intel_dp: DP struct
5417 *
5418 * Initializes frontbuffer_bits and drrs.dp
5419 */
5420 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5421 {
5422 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5423 struct drm_i915_private *dev_priv = dev->dev_private;
5424 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5425 struct drm_crtc *crtc = dig_port->base.base.crtc;
5426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5427
5428 if (!intel_crtc->config->has_drrs) {
5429 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5430 return;
5431 }
5432
5433 mutex_lock(&dev_priv->drrs.mutex);
5434 if (WARN_ON(dev_priv->drrs.dp)) {
5435 DRM_ERROR("DRRS already enabled\n");
5436 goto unlock;
5437 }
5438
5439 dev_priv->drrs.busy_frontbuffer_bits = 0;
5440
5441 dev_priv->drrs.dp = intel_dp;
5442
5443 unlock:
5444 mutex_unlock(&dev_priv->drrs.mutex);
5445 }
5446
5447 /**
5448 * intel_edp_drrs_disable - Disable DRRS
5449 * @intel_dp: DP struct
5450 *
5451 */
5452 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5453 {
5454 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5455 struct drm_i915_private *dev_priv = dev->dev_private;
5456 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5457 struct drm_crtc *crtc = dig_port->base.base.crtc;
5458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5459
5460 if (!intel_crtc->config->has_drrs)
5461 return;
5462
5463 mutex_lock(&dev_priv->drrs.mutex);
5464 if (!dev_priv->drrs.dp) {
5465 mutex_unlock(&dev_priv->drrs.mutex);
5466 return;
5467 }
5468
5469 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5470 intel_dp_set_drrs_state(dev_priv->dev,
5471 intel_dp->attached_connector->panel.
5472 fixed_mode->vrefresh);
5473
5474 dev_priv->drrs.dp = NULL;
5475 mutex_unlock(&dev_priv->drrs.mutex);
5476
5477 cancel_delayed_work_sync(&dev_priv->drrs.work);
5478 }
5479
5480 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5481 {
5482 struct drm_i915_private *dev_priv =
5483 container_of(work, typeof(*dev_priv), drrs.work.work);
5484 struct intel_dp *intel_dp;
5485
5486 mutex_lock(&dev_priv->drrs.mutex);
5487
5488 intel_dp = dev_priv->drrs.dp;
5489
5490 if (!intel_dp)
5491 goto unlock;
5492
5493 /*
5494 * The delayed work can race with an invalidate hence we need to
5495 * recheck.
5496 */
5497
5498 if (dev_priv->drrs.busy_frontbuffer_bits)
5499 goto unlock;
5500
5501 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5502 intel_dp_set_drrs_state(dev_priv->dev,
5503 intel_dp->attached_connector->panel.
5504 downclock_mode->vrefresh);
5505
5506 unlock:
5507 mutex_unlock(&dev_priv->drrs.mutex);
5508 }
5509
5510 /**
5511 * intel_edp_drrs_invalidate - Disable Idleness DRRS
5512 * @dev: DRM device
5513 * @frontbuffer_bits: frontbuffer plane tracking bits
5514 *
5515 * This function gets called everytime rendering on the given planes start.
5516 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5517 *
5518 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5519 */
5520 void intel_edp_drrs_invalidate(struct drm_device *dev,
5521 unsigned frontbuffer_bits)
5522 {
5523 struct drm_i915_private *dev_priv = dev->dev_private;
5524 struct drm_crtc *crtc;
5525 enum pipe pipe;
5526
5527 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5528 return;
5529
5530 cancel_delayed_work(&dev_priv->drrs.work);
5531
5532 mutex_lock(&dev_priv->drrs.mutex);
5533 if (!dev_priv->drrs.dp) {
5534 mutex_unlock(&dev_priv->drrs.mutex);
5535 return;
5536 }
5537
5538 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5539 pipe = to_intel_crtc(crtc)->pipe;
5540
5541 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5542 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5543
5544 /* invalidate means busy screen hence upclock */
5545 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5546 intel_dp_set_drrs_state(dev_priv->dev,
5547 dev_priv->drrs.dp->attached_connector->panel.
