drm/edid: fix a debug message
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 /* Compliance test status bits */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
46 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51 int link_bw;
52 struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56 { DP_LINK_BW_1_62,
57 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58 { DP_LINK_BW_2_7,
59 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63 { DP_LINK_BW_1_62,
64 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65 { DP_LINK_BW_2_7,
66 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70 { DP_LINK_BW_1_62,
71 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72 { DP_LINK_BW_2_7,
73 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77 * CHV supports eDP 1.4 that have more link rates.
78 * Below only provides the fixed rate but exclude variable rate.
79 */
80 static const struct dp_link_dpll chv_dpll[] = {
81 /*
82 * CHV requires to program fractional division for m2.
83 * m2 is stored in fixed point format using formula below
84 * (m2_int << 22) | m2_fraction
85 */
86 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
87 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
89 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
91 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int skl_rates[] = { 162000, 216000, 270000,
95 324000, 432000, 540000 };
96 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
97 243000, 270000, 324000, 405000,
98 420000, 432000, 540000 };
99 static const int default_rates[] = { 162000, 270000, 540000 };
100
101 /**
102 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
103 * @intel_dp: DP struct
104 *
105 * If a CPU or PCH DP output is attached to an eDP panel, this function
106 * will return true, and false otherwise.
107 */
108 static bool is_edp(struct intel_dp *intel_dp)
109 {
110 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
111
112 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
113 }
114
115 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
116 {
117 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
118
119 return intel_dig_port->base.base.dev;
120 }
121
122 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
123 {
124 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
125 }
126
127 static void intel_dp_link_down(struct intel_dp *intel_dp);
128 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
129 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
130 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
131 static void vlv_steal_power_sequencer(struct drm_device *dev,
132 enum pipe pipe);
133
134 static int
135 intel_dp_max_link_bw(struct intel_dp *intel_dp)
136 {
137 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
138
139 switch (max_link_bw) {
140 case DP_LINK_BW_1_62:
141 case DP_LINK_BW_2_7:
142 case DP_LINK_BW_5_4:
143 break;
144 default:
145 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
146 max_link_bw);
147 max_link_bw = DP_LINK_BW_1_62;
148 break;
149 }
150 return max_link_bw;
151 }
152
153 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
154 {
155 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
156 struct drm_device *dev = intel_dig_port->base.base.dev;
157 u8 source_max, sink_max;
158
159 source_max = 4;
160 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
161 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
162 source_max = 2;
163
164 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
165
166 return min(source_max, sink_max);
167 }
168
169 /*
170 * The units on the numbers in the next two are... bizarre. Examples will
171 * make it clearer; this one parallels an example in the eDP spec.
172 *
173 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
174 *
175 * 270000 * 1 * 8 / 10 == 216000
176 *
177 * The actual data capacity of that configuration is 2.16Gbit/s, so the
178 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
179 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
180 * 119000. At 18bpp that's 2142000 kilobits per second.
181 *
182 * Thus the strange-looking division by 10 in intel_dp_link_required, to
183 * get the result in decakilobits instead of kilobits.
184 */
185
186 static int
187 intel_dp_link_required(int pixel_clock, int bpp)
188 {
189 return (pixel_clock * bpp + 9) / 10;
190 }
191
192 static int
193 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
194 {
195 return (max_link_clock * max_lanes * 8) / 10;
196 }
197
198 static enum drm_mode_status
199 intel_dp_mode_valid(struct drm_connector *connector,
200 struct drm_display_mode *mode)
201 {
202 struct intel_dp *intel_dp = intel_attached_dp(connector);
203 struct intel_connector *intel_connector = to_intel_connector(connector);
204 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
205 int target_clock = mode->clock;
206 int max_rate, mode_rate, max_lanes, max_link_clock;
207
208 if (is_edp(intel_dp) && fixed_mode) {
209 if (mode->hdisplay > fixed_mode->hdisplay)
210 return MODE_PANEL;
211
212 if (mode->vdisplay > fixed_mode->vdisplay)
213 return MODE_PANEL;
214
215 target_clock = fixed_mode->clock;
216 }
217
218 max_link_clock = intel_dp_max_link_rate(intel_dp);
219 max_lanes = intel_dp_max_lane_count(intel_dp);
220
221 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
222 mode_rate = intel_dp_link_required(target_clock, 18);
223
224 if (mode_rate > max_rate)
225 return MODE_CLOCK_HIGH;
226
227 if (mode->clock < 10000)
228 return MODE_CLOCK_LOW;
229
230 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
231 return MODE_H_ILLEGAL;
232
233 return MODE_OK;
234 }
235
236 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
237 {
238 int i;
239 uint32_t v = 0;
240
241 if (src_bytes > 4)
242 src_bytes = 4;
243 for (i = 0; i < src_bytes; i++)
244 v |= ((uint32_t) src[i]) << ((3-i) * 8);
245 return v;
246 }
247
248 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
249 {
250 int i;
251 if (dst_bytes > 4)
252 dst_bytes = 4;
253 for (i = 0; i < dst_bytes; i++)
254 dst[i] = src >> ((3-i) * 8);
255 }
256
257 /* hrawclock is 1/4 the FSB frequency */
258 static int
259 intel_hrawclk(struct drm_device *dev)
260 {
261 struct drm_i915_private *dev_priv = dev->dev_private;
262 uint32_t clkcfg;
263
264 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
265 if (IS_VALLEYVIEW(dev))
266 return 200;
267
268 clkcfg = I915_READ(CLKCFG);
269 switch (clkcfg & CLKCFG_FSB_MASK) {
270 case CLKCFG_FSB_400:
271 return 100;
272 case CLKCFG_FSB_533:
273 return 133;
274 case CLKCFG_FSB_667:
275 return 166;
276 case CLKCFG_FSB_800:
277 return 200;
278 case CLKCFG_FSB_1067:
279 return 266;
280 case CLKCFG_FSB_1333:
281 return 333;
282 /* these two are just a guess; one of them might be right */
283 case CLKCFG_FSB_1600:
284 case CLKCFG_FSB_1600_ALT:
285 return 400;
286 default:
287 return 133;
288 }
289 }
290
291 static void
292 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
293 struct intel_dp *intel_dp);
294 static void
295 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
296 struct intel_dp *intel_dp);
297
298 static void pps_lock(struct intel_dp *intel_dp)
299 {
300 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
301 struct intel_encoder *encoder = &intel_dig_port->base;
302 struct drm_device *dev = encoder->base.dev;
303 struct drm_i915_private *dev_priv = dev->dev_private;
304 enum intel_display_power_domain power_domain;
305
306 /*
307 * See vlv_power_sequencer_reset() why we need
308 * a power domain reference here.
309 */
310 power_domain = intel_display_port_power_domain(encoder);
311 intel_display_power_get(dev_priv, power_domain);
312
313 mutex_lock(&dev_priv->pps_mutex);
314 }
315
316 static void pps_unlock(struct intel_dp *intel_dp)
317 {
318 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
319 struct intel_encoder *encoder = &intel_dig_port->base;
320 struct drm_device *dev = encoder->base.dev;
321 struct drm_i915_private *dev_priv = dev->dev_private;
322 enum intel_display_power_domain power_domain;
323
324 mutex_unlock(&dev_priv->pps_mutex);
325
326 power_domain = intel_display_port_power_domain(encoder);
327 intel_display_power_put(dev_priv, power_domain);
328 }
329
330 static void
331 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
332 {
333 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334 struct drm_device *dev = intel_dig_port->base.base.dev;
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 enum pipe pipe = intel_dp->pps_pipe;
337 bool pll_enabled;
338 uint32_t DP;
339
340 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
341 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
342 pipe_name(pipe), port_name(intel_dig_port->port)))
343 return;
344
345 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
346 pipe_name(pipe), port_name(intel_dig_port->port));
347
348 /* Preserve the BIOS-computed detected bit. This is
349 * supposed to be read-only.
350 */
351 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
352 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
353 DP |= DP_PORT_WIDTH(1);
354 DP |= DP_LINK_TRAIN_PAT_1;
355
356 if (IS_CHERRYVIEW(dev))
357 DP |= DP_PIPE_SELECT_CHV(pipe);
358 else if (pipe == PIPE_B)
359 DP |= DP_PIPEB_SELECT;
360
361 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
362
363 /*
364 * The DPLL for the pipe must be enabled for this to work.
365 * So enable temporarily it if it's not already enabled.
366 */
367 if (!pll_enabled)
368 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
369 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
370
371 /*
372 * Similar magic as in intel_dp_enable_port().
373 * We _must_ do this port enable + disable trick
374 * to make this power seqeuencer lock onto the port.
375 * Otherwise even VDD force bit won't work.
376 */
377 I915_WRITE(intel_dp->output_reg, DP);
378 POSTING_READ(intel_dp->output_reg);
379
380 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
381 POSTING_READ(intel_dp->output_reg);
382
383 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
384 POSTING_READ(intel_dp->output_reg);
385
386 if (!pll_enabled)
387 vlv_force_pll_off(dev, pipe);
388 }
389
390 static enum pipe
391 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
392 {
393 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
394 struct drm_device *dev = intel_dig_port->base.base.dev;
395 struct drm_i915_private *dev_priv = dev->dev_private;
396 struct intel_encoder *encoder;
397 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
398 enum pipe pipe;
399
400 lockdep_assert_held(&dev_priv->pps_mutex);
401
402 /* We should never land here with regular DP ports */
403 WARN_ON(!is_edp(intel_dp));
404
405 if (intel_dp->pps_pipe != INVALID_PIPE)
406 return intel_dp->pps_pipe;
407
408 /*
409 * We don't have power sequencer currently.
410 * Pick one that's not used by other ports.
411 */
412 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
413 base.head) {
414 struct intel_dp *tmp;
415
416 if (encoder->type != INTEL_OUTPUT_EDP)
417 continue;
418
419 tmp = enc_to_intel_dp(&encoder->base);
420
421 if (tmp->pps_pipe != INVALID_PIPE)
422 pipes &= ~(1 << tmp->pps_pipe);
423 }
424
425 /*
426 * Didn't find one. This should not happen since there
427 * are two power sequencers and up to two eDP ports.
428 */
429 if (WARN_ON(pipes == 0))
430 pipe = PIPE_A;
431 else
432 pipe = ffs(pipes) - 1;
433
434 vlv_steal_power_sequencer(dev, pipe);
435 intel_dp->pps_pipe = pipe;
436
437 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
438 pipe_name(intel_dp->pps_pipe),
439 port_name(intel_dig_port->port));
440
441 /* init power sequencer on this pipe and port */
442 intel_dp_init_panel_power_sequencer(dev, intel_dp);
443 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
444
445 /*
446 * Even vdd force doesn't work until we've made
447 * the power sequencer lock in on the port.
448 */
449 vlv_power_sequencer_kick(intel_dp);
450
451 return intel_dp->pps_pipe;
452 }
453
454 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
455 enum pipe pipe);
456
457 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
458 enum pipe pipe)
459 {
460 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
461 }
462
463 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
464 enum pipe pipe)
465 {
466 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
467 }
468
469 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
470 enum pipe pipe)
471 {
472 return true;
473 }
474
475 static enum pipe
476 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
477 enum port port,
478 vlv_pipe_check pipe_check)
479 {
480 enum pipe pipe;
481
482 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
483 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
484 PANEL_PORT_SELECT_MASK;
485
486 if (port_sel != PANEL_PORT_SELECT_VLV(port))
487 continue;
488
489 if (!pipe_check(dev_priv, pipe))
490 continue;
491
492 return pipe;
493 }
494
495 return INVALID_PIPE;
496 }
497
498 static void
499 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
500 {
501 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
502 struct drm_device *dev = intel_dig_port->base.base.dev;
503 struct drm_i915_private *dev_priv = dev->dev_private;
504 enum port port = intel_dig_port->port;
505
506 lockdep_assert_held(&dev_priv->pps_mutex);
507
508 /* try to find a pipe with this port selected */
509 /* first pick one where the panel is on */
510 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
511 vlv_pipe_has_pp_on);
512 /* didn't find one? pick one where vdd is on */
513 if (intel_dp->pps_pipe == INVALID_PIPE)
514 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
515 vlv_pipe_has_vdd_on);
516 /* didn't find one? pick one with just the correct port */
517 if (intel_dp->pps_pipe == INVALID_PIPE)
518 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
519 vlv_pipe_any);
520
521 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
522 if (intel_dp->pps_pipe == INVALID_PIPE) {
523 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
524 port_name(port));
525 return;
526 }
527
528 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
529 port_name(port), pipe_name(intel_dp->pps_pipe));
530
531 intel_dp_init_panel_power_sequencer(dev, intel_dp);
532 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
533 }
534
535 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
536 {
537 struct drm_device *dev = dev_priv->dev;
538 struct intel_encoder *encoder;
539
540 if (WARN_ON(!IS_VALLEYVIEW(dev)))
541 return;
542
543 /*
544 * We can't grab pps_mutex here due to deadlock with power_domain
545 * mutex when power_domain functions are called while holding pps_mutex.
546 * That also means that in order to use pps_pipe the code needs to
547 * hold both a power domain reference and pps_mutex, and the power domain
548 * reference get/put must be done while _not_ holding pps_mutex.
549 * pps_{lock,unlock}() do these steps in the correct order, so one
550 * should use them always.
551 */
552
553 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
554 struct intel_dp *intel_dp;
555
556 if (encoder->type != INTEL_OUTPUT_EDP)
557 continue;
558
559 intel_dp = enc_to_intel_dp(&encoder->base);
560 intel_dp->pps_pipe = INVALID_PIPE;
561 }
562 }
563
564 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
565 {
566 struct drm_device *dev = intel_dp_to_dev(intel_dp);
567
568 if (HAS_PCH_SPLIT(dev))
569 return PCH_PP_CONTROL;
570 else
571 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
572 }
573
574 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
575 {
576 struct drm_device *dev = intel_dp_to_dev(intel_dp);
577
578 if (HAS_PCH_SPLIT(dev))
579 return PCH_PP_STATUS;
580 else
581 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
582 }
583
584 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
585 This function only applicable when panel PM state is not to be tracked */
586 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
587 void *unused)
588 {
589 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
590 edp_notifier);
591 struct drm_device *dev = intel_dp_to_dev(intel_dp);
592 struct drm_i915_private *dev_priv = dev->dev_private;
593 u32 pp_div;
594 u32 pp_ctrl_reg, pp_div_reg;
595
596 if (!is_edp(intel_dp) || code != SYS_RESTART)
597 return 0;
598
599 pps_lock(intel_dp);
600
601 if (IS_VALLEYVIEW(dev)) {
602 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
603
604 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
605 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
606 pp_div = I915_READ(pp_div_reg);
607 pp_div &= PP_REFERENCE_DIVIDER_MASK;
608
609 /* 0x1F write to PP_DIV_REG sets max cycle delay */
610 I915_WRITE(pp_div_reg, pp_div | 0x1F);
611 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
612 msleep(intel_dp->panel_power_cycle_delay);
613 }
614
615 pps_unlock(intel_dp);
616
617 return 0;
618 }
619
620 static bool edp_have_panel_power(struct intel_dp *intel_dp)
621 {
622 struct drm_device *dev = intel_dp_to_dev(intel_dp);
623 struct drm_i915_private *dev_priv = dev->dev_private;
624
625 lockdep_assert_held(&dev_priv->pps_mutex);
626
627 if (IS_VALLEYVIEW(dev) &&
628 intel_dp->pps_pipe == INVALID_PIPE)
629 return false;
630
631 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
632 }
633
634 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
635 {
636 struct drm_device *dev = intel_dp_to_dev(intel_dp);
637 struct drm_i915_private *dev_priv = dev->dev_private;
638
639 lockdep_assert_held(&dev_priv->pps_mutex);
640
641 if (IS_VALLEYVIEW(dev) &&
642 intel_dp->pps_pipe == INVALID_PIPE)
643 return false;
644
645 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
646 }
647
648 static void
649 intel_dp_check_edp(struct intel_dp *intel_dp)
650 {
651 struct drm_device *dev = intel_dp_to_dev(intel_dp);
652 struct drm_i915_private *dev_priv = dev->dev_private;
653
654 if (!is_edp(intel_dp))
655 return;
656
657 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
658 WARN(1, "eDP powered off while attempting aux channel communication.\n");
659 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
660 I915_READ(_pp_stat_reg(intel_dp)),
661 I915_READ(_pp_ctrl_reg(intel_dp)));
662 }
663 }
664
665 static uint32_t
666 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
667 {
668 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
669 struct drm_device *dev = intel_dig_port->base.base.dev;
670 struct drm_i915_private *dev_priv = dev->dev_private;
671 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
672 uint32_t status;
673 bool done;
674
675 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
676 if (has_aux_irq)
677 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
678 msecs_to_jiffies_timeout(10));
679 else
680 done = wait_for_atomic(C, 10) == 0;
681 if (!done)
682 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
683 has_aux_irq);
684 #undef C
685
686 return status;
687 }
688
689 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
690 {
691 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
692 struct drm_device *dev = intel_dig_port->base.base.dev;
693
694 /*
695 * The clock divider is based off the hrawclk, and would like to run at
696 * 2MHz. So, take the hrawclk value and divide by 2 and use that
697 */
698 return index ? 0 : intel_hrawclk(dev) / 2;
699 }
700
701 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
702 {
703 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
704 struct drm_device *dev = intel_dig_port->base.base.dev;
705 struct drm_i915_private *dev_priv = dev->dev_private;
706
707 if (index)
708 return 0;
709
710 if (intel_dig_port->port == PORT_A) {
711 return DIV_ROUND_UP(dev_priv->display.get_display_clock_speed(dev), 2000);
712 } else {
713 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
714 }
715 }
716
717 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
718 {
719 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
720 struct drm_device *dev = intel_dig_port->base.base.dev;
721 struct drm_i915_private *dev_priv = dev->dev_private;
722
723 if (intel_dig_port->port == PORT_A) {
724 if (index)
725 return 0;
726 return DIV_ROUND_CLOSEST(dev_priv->display.get_display_clock_speed(dev), 2000);
727 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
728 /* Workaround for non-ULT HSW */
729 switch (index) {
730 case 0: return 63;
731 case 1: return 72;
732 default: return 0;
733 }
734 } else {
735 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
736 }
737 }
738
739 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
740 {
741 return index ? 0 : 100;
742 }
743
744 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
745 {
746 /*
747 * SKL doesn't need us to program the AUX clock divider (Hardware will
748 * derive the clock from CDCLK automatically). We still implement the
749 * get_aux_clock_divider vfunc to plug-in into the existing code.
750 */
751 return index ? 0 : 1;
752 }
753
754 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
755 bool has_aux_irq,
756 int send_bytes,
757 uint32_t aux_clock_divider)
758 {
759 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
760 struct drm_device *dev = intel_dig_port->base.base.dev;
761 uint32_t precharge, timeout;
762
763 if (IS_GEN6(dev))
764 precharge = 3;
765 else
766 precharge = 5;
767
768 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
769 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
770 else
771 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
772
773 return DP_AUX_CH_CTL_SEND_BUSY |
774 DP_AUX_CH_CTL_DONE |
775 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
776 DP_AUX_CH_CTL_TIME_OUT_ERROR |
777 timeout |
778 DP_AUX_CH_CTL_RECEIVE_ERROR |
779 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
780 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
781 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
782 }
783
784 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
785 bool has_aux_irq,
786 int send_bytes,
787 uint32_t unused)
788 {
789 return DP_AUX_CH_CTL_SEND_BUSY |
790 DP_AUX_CH_CTL_DONE |
791 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
792 DP_AUX_CH_CTL_TIME_OUT_ERROR |
793 DP_AUX_CH_CTL_TIME_OUT_1600us |
794 DP_AUX_CH_CTL_RECEIVE_ERROR |
795 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
796 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
797 }
798
799 static int
800 intel_dp_aux_ch(struct intel_dp *intel_dp,
801 const uint8_t *send, int send_bytes,
802 uint8_t *recv, int recv_size)
803 {
804 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
805 struct drm_device *dev = intel_dig_port->base.base.dev;
806 struct drm_i915_private *dev_priv = dev->dev_private;
807 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
808 uint32_t ch_data = ch_ctl + 4;
809 uint32_t aux_clock_divider;
810 int i, ret, recv_bytes;
811 uint32_t status;
812 int try, clock = 0;
813 bool has_aux_irq = HAS_AUX_IRQ(dev);
814 bool vdd;
815
816 pps_lock(intel_dp);
817
818 /*
819 * We will be called with VDD already enabled for dpcd/edid/oui reads.
820 * In such cases we want to leave VDD enabled and it's up to upper layers
821 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
822 * ourselves.
823 */
824 vdd = edp_panel_vdd_on(intel_dp);
825
826 /* dp aux is extremely sensitive to irq latency, hence request the
827 * lowest possible wakeup latency and so prevent the cpu from going into
828 * deep sleep states.
829 */
830 pm_qos_update_request(&dev_priv->pm_qos, 0);
831
832 intel_dp_check_edp(intel_dp);
833
834 intel_aux_display_runtime_get(dev_priv);
835
836 /* Try to wait for any previous AUX channel activity */
837 for (try = 0; try < 3; try++) {
838 status = I915_READ_NOTRACE(ch_ctl);
839 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
840 break;
841 msleep(1);
842 }
843
844 if (try == 3) {
845 WARN(1, "dp_aux_ch not started status 0x%08x\n",
846 I915_READ(ch_ctl));
847 ret = -EBUSY;
848 goto out;
849 }
850
851 /* Only 5 data registers! */
852 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
853 ret = -E2BIG;
854 goto out;
855 }
856
857 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
858 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
859 has_aux_irq,
860 send_bytes,
861 aux_clock_divider);
862
863 /* Must try at least 3 times according to DP spec */
864 for (try = 0; try < 5; try++) {
865 /* Load the send data into the aux channel data registers */
866 for (i = 0; i < send_bytes; i += 4)
867 I915_WRITE(ch_data + i,
868 intel_dp_pack_aux(send + i,
869 send_bytes - i));
870
871 /* Send the command and wait for it to complete */
872 I915_WRITE(ch_ctl, send_ctl);
873
874 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
875
876 /* Clear done status and any errors */
877 I915_WRITE(ch_ctl,
878 status |
879 DP_AUX_CH_CTL_DONE |
880 DP_AUX_CH_CTL_TIME_OUT_ERROR |
881 DP_AUX_CH_CTL_RECEIVE_ERROR);
882
883 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
884 continue;
885
886 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
887 * 400us delay required for errors and timeouts
888 * Timeout errors from the HW already meet this
889 * requirement so skip to next iteration
890 */
891 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
892 usleep_range(400, 500);
893 continue;
894 }
895 if (status & DP_AUX_CH_CTL_DONE)
896 break;
897 }
898 if (status & DP_AUX_CH_CTL_DONE)
899 break;
900 }
901
902 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
903 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
904 ret = -EBUSY;
905 goto out;
906 }
907
908 /* Check for timeout or receive error.
909 * Timeouts occur when the sink is not connected
910 */
911 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
912 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
913 ret = -EIO;
914 goto out;
915 }
916
917 /* Timeouts occur when the device isn't connected, so they're
918 * "normal" -- don't fill the kernel log with these */
919 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
920 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
921 ret = -ETIMEDOUT;
922 goto out;
923 }
924
925 /* Unload any bytes sent back from the other side */
926 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
927 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
928 if (recv_bytes > recv_size)
929 recv_bytes = recv_size;
930
931 for (i = 0; i < recv_bytes; i += 4)
932 intel_dp_unpack_aux(I915_READ(ch_data + i),
933 recv + i, recv_bytes - i);
934
935 ret = recv_bytes;
936 out:
937 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
938 intel_aux_display_runtime_put(dev_priv);
939
940 if (vdd)
941 edp_panel_vdd_off(intel_dp, false);
942
943 pps_unlock(intel_dp);
944
945 return ret;
946 }
947
948 #define BARE_ADDRESS_SIZE 3
949 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
950 static ssize_t
951 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
952 {
953 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
954 uint8_t txbuf[20], rxbuf[20];
955 size_t txsize, rxsize;
956 int ret;
957
958 txbuf[0] = (msg->request << 4) |
959 ((msg->address >> 16) & 0xf);
960 txbuf[1] = (msg->address >> 8) & 0xff;
961 txbuf[2] = msg->address & 0xff;
962 txbuf[3] = msg->size - 1;
963
964 switch (msg->request & ~DP_AUX_I2C_MOT) {
965 case DP_AUX_NATIVE_WRITE:
966 case DP_AUX_I2C_WRITE:
967 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
968 rxsize = 2; /* 0 or 1 data bytes */
969
970 if (WARN_ON(txsize > 20))
971 return -E2BIG;
972
973 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
974
975 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
976 if (ret > 0) {
977 msg->reply = rxbuf[0] >> 4;
978
979 if (ret > 1) {
980 /* Number of bytes written in a short write. */
981 ret = clamp_t(int, rxbuf[1], 0, msg->size);
982 } else {
983 /* Return payload size. */
984 ret = msg->size;
985 }
986 }
987 break;
988
989 case DP_AUX_NATIVE_READ:
990 case DP_AUX_I2C_READ:
991 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
992 rxsize = msg->size + 1;
993
994 if (WARN_ON(rxsize > 20))
995 return -E2BIG;
996
997 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
998 if (ret > 0) {
999 msg->reply = rxbuf[0] >> 4;
1000 /*
1001 * Assume happy day, and copy the data. The caller is
1002 * expected to check msg->reply before touching it.
1003 *
1004 * Return payload size.
1005 */
1006 ret--;
1007 memcpy(msg->buffer, rxbuf + 1, ret);
1008 }
1009 break;
1010
1011 default:
1012 ret = -EINVAL;
1013 break;
1014 }
1015
1016 return ret;
1017 }
1018
1019 static void
1020 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1021 {
1022 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1023 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1024 enum port port = intel_dig_port->port;
1025 const char *name = NULL;
1026 int ret;
1027
1028 switch (port) {
1029 case PORT_A:
1030 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1031 name = "DPDDC-A";
1032 break;
1033 case PORT_B:
1034 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1035 name = "DPDDC-B";
1036 break;
1037 case PORT_C:
1038 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1039 name = "DPDDC-C";
1040 break;
1041 case PORT_D:
1042 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1043 name = "DPDDC-D";
1044 break;
1045 default:
1046 BUG();
1047 }
1048
1049 /*
1050 * The AUX_CTL register is usually DP_CTL + 0x10.
1051 *
1052 * On Haswell and Broadwell though:
1053 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1054 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1055 *
1056 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1057 */
1058 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1059 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1060
1061 intel_dp->aux.name = name;
1062 intel_dp->aux.dev = dev->dev;
1063 intel_dp->aux.transfer = intel_dp_aux_transfer;
1064
1065 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1066 connector->base.kdev->kobj.name);
1067
1068 ret = drm_dp_aux_register(&intel_dp->aux);
1069 if (ret < 0) {
1070 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1071 name, ret);
1072 return;
1073 }
1074
1075 ret = sysfs_create_link(&connector->base.kdev->kobj,
1076 &intel_dp->aux.ddc.dev.kobj,
1077 intel_dp->aux.ddc.dev.kobj.name);
1078 if (ret < 0) {
1079 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1080 drm_dp_aux_unregister(&intel_dp->aux);
1081 }
1082 }
1083
1084 static void
1085 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1086 {
1087 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1088
1089 if (!intel_connector->mst_port)
1090 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1091 intel_dp->aux.ddc.dev.kobj.name);
1092 intel_connector_unregister(intel_connector);
1093 }
1094
1095 static void
1096 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1097 {
1098 u32 ctrl1;
1099
1100 pipe_config->ddi_pll_sel = SKL_DPLL0;
1101 pipe_config->dpll_hw_state.cfgcr1 = 0;
1102 pipe_config->dpll_hw_state.cfgcr2 = 0;
1103
1104 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1105 switch (link_clock / 2) {
1106 case 81000:
1107 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1108 SKL_DPLL0);
1109 break;
1110 case 135000:
1111 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1112 SKL_DPLL0);
1113 break;
1114 case 270000:
1115 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1116 SKL_DPLL0);
1117 break;
1118 case 162000:
1119 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1120 SKL_DPLL0);
1121 break;
1122 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1123 results in CDCLK change. Need to handle the change of CDCLK by
1124 disabling pipes and re-enabling them */
1125 case 108000:
1126 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1127 SKL_DPLL0);
1128 break;
1129 case 216000:
1130 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1131 SKL_DPLL0);
1132 break;
1133
1134 }
1135 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1136 }
1137
1138 static void
1139 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1140 {
1141 switch (link_bw) {
1142 case DP_LINK_BW_1_62:
1143 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1144 break;
1145 case DP_LINK_BW_2_7:
1146 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1147 break;
1148 case DP_LINK_BW_5_4:
1149 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1150 break;
1151 }
1152 }
1153
1154 static int
1155 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1156 {
1157 if (intel_dp->num_sink_rates) {
1158 *sink_rates = intel_dp->sink_rates;
1159 return intel_dp->num_sink_rates;
1160 }
1161
1162 *sink_rates = default_rates;
1163
1164 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1165 }
1166
1167 static int
1168 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1169 {
1170 if (IS_SKYLAKE(dev)) {
1171 *source_rates = skl_rates;
1172 return ARRAY_SIZE(skl_rates);
1173 } else if (IS_CHERRYVIEW(dev)) {
1174 *source_rates = chv_rates;
1175 return ARRAY_SIZE(chv_rates);
1176 }
1177
1178 *source_rates = default_rates;
1179
1180 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1181 /* WaDisableHBR2:skl */
1182 return (DP_LINK_BW_2_7 >> 3) + 1;
1183 else if (INTEL_INFO(dev)->gen >= 8 ||
1184 (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1185 return (DP_LINK_BW_5_4 >> 3) + 1;
1186 else
1187 return (DP_LINK_BW_2_7 >> 3) + 1;
1188 }
1189
1190 static void
1191 intel_dp_set_clock(struct intel_encoder *encoder,
1192 struct intel_crtc_state *pipe_config, int link_bw)
1193 {
1194 struct drm_device *dev = encoder->base.dev;
1195 const struct dp_link_dpll *divisor = NULL;
1196 int i, count = 0;
1197
1198 if (IS_G4X(dev)) {
1199 divisor = gen4_dpll;
1200 count = ARRAY_SIZE(gen4_dpll);
1201 } else if (HAS_PCH_SPLIT(dev)) {
1202 divisor = pch_dpll;
1203 count = ARRAY_SIZE(pch_dpll);
1204 } else if (IS_CHERRYVIEW(dev)) {
1205 divisor = chv_dpll;
1206 count = ARRAY_SIZE(chv_dpll);
1207 } else if (IS_VALLEYVIEW(dev)) {
1208 divisor = vlv_dpll;
1209 count = ARRAY_SIZE(vlv_dpll);
1210 }
1211
1212 if (divisor && count) {
1213 for (i = 0; i < count; i++) {
1214 if (link_bw == divisor[i].link_bw) {
1215 pipe_config->dpll = divisor[i].dpll;
1216 pipe_config->clock_set = true;
1217 break;
1218 }
1219 }
1220 }
1221 }
1222
1223 static int intersect_rates(const int *source_rates, int source_len,
1224 const int *sink_rates, int sink_len,
1225 int *common_rates)
1226 {
1227 int i = 0, j = 0, k = 0;
1228
1229 while (i < source_len && j < sink_len) {
1230 if (source_rates[i] == sink_rates[j]) {
1231 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1232 return k;
1233 common_rates[k] = source_rates[i];
1234 ++k;
1235 ++i;
1236 ++j;
1237 } else if (source_rates[i] < sink_rates[j]) {
1238 ++i;
1239 } else {
1240 ++j;
1241 }
1242 }
1243 return k;
1244 }
1245
1246 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1247 int *common_rates)
1248 {
1249 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1250 const int *source_rates, *sink_rates;
1251 int source_len, sink_len;
1252
1253 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1254 source_len = intel_dp_source_rates(dev, &source_rates);
1255
1256 return intersect_rates(source_rates, source_len,
1257 sink_rates, sink_len,
1258 common_rates);
1259 }
1260
1261 static void snprintf_int_array(char *str, size_t len,
1262 const int *array, int nelem)
1263 {
1264 int i;
1265
1266 str[0] = '\0';
1267
1268 for (i = 0; i < nelem; i++) {
1269 int r = snprintf(str, len, "%d,", array[i]);
1270 if (r >= len)
1271 return;
1272 str += r;
1273 len -= r;
1274 }
1275 }
1276
1277 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1278 {
1279 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1280 const int *source_rates, *sink_rates;
1281 int source_len, sink_len, common_len;
1282 int common_rates[DP_MAX_SUPPORTED_RATES];
1283 char str[128]; /* FIXME: too big for stack? */
1284
1285 if ((drm_debug & DRM_UT_KMS) == 0)
1286 return;
1287
1288 source_len = intel_dp_source_rates(dev, &source_rates);
1289 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1290 DRM_DEBUG_KMS("source rates: %s\n", str);
1291
1292 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1293 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1294 DRM_DEBUG_KMS("sink rates: %s\n", str);
1295
1296 common_len = intel_dp_common_rates(intel_dp, common_rates);
1297 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1298 DRM_DEBUG_KMS("common rates: %s\n", str);
1299 }
1300
1301 static int rate_to_index(int find, const int *rates)
1302 {
1303 int i = 0;
1304
1305 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1306 if (find == rates[i])
1307 break;
1308
1309 return i;
1310 }
1311
1312 int
1313 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1314 {
1315 int rates[DP_MAX_SUPPORTED_RATES] = {};
1316 int len;
1317
1318 len = intel_dp_common_rates(intel_dp, rates);
1319 if (WARN_ON(len <= 0))
1320 return 162000;
1321
1322 return rates[rate_to_index(0, rates) - 1];
1323 }
1324
1325 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1326 {
1327 return rate_to_index(rate, intel_dp->sink_rates);
1328 }
1329
1330 bool
1331 intel_dp_compute_config(struct intel_encoder *encoder,
1332 struct intel_crtc_state *pipe_config)
1333 {
1334 struct drm_device *dev = encoder->base.dev;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
1336 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1337 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1338 enum port port = dp_to_dig_port(intel_dp)->port;
1339 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1340 struct intel_connector *intel_connector = intel_dp->attached_connector;
1341 int lane_count, clock;
1342 int min_lane_count = 1;
1343 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1344 /* Conveniently, the link BW constants become indices with a shift...*/
1345 int min_clock = 0;
1346 int max_clock;
1347 int bpp, mode_rate;
1348 int link_avail, link_clock;
1349 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1350 int common_len;
1351
1352 common_len = intel_dp_common_rates(intel_dp, common_rates);
1353
1354 /* No common link rates between source and sink */
1355 WARN_ON(common_len <= 0);
1356
1357 max_clock = common_len - 1;
1358
1359 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1360 pipe_config->has_pch_encoder = true;
1361
1362 pipe_config->has_dp_encoder = true;
1363 pipe_config->has_drrs = false;
1364 pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1365
1366 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1367 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1368 adjusted_mode);
1369
1370 if (INTEL_INFO(dev)->gen >= 9) {
1371 int ret;
1372 ret = skl_update_scaler_users(intel_crtc, pipe_config, NULL, NULL, 0);
1373 if (ret)
1374 return ret;
1375 }
1376
1377 if (!HAS_PCH_SPLIT(dev))
1378 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1379 intel_connector->panel.fitting_mode);
1380 else
1381 intel_pch_panel_fitting(intel_crtc, pipe_config,
1382 intel_connector->panel.fitting_mode);
1383 }
1384
1385 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1386 return false;
1387
1388 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1389 "max bw %d pixel clock %iKHz\n",
1390 max_lane_count, common_rates[max_clock],
1391 adjusted_mode->crtc_clock);
1392
1393 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1394 * bpc in between. */
1395 bpp = pipe_config->pipe_bpp;
1396 if (is_edp(intel_dp)) {
1397 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1398 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1399 dev_priv->vbt.edp_bpp);
1400 bpp = dev_priv->vbt.edp_bpp;
1401 }
1402
1403 /*
1404 * Use the maximum clock and number of lanes the eDP panel
1405 * advertizes being capable of. The panels are generally
1406 * designed to support only a single clock and lane
1407 * configuration, and typically these values correspond to the
1408 * native resolution of the panel.
1409 */
1410 min_lane_count = max_lane_count;
1411 min_clock = max_clock;
1412 }
1413
1414 for (; bpp >= 6*3; bpp -= 2*3) {
1415 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1416 bpp);
1417
1418 for (clock = min_clock; clock <= max_clock; clock++) {
1419 for (lane_count = min_lane_count;
1420 lane_count <= max_lane_count;
1421 lane_count <<= 1) {
1422
1423 link_clock = common_rates[clock];
1424 link_avail = intel_dp_max_data_rate(link_clock,
1425 lane_count);
1426
1427 if (mode_rate <= link_avail) {
1428 goto found;
1429 }
1430 }
1431 }
1432 }
1433
1434 return false;
1435
1436 found:
1437 if (intel_dp->color_range_auto) {
1438 /*
1439 * See:
1440 * CEA-861-E - 5.1 Default Encoding Parameters
1441 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1442 */
1443 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1444 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1445 else
1446 intel_dp->color_range = 0;
1447 }
1448
1449 if (intel_dp->color_range)
1450 pipe_config->limited_color_range = true;
1451
1452 intel_dp->lane_count = lane_count;
1453
1454 if (intel_dp->num_sink_rates) {
1455 intel_dp->link_bw = 0;
1456 intel_dp->rate_select =
1457 intel_dp_rate_select(intel_dp, common_rates[clock]);
1458 } else {
1459 intel_dp->link_bw =
1460 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1461 intel_dp->rate_select = 0;
1462 }
1463
1464 pipe_config->pipe_bpp = bpp;
1465 pipe_config->port_clock = common_rates[clock];
1466
1467 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1468 intel_dp->link_bw, intel_dp->lane_count,
1469 pipe_config->port_clock, bpp);
1470 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1471 mode_rate, link_avail);
1472
1473 intel_link_compute_m_n(bpp, lane_count,
1474 adjusted_mode->crtc_clock,
1475 pipe_config->port_clock,
1476 &pipe_config->dp_m_n);
1477
1478 if (intel_connector->panel.downclock_mode != NULL &&
1479 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1480 pipe_config->has_drrs = true;
1481 intel_link_compute_m_n(bpp, lane_count,
1482 intel_connector->panel.downclock_mode->clock,
1483 pipe_config->port_clock,
1484 &pipe_config->dp_m2_n2);
1485 }
1486
1487 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1488 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1489 else if (IS_BROXTON(dev))
1490 /* handled in ddi */;
1491 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1492 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1493 else
1494 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1495
1496 return true;
1497 }
1498
1499 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1500 {
1501 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1502 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1503 struct drm_device *dev = crtc->base.dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 u32 dpa_ctl;
1506
1507 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1508 crtc->config->port_clock);
1509 dpa_ctl = I915_READ(DP_A);
1510 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1511
1512 if (crtc->config->port_clock == 162000) {
1513 /* For a long time we've carried around a ILK-DevA w/a for the
1514 * 160MHz clock. If we're really unlucky, it's still required.
1515 */
1516 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1517 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1518 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1519 } else {
1520 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1521 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1522 }
1523
1524 I915_WRITE(DP_A, dpa_ctl);
1525
1526 POSTING_READ(DP_A);
1527 udelay(500);
1528 }
1529
1530 static void intel_dp_prepare(struct intel_encoder *encoder)
1531 {
1532 struct drm_device *dev = encoder->base.dev;
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1535 enum port port = dp_to_dig_port(intel_dp)->port;
1536 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1537 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1538
1539 /*
1540 * There are four kinds of DP registers:
1541 *
1542 * IBX PCH
1543 * SNB CPU
1544 * IVB CPU
1545 * CPT PCH
1546 *
1547 * IBX PCH and CPU are the same for almost everything,
1548 * except that the CPU DP PLL is configured in this
1549 * register
1550 *
1551 * CPT PCH is quite different, having many bits moved
1552 * to the TRANS_DP_CTL register instead. That
1553 * configuration happens (oddly) in ironlake_pch_enable
1554 */
1555
1556 /* Preserve the BIOS-computed detected bit. This is
1557 * supposed to be read-only.