5548 fixed_mode->vrefresh);
5549
5550 mutex_unlock(&dev_priv->drrs.mutex);
5551 }
5552
5553 /**
5554 * intel_edp_drrs_flush - Restart Idleness DRRS
5555 * @dev: DRM device
5556 * @frontbuffer_bits: frontbuffer plane tracking bits
5557 *
5558 * This function gets called every time rendering on the given planes has
5559 * completed or flip on a crtc is completed. So DRRS should be upclocked
5560 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5561 * if no other planes are dirty.
5562 *
5563 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5564 */
5565 void intel_edp_drrs_flush(struct drm_device *dev,
5566 unsigned frontbuffer_bits)
5567 {
5568 struct drm_i915_private *dev_priv = dev->dev_private;
5569 struct drm_crtc *crtc;
5570 enum pipe pipe;
5571
5572 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5573 return;
5574
5575 cancel_delayed_work(&dev_priv->drrs.work);
5576
5577 mutex_lock(&dev_priv->drrs.mutex);
5578 if (!dev_priv->drrs.dp) {
5579 mutex_unlock(&dev_priv->drrs.mutex);
5580 return;
5581 }
5582
5583 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5584 pipe = to_intel_crtc(crtc)->pipe;
5585
5586 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5587 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5588
5589 /* flush means busy screen hence upclock */
5590 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5591 intel_dp_set_drrs_state(dev_priv->dev,
5592 dev_priv->drrs.dp->attached_connector->panel.
5593 fixed_mode->vrefresh);
5594
5595 /*
5596 * flush also means no more activity hence schedule downclock, if all
5597 * other fbs are quiescent too
5598 */
5599 if (!dev_priv->drrs.busy_frontbuffer_bits)
5600 schedule_delayed_work(&dev_priv->drrs.work,
5601 msecs_to_jiffies(1000));
5602 mutex_unlock(&dev_priv->drrs.mutex);
5603 }
5604
5605 /**
5606 * DOC: Display Refresh Rate Switching (DRRS)
5607 *
5608 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5609 * which enables swtching between low and high refresh rates,
5610 * dynamically, based on the usage scenario. This feature is applicable
5611 * for internal panels.
5612 *
5613 * Indication that the panel supports DRRS is given by the panel EDID, which
5614 * would list multiple refresh rates for one resolution.
5615 *
5616 * DRRS is of 2 types - static and seamless.
5617 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5618 * (may appear as a blink on screen) and is used in dock-undock scenario.
5619 * Seamless DRRS involves changing RR without any visual effect to the user
5620 * and can be used during normal system usage. This is done by programming
5621 * certain registers.
5622 *
5623 * Support for static/seamless DRRS may be indicated in the VBT based on
5624 * inputs from the panel spec.
5625 *
5626 * DRRS saves power by switching to low RR based on usage scenarios.
5627 *
5628 * eDP DRRS:-
5629 * The implementation is based on frontbuffer tracking implementation.
5630 * When there is a disturbance on the screen triggered by user activity or a
5631 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5632 * When there is no movement on screen, after a timeout of 1 second, a switch
5633 * to low RR is made.
5634 * For integration with frontbuffer tracking code,
5635 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5636 *
5637 * DRRS can be further extended to support other internal panels and also
5638 * the scenario of video playback wherein RR is set based on the rate
5639 * requested by userspace.
5640 */
5641
5642 /**
5643 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5644 * @intel_connector: eDP connector
5645 * @fixed_mode: preferred mode of panel
5646 *
5647 * This function is called only once at driver load to initialize basic
5648 * DRRS stuff.
5649 *
5650 * Returns:
5651 * Downclock mode if panel supports it, else return NULL.
5652 * DRRS support is determined by the presence of downclock mode (apart
5653 * from VBT setting).