1558 */
1559 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1560
1561 /* Handle DP bits in common between all three register formats */
1562 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1563 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1564
1565 if (crtc->config->has_audio)
1566 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1567
1568 /* Split out the IBX/CPU vs CPT settings */
1569
1570 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1571 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1572 intel_dp->DP |= DP_SYNC_HS_HIGH;
1573 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1574 intel_dp->DP |= DP_SYNC_VS_HIGH;
1575 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1576
1577 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1578 intel_dp->DP |= DP_ENHANCED_FRAMING;
1579
1580 intel_dp->DP |= crtc->pipe << 29;
1581 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1582 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1583 intel_dp->DP |= intel_dp->color_range;
1584
1585 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1586 intel_dp->DP |= DP_SYNC_HS_HIGH;
1587 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1588 intel_dp->DP |= DP_SYNC_VS_HIGH;
1589 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1590
1591 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1592 intel_dp->DP |= DP_ENHANCED_FRAMING;
1593
1594 if (!IS_CHERRYVIEW(dev)) {
1595 if (crtc->pipe == 1)
1596 intel_dp->DP |= DP_PIPEB_SELECT;
1597 } else {
1598 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1599 }
1600 } else {
1601 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1602 }
1603 }
1604
1605 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1606 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1607
1608 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1609 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1610
1611 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1612 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1613
1614 static void wait_panel_status(struct intel_dp *intel_dp,
1615 u32 mask,
1616 u32 value)
1617 {
1618 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1619 struct drm_i915_private *dev_priv = dev->dev_private;
1620 u32 pp_stat_reg, pp_ctrl_reg;
1621
1622 lockdep_assert_held(&dev_priv->pps_mutex);
1623
1624 pp_stat_reg = _pp_stat_reg(intel_dp);
1625 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1626
1627 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1628 mask, value,
1629 I915_READ(pp_stat_reg),
1630 I915_READ(pp_ctrl_reg));
1631
1632 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1633 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1634 I915_READ(pp_stat_reg),
1635 I915_READ(pp_ctrl_reg));
1636 }
1637
1638 DRM_DEBUG_KMS("Wait complete\n");
1639 }
1640
1641 static void wait_panel_on(struct intel_dp *intel_dp)
1642 {
1643 DRM_DEBUG_KMS("Wait for panel power on\n");
1644 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1645 }
1646
1647 static void wait_panel_off(struct intel_dp *intel_dp)
1648 {
1649 DRM_DEBUG_KMS("Wait for panel power off time\n");
1650 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1651 }
1652
1653 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1654 {
1655 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1656
1657 /* When we disable the VDD override bit last we have to do the manual
1658 * wait. */
1659 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1660 intel_dp->panel_power_cycle_delay);
1661
1662 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1663 }
1664
1665 static void wait_backlight_on(struct intel_dp *intel_dp)
1666 {
1667 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1668 intel_dp->backlight_on_delay);
1669 }
1670
1671 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1672 {
1673 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1674 intel_dp->backlight_off_delay);
1675 }
1676
1677 /* Read the current pp_control value, unlocking the register if it
1678 * is locked
1679 */
1680
1681 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1682 {
1683 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 u32 control;
1686
1687 lockdep_assert_held(&dev_priv->pps_mutex);
1688
1689 control = I915_READ(_pp_ctrl_reg(intel_dp));
1690 control &= ~PANEL_UNLOCK_MASK;
1691 control |= PANEL_UNLOCK_REGS;
1692 return control;
1693 }
1694
1695 /*
1696 * Must be paired with edp_panel_vdd_off().
1697 * Must hold pps_mutex around the whole on/off sequence.
1698 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1699 */
1700 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1701 {
1702 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1703 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1704 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1705 struct drm_i915_private *dev_priv = dev->dev_private;
1706 enum intel_display_power_domain power_domain;
1707 u32 pp;
1708 u32 pp_stat_reg, pp_ctrl_reg;
1709 bool need_to_disable = !intel_dp->want_panel_vdd;
1710
1711 lockdep_assert_held(&dev_priv->pps_mutex);
1712
1713 if (!is_edp(intel_dp))
1714 return false;
1715
1716 cancel_delayed_work(&intel_dp->panel_vdd_work);
1717 intel_dp->want_panel_vdd = true;
1718
1719 if (edp_have_panel_vdd(intel_dp))
1720 return need_to_disable;
1721
1722 power_domain = intel_display_port_power_domain(intel_encoder);
1723 intel_display_power_get(dev_priv, power_domain);
1724
1725 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1726 port_name(intel_dig_port->port));
1727
1728 if (!edp_have_panel_power(intel_dp))
1729 wait_panel_power_cycle(intel_dp);
1730
1731 pp = ironlake_get_pp_control(intel_dp);
1732 pp |= EDP_FORCE_VDD;
1733
1734 pp_stat_reg = _pp_stat_reg(intel_dp);
1735 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1736
1737 I915_WRITE(pp_ctrl_reg, pp);
1738 POSTING_READ(pp_ctrl_reg);
1739 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1740 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1741 /*
1742 * If the panel wasn't on, delay before accessing aux channel
1743 */
1744 if (!edp_have_panel_power(intel_dp)) {
1745 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1746 port_name(intel_dig_port->port));
1747 msleep(intel_dp->panel_power_up_delay);
1748 }
1749
1750 return need_to_disable;
1751 }
1752
1753 /*
1754 * Must be paired with intel_edp_panel_vdd_off() or
1755 * intel_edp_panel_off().
1756 * Nested calls to these functions are not allowed since
1757 * we drop the lock. Caller must use some higher level
1758 * locking to prevent nested calls from other threads.
1759 */
1760 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1761 {
1762 bool vdd;
1763
1764 if (!is_edp(intel_dp))
1765 return;
1766
1767 pps_lock(intel_dp);
1768 vdd = edp_panel_vdd_on(intel_dp);
1769 pps_unlock(intel_dp);
1770
1771 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1772 port_name(dp_to_dig_port(intel_dp)->port));
1773 }
1774
1775 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1776 {
1777 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 struct intel_digital_port *intel_dig_port =
1780 dp_to_dig_port(intel_dp);
1781 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1782 enum intel_display_power_domain power_domain;
1783 u32 pp;
1784 u32 pp_stat_reg, pp_ctrl_reg;
1785
1786 lockdep_assert_held(&dev_priv->pps_mutex);
1787
1788 WARN_ON(intel_dp->want_panel_vdd);
1789
1790 if (!edp_have_panel_vdd(intel_dp))
1791 return;
1792
1793 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1794 port_name(intel_dig_port->port));
1795
1796 pp = ironlake_get_pp_control(intel_dp);
1797 pp &= ~EDP_FORCE_VDD;
1798
1799 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1800 pp_stat_reg = _pp_stat_reg(intel_dp);
1801
1802 I915_WRITE(pp_ctrl_reg, pp);
1803 POSTING_READ(pp_ctrl_reg);
1804
1805 /* Make sure sequencer is idle before allowing subsequent activity */
1806 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1807 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1808
1809 if ((pp & POWER_TARGET_ON) == 0)
1810 intel_dp->last_power_cycle = jiffies;
1811
1812 power_domain = intel_display_port_power_domain(intel_encoder);
1813 intel_display_power_put(dev_priv, power_domain);
1814 }
1815
1816 static void edp_panel_vdd_work(struct work_struct *__work)
1817 {
1818 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1819 struct intel_dp, panel_vdd_work);
1820
1821 pps_lock(intel_dp);
1822 if (!intel_dp->want_panel_vdd)
1823 edp_panel_vdd_off_sync(intel_dp);
1824 pps_unlock(intel_dp);
1825 }
1826
1827 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1828 {
1829 unsigned long delay;
1830
1831 /*
1832 * Queue the timer to fire a long time from now (relative to the power
1833 * down delay) to keep the panel power up across a sequence of
1834 * operations.
1835 */
1836 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1837 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1838 }
1839
1840 /*
1841 * Must be paired with edp_panel_vdd_on().
1842 * Must hold pps_mutex around the whole on/off sequence.
1843 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1844 */
1845 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1846 {
1847 struct drm_i915_private *dev_priv =
1848 intel_dp_to_dev(intel_dp)->dev_private;
1849
1850 lockdep_assert_held(&dev_priv->pps_mutex);
1851
1852 if (!is_edp(intel_dp))
1853 return;
1854
1855 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1856 port_name(dp_to_dig_port(intel_dp)->port));
1857
1858 intel_dp->want_panel_vdd = false;
1859
1860 if (sync)
1861 edp_panel_vdd_off_sync(intel_dp);
1862 else
1863 edp_panel_vdd_schedule_off(intel_dp);
1864 }
1865
1866 static void edp_panel_on(struct intel_dp *intel_dp)
1867 {
1868 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870 u32 pp;
1871 u32 pp_ctrl_reg;
1872
1873 lockdep_assert_held(&dev_priv->pps_mutex);
1874
1875 if (!is_edp(intel_dp))
1876 return;
1877
1878 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1879 port_name(dp_to_dig_port(intel_dp)->port));
1880
1881 if (WARN(edp_have_panel_power(intel_dp),
1882 "eDP port %c panel power already on\n",
1883 port_name(dp_to_dig_port(intel_dp)->port)))
1884 return;
1885
1886 wait_panel_power_cycle(intel_dp);
1887
1888 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1889 pp = ironlake_get_pp_control(intel_dp);
1890 if (IS_GEN5(dev)) {
1891 /* ILK workaround: disable reset around power sequence */
1892 pp &= ~PANEL_POWER_RESET;
1893 I915_WRITE(pp_ctrl_reg, pp);
1894 POSTING_READ(pp_ctrl_reg);
1895 }
1896
1897 pp |= POWER_TARGET_ON;
1898 if (!IS_GEN5(dev))
1899 pp |= PANEL_POWER_RESET;
1900
1901 I915_WRITE(pp_ctrl_reg, pp);
1902 POSTING_READ(pp_ctrl_reg);
1903
1904 wait_panel_on(intel_dp);
1905 intel_dp->last_power_on = jiffies;
1906
1907 if (IS_GEN5(dev)) {
1908 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1909 I915_WRITE(pp_ctrl_reg, pp);
1910 POSTING_READ(pp_ctrl_reg);
1911 }
1912 }
1913
1914 void intel_edp_panel_on(struct intel_dp *intel_dp)
1915 {
1916 if (!is_edp(intel_dp))
1917 return;
1918
1919 pps_lock(intel_dp);
1920 edp_panel_on(intel_dp);
1921 pps_unlock(intel_dp);
1922 }
1923
1924
1925 static void edp_panel_off(struct intel_dp *intel_dp)
1926 {
1927 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1928 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1929 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1930 struct drm_i915_private *dev_priv = dev->dev_private;
1931 enum intel_display_power_domain power_domain;
1932 u32 pp;
1933 u32 pp_ctrl_reg;
1934
1935 lockdep_assert_held(&dev_priv->pps_mutex);
1936
1937 if (!is_edp(intel_dp))
1938 return;
1939
1940 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1941 port_name(dp_to_dig_port(intel_dp)->port));
1942
1943 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1944 port_name(dp_to_dig_port(intel_dp)->port));
1945
1946 pp = ironlake_get_pp_control(intel_dp);
1947 /* We need to switch off panel power _and_ force vdd, for otherwise some
1948 * panels get very unhappy and cease to work. */
1949 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1950 EDP_BLC_ENABLE);
1951
1952 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1953
1954 intel_dp->want_panel_vdd = false;
1955
1956 I915_WRITE(pp_ctrl_reg, pp);
1957 POSTING_READ(pp_ctrl_reg);
1958
1959 intel_dp->last_power_cycle = jiffies;
1960 wait_panel_off(intel_dp);
1961
1962 /* We got a reference when we enabled the VDD. */
1963 power_domain = intel_display_port_power_domain(intel_encoder);
1964 intel_display_power_put(dev_priv, power_domain);
1965 }
1966
1967 void intel_edp_panel_off(struct intel_dp *intel_dp)
1968 {
1969 if (!is_edp(intel_dp))
1970 return;
1971
1972 pps_lock(intel_dp);
1973 edp_panel_off(intel_dp);
1974 pps_unlock(intel_dp);
1975 }
1976
1977 /* Enable backlight in the panel power control. */
1978 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1979 {
1980 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1981 struct drm_device *dev = intel_dig_port->base.base.dev;
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 u32 pp;
1984 u32 pp_ctrl_reg;
1985
1986 /*
1987 * If we enable the backlight right away following a panel power
1988 * on, we may see slight flicker as the panel syncs with the eDP
1989 * link. So delay a bit to make sure the image is solid before
1990 * allowing it to appear.
1991 */
1992 wait_backlight_on(intel_dp);
1993
1994 pps_lock(intel_dp);
1995
1996 pp = ironlake_get_pp_control(intel_dp);
1997 pp |= EDP_BLC_ENABLE;
1998
1999 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2000
2001 I915_WRITE(pp_ctrl_reg, pp);
2002 POSTING_READ(pp_ctrl_reg);
2003
2004 pps_unlock(intel_dp);
2005 }
2006
2007 /* Enable backlight PWM and backlight PP control. */
2008 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2009 {
2010 if (!is_edp(intel_dp))
2011 return;
2012
2013 DRM_DEBUG_KMS("\n");
2014
2015 intel_panel_enable_backlight(intel_dp->attached_connector);
2016 _intel_edp_backlight_on(intel_dp);
2017 }
2018
2019 /* Disable backlight in the panel power control. */
2020 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2021 {
2022 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 u32 pp;
2025 u32 pp_ctrl_reg;
2026
2027 if (!is_edp(intel_dp))
2028 return;
2029
2030 pps_lock(intel_dp);
2031
2032 pp = ironlake_get_pp_control(intel_dp);
2033 pp &= ~EDP_BLC_ENABLE;
2034
2035 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2036
2037 I915_WRITE(pp_ctrl_reg, pp);
2038 POSTING_READ(pp_ctrl_reg);
2039
2040 pps_unlock(intel_dp);
2041
2042 intel_dp->last_backlight_off = jiffies;
2043 edp_wait_backlight_off(intel_dp);
2044 }
2045
2046 /* Disable backlight PP control and backlight PWM. */
2047 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2048 {
2049 if (!is_edp(intel_dp))
2050 return;
2051
2052 DRM_DEBUG_KMS("\n");
2053
2054 _intel_edp_backlight_off(intel_dp);
2055 intel_panel_disable_backlight(intel_dp->attached_connector);
2056 }
2057
2058 /*
2059 * Hook for controlling the panel power control backlight through the bl_power
2060 * sysfs attribute. Take care to handle multiple calls.
2061 */
2062 static void intel_edp_backlight_power(struct intel_connector *connector,
2063 bool enable)
2064 {
2065 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2066 bool is_enabled;
2067
2068 pps_lock(intel_dp);
2069 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2070 pps_unlock(intel_dp);
2071
2072 if (is_enabled == enable)
2073 return;
2074
2075 DRM_DEBUG_KMS("panel power control backlight %s\n",
2076 enable ? "enable" : "disable");
2077
2078 if (enable)
2079 _intel_edp_backlight_on(intel_dp);
2080 else
2081 _intel_edp_backlight_off(intel_dp);
2082 }
2083
2084 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2085 {
2086 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2087 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2088 struct drm_device *dev = crtc->dev;
2089 struct drm_i915_private *dev_priv = dev->dev_private;
2090 u32 dpa_ctl;
2091
2092 assert_pipe_disabled(dev_priv,
2093 to_intel_crtc(crtc)->pipe);
2094
2095 DRM_DEBUG_KMS("\n");
2096 dpa_ctl = I915_READ(DP_A);
2097 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2098 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2099
2100 /* We don't adjust intel_dp->DP while tearing down the link, to
2101 * facilitate link retraining (e.g. after hotplug). Hence clear all
2102 * enable bits here to ensure that we don't enable too much. */
2103 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2104 intel_dp->DP |= DP_PLL_ENABLE;
2105 I915_WRITE(DP_A, intel_dp->DP);
2106 POSTING_READ(DP_A);
2107 udelay(200);
2108 }
2109
2110 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2111 {
2112 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2113 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2114 struct drm_device *dev = crtc->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
2116 u32 dpa_ctl;
2117
2118 assert_pipe_disabled(dev_priv,
2119 to_intel_crtc(crtc)->pipe);
2120
2121 dpa_ctl = I915_READ(DP_A);
2122 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2123 "dp pll off, should be on\n");
2124 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2125
2126 /* We can't rely on the value tracked for the DP register in
2127 * intel_dp->DP because link_down must not change that (otherwise link
2128 * re-training will fail. */
2129 dpa_ctl &= ~DP_PLL_ENABLE;
2130 I915_WRITE(DP_A, dpa_ctl);
2131 POSTING_READ(DP_A);
2132 udelay(200);
2133 }
2134
2135 /* If the sink supports it, try to set the power state appropriately */
2136 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2137 {
2138 int ret, i;
2139
2140 /* Should have a valid DPCD by this point */
2141 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2142 return;
2143
2144 if (mode != DRM_MODE_DPMS_ON) {
2145 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2146 DP_SET_POWER_D3);
2147 } else {
2148 /*
2149 * When turning on, we need to retry for 1ms to give the sink
2150 * time to wake up.
2151 */
2152 for (i = 0; i < 3; i++) {
2153 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2154 DP_SET_POWER_D0);
2155 if (ret == 1)
2156 break;
2157 msleep(1);
2158 }
2159 }
2160
2161 if (ret != 1)
2162 DRM_DEBUG_KMS("failed to %s sink power state\n",
2163 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2164 }
2165
2166 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2167 enum pipe *pipe)
2168 {
2169 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2170 enum port port = dp_to_dig_port(intel_dp)->port;
2171 struct drm_device *dev = encoder->base.dev;
2172 struct drm_i915_private *dev_priv = dev->dev_private;
2173 enum intel_display_power_domain power_domain;
2174 u32 tmp;
2175
2176 power_domain = intel_display_port_power_domain(encoder);
2177 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2178 return false;
2179
2180 tmp = I915_READ(intel_dp->output_reg);
2181
2182 if (!(tmp & DP_PORT_EN))
2183 return false;
2184
2185 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2186 *pipe = PORT_TO_PIPE_CPT(tmp);
2187 } else if (IS_CHERRYVIEW(dev)) {
2188 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2189 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
2190 *pipe = PORT_TO_PIPE(tmp);
2191 } else {
2192 u32 trans_sel;
2193 u32 trans_dp;
2194 int i;
2195
2196 switch (intel_dp->output_reg) {
2197 case PCH_DP_B:
2198 trans_sel = TRANS_DP_PORT_SEL_B;
2199 break;
2200 case PCH_DP_C:
2201 trans_sel = TRANS_DP_PORT_SEL_C;
2202 break;
2203 case PCH_DP_D:
2204 trans_sel = TRANS_DP_PORT_SEL_D;
2205 break;
2206 default:
2207 return true;
2208 }
2209
2210 for_each_pipe(dev_priv, i) {
2211 trans_dp = I915_READ(TRANS_DP_CTL(i));
2212 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2213 *pipe = i;
2214 return true;
2215 }
2216 }
2217
2218 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2219 intel_dp->output_reg);
2220 }
2221
2222 return true;
2223 }
2224
2225 static void intel_dp_get_config(struct intel_encoder *encoder,
2226 struct intel_crtc_state *pipe_config)
2227 {
2228 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2229 u32 tmp, flags = 0;
2230 struct drm_device *dev = encoder->base.dev;
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 enum port port = dp_to_dig_port(intel_dp)->port;
2233 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2234 int dotclock;
2235
2236 tmp = I915_READ(intel_dp->output_reg);
2237
2238 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2239
2240 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2241 if (tmp & DP_SYNC_HS_HIGH)
2242 flags |= DRM_MODE_FLAG_PHSYNC;
2243 else
2244 flags |= DRM_MODE_FLAG_NHSYNC;
2245
2246 if (tmp & DP_SYNC_VS_HIGH)
2247 flags |= DRM_MODE_FLAG_PVSYNC;
2248 else
2249 flags |= DRM_MODE_FLAG_NVSYNC;
2250 } else {
2251 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2252 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2253 flags |= DRM_MODE_FLAG_PHSYNC;
2254 else
2255 flags |= DRM_MODE_FLAG_NHSYNC;
2256
2257 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2258 flags |= DRM_MODE_FLAG_PVSYNC;
2259 else
2260 flags |= DRM_MODE_FLAG_NVSYNC;
2261 }
2262
2263 pipe_config->base.adjusted_mode.flags |= flags;
2264
2265 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2266 tmp & DP_COLOR_RANGE_16_235)
2267 pipe_config->limited_color_range = true;
2268
2269 pipe_config->has_dp_encoder = true;
2270
2271 intel_dp_get_m_n(crtc, pipe_config);
2272
2273 if (port == PORT_A) {
2274 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2275 pipe_config->port_clock = 162000;
2276 else
2277 pipe_config->port_clock = 270000;
2278 }
2279
2280 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2281 &pipe_config->dp_m_n);
2282
2283 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2284 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2285
2286 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2287
2288 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2289 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2290 /*
2291 * This is a big fat ugly hack.
2292 *
2293 * Some machines in UEFI boot mode provide us a VBT that has 18
2294 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2295 * unknown we fail to light up. Yet the same BIOS boots up with
2296 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2297 * max, not what it tells us to use.
2298 *
2299 * Note: This will still be broken if the eDP panel is not lit
2300 * up by the BIOS, and thus we can't get the mode at module
2301 * load.
2302 */
2303 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2304 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2305 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2306 }
2307 }
2308
2309 static void intel_disable_dp(struct intel_encoder *encoder)
2310 {
2311 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2312 struct drm_device *dev = encoder->base.dev;
2313 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2314
2315 if (crtc->config->has_audio)
2316 intel_audio_codec_disable(encoder);
2317
2318 if (HAS_PSR(dev) && !HAS_DDI(dev))
2319 intel_psr_disable(intel_dp);
2320
2321 /* Make sure the panel is off before trying to change the mode. But also
2322 * ensure that we have vdd while we switch off the panel. */
2323 intel_edp_panel_vdd_on(intel_dp);
2324 intel_edp_backlight_off(intel_dp);
2325 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2326 intel_edp_panel_off(intel_dp);
2327
2328 /* disable the port before the pipe on g4x */
2329 if (INTEL_INFO(dev)->gen < 5)
2330 intel_dp_link_down(intel_dp);
2331 }
2332
2333 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2334 {
2335 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2336 enum port port = dp_to_dig_port(intel_dp)->port;
2337
2338 intel_dp_link_down(intel_dp);
2339 if (port == PORT_A)
2340 ironlake_edp_pll_off(intel_dp);
2341 }
2342
2343 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2344 {
2345 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2346
2347 intel_dp_link_down(intel_dp);
2348 }
2349
2350 static void chv_post_disable_dp(struct intel_encoder *encoder)
2351 {
2352 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2353 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2354 struct drm_device *dev = encoder->base.dev;
2355 struct drm_i915_private *dev_priv = dev->dev_private;
2356 struct intel_crtc *intel_crtc =
2357 to_intel_crtc(encoder->base.crtc);
2358 enum dpio_channel ch = vlv_dport_to_channel(dport);
2359 enum pipe pipe = intel_crtc->pipe;
2360 u32 val;
2361
2362 intel_dp_link_down(intel_dp);
2363
2364 mutex_lock(&dev_priv->dpio_lock);
2365
2366 /* Propagate soft reset to data lane reset */
2367 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2368 val |= CHV_PCS_REQ_SOFTRESET_EN;
2369 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2370
2371 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2372 val |= CHV_PCS_REQ_SOFTRESET_EN;
2373 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2374
2375 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2376 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2377 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2378
2379 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2380 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2381 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2382
2383 mutex_unlock(&dev_priv->dpio_lock);
2384 }
2385
2386 static void
2387 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2388 uint32_t *DP,
2389 uint8_t dp_train_pat)
2390 {
2391 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2392 struct drm_device *dev = intel_dig_port->base.base.dev;
2393 struct drm_i915_private *dev_priv = dev->dev_private;
2394 enum port port = intel_dig_port->port;
2395
2396 if (HAS_DDI(dev)) {
2397 uint32_t temp = I915_READ(DP_TP_CTL(port));
2398
2399 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2400 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2401 else
2402 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2403
2404 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2405 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2406 case DP_TRAINING_PATTERN_DISABLE:
2407 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2408
2409 break;
2410 case DP_TRAINING_PATTERN_1:
2411 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2412 break;
2413 case DP_TRAINING_PATTERN_2:
2414 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2415 break;
2416 case DP_TRAINING_PATTERN_3:
2417 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2418 break;
2419 }
2420 I915_WRITE(DP_TP_CTL(port), temp);
2421
2422 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2423 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2424
2425 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2426 case DP_TRAINING_PATTERN_DISABLE:
2427 *DP |= DP_LINK_TRAIN_OFF_CPT;
2428 break;
2429 case DP_TRAINING_PATTERN_1:
2430 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2431 break;
2432 case DP_TRAINING_PATTERN_2:
2433 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2434 break;
2435 case DP_TRAINING_PATTERN_3:
2436 DRM_ERROR("DP training pattern 3 not supported\n");
2437 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2438 break;
2439 }
2440
2441 } else {
2442 if (IS_CHERRYVIEW(dev))
2443 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2444 else
2445 *DP &= ~DP_LINK_TRAIN_MASK;
2446
2447 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2448 case DP_TRAINING_PATTERN_DISABLE:
2449 *DP |= DP_LINK_TRAIN_OFF;
2450 break;
2451 case DP_TRAINING_PATTERN_1:
2452 *DP |= DP_LINK_TRAIN_PAT_1;
2453 break;
2454 case DP_TRAINING_PATTERN_2:
2455 *DP |= DP_LINK_TRAIN_PAT_2;
2456 break;
2457 case DP_TRAINING_PATTERN_3:
2458 if (IS_CHERRYVIEW(dev)) {
2459 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2460 } else {
2461 DRM_ERROR("DP training pattern 3 not supported\n");
2462 *DP |= DP_LINK_TRAIN_PAT_2;
2463 }
2464 break;
2465 }
2466 }
2467 }
2468
2469 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2470 {
2471 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473
2474 /* enable with pattern 1 (as per spec) */
2475 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2476 DP_TRAINING_PATTERN_1);
2477
2478 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2479 POSTING_READ(intel_dp->output_reg);
2480
2481 /*
2482 * Magic for VLV/CHV. We _must_ first set up the register
2483 * without actually enabling the port, and then do another
2484 * write to enable the port. Otherwise link training will
2485 * fail when the power sequencer is freshly used for this port.
2486 */
2487 intel_dp->DP |= DP_PORT_EN;
2488
2489 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2490 POSTING_READ(intel_dp->output_reg);
2491 }
2492
2493 static void intel_enable_dp(struct intel_encoder *encoder)
2494 {
2495 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2496 struct drm_device *dev = encoder->base.dev;
2497 struct drm_i915_private *dev_priv = dev->dev_private;
2498 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2499 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2500 unsigned int lane_mask = 0x0;
2501
2502 if (WARN_ON(dp_reg & DP_PORT_EN))
2503 return;
2504
2505 pps_lock(intel_dp);
2506
2507 if (IS_VALLEYVIEW(dev))
2508 vlv_init_panel_power_sequencer(intel_dp);
2509
2510 intel_dp_enable_port(intel_dp);
2511
2512 edp_panel_vdd_on(intel_dp);
2513 edp_panel_on(intel_dp);
2514 edp_panel_vdd_off(intel_dp, true);
2515
2516 pps_unlock(intel_dp);
2517
2518 if (IS_VALLEYVIEW(dev))
2519 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2520 lane_mask);
2521
2522 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2523 intel_dp_start_link_train(intel_dp);
2524 intel_dp_complete_link_train(intel_dp);
2525 intel_dp_stop_link_train(intel_dp);
2526
2527 if (crtc->config->has_audio) {
2528 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2529 pipe_name(crtc->pipe));
2530 intel_audio_codec_enable(encoder);
2531 }
2532 }
2533
2534 static void g4x_enable_dp(struct intel_encoder *encoder)
2535 {
2536 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2537
2538 intel_enable_dp(encoder);
2539 intel_edp_backlight_on(intel_dp);
2540 }
2541
2542 static void vlv_enable_dp(struct intel_encoder *encoder)
2543 {
2544 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2545
2546 intel_edp_backlight_on(intel_dp);
2547 intel_psr_enable(intel_dp);
2548 }
2549
2550 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2551 {
2552 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2553 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2554
2555 intel_dp_prepare(encoder);
2556
2557 /* Only ilk+ has port A */
2558 if (dport->port == PORT_A) {
2559 ironlake_set_pll_cpu_edp(intel_dp);
2560 ironlake_edp_pll_on(intel_dp);
2561 }
2562 }
2563
2564 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2565 {
2566 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2567 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2568 enum pipe pipe = intel_dp->pps_pipe;
2569 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2570
2571 edp_panel_vdd_off_sync(intel_dp);
2572
2573 /*
2574 * VLV seems to get confused when multiple power seqeuencers
2575 * have the same port selected (even if only one has power/vdd
2576 * enabled). The failure manifests as vlv_wait_port_ready() failing
2577 * CHV on the other hand doesn't seem to mind having the same port
2578 * selected in multiple power seqeuencers, but let's clear the
2579 * port select always when logically disconnecting a power sequencer
2580 * from a port.
2581 */
2582 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2583 pipe_name(pipe), port_name(intel_dig_port->port));
2584 I915_WRITE(pp_on_reg, 0);
2585 POSTING_READ(pp_on_reg);
2586
2587 intel_dp->pps_pipe = INVALID_PIPE;
2588 }
2589
2590 static void vlv_steal_power_sequencer(struct drm_device *dev,
2591 enum pipe pipe)
2592 {
2593 struct drm_i915_private *dev_priv = dev->dev_private;
2594 struct intel_encoder *encoder;
2595
2596 lockdep_assert_held(&dev_priv->pps_mutex);
2597
2598 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2599 return;
2600
2601 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2602 base.head) {
2603 struct intel_dp *intel_dp;
2604 enum port port;
2605
2606 if (encoder->type != INTEL_OUTPUT_EDP)
2607 continue;
2608
2609 intel_dp = enc_to_intel_dp(&encoder->base);
2610 port = dp_to_dig_port(intel_dp)->port;
2611
2612 if (intel_dp->pps_pipe != pipe)
2613 continue;
2614
2615 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2616 pipe_name(pipe), port_name(port));
2617
2618 WARN(encoder->connectors_active,
2619 "stealing pipe %c power sequencer from active eDP port %c\n",
2620 pipe_name(pipe), port_name(port));
2621
2622 /* make sure vdd is off before we steal it */
2623 vlv_detach_power_sequencer(intel_dp);
2624 }
2625 }
2626
2627 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2628 {
2629 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2630 struct intel_encoder *encoder = &intel_dig_port->base;
2631 struct drm_device *dev = encoder->base.dev;
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2634
2635 lockdep_assert_held(&dev_priv->pps_mutex);
2636
2637 if (!is_edp(intel_dp))
2638 return;
2639
2640 if (intel_dp->pps_pipe == crtc->pipe)
2641 return;
2642
2643 /*
2644 * If another power sequencer was being used on this
2645 * port previously make sure to turn off vdd there while
2646 * we still have control of it.
2647 */
2648 if (intel_dp->pps_pipe != INVALID_PIPE)
2649 vlv_detach_power_sequencer(intel_dp);
2650
2651 /*
2652 * We may be stealing the power
2653 * sequencer from another port.
2654 */
2655 vlv_steal_power_sequencer(dev, crtc->pipe);
2656
2657 /* now it's all ours */
2658 intel_dp->pps_pipe = crtc->pipe;
2659
2660 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2661 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2662
2663 /* init power sequencer on this pipe and port */
2664 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2665 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2666 }
2667
2668 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2669 {
2670 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2671 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2672 struct drm_device *dev = encoder->base.dev;
2673 struct drm_i915_private *dev_priv = dev->dev_private;
2674 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2675 enum dpio_channel port = vlv_dport_to_channel(dport);
2676 int pipe = intel_crtc->pipe;
2677 u32 val;
2678
2679 mutex_lock(&dev_priv->dpio_lock);
2680
2681 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2682 val = 0;
2683 if (pipe)
2684 val |= (1<<21);
2685 else
2686 val &= ~(1<<21);
2687 val |= 0x001000c4;
2688 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2689 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2690 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2691
2692 mutex_unlock(&dev_priv->dpio_lock);
2693
2694 intel_enable_dp(encoder);
2695 }
2696
2697 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2698 {
2699 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2700 struct drm_device *dev = encoder->base.dev;
2701 struct drm_i915_private *dev_priv = dev->dev_private;
2702 struct intel_crtc *intel_crtc =
2703 to_intel_crtc(encoder->base.crtc);
2704 enum dpio_channel port = vlv_dport_to_channel(dport);
2705 int pipe = intel_crtc->pipe;
2706
2707 intel_dp_prepare(encoder);
2708
2709 /* Program Tx lane resets to default */
2710 mutex_lock(&dev_priv->dpio_lock);
2711 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2712 DPIO_PCS_TX_LANE2_RESET |
2713 DPIO_PCS_TX_LANE1_RESET);
2714 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2715 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2716 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2717 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2718 DPIO_PCS_CLK_SOFT_RESET);
2719
2720 /* Fix up inter-pair skew failure */
2721 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2722 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2723 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2724 mutex_unlock(&dev_priv->dpio_lock);
2725 }
2726
2727 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2728 {
2729 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2730 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2731 struct drm_device *dev = encoder->base.dev;
2732 struct drm_i915_private *dev_priv = dev->dev_private;
2733 struct intel_crtc *intel_crtc =
2734 to_intel_crtc(encoder->base.crtc);
2735 enum dpio_channel ch = vlv_dport_to_channel(dport);
2736 int pipe = intel_crtc->pipe;
2737 int data, i, stagger;
2738 u32 val;
2739
2740 mutex_lock(&dev_priv->dpio_lock);
2741
2742 /* allow hardware to manage TX FIFO reset source */
2743 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2744 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2745 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2746
2747 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2748 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2749 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2750
2751 /* Deassert soft data lane reset*/
2752 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2753 val |= CHV_PCS_REQ_SOFTRESET_EN;
2754 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2755
2756 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2757 val |= CHV_PCS_REQ_SOFTRESET_EN;
2758 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2759
2760 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2761 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2762 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2763
2764 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2765 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2766 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2767
2768 /* Program Tx lane latency optimal setting*/
2769 for (i = 0; i < 4; i++) {
2770 /* Set the upar bit */
2771 data = (i == 1) ? 0x0 : 0x1;
2772 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2773 data << DPIO_UPAR_SHIFT);
2774 }
2775
2776 /* Data lane stagger programming */
2777 if (intel_crtc->config->port_clock > 270000)
2778 stagger = 0x18;
2779 else if (intel_crtc->config->port_clock > 135000)
2780 stagger = 0xd;
2781 else if (intel_crtc->config->port_clock > 67500)
2782 stagger = 0x7;
2783 else if (intel_crtc->config->port_clock > 33750)
2784 stagger = 0x4;
2785 else
2786 stagger = 0x2;
2787
2788 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2789 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2790 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2791
2792 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2793 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2794 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2795
2796 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2797 DPIO_LANESTAGGER_STRAP(stagger) |
2798 DPIO_LANESTAGGER_STRAP_OVRD |
2799 DPIO_TX1_STAGGER_MASK(0x1f) |
2800 DPIO_TX1_STAGGER_MULT(6) |
2801 DPIO_TX2_STAGGER_MULT(0));
2802
2803 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2804 DPIO_LANESTAGGER_STRAP(stagger) |
2805 DPIO_LANESTAGGER_STRAP_OVRD |
2806 DPIO_TX1_STAGGER_MASK(0x1f) |
2807 DPIO_TX1_STAGGER_MULT(7) |
2808 DPIO_TX2_STAGGER_MULT(5));
2809
2810 mutex_unlock(&dev_priv->dpio_lock);
2811
2812 intel_enable_dp(encoder);
2813 }
2814
2815 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2816 {
2817 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2818 struct drm_device *dev = encoder->base.dev;
2819 struct drm_i915_private *dev_priv = dev->dev_private;
2820 struct intel_crtc *intel_crtc =
2821 to_intel_crtc(encoder->base.crtc);
2822 enum dpio_channel ch = vlv_dport_to_channel(dport);
2823 enum pipe pipe = intel_crtc->pipe;
2824 u32 val;
2825
2826 intel_dp_prepare(encoder);
2827
2828 mutex_lock(&dev_priv->dpio_lock);
2829
2830 /* program left/right clock distribution */
2831 if (pipe != PIPE_B) {
2832 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2833 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2834 if (ch == DPIO_CH0)
2835 val |= CHV_BUFLEFTENA1_FORCE;
2836 if (ch == DPIO_CH1)
2837 val |= CHV_BUFRIGHTENA1_FORCE;
2838 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2839 } else {
2840 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2841 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2842 if (ch == DPIO_CH0)
2843 val |= CHV_BUFLEFTENA2_FORCE;
2844 if (ch == DPIO_CH1)
2845 val |= CHV_BUFRIGHTENA2_FORCE;
2846 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2847 }
2848
2849 /* program clock channel usage */
2850 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2851 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2852 if (pipe != PIPE_B)
2853 val &= ~CHV_PCS_USEDCLKCHANNEL;
2854 else
2855 val |= CHV_PCS_USEDCLKCHANNEL;
2856 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2857
2858 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2859 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2860 if (pipe != PIPE_B)
2861 val &= ~CHV_PCS_USEDCLKCHANNEL;
2862 else
2863 val |= CHV_PCS_USEDCLKCHANNEL;
2864 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2865
2866 /*
2867 * This a a bit weird since generally CL
2868 * matches the pipe, but here we need to
2869 * pick the CL based on the port.
2870 */
2871 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2872 if (pipe != PIPE_B)
2873 val &= ~CHV_CMN_USEDCLKCHANNEL;
2874 else
2875 val |= CHV_CMN_USEDCLKCHANNEL;
2876 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2877
2878 mutex_unlock(&dev_priv->dpio_lock);
2879 }
2880
2881 /*
2882 * Native read with retry for link status and receiver capability reads for
2883 * cases where the sink may still be asleep.
2884 *
2885 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2886 * supposed to retry 3 times per the spec.
2887 */
2888 static ssize_t
2889 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2890 void *buffer, size_t size)
2891 {
2892 ssize_t ret;
2893 int i;
2894
2895 /*
2896 * Sometime we just get the same incorrect byte repeated
2897 * over the entire buffer. Doing just one throw away read
2898 * initially seems to "solve" it.