5654 */
5655 static struct drm_display_mode *
5656 intel_dp_drrs_init(struct intel_connector *intel_connector,
5657 struct drm_display_mode *fixed_mode)
5658 {
5659 struct drm_connector *connector = &intel_connector->base;
5660 struct drm_device *dev = connector->dev;
5661 struct drm_i915_private *dev_priv = dev->dev_private;
5662 struct drm_display_mode *downclock_mode = NULL;
5663
5664 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5665 mutex_init(&dev_priv->drrs.mutex);
5666
5667 if (INTEL_INFO(dev)->gen <= 6) {
5668 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5669 return NULL;
5670 }
5671
5672 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5673 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5674 return NULL;
5675 }
5676
5677 downclock_mode = intel_find_panel_downclock
5678 (dev, fixed_mode, connector);
5679
5680 if (!downclock_mode) {
5681 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5682 return NULL;
5683 }
5684
5685 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5686
5687 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5688 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5689 return downclock_mode;
5690 }
5691
5692 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5693 struct intel_connector *intel_connector)
5694 {
5695 struct drm_connector *connector = &intel_connector->base;
5696 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5697 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5698 struct drm_device *dev = intel_encoder->base.dev;
5699 struct drm_i915_private *dev_priv = dev->dev_private;
5700 struct drm_display_mode *fixed_mode = NULL;
5701 struct drm_display_mode *downclock_mode = NULL;
5702 bool has_dpcd;
5703 struct drm_display_mode *scan;
5704 struct edid *edid;
5705 enum pipe pipe = INVALID_PIPE;
5706
5707 if (!is_edp(intel_dp))
5708 return true;
5709
5710 pps_lock(intel_dp);
5711 intel_edp_panel_vdd_sanitize(intel_dp);
5712 pps_unlock(intel_dp);
5713
5714 /* Cache DPCD and EDID for edp. */
5715 has_dpcd = intel_dp_get_dpcd(intel_dp);
5716
5717 if (has_dpcd) {
5718 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5719 dev_priv->no_aux_handshake =
5720 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5721 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5722 } else {
5723 /* if this fails, presume the device is a ghost */
5724 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5725 return false;
5726 }
5727
5728 /* We now know it's not a ghost, init power sequence regs. */
5729 pps_lock(intel_dp);
5730 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5731 pps_unlock(intel_dp);
5732
5733 mutex_lock(&dev->mode_config.mutex);
5734 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5735 if (edid) {
5736 if (drm_add_edid_modes(connector, edid)) {
5737 drm_mode_connector_update_edid_property(connector,
5738 edid);
5739 drm_edid_to_eld(connector, edid);
5740 } else {
5741 kfree(edid);
5742 edid = ERR_PTR(-EINVAL);
5743 }
5744 } else {
5745 edid = ERR_PTR(-ENOENT);
5746 }
5747 intel_connector->edid = edid;
5748
5749 /* prefer fixed mode from EDID if available */
5750 list_for_each_entry(scan, &connector->probed_modes, head) {
5751 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5752 fixed_mode = drm_mode_duplicate(dev, scan);
5753 downclock_mode = intel_dp_drrs_init(
5754 intel_connector, fixed_mode);
5755 break;
5756 }
5757 }
5758
5759 /* fallback to VBT if available for eDP */
5760 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5761 fixed_mode = drm_mode_duplicate(dev,
5762 dev_priv->vbt.lfp_lvds_vbt_mode);
5763 if (fixed_mode)
5764 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5765 }
5766 mutex_unlock(&dev->mode_config.mutex);
5767
5768 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
5769 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5770 register_reboot_notifier(&intel_dp->edp_notifier);
5771
5772 /*
5773 * Figure out the current pipe for the initial backlight setup.
5774 * If the current pipe isn't valid, try the PPS pipe, and if that
5775 * fails just assume pipe A.