2899 */
2900 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2901
2902 for (i = 0; i < 3; i++) {
2903 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2904 if (ret == size)
2905 return ret;
2906 msleep(1);
2907 }
2908
2909 return ret;
2910 }
2911
2912 /*
2913 * Fetch AUX CH registers 0x202 - 0x207 which contain
2914 * link status information
2915 */
2916 static bool
2917 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2918 {
2919 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2920 DP_LANE0_1_STATUS,
2921 link_status,
2922 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2923 }
2924
2925 /* These are source-specific values. */
2926 static uint8_t
2927 intel_dp_voltage_max(struct intel_dp *intel_dp)
2928 {
2929 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2930 struct drm_i915_private *dev_priv = dev->dev_private;
2931 enum port port = dp_to_dig_port(intel_dp)->port;
2932
2933 if (IS_BROXTON(dev))
2934 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2935 else if (INTEL_INFO(dev)->gen >= 9) {
2936 if (dev_priv->edp_low_vswing && port == PORT_A)
2937 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2938 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2939 } else if (IS_VALLEYVIEW(dev))
2940 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2941 else if (IS_GEN7(dev) && port == PORT_A)
2942 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2943 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2944 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2945 else
2946 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2947 }
2948
2949 static uint8_t
2950 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2951 {
2952 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2953 enum port port = dp_to_dig_port(intel_dp)->port;
2954
2955 if (INTEL_INFO(dev)->gen >= 9) {
2956 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2957 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2958 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2959 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2960 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2961 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2962 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2963 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2964 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2965 default:
2966 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2967 }
2968 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2969 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2970 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2971 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2972 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2973 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2974 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2975 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2976 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2977 default:
2978 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2979 }
2980 } else if (IS_VALLEYVIEW(dev)) {
2981 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2982 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2983 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2984 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2985 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2986 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2987 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2988 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2989 default:
2990 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2991 }
2992 } else if (IS_GEN7(dev) && port == PORT_A) {
2993 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2994 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2995 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2996 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2997 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2998 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2999 default:
3000 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3001 }
3002 } else {
3003 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3004 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3005 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3006 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3007 return DP_TRAIN_PRE_EMPH_LEVEL_2;
3008 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3009 return DP_TRAIN_PRE_EMPH_LEVEL_1;
3010 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3011 default:
3012 return DP_TRAIN_PRE_EMPH_LEVEL_0;
3013 }
3014 }
3015 }
3016
3017 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3018 {
3019 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3020 struct drm_i915_private *dev_priv = dev->dev_private;
3021 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3022 struct intel_crtc *intel_crtc =
3023 to_intel_crtc(dport->base.base.crtc);
3024 unsigned long demph_reg_value, preemph_reg_value,
3025 uniqtranscale_reg_value;
3026 uint8_t train_set = intel_dp->train_set[0];
3027 enum dpio_channel port = vlv_dport_to_channel(dport);
3028 int pipe = intel_crtc->pipe;
3029
3030 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3031 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3032 preemph_reg_value = 0x0004000;
3033 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3034 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3035 demph_reg_value = 0x2B405555;
3036 uniqtranscale_reg_value = 0x552AB83A;
3037 break;
3038 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3039 demph_reg_value = 0x2B404040;
3040 uniqtranscale_reg_value = 0x5548B83A;
3041 break;
3042 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3043 demph_reg_value = 0x2B245555;
3044 uniqtranscale_reg_value = 0x5560B83A;
3045 break;
3046 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3047 demph_reg_value = 0x2B405555;
3048 uniqtranscale_reg_value = 0x5598DA3A;
3049 break;
3050 default:
3051 return 0;
3052 }
3053 break;
3054 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3055 preemph_reg_value = 0x0002000;
3056 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3057 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3058 demph_reg_value = 0x2B404040;
3059 uniqtranscale_reg_value = 0x5552B83A;
3060 break;
3061 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3062 demph_reg_value = 0x2B404848;
3063 uniqtranscale_reg_value = 0x5580B83A;
3064 break;
3065 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3066 demph_reg_value = 0x2B404040;
3067 uniqtranscale_reg_value = 0x55ADDA3A;
3068 break;
3069 default:
3070 return 0;
3071 }
3072 break;
3073 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3074 preemph_reg_value = 0x0000000;
3075 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3076 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3077 demph_reg_value = 0x2B305555;
3078 uniqtranscale_reg_value = 0x5570B83A;
3079 break;
3080 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3081 demph_reg_value = 0x2B2B4040;
3082 uniqtranscale_reg_value = 0x55ADDA3A;
3083 break;
3084 default:
3085 return 0;
3086 }
3087 break;
3088 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3089 preemph_reg_value = 0x0006000;
3090 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3091 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3092 demph_reg_value = 0x1B405555;
3093 uniqtranscale_reg_value = 0x55ADDA3A;
3094 break;
3095 default:
3096 return 0;
3097 }
3098 break;
3099 default:
3100 return 0;
3101 }
3102
3103 mutex_lock(&dev_priv->dpio_lock);
3104 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3105 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3106 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3107 uniqtranscale_reg_value);
3108 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3109 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3110 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3111 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3112 mutex_unlock(&dev_priv->dpio_lock);
3113
3114 return 0;
3115 }
3116
3117 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3118 {
3119 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3122 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3123 u32 deemph_reg_value, margin_reg_value, val;
3124 uint8_t train_set = intel_dp->train_set[0];
3125 enum dpio_channel ch = vlv_dport_to_channel(dport);
3126 enum pipe pipe = intel_crtc->pipe;
3127 int i;
3128
3129 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3130 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3131 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3132 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3133 deemph_reg_value = 128;
3134 margin_reg_value = 52;
3135 break;
3136 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3137 deemph_reg_value = 128;
3138 margin_reg_value = 77;
3139 break;
3140 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3141 deemph_reg_value = 128;
3142 margin_reg_value = 102;
3143 break;
3144 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3145 deemph_reg_value = 128;
3146 margin_reg_value = 154;
3147 /* FIXME extra to set for 1200 */
3148 break;
3149 default:
3150 return 0;
3151 }
3152 break;
3153 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3154 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3155 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3156 deemph_reg_value = 85;
3157 margin_reg_value = 78;
3158 break;
3159 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3160 deemph_reg_value = 85;
3161 margin_reg_value = 116;
3162 break;
3163 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3164 deemph_reg_value = 85;
3165 margin_reg_value = 154;
3166 break;
3167 default:
3168 return 0;
3169 }
3170 break;
3171 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3172 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3173 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3174 deemph_reg_value = 64;
3175 margin_reg_value = 104;
3176 break;
3177 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3178 deemph_reg_value = 64;
3179 margin_reg_value = 154;
3180 break;
3181 default:
3182 return 0;
3183 }
3184 break;
3185 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3186 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3187 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3188 deemph_reg_value = 43;
3189 margin_reg_value = 154;
3190 break;
3191 default:
3192 return 0;
3193 }
3194 break;
3195 default:
3196 return 0;
3197 }
3198
3199 mutex_lock(&dev_priv->dpio_lock);
3200
3201 /* Clear calc init */
3202 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3203 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3204 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3205 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3206 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3207
3208 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3209 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3210 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3211 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3212 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3213
3214 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3215 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3216 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3217 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3218
3219 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3220 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3221 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3222 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3223
3224 /* Program swing deemph */
3225 for (i = 0; i < 4; i++) {
3226 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3227 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3228 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3229 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3230 }
3231
3232 /* Program swing margin */
3233 for (i = 0; i < 4; i++) {
3234 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3235 val &= ~DPIO_SWING_MARGIN000_MASK;
3236 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3237 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3238 }
3239
3240 /* Disable unique transition scale */
3241 for (i = 0; i < 4; i++) {
3242 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3243 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3244 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3245 }
3246
3247 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3248 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3249 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3250 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3251
3252 /*
3253 * The document said it needs to set bit 27 for ch0 and bit 26
3254 * for ch1. Might be a typo in the doc.
3255 * For now, for this unique transition scale selection, set bit
3256 * 27 for ch0 and ch1.
3257 */
3258 for (i = 0; i < 4; i++) {
3259 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3260 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3261 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3262 }
3263
3264 for (i = 0; i < 4; i++) {
3265 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3266 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3267 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3268 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3269 }
3270 }
3271
3272 /* Start swing calculation */
3273 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3274 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3275 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3276
3277 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3278 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3279 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3280
3281 /* LRC Bypass */
3282 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3283 val |= DPIO_LRC_BYPASS;
3284 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3285
3286 mutex_unlock(&dev_priv->dpio_lock);
3287
3288 return 0;
3289 }
3290
3291 static void
3292 intel_get_adjust_train(struct intel_dp *intel_dp,
3293 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3294 {
3295 uint8_t v = 0;
3296 uint8_t p = 0;
3297 int lane;
3298 uint8_t voltage_max;
3299 uint8_t preemph_max;
3300
3301 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3302 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3303 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3304
3305 if (this_v > v)
3306 v = this_v;
3307 if (this_p > p)
3308 p = this_p;
3309 }
3310
3311 voltage_max = intel_dp_voltage_max(intel_dp);
3312 if (v >= voltage_max)
3313 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3314
3315 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3316 if (p >= preemph_max)
3317 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3318
3319 for (lane = 0; lane < 4; lane++)
3320 intel_dp->train_set[lane] = v | p;
3321 }
3322
3323 static uint32_t
3324 gen4_signal_levels(uint8_t train_set)
3325 {
3326 uint32_t signal_levels = 0;
3327
3328 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3329 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3330 default:
3331 signal_levels |= DP_VOLTAGE_0_4;
3332 break;
3333 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3334 signal_levels |= DP_VOLTAGE_0_6;
3335 break;
3336 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3337 signal_levels |= DP_VOLTAGE_0_8;
3338 break;
3339 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3340 signal_levels |= DP_VOLTAGE_1_2;
3341 break;
3342 }
3343 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3344 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3345 default:
3346 signal_levels |= DP_PRE_EMPHASIS_0;
3347 break;
3348 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3349 signal_levels |= DP_PRE_EMPHASIS_3_5;
3350 break;
3351 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3352 signal_levels |= DP_PRE_EMPHASIS_6;
3353 break;
3354 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3355 signal_levels |= DP_PRE_EMPHASIS_9_5;
3356 break;
3357 }
3358 return signal_levels;
3359 }
3360
3361 /* Gen6's DP voltage swing and pre-emphasis control */
3362 static uint32_t
3363 gen6_edp_signal_levels(uint8_t train_set)
3364 {
3365 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3366 DP_TRAIN_PRE_EMPHASIS_MASK);
3367 switch (signal_levels) {
3368 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3369 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3370 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3371 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3372 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3373 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3374 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3375 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3376 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3377 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3378 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3379 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3380 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3381 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3382 default:
3383 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3384 "0x%x\n", signal_levels);
3385 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3386 }
3387 }
3388
3389 /* Gen7's DP voltage swing and pre-emphasis control */
3390 static uint32_t
3391 gen7_edp_signal_levels(uint8_t train_set)
3392 {
3393 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3394 DP_TRAIN_PRE_EMPHASIS_MASK);
3395 switch (signal_levels) {
3396 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3397 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3398 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3399 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3400 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3401 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3402
3403 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3404 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3405 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3406 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3407
3408 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3409 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3410 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3411 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3412
3413 default:
3414 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3415 "0x%x\n", signal_levels);
3416 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3417 }
3418 }
3419
3420 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3421 static uint32_t
3422 hsw_signal_levels(uint8_t train_set)
3423 {
3424 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3425 DP_TRAIN_PRE_EMPHASIS_MASK);
3426 switch (signal_levels) {
3427 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3428 return DDI_BUF_TRANS_SELECT(0);
3429 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3430 return DDI_BUF_TRANS_SELECT(1);
3431 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3432 return DDI_BUF_TRANS_SELECT(2);
3433 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3434 return DDI_BUF_TRANS_SELECT(3);
3435
3436 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3437 return DDI_BUF_TRANS_SELECT(4);
3438 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3439 return DDI_BUF_TRANS_SELECT(5);
3440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3441 return DDI_BUF_TRANS_SELECT(6);
3442
3443 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3444 return DDI_BUF_TRANS_SELECT(7);
3445 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3446 return DDI_BUF_TRANS_SELECT(8);
3447
3448 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3449 return DDI_BUF_TRANS_SELECT(9);
3450 default:
3451 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3452 "0x%x\n", signal_levels);
3453 return DDI_BUF_TRANS_SELECT(0);
3454 }
3455 }
3456
3457 static void bxt_signal_levels(struct intel_dp *intel_dp)
3458 {
3459 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3460 enum port port = dport->port;
3461 struct drm_device *dev = dport->base.base.dev;
3462 struct intel_encoder *encoder = &dport->base;
3463 uint8_t train_set = intel_dp->train_set[0];
3464 uint32_t level = 0;
3465
3466 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3467 DP_TRAIN_PRE_EMPHASIS_MASK);
3468 switch (signal_levels) {
3469 default:
3470 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n");
3471 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3472 level = 0;
3473 break;
3474 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3475 level = 1;
3476 break;
3477 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3478 level = 2;
3479 break;
3480 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3481 level = 3;
3482 break;
3483 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3484 level = 4;
3485 break;
3486 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3487 level = 5;
3488 break;
3489 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3490 level = 6;
3491 break;
3492 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3493 level = 7;
3494 break;
3495 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3496 level = 8;
3497 break;
3498 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3499 level = 9;
3500 break;
3501 }
3502
3503 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
3504 }
3505
3506 /* Properly updates "DP" with the correct signal levels. */
3507 static void
3508 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3509 {
3510 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3511 enum port port = intel_dig_port->port;
3512 struct drm_device *dev = intel_dig_port->base.base.dev;
3513 uint32_t signal_levels, mask;
3514 uint8_t train_set = intel_dp->train_set[0];
3515
3516 if (IS_BROXTON(dev)) {
3517 signal_levels = 0;
3518 bxt_signal_levels(intel_dp);
3519 mask = 0;
3520 } else if (HAS_DDI(dev)) {
3521 signal_levels = hsw_signal_levels(train_set);
3522 mask = DDI_BUF_EMP_MASK;
3523 } else if (IS_CHERRYVIEW(dev)) {
3524 signal_levels = chv_signal_levels(intel_dp);
3525 mask = 0;
3526 } else if (IS_VALLEYVIEW(dev)) {
3527 signal_levels = vlv_signal_levels(intel_dp);
3528 mask = 0;
3529 } else if (IS_GEN7(dev) && port == PORT_A) {
3530 signal_levels = gen7_edp_signal_levels(train_set);
3531 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3532 } else if (IS_GEN6(dev) && port == PORT_A) {
3533 signal_levels = gen6_edp_signal_levels(train_set);
3534 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3535 } else {
3536 signal_levels = gen4_signal_levels(train_set);
3537 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3538 }
3539
3540 if (mask)
3541 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3542
3543 DRM_DEBUG_KMS("Using vswing level %d\n",
3544 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3545 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3546 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3547 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3548
3549 *DP = (*DP & ~mask) | signal_levels;
3550 }
3551
3552 static bool
3553 intel_dp_set_link_train(struct intel_dp *intel_dp,
3554 uint32_t *DP,
3555 uint8_t dp_train_pat)
3556 {
3557 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3558 struct drm_device *dev = intel_dig_port->base.base.dev;
3559 struct drm_i915_private *dev_priv = dev->dev_private;
3560 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3561 int ret, len;
3562
3563 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3564
3565 I915_WRITE(intel_dp->output_reg, *DP);
3566 POSTING_READ(intel_dp->output_reg);
3567
3568 buf[0] = dp_train_pat;
3569 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3570 DP_TRAINING_PATTERN_DISABLE) {
3571 /* don't write DP_TRAINING_LANEx_SET on disable */
3572 len = 1;
3573 } else {
3574 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3575 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3576 len = intel_dp->lane_count + 1;
3577 }
3578
3579 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3580 buf, len);
3581
3582 return ret == len;
3583 }
3584
3585 static bool
3586 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3587 uint8_t dp_train_pat)
3588 {
3589 if (!intel_dp->train_set_valid)
3590 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3591 intel_dp_set_signal_levels(intel_dp, DP);
3592 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3593 }
3594
3595 static bool
3596 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3597 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3598 {
3599 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3600 struct drm_device *dev = intel_dig_port->base.base.dev;
3601 struct drm_i915_private *dev_priv = dev->dev_private;
3602 int ret;
3603
3604 intel_get_adjust_train(intel_dp, link_status);
3605 intel_dp_set_signal_levels(intel_dp, DP);
3606
3607 I915_WRITE(intel_dp->output_reg, *DP);
3608 POSTING_READ(intel_dp->output_reg);
3609
3610 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3611 intel_dp->train_set, intel_dp->lane_count);
3612
3613 return ret == intel_dp->lane_count;
3614 }
3615
3616 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3617 {
3618 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3619 struct drm_device *dev = intel_dig_port->base.base.dev;
3620 struct drm_i915_private *dev_priv = dev->dev_private;
3621 enum port port = intel_dig_port->port;
3622 uint32_t val;
3623
3624 if (!HAS_DDI(dev))
3625 return;
3626
3627 val = I915_READ(DP_TP_CTL(port));
3628 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3629 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3630 I915_WRITE(DP_TP_CTL(port), val);
3631
3632 /*
3633 * On PORT_A we can have only eDP in SST mode. There the only reason
3634 * we need to set idle transmission mode is to work around a HW issue
3635 * where we enable the pipe while not in idle link-training mode.
3636 * In this case there is requirement to wait for a minimum number of
3637 * idle patterns to be sent.
3638 */
3639 if (port == PORT_A)
3640 return;
3641
3642 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3643 1))
3644 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3645 }
3646
3647 /* Enable corresponding port and start training pattern 1 */
3648 void
3649 intel_dp_start_link_train(struct intel_dp *intel_dp)
3650 {
3651 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3652 struct drm_device *dev = encoder->dev;
3653 int i;
3654 uint8_t voltage;
3655 int voltage_tries, loop_tries;
3656 uint32_t DP = intel_dp->DP;
3657 uint8_t link_config[2];
3658
3659 if (HAS_DDI(dev))
3660 intel_ddi_prepare_link_retrain(encoder);
3661
3662 /* Write the link configuration data */
3663 link_config[0] = intel_dp->link_bw;
3664 link_config[1] = intel_dp->lane_count;
3665 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3666 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3667 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3668 if (intel_dp->num_sink_rates)
3669 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3670 &intel_dp->rate_select, 1);
3671
3672 link_config[0] = 0;
3673 link_config[1] = DP_SET_ANSI_8B10B;
3674 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3675
3676 DP |= DP_PORT_EN;
3677
3678 /* clock recovery */
3679 if (!intel_dp_reset_link_train(intel_dp, &DP,
3680 DP_TRAINING_PATTERN_1 |
3681 DP_LINK_SCRAMBLING_DISABLE)) {
3682 DRM_ERROR("failed to enable link training\n");
3683 return;
3684 }
3685
3686 voltage = 0xff;
3687 voltage_tries = 0;
3688 loop_tries = 0;
3689 for (;;) {
3690 uint8_t link_status[DP_LINK_STATUS_SIZE];
3691
3692 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3693 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3694 DRM_ERROR("failed to get link status\n");
3695 break;
3696 }
3697
3698 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3699 DRM_DEBUG_KMS("clock recovery OK\n");
3700 break;
3701 }
3702
3703 /*
3704 * if we used previously trained voltage and pre-emphasis values
3705 * and we don't get clock recovery, reset link training values
3706 */
3707 if (intel_dp->train_set_valid) {
3708 DRM_DEBUG_KMS("clock recovery not ok, reset");
3709 /* clear the flag as we are not reusing train set */
3710 intel_dp->train_set_valid = false;
3711 if (!intel_dp_reset_link_train(intel_dp, &DP,
3712 DP_TRAINING_PATTERN_1 |
3713 DP_LINK_SCRAMBLING_DISABLE)) {
3714 DRM_ERROR("failed to enable link training\n");
3715 return;
3716 }
3717 continue;
3718 }
3719
3720 /* Check to see if we've tried the max voltage */
3721 for (i = 0; i < intel_dp->lane_count; i++)
3722 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3723 break;
3724 if (i == intel_dp->lane_count) {
3725 ++loop_tries;
3726 if (loop_tries == 5) {
3727 DRM_ERROR("too many full retries, give up\n");
3728 break;
3729 }
3730 intel_dp_reset_link_train(intel_dp, &DP,
3731 DP_TRAINING_PATTERN_1 |
3732 DP_LINK_SCRAMBLING_DISABLE);
3733 voltage_tries = 0;
3734 continue;
3735 }
3736
3737 /* Check to see if we've tried the same voltage 5 times */
3738 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3739 ++voltage_tries;
3740 if (voltage_tries == 5) {
3741 DRM_ERROR("too many voltage retries, give up\n");
3742 break;
3743 }
3744 } else
3745 voltage_tries = 0;
3746 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3747
3748 /* Update training set as requested by target */
3749 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3750 DRM_ERROR("failed to update link training\n");
3751 break;
3752 }
3753 }
3754
3755 intel_dp->DP = DP;
3756 }
3757
3758 void
3759 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3760 {
3761 bool channel_eq = false;
3762 int tries, cr_tries;
3763 uint32_t DP = intel_dp->DP;
3764 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3765
3766 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3767 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3768 training_pattern = DP_TRAINING_PATTERN_3;
3769
3770 /* channel equalization */
3771 if (!intel_dp_set_link_train(intel_dp, &DP,
3772 training_pattern |
3773 DP_LINK_SCRAMBLING_DISABLE)) {
3774 DRM_ERROR("failed to start channel equalization\n");
3775 return;
3776 }
3777
3778 tries = 0;
3779 cr_tries = 0;
3780 channel_eq = false;
3781 for (;;) {
3782 uint8_t link_status[DP_LINK_STATUS_SIZE];
3783
3784 if (cr_tries > 5) {
3785 DRM_ERROR("failed to train DP, aborting\n");
3786 break;
3787 }
3788
3789 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3790 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3791 DRM_ERROR("failed to get link status\n");
3792 break;
3793 }
3794
3795 /* Make sure clock is still ok */
3796 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3797 intel_dp->train_set_valid = false;
3798 intel_dp_start_link_train(intel_dp);
3799 intel_dp_set_link_train(intel_dp, &DP,
3800 training_pattern |
3801 DP_LINK_SCRAMBLING_DISABLE);
3802 cr_tries++;
3803 continue;
3804 }
3805
3806 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3807 channel_eq = true;
3808 break;
3809 }
3810
3811 /* Try 5 times, then try clock recovery if that fails */
3812 if (tries > 5) {
3813 intel_dp->train_set_valid = false;
3814 intel_dp_start_link_train(intel_dp);
3815 intel_dp_set_link_train(intel_dp, &DP,
3816 training_pattern |
3817 DP_LINK_SCRAMBLING_DISABLE);
3818 tries = 0;
3819 cr_tries++;
3820 continue;
3821 }
3822
3823 /* Update training set as requested by target */
3824 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3825 DRM_ERROR("failed to update link training\n");
3826 break;
3827 }
3828 ++tries;
3829 }
3830
3831 intel_dp_set_idle_link_train(intel_dp);
3832
3833 intel_dp->DP = DP;
3834
3835 if (channel_eq) {
3836 intel_dp->train_set_valid = true;
3837 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3838 }
3839 }
3840
3841 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3842 {
3843 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3844 DP_TRAINING_PATTERN_DISABLE);
3845 }
3846
3847 static void
3848 intel_dp_link_down(struct intel_dp *intel_dp)
3849 {
3850 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3851 enum port port = intel_dig_port->port;
3852 struct drm_device *dev = intel_dig_port->base.base.dev;
3853 struct drm_i915_private *dev_priv = dev->dev_private;
3854 uint32_t DP = intel_dp->DP;
3855
3856 if (WARN_ON(HAS_DDI(dev)))
3857 return;
3858
3859 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3860 return;
3861
3862 DRM_DEBUG_KMS("\n");
3863
3864 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3865 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3866 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3867 } else {
3868 if (IS_CHERRYVIEW(dev))
3869 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3870 else
3871 DP &= ~DP_LINK_TRAIN_MASK;
3872 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3873 }
3874 POSTING_READ(intel_dp->output_reg);
3875
3876 if (HAS_PCH_IBX(dev) &&
3877 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3878 /* Hardware workaround: leaving our transcoder select
3879 * set to transcoder B while it's off will prevent the
3880 * corresponding HDMI output on transcoder A.
3881 *
3882 * Combine this with another hardware workaround:
3883 * transcoder select bit can only be cleared while the
3884 * port is enabled.
3885 */
3886 DP &= ~DP_PIPEB_SELECT;
3887 I915_WRITE(intel_dp->output_reg, DP);
3888 POSTING_READ(intel_dp->output_reg);
3889 }
3890
3891 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3892 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3893 POSTING_READ(intel_dp->output_reg);
3894 msleep(intel_dp->panel_power_down_delay);
3895 }
3896
3897 static bool
3898 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3899 {
3900 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3901 struct drm_device *dev = dig_port->base.base.dev;
3902 struct drm_i915_private *dev_priv = dev->dev_private;
3903 uint8_t rev;
3904
3905 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3906 sizeof(intel_dp->dpcd)) < 0)
3907 return false; /* aux transfer failed */
3908
3909 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3910
3911 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3912 return false; /* DPCD not present */
3913
3914 /* Check if the panel supports PSR */
3915 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3916 if (is_edp(intel_dp)) {
3917 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3918 intel_dp->psr_dpcd,
3919 sizeof(intel_dp->psr_dpcd));
3920 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3921 dev_priv->psr.sink_support = true;
3922 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3923 }
3924
3925 if (INTEL_INFO(dev)->gen >= 9 &&
3926 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3927 uint8_t frame_sync_cap;
3928
3929 dev_priv->psr.sink_support = true;
3930 intel_dp_dpcd_read_wake(&intel_dp->aux,
3931 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3932 &frame_sync_cap, 1);
3933 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3934 /* PSR2 needs frame sync as well */
3935 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3936 DRM_DEBUG_KMS("PSR2 %s on sink",
3937 dev_priv->psr.psr2_support ? "supported" : "not supported");
3938 }
3939 }
3940
3941 /* Training Pattern 3 support, both source and sink */
3942 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3943 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3944 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3945 intel_dp->use_tps3 = true;
3946 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3947 } else
3948 intel_dp->use_tps3 = false;
3949
3950 /* Intermediate frequency support */
3951 if (is_edp(intel_dp) &&
3952 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3953 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3954 (rev >= 0x03)) { /* eDp v1.4 or higher */
3955 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3956 int i;
3957
3958 intel_dp_dpcd_read_wake(&intel_dp->aux,
3959 DP_SUPPORTED_LINK_RATES,
3960 sink_rates,
3961 sizeof(sink_rates));
3962
3963 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3964 int val = le16_to_cpu(sink_rates[i]);
3965
3966 if (val == 0)
3967 break;
3968
3969 /* Value read is in kHz while drm clock is saved in deca-kHz */
3970 intel_dp->sink_rates[i] = (val * 200) / 10;
3971 }
3972 intel_dp->num_sink_rates = i;
3973 }
3974
3975 intel_dp_print_rates(intel_dp);
3976
3977 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3978 DP_DWN_STRM_PORT_PRESENT))
3979 return true; /* native DP sink */
3980
3981 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3982 return true; /* no per-port downstream info */
3983
3984 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3985 intel_dp->downstream_ports,
3986 DP_MAX_DOWNSTREAM_PORTS) < 0)
3987 return false; /* downstream port status fetch failed */
3988
3989 return true;
3990 }
3991
3992 static void
3993 intel_dp_probe_oui(struct intel_dp *intel_dp)
3994 {
3995 u8 buf[3];
3996
3997 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3998 return;
3999
4000 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4001 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4002 buf[0], buf[1], buf[2]);
4003
4004 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4005 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4006 buf[0], buf[1], buf[2]);
4007 }
4008
4009 static bool
4010 intel_dp_probe_mst(struct intel_dp *intel_dp)
4011 {
4012 u8 buf[1];
4013
4014 if (!intel_dp->can_mst)
4015 return false;
4016
4017 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4018 return false;
4019
4020 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4021 if (buf[0] & DP_MST_CAP) {
4022 DRM_DEBUG_KMS("Sink is MST capable\n");
4023 intel_dp->is_mst = true;
4024 } else {
4025 DRM_DEBUG_KMS("Sink is not MST capable\n");
4026 intel_dp->is_mst = false;
4027 }
4028 }
4029
4030 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4031 return intel_dp->is_mst;
4032 }
4033
4034 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4035 {
4036 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4037 struct drm_device *dev = intel_dig_port->base.base.dev;
4038 struct intel_crtc *intel_crtc =
4039 to_intel_crtc(intel_dig_port->base.base.crtc);
4040 u8 buf;
4041 int test_crc_count;
4042 int attempts = 6;
4043
4044 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4045 return -EIO;
4046
4047 if (!(buf & DP_TEST_CRC_SUPPORTED))
4048 return -ENOTTY;
4049
4050 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4051 return -EIO;
4052
4053 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4054 buf | DP_TEST_SINK_START) < 0)
4055 return -EIO;
4056
4057 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4058 return -EIO;
4059 test_crc_count = buf & DP_TEST_COUNT_MASK;
4060
4061 do {
4062 if (drm_dp_dpcd_readb(&intel_dp->aux,
4063 DP_TEST_SINK_MISC, &buf) < 0)
4064 return -EIO;
4065 intel_wait_for_vblank(dev, intel_crtc->pipe);
4066 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4067
4068 if (attempts == 0) {
4069 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4070 return -ETIMEDOUT;
4071 }
4072
4073 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
4074 return -EIO;
4075
4076 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4077 return -EIO;
4078 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4079 buf & ~DP_TEST_SINK_START) < 0)
4080 return -EIO;
4081
4082 return 0;
4083 }
4084
4085 static bool
4086 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4087 {
4088 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4089 DP_DEVICE_SERVICE_IRQ_VECTOR,
4090 sink_irq_vector, 1) == 1;
4091 }
4092
4093 static bool
4094 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4095 {
4096 int ret;
4097
4098 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4099 DP_SINK_COUNT_ESI,
4100 sink_irq_vector, 14);
4101 if (ret != 14)
4102 return false;
4103
4104 return true;
4105 }
4106
4107 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4108 {
4109 uint8_t test_result = DP_TEST_ACK;
4110 return test_result;
4111 }
4112
4113 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4114 {
4115 uint8_t test_result = DP_TEST_NAK;
4116 return test_result;
4117 }
4118
4119 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4120 {
4121 uint8_t test_result = DP_TEST_NAK;
4122 struct intel_connector *intel_connector = intel_dp->attached_connector;
4123 struct drm_connector *connector = &intel_connector->base;
4124
4125 if (intel_connector->detect_edid == NULL ||
4126 connector->edid_corrupt ||
4127 intel_dp->aux.i2c_defer_count > 6) {
4128 /* Check EDID read for NACKs, DEFERs and corruption
4129 * (DP CTS 1.2 Core r1.1)
4130 * 4.2.2.4 : Failed EDID read, I2C_NAK
4131 * 4.2.2.5 : Failed EDID read, I2C_DEFER
4132 * 4.2.2.6 : EDID corruption detected
4133 * Use failsafe mode for all cases
4134 */
4135 if (intel_dp->aux.i2c_nack_count > 0 ||
4136 intel_dp->aux.i2c_defer_count > 0)
4137 DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4138 intel_dp->aux.i2c_nack_count,
4139 intel_dp->aux.i2c_defer_count);
4140 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4141 } else {
4142 if (!drm_dp_dpcd_write(&intel_dp->aux,
4143 DP_TEST_EDID_CHECKSUM,
4144 &intel_connector->detect_edid->checksum,
4145 1))
4146 DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4147
4148 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4149 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4150 }
4151
4152 /* Set test active flag here so userspace doesn't interrupt things */
4153 intel_dp->compliance_test_active = 1;
4154
4155 return test_result;
4156 }
4157
4158 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4159 {
4160 uint8_t test_result = DP_TEST_NAK;
4161 return test_result;
4162 }
4163
4164 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4165 {
4166 uint8_t response = DP_TEST_NAK;
4167 uint8_t rxdata = 0;
4168 int status = 0;
4169
4170 intel_dp->compliance_test_active = 0;
4171 intel_dp->compliance_test_type = 0;
4172 intel_dp->compliance_test_data = 0;
4173
4174 intel_dp->aux.i2c_nack_count = 0;
4175 intel_dp->aux.i2c_defer_count = 0;
4176
4177 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4178 if (status <= 0) {
4179 DRM_DEBUG_KMS("Could not read test request from sink\n");
4180 goto update_status;
4181 }
4182
4183 switch (rxdata) {
4184 case DP_TEST_LINK_TRAINING:
4185 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4186 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4187 response = intel_dp_autotest_link_training(intel_dp);
4188 break;
4189 case DP_TEST_LINK_VIDEO_PATTERN:
4190 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4191 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4192 response = intel_dp_autotest_video_pattern(intel_dp);
4193 break;
4194 case DP_TEST_LINK_EDID_READ:
4195 DRM_DEBUG_KMS("EDID test requested\n");
4196 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4197 response = intel_dp_autotest_edid(intel_dp);
4198 break;
4199 case DP_TEST_LINK_PHY_TEST_PATTERN:
4200 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4201 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4202 response = intel_dp_autotest_phy_pattern(intel_dp);
4203 break;
4204 default:
4205 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4206 break;
4207 }
4208
4209 update_status:
4210 status = drm_dp_dpcd_write(&intel_dp->aux,
4211 DP_TEST_RESPONSE,
4212 &response, 1);
4213 if (status <= 0)
4214 DRM_DEBUG_KMS("Could not write test response to sink\n");
4215 }
4216
4217 static int
4218 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4219 {
4220 bool bret;
4221
4222 if (intel_dp->is_mst) {
4223 u8 esi[16] = { 0 };
4224 int ret = 0;
4225 int retry;
4226 bool handled;
4227 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4228 go_again:
4229 if (bret == true) {
4230
4231 /* check link status - esi[10] = 0x200c */
4232 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4233 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4234 intel_dp_start_link_train(intel_dp);
4235 intel_dp_complete_link_train(intel_dp);
4236 intel_dp_stop_link_train(intel_dp);
4237 }
4238
4239 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4240 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4241
4242 if (handled) {
4243 for (retry = 0; retry < 3; retry++) {
4244 int wret;
4245 wret = drm_dp_dpcd_write(&intel_dp->aux,
4246 DP_SINK_COUNT_ESI+1,
4247 &esi[1], 3);
4248 if (wret == 3) {
4249 break;
4250 }
4251 }
4252
4253 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4254 if (bret == true) {
4255 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4256 goto go_again;
4257 }
4258 } else
4259 ret = 0;
4260
4261 return ret;
4262 } else {
4263 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4264 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4265 intel_dp->is_mst = false;
4266 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4267 /* send a hotplug event */
4268 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4269 }
4270 }
4271 return -EINVAL;
4272 }
4273
4274 /*
4275 * According to DP spec
4276 * 5.1.2:
4277 * 1. Read DPCD
4278 * 2. Configure link according to Receiver Capabilities
4279 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4280 * 4. Check link status on receipt of hot-plug interrupt
4281 */
4282 static void
4283 intel_dp_check_link_status(struct intel_dp *intel_dp)
4284 {
4285 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4286 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4287 u8 sink_irq_vector;
4288 u8 link_status[DP_LINK_STATUS_SIZE];
4289
4290 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4291
4292 if (!intel_encoder->connectors_active)
4293 return;
4294
4295 if (WARN_ON(!intel_encoder->base.crtc))
4296 return;
4297
4298 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4299 return;
4300
4301 /* Try to read receiver status if the link appears to be up */
4302 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4303 return;
4304 }
4305
4306 /* Now read the DPCD to see if it's actually running */
4307 if (!intel_dp_get_dpcd(intel_dp)) {
4308 return;
4309 }
4310
4311 /* Try to read the source of the interrupt */
4312 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4313 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4314 /* Clear interrupt source */
4315 drm_dp_dpcd_writeb(&intel_dp->aux,
4316 DP_DEVICE_SERVICE_IRQ_VECTOR,
4317 sink_irq_vector);
4318
4319 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4320 DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4321 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4322 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4323 }
4324
4325 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4326 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4327 intel_encoder->base.name);
4328 intel_dp_start_link_train(intel_dp);
4329 intel_dp_complete_link_train(intel_dp);
4330 intel_dp_stop_link_train(intel_dp);
4331 }
4332 }
4333
4334 /* XXX this is probably wrong for multiple downstream ports */
4335 static enum drm_connector_status
4336 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4337 {
4338 uint8_t *dpcd = intel_dp->dpcd;
4339 uint8_t type;
4340
4341 if (!intel_dp_get_dpcd(intel_dp))
4342 return connector_status_disconnected;
4343
4344 /* if there's no downstream port, we're done */
4345 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4346 return connector_status_connected;
4347
4348 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4349 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4350 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4351 uint8_t reg;
4352
4353 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4354 &reg, 1) < 0)
4355 return connector_status_unknown;
4356
4357 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4358 : connector_status_disconnected;
4359 }
4360
4361 /* If no HPD, poke DDC gently */
4362 if (drm_probe_ddc(&intel_dp->aux.ddc))
4363 return connector_status_connected;
4364
4365 /* Well we tried, say unknown for unreliable port types */
4366 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4367 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4368 if (type == DP_DS_PORT_TYPE_VGA ||
4369 type == DP_DS_PORT_TYPE_NON_EDID)
4370 return connector_status_unknown;
4371 } else {
4372 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4373 DP_DWN_STRM_PORT_TYPE_MASK;
4374 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4375 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4376 return connector_status_unknown;
4377 }
4378
4379 /* Anything else is out of spec, warn and ignore */
4380 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4381 return connector_status_disconnected;
4382 }
4383
4384 static enum drm_connector_status
4385 edp_detect(struct intel_dp *intel_dp)
4386 {
4387 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4388 enum drm_connector_status status;
4389
4390 status = intel_panel_detect(dev);
4391 if (status == connector_status_unknown)
4392 status = connector_status_connected;
4393
4394 return status;
4395 }
4396
4397 static enum drm_connector_status
4398 ironlake_dp_detect(struct intel_dp *intel_dp)
4399 {
4400 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4401 struct drm_i915_private *dev_priv = dev->dev_private;
4402 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4403
4404 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4405 return connector_status_disconnected;
4406
4407 return intel_dp_detect_dpcd(intel_dp);
4408 }
4409
4410 static int g4x_digital_port_connected(struct drm_device *dev,
4411 struct intel_digital_port *intel_dig_port)
4412 {
4413 struct drm_i915_private *dev_priv = dev->dev_private;
4414 uint32_t bit;
4415
4416 if (IS_VALLEYVIEW(dev)) {
4417 switch (intel_dig_port->port) {
4418 case PORT_B:
4419 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4420 break;
4421 case PORT_C:
4422 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4423 break;
4424 case PORT_D:
4425 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4426 break;
4427 default:
4428 return -EINVAL;
4429 }
4430 } else {
4431 switch (intel_dig_port->port) {
4432 case PORT_B:
4433 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4434 break;
4435 case PORT_C:
4436 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4437 break;
4438 case PORT_D:
4439 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4440 break;
4441 default:
4442 return -EINVAL;
4443 }
4444 }
4445
4446 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4447 return 0;
4448 return 1;
4449 }
4450
4451 static enum drm_connector_status
4452 g4x_dp_detect(struct intel_dp *intel_dp)
4453 {
4454 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4455 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4456 int ret;
4457
4458 /* Can't disconnect eDP, but you can close the lid... */
4459 if (is_edp(intel_dp)) {
4460 enum drm_connector_status status;
4461
4462 status = intel_panel_detect(dev);
4463 if (status == connector_status_unknown)
4464 status = connector_status_connected;
4465 return status;
4466 }
4467
4468 ret = g4x_digital_port_connected(dev, intel_dig_port);
4469 if (ret == -EINVAL)
4470 return connector_status_unknown;
4471 else if (ret == 0)
4472 return connector_status_disconnected;
4473
4474 return intel_dp_detect_dpcd(intel_dp);
4475 }
4476
4477 static struct edid *
4478 intel_dp_get_edid(struct intel_dp *intel_dp)
4479 {
4480 struct intel_connector *intel_connector = intel_dp->attached_connector;
4481
4482 /* use cached edid if we have one */
4483 if (intel_connector->edid) {
4484 /* invalid edid */
4485 if (IS_ERR(intel_connector->edid))
4486 return NULL;
4487
4488 return drm_edid_duplicate(intel_connector->edid);
4489 } else
4490 return drm_get_edid(&intel_connector->base,
4491 &intel_dp->aux.ddc);
4492 }
4493
4494 static void
4495 intel_dp_set_edid(struct intel_dp *intel_dp)
4496 {
4497 struct intel_connector *intel_connector = intel_dp->attached_connector;
4498 struct edid *edid;
4499
4500 edid = intel_dp_get_edid(intel_dp);
4501 intel_connector->detect_edid = edid;
4502
4503 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4504 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4505 else
4506 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4507 }
4508
4509 static void
4510 intel_dp_unset_edid(struct intel_dp *intel_dp)
4511 {
4512 struct intel_connector *intel_connector = intel_dp->attached_connector;
4513
4514 kfree(intel_connector->detect_edid);
4515 intel_connector->detect_edid = NULL;
4516
4517 intel_dp->has_audio = false;
4518 }
4519
4520 static enum intel_display_power_domain
4521 intel_dp_power_get(struct intel_dp *dp)
4522 {
4523 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4524 enum intel_display_power_domain power_domain;
4525
4526 power_domain = intel_display_port_power_domain(encoder);
4527 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4528
4529 return power_domain;
4530 }
4531
4532 static void
4533 intel_dp_power_put(struct intel_dp *dp,
4534 enum intel_display_power_domain power_domain)
4535 {
4536 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4537 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4538 }
4539
4540 static enum drm_connector_status
4541 intel_dp_detect(struct drm_connector *connector, bool force)
4542 {
4543 struct intel_dp *intel_dp = intel_attached_dp(connector);
4544 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4545 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4546 struct drm_device *dev = connector->dev;
4547 enum drm_connector_status status;
4548 enum intel_display_power_domain power_domain;
4549 bool ret;
4550 u8 sink_irq_vector;
4551
4552 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4553 connector->base.id, connector->name);
4554 intel_dp_unset_edid(intel_dp);
4555
4556 if (intel_dp->is_mst) {
4557 /* MST devices are disconnected from a monitor POV */
4558 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4559 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4560 return connector_status_disconnected;
4561 }
4562
4563 power_domain = intel_dp_power_get(intel_dp);
4564
4565 /* Can't disconnect eDP, but you can close the lid... */
4566 if (is_edp(intel_dp))
4567 status = edp_detect(intel_dp);
4568 else if (HAS_PCH_SPLIT(dev))
4569 status = ironlake_dp_detect(intel_dp);
4570 else
4571 status = g4x_dp_detect(intel_dp);
4572 if (status != connector_status_connected)
4573 goto out;
4574
4575 intel_dp_probe_oui(intel_dp);
4576
4577 ret = intel_dp_probe_mst(intel_dp);
4578 if (ret) {
4579 /* if we are in MST mode then this connector
4580 won't appear connected or have anything with EDID on it */
4581 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4582 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4583 status = connector_status_disconnected;
4584 goto out;
4585 }
4586
4587 intel_dp_set_edid(intel_dp);
4588
4589 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4590 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4591 status = connector_status_connected;
4592
4593 /* Try to read the source of the interrupt */
4594 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4595 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4596 /* Clear interrupt source */
4597 drm_dp_dpcd_writeb(&intel_dp->aux,
4598 DP_DEVICE_SERVICE_IRQ_VECTOR,
4599 sink_irq_vector);
4600
4601 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4602 intel_dp_handle_test_request(intel_dp);
4603 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4604 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4605 }
4606
4607 out:
4608 intel_dp_power_put(intel_dp, power_domain);
4609 return status;
4610 }
4611
4612 static void
4613 intel_dp_force(struct drm_connector *connector)
4614 {
4615 struct intel_dp *intel_dp = intel_attached_dp(connector);
4616 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4617 enum intel_display_power_domain power_domain;
4618
4619 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4620 connector->base.id, connector->name);
4621 intel_dp_unset_edid(intel_dp);
4622
4623 if (connector->status != connector_status_connected)
4624 return;
4625
4626 power_domain = intel_dp_power_get(intel_dp);
4627
4628 intel_dp_set_edid(intel_dp);
4629
4630 intel_dp_power_put(intel_dp, power_domain);
4631
4632 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4633 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4634 }
4635
4636 static int intel_dp_get_modes(struct drm_connector *connector)
4637 {
4638 struct intel_connector *intel_connector = to_intel_connector(connector);
4639 struct edid *edid;
4640
4641 edid = intel_connector->detect_edid;
4642 if (edid) {
4643 int ret = intel_connector_update_modes(connector, edid);
4644 if (ret)
4645 return ret;
4646 }
4647
4648 /* if eDP has no EDID, fall back to fixed mode */
4649 if (is_edp(intel_attached_dp(connector)) &&
4650 intel_connector->panel.fixed_mode) {
4651 struct drm_display_mode *mode;
4652
4653 mode = drm_mode_duplicate(connector->dev,
4654 intel_connector->panel.fixed_mode);
4655 if (mode) {
4656 drm_mode_probed_add(connector, mode);
4657 return 1;
4658 }
4659 }
4660
4661 return 0;
4662 }
4663
4664 static bool
4665 intel_dp_detect_audio(struct drm_connector *connector)
4666 {
4667 bool has_audio = false;
4668 struct edid *edid;
4669
4670 edid = to_intel_connector(connector)->detect_edid;
4671 if (edid)
4672 has_audio = drm_detect_monitor_audio(edid);
4673
4674 return has_audio;
4675 }
4676
4677 static int
4678 intel_dp_set_property(struct drm_connector *connector,
4679 struct drm_property *property,
4680 uint64_t val)
4681 {
4682 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4683 struct intel_connector *intel_connector = to_intel_connector(connector);
4684 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4685 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4686 int ret;
4687
4688 ret = drm_object_property_set_value(&connector->base, property, val);
4689 if (ret)
4690 return ret;
4691
4692 if (property == dev_priv->force_audio_property) {
4693 int i = val;
4694 bool has_audio;
4695
4696 if (i == intel_dp->force_audio)
4697 return 0;
4698
4699 intel_dp->force_audio = i;
4700
4701 if (i == HDMI_AUDIO_AUTO)
4702 has_audio = intel_dp_detect_audio(connector);
4703 else
4704 has_audio = (i == HDMI_AUDIO_ON);
4705
4706 if (has_audio == intel_dp->has_audio)
4707 return 0;
4708
4709 intel_dp->has_audio = has_audio;
4710 goto done;
4711 }
4712
4713 if (property == dev_priv->broadcast_rgb_property) {
4714 bool old_auto = intel_dp->color_range_auto;
4715 uint32_t old_range = intel_dp->color_range;
4716
4717 switch (val) {
4718 case INTEL_BROADCAST_RGB_AUTO:
4719 intel_dp->color_range_auto = true;
4720 break;
4721 case INTEL_BROADCAST_RGB_FULL:
4722 intel_dp->color_range_auto = false;
4723 intel_dp->color_range = 0;
4724 break;
4725 case INTEL_BROADCAST_RGB_LIMITED:
4726 intel_dp->color_range_auto = false;
4727 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4728 break;
4729 default:
4730 return -EINVAL;
4731 }
4732
4733 if (old_auto == intel_dp->color_range_auto &&
4734 old_range == intel_dp->color_range)
4735 return 0;
4736
4737 goto done;
4738 }
4739
4740 if (is_edp(intel_dp) &&
4741 property == connector->dev->mode_config.scaling_mode_property) {
4742 if (val == DRM_MODE_SCALE_NONE) {
4743 DRM_DEBUG_KMS("no scaling not supported\n");
4744 return -EINVAL;
4745 }
4746
4747 if (intel_connector->panel.fitting_mode == val) {
4748 /* the eDP scaling property is not changed */
4749 return 0;
4750 }
4751 intel_connector->panel.fitting_mode = val;
4752
4753 goto done;
4754 }
4755
4756 return -EINVAL;
4757
4758 done:
4759 if (intel_encoder->base.crtc)
4760 intel_crtc_restore_mode(intel_encoder->base.crtc);
4761
4762 return 0;
4763 }
4764
4765 static void
4766 intel_dp_connector_destroy(struct drm_connector *connector)
4767 {
4768 struct intel_connector *intel_connector = to_intel_connector(connector);
4769
4770 kfree(intel_connector->detect_edid);
4771
4772 if (!IS_ERR_OR_NULL(intel_connector->edid))
4773 kfree(intel_connector->edid);
4774
4775 /* Can't call is_edp() since the encoder may have been destroyed
4776 * already. */
4777 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4778 intel_panel_fini(&intel_connector->panel);
4779
4780 drm_connector_cleanup(connector);
4781 kfree(connector);
4782 }
4783
4784 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4785 {
4786 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4787 struct intel_dp *intel_dp = &intel_dig_port->dp;
4788
4789 drm_dp_aux_unregister(&intel_dp->aux);
4790 intel_dp_mst_encoder_cleanup(intel_dig_port);
4791 if (is_edp(intel_dp)) {
4792 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4793 /*
4794 * vdd might still be enabled do to the delayed vdd off.