5776 */
5777 if (IS_CHERRYVIEW(dev))
5778 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5779 else
5780 pipe = PORT_TO_PIPE(intel_dp->DP);
5781
5782 if (pipe != PIPE_A && pipe != PIPE_B)
5783 pipe = intel_dp->pps_pipe;
5784
5785 if (pipe != PIPE_A && pipe != PIPE_B)
5786 pipe = PIPE_A;
5787
5788 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5789 pipe_name(pipe));
5790 }
5791
5792 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5793 intel_connector->panel.backlight.power = intel_edp_backlight_power;
5794 intel_panel_setup_backlight(connector, pipe);
5795
5796 return true;
5797 }
5798
5799 bool
5800 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5801 struct intel_connector *intel_connector)
5802 {
5803 struct drm_connector *connector = &intel_connector->base;
5804 struct intel_dp *intel_dp = &intel_dig_port->dp;
5805 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5806 struct drm_device *dev = intel_encoder->base.dev;
5807 struct drm_i915_private *dev_priv = dev->dev_private;
5808 enum port port = intel_dig_port->port;
5809 int type, ret;
5810
5811 if (WARN(intel_dig_port->max_lanes < 1,
5812 "Not enough lanes (%d) for DP on port %c\n",
5813 intel_dig_port->max_lanes, port_name(port)))
5814 return false;
5815
5816 intel_dp->pps_pipe = INVALID_PIPE;
5817
5818 /* intel_dp vfuncs */
5819 if (INTEL_INFO(dev)->gen >= 9)
5820 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5821 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5822 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5823 else if (HAS_PCH_SPLIT(dev))
5824 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5825 else
5826 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
5827
5828 if (INTEL_INFO(dev)->gen >= 9)
5829 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5830 else
5831 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
5832
5833 if (HAS_DDI(dev))
5834 intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
5835
5836 /* Preserve the current hw state. */
5837 intel_dp->DP = I915_READ(intel_dp->output_reg);
5838 intel_dp->attached_connector = intel_connector;
5839
5840 if (intel_dp_is_edp(dev, port))
5841 type = DRM_MODE_CONNECTOR_eDP;
5842 else
5843 type = DRM_MODE_CONNECTOR_DisplayPort;
5844
5845 /*
5846 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5847 * for DP the encoder type can be set by the caller to
5848 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5849 */
5850 if (type == DRM_MODE_CONNECTOR_eDP)
5851 intel_encoder->type = INTEL_OUTPUT_EDP;
5852
5853 /* eDP only on port B and/or C on vlv/chv */
5854 if (WARN_ON((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
5855 is_edp(intel_dp) && port != PORT_B && port != PORT_C))
5856 return false;
5857
5858 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5859 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5860 port_name(port));
5861
5862 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5863 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5864
5865 connector->interlace_allowed = true;
5866 connector->doublescan_allowed = 0;
5867
5868 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5869 edp_panel_vdd_work);
5870
5871 intel_connector_attach_encoder(intel_connector, intel_encoder);
5872 drm_connector_register(connector);
5873
5874 if (HAS_DDI(dev))
5875 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5876 else
5877 intel_connector->get_hw_state = intel_connector_get_hw_state;
5878 intel_connector->unregister = intel_dp_connector_unregister;
5879
5880 /* Set up the hotplug pin. */
5881 switch (port) {
5882 case PORT_A:
5883 intel_encoder->hpd_pin = HPD_PORT_A;
5884 break;
5885 case PORT_B:
5886 intel_encoder->hpd_pin = HPD_PORT_B;
5887 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
5888 intel_encoder->hpd_pin = HPD_PORT_A;
5889 break;
5890 case PORT_C:
5891 intel_encoder->hpd_pin = HPD_PORT_C;
5892 break;
5893 case PORT_D:
5894 intel_encoder->hpd_pin = HPD_PORT_D;
5895 break;
5896 case PORT_E:
5897 intel_encoder->hpd_pin = HPD_PORT_E;
5898 break;
5899 default:
5900 BUG();
5901 }
5902
5903 if (is_edp(intel_dp)) {
5904 pps_lock(intel_dp);
5905 intel_dp_init_panel_power_timestamps(intel_dp);
5906 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
5907 vlv_initial_power_sequencer_setup(intel_dp);
5908 else
5909 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5910 pps_unlock(intel_dp);
5911 }
5912
5913 ret = intel_dp_aux_init(intel_dp, intel_connector);
5914 if (ret)
5915 goto fail;
5916
5917 /* init MST on ports that can support it */
5918 if (HAS_DP_MST(dev) &&
5919 (port == PORT_B || port == PORT_C || port == PORT_D))
5920 intel_dp_mst_encoder_init(intel_dig_port,
5921 intel_connector->base.base.id);
5922
5923 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5924 intel_dp_aux_fini(intel_dp);
5925 intel_dp_mst_encoder_cleanup(intel_dig_port);
5926 goto fail;
5927 }
5928
5929 intel_dp_add_properties(intel_dp, connector);
5930
5931 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5932 * 0xd. Failure to do so will result in spurious interrupts being
5933 * generated on the port when a cable is not attached.
5934 */
5935 if (IS_G4X(dev) && !IS_GM45(dev)) {
5936 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5937 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5938 }
5939
5940 i915_debugfs_connector_add(connector);
5941
5942 return true;
5943
5944 fail:
5945 if (is_edp(intel_dp)) {
5946 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5947 /*
5948 * vdd might still be enabled do to the delayed vdd off.
5949 * Make sure vdd is actually turned off here.