4795 * Make sure vdd is actually turned off here.
4796 */
4797 pps_lock(intel_dp);
4798 edp_panel_vdd_off_sync(intel_dp);
4799 pps_unlock(intel_dp);
4800
4801 if (intel_dp->edp_notifier.notifier_call) {
4802 unregister_reboot_notifier(&intel_dp->edp_notifier);
4803 intel_dp->edp_notifier.notifier_call = NULL;
4804 }
4805 }
4806 drm_encoder_cleanup(encoder);
4807 kfree(intel_dig_port);
4808 }
4809
4810 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4811 {
4812 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4813
4814 if (!is_edp(intel_dp))
4815 return;
4816
4817 /*
4818 * vdd might still be enabled do to the delayed vdd off.
4819 * Make sure vdd is actually turned off here.
4820 */
4821 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4822 pps_lock(intel_dp);
4823 edp_panel_vdd_off_sync(intel_dp);
4824 pps_unlock(intel_dp);
4825 }
4826
4827 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4828 {
4829 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4830 struct drm_device *dev = intel_dig_port->base.base.dev;
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 enum intel_display_power_domain power_domain;
4833
4834 lockdep_assert_held(&dev_priv->pps_mutex);
4835
4836 if (!edp_have_panel_vdd(intel_dp))
4837 return;
4838
4839 /*
4840 * The VDD bit needs a power domain reference, so if the bit is
4841 * already enabled when we boot or resume, grab this reference and
4842 * schedule a vdd off, so we don't hold on to the reference
4843 * indefinitely.
4844 */
4845 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4846 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4847 intel_display_power_get(dev_priv, power_domain);
4848
4849 edp_panel_vdd_schedule_off(intel_dp);
4850 }
4851
4852 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4853 {
4854 struct intel_dp *intel_dp;
4855
4856 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4857 return;
4858
4859 intel_dp = enc_to_intel_dp(encoder);
4860
4861 pps_lock(intel_dp);
4862
4863 /*
4864 * Read out the current power sequencer assignment,
4865 * in case the BIOS did something with it.
4866 */
4867 if (IS_VALLEYVIEW(encoder->dev))
4868 vlv_initial_power_sequencer_setup(intel_dp);
4869
4870 intel_edp_panel_vdd_sanitize(intel_dp);
4871
4872 pps_unlock(intel_dp);
4873 }
4874
4875 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4876 .dpms = intel_connector_dpms,
4877 .detect = intel_dp_detect,
4878 .force = intel_dp_force,
4879 .fill_modes = drm_helper_probe_single_connector_modes,
4880 .set_property = intel_dp_set_property,
4881 .atomic_get_property = intel_connector_atomic_get_property,
4882 .destroy = intel_dp_connector_destroy,
4883 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4884 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4885 };
4886
4887 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4888 .get_modes = intel_dp_get_modes,
4889 .mode_valid = intel_dp_mode_valid,
4890 .best_encoder = intel_best_encoder,
4891 };
4892
4893 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4894 .reset = intel_dp_encoder_reset,
4895 .destroy = intel_dp_encoder_destroy,
4896 };
4897
4898 void
4899 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4900 {
4901 return;
4902 }
4903
4904 enum irqreturn
4905 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4906 {
4907 struct intel_dp *intel_dp = &intel_dig_port->dp;
4908 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4909 struct drm_device *dev = intel_dig_port->base.base.dev;
4910 struct drm_i915_private *dev_priv = dev->dev_private;
4911 enum intel_display_power_domain power_domain;
4912 enum irqreturn ret = IRQ_NONE;
4913
4914 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4915 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4916
4917 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4918 /*
4919 * vdd off can generate a long pulse on eDP which
4920 * would require vdd on to handle it, and thus we
4921 * would end up in an endless cycle of
4922 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4923 */
4924 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4925 port_name(intel_dig_port->port));
4926 return IRQ_HANDLED;
4927 }
4928
4929 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4930 port_name(intel_dig_port->port),
4931 long_hpd ? "long" : "short");
4932
4933 power_domain = intel_display_port_power_domain(intel_encoder);
4934 intel_display_power_get(dev_priv, power_domain);
4935
4936 if (long_hpd) {
4937 /* indicate that we need to restart link training */
4938 intel_dp->train_set_valid = false;
4939
4940 if (HAS_PCH_SPLIT(dev)) {
4941 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4942 goto mst_fail;
4943 } else {
4944 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4945 goto mst_fail;
4946 }
4947
4948 if (!intel_dp_get_dpcd(intel_dp)) {
4949 goto mst_fail;
4950 }
4951
4952 intel_dp_probe_oui(intel_dp);
4953
4954 if (!intel_dp_probe_mst(intel_dp))
4955 goto mst_fail;
4956
4957 } else {
4958 if (intel_dp->is_mst) {
4959 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4960 goto mst_fail;
4961 }
4962
4963 if (!intel_dp->is_mst) {
4964 /*
4965 * we'll check the link status via the normal hot plug path later -
4966 * but for short hpds we should check it now
4967 */
4968 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4969 intel_dp_check_link_status(intel_dp);
4970 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4971 }
4972 }
4973
4974 ret = IRQ_HANDLED;
4975
4976 goto put_power;
4977 mst_fail:
4978 /* if we were in MST mode, and device is not there get out of MST mode */
4979 if (intel_dp->is_mst) {
4980 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4981 intel_dp->is_mst = false;
4982 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4983 }
4984 put_power:
4985 intel_display_power_put(dev_priv, power_domain);
4986
4987 return ret;
4988 }
4989
4990 /* Return which DP Port should be selected for Transcoder DP control */
4991 int
4992 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4993 {
4994 struct drm_device *dev = crtc->dev;
4995 struct intel_encoder *intel_encoder;
4996 struct intel_dp *intel_dp;
4997
4998 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4999 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5000
5001 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5002 intel_encoder->type == INTEL_OUTPUT_EDP)
5003 return intel_dp->output_reg;
5004 }
5005
5006 return -1;
5007 }
5008
5009 /* check the VBT to see whether the eDP is on DP-D port */
5010 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5011 {
5012 struct drm_i915_private *dev_priv = dev->dev_private;
5013 union child_device_config *p_child;
5014 int i;
5015 static const short port_mapping[] = {
5016 [PORT_B] = PORT_IDPB,
5017 [PORT_C] = PORT_IDPC,
5018 [PORT_D] = PORT_IDPD,
5019 };
5020
5021 if (port == PORT_A)
5022 return true;
5023
5024 if (!dev_priv->vbt.child_dev_num)
5025 return false;
5026
5027 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5028 p_child = dev_priv->vbt.child_dev + i;
5029
5030 if (p_child->common.dvo_port == port_mapping[port] &&
5031 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5032 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5033 return true;
5034 }
5035 return false;
5036 }
5037
5038 void
5039 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5040 {
5041 struct intel_connector *intel_connector = to_intel_connector(connector);
5042
5043 intel_attach_force_audio_property(connector);
5044 intel_attach_broadcast_rgb_property(connector);
5045 intel_dp->color_range_auto = true;
5046
5047 if (is_edp(intel_dp)) {
5048 drm_mode_create_scaling_mode_property(connector->dev);
5049 drm_object_attach_property(
5050 &connector->base,
5051 connector->dev->mode_config.scaling_mode_property,
5052 DRM_MODE_SCALE_ASPECT);
5053 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5054 }
5055 }
5056
5057 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5058 {
5059 intel_dp->last_power_cycle = jiffies;
5060 intel_dp->last_power_on = jiffies;
5061 intel_dp->last_backlight_off = jiffies;
5062 }
5063
5064 static void
5065 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5066 struct intel_dp *intel_dp)
5067 {
5068 struct drm_i915_private *dev_priv = dev->dev_private;
5069 struct edp_power_seq cur, vbt, spec,
5070 *final = &intel_dp->pps_delays;
5071 u32 pp_on, pp_off, pp_div, pp;
5072 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
5073
5074 lockdep_assert_held(&dev_priv->pps_mutex);
5075
5076 /* already initialized? */
5077 if (final->t11_t12 != 0)
5078 return;
5079
5080 if (HAS_PCH_SPLIT(dev)) {
5081 pp_ctrl_reg = PCH_PP_CONTROL;
5082 pp_on_reg = PCH_PP_ON_DELAYS;
5083 pp_off_reg = PCH_PP_OFF_DELAYS;
5084 pp_div_reg = PCH_PP_DIVISOR;
5085 } else {
5086 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5087
5088 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5089 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5090 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5091 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5092 }
5093
5094 /* Workaround: Need to write PP_CONTROL with the unlock key as
5095 * the very first thing. */
5096 pp = ironlake_get_pp_control(intel_dp);
5097 I915_WRITE(pp_ctrl_reg, pp);
5098
5099 pp_on = I915_READ(pp_on_reg);
5100 pp_off = I915_READ(pp_off_reg);
5101 pp_div = I915_READ(pp_div_reg);
5102
5103 /* Pull timing values out of registers */
5104 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5105 PANEL_POWER_UP_DELAY_SHIFT;
5106
5107 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5108 PANEL_LIGHT_ON_DELAY_SHIFT;
5109
5110 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5111 PANEL_LIGHT_OFF_DELAY_SHIFT;
5112
5113 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5114 PANEL_POWER_DOWN_DELAY_SHIFT;
5115
5116 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5117 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5118
5119 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5120 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5121
5122 vbt = dev_priv->vbt.edp_pps;
5123
5124 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5125 * our hw here, which are all in 100usec. */
5126 spec.t1_t3 = 210 * 10;
5127 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5128 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5129 spec.t10 = 500 * 10;
5130 /* This one is special and actually in units of 100ms, but zero
5131 * based in the hw (so we need to add 100 ms). But the sw vbt
5132 * table multiplies it with 1000 to make it in units of 100usec,
5133 * too. */
5134 spec.t11_t12 = (510 + 100) * 10;
5135
5136 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5137 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5138
5139 /* Use the max of the register settings and vbt. If both are
5140 * unset, fall back to the spec limits. */
5141 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5142 spec.field : \
5143 max(cur.field, vbt.field))
5144 assign_final(t1_t3);
5145 assign_final(t8);
5146 assign_final(t9);
5147 assign_final(t10);
5148 assign_final(t11_t12);
5149 #undef assign_final
5150
5151 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5152 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5153 intel_dp->backlight_on_delay = get_delay(t8);
5154 intel_dp->backlight_off_delay = get_delay(t9);
5155 intel_dp->panel_power_down_delay = get_delay(t10);
5156 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5157 #undef get_delay
5158
5159 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5160 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5161 intel_dp->panel_power_cycle_delay);
5162
5163 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5164 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5165 }
5166
5167 static void
5168 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5169 struct intel_dp *intel_dp)
5170 {
5171 struct drm_i915_private *dev_priv = dev->dev_private;
5172 u32 pp_on, pp_off, pp_div, port_sel = 0;
5173 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5174 int pp_on_reg, pp_off_reg, pp_div_reg;
5175 enum port port = dp_to_dig_port(intel_dp)->port;
5176 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5177
5178 lockdep_assert_held(&dev_priv->pps_mutex);
5179
5180 if (HAS_PCH_SPLIT(dev)) {
5181 pp_on_reg = PCH_PP_ON_DELAYS;
5182 pp_off_reg = PCH_PP_OFF_DELAYS;
5183 pp_div_reg = PCH_PP_DIVISOR;
5184 } else {
5185 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5186
5187 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5188 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5189 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5190 }
5191
5192 /*
5193 * And finally store the new values in the power sequencer. The
5194 * backlight delays are set to 1 because we do manual waits on them. For
5195 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5196 * we'll end up waiting for the backlight off delay twice: once when we
5197 * do the manual sleep, and once when we disable the panel and wait for
5198 * the PP_STATUS bit to become zero.
5199 */
5200 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5201 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5202 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5203 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5204 /* Compute the divisor for the pp clock, simply match the Bspec
5205 * formula. */
5206 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5207 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5208 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5209
5210 /* Haswell doesn't have any port selection bits for the panel
5211 * power sequencer any more. */
5212 if (IS_VALLEYVIEW(dev)) {
5213 port_sel = PANEL_PORT_SELECT_VLV(port);
5214 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5215 if (port == PORT_A)
5216 port_sel = PANEL_PORT_SELECT_DPA;
5217 else
5218 port_sel = PANEL_PORT_SELECT_DPD;
5219 }
5220
5221 pp_on |= port_sel;
5222
5223 I915_WRITE(pp_on_reg, pp_on);
5224 I915_WRITE(pp_off_reg, pp_off);
5225 I915_WRITE(pp_div_reg, pp_div);
5226
5227 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5228 I915_READ(pp_on_reg),
5229 I915_READ(pp_off_reg),
5230 I915_READ(pp_div_reg));
5231 }
5232
5233 /**
5234 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5235 * @dev: DRM device
5236 * @refresh_rate: RR to be programmed
5237 *
5238 * This function gets called when refresh rate (RR) has to be changed from
5239 * one frequency to another. Switches can be between high and low RR
5240 * supported by the panel or to any other RR based on media playback (in
5241 * this case, RR value needs to be passed from user space).
5242 *
5243 * The caller of this function needs to take a lock on dev_priv->drrs.
5244 */
5245 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5246 {
5247 struct drm_i915_private *dev_priv = dev->dev_private;
5248 struct intel_encoder *encoder;
5249 struct intel_digital_port *dig_port = NULL;
5250 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5251 struct intel_crtc_state *config = NULL;
5252 struct intel_crtc *intel_crtc = NULL;
5253 u32 reg, val;
5254 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5255
5256 if (refresh_rate <= 0) {
5257 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5258 return;
5259 }
5260
5261 if (intel_dp == NULL) {
5262 DRM_DEBUG_KMS("DRRS not supported.\n");
5263 return;
5264 }
5265
5266 /*
5267 * FIXME: This needs proper synchronization with psr state for some
5268 * platforms that cannot have PSR and DRRS enabled at the same time.