5950 */
5951 pps_lock(intel_dp);
5952 edp_panel_vdd_off_sync(intel_dp);
5953 pps_unlock(intel_dp);
5954 }
5955 drm_connector_unregister(connector);
5956 drm_connector_cleanup(connector);
5957
5958 return false;
5959 }
5960
5961 void
5962 intel_dp_init(struct drm_device *dev,
5963 i915_reg_t output_reg, enum port port)
5964 {
5965 struct drm_i915_private *dev_priv = dev->dev_private;
5966 struct intel_digital_port *intel_dig_port;
5967 struct intel_encoder *intel_encoder;
5968 struct drm_encoder *encoder;
5969 struct intel_connector *intel_connector;
5970
5971 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5972 if (!intel_dig_port)
5973 return;
5974
5975 intel_connector = intel_connector_alloc();
5976 if (!intel_connector)
5977 goto err_connector_alloc;
5978
5979 intel_encoder = &intel_dig_port->base;
5980 encoder = &intel_encoder->base;
5981
5982 if (drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5983 DRM_MODE_ENCODER_TMDS, NULL))
5984 goto err_encoder_init;
5985
5986 intel_encoder->compute_config = intel_dp_compute_config;
5987 intel_encoder->disable = intel_disable_dp;
5988 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5989 intel_encoder->get_config = intel_dp_get_config;
5990 intel_encoder->suspend = intel_dp_encoder_suspend;
5991 if (IS_CHERRYVIEW(dev)) {
5992 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5993 intel_encoder->pre_enable = chv_pre_enable_dp;
5994 intel_encoder->enable = vlv_enable_dp;
5995 intel_encoder->post_disable = chv_post_disable_dp;
5996 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
5997 } else if (IS_VALLEYVIEW(dev)) {
5998 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5999 intel_encoder->pre_enable = vlv_pre_enable_dp;
6000 intel_encoder->enable = vlv_enable_dp;
6001 intel_encoder->post_disable = vlv_post_disable_dp;
6002 } else {
6003 intel_encoder->pre_enable = g4x_pre_enable_dp;
6004 intel_encoder->enable = g4x_enable_dp;
6005 if (INTEL_INFO(dev)->gen >= 5)
6006 intel_encoder->post_disable = ilk_post_disable_dp;
6007 }
6008
6009 intel_dig_port->port = port;
6010 intel_dig_port->dp.output_reg = output_reg;
6011 intel_dig_port->max_lanes = 4;
6012
6013 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6014 if (IS_CHERRYVIEW(dev)) {
6015 if (port == PORT_D)
6016 intel_encoder->crtc_mask = 1 << 2;
6017 else
6018 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6019 } else {
6020 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6021 }
6022 intel_encoder->cloneable = 0;
6023
6024 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6025 dev_priv->hotplug.irq_port[port] = intel_dig_port;
6026
6027 if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6028 goto err_init_connector;
6029
6030 return;
6031
6032 err_init_connector:
6033 drm_encoder_cleanup(encoder);
6034 err_encoder_init:
6035 kfree(intel_connector);
6036 err_connector_alloc:
6037 kfree(intel_dig_port);
6038
6039 return;
6040 }
6041
6042 void intel_dp_mst_suspend(struct drm_device *dev)
6043 {
6044 struct drm_i915_private *dev_priv = dev->dev_private;
6045 int i;
6046
6047 /* disable MST */
6048 for (i = 0; i < I915_MAX_PORTS; i++) {
6049 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6050 if (!intel_dig_port)
6051 continue;
6052
6053 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6054 if (!intel_dig_port->dp.can_mst)
6055 continue;
6056 if (intel_dig_port->dp.is_mst)
6057 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6058 }
6059 }
6060 }
6061
6062 void intel_dp_mst_resume(struct drm_device *dev)
6063 {
6064 struct drm_i915_private *dev_priv = dev->dev_private;
6065 int i;
6066
6067 for (i = 0; i < I915_MAX_PORTS; i++) {
6068 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6069 if (!intel_dig_port)
6070 continue;
6071 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6072 int ret;
6073
6074 if (!intel_dig_port->dp.can_mst)
6075 continue;
6076
6077 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6078 if (ret != 0) {
6079 intel_dp_check_mst_status(&intel_dig_port->dp);
6080 }
6081 }
6082 }
6083 }
This page took 0.256601 seconds and 6 git commands to generate.