5269 */
5270
5271 dig_port = dp_to_dig_port(intel_dp);
5272 encoder = &dig_port->base;
5273 intel_crtc = to_intel_crtc(encoder->base.crtc);
5274
5275 if (!intel_crtc) {
5276 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5277 return;
5278 }
5279
5280 config = intel_crtc->config;
5281
5282 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5283 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5284 return;
5285 }
5286
5287 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5288 refresh_rate)
5289 index = DRRS_LOW_RR;
5290
5291 if (index == dev_priv->drrs.refresh_rate_type) {
5292 DRM_DEBUG_KMS(
5293 "DRRS requested for previously set RR...ignoring\n");
5294 return;
5295 }
5296
5297 if (!intel_crtc->active) {
5298 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5299 return;
5300 }
5301
5302 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5303 switch (index) {
5304 case DRRS_HIGH_RR:
5305 intel_dp_set_m_n(intel_crtc, M1_N1);
5306 break;
5307 case DRRS_LOW_RR:
5308 intel_dp_set_m_n(intel_crtc, M2_N2);
5309 break;
5310 case DRRS_MAX_RR:
5311 default:
5312 DRM_ERROR("Unsupported refreshrate type\n");
5313 }
5314 } else if (INTEL_INFO(dev)->gen > 6) {
5315 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5316 val = I915_READ(reg);
5317
5318 if (index > DRRS_HIGH_RR) {
5319 if (IS_VALLEYVIEW(dev))
5320 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5321 else
5322 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5323 } else {
5324 if (IS_VALLEYVIEW(dev))
5325 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5326 else
5327 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5328 }
5329 I915_WRITE(reg, val);
5330 }
5331
5332 dev_priv->drrs.refresh_rate_type = index;
5333
5334 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5335 }
5336
5337 /**
5338 * intel_edp_drrs_enable - init drrs struct if supported
5339 * @intel_dp: DP struct
5340 *
5341 * Initializes frontbuffer_bits and drrs.dp
5342 */
5343 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5344 {
5345 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5346 struct drm_i915_private *dev_priv = dev->dev_private;
5347 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5348 struct drm_crtc *crtc = dig_port->base.base.crtc;
5349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5350
5351 if (!intel_crtc->config->has_drrs) {
5352 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5353 return;
5354 }
5355
5356 mutex_lock(&dev_priv->drrs.mutex);
5357 if (WARN_ON(dev_priv->drrs.dp)) {
5358 DRM_ERROR("DRRS already enabled\n");
5359 goto unlock;
5360 }
5361
5362 dev_priv->drrs.busy_frontbuffer_bits = 0;
5363
5364 dev_priv->drrs.dp = intel_dp;
5365
5366 unlock:
5367 mutex_unlock(&dev_priv->drrs.mutex);
5368 }
5369
5370 /**
5371 * intel_edp_drrs_disable - Disable DRRS
5372 * @intel_dp: DP struct
5373 *
5374 */
5375 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5376 {
5377 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5378 struct drm_i915_private *dev_priv = dev->dev_private;
5379 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5380 struct drm_crtc *crtc = dig_port->base.base.crtc;
5381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5382
5383 if (!intel_crtc->config->has_drrs)
5384 return;
5385
5386 mutex_lock(&dev_priv->drrs.mutex);
5387 if (!dev_priv->drrs.dp) {
5388 mutex_unlock(&dev_priv->drrs.mutex);
5389 return;
5390 }
5391
5392 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5393 intel_dp_set_drrs_state(dev_priv->dev,
5394 intel_dp->attached_connector->panel.
5395 fixed_mode->vrefresh);
5396
5397 dev_priv->drrs.dp = NULL;
5398 mutex_unlock(&dev_priv->drrs.mutex);
5399
5400 cancel_delayed_work_sync(&dev_priv->drrs.work);
5401 }
5402
5403 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5404 {
5405 struct drm_i915_private *dev_priv =
5406 container_of(work, typeof(*dev_priv), drrs.work.work);
5407 struct intel_dp *intel_dp;
5408
5409 mutex_lock(&dev_priv->drrs.mutex);
5410
5411 intel_dp = dev_priv->drrs.dp;
5412
5413 if (!intel_dp)
5414 goto unlock;
5415
5416 /*
5417 * The delayed work can race with an invalidate hence we need to
5418 * recheck.
5419 */
5420
5421 if (dev_priv->drrs.busy_frontbuffer_bits)
5422 goto unlock;
5423
5424 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5425 intel_dp_set_drrs_state(dev_priv->dev,
5426 intel_dp->attached_connector->panel.
5427 downclock_mode->vrefresh);
5428
5429 unlock:
5430 mutex_unlock(&dev_priv->drrs.mutex);
5431 }
5432
5433 /**
5434 * intel_edp_drrs_invalidate - Invalidate DRRS
5435 * @dev: DRM device
5436 * @frontbuffer_bits: frontbuffer plane tracking bits
5437 *
5438 * When there is a disturbance on screen (due to cursor movement/time
5439 * update etc), DRRS needs to be invalidated, i.e. need to switch to
5440 * high RR.
5441 *
5442 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5443 */
5444 void intel_edp_drrs_invalidate(struct drm_device *dev,
5445 unsigned frontbuffer_bits)
5446 {
5447 struct drm_i915_private *dev_priv = dev->dev_private;
5448 struct drm_crtc *crtc;
5449 enum pipe pipe;
5450
5451 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5452 return;
5453
5454 cancel_delayed_work(&dev_priv->drrs.work);
5455
5456 mutex_lock(&dev_priv->drrs.mutex);
5457 if (!dev_priv->drrs.dp) {
5458 mutex_unlock(&dev_priv->drrs.mutex);
5459 return;
5460 }
5461
5462 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5463 pipe = to_intel_crtc(crtc)->pipe;
5464
5465 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5466 intel_dp_set_drrs_state(dev_priv->dev,
5467 dev_priv->drrs.dp->attached_connector->panel.
5468 fixed_mode->vrefresh);
5469 }
5470
5471 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5472
5473 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5474 mutex_unlock(&dev_priv->drrs.mutex);
5475 }
5476
5477 /**
5478 * intel_edp_drrs_flush - Flush DRRS
5479 * @dev: DRM device
5480 * @frontbuffer_bits: frontbuffer plane tracking bits
5481 *
5482 * When there is no movement on screen, DRRS work can be scheduled.
5483 * This DRRS work is responsible for setting relevant registers after a
5484 * timeout of 1 second.
5485 *
5486 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5487 */
5488 void intel_edp_drrs_flush(struct drm_device *dev,
5489 unsigned frontbuffer_bits)
5490 {
5491 struct drm_i915_private *dev_priv = dev->dev_private;
5492 struct drm_crtc *crtc;
5493 enum pipe pipe;
5494
5495 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5496 return;
5497
5498 cancel_delayed_work(&dev_priv->drrs.work);
5499
5500 mutex_lock(&dev_priv->drrs.mutex);
5501 if (!dev_priv->drrs.dp) {
5502 mutex_unlock(&dev_priv->drrs.mutex);
5503 return;
5504 }
5505
5506 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5507 pipe = to_intel_crtc(crtc)->pipe;
5508 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5509
5510 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5511 !dev_priv->drrs.busy_frontbuffer_bits)
5512 schedule_delayed_work(&dev_priv->drrs.work,
5513 msecs_to_jiffies(1000));
5514 mutex_unlock(&dev_priv->drrs.mutex);
5515 }
5516
5517 /**
5518 * DOC: Display Refresh Rate Switching (DRRS)
5519 *
5520 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5521 * which enables swtching between low and high refresh rates,
5522 * dynamically, based on the usage scenario. This feature is applicable
5523 * for internal panels.
5524 *
5525 * Indication that the panel supports DRRS is given by the panel EDID, which
5526 * would list multiple refresh rates for one resolution.
5527 *
5528 * DRRS is of 2 types - static and seamless.
5529 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5530 * (may appear as a blink on screen) and is used in dock-undock scenario.
5531 * Seamless DRRS involves changing RR without any visual effect to the user
5532 * and can be used during normal system usage. This is done by programming
5533 * certain registers.
5534 *
5535 * Support for static/seamless DRRS may be indicated in the VBT based on
5536 * inputs from the panel spec.
5537 *
5538 * DRRS saves power by switching to low RR based on usage scenarios.
5539 *
5540 * eDP DRRS:-
5541 * The implementation is based on frontbuffer tracking implementation.
5542 * When there is a disturbance on the screen triggered by user activity or a
5543 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5544 * When there is no movement on screen, after a timeout of 1 second, a switch
5545 * to low RR is made.
5546 * For integration with frontbuffer tracking code,
5547 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5548 *
5549 * DRRS can be further extended to support other internal panels and also
5550 * the scenario of video playback wherein RR is set based on the rate
5551 * requested by userspace.
5552 */
5553
5554 /**
5555 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5556 * @intel_connector: eDP connector
5557 * @fixed_mode: preferred mode of panel
5558 *
5559 * This function is called only once at driver load to initialize basic
5560 * DRRS stuff.
5561 *
5562 * Returns:
5563 * Downclock mode if panel supports it, else return NULL.
5564 * DRRS support is determined by the presence of downclock mode (apart
5565 * from VBT setting).
5566 */
5567 static struct drm_display_mode *
5568 intel_dp_drrs_init(struct intel_connector *intel_connector,
5569 struct drm_display_mode *fixed_mode)
5570 {
5571 struct drm_connector *connector = &intel_connector->base;
5572 struct drm_device *dev = connector->dev;
5573 struct drm_i915_private *dev_priv = dev->dev_private;
5574 struct drm_display_mode *downclock_mode = NULL;
5575
5576 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5577 mutex_init(&dev_priv->drrs.mutex);
5578
5579 if (INTEL_INFO(dev)->gen <= 6) {
5580 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5581 return NULL;
5582 }
5583
5584 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5585 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5586 return NULL;
5587 }
5588
5589 downclock_mode = intel_find_panel_downclock
5590 (dev, fixed_mode, connector);
5591
5592 if (!downclock_mode) {
5593 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5594 return NULL;
5595 }
5596
5597 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5598
5599 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5600 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5601 return downclock_mode;
5602 }
5603
5604 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5605 struct intel_connector *intel_connector)
5606 {
5607 struct drm_connector *connector = &intel_connector->base;
5608 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5609 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5610 struct drm_device *dev = intel_encoder->base.dev;
5611 struct drm_i915_private *dev_priv = dev->dev_private;
5612 struct drm_display_mode *fixed_mode = NULL;
5613 struct drm_display_mode *downclock_mode = NULL;
5614 bool has_dpcd;
5615 struct drm_display_mode *scan;
5616 struct edid *edid;
5617 enum pipe pipe = INVALID_PIPE;
5618
5619 if (!is_edp(intel_dp))
5620 return true;
5621
5622 pps_lock(intel_dp);
5623 intel_edp_panel_vdd_sanitize(intel_dp);
5624 pps_unlock(intel_dp);
5625
5626 /* Cache DPCD and EDID for edp. */
5627 has_dpcd = intel_dp_get_dpcd(intel_dp);
5628
5629 if (has_dpcd) {
5630 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5631 dev_priv->no_aux_handshake =
5632 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5633 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5634 } else {
5635 /* if this fails, presume the device is a ghost */
5636 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5637 return false;
5638 }
5639
5640 /* We now know it's not a ghost, init power sequence regs. */
5641 pps_lock(intel_dp);
5642 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5643 pps_unlock(intel_dp);
5644
5645 mutex_lock(&dev->mode_config.mutex);
5646 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5647 if (edid) {
5648 if (drm_add_edid_modes(connector, edid)) {
5649 drm_mode_connector_update_edid_property(connector,
5650 edid);
5651 drm_edid_to_eld(connector, edid);
5652 } else {
5653 kfree(edid);
5654 edid = ERR_PTR(-EINVAL);
5655 }
5656 } else {
5657 edid = ERR_PTR(-ENOENT);
5658 }
5659 intel_connector->edid = edid;
5660
5661 /* prefer fixed mode from EDID if available */
5662 list_for_each_entry(scan, &connector->probed_modes, head) {
5663 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5664 fixed_mode = drm_mode_duplicate(dev, scan);
5665 downclock_mode = intel_dp_drrs_init(
5666 intel_connector, fixed_mode);
5667 break;
5668 }
5669 }
5670
5671 /* fallback to VBT if available for eDP */
5672 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5673 fixed_mode = drm_mode_duplicate(dev,
5674 dev_priv->vbt.lfp_lvds_vbt_mode);
5675 if (fixed_mode)
5676 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5677 }
5678 mutex_unlock(&dev->mode_config.mutex);
5679
5680 if (IS_VALLEYVIEW(dev)) {
5681 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5682 register_reboot_notifier(&intel_dp->edp_notifier);
5683
5684 /*
5685 * Figure out the current pipe for the initial backlight setup.
5686 * If the current pipe isn't valid, try the PPS pipe, and if that
5687 * fails just assume pipe A.
5688 */
5689 if (IS_CHERRYVIEW(dev))
5690 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5691 else
5692 pipe = PORT_TO_PIPE(intel_dp->DP);
5693
5694 if (pipe != PIPE_A && pipe != PIPE_B)
5695 pipe = intel_dp->pps_pipe;
5696
5697 if (pipe != PIPE_A && pipe != PIPE_B)
5698 pipe = PIPE_A;
5699
5700 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5701 pipe_name(pipe));
5702 }
5703
5704 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5705 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5706 intel_panel_setup_backlight(connector, pipe);
5707
5708 return true;
5709 }
5710
5711 bool
5712 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5713 struct intel_connector *intel_connector)
5714 {
5715 struct drm_connector *connector = &intel_connector->base;
5716 struct intel_dp *intel_dp = &intel_dig_port->dp;
5717 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5718 struct drm_device *dev = intel_encoder->base.dev;
5719 struct drm_i915_private *dev_priv = dev->dev_private;
5720 enum port port = intel_dig_port->port;
5721 int type;
5722
5723 intel_dp->pps_pipe = INVALID_PIPE;
5724
5725 /* intel_dp vfuncs */
5726 if (INTEL_INFO(dev)->gen >= 9)
5727 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5728 else if (IS_VALLEYVIEW(dev))
5729 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5730 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5731 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5732 else if (HAS_PCH_SPLIT(dev))
5733 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5734 else
5735 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5736
5737 if (INTEL_INFO(dev)->gen >= 9)
5738 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5739 else
5740 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5741
5742 /* Preserve the current hw state. */
5743 intel_dp->DP = I915_READ(intel_dp->output_reg);
5744 intel_dp->attached_connector = intel_connector;
5745
5746 if (intel_dp_is_edp(dev, port))
5747 type = DRM_MODE_CONNECTOR_eDP;
5748 else
5749 type = DRM_MODE_CONNECTOR_DisplayPort;
5750
5751 /*
5752 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5753 * for DP the encoder type can be set by the caller to
5754 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5755 */
5756 if (type == DRM_MODE_CONNECTOR_eDP)
5757 intel_encoder->type = INTEL_OUTPUT_EDP;
5758
5759 /* eDP only on port B and/or C on vlv/chv */
5760 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5761 port != PORT_B && port != PORT_C))
5762 return false;
5763
5764 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5765 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5766 port_name(port));
5767
5768 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5769 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5770
5771 connector->interlace_allowed = true;
5772 connector->doublescan_allowed = 0;
5773
5774 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5775 edp_panel_vdd_work);
5776
5777 intel_connector_attach_encoder(intel_connector, intel_encoder);
5778 drm_connector_register(connector);
5779
5780 if (HAS_DDI(dev))
5781 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5782 else
5783 intel_connector->get_hw_state = intel_connector_get_hw_state;
5784 intel_connector->unregister = intel_dp_connector_unregister;
5785
5786 /* Set up the hotplug pin. */
5787 switch (port) {
5788 case PORT_A:
5789 intel_encoder->hpd_pin = HPD_PORT_A;
5790 break;
5791 case PORT_B:
5792 intel_encoder->hpd_pin = HPD_PORT_B;
5793 break;
5794 case PORT_C:
5795 intel_encoder->hpd_pin = HPD_PORT_C;
5796 break;
5797 case PORT_D:
5798 intel_encoder->hpd_pin = HPD_PORT_D;
5799 break;
5800 default:
5801 BUG();
5802 }
5803
5804 if (is_edp(intel_dp)) {
5805 pps_lock(intel_dp);
5806 intel_dp_init_panel_power_timestamps(intel_dp);
5807 if (IS_VALLEYVIEW(dev))
5808 vlv_initial_power_sequencer_setup(intel_dp);
5809 else
5810 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5811 pps_unlock(intel_dp);
5812 }
5813
5814 intel_dp_aux_init(intel_dp, intel_connector);
5815
5816 /* init MST on ports that can support it */
5817 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5818 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5819 intel_dp_mst_encoder_init(intel_dig_port,
5820 intel_connector->base.base.id);
5821 }
5822 }
5823
5824 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5825 drm_dp_aux_unregister(&intel_dp->aux);
5826 if (is_edp(intel_dp)) {
5827 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5828 /*
5829 * vdd might still be enabled do to the delayed vdd off.
5830 * Make sure vdd is actually turned off here.
5831 */
5832 pps_lock(intel_dp);
5833 edp_panel_vdd_off_sync(intel_dp);
5834 pps_unlock(intel_dp);
5835 }
5836 drm_connector_unregister(connector);
5837 drm_connector_cleanup(connector);
5838 return false;
5839 }
5840
5841 intel_dp_add_properties(intel_dp, connector);
5842
5843 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5844 * 0xd. Failure to do so will result in spurious interrupts being
5845 * generated on the port when a cable is not attached.
5846 */
5847 if (IS_G4X(dev) && !IS_GM45(dev)) {
5848 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5849 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5850 }
5851
5852 i915_debugfs_connector_add(connector);
5853
5854 return true;
5855 }
5856
5857 void
5858 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5859 {
5860 struct drm_i915_private *dev_priv = dev->dev_private;
5861 struct intel_digital_port *intel_dig_port;
5862 struct intel_encoder *intel_encoder;
5863 struct drm_encoder *encoder;
5864 struct intel_connector *intel_connector;
5865
5866 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5867 if (!intel_dig_port)
5868 return;
5869
5870 intel_connector = intel_connector_alloc();
5871 if (!intel_connector) {
5872 kfree(intel_dig_port);
5873 return;
5874 }
5875
5876 intel_encoder = &intel_dig_port->base;
5877 encoder = &intel_encoder->base;
5878
5879 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5880 DRM_MODE_ENCODER_TMDS);
5881
5882 intel_encoder->compute_config = intel_dp_compute_config;
5883 intel_encoder->disable = intel_disable_dp;
5884 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5885 intel_encoder->get_config = intel_dp_get_config;
5886 intel_encoder->suspend = intel_dp_encoder_suspend;
5887 if (IS_CHERRYVIEW(dev)) {
5888 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5889 intel_encoder->pre_enable = chv_pre_enable_dp;
5890 intel_encoder->enable = vlv_enable_dp;
5891 intel_encoder->post_disable = chv_post_disable_dp;
5892 } else if (IS_VALLEYVIEW(dev)) {
5893 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5894 intel_encoder->pre_enable = vlv_pre_enable_dp;
5895 intel_encoder->enable = vlv_enable_dp;
5896 intel_encoder->post_disable = vlv_post_disable_dp;
5897 } else {
5898 intel_encoder->pre_enable = g4x_pre_enable_dp;
5899 intel_encoder->enable = g4x_enable_dp;
5900 if (INTEL_INFO(dev)->gen >= 5)
5901 intel_encoder->post_disable = ilk_post_disable_dp;
5902 }
5903
5904 intel_dig_port->port = port;
5905 intel_dig_port->dp.output_reg = output_reg;
5906
5907 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5908 if (IS_CHERRYVIEW(dev)) {
5909 if (port == PORT_D)
5910 intel_encoder->crtc_mask = 1 << 2;
5911 else
5912 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5913 } else {
5914 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5915 }
5916 intel_encoder->cloneable = 0;
5917 intel_encoder->hot_plug = intel_dp_hot_plug;
5918
5919 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5920 dev_priv->hpd_irq_port[port] = intel_dig_port;
5921
5922 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5923 drm_encoder_cleanup(encoder);
5924 kfree(intel_dig_port);
5925 kfree(intel_connector);
5926 }
5927 }
5928
5929 void intel_dp_mst_suspend(struct drm_device *dev)
5930 {
5931 struct drm_i915_private *dev_priv = dev->dev_private;
5932 int i;
5933
5934 /* disable MST */
5935 for (i = 0; i < I915_MAX_PORTS; i++) {
5936 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5937 if (!intel_dig_port)
5938 continue;
5939
5940 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5941 if (!intel_dig_port->dp.can_mst)
5942 continue;
5943 if (intel_dig_port->dp.is_mst)
5944 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5945 }
5946 }
5947 }
5948
5949 void intel_dp_mst_resume(struct drm_device *dev)
5950 {
5951 struct drm_i915_private *dev_priv = dev->dev_private;
5952 int i;
5953
5954 for (i = 0; i < I915_MAX_PORTS; i++) {
5955 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5956 if (!intel_dig_port)
5957 continue;
5958 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5959 int ret;
5960
5961 if (!intel_dig_port->dp.can_mst)
5962 continue;
5963
5964 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5965 if (ret != 0) {
5966 intel_dp_check_mst_status(&intel_dig_port->dp);
5967 }
5968 }
5969 }
5970 }
This page took 0.150194 seconds and 6 git commands to generate